

Inside Java™ 2 Platform Security: Architecture, API Design, and Implementation, 2nd

PREFACE..3
How This Book Is Organized ..3
Acknowledgments..4
About the Authors ...6

PREFACE TO THE FIRST EDITION ..6
Acknowledgments for the First Edition...7

CHAPTER 1. COMPUTER AND NETWORK SECURITY FUNDAMENTALS ...9
1.1 Cryptography versus Computer Security ..9
1.2 Threats and Protection..10
1.3 Perimeter Defense...11
1.4 Access Control and Security Models...14
1.5 Using Cryptography..17
1.6 Authentication ...21
1.7 Mobile Code..23
1.8 Where Java Technology–Based Security Fits In...24

CHAPTER 2. BASIC SECURITY FOR THE JAVA PROGRAMMING LANGUAGE......................................25
2.1 The Java Programming Language and Platform..25
2.2 Original Basic Security Architecture ..26
2.3 Bytecode Verification and Type Safety ...27
2.4 Signed Applets...29
2.5 Further Enhancements..30

CHAPTER 3. JAVA 2 SECURITY ARCHITECTURE ...31
3.1 Security Architecture Requirements of Java 2 ..31
3.2 Overview of the Java 2 Security Architecture...33
3.3 Architecture Summary...33
3.4 Lessons Learned..35

CHAPTER 4. SECURE CLASS LOADING ...37
4.1 Class Files, Types, and Defining Class Loaders...37
4.2 Well-Known Class Loader Instances ..38
4.3 Class Loader Hierarchies ...38
4.4 Loading Classes ..41
4.5 SecureClassLoader Details ...45
4.6 URLClassLoader Details...46
4.7 Class Paths ...47

CHAPTER 5. ELEMENTS OF SECURITY POLICY...49
5.1 Permissions...49
5.2 Describing Code ...58
5.3 ProtectionDomain ..62
5.4 Security Policy ..66
5.5 Assigning Permissions ..69
5.6 Dynamic Security Policy...70

CHAPTER 6. ENFORCING SECURITY POLICY ..72
6.1 SecurityManager...72
6.2 AccessControlContext...74
6.3 DomainCombiner ...75
6.4 AccessController ..76

CHAPTER 7. CUSTOMIZING THE SECURITY ARCHITECTURE ..92
7.1 Creating New Permission Types ...92
7.2 Customizing Security Policy ...96
7.3 Customizing the Access Control Context ..101

CHAPTER 8. ESTABLISHING TRUST...102
8.1 Digital Certificates..102
8.2 Establishing Trust with Certification Paths ..105
8.3 Establishing Trust in Signed Code..110
8.4 User-Centric Authentication and Authorization Using JAAS ...112
8.5 Distributed End-Entity Authentication..119

CHAPTER 9. OBJECT SECURITY..124
9.1 Security Exceptions...124
9.2 Fields and Methods...125
9.3 Static Fields ..126

 - 1 -

Inside Java™ 2 Platform Security: Architecture, API Design, and Implementation, 2nd

9.4 Private Object State and Object Immutability ..126
9.5 Privileged Code ..128
9.6 Serialization ..129
9.7 Inner Classes...131
9.8 Native Methods ...131
9.9 Signing Objects ...132
9.10 Sealing Objects ...134
9.11 Guarding Objects..135

CHAPTER 10. PROGRAMMING CRYPTOGRAPHY...139
10.1 Cryptographic Concepts ...139
10.2 Design Principles..140
10.3 Cryptographic Services and Service Providers...141
10.4 Core Cryptography Classes ..146
10.5 Additional Cryptography Classes ...163
10.6 Code Examples..173
10.7 Standard Names ..181
10.8 Algorithm Specifications ...185

CHAPTER 11. NETWORK SECURITY..189
11.1 Java GSS-API..189
11.2 JSSE ..195
11.3 Remote Method Invocation ...204

CHAPTER 12. DEPLOYING THE SECURITY ARCHITECTURE ..207
12.1 Installing the Latest Java 2 Platform Software...207
12.2 The Installation Directory <java.home> ...208
12.3 Setting System and Security Properties...208
12.4 Securing the Deployment ..210
12.5 Installing Provider Packages..212
12.6 Policy Configuration...214
12.7 JAAS Login Configuration Files ...223
12.8 Security Tools..226
12.9 X.500 Distinguished Names ..239
12.10 Managing Security Policies for Nonexperts..240

CHAPTER 13. OTHER PLATFORMS AND FUTURE DIRECTIONS...242
13.1 Introduction to Java Card...242
13.2 Introduction to Java 2 Micro Edition..245
13.3 Security Enhancements on the Horizon for J2SE..246
13.4 Brief Introduction to Jini Network Technology...249
13.5 Brief Introduction to J2EE..251
13.6 Client Containers ..252
13.7 Final Remarks...253

BIBLIOGRAPHY ...254

 - 2 -

Inside Java™ 2 Platform Security: Architecture, API Design, and Implementation, 2nd

Preface
Inventing is a combination of brains and materials. The more brains you use, the less material you
need.

—Charles Kettering

The phrases "computer security," "network security," and "information security" conjure up
various notions and precepts to a given audience. Some people tend to envision technical
measures, such as cryptography, as the sole means by which security is attained. Other people
recognize the limitations of various technical measures and treat them as tools that, when used in
combination with other technical measures, can accomplish the task at hand. The distinction is
subtle but important. The phrase "platform security" reflects a holistic view of security, suggesting
that the foundation is secure and can be relied on as is or used as a secure subsystem to leverage
when building larger systems. Building a secure platform is a very difficult and exacting task that
historically has been accomplished only when security is a design requirement that is taken into
consideration at the onset. The idea that security can be "bolted on" has proved frail and wrought
with failure modes, which has led to a mulititude of security breaches.

Java technology is possibly the only general-purpose secure computing platform to become
commercially successful. This would never have happened had the designers not taken security
seriously from the start. The security properties of Java technology are many, and the Java
platform builds on itself to create a reliable and secure platform. The Java 2 security model would
be impossible to make trustworthy if it were not for the safety net provided by the Java language
itself. The Java language specifies the semantics to ensure type safety and referential integrity and
yet would fail miserably if it were not for the enforcement and assurances the Java virtual machine
provides. Thus, from these various secure subsystems, we have created a greater whole.

The target audience of this book is varied. We believe this book will be a useful resource to those
seeking a general understanding of the security foundation the Java 2 security architecture
provides and relies on. The book should also prove particularily useful to software practitioners
building enterprise-class applications that must meet varied security requirements, ranging from
authentication to authorization to information protection. This book provides insight into some of
the design trade-offs we made as we developed the platform and the lessons we have learned as
we continue to evolve and enhance the platform. We provide guidance to those needing to
customize the security model for their specific purposes. We describe the inflection points we
designed into the platform to accommodate those rare but critical customizations. Most of the
aforementioned topics are targeted to system developers, yet we recognize that security is not
limited to the implementation of an application. Equally important is the deployment of the
application. For deployers, we supply descriptions ranging from expressing security policy to
hardening the installation of the runtime environment.

This book does not explain to any level of detail the Java programming language. We recommend
the book by Arnold and Gosling [3] as a good starting point. Also, we do not cover the various
security APIs in their entirety, and thus we refer the reader to the Java 2 SDK documentation.

How This Book Is Organized

The text of this book is organized to cater to its various audiences. The first two chapters supply
background information providing the basis for more specific topics covered in subsequent
chapters. The reader need not be proficient in the Java language to understand these introductory
chapters. Chapters 3 through 6 describe the Java 2 security architecture, starting with general
concepts and ending with comprehensive coverage of security policy enforcement. Chapters 7
through 11 are targeted toward the enterprise application developer, covering topics ranging from
trust establishment to cryptography and network security. For these chapters, Java language

 - 3 -

Inside Java™ 2 Platform Security: Architecture, API Design, and Implementation, 2nd

proficiency is assumed. Chapter 12 is directly targeted toward deployers, who should also read
Chapter 8 for additional details about trust establishment. It is our belief that deployers need not
be proficient in the Java language and that they can ignore the sections of Chapter 8 describing
APIs.

The content of each chapter of this book is as follows:

Chapter 1: A general background on computer, network, and information security

Chapter 2: A review of the Java security models, starting with the original sandbox and
progressing to the fine-grained access control model

Chapter 3: An in-depth look at the Java 2 security architecture, which is policy driven and
capable of enforcing fine-grained access controls

Chapter 4: Detailed coverage of class loading, including a description of the class loader
inheritance hierarchy and the runtime delegation hierarchy

Chapter 5: An explanation of the security classes that supply the foundation for the enforcement
of security policy at runtime

Chapter 6: Thorough coverage of the policy enforcement classes and the design of the Java 2
security architecture access control algorithm

Chapter 7: An explanation of the customization points provided for systems programmers who
need to enhance the core security architecture

Chapter 8: An outline of the trust establishment capabilities and mechanisms supplied by the
security architecture

Chapter 9: A presentation of common pitfalls and defensive programming strategies

Chapter 10: Comprehensive coverage of the cryptography-related APIs

Chapter 11: An operational overview of the APIs used to secure network protocols, including
those for authentication, confidentiality, and integrity protection

Chapter 12: A presentation of the deployment options that may be used to securely deploy the
Java runtime and Java technology-based applications

Chapter 13: A look at the various Java technology platforms and a glance toward the future of
Java security

Acknowledgments

This project began as a casual conversation between Li Gong and me at the 2001 JavaOne
conference in San Francisco. Prior to that conversation, Li had transitioned from the role of chief
security architect for the Java 2 security development project to leading Project JXTA, whereas I
had transitioned into the lead security architect role for the Java 2 development team near the end
of the prior millennium. I mentioned to Li that the security architecture had evolved to the point
that the first edition was no longer current and thus not an authoritative text.

Nearly two years later, the results of that conversation have come to fruition, and I can confidently
state that we have come a long way to reach our goal of producing a book that thoroughly and

 - 4 -

Inside Java™ 2 Platform Security: Architecture, API Design, and Implementation, 2nd

accurately describes the Java 2 security architecture. This clearly would not have been possible
without Li's support, and I am grateful for having had the opportunity to work with Li in the past
and especially on this project.

This book would probably be stuck in the starting blocks if it were not for the guidance and gentle
nudging of Lisa Friendly, Manager of Software Technical Publications at Sun Microsystems. Lisa
recognized early on that my commitment to the project was absolute but that my copious free
time, which was allotted to this effort, fell between the hours of 10 P.M. and 2 A.M. Lisa quickly
solved this problem by engaging Mary Dageforde as technical editor. I am forever grateful. Not
only is Mary an excellent technical writer and editor who ended up writing enough to get coauthor
billing, but she can code too! Mary truly made this project happen with her drive, dedication, and
thoroughness. I cannot say enough about Mary, so I will keep it brief. Thank you, Mary.

Tim Lindholm was also an early inspiration, and I appreciate his support in helping me keep
things in perspective. I also want to acknowledge the support of my management—Larry
Abrahams, Maxine Erlund, Sharon Liu, and Stephen Pelletier—who understood how important
this project was to me.

My peers in the Java security development team participated in this publication in many ways, and
I wish to acknowledge them for their content contributions, insights, patience, camaraderie,
constructive criticism, and most of all their friendship. Thank you, Alan Bateman, Jean-Christophe
Collet, Jaya Hangal, Charlie Lai, Rosanna Lee, Jan Luehe, Seema Malkani, Ram Marti, Michael
McMahon, Sean Mullan, Jeff Nisewanger, Yu-Ching Peng, Chok Poh, Vincent Ryan, Scott
Seligman, Andreas Sterbenz, Mayank Upadhyay, Yingxian Wang, and Brad Wetmore.

Being a part of the team that created something that has had such a significant impact on
computing is an honor not shared by many. The success of Java is obviously a result of the high
caliber of people who made it a reality. I have had the luxury of working alongside many talented
people, and I expressly want to thank Lars Bak, Josh Bloch, Gilad Bracha, Zhiqun Chen, Steffen
Garup, James Gosling, Graham Hamilton, Mark Hapner, Stanley Ho, Peter Jones, Peter Kessler,
Tim Lindholm, Ron Monzillo, Hans Muller, Hemma Prafullchandra, Mark Reinhold, Rene
Schmidt, Bill Shannon, Bob Scheifler, Jim Waldo, and Ann Wollrath for the great experience,
mentoring, and technical challenges.

Few people realize the existence and close working relationship the Java security development
team at Sun Microsystems maintains with our peers in other organizations. I specifically wish to
acknowledge the team at IBM, including Larry Koved, Marco Pistoia, Tony Nadalin, and Bruce
Rich, who have been instrumental in enhancing the feature set of the Java 2 security architecture.

As new technologies emerge, we have worked closely with security researchers within Sun Labs
to integrate and productize their output. I wish to acknowledge Anne Anderson, Whitfield Diffie,
Steve Hanna, Susan Landau, and Radia Perlman for passing along best-in-breed security
technology.

I also want to thank the many reviewers of this text and specifically recognize Gilad Bracha, Matt
Curtin, James Hoburg, Peter Jones, Charlie Lai, Brian Larkins, Rosanna Lee, John Linn, Ram
Marti, Doug Monroe, Sean Mullan, Shivaram Mysore, Vincent Ryan, Bob Scheifler, Andreas
Sterbenz, Brad Wetmore, and Phil Yeater for the feedback they provided. I also wish to recognize
Peter Jones and Shivaram Mysore for their content contributions.

Thanks also to Alan Sommerer, the Sun Microsystems Manager of Technical Publications for the
Java platform, for his help in ushering this book to publication.

Finally, I want to express my gratitude to the production team. I thank the copy editor, Evelyn
Pyle, and the production folks at Addison-Wesley for their support and effort in getting this book
off my laptop and into print. Thanks to Marcy Barnes, Jacquelyn Doucette, Amy Fleischer, John

 - 5 -

Inside Java™ 2 Platform Security: Architecture, API Design, and Implementation, 2nd

Fuller, Mike Hendrickson, Michael Mullen, and Ann Sellers. Also, I want to acknowledge Mary
Darby and Amy Girard from Duarte Design for their innate ability to take my graphically
challenged images and turn them into a thousand words.

Gary Ellison
San Mateo, California
March 2003

I am grateful to all past and current members of the Java Security and Networking group at Sun,
as well as contributors from all over the world, who continue to strengthen Java's position as the
premier computing platform in these areas. I am in debt to Gary Ellison and Mary Dageforde for
their tremendous effort in producing this second edition which significantly expands the coverage
of the first.

Li Gong
Beijing, China

It has been a pleasure working with Gary Ellison on this book. I thank him for his vision,
dedication, encouragement, feedback, enormous effort in the face of multiple competing
responsibilities, and sense of humor. It has also been my good fortune to work with Li Gong and
members of the top-notch Java Security and Networking team at Sun at various times throughout
the past several years. I thank them all. Thanks also to Lisa Friendly of Sun and Mike
Hendrickson of Addison-Wesley for their support and their roles in facilitating publication of this
book. Finally, I would like to thank the copy editor, the graphics designers, and the very helpful
production folks at Addison-Wesley.

Mary Dageforde
Santa Clara, California

About the Authors

Li Gong is Managing Director of Sun Microsystems' Engineering and Research Institute in
Beijing, China. Previously at Sun, he was engineering head of Java Security and Networking, Java
Embedded Servers, and JXTA. He obtained B.S. and M.S. degrees from Tsinghua University,
Beijing, and a Ph.D. from the University of Cambridge. He is Associate Editor-in-Chief of IEEE
Internet Computing.

Gary Ellison is a Senior Staff Engineer at Sun Microsystems, where he designs secure network
computing platforms. His primary role is focused on aspects of trust, security, and privacy. From
1999 through 2002, he led the architecture, design, and implementation of the security and
networking components in the Java 2 Platform, Standard Edition. He holds a B.Sc. in Mathematics
and Physical Science from The Ohio State University.

Mary Dageforde is a freelance consultant who writes software documentation for various Silicon
Valley computer companies, including Sun Microsystems. She has an M.S. in Computer Science
from Stanford University and a software design and development background encompassing
compiler and interpreter implementation, language design, and database management. Since 1990,
she has concentrated on documenting APIs, languages, tools, and systems. She wrote the Security
trail of The Java™ Tutorial Continued (Addison-Wesley, 1999).

Preface to the First Edition
Give me a lever and a fulcrum, and I can move the globe.

 - 6 -

Inside Java™ 2 Platform Security: Architecture, API Design, and Implementation, 2nd

—Archimedes

Since Java technology's inception, and especially its public debut in the spring of 1995, strong and
growing interest has developed regarding the security of the Java platform, as well as new security
issues raised by the deployment of Java technology. This level of attention to security is a fairly
new phenomenon in computing history. Most new computing technologies tend to ignore security
considerations when they emerge initially, and most are never made more secure thereafter.
Attempts made to do so typically are not very successful, as it is now well known that retrofitting
security is usually very difficult, if not impossible, and often causes backward compatibility
problems.

Thus it is extremely fortunate that when Java technology burst on the Internet scene, security was
one of its primary design goals. Its initial security model, although very simplistic, served as a
great starting place, an Archimedean fulcrum. The engineering talents and strong management
team at JavaSoft are the lever; together they made Java's extensive security architecture a reality.

From a technology provider's point of view, security on the Java platform focuses on two aspects.
The first is to provide the Java platform, primarily through the Java Development Kit, as a secure
platform on which to run Java-enabled applications in a secure fashion. The second is to provide
security tools and services implemented in the Java programming language that enable a wider
range of security-sensitive applications, for example, in the enterprise world.

I wrote this book with many purposes in mind. First, I wanted to equip the reader with a brief but
clear understanding of the overall picture of systems and network security, especially in the
context of the Internet environment within which Java technology plays a central role, and how
various security technologies relate to each other.

Second, I wanted to provide a comprehensive description of the current security architecture on
the Java platform. This includes language features, platform APIs, security policies, and their
enforcement mechanisms. Whenever appropriate, I discuss not only how a feature functions, but
also why it is designed in such a way and the alternative approaches that we—the Java security
development team at Sun Microsystems—examined and rejected. When demonstrating the use of
a class or its methods, I use real-world code examples whenever appropriate. Some of these
examples are synthesized from the Java 2 SDK code source tree.

Third, I sought to tell the reader about security deployment issues, both how an individual or an
enterprise manages security and how to customize, extend, and enrich the existing security
architecture.

Finally, I wanted to help developers avoid programming errors by discussing a number of
common mistakes and by providing tips for safe programming that can be immediately applied to
ongoing projects.

Acknowledgments for the First Edition

It is a cliche to say that writing a book is not possible without the help of many others, but it is
true. I am very grateful to Dick Neiss, my manager at JavaSoft, who encouraged me to write the
book and regularly checked on my progress. Lisa Friendly, the Addison-Wesley Java series editor,
helped by guiding me through the writing process while maintaining a constant but "friendly"
pressure. The team at Addison-Wesley was tremendously helpful. I'd like particularly to thank
Mike Hendrickson, Katherine Kwack, Marina Lang, Laura Michaels, Marty Rabinowitz, and
Tracy Russ. They are always encouraging, kept faith in me, and rescued me whenever I
encountered obstacles.

 - 7 -

Inside Java™ 2 Platform Security: Architecture, API Design, and Implementation, 2nd

This book is centered around JDK 1.2 security development, a project that lasted fully two years,
during which many people inside and outside of Sun Microsystems contributed in one way or
another to the design, implementation, testing, and documentation of the final product. I would
like to acknowledge Dirk Balfanz, Bob Blakley, Josh Bloch, David Bowen, Gilad Bracha, David
Brownell, Eric Chu, David Connelly, Mary Dageforde, Drew Dean, Satya Dodda, Michal Geva,
Gadi Guy, Graham Hamilton, Mimi Hills, Ted Jucevic, Larry Koved, Charlie Lai, Sheng Liang,
Tim Lindholm, Jan Luehe, Gary McGraw, Marianne Mueller, Tony Nadalin, Don Neal, Jeff
Nisewanger, Yu-Ching Peng, Hemma Prafullchandra, Benjamin Renaud, Roger Riggs, Jim
Roskind, Nakul Saraiya, Roland Schemers, Bill Shannon, Vijay Srinivasan, Tom van Vleck, Dan
Wallach, and Frank Yellin. I also appreciate the technical guidance from James Gosling and Jim
Mitchell, as well as management support from Dick Neiss, Jon Kannegaard, and Alan Baratz. I
have had the pleasure of chairing the Java Security Advisory Council, and I thank the external
members, Ed Felten, Peter Neumann, Jerome Saltzer, Fred Schneider, and Michael Schroeder for
their participation and superb insights into all matters that relate to computer security.

Isabel Cho, Lisa Friendly, Charlie Lai, Jan Luehe, Teresa Lunt, Laura Michaels, Stephen
Northcutt, Peter Neumann, and a number of anonymous reviewers provided valuable comments
on draft versions of this book.

G. H. Hardy once said that young men should prove theorems, while old men should write books.
It is now time to prove some more theorems.

Li Gong
Los Altos, California
June 1999

 - 8 -

Inside Java™ 2 Platform Security: Architecture, API Design, and Implementation, 2nd

Chapter 1. Computer and Network Security
Fundamentals
The three golden rules to ensure computer security are: do not own a computer; do not power it
on; and do not use it.

—Robert (Bob) T. Morris

Security is all about ensuring that bad things do not happen. This deceptively simple brief
statement can in fact have very complicated interpretations. Exploring them can help in
understanding what security really means.

Certain rule-of-thumb principles apply to the concept of security in general. Throughout this book,
you will see that these heuristics apply equally well to computer security. First, security is always
related to utility. To ensure that bad things do not happen, you can simply do nothing. For
example, a car stored in a garage cannot cause a traffic accident. But doing nothing with the car is
clearly not what is intended. The real goal is to ensure that bad things do not happen but that good
things do get done.

Second, security is relative to the threat that one considers. For example, the effectiveness of your
house's locked front door to prevent theft depends heavily on the types of thieves against which
you are guarding. Although the lock might deter an amateur thief, it might not pose a problem for
a sophisticated one equipped with the right tools.

Third, security must be considered from an overall system point of view. A system is only as
secure as its weakest point. That is, it is not enough to secure only the front door. A skilled thief
will try to enter the house from all potentially weak spots, especially those farthest away from
where you have installed strong locks. It is of little use to install a deadbolt on a screen door.

Fourth, security must be easy to accomplish. If it takes 30 minutes and great effort to unlock a
complicated lock, you will tend to leave the door unlocked.

Fifth, security must be affordable and cost-effective. For example, it clearly does not make sense
to install a lock that is worth more than the contents it is guarding. This is made more difficult to
gauge due to the fact that the value of something is subjective.

Last, but not least, security measures must be as simple as possible to comprehend because, as
experience indicates, the more complex a system is, the more error-prone it tends to be. It is better
to have something that is simple and trustworthy than something that is less dependable due to the
complexity of building a comprehensive system.

1.1 Cryptography versus Computer Security

Before moving on to specific topics, we want to clarify that cryptography and computer security
are two distinct subjects. Cryptography is the art of encoding information in a secret format such
that only the intended recipient can access the information. Cryptography can also be applied to
supply proofs of authenticity, integrity, and intent. The use of cryptography has progressed
extensively over a long period of time, ranging from the ancient Caesar cipher to cipher machines
widely used in World War II to modern cryptosystems implemented with computer hardware and
software.

Computer security is the application of measures that ensure that information being processed,
stored, or communicated is reliable and available to authorized entities. Computer security first
became an issue only in the 1960s, when timesharing, multiuser computer operating systems, such

 - 9 -

Inside Java™ 2 Platform Security: Architecture, API Design, and Implementation, 2nd

as Cambridge's early computing system [133] and MIT's Multics [110], were first built. After that,
the field of computer security remained relatively obscure for years, apart from a brief active
period in the mid-1970s [5, 51, 57, 116]. Security concerns then were based mostly on military
requirements. Commercial security did not become fully mainstream until the Internet and
electronic commerce (e-commerce)—and Java technology in particular—took center stage in the
1990s.

Security mechanisms often can benefit from the use of cryptography, such as when running a
network-based user login protocol. However, they do not necessarily depend on the use of
cryptography, such as when implementing UNIX-style access control on files.

Yet cryptography does not exist in a vacuum. Cryptographic algorithms are usually implemented
in software or hardware; thus, their correct operation depends critically on whether there is an
adequate level of system security. For example, if lack of access control means that an attacker
can modify the software that implements the algorithm, the lack of security directly impacts the
utilization of cryptography.

1.2 Threats and Protection

In computer security literature, threats or attacks are usually classified into three categories.

1. Secrecy attacks. The attacker attempts to steal confidential information, such as
passwords, medical records, electronic mail (e-mail) logs, and payroll data. The methods
of attack vary, from bribing a security guard to exploiting a security hole in the system or
a weakness in a cryptographic algorithm.

2. Integrity attacks. The attacker attempts to alter parts of the system illegally. For
example, a bank employee modifies the deposit system to transfer customer money into
his own account, thus compromising transaction integrity [96]. Or, a college student
breaks into the college administration system to raise her examination scores, thus
compromising data integrity. An attacker might also try to erase system logs in order to
hide his footprint.

3. Availability attacks. The attacker attempts to disrupt the normal operation of a system.
These are also commonly called denial-of-service attacks. For example, bombarding a
machine with a large number of IP (Internet Protocol) packets can effectively isolate the
machine from the rest of the network. A cyberterrorist might attempt to bring down the
national power grid or cause traffic accidents by compromising the computer-operated
control systems.

These three categories of attacks are intricately related; that is, the techniques and results of
attacks in one category can often be used to assist attacks in another. For example, by
compromising secrecy, an attacker could obtain passwords and thus compromise integrity by
gaining access to and then modifying system resources, which in turn could lead to successful
denial-of-service attacks. When a system failure occurs during an attack, most systems are not
fail-safe—that is, they do not enter into a state that is deemed secure—because they are not
designed to do so [111]. For example, it has been shown that a system crash sometimes leads to a
core dump in a publicly readable directory, where the core can contain sensitive information if the
dump occurs at the right time.[1]

[1] Of course, attacks can be viewed from other perspectives. For example, there is widespread public
concern about the privacy of the unregulated and sometimes illegal collection and distribution of
personal data, such as birth dates and U.S. social security numbers.

Similarly, protection mechanisms against these types of attacks in general are related. Roughly
speaking, the mechanisms are for one or more of the following purposes: attack prevention,
detection, or recovery. Not all these purposes can be fulfilled by the same mechanisms, as
explained later in this chapter.

 - 10 -

Inside Java™ 2 Platform Security: Architecture, API Design, and Implementation, 2nd

To protect data secrecy, you can store the data in an obscure place in the hope that attackers will
not find it. Or you can install strict access control procedures to guard against unauthorized access.
Or you can use encryption technology to encrypt the data such that attackers cannot access real
data unless they can steal the encryption key or can break the cryptosystem, which could be
extremely difficult. Of course, multiple measures can be deployed at the same time. Note that, for
secrecy, the most important technique is prevention. A loss of data is very difficult to detect, and
lost data is impossible to recover.

To protect data integrity, you can use any or all the mechanisms mentioned previously. However,
in this case, detection is easier, and recovery is often possible. For example, you could compute
the hash value for a file x, using a wellknown one-way function f(), and store f (x) separately. If x
is then modified to be x', f (x) very likely will not be equal to f (x'), according to the properties of
f(). Thus, you can recompute the hash value and compare it with f (x). A mismatch will indicate
that integrity has been compromised. See Section 1.5.1 for more information on one-way hash
functions.

Of course, if the corresponding f (x) is also compromised, detection might not be possible. If the
place to store f (x) itself is not safe, you could use a keyed, oneway hash function and store f (k, x)
together with x. If k is kept secret, it will still be difficult for attackers to modify x and the hash
value in such a way as to avoid detection [39, 83].

To be able to restore the data to its original form after an integrity compromise, you can back up
data and store the backup in a secure place [96]. Or you can use more complicated distributed
computing techniques to back up the data in an insecure network [53, 98, 114, 118].

Guarding against an availability attack is more complicated. The reason is that apart
from applying the usual techniques of prevention and detection, surviving such
attacks becomes critical. Here, computer security meets the field of faulttolerant
computing. Some interesting research results in this combined topic area, sometimes
called dependable systems, are available. For further reading, consult the papers and
their citations at [24, 42, 99, 114].

1.3 Perimeter Defense

Because of the multitude of potential weaknesses and the essentially unlimited number of attack
scenarios, whereby each scenario can be a combination of various attack techniques, securing an
entire system can be daunting, especially when the system includes multiple host machines
connected via a network. Because a system is only as secure as its weakest link, the security
coverage must be comprehensive. The task is further complicated by the fact that a system—for
example, the internal network deployed within a large enterprise—typically consists of machines
of numerous brands and types. These machines run different operating systems and different
application software and are connected with routers and other networking gears from various
vendors offering differing features and capabilities. In such a heterogeneous and evolving
environment, examining the entire system and securing all its components—if possible at all—
takes a long time.

Faced with such a messy picture, it is no surprise that companies find it easier, both
psychologically and physically, simply to divide the world into two camps: "us" and "them." "Us"
includes all machines owned, operated, or, in general, trusted by the concerned enterprise, whereas
"them" includes all other machines, which are potentially hostile and cannot be trusted. Once the
border is drawn, it is a matter of keeping "them" out and "us" in. Such a defensive posture is often
called perimeter defense.

One approach to constructing a perimeter defense is simply not to connect "us" with "them."
Indeed, some military installations and commercial entities have internal networks that are entirely

 - 11 -

Inside Java™ 2 Platform Security: Architecture, API Design, and Implementation, 2nd

separated from a wider area network: the Internet, for example. They might allow some isolated
terminals or machines for outside connections, but these special machines are usually guarded to
prevent their being connected to the internal network.

If the overall system contains machines scattered among physical or geographical locations, leased
lines or dedicated network connections can link the sites to form a private network. If, however,
the sites must communicate through the open network, encryption can be deployed between every
two communicating sites so that they form a virtual private network (VPN). This is depicted in the
fictitious scenario in Figure 1.1, where, although all four campuses are connected to the Internet,
three sites (MIT, UT Austin, and UCLA) have firewalls deployed and have also formed a VPN so
that network traffic among them is automatically protected from eavesdropping.

Figure 1.1. Perimeter defense

However, such total isolation from the outside does not always work well. For example, e-mail
has become the "killer application" of the Internet as people increasingly demand the ability to
communicate with the outside world via the Internet. The World Wide Web (the Web) has made
the Internet even more popular, and—if used judiciously, of course—browsing the Web to locate
information is important to productivity. These trends are driving previously closed enterprises to
open up their border control selectively. Here is where firewalls play a critical role in constructing
a more useful perimeter defense.

1.3.1 Firewalls

Firewalls come in different shapes and sizes [8]. Generally speaking, as illustrated in Figure 1.2, a
firewall is a machine sitting between a private network and a public one. A firewall functions as a
filter for network traffic, with the responsibility of selectively allowing certain traffic through, in
each direction, based on a security policy. A security policy can be very simple or quite
complicated. The reason is that filtering decisions are often based on, for example, the source and
destination of the traffic, the protocols used, and the applications involved, among other factors.
The firewall also might redirect traffic, act as a proxy server, or even manipulate the traffic
content before allowing it to pass through. Furthermore, the firewall might encrypt traffic; indeed,
encrypting firewalls can be used to form a VPN.

 - 12 -

Inside Java™ 2 Platform Security: Architecture, API Design, and Implementation, 2nd

Figure 1.2. Firewall deployment

Perimeter defense as implemented by firewalls has been shown to be an effective security
solution. A firewall provides a central point of control, so a corporate policy can be more easily
implemented and updated. But a firewall has certain problems. First, firewalls cannot filter or stop
all network traffic. In fact, traffic for such protocols as HTTP (Hypertext Transfer Protocol) is
often deliberately let through firewalls. Generally, there is tension between the firewall and the
utility the network provides. The firewall attempts to block or reduce unwanted traffic, whereas
the primary benefit of the network is its ability to exchange all forms of traffic. A firewall can also
be a bottleneck and a single point of communication failure. Moreover, many applications on the
desktop have to be rewritten to use the firewall as a proxy. This problem is less severe for new
applications, which often have built-in proxy support.

1.3.2 Inadequacies of Perimeter Defense Alone

Perimeter defense alone is not sufficient, however, as a total security solution, for several reasons.
Locating and securing all perimeter points is quite difficult. In reported cases, direct telephone
line–based connections are established, for diagnostic purposes, that can effectively puncture the
perimeter defense [96]. Further, when an enterprise allows its employees to work remotely and
from home, inspecting and ensuring that the remote entry points to the internal network are
adequately protected may be impractical.

Even within an enterprise, controls are needed because not everything or everyone can be fully
trusted. The most devastating attacks often occur from within. Such insider attacks usually incur
comparatively large losses because insiders have a significant advantage over external attackers.

 - 13 -

Inside Java™ 2 Platform Security: Architecture, API Design, and Implementation, 2nd

For example, the accounting department must be protected so that only authorized employees may
issue purchase orders, whereas the patent department must be isolated to prevent information leaks
to competitors.

The remainder of this chapter reviews security models and techniques that are useful both within
the perimeter and across organizational boundaries.

1.4 Access Control and Security Models

A security model is an abstraction of how one goes about controlling access to protected data.
Like firewalls, security models come in various shapes and sizes because requirements for various
applications and their environments can differ vastly. Multiple ways to classify security models
are available, including the following:

• MAC and DAC models
• Data and information security models
• Static and dynamic models

1.4.1 MAC and DAC Models

One classification of security models centers on the concept of mandatory access control, or
MAC. In a MAC security model, entities within a system are either subjects, roughly
corresponding to the notions of users, processes, machines, and so on, or objects, roughly
corresponding to the targets of control, such as files and data records. Each entity is assigned a
sensitivity level. Such levels normally form a lattice over a "dominate" relationship so that, for
example, if there are two levels, either one dominates the other or the two are incompatible. For
example, levels of "classified," "secret," and "top-secret" could have the dominate relationship
shown in Figure 1.3.

Figure 1.3. MAC security model

 - 14 -

Inside Java™ 2 Platform Security: Architecture, API Design, and Implementation, 2nd

MAC models meeting the requirements of multilevel security are exemplified by the work of Bell
and LaPadula [5], describing a mathematical model for the security of the Multics system [110].
In the Bell-LaPadula model, a subject may have read access to an object if, and only if, its level
dominates that of the object and may have write access to an object if, and only if, its level is
dominated by that of the object. This is called informally read-down and write-up, or more
precisely, no read-up and no write-down. According to this model, two entities may communicate
in both directions only when either they are at the same level or they do so via a trusted
intermediary.

Non-MAC models are called discretionary access control, or DAC, models. The UNIX security
model is similar to a DAC model in that the owner (user) of each file can determine who else can
access it by setting the file's permission bits. Someone who can read a file can also make a copy of
it and then let everyone read it. MAC models do not permit such discretionary decisions.

1.4.2 Access to Data and Information

So far, the discussion of access control has focused on models that specify explicit access to data,
such as directly reading the content of a file stored on the file system. However, information can
be transmitted implicitly, as experiences of human life can testify. In particular, cooperating
parties can communicate through socalled covert channels, as compared to overt channels. For
example, if two parties share the same disk partition and one party fills the disk to its full capacity,
the other party can notice this fact when a new file creation fails due to lack of space. By filling or
not filling the disk, one party can transmit a 1 or a 0 to the other party.

Investigation of this scenario began with Lampson's paper on the confinement problem [70]. In
that paper, Lampson discussed the difficulty of restricting an application so that it cannot affect
the outside world either directly or by transmitting information.

How critical this type of attack is hinges on the level of one's fear of infiltrationby the enemy and
on the perceived potential for severe damage that an insider can cause. The mode of insider attack
has a long tradition. The fall of Troy eventually led to the term "Trojan horse," which in the
computer security field means any program that is planted on one's machine for the purpose of
causing harm.

Early research into the confinement problem led to security models that are based on information
flow instead of data access. In particular, the models put forward by Goguen and Meseguer served
as the basis for extensive theory work in this area [37, 38]. Also, practical studies of covert-
channel communication in real systems have been done. For example, a team at Digital Equipment
Corporation constructed a case study in which two parties share the same disk. By placing files in
strategic locations, one party can selectively read one file or another, which will cause a detectable
delay when another party tries to read a third file. The delay is caused by the speed of the disk-arm
movement, and the two different delay values can be interpreted as 1 and 0. The value of such
practical studies is mostly in determining the capacity, and therefore the usability and threat, of
covert channels. For example, the disk-arm covert channel is usually a lot faster than the
fillupdisk-partition covert channel.

Note that the practical utility of covert channels is difficult to gauge. First, there is always the
possibility of noise. In the disk-arm case, for example, a third party independently accessing
various files on the disk could significantly reduce the bandwidth of the covert channel. However,
for very secret materials, such as cryptographic keys, a slow covert channel is adequate for leaking
those secrets. Second, covert channels are exploitable only when one can plant Trojan horse
programs. When such penetration occurs, other forms of communication that are easier to exploit
are often possible.

Moreover, defense against covert channels is effective only "within the system." For example, a
computer system that does not allow an insider to signal to the outside world cannot prevent the

 - 15 -

Inside Java™ 2 Platform Security: Architecture, API Design, and Implementation, 2nd

insider from memorizing the secrets and walking out with them. Nevertheless, some
organizations, especially the U.S. government, take covert channels seriously. For example,
researchers at the Naval Research Laboratory have been developing an extensive system, called
the "Pump," for the sole purpose of transmitting information with no or limited leakage of
information through covert channels. The Java platform does not comprehensively address the
presence of covert channels.

1.4.3 Static versus Dynamic Models

At first glance, a security policy appears static. For example, an employee either can or cannot
read file x. There is no third way, and that is that. But in reality, security policies are dynamic;
they can change over time. When that employee transfers into a different department in the
organization, she might then be given access to a file to which she was previously denied access.
In the MAC model, the sensitivity level of the data and the clearance level of people can also
change. Data can be upgraded or downgraded, or a person might gain or lose a particular level of
security clearance.

Several notable security models exhibit this dynamism. One is the High-Watermark model [72], in
which the sensitivity level of data keeps moving up according to the clearance level of the person
who has had access to the data.

Another is the Chinese Wall model [18], which models the practice, especially in consulting firms
and financial institutions, of erecting a Chinese Wall to avoid conflicts of interest. For example, a
consultant in the oil industry is available to consult with oil company A or B, both of which are
clients of the firm. Thus, the consultant potentially can access materials related to either A or B.
However, once the consultant accesses A's materials, access to B's will be denied, due to conflict
of interest. The Chinese Wall model attempts to represent such real-life policies.

A dynamic model that has its root in the financial industry is the Clark-Wilson integrity model
[23], which can be used to model the security requirements for performing financial transactions.
For example, transactions over a certain monetary limit must be cosigned by two people and in a
particular order. This model was the first widely cited security model that clearly demonstrated the
need for security models beyond those of interest to the military and to government agencies,
which were primarily MAC security models.

1.4.4 Considerations for Using Security Models

A model can be used, for example, to drive or analyze the design of a computer system or to form
the basis of a system's operation. These practical uses of models result in a number of interesting
issues that have been studied to various degrees.

First is decidability. That is, when given a general security model of a real system and a particular
requirement or condition of security—for example, an employee must not be allowed to access
file x directly or indirectly—can you decide whether a system is secure? The answer to this
question is no in the general case (see [51]). Later research to resolve this issue has primarily
involved efforts to restrict the model's generality so that the issue becomes decidable. In such
models, the computational complexity to answer the question is still NP-complete
(Nondeterministic Polynomial time complete) [113].

The second issue is that it is often impossible or infeasible to model, specify, or analyze a system
because a practical system tends to be fairly large. This has led to work with composability. Here,
a security model is constructed such that if various components satisfy some set of security
properties and are connected in some particular ways, the overall system automatically—via
mathematical proof—satisfies another set of security properties [79, 88]. In practice, the ability to
develop secure and composable systems is in the somewhat distant future.

 - 16 -

Inside Java™ 2 Platform Security: Architecture, API Design, and Implementation, 2nd

Third, the need to retrofit security mechanisms into so-called legacy systems, or at least to connect
systems together securely, means that the legacy systems must be securely interoperable. One
definition of secure interoperability is that the security properties of each existing system must be
preserved under their original definitions. However, in this case, deciding whether a particular
interoperation is secure is often NP-complete [46] even under very simple models.

Finally, security does not mean only confidentiality. Modeling the integrity of a system is also
critical. Examples of integrity models are the Bell-LaPadula confidentiality model described in
Section 1.4.1 and an early integrity model by Biba [13], which is the mirror image of the Bell-
LaPadula model; that is, it is a read-up and write-down rather than a read-down and write-up
model. One can also view integrity as an aspect of dependability or correctness and thus can enlist
the help of results from the field of fault tolerance.

1.5 Using Cryptography

Whereas cryptography pertains to the encoding and decoding of information, cryptanalysis is the
reverse of cryptography and is the art of decoding, or breaking, secretly encoded information
without knowledge of the encryption keys. The term cryptology, or crypto, refers to the whole
subject field.

Security and cryptology are related but different fields, and many people confuse them. Both
fields are orthogonal in the sense that each has its own utility without depending on the other,
although technology from one can help the other. For example, all the security models discussed
so far do not need to use crypto at all. Crypto can be used to enhance confidentiality and integrity
and can be studied in the abstract, without reference to computer security. However, modern
crypto exists largely in the context of a computer and a communications system, in which such
features as access control are useful in protecting the access to cryptographic keys. In fact, the
easiest way to attack a cryptosystem is to try to compromise its key-storage facility.

Among the most commonly used crypto concepts are

• One-way hash functions
• Symmetric ciphers
• Asymmetric ciphers

These concepts are discussed in the following subsections.

Another note about cryptosystems in general is that all, with the exception of one, are theoretically
insecure, according to theorems by Claude Shannon, in the sense that an enemy with sufficient
knowledge and computing power can always break the cryptosystem. The only exception is a
system called one-time pad, in which the secret key is as long as the plaintext itself and is never
reused. A one time pad system is practical only when the sender and recipient have a secure way
to exchange the potentially very large key.

Comprehensive coverage of cryptography is available in the Handbook of Applied Cryptography
[82]. For readers who do not want to dive into the deep background of cryptography and related
research subjects, Applied Cryptography [115] may be a more suitable text.

1.5.1 One-Way Hash Functions

A one-way hash function is an important building block to help achieve data integrity. Such
functions are often used to protect data both in storage and in transit.

According to Knuth [64], the idea of hashing originated in 1953 with two groups of IBM
researchers. The earliest reference we can find to the concept of a one-way function was by

 - 17 -

Inside Java™ 2 Platform Security: Architecture, API Design, and Implementation, 2nd

Wilkes in 1968 [133], when he referred to the invention of one-way functions for the Cambridge
Time-Sharing Computer System by Needham.[2]

[2] Roger Needham later remembered that the idea was first discussed in The Eagle public house in
Cambridge in 1967. He also noted that it is a compliment to the hospitality of the public house that
nobody remembers exactly who made the suggestion.

The concept of one-way hash functions also dates back many years. A number of researchers,
such as Merkle [83], Naor and Yung [90], and Damg ard [26], have suggested definitions. Meyer
and Schilling [85], Merkle [84], Rabin [98], Rivest [102], and others have presented practical
designs for such functions.

Many terms relating to one-way hash functions have been introduced. Some of these terms are
alternative names, and some are intended to emphasize differing assumptions. Examples are one-
way (hash) function, collision-free (hash) function, fingerprinting function, modification detection
code, and message authentication code.

Informally, a one-way hash function is a function that is easy to compute but difficult to reverse.
Also, it is difficult to find two input values for which the function would compute the same output
value. Such properties allow the protection of integrity as follows. Suppose that you store a file on
a disk and suspect that it might be tampered with. Using the file content as input, you can compute
the hash function value, which can be a lot shorter than the file content itself. Later, you can take
the current content of the file and feed it into the hash function. If the new hash value is identical
to the old hash value, it is highly likely that the file content has not been modified. In this case, the
one-way hash function serves as an unforgeable link between the file content and its hash value.
Figure 1.4 illustrates one-way hash functions.

Figure 1.4. One-way hash function

 - 18 -

Inside Java™ 2 Platform Security: Architecture, API Design, and Implementation, 2nd

Designers often incorporate secret keys into the inputs of one-way hash functions such that the
hash value cannot be correctly computed or predicted without knowing the secret keys. In this
case, such a keyed, one-way hash function serves as an unforgeable link not only between the file
content and its hash value but also between the secret keys used—and thus the entities that possess
the keys—and the hash value.

1.5.2 Symmetric Ciphers

A symmetric cipher is a transformation, operated under a secret key, that can translate its input,
called plaintext, to its output, called ciphertext, in such a way that, excluding cryptanalysis, only
those entities possessing the secret key can recover the plaintext from the ciphertext (Figure 1.5).

Figure 1.5. Symmetric cipher

Symmetric ciphers have a long history. Their first known use dates from the early Caesar syste
[66]. Symmetric ciphers have been widely used; for example, the Data Encryption Standard (D
[128] has been in use for nearly three decades. DES is no longer considered a strong encryption
algorithm, due to advanc

m
ES)

es in cryptanalysis and computing power. Thus, a replacement algorithm
has been selected: the Advanced Encryption Standard (AES) [92].

Symmetric ciphers are also called secret-key ciphers because the two communicating parties must
share a secret key. This requirement creates some difficulties in key management and key
distribution. Moreover, because each pair of communicating parties must share a distinct secret
key, in theory an exponential number of secret keys is needed when a large group of parties talk to
one another.

Symmetric ciphers can be operated in different modes, such as various feedback modes.
Symmetric ciphers can also be stacked to improve the crypto strength of the whole system, such as
in the case of triple-DES.

 - 19 -

Inside Java™ 2 Platform Security: Architecture, API Design, and Implementation, 2nd

1.5.3 Asymmetric Ciphers

An asymmetric cipher is similar to a symmetric cipher, but instead it depends on a pair of keys
rather than on only one key. The public key of the pair is used to encrypt plaintext. The private key
of the pair is used to decrypt ciphertext. See Figure 1.6. The keys are generated such that it is easy
to deduce the public key, given the private key; the reverse, however, is very difficult. This
property enables people to exchange their public keys over public channels and still conduct
private communications. Compare this with symmetric cipher systems, in which people must
arrange a shared secret key via a private channel. Notable asymmetric systems include Diffie-
Hellman [29] and RSA [104]. Asymmetric systems are often used to encrypt and exchange keys
for symmetric systems.

Figure 1.6. Asymmetric cipher used for encryption and decryption

A distinct property of some asymmetric systems is that the encryption and decryption are
reversible. This means that one can apply the decryption operation with the private key to the

e
r

vate

 came from Alice.

vest, Shamir, and Adleman) is perhaps the most widely used
asymmetric system that can also be used to produce digital signatures. Another system, Digital

d

tion

ation of another entity have some specific value. A

plaintext to get ciphertext, and one can recover the plaintext by applying the encryption operation
with the public key to the ciphertext. In this case, because the public key is public, no
confidentiality protection is provided. However, because only the holder of the private key can
generate the ciphertext with these systems, the ciphertext can serve as a digital signature of th
plaintext, and anyone with the public key can verify the authenticity of the signature. Thus, fo
example, Alice can sign a message M by applying the decryption operation to it using her pri
key to get SM. She then sends M and SM to Bob. Bob verifies that SM is a valid signature for M by
applying the encryption operation to SM using Alice's public key. If the result is equal to M, the
signature is valid, and Bob knows that the message

RSA (named for its creators—Ri

Signature Algorithm (DSA) [91], can perform only digital signature functions; it cannot be use
for encryption.

To prove that it is the real owner of a public key, one party can present a certificate for verifica
by the other party. A public-key certificate is a digitally signed statement from one entity, saying
that the public key and some other inform

 - 20 -

Inside Java™ 2 Platform Security: Architecture, API Design, and Implementation, 2nd

chain of certificates is possible, whereby each certificate contains a public key that is used to
certify the public key in the succeeding certificate. The first certificate, often called the root
certificate, does not have another public key to certify it. Thus, it normally is a selfsigned
certificate in that its own public key is used to certify itself. Later chapters, especially Chapter 8,
have more in-depth discussion about certificates.

n

 is crucial to authenticate, or know the identity of, the

d

n the
password and use it later. e passwords [68] and
an Internet Engineering T e Password), which
evolved from S/Key [50]. These are an improvem t with limitations, because one can carry only
a limited number of one-time passwords.

n

liest work in network-based authentication is the well-known
Needh m

1.6 Authentication

Another basic security issue is authentication. Authentication is the process of confirming the
identity of an entity (a user, a machine, or a machine operating on behalf of a user). Authenticatio
first became an issue when time-sharing systems began to be deployed and the system needed to
know the identity of a user logging in to the system. This knowledge is critical for enforcing
access control policies, as most of the security models mentioned previously are based on granting
access to certain users and not to others.

The importance of authentication increased when networked computer systems started to surface.
The network often is shared or public, so it
user at the other end of the wire. It is equally important for the users to know the identity of the
system they are connecting to.

Numerous authentication protocols exist, but many of them have subtle security flaws, discovere
even after many years of scrutiny by experts. As a result, authentication has become a major study
subject.

The basic approach is first to ask the user at the other end of the wire to present a name and a
password and then to check these against system records. Such a simple-minded solution, which
amazingly is still widely used when more secure solutions are available, is vulnerable to
eavesdropping and guessing attacks [78]. Anyone who is monitoring network traffic can lear

 Variations of this approach exist, such as one-tim
ask Force (IETF) standard called OTP (One Tim

en

This basic approach can be generalized to one based on challenge and response. This approach ca
also be extended to perform the function of key distribution such that different entities need to
share keys only with certain designated key-distribution centers. These centers can dynamically
establish secret keys between any set of such entities that previously might not have
communicated to each other. The ear

a -Schroeder protocol [94], as illustrated in Figure 1.7. With such a protocol, two ent
rred to as Alice and Bob in the figure, can use the authentication server as a trusted third p

ities,
refe
to es l
impleme
(distribu

arty
tab ish a short-term secure session. This protocol is the basis of the Kerberos system

nted as part of the MIT Project Athena and later adopted as part of the Open Group DCE
ted computing environment) Security Service and as an IETF standard [87, 95].

Figure 1.7. Use of authentication server

 - 21 -

Inside Java™ 2 Platform Security: Architecture, API Design, and Implementation, 2nd

Figure 1.7 is a simplified representation of the use of an authentication server. In the figure, it is

e

tes a message for Bob with Alice's
name and the session key, and encrypts this message, using the secret key it shares with

to

 Bob so that he'll also know what the session key is. Alice sends
this message to Bob.

ude replay
affic

sometimes after some skillful modifications—to defeat security.
But these types of attacks can easily slip a protocol designer's mind and thereby lead to the
possibility of attack later. As a result, formal and informal protocol analysis techniques have been

assumed that the authentication server shares a secret key with Alice and a different secret key
with Bob. Whenever Alice and Bob want to communicate securely with each other, they can
obtain a session key for that communication from the authentication server. A description of th
steps depicted in the figure follows.

1. Alice sends to the authentication server a message with her name and Bob's name.
2. The authentication server creates a session key, crea

Bob. The authentication server then encloses this message in another message it creates
for Alice and encrypts this message with the secret key it shares with Alice. In addition
the message for Bob, this message includes Bob's name and the session key. The
authentication server sends this message to Alice.

3. Alice decrypts the message, using her secret key. Now she has the session key and a
message she can send to

4. Bob decrypts the message, using his secret key. Now he knows what the session key is,
and Alice and Bob can securely exchange messages encrypted with the session key.

Protocol design is full of peril. The Needham-Schroeder protocol, among many others, was later
shown to be defective in a number of aspects [19, 45]. Attacks on security protocols incl
attacks and interleaving attacks, whereby an attacker listens and records legitimate network tr
and then reuses these messages—

 - 22 -

Inside Java™ 2 Platform Security: Architecture, API Design, and Implementation, 2nd

suggested and applied [19, 30, 45, 81, 86], including the fairly recent application of mod
checking tools.

el-

s is correct, all offline and thus

0,

guessable passwords. Hardware tokens exhibit much stronger controls against guessing attacks by
an

 not a fundamentally new concept; anything that causes a remote system to behave
puting

ode

d on network bandwidth.

n
 of active components include ActiveX

controls and Java technology–based applets (Java applets).

Active contents do not pose a new category of threat. Instead, they help expose the inadequacies
f commonly deployed security mechanisms. For example, when mobile code is a DNS update

request, the interface is fairly narrow so that its security implication is more easily understood.
owever, when fully general mobile code, such as an ActiveX control, arrives, the interface

becomes the entire Win32 APIs (Application Programming Interfaces), and any security holes in
ose APIs might be exploited.

he increasing use of mobile code has resulted in two responses. On the one hand, people try to
enhance system security to better control and thus use the attractive aspects of mobile code. On

e other hand, people get scared and want to block mobile code at their perimeters. The latter is at
a gapstopper, as mobile code and active contents can travel through multiple channels, such

s e-mail, and filtering every e-mail message and removing parts of messages are often
nacceptable to the e-mail users. One primary design goal of Java technology is to make it a

m for mobile code.

One especially serious issue involves authentication protocols designed for use by human beings.
These protocols usually involve the use of passwords that people can remember. This approach
has the disadvantage that such passwords are generally chosen from a fairly small space, such as
all words in a dictionary, that can be mechanically searched and thus easily deduced. As examined
by the security research community, all the authentication protocols that were published prior to
1989 suffer from this problem of easily guessed passwords. As a result, an attacker who has
monitored the network traffic and obtained a running record of an authentication protocol can then
guess each candidate password and verify whether the gues
undetectable. Technical solutions to this problem started to appear in late 1989 [43, 78] and
include EKE (Encrypted Key Exchange) and A-EKE (Augmented Encrypted Key Exchange) [1
11]. Smart cards and other hardware-based security devices are often helpful in avoiding use of

adding a second physical factor in the authentication, something possessed. Biometric devices c
be used to add yet a third factor to the authentication: something inherent (that is, a personal
physical characteristic).

1.7 Mobile Code

Mobile code is
differently can in theory be viewed as mobile code. Thus, the whole field of distributed com
works on the premise of mobile code. This includes data, such as Domain Name Service (DNS)
information; remote commands, such as Remote Procedure Call (RPC); and executable scripts,
such as remote shell on UNIX. This section focuses on the last category: executable scripts, c
that travels from one machine to another and gets executed as it travels. Such mobile code is
widespread, partly because it helps to distribute the computation load among client as well as
server machines and partly because it helps to reduce deman

PostScript files belong to this category because when a PostScript file is displayed and viewed, it
is the file content that is being executed. The same is true for Microsoft Word documents that
contain macros; the macros are interpreted as the document is read. Another example is LISP.
Many people read their e-mail from within EMACS, a powerful text editor. EMACS interprets
LISP programs as it sees fit, so a LISP program segment embedded in an e-mail message ca
become active when viewed inside EMACS. Other kinds

o

H

th

T

th
best
a
u
secure platfor

 - 23 -

Inside Java™ 2 Platform Security: Architecture, API Design, and Implementation, 2nd

1.8 Where Java Technology–Based Security Fits In

The previous sections provided a broad overview of the large security jigsaw puzzle that today's
ccess control, from encryption to authentication. Java technology–

) is a very important piece of this puzzle because Java technology is
pervasive both as a platform-independent technology and as the best vehicle to program mobile

le content for the Internet and the Web. The rate of adoption of Java technology
is phenomenal. It is being deployed, for example, in financial institutions, in online e-commerce

st

systems use: from firewalls to a
based security (Java security

code and executab

software, and as part of other critical infrastructure applications. Therefore, the Java platform mu
fulfill its promise as a safe Internet programming platform.[3]

[3] We should make it clear that JavaScript is not based on the Java programming language and is

 features, the Java 2 SDK (Software Development Kit) is designed to build in
hooks so that it can be extensible to handle specific

requirem

 or
Microso
und i
plat
avai to
Java AP

e but rather many pieces of the security puzzle. Just as
 brought
ng

computer security into the technology mainstream.

related to it only by name. JavaScript does not have the comprehensive security considerations and
mechanisms that the Java platform has.

The Java platform can be viewed as a client-side application, such as when running it inside a
browser; a server-side application, such as when running server software programmed in the Java
programming language; or an operating system, such as when running the JavaOS directly on MS-
DOS or bare hardware. Because different usage scenarios might require different or even
conflicting security
common functionality while leaving sufficient

ents.

When Java technology is available within an operating system, such as Solaris, Linux,
ft Windows (Windows), its presence does not alter the basic security characteristics of the

erly ng system. On Solaris, for example, an instance of the virtual machine for the Java
form (Java virtual machine, or JVM) will have access only to resources that would be
lable to the user running the JVM. However, if the entire application interface is limited

Is, usually the overall system security is improved.

Finally, security features on the Java 2 platform are not limited to what is available in the current
shipping version. Further versions no doubt will continue to enrich the security features. Java
technology is becoming not just on
SSL/TLS (Secure Sockets Layer/Transport Layer Security) [28] and the browser finally
cryptography to the mass market, Java technology has played an important role in pushi

 - 24 -

Inside Java™ 2 Platform Security: Architecture, API Design, and Implementation, 2nd

Chapter 2. Basic Security for the Java Programmin
Language

g

Never forget class struggle.

f its critical design goals and cited as a significant
logies.

 technology rarely includes reasonably good security features in its initial-release. Thus, the

th security profes computer industry in general. Long-time
security researchers, academics, and students have poured over design details and source code of

ed by Sun Microsystems for just such purposes. Even the popular
zy; both the Wall Street Journal and the New York Times have covered

—Mao Ze-Dong

Since the inception of Java technology [48, 74], strong and growing interest has centered on its
security. Security has been publicized as one o

 differentiating Java from other technomeans of

A new
positioning of Java as the best platform for secure Internet programming has attracted a lot of
attention from bo sionals and the

the SDK, which was releas
media have caught the fren
it prominently.[1]

[1] Refer to [80] for some quotes and citations.

ich

ded by

rm independent so that application
developers can write a program once and then run it securely everywhere on the Internet. It is

cts of C and C++ omitted and

From a technology provider's point of view, Java security provides two features [41]:

• Primarily through the SDK, the Java platform as a secure, ready-made platform on wh
to run Java technology–enabled applications in a secure fashion

• Security tools and services, implemented in the Java programming language (Java
language), that enable a wider range of security-sensitive applications

The deployment of Java technology also raised an array of interesting security issues, which are
covered in later chapters. This chapter focuses primarily on the basic security features provi
the Java language and platform.

2.1 The Java Programming Language and Platform

The Java programming language [3] was designed originally for use in embedded consumer
electronics applications, such as hand-held devices and set-top boxes. It is a general-purpose
object-oriented programming language and is simple enough that many programmers can become
fluent in it fairly quickly. It is specifically designed to be platfo

related to C and C++, but it is rather different, with a number of aspe
a few ideas from other languages included.

The Java language is strongly typed. It does not include any unsafe constructs, such as array
accesses without index checking, because such unsafe constructs might result in unspecified and
unpredictable program behavior.[2] The Java language comes with automatic storage management
typically done by a garbage collector. Further, the Java language avoids the safety problems, such
as those posed by C's

,

 free or C++'s delete, concerning the explicit deallocation of memory
that is no longer needed.

[2] A study concluded that about 50 percent of all alerts issued by the Computer Emergency Response
Team (CERT) are caused in part by buffer-overflow errors.

A program written in the Java programming language (Java program) is normally compiled to a
bytecoded instruction set and binary format defined in the Java Virtual Machine Specification

 - 25 -

Inside Java™ 2 Platform Security: Architecture, API Design, and Implementation, 2nd

[48]. The Java language also defines a number of packages for more complete programming
support. A Java program is normally stored as binary files representing compiled classes and
interfaces. The binary class files are loaded into a JVM and then linked, initialized, and executed.

.java
java Test Hello

ava

hnology is also embedded in smart cards, cell phones, TV set-top boxes, and game

consoles. Thus, Java programs need not depend on browser integration.

e JVM also knows nothing of the Java

class file format

n. Because applets are downloaded
dynamically and often without your awareness and because you may not know who the applets'

et.
und within its sandbox but cannot reach beyond it. For example, the

applet cannot read or alter any file stored on the user's system. In this way, if a user accidentally
imports rovides a
very en network. The

Here is an example of a simple program:

class Test {
 public static void main(String[] args) {
 for (int i = 0; i < args.length; i++)
 System.out.print(i == 0 ? args[i] : " " + args[i]);
 System.out.println();
 }
}

The class Test, stored in the file Test.java, can be compiled and executed by giving these
commands:

javac Test

The program will print out Hello.

The Java platform is network-centric and is born of the idea that the same software should run on
many different kinds of computers, consumer gadgets, and other devices, such as smart cards.
With Java technology, you can use the same application on a Sun Enterprise 15K running the
Solaris operating system as on a personal computer (PC) running Windows.

The HotJava browser demonstrated the Java platform's power by making it possible to embed J
programs inside HTML pages. These programs, called applets, are transparently downloaded, to
be run inside the browser. The Java platform has been integrated into most popular Web browsers.
Java tec

The Java platform consists of the Java language, the JVM, and the application programming
interfaces (API libraries). The JVM is an abstract computing machine and does not assume any
particular implementation technology or host platform. Th
programming language but instead knows only of a particular file format: the . A
class file contains JVM instructions, or bytecodes, and a symbol table, as well as ancillary
information. Bytecodes can be either interpreted or compiled for a native platform. The JVM may
also be implemented either in microcode or directly in silicon.

2.2 Original Basic Security Architecture

In the original (1.0) release of the Java platform, the basic security architecture centered on
allowing a user to import and run Java applets dynamically without undue risk to the user's
system. An applet is loosely defined to be any code that does not reside on the local system and
must be downloaded to be run. Code that does reside on the local system is commonly called a
Java application, that is, a Java technology–based applicatio

authors are, you cannot blindly trust an applet not to be malicious. Thus, a downloaded applet's
actions are restricted to a sandbox, an area of the Web browser allocated specifically to the appl
The applet may play aro

a hostile applet, it cannot damage the user's system. Thus, this sandbox model p
 restrictive environment in which to run untrusted code obtained from the op

 - 26 -

Inside Java™ 2 Platform Security: Architecture, API Design, and Implementation, 2nd

sand x opted
by appli Java technology–enabled Web browsers.

In the or
hav l
maintain ng end users from
installing hostile software. Note that the distinction between an applet and an application, or

s C or C++. Automatic memory management, garbage collection, and range checking on

strings and arrays are examples of how the Java language helps the programmer to write correct

newly downloaded applet is run, a bytecode
verifier is invoked to check that the applet conforms to the Java Language Specification and that

is that, for
de in a

eration and dynamic optimization; and the program execution. During this
process, a class loader defines a local namespace, which is used to ensure that untrusted code

s 4

bo model is deployed through Java Development Kit (JDK) 1.0.x and is generally ad
cations built with the JDK, including

iginal Java platform, all applications—as opposed to applets—are completely trusted to
e fu l access to vital system resources, such as the file system. Security comes from

ing physical control over the systems by, for example, preventi

"outside" versus "inside," is not always absolute. With a network file system, a class file appearing
to reside on the local file system might in fact be located thousands of miles away, whereas an
applet can be downloaded from within the local area network (LAN), possibly from the same host
on which the user is running it.

The original basic security architecture is enforced through a number of mechanisms. First, the
Java language is designed to be type safe and easy to use. Thus, the programmer is less likely to
make subtle mistakes, compared with those possible when using other programming languages,
such a

and safer code.

Second, a bytecode verifier ensures that only legitimate code written in the Java programming
language (Java code) is executed. A compiler translates Java programs into a machine-
independent bytecode representation. Before a

there are no violations of the Java language rules or namespace restrictions. The reason
the sake of security, the JVM imposes strong format and structural constraints on the co
class file. The verifier also checks for violations of memory management, stack underflows or
overflows, and illegal data type casts. Without these checks, a hostile applet could corrupt part of
the security mechanism or replace part of the system with its own code. The bytecode verifier,
together with the JVM, is designed to guarantee language type safety at runtime. To ensure
complete type safety, for example, the JVM uses a runtime type check when storing references in
arrays.

Runtime activities include the loading and linking of the classes needed for execution; optionally,
machine code gen

cannot interfere with the running of other Java programs.

Finally, access to crucial system resources is mediated by the JVM and is checked in advance by a
security manager class that restricts to a minimum the actions of untrusted code. Class loader and
security manager classes are discussed in greater detail later, in Chapter and 6.

led Web browser that can import code fragments from anywhere does not know
re executing any code

that the format of the fragment is correct to passing it through a
lish that the code plays by the rules. Approximately, the code is

ked to ensure that

2.3 Bytecode Verification and Type Safety

Although a trustworthy compiler can ensure that Java language source code does not violate safety
rules, someone could use a rigged compiler to produce code that does violate them. A Java
technology–enab
whether a code fragment comes from a trustworthy compiler. Thus, befo
fragment, the runtime system subjects it to a series of tests.

The tests range from verifying
simple theorem prover to estab
chec

• It does not do illegal data conversions, such as converting integers to pointers.
• It does not forge pointers. (There are no pointers in the Java language.)

 - 27 -

Inside Java™ 2 Platform Security: Architecture, API Design, and Implementation, 2nd

• It does not violate access restrictions. For example, a private field should not be
accessible from outside the object.

• It accesses objects as what they are. (For example, the tests ensure that InputStream

r is not strictly necessary to ensure type safety, because the JVM
can, in theory, perform complete type checking during runtime. However, runtime checks often

e,

ecause

The preceding five checked points do not tell the whole story and are not meant to be formal or
ermit a description of the considerable work that covers the

design, the inner workings of the JVM, the background of flow

.

nterfaces that expect to take an integer between 1 and 12 to represent a month

This same principle applies to bytecode that it runs to
have certain properties, and i re that those properties are
met. The JVM also decides to check additional properties itself, perhaps because these are difficult
or impossible to analyze statically by the bytecode verifier. There is no mystery in ensuring type
safety, just precise and judicious application of well-known principles.

You might ask what type safety has to do with computer security. Type safety contributes to
program correctness. If a program that implements security functionality does not accomplish
what is intended because the program cannot be correctly executed, the security functionality may
not be provided. For example, a security decision may be embodied in an equality test of the
following form:

if (name.equalsIgnoreCase("Chuck Jones")) {
 openDoorToHackersLounge()
} else {
 throwThemOut()
}

Here, security reasoning is written and performed in the Java language. Thus, it is critical that a
yes answer is not possible when one string, such as "Chuck Jones", is comp ed to a

objects are always used as InputStreams and never as anything else.)
• It calls methods with appropriate arguments of the appropriate type, there are no stack

overflows, and methods return objects of the appropriate type.

Note that a static bytecode verifie

slow down the execution of a program significantly because such checks have to be done
repeatedly for each method invocation. Thus, moving some checks up front to class loading tim
where those checks are done only once, seems an appealing strategy. Knowing that any
downloaded code satisfies these properties makes the runtime system operate much faster b
it does not have to check for them. Note that the verifier is independent of the Java language or
compiler and so can also examine bytecode that is generated from source languages other than
Java.

precise. Space limitations do not p
finer details of the Java language
analysis, and the art of theorem proving, all of which are necessary background for a complete
understanding of how type safety is enforced.

For the present discussion, it is sufficient to understand the following points. The most
fundamental goal of the Java security architecture is to ensure that the Java Language
Specification and the Java Virtual Machine Specification are observed and implemented correctly
One way to think about this is to imagine that you are writing a calendar application. You
typically will have i
within the year. You might also have an initialization interface that prompts the user to type in the
current month. Because your other interfaces assume that the month integer will be between 1 and
12, it is prudent that you check and ensure, from inside the initialization procedure, that the input
is indeed a valid number. If you do not check for this and as a result do not reject invalid numbers,
your calendar application might not work with an out-of-range month number and might behave in
strange ways.

the Java platform. The JVM expects the
t is the job of the bytecode verifier to ensu

ar

 - 28 -

Inside Java™ 2 Platform Security: Architecture, API Design, and Implementation, 2nd

different string, such as "Tex Avery". Oth
leads to a security hole.

erwise, a trivial incorrectness in string comparison

n

Yellin, in an early paper, included some details of the verifier and other typechecking mechanisms
35]. However, you need a fairly good understanding of the bytecode instructions in order to

digest them fully. More recently, Liang and Bracha wrote about a new mechanism, implemented
 the Java 2 SDK, Standard Edition (J2SDK), 1.2, that solves a problem with type safety

regarding dynamic class loading [73]. This subject of bytecode verification is still evolving, with
ngoing work occurring within the J2SDK development team, as well as at research labs and

universities. A more formal and precise exposition of the entire language type-safety subject is
nticipated for the future.

.4 Signed Applets

K 1.1 introduced the concept of signed applets. Recall that in the original sandbox model, all
mote code—that is, all applets—are automatically untrusted and are restricted to running inside

andbox. Such restrictions, although contributing to a safe computing environment, are too
miting. Within a LAN, for example, a company might deploy an applet that is used to maintain

ployee pension data. An employee who downloads and runs the applet to change the plan
llocation would want the applet to automatically update his own accounting record stored in his

n file directory.

To facilitate such features, JDK 1.1 added support for digital signatures so that an applet's class
les, after their development, could be signed and stored together with their signatures in the JAR

) format. For each JDK installation, you can specify which signers, that is, which
ublic keys, are trusted. When a correctly digitally signed applet is downloaded, and if its signers

be verified and recognized as trusted, the applet is treated as if it is trusted local code and is
iven full system access (Figure 2.1

On the other hand, it is important to note that not all type-safety problems inevitably result in a
security breach. For example, if a virtual machine implementation has a single bug that equates
string "acegikmoqsuwy" with string "bdfhjlnprtvxz", what security compromise
this will cause is not immediately clear. Nevertheless, the type-safety issue needs close attentio
and should not be left to chance.

[1

in

o

a

2

JD
re
the s
li
em
a
ow

fi
(Java Archive
p
can

).

Figure 2.1. JDK 1.1 security model

g

 - 29 -

Inside Java™ 2 Platform Security: Architecture, API Design, and Implementation, 2nd

2.5 Further Enhancements

Both the original sandbox model and the trusted-applet model were extended
[3]

 into the security
architecture introduced in Java 2 SDK, Standard Edition (J2SDK) , 1.2. This security architecture

ined access control based on security policies and permissions. An overview
given in Chapter 3

implements fine-gra
of this architecture is and covered in greater detail in Chapters 4 through 6.

[3] Note: A terminology shift occurred in December 1998. The Sun Microsystems product that
implements the Java 2 Platform is referred to using "Java 2 SDK, Standard Edition," rather than "JDK."

 - 30 -

Inside Java™ 2 Platform Security: Architecture, API Design, and Implementation, 2nd

Chapter 3. Java 2 Security Architecture
The state is nothing but an instrument of oppression of one class by another.

—Friedrich Engels

The need to support flexible and fine-grained access control security policies, with extensibility
he and scalability, called for an improved security architecture. The architecture introduced with t

Java 2 Platform, Standard Edition (J2SE), 1.2, fulfills this goal. This chapter details why the
security architecture changes were needed and then gives an overview of the Java 2 security
architecture. The three subsequent chapters provide architecture details. Chapter 4 describes
secure class loading, Chapter 5 tells how a security policy is specified and represented, and
Chapter 6 tells how the security policy is enforced.

3.1 Security Architecture Requirements of Java 2

r
 security model. Not many technologies have security

as a design goal, so Java technology, together with the Internet and the promise of e-commerce,
puter industry. Doing

hancements incorporated

n

 a

e
1.1,

 her
usted signer, the applet could access

resources outside the sandbox.

However, the customer may have installed on her local desktop financial management software

o

n
o do

example of such efforts; it had a limited range of user-definable security properties. However,

As discussed in the previous chapter, it was critical that the original release of JDK 1.0 conside
security seriously and provide the sandbox

helped to finally move security technology into the mainstream of the com
so was a significant achievement. The next step was to improve on the en
in JDK 1.1 to make the security solutions on the Java platform easy to use and more robust. The
Java 2 security architecture corrects limitations of earlier platform versions.

3.1.1 Flexible Access Control

By default, the sandbox model severely restricts the kind of activities that an applet may perform.
Although it was the catalyst that created the atmosphere for safe Internet computing, this model
treats all applets as potentially malicious. Thus, some applets, such as those created by a
corporation's finance group to handle internal transactions, are also limited in what they can do,
even though they are likely to be more trustworthy than an arbitrary applet downloaded from a
unfamiliar Web site.

Such a blanket restriction on all applets can be limiting. For example, suppose that a customer of
brokerage firm uses a stock-trading applet loaded from the brokerage's Web site. This customer
may want to let the applet update local files that contain her stock portfolio. However, access to
the client-side file system is prohibited by the sandbox model. Thus, this customer needs flexibl
access control, whereby certain applets can have access that is outside the sandbox. With JDK
the brokerage firm could sign the trading applet, and, assuming that the customer configured
Java runtime to recognize the brokerage firm to be a tr

that handles income tax issues. She might not feel comfortable letting the brokerage firm's applet
have free rein on her entire desktop system. In this case, it may be best to confine the applet t
limited file system access, perhaps only to the brokerage firm's file folder. What is needed is a
model whereby the sandbox can be customized—for example, by the client system—to have
flexible shapes and boundaries: in other words, fine-grained access control.

Prior to Java 2, one could, in theory, implement a more flexible and finergrained access control o
the Java platform. To accomplish this, however, someone, such as an application writer, had t
substantial programming work by, for example, subclassing and customizing the
SecurityManager, ClassLoader, and other classes. The HotJava browser was an

 - 31 -

Inside Java™ 2 Platform Security: Architecture, API Design, and Implementation, 2nd

such extremely security-sensitive programming requires in-depth knowledge of computer security
and robust programming skills.

ler and
.

cement

plements

rsion of

curity architecture cleanly separates the enforcement mechanism from the
description of security policy. In this way, application builders can configure security policies

r-
w

at checks whether money can be withdrawn from a bank account, you
would have to add a new checkAccountWithdraw method to the SecurityManager

To that end, the Java 2 architecture provides typed access control permissions and an automatic

The Java 2 security architecture eliminates the need to write custom security code for all but the
most specialized environments, such as the military, which may require special security
properties, such as multilevel security [72]. Even then, writing custom security code is simp
safer than before

3.1.2 Separation of Policy Expression from Policy Enfor

As codified by the java.lang.SecurityManager class, the sandbox model im
a specific security policy that is expressed in the implementation of the software that does the
policy enforcement. This means that to enforce a different security policy, a customized ve
the software must be used—clearly, this is not desirable. Instead, what is needed is an
infrastructure that supports a range of easily configurable security policies.

The Java 2 se

without having to write special programs.

3.1.3 Flexible and Extensible Policy Enforcement

Prior to Java 2, the Java security architecture hard coded the types of security checks performed.
For example, to check whether a file can be opened for reading, you would call the checkRead
method on the currently installed SecurityManager. Such a design is not easily extensible,
because it does not accommodate the handling of new types of checks that are introduced as afte
market add-ons to the Java runtime. It is also not very scalable. For example, to create a ne
access check, such as one th

class or one of its subclasses. Thousands of various kinds of checks are possible. If methods were
created for this large a number, they would clutter the SecurityManager class. In fact,
because many checks are application specific, not of all them can be defined within the JDK.
What is needed is an easily extensible access control structure.

permission-handling mechanism to achieve extensibility and scalability. In theory, no new method
ever needs to be added to the SecurityManager class. Thus far, throughout the multiple
J2SE releases, we have not encountered a situation requiring a new method. Instead, the more
general checkPermission method added in Java 2 has proved sufficient to handle all
security checks. See Chapter 6 for more information.

3.1.4 Flexible and Customizable Security Policy

JDK 1.x had the built-in assumption that all locally installed Java applications were fully trusted
and therefore should run with full privileges. As a result, the sandbox model applied only to
downloaded unsigned applets. However, software installed locally should not be given full access
to all parts of the system. For example, often a
and then tries it out. It is prudent to limit the pot

user installs a demo program on the local system
ential damage such a demo program could cause,

er example, caching applets on the local file system
not change the security model by treating cached

applets as trusted code, even though they now reside on the local system. Furthermore, the

at

giving it less than full system access. In anoth
will improve performance, but caching should

distinction between what is local code and what is remote code is blurry. In the modern world of
software components, one application could use multiple components, such as JavaBeans, th

 - 32 -

Inside Java™ 2 Platform Security: Architecture, API Design, and Implementation, 2nd

reside in all corners of the Internet. So security checks must be extended to all Java programs: to
include applications as well as applets.

In J 2 curity
controls.
the code de. Such a choice is expressed by configuring a suitable
secu

3.1 R

In JDK
imple e
maintain
struct r
app t
Secur
mechan

3.2 Overview of the Java 2 Security Architecture

The secu which
individu e
code's c er it is
digi
that com with the ones needed for the attempted access. If a security
policy is not explicitly given, the default policy is the classic sandbox policy as implemented in

example in which well-known security principles
[36, 96, 127, 111] are put into engineering practice to construct a practical and widely deployed

ava , all code—whether local, remote, signed, or unsigned—is subjected to the same se
 Thus, users can choose to give full or limited system access, based on the properties of
 and who is running the co

rity policy.

.5 obust and Simple Internal Security Mechanisms

1.0 and JDK 1.1, a number of internal security mechanisms were designed and
nted, using techniques that were rather fragile. Although they worked reasonably wm ell,
ing and extending them proved difficult. For Java 2, we made important internal

al adjustments to reduce thu e risks of creating subtle security holes in the Java runtime and
lica ion programs. This involved revising the design and implementation of the

ityManager and ClassLoader classes, as well as the underlying access control
ism.

rity architecture introduced in the Java 2 platform uses a security policy to decide
al access permissions are granted to running code. These permissions are based on th
haracteristics, such as who is running the code, where it is coming from, wheth

tally signed, and if so by whom. Attempts to access protected resources invoke security checks
pare the granted permissions

JDK 1.0 and JDK 1.1. The various caveats, refinements, and exceptions to this model are
discussed in later chapters.

The Java 2 security architecture does not invent a new computer security theory, even though we
had to design new ways of dealing with many subtle security issues that are unique to object-
oriented systems. Instead, it offers a real-world

secure system.

Chapters 5 and 6 describe the details of the policy enforcement implementation classes. The major
components of the security model are security policy, access permissions, protection domain,
access control checking, privileged operation, and class loading and resolution. Security policy
and access permissions define what actions are allowed, whereas protection domain and access
control checking provide the enforcement. Privileged operation and class loading and resolution

when making a security decision. We describe best practices to minimize the risk of introducing a

are valuable assistants in the overall protection mechanisms.

Beyond the security model itself, we describe the implementation classes that support
authentication, integrity protection, and confidentiality controls. Additionally, we provide the
details of how to customize the security architecture to enhance or modify the context evaluated

security vulnerability in custom code, and we tell how to deploy the Java runtime to ensure that it
too is secure from unauthorized modification.

3.3 Architecture Summary

As a summary of the overall process of how the Java 2 security architecture works, this section
takes you through the handling of an applet or application. The following steps occur when

 - 33 -

Inside Java™ 2 Platform Security: Architecture, API Design, and Implementation, 2nd

viewing an applet, either through a Web browser or appletviewer or when running a Java
application, possibly from the command line by invoking the program called java.

1. A class file is obtained and accepted if it passes preliminary bytecode verification.
2. The class's code source is determined. If the code appears to be signed, this step includes

signature verification.
3. The set of static permissions, if any, to be granted to this class is determined, based on the

4. A protection domain is created to mark the code source and to hold the statically bound

5. methods executed. The runtime type-

6. he call

,

e. In

7.
 been granted, the execution continues.

class's code source.

permission set. Then the class is loaded and defined to be associated with the protection
domain. Note: If a suitable domain has previously been created, that
ProtectionDomain object is reused, and no new permission set is created.
The class may be instantiated into objects and their
safety check continues.
When a security check is invoked and one or more methods of this class are in t
chain, the access controller examines the protection domain. At this point, the security
policy is consulted, and the set of permissions to be granted to this class is determined
based on the class's code source and principals, specifying who is running the cod
this step, the Policy object is constructed, if it has not been already. The Policy
object maintains a runtime representation of the security policy.
Next, the permission set is evaluated to see whether sufficient permission has been
granted for the requested access. If it has
Otherwise, a security exception is thrown. (This check is done for all classes whose
methods are involved in a thread. See Chapter 6 for the complete algorithm.)
When a security exception, which is a runtime exception, is thrown8. and not caught, the
Java virtual machine aborts.

 help to reduce start-up time and the footprint of the runtime

em resources. Most significan d by the concept of

protection domains and the work on handling mutually suspicious programs in Multics [110, 116]

ity

rovided by an underlying operating system.

The delaying tactics described earlier
because objects are not instantiated until they must be used.

There are variations to this flow of actions. For example, in an eager approach, the creation of the
Policy object and permissions can happen when classes are loaded into the runtime. This was
the approach taken prior to Java 2 version 1.4.

The fundamental ideas adopted in the Java 2 security architecture have roots reaching into the past
40 years of computer security research: for example, the overall idea of the access control list [69].
We followed some of the UNIX conventions in specifying access permissions to the file system
and other syst tly, the design was inspire

and "rights amplification" in Hydra [57, 134].

One novel feature not present in such operating systems as UNIX or Windows is the
implementation of the least-privilege principle by automatically intersecting the sets of
permissions granted to the protection domains involved in the call sequence. In this way, a
programming error in system or application software is less likely to have an exploitable secur
hole.

Note that although it typically runs over a host operating system, such as Solaris, the Java virtual
machine also may run directly over hardware, as in the case of the network computer JavaStation
running JavaOS [101]. In general, to maintain platform independence, the Java 2 architecture does
not depend on security features p

Furthermore, this architecture does not override the protection mechanisms in the underlying
operating system. For example, by configuring a fine-grained access control policy, a user may
grant specific permissions to certain software. This is effective, however, only if the underlying
operating system itself has granted the user those permissions.

 - 34 -

Inside Java™ 2 Platform Security: Architecture, API Design, and Implementation, 2nd

The protection mechanisms in Java 2 are language based and carried out within a single address
space. This departure from more traditional operating systems is related to work on software-
based protection and safe kernel extensions—for example, [12, 21, 117]—whereby resea teams
have targeted some of the same goals but by using different programming techniques. In a typical
operating system, a cross-domain call tends to be quite expensive. In Java 2, a cross-domain

rch

 call is
just another method invocation.

dynamically and that each
ay define its own semantics: for example, how it relates to a

 for any and all Java code, whatever its origin or status.

ourse of developing Java 2 platform security, great attention has been given to interface
esign, proper division of labor among classes, minimizing the number of classes and APIs, and,
henever possible, implementing private classes and methods for the sake of clarity and

ction. Typically, we do not start to prototype code until we have a good grasp of the APIs.
his was especially true when we first began developing Java 2. Throughout the development life

cycle, we have responded to comments and suggestions and have made extensive revisions to
PIs throughout the project, all without much difficulty and without jeopardizing code quality or

project delivery. When we made the initial transition from JDK 1.x we superseded fragile features,
uch as those methods we deprecated in the SecurityManager class, with a more robust

architecture.

We did encounter in JDK 1.0 two artifacts that, although inconvenient, were not changed. First,
ystem classes have been traditionally loaded with a "primordial" class loader, which is now

formally referred to as the bootstrap class loader. If you asked for the class loader of a system
lass, you were given a null. This became a sort of de facto API; that is, a class having a null

class loader was a system class. Some programmers started to test for the existence or
onexistence of class loaders as a way to distinguish between system and nonsystem classes,

ially as part of the security decision-making process. For backward compatibility, Java 2
rovides that system classes are still loaded by the bootstrap class loader; if a null is returned as

class loader for a class, it means that the bootstrap class loader loaded the class. Note: System
lasses are now sometimes referred to as bootstrap classes, but we will continue to refer to them as
ystem classes in this book.

his association between system classes and the null class loader, coupled with the difference
treatment of classes based on their class loader types, however, makes it difficult to subdivide

ystem classes into various packages or JAR files and then give them separate sets of permissions.
Such a subdivision can reduce the amount of code you need to trust completely, as well as reduce

The following are significant benefits of Java 2 platform security:

• The content of the security policy is totally separated from not only the implementation
mechanism but also the interfaces. This leaves maximum room for evolution. It also
allows the policy to be configured entirely separately from the runtime environment, thus
reducing the complexity of system administration.

• The access control algorithm is cleanly separated from the semantics of the permissions it
is checking. This allows the reuse of the access controller code with—perhaps
application-specific—permission classes that are introduced after Java 2's release.

• The introduction of a hierarchy of permission classes brings the full power of object
orientation, and especially encapsulation, to bear. This means that access control
permissions can be expressed both statically and
Permission class m
permission of its own type or of a different type or how to interpret wildcard symbols and
other peculiarities that are specific to it.

• The secure class loading mechanism, coupled with the delegation mechanism, extends
security coverage to Java applications, thus resulting in a uniform security architecture
and policy

3.4 Lessons Learned

Over the c
d
w
prote
T

A

s

s

c

n
espec
p
the
c
s

T
in
s

 - 35 -

Inside Java™ 2 Platform Security: Architecture, API Design, and Implementation, 2nd

the amount of trust in that code. In Java 2, application classes r
must now be loaded with non-null class loaders. Further, a c

esiding on the local file system
lass being loaded with a non-null

fact that is not changed is that the runtime system does not always have a
ed, and in this case, a call to System.getSecurityManager

d this

ould

vel;

r, but such checks may need to be deployed gingerly for fear of breaking
backward compatibility. It would have been easier for us if the security manager had always been

finitely cannot invoke method calls on something that is

class loader does not say anything about its status, as the class might have been granted
AllPermission. Hindsight tells us that it would have been much easier to evolve the design
if all system classes had been originally loaded with a special, but non-null, class loader.

The second JDK 1.0 arti
security manager install
results in a null security manager. Again, for backward compatibility, we have not change
in Java 2. However, this oddity causes a few unnecessary complexities. For example, each
invocation of a security check must be preceded with a test for a null security manager; this
clutters code. Historically, programmers have tested for a null security manager as a means of
determining the state of the universe, rather like trying to distinguish the world before and after
the so-called big bang. This has led to unwarranted assumptions of how a virtual machine sh
behave when the security manager is null, partly because no security checks can be invoked on
a null security manager. These assumptions should not have been permitted at a general le
nevertheless, they are being made by some programmers. The presence of such assumptions
creates pressure on maintaining backward compatibility.

The AccessController class makes it possible to invoke security checks in the absence of
a security manage

installed—that is, immediately after the bootstrap process—even though its behavior might
change over time.

The lesson learned from these two artifacts is that one cannot easily evolve the interface design of
something that is null. Further, you de
null.

 - 36 -

Inside Java™ 2 Platform Security: Architecture, API Design, and Implementation, 2nd

Chapter 4. Secure Class Loading
... sometimes it is necessary ... to consider men as a class, yet in the long run our safety lies in
recognizing the individual's worth or lack of worth as the chief basis of action, and in shaping o
whole conduct ... accordingly.

ur

sting

ine

lasses are discovered and the security attributes assigned to

classes loaded from particular sources. Finally, dynamic class loading supports the notion of

,
va

—Theodore Roosevelt

Dynamic class loading, a fundamental feature of the Java virtual machine, enables the Java
platform to install software components at runtime [74]. This feature has a number of intere
characteristics. One is lazy loading, which means that classes are loaded on demand and as they
are needed to resolve links. Type-safe linkage is the mechanism by which the Java virtual mach
maintains type safety. It does so by adding link-time checks, which are performed only once, thus
avoiding additional runtime checks. In addition, dynamic class loading in the Java platform
supports the notion of user-definable class loading policy, whereby user-defined class loaders can
customize the means by which c

multiple namespaces. For example, a browser can load applets from various Web pages into
separate class loaders, thus maintaining a degree of isolation among those applet classes. In fact
those applets may contain classes of the same name; they are treated as distinct types by the Ja
virtual machine.

Section 2.3 touched on language type safety, which is enforced by a variety of techniques,
including bytecode verification, class loading, and runtime checks. This chapter focuses on the
algorithms and APIs for locating class files, determining the appropriate class loaders to use,

4.1 Class Files, Types, and Defining Class Loaders

ts, the smallest component unit is a class. A

 in

nd

D d = new D();

ust
ine

ss D.

defining
loader of the class. The actual class type is completely specified by both the class name N and the
defining class loader. We N, L>. In other
words, two class types in the Java virtual machine are equal if both the class names are equal and
the classes have the same defining class loader.

assigning suitable security attributes to loaded classes, and associating the classes with protection
domains, described in the next chapter.

When a class loader loads Java software componen
class is defined in a machine-independent binary representation called the class file format [74].
The representation of an individual class is called a class file, even though it need not be stored
an actual file. Typically, a class is in a file created as the result of compiling the source code for
the class. A class file may contain bytecode, as well as symbolic references to fields, methods, a
names of other classes. An example of a class is a class C declared as follows:

class C {
void f() {

...
 }
}

The class file representing C contains a symbolic reference to class D. The symbolic reference is
resolved to the actual class type when class C is linked. To do this, the Java virtual machine m
ask a class loader to load the class file of D and create the class type. The Java virtual mach
relies on the class loader that defined class C to be the initiating loader to find cla

A class loader instance L that directly creates—loads and defines—class C is called the

 symbolically denote this relationship as C = <

 - 37 -

Inside Java™ 2 Platform Security: Architecture, API Design, and Implementation, 2nd

4.2 Well-Known Class Loader Instances

s
?

h

 system in a platform-
dependent manner.

hese core classes are

y Bracha and Liang [73].
ded by the bootstrap class loader have a defining class loader that is represented as a

e implementation and is not part

oader and to the classes it defines as application classes.

m

he class definition hierarchy contains

Because each class loader is itself an instance of a class that must be loaded by another clas
loader, a chicken-and-egg question arises; that is, where does the first class loader come from
The answer is: A "primordial" class loader bootstraps the class loading process. This is formally
referred to as the bootstrap class loader [48] and is sometimes written in a native language, suc
as C. The bootstrap class loader often loads classes from the local file

Some classes, such as those defined in the java.* packages, are essential for the correct
functioning of the Java virtual machine and Java runtime environment. T
loaded and defined by the bootstrap class loader. They are referred to as system classes in the
seminal paper "Dynamic Class Loading in the Java Virtual Machine" b
Classes loa
null reference. The null reference is merely an artifact of th
of the platform specification.

To confuse matters, fairly late during Java 2 development, there was a terminology shift. All
classes that reside on the CLASSPATH are called system classes, as they are loaded by a user-
defined class loader known as the system class loader. A reference to this class loader can be
obtained by invoking the method
java.lang.ClassLoader.getSystemClassLoader. We will refer to this class
loader instance as the application class l
We will refer to classes defined by the bootstrap class loader as system classes.

Another well-known class loader instance is the extension class loader, which loads classes fro
the installed optional packages [122]. Optional packages were formerly known as standard
extensions: hence the name extension class loader.

4.3 Class Loader Hierarchies

Java 2 has two orthogonal class loader hierarchies. T
subclasses of java.lang.ClassLoader. Each subclass in this hierarchy builds on the
behavior and semantics of its ancestors. This inheritance hierarchy is covered in Section 4.3.1.
The second hierarchy is a dynamic one formed at runtime. This is the class loader delegation
hierarchy. In the previous code example, class C constructs a new instance of class D. The class
loader delegation hierarchy enables class C to reach class D, regardless of whether class D is a
system, extension, application, or other category of class. The class loader delegation hierarchy is
described in Section 4.3.2.

4.3.1 Class Loader Inheritance Hierarchy

Figure 4.1 shows part of the class loader inheritance hierarchy. Class loaders are ordinary objects.
At the root of the class loader class hierarchy is the abstract class
java.lang.ClassLoader, originally defined in JDK 1.0 and since expanded (see Section
4.4). The java.security.SecureClassLoader class, introduced in Java 2, is a
subclass and a concrete implementation of the abstract ClassLoader class. The class
java.net.URLClassLoader, also introduced in Java 2, is a subclass of
SecureClassLoader. The URLClassLoader is a fully functional class loader, whereas
its superclasses are either abstract or missing useful implementations of key methods.

Figure 4.1. Subclassing Classleader

 - 38 -

Inside Java™ 2 Platform Security: Architecture, API Design, and Implementation, 2nd

The utility program appletviewer relies on a vendor-specific implementation class,
sun.applet.AppletClassLoader, to load applets. In JDK 1.0,
AppletClassLoader is a subclass and concrete implementation of ClassLoader; in
Java 2, a subclass of URLClassLoader. Note that interposing new classes between an
existing class and its superclass is binary backward compatible [48].

When creating a custom class loader class, you can subclass from all but one of the class loader
ds on the particular needs of
e

t is a vendor-specific implementation defined in the

When it is the initiating loader and is asked to load a class, a class loader either loads the class
tion 4.4

classes mentioned in this section. Which one you subclass from depen
 should not subclass from is thyour custom class loader. The class you

AppletClassLoader class. Because i
sun.* package, this class is not supported and is subject to change.

4.3.2 Class Loader Delegation Hierarchy

itself or asks another class loader to do so, using the mechanisms described in Sec . In other
relationship is

 class loader.
Instead, the delegation relationship is formed when ClassLoader jects are created; it takes

,

words, the first class loader can delegate to the second class loader. The delegation
formed at runtime and has nothing to do with which class loader loads which other

 ob
the form of a parent-child relationship.

When it needs to discover a class, the Java virtual machine starts the search from the class loader
that defined the class that triggered the class loading. The Java runtime environment creates a
class loader delegation hierarchy with the application class loader typically at the top of the
hierarchy. The formation of this hierarchy occurs early in the runtime's start-up sequence, at which
point it creates the application class loader. The application class loader delegates to the extension
class loader, and, finally, the extension class loader delegates to the bootstrap class loader. That is
the bootstrap class loader is the delegation root of all class loaders. Applet and application
containers, such as the appletviewer, Java Plug-in, or Java Web Start, instantiate class
loaders that delegate to the application class loader.

 - 39 -

Inside Java™ 2 Platform Security: Architecture, API Design, and Implementation, 2nd

With all classes in one Java runtime environment, a class loading tree can easily be formed to
reflect the class loading relationship (Figure 4.2). Each class that is not a class loader is a leaf
node. The immediately preceding node of each class is its defining class loader, with the bootstr
class loader being the root class. Such a structure is a tree

ap
 because there cannot be cycles; that is, a

class loader cannot load its own ancestor class loader.

Figure 4.2. Class loading relationship

The constructors of the ClassLoader API build the delegation tree:

legation parent. The default delegation parent is
ll to the getSystemClassLoader method of the

You c n

public ClassLoader getParent()

protected ClassLoader(ClassLoader parent)
protected ClassLoader()

The first constructor creates a class loader that has the supplied class loader as the delegation
parent. The second constructor uses a default de
the class loader returned by a ca
ClassLoader class:

public static ClassLoader getSystemClassLoader()

a obtain the parent of a class loader by calling the getParent method:

 - 40 -

Inside Java™ 2 Platform Security: Architecture, API Design, and Implementation, 2nd

Bec e rictions are in
place, w
security uctors. (The security manager is described in Chapter 6

aus class loaders can perform sensitive operations, such as defining classes, rest
hen a security manager is present, to control the creation of class loaders by invoking a
 check in the constr .) Because all

clas a the
super check
involves y the security policy, to all the
code on the execution stack. In the case of the ClassLoader constructors, the permission that

s lo ders are subclasses of ClassLoader and constructors in the subclasses always call
() constructor, security checks placed here are always invoked. A security
 ensuring that a particular permission has been granted, b

is required and checked for is the RuntimePermission with name
"createClassLoader". See Chapter 5 for information on permissions and security policy
granting various permissions to code of varying locations, signers, and so on. The full access
control—permission checking—algor which code must

ithm, including specification of exactly
have the required permission, is described in Chapter 6.

ll this.getClass().getClassLoader() to obtain
its own defining class loader. With a reference to this class loader, you might attempt to "reach

ts del Obviously, one has to be
very careful about which class loader is specified as the delegation parent.

For similar reasons, the same security check is placed in the method call
Class.getClassLoader() because you not want anything with a reference to a
Class object to reach over to its ClassLoader object. This security check is new to Java 2.

Restrictions are also implemented to control who can successfully invoke the
getSystemClassLoader and getParent methods. The reason is primarily because
from within any object, you can ca

over" to its delegation parents and then invoke methods on them. Uncontrolled reach-over is
clearly undesirable. Thus, if a security manager is present, the getSystemClassLoader
and getParent methods will succeed only if the caller's class loader is the same as or is a
delegation ancestor of the current class loader or if the code in the execution context has the
RuntimePermission with name "getClassLoader". Otherwise, a security exception
will be thrown. Note that allowing a delegation ancestor to have access is reasonable because a
delegation child, on its creation, must designate i egation parent.

do

The other security checks mentioned in this section were done in prior releases in the approach
typical for those releases, that is, calling check methods in the SecurityManager class, as
described in Chapter 6.

The use of delegation is described in the following sections.

4.4 Loading Classes

The following ClassLoader methods relate to class loading:

public Class loadClass(String name)
protected synchronized Class loadClass(String name,
 boolean resolve)

e)

)

e
rm of

etrieving the binary representation previously created by compiling the
source code for the class—and then "defining" the class, that is, constructing from that binary
form C

protected native final Class findLoadedClass(String nam
protected Class findClass(String name)
protected final void resolveClass(Class c

The loadClass methods, called by the Java virtual machine to load classes, take a class nam
as argument and return a Class object. The loading process involves finding the binary fo
the class—typically by r

 a lass object that represents the class.

 - 41 -

Inside Java™ 2 Platform Security: Architecture, API Design, and Implementation, 2nd

4.4.1 F

The fa der class, search
for a cla

1. he class has already been

 class loaders in this class loader's delegation hierarchy loaded the class,
invoke the findClass method to find the class using this class loader's

nism to locate the class.

al,

 the
r

—

inding a Class

de ult implementations of the loadClass methods, in the ClassLoa
ss in the following order:

Call the findLoadedClass method to check whether t
loaded. Otherwise,

2. If this class loader has a specified delegation parent, call the corresponding
loadClass method of the parent, thereby delegating to the parent the task of loading
the class.

3. If none of the

implementation-specific mecha

The findLoadedClass method looks into the Java virtual machine's loaded class cache to
see whether the class has already been loaded. It is critical for type safety that the same class not
be loaded more than once by the same class loader. Note that this method is native fin
and it thus may never be overridden.

If the class is not among those already loaded, the current class loader will attempt to delegate
task to its parent class loader. This can occur recursively, ensuring that the appropriate class loade

the is used. For example, when searching for a system class, the delegation process continues until
bootstrap class loader is reached.

Note: Each class loader's findClass method attempts to locate only the classes the class
loader is responsible for defining. Thus, the bootstrap class loader looks only for system classes
for example, classes in the runtime JAR file rt.jar—whereas the extensions class loader
searches only for classes in the files of the extensions directory, and so on. If it doesn't find the
class being searched for, a class loader throws an exception that is caught by the class loader that
delegated to it, and then that class loader calls its own findClass method to attempt to find
the class. The process is depicted in Figure 4.3.

Figure 4.3. ClassLoader searching for classes

 - 42 -

Inside Java™ 2 Platform Security: Architecture, API Design, and Implementation, 2nd

In this figure, the solid arrows depict the parent-child delegation relationship between class loader
instances, and the dashed arrows represent the possibly multiple class loader instances traversed to
find the desired class. The initiating class loader, that is, the class loader initially asked to load t
target class, delegates to its delegation parent, which delegates to its delegation parent, and s
all the way up to the final delegation parent, the bootstrap class loader. The bootstrap class loader
attempts to find the class. If it fails, the class loader that delega

he
o on,

ted to it attempts to find the class,

1
and so on, until one of the class loaders finds the class, or it is not found at all. If the class is
found, the class loader that found it must be the defining class loader, as described in Section 4. .

arified is which class loader does the Java virtual machine

tSystemClassLoader method, is used. In the Sun Microsystems
implementat is a subclass of URLClassLoader.

loaded, a new instance of the
AppletClassLoader is used.

ader instances have
For example, a Web

lasses from

The findClass method provides a way to customize the mechanism for looking for classes.
Thus, a custom class loader can override this method to specify how a class should be discovered.
For example, an applet class loader can override this method to go back to the applet host—origin
server—to try to locate the class file and load it over the network.

If the class was found by using the previous steps and the resolve flag is true, the
loadClass method then calls the final resolveClass method on the resulting
Class object to link the class if it hasn't already been linked.

An issue about class loading to be cl
start with when trying to load a class, given the name of any class? Following are the rules
implemented in Java 2:

• When the first class of an application is being loaded, a new instance of the application
class loader, that is, the class loader returned by the ClassLoader
ge

ion, this class loader
• When the first class of an applet is being

• If the request to load a class is triggered by a reference to it from an existing class, the
class loader for the existing class is asked to load the class.

The rules about the use of URLClassLoader and AppletClassLo
 environment. exceptions and can vary, depending on the particular system

browser may choose to reuse an existing AppletClassLoader to load applet c
the same Web page.

4.4.2 Defining the Class

Part of the operation of loading a class involves defining the class after the binary repr
ction 4.4.1

esentation
of the class is found by the steps listed in Se . The defineClass methods convert an

of class Class and
in

tring name, byte[] b,
 int off, int len, ProtectionDomain protectionDomain)

Class(String name, byte[] b,
 int off, int len)

 is an object used for grouping

e

certificates corresponding to the private keys used to sign the class. (Code signing is described in

array of bytes—containing the binary representation—into an instance
: associate the class with its appropriate ProtectionDoma

protected final Class defineClass(S

protected final Class define

As you will see in the next chapter, a ProtectionDomain
together various characteristics applicable to all classes in the domain. During class definition,
each class is assigned to its ProtectionDomain, based on characteristics of the
CodeSource of the class. A CodeSource is described by two properties: the origin of th
class, specified as a URL, and the signers of the code, if any, which are specified by the digital

 - 43 -

Inside Java™ 2 Platform Security: Architecture, API Design, and Implementation, 2nd

Section 8.3.) It is incumbent on the defining class loader to associate each class with the
appropriate ProtectionDomain. At runtim keeps track of te, the Java virtual machine he
ProtectionDomain s on the call stack. A resource access is basically

all stack are
granted the requisite permissi

s of the class instance
granted if, and only if, all ProtectionDomains of the class instances on the c

on. (See Chapter 6 for full details.)

eing

 by
n the same

stance as a

SecureClassLoader defineClass method constructs or finds a
Loader

When defining a class, a class loader—instance of ClassLoader—must assign the class b
defined to a ProtectionDomain based on the CodeSource. A class loader may

onstructedimplement an optimization that reduces the number of ProtectionDomains c
caching unique ProtectionDomains as they are created and reusing them whe
CodeSource is encountered for subsequent classes.

A class loader that directly finds or creates the ProtectionDomain then calls the
ClassLoader defineClass method with the ProtectionDomain in
parameter. Some class loaders, such as URLClassLoader, don't search for or construct a
ProtectionDomain but instead rely on the inherited SecureClassLoader
defineClass method, which takes a CodeSource parameter. The

ProtectionDomain instance and then passes it in a call to the Class
defineClass method, as described in Section 4.5.

Note that the second defineClass method does not explicitly mention a
ProtectionDomain, because this method existed before Java 2, when
ProtectionDomains did not exist. In this case, a default ProtectionDomain is used
This associates the class with the domain having a

.

 a class on its prote e

Class.getProtectionDomain method. Obviously, ProtectionDomain objects
. If

ClassLoader.setSigners ethod to associate the signers' certificates with the runtime

Class.getSigners ere is no
security check placed in this method, because it is usually not a security risk to reveal who signed

CodeSource of (null, null), that is, a
CodeSource with null for both the URL and certificates. Such a class will be effectively
granted the permissions that the security policy specifies for code whose origin and signing
status—whether it was signed and by whom—do not matter.

The result of class definition is that a Class is created and marked as belonging to a specific
protection domain. You can later query ction domain by calling th

are security-sensitive objects, so you must be cautious about who can obtain references to them
a security manager is present, the getProtectionDomain method invokes a security check
to ensure that the code in the current execution context has the RuntimePermission with
name "getProtectionDomain". If it does not, a security exception is thrown.

When a class file is correctly signed with one or more digital signatures, the defineClass
method that includes a ProtectionDomain argument calls the

 m
Class created from the class file:

protected final void setSigners(Class c, Object[] signers)

You can query a class for its signers by calling the method. Th

the class.

4.4.3 Other ClassLoader Methods

The rest of the methods in the ClassLoader class are related mostly to finding resources and
packaging. They are mentioned next with no further description:

 - 44 -

Inside Java™ 2 Platform Security: Architecture, API Design, and Implementation, 2nd

protected String findLibrary(String libname)
public URL getResource(String name)
public final Enumeration getResources(String name)
public Enumeration findResources(String name)

ing name)
public static InputStream

nePackage(...)

Refer to the javadocs for further explanation.

The
add n
dev
Gradual
the newl

The two s are the following:

urce cs)
protected PermissionCollection getPermissions(CodeSource

The defineClass od defines a class from a particular code source. In some sense, this
ss, which

t to

main to
on

n has not yet been created,
SecureClassLoader to get the static permissions assigned to

n

d in Section 5.3

public URL findResource(String name)
public static URL getSystemResource(String name)
public static Enumeration getSystemResources(String name)
public InputStream getResourceAsStream(Str

 getSystemResourceAsStream(String name)
protected Package defi
protected Package getPackage(String name)
protected Package[] getPackages()

4.5 SecureClassLoader Details

java.security.SecureClassLoader class extends ClassLoader with
itio al support for defining a class, given the code source of the class. During Java 2
elopment, this class initially had a richer design with a comprehensive set of method calls.

ly, those functionalities have been moved either to the base class ClassLoader or to
y created class URLClassLoader.

 main methods of the SecureClassLoader clas

protected final Class defineClass(String name, byte[] b,
 int off, int len, CodeSo

 codesource)

 meth
method duplicates certain functionality of the ClassLoader method defineCla
takes a ProtectionDomain as an argument. However, sometimes it is convenient no
have to worry about protection domains. For example, the caller, a subclass, of this
SecureClassLoader method, might not be able to determine which protection do
use but still needs to define the class. In this case, codesource is the only piece of informati
available about the origin of the class that can be used to determine the permissions to be granted.

The SecureClassLoader defineClass method determines the
ProtectionDomain for the class, first checking whether a ProtectionDomain has
already been created for code from the code source of the class. If so, a reference to that
ProtectionDomain is used. If such a ProtectionDomai

 calls getPermissions
the specified code and then instantiates a ProtectionDomain, passing its constructor the
CodeSource; the static permissions, permissions the loader assigns at class loading time; the
class loader, "this"; and null for the Principals array that may be set during executio
to indicate who is executing the code. (A class loader should always assign null for the
Principals, as describe .) After the ProtectionDomain has been found
or created, the SecureClassLoader defineClass method then calls the
ClassLoader defineClass method that takes a ProtectionDomain as an
argument.

 - 45 -

Inside Java™ 2 Platform Security: Architecture, API Design, and Implementation, 2nd

The getPermissions m
CodeSource object. The defa

ethod is intended to return the static permissions for the given
ult implementation of this method, as of J2SE 1.4, simply returns

,
he

customizes the getPermissions method, as described in the next section.

ss loader, which is the application class
loader. The URLs will be searched in the order specified for classes and resources but only after

an empty new Permissions object. A class loader can override this method. For example
this method in the AppletClassLoader automatically grants a permission that allows t
applet to connect back to the local host if the applet was loaded from the local file system, even
though the security policy does not specify this permission. The URLClassLoader also

4.6 URLClassLoader Details

The java.net.URLClassLoader class extends SecureClassLoader and is used
to load classes and resources from a search path of URLs referring to both JAR files and
directories. Here are the two constructors:

public URLClassLoader(URL[] urls, ClassLoader parent)
public URLClassLoader(URL[] urls)

The first method constructs a new URLClassLoader for the given URLs and assigns it
parent as its delegation parent. The second method constructs a new URLClassLoader for
the specified URLs, using the default delegation parent cla

URLClassLoader first delegates to its parent by searching in the specified parent class
loader, as described in Section 4.4.1.

The URLClassLoader class overrides the ClassLoader method
findClass(String name) and a few resource-related loading methods to find and load

e

ission
 files and, recursively, all files and subdirectories contained in that

 the URLs specified when the URLClassLoader was created.

the class or resource with the specified name from the URL search path. Any URLs that refer to
JAR files are loaded and opened as needed until the class is found.

More interesting from a security perspective, this class overrides the following method inherited
from SecureClassLoader:

protected PermissionCollection getPermissions(CodeSource
 codesource)

This method, for returning the static permissions for the given CodeSource object, first calls
super.getPermissions(). The method then adds permissions, based on the URL of th
code source, according to the following rules:

• If the protocol specified by the URL is "file" and the path specifies a file, read permission
to that file is granted.

• If the protocol specified by the URL is "file" and the path is a directory, read perm
is granted to all
directory.

• If the protocol specified by the URL is not "file," a permission to connect to and accept
connections from the URL's network host is granted.

In other words, classes loaded by a URLClassLoader are, by default, granted permission to
access

Another distinguishing feature of URLClassLoader is the pair of static methods to create
new URLClassLoader instances:

 - 46 -

Inside Java™ 2 Platform Security: Architecture, API Design, and Implementation, 2nd

public static URLClassLoader newInstance(URL[] urls,
 ClassLoader parent)
public static URLClassLoader newInstance(URL[] urls)

As stated earlier in the chapter, security concerns compel severe restrictions on who can create
ces. However, it is convenient to provide a mechanism for applications or
cations and to load classes or resources from them. These static

 call

plet
efined

ClassLoader instan
applets to specify URL lo
newInstance methods allow any program to create instances of the URLClassLoader
class, although not other types of class loaders. This is considered acceptable, given the available
public methods and the delegation mechanism. Note that an application or applet still cannot
the protected methods in URLClassLoader or its superclasses.

Typically in a Web browser and specifically in appletviewer and the Java Plug-in, an ap
class loader is used to load classes and resources needed for applets. In Java 2, this class is d
in the vendor-specific sun.* package and is a subclass of URLClassLoader. Additional
URLClassLoader subclasses mentioned in Section 4.2 are the application class loader and
the extension class loader.

4.7 Class Paths

The class loader classes described previously provide programmable ways to locate and load
lasses and resources. To simplify the task of installing software components on a system

orting the Java platform, common and user-specific places are available in which to put such
omponents in order to allow them to be automatically discovered by the Java runtime system.

 JDK 1.0 and 1.1, a well-known, built-in, systemwide search path called CLASSPATH is set in
atform-specific way. On UNIX systems, for example, CLASSPATH can be set via the shell

nvironment variable CLASSPATH. Essentially, all classes or JAR files containing classes on the
cal file system must reside on this path to be discovered. It also is where all system classes
side. As a result, all classes from the local file system are treated as system classes and are given
ll privileges to access all resources. In other words, those local classes that really belong to the
stem code are not distinguished from other local classes that are merely part of some locally
stalled applications.

his was clearly not perfect. One can imagine many scenarios in which a locally installed
application should not be given full system privilege: for example, a demo program newly

ocument, you might
ntent of the document is

ication.

 Java 2 includes provisions to treat locally resident classes in the same
ed applet classes, that is, by granting them specific and fine-grained

Loader, which granted them permissions according to the security policy.

c
supp
c

In
a pl
e
lo
re
fu
sy
in

T

received in the mail. As another example, when displaying an important d
want to run the display application in read-only mode to ensure that the co
not altered or lost due to software bugs in the appl

The security architecture in
way as remotely download
permissions. For this to work, true system classes must be distinguishable from all other classes.
The Java 2 approach is to have separate class paths: one for system classes and one for the rest.

The earliest design for this path separation, which was released in a beta version of Java 2 SDK,
called for a search path—the application class path—in addition to the existing CLASSPATH. As
with JDK 1.1, all classes on CLASSPATH were treated as system classes. All classes on the
application class path were non-system classes, however, and were loaded with instances of the
SecureClass
The application class path could be specified by either setting a property called
java.app.class.path or using a command line option when invoking the application.
Command line options and other deployment issues are discussed in Chapter 12.

 - 47 -

Inside Java™ 2 Platform Security: Architecture, API Design, and Implementation, 2nd

This design had the advantage of being fully backward compatible. An existing application c
be migrated from sitting on

ould

t
on tter security architecture and a very powerful

extensions mechanism.

of URLClassLoader. The security
policy can be configured to grant different permissions to different code sources on the application

an this. As noted, system classes are accustomed to being loaded by the
etermining whether a class is a system class by whether it has a

 not good practice, yet there remains legacy code that is best not
broken in the new security architecture. Moreover, bootstrapping and other issues could be

 2. We
ed

CLASSPATH to the new application class path at its own pace and
without affecting other installed software components. Before migration, the application ran
exactly as in JDK 1.0 and JDK 1.1. Once migrated, the application became subject to fine-grained
access control. However, it can be argued that such migration effort should not be placed on the
shoulders of users. Also, the backward compatibility might have simply led users to do nothing a
all; thus, they would miss out a much be

Because of such concerns, in the eventual design of Java 2, CLASSPATH is interpreted as the
application class path. Thus, deployed applications do not have to be moved. When Java 2 is
installed, classes on this path are loaded by subclasses

path.

As for the system class path, J2SE recognizes a nonstandard command line flag, -
Xbootclasspath, which can be used to augment the locations the bootstrap class loader
searches to discover classes. Users or developers should rarely or never have to install classes on
this path. Note that this design might not provide full backward compatibility for some existing
applications, even though the number of such applications is expected to be very small. The
reason is that up to and including JDK 1.1, all classes on CLASSPATH were treated as system
classes and were loaded with the bootstrap class loader. To reiterate, in J2SE, classes are
loaded with an instance of URLClassLoader. Therefore, an application that checks for
bootstrap class loaders might need to be upgraded to reflect the presence of
URLClassLoader.

You might question why there remains a separate system class path. If system classes need all
permissions, and they do, why not simply use the policy to grant them AllPermission and
thus treat them as just a special kind of application? The real situation is somewhat more
complicated th
bootstrap class loader. D
bootstrap class loader is

technically solved, but the solutions were judged to be too destabilizing to attempt for Java
hope that, in the future, different parts of the system classes can be granted only those fine-grain
permissions that they really need. This subdivision of system classes will constrain the power of
each system component and further reduce the consequences of programming errors in system
classes.

 - 48 -

Inside Java™ 2 Platform Security: Architecture, API Design, and Implementation, 2nd

Chapter 5. Elements of Security Policy
Policy must be clear, consistent, and confident.

A security policy, specified separately from the Java runtime system by a system administrator or
urces may be accessed by various groups of
om a set of properties characterizing running

code to a set of resource nted to

prise the interfaces to security policy. We describe
classes relevant for representing the policy, running code, and the security-sensitive resource

t,
.

on must be gra ecurity policy to the running code in order for
the operation to be allowed. The Policy is then consulted to determine whether the specified
permission has been g

Section 5.2.1

—Dwight D. Eisenhower

user, indicates what security-sensitive system reso
code. A security policy is essentially a mapping fr

 access permissions gra the code. Some code will be granted a
certain set of permissions, whereas other code will be granted its own set of permissions. In a Java
runtime environment, the policy contents are represented in an implementation of the abstract
Policy class.

This chapter documents the elements that com

accesses the code requires in order to do specific operations.

The first section describes Permissions, instances of which represent access to specific
security-sensitive resources. A Policy implementation usage of permissions is twofold. Firs
permissions are used to represent which resource accesses are granted to different groups of code
Second, when a security-sensitive operation is attempted, a relevant permission is constructed to
indicate which permissi nted by the s

ranted.

 describes the CodeSource class, which holds two of the three properties used to
characterize running code: its URL (origin) and digital certificates specifying the signers, if any,
of the code. The third property, giving the Java runtime an indication of who is running the code,
is discussed in Section 5.2.3 and further in Chapter 8.

In Section 5.3, we describe ProtectionDomains. As mentioned in the preceding chapter,
each class is associated—when it is defined—with an instance of ProtectionDomain. A
ProtectionDomain is a convenience class for grouping the CodeSource of the class;
static permissions, or ones assigned at class loading time; a reference to the defining class loader
for the class; and a Principal array that may be set during execution to indicate on whose
behalf the code is executing. All classes with the equivalent CodeSource, Principals, and
defining class loader belong to the same ProtectionDomain. The JVM tracks all the
ProtectionDomains for the code on the execution stack. As you will see in Chapter 6, a
resource access is granted if every ProtectionDomain in the current execution context has
been granted the permission required for that access, that is, if the code and Principals
specified by each ProtectionDomain are granted the permission.

Section 5.4 describes security policy and the abstract Policy class. At runtime, a concrete
lly declared security policy, which is
n 5.5

implementation of this class encapsulates the externa
consulted whenever security checking is done. Sectio depicts how permissions are granted to

The permission classes represent system resources and the operations supported on those

lePermission

running code.

5.1 Permissions

resources. Each permission has a String name, and some permissions also have a String
action list. An example of a permission is a Fi with name "/tmp/abc"

 - 49 -

Inside Java™ 2 Platform Security: Architecture, API Design, and Implementation, 2nd

and action "read", which specifies read access to the file /tmp/abc. Permissions are used to
ed at

e
various

A permission is also constructed at runtime as needed to indicate a permission that must be

ty-

specify both what resource accesses are allowed by a policy and what permissions are requir
runtime prior to performing security-sensitive operations.

Permission objects are used in a security policy to indicate which security-sensitive resourc
accesses are allowed for various groups of code, that is, for code in various locations, with
signers, executed by various users or services. Some code may be granted certain permissions,
whereas other code is granted a different set of permissions.

granted, by the security policy, to all the code in the current execution context in order for a
particular resource access to be permitted. That is, a method responsible for performing a securi
sensitive operation should always first construct an appropriate Permission and then test
whether the callers on the call stack have been granted the specified permission by the policy. The
method does this in the manner described in Chapter 6, typically by calling the
SecurityManager checkPermission method, passing it the required

s.

Permission.

All permission classes are positive in that they represent approvals, rather than denials, of acces
This design choice, discussed further in Section 5.1.5, greatly simplifies the implementatio
improves efficiency.

The remainder of this section describes permissions. We first cover the design of the

n and

ission classes. Then we discuss sets

Permission java.security.Permission
rce.

ed abc in the directory /tmp:

Permissi lasses,

Permission class hierarchy and some of the specific perm
of permissions and provide details about what it means for one permission to "imply" another.

5.1.1 Permission Class Hierarchy

The root class of the class hierarchy, , is
an abstract class and may be subclassed, as appropriate, to represent access to a specific resou
For example, FilePermission is a Permission subclass that is used to represent access
to a file. The following code can be used to construct a permission that represents read access to
the file nam

perm = new java.io.FilePermission("/tmp/abc", "read");

New permissions are subclassed from either the on class or one of its subc
such as java.security.BasicPermission (Figure 5.1). Subclassed permissions,
other than BasicPermission, generally belong to their own packages. Thus, for example,
FilePermission is found in the java.io package, which holds the APIs for file system
access.

Figure 5.1. Common Permission subclasses

 - 50 -

Inside Java™ 2 Platform Security: Architecture, API Design, and Implementation, 2nd

5.1.2 Common Permission Classes

Some of the more commonly encountered permission classes are Permission,
BasicPermission, AllPermission, and UnresolvedPermission.

java.security.Permission

At the root of the Permission class hierarchy is the abstract Permission class, which has
the following constructor and public methods:

public Permission(String name);
public abstract boolean implies(Permission permission);
public abstract boolean equals(Object obj);
public String toString();
public PermissionCollection newPermissionCollection();

Each permission has

a target name, whose interpretation depends on the subclass. It is conceivable

t Permission class has just a name argument, most Permission
e actions that are permitted on the permission target. For

ilePermission object is the path to a file
perations, such as read and write, are

ctory.

jects that do not need such a list. One
here the named permission, such as
ubdivision of different actions.

he name embodies both the target of the
t—and the action: exit. For
ch permission classes typically

on

that for certain types of permissions, the target name is of no importance and is thus not
interpreted.

Although the abstrac
objects also include a list that gives th
example, the permission name for a java.io.F
or directory, and the list of actions specifies which o
granted for the specified file or for files in the specified dire

The actions list is optional for those Permission ob
example is java.lang.RuntimePermission, w

, is either granted or not. There is no further s"exitVM"
Admittedly, for these special cases, quite often t
permission—for example, is the target from which tVM o exi
simplicity, the target and action are merged as one string. Su
subclass from java.security.BasicPermissi

 - 51 -

Inside Java™ 2 Platform Security: Architecture, API Design, and Implementation, 2nd

Each Permission instance is typically generated by passing one or more string parameters to
the constructor. The first parameter is usually the name of the target, such as the name of a file for
which the permission is aimed. The second parameter, if present, is the action, such as "rea
for reading the file. Generally, a set of actions is specified as a comma-separated compo

d"
site string.

Subclasses sh ovi at ca p een

issions. The semantics of the statement "permission p1 implies permission p2"
means that if you are granted permission p1, you are naturally granted permission p2. Thus, this

ermission equivalence. Object
etermine
ission

heck

Sometimes, it is desirable to present a pe ontent i adable fashion. The

d the actions in ng format:

Permission objects, like String objects, are immutable once they have been created.
ould not pr de methods th n change the state of a ermission once it has b

created.

Whether two Permission objects are considered equal is left entirely up to each subclass of
the Permission class. In fact, it is up to each Permission subclass to determine the
appropriate semantics for its implementation of each abstract Permission method.

One method that must be implemented by each subclass is the implies method, which is used
to compare perm

is not really an equality test but rather more of a subset test.

It is important to remember that object equality differs from p
equality is useful, for example, when you store objects in hash tables and later need to d
whether an entry already exists. This can be done by calling the equals method. Perm
equivalence, on the other hand, means that two objects semantically represent the same
permission. To determine permission equivalence, you must use the implies method and c
to see whether one Permission object implies another, and vice versa.

rmission's c n a human-re
toString method returns a string describing the permission. The convention is to specify the
class name, the permission name, an the followi

(ClassName name actions)

For example, the following is returned as a result of a call to the toString method on a
java.io.FilePermission that specifies both read and write access to the file /tmp/abc:

(java.io.FilePermission /tmp/abc read,write)

As shown in Section 5.1.3, subclasses of Permission sometimes need to be stored in a
specialized PermissionCollection object so as to provide the desired
PermissionCollection.implies semantics. When this is the case, the
Permission.newPermissionCollection method must be overr
specialized

idden such that the
PermissionCollection is returned. The default

.

 Permission class implements two interfaces: java.security.Guard and
. For the latter, the intention is that Permission objects may

hod Invocation (RMI), and thus a
 to the class

a.security.GuardedObject, is discussed in Chapter 9

newPermissionCollection behavior is to return null

The
java.io.Serializable
be transported to remote machines, such as via Remote Met
Serializable representation is useful. Guard, which is related
jav .

at the
ific permissions is discussed in Chapter 7

Applications are free to introduce new categories of Permission classes beyond those th
system always supports. How to add application-spec .

java.security.BasicPermission

 - 52 -

Inside Java™ 2 Platform Security: Architecture, API Design, and Implementation, 2nd

The java.security.BasicPermission class extends the Permission class and
offers a very simple naming convention that is often encountered when creating permission
classes. BasicPermission is commonly used as the base class for "named" permission
named permission contains a name, such as

s. A

ay appear at the end of the name, following a "."
or by itself, to signify a wildcard match. For example, java.* and * are valid, but *java and

 defined by

javax.security.auth.AuthPermission

g
or such

ns string is

Historically, all permission classes in the Permission class hierarchy below Permission

tation of

ore

e following two constructors:

public BasicPermission(S
 actions);

 whether the
er its name is

comparison takes into
es "a.b.c".

"exitVM", "setFactory", and
"queuePrintJob", but no actions list; either you have the named permission or you do not.
The naming convention follows the hierarchical property naming convention, which is analogous
to the package naming convention. An asterisk m

a*b are invalid.

BasicPermission is an abstract class, so you cannot directly construct it and must construct
one of its subclasses instead. Following are the subclasses of BasicPermission
the J2SE platform:

java.awt.AWTPermission
java.io.SerializablePermission
java.lang.RuntimePermission
java.lang.reflect.ReflectPermission
java.net.NetPermission
java.security.SecurityPermission
java.sound.sampled.AudioPermission
java.sql.SQLPermission
java.util.PropertyPermission
java.util.logging.LoggingPermission
javax.net.ssl.SSLPermission

javax.security.auth.kerberos.DelegationPermission

Subclasses may implement actions on top of BasicPermission, if desired. In the precedin
list of subclasses, only java.util.PropertyPermission currently does this. F
a permission, the name is the property name, such as "java.home", and the actions list
specifies whether you can set the specified property value—if the actio
"write"—get the property value—if actions is "read"—or both—if actions
includes both "read" and "write", as in "read, write" or "write, read".

have two constructors: one that takes just a String argument for the name, that is, the target,
and another that additionally takes a String argument for the actions, regardless of whether the
permission class uses actions. This was a limitation previously imposed by the implemen
the UnresolvedPermission, described later, and the default Policy provider. The
limitation was removed with the release of J2SE 1.4. To remain backward compatible with
existing permission classes, the two-argument constructor of a permission class may simply ign
the argument.

BasicPermission exposes th

tring name);
public BasicPermission(String name, String

The BasicPermission implementation of the implies method checks
nd, if so, whethpermission parameter is of the same class type as this instance a

ame string implied by the name of the comparing permission. Here, n
account wildcards, so that, for example, "a.b.*" impli

 - 53 -

Inside Java™ 2 Platform Security: Architecture, API Design, and Implementation, 2nd

The BasicPermission implementation of the equals method simply checks whether the
permission name strings are equal.

java.security.AllPermission

The java.security.AllPermission class represents a wildcard for all possible
permissions. This class was introduced to simplify the work of system administrators who might
need to perform multiple tasks that require all or numerous permissions. It would be inconvenient
to require the security policy to iterate through all permissions while making a policy decision.

Because AllPermission does not care about the actual targets and actions, its constructors

public boolean equals(Object obj) {

Note that AllPermission also implies any permissions defined in the future. Clearly,

ignore all passed-in parameters. By definition, AllPermission permission implies all
permissions. Moreover, two AllPermission objects are always considered equal. Thus, the
AllPermission class implements the following two methods specially:

public boolean implies(Permission p) {
 return true;
}

 return (obj instanceof AllPermission);
}

granting this permission must be done with caution.

java.security.UnresolvedPermission

As discussed in Section 5.4, the s
permissions are available for code from

ecurity policy for a Java runtime environment—specifying which
 various code sources—is represented by a Policy

cipals,
 is

created for

s referenced by the policy configuration exist locally. That is,
or another loader

iated

 class is found on the bootstrap

ject
d or

be downloaded. In ss has yet to be

o hold

object. In particular, the internal state of a security policy is normally represented by the
Permission objects associated with each unique pair of CodeSource and Prin
whereby the Principals represent the entity running the code. Whenever a Policy object
initialized or refreshed, Permission objects of specific class types may need to be
the permissions granted by the security policy.

Many Permission class type
those classes can be discovered by the Policy provider's defining class loader
it delegates to, such as the bootstrap class loader. Objects for such permissions can be instant

to instantiate a during Policy initialization. For example, it is always possible
ilePermissionjava.io.FilePermission, as the F

class path.

However, the dynamic nature of Java technology makes it possible that when the Policy ob
is constructed, the code that implements a particular Permission class has yet to be loade
is not available for loading. For example, a referenced Permission class might be in a JAR
file that will eventually this case, the Permission cla
defined within the Java runtime environment. For each such class, an
UnresolvedPermission object is instantiated instead, as a placeholder that contains
information about the permission. Thus, the UnresolvedPermission class is used t
such "unresolved" permissions. Similarly, the class
UnresolvedPermissionCollection stores a collection of
UnresolvedPermission permissions.

 - 54 -

Inside Java™ 2 Platform Security: Architecture, API Design, and Implementation, 2nd

Unresolved permissions of a particular type must be resolved before an acc
can be made about a permission of the actual type. It is presumed that the permission class
becomes available when the policy
determining

ess control decision

 enforcement point constructs the requisite permission when
 whether to grant access to the resource. To resolve an

UnresolvedPermission
ted

erm n
nt

Permission

ons enable the deferred
ss need not be defined until necessary.

echanism is required to
ying the signing

requirement in the security policy, we have a foundation that can be used to assure us that the
.Permission
s on the trust

mechanism, it would
or

d
e is used

t

the class files. The certificates, which can be used to verify a class file's digital

UnresolvedPermission, the policy decision point must locate and instantiate the
appropriate permission class type, based on the lexical information in the
UnresolvedPermission. This new object then replaces the

. In the unlikely event that the permission is still unresolved, the
policy implementation must ensure that the permission is not granted and deny the reques
access.

Note that it is not necessary to instantiate all loadable permission classes at Policy initiation.
Typically, only a small portion of the Policy's contents is needed. Thus, it is quite legitimate,
and even sometimes desirable for performance and efficiency, to make extensive use of
UnresolvedPermission even when the Permission class is loadable, thus delaying
the instantiation of the Permission objects until they are used. Nevertheless, Policy
implementers must pay close attention to the complexity that UnresolvedP issio
adds, especially when an UnresolvedPermission may resolve into differe
implementations at different times.

A few methods, explained later, in the Unresolved class are

public UnresolvedPermission(String type,
 String name, String actions,
 java.security.cert.Certificate certs[]);
public boolean implies(Permission p);
public boolean equals(Object obj);

Note that the constructor takes an array of certificates, which can be used to verify the signatures
on the permission class. Remember that UnresolvedPermissi
loading of permission classes so that a given permission cla
The very nature of such permission classes suggests that a more rigorous m
ensure their authenticity. By signing a given permission class and specif

permission class respects the intentions of the root class java.security
and that the implementation is not malicious. Of course, this assurance depend
conveyed by the signature keys used to sign the class. However, without this
be up to the application to make this trust decision, which would be difficult, if not impossible, f
the application to do.

The certificates also are useful when a Permission class does not reside locally and is
downloaded each time it is used. On the one hand, ensuring that the same class file is downloade
each time is often desirable. However, this could be difficult to verify unless local storag
to keep a copy or at least a fingerprint of a prior class file. On the other hand, software tends to ge
upgraded often, so it is not uncommon to expect the same named Permission class file to
change over time, albeit in a consistent way. But again, this consistency is difficult to check by
examining
signature, normally change less often and can be managed more efficiently than the class files.

The by now familiar implies method always returns false for unresolved permissions. The
reason is that an UnresolvedPermission is never considered to imply another
permission.

 - 55 -

Inside Java™ 2 Platform Security: Architecture, API Design, and Implementation, 2nd

Finally, when comparing two UnresolvedPermission obje
 object must also be an

cts for equality, the second
Permission UnresolvedPermission. It must also have the

f a specific type of Permission objects, such as
FilePermission. In other words, each PermissionCollection holds a

The collection of Permission
objects. tion. For example,
Fil P any order.

Similar
the s c
Permi
PermissionCollection ject. Note that in this case, the specified permission, say to

 of

ny concrete subclass of
cs are followed when the

pt
n.

e

sion
ll

rned from newPermissionCollection, the returned
PermissionCollection must be used. If null is returned, the caller of

same class name, target, actions, and certificates as the first object, the one doing the comparison.

5.1.3 Permission Sets

It is often more convenient to work with sets of permissions than with one permission at a time.
The abstract class java.security.PermissionCollection represents a
collection—a set that allows duplicates—o

homogeneous collection of permissions. Following are the more germane
PermissionCollection methods:

public abstract void add(Permission permission);
public abstract boolean implies(Permission permission);
public abstract Enumeration elements();
public void setReadOnly();
public boolean isReadOnly();

add method adds a Permission object to the current
How this is accomplished is left to the subclass implementa

e ermissions can be added to a PermissionCollection object in

to its purpose in the Permission class, the implies method here checks whether
pe ified permission is implied by one or more of the permissions in the

ssionCollection object. If so, we say that the permission is implied by the
 ob

read and write file x, might not be implied by any single permission but rather by a composition
permissions in the PermissionCollection object, such as one permission to read file x
and another to write file x. Thus, it is crucial that a
PermissionCollection ensures that the correct semanti
implies method is called.

The setReadOnly method marks the PermissionCollection object read-only,
effectively making the collection immutable. Once a collection is marked read-only, any attem
to add a permission to the collection will result in a SecurityException being throw

To group together permission objects of the same type, the caller should first invoke the
Permission object's newPermissionCollection method. The default behavior is
simply to return null. However, to test whether a permission collection implies a given
permission, the collection may at times implement specialized processing. To accomplish this, th
implementation of the PermissionCollection.implies method ensures the
semantically correct behavior and generally does not necessarily rely on the implementation of the
permission class's implies method. To enable this, the implementation of the Permis
class would override the newPermissionCollection method. When a non-nu
reference is retu

newPermissionCollection is free to store permissions of the given type in any
PermissionCollection it chooses, such as one that is backed by a Hashtable, a
Vector, or whatever collection class is appropriate.

The java.security.Permissions class represents a heterogeneous collection of
permissions. A final subclass of PermissionCollection, it is essentially a collection

 - 56 -

Inside Java™ 2 Platform Security: Architecture, API Design, and Implementation, 2nd

of PermissionCollection objects. That is, it contains various types of Permission
objects organized into PermissionCollections. For example, any
java.io.FilePermission objects added to an instance of a Permissions class a
stored in a package private instance of the

re

eturned whenever the FilePermission
 method is invoked.

Following are the main public methods of the Permissions class:

plies(Permission permission);

s called to add a Permission, the Permission is stored in the
appropri PermissionCollection. If no such collection yet exists, the Permission

specific

 as

Similar to the beh , the method checks

of permissions in the appropriate PermissionCollection imply the

java.net.NetPermission at might not

e
at the applet has been granted all permissions. Or suppose

ctively is thereby
perations, including

FilePermissionCollection class. This is
the type of collection r
newPermissionCollection

public void add(Permission permission);
public boolean im

When the add method i
ate

object's newPermissionCollection method is called to create the
PermissionCollection, and then the Permission object is added to it. Finally, the
PermissionCollection object is added to the Permissions object. If
newPermissionCollection returns null, a default implementation-
PermissionCollection that happens to use a hash table will be created and used. Each
hash table entry has the Permission class's name as the key and the Permission object
the value.

avior of PermissionCollection implies
whether a PermissionCollection object is present for the supplied permission type and
if so, whether it implies the permission passed in as a parameter. It returns true if the
composition
specified permission.

5.1.4 Implications of Permission Implications

Recall that permissions are often compared with one another. To facilitate such comparisons, each
permission class must define an implies method that semantically represents how the
particular permission class relates to other instances of the permission class. Obviously,
java.io.FilePermission("/tmp/*", "read") implies
java.io.FilePermission("/tmp/abc", "read"), but it does not imply any

. However, there is another, deeper implication th
be immediately obvious to some readers.

Suppose that an applet is granted permission to write to the entire file system. Presumably, this
allows the applet to replace the system software, including the Java virtual machine and runtim
environment. This effectively means th
that an applet is granted runtime permission to create class loaders. It effe
granted many more permissions, as a class loader can perform sensitive o
assigning AllPermission to classes it defines.

Other permissions that are potentially dangerous to give out include:

• AllPermission—of course
• Those that allow the setting of system properties
• java.lang.reflect.ReflectPermission
• java.security.SecurityPermission with a target name of

"setPolicy"

 - 57 -

Inside Java™ 2 Platform Security: Architecture, API Design, and Implementation, 2nd

• Runtime permissions for defining packages and for loading native code libraries, beca
the Java security architecture is not designed to, and does not prevent, malicious behavio
at the level of native code

It is common convention that the javadocs for a permission class give a description of the risks
associated with granting a particular permission.

use
r

The lack of negative permissions does not mean that they cannot be introduced in the future.

ly,
not

plies
the said permission as soon as you find one permission within the set that implies the said

y

y the
complement of a positive. It seems that with additional "syntactic sugar" in more powerful policy-

 policy
e seen.

s.

sses
are used to describe code.

s containing the public
keys corresponding to the private keys used to sign the code. (Note: Digital certificates are

5.1.5 Positive versus Negative Permissions

The Permission class hierarchy denotes only positive permissions. This means that if a
permission is present in the security policy, the said permission is granted. The denial of a
permission is implicitly expressed by the absence of the said permission rather than by the
presence of a "negative" permission.

However, restricting the design to only positive permissions has significant benefits for simplicity
and good performance; no conflict can exist between two positive permissions, in the sense that
there is no danger that access granted by one permission is denied by the other. Consequent
when you examine a security policy to decide what permissions to grant to some code, you do
need to check for conflicts. Without negative permissions, you can determine that the set im

permission. These benefits to SDK implementation are also benefits to security policy
administration.

The lack of negative permissions, on the other hand, does not allow you to specify a polic
conveniently, such as "grant all file system access except for this particular file." However, this
loss of convenience is not really a loss of functionality, because a negative can be expressed b

processing tools, one can preprocess a policy with negative permissions and translate the
into one with only positive permissions. How this issue plays out in practice remains to b

Even though the permission classes within the Java runtime do not support a negative semantic,
this does not preclude a custom security policy implementation from supporting such a semantic.
One possibility is to implement a Policy provider and heterogeneous permission collection
classes that support the notion of a constraint-based matching algorithm within the logic of the
implies method

5.2 Describing Code

The security policy is essentially an access control matrix that describes code according to its
characteristics and the permissions it is granted. The CodeSource and Principal cla

5.2.1 CodeSource

Code is fully characterized by three things. One is its origin, or its location as specified by a URL.
The second, applicable if the code is signed, is the set of digital certificate

described in Section 8.1.) The first two characteristics are captured in the class
java.security.CodeSource, which can be viewed as a natural extension of the concept
of a code base within HTML, although it is important not to confuse the CodeSource cla
with the

ss
who is running the code.

This is discussed briefly in Section 5.2.3
CODEBASE tag in HTML. The third characteristic of code is

 and in greater detail in Chapter 8.

 - 58 -

Inside Java™ 2 Platform Security: Architecture, API Design, and Implementation, 2nd

An example of a CodeSource URL, where the code is an applet packaged in a JAR file called
foo.jar that resides at the Web address http://java.sun.com/clas
be the URL

ses/, would

http://java.sun.com/classes/foo.jar

ile or If the JAR file is signed, it will contain digital signatures for individual entries in the JAR f
for the entire JAR file itself. In this case, the corresponding CodeSource will contain not only
the code's URL but also the certificates that correspond to the signing keys. Actually, it may
contain a chain of certificates. Certificate chains are described in Section 8.2. Note that if the
signatures cannot be d. Verific

ause th
 verified, the JAR file must be viewed as unsigne ation could fail

either bec e content of the JAR file was modified such that one or more entries no longer
mat t are not trusted (refer to Section 8.3ch i s signature or because the signing keys).

CodeS Pol
perm
runn
perform

Following are

CodeSource(URL url, java.security.cert.Certificate certs[]);
public b l
public bool

We intention
in the constru o
those certific o
make a clon d
around without i
in the next chapter, a
running code. For examp
to write to the local fi
system access. If a latter
identical to the former o
the local file system, r

One might notice that
verification. Thus, a a
interface in C d.
For simplici ce
is to rely on digit an exist, where one interface uses
public keys and the other, certificates. But having both would be redundant and add complexity to

Using certificates exclusively should not cause any problem, because given any public and private
ou can easily produce a self-signed certificate that encloses the public key. In fact, the

e Java 2 SDK, keytool, always generates a self-signed
certificate normally would not convey any

medium to transport the key.

sier to carry around important
c

ource objects are used by icy implementations to specify code granted specific
issions by the security policy. CodeSource objects are also used to specify code that is
ing and that may need to be checked at some point for having the permissions required to

 secu y-rit sensitive operations.

the most important methods in the CodeSource class:

oo ean equals(Object obj);
ean implies(CodeSource codesource);

ally made CodeSource immutable by including both the URL and the certificates
ct r and by making copies of the certificates instead of merely keeping references to

ate objects. Note that the URL itself is already immutable, so there is no need t
e of it. Making a CodeSource object immutable ensures that it can be passe

ts integrity being compromised. Its integrity is important because, as we discuss
ccess control decisions are made based partly on the CodeSource of

le, a code fragment from a designated CodeSource may be allowed
le system, whereas code from other places is prohibited from local file

kind of CodeSource object could be illegally mutated to become
C deSource object, code from the latter would gain illegal access to

the eby causing a security breach.

only private keys are needed to create signatures and only public keys for
synt ctically complete certificate seems unnecessary. So why does the

 use only certificates and not rodeSource aw public keys? The answer is twofol
ty, and because of the security issues with relying on raw public keys, the best practi

al certificates. In theory, both interfaces c

the underlying algorithm and code.

key pair, y
tool used to generate keys in th
certificate when generating a key. A self-signed
significance to the key enclosed inside, except to serve as a

Moreover, using certificates instead of public keys makes it ea
information that might be contained inside a certificate but that cannot be expressed by the publi
key itself. That is, a certificate contains more than just the public key, as described in Chapter 8.

 - 59 -

Inside Java™ 2 Platform Security: Architecture, API Design, and Implementation, 2nd

For example, because CodeSource objects contain not only certificates but also their
supporting certificate chains, one can validate an entire certificate chain all the way up to the root

ation Authority (CA). Such validation information is valuaCertific ble for auditing purposes.

5.2.2 Testing for Equality and Using Implication

se
such a comparison is central to security Tw CodeSource objects are

an a
deSource any code qualified by the second will also be qualified by

the first. In this case, the first CodeSource "implies" the second CodeSource. For
e, a CodeSource with the origin http://java.sun.com/classes/ is more

 simplified by granting
CodeSource t the same permissions

java.sun.com/classes/

edirects. For example, a
http://java.sun.com. Such an entry is

 server

or example, to specify files in
ng system, you can use

n a

false

e must not be null.
2. certificates are not null, all of them must be present in codesource's

t be

CodeSource

Correctly testing for equality between two CodeSource objects is critically important becau
 policy decisions. o

considered equal if their URL locations are identical and if the two sets of certificates contained in
the two objects are identical. Note that the two sets of certificates might not be stored in the same
order in the array.

Sometimes, it is convenient to specify a first CodeSource object that is more general th
second Co object so that

exampl
general than one with the origin http://java.sun.com/classes/foo.jar.

With such a relationship based on "implication," security policy can be
ions to a general object, which will implicitly granpermiss

to any more specific CodeSource object. For example, you can give to
http:// permission to access the local file system, meaning
that you give the same permission to all code residing on that Web page.

Note that URL matching here is lexical and does not deal with proxies or r
an include an entry that specifies a URL policy c

useful only when you can obtain code directly from HTTP for execution. If the Web
 entry has no effect. redirects this URL to a different one, this policy

To specify URLs for the local file system, you can use file URLs. F
the /home/gong/temp directory on a UNIX operati
file:/home/gong/temp/*. To specify files in the temp directory on the C drive o
Windows system, you can use file:/c:/temp/*.

Obviously, strict and precise rules must be followed in order to determine whether one
CodeSource object implies another. When the this.implies(CodeSource
codesource) method is called, it returns true if this CodeSource object implies the
codesource instance passed in as the parameter. More specifically, this method makes the

lowing order. If any check fails, it returns . If they all succeed, following checks, in the fol
it returns true.

1. codesourc
If this object's
certificates.

3. If this object's location (getLocation()) is not null, the following checks are
made against its location and codesource's location.

a. codesource's location must not be null.
b. If this object's location equals codesource's location, immediately return

true. Otherwise, continue.
c. This object's protocol (getLocation().getProtocol()) mus

equal to codesource's protocol.

 - 60 -

Inside Java™ 2 Platform Security: Architecture, API Design, and Implementation, 2nd

d. If this object's host (getLocation().getHost()) is not null, the
ission constructed with this object's host must imply the

is

e a

ct's file ends with /-, codesource's file must reference a
class or JAR file in the directory pointed by this object's file without the

For example, consider objects with the following locations and

CodeSource
ason is

sses/ all
http://java.sun.com/classes/foo.jar as a special case.

Two if

Cod S
provided

Followi e class. When defining a class that is loaded from
either the local host or a remote host, you must calculate its code source. This requirement exists

permissio e findClass method in the

SocketPerm
SocketPermission constructed with codesource's host.

e. If this object's port (getLocation().getPort()) is not equal to -1, that
is, if a port is specified, it must equal codesource's port.

f. If this object's file (getLocation().getFile()) does not equal
codesource's file, the following checks are made:

 If this object's file ends with a /, codesource's file must contain th
object's file as a prefix.

 If this object's file ends with /*, codesource's file must referenc
class or JAR file in the directory pointed to by this object's file without
the trailing *.

 If this obje

trailing * or recursively any of its subdirectories.
 In all other cases, codesource's file must, as a prefix, contain this

object's file with a / appended.
g. If this object's reference (getLocation().getRef()) is not null, it

must equal codesource's reference.

CodeSource null
certificates:

http:
http://*.sun.com/
http://java.sun.com/classes/
http://java.sun.com/classes/foo.jar

All these imply the object with the location
http://java.sun.com/classes/foo.jar and null certificates. The re
that http:, http://*.sun.com/, and http://java.sun.com/cla
include

 d ferent CodeSource objects refer to the same code source if they imply each other.

e ource implements the interface java.io.Serializable. Therefore, we
 customized private methods writeObject and readObject for serialization.

ng is a sample use of the CodeSourc

so that subsequent requests to the security policy can be made in order to determine the
ns accorded to the code. Th

java.net.URLClassLoader class (see Section 4.6) executes the following code

LClassLoader

// name (passed to findClass) with ".class" appended and any

segment:

...
// Construct a URLClassPath for the URLs this UR
// uses to search for classes
URLClassPath ucp = new URLClassPath(urls);
...
// Find the class file named by path, where path is the
class

 - 61 -

Inside Java™ 2 Platform Security: Architecture, API Design, and Implementation, 2nd

// periods replaced with forward slashes.
Resource res = ucp.getResource(path, false);
...
// Get the class file bytes, certificates, and URL
byte[] b = res.getBytes();
java.security.cert.Certificate[] certs =

 appropriate

res.getCertificates();
URL url = res.getCodeSourceURL();
// Construct a CodeSource from the URL and certificates
CodeSource cs = new CodeSource(url, certs);
...
// Call the superclass SecureClassLoader's defineClass
method
// to define the class and associate it with its
// protection domain. Here name is the class name passed to
// findClass.
return defineClass(name, b, 0, b.length, cs);

5.2.3 Principal

The Principal interface represents the abstract notion of a principal, which is any entity, such
as an individual or a service, to which authorizations, and thus accountability, may be attributed.
Principals are used to represent a user or service when that user/service has been
authenticated and then subsequently associated with the current execution context such that further
execution is considered to be done on behalf of that user/service. Whereas a CodeSource
indicates two of the three characteristics of running code—its location and signer certificates—
Principals specify the third characteristic: an indication of who is running the code.
Principals are described further in Section 8.4.

5.3 ProtectionDomain

To assign permissions to a class, one could follow the straightforward approach of encapsulating
all the permissions granted to a class, represented by various Permission objects, to an
instance of a Permissions class (described in Section 5.1.3 and then associating t
permission set with the class via an interface in the base class

his
. However,

sily be

o
 added after the initial Java 2 release without any impact on the Class

ibed in Section 5.3.1

java.lang.Class
linking a permission set so directly with a class would lead to a rigid API that could not ea
extended. For example, suppose that access control checks were to be performed based not only
on permissions granted to the class but also on the name of the principal currently running the
code. To do this, the Class class would have to be extended with additional interfaces, thus
cluttering the base class. In fact, this feature of extending checks based on principals in addition t
code characteristics was
class, as descr .

may be dynamically determined when an access control
check is performed. Thu to protection domains and are indirectly associated with

main is scoped by the set of
r system entity

To facilitate extensibility, in the Java 2 SDK, each class is associated at class loading time with an
instance of a ProtectionDomain class, which encapsulates the class characteristics, vis-à-
vis a CodeSource. The permissions granted to the specified code may be statically bound in
the ProtectionDomain instance or

s, classes belong
the permissions granted to the code specified by their domains.

According to the classical definition of a protection domain [111], a do
objects currently directly accessible by a principal, where a principal is a compute

 - 62 -

Inside Java™ 2 Platform Security: Architecture, API Design, and Implementation, 2nd

to which authorizations—and as a result, accountability—are granted. Thus, the sandbox in JDK
1.0 is, in a sense, a protection domain with a fixed boundary.

In Java 2, each class belongs to a protection domain. The Java runtime maintains the mapping
from code to protection domains. The mapping from a class to its domain is set only
the class is defined, and cannot be changed during the lifetime of the

 once, when

ClassLoader ll, to the class loader defining the class.
issions granted to the code statically
s for the protection domain are

ubsections.

public ProtectionDomain(CodeSource codesource,

llection
incipal[]

ce ProtectionDomain t
me CodeSource map to the same

h the same CodeSource by the class

ay.
missionCollection is supplied, it is made immutable by setting it to

 null,
 security

bsequent permission checks against this
ses of J2SE. Only this first
leases prior to J2SE 1.4,

aracteristics encapsulated in a
to maintain backward compatibility with

An optional package, the Java Authentication and Authorization Service (JAAS), was developed
for use with J2SE 1.3. JAAS enabled services to authenticate and enforce access controls on users.
JAAS extended the access control architecture of the Java 2 platform in a compatible fashion to

Class object.

The definition of the class java.security.ProtectionDomain is fairly
straightforward. It encapsulates

• A CodeSource describing the code origin and signing certificates.
• A Principal array that may be set during execution to indicate who is executing the

code.
• A reference, possibly nu
• A PermissionCollection containing perm

when the class was loaded. The dynamic permission
determined by consulting the policy.

The main ProtectionDomain methods are discussed in the following s

5.3.1 ProtectionDomain Constructors

ProtectionDomain has two constructors:

 PermissionCollection permissions);
ProtectionDomain(CodeSource codesource, PermissionCo
 permissions, ClassLoader classloader, Pr
principals)

Typically, a ProtectionDomain is instantiated by a class loader. The first time a given
CodeSour is encountered during class loading, a is created. Tha
is, for each class loader instance, all classes with the sa
ProtectionDomain. Subsequent encounters wit
loader may reuse a reference to a cached ProtectionDomain.

The first constructor creates a ProtectionDomain with the specified CodeSource and
PermissionCollection, a null ClassLoader, and an empty Principal arr
If a non-null Per
read-only, to ensure its integrity and consistency. When we first developed Java 2, we made this
design decision as an added integrity precaution; in retrospect, however, it complicated our ability
to make security policy more flexible. When the PermissionCollection is not
the permissions are statically granted to the ProtectionDomain and therefore the
Policy
ProtectionDomain. This behavior is consistent across all relea
constructor existed when the Java 2 platform was introduced. In the re

 will not be consulted on su

permissions were granted to code solely on the basis of the ch
CodeSource. This constructor remains in order
versions prior to J2SE 1.4.

 - 63 -

Inside Java™ 2 Platform Security: Architecture, API Design, and Implementation, 2nd

support granting permissions based not only on the code location and signers but also on who was
executing the code. For example, code executed by one user may be granted certain permissions,
whereas the same code executed by another user may be gra rent permissions. JAAS,

hapter 8
nted diffe

described further in C , is no longer an optional package; it was integrated into the J2SE

er

ing the
permissions granted to code when a permission check is invoked, rather than simply when the

1.4 release. To facilitate the integration, a second constructor was added so a
ProtectionDomain could encapsulate the additional characteristic of a user (or service), as
represented by one or more Principal objects. Additionally, a reference to the defining load
of the class is necessary to disambiguate two similar ProtectionDomains.

J2SE 1.4 greatly enhanced the support for dynamic policy, that is, for dynamically determin

code's ProtectionDomain was instantiated. To support dynamic policy, the
SecureClassLoader (see Section 4.5) uses the second constructor to create a
ProtectionDomain. No longer are all the objects that a ProtectionDomain
encapsulates statically bound at class loading time. The CodeSource is, as before, but the
permissions are not. The

his is
missions to all the principals active on the execution thread at

 is,
ute

 SecureClassLoader overrides the
 method, as is done by (Section 4.6

SecureClassLoader doesn't statically assign any permissions,
although subclasses of SecureClassLoader might. For example, the implementation of
URLClassLoader assigns permissions to enable the class to access resources from its point
of origin.

During the process of defining a class, a null is specified for the Principals. T
necessary to avoid granting the per
the time the class is defined and to all threads of execution that use instances of the class. That
it is not possible to determine while loading classes which principal(s) should be trusted to exec
code from the specified CodeSource.

The following code segment from java.security.SecureClassLoader
demonstrates one example of how a protection domain is constructed:

PermissionCollection perms = getPermissions(cs);
ProtectionDomain pd = new ProtectionDomain(cs, perms, this,
null);

In this example, the SecureClassLoader first calls getPermissions, passing it the
CodeSource, to compute the statically bound permissions to associate with the
ProtectionDomain. The SecureClassLoader getPermissions method
simply returns a new, empty Permissions object. Thus, the collection of static permissions
should be an empty set unless a subclass of
getPermissions URLClassLoader).

nDomain implies method has the following signature:

SecureClassLoader constructs the ProtectionDomain, based on the
CodeSource of the class being defined, the static permissions supplied by calling
getPermissions, a reference to this defining class loader (used to scope the permission
grants) and a null for the array of Principals.

5.3.2 ProtectionDomain implies Method

The Protectio

public boolean implies(Permission permission);

This method is called for each ProtectionDomain on the call stack, whenever an access
control decision is requested, to see whether the requisite permission is granted to the code—and

 - 64 -

Inside Java™ 2 Platform Security: Architecture, API Design, and Implementation, 2nd

possibly Principals—indicated by this ProtectionDomain. (The full access control
checking behavior is described in Chapter 6.)

This method checks whether the
the object. If the

ProtectionDomain "implies" the permission expressed by
Permission ProtectionDomain was assigned just static

permissions—that is, the first constructor was called with a non-null
PermissionCollection—the encapsulated PermissionCollection's
implies method (Section 5.1.3) is invoked. Otherwise, the current Policy is obtained and its

A ProtectionDomain objec access to it is security
checked with a runtime permission rom java.lang.Class
demonstrates how the method getProtectionDomain controls access to the protection
domain of the class:

 }

implies method invoked, thus delegating the policy decision to the installed policy provider.

5.3.3 ProtectionDomain Finer Points

t may contain sensitive information, so
. The following code segment f

public java.security.ProtectionDomain getProtectionDomain()
{
 SecurityManager sm = System.getSecurityManager();
 if (sm != null) {
 getPDperm = new
RuntimePermission("getProtectionDomain");
 sm.checkPermission(getPDperm);

 return protectiondomain;
}

As you will see in Chapter 6, this allows the ProtectionDomain of the class to b
only if the code in the current execution context has been grante

e returned
d the RuntimePermission

may be classes that have the same
permissions but that are from different code sources and thus belong to different domains.

ne
protection domain is sp ystem domain. The s ain comprises all classes that are

se, or kernel in operating system
e bootstrap class
 domain is

rotected external resources, such as
ible only
at

with the target name "getProtectionDomain".

A number of additional points are worth discussing. First, protection domains in Java 2 are created
on demand as new classes are loaded into the runtime. In the Java 2 default implementation,
classes belonging to the same domain are loaded by the same class loader. This implementation
detail is natural but not necessary. Classes belonging to the same domain are granted the same
permissions, but the reverse is obviously not true, as there

Second, out of the many protection domains created during the lifetime of the Java runtime, o
ecial: the s ystem dom

considered part of the system core, trusted computing ba
terminology. For historical reasons, system classes are always loaded by th

 in the systemloader. For the time being, you need remember only that code
automatically granted all permissions. It is important that all p
the file system, the networking facility, and the screen and keyboard, are directly access
via system code, which mediates access requests made by less trustworthy code. Note th
although system classes have a null class loader (Section 4.2), their protection domain is a non-
null reference to a ProtectionDomain that has been statically assigned the
AllPermission permission.

Moreover, the indirection between a class and its per
interesting benefit of enabling Java virtual machine v

missions via a protection domain has an
endors to perform implementation

 - 65 -

Inside Java™ 2 Platform Security: Architecture, API Design, and Implementation, 2nd

optimizations. For example, recall that it is desirable in some cases to change the permissions
granted to some code during the lifetime of a Java runtime. By maintaining stability in the
reference of the ProtectionDomain object, one can determine whether two classes belong
to the same domain and then apply various optimization techniques.

Finally, note that the protection domains also serve as a convenient point for grouping and

n

 a class loader defines a distinct namespace. It could be used

e, we

gard to the particular security policy being enforced. So we decided to maintain existing
accessibility customs and rules, thus making accessibility orthogonal to security. In other words, it

l

ay within the

ecified by the security policy in effect
at says

 For

isolating units of protection within the Java runtime environment. For example, different domains
may be prevented from interacting with each other. This could be done by using distinct class
loaders to load classes belonging to different domains in such a way that any permitted interactio
either must be through system code or explicitly allowed by the domains concerned. The reason is
that in the Java virtual machine, a class is distinguished by itself and the ClassLoader
instance that defined the class. Thus,
to isolate and protect code within one protection domain by refusing to load code from different
domains (and with different permissions).

This point raises the issue of accessibility, that is, what is visible to an object and what methods
can an object invoke and on what other objects. In designing the Java 2 security architectur
examined existing coding practices that use accessibility features that make one object visible to
another. We found that accessibility needed to remain flexible, especially in server programs,
without re

is up to the application programmer to decide whether and how objects and methods should be
hidden from one another. In this sense, the Java security mechanism is much more than a classica
capability system.

Note that, technically, we could have enforced stricter isolation between domains. However, this
would have created a need for a new set of interfaces for interdomain communication, similar to
interprocess communication (IPC). Also, existing applications would have had to be rewritten to
use the new interfaces. To enforce complete isolation, we might have had to redesign some shared
system classes and their static fields [52]. Thus, the decision to leave accessibility separate from
security was the best available solution at the time. However, an effort is under w
Java community to develop an application isolation API.

5.4 Security Policy

The security behavior of a Java runtime environment is sp
during runtime. In abstract terms, the security policy is a typical access control matrix th

hat circumstances.what system resources can be accessed, in what fashion, and under w
example, one entry in the matrix shown in Figure 5.2 says someth

p://java.sun.com, allow it t
ing like, "When running an
o read the file x." More

s a mapping from a set of properties that characterize running code
 set of access permissions granted to the code.

applet downloaded from htt
cifically, a security policy ispe

 ato

Figure 5.2. Policy matrix

 - 66 -

Inside Java™ 2 Platform Security: Architecture, API Design, and Implementation, 2nd

In J2SE, the expression of policy is declarative in nature, that is, nonprogrammatically specified
external to the Java runtime environment. The advantages of this approach are many, but the most
obvious is the flexibility it supplies to the deployer. The security policy can a

cies that can be co
ctually be composed

of a set of poli nfigured by a system administrator or user. There can be multiple
d as a flat ASCII file, as a
se. The default Policy

forms of representation of a policy. For example, it may be represente
serialized binary file representing a Policy subclass, or as a databa
provider implementation in J2SE expects the policy to be specified in a particular textual format in
an ASCII file. The specification of this format is described in Chapter 12.

The source location(s) for the policy information used by the Policy object are express
URL(s) as values of one or more security properties. This is further described in

ed by
Section 12.6. The

design decision of using URLs to locate the external policy is flexible and should suffice for most
deployment environments. For example, the policy can be retrieved via HTTP, LDAP
(Lightweight Directory Access Protocol), or another protocol.

So that the security mechanism inside the Java runtime environment can consult the policy, the
rnally by an instance of a Policy class that is a

. Because there is no limitation on

t methods:

n
 domain);

e or when the security policy is used for the first

y

on 5.1.2

policy contents are necessarily represented inte
subclass of the abstract class java.security.Policy
who can instantiate such an object, multiple instances of the Policy object could exist at the
same time. Nevertheless, only one Policy object is in effect at any time, in the sense that it is
the one consulted when making security policy decisions.

The security policy is represented by a Policy subclass that provides an implementation of the
abstract methods in the Policy class. Following are Policy's most importan

public static Policy getPolicy();
public static void setPolicy(Policy policy);
public abstract PermissionCollection
getPermissions(CodeSource

codesource);
public PermissionCollection getPermissions(ProtectionDomai

public boolean implies(ProtectionDomain domain,
 Permission permission);
public abstract void refresh();

The Policy object maintains a runtime representation of the policy and is typically instantiated
either at the Java virtual machine start-up tim
time. It may be changed later via a secure mechanism, such as by calling the static setPolic
method. The currently installed Policy object can be obtained by calling the static
getPolicy method.

The refresh method causes the Policy object to refresh or reload its current configuration.
How this is done is implementation dependent. For example, if the Policy object obtains its
policy content from configuration files, a call to refresh will typically cause it to reread the
policy configuration files. The description of UnresolvedPermissions in Secti

ed as a provider structure. That is, there is a default
plementation, but an alternative implementation can be provided and installed, if desired. We

ld have been
impossible to anticipate the various possible ways for doing this and then design sufficient APIs

portrays some policy update issues.

The component is designPolicy
im
designed the Policy component as a provider structure because we wanted to instill enough
flexibility so that the policy content can be obtained in arbitrary ways. It wou

 - 67 -

Inside Java™ 2 Platform Security: Architecture, API Design, and Implementation, 2nd

for them. Refer to Section 12.6.5 for more information on deploying an alternative Policy
provider.

The getPolicy method is public static so that anyone can call it, but policy conte
can be sensitive. Thus, a suitable security check is invoked inside the

nt

e

e

getPolicy method so
that only code that has permission to obtain the policy—code granted the
SecurityPermission with name "getPolicy"—can do so. Similarly, a security
check is invoked, when the setPolicy method is called, to ensure that only code granted th
SecurityPermission with name "setPolicy" will be able to change the Policy
implementation to be used. If the calling code does not have the required permission, a
java.lang.SecurityException is thrown, thereby indicating that a security-sensitiv
operation was attempted and then denied, due to insufficient access permission.

The following code segments demonstrate the use of the Java 2 permission model, whereby if a
SecurityManager has been installed (see Section 6.1), a security-sensitive operation can
performed only if the required permission has been granted:

public static Policy getPolicy() {
 SecurityManager sm = System.getSecurityManager();
 if (sm != null) sm.checkPermission(new
 SecurityPermission("getPolicy"));
 return policy;

be

public static void setPolicy(Policy policy) {

class of the Policy class.

he

tiated.

}

 SecurityManager sm = System.getSecurityManager();
 if (sm != null) sm.checkPermission(new
 SecurityPermission("setPolicy");
Policy.policy = policy;
}

The getPermissions(CodeSource) and refresh methods are abstract. Therefore,
they must be implemented by a sub

The contract for the getPermissions methods requires that the returned set of permissions
must be an instance of a new mutable PermissionCollection object that must support
heterogeneous Permission types.

The methods that take a ProtectionDomain as a parameter—
getPermissions(ProtectionDomain) and
implies(ProtectionDomain)—were introduced in J2SE 1.4 to support intrinsically t
dynamic binding of policy to protection domains.

The default implementations of these methods in the Policy class preserve backward
compatibility with legacy Policy providers, where permissions were statically determined by
consulting the Policy when a class was defined and the class's protection domain instan
The concrete implementation of Policy from Sun Microsystems overrides these methods to
handle the dynamic binding of policy to protection domains.

 - 68 -

Inside Java™ 2 Platform Security: Architecture, API Design, and Implementation, 2nd

5.5 Assigning Permissions

Previous sections covered the basics of security policy, code source, and the Permission class
hierarchy. This section discusses how permissions are computed for running code.

When loading a new class, the class loader assigns the class to its ProtectionDomain. The
d

e specified code, as described in Section 5.3
ProtectionDomain encapsulates the class characteristics, such as location and signers, an
the static permissions granted to th .

ition, but it

d

Permissions may be granted to a class before the class loader completes the class defin
is perfectly legitimate to delay the instantiation of the granted permissions until a security check
occurs. This optimization allows a Java application that does not call for security checks to
execute faster and with a smaller footprint. Even for a Java program that does trigger a security
check, this optimization allows it to start up faster. Note that if the content of the policy is change
between the time the Policy class is instantiated and the time the first security check is
invoked, the presence of this optimization technique may result in the Policy object having
more up-to-date content.

Keeping the policy content up-to-date is, of course, a good thing. Section 5.4 discusses policy
update using the refresh method. It is possible that the permissions already granted to a class
will be changed or even withdrawn after the class is defined, such as during a revocation
procedure after a security incident. Such alterations are considered legal, as long as they are also
controlled with the appropriate permissions.

It must be emphasized that permissions are effectively granted to classes, which are static Ja
code, and not to objects, which are instances of classes. The primary reasons for this are to reduc
complexity and increase manageability. Objects are runtime entities, so they do not exist in a st
state. But the security policy must exist in a static state and independent of any particular Java
runtime environment, so it cannot possibly refer to objects. Also, for the sort of security po
considered he

va
e

atic

licies
re, the same policy should be enforced no matter how objects are instantiated. In

addition, the number of different classes tends to be a lot smaller than the number of different
objects. Even if you want to support a security policy that is dependent on the runtime
environment, the right way is not to grant permissions to objects but rather to perform security
checks that take into account the runtime environment and perhaps who is running the code.[1] W
return to this subj

e
ect in Chapter 6.

] The security policy could grant permissions to interfaces, too, but this is immaterial, as interfaces
ed into objects that cause security checks to occur.

ll that the security policy, in essence, can be represented with a list of
ntries, each being of the form (CodeSource, Principal, Permission), thereby
dicating that code from the named code source, executed by the specified

—user or service—is given the named permission. A CodeSource
onsists of a URL conveying the code location and certificates representing the code

signers. All the code characteristics—URL, certificates, and Principal—in a
olicy entry are optional. If a characteristic is omitted, it indicates that the

characteristic's value doesn't matter. If you don't specify a URL, for example, the
pecified permission is granted to code no matter where it is located. Clearly, for a

given piece of code, its code source can match multiple entries in the policy. In this
ase, the code is granted the union of all permissions granted in each matched entry in

the policy. In other words, permission assignment is additive. For example, if code
at is signed by A gets permission X—no matter where the code is located or who is

running it—and code signed by B gets permission Y—no matter where the code is

[1

alone do not get instantiat

Finally, reca
e
in
Principal
c

p

s

c

th

 - 69 -

Inside Java™ 2 Platform Security: Architecture, API Design, and Implementation, 2nd

located or who is running it—code signed by both A and B gets permissions X and Y.
Similarly, if the URL http://java.sun.com is given permission X and the URL
ttp://java.sun.com/people is given permission Y, an applet from
ttp://java.sun.com/people/gong gets both X and Y, assuming that the
igners and users match. For further details of the matching algorithm, refer to the
mplies method in Section 5.2.1

h
h
s
i .

.6 Dynamic Security Policy

he technique of deferred binding of permissions to protection domains is known as dynamic
policy. However, even if the Java runtime environment subscribes to this technique, not all

ermissions accorded to a protection domain are computed dynamically. For instance, class
ders may statically bind permissions to a protection domain. An example of this is that code

ownloaded from an origin server is granted permission to connect back to the origin server.
cally, the implementation of URLClassLoader adds into the static permission set of

ns based on the URL of the

ally bound to its
ProtectionDomain when the ProtectionDomain was created, that is, the first time

the class was encountered. This static binding restricted the effectiveness
of refreshing security policy, calling the method. This depended on how

ted.

ProtectionDomains from the ClassLoader
n, which enables the deployment of dynamically changing security
d have done it this way from the beginning.

.

eturned the result of
PermissionCollection implies. Now the implies method of

ent.

5

T

p
loa
d
Specifi
the ProtectionDomain—of the class being loaded—permissio
CodeSource of the class.

Prior to J2SE 1.4, all permissions assigned to a class were static

the CodeSource for
Policy refresh

the Policy provider and class loaders were implemented. For example, the Policy
implementation might not have supported recomputing the permissions accorded a
ProtectionDomain following a refresh. Also, a class loader might have statically bound
permissions to protection domains and cached the protection domains as an optimization, thus
preventing a refresh from having any effect.

J2SE 1.4 intrinsically supports dynamically determining the permissions granted to code, rather
than statically (also known as eager binding) when the code's ProtectionDomain is crea
The binding of the permissions specified in Policy is deferred until the
ProtectionDomain is evaluated in the context of a security check. This change enables the
Policy provider to dynamically derive the permissions granted to a class. The approach shifts
responsibility for assigning permissions to
to the Policy implementatio
policies. In hindsight, we shoul

Now when the SecureClassLoader constructs a ProtectionDomain for a class, it
no longer consults Policy within its implementation of the getPermissions method.
Rather, the SecureClassLoader getPermissions method returns an empty
Permissions (a subclass of PermissionCollection) object. To remain backward
compatible, derivative ClassLoaders continue to add permissions to this collection. Note
that these permissions are static and according to the specification are marked read-only once a
ProtectionDomain is constructed with a non-null PermissionCollection
Our design retains this semantic.

Formerly, the implies method of ProtectionDomain r

ProtectionDomain must first test the static permissions for implication. If that fails and the
ProtectionDomain was constructed for dynamic permissions, ProtectionDomain
calls the implies method in Policy, passing this as the ProtectionDomain argum
The implies method in Policy collects the PermissionCollection for the given

 - 70 -

Inside Java™ 2 Platform Security: Architecture, API Design, and Implementation, 2nd

ProtectionDomain, either from a cache of previous evaluations or from the ex
representation, and then evaluates whether the collection implies the requisite permission.

ternal policy

Adding support for dynamic policy has some important yet subtle distinct qualities. The former

ather than
ce to the

rry additional context, such as the Principals associated
mic policy is that it
 provider. For example, a

tions of a requisite permission
tection domain and the permissions derived

asses that provide the basic machinery to qualify system
urity policies governing the resources the entities may

design assumed that a Policy provider implementation could compute a full enumeration of all
the permissions granted to a given CodeSource. However, many access management systems
tend to be able to answer whether a given security context has the requisite permission r

s accorded a given security context. Also, the interfabeing able to list all the permission
Policy class was too narrow to ca
with the current thread of execution. A consequence of enabling dyna

olicypotentially adds complexity to a proper implementation of a P
y provider must accommodate the case in which the acPolic

spans the collection statically bound to the pro
amically. dyn

This chapter has detailed the security cl
entities such that we can specify the sec
access. The next chapter describes how this machinery is used to enforce security policy in the
Java runtime.

 - 71 -

Inside Java™ 2 Platform Security: Architecture, API Design, and Implementation, 2nd

Chapter 6. Enforcing Security Policy
If effectively enforced, the law confers a real and great good.

—Theodore Roosevelt

The previous chapter describes how security policy, telling what permissions are granted to
various groups of code with various characteristics, is specified separately from the Java runtime

orced. The chapter describes the classes
involved in enforcement (SecurityManager, AccessController,

ol algorithm
environment

d by the policy.

 1.0,
d
e

class

environment and represented at runtime within a Policy object. That chapter documents classes
used to characterize code, both code granted permissions by the policy and code that is running
and whose permissions will need to be checked by consulting the policy whenever a security-
sensitive resource access is attempted.

This chapter focuses on how the security policy is enf

AccessControlContext, and DomainCombiner) and the access contr
used to determine whether to allow a resource access, based on the current execution
and the permissions grante

6.1 SecurityManager

The java.lang.SecurityManager class, designed into the original release of JDK
is the focal point of access control. The security manager is called whenever a decision is neede
to determine whether to grant or deny a request for accessing a sensitive resource. As an exampl
of a SecurityManager class, the sun.applet.AppletSecurity class, a sub
of SecurityManager, implemented the sandbox security model in JDK 1.0. Recall from
Section 2.2 that according to this model, applications—classes residing on the local file system—
are given full system access, whereas applets—remote classes loaded over the network—are

allowed access to a security-sensitive resource only if that code has
been explicitly granted the corresponding required permission by the security policy currently in

icts

n()

 return protectiondomain;

denied all but the most essential privileges.

6.1.1 Example Use of the Security Manager

In the Java 2 platform, code is

effect. Policy enforcement may be accomplished by calling the SecurityManager
checkPermission methods. Any code whose execution requires that a particular permission
be granted may call checkPermission directly, after first checking to ensure that a
SecurityManager is installed. For example, the following code segment from
java.lang.Class demonstrates how its getProtectionDomain method restr
access to the protection domain of a class:

public java.security.ProtectionDomain getProtectionDomai
{
 SecurityManager sm = System.getSecurityManager();
 if (sm != null) {
 getPDperm = new
RuntimePermission("getProtectionDomain");
 sm.checkPermission(getPDperm);
 }

}

 - 72 -

Inside Java™ 2 Platform Security: Architecture, API Design, and Implementation, 2nd

6.1.2 SecurityManager API

Prior to Java 2, the SecurityManager class was abstract, so a vendor had to subclass it an
create a concrete implementation. This was inconvenient. In Java 2, the class is concrete, with a
public constructor. Following are the main

d

 getClassContext()

public Object getSecurityContext()

t context)

urity check is

yManager"
can instantiate a SecurityManager.

thods on the execution stack. The element at index 0 is
the class of the currently executing method, the element at index 1 is the class of that method's

the current method calling sequence,
aking an access control decision. This method is necessarily

ext.

cution
n later

ontext. The default

SecurityManager APIs:

public SecurityManager()
protected native Class[]

public void checkPermission(Permission perm)
public void checkPermission(Permission perm, Objec

A SecurityManager is itself considered a sensitive resource. Therefore, a sec
placed in the constructor to ensure that only code granted the
java.lang.RuntimePermission with the name "createSecurit

The getClassContext method returns the current execution stack as an array of classes.
The length of the array is the number of me

caller, and so on. Such a context is useful for determining
which is essential knowledge for m
native because introspection should not disturb the Java runtime environment execution cont

The getSecurityContext method creates an object that encapsulates the curren
so that you ca

t exe
environment. This method's purpose is to create a snapshot of the context

ed within that cquery whether a security check would have passed if invok
implementation of this method returns an AccessControlContext object, which is
explained in Section 6.4.6.

Recall that a systemwide security manager may be installed and that access control checking is
often done only if that is the case. The java.lang.System class manages this security
manager with the following relevant methods:

public static synchronized void

rityManager getSecurityManager()

ess is sometimes
d no security

"setSecurityManager"
urity manager. Otherwise, a SecurityException is

ect

 setSecurityManager(SecurityManager s)
public static Secu

In the setSecurityManager method, if a security manager has not yet been established,
the argument passed in is established as the current security manager. This proc
called installing the security manager. If the argument passed in is null an
manager has been established, no action is taken, and the method simply returns. If a security
manager has already been installed, a security check is invoked to see whether the caller has the
RuntimePermission with name . If it does, the passed-in
argument is installed as the new sec
thrown.

The getSecurityManager method returns the installed security manager or, if no security
manager has been installed, null. Allowing a security manager to be null is not a perf
design; its shortcomings are discussed later in the chapter.

 - 73 -

Inside Java™ 2 Platform Security: Architecture, API Design, and Implementation, 2nd

6.1.3 The checkPermission Methods

Policy enforcement may be initiated by

ext)

 method with a single permission argument always performs
ck is

 the
ad B. In this case, the second

The checkPermission methods were introduced with the release of J2SE 1.2. Prior to their

ture is shown

; otherwise, it throws a
security exception. The default implementati the SecurityManager

ler

 calling one of the SecurityManager
checkpermission methods. The method signatures are

public void checkPermission(Permission perm)
public void checkPermission(Permission perm, Object cont

The checkPermission
security checks within the context of the currently executing thread. When a security che
being invoked within a given context—for example, from within a worker thread A—often
check should be done against a different context, such as thre
checkPermission method should be used, with an appropriate context argument, such as
the AccessControlContext of thread B.

introduction, specialized check methods were exposed for each type of resource access. These
specialized check methods have been superseded by checkPermission. Additionally, we
modified them to call checkPermission and, where practical, removed occurrences of
check method overloading.

The first SecurityManager checkPermission method whose signa
earlier checks whether the requested access, specified by the given permission, is permitted, based
on the current security policy. If it is permitted, the method returns silently

on forwards all calls to
checkPermission method to the java.security.AccessControl
checkPermission method, described in Section 6.4.

The second SecurityManager checkPermiss oni r the
specified security co o the resource specified by the given permission,

cy. Recall that the getSecurityContext method creates
rrent execution environment in an

 context passed i nce

es

reused for all permission types, including those yet to be invented.
Thus, to protect a new resource, one simply introduces a new Permission class and then

checkPermission e

 method checks whethe
ntext is granted access t

based on the current security poli
an object that encapsulates the cu
AccessControlContext. If the n is, as expected, an insta of
AccessControlContext, the checkPermission method on that
AccessControlContext object is called. A security exception is thrown if the context
object is not an instance of AccessControlContext or if the resource access is denied.

The two SecurityManager checkPermission methods replace the myriad of
check methods from JDK 1. x; thus, the semantics of the required check are no longer hard
coded in the names and implementations of those check methods. Instead, they are encoded in
the permission argument passed to the checkPermission method. This simple idea has a
tremendous advantage. The implementation of the checkPermission call typically involv
examining Java runtime internal state and performing complicated algorithms. That
implementation can now be

places a checkPermission call in the appropriate place.

6.2 AccessControlContext

An AccessControlContext is used to make system resource access decisions based on
the context it encapsulates. More specifically, it encapsulates a context and has a
checkPermission method that is equivalent to the method in th

 - 74 -

Inside Java™ 2 Platform Security: Architecture, API Design, and Implementation, 2nd

AccessController class (refer to Section 6.4), with one difference: The
AccessControlContext checkPermission method makes access decisions based
on the context it encapsulates rather than on that of the current execution thread.

Thus, the purpose of

 in which a security
ifferent context,

ext has the following APIs:

t[],

perm)
public DomainCombiner getCombiner()

ch

o the
s. The constructor taking a

omization of the access

gment and

to
Controller, was added to Java 2 SDK,

escribed in

AccessControlContext is for those situations
check that should be made within a given context needs to be done from within a d
for example, from within a worker thread.

AccessControlCont

public AccessControlContext(ProtectionDomain context[])
public AccessControlContext(ProtectionDomain contex
 DomainCombiner combiner)
public void checkPermission(Permission

The public constructors create an AccessControlContext object with the given
set of ProtectionDomain objects, thus mimicking the execution context in whi
objects, which instantiate classes from different protection domains, call each other in
the sequence given in the array. The first element in the array corresponds t
protection domain of the most recent clas
DomainCombiner as a second argument allows for the cust
control machinery of the Java runtime.

6.3 DomainCombiner

The DomainCombiner interface enables an extrinsic implementation class to au
 the current dynamically update the ProtectionDomains associated with

cessControlContext. This interface, along with the changes Ac
AccessControlContext and Access
Standard Edition (J2SDK), 1.3, to support principal-based access control, which is d
greater detail in Section 8.4.7.

A DomainCombiner is passed as a parameter to the appropriate constructo
AccessControlContext, thus binding the implementation to the access

r for
 control algorithm

described in Section 6.4. The newly constructed context may then be passed to the
AccessController.doPrivileged method to bind the provided context and
associated DomainCombiner with the current execution thread. (See Section 6.4 for

iner
combine e invoked.

erface wields considerable

 a

ProtectionDomain that issued the most recent call to

information on AccessController and its doPrivileged method.) Once the
DomainCombiner is bound to the execution context, subsequent calls to
AccessController.getContext or
AccessController.checkPermission trigger the DomainComb

 method to b

Obviously, an object implementing the DomainCombiner int
authority, as it participates in assembling the AccessControlContext evaluated during
policy enforcement. Therefore, the ability to construct an AccessControlContext with
DomainCombiner requires that the caller be granted the SecurityPermission
permission with the named target "createAccessControlContext".

The combine method takes two arguments. The first argument represents an array of
ProtectionDomains from the current execution thread, up to and including the

 - 75 -

Inside Java™ 2 Platform Security: Architecture, API Design, and Implementation, 2nd

AccessController.doPrivileged. The second argument represents an array of
inherited ProtectionDomains. The ProtectionDomains may be inherited from a
parent thread or from a privileged context.

 case, the

e

otectionDomains. Reordering and other optimizations to the
tes

w
ControlContext, which has the combined ProtectionDomains and the

same instance of the DomainCombiner bound to it.

6.4 AccessController

Although the SecurityManager class defines the checkPermission and check
methods as interfaces to invoke an appropriate security check, these interfaces do not specify how

e security checks are done. In particular, they do not specify under what circumstances a request
ld be granted or denied. This is necessary because it is almost impossible to anticipate all

 and to install the appropriate security managers, depending on the
nvironment.

might

posite semantics of a check method,
nt, adhoc, and possibly dangerous behavior. Another problem is that

ityManager is difficult, especially for application developers who are
sed in security. Some programmers tend to hard code a security policy in the
ods without leaving enough room for smooth evolution, whereas others may

introduce subtle security bugs.

nt

checkPermission methods invoke by default the
checkPermission method defined in AccessController, and thus
SecurityManager esse g to the
AccessController.

A prototypical combine method inspects the two input arrays of ProtectionDomains and
returns a single array containing the updated ProtectionDomains. In the simplest
combine method merges the two stacks into one. In more complex scenarios, th combine
method returns a modified stack of ProtectionDomains. The modification may have added
new ProtectionDomains, removed certain ProtectionDomains, or simply updated
existing Pr
ProtectionDomains are also permitted. Typically, the combine method bases its upda
on the information encapsulated within the DomainCombiner.

After it receives the combined stack of ProtectionDomains back from the
DomainCombiner, the AccessController.getContext method returns a ne
Access

th
shou
reasonable ways to enforce a security check. For example, one application developer might want
to implement a multilevel security policy [5], whereas another might want to implement support
for separation-of-duty policies [72]. One way to achieve the goal of supporting multiple policies is
to provide a Policy object with a sufficiently rich expressive power to include all possible
policy specifications. This might not be possible, or at best, it might be very difficult. Another way
is to override the check methods defined in SecurityManager to implement particular
flavors of the security policy
application e

Not fully specifying how security checks are done has its drawbacks. One is that developers
write security managers that have inconsistent behavior. For example, two custom
SecurityManage
thus resulting in inconsiste

r classes might implement totally op

implementing a Secur
not deeply ver
check meth

Thus, there is an urgent need to provide a default implementation that specifies a complete access
control algorithm that is general enough to be used in a majority of applications. Developers can
readily use such an implementation, and users can expect consistent behavior across differe
applications and platforms. The default implementation is the
java.security.AccessController class. In other words, the
SecurityManager

ntially delegates security decision makin

 - 76 -

Inside Java™ 2 Platform Security: Architecture, API Design, and Implementation, 2nd

The next subsection examines the interface design of AccessController. Later sections
cover in detail the general access control algorithm that is embodied in this class.

6.4.1 Interface Design of AccessController

The AccessController class is declared final, so it cannot be further subclassed. It h
no public constructor; thus, no one can instantiate it. It has only the following static methods:

as

public static void checkPermission(Permission perm)

 AccessC
public static native Object
 doPrivileged(PrivilegedExceptionAction action)
 throws PrivilegedActionException

public static native Object
 doPrivileged(PrivilegedExceptionAction action,
 AccessControlContext context)
 throws PrivilegedActionException
public static AccessControlContext getContext()

The checkPermission method checks whether a requested access, as specified by the
permission argument, is allowed in the current execution context. If it is, the method returns
silently. Otherwise, it throws an AccessControlException—a subclass of
SecurityException—that provides details of the reason for failure. The access control
algorithm implemented by checkPermission is described in the following subsections. The
other methods also are described in the following subsections: getContext, in Section 6.4.2

public static native Object
 doPrivileged(PrivilegedAction action)
public static native Object
 doPrivileged(PrivilegedAction action,

ontrolContext context)

;
the doPrivileged methods, in Sections 6.4.4 through 6.4.6.

6.4.2 The Basic Access Control Algorithm

The decision as to whether to grant access to controlled resources can be made only within the
right context, which must provide answers to such questions as who is requesting what and on
whose behalf. Often, a thread is the right context for access control. Less often, access control
decisions must be carried out among multiple threads that must cooperate in obtaining the right
context information. A thread of execution may occur completely within a single protection
domain. That is, all classes and objects involved in the thread belong to the identical protection
domain. Alternatively, a thread of execution may involve multiple domains, such as an application
domain and the system domain. For example, an application that prints a message will have to
interact with the system domain, which is the only access point to an output stream.

The AccessController getContext method returns, in an
AccessControlContext instance (Sections 6.2 and 6.4.6), the current execution context.
The current execution context is entirely represented by its current sequence of method
invocations, where each method is defined in a class, and each class belongs to a
ProtectionDomain. Thus, you can form a sequence of protection domains for the executio
context, and the

n
AccessControlContext returned by getContext contains such a

sequence.

 - 77 -

Inside Java™ 2 Platform Security: Architecture, API Design, and Implementation, 2nd

The basic access control algorithm can be summarized in one sentence: A request for access is
granted if, and only if, every protection domain in the current execution context has been grante
the said permission, that is, if the code and principals specified by each protection domain are
granted the permission

d

rmissions within all the protection domains D in the current execution
context:

. In other words, the required permission p must be an element of the
intersection of the pe

The term caller is used to denote a pro
as a protection domain can be associa

tection domain within the context of the current execution,
ted with multiple contexts. The basic access control

}

igh-

t in Figure

algorithm can be expressed in the following constructive manner. Suppose that the current thread
traversed m callers, in the order of caller 1 to caller 2 through to caller m. Then caller m invoked
the checkPermission method, which determines whether access is granted or denied, based
on the following algorithm:

i = m;
while (i > 0) {
 if (caller i's domain does not have the permission)
 throw AccessControlException;
 return;
 i = i - 1;

return;

To examine this basic algorithm, suppose that a game applet has a method named
openHighScoreFile that calls the constructor of FileInputStream to open the h
score file, the file that keeps the scores of the top ten players of the game. The constructor calls
checkRead, which in turn calls the checkPermission method inside the security
manager. The security manager in turn calls the checkPermission method in
AccessController. At this point, the execution context looks like the snapsho
6.1.

Figure 6.1. Stack frame snapshot

 - 78 -

Inside Java™ 2 Platform Security: Architecture, API Design, and Implementation, 2nd

In this example, two distinct protection domains exist within the execution context: the system
domain and the domain assigned to the application. The algorithm says that the file can be opened
if, and only if, both domains have the FilePermission that allows reading the high-
file. Because the system domain by default has all permissions, the algorithm is reduced to
checking whether the application has been granted the specified FilePermission. If the
application has not been granted the permission, the file will not be opened, even though the
application tries to enlist the help of system code to do so. This last point is critical because an
application domain should not gain additional permissions simply as a result of calling the system
domain.

score

In a reverse situation, a system domain i lication domain. For nvokes a method from an app
example, the AWT (Abstract Window Toolkit) system code calls an applet's paint method to
display the applet. Suppose that the applet then tries to open the high-score file from within
paint. Figure 6.2 shows the execution context.

Figure 6.2. Stack frame execution context

Again, even though it appears that the AWT code triggers the call to FileInputStream, th
file will not be opened if the applet has not been granted the necessary file permission. Otherwise
the applet would gain immense power simply because system code calls back to its own code. If
this were not the case, the system domain would be vulnerable to a "luring" attack, and a serious
security compromise could result. The access control algorithm built into the a

e
,

ccess controller in
Java 2 prevents such mishaps.

 - 79 -

Inside Java™ 2 Platform Security: Architecture, API Design, and Implementation, 2nd

Thus, code in a less powerful domain cannot gain additional permissions as a result of ca
code in a more powerful domain, whereas code in a more powerful domain must lose its power
when calling code in a less powerful domain. That is, code doesn't pass on its power to the less
powerful domain. This

lling

hat performed an access contr licitly on knowing its
caller's status, that is, whether the caller was system code or applet code. This arrangement was

 also

g

 and

s
s A.

Class A defines a method x(), which B inherits but does not override. Further assume that

ection
hich simply inherited the method unchanged?

sions. Thus, in the scenario just given, class A's protection domain is examined for the
necessary access permissions. Note that if in class B, method x() was overridden but otherwise

In fact, for this example, both protection domains would be examined, as both will appear as
 is that once a subclass overrides a method

 method call.

principle of least privilege is applied to a thread that traverses multiple
protection domains.

Prior to Java 2, any code t ol decision relied exp

fragile because knowing only the caller's status is often insufficiently secure. You frequently
need to know the status of the caller's caller, and so on. Placing this discovery process explicitly
on the typical programmer becomes a serious burden and can be error-prone. It also means that the
AWT code writer must worry about scenarios under which an applet might behave. The algorithm
implemented in AccessController relieves this burden by automating the access-checkin
process.

6.4.3 Method Inheritance

The subtle issue of method inheritance needs clarification. The basic access control algorithm,
its extended versions discussed later in the chapter, are defined in terms of a sequence of callers,
each represented by a method invocation. The method invocation identifies the class in which the
method is defined; the class is linked to the protection domain to which it belongs. Technically
speaking, the code and principals the protection domain represents have been granted permission
against which an access control decision is made. Suppose that class B is a subclass of clas

classes A and B belong to two different protection domains. When someone invokes a call on
B.x(), which protection domain should be considered for this method invocation? Is it the
protection domain of class A, which defined and implemented this method? Or is it the prot
domain of class B, w

Either choice may seem reasonable under certain conditions. On balance, however, associating the
protection domain according to where the method is implemented is more natural because a more
powerful class can write its methods in a secure way that allows less powerful classes to inherit
them and accomplish tasks for which they themselves would not have had the required
permis

does nothing more than delegate to its parent, super. x(), the protection domain to examine
would be that of B instead of A, even though the override will not have changed the
implementation of the method.

method invocations of the execution thread. The reason
call, the superclass cannot be held responsible for the eventual implementation of the
In other words, B could have changed the implementation of x() in arbitrary ways, so its

f these scenarios are depicted in Figure 6.3. protection domain should be examined. Both o

Figure 6.3. Method inheritance

 - 80 -

Inside Java™ 2 Platform Security: Architecture, API Design, and Implementation, 2nd

6.4.4 Extending the Basic Algorithm with Privileged Operations

he computation must be

e
le, the new password is stored in the updated password file. Note that

pen the password file for read and write access; assume that the
ss to do so. Under the basic algorithm, the application

ot
n a

it is doing.
roperties,

ties in order to complete

essController class includes a static method,
lls doPrivileged is telling the Java runtime to

re the status of its callers and that it itself is taking responsibility in exercising its own

ller i is marked as privileged)

The basic algorithm is simple and secure because all code involved in t
granted sufficient permission for the requested access. However, the algorithm can be too
restrictive. For example, consider a password-changing application. When a piece of user code
calls this application, the user is prompted to type a new password twice—to ensure that the
correct password is entered—and then to enter the old password. If the old password matches th
one stored in the password fi
the application needs to o
application has been granted sufficient acce
cannot open the password file, because it is called by the user code, which does not and should n

tly. In this case, the application should be givehave permission to access the password file direc
way to opt out of the basic algorithm in order to open the file, knowing full well what

t access to certain system pIn another, similar, example, an applet might not have direc
but the system code servicing the applet may need to obtain some proper
its tasks.

To handle such exceptional cases, the Acc
Privileged. A piece of code that cado

igno
permissions. Following is an extended access control algorithm that takes into account privilege
status:

i = m;
while (i > 0) {
 if (caller i's domain does not have the permission)
 throw AccessControlException;
 if (ca
 return;
 i = i - 1;
}
return;

 - 81 -

Inside Java™ 2 Platform Security: Architecture, API Design, and Implementation, 2nd

In this extended algorithm, callers must be checked in the same order that they call each other,

n use
ent to open the file, even if the calling code does not have access

 AccessController.doPrivileged(new PrivilegedAction() {

 // Open file for reading and writing.

iled look at doPrivileged. When executing this method, the Java virtual
me as privileged. In the previous example, the stack
word method is marked privileged. Just before

pleting the execution of the doPrivileged method, the Java virtual machine unmarks the

 effectively

eck. The implementation guarantees that the assertion of privileges will exist only
 executed, even if execution of doPrivileged is interrupted by an

e method, named run, that returns an
ion of that interface, using an

ethod is supplied. When the call
vilegedAction implementation is

d calls the run method from the
vilegedAction implementation after marking the current stack frame as privileged and

nored in

is merely enabling privileges it already has. This is
 than the set of permissions
ler to ignore the callers

d code. For example, AccessController can stop
 after it has already verified that the privileged code has the required permission.

ileges. That is, the effect
ncurrently running

ds might be executing code that belongs to the same
n domain.

starting with the most recent caller.

Armed with the call to
g code segm

 "invoke one's own privilege," the password-changing application ca
the followin
permission:

public void changePassword() {
 // Use own privilege to open the password file.

 public Object run() {

 ...
 return null;
 }
 });

new passwords. // Verify user's old and
 ...
}

Here is a deta
machine marks the calling thread's stack fra

e corresponding to the changePassfram
com
calling thread's stack frame, thereby indicating that it is no longer privileged.

The doPrivileged method called in the preceding example takes an object of type
java.security.PrivilegedAction and invokes its run method, which
asserts the privileges of the calling class such that all other classes on the execution thread whose
methods were invoked prior to the calling class's method are not considered as part of the context
of a security ch
while the run method is
asynchronous exception.

PrivilegedAction is an interface with a singl
Object. The preceding example shows creation of an implementat

he run manonymous inner class; a concrete implementation of t
 of the Prito doPrivileged is made, an instance

sed to it. The doPrivileged methopas
riP

returns the run method's return value as the doPrivileged return value, which is ig
this example.

By calling doPrivileged, the caller
important to understand. A block of code never gains more permissions

ply tells AccessControlit has been granted. Being privileged sim
ethod containing the privilegeof the m

eckingch

Moreover, a privileged block is specific to the thread that enabled its priv
read does not have any impact on other coof code being privileged in one th

threads, even though those other threa
protectio

 - 82 -

Inside Java™ 2 Platform Security: Architecture, API Design, and Implementation, 2nd

Another subtlety to consider is that the doPrivileged method can be invoked reflectively by
.Method.invoke. In this case, the privileges granted in
Method.invoke but those of the nonreflective code that

it. Otherwise, system privileges could erroneously or maliciously be conferred on user

reful of doPrivileged. In the password-
changing a le, suppose that the code to open the password file is in another

sswordFile, which opens the password file and returns the object
ple code would become the following:

leged(new PrivilegedAction() {
 public Object run() {

d operate exactly as before. Calling doPrivileged from inside
er code could then
 would get a
ference. The lesson
rce whose access

 or have full control over

 process it internally only after password checking succeeds.

se to exercise

oller
e caller

ode it invoked. The code may have control over which
 cannot be expected to know what will be invoked

r. Privileges and granted permissions could be misused or abused if any of those callers were

e example in the previous section demonstrates the simplest usage of doPrivileged
by passing in a interface as the argument. That usage pattern, repeated

es not need to return a value.

using java.lang.reflect
d mode are not those of privilege

ked invo
code.

Let us dig a little deeper into the proper and ca use
pplication examp

method, named openPa
reference to the file input stream. The exam

public void changePassword() {
 open the password file. // Use own privilege to

 AccessController.doPrivi

 // Open file for reading and writing.
 f = openPasswordFile();
 return null;
 }
 });
 // Verify user's old and new passwords.
 ...
}

This code shoul
openPasswordFile instead would be a mistake. Why? Because the us

e user codecall it directly, and because of the privilege inside that method, th
reference to the password file, as openPasswordFile returns such a re

 a resouhere is that a method, such as openPasswordFile, that returns
should be controlled should not assert its privilege if it does not know
who can call it. On the other hand, changePassword may safely assert its own privilege,

 call it. The reason is that it takes care not to reveal the password file to the even if anyone can
d willoutside world an

Note that the design of the privilege feature is asymmetrical. That is, code may choo
its privileges and tell the access controller to ignore those callers before the asserting method, but
it cannot tell the access controller to ignore those callers that are subsequently called. Thus, calling
a method whose corresponding protection domain does not have a requisite permission will not
escalate the privileges of the called method. This asymmetry is deliberate. If the access contr

red those classes and methods that were subsequently called, then effectively thalso igno
would have granted its permissions to any c

ses and methods are directly invoked butclas
late
malicious or incompetent. It is a very bad idea to trust a series of unknown parties. The algorithm
is designed to protect code from accidentally falling into such traps.

6.4.5 Privileged Actions Programming Idioms

The cod
PrivilegedAction

next, is useful only when the code within the privileged block do

somemethod() {
 ...normal code here...

 - 83 -

Inside Java™ 2 Platform Security: Architecture, API Design, and Implementation, 2nd

 AccessController.doPrivileged(new PrivilegedAction() {
 public Object run() {
 // Privileged code goes here, for example:

s ignored in
this example.

somemethod() {

run() {

namic cast on the value returned by doPrivileged.

lternative is to use a final local variable, as follows:

 {

perty("user.name");
eed this.

mal code here...

the anonymous inner class, it
 using an

 System.loadLibrary("awt");
 return null; // Nothing to return.
 }
 });
 ...normal code here...
}

As previously mentioned, PrivilegedAction is an interface with a single method, named
run, that returns an Object. The example shows a concrete implementation of the run
method being supplied. When the call to doPrivileged is made, an instance of the
PrivilegedAction implementation is passed to it. The doPrivileged method calls
the run method from the PrivilegedAction implementation after enabling privileges and
then returns the method's return value as the doPrivileged return value, which i

If the code from within the privileged block needs to return a value, the following is one way to
write the code:

 ...normal code here...
 String user = (String) AccessController.doPrivileged(
 new PrivilegedAction() {
 public Object
 return System.getProperty("user.name");
 }
 });
 ...normal code here...
}

This usage requires a dy

An a

somemethod() {
 ...normal code here...
 final String user[] = {null};
 AccessController.doPrivileged(new PrivilegedAction()
 public Object run() {
 user[0] = System.getPro
 return null; // Still n
 }
 });
 ...nor
}

Because the local variable, user, cannot be declared in the body of
must be declared final and must be assigned before the body of the inner class. But by
array, we still can assign an element to the array and not violate language semantics.

 - 84 -

Inside Java™ 2 Platform Security: Architecture, API Design, and Implementation, 2nd

A third solution is to write a nonanonymous class that handles typing information safely, suc
the following:

h as

 private String value;

 value = System.getProperty(property);
ue;

use the run method returns a value, you can
thod to the following:

emethod() {
 ...normal code here...

oller.doPrivileged(new
 GetPropertyAction("user.name"));

 code that does not throw checked
exceptions, such as FileNotFoundException. If the code can throw a checked

one that must be listed in the throws clause of a method—then the alternative form
method, which takes a PrivilegedExceptionAction rather

Stream fis = (FileInputStream)
 AccessController.doPrivileged(

 PrivilegedExceptionAction() {

somemethod() {
 ...normal code here...
 GetPropertyAction gpa = new

); GetPropertyAction("user.name"
 AccessController.doPrivileged(gpa);
 String user = gpa.getValue();
 ...normal code here...
}

class GetPropertyAction implements PrivilegedAction {
 private String property;

 public GetPropertyAction(String prop) {
 property = prop;
 }

 public Object run() {

 return val
 }

{ public String getValue()
 return value;
 }
}

In this example, there is no type cast. Beca
abbreviate someme

som

 String user = (String) AccessContr

 ...normal code here...
}

Finally, the interface PrivilegedAction is for privileged

exception—
of the doPrivileged
than a PrivilegedAction, should be used.

somemethod() throws FileNotFoundException {
 ...normal code here...

 try {
 FileInput

 new

 - 85 -

Inside Java™ 2 Platform Security: Architecture, API Design, and Implementation, 2nd

 public Object run() throws
leNotFoundException {

ActionException e) {

FileNotFoundException, as only "checked" exceptions
PrivilegedActionException.

 throw (FileNotFoundException) e.getException();

 ...normal code here...

Fi
 return new FileInputStream("someFile");
 }
 });
 } catch (Privileged
 // e.getException() should be an instance of
 //
 // will be "wrapped" in a

 }

}

The use of doPrivileged may seem cumbersome, but there is a reason for this. The rationale
behind this design choice is discussed in Section 6.4.10. Meanwhile, remember that privileged
operations should be implemented with great care because they assert the code's granted
permissions even when acting on behalf of untrusted code. The privileged code block should b
small as possible, and al

e as
l code that can be executed outside the block should not be inside the

block.

, strictly speaking, the Java virtual machine does not have to force a thread to recursively

ccount is similar to the

6.4.6 The Inherited Access Control Context

As previously mentioned, the AccessController getContext method computes a
snapshot of the current execution context, places it in an AccessControlContext object,
and returns that object. To facilitate the generation of the context, the JVM keeps track of the
ProtectionDomain created for each class executing on the call stack.

In the Java runtime, code can start any number of child threads, which can then start their own
child threads, and so on. When a thread is created, the Java virtual machine creates a fresh
execution stack but ensures that the current execution context is inherited by the child thread. In
other words, the security context of the child thread includes the security context of all its
ancestors. More specifically, the snapshot of the current execution context includes the current
thread's inherited AccessControlContext.

Note that
inherit its parent context, as not inheriting it does not necessarily pose a security problem.
However, our experience shows that a typical programmer expects the security context to be
inherited, and surprising the programmer is undesirable. Automatic inheritance is in fact quite
convenient in some cases. In a server application, for example, a master thread might create slave
threads to handle individual incoming requests when it would have been a burden to manually
write the code for the slave threads to take into account the master's security context.

Another point to emphasize is that the inherited context is the exact context in the parent thread at
the moment when the child thread is created. The inherited context is essentially frozen for further
references, and the parent thread is free to continue and change its context afterward without
impacting the content of the inherited context.

The access control algorithm that takes the inherited context into a
previously shown 'extended access control algorithm,' with the addition of a step calling the
inherited context's checkPermission method to evaluate whether the inherited context's
domains have the required permission:

i = m;

 - 86 -

Inside Java™ 2 Platform Security: Architecture, API Design, and Implementation, 2nd

while (i > 0) {
 if (caller i's domain does not have the permission)
 throw AccessControlException;

ith the new
thread,

nsure that a privileged operation is limited to a reduced set of

tive Object

Action action,
ntrolContext context)

on argument,

 method might be easier after
g

ect run() {

s

 if (caller i is marked as privileged)
 return;
 i = i - 1;
}

// Next, check the context inherited when the thread was
created.
// Whenever a new thread is created, the
AccessControlContext
// at that time is stored and associated w

// as the "inherited" context.

inheritedContext.checkPermission(permission);

return;

6.4.7 The Privileged Access Control Context

Sometimes, code needs to e
permissions or is bounded by a security context that was collected earlier in the life cycle of the
Java runtime. To support this, the following two doPrivileged methods accept an
AccessControlContext as an argument:

public static na
 doPrivileged(PrivilegedAction action,

ntrolContext context) AccessCo
public static native Object
 doPrivileged(PrivilegedException
 AccessCo
 throws PrivilegedActionException

The only difference between them is that one takes a PrivilegedActi
whereas the other takes a PrivilegedExceptionAction, needed if the method might
throw a checked exception.

Each of these methods marks the calling method's stack frame as privileged and associates the
given AccessControlContext with the privileged frame. The context will be included in
all future access control checks and will be checked after the privileged frame's
ProtectionDomain is checked. Understanding the use of this
you read the full access control algorithm, discussed next. Its use is illustrated by the followin
code, where acc is the AccessControlContext object:

somemethod() {
 ...normal code here...
 AccessController.doPrivileged(new PrivilegedAction() {
 public Obj
 // Code goes here. Any permission checks from thi
 // point forward require both the current context
 // and the snapshot's context to have the desired

 - 87 -

Inside Java™ 2 Platform Security: Architecture, API Design, and Implementation, 2nd

 // permission.
 }
 }, acc);
 ...normal code here...
}

// Whenever a new thread is created, the

6.4.8 The Full Access Control Algorithm

The full access control algorithm is the following: Suppose that the current thread traversed m
callers, in the order of caller 1 to caller 2 through to caller m. Then caller m invoked the
checkPermission method. The checkPermission method determines whether access
is granted or denied, based on the following algorithm:

i = m;
while (i > 0) {
 if (caller i's domain does not have the permission)
 throw AccessControlException;
 else if (caller i is marked as privileged) {
 if (a context was specified in the call to
doPrivileged)
 context.checkPermission(permission);
 return;
 }
 i = i - 1;
}

// Next, check the context inherited when the thread was
created.

AccessControlContext
// at that time is stored and associated with the new
thread,
// as the "inherited" context.

inheritedContext.checkPermission(permission);

return;

The full algorithm is slightly more complicated than the inherited context algorithm given in
Section 6.4.6. They differ in only one way. When a privileged frame is being checked and an
access control context was specified in the call to doPrivileged, the security check will pass

 and in the specified

ivileged, it is critical that
the inherited context be evaluated for the requisite permission so as to ensure that untrusted code

hread. For example, if unprivileged code could start a "system" thread
trol checks triggered by the "system" thread, the system code
on programming idiom for trusted code not to exercise its

f its caller. The intent of the
-sensitive

if, and only if, the requested permission is allowable in the caller's frame
access control context.

One other subtlety is worth noting. If the code never invokes doPr

cannot lurk behind a child t
without being included in access con

romised. It is a commmight be comp
privileges when performing a security-sensitive operation on behalf o
idiom is to ensure that the calling code has sufficient privileges to access security
resources.

 - 88 -

Inside Java™ 2 Platform Security: Architecture, API Design, and Implementation, 2nd

Thus, a call to a doPrivileged method that includes an Acc
t can be used to enable a privileged frame but only for those

essControlContext
 permissions that would have

ontext. In other words, this feature can be used to
erage. Without a context being specified, a privileged

e may exercise all the permissions granted to it. With a context specified, the exercisable
ed

r exits
enefit is that

checking whether a permission is allowed is simplified and can be faster in many cases. The

In the lazy evaluation implementation, which is what Java 2 uses, whenever permission checking
 requested, the thread state, as reflected by the current thread stack or its equivalent, is examined,

and a decision is reached either to deny or to grant the particular access requested. One potential
ownside of this approach is the performance penalty at permission-checking time. However, this

penalty would be incurred as well in the eager evaluation implementation, albeit at earlier times
nd spread out among each cross-domain call. In the Java 2 implementation, performance of this

algorithm is quite acceptable, so we feel that lazy evaluation is the most economical approach
verall.[1]

argumen
been granted in the specified access control c

her restrict the extent of the privilege covfurt
fram
permissions are further limited to those that would have been permitted within the specifi
context.

From a theoretical and abstract level, the access control algorithm says that, at any point in a
thread of computation, the effective permission is the intersection of the permissions of all
protection domains traversed by the execution thread with the privilege status and its associated
access control context, if any, as well as inherited access control context taken into account. Many
strategies for implementing this algorithm are possible. The two most obvious are discussed here:
eager evaluation and lazy evaluation.

In an eager evaluation implementation, whenever a thread enters a new protection domain o
from an existing one, the set of effective permissions is updated dynamically. The b

disadvantage is that because permission checking occurs much less often than cross-domain calls,
a large percentage of permission updates might be useless effort.

is

d

a

o

[1] For details of the implementation of protection domains prior to J2SE 1.4 and a discussion on
performance and optimization techniques, see [47].

Note that because access control is based on the protection domains associated with the curre
execution context, the con

nt
text must be preserved when optimizing code across class boundaries.

In particular, a static, or just-in-time (JIT), compiler or a particular implementation of the Java
recautions not to optimize so aggressively as to lose security context.

ust be done with care so that protection domain information is not

Recall from earlier in th he difference, when invoking a se calling
s defined in the
t on whether you depended on any

check
checkPermission
Acc s iom for calling
Sec r

virtual machine must exact p
For example, method inlining m
lost and the AccessController class can be correctly implemented such that its effective
behavior does not differ between optimized and unoptimized code.

6.4.9 SecurityManager versus AccessController

is chapter t curity check, between
checkPermission and calling the other check method
SecurityManager class. The choice then was contingen
pre–Java 2 security manager classes. Now you have another choice: calling either the
checkPermission method defined in SecurityManager or the one defined in
AccessController. These methods differ in two major ways.

First, sometimes no installed SecurityManager exists, so you cannot invoke or
 methods on it. By contrast, the static methods in

e sController are always available to be called. Recall the following id
u ityManager:

 - 89 -

Inside Java™ 2 Platform Security: Architecture, API Design, and Implementation, 2nd

Sec r
if s
 sm.checkPermission(permission);

Note, however, that some existing applications test whether there is an installed instanc

ontrol
check to a

ssController directly. Otherwise, call
.

erface for
 has

tus might not be taken into
d is not the one provided by Java 2 and does not

ssController or its equivalent.

You might wonder why we provide these choices. Isn't one way of doing things good enough?

AccessController. In particular, they will provide additional functionality rather than
nt

nd

program is "armed," in that
e

limit to
 "armed"
ed harm.

u ityManager sm = System.getSecurityManager();
(m != null)

But you can always call

AccessController.checkPermission(permission);

Thus, regardless of whether a systemwide SecurityManager has been installed, if you want
to ensure that your security check is always invoked, you should call AccessController.

e of
SecurityManager. Then, based on the result of this test, which signifies one or the other
security states, these applications take different actions. For the backward compatibility of these
applications, calling SecurityManager is more appropriate.

The second difference is that calling SecurityManager does not guarantee a particular
access control algorithm; someone might have extended it and installed a custom security
manager. By contrast, calling AccessController guarantees that the full access c
algorithm specified earlier is used. Thus, if you do not want to delegate your security
custom security manager, you should call Acce
SecurityManager

Also, be warned that because the tyManager class defines a general intSecuri
security checks, it does not provide the privilege mechanism that AccessController
defined. In fact, if you use the privilege mechanism in your code but later call
SecurityManager
account if the security manager you installe

 to perform a security check, the privilege sta

consult Acce

These choices are based on experience. A balanced trade-off between generality and consistency
is needed. In the long run, we expect that custom security managers will not often be needed and
that, even when they are defined, they will be built on existing functionality in

promote incompatible behavior. Nevertheless, in a special environment in which a vastly differe
sort of security policy must be enforced, a customized security manager conceivably might not be
able to use the algorithms implemented by AccessController.

6.4.10 A Brief History of Privileged Operations

To cap the discussion on the AccessController class, we now provide more backgrou
on how the design of the doPrivileged methods developed. The main goals were to help
programmers write secure code and to guarantee security when a programmer makes a mistake.

It is helpful to compare the desired result with UNIX's setuid facility. Compared with the MS-
DOS and Windows operating systems, UNIX has traditionally given security somewhat more
comprehensive consideration. It limits what a userinvoked program/application may do to a user's
privileges. In some cases, though, these limits are too restricting. The setuid mechanism is
designed to circumvent those limits. However, the entire setuid-ed
any software bug in a part of the often large program can potentially lead to a security hole. W
wanted to avoid this possibility in Java 2, so we created APIs that enable a programmer to
just a few method calls either the scope of the dangerous operations or the duration of the
period. In this way, bugs outside those sensitive methods are less likely to cause unintend

 - 90 -

Inside Java™ 2 Platform Security: Architecture, API Design, and Implementation, 2nd

We considered several design proposals. One was to extend the language with a method modifie
perhaps called "privileged." Privilege would be granted when entering the method and revoked o
returning from it. This was by far the cleanest design, but it would have required a major additi
to the Java language, which in turn would have required compiler vendors to update their
compilers. Such a change cannot be made lightly. Moreover, a method modifier cannot take a
context argument. So we decided against it. We also rejected a number of other proposals that
would have either changed the existing semantics of non-security-related code or required Java
virtual machine support that would have been difficult to implement on all platforms.

Up to Java 2 SDK 1.2 Beta 3, we wen

r,
n

on

t with a design by which we provided the following two

ed()

in the wellknown try-

 longer needed. This limited the privilege

 prevent mismatch between invocations of these begin and end methods from
t

tly added complexity in
n suitable language

method calls in the AccessController class:

public static native void beginPrivileg
public static native void endPrivileged()

Declaring a block of code to be privileged was to occur as follows:

somemethod() {
 (normal code here)
 try {
 AccessController.beginPrivileged();

es here, for example: // Privileged code go
 System.loadLibrary("awt");
 } finally {
 AccessController.endPrivileged();
 }
 (more normal code here)
}

This design had the advantage of being fairly simple to use with
finally block construct. Its downside was that the call to endPrivileged could have

inPrivileged call and optimally been made only in the same method frame as the beg
nowould have been called as soon as the privilege was

period to one method invocation and ensured that the privilege was reversed as soon as possible. If
mer accidentally forgot to call endPrivileged, we built in a number of measures a program

and checks to
within different frames. For example, we would have reversed a privilege status if it was clear tha
the programmer should have reversed it but forgot to do so. In the end, the requirement to match
frames was considered difficult to specify and enforce precisely in a platform-independent
manner, so we abandoned that design in favor of the doPrivileged interface.

The design we eventually adopted works reasonably well, except for sligh
programming. We expect to improve the design later, for example, whe
constructs are made available.

 - 91 -

Inside Java™ 2 Platform Security: Architecture, API Design, and Implementation, 2nd

Chapter 7. Customizing the Security Architecture
 office of government is not to confer happiness, but to give men opportunity to work out

ity architecture. We explain how to develop
ort either extensibility or
lementing a custom

curityManager class,
 a custom Policy provider, and implementing a DomainCombiner interface.

The
happiness for themselves.

—William Ellery Channing

This chapter demonstrates ways to augment the secur
custom implementations of the various security classes that supp
substitution mechanisms. We also describe the mechanics of imp
Permis
implement

sion class, extending the functionality of the Se
ing

7.1 Creating New Permission Types

Recall from Section 5.1 that J2SDK 1.2 introduced a new hierarchy of typed and parameter
curity.Permission. Ot

ized
her

or one of its subclasses and
lePermission permission representing file

e

urces.
ystem resources, such

ties

 new categories of permissions. However, it is essential that, apart
o one extend the permissions that are built into the SDK, either by adding

dditional keywords into a class such as
sion. Refraining from doing this maintains compatibility.

en creating a new permission, it is advisable also to declare the permission to be final. The

f
n has a concrete
e implies method take the

 class:

rmission) {

access permissions, rooted by an abstract class, java.se
ermission class permissions are subclassed from either the P

appear in relevant packages. For example, the Fi
system access is located in the java.io package. Other permission classes ar

• java.net.SocketPermission for access to network reso
• java.lang.RuntimePermission for access to runtime s

as class loaders and threads
• java.lang.PropertyPermission for access to system proper

esources • java.awt.AWTPermission for access to windowing r

As this list illustrates, accesses to controlled resources, including properties and packages, are
represented by the permission classes.

Applications are free to
ases, n

 add
from official rele
new functionality or by introducing a

ang.RuntimePermisjava.l

Wh
rule of thumb is that if the permission will be granted in a security policy, it is probably best to
declare it final. However, at times it may be necessary to create a class hierarchy for your
custom permission. If this is the case, a couple of design heuristics are worth mentioning. First, i
the abstract, or base, class of your permission or permission collectio
implementation of the implies method, it is recommended that th
type of the permissions into consideration. For example, the implies method of the
BasicPermission class has the following logic, which is similar to that of the
BasicPermissionCollection

public boolea
 if (! (permission instanceof BasicPermission))

n implies(Permission pe

 return false;
 BasicPermission bp = (BasicPermission) permission;

his.getClass()) if (bp.getClass() != t
 return false;

...

 - 92 -

Inside Java™ 2 Platform Security: Architecture, API Design, and Implementation, 2nd

}

Pay particular attention to the second if statement, which enforces the type equality heuristic.

g

ction class. The Java security architecture specifically enables this by
first delegating to the permission collection object for processing of a requisite permission when

lication
access to
 three

ons are to be controlled for any given channel of programming: the ability to "view", to
n

ion

e
resp es and ntics. Additionally, it may be

in the implementation supplied by the
ssary is when the actions of a permission

can be granted separately but tested in comb ple, you may have two separate
ne for

Permission

 /* previe

Without this, the implementation may be exposed to a subtle security hole whereby the subclass
may be able to interact in malicious ways with the superclass's implication checking.

The second design heuristic addresses whether a custom PermissionCollection class
should be implemented. The general principle is that if the permission has complex processin
semantics for either its name or the actions it specifies, it is usually necessary to create a custom
PermissionColle

making a policy decision.

Perhaps these guidelines are best shown by an example. Suppose that you are an app
developer from company MyPVR and want to create a customized permission to control

channel programming features of a personal video recorder. Further suppose that onlythe
acti
"preview", and to "record". The first question is, can you use an existing Permissio
object, such as the BasicPermission class, or do you need a custom permission class?
Given the need to be able to control access based on the three actions, the BasicPermiss
class will not suffice. Therefore, a custom class needs to be designed.

Next, you must make sure that the implies method, among other methods, is correctly
implemented. If you decide to support more elaborate channel-naming syntax for
PVRPermissions, such as 1–10:13–20 or *, you may need to implement a custom
permission collection class, PVRPermissionCollection. This custom class would b

onsible for parsing the nam ensuring the proper sema
necessary to perform the implies logic entirely with
permission collection. An example of when this is nece

ination. For exam
grants of a PVRPermission specified by the security policy: one for "view" and o
"preview", yet the resource management code tests for them in combination, perhaps as an
optimization. That is, in order to be able to "preview" a channel, one must also have the
permission to "view" the channel.

Here are parts of the code for sample com.mypvr.PVRPermission and
com.mypvr.PVRPermissionCollection classes:

public final class com.mypvr.PVRPermission
 extends java.security.Basic
 implements java.io.Serializable {

 /* view channel */
 private final static int VIEW = 0x1;

w a channel */
 private final static int PREVIEW = 0x2;
 /* record a channel */
 private final static int RECORD = 0x4;
 /* all actions */

LL = private final static int A
VIEW|PREVIEW|RECORD;
 /* the channel number */
 private transient String channel;

 - 93 -

Inside Java™ 2 Platform Security: Architecture, API Design, and Implementation, 2nd

 /* the actions mask */

 PVRPermission(String channel, String actions) {

 this.channel = channel;
 this.actionMask = getMask(actions) // parse actions

 }

rmission

mission) p;

nel) &&
that.actions))

n() {

e {
ivate Vector permissions;

ermission;

 int needed = desired;

nnel)) {

d) == desired)

 private transient int actionMask;
 public
 super(channel, actions);

 ...
 /* for completeness we implement implies but given the
usage
 pattern the real work will be done in the pe
collection
 */
 public boolean implies(Permission p) {
 if (!(p instanceof PVRPermission))
 return false;
 PVRPermission that = (PVRPer

 if (this.channel.equals(that.chan
 this.actions.equals(
 return true;
 return false;

 }

ic PermissionCollection newPermissionCollectio publ
 return new PVRPermissionCollection();
 }
}

final class PVRPermissionCollection extends
PermissionCollection

 implements java.io.Serializabl
 pr

 public PVRPermissionCollection() {
 permissions = new Vector();
 }
 ...
 public boolean implies(Permission permission) {
 if (! (permission instanceof PVRPermission))
 return false;
 PVRPermission np = (PVRPermission) p
 int desired = np.getMask();
 int effective = 0;

 Enumeration e = permissions.elements();
hile (e.hasMoreElements()) { w

 PVRPermission x = (PVRPermission)
t(); e.nextElemen

 if (x.channel.equals(np.cha
 if ((needed & x.getMask()) != 0) {
 effective |= x.getMask();
 if ((effective & desire

 - 94 -

Inside Java™ 2 Platform Security: Architecture, API Design, and Implementation, 2nd

 return true;
 needed = (desired effective);

 }
 }

 return false;
 }

the channel you also need to be
able

 new
channel),

n to applications and applets, you need to enter appropriate entries
o configure the policy is discussed in detail in Section 12.5

 }

}

Next, you want the application's resource management code, when checking whether an access
should be granted, to call SecurityManager's checkPermission method, using an
instance of com.mypvr.PVRPermission as the parameter

public void previewChannel(int channel) {
 // in order to preview

 // to view the channel
 com.mypvr.PVRPermission tvperm =

com.mypvr.PVRPermission(Integer.toString(
 "view,preview");
 SecurityManager security = System.getSecurityManager();
 if (security != null) {
 security.checkPermission(tvperm);
 }
...
}

Finally, to grant this permissio
into the security policy. How t .

 permission com.mypvr.PVRPermission "5", "view";

stalled,
sion method will

asses are provided in Chapter 6

Basically, you put the string representation of this permission in the policy file so that this
permission can be automatically configured for each domain granted the permission. An example
of the policy file entry specifying permission for the user "Duke" to watch channel 5 is as
follows, which grants to any code considered to be executed by "Duke" the privilege to view
and preview channel 5:

grant principal javax.security.auth.x500.X500Principal
"cn=Duke"{

 permission com.mypvr.PVRPermission "5", "preview";
}

To exercise the built-in access control algorithm, our code would typically invoke a permission
check by directly calling the checkPermission method of the SecurityManager
class, as shown. Generally, it is best to start up the access control machinery by calling the
SecurityManager.checkPermission method as demonstrated. The default
implementation of SecurityManager.checkPermission delegates to the
AccessController. However, should a custom SecurityManager class be in
there is no guarantee that the AccessController.checkPermis
ever be invoked. Details of these cl , and the question of when to
use AccessController versus SecurityManager is discussed in Section 6.4.9.

 - 95 -

Inside Java™ 2 Platform Security: Architecture, API Design, and Implementation, 2nd

7.2 Customizing Security Policy

The security policy is first processed by the Policy object and then is enforced by the
ller, so customizing any of these classes would
eginning with J2SE 1.4, security policy decisions

puted
e

mented to supply specialized behavior. We
he extension points of the SecurityManager and then give guidance in

 custom Policy provider.

.1 Customizing Security Policy Enforcement

 public void checkPermission(Permission perm) {

 int i = d.getHours();
& (i < 17))

ySec anager checkPerm od checks whether the
 to be checked is a FilePermission. If it is, checkPermission computes

e
ecurityManager in place of

the built-in SecurityManager. A SecurityManager is installed by calling the

SecurityManager or AccessContro
 behavior of the security policy. Bcustomize the

are lazily evaluated; prior to J2SE 1.4, security policy decisions were in effect statically com
in advance of enforcement. This section provides general descriptions of the various ways th
policy enforcement and decision machinery can be aug
first describe t
implementing a

7.2

As a first example, suppose that you want to allow file access only during office hours: 9 A.M. to 5
P.M. That is, during office hours, the security policy decides who can access what files. Outside of
office hours, no one can access any file, no matter what the security policy says. To achieve this,
you can implement a TimeOfDaySecurityManager class, as follows:

public class TimeOfDaySecurityManager extends
SecurityManager {

 if (perm instanceof FilePermission) {
 Date d = new Date();

 if ((i >= 9) &
 super.checkPermission(perm);
 else
 throw new SecurityException("Outside of office
hours");
 } else super.checkPermission(perm);
 }
}

The TimeOfDa urityM ission meth
permission
the current time. If the time is within office hours, checkPermission invokes the
checkPermission method from TimeOfDaySecurityManager's
SecurityManager superclass to check the security policy. Otherwise,
checkPermission throws a security exception. An application that wishes to enforce th
given office hour restriction should install this TimeOfDayS

java.lang.System.setSecurityManager method, as described in Section 6.1.2.

The next example concerns the need to keep a record of resource accesses that were granted or
denied, for audit purposes later. Suppose that you design a simple
AuditSecurityManager class as follows:

public class AuditSecurityManager extends SecurityManage

 private static java.util.logging.Logger logger =

java.util.logging.Logger.getLogger("AuditSecurityManager");

r {

 - 96 -

Inside Java™ 2 Platform Security: Architecture, API Design, and Implementation, 2nd

 public void checkPermission(Permission perm) {
 logger.log(java.util.logging.Level.INFO,

u also have an instance of the java.util.logging.Logger
class, whose method records ks in a safe place. In this example, the

o

e
ethod with a level of WARNING to indicate the

yManager extends SecurityManager {

on(Permission perm) {

.Level.WARNING,

e;

if you wanted to enforce a multilevel security policy, you would first have to create

perm.toString());
 super.checkPermission(perm);
 }
}

This class assumes that yo
log permission chec log

method simply records the fact that a particular permission was checked. A variation would be t
enter the audit record after checkPermission and specify a different logging level,
contingent on the result of the access control decision. If the checkPermission call
succeeds, the log method is called right after the super.checkPermission call, with a
level of INFO. If the call fails, a SecurityException is thrown, and the
AuditSecurityManager checkPermission catches th
SecurityException, calls the log m
failure, and then rethrows the exception, as follows:

public class AuditSecurit
 . . .

 public void checkPermissi
 try {
 super.checkPermission(perm);
 logger.log(java.util.logging.Level.INFO,
perm.toString());

ption e) { } catch (SecurityExce
 logger.log(java.util.logging

rm.toString()); pe
 throw

 }
 }
}

To implement complex security policies, you potentially need to spend more effort in the design.
For example,
sensitivity labels for each object.[1] The JVM would also have to keep track of the interaction

ange object labels dynamically, as in a High-Watermark
SecurityManager's checkPermission method would need to base

 the labels of the objects involved in the current thread of execution. As another
plement a Chinese Wall, or separation-of-duty, model, the JVM would need not

 to monitor object interaction but also to keep a history of it. Much research and

e done perhaps most conveniently by adding a security level attribute to the base class,

ns

 run the
e need to support a specialized policy expression language to the need to support a
 store. An example might be a Policy provider that specifies policy according to

syntax and processing rules of KeyNote [14]. We introduced the role and structure of the

between objects and might have to ch
en the model. Th

its decision on
ple, to imexam

lyon
experimentation is needed in this area.

ld b[1] This cou
the Object class, but that would be a very significant change.

7.2.2 Customizing Security Policy Decisio

The wide variety of reasons for designing and implementing a custom Policy provider
gamut from th

tom policycus
the

 - 97 -

Inside Java™ 2 Platform Security: Architecture, API Design, and Implementation, 2nd

Policy class in Section 5.4. In this section, we illustrate quintessential and sometimes subtle
design details necessary to implement a Policy provider correctly.

Locating Security Policy

When we designed the Java security policy interface, we recognized that it would be nearly
impossible to specify adequately the storage and access requirements of security policy or the

dized
language by which security policy was expressed. Therefore, we incorporated two key
abstractions in our design. The first is the notion of a pluggable provider, which is a standar
mechanism fully documented in Section 12.3.3. The second, location independence of the policy
store, is not part of the Java platform specification, yet most platform vendors have adopte
model. Our approach to referencing the policy store is to leverage the inherent generality and
location independence Uniform Resource Locators (URLs) provide.

d Sun's

 Usually, the deployment of the Java runtime is managed by a system administrator. At deployment
time, the administrator has the latitude of changing the configuration of the Java runtime to point
to the location of the security policy data. This change can be statically reflected in the security
properties file, or it can be specified when the runtime is started, by specifying a URL value for
the java.security.policy system property. This is described in much greater detail in
Section 12.5. For purposes of this discussion, the salient point is that it is imperative for a
Policy provider implementation to follow the directions of the deployer when locating and
accessing the policy data. That is, a proper implementation will follow the hints given by the
values for the

The first thing to consider is whether the deployment permits the override of the security policy

licy system

rmer is
s indicated by

 data:

ecurity.p

policy.url.n properties in the security properties file, as well as the
mechanism to override or augment security policy via the system property
java.security.policy.

location via the java.security.policy system property. This is captured in the
policy.allowSystemProperty security property:

if ("true".equalsIgnoreCase

(Security.getProperty("policy.allowSystemProperty"))) {
 // process the override URL.
 ...
} else {
 ...
}

Next, assuming that the location can be overridden by the java.security.po
property, determine whether the supplied URL is to be used in conjunction with the statically
configured URLs or whether it is to be considered as the sole source of policy data. The fo
indicated by preceding the specified location with an = sign, whereas the latter i
preceding the specified location with a double equals (==). For example, specifying the following
system property as a subpart of the command line invoking the Java runtime indicates that the
policy at the given URL should be the only source of policy

-
Djava.security.policy==https://policy.example.com/s
olicy

Bootstrapping Security Policy

 - 98 -

Inside Java™ 2 Platform Security: Architecture, API Design, and Implementation, 2nd

When we designed the Policy provider architecture, one of our design goals was to enable the
installation of third-party security policy implementations. We also wanted to give deploy
flexibility in installing and configuring the Java runtime environment.

ers
Section 12.4 details

configuring and installing provider packages. As described in Chapter 12, the security Polic
provider class can be statically configured to be the default provider. One advantage of statically
configuring the default security provider is to avoid having to implement application code that
dynamically installs the

y

enerally, system or infrastructure software of this caliber is installed as an optional package
01]. However, by installing the Policy provider as an installed extension, the implementation

f the Policy provider is faced with a chicken-and-egg problem. And by statically configuring
stemwide security policy class, the Java runtime is confronted with a chicken-and-egg

roblem of its own. Let's consider the runtime's problem first.

he Java runtime must be able to install a security Policy provider that is not part of the system
ain. However, code that is outside the system domain is subject to security checks by the

ecurityManager or AccessController. Therefore, how can the runtime enforce
olicy while in the process of installing the Policy provider? It is possible for the Java runtime
 detect this conundrum by being selective as to which class loader is used to install the Policy

ider. Once this recursion is detected, it is possible to bootstrap the installation of the
onfigured Policy provider by relying on the Java platform vendor's default Policy

plementation class. Once the configured provider is loaded, it can be installed as the
ystemwide Policy provider. The deployer may need to realize that the platform vendor's
efault policy must be configured to grant the thirdparty Policy provider sufficient permissions

o means foolproof, given that the third-
uent security checks of utility classes

The second circularity problem exists regardless of whether the security Policy provider is
stalled dynamically. Again because the Policy provider is not part of

the system domain, it is subject to security checks. Because access control decisions are passing
e

r
icy implementation can treat its protection domain

specially and assume it to have sufficient permission to access the resource. In other words, it is
.

{
 ...

Policy provider by invoking the setPolicy method of the
Policy class.

G
[1
o
the sy
p

T
dom
S
p
to
prov
c
im
s
d
to be bootstrapped in this manner. This approach is by n
party implementation may trigger class loads and subseq
outside the system domain or its own protection domain.

configured statically or in

through the Policy implementation via either the getPermissions method or th
implies method, the Policy class's protection domain will be under scrutiny whenever it
triggers a security check.

A rather rudimentary solution a Policy implementation can use is to cache a reference to its
own protection domain within its constructor. Then whenever its getPermissions o
implies method is invoked, the Pol

probably fair to assume that the Policy implementation has been granted AllPermission
Here is some sample code from the Policy implementation class:

// Domain of this provider
private ProtectionDomain providerDomain;

public CustomPolicy()

 final Object p = this;
 providerDomain = (ProtectionDomain)
 AccessController.doPrivileged(
 new java.security.PrivilegedAction() {
 public Object run() {

 - 99 -

Inside Java™ 2 Platform Security: Architecture, API Design, and Implementation, 2nd

 return
p.getClass().getProtectionDomain();
 }

 ...

ain
domain)

new Permissions();

}

Spanning Permissions

 });
}
...

public boolean implies(ProtectionDomain pd, Permission p) {
 ...
 if (providerDomain == pd) {
 return true;
 }

}

public PermissionCollection getPermissions(ProtectionDom

 {
 Permissions perms =
 ...
 if (providerDomain == domain) {
 perms.add(new java.security.AllPermission());
 }
 ...

Some words of caution: If the Policy implementation is packaged with less trusted code and
both are in the same protection domain, the less trusted code will be accorded the same
permissions as the Policy implementation. Also, a call to the refresh method should be
careful not to drop the cached protection domain.

In Section 5.6, we introduced the merits of dynamic policy and alluded to the spanning permission
problem. We also described this issue in Section 7.1. Essentially, the issue can be stated as
follows: A Policy provider must be able to accommodate a policy decision query through its
implies interface to determine whether a requisite permission is implied by the given
protection domain. This must be derived even when the actions of the requisite permission span

.

ProtectionDomain into a single PermissionCollection. The obvious place to

the permission collection encapsulated by the ProtectionDomain and Policy objects

In our sample PVRPermissionCollection implementation, we made special provisions
for the advent of this when the actions of the requisite permission were specified in separate
grant statements. The same problem exists for the Policy provider, as the class loader may
assign permissions to the ProtectionDomain of a class, and the provisioning of the security
policy may also specify permissions of the same type and target but for different actions. The
simplest approach is for the Policy provider to merge the permissions from the protection
domain with the permissions it deems are granted by the policy for the given

implement this merge is in the getPermissions method of the Policy class.

 - 100 -

Inside Java™ 2 Platform Security: Architecture, API Design, and Implementation, 2nd

7.3 Customizing the Access Control Context

When we first introduced the DomainCombiner in Section 6.3, we described the API and the
relationship of a DomainCombiner to the access control machinery. The remainder of this

access control machinery of the Java
essControlContext with an instance

of a DomainCombiner. The second step is to bind the security context with the execution
con t. y supplying the AccessControlContext to the appropriate
AccessController doPrivileged method.

A real-w ner is the
javax.security.auth.SubjectDomainCombiner. This particular
imp e ty.auth.Subject. As
described in Section 8.4.1

chapter describes possible uses for a DomainCombiner and implementation strategies. We
may use the term combiner as a shorthand for DomainCombiner.

Two steps must be taken to insert a combiner into the
runtime environment. The first is to construct an Acc

tex This is accomplished b

orld application of a DomainCombi

lem ntation encapsulates an instance of a javax.securi
, a Subject encapsulates a set of (ostensibly authenticated)

gment the
ProtectionDomains of the current execution context with the principal information so that

 the code.

mainCombiner is invoked as a result of a call to either
the checkPermission or the getContext AccessController method. In the
abse
AccessControlContext object. When a DomainCombiner is present, it is up to the
imp e
Acces
possible
exam e
the
provisio
combiner ca a
detects that
return an Acc s
the Permissi
include an in

principals. The role of the SubjectDomainCombiner is to au

security policy can be based on who is running

The combine method of a bound Do

nce of a DomainCombiner, the AccessController optimizes the

lem ntation of the installed combiner to perform any optimizations on the
sControlContext returned from the combine method. That said, another
 application for a DomainCombiner is one that implements special optimizations. For
, suppose that the encapsulated pl DomainCombiner principal information analogous to

SubjectDomainCombiner. Additionally, the custom combiner makes special
ns fo her t administrative principal such that it is accorded AllPermission. Such a

n m ke a significant optimization to the AccessControlContext when it
it is executing as the administrative principal. One possibility is for the combiner to
e sControlContext with a single ProtectionDomain; in that case,
onCollection encapsulated within the ProtectionDomain would

stance of the AllPermission permission.

 - 101 -

Inside Java™ 2 Platform Security: Architecture, API Design, and Implementation, 2nd

Ch p
Love all

—Willia

The il
cornerst trust relationship is entity authentication, the process by which one or
mor u
reasonably strong assurance that the evidence presented proves the claimant's identity. Succinctly,
an a e e
entity ha
trustwor

Enti a
reduced
somethin ommonly a biometric, such as a fingerprint. A system
may
during a
restricte that authenticated with two
fact —
from an

The Java 2 platform provides a robust infrastructure and rich set of APIs that, when applied,
ent

ava platform introduced the notion of code signing with the
release of JDK 1.1. Java 2 relies on digital signatures and public-key certificates to determine the

in

a ter 8. Establishing Trust
, trust a few, do wrong to none.

m Shakespeare

ab ity to establish trust is an essential ingredient when building reliable systems. A
one of establishing a

e a thenticating parties determine the identity of a claimant party such that they have a

uth nticated identity supplies assurance that the claimant is genuine. Once the identity of th
s been determined, access control decisions can be made based on the perceived
thiness of the parties involved.

ty uthentication is accomplished with a variety of means. Generally speaking, it can be
to proving at least one of three basic factors: something known, something possessed, or
g inherent in the claiming entity, c

 derive different degrees of trust, depending on which or how many factors were corroborated
uthentication. For example, an entity that authenticates with a reusable password may be
d to have only read access to certain files. However, an entity

ors the possession of a debit card and the correct PIN—may be permitted to withdraw funds
automatic teller machine.

bolster application security. This chapter describes the mechanisms endemic to trust establishm
within the context of the Java 2 platform. We begin by describing the foundation on which we
establish trust in mobile code. The J

trust in a given piece of code. Code signing as a means of trust establishment is described
Section 8.3.

Section 8.1 provides a brief overview of digital certificates and their application in Java 2. The
in Section 8.2Java Certification Path (CertPath) API is covered . CertPath specifically caters to

ustomized trust management solutions based on
(public key infrastructure). Section 8.3

application developers who need to implement c
 explains how digital certificates are used to sign code

cludes a detailed discussion of signed JAR files and how signed code can affect access
PKI
and in
control decisions. Section 8.4 covers how u
the Java Authentication and Authorization S

ser-centric access control can be accomplished with
ervice (JAAS). Section 8.5 explains how an

entication can use the authentication and credential
c Security Services API (Java GSS-API) and the trust

management capabilities of the Java Secure Socket Extension (JSSE).

 2

t—a

application that requires peer-to-peer auth
delegation capabilities of the Java Generi

Note: the Java Certification Path API and the Java GSS-API were added to the platform in Java
SDK, Standard Edition (J2SDK), 1.4. JAAS and JSSE were introduced as optional packages—
extensions—to earlier releases of the J2SDK and subsequently integrated into J2SDK 1.4.

8.1 Digital Certificates

Users of public-key applications and systems must be confident that the public key of a subjec
user, organization, or other entity, such as a service—is genuine, that is, that the associated private
key is owned by the subject. Public-key certificates are used to establish trust. A public-key
certificate is a binding of a public key to a subject, whereby the certificate is digitally signed by
the private key of another entity, often called a Certification Authority (CA).

 - 102 -

Inside Java™ 2 Platform Security: Architecture, API Design, and Implementation, 2nd

If the user does not have a trusted copy of the public key corresponding to the private key the CA
used to sign the subject's public-key certificate, another public-key ce

rtificate vouching for the

signing CA is required. This logic can be applied recursively, until a chain of certificates, or a
ficate, or a most-

on 8.2
certification path, is discovered from a trust anchor—often called the root certi
trusted CA—to the target subject, commonly referred to as the end entity. See Secti for

lished as part of the X.500

more information on certification paths.

To facilitate interoperability, the international body that sets communication standards—
International Telecommunication Union (ITU), formerly Comité Consultatif International
Téléphonique et Télégraphique—created a standard digital certificate format, ITU-T X.509, or
ISO/IEC/ITU 9594-8. X.509 version 1 [20], or X.509 v1, was first pub
directory recommendations. X.500 was intended to define a global, distributed database of named
entities.

An X.509 certificate binds a public key to a Distinguished Name (described in Section 8.1.1).
Frequently, such a certificate is called an identity certificate. In the context of an X.500 directory,

 directory.
ation for Privacy Enhancement for Internet Electronic Mail (PEM)

[62] used X.509 version 1 certific ginators and recipients.
Deployment of PEM proved dif rsion 2 specification were used
in a revision to the PEM specification [60].

Version 3, the most widely used version of the X.509 certificate format, is especially popular in
ets

ields of

C=US"

 of X.509 are available:

1. X.509 v1, available since 1988, is limited in capabilities and has been supplanted by
X.509 v3.

the bound public key is used to authenticate an entity attempting to modify a directory entry.

Other applications for X.509 certificates were developed outside the scope of the X.500
For example, the initial specific

ates to ensure authenticity of message ori
ficult, and additions to the X.509 ve

Web browsers, such as Netscape Navigator and Internet Explorer, that support the Secure Sock
Layer (SSL) and Transport Layer Security (TLS) protocols.

8.1.1 X.500 Distinguished Names

X.500 Distinguished Names are used to identify entities for the subject and issuer (signer) f
X.509 certificates. Following is a sample X.500 DN string:

"CN=Duke, OU=Java Software, O=Sun, L=Santa Clara, S=CA,

The keywords CN, OU, and so on, are abbreviations:

• CN = Common name
• OU = Organization unit
• O = Organization name
• L = Locality name (indicating a city)
• S = State name (indicating a state or province)
• C = Country (expected to be a two-letter country code)

For more information about X.500 Distinguished Names, see [130].

8.1.2 X.509 Certificate Versions

Four versions

 - 103 -

Inside Java™ 2 Platform Security: Architecture, API Design, and Implementation, 2nd

2. X.509 v2 introduced the conc
possibility of reuse of subject

ept of subject and issuer unique identifiers to handle the
 and/or issuer names. Most certificate profile documents

que

tion of extensions. Anyone may define an extension and include

es

al

4.
 a

8.1.3

All X.50 ave the following data:

cts what
pecified in a certificate. Thus far, four versions are standardized.

is used in numerous
ways; for example, when a certificate is revoked, its serial number is placed in a

ificates. A

 CA to sign the certificate,

 is normally a

ate is
nd time

 which the CA warrants that
.

e identifies. This
e Internet. It is the

the entity being named (the subject),
is

ct
lgorithm specified by the

strongly recommend that names not be reused and that certificates not make use of uni
identifiers. Version 2 certificates are not widely used.

3. X.509 v3 supports the no
it in the certificate. Some commonly used extensions are

a. KeyUsage, which limits the use of the keys to particular purposes, such as
signing only

b. SubjectAltName and IssuerAltName, which allow other identiti
also to be associated with this public key—for example, DNS names, e-mail
addresses, and IP addresses

c. BasicConstraints, which identify whether the subject of the certificate is
a CA and how deep a certification path may exist through that CA

An extension can be marked "critical" to indicate that it should be checked and
enforced/used. For example, if a certificate has the KeyUsage extension marked critic
and only digitalSignature is asserted, the certificate must be used only in
conjunction with digital signature mechanisms, such as entity authentication, for example,
SSL/TLS communication.

X.509 v4 mainly adds support for attribute certificates. Unlike public-key certificates,
which bind a name to a public key, attribute certificates bind one or more attributes to
name.

X.509 Certificate Contents

9 certificates h

• Version. The X.509 version that applies to this certificate. The version affe
information can be s

• Serial number. A unique number, assigned by the entity that created the certificate so as
to distinguish it from other certificates it issues. This information

Certificate Revocation List (CRL), a time-stamped list identifying revoked cert
en made freely available in a public repository. CRL is signed by a CA and oft

• Signature algorithm identifier. The algorithm used by the
such as MD5RSA.

• Issuer. The X.500 name of the entity that signed the certificate. The entity
CA.

• Validity period. The time period for which the certificate is valid. Each certific
valid for only a limited amount of time. This period is described by a start date a
and an end date and time. This is the expected period during
it will maintain information about the status of the certificate

• Subject name. The name of the entity whose public key the certificat
ntended to be unique across thname uses the X.500 standard, so it is i

Distinguished Name of the entity.
• Subject public-key information. The public key of

together with an algorithm identifier that specifies to which public-key cryptosystem th
key belongs and any key parameters used by the algorithm.

effectively binding the subje• Signature. The signature is over the preceding fields,
the apublic key to the subject name. The signature uses

signature algorithm identifier.

 - 104 -

Inside Java™ 2 Platform Security: Architecture, API Design, and Implementation, 2nd

All the data in a certificate is encoded using two related
(ASN.1) and Distinguished Encoding Rules (DER). ASN

standards: Abstract Syntax Notation 1
.1 describes data; DER describe a single

Certificates are available in a number of ways. A self-signed certificate can be generated by using

way to store and transfer that data.

Certificates are often stored using the Base64 encoding [75]. Base64 encoding facilitates
exporting certificates to other applications (for example, via e-mail). In its Base64 encoding, the
encoded certificate is bounded at the beginning and the end, respectively, by

 -----BEGIN CERTIFICATE-----

and

-----END CERTIFICATE-----

8.1.4 Obtaining Certificates

the right tools, such as the keytool utility, which is provided with J2SDK and described in
Section 12.8. A self-signed certificate is one signed using the private key corresponding to the
public key in the certificate. However, some people will accept only certificates signed by a
trusted CA. The value a CA provides is that of a neutral and trusted introduction service, bas
part on its verification requirements, which are openly published in its Certification Practic
Statement (CPS) [22].

A certificate can be requested from a CA. The

ed in
e

 utility can assist in generating the
est (CSR) [109]. Basically, to obtain a certificate from a

inimum, the CA will need the
the name and address for a

ide

ntroduced in Section 8.1

keytool
request, called a Certificate Signing Requ
CA, a matched pair of public and private keys are needed. At a m
public key and information about the entity being certified, such as
person whose public key is to be certified. Normally, the CA will require the requester to prov
proof as to the accuracy of this information. The information is submitted in a self-signed
certificate so that the CA can verify its integrity. That is, the CA can verify that the private key
used to sign the request corresponds to the public key in the request.

8.2 Establishing Trust with Certification Paths

As i , a certification path is a chain of certificates from a trust anchor to
the target subj ity. After t in the chain a the public

se of such a

's

Figure 8.1

ect, or end ent he first, each certificate uthenticates
key of the signer of the previous certificate in the chain. The trust anchor is usually specified by a
certificate issued to a CA that the user relies on as a Trusted Third Party (TTP). U
certificate implies that one trusts the entity that signed the certificate.

In general, a certification path is an ordered list of certificates, usually comprising the end entity
public-key certificate and zero or more additional certificates. A certification path typically has
one or more encodings, allowing it to be safely transmitted across networks and to different
operating system architectures.

 illustrates a certification path from the public key of a trust anchor (CA1) to the target
ce's public key through an subject (Alice). The certification path establishes trust in Ali

intermediate CA named CA2.

Figure 8.1. Certification path

 - 105 -

Inside Java™ 2 Platform Security: Architecture, API Design, and Implementation, 2nd

A certification path must be validated before it can be relied on to establish trust in a subj
public key. Validation can consist of various checks on the certificates contained in the

ect's

ification path, such as verifying the signatures and checking that each certificate has not been
revoked. The PKIX (Public Key Infrastructure) standards define an algorithm for validating

t
ocol.

ec

 benefits two types of developers: those who need to

es a
the PKIX [54] standards. (See Section 8.2.6

cert

certification paths consisting of X.509 certificates.

Often a user may not have a certification path from a trust anchor to the subject. Providing
services to build or discover certification paths is an important feature of public-key-enabled
systems. RFC (Request for Comments) 2587 [16] defines an LDAP schema definition tha
facilitates the discovery of X.509 certification paths using the LDAP directory service prot

Building and validating certification paths is an important part of many standard security
protocols, such as SSL/TLS, S/MIME (Secure Multi-Purpose Internet Mail Extensions), and IPS
(Internet Protocol Security). The Java Certification Path (CertPath) API, added to the Java 2
platform 1.4, provides a set of classes and interfaces for developers who need to integrate this
functionality into their applications. This API
write service provider implementations for specific certification path building or validation
algorithms and those who need to access standard algorithms for creating, building, and validating
certification paths in an implementation-independent manner.

The Java Certification Path API consists of interfaces and classes that support certification path
functionality in an algorithm- and implementation-independent manner. The API also includ
set of algorithm-specific classes for .) The API builds
on and extends the previously existing J2SDK java.security.cert package for handling

ction, we briefly describe the fundamental classes and interfaces that
n be divided into five categories: core, basic, validation, building,

 API

. This class is an
abstraction for certificates that have different formats but important common uses. For

)
share general certificate functionality, such as encoding and verifying, and some

types of information, such as a public key. X.509, PGP, and SDSI (Simple Distributed
ertificates can all be implemented by subclassing the

ts of information and store

have different formats
nctionality of listing
en certificate.

certificates. In the next subse
make up this API. The classes ca
and storage.

8.2.1 Core Certificate API

Java 2 contains a rich set of APIs for accessing and managing certificates. The certificate
includes the following classes:

• Certificate, an abstract class for managing a variety of certificates

example, different types of certificates, such as X.509 and PGP (Pretty Good Privacy
[136],

Security Infrastructure) [103] c
Certificate class, even though they contain different se
and retrieve the information in different ways.

• CRL, an abstraction of Certificate Revocation Lists (CRLs) that
but important common uses. For example, all CRLs share the fu
revoked certificates and can be queried on whether they list a giv

 - 106 -

Inside Java™ 2 Platform Security: Architecture, API Design, and Implementation, 2nd

• CertificateFactory, which defines the functionality of a certificate factory,
ification path (CertPath), and Certificate Revocation List used to generate certificate, cert

objects from their encodings.
9 certificates. This class prov• X509Certificate, an abstract class for X.50

andard way to access all the attributes of an X.509 cert
ides a

ificate.
 The extensions defined for

• X509CRLEntry, an abstract class for a revoked certificate in a CRL.

st
• X509Extension, an interface for X.509 extensions.

X.509 v3 certificates and v2 Certificate Revocation Lists provide methods for associating
 certification hierarchy, additional attributes with users or public keys, for managing the

and for managing CRL distribution. The X.509 extensions format also allows
communities to define private extensions to carry information unique to those
communities.

• X509CRL, an abstract class for an X.509 CRL.

In Section 8.1.3, we described the common contents of X.509 certificates. The following example

System.out.println("Version: " + cert.getVersion());

tAfter());
System.out.println("Subject name: " +

at
quest.)

demonstrates how to access the various attributes of an X.509 certificate:

FileInputStream fis = new FileInputStream(filename);
CertificateFactory cf =
CertificateFactory.getInstance("X.509");
X509Certificate cert =
 (X509Certificate)cf.generateCertificate(fis);
System.out.println("X.509 Certificate");

System.out.println("Serial number: " +
 cert.getSerialNumber().toString(16));
System.out.println("Signnature algorithm: " +
 cert.getSigAlgName());
System.out.println("Issuer name: " +
cert.getIssuerDN().getName());
System.out.println("Valid from: " + cert.getNotBefore());
System.out.println("Valid to: " + cert.getNo

 cert.getSubjectDN().getName());
System.out.println("Subject public key algorithm: " +
 cert.getPublicKey().getAlgorithm());

8.2.2 Basic Certification Path Classes

The basic certification path classes provide fundamental functionality for encoding and
representing certification paths. The key class in the Java Certification Path API is CertPath,
which encapsulates the universal aspects shared by all types of certification paths. An application
uses an instance of the CertificateFactory class to create a CertPath object. The
following example parses a PKCS (Public-Key Cryptography Standards) #7 [107] formatted
certificate reply stored in a file and extracts all the certificates from it. (A certificate reply is wh
a CA sends in response to a certificate signing re

FileInputStream fis = new FileInputStream(filename);
CertificateFactory cf =
CertificateFactory.getInstance("X.509");
CertPath cp = cf.generateCertPath(fis);

 - 107 -

Inside Java™ 2 Platform Security: Architecture, API Design, and Implementation, 2nd

8.2.3 Certification Path Validation Classes

The Java Certification Path API includes classes and interfaces for validating certification paths.
thValidator engine class (see Section 10.2An application uses an instance of the CertPa)

to validate the certificates in a CertPath object. If successful, the result of the validation

try {
 C
param
} cat
 S
} c t
 S
}

Note tha
must ea
java.
example
validate
instance
trus cho or
incl h of paths that
may

8.2.4 C

The Java s.
An appli

algorithm is returned in an object implementing the CertPathValidatorResult
interface. Following is a simplified code sample that illustrates how to create a
CertPathValidator that implements the "PKIX" algorithm and how to use it to validate
the certification path in the CertPath cp:

CertPathValidator cpv =
CertPathValidator.getInstance("PKIX");

 ertPathValidatorResult cpvResult = cpv.validate(cp,
s);
ch (CertPathValidatorException cpve) {
y stem.err.println("validation failed: " + cpve);

a ch (InvalidAlgorithmParameterException iape) {
ystem.err.println("invalid parameter: " + iape);

t the CertPath and CertPathParameters passed to the validate method
ch be of a type that is supported by the validation algorithm. Otherwise, a
security.InvalidAlgorithmParameterException is thrown. For
, a CertPathValidator instance that implements the "PKIX" algorithm
s CertPath objects of type "X.509" and CertPathParameters that are
s of PKIXParameters. Typically, the CertPathParameters supply a set of

t an rs as instances of TrustAnchor classes. The information in a TrustAnch
udes t e CA's Distinguished Name and public key and any constraints on the set
 be validated using this key.

ertification Path Building Classes

 Certification Path API includes classes for building, or discovering, certification path
cation uses an instance of the CertPathBuilder engine class (see Section 10.2) to
ertPathbuild a C

impleme ing code sample
illustrate Builder that implements the "PKIX" algorithm and
how u

Cer P
try {
 C
 C
} cat
 System.err.println("build failed: " + cpbe);

 object. If successful, the result of the build is returned in an object
nting the interface. The follow
s how to create a

CertPathBuilderResult
CertPath

se to it to generate a certification path:

t athBuilder cpb = CertPathBuilder.getInstance("PKIX");

ertPathBuilderResult cpbResult = cpb.build(params);
ertPath cp = cpbResult.getCertPath();
ch (CertPathBuilderException cpbe) {

} catch (InvalidAlgorithmParameterException iape) {
 System.err.println("invalid parameter: " + iape);
}

 - 108 -

Inside Java™ 2 Platform Security: Architecture, API Design, and Implementation, 2nd

8.2.5 Certificate/CRL Storage Classes

The Java Certification Path API also includes the CertStore engine class (see Section 10.2)
 This class is useful because it allows a

caller to specify the repository a CertPathValidator or CertPathBuilder

 caller
specifies as a callback mechanism to fetch CRLs for performing revocation checks. Similarly, a

ate
ovide access to a potentially vast

e

s
,

uilderResult return the results of their respective PKIX certification
path algorithm. Finally, J2SE defines the abstract class, which can

ing example is a specialized implementation of the path validation example from

for retrieving certificates and CRLs from a repository.

implementation should use to find certificates and CRLs.

A CertPathValidator implementation may use the CertStore object that the

CertPathBuilder may use the CertStore as a callback mechanism to fetch certificates
and, if performing revocation checks, CRLs.

Unlike the java.security.KeyStore class, which provides access to a cache of priv
keys and trusted certificates, a CertStore is designed to pr
repository of untrusted certificates and CRLs. For example, one could implement a CertStor
that provides access to certificates and CRLs stored in one or more directories using LDAP. In
fact, J2SE adds the convenience class LDAPCertStoreParameters to simplify the
integration to an LDAP repository.

8.2.6 PKIX Classes

The Java Certification Path API also includes a set of algorithm-specific classes modeled for use
with the PKIX certification path validation algorithm as defined in RFC 3280. Specifically, J2SE
adds parameter convenience classes PKIXParameters and PKIXBuilderParameter
to supply parameters for the CertPathValidator and CertPathBuilder algorithms
respectively. Specialized result classes PKIXCertPathValidatorResult and
PKIXCertPathB

PKIXCertPathChecker
be extended to customize the PKIX certification path validation algorithm.

The follow
Section 8.2.3:

CertPathValidator cpv =
CertPathValidator.getInstance("PKIX");
KeyStore tks = KeyStore.getInstance("JKS");
tks.load(new FileInputStream("./keystore"),
"Three may keep a secret if two of them are
dead".toCharArray());
TrustAnchor anchor = new TrustAnchor((X509Certificate)
 tks.getCertificate("ca"),null);
PKIXParameters params =
 new PKIXParameters(Collections.singleton(anchor));
params.setRevocationEnabled(false);
try {
 PKIXCertPathValidatorResult result =
 (PKIXCertPathValidatorResult) cpv.validate(cp, params);
} catch (CertPathValidatorException cpve) {
 System.err.println("validation failed: " + cpve);
} catch (InvalidAlgorithmParameterException iape) {
 System.err.println("invalid parameter: " + iape);
}

 - 109 -

Inside Java™ 2 Platform Security: Architecture, API Design, and Implementation, 2nd

8.3 Establishing Trust in Signed Code

By building on the mechanisms described in the previous section, we now have the ability to
establish trust in code. In Section 2.4, we described code signing, which was introduced with the

t

ef
er

 the JAR file are relied on to ensure that the contents have not been modified either
maliciously makes
trust dec

8.3 S

Digital s
purpose
primitives ty

. By

n

ts the integrity of the digest. Refer to Section 10.6.3

release of JDK 1.1. Code signing provides the means to make trust decisions predicated on a trus
relationship with the signer of the code. The code-signing model in JDK 1.1 effectively granted
code that was signed by one or more trusted parties the permission to execute unencumbered. In
other words, the code was not placed into the sandbox. In Java 2, we can be much more flexible
and give only the minimum set of permissions necessary to accomplish the task. This is another
example of how Java 2 subscribes to the principle of least privilege [111].

The remainder of this section describes the intricacies of code signing. First, we provide a bri
overview describing the application of digital signatures to ensure the integrity of data. We cov
the germane aspects of the JAR file format [121]. Then we tell how the integrity-protection
mechanisms of

 or otherwise. Finally, we describe how and when the Java runtime environment
isions based on the signers of the code with respect to the installed security policy.

.1 ecuring Messages with Digital Signatures

ignatures are a common technique used to ensure the integrity of a message. For the
s of this discussion, we will describe only digital signatures that use the basic security

: public-key cryptography and one-way hash functions. Aside from the data-integri
property a digital signature provides, a digital signature may also be used for authentication
combining these primitives, we can prove that a message has arrived intact. Also, one can be
reasonably certain which key was used to sign the message. Thus, one can make a trust decisio
based on this knowledge and the knowledge that only authorized entities possess the signing key.

In general, digital signatures work as follows: The signer of a message computes a one-way hash
of the message. The result of this computation, the digest, is then signed, that is, encrypted with
the signer's private key. Thus, the digest is used to ensure the integrity of the message, and the
signature protec for examples of using the
java.security.Signature class.

lues.
 the

ed to
e

ce
. To

k, the certification path should be traversed to a trusted anchor (Section 8.2

To validate that the message has not been tampered with, the verifier computes the hash of the
message, decrypts the signature with the signer's public key, and compares the two digest va
If they are the same, the verifier has proof that the message arrived unscathed. Also note that
verifier relies on the fact that only the private key that corresponds to the public key used to
decrypt the signature could have been used to correctly encrypt the digest. This proves that the
private key was used to sign the message. Possession of the private key is a primary factor us
authenticate a system entity. Therefore, if the public key is bound to a public-key certificate, th
verifier can determine the Distinguished Name, or identity, of the signer. However, the presen
of a public-key certificate is not sufficient evidence to trust the contents of the certificate
accomplish this tas).

,
ishing trust in the code the JAR contains.

8.3.2 JAR File Format Overview

The JAR file format builds on the cross-platform ZIP archive format, defining a standard structure
and archive entries that describe the contents of the archive, the integrity controls, and additional
information necessary to describe the signatures and signers. This information is used to verify the
integrity of the contents and subsequently to make trust decisions.

The remainder of this section describes the security elements of the JAR file format, their usage
and the relationships relevant to establ

 - 110 -

Inside Java™ 2 Platform Security: Architecture, API Design, and Implementation, 2nd

• META-INF directory. The META-INF directory contains all the ancillary control f
used to describe the contents of the archive, including the information used to protec
integrity of the JAR contents. The

iles
t the

t

listed in

of attribute information about a file contained in the archive. The syntax of this
information is modeled after RFC 822 [25] "name: value" pairs. In fact, all the control

 value

 digest
le section for the DHPublicKey.class

• Name: com/sun/crypto/provider/DHPublicKey.class

,

e
e entry

specifies the SHA-1 digest of the section in the manifest file for
.class:

 by
.

within the signature instructions file of the named file's section in the

until
 instructions files are

verified, not the files in the archive. For efficiency, this verification can be remembered.

ith

attribute, which specifies either a relative file path or a URL.

META-INF directory is the parent to all the files tha
follow.

• Manifest file. The JAR archive contains a single manifest file, named MANIFEST.MF,
which consists of sections that are entries for various files in the archive. Sections are
separated from one another by empty lines. Not all files in the archive need to be
the manifest, but all files that are to be signed must be listed. Each manifest entry consists

files in the JAR archive use this structural convention except for the digital signature files
themselves. For each file that is signed, there is, at a minimum, a name entry whose
specifies a relative file path, or URL, and an attribute whose name specifies the digest
algorithm used and whose value contains the Base64-encoded representation of the
of the named file. Here is a samp file:

• SHA1-Digest: A5o8kN0r/eqp2QiJDGLCFQdIRC4=
• Signature (instructions) file. Whenever a JAR file is signed, a signature instructions file

sometimes referred to as a signature file, and a corresponding signature block file are
created. There can be multiple signature instructions files in the archive, one for each
signer. Each signature instructions file ends with a .SF file extension. This file looks
similar to the manifest file, except that the digests in this file are calculated from the
manifest file entries rather than from the contents of the specified files. That is, each
individual entry must name a file and then specify the digest algorithm used and th
digest of the section in the manifest file for the named file. The following sampl

DHPublicKey
• Name: com/sun/crypto/provider/DHPublicKey.class
• SHA1-Digest: fYx7UiXMdD2WWcgaYhLimHmoRbM=
• Signature block file. A signature block file has the same file name as the corresponding

signature instructions file but with a different extension. The extension varies, depending
on the type of digital signature algorithm used. The format of the contents is specific to
the signature algorithm. For example, both the DSA and RSA signature algorithms
conform to the syntax and encoding specified by PKCS #7 [107].

Given the preceding description of the layout and semantics of a signed JAR, some important
characteristics can be noted. The integrity of the files contained in the JAR archive is protected
the hashes, or digests, of the files. The digest for a file is stored in a named section of the manifest
This digest of the file and all the other attributes specified in its section of the manifest are
protected by the digest
manifest. Finally, the signature instructions file is protected by the signature block file. A
noteworthy quality of this design is that it protects not only the contents of the JAR file but also
any attributes specified in a named section of the manifest.

8.3.3 Runtime Trust Establishment

A Java runtime environment may defer initiating the verification of the JAR archive contents
the manifest must be parsed. At that time, only the signatures in the signature

To validate a JAR file fully, a digest value in the signature instructions file is first compared w
a digest calculated against the corresponding named entry in the manifest file. (This step may have
been performed earlier, as described in the previous paragraph.) Then a digest value in the
manifest file is compared to a digest calculated against the data referenced in the "Name:"

 - 111 -

Inside Java™ 2 Platform Security: Architecture, API Design, and Implementation, 2nd

During class loading, if the class coming from the JAR file verifies correctly, the defining class
loader will set the signers of the class accordingly. The signers of the class will be taken into
consideration by the security policy whenever the class is involved in a security check.

t
 the

n

, if any

 referred to as a package-
insertion attack.

e of

The security subsystem of the Java runtime environment requires consistency in wha
keys are used to sign classes within a JAR file. One very important restriction is
same-package, same-signers requirement. If any class file that belongs to a package i
a JAR file is signed, all class files belonging to the same package must be signed by
the same signers. JAR files may still contain unsigned packages. However
package contains signed classes, all class files of that package must be signed by the
same signers. This constraint is enforced to thwart what is

8.4 User-Centric Authentication and Authorization Using
JAAS

When Java technology is used to construct a full-fledged distributed system, a whole new rang
distributed systems security issues, such as those mentioned in Chapter 1, must be addressed. F
example, additional mechanisms are needed to make Remote Method Invocation (RMI) secure
the presence of hostile network attacks. Jini Network Technology takes full adva

or
in

ntage of RMI.
Jini Network Technology enables digital devices to simply connect together, so service
registration and location mu ontains coexisting but
potentially hostile parties. Thus, a full set of higher-level services must be secured, such as
transactions for e-commerce. In addition, many lower-level security protocols can be leveraged,
such as the network security protocols Kerberos [65] and IPSec [61]. This playing field is too
large to speculate about in this short section, but a critical foundation for all these issues is a
facility to authenticate users and to use this information to make access control decisions.

Java 2 relies on security policy to grant access permissions to running code. In the initial Java 2
releases, the decision depended on the characteristics of where the code was coming from and
whether it was digitally signed and by whom. A code-centric style of access control is unusual.
Traditional security measures, most commonly found in sophisticated operating systems, are user-
centric, in that they apply control on the basis of who is running an application, not on which
application is running. Code-centric access control was justified largely because as a user surfing
the Web encounters executable content—for example, mobile code written in the Java language—
the user essentially retains a constant identity. On the other hand, the user might trust one piece of
mobile code more than others and would like to run this code with more privileges. Thus, it is
natural to control the security of mobile code in a code-centric style.

 in multiuser environments, such as public Internet

ntities.

a standard

2SE 1.4.

st be securely managed if the environment c

Nevertheless, Java technology is widely used
kiosks, enterprise payroll and calendar applications, and servers handling e-commerce transactions
from numerous trading partners. All these examples must deal with different users, either
concurrently or sequentially, and must grant them different privileges based on their ide

The Java Authentication and Authorization Service (JAAS) was designed to provide
programming interface for authenticating users and for assigning privileges. JAAS was introduced
as an optional package, or extension, to J2SE 1.3, and was subsequently integrated into J
In these releases, an application can provide code-centric access control, user-centric access
control, or a combination of both. JAAS also lays the groundwork to support a general mechanism
for cross-protection domain authorization and the "running-on-behalf-of" style of delegation.

Authentication has been a topic of security research for decades. However, the Java runtime
environment presents unique challenges. The design of JAAS was motivated by the following
requirements:

 - 112 -

Inside Java™ 2 Platform Security: Architecture, API Design, and Implementation, 2nd

• Extensibility. A need existed for a small but well-grounded set of Java application
programming interfaces for authentication and authorization that can easily be extended.

• Pluggability. Different systems can easily incorporate their new or existing
authentication capab

• Compatibility. The initial code-based access control architecture, introduced in Java 2,
and the user-based access control mechan m in JAAS could coexist independently and
could also be seamlessly combined to imp ement sophisticated security policies.

or

th the

ork to certain

d

8.4.1 Subj

Users of
services
refer to
it interac
same na
service. cipal represents a name associated with a subject [71]. Because a subject
may have multiple names, potentially one for each service with which it interacts, a subject in

cation typically
involves the subject demonstrating possession of some form of evidence to prove its identity. Such

y

n

ject.

ilities into the JAAS framework.

is
l

Several existing standards support authentication, including the Generic Security Services
Application Programmer's Interface (GSS-API) [77] and Simple Authentication and Security
Layer Application Programmer's Interface (SASL) [89]. SASL represents a framework that
provides authentication support for connection-based protocols, thereby catering to applications
that perform network authentication. Like JAAS, SASL also has a modular architecture. GSS
mechanisms, such as Kerberos [76] or the Simple Public Key Mechanism (SPKM) [1], may be
plugged in under the SASL framework. JAAS, on the other hand, also supports local login. Thus,
JAAS and SASL/GSS complement each other to provide both local and network-based support f
authentication.

One scenario in which these architectures might coexist involves environments that rely on
Kerberos (and possibly other services) for authentication. JAAS login modules could be plugged
in under the login application to authenticate the user, when initially logging in, to bo
underlying operating system and to Kerberos, to obtain the user's Kerberos Ticket Granting
Ticket. By installing a Kerberos login module, the user would not have to perform additional
steps, such as executing the command kinit at a later time to obtain the ticket. When the user
executes client applications that are attempting to authenticate across the netw
servers that use the Kerberos protocol, those applications could then use SASL, which woul
presumably have the appropriate Kerberos mechanism plugged in to perform the actual
authentication.

ects and Principals

ten depend on computing services to assist them in performing work. Furthermore,
 themselves might subsequently interact with other services. JAAS uses the term subject to
a system entity, such as a user or a computing service. To identify the subjects with which
ts, a computing service typically relies on names. However, a subject might not have the

me for each service and, in fact, may even have a different name for each individual
The term prin

JAAS comprises a set of principals.

Once a subject is authenticated, an instance of javax.security.auth.Subject is
created to represent that subject and is populated with objects that implement the
java.security.Principal interface. Authentication represents the process by which
one system entity verifies the identity of another and must be performed in a secure fashion;
otherwise, an intruder may impersonate others to gain access to a system. Authenti

evidence may be information only the subject would be likely to know or have, such as a
password or smart card, or that only the subject could produce, such as signed data using a private
key.

When it attempts to authenticate to a service, a subject typically provides the proof of its identit
along with its name. If the authentication attempt succeeds, the service associates a service-
specific Principal, using the given name, with the Subject. Applications and services ca
determine the identity of the Subject simply by referencing the relevant Principal
associated with that Sub

 - 113 -

Inside Java™ 2 Platform Security: Architecture, API Design, and Implementation, 2nd

Reliance on named principals usually derives from the fact that a service implements a
conventional access control model of security [69]. This model allows a service to define a set
protected resources and the conditions under which named principals may access those resource
Both KeyNote [14] and SPKI [34] have focused on the limitations of using conventional names in
large distributed systems for access control and note that public keys, instead, provide a more
practical and scalable name representation. JAAS and SPKI do not impose any restrictions on
principal names. Localized environments that have limited namespaces or that do not rely on
public-key cryptography may define principals that have conventional names. Large-scale
distributed systems may use principals that allow the principal name to be a public key.

 of
s.

8.4.2 Credentials

In addition to Principal information, some services may want to associate other security-
tes

 and

 keys, for example, represent credentials that enable the subject to
sign or encrypt data. In JAAS, credentials may be any type of object. Therefore, existing

ugged in to

 the kinds of

credentials that are needed and recognized during their interactions. Thus, some credentials might
be standard or well recogn ervice specific. In
addition, credential implementations do not necessarily have to contain the security-related data;
they might simply reference that data. This occurs when the data must physically reside on a
separate server or hardware device, such as private keys on a smart card.

A subject must successfully authenticate to a service to obtain credentials. On successful
authentication, the service creates the appropriate credential object and associates it with the
Subject. Once a Subject has been populated with credentials, applications considered to be
running on behalf of the subject may, with the proper permissions, then access and use those
credentials. JAAS does not impose any restrictions about credential delegation to third parties.
Rather, JAAS either allows each credential implementation to specify its own delegation protocol,
as Kerberos does, or leaves delegation decisions up to the applications.

JAAS divides each Subject's credentials into two sets. One set contains the subject's public
credentials, such as public-key certificates. The other set stores the subject's private credentials,
such as private keys, Kerberos tickets, encryption keys, passwords, and so on. To access a
Subject's public credentials, no permissions are required. However, access to a Subject's
private credential set requires the caller to have been granted a
PrivateCredentialPermission for the corresponding credential class.

8.4.3 Pluggable and Stacked Authentication

ent

rators

related attributes and data with a Subject. JAAS calls such generic security-related attribu
credentials. A credential may contain information that could be used to authenticate the subject to
additional services. Some common types of credentials are passwords, Kerberos tickets [87]
public-key certificates. Many of these credential forms are used in environments that support
single sign-on. Credentials may also contain data that simply enables the subject to perform
certain activities. Cryptographic

credential implementations, such as java.security.cert.Certificate, can be
easily incorporated into JAAS. Third-party credential implementations may also be pl
the JAAS framework.

Although Kerberos tickets and cryptographic keys exemplify common types of credentials,
credentials can represent a wider range of security-related data. Applications running on behalf of
subjects must coordinate with the services on which they depend so as to agree on

ized, whereas others might be application and s

To authenticate to conventional services, a subject is required to provide its name and some form
of proof of its identity. Depending on the security parameters of the particular service, differ
kinds of proof may be required. The JAAS authentication framework is based on PAM (Pluggable
Authentication Modules) [112] and thus supports an architecture that allows system administ
to plug in the appropriate authentication mechanisms to meet security requirements. The

 - 114 -

Inside Java™ 2 Platform Security: Architecture, API Design, and Implementation, 2nd

architecture also enables applications to remain independent of the underlying authentication
technology. Hence, as new authentication services become available or as current services are
updated, system administrators can easily deploy them without having to modify or recompile

epicted in Figure 8.2. existing applications. The authentication framework is d

Figure 8.2. Pluggable authentication

When attempting to authenticate a subject, an application calls into the authentication framew
which JAAS defines as a

ork,

nterface can be
hout requiring any modifications to the application.

technology. For
nd verifies a

ssword; a smart card login module instructs the subject to insert the card into the card reader
n number (PIN); and a biometric login module prompts for a

cteristic of the subject, such as a fingerprint or retina

login context. The
javax.security.auth.login.LoginContext class provides the basic methods
used to authenticate subjects and provides a way to develop applications independent of the
underlying authentication technology. The LoginContext consults an instance of
javax.security.auth.login.Configuration to determine the authentication
mechanism(s), or login module(s), configured for a particular application. Different
implementations of the javax.security.auth.spi.LoginModule i
plugged in under an application wit

Each login module may authenticate a subject by using a different authentication
example, a conventional password-based login module prompts for a user name a
pa
and verifies a personal identificatio
user name and verifies some physical chara
scan. Depending on the security requirements of the application, a system administrator configures

in the appropriate login module. In fact, system administrators may also plug in multiple log
odules under an application. This type of stacked configuration is depicted in Figure 8.3.

tication

m

Figure 8.3. Stacked authen

 - 115 -

Inside Java™ 2 Platform Security: Architecture, API Design, and Implementation, 2nd

A subject authenticates to the login modules in the order specified by the conf
general, regardless of whether a login module succeeds or fai
authenticate to the ensuing login modules on the stack. This helps hide the source of failure from
potential attackers. Additional parameters within the configuration allow for exceptions to this
rule and also determine which login modules must succeed for the overall authentication to
succeed. Details on the login configuration syntax, se

iguration. In
ls, the subject continues to

mantics, and location appear in Section 12.7.
 if

A typical application instantiates a LoginContext class, passing in a name and an instance of

rface.

succeed. The CallbackHandler n 8.4.4

The login context reports a successful authentication status back to the calling application only
all the necessary login modules, as determined by the configuration, succeed. To guarantee this,
the login context performs the authentication steps in two phases. Both phases must complete
successfully for the login context to return an overall authentication status noting success.

a class that implements the
javax.security.auth.callback.CallbackHandler inte
LoginContext uses the name as the index into the configuration to determine which login
modules should be used and which ones must succeed in order for the overall authentication to

 interface is described in Sectio .

1. The login context invokes each configured login module and instructs it to verify the

ials with the

fying a provided PIN and, on success, simply
mart

h

bility to share information
ts. One motivation for

sharing information is to help achieve single sign-on. For example, stacked login modules may
only

The application then calls the login context's login method, which creates a new empty
Subject—if no Subject was specified in the LoginContext constructor—and then
does the following:

identity of the subject. If all the necessary login modules successfully pass this phase, the
login context then enters the second phase.

2. The login context invokes each configured login module again, instructing it to formally
commit the authentication process. During this phase, each login module associates any
relevant Principals, which hold the authenticated identities, and credent
Subject.

Thus, once the overall authentication process has completed, the calling application can enumerate
the Subject's collection of Principals to obtain its various identities and can traverse
through a Subject's credentials to access supplementary data. Some login modules might
associate only credentials, not principals, with the subject. A smart card login module, for
example, might authenticate the subject by veri
associate with the Subject a credential referencing a cryptographic key on the card. The s
card module in this case does not associate a Principal with the Subject.

If either phase fails, the login context invokes each configured login module and instructs it to
abort the entire authentication attempt. Each login module then cleans up any relevant state it had
associated with the authentication attempt.

During this two-phase process, if a particular login module fails, it does not sleep and does not
attempt to retry the authentication. Otherwise, the entity attempting the authentication could detect
which login module failed. The calling application owns the responsibility of performing suc
tasks as reattempting authentication and may elect to perform such tasks after each two-phase
round of authentication.

During the authentication process, login modules have the choice and a
with one another; whether one does depends on its security requiremen

share user name and password information, thereby enabling a user to enter that information
once but still get authenticated to multiple services. In the case of a subject having different user
names and passwords for each service, login modules may also coordinate with one another to
map such information into the relevant service-specific information. Thus, although the subject

 - 116 -

Inside Java™ 2 Platform Security: Architecture, API Design, and Implementation, 2nd

enters only a single user name and password, that information gets mapped into the respective
service-specific user names and passwords, thereby enabling the subject to authenticate to
multiple services again with relative ease.

ame and password information needs the ability to
prompt the subject for such information without knowing whether the calling application has a

t

llbackHandler, implemented

8.4.4 Callbacks

By using the login context, applications remain independent from underlying login modules.
Login modules may be plugged in under any type of application. A login module must be able to
gather information from and display information to subjects via the calling application. For
example, a login module that requires user n

graphical user interface (GUI).

The login context achieves this independence by allowing applications to specify a callback tha
underlying login modules may use to interact with subjects. Applications provide a
CallbackHandler implementation when a login context is instantiated. This
CallbackHandler is passed to each login module. Login modules may then invoke the
callback to gather or display the relevant information. The Ca
by the application, inherently knows whether to construct a graphical window or simply to use a
standard output stream. The callback design and usage is depicted in Figure 8.4.

Figure 8.4. Callback design and usage

8.4.5 Authorization

Authentication serves as the basis for authorization [71]. Specifically, once it knows the identity
of a subject, an application may then specify what set of operations that subject may perform. A

ing relevant information for a user
at Subject. The set
sociated with that

, not on the itself. In other words, permissions are granted to a ,

Subject simply represents a nameless container hold
(subject), whereas Principals represent authenticated identities for th
of permissions granted to a Subject depends on the Principals as
Subject Subject Subject
based on the authenticated Principals it contains. This set of permissions granted can be
configured within an external access control policy.

 - 117 -

Inside Java™ 2 Platform Security: Architecture, API Design, and Implementation, 2nd

8.4.6 Principal-Based Access Control

Once we have authenticated a subject, the trust relationship can be enforced with Java 2
echanisms. Thus, we can impose access controls on the Principals associated

with the authenticated identities in the . Principal-based access controls—access

entation, which is consulted any time code
n. To determine whether the code has sufficient

authorization m
Subject

controls based on who is running the code—extend Java 2 code-source-based access controls.

8.4.7 Access Control Implementation

The Java 2 runtime environment enforces access controls via the currently installed
java.lang.SecurityManager implem
attempts to perform a security-sensitive operatio
permissions, the default SecurityManager implementation delegates responsibility to the
java.security.AccessController. The AccessController obtains a
snapshot of the current AccessControlContext and then ensures that the code referenced
by the AccessControlContext contains sufficient permissions for the operation to
proceed. (See Chapter 6.)

JAAS enables the Java 2 security architecture to make subject-based authorizations w
javax.security.auth.Subject.doAs methods. These methods dynamically
associate a Subject with the current AccessControlContext. Privileged code is then
considered to be executed on behalf of the specified Subject. Hence, as subsequent access
control checks are m

ith the

ade, the AccessController can base its decisions on both the

executing code itself and the s associated with the . The following static

ect,
y.PrivilegedAction action);

c)

rst associate the specified Subject with the current thread's
AccessControlContext and then execute the action. This achieves the effect of having

Principal Subject
methods may be called to perform an action on behalf of a particular Subject:

public static Object
 doAs(Subject subj
 java.securit

public static Object
 doAs(Subject subject,
 java.security.PrivilegedExceptionAction action)
 throws java.security.PrivilegedActionException;

public static Object
 doAsPrivileged(Subject subject,
 java.security.PrivilegedAction action,
 java.security.AccessControlContext acc);

public static Object
 doAsPrivileged(Subject subject,
 java.security.PrivilegedExceptionAction
action,
 java.security.AccessControlContext ac
 throws java.security.PrivilegedActionException;

The doAs methods fi

the action run as the Subject. This is accomplished by constructing an
AccessControlContext with an implementation of
java.security.DomainCombiner and then binding it to the current execution thread

 - 118 -

Inside Java™ 2 Platform Security: Architecture, API Design, and Implementation, 2nd

by invoking a corresponding AccessController.doPrivileged method with the
AccessControlContext. See Section 6.4.4.

The first method can throw runtime exceptions, although normal execution has it returning an
Object from the run method of its action argument. The second method behaves similarly

ng the provided Subject with the current Thread's
this

e.

r for an access control
check to succeed, the policy must grant each protection domain referenced by the

 is
rate AccessControlContext. This may be useful in a server

environment, for example. A server may authenticate multiple incoming requests and perform a

ileged and pass in a null AccessControlContext.

ged" is
 methods. This ensures that only authorized entities can

except that it can throw a checked exception from its PrivilegedExceptionAction
run method.

The doAsPrivileged methods behave exactly the same as the doAs methods, except that
instead of associati
AccessControlContext, they use the provided AccessControlContext. In
way, actions can be restricted by AccessControlContexts different from the current on

An AccessControlContext contains protection domains with information about all the
code executed since the AccessControlContext was instantiated, including the code
locations and the permissions the code is granted by the policy. In orde

AccessControlContext the required permissions.

If the AccessControlContext provided to doAsPrivileged is null, the action
not restricted by a sepa

separate doAs operation for each request. To start each action "fresh," and without the
restrictions of the current server AccessControlContext, the server can call
doAsPriv

A javax.security.auth.AuthPermission with target name "doAs" is required
to call the doAs methods, and an AuthPermission with target "doAsPrivile
required to call the doAsPrivileged
associate a subject with the execution context.

With these mechanisms in place, we can now inject additional context to the access control
algorithm described in Section 6.4.8. Recall that the JVM keeps track of each
ProtectionDomain for every class executing on the call stack. Whenever a Subject is
associated with the execution context, each ProtectionDomain on the call stack is
effectively assigned the Principals from that Subject. This binding of the principals to a
ProtectionDo is accomplished by an implementation of a and main DomainCombiner
is discussed in Section 6.3. To reiterate, as of J2SE 1.4, when an access control (permission) check

all

th the dynamic permissions and the static
permissions, assigned when the class was loaded, are considered when making the access control

entication

s

is invoked, the Policy is consulted to determine, for each ProtectionDomain on the c
stack, whether the requisite permission is granted to the code and principals indicated by
components of the ProtectionDomain. Bo

decision.

8.5 Distributed End-Entity Auth

With the increasing use of distributed systems, users need to access resources that are often
remote. Traditionally, users have had to sign on to multiple systems, each of which may involve
different identities and authentication technologies. In contrast, with single sign-on, the user need
to authenticate only once, and the authenticated identity is securely carried across the network to
access resources on behalf of the subject.

 - 119 -

Inside Java™ 2 Platform Security: Architecture, API Design, and Implementation, 2nd

The Java 2 platform supplies rich APIs that, when used in conjunction with the authentication
framework, integrate with standard distributed environments. An example in J2SE is a
LoginModule implementing the Kerberos V5 protocol,
com.sun.security.auth.module.Krb5LoginModule. An application that
requires peer-to-peer authentication can use the inherent authentication and credential delegat
capabilities of the Java Generic Security Services API (Java GSS-API) [58] to carry network
authentication credentials to an end entity.

Another example of support for a distributed authentication protocol is the imple

ion

mentation of the
cure Socket Extension (JSSE), which enables secure Internet communications. JSSE

rovides a framework and an implementation for a Java language binding of the SSL and TLS
protocols and includes functionality for data encryption, server authentication, message integrity,
nd optional client authentication. Before we dive into the description of these frameworks, we

describe an oft overlooked feature that can be used to accommodate client authentication to a
istributed service: the java.net.Authenticator.

he remainder of this chapter describes key concepts of end-entity authentication with respect to
Java GSS-API and the JSSE API. Descriptions of the details of these APIs and their use are

eferred until Chapter 11

Java Se
p

a

d

T

d in order to present a cohesive view of the APIs with respect to not only
authentication but also the confidentiality and integrity-protection mechanisms they provide.

8.5.1 java.net.Authenticator

The Authenticator class represents an object that knows how to obtain authentication
formation for a network connection. Usually, it will do this by prompting the user for

information. Generally, the Authenticator is used for authentication protocols that rely on
ome form of user name and password; therefore, an implementation of Authenticator

conveys the results of its interaction with the user via an instance of the
ava.net.PasswordAuthentication class. The PasswordAuthentication

class is a data holder and is simply a repository for a user name and a password.

Applications use the Authenticator class by creating a subclass and registering an instance
f that subclass with the system via the setDefault method. Note that currently this is a

runtime-wide setting and therefore impacts all protocol handlers. When authentication is required,
e system will invoke the static requestPasswordAuthentication method. This

method populates the instance variables of the registered Authenticator and then
ispatches into the Authenticator, typically with a call to the
getPasswordAuthentication method. The subclass's
etPasswordAuthentication method can call a number of inherited
getRequestingXXX methods to perform queries about the authentication being requested
nd can then form an appropriate message for the user.

.5.2 Single Sign-on in a Kerberized Environment

 this section, we provide a brief overview of how to accomplish single sign-on based on the
Kerberos V5 protocol. JAAS can be used to authenticate a principal to a Kerberos authentication
erver and obtain credentials that prove the principal's identity. As one option, Sun's

implementation of a Kerberos login module can be made to read credentials from an existing
ache on platforms that contain native Kerberos support. Once the Kerberos credentials have been

obtained, the Java GSS-API can be used to authenticate to a remote peer using the credentials.
ere, we give brief descriptions of Kerberos V5, the Generic Security Service API, and the

Krb5LoginModule from Sun. Details of Java GSS-API and its use are deferred until Chapter

in

s

j

o

th

d

g

a

8

In

s

c

H

11.

 - 120 -

Inside Java™ 2 Platform Security: Architecture, API Design, and Implementation, 2nd

Kerberos V5

ntication protocol designed to provide strong
n using Kerberos V5, the user's password is

erberos was developed in the mid-
e Kerberos V5 protocol is beyond

the scope of this text. For more information on the Kerberos V5 protocol, refer to [65] and [95].

Generic Security Service API (GSS-API)

7],
encing

m
ID {iso(1) member-body(2) United States(840) mit(113554) infosys(1)

odule

h.module.Krb5LoginModule is Sun's
implementation of a login module for the Kerberos V5 protocol. On successful authentication, the

ility
gin module to acquire these credentials is restricted to code possessing the appropriate

cePermission.

 to access
he credential necessary to

ts access to the
applies

xchange with the KDC (Key
et, a service ticket, or a secret

icePermission embodies the service's principal name and a list of actions that
ify the context with which the credential can be used. Granting a ServicePermission

implies that the caller can use a cached credential—TGT, service ticket, or secret key—within the
hat

Kerberos V5 is a trusted third-party network authe
authentication using secret-key cryptography. Whe
never sent across the network, not even in encrypted form. K
1980s as part of MIT's Project Athena. A full description of th

The Generic Security Service API, described in a language-independent form in RFC 2743 [7
offers security services such as authentication, message confidentiality and integrity, sequ
of protected messages, replay detection, and credential delegation. The underlying security
technology, or security mechanism, being used has a choice of supporting one or more of these
features beyond the essential one-way authentication.

The API is designed such that an implementation may support multiple mechanisms
simultaneously, giving the application the ability to choose one at runtime. Mechanisms are
identified by means of unique object identifiers (OIDs). For instance, the Kerberos V5 mechanis
is identified by the O
gssapi(2) krb5(2)}.

Another important feature of the API is that it is token based. That is, calls to the API generate
opaque octets that the application must transport to its peer. This enables the API to be transport
independent.

The Kerberos Login M

The class com.sun.security.aut

Ticket Granting Ticket (TGT) is stored in the Subject's private credentials set, and the
appropriate Kerberos Principal is stored in the Subject's Principal set.

The Krb5LoginModule has been implemented such that it can use the operating
environment's native credentials cache to acquire the TGT and/or use a keytab file containing the
secret key so as to authenticate a principal implicitly. Due to the sensitivity of this information, it
is imperative that the cached credentials not be handed out to untrusted code. Therefore, the ab
of the lo
javax.security.auth.kerberos.Servi

ServicePermissions protect Kerberos services and the credent
e is a one-to-one mapping of a service principal and t

ials necessary
those services. Ther
access the service. Therefore, granting access to a service principal implicitly gran
credential necessary to establish a security context with the service principal. This
regardless of whether the credential is in a cache or acquired via an e
Distribution Center). The credential can be a Ticket Granting Tick
key from a key table.

A Serv
spec

context designated by the action. In the case of the TGT, granting this permission also implies t
the TGT can be obtained by an Authentication Service exchange.

 - 121 -

Inside Java™ 2 Platform Security: Architecture, API Design, and Implementation, 2nd

8.5.3 JSSE Authentication Mechanisms

The Java Secure Socket Extension (JSSE) includes machinery to authenticate end entities as part
of its underlying SSL/TLS protocol. (Throughout this book, we use the abbreviations SSL an
TLS interchangeably. Un

d
less noted otherwise, we are referring to both the SSL and TLS

protocols.) We defer discussion of the API until Chapter 11 so as to present a unified view of its

n

y managers select keying
the received material.

rs

including
CS12 and

Keystores are described in detail in Section 12.8.1

full capabilities.

The intricacies of the TLS protocol message exchange are not germane to this discussion.
However, during the TLS handshake, both the server and the client can solicit authentication
credentials from the peer entity. The credentials used to authenticate the end entity are typically a
X.509 certificate or a certificate chain. JSSE introduces the key manager and trust manager
abstractions as the interfaces to the process of establishing trust. Ke
material; trust managers decide whether to trust

Key managers and trust managers use keystores for their key material. A key manager administe
a keystore and supplies public/private keys to the TLS mechanism as needed. A trust manager
makes decisions about whom to trust, based on information in the truststore, a special type of
keystore, it manages.

A keystore is a database of key material. Key material is used for a variety of purposes,
ous types of keystores are available, including PKauthentication and data integrity. Vari

Sun's JKS.

. Some of that information is summarized here,

ntries

can be used for a v In cont e entry contains
ertificate entries don't have private

 where a
K
nd trusted

 to trust. If data is received
ed identity of the sender can be verified, one can

hat the data originated from that entity.

 that entity. By
cision, and thus the

new entry in the store is considered a trusted entry.

estricted access, whereas the trusted
certificates are supplied in a more publicly accessible keystore, if needed.

presents t tity

and the term truststore is also introduced to refer to a type of keystore that contains only
certificates referring to trusted entities.

Generally speaking, keystore information can be grouped into two different categories: key e
and trusted certificate entries. A key entry consists of an entity's identity and its private key and

ariety of cryptographic purposes. rast, a trusted certificat
only a public key in addition to the entity's identity. Trusted c
keys and are ignored by key managers. That is, a trusted certificate entry cannot be used
private key is required, such as in a javax.net.ssl.KeyManager. In the J2SD

 keystore, the keystore may contain both key entries aimplementation of the JKS type of
certificate entries.

g decisions about whomA truststore is a keystore used when makin
entity that is trusted and if the claimfrom an

me tassu

An entry should be added to a truststore only if the user makes a decision to trust
importing a public key into a truststore, the user is explicitly making a trust de

It may be useful to have two different keystore files: one containing key entries and the other
containing trusted certificate entries, including Certification Authority (CA) certificates. The
former contains private information; the latter does not. More protection for the private keys can
be provided if the private keys are stored in a keystore with r

Authenticating the Server

In TLS, the authentication step is optional. However, common practice is always to authenticate
the server. Authenticating the server to the client ensures that the server re he end en

 - 122 -

Inside Java™ 2 Platform Security: Architecture, API Design, and Implementation, 2nd

the server claims to represent. To prove that a server belongs to the organization that it claims, the
server presents its public-key certificate (identity certificate) to the client. The client uses the
public key in the certificate to initiate the key-exchange algorithm with the server. Thus, the
communicating peer must have the corresponding private key to engage in the TLS handshake
successfully. If the handshake succeeds and the certificate is valid, the client can be certain of the
identity of the server. Because the identity bound to the certificate is the DNS domain name of
server, this creates a convenient means by which to thwart DNS-based attacks.

the

 - 123 -

Inside Java™ 2 Platform Security: Architecture, API Design, and Implementation, 2nd

Chapter 9. Object Security
e cannot secure all our rights, let us secure what we can.

 using the Java language and platform, and especially when you
end on the underlying object

rtition, and type safety. This
lso evident in the protection of the runtime's internal state, which is often

n using the Java Remote Method
applications that span multiple JVMs,

nt or even necessary to protect the state of an object for
d confidentiality when the state is transported from one machine to another. These

rity requirements exist when the objects of concern are inside a runtime system—for example,

ques to
r

signing, sealing—encrypting—and guarding objects. It begins by discussing some general

piece of code to catch an exception thrown from lowerlevel code and
 either (1) mask this by translating the exception into a higher-level exception and rethrowing

it or (2) do some processing that results in its "swallowing" the exception. For example, suppose

 let
w e has been given wrongly, as doing this would help an attacker guess

available user names. Instead, a more general error message, such as "login failed," should be

h as java.security.AccessControlException and

rk"

If w

—Thomas Jefferson

As you develop applications
consider security features, you knowingly or unknowingly dep
orientation, such as data encapsulation, object namespace pa
dependence is a
represented and maintained as objects. For example, whe

uild distributed Java Invocation (Java RMI) package to b
 sometimes find it convenieyou will

grity aninte
secu
in memory—in transit—for example, stored in IP packets—or stored externally—for example,
saved on disk.

These requirements entail a whole range of object-level security issues that must be correctly
handled during system development, in addition to code-signing and policy-driven, fine-grained
access control mechanisms. This chapter provides a number of secure-programming techni
use when programming in the Java language. The chapter also describes three interfaces fo

practices.

9.1 Security Exceptions

It is
then

 not uncommon for a

that you write a class, MyPasswordChecker, that checks a user's password when the user
logs in. If the password check fails because the user name does not exist, it is bad practice to
the user kno that the nam

given:

public class MyPasswordChecker {
 public void check(String name, String password)
 throws LoginFailureException {
 try {
 // Call the real password checking routine.
 ...
 } catch (NoSuchUserException e) {
 throw new LoginFailureException():
 }
 }
}

However, you should be extremely careful when writing code that masks or swallows security
exceptions, suc
java.lang.SecurityException, because such an action could potentially mask
serious security breaches. Sometimes, developers get annoyed by a security exception and take
matters into their own hands by substituting their own security policy decision for that of
AccessController or SecurityManager. This attitude of "just-make-the-code-wo

 - 124 -

Inside Java™ 2 Platform Security: Architecture, API Design, and Implementation, 2nd

is very dangerous, especially if the code being developed might be run as system code and thus be
fully trusted. Often, software design can be improved to avoid having to catch and swallow
undesirabl

e exceptions.

ds

nge the value of the default time zone. Second, because multiple
threads can access this field, some synchronization is needed. Following is a better design:

eZone zone) {

cide that a security check is needed to guard against
ext
le, as

e
ranted:

ger sm = System.getSecurityManager();
 null) {

m.checkPermission(new
eZonePermission("setDefault"));

9.2 Fields and Metho

The Java language provides four access modes, which should be used properly: public, protected,
private, and package private, which is the default if no mode is explicitly specified. A common
example of improper use is the inexperienced programmer who, when writing a time zone class,
mistakenly declares fields or variables that are publicly accessible:

public TimeZone defaultZone;

This design has a number of problems. First, any person or code, including untrusted code, can
access this field and directly cha

private TimeZone defaultZone = null;
public synchronized void setDefault(Tim
 defaultZone = zone;
}

Suppose that after product release you de
unauthorized modification to the value of the default time zone, defaultZone. For the n

 new TimeZonePermission class—for examprelease of the product, you can define a
a subclass of BasicPermission—and add code like the following to allow setting th

me "setDefault" has been gdefault zone if the TimeZonePermission with na

private TimeZone defaultZone = null;
nized void setDefault(TimeZone zone) { public synchro

Mana Security
(sm != if

 s
Tim
 defaultZone = zone;
 }
}

Permissions are described in Section 5.1; permission-checking, in Chapter 6.

A critical point about this product update is that it is done in a way that does not break backward
compatibility. That is, a third-party application that runs on the earlier version of the release will

 design, a security check or a synchronization
feature could not be added without changing existing APIs.

 such
r, decide carefully, for every single public method, if any such access is sensitive

and might require a security check. If a field is intended to be a constant, it can be but

still have the same API available when running on the new release. If the TimeZone was
directly exposed as a public field, as in the first

To recap, never design public fields or variables that can be accessed directly. Instead, declare
these fields as private and provide public accessor methods that mediate access to
fields. Moreove

public
should be made static and final, as discussed in the next section.

 - 125 -

Inside Java™ 2 Platform Security: Architecture, API Design, and Implementation, 2nd

Even when methods or fields
not final. Because an attacker ca

 are protected, a subclass can access them as long as the class is
n easily provide a subclass, security may be compromised.

e.

A static field is a per class field in the sense that its value is shared by all objects instantiated from

;
in the

o

n-
final public static variab assess the potential damage they can cause.

problems
to share a

 is incompatible with what
be of type

a.lang.Object. This kind of substitution can create very subtle security

t a query method by
using a simple return statement, as in the f :

 private boolean status = false;

Similarly, package private methods and fields may be accessed by any class in the same packag
Note that the JVM strictly controls access to package private members, based on its notion of a
"runtime package." That is, a class is allowed access to package private members of another class
at runtime only if both classes are in the same package and are both defined by the same class
loader. Code signing adds an additional layer of protection from rogue classes impersonating as
members of a package, due to the requirement that all class files belonging to the same package
must be signed by the same signer(s). Regardless, always review all protected and package
private methods and fields to see whether they should be made private and, if not, whether
they should be accessed via accessor methods that perform security checks.

9.3 Static Fields

the same class. Use of static fields is a minefield that can cause unintended interactions between
supposedly independent subsystems. Static fields offer even less protection than per object fields
in the latter case, you must have an object's reference in order to access the field, whereas
former case, anyone can access the field simply by using the class name directly.

As a result, directly exposed, non-final public static variables are extremely
problematic for security. Never design a class with such variables. Instead, declare them as
static private, with appropriate public static accessor methods. You still have t
decide carefully whether these accessor methods should invoke security checks.

If you have a product already released with such dangerous variables, you should review all no
les and carefully

You should eliminate the worst offenders even though doing so breaks backward compatibility.
For the rest, if you must keep them for backward compatibility, you can only hope that no one can
come up with a way to exploit them.

Another dangerous aspect of static fields is that they can create type-safety
signed if used casually. For example, a part of the system code might be de

yped too loosely, an untrusted applet or static field, Foo, internally. If Foo is t
application can plant an object of a subtype or a type that
the system programmer intended: for example, when Foo is declared to
jav
problems that are difficult to detect and correct.

9.4 Private Object State and Object Immutability

Most objects have private, internal states that should not be randomly modified. Often, other
objects need to query the state information. Many programmers implemen

ollowing example

public MyClass {

 public void setStatus(boolean s) {
 status = s;
 }

 public boolean getStatus() {

 - 126 -

Inside Java™ 2 Platform Security: Architecture, API Design, and Implementation, 2nd

 return status;
 }
}

 }

Class's consent. The reason is that, unlike boolean
or any other non- primitive type, an array of s—or an array of anything—is

ass
ch a consequence might not be what the designer of MyClass intended, as

In summary, when interacting with potentially malicious code, never return a reference to a

 to

No problem so far. However, if status is not a simple boolean but rather an array of
boolean, serious problems can occur, as here:

public MyClass {
 private boolean[] status = null;
 . . .
 public boolean[] getStatus() {
 return status;

}

In this example, once it obtains a reference to the private status member, another object can
change the value of status without My

final boolean
mutable. That is, the array reference returned refers to the internal instance within the MyCl
object. Su
uncontrolled modification to internal state can lead to incorrect or even malicious results.

There is a twist to this problem. In the example with an array of booleans, the simplest way to
implement the setStatus method is as follows:

public void setStatus(boolean[] s) {
 status = s;
}

Again, because s is mutable, even after MyClass has "taken possession of" it, the object that
supplied s to MyClass can still change the value of s. Many programmers overlook this
possibility.

mutable object, where changes to it would adversely affect internal object state. Further, you
should never directly store a mutable object (by assigning the array reference to an internal
variable) if the source of the object may be malicious. Because any code can potentially be
malicious, the best practice is to clone or copy the objects before returning or storing them.

This discussion shows how important it is to be able to distinguish immutable objects from
mutable ones and how beneficial it is to make objects immutable when possible. For example,
array, Vector, and Hashtable are mutable. Even if an array contains only immutable
objects, such as String, the array itself is still mutable, and anyone with a reference to the array
can change entire objects contained in the array.

Figuring out whether an object is immutable is not always easy, as immutabilitydepends on what
fields and methods are available and whether objects used in those cases are also immutable. This
analysis might need to be done recursively, until all loose ends are tracked down and resolved
be immutable.

A final word on immutable objects: Because a password is typically seen as a string of characters,
it is common to see Java programs in which a String is used to represent a password. Given
that a String is immutable, however, there is no way for the application program to erase it

 - 127 -

Inside Java™ 2 Platform Security: Architecture, API Design, and Implementation, 2nd

when it is no longer needed. Its fate is left entirely with the JVM's garbage collector. For better
security, you should use char[] to represent passwords and wipe out the
after use.

 content of the array

9.5 Privileged Code

Recall from Chapter 6 that a security-sensitive operation is typically allowed only if all the code in
the execution environment has been granted the required permission by the security policy, but
you can use an

 code
r or

ns. If a piece of trusted code (such as

be

at

 new PrivilegedAction() {
Object run() {
rn new FileInputStream(filename);

AccessController.doPrivileged method to mark a segment of
as privileged. The privileged code can then perform operations allowed for that code, whethe
not its callers have been granted the required permissio
system code, which is granted all permissions) is privileged, it can load libraries (including native
code), read any file, read system properties, and so on, independent of what its callers would
normally be allowed to do. A privileged code segment is a critical region in which mistakes can
made and errors can be costly.

When writing privileged code, always try to keep it as short as possible. This practice not only
reduces the chance of making mistakes but also makes auditing the code easier so as to ensure th
it is accessing only the minimal amount of protected resources.

Also, watch out for the use of tainted variables, ones that are set by the caller—passed in as
parameters—and thus not under the control of the privileged code. For example, consider the
following privileged code to open a file:

public FileInputStream getFileToRead(String filename) {
 FileInputStream fn =
 (FileInputStream) AccessController.doPrivileged(

 public
 retu
 }
 }
);
}

This code can be used to open a font file when displaying images for applets, even though the
original calling applet classes would not have access to the actual font file. However, this example
has two flaws. One is that the method is public, so anyone can call it. The other is that there is no
sanity check on the file name, so the code blindly opens any file requested by the caller. Either
flaw alone can be a problem.[1] Combined, they create the worst possible situation, as now anyone

 to be
can turn around and invoke getFileToRead. In this case,
d indirectly by privileged code and security could be

compromised.

can call this method to open any file desired, assuming that the privileged code has the appropriate
permissions, which any system code does.

[1] A different set of problems can occur if untrusted code can take advantage of the first problem and
cause a large number of arbitrary files to be opened.

The problem does not stop at public methods. Even if you change getFileToRead
nonpublic, another public method
once again a tainted variable is use

The most conservative way to design such methods is to make them private. That way, they are
not callable from outside their own class.

 - 128 -

Inside Java™ 2 Platform Security: Architecture, API Design, and Implementation, 2nd

9.6 Serialization

Serialization is a feature that allows an object's nontransient state to be stored in a "serialized"
 of transporting the object to another machine and then
e object, at the destination. RMI uses serialization extensively,

as do other packages. Objects are serialized and deserialized via output and input stream classes

oked for serialization and deserialization,
respectively. You also can write, for a serializable class—one that implements the
jav .
customi endations
on defen d
exte

Sec y t
method nstructor that takes as input the values for each of the serialized
object's no nstance. Under these circumstances,

nder construction, you cannot safely assume that the
input content was generated via the serialization of a properly constructed object of the correct

ms can occur.

n.

In good defensive programming, if a class has any private or package private fields on which it
maintains invariants, an explicit r e provided that checks that these
invariants are satisfied, as in the following example:

private void readObject(ObjectInputStream s) throws

 not satisfied>)
 throw new java.io.InvalidObjectException();

Further, if a class has any object reference fields that are private or package private and if the class
ackage, the
tion

 stream should be treated as untrusted input in
e values as the deserialized subobjects,

adObject method.

remain private.

 if (<invariants are not satisfied>)

form, for example, for the purpose
deserializing it, or reconstructing th

ObjectOutputStream and ObjectInputStream. Default implementations of two
methods, ObjectOutputStream.writeObject and
ObjectInputStream.readObject, are inv

a io.Serializable interface—writeObject and readObject methods to
ze how serialization and deserialization are done. Following, we provide recomm
sively programming implementations of Serializable. Also, this topic is covere

nsively in [15].

urit -conscious implementers should keep in mind that a serializable class's readObjec
is, in effect, a public co

ntransient fields and creates a new object i
implementers should enforce the same restrictions that would be used if the object were created
with a public constructor. Also, as the input to readObject can be provided by an adversary
whose goal is to compromise the object u

type. As a result, if readObject blindly takes its input, various security proble
This is true whether readObject is implicit—that is, the default provided by the JRE (Java
Runtime Environment) implementation—or explicit, provided by the serializable class in questio
In fact, the default implementation of readObject does no validity checking whatsoever.

eadObject method should b

 IOException, ClassNotFoundException {
 s.defaultReadObject();
 if (<invariants are

}

depends on the fact that these object references are not available outside the class or p
objects referenced by those fields must be defensively copied as part of the deserializa
process. That is, the subobjects deserialized from the

 the samthat newly created objects, initialized to have
should be substituted for the subobjects by the re

For example, suppose that an object has a private byte array field, b, that must
llows: Then b should be a clone of the result from readObject, as fo

private void readObject(ObjectInputStream s) throws
 IOException, ClassNotFoundException {
 s.defaultReadObject();
 b = (byte[])b.clone();

 - 129 -

Inside Java™ 2 Platform Security: Architecture, API Design, and Implementation, 2nd

 throw new java.io.InvalidObjectException();
}

Note that calling clone is not always the right way to copy a subobject defensively. If the
clone method cannot be counted on to produce an independent copy and not to "steal" a
reference to the copy, for example, when the class of the subobject is not final, an alternative
way to produce the copy should
nd still have the same

 be used. Also note that a way to avoid the overhead of copying
a safety, as long as a shallow copy is OK, is either to (1) have a custom

tInputStream's readUnshared method
field as
e

the integrity
 a readResolve method instead, calling a public constructor from

 absolutely guarantees that the deserialized object is one that could have

an

ion that wouldn't otherwise

a

asses that are not
ream has been

bject can't be
at is, readObject

 which their
n being discussed.

lizable superclasses
n't make sense, and it
ity. Therefore, in J2SE

 readObjectNoData
method as a superclass of the object being deseri invokes the

ething
o,

readObject method invoke the Objec
rather than its readObject method to read an object or (2) mark a serializable

ialPersistentFields declaration, using thunshared with an explicit ser
ObjectStreamField constructor that takes a boolean.

As a conservative alternative to using an explicit readObject method to ensure
of deserialized objects, use
within that method. This
been produced with a public constructor.

In J2SE 1.4, we added support for an additional private method that a serializable class c
declare:

private void readObjectNoData() throws ObjectStreamException

This feature was added to allow a serializable class to perform validat
be possible on deserialized instances. The class's readObjectNoData method, if declared, is
invoked when deserializing an instance of a subclass, and the serialized data does not identify the
class as a superclass of that subclass. The purpose of the readObjectNoDat method is to
validate and initialize the deserialized instance's state for the class when this situation occurs.

This situation may occur when the receiving party uses a different version of the deserialized
instance's class than the sending party, and the receiver's version extends cl
extended by the sender's version. This may also occur if the serialization st
tampered with; hence, readObjectNoData is useful for initializing deserialized objects
properly despite a "hostile" or incomplete source stream.

Prior to J2SE 1.4, if the object were deserialized, the object's fields declared by the class would
just be assigned default values (null, zero, or false), and its readObject method
would not be invoked. Although this may seem wrong, logically, readO
invoked, because there is no instance data in the stream for the object. Th
methods assume that they are passed the ObjectInputStream in a state in
class's serialized instance data can be read, but that is not the case in the situatio

The intention of the pre–J2SE 1.4 behavior was to allow the addition of seria
as part of compatible class evolution. But in many cases, such behavior does
subverts the superclass's attempts at validation or other constructorlike activ
1.4, when the serialization stream does not list the class containing the

alized, ObjectInputStream
class's readObjectNoData method to allow it to do such things as validate the object,
initialize the instance's specific state, and so on.

In general, if a non-final serializable class declares a readObject method to do som
special in the event of all the class's serializable fields having their default values (null, zer
or false), it should also declare a readObjectNoData method to do the same thing. (In

 - 130 -

Inside Java™ 2 Platform Security: Architecture, API Design, and Implementation, 2nd

many cases, it might be appropriate to declare a readObjectNoData method that throws
InvalidObjectException unconditionally.)

Here are som ore points to remem pleme m ber when im enting a Serializable interface. First,

g improper
access to resources and thereby causing security breaches or errors. In fact, for correctness,

 declared transient, as they make no sense in a different
 be deserialized.

e warning banner.

d to
ot be

ion

r,
must be managed, and this is far from a

 a
is rewritten to use

inner classes a inner ess to the private field. During

ner classes. Transforming
a field from private to package private does not naturally lead to security problems, but you must

pose that class B is a protected member
of class A. After compilation, B's class file defines itself as a public class, but an attribute in the

f A, B's
 having package scope with an attribute that declares the true access

protection mode. This side effect is not a problem by itself. However, any implementation of the

urity
 control

ds for the parameters they take and the values they

return. In particular, if a native method does something that bypasses Java security checks, you

use the transient keyword for fields that contain direct handles to system resources and
information relative to an address space. Otherwise, if a resource, such as a file handle, is not
declared transient, when the object is serialized/deserialized, a part of the state probably won't get
preserved/restored properly. This results in the object, after being deserialized, havin

system-specific references should be
environment in which the object is to

Second, as stated earlier, you should guarantee that a deserialized object does not have state that
violates some invariants by having a class define its own deserializing methods. Because
deserializing an object is a kind of object creation, if untrusted code has a restriction regarding
object creation, you must ensure that that untrusted code has the same restriction when it
deserializes the object. To illustrate the problem, consider the situation when an applet creates a
frame. Security requires that a frame always be created to include a warning label: "This is an
applet window." If the frame is serialized by anyone, including the applet, and then deserialized
by an applet, you must ensure that the frame comes back up with the sam

Finally, when the state of a serialized object is outside the JVM, such as when being transporte
another machine, the state can potentially be corrupted. Although such corruption cann
directly prevented by the Java security system, measures can be taken to detect whether corrupt
has occurred. One way is to encrypt the byte stream produced by serialization. Another way is to
use SignedObject and SealedObject, which are covered later in this chapter. Howeve
such measures do not come free, as cryptographic keys
trivial task.

9.7 Inner Classes

Inner classes as currently defined have some security implications. Suppose that class A has
private field accessible only from within the class itself. Further suppose that A

nd now encloses an class B that requires acc
compilation, the compiler automatically inserts into the definition of A a package private access
method to the private field so that B can call this method. One side effect of this design is that any
class in the same package as A and B will be able to call the access method and thus access the
private field whose access had been forbidden to it prior to the use of in

take care to examine the consequences of such transformations.

The use of inner classes has another design side effect. Sup

class file correctly records the protection mode bit. Similarly, if B is a private member o
class file defines itself as

JVM must perform the extra check and honor the true protection attributes.

9.8 Native Methods

Be careful when using native methods. Native methods, by definition, are outside the Java sec
system. Neither the security manager nor any other Java security mechanism is designed to
the behavior of native code. Thus, errors or security breaches in native code can be a lot more
deadly. You should examine native metho

 - 131 -

Inside Java™ 2 Platform Security: Architecture, API Design, and Implementation, 2nd

must be very careful about the access mode of the method. If the mode is public, anyone ca
r that method should be m

n call
ade

9.9 Signing Objects

quite a few situations exist in which the authenticity of an object and its
 Following are three examples.

 around internally to
n must be
ust be detected.

• An object is transported across machines (JVMs), and its authenticity still needs to be

to a disk for JVM

rfaces to sign objects. A series of

lizable, that is, must implement the
hen a SignedObject is created, the object is always

serialized before its digital signature is generated. A contains the serialized
in

the method. You must examine the consequences and decide whethe
private.

Recall the earlier discussion about the need to protect an object when it is in serialized state and
during transit. In fact,
state must be assured.

• An object acting as an authentication or authorization token is passed
any Java runtime as part of the security system functions. Such a toke
unforgeable, and any innocent or malicious modification to its state m

verified.
n object's state is stored outside the Java runtime, for example, on• A

restarting purposes.

The class java.security.SignedObject defines inte
nested SignedObjects can be used to construct a logical sequence of signatures that resemble
a chain of authorization and delegation.

The object to be signed must be Seria
Serializable interface, because w

SignedObject
object, the signature, and the name of the algorithm used to generate the signature, as depicted
Figure 9.1.

Figure 9.1. Signed object

The signed object is a "deep copy" (in serialized form) of an original object. Once the copy is
made, further manipulation of the original object has no side effect on the copy. In fact, a
SignedObject is immutable.

The SignedObject constructor and public methods follow; for brevity, exception
declarations are not listed:

public SignedObject(Serializable object, PrivateKey
signingKey,

 - 132 -

Inside Java™ 2 Platform Security: Architecture, API Design, and Implementation, 2nd

 Signature signingEngine)
public Object getObject();
public byte[] getSignature();
public String getAlgorithm();
public boolean verify(PublicKey verificationKey,
 Signature verificationEngine);

This class is intended to be subclassed in the future so as to allow multiple signatures on the same
signed object. In this case, existing method calls in this base class are fully compatible
semantically. In particular, any get method returns the unique value if there is only one
signature; an arbitrary value from the set of signatures if there is more than one signature.

To create a SignedObject, first instantiate a Signature object that will be used to
generate the signature. In creating the Signature, pass the name of the desired signature
algorithm, such as "SHA1withDSA", and the provider whose implementation of that signature
algorithm is to be used. After the Signature is created, instantiate the SignedObject
passing it the Serializable object to be signed, the private key to be used to sign the object,

g

Object so:

Sig a

if (so.verify(publickey, verificationEngine))
 r
 // call getObject to deserialize and return the object
 Object myobj = so.getObject();

Obviously, for verification to succeed, the specified public key must be the one corresponding to
or verification

nt
e

 method in a sense loses type information b ng an object of the type
 between collaborating parties so that the

correc ample, the previous code can be changed as follows. Suppose
that

String myobject = new String("Greetings.");

Then the bject retrieved, via the following:

,

and the Signature object to be used to generate the signature. Thus, typical code for creatin
a SignedObject follows:

Signature signingEngine =
 Signature.getInstance(algorithm, provider);
SignedObject so =
 new SignedObject(myobject, privatekey, signingEngine);

Typical code for verification and object retrieval is as follows, having received
Signed

n ture verificationEngine =
 Signature.getInstance(algorithm, provider);

t y {

} catch (ClassNotFoundException e) {};

the private key used to generate the signature, and the signature algorithm used f
must be the same as the one used to generate the signature. Also, the security of
SignedObject depends on the underlying digital signature algorithm and key manageme
system not having been compromised. The signing, or verification, engine does not need to b
initialized prior to creating a SignedObject or verifying the signature, as it will automatically
be initialized by the SignedObject constructor or verify method.

The getObject y returni
Object, so the signed objects likely will be used

t casting can be done. For ex
 the object passed to the SignedObject constructor as shown earlier is the following:

 signature can be verified, and the o

 - 133 -

Inside Java™ 2 Platform Security: Architecture, API Design, and Implementation, 2nd

if s
 tr

 }

In fact, i ting is
perform

More important, for flexibility reasons, the method allows customized signature

be

invoked to verify a signature. In other words, a malicious Signature oose to always
urity checks. For similar reasons,

verify the SignedObject class is final.

iles that contain class files. Signing code
ase of Java technology, native code

in the case of Microsoft's Authen ing jects is done with objects that might
.

(o.verify(publickey, verificationEngine))
y {

 String myobj = (String) so.getObject();
catch (ClassNotFoundException e) {};

t is probably more common to subclass SignedObject so that the correct cas
ed inside the subclass. In this way, static typing information is better preserved.

verify
engines, which can implement signature algorithms that are not installed formally as part of a
cryptography provider. However, it is crucial that the programmer writing the verifier code
aware what Signature engine is being used, as its own implementation of verify is

might ch
return true on verification in an attempt to bypass sec

 in

Note that signing objects is different from signing JAR f
facilitates the authentication of static code—bytecode in the c

ticode—whereas sign ob
represent a complex transaction application, complete with active state information

9.10 Sealing Objects

The SignedObject class provides object authenticity, or integrity. The class
SealedObject, on the other hand, protects an object's confidentiality.[2] The

 at the same time.
se two classes

may be combined to provide integrity and confidentiality [3] In fact, from a
.

4. This design choice was influenced

technical design perspective, designing the two classes into one would have been a better choice
In reality, the SealedObject class is not even in the java.security package. Instead, it
is included in the javax.crypto package, which was initially part of the Java Cryptography
Extension (JCE) 1.2 and has been incorporated into J2SE 1.
solely by U.S. regulations regarding the export of encryption software.[4]

[2]

the two end points and using this channel to send the plain object and data. In other words, there was

es

ired encryption

ontent the original

ted

n, the original content can be obtained in object form through deserialization.
d, the content is not available to anyone who does not possess the correct

ion key, assuming that the cryptosystem is secure.

 For those who are interested in researching the history of secure objects, earlier work on secure
network objects using Modula-3 and Oblique [129] is related to SignedObject and
SealedObject in that there was the high-level abstraction of secure remote object invocation.
However, this abstraction was implemented by establishing a secure communication channel between

no explicit concept of signing and sealing objects directly.

[3] Experience in security system design indicates that blindly signing encrypted data is sometim
dangerous. Thus, you should create and sign a SignedObject first and then use that
SignedObject to create a SealedObject.

[4] In fact, when JCE was initially designed, the U.S. Commerce Department requ
in the same kind of export license as that issued for munitions. software to obta

Given any Serializable object, a SealedObject that embeds in its c
object, in serialized format, can be created. Then, a cryptographic algorithm, such as Blowfish, is
applied to the content to protect its confidentiality. The encrypted content can later be decryp
by using the corresponding algorithm with the correct decryption key.

After decryptio
ile encrypteWh

decrypt

 - 134 -

Inside Java™ 2 Platform Security: Architecture, API Design, and Implementation, 2nd

The SealedObject constructor and public methods are as follows, with exception
declarations left out:

public SealedObject(Serializable object, Cipher c);

ovider);

KeyGenerator keyGen = KeyGenerator.getInstance("DES");

Next, a SealedObject is created and e Cipher object must be fully

Later, the sealed object can be decrypted and the original object retrieved:

ct, that may be used for ob access control. A
GuardedObject is used to protect access to another object. A GuardedObject

t is
owed, it

throws a SecurityException. and protection of access to the

public final String getAlgorithm();
public final Object getObject(Cipher c);
public final Object getObject(Key k)
public final Object getObject(Key k, String pr

A typical use of this class is illustrated with the following code segments; first, a DES key is
generated and the DES cipher initialized:

SecretKey desKey = keyGen.generateKey();
Cipher cipher = Cipher.getInstance("DES");
cipher.init(Cipher.ENCRYPT_MODE, desKey);

ncrypted. Note that the
initialized with the correct algorithm, key, padding scheme, and so on, before being applied to a
SealedObject:

String s = new String("Greetings");
SealedObject so = new SealedObject(s, cipher);

cipher.init(Cipher.DECRYPT_MODE, desKey);
try {
 String s = (String) so.getObject(cipher);
} catch (ClassNotFoundException e) {};

As is the case with SignedObject, SealedObject may be subclassed to provide better
static typing information.

9.11 Guarding Objects

Apart from SignedObject, which provides object authenticity, J2SDK 1.2 introduced an
interface, java.security.Guard, and a class,
java.security.GuardedObje ject-level

encapsulates a target object and a Guard object. Once a target object is encapsulated by a
GuardedObject, access to that object is controlled by the getObject method. This
method invokes the checkGuard method on the java.security.Guard object tha
guarding access. If access is allowed, checkGuard returns silently; if access is not all

 A GuardedObject
target object via the Guard object is illustrated in Figure 9.2, where solid lines represent metho
calls and dotted lines represent object references. Here, when a requester asks for an object that is
guarded by a

d

Guard
then the reference to the desired object is returned to the requester, if the Guard allows it.

Figure 9.2. Guard and GuardedObject

GuardedObject with a particular Guard, first the is consulted, and

 - 135 -

Inside Java™ 2 Platform Security: Architecture, API Design, and Implementation, 2nd

One major motivation for having the GuardedObject class is that often the supplier of a
resource is not in the same execution context, such as a thread, as the consumer of that resource.
In this case, a security check within the security context of the supplier is often inappropriate
because the check should occur within the security context of the consumer.

For example, when a file server thread responds to a request to open a file for reading and this
request comes from a different environment, the decision to supply the file must take into account
information about the requester, such as its AccessControlContext. (See Chapter 6.)
Sometimes, however, the consumer cannot provide the supplier with such information, for several
reasons.

the consumer cannot be interpreted by

ed so that the supplier of the resource can create an object
representing the resource and a GuardedObject containing the resource object and then

the

ect only when certain checks, such as security checks, inside the Guard are satisfied.
Guard is an interface, so any object can choose to become a .

Usin

t so

• The consumer program does not always know ahead of time what information should be
provided—quite possible in a dynamically changing environment—and it is
undesirable—for example, for performance reasons—to engage in a dialogue or
negotiation for each request.

• The consumer regards information about its execution environment as being too security
sensitive to pass on to another party.

• There is too much information or data to pass on.
• Information about the execution environment of

the supplier.

To make access control in these situations more uniform and easier to program,
GuardedObject was design

provide the GuardedObject to the consumer. In creating the GuardedObject, the
supplier also specifies a Guard object such that anyone, including the consumer, can obtain
resource obj

Guard

g GuardedObject has several benefits:

• You can correctly embed the protection mechanism together with the protected objec
that access to the object is guaranteed to occur in a context in which the protection
mechanism will allow it.

• You can delay an access control decision from time of request to time of actual access,
thus simplifying server programs.

 - 136 -

Inside Java™ 2 Platform Security: Architecture, API Design, and Implementation, 2nd

• You can replace often used access control lists with object stores and simply store a set of

, as long
as any object instantiated from this class is protected within a GuardedObject and

tions, all inside a
Guard.

n implements the

Following is the signature of the GuardedObject class.

Object to encapsulate an object's protection semantics
completely inside an appropriate Guard object. Note that this is just an example. There is no

ile

rstand what

ulate all constructors with the same or similar checks.

 public void checkGuard(Object object) throws

GuardedObjects.
• The designer of a class does not need to specify the class's protection semantics

the associated Guard object implements the correct security checks.
• The same programming pattern can be used to encapsulate an object's protection

mechanisms, which can differ for the object's different method invoca

Note that because the built-in base class java.security.Permissio
Guard interface, all permissions of this type, including all permissions (on file, network,
runtime, and other resources) defined in the SDK, are instantly usable as Guard objects.

The Guard interface contains only one method:

void checkGuard(Object object);

public GuardedObject(Object object, Guard guard);
public Object getObject();

The following example uses Guarded

plan to massively change such classes in the SDK to use GuardedObject.

An instance of a java.io.FileInputStream is used as an example of an object to be
guarded, and a java.io.FilePermission is used as the Guard. For this example, a f
input stream is created with a given file name, as follows:

FileInputStream fis = new FileInputStream("/a/b/c");

Normally, the implementation of this constructor must be aware that a security check needs to be
done to ensure that permission to read the specified file has been granted, must unde
sort of check is appropriate, and must pop

Such checks are included in the current FileInputStream implementation but are not
needed within the constructors if access to a FileInputStream is instead controlled by a
Guard. First, note that a FilePermission can be used as a Guard object, as its
superclass, java.security.Permission, is a Guard object by virtue of implementing
Guard and having a checkGuard method, defined as follows:

public abstract Permission implements Guard {
 . . .

SecurityException {
 SecurityManager sm = System.getSecurityManager();
 if (sm != null) sm.checkPermission(this);
 }
 . . .
}

 - 137 -

Inside Java™ 2 Platform Security: Architecture, API Design, and Implementation, 2nd

This implementation ensures that a proper access control check takes place within the consumer
context, when access to the stream is first requested.

e following code will retrieve the
FileInputStream but on tain read access to the file
"/a/b/c":

FileInputStream fis = (FileInputStream) g.getObject();

rity

y.

GuardedObject approach is used; instead, its constructors have the appropriate permission
chec rns a FileInputStream to the consumer, no further security checks
are done

Ano dObject is in the implementation of deferred object
requ ts rface Definition Language) or a similar product. The obvious
imp e mon Object Request Broker Architecture)-style API is to
spin a separate thread in the ORB implementation to make the (deferred) request. This new thread

bject,
the new thread can simply return a properly guarded object. This forces a security check to occur
whe h pts to retrieve the object.

Guard bject can be extended, or subclassed, to implement arbitrary
guar g in GuardedObject is similar to the well-
known guard concept in programming language research. It has been used elsewhere, albeit

 that makes Guard very powerful for
access control on the Java platform.

As anoth ically, radically rewrite the FileInputStream class as
follows. uard object g as the parameter, a suitable
Guard is automatically generated. For every access method, such as read(bytes), the

As with , subclassing can better preserve static typing

Now the provider side of the code can simply be as follows:

FileInputStream fis = new FileInputStream("/a/b/c");
FilePermission p = new FilePermission("/a/b/c", "read");
GuardedObject g = new GuardedObject(fis, p);

After GuardedObject g is passed to the consumer, th
ly if the consumer is permitted to ob

Note that in this case, the implementation of FileInputStream itself need not be secu
aware, as long as it is always protected by a GuardedObject.

This design does not further perform security checks once a FileInputStream is returned to
the consumer. This is the same behavior implemented in the FileInputStream class toda
That is, the FileInputStream implementation does not itself assume that the

ks. But once it retu
.

ther potential application of Guarde
es in the Java IDL (Inte
lem ntation of this CORBA (Com

is created by the ORB implementation, so any information about what code originated the request
is lost, thereby making security checking difficult, if not impossible. With GuardedO

n t e requester attem

 and GuardedO
din semantics. In fact, the guard concept

mostly in specialized forms, for example as a pattern [35]. Its combination with
java.security.Permission is a novel feature

er example, we can, hypothet
 For every constructor that does not take a G

uniform security check in the form of g.checkGuard() is invoked first.

SignedObject GuardedObject
information, where the base classes are intended to be used between cooperating parties so that the
receiving party should know what type of object to expect.

 - 138 -

Inside Java™ 2 Platform Security: Architecture, API Design, and Implementation, 2nd

Chapter 10. Programming Cryptography
The secret of my influence has always been that it remained a secret.

—Salvador Dali

Earlier chapters briefly covered some of the basic concepts of cryptography, as well as code
signing and the use of certificates, which depend on public-key cryptosystems. This chapter goes
behind t APIs
and the t

The A
digital si
framewo g and developing cryptographic functionality for the Java platform.
Loo y o
cryptogr
interope
specifica

n, key exchange, MAC (message authentication code), and a
num
com an
exte o
concern as
inte te

This cha he chapter
notion of

he scenes to look at the Java Cryptography Architecture (JCA), which underlies the
ools.

 JC first appeared in JDK 1.1. It had fairly limited functionalities that included APIs for
gnatures and message digests. The Java 2 SDK significantly extended the JCA into a
rk for accessin

sel speaking, JCA encompasses the parts of the Java 2 SDK Security API that are related t
aphy. The JCA also includes a provider architecture that allows for multiple and
rable cryptography implementations, as well as a set of associated conventions and
tions.

When the Java 2 SDK was first released, the JCA logically covered both the crypto APIs defined
in the SDK and those defined in the Java Cryptography Extension (JCE) 1.2, an optional package
that provided APIs for encryptio

ber of other encryption-related features. Thus, the SDK and JCE together provided a
prehensive set of platform-independent cryptography APIs. JCE was released separately as
nsi n to the Java 2 SDK versions 1.2.x and 1.3. x, in accordance with U.S. regulations

ing the export of cryptography. As the regulations were subsequently modified, JCE w
gra d into the Java 2 SDK 1.4.

pter covers architectural issues and classes that span the full JCA. First, t
defines cryptography terms and then presents the JCA design principles, including the
Cryptographic Service Providers. The cryptography classes are described in detail in Sections 10.4
(the core classes) and 10.5 (the additional JCE cryptography classes now integrated into the
J2SDK). Section 10.6 provides several code examples illustrating use of the cryptography classes.
Section 10.7 specifies the "standard names" to be used to refer to algorithms, types, and so on.
Finally, Section 10.8 provides specifications for the various algorithms.

This section provides a high-level description of the cryptographic terms used in the API
specifications and this chapter.

A digital signa akes arbitrary-sized input and a y and generates a
relatively short e, string of bytes, called the sign h the following tw
properties:

lic key corresponding t used to generate the signature is
d, it should be possible to verify put.
ature and the public key do n .

age digest tak and
generates a fixed-size output, called a digest, o be computationally infeasible to

b
a

fingerprints" of data.

10.1 Cryptographic Concepts

ture algorithm t
, often fixed-siz

private ke
ature, wit o

1. When the pub o the private key
provide

2. The sign
 the authenticity and integrity of the in

ot reveal anything about the private key

A cryptographically secure mess es arbitrary-sized input—a byte array—
r hash. It should

find two messages that hash to the same value, a
input that was used to generate it. Thus, mess

nd the digest should not reveal anything a
ge digests are sometimes called the "digital

out the

 - 139 -

Inside Java™ 2 Platform Security: Architecture, API Design, and Implementation, 2nd

Encryption is the process of taking data, called cleartext, and a short string—a key—and
producing data, or ciphertext, meaningless to a third party who does not know the key. Decryption
is the inverse process: taking ciphertext and a short key string and producing cleartext.

Password-based encryption (PBE) derives an encryption key from a password. In order to make
sword to key very
andom number, kn

Encryption and decryption are done using a cipher. A cipher is an object capable of carryin
cryption according to an enc

Key agreement is a protocol by which two or ptogra
keys. With such a protocol, the parties do not t information.

e (MAC) provid tio
er or stored in an unreliable me sa
 codes are used between two pa y, in order to validate

etween them.

A MAC mechanism that is based on cryptogra unctions is referred to as HMAC. HMAC
 with any cryptographic hash func 1, in combination

ed key. HMAC is specified in RFC 2104 [67].

10.2 Design Principles

The design of the Java Cryptography Architec thm
independence and extensibility and (2) implem erability. The

t API users use cryptog atures and
hout concern for the impl being use

implement these services. At the same time, th ardized APIs so that
can request specific algorithms an

chieved by definin ngines," or services
ide the functiona gines. These cla

xamples are the Me
her classes.

 independence is achieved by id
the context of JCA means a Cryptographic Se er (CSP), or simply a provider, which is
a package or set of packages that implement one or more JCA cryptographic services, such as

m
 a

particular service, such as the DSA signature algorithm, and receive an implementation from one

example, when the appropriate key factory implementations are installed, a key generated by one

the task of getting from pas
implementations mix in a r

time-consuming for an attacker, most PBE
own as a salt, to create the key.

g out
encryption and de ryption scheme, or algorithm.

more parties can establish the same cry
have to exchange any secre

phic

A message authentication cod es a way to check the integrity of informa n
transmitted ov
authentication

dium, based on a secret key. Typically, mes
rties that share a secret ke

ge

information transmitted b

phic hash f
can be used
secret shar

tion, such as MD5 or SHA- with a

ture is guided by two principles: (1) algori
entation independence and interop

aim of the JCA is to le
message digests, wit

raphic services, such as digital sign
ementations or even the algorithms
e JCA provides stand

d to

developers d specific implementations, if desired.

Algorithm independence is a
and defining classes that prov

g types of cryptographic "e
lity of these cryptographic en

,
sses

are called engine classes; e ssageDigest, Signature,
KeyFactory, and Cip

Implementation using a provider-based architecture. A prov
rvice Provid

er in

digital signature algorithms, message digest algorithms, and key-conversion services. A progra
may simply request a particular type of object, such as a Signature object, that implements

of the installed providers. If desired, a program may instead request an implementation from a
specific provider. Providers may be updated transparently to the application when, for example,
faster or more secure versions are available.

Given the general nature of the API design, implementation interoperability is obtained in the
sense that even though various implementations might have different characteristics, they can
work with one another, such as using one another's keys or verifying one another's signatures. For

provider would be usable by another for the same algorithm, and a signature generated by one
provider would be verifiable by another. This would apply even though one provider might be
implemented in software, while the other is implemented in hardware, and one might be platform

 - 140 -

Inside Java™ 2 Platform Security: Architecture, API Design, and Implementation, 2nd

independent, while the other is platform specific. The interface design is also extensible in that
new algorithms that fit in one of the supported engine classes can easily be added.

Figure 10.1 depicts the architectural outline of JCA. By following the two design principles given
earlier, JCA brings major benefits to the cryptographic software market. On the one hand,
application software developers have only one set of APIs (JCA) to worry about, no matter what
algorithms they choose to use or what provider packages they install. On the other hand, crypto
toolkit or library v for example,
patented algorithms ning full
interoperability with one another at the level of JCA APIs.

Figure 10.1. JCA architecture

endors can compete with one another in intellectual property—
 and techniques—and performance optimization while maintai

10.3 Cryptographic Services and Service Providers

As previously noted, the JCA incorporates the notion of a CSP, or provider, which is a package or
a set of packages that supplies a concrete implementation of one or more cryptographic services.
In JDK 1.1, a provider could supply an implementation of one or more digital signature
algorithms, message digest algorithms, and key-generation algorithms. The following types of
services were added in the Java 2 SDK 1.2:

• Algorithm parameter management

JCE 1.2 to the Java 2 SDK 1.2.x and 1.3.x, in accordance
with U.S ryptography, and it provided APIs for

•
• Key generation

• Key factories
• Keystore creation and key management

• Algorithm parameter generation
• Certificate factories
• Random-number generation

 was released separately as an extension
. regulations concerning the export of c

Encryption

 - 141 -

Inside Java™ 2 Platform Security: Architecture, API Design, and Implementation, 2nd

• Key agreement
MAC (message authentication code) •

The gu
that rele

•

• Certificate stores for retrieving certificates

e
certification path and certificate store services are described in Section 8.2

 re lations were subsequently modified, and JCE was integrated into the Java 2 SDK 1.4. In
ase, the following types of services were added:

 ilders
• Certification path validators

Certification chain (path) bu

Details about most of the services that may be implemented are provided later in this chapter. Th
.

Each SD
new pro
configur CA
offer a
supp t.
returned ers
are avail d for
requeste
nex o

For am
Provider
whe as
preferen
specify a , the following behavior will occur.

e

r installed provider
ion is

—keys or parameters—required for

• Generates data objects—keystores or certificates—that encapsulate cryptographic keys,

ature and KeyFactory. The
Signature class provides access to the functionality of a digital signature algorithm. A DSA
KeyFactory supplies a DSA private or public key from its encoding or transparent
specification in a format usable by the initSign or initVerify methods, respectively, of
a DSA Signature object.

K installation typically has one or more provider packages installed, and users may add
viders statically or dynamically. Each provider is referred to by a unique name. Users may
e their runtimes with different providers and specify a preference order for each. J
set of APIs that allos ws users to query which providers are installed and what services they

or If the application requests a specific provider, only objects from that provider are
. If no specific provider is given, a default provider is chosen. When multiple provid
able, a preference order is specified. This is the order in which providers are searche
d services. When a requested service is not provided by the most preferred provider, the

t pr vider in the preference order is examined, and so on.

ple, suppex ose that you have two providers installed in your JVM: Provider1 and
2. Further suppose that Provider1 implements the SHA1withDSA and MD5 algorithms,
 Provider2re implements SHA1withDSA, MD5withRSA, and MD5. If Provider1 has
ce order 1—the highest priority—and Provider2 has preference order 2 and you don't
 particular provider when requesting an algorithm

• If you are looking for an MD5 implementation and both providers supply such an
implementation, the Provider1 implementation is returned because it has the highest
priority and thus is searched first.

• If you are looking for an MD5withRSA signature algorithm, Provider1 is searched first.
No implementation is found, so Provider2 is searched. An implementation is found ther
and returned.

• If you are looking for a SHA1withRSA signature algorithm, neithe
implements it, so a java.security.NoSuchAlgorithmExcept
thrown.

An engine class defines a cryptographic service in an abstract fashion without a concrete
implementation. A cryptographic service is always associated with a particular algorithm or type
and does one of the following:

• Provides cryptographic operations, such as those for digital signatures and message
digests

• Generates or supplies the cryptographic material
cryptographic operations

which can be used in a cryptographic operation, in a secure fashion

For example, two of the engine classes are Sign

 - 142 -

Inside Java™ 2 Platform Security: Architecture, API Design, and Implementation, 2nd

Programmers can request
operations. The engine

and use instances of the engine classes to carry out corresponding
classes defined in the Java 2 SDK 1.4 are listed in Table 10.1.

Table 10.1. Java 2 SDK 1.4 Engine Classes

Engine Class Used to See
Section

MessageDigest Calculate the message digest (hash) of
specified data.

10.4.3

Signature Sign data and verify digital signatures. 10.4.4

AlgorithmParameters Manage the parameters for a particular
algorithm, including parameter encoding

10.

and decoding.

4.5

AlgorithmParameterGenerator Generate a set of parameters suitable for a
specified algorithm.

10.4.5

KeyPairGenerator Generate a pair of public and private keys
suitable for a specified algorithm.

10.4.6
and

.810.4

KeyFactory Convert opaque keys of type Key into 10.4.6

0.4.7
key specifications—transparent
representations of the underlying key
material—and vice versa.

and
1

CertificateFactory 10.4.7Create public-key certificates and CRLs.

KeyStore Create and manage a keystore, a database
of keys and certificates.

10.4.9

SecureRandom Generate random or pseudo-random
numbers.

10.4.10

Cipher Encrypt and decrypt data. 10.5.1

KeyGenerator Generate secret keys for symmetric 10.5.2
algorithms.

SecretKeyFactory Convert opaque keys of type
javax.crypto.SecretKey into
key specifications and vice versa.

.310.5

KeyAgreement Provide the functionality of a key-
agreement protocol.

10.5.4

Mac Provide the functionality of a message
authentication code (MAC).

10.5.5

CertPathValidator Validate certification paths. 8.2.3

CertPathBuilder Build certificate chains, or certification
paths.

8.2.4

CertStore Retrieve certificates and CRLs from a
repository.

8.2.5

 - 143 -

Inside Java™ 2 Platform Security: Architecture, API Design, and Implementation, 2nd

A generator and a factory differ within the JCA context. A generator creates objects with new
contents, whereas a factory creates objects from existing material—for example, an encoding.

An engine class provides the interface to the functionality of a specific type of cryptographic

re
uld be that for a

specific kind of signature algorithm, such as SHA1withDSA, SHA1withRSA, or MD5withRSA.

lied by an engine class are implemented in terms of a Service

the

An instance of an engine class and of its corresponding SPI class is created by a call to

service, independent of a particular cryptographic algorithm. An engine class defines APIs that
allow applications to access the specific type of cryptographic service it provides. The
implementations, from one or more providers, are those for specific algorithms. The
Signature engine class, for example, provides access to the functionality of a digital signatu
algorithm. The implementation supplied in a SignatureSpi subclass wo

The application interfaces supp
Provider Interface (SPI). That is, for each engine class, there is a corresponding abstract SPI class
that defines the SPI methods that cryptographic service providers must implement.

An instance—the API object—of an engine class encapsulates, as a private field, an instance—
SPI object—of the corresponding SPI class. All API methods of an API object are declared
final, and their implementations invoke the corresponding SPI methods of the encapsulated
SPI object.
a getInstance factory method of the engine class. Figure 10.2 depicts an API object and it
corresponding SPI object.

s

Figure 10.2. API class and corresponding SPI class

The name of each SPI class is the same as that of the corresponding engine class, followed by
Spi. For example, the SPI class corresponding to the Signature engine class is the

ethods.

a
sses, may be

 SHA-1, MD5, or MD2.

e keys to

e

hy services are provided by JCA Cryptographic Service
E providers. Other providers may define their own

plemented by these providers, such as
ection 12.5

SignatureSpi class. Each SPI class is abstract. To supply the implementation of a particular
type of service, for a specific algorithm, a provider must subclass the corresponding SPI class and
provide implementations for all the abstract m

Another example of an engine class is the MessageDigest class, which provides access to
message digest algorithm. Its implementations, in MessageDigestSpi subcla
those of various message digest algorithms, such as

As a final example, the KeyFactory engine class supports the conversion from opaqu
transparent key specifications, and vice versa. The implementation supplied in a
KeyFactorySpi subclass is for a specific type of key: for example, DSA public and privat
keys.

Implementations for various cryptograp
Providers, such as the SUN and SunJC
implementations of those services or of other services not im
one of the RSA-based signature algorithms or the MD2 message digest algorithm. S

 - 144 -

Inside Java™ 2 Platform Security: Architecture, API Design, and Implementation, 2nd

explains how to install and register provider packages so that they are available for use by you
programs.

The Sun Microsystems version of the Java runtime environment comes standard with a default
provider, named SUN. Other Java runtime environments might not necessarily supply the SUN
provider. The SUN provider package includes implemen

r

tations of the following:

 generator for generating a pair of public and private keys suitable for the

• A DSA algorithm parameter generator

vate-

 the

• A certificate path builder and validator for PKIX, as defined in the Internet X.509 Public

rietary keystore type named JKS

The n ms version of the Java runtime environment also comes standard with a
pro JCE. This provider package supplies the following cryptographic services:

in

 (PCBC) modes
(Note: Throughout this chapter, the terms Triple DES and DES-EDE are used

MAC-

)

ue DES, Triple
ey

• A Diffie-Hellman algorithm parameter generator
 opaque

ing key

 Algorithm p an, DES, Triple DES, Blowfish, and PBE

heme described in PKCS #5
S

onsult
the latest online Java Cryptography Architecture and Java Cryptography Extension documentation

• The Digital Signature Algorithm (DSA) [91]
• The MD5 [102] and SHA-1 [93] message digest algorithms
• A DSA key-pair

DSA algorithm

• A DSA algorithm parameter manager
• A DSA key factory providing bidirectional conversions between opaque DSA pri

and public-key objects and their underlying key material
• A proprietary SHA1PRNG pseudo-random-number generation algorithm, following

recommendations in the IEEE P1363 standard
• A certificate factory for X.509 certificates and CRLs

Key Infrastructure Certificate and CRL Profile [54]
• A certificate store implementation for retrieving certificates and CRLs from Collection

and LDAP [16] directories
• A keystore for the prop

 Su Microsyste
vider named Sun

• An implementation of the DES [128], Triple DES, and Blowfish encryption algorithms
the Electronic Code Book (ECB), Cipher Block Chaining (CBC), Cipher Feedback
(CFB), Output Feedback (OFB), and Propagating Cipher Block Chaining

interchangeably.)
• Key generators for generating keys suitable for the DES, Triple DES, Blowfish, H

MD5, and HMAC-SHA1 algorithms
• An implementation of the MD5 with DES-CBC password-based encryption (PBE

algorithm defined in PKCS #5 [106]
• "Secret-key factories" providing bidirectional conversions between opaq

DES, and PBE key objects and transparent representations of their underlying k
material

• An implementation of the Diffie-Hellman key-agreement algorithm between two or more
parties

• A Diffie-Hellman key-pair generator for generating a pair of public and private values
suitable for the Diffie-Hellman algorithm

• A Diffie-Hellman "key factory" providing bidirectional conversions between
Diffie-Hellman key objects and transparent representations of their underly
material

• arameter managers for Diffie-Hellm
parameters

• An implementation of the HMAC-MD5 and HMAC-SHA1 keyed-hashing algorithms
defined in RFC 2104 [67]

• An implementation of the padding sc
• A keystore implementation for the proprietary keystore type named JCEK

The lists of services supplied by the SUN and SunJCE providers will continue to expand. C

 - 145 -

Inside Java™ 2 Platform Security: Architecture, API Design, and Implementation, 2nd

to get up-to-date lists. This is available at
http://java.sun.com/j2se/m.n/docs/guide/security/ m.n refers

10.4 Core Cryptography Classes

, where
to the release number. For example, the security documentation for the 1.4 release is at
http://java.sun.com/j2se/1.4/docs/guide/security/.

This section describes the design and usage of classes central to the Java Cryptography
Architecture. Section 10.5 describes additional classes in Java 2 SDK 1.4 that were initially in the
Java Cryptography Extension optional package.

roviders and security-wide
properties. It contains only static methods and is never instantiated:

public static Provider getProvider(String name)

(String key)
public static void setProperty(String key, String datum)

lgorithms
er of the

od adds a provider to the end of the list of installed
providers. It returns either the preference position at which the provider was added or -1, if the

provider gets installed at the requested position, the provider that used to be a on, as
sition, are shifted down, toward the end of

e position at which the provider

 at a
here the specified provider was are shifted up one position, toward the head

alled provider, you

set of packages that supplies a concrete implementation of a subset of the

10.4.1 Security

The java.security.Security class manages installed p

public static Provider[] getProviders()

public static int addProvider(Provider provider)
public static int insertProviderAt(Provider provider,
 int position)
public static void removeProvider(String name)
public static String getProperty

The getProviders method returns an array containing all the installed providers: technically,
the Provider subclass for each package provider. The order of the providers in the array is
their preference order, which is the order in which providers are searched for requested a
if no specific provider is requested. The getProvider method returns the Provid
specified name. The addProvider meth

provider was not added because it was already installed.

The insertProviderAt method attempts to add a new provider at a specified position in
the preference order. A provider cannot be added again if it is already installed. If the given

t that positi
well as all providers with a position greater than that po
the list of installed providers. This method returns the preferenc
was added or -1 if the provider was not added because it was already installed.

The removeProvider method removes the named provider. It returns silently if the
Provider is not installed. When the specified provider is removed, all providers located
position greater than w
of the list of installed providers. To change the preference position of an inst
must first remove it and then reinsert it at the new preference position.

The Security class maintains a list of systemwide security properties. These properties are
y methods, respectively. accessible and settable via the getProperty and setPropert

10.4.2 Provider

The term "Cryptographic Service Provider" (used interchangeably with "provider" in this book)
refers to a package or

 - 146 -

Inside Java™ 2 Platform Security: Architecture, API Design, and Implementation, 2nd

cryptography aspects of the Java 2 SDK Security API. The java.security.Pr
class is the interface to such a package or set of packages.

Each

ovider

 calling

public String getName()

public String getInfo()

entations of cryptographic services, the Provider
d

t
group, writes the implementation code and creates a subclass of the Provider class. The

to provide the

The algorithm name is case insensitive. For example, all the following calls are equivalent:

Mes a
Mes a
Mes a

urrently case-sensitive name of a provider, or a Provider
instance, which will guarantee that the implementation of the algorithm requested is from the

thm,
 String provider)

sageDigest getInstance(String algorithm,
 Provider provider)

ageDigest object.
Thus, it does not need further initialization.

 you supply the data to the initialized message digest
re calls to one of the update methods:

Provider class instance has a name, a version number, and a string description of the
provider and its services. You can query the Provider instance for this information by
the following methods:

public double getVersion()

Note that in addition to registering implem
class can also be used to register implementations of other security services that might get define
as part of the Java 2 SDK Security API.

To supply implementations of cryptographic or other services, an entity, such as a developmen

constructor of the subclass sets the values of various properties that are required for the Java 2
SDK Security API to look up the services implemented by the provider. That is, the constructor
specifies the fully qualified names of the classes implementing the services.

10.4.3 MessageDigest

The java.security.MessageDigest class is an engine class designed
functionality of cryptographically secure message digests, such as SHA-1 or MD5. To compute a
digest, you first create a MessageDigest instance. As with all engine classes, a
MessageDigest object for a particular type of message digest algorithm is obtained by
calling a getInstance static factory method on the MessageDigest class, such as the
following:

public static MessageDigest getInstance(String algorithm)

s geDigest.getInstance("SHA-1")
s geDigest.getInstance("sha-1")
s geDigest.getInstance("sHa-1")

A caller may optionally specify the c

specified provider:

public static MessageDigest getInstance(String algori

public static Mes

A call to one of the getInstance methods returns an initialized Mess

Next, to calculate the digest of some data,
object. This is done by making one or mo

 - 147 -

Inside Java™ 2 Platform Security: Architecture, API Design, and Implementation, 2nd

public void update(byte input)
public void update(byte[] input)

yte[] input, int offset, int len)

in the
f, starting at offset. The len parameter tells the number of bytes in buf

king a call
 with the specified input, followed by a call

public void update(b

After the data has been supplied by calls to update methods, the digest is computed, using a
call to one of the digest methods:

public byte[] digest()
public byte[] digest(byte[] input)
public int digest(byte[] buf, int offset, int len)

The first two methods return the computed digest. The third stores the computed digest
provided buffer bu
allotted for the digest. The method returns the number of bytes stored in buf. A call to the
digest method that takes just an input byte array argument is equivalent to ma
to public void update(byte[] input)
to the digest method without any arguments.

Examples of computing message digests are shown in Section 10.6.1.

10.4.4 Signature

The java.security.Signature engine class is designed to provide
a cryptographic digital signature algorithm, such as SHA1withDSA or MD5w

 the functionality of
ithRSA. A

 object can be used to generate a signature for data, and can also be used to verify

ture object may have three states:

ance. As with all engine
thm is obtained by calling

g algorithm)
g algorithm,

 Provider provider)

ITIALIZED state. The initialization method to be called
g, the

Signature
whether an alleged signature is in fact the authentic signature of the data associated with it.
Signature objects are modal objects. That is, a Signature object is always in a given
state in which it may do only one type of operation.

Signature states are represented as final integer constants defined in the Signature class. A
Signa

1. UNINITIALIZED
2. SIGN
3. VERIFY

To sign data or verify a signature, you first create a Signature inst
classes, a Signature object for a particular type of signature algori
one of the getInstance static factory methods on the Signature class:

public static Signature getInstance(Strin
public static Signature getInstance(Strin
 String provider)
public static Signature getInstance(String algorithm,

A Signature object must be initialized before it can be used. When it is created, a
Signature object is in the UNIN
depends on whether the object is going to be used for signing or for verification. If for signin
object must first be initialized with the private key of the entity whose signature is going to be
generated. This initialization is done by calling the initSign method:

 - 148 -

Inside Java™ 2 Platform Security: Architecture, API Design, and Implementation, 2nd

public final void initSign(PrivateKey privateKey)

This method puts the Signature object in the SIGN state.

y

public final void initVerify(PublicKey publicKey)
(Certificate certificate)

f the update methods:

n)

pplied

public final byte[] sign()
public final int sign(byte[] outbuf, int offset, int len)

o initSign. That
is, the object is reset and available to generate another signature with the same private key, if

ade to

t
ature of the data associated

with it. The process b sed to the signature itself,
ethods:

If the Signature object is going to be used for verification, it must be initialized with the
public key of the entity whose signature is going to be verified. This initialization is done b
calling one of the initVerify methods:

public final void initVerify

A call to an initVerify method puts the Signature object in the VERIFY state.

If the Signature object has been initialized for signing—if it is in the SIGN state—the data to
be signed can then be supplied to the object. This is done by making one or more calls to one or
more o

public final void update(byte b)
public final void update(byte[] data)
public final void update(byte[] data, int off, int le

Calls to the method(s) should be made until all the data to bupdate e signed has been su
to the Signature object.

To generate the signature, simply call one of the sign methods:

The first method returns the signature result in a byte array. The second stores the signature
result in the provided buffer outbuf, starting at offset. The len parameter is the number of
bytes in outbuf allotted for the signature. The method returns the number of bytes stored. The
signature encoding is algorithm specific. For example, a SHA1withDSA signature is encoded as a
standard ASN.1 sequence of two integers: r and s.

When a sign method is called, it generates the signature and then resets the Signature
object to the state it was in when previously initialized for signing, via a call t

desired, via new calls to update and sign. Alternatively, a new call can be m
ey, or to initVerify to initialize the initSign, specifying a different private k

Signature object to verify a signature.

If the Signature object has been initialized for verification—it is in the VERIFY state—i
can then verify whether an alleged signature is in fact the authentic sign

egins by supplying the data to be verified, as oppo
to the object. This is done by making one or more calls to one or more of the update m

public final void update(byte b)
public final void update(byte[] data)
public final void update(byte[] data, int off, int len)

 - 149 -

Inside Java™ 2 Platform Security: Architecture, API Design, and Implementation, 2nd

Calls to the update method(s) should be made until all the data has been supplied to the
Signat objecure t.

 offset,

The first argument mu array containing the signature. The verify method returns a

Wh th method is called, it performs the verification and then resets the
Sig a he state it was in when previously initialized for verification, via a call to
ini V he object is reset and available to verify another signature from the
iden key was specified in the call to initVerify. Alternatively, a new call
can be m initVerify, specifying a different public key to initialize the

ature object for verifying a signature from a different entity, or to initSign, to
initialize the Signature object for generating a signature.

6.3

The signature can then be verified by calling one of the verify methods:

public final boolean verify(byte[] signature)
public final boolean verify(byte[] signature, int
 int length)

st be a byte
boolean indicating whether the signature is the authentic signature of the data supplied to the
update method(s).

en e verify
n ture object to t
t erify. That is, t
tity whose public

ade either to
Sign

Examples of generating and verifying signatures are shown in Section 10. .

pecifications are divided into a small set of classes.

nsparent representation of the sets of parameters used
with an algorithm. This means that you can access each parameter value in the set individually,
thro onding specification class. For example,
DSA efines getP, getQ, and getG methods, which access the p, q, and
g param , respectively. In an opaque representation, by contrast, as supplied by the
AlgorithmParameters class, you have no direct access to the parameter fields. Rather,

thmParameters object to a transparent specification. Examples of c y
be initialized with AlgorithmParameters or AlgorithmParameterSpec objects

10.4.5 Algorithm Parameters

JCA is designed to handle many crypto algorithms. These algorithms can be very different. In
particular, each tends to have unique requirements with regard to various parameters, such as key
size and defined constants. To organize these parameters, an algorithm parameter specification is
defined for each algorithm, and all such s

An algorithm parameter specification is a tra

ugh one of the get methods defined in the corresp
ParameterSpec d

eter values

you can get only the name of the algorithm associated with the parameter set, via
getAlgorithm, and some kind of encoding for the parameter set, via getEncoded. You
can call the AlgorithmParameters.getParameterSpec method to convert an
Algori lasses that ma

are the KeyPairGenerator (Section 10.4.8) and Cipher (Section 10.5.1) classes.

spec.AlgorithmParameterSpec
arameterSpec
Parameters

•

thmParameterSpec

The algorithm parameter and algorithm parameter specification interfaces and classes in the
java.security and java.security.spec packages are

• java.security.
• java.security.spec.DSAP
• java.security.Algorithm

java.security.AlgorithmParameterGenerator

Algori

 - 150 -

Inside Java™ 2 Platform Security: Architecture, API Design, and Implementation, 2nd

This interface is the base interface for the tr
contains no methods or constants. Its only purp

ansparent specification of cryptographic parameters. It
ose is to group and provide type safety for all

 w he following methods:

)
public BigInteger getQ()

 return the DSA algorithm parameters: the prime p, the subprime q, and the base g.

mParameters

public static AlgorithmParameters getInstance(String

 Provider provider)

the
. In the init method with a params argument but no format

r parameters is used. The primary decoding format is
eters exists. Note that

ay be initialized only once and thus are not meant for

 be

ir primary encoding format.

ified encoding format, use this getEncoded method:

parameter specifications. All parameter specifications must implement this interface.

DSAParameterSpec

This class, which implements the AlgorithmParameterSpec interface, specifies the set
of parameters used ith the DSA algorithm. It has t

public BigInteger getP(

public BigInteger getG()

These methods

Algorith

This engine class provides an opaque representation of cryptographic parameters. As with all
engine classes, an AlgorithmParameters object for a particular type of algorithm is
obtained by calling one of the getInstance static factory methods on the
AlgorithmParameters class:

public static AlgorithmParameters getInstance(String
algorithm)

algorithm,
 String provider)
public static AlgorithmParameters getInstance(String
algorithm,

Once an AlgorithmParameters object is instantiated, it must be initialized via a call to
init, using an appropriate parameter specification or parameter encoding:

public void init(AlgorithmParameterSpec paramSpec)
public void init(byte[] params)
public void init(byte[] params, String format)

In the preceding, params is an array containing the encoded parameters, and format is
name of the decoding format
argument, the primary decoding format fo
ASN.1, if an ASN.1 specification for the param
AlgorithmParameters objects m
reuse.

A byte encoding of the parameters represented in an AlgorithmParameters object may
obtained via a call to the getEncoded method:

public byte[] getEncoded()

This method returns the parameters in the

To have the parameters returned in a spec

 - 151 -

Inside Java™ 2 Platform Security: Architecture, API Design, and Implementation, 2nd

public byte[] getEncoded(String format)

If format is null, the primary encoding format for parameters is used, as in the other
getEncoded method.[1]

[1] In the default AlgorithmParameters implementation, supplied by the SUN provider, the
format argument is currently ignored.

rs may be obtained from an
AlgorithmParameters getParameterSpec method:

The parameter identifies the specification class in which the parameters should be
Spec.class to indicate that the

SAParameterSpec, which is in the
ents the

e of
r

 provider)
or
vider provider)

initialized in either of two ways:

dard values.

ovided source of randomness:

A transparent parameter specification for the algorithm paramete
 object via a call to the

public AlgorithmParameterSpec getParameterSpec(Class
paramSpec)

paramSpec
returned. That class could be, for example, DSAParameter
parameters should be returned in an instance of D
java.security.spec package and implem AlgorithmParameterSpec
interface.

AlgorithmParameterGenerator

This engine class generates a set of parameters suitable for the algorithm that is specified when an
AlgorithmParameterGenerator instance is created. To get an
AlgorithmParameterGenerator instance for a particular type of algorithm, call on
the getInstance static factory methods on the AlgorithmParameterGenerato
class:

public static AlgorithmParameterGenerator
 getInstance(String algorithm)
public static AlgorithmParameterGenerator
 getInstance(String algorithm, String
public static AlgorithmParameterGenerat

ithm, Pro getInstance(String algor

The AlgorithmParameterGenerator object can be

• Algorithm independent
• Algorithm specific

The algorithm-independent approach uses the fact that all parameter generators share two
concepts, those of a source of randomness and a size. Although the concept of size is universally
shared by all algorithm parameters, it is interpreted differently for different algorithms. For
example, in the case of parameters for the DSA algorithm, the size is the prime modulus, in bits.
When the algorithm-independent approach is used, any algorithm-specific parameter-generation
values default to some stan

An init method takes these two universally shared types of arguments. There is also one that
takes just a size argument; it uses a system-pr

public void init(int size, SecureRandom random);
public void init(int size)

 - 152 -

Inside Java™ 2 Platform Security: Architecture, API Design, and Implementation, 2nd

In the algorithm-specific approach, a parameter-generator object is initialized using algorithm-
arameter generation

:

public void init(AlgorithmParameterSpec genParamSpec)

e Diffie-Hellman scheme, the
e prime modulus and the size of the

u

AlgorithmParameterGenerator object, you

10.4.6 Key a

their subinterfaces, as well as some

java.security.Key. It defines the

u c l
value individually, through one of the get methods defined in the corresponding specification

ue keys have three ch

A or
ms and with related algorithms, such as MD5withRSA and

gorithm

specific semantics, which are represented by a set of algorithm-specific p
values supplied in an AlgorithmParameterSpec object

public void init(AlgorithmParameterSpec genParamSpec,
 SecureRandom random)

In the generation of the system parameters in, for example,
parameter-generation values usually consist of the size of th

th

random exponent, both specified in bits. The source of randomness is explicitly specified if yo
call the first init method shown earlier or is system provided if you call the second init
method.

Once you have created and initialized an
can generate the algorithm parameters by using the generateParameters method:

public AlgorithmParameters generateParameters()

nd KeySpec

This section describes the following key-related interfaces and
classes implementing them:

• Key
• PublicKey
• PrivateKey
• KeySpec

Key

The top-level interface for all opaque keys is
functionality shared by all opaque key objects.

In an opaque key representation, you have no direct access to the key material that constitutes a
key. In other words, the opaque representation gives you limited access to the key by calling the
three methods defined by the Key interface: getAlgorithm, getFormat, and
getEncoded. In a transparent representation, by contrast, yo an access each key-materia

class, as shown later, under KeySpec.

All opaq aracteristics:

1. An algorithm—the key algorithm for that key
2. An encoded form
3. A format

The key algorithm is usually an encry
RSA, that will work with those algorith

ption or asymmetric operation algorithm, such as DS

SHA1withRSA. The name of the algorithm of a key is obtained by using the getAl
method:

public String getAlgorithm()

 - 153 -

Inside Java™ 2 Platform Security: Architecture, API Design, and Implementation, 2nd

The encoded form is an external encoded form for the key used when a standard representation of
e key is

d using

public byte[] getEncoded()

tFormat

tore
sing a KeyFactory, you can parse encoded keys in an algorithm-specific

e CertificateFactory to parse certificates.
 are described in Section 10.4.7

the key is needed outside the JVM, as when transmitting the key to another party. Th
encoded according to a standard format, such as X.509 or PKCS #8 [108], and is returne
the getEncoded method:

The format is the name of the format of the encoded key and is returned by the ge
method:

public String getFormat()

Keys are generally obtained through key generators, certificates, key specifications—using a
KeyFactory—or a KeyS implementation that accesses a keystore database used to
manage keys. U
manner. Similarly, you can us
KeyFactory and CertificateFactory ; KeyStore,
in Section 10.4.9.

PublicKey and PrivateKey

The java.security.PublicKey and java.security.PrivateKey interfaces
both extend the Key interface. They are methodless interfaces used for type safety and type
identification.

KeySpec

A key specification is a transparent r ntation of the key m
stored on a hardware device, the key

eprese aterial that constitutes a key. If it is
's specification may contain information that helps identify

methods to access the private key x and the DSA algorithm parameters used to calculate the key:

A key may be n hm-specific way or in an algorithm-independent

ee
).

ods or constants. Its
only purpose is to group and provide type safety for all key specifications. All key specifications

ll

 and appear in Section 10.6.3

the key on the device. A key's being transparent means that you can access each key-material
value individually, through one of the get methods defined in the corresponding specification

d getG class. For example, DSAPrivateKeySpec defines getX, getP, getQ, an

the prime p, the subprime q, and the base g.

specified either in a algorit
encoding format, such as ASN.1. For example, a DSA private key may be specified by its
components x, p, q, and g (see DSAPrivateKeySpec) or by using its DER encoding (s
PKCS8EncodedKeySpec

The java.security.spec.KeySpec interface contains no meth

must implement this interface. Descriptions of a number of classes implementing KeySpec, a
in the java.security.spec package, follow. Code examples using
DSAPrivateKeySpec DSAPublicKeySpec .

 a DSA
private key with its associated parameters. This class has the following methods, which return the

public BigInteger getX()
public BigInteger getP()

DSAPrivateKeySpec. This class implements the KeySpec interface, specifying

private key x and the DSA algorithm parameters used to calculate the key: the prime p, the
subprime q, and the base g:

 - 154 -

Inside Java™ 2 Platform Security: Architecture, API Design, and Implementation, 2nd

public BigInteger getQ()
 BigInte getG() public ger

public key with its associated parameters. This class has the following methods, which return the
d to calculate the key: the prime p, the

public BigInteger getG()

dition

public BigInteger getPrimeQ()

gInteger getCrtCoefficient()

r p
, and

ey logically consists of only the

oefficient()

factor p
q-1), and

DSAPublicKeySpec. This class implements the KeySpec interface, specifying a DSA

public key y and the DSA algorithm parameters use
subprime q, and the base g:

public BigInteger getY()
public BigInteger getP()
public BigInteger getQ()

RSAPrivateKeySpec. This class implements the KeySpec interface, specifying an RSA
private key. This class has the following methods to return the RSA modulus n and private
exponent d values, which constitute the RSA private key:

public BigInteger getModulus()
public BigInteger getPrivateExponent()

RSAPrivateCrtKeySpec. This class extends the RSAPrivateKeySpec class and
 specifies an RSA private key, as defined in the PKCS #1 [105] standard, using the Chinese

Remainder Theorem (CRT) information values. This class has the following methods, in ad
to those inherited from its RSAPrivateKeySpec superclass:

public BigInteger getPublicExponent()
public BigInteger getPrimeP()

public BigInteger getPrimeExponentP()
public BigInteger getPrimeExponentQ()
public Bi

These methods return the public exponent e and the CRT information integers: the prime facto
p-1)of the modulus n, the prime factor q of n, the exponent d mod (

the CRT coefficient
, the exponent d mod (q-1)

(inverse of q) mod p. An RSA private k
modulus and the private exponent. The presence of the CRT values is intended for efficiency.

RSAMultiPrimePrivateCrtKeySpec. This class extends the
RSAPrivateKeySpec class and specifies an RSA multiprime private key, as defined in the
PKCS #1 v2.1 standard, using the CRT information values.
RSAMultiPrimePrivateCrtKeySpec has the following methods, in addition to the
methods inherited from its superclass RSAPrivateKeySpec:

public BigInteger getPublicExponent()
public BigInteger getPrimeP()
public BigInteger getPrimeQ()
public BigInteger getPrimeExponentP()
public BigInteger getPrimeExponentQ()
public BigInteger getCrtC
public RSAOtherPrimeInfo[] getOtherPrimeInfo()

These methods return the public exponent e and the CRT information integers: the prime
of the modulus n, the prime factor q of n, the exponent d mod (p-1), the exponent d mod (

 - 155 -

Inside Java™ 2 Platform Security: Architecture, API Design, and Implementation, 2nd

the CRT coefficient (inverse of q) mod p. Method getOtherPrimeInfo returns a c
, or , if there are only

opy of
the otherPrimeInfo, as defined in PKCS #1 v2.1 null two prime

rivate exponent. The presence
of the CRT value y.

RSAPublicKeySpec. This class implements the KeySpec interface and specifies an RSA
as the following methods, which return the RSA modulus n and public
onstitute the RSA public key:

oded format. The class's getEncoded and getFormat methods

rmat "PKCS #8"

e

standard, and its getFormat method returns the string "X.509".

paque Key object from a given key specification—key material—or retrieve the

, a DSA public
ding according to

ifications.
ecifications. For

example, when you translate from X509EncodedKeySpec to DSAPublicKeySpec, you

class:

factors (p and q).

An RSA private key logically consists of only the modulus and the p
s is intended for efficienc

public key. This class h
exponent e values that c

public BigInteger getModulus()
public BigInteger getPublicExponent()

EncodedKeySpec. This abstract class implements the KeySpec interface and represents a
public or private key in enc
return the encoded key and the name of the encoding format, respectively:

public abstract byte[] getEncoded();
public abstract String getFormat();

PKCS8EncodedKeySpec. This subclass of EncodedKeySpec represents the DER
encoding of a private key, according to the format specified in the PKCS #8 standard. The
subclass's getEncoded method returns the key bytes, encoded according to the PKCS #8
standard, and its getFo method returns the string .

X509EncodedKeySpec. This subclass of EncodedKeySpec represents the DER
encoding of a public or private key, according to the format specified in the X.509 standard. Th
subclass's getEncoded method returns the key bytes, encoded according to the X.509

10.4.7 KeyFactory and CertificateFactory

This section reviews the factory classes for generating keys and certificates.

KeyFactory

The java.security.KeyFactory class is an engine class designed to provide
conversions between opaque cryptographic keys of type Key and key specifications, transparent
representations of the underlying key material. Key factories are bidirectional. That is, you can
build an o
underlying key material of a Key object.

Multiple compatible key specifications may exist for the same key. For example
key may be specified by its components y, p, q, and g or by using its DER enco
the X.509 standard. A key factory can be used to translate between compatible key spec
Key parsing can be achieved through translation between compatible key sp

basically are parsing the encoded key into its components.

As with all engine classes, a KeyFactory object for a particular type of key algorithm is
obtained by calling one of the getInstance static factory methods on the KeyFactory

 - 156 -

Inside Java™ 2 Platform Security: Architecture, API Design, and Implementation, 2nd

public static KeyFactory getInstance(String algorithm)
public static KeyFactory getInstance(String algorithm,

vateKey object from the specification b
generatePublic or generatePrivate method, respectively:

e a Key object, you can get a corresponding KeySpec object by calling
 method:

pec.class to indicate that t
ma rned in an insta he DSAPublicKeySpec class.

Key from a key specification is is shown in
Section 10.6.3

 String provider)
public static KeyFactory getInstance(String algorithm,
 Provider provider)

If you have a key specification for a public or private key, you can obtain an opaque
PublicKey or Pri y using the

public PublicKey generatePublic(KeySpec keySpec)
public PrivateKey generatePrivate(KeySpec keySpec)

Conversely, if you hav
the getKeySpec

public KeySpec getKeySpec(Key key, Class keySpec)

The keySpec parameter identifies the specification class in which the key material should be
returned. It could be, for example, DSAPublicKeyS he key

terial should be retu nce of t

The use of a KeyFactory to obtain a Private
.

.cert.CertificateFactory class is an engine class that
defines the functionality of a certificate factory. A certificate factory is used to generate certificate

stances

java.security.cert.X509CRL, respectively.

icate or
 on the

,

pe,

To g or CRL object and initialize it with the data read from an input
od, respectively:

s)
generateCRL(InputStream is)

CertificateFactory

The java.security

and CRL objects from their encodings.

A certificate factory for an X.509 certificate must return certificates and CRLs that are in
of java.security.cert.X509Certificate and

As with all engine classes, a CertificateFactory object for a particula
CRL type is obtained by calling one of the getInstance static factory methods

r certif

CertificateFactory class:

public static CertificateFactory getInstance(String type)
typepublic static CertificateFactory getInstance(String

 String provider)
public static CertificateFactory getInstance(String ty
 Provider provider)

enerate a Certificate
stream, use the generateCertificate or generateCRL meth

public final Certificate generateCertificate(InputStream i
public final CRL

 - 157 -

Inside Java™ 2 Platform Security: Architecture, API Design, and Implementation, 2nd

To return a possibly empty collection view of the certificates or CRLs read from a given input
stream, use the generateCertificates or generateCRLs method, respectively:

m is

public final Collection generateCertificates(InputStream is)
public final Collection generateCRLs(InputStream is)

The use of a CertificateFactory to generate certificates read from an input strea
shown in Section 10.6.4.

10.4.8 KeyPair and KeyPairGenerator

The java.security.KeyPair class is a holder for a key pair: a public key and a private
public key:

ateKey getPrivate()

Generator, use one of the factory methods:

static KeyPairGenerator getInstance(String algorithm,
 String provider)

ator getInstance(String algorithm,
 Provider provider)

re it can generate keys. In most cases, algorithm-
air generators share two concepts: those of a
ze is interpreted differently for different

ase of the DSA algorithm, the size is the length of the modulus.

ese two universally shared types of arguments, whereas
argument because it uses a system-provided source of

public void initialize(int keysize, SecureRandom random)

 p,

es, the SUN provider creates a new
set of parame providers might have precomputed parameter sets for more than just the

key. This class has two public methods, one each for returning the private key and the

public Priv
public PublicKey getPublic()

The java.security.KeyPairGenerator class is an engine class used to generate
pairs of public and private keys. The generation can be algorithm independent or algorithm
specific, depending on how the object is initialized.

All key-pair generation starts with a KeyPairGenerator. A key-pair generator for a
particular algorithm creates a public/private key pair that can be used with this algorithm and also
associates algorithm-specific parameters with each of the generated keys. To create a
KeyPair

public static KeyPairGenerator getInstance(String algorithm)
public

public static KeyPairGener

A key-pair generator needs to be initialized befo
independent initialization is sufficient. All key-p
source of randomness and a key size. The key si
algorithms. For example, in the c

One method takes thinitialize
another one takes just a key size
randomness:

public void initialize(int keysize)

Because no other parameters are specified when you call the preceding algorithm-independent
initialize methods, the provider must decide what to do about any algorithm-specific
parameters to be associated with each key. For example, if the algorithm is DSA and the modulus
size (key size) is 512, 768, or 1,024, the SUN provider uses a set of precomputed values for the
q, and g parameters. If the modulus size is not one of these valu

ters. Other
three modulus sizes mentioned here. Still others might not have a list of precomputed parameters
at all and instead always create new parameter sets.

 - 158 -

Inside Java™ 2 Platform Security: Architecture, API Design, and Implementation, 2nd

In some cases, you need an algorithm-specific initialization: for example, when a set of algorithm-
specific parameters already exists, as is the case for so-called community parameters in DSA. Two
initialize methods take an AlgorithmParameterSpec argument (described in
Section 10.4.5). One does not take a SecureRandom argument, in which case its source of
randomness is provided by the system:

public void initialize(AlgorithmParameterSpec params,
 SecureRandom random)
public void initialize(AlgorithmParameterSpec params)

To generate a key pair, call the following method from KeyPairGenerator:

public KeyPair generateKeyPair()

Multiple calls to yield different key pairs. generateKeyPair

Examples of generating a public/private key pair are shown in Section 10.6.2.

10.4.9 KeyStore

The java.security.KeyStore class is an engine class that defines interfaces to access
and modify the information in a keystore. This section discusses KeyStore's API design and
implementation. Section 12.8.1 describes the keystore, which can be used to manage a repository
of keys and certificates, and Section 12.8.2 demonstrat
by the keytool utility.

es creation and manipulation of keystores

le, where each implementation is for a
mentation might provide persistent keystores,

whereas another can use smart car ore im arious types are not

ing a proprietary keystore type—format—named JKS.

e
 stronger protection of private keys—using

password-based encryption with Triple DES—than the keystore implementation from the SUN

KeyStore represents an in-memory collection of keys and certificates and manages two types
ction 12.8.1

Two command line tools make use of KeyStore: keytool and jarsigner, as well as a
GUI-based tool, Policy Tool. KeyStore is also used by the default Policy
implementation when it processes policy files. SDK users can write additional security
applications that use or extend KeyStore.

Multiple different concrete implementations are po
particular type of keystore. For example, one imple

ssib

ds. Thus, keyst plementations of v
meant to be compatible.

A KeyStore implementation is provider based, as with all engine classes. The SDK has a built-
 the SUN provider supplied by Sun Microsystems, that in default implementation, provided by

implements the keystore as a file, us

The SunJCE provider supplied by Sun Microsystems also includes its own KeyStore
implementation. The provider implements the keystore as a file, using a proprietary keystore typ
named JCEKS. This implementation uses a much

provider.

of entries: key entries and trusted certificate entries. (See Se .) To create a KeyStore
ethods on the KeyStore class,

public static KeyStore getInstance(String type)

object, you call one of the getInstance static factory m
specifying the keystore type and, optionally, specifying the name of a provider or a Provider
instance:

 - 159 -

Inside Java™ 2 Platform Security: Architecture, API Design, and Implementation, 2nd

public static KeyStore getInstance(String type,
 String provider)

 provider)

nformation, as well as the
grity of the keystore. The SDK

ass defines a static method getDefaultType, as follows:

he default
rity property value is defined. (Setting security property values is

public static KeyStore getInstance(String type,
 Provider

A keystore type defines the storage and data format of the keystore i
algorithms used to protect private keys in the keystore and the inte
default implementation of the keystore uses a proprietary keystore type named JKS. Strings
specifying types are not case sensitive; thus, "jks" would be considered the same as "JKS".

The KeyStore cl

public final static String getDefaultType()

This method returns the value of the keystore.type security property, or t
"JKS" value if no such secu
described in Section 12.3.3.) The following line of code creates a KeyStore instance of the

e

d)

ord is

Each entry in a keystore is identified by a unique alias string. An enumeration of the alias names

liases()

 determine whether the entry specified by the given alias is a key entry or a

eyEntry(String alias)
CertificateEntry(String alias)

as, byte[] key,
 Certificate[] chain)
public final void setKeyEntry(String alias, Key key,

default keystore type:

KeyStore ks =
KeyStore.getInstance(KeyStore.getDefaultType());

Before a KeyStore object can be used, the keystore data must be loaded into memory via th
load method:

public final void load(InputStream stream, char[] passwor

The optional password is used to check the integrity of the keystore data. If no passw
supplied, no integrity check is performed. If you want to create an empty keystore, pass null as
the InputStream argument to the load method.

present in the keystore can be obtained as follows:

public final Enumeration a

The following methods
trusted certificate entry:

public final boolean isK
final boolean ispublic

The setCertificateEntry method assigns a certificate to a specified alias:

public final void setCertificateEntry(String alias,
 Certificate cert)

The setKeyEntry methods add—if alias does not yet exist—or set key entries:

public final void setKeyEntry(String ali

 - 160 -

Inside Java™ 2 Platform Security: Architecture, API Design, and Implementation, 2nd

 char[] password, Certificate[] chain)

The deleteEntry method deletes an entry:

public final void deleteEntry(String alias)

The getKey method returns the key associated with the given alias. The key is recovered by

e certificate, or certificate chain, respectively, associated with the

)

You n ry whose certificate matches a given
cert

public final String getCertificateAlias(Certificate cert)

The in-m e store method:

andomness is the source of
s and

 JDK
dom

[63]. Here are its

using the given password:

public final Key getKey(String alias, char[] password)

The following methods return th
given alias:

public final Certificate getCertificate(String alias)
public final Certificate[] getCertificateChain(String alias

 ca determine the name, or alias, of the first ent
ificate via the following:

emory keystore can be saved via th

public final void store(OutputStream stream, char[]
password)

10.4.10 Randomness and Seed Generators

A basic concept of cryptography is random-number generation. R
security in cryptography and is very useful, and sometimes essential, when generating key

e protocols. providing unique identifiers in, for example, challenge-respons

The base class of a random-number generator is java.util.Random, introduced in
her, it produces pseudo-ran1.0. The generator does not produce pure random numbers; rat

numbers.

Random uses a 48-bit seed, which is modified using a linear congruent formula
interfaces:

public Random()
public Random(long seed)
void setSeed(long seed)
protected int next(int bits)
boolean nextBoolean()
void nextBytes(byte[] bytes)
double nextDouble()
float nextFloat()
double nextGaussian()
int nextInt()
int nextInt(int n)
long nextLong()

 - 161 -

Inside Java™ 2 Platform Security: Architecture, API Design, and Implementation, 2nd

You can construct a Random object and assign it a seed either in the constructor or via the
setSeed method. If a seed is not assigned explicitly, it is by default a value based on the time at
which the object is created. After the object has been initialized, various next methods can be
called to obtain the next random number in different forms. The generator is deterministic in that

d
.

Security-savvy readers will have noticed by now that neither the default seeding scheme nor the
m produces numbers that are as unpredictable as a security

 the need for java.security.SecureRandom:

dom
engine class provides implementation-independent algorithms, whereby an application requests a

hat algorithm.
The application can also request a particular algorithm fro provider. For example, the

A1PRNG.

andom

)
m,

 is the preferred way to obtain SecureRandom objects, even though
ility. If these constructors are called,

state of the
andom

 seed the

g seed)

 right after getInstance:

Once the SecureRandom object has been seeded, it attempts to produce bits as random as the

if two instances of Random are created with the same seed and if the same sequence of metho
calls is made for each, both instances will generate and return identical sequences of numbers
Subclasses of Random are permitted to use other algorithms.

subsequent number-generation algorith
application would normally require. Thus
It provides a cryptographically strong pseudo-random-number generator (PRNG).

Like other algorithm-based classes in the SDK, the java.security.SecureRan

particular PRNG algorithm and is handed back a SecureRandom object for t
m a specific

default provider SUN supports a built-in algorithm named SH

As with all engine classes, to get a SecureRandom instance for a particular type of PRNG
algorithm, you call one of the getInstance static factory methods on the SecureR
class:

public static SecureRandom getInstance(String algorithm
public static SecureRandom getInstance(String algorith
 String provider)
public static SecureRandom getInstance(String algorithm,
 Provider provider)

Using getInstance
public constructors are still provided for backward compatib
the default provider with the default algorithm is used:

public SecureRandom()
public SecureRandom(byte[] seed)

The SecureRandom implementation attempts to randomize completely the internal
generator itself. However, this seeding process does not happen until the first time that r
output is needed, that is, when nextBytes is called. Thus, the caller can explicitly
SecureRandom object by calling one of the setSeed methods:

public void setSeed(byte[] seed)
public void setSeed(lon

Here is an example of calling setSeed

SecureRandom random = SecureRandom.getInstance("SHA1PRNG");
random.setSeed(seed);

original seeds. At any time, a SecureRandom object might be reseeded by using one of the
setSeed methods. The newly given seed supplements rather than replaces the existing seed.
Thus, repeated calls do not reduce randomness.

 - 162 -

Inside Java™ 2 Platform Security: Architecture, API Design, and Implementation, 2nd

To get random bytes, a caller simply passes an array of any length, which is then filled with
random bytes:

public void nextBytes(byte[] bytes)

dom seed to be used by a

SecureRandom itself can also help with seed generation—for example, for seeding another
SecureRandom object—by calling the generateSeed method to generate a given number
of seed bytes:

public byte[] generateSeed(int numBytes)

Examples of the use of SecureRandom to generate a ran
KeyPairGenerator are shown in Section 10.6.2.

10.5 Additional Cryptography Classes

This section describes the design and usage of Java Cryptography Extension classes, which are
now te ryptography Architecture classes in the Java 2 SDK 1.4.

10.5.1

d
nd decryption. This class forms the core o .

e
ich provider you want to supply the

n);
rmation,
);

n,

on the
transformation always includes the name of a

nd may be followed by a mode and padding scheme.

 in grated with the rest of the Java C

 Cipher

The javax.crypto.Cipher class provides the functionality of a cryptographic cipher use
for encryption a f the JCE framework

Creating a Cipher Object

As with all engine classes, a Cipher object is created by calling one of the getInstance
static factory methods on the Cipher class. To create a Cipher object, you must specify th
transformation name. You may also specify wh
implementation of the requested transformation:

public static Cipher getInstance(String transf
public static Cipher getInstance(String transfo

ormatio

 String provider
public static Cipher getInstance(String transformatio
 Provider provider);

A transformation is a string that describes the operation or set of operations to be performed
given input to produce some output. A
cryptographic algorithm, such as DES, a

A transformation is of one of the following forms:

"algorithm/mode/padding"
"algorithm"

For example, the following are valid transformations:

"DES/CBC/PKCS5Padding"
"DES"

 - 163 -

Inside Java™ 2 Platform Security: Architecture, API Design, and Implementation, 2nd

If no mode or padding has been specified, provider-specific default values for the mode an
padding scheme are used. For example, the SunJCE provider uses ECB as the default mode and
PKCS5Padding as the default padding scheme for DES, DES-EDE, and

d

Cipher c1 = Cipher.getInstance("DES/ECB/PKCS5Padding");

 mode, you
is number to

its.)

Blowfish ciphers.
This means that in the case of the SunJCE provider, the following statements are equivalent:

Cipher c1 = Cipher.getInstance("DES");

When requesting a block cipher in stream cipher mode, such as DES in CFB or OFB
may, optionally, specify the number of bits to be processed at a time by appending th

e mode name, as shown in the "DES/CFB8/NoPadding" and th
"DES/OFB32/PKCS5Padding" transformations. If no such number is specified, a

4 bprovider-specific default is used. (For example, the SunJCE provider uses a default of 6
Section 10.7 lists standard names that can be used to specify the algorithm name, mode, and

d and must be

es,
renced

se of each

ity.Key object

thods takes a mode parameter (opmode) and initializes
(key) or certificate

), and a source of

blic void init(int opmode, Certificate certificate)

m);
blic void init(int opmode, Certificate certificate,

 AlgorithmParameterSpec params);

 AlgorithmParameters params)

padding scheme components of a transformation.

The objects returned by the getInstance factory methods are uninitialize
initialized before they become usable.

Initializing a Cipher Object

A Cipher object obtained via getInstance must be initialized for one of four mod
ger constants in the Cipher class. The modes can be refewhich are defined as final inte

by their symbolic names, which are shown here along with a description of the purpo
ode: m

• ENCRYPT_MODE, for encryption of data
• DECRYPT_MODE, for decryption of data
• WRAP_MODE, for wrapping a Key into bytes so that it can be securely transported
• UNWRAP_MODE, for unwrapping a previously wrapped key into a

java.secur

Each of the Cipher initialization me
the Cipher object for that mode. Other parameters include the key

ntaining the key (), algorithm parameters (co certificate params
randomness (random). To initialize a Cipher object, call one of the following init
methods:

public void init(int opmode, Key key);
pu
public void init(int opmode, Key key,
 SecureRandom rando
pu
 SecureRandom random)
public void init(int opmode, Key key,

public void init(int opmode, Key key,
 AlgorithmParameterSpec params,
 SecureRandom random);
public void init(int opmode, Key key,

 - 164 -

Inside Java™ 2 Platform Security: Architecture, API Design, and Implementation, 2nd

public void init(int opmode, Key key, AlgorithmParameters
params,
 SecureRandom random)

If a Cipher object that requires parameters, such as an initialization vector, is initialized for

implementation is supposed to supply the required parameters itself, either by generating random
para t r
object th rameters are supplied to the
init m
InvalidAlgorithmParameterException on will be raised, depending on the
ini m
must be

Note tha ject is initialized, it l state. In other
words, initializing a Cipher is equivalent to creating a new instance of that Cipher and

n one step—single-part operation—or in multiple steps—
multiple-part operation. A multiple-part operation is useful if you do not know in advance how

ds:

public byte[] doFinal(byte[] input, int inputOffset, int

 byte[] output);

 byte[] output, int outputOffset)

ultiple steps, first make one or more calls to one or more of the

public int update(byte[] input, int inputOffset, int

ted by one of the preceding doFinal methods—if
some input data is still left for the last step—or by one of the following doFinal methods—if
no input data is left for the last step:

encryption and no parameters are supplied to the init method, the underlying cipher

me ers or by using a default, provider-specific set of parameters. However, if a Ciphe
at requires parameters is initialized for decryption and no pa
ethod, an InvalidKeyException or

 excepti
t ethod that was used. Also note that the same parameters that were used for encryption

used for decryption.

t when a Cipher ob oses all previously acquired

initializing it. For example, if a Cipher is first initialized for decryption with a given key and
then initialized for encryption, it will lose any state acquired while in decryption mode.

Encrypting and Decrypting Data

Data can be encrypted or decrypted i

long the data is going to be or if the data is too long to be stored in memory all at once.

To encrypt or decrypt data in a single step, call one of the doFinal metho

public byte[] doFinal(byte[] input);

inputLen);
public int doFinal(byte[] input, int inputOffset, int
inputLen,

public int doFinal(byte[] input, int inputOffset, int
inputLen,

To encrypt or decrypt data in m
update methods to supply all the data to be encrypted or decrypted:

public byte[] update(byte[] input);
public byte[] update(byte[] input, int inputOffset, int
inputLen);

inputLen,
 byte[] output);
public int update(byte[] input, int inputOffset, int
inputLen,
 byte[] output, int outputOffset)

A multiple-part operation must be termina

 - 165 -

Inside Java™ 2 Platform Security: Architecture, API Design, and Implementation, 2nd

public byte[] doFinal();
public int doFinal(byte[] output, int outputOffset);

All the methods take care of any necessary padding or unpadding, if padding or

5

doFinal
unpadding was requested as part of the specified transformation.

A call to doFinal resets the Cipher object to the state it was in when initialized via a call to
init. That is, the Cipher object is reset and available to encrypt or decrypt more data,
depending on the operation mode that was specified in the call to init.

Sections 10.6. and 10.6.6 show coding examples for encrypting and decrypting data using a

p

ne else who will
ent will need in

er.PRIVATE_KEY,
or)

 calling the getAlgorithm method from the

revious call to wrap, first initialize a Cipher object for

pe of the wrapped key. This must be one of

Cipher object.

Wrapping and Unwrapping Keys

Wrapping a key enables secure transfer of the key from one place to another. The wrap/unwra
API makes it more convenient to write code, as it works with key objects directly. These methods
also enable the possibility of secure transfer of hardware-based keys.

To wrap a Key, first initialize the Cipher object for WRAP_MODE, and then call the
following:

public final byte[] wrap(Key key);

If you are supplying the wrapped key bytes, the result of calling wrap, to som
mation the recipi

eo
unwrap them, be sure also to send the following additional infor
order to do the unwrap:

• The name of the key algorithm
• The type of the wrapped key (Cipher.SECRET_KEY, Ciph

Cipher.PUBLIC_KEY

The key algorithm name can be determined by
Key interface:

public String getAlgorithm();

To unwrap the bytes returned by a p
UNWRAP_MODE, and then call the following:

public final Key unwrap(byte[] wrappedKey,
 String wrappedKeyAlgorithm,
 int wrappedKeyType));

Here, wrappedKey is the bytes returned from the previous call to wrap,
wrappedKeyAlgorithm is the algorithm associated with the wrapped key, and
wrappedKeyType is the ty
Cipher.SECRET_KEY, Cipher.PRIVATE_KEY, or Cipher.PUBLIC_KEY.

Managing Algorithm Parameters

 - 166 -

Inside Java™ 2 Platform Security: Architecture, API Design, and Implementation, 2nd

The parameters being used by the underlying Cipher implementation, which were either
explicitly passed to the init method by the application or generated by the underlying
implementation itself, can be retrieved from the Cipher object by calling its
getParameters method, which returns the parameters as a

 object or, if no parameters are being used,

 the

tion itself. The application can retrieve the generated parameters
from the object, as follows:

// initialize cipher for encryption, without supplying

c.init(Cipher.ENCRYPT_MODE, myKey);

rypt some data and store away ciphertext

 cipherText = c.doFinal("This is just an

ters algParams = c.getParameters();

tore it away
tEncoded();

for
ows:

// get parameter object for password-based encryption

// initialize with parameter encoding from above

java.security.AlgorithmParameters
null. If the parameter is an initialization vector (IV), it can also be retrieved by calling the
getIV method:

public AlgorithmParameters getParameters()
public byte[] getIV()

In the following example, a Cipher object implementing password-based encryption is
initialized with just a key and no parameters. However, the selected algorithm for password-based
encryption requires two parameters: a salt and an iteration count. These will be generated by
underlying algorithm implementa

Cipher

import javax.crypto.*;
import java.security.AlgorithmParameters;

// get cipher object for password-based encryption
Cipher c = Cipher.getInstance("PBEWithMD5AndDES");

// any parameters. Here, "myKey" is assumed to refer
// to an already generated key.

// enc
// for later decryption
byte[]
example".getBytes());

// retrieve parameters generated by underlying cipher
// implementation
AlgorithmParame

// get parameter encoding and s
byte[] encodedAlgParams = algParams.ge

The same parameters that were used for encryption must be used for decryption. They can be
instantiated from their encoding and used to initialize the corresponding Cipher object
decryption, as foll

import javax.crypto.*;
import java.security.AlgorithmParameters;

AlgorithmParameters algParams;
algParams =
AlgorithmParameters.getInstance("PBEWithMD5AndDES");

 - 167 -

Inside Java™ 2 Platform Security: Architecture, API Design, and Implementation, 2nd

algParams.init(encodedAlgParams);

S");

 one of the
// init() methods that takes an AlgorithmParameters

 algParams object from above
 c.init(Cipher.DECRYPT_MODE, myKey, algParams);

re

tParameters r
of null indicates that no parameters were used.

• PBEWithMD5AndDES uses a set of parameters, comprising a salt and an iteration

n salt

object contents and uses the same
parameters for unsealing, or decryption.

Cipher Output Considerations

 specify the output
at

 big the output buffer should be:

public int getOutputSize(int inputLen)

mmetric

 object, you must specify the name of a symmetric algorithm for which a
secret key is to be generated. You may also specify which provider you want to supply the
implementation of the requested algorithm:

// get cipher object for password-based encryption
Cipher c = Cipher.getInstance("PBEWithMD5AndDE

// initialize cipher for decryption, using

// object, and pass it the

If you did not specify any parameters when you initialized a Cipher object and you are not su
whether the underlying implementation uses any parameters, you can find out by simply calling
the ge method of your Ciphe object and checking the value returned. A
return value

The following cipher algorithms implemented by the SunJCE provider use parameters:

• DES, DES-EDE, and Blowfish, when used in feedback—CBC, CFB, OFB, or
PCBC—mode, use an initialization vector (IV). The class
javax.crypto.spec.IvParameterSpec can be used to initialize a
Cipher object with a given IV.

count. The javax.crypto.spec.PBEParameterSpec class can be used to
initialize a Cipher object implementing PBEWithMD5AndDES with a give
and iteration count.

Note that you do not have to worry about storing or transferring any algorithm parameters for use
by the decryption operation if you use the SealedObject class. This class attaches the
parameters used for sealing, or encryption, to the encrypted

Some of the update and doFinal methods of Cipher allow the caller to
buffer into which to encrypt or decrypt the data. In these cases, it is important to pass a buffer th
is large enough to hold the result of the encryption or decryption operation.

The following method in Cipher can be used to determine how

10.5.2 KeyGenerator

A javax.crypto.KeyGenerator is used to generate secret keys for sy
algorithms.

Creating a Key Generator

As with all engine classes, a KeyGenerator object is created by calling one of the
getInstance static factory methods on the KeyGenerator class. To create a
KeyGenerator

 - 168 -

Inside Java™ 2 Platform Security: Architecture, API Design, and Implementation, 2nd

public static KeyGenerator getInstance(String algorithm);
public static KeyGenerator getInstance(String algorithm,
 String provider
public static KeyGenerator
 Provider provider);

);
getInstance(String algorithm,

ar symm ithm creates a symmetric key that can be
 generator also associates algorithm-specific parameters, if any,

a source of randomness. An init method

id init(SecureRandom random);

Because no ot eters are specified when you call these algorithm-independent init
ider what to do about the algorithm-specific parameters, if any, to be

associated with the generated key.

o init methods
have an AlgorithmParameterSpec argument. One also has a SecureRandom

licitly initialize the KeyGenerator via a call to an init
method, each provider must supply and document a default initialization.

The following method generates a secret key:

ey into

le format,

Initializing a KeyGenerator Object

A key generator for a particul etric-key algor
used with that algorithm. A key
with the generated key.

A key can be generated in an algorithm-independent manner or in an algorithm-specific manner.
The only difference between the two is the initialization of the object.

All key generators share the concepts of a key size and
takes these two universally shared types of arguments. Another one takes just a keysize

ust a source of argument and uses a system-provided source of randomness, and yet another takes j
randomness:

public vo
public void init(int keysize);
public void init(int keysize, SecureRandom random);

her param
methods, it is up to the prov

For situations in which a set of algorithm-specific parameters already exists, tw

argument, while the source of randomness is system-provided for the other:

public void init(AlgorithmParameterSpec params);
public void init(AlgorithmParameterSpec params,
 SecureRandom random);

In case the client does not exp

Creating a Key

public SecretKey generateKey();

10.5.3 SecretKeyFactory

The javax.crypto.SecretKeyFactory class represents a factory for secret keys. Key
factories are used to convert opaque cryptographic keys of type java.security.K
key specifications, transparent representations of the underlying key material in a suitab
and vice versa.

 - 169 -

Inside Java™ 2 Platform Security: Architecture, API Design, and Implementation, 2nd

A SecretKeyFactory object operates only on secret, or symmetric, keys, whereas a
java.security.KeyFactory object (Section 10.4.7) processes the public and privat
key components of a key pair.

Objects of type

e

, of which java.security.PublicKey,
java.security.PrivateKey, and javax.crypto.SecretKey are subclasses,

; that is, you cannot tell how they are implemented. The underlying
implementation is provider dependent and may be software or hardware based. Key factories

man key
factories from different providers, the resulting PublicKey objects will most likely have

 by its secret-key factory. For
by the SunJCE provider supports

 a transparent representation of DES-EDE keys,
and th for PBE supports PBEKeySpec as a transparent

et-key
e

 class:

public static SecretKeyFactory getInstance(String algorithm,
 String provider);

gorithm,

Key Cipher

ot realistic secret key

Spec = new DESKeySpec(desKeyData);
keyFactory =

"DES");
ory.generateSecret(desKeySpec);

java.security.Key

are opaque key objects

allow providers to supply their own implementations of cryptographic keys. For example, if you
have a key specification for a Diffie-Hellman public key, consisting of the public value y, the
prime modulus p, and the base g, and you feed the same specification to Diffie-Hell

different underlying implementations.

A provider should document the key specifications supported
example, the SecretKeyFactory for DES keys supplied
DESKeySpec as a transparent representation of DES keys, the SecretKeyFactory for
DES-EDE keys supports DESedeKeySpec as

e SecretKeyFactory
representation of the underlying password.

As with all engine classes, a SecretKeyFactory object for a particular type of secr
algorithm is obtained by calling one of the getInstance static factory methods on th
SecretKeyFactory

public static SecretKeyFactory getInstance(String
algorithm);

public static SecretKeyFactory getInstance(String al
 Provider
provider);

The following is an example of how to use a SecretKeyFactory to convert secret-key data
into a Secret object, which can be used for a subsequent operation:

// Note the following bytes are n
data
// bytes but are simply supplied as an illustration of using
data
// bytes (key material) you already have to build a
DESKeySpec.
byte[] desKeyData = { (byte)0x01, (byte)0x02, (byte)0x03,
 (byte)0x04, (byte)0x05, (byte)0x06, (byte)0x07,
(byte)0x08 };
DESKeySpec desKey
SecretKeyFactory
SecretKeyFactory.getInstance(
SecretKey secretKey = keyFact

In this case, the underlying implementation of secretKey is based on the provider of
keyFactory.

 - 170 -

Inside Java™ 2 Platform Security: Architecture, API Design, and Implementation, 2nd

An alternative, provider-independent way of creating a functionally equivalent SecretKey
aterial is to use the javax.crypto.spec.SecretKeySpec

SecretKey interface:

 javax.crypto.KeyAgreement class provides the functionality of a key-agreement
ocol. The keys involved in establishing a shared secret are created by

enerator or KeyGenerator, a KeyFactory, or as a result from an
 phase of the key-agreement protocol.

Agreement Object

 create a KeyAgreement object. As with all
particular type of key-agreement algorithm is
tatic factory methods on the KeyAgreement

(String algorithm);
(String algorithm,
tring provider);
tring algorithm,
vider provider);

ment Object

You initialize a object with your private information. In the case of Diffie-

s. Note that if
ecification of algorithm parameters and if

initialize the KeyAgreement object, the key must
fie-Hellman algorithm uses a

lgorithmParameterSpec params);
ameterSpec params,

phases that need to be executed by each

public Key doPhase(Key key, boolean lastPhase);

object from the same key m
class, which implements the javax.crypto.

byte[] desKeyData = { (byte)0x01, (byte)0x02, ...};
SecretKeySpec secretKey = new SecretKeySpec(desKeyData,
"DES");

10.5.4 KeyAgreement

The
prot
KeyPairG
intermediate

Creating a Key

Each party involved in the key agreement has to
engine classes, a KeyAgreement object for a
obtained by calling one of the getInstance s
class:

public static KeyAgreement getInstance
yAgreement getInstancepublic static Ke

 S
ublic static KeyAgreement getInstance(Sp
 Pro

Initializing a KeyAgree

KeyAgreement
Hellman, you initialize it with your Diffie-Hellman private key. Additional initialization
information may contain a source of randomness and/or a set of algorithm parameter
the requested key-agreement algorithm requires the sp
only a key but no parameters are provided to
contain the required algorithm parameters. (For example, the Dif
prime modulus p and a base generator g as its parameters.)

To initialize a KeyAgreement object, call one of its init methods:

public void init(Key key);
public void init(Key key, SecureRandom random);
public void init(Key key, A
public void init(Key key, AlgorithmPar

eRandom random); Secur

Executing a KeyAgreement Phase

Every key-agreement protocol consists of a number of
party involved in the key agreement. To execute the next phase in the key agreement, call the
doPhase method:

 - 171 -

Inside Java™ 2 Platform Security: Architecture, API Design, and Implementation, 2nd

The key parameter contains the key to be proc
public key of one of the other parties involved in the key agre

essed by that phase. In most cases, this is the
ement or an intermediate key that

 be executed is the last one in the key
FALSE he key agreement are to follow,

his is the last phase of the key agreement and that
generateSecret can be called next.

doPhase once, with
mong three parties, you call

doPhase twice: the first time with lastPhase set to FALSE and the second time with

h party has e ed all the required key-agreement phases, each party can compute the

cret(byte[] sharedSecret, int offset);
blic SecretKey generateSecret(String algorithm);

The javax.crypto.Mac class provides the functionality of a message authentication code

bject for a particular type of MAC algorithm is obtained by

algorithm);

 A Mac object is always initialized with
ters, depending on the

rams);

was generated by a previous phase. The doPhase method may return an intermediate key that
rties of this key agreement so they can process it in a you may have to send to the other pa

subsequent phase.

The lastPhase parameter specifies whether the phase to
agreeement. A value of indicates that more phases of t
and a value of TRUE indicates that t

In the example of Diffie-Hellman between two parties, you call
lastPhase set to TRUE. In the example of Diffie-Hellman a

lastPhase set to TRUE.

Generating the Shared Secret

After eac xecut
shared secret by calling one of the generateSecret methods:

public byte[] generateSecret();
public int generateSe
pu

10.5.5 Mac

(MAC).

Creating a Mac Object

As with all engine classes, a Mac o
calling one of the getInstance static factory methods on the Mac class:

public static Mac getInstance(String
public static Mac getInstance(String algorithm,
 String provider);
public static Mac getInstance(String algorithm,
 Provider provider);

Initializing a Mac Object

To initialize a Mac object, call one of its init methods.
a secret key and may, optionally, be initialized with a set of parame
underlying MAC algorithm:

public void init(Key key);
public void init(Key key, AlgorithmParameterSpec pa

You can initialize your Mac object with any secret-key object that implements the
terface. This could be an object returned by javax.crypto.SecretKey in

 - 172 -

Inside Java™ 2 Platform Security: Architecture, API Design, and Implementation, 2nd

javax.crypto.KeyGenerator.generateKey(), or one that is the result of a key-

javax.crypto.KeyAgreement.generateSecret(), or an instance of

hms, the secret-key algorithm associated with the secret-key object used

A MAC can be computed in one step—single-part operation—or in multiple steps—multiple-part
 not know in advance how long the data is

ce.

put);

ate(byte[] input);
public void update(byte[] input, int inputOffset, int

f some input

set);

e Digest

 digest, or hash, using the SHA-1 algorithm. Suppose that

t object to calculate the hash, as follows:

agreement protocol, as returned by

javax.crypto.spec.SecretKeySpec.

With some MAC algorit
to initialize the Mac object does not matter, as is the case with the HMAC-MD5 and HMAC-
SHA1 implementations of the SunJCE provider. With others, however, the secret-key algorithm
does matter, and an InvalidKeyException is thrown if a secret-key object with an
inappropriate secret-key algorithm is used.

Computing a MAC

operation. A multiple-part operation is useful if you do
going to be or if the data is too long to be stored in memory all at on

To compute the MAC of some data in a single step, call the following doFinal method:

public byte[] doFinal(byte[] in

To compute the MAC of some data in multiple steps, first make one or more calls to one or more
of the update methods to supply all the data:

public void update(byte input);
public void upd

inputLen);

A multiple-part operation must be terminated by the preceding doFinal method i
data is still left for the last step or by one of the following doFinal methods if no input data is
left for the last step:

public byte[] doFinal();
public void doFinal(byte[] output, int outOff

10.6 Code Examples

T
in

his section presents several examples to illustrate further how you can use the classes discussed
 this chapter.

10.6.1 Computing a Messag

The first example computes a message
you have a message composed of three byte arrays: i1, i2, and i3. First, you create a
properly initialized message digest object. Then you run the three byte arrays through the
message diges

MessageDigest sha = MessageDigest.getInstance("SHA-1");
sha.update(i1);
sha.update(i2);
sha.update(i3);
byte[] hash = sha.digest();

 - 173 -

Inside Java™ 2 Platform Security: Architecture, API Design, and Implementation, 2nd

The call to the digest method signals the end of the input message and causes the digest to be
rent digest method, which takes

sha.update(i1);

After the message digest has been calculated, the message digest object is automatically reset and
st. All former state, that is, the data supplied to

update

In some hash implementations, you can obtain intermediate hash values through cloning. Suppose
 three separate messages of this form:

i1, i2, and i3

ne().digest();

2 */

/* compute the hash for i1, i2 and i3 */

g

 algorithm. Keys are
d. First, you get a

ng keys for the DSA algorithm. Then, to initialize the
reRandom object:

PairGenerator.getInstance("DSA");
SecureRandom random =
 SecureRandom.getInstance("SHA1PRNG", "SUN");
random.setSeed(userSeed);
keyGen.initialize(1024, random);

calculated. An alternative equivalent approach, calling a diffe
the last segment of the input as a parameter, is the following:

sha.update(i2);
byte[] hash = sha.digest(i3);

ready to receive new data and calculate its dige
 calls, is lost.

that you want to calculate separate hashes for

i1

i1 and i2

You can perform the computations as follows:

/* compute the hash for i1 */
sha.update(i1);
byte[] i1Hash = sha.clo

/* compute the hash for i1 and i
sha.update(i2);
byte[] i12Hash = sha.clone().digest();

sha.update(i3);
byte[] i123hash = sha.digest();

This works only if the SHA-1 implementation is cloneable. One way to determine whether clonin
is possible is to attempt to clone the MessageDigest object and see whether a
CloneNotSupportedException is thrown.

10.6.2 Generating a Public/Private Key Pair

The second coding example generates a public/private key pair for the DSA
user-derived seed: userSeegenerated with a 1,024-bit modulus, using a

 generatiKeyPairGenerator object for
KeyPairGenerator, you need a random seed, obtained from a Secu

Ke
Key
yPairGenerator keyGen =

 - 174 -

Inside Java™ 2 Platform Security: Architecture, API Design, and Implementation, 2nd

Suppose that you already have a set of
use to generate your key pair. Then t

DSA-specific parameters—p, q, and g—that you want to
he key-pair generator should be initialized differently, as in

eyGen =
KeyPairGenerator.getInstance("DSA");

ec dsaSpec = new DSAParameterSpec(p, q, g);
SecureRandom random =

Finally, you generate the key pair:

This example generates and verifies a signature using the key pair generated in Section 10.6.2

the following example:

KeyPairGenerator k

DSAParameterSp

 SecureRandom.getInstance("SHA1PRNG", "SUN");
random.setSeed(userSeed);
keyGen.initialize(dsaSpec, random);

KeyPair pair = keyGen.generateKeyPair();

10.6.3 Generating and Verifying Signatures

.
nature object. Then, using the key pair generated in the preceding

section, you initialize the object with the private key and sign the data to be signed, which is in a

1withDSA");
/* Initialize the Signature object with a private key */
PrivateKey priv = pair.getPrivate();
dsa.initSign(priv);

/* Supply the data to be signed, and sign it */

Verifying the signature is straightforward:

ic key */
pair.getPublic();

dsa.initVerify(pub);

 Supply the data to be verified, and verify it */

System.out.println("signature verifies: " + verifies);

Suppose that, rather tha a public/private ou have only the components of your
e), and g (the base). Further

hich is in a byte

");

First, you create a Sig

byte array called data:

Signature dsa = Signature.getInstance("SHA

dsa.update(data);
byte[] sig = dsa.sign();

/* Initialize the Signature object with the publ
PublicKey pub =

/*
dsa.update(data);
boolean verifies = dsa.verify(sig);

n having key pair, y
DSA private key: x (the private key), p (the prime), q (the sub-prim
suppose that you want to use your private key to digitally sign some data, w

ray named someData. Then the following code should be used: ar

DSAPrivateKeySpec dsaPrivKeySpec =
 new DSAPrivateKeySpec(x, p, q, g);

KeyFactory keyFactory = KeyFactory.getInstance("DSA
ivateKey privKey = Pr

 - 175 -

Inside Java™ 2 Platform Security: Architecture, API Design, and Implementation, 2nd

 keyFactory.generatePrivate(dsaPrivKeySpec);

gnature sig = Signature.getInstance("SHA1withDSA");

byte[] signature = sig.sign();

This code how to cre ification and use a key factory to obtain a

eate

c =
 new DSAPublicKeySpec(y, p, q, g);

all
ePublic method on the DSA key factory already created in the preceding

ySpec);

nd it to Alice, along with the files containing the

a file to a byte array
rray named signature,

ey file to a byte array named
uns the following code, which illustrates how

 public key from its encoding. (Note: initVerify
.)

bKey);

ctory.getInstance("DSA");
.generatePublic(pubKeySpec);

("SHA1withDSA");

Si
sig.initSign(privKey);
sig.update(someData);

 also illustrates ate a key spec
PrivateKey from the key specification.

Now suppose that your personal attorney, Alice, wants to use the data you signed. For her to do so
and so that she can verify your signature, you need to send her three things: the data, the signature,
and the public key corresponding to the private key you used to sign the data. You can store the
someData bytes in one file and the signature bytes in another and send both files to Alice. For
the public key, assume, as in the previous signing example, that you have the components of the
DSA public key corresponding to the DSA private key used to sign the data. Then you can cr
a DSAPublicKeySpec from those components:

DSAPublicKeySpec dsaPubKeySpe

You still need to extract the key bytes so that you can put them in a file. To do this, you first c
the generat
example and then extract the encoded key bytes:

PublicKey pubKey = keyFactory.generatePublic(dsaPubKe
byte[] encKey = pubKey.getEncoded();

You now can store these bytes in a file and se
data and the signature.

Once Alice receives these files, she copies the data bytes from the dat
med data, the signature bytes from the signature file to a byte ana

and the encoded public-key bytes from the public-k
ature, she rencodedPubKey. To verify the sign

stantiate a DSAto use a key factory to in
quires a PublicKeyre

X509EncodedKeySpec pubKeySpec =
ySpec(encodedPu new X509EncodedKe

KeyFactory keyFactory = KeyFa
ublicKey pubKey = keyFactoryP

Signature sig = Signature.getInstance
sig.initVerify(pubKey);
sig.update(data);
sig.verify(signature);

Alice can also convert pubKey to a DSAPublicKeySpec in order to access the key
components:

DSAPublicKeySpec dsaPubKeySpec =

 - 176 -

Inside Java™ 2 Platform Security: Architecture, API Design, and Implementation, 2nd

 (DSAPublicKeySpec) keyFactory.getKeySpec(pubKey,
 DSAPublicKeySpec.class)

;

ach read a file that contains certificates. In the first, the certificates
ing and the end,

CERTIFICATE-----

t the mark and
am, which does support those methods. We

rateCertificate consumes only one certificate and the
tioned to the next certificate in the file:

etInstance("X.509");
lable()];

= new ByteArrayInputStream(bytes);
ais.available() > 0) {

ert = cf.generateCertificate(bais);

econd example shows how to parse a PKCS #7 [107] formatted certificate reply stored in a
e and extract all the certificates from it. A certificate reply is received from a Certification

ng a certificate signing request asking the CA to sign a certificate
authenticates your identity and returns one or more

that you are the owner of the public key. Suppose that filename is
). Here is the code:

leInputStream fis = new FileInputStream(filename);

ext()) {

(cert);

BigInteger y = dsaPubKeySpec.getY()
BigInteger p = dsaPubKeySpec.getP();
BigInteger q = dsaPubKeySpec.getQ();
BigInteger g = dsaPubKeySpec.getG();

10.6.4 Reading a File That Contains Certificates

The examples in this section e
are Base64-encoded. Such certificates are each bounded at the beginn
respectively, by

-----BEGIN

and

-----END CERTIFICATE-----.

In the first example, we convert a FileInputStream, which does not suppor
reset methods, to a ByteArrayInputStre
do this so that each call to gene
read position of the input stream is posi

FileInputStream fis = new FileInputStream(filename);
DataInputStream dis = new DataInputStream(fis);
CertificateFactory cf =
 CertificateFactory.g
byte[] bytes = new byte[dis.avai
dis.readFully(bytes);
yteArrayInputStream bais B
while (b
 Certificate c
 System.out.println(cert.toString());
}

The s
fil
Authority as a result of submitti

. The CA containing your public key
rtificates authenticating ce

the name of the file containing the certificate(s

Fi
CertificateFactory cf =
 CertificateFactory.getInstance("X.509");
Collection c = cf.generateCertificates(fis);
Iterator i = c.iterator();
while (i.hasN
 Certificate cert = (Certificate) i.next();
 System.out.println
}

 - 177 -

Inside Java™ 2 Platform Security: Architecture, API Design, and Implementation, 2nd

10.6.5 Using Encryption

This example takes you through the process of generating a key, creating and initializing a cipher

cryption Standard (DES).

o instantiate a for DES. We do not specify a
use

KeyGenerator

KeyGenerator keygen = KeyGenerator.getInstance("DES");
eKey();

The next step is to create a instance. To do this, we use one of the getInstance
s. We must specify the name of the requested transformation,

nts, separated by slashes (/):

• The padding scheme (optional)

ut a
.

S #5–style padding is
"PKCS5Padding":

Cipher desCipher;

cipher

We use

// In
desCi

// Ou
byte[] cleartext = "This is just an example".getBytes();

// Encrypt the cleartext
byte[] ciphertext = desCipher.doFinal(cleartext);

object, encrypting a file, and then decrypting it. Throughout this example, we use the Data
En

Generating a Key

To create a DES key, we have t KeyGenerator
provider, because we do not care about a particular DES key-generation implementation. Beca

 do not initialize the , a system-provided source of randomness will be usedwe
to create the DES key:

SecretKey desKey = keygen.generat

After the key has been generated, the same KeyGenerator object can be reused to create
further keys.

Creating a Cipher

Cipher
factory methods of the Cipher clas
which includes the following compone

• The algorithm name
• The mode (optional)

In this example, we create a DES (Data Encryption Standard) cipher in Electronic Code Book
mode, with PKCS #5–style padding. We do not specify a provider, because we do not care abo
particular implementation of the requested transformation

The standard algorithm name for DES is "DES", the standard name for the Electronic Code
Book mode is "ECB", and the standard name for PKC

// Create the
desCipher = Cipher.getInstance("DES/ECB/PKCS5Padding");

the generated desKey to initialize the Cipher object for encryption:

itialize the cipher for encryption
pher.init(Cipher.ENCRYPT_MODE, desKey);

r cleartext

 - 178 -

Inside Java™ 2 Platform Security: Architecture, API Design, and Implementation, 2nd

// Initialize the same cipher for decryption
desCipher.init(Cipher.DECRYPT_MODE, desKey);

Note tha

10.6.6

In th e ncryption key. It
wou
jav . e String are immutable;
that n or zero out the contents of a

jects unsuitable for storing security-
hould always collect and store security-

sensitive information in a char array instead. For that reason, the

The ll

 /

 p
IOE c
 char[] lineBuffer;

loop:

 case '\r':

Pushb

 }
 ((PushbackInputStream)in).unread(c2);
 } else
 break loop;

// Decrypt the ciphertext
byte[] cleartext1 = desCipher.doFinal(ciphertext);

t cleartext and cleartext1 are identical.

 Using Password-Based Encryption

is xample, we prompt the user for a password from which we derive an e
ld seem logical to collect and store the password in an object of type
a lang.String. However, here's the caveat: Objects of typ

 is, o methods are defined that allow you to change—overwrite—
String after usage. This feature makes String ob
sensitive information, such as user passwords. You s

javax.crypto.spec.PBEKeySpec class takes and returns a password as a char
array.

 fo owing method is an example of how to collect a user password as a char array:

 **
 * Reads user password from given input stream.
*/

 ublic char[] readPasswd(InputStream in) throws
x eption {

 char[] buf;
 int i;

 buf = lineBuffer = new char[128];

 int room = buf.length;
 int offset = 0;
 int c;

 while (true) {
 switch (c = in.read()) {
 case -1:
 case '\n':
 break loop;

 int c2 = in.read();
 if ((c2 != '\n') && (c2 != -1)) {
 if (!(in instanceof
ackInputStream)) {
 in = new PushbackInputStream(in);

 - 179 -

Inside Java™ 2 Platform Security: Architecture, API Design, and Implementation, 2nd

 default:

 buf = new char[offse
 room = buf.length - offset - 1;
 System.arraycopy(lineBuffer, 0, buf, 0,

rrays.fill(lineBuffer, ' ');

 }

) {
;

 Arrays.fill(buf, ' ');

In o r
sam

Factory keyFac;

x73, (byte)0x21, (byte)0x8c,
 (
};

// t
int c

// r
pbePa

// Prompt user for encryption password.
// Colle
// "readPa
// it into
// factory
System.o
System.o .
pbeKeySpec = new PBEKeySpec(readPasswd(System.in));
keyFac = SecretKeyFactory.getInstance("PBEWithMD5AndDES");

 if (--room < 0) {
t + 128];

offset);
 A
 lineBuffer = buf;
 }

 buf[offset++] = (char) c;
 break;
 }

 if (offset == 0
 return null
 }

 char[] ret = new char[offset];
 System.arraycopy(buf, 0, ret, 0, offset);

 return ret;
 }

rde to use PBE as defined in PKCS #5, we have to specify a salt and an iteration count. The
e salt and iteration count that are used for encryption must be used for decryption:

PBEKeySpec pbeKeySpec;
PBEParameterSpec pbeParamSpec;
SecretKey

// Salt
byte[] salt = {
 (byte)0xc7, (byte)0

 byte)0x7e, (byte)0xc8, (byte)0xee, (byte)0x99

I eration count
 ount = 20;

C eate PBE parameter set
ramSpec = new PBEParameterSpec(salt, count);

ct user password as char array (using the
sswd" method from above), and convert
 a SecretKey object, using a PBE key
.
.ut print("Enter encryption password: ");

ut flush();

 - 180 -

Inside Java™ 2 Platform Security: Architecture, API Design, and Implementation, 2nd

Sec e

// r
Cipher pbeCipher = Cipher.getInstance("PBEWithMD5AndDES");

c);

// Our cleartext
byte[] cleartext = "This is another example".getBytes();

// n
byt [

10.6.7

Addit on th the rest of the
cumentation at
java.sun.com/j2se/m.n/docs/guide/security/, where m.n refers

10.7 Standard Names

Whethe to
by speci rather according to adopted
standard d explains their backgrounds.

In some t explicitly listed,
to fa it
angle br aceholders to be replaced by specific
message digest, encryption algorithm, and other names.

insensitively. Thus, for

hms

Message digest algorithm names can be specified when generating an instance of

• MD2. The MD2 message digest algorithm as defined in RFC 1319 [59].

• SHA-1, SHA-256, SHA-384, and SHA-512. Hash algorithms as defined in Secure Hash
ed to provide 80

bits of
ed to provide
512 output.

r tKey pbeKey = keyFac.generateSecret(pbeKeySpec);

C eate PBE Cipher

// Initialize PBE Cipher with key and parameters
pbeCipher.init(Cipher.ENCRYPT_MODE, pbeKey, pbeParamSpe

E crypt the cleartext
e] ciphertext = pbeCipher.doFinal(cleartext);

 Additional Sample Programs

i al sample programs are shown in the JCE Reference Guide, available wi
security do
http://
to the release number. For example, the security documentation for the 1.4 release is at
http://java.sun.com/j2se/1.4/docs/guide/security/.

r in Java documentation or code, algorithms, certificates, and keystore types are referred
alized names. These names are not chosen randomly but
s. This section lists the names used an

 cases, naming conventions are suggested for forming names that are no
cil ate name consistency across provider implementations. Such suggestions use items in

ackets, such as <digest> and <encryption>, as pl

Note: Algorithm, certificate, and keystore type names are treated case
example, "dsa" and "DSA" are considered equivalent.

10.7.1 Message Digest Algorit

MessageDigest.

• MD5. The MD5 message digest algorithm as defined in RFC 1321 [102].

Standard, NIST FIPS 180-2 [93]. SHA-1 is a 160-bit hash function intend
bits of security. SHA-256 is a 256-bit hash function intended to provide 128
security against collision attacks. SHA-512 is a 512-bit hash function intend
256 bits of security. A 384-bit hash may be obtained by truncating the SHA-

 - 181 -

Inside Java™ 2 Platform Security: Architecture, API Design, and Implementation, 2nd

10.7.2 Key and Parameter Algorithms

Key and parameter algorithm names can be specified when generating an instance of
KeyPairGenerator, KeyFactory, KeyAgreement,

.

• DSA. The Digital Signature Algorithm as defined in FIPS PUB 186
Hellman. Diffie-Hellman Key Agreement as defined in PKCS #3: Diffie-Hellman

ment Standard, RSA Laboratories, version 1.4, November 1993
ish. The block cipher designed by Bruce Schneier

 Data Encryption Standard as described in FIPS PUB 46-2
le DES Encryption (DES-EDE)
sword-based encryption algorithm (PKCS #5)

ms

g an instance of

SA. The SHA-1 with DSA signature algorithm, which uses the SHA-1 digest
hm and DSA to create and verify DSA digital signatures as defined in FIPS PUB

• algorithm, which uses the MD5

• SHA1withRSA. The signature algorithm with SHA-1 and the RSA encryption algorithm
ility Workshop, using the padding conventions described

th a
r DSA,

just as was done for the explicitly defined standard names in this section, such as
 the

>and<mgf> can
n,

10.7.4

e specified when generating an instance of

rithm
rd,
tion

PRNG. It computes the SHA-1 hash over a true-random seed value concatenated
with a 64-bit counter, which is incremented by 1 for each operation. From the 160-bit

AlgorithmParameterGenerator, and AlgorithmParameters

• RSA. The RSA encryption algorithm as defined in PKCS #1

• Diffie
Key-Agree

• Blowf
• DES. The
• DESede. Trip
• PBE. The pas

10.7.3 Digital Signature Algorith

The following digital signature algorithm names can be specified when generatin
Signature:

• SHA1withD
algorit
186.

• MD2withRSA. The MD2 with RSA encryption signature algorithm, which uses the MD2
digest algorithm and RSA to create and verify RSA digital signatures as defined in PKCS
#1.
MD5withRSA. The MD5 with RSA encryption signature
digest algorithm and RSA to create and verify RSA digital signatures as defined in PKCS
#1.

as defined in the OSI Interoperab
in PKCS #1.

• <digest>with<encryption>. Used to form a name for a signature algorithm wi
particular message digest, such as MD2 or MD5, and algorithm, such as RSA o

MD2withRSA. For the new signature schemes defined in PKCS #1 v2.0, for which
<digest>with<encryption> form is insufficient, <digest>with<encryption
be used to form a name. Here, <mgf> should be replaced by a mask-generation functio
such as MGF1, for example, MD5withRSAandMGF1.

 Random-Number Generation Algorithms

Random-number generation algorithm names can b
SecureRandom.

• SHA1PRNG. The name of the pseudo-random-number generation (PRNG) algo
supplied by the SUN provider. This implementation follows the IEEE P1363 standa
given in its Appendix G.7, Expansion of Source Bits, and uses SHA-1 as the founda
of the

SHA-1 output, only 64 bits are used.

 - 182 -

Inside Java™ 2 Platform Security: Architecture, API Design, and Implementation, 2nd

10.7.5

Cert ca ateFactory.

10.7.6

Keys r KeyStore

• CS #12
• JCEKS. The name of the keystor tati ided by the SunJCE provider

A cryptographic service is always associated with a particular algorithm or type. For example, a
ways associated with a particular algorithm, such as DSA, and a
 service is always associated with a particular certificate type, such

e for cryptographic services. The service attributes can be used as
 value are case insensitive.

e. The maximum key size that the provider supports for the cryptographic service.
ementedIn. Whether the implementation for the cryptographic service is done by

re. The value of this attribute is "software" or "hardware".

mponent in a transformation when
requesting an instance of Cipher:

• AES. Advanced Encryption Standard as specified by NIST in a draft FIPS. Based on the
y Joan Daemen and Vincent Rijmen, AES is a 128-bit block cipher
8, 192, and 256 bits.

cryption Standard as described in FIPS PUB 46-2.
• DESede. Triple DES Encryption (DES-EDE).

 The
CS #5), using the specified message digest

do-random function (<prf>) and encryption algorithm (<encryption>).

 The password-based encryption algorithm as defined
A Laboratories, "PKCS #5: Password-Based Encryption Standard," version

ember 1993. Note that this algorithm implies CBC as the cipher mode

des or padding schemes.
o PBEWithHmacSHA1AndDESede. The password-based encryption algorithm

 in RSA Laboratories, "PKCS #5: Password-Based Cryptography
Standard," version 2.0, March 1999.

 Certificate Types

ifi te types can be specified when generating an instance of Certific

• X.509. The certificate type defined in X.509

 Keystore Types

to e types can be specified when generating an instance of .

• JKS. The name of the keystore implementation provided by the SUN provider
PKCS12. The transfer syntax for personal identity information as defined in PK

e implemen on prov

10.7.7 Service Attributes

digital signature service is al
CertificateFactory
as X.509.

The attributes in this section ar
filters for selecting providers. Both the attribute name and

• KeySiz
• Impl

software or hardwa

10.7.8 Cipher Algorithms, Modes, and Padding

Algorithms

The following names can be specified as the algorithm co

Rijndael algorithm b
supporting keys of 12

• Blowfish. The block cipher designed by Bruce Schneier.
• DES. The Digital En

• PBEWith<digest>And<encryption> or PBEWith<prf>And<encryption>.
password-based encryption algorithm (PK
(<digest>) or pseu
Examples:

o PBEWithMD5AndDES.
in RS
1.5, Nov
and PKCS5Padding as the padding scheme and cannot be used with any other
cipher mo

as defined

 - 183 -

Inside Java™ 2 Platform Security: Architecture, API Design, and Implementation, 2nd

• RC2, RC4, and RC5. Variable-key-size encryption algorithms developed by Ron Rivest
for RSA Data Security, Inc.

CS #1.

t in a transformation when

ode

efined in The National Institute of Standards and
) Federal Information Processing Standard (FIPS) PUB 81, "DES
n," U.S. Department of Commerce, December 1980

The following names can be specified as the padding component in a transformation when
 instance of Cipher:

.
• OAEPWith<digest>And<mgf>Padding. Optimal Asymmetric Encryption Padding

e digest
and <mgf> by the mask-generation function. Example:

 version 1.5, November 1993.
r

uct {
 opaque content[SSLCompressed.length];

ng_length;
ipher;

's

plies that if

This makes the padding scheme similar to PKCS5Padding, where the padding length is encoded in

therefore
k_length-1.

• RSA. The RSA encryption algorithm as defined in PK

Modes

The following names can be specified as the mode componen
requesting an instance of Cipher:

• NONE. No m
• CBC. Cipher Block Chaining mode, as defined in FIPS PUB 81
• CFB. Cipher Feedback mode, as defined in FIPS PUB 81
• ECB. Electronic Code Book mode, as d

Technology (NIST
Modes of Operatio

• OFB. Output Feedback mode, as defined in FIPS PUB 81
• PCBC. Propagating Cipher Block Chaining, as defined by Kerberos V4

Padding

requesting an

• NoPadding. No padding

scheme defined in PKCS #1, where <digest> should be replaced by the messag

OAEPWithMD5AndMGF1Padding.
• PKCS5Padding. The padding scheme described in RSA Laboratories, "PKCS #5:

Password-Based Encryption Standard,"
• SSL3Padding. The padding scheme defined in the SSL Protocol version 3.0, Novembe

18, 1996, section 5.2.3.2 (CBC block cipher):

block-ciphered str

 opaque MAC[CipherSpec.hash_size];
 uint8 padding[GenericBlockCipher.padding_length];
 uint8 paddi
 GenericBlockC}

The size of an instance of a GenericBlockCipher must be a multiple of the block cipher
block length.

The padding length, which is always present, contributes to the padding, which im

sizeof(content) + sizeof(MAC) % block_length = 0,

padding has to be block_length-1 bytes long, because o
padding_length.

f the existence of

the padding and ranges from 1 to block_length. With the SSL scheme, the
izeof(padding) is encoded in the always present padding_length and s

ranges from 0 to bloc

 - 184 -

Inside Java™ 2 Platform Security: Architecture, API Design, and Implementation, 2nd

Note that this padding mechanism is not supported by the SunJCE provider.

evious section. The
11

10.7.9 Key-Generator Algorithms

The following algorithm names can be specified when requesting an instance of
KeyGenerator. Most of these algorithms were described in the pr

acMD5 and HmacSHA1 algorithms are described in Section 10.7. .

t-Key Algorithms

Hm

• AES
• Blowfish
• DES
• DESede
• HmacMD5
• HmacSHA1

10.7.10 Secre

The following algorithm names can be specified when requesting an instance of
SecretKeyFactory. These algorithms were described in Section 10.7.8.

• AES
• DES
• DESede
• PBEWith<digest>And<encryption> or PBEWith<prf>And

factory for use with PKCS #5 password-based encryption, wh
<encryption>. Secret-key

ere <digest> is a message
n algorithm.

e only the low-

s

nstance of Mac:

 5. The HMAC-MD5 keyed-hashing algorithm as defined in RFC 2104:
 for Message Authentication" (February 1997).
-SHA1 keyed-hashing algorithm as defined in RFC 2104:

97).
ased message

authentication standard, where <mac> is a message authentication code algorithm name.

enting crypto algorithms, a provider should comply with existing standard
 specifications and their relationships with SDK

 or all the following fields are given for each algorithm
specification:

• Name. The name by which the algorithm is known. This is the name passed to the

termine the name of an existing algorithm object. These

digest, <prf> is a pseudo-random function, and <encryption> is an encryptio
Examples: PBEWithMD5AndDES (PKCS #5, v1.5) and
PBEWithHmacSHA1AndDESede (PKCS #5, v2.0). Note: Both of these us
order 8 bits of each password character.

10.7.11 MAC Algorithm

The following algorithm names can be specified when requesting an i

• HmacMD
"HMAC:Keyed-Hashing

• HmacSHA1. The HMAC
"HMAC: Keyed-Hashing for Message Authentication" (February 19

• PBEWith<mac>. MAC for use with PKCS #5 v2.0 password-b

Example: PBEWithHmacSHA1.

10.8 Algorithm Specifications

When implem
specifications. Following are some of these
implementations. In particular, some

getInstance method when requesting the algorithm and returned by the
getAlgorithm method to de

 - 185 -

Inside Java™ 2 Platform Security: Architecture, API Design, and Implementation, 2nd

methods are in the engine classes Signature
KeyPairGenerator, and AlgorithmP

, MessageDigest,
arameterGenerator.

airGenerator ParameterGenerator
 General notes about the algorithm, including any standards implemented by

m, applicable patents, and so on.
lgorithm (optional). The key pair algorithm for this algorithm.

Name: SHA-1

10.8.2 MD2 Message Digest Algorithm

ut of this algorithm
is a 128-bit (16-byte) digest.

10.8.3 MD5 Message Digest Algorithm

 of this algorithm

• Type. The type of algorithm: Signature, MessageDigest,
KeyP , or .

• Description.
the algorith

• Key Pair A
• Key Size (optional). Legal key sizes for a keyed algorithm or key-generation algorithm.
• Size (optional). Legal sizes for algorithm parameter generation for an algorithm

parameter generation algorithm.
• Parameter Defaults (optional). Default parameter values for a key-generation algorithm.
• Signature Format (optional). The format of the signature for a Signature algorithm,

that is, the input and output of the verify and sign methods, respectively.

10.8.1 SHA-1 Message Digest Algorithm

Type: MessageDigest

Description: The message digest algorithm as defined in NIST's FIPS 180-1. The output of this
algorithm is a 160-bit digest.

Name: MD2

Type: MessageDigest

Description: The message digest algorithm as defined in RFC 1319. The outp

Name: MD5

Type: MessageDigest

Description: The message digest algorithm as defined in RFC 1321. The output
is a 128-bit (16-byte) digest.

10.8.4 Digital Signature Algorithm

Name: SHA1withDSA

Type: Signature

Description: The signature algorithm described in NIST FIPS 186, using DSA with the SHA-1
message digest algorithm.

Key Pair Algorithm: DSA

 - 186 -

Inside Java™ 2 Platform Security: Architecture, API Design, and Implementation, 2nd

Signature Format: An ASN.1 sequence of two INTEGER values r and s, in that order:

SEQUENCE ::= { r INTEGER, s INTEGER }

10.8.5 RSA-Based Signature Algorithms

Names: MD2withRSA, MD5withRSA, and SHA1withRSA

Type: Signature

Description: The signature algorithms that use the MD2, MD5, and SHA-1
algorithms, respectively, with RSA encryption.

message digest

CS #1 block as defined in RSA Laboratory's Public Key
he data encrypted is the digest of the data signed.

IPS 186 for DSA.

t.

2b 35d70e1b 1ff91b28 e37a62ec dc34409b

f6 3413c5e1 2ed0899b

d9 346e38c5

399

counter = 263

Key Pair Algorithm: RSA

Signature Format: A DER-encoded PK
Cryptography Standards Note #1. T

10.8.6 DSA Key-Pair Generation Algorithm

Name: DSA

Type: KeyPairGenerator

Description: The key-pair generation algorithm described in NIST F

Key Size: The length, in bits, of the modulus p. This must range from 512 to 1,024 and must be a
multiple of 64. The default key size is 1,024.

Parameter Defaults: The following default parameter values are used for key sizes of 512, 768,
and 1,024 bits. The use of the parameter named counter is explained in the FIPS documen

For 512-bit key parameters:

SEED = b869c8

counter = 123

26d b078b05e decbcd1e p = fca682ce 8e12caba 26efccf7 110e5
 b4a208f3 ae1617ae 01f35b91 a47e6d
 cd132acd 50d99151 bdc43ee7 37592e17

q = 962eddcc 369cba8e bb260ee6 b6a126

g = 678471b2 7a9cf44e e91a49c5 147db1a9 aaf244f0 5a434d64
 86931d2d 14271b9e 35030b71 fd73da17 9069b32e 2935630e
 1c206235 4d0da20a 6c416e50 be794ca4

For 768-bit key parameters:

SEED = 77d0f8c4 dad15eb8 c4f2f8d6 726cefd9 6d5bb

 - 187 -

Inside Java™ 2 Platform Security: Architecture, API Design, and Implementation, 2nd

p = e9e64259 9d355f37 c97ffd35 67120b8e 25c9cd43 e927b3a9
 670fbec5 d8901419 22d2c3b3 ad248009 3799869d 1e846aab
 49fab0ad 26d2ce6a 22219d47 0bce7d77 7d4a21fb e9c270b5
 7f607002 f3cef839 3694cf45 ee3688c1 1a8c56ab 127a3daf

q = 9cdbd84c 9f1ac2f3 8d0f80f4 2ab952e7 338bf511

 f6cb9b55 6cd7813b 801d346f f26660b7 6b9950a5 a49f9fe8

Name: RSA

Type: KeyPairGenerator

ithm

Name: DSA

tion: The parameter-generation algorithm described in NIST FIPS 186 for DSA.

g = 30470ad5 a005fb14 ce2d9dcd 87e38bc7 d1b1c5fa cbaecbe9
 5f190aa7 a31d23c4 dbbcbe06 17454440 1a5b2c02 0965d8c2
 bd2171d3 66844577 1f74ba08 4d2029d8 3c1c1585 47f3a9f1
 a2715be2 3d51ae4d 3e5a1f6a 7064f316 933a346d 3f529252

For 1,024-bit key parameters:

SEED = 8d515589 4229d5e6 89ee01e6 018a237e 2cae64cd

counter = 92

p = fd7f5381 1d751229 52df4a9c 2eece4e7 f611b752 3cef4400
 c31e3f80 b6512669 455d4022 51fb593d 8d58fabf c5f5ba30

 047b1022 c24fbba9 d7feb7c6 1bf83b57 e7c6a8a6 150f04fb
 83f6d3c5 1ec30235 54135a16 9132f675 f3ae2b61 d72aeff2
 2203199d d14801c7

q = 9760508f 15230bcc b292b982 a2eb840b f0581cf5

g = f7e1a085 d69b3dde cbbcab5c 36b857b9 7994afbb fa3aea82
 f9574c0b 3d078267 5159578e bad4594f e6710710 8180b449
 167123e8 4c281613 b7cf0932 8cc8a6e1 3c167a8b 547c8d28
 e0a3ae1e 2bb3a675 916ea37f 0bfa2135 62f1fb62 7a01243b
 cca4f1be a8519089 a883dfe1 5ae59f06 928b665e 807b5525
 64014c3b fecf492a

10.8.7 RSA Key-Pair Generation Algorithm

Description: The key-pair generation algorithm described in PKCS #1.

Key Size: Any integer that is a multiple of 8, greater than or equal to 512.

10.8.8 DSA Parameter-Generation Algor

Type: ParameterGenerator

Descrip

Size: The length, in bits, of the modulus p. This must range from 512 to 1,024 and must be a
multiple of 64. The default size is 1,024.

 - 188 -

Inside Java™ 2 Platform Security: Architecture, API Design, and Implementation, 2nd

Chapter 11. Network Security

r

.
thin the confines of the corporate intranet, presumably

ions, such as securities

 deployed network-layer protocol, yet it has a number of well-
known security problems [6, 7]. To overcome these problems, security features have been added

oyed.

APIs that
 protocols: Kerberos V5 and TLS 1.0.

Integrity without knowledge is weak and useless, and knowledge without integrity is dangerous
and dreadful.

—Samuel Johnson

The importance of securing the communications path between distributed entities increases as ou
reliance on Internet technologies compounds. Today, transactions that only a few years ago we
would trust being done only over private networks are being conducted using Internet technology
Data communications might commence wi
a private network, or possibly traverse the open Internet. Applicat
transactions, payments, online banking, payroll, and health care, barely scratch the surface of the
types of things that we entrust to travel over open networks. Obviously, this data is extremely
sensitive, and all sorts of mischief could ensue if it were to be exposed to the wrong party or if it
were modified en route.

The Internet is a less than ideal medium to conduct such transactions. Version 4 of the Internet
Protocol [97] is the most widely

to the Internet Protocol [27, 61]. However, these protocols are not widely adopted and depl
Over time, this will certainly change, but in the meantime, the most widely deployed alternative is
to solve the security problems above the transport layer. The Java 2 platform provides
support the two most commonly used upper-layer security

In Section 8.5, we described the importance of authenticating communicating peers. Having a
ical but does nothing to strong assurance of the identities participating in a dialogue is crit

guarantee that the communication is kept confidential and that the messages have not been altered.

In this chapter, we complete the description of the Java GSS-API and the JSSE API, focusing on
the authentication, confidentiality, and integrity protection mechanisms they provide. To close the
chapter, we describe the security properties of Remote Method Invocation.

11.1 Java GSS-API

When we introduced Java GSS-API in Section 8.5.2, we described its general facility for
authenticating a distributed end entity. In this section, we go into the details of using the Java
GSS-API. Typically, the establishment of a Java GSS-API security context required for securely
exchanging messages between entities, such as a client and a server, encompasses authenticati
confidentiality, and integrity controls at the time the security context is negotiated.

ing Kerberos Creden

on,

11.1.1 Us tials with Java GSS-API

es
y for

r class can create instances of classes implementing the following
 methods to
pports.

GSSManager manager = GSSManager.getInstance();

The Java GSS-API framework itself is quite thin, with all security-related functionality delegated
to components obtained from the underlying mechanisms. The framework classes and interfac
are in the org.ietf.jgss package. The abstract GSSManager class serves as a factor
other Java GSS-API classes and also provides information about the mechanisms that are
supported. The GSSManage
interfaces: GSSName, GSSCredential, and GSSContext. The class also has
query for the list of available mechanisms and the name types that each mechanism su

Here is sample code showing how the GSSManager may be used. First, an instance of the
default GSSManager subclass may be obtained through the static method getInstance:

 - 189 -

Inside Java™ 2 Platform Security: Architecture, API Design, and Implementation, 2nd

The GSSName interface encapsulates a single GSS-API principal entity. The application obtains
an implementation of this interface through one of the

ds in the

GSSManager class. Conceptually, a contains many representations of the entity or

y
e:

id("1.2.840.113554.1.2.2");
 Oid krb5PrincipalNameType = new

 who the client wishes to be
GSSName userName = manager.createName("gfe",

-
c

// name format.
 =

manager.createName("nfs/foo.example.com",

 represents the service nfs running on the host machine
 in the Kerberos realm .

. A

he entity that it represents. It may contain multiple, distinct,
al elements, each containing information for a specific security

m context

tended to provide a "login to the network" function, as such a
function of new credentials rather than merely acquiring a handle to

redential.DEFAULT_LI
 krb5Mechanism,

The GSS-API itself does not dictate how an underlying mechanism obtains the credentials that are
It is assumed that prior to calling the GSS-API, these credentials are

obtained and stored in a location that the mechanism provider is aware of. The default model in
ate
or

createName metho
GSSName

many primitive name elements, one for each supported underlying mechanism. Different name
formats and their definitions are identified with universal object identifiers (OIDs), represented b
the Oid class. The format of a name can be derived based on the unique OID of its name typ

 Oid krb5Mechanism = new O

Oid("1.2.840.113554.1.2.2.1");
 // Identify

GSSName.NT_USER_NAME);
// Identify the name of the server. This uses a Kerberos
specifi

GSSName serverName

krb5PrincipalNameType);

The Kerberos V5 mechanism maps this last name to the Kerberos-specific form
nfs/foo.example.com@EXAMPLE.COM, where EXAMPLE.COM is the realm of the
principal. This principal
foo.example.com EXAMPLE.COM

The GSSCredential interface encapsulates the GSS-API credentials for an entity
credential contains all the necessary cryptographic information to enable the creation of a GSS
security context on behalf of t
mechanism-specific credenti
mechanism, but all referring to the same entity. A credential may be used to perfor
initiation, acceptance, or both.

GSS-API credential creation is not in
would involve the creation

existing credentials:

// Acquire credentials for the user
GSSCredential userCreds = manager.createCredential(userName,

GSSC FETIME,

GSSCredential.INITIATE_ONLY);

needed for authentication.

the Java 2 platform is that the mechanism providers must obtain credentials only from the priv
or public credential sets associated with the Subject in the current access control context. F
detailed information about Subjects, see Section 8.4 and in particular Section 8.4.7 abou
dynamic association of a

t
Subject with the current access control context.

 - 190 -

Inside Java™ 2 Platform Security: Architecture, API Design, and Implementation, 2nd

In the preceding example, the Kerberos V5 mechanism will search for the required INITIATE
credentials (KerberosTicket) in the private credential set, whereas another mechanism
might look in the public set or in both sets. This model has the advantage that credenti
management is simple and predictable from the point o
the right permissions, can purge t

al

application's f view. An application, given
he credentials in the Subject or renew them using standard

ed credentials. Multiple
 same or a different set of

 and
ntext

ailable

text that will
be

Context(serverName,

,
erCreds

 its
a communication channel of its choice. The context establishment occurs in a loop

,
d.

initSecContext acceptSecContext methods produce
s

 given in Section 11.1.2

Java APIs.

Security contexts are established between peers using locally acquir
contexts may exist simultaneously between a pair of peers using the
credentials. GSS-API functions in a manner independent of the underlying transport protocol
depends on its calling application to transport the tokens that are generated by the security co
between the peers. The GSSContext interface provides the security services that are av
over the context. Use a GSSManager to instantiate a GSSContext:

// Instantiate and initialize a security con

// established with the server
GSSContext context = manager.create
 krb5Mechanism, userCreds, GSSContext.DEFAULT_LIFETIME);

This returns an initialized security context that is aware of the peer that it must communicate with
the server, and the mechanism that it must use to do so. The client's credentials (us)
are necessary to authenticate to the peer.

Before the GSSContext can be used for its security services, a security context-has to be
established with an exchange of tokens between the two peers. Each call to a context
establishment method will generate an opaque token that the application must somehow send to
peer, using
where the initiator, such as a client, calls the GSSContext initSecContext method
and the accepter, such as a server, calls acceptSecContext until the context is establishe
While in this loop, the and
tokens that the application—client or server—sends to the peer. The peer passes any such token a
input to its acceptSecContext or initSecContext, as the case may be. More
information about security context establishment is .

ith which it has
an initiate other security contexts on behalf of

er environment. To enable this, the
all to initSecContext:

In the case of the Kerberos V5 mechanism, the delegated credential is a forwardable Ticket

Delegation of Credentials

Java GSS-API allows a client to delegate its credentials securely to the server w
established a security context, such that the server c
the client. This feature is useful for single sign-on in a multiti

t cclient requests credential delegation prior to making the firs

// Enable delegation of credential
context.requestCredDeleg(true);

The server receives the delegated credential after context establishment by invoking
getDelegCred on its instance of GSSContext. The server can then pass this
GSSCredential to the GSSManager.createContext method, pretending to be the
client.

Granting Ticket (TGT) that is encapsulated as part of the first token sent from the client to the
server. Using this TGT, the server can obtain a service ticket on behalf of the client for any other
service.

 - 191 -

Inside Java™ 2 Platform Security: Architecture, API Design, and Implementation, 2nd

Mitigating Single Sign-On Risks

The convenience of single sign-on also introduces new risks. Single sign-on environments
typically assume that the host operating environment has not been tampered with. Historically,
single sign-on environments have not had to contend with untrusted mobile code. Without proper

The Subject is prot ogue applets by means of the
n,

redentialPermission to read the sensitive
private credentials stored in it.

by Java GSS-API mechanism providers as they read

ition

edential
they cannot use them

ade to ensure that the caller has

uccessful GSSCredential acquisition implies that a TGT has been
che. A ServicePermission with action "initiate" and target

name of the form realm@realm" must be granted to the client code, where

The service principal krbtgt/EXAMPLE.COM@EXAMPLE.COM represents the Ticket
Granting Service (TGS) in the Kerberos realm EXAMPLE.COM, and the action "initiate"

security checks to thwart untrusted code from impersonating the user, all sorts of mayhem may
occur.

To illustrate, some details of the safeguards the permissions model must consider are given. For
example, suppose that the browser has performed a JAAS login at start-up time and associated a
Subject with all applets that run in it.

ected from r
javax.security.auth.AuthPermission class. A relevant AuthPermissio
with target "getSubject" or "getSubjectFromDomainCombiner", is checked
whenever code tries to obtain a reference to the Subject associated with any access control
context. Even if it were given access to a Subject, an applet needs a
javax.security.auth.PrivateC

Other kinds of checks are to be done
credentials and establish security contexts on behalf of the credentials' owners. In order to support
the Kerberos V5 mechanism, two new permission classes have been added within the
javax.security.auth.kerberos package:

ServicePermission(String servicePrincipal, String action)
DelegationPermission(String principals)

As new GSS-API mechanisms are standardized for inclusion in J2SE, packages will be added that
contain relevant permission classes for providers of those mechanisms.

Credential Acquis

The GSSManager.createCredential method obtains mechanism-spe
ject. The method then stores them in a GSSCr

cific credential
elements from the current Sub
container. Allowing applets to acquire GSSCredentials freely, even if
to do much, is undesirable. Doing so would leak information about the existence of user and

efore an application can acquire a GSSCredential with any service principals. Thus, b
Kerberos credential elements within it, an authorization check is m

ission. the necessary ServicePerm

On the client side, a s
accessed from a ca

"krbtgt/
realm is a placeholder for the actual realm. Here is a sample instantiation of such a
ServicePermission:

ServicePermission("krbtgt/EXAMPLE.COM@EXAMPLE.COM",
"initiate");

 - 192 -

Inside Java™ 2 Platform Security: Architecture, API Design, and Implementation, 2nd

suggests that a ticket to this service is being accessed
used in this permission check at the time of clientside

. The TGS service principal will always be
 credential acquisition.

code,
vice principal and

Here, the service principal nfs/foo.example.com represents the Kerberos service

Of course, the

 and target name of the form
 such

vents unauthorized code from obtaining and using a Kerberos service ticket for the
principal ftp@EXAMPLE.COM.

angerous.
us

ted
his

rver side, the permission to use the secret key to accept incoming security context

An
princ a
servers a
Kerbero e
context appropriate
javax.security.auth.kerberos.DelegationPermission to delegate

On the server side, a successful GSSCredential acquisition implies that a secret key has
been accessed from a cache. A ServicePermission with action "accept" and target
name of the form "servicePrincipal@realm" must be granted to the client
where servicePrincipal and realm are placeholders for the actual ser
realm, respectively. Here is an example:

ServicePermission("nfs/foo.example.com@EXAMPLE.COM",
"accept");

principal, and the action "accept" suggests that the secret key for this service is being
requested.

Context Establishment

An application that has permissions to contact a particular server—say, the LDAP server—must
not instead contact a different server, such as the FTP (file transfer protocol) server.
application might be restricted from doing so with the help of a
java.net.SocketPermission. Even if the network connection is permitted, it is still
possible to use a ServicePermission to restrict the application from authenticating using
an acquired identity.

When the Kerberos mechanism provider is about to initiate context establishment, it checks that a
ServicePermission with action "initiate"
"servicePrincipal@realm" has been granted to the client code. Here is a sample
ServicePermission:

ServicePermission("ftp@EXAMPLE.COM", "initiate");

This check pre

Providing limited access to specific service principals using this permission is still d
Downloaded code is allowed to communicate back with the host it originated from. A malicio
applet could send back the initial GSS-API output token that contains a Kerberos Ticket encryp
in the target service principal's long-term secret key, thus exposing it to an off-line attack. For t
reason, it is not advisable to grant any "initiate" ServicePermission to untrusted
code.

On the se
establishment requests is already checked during credential acquisition. Hence, no checks are
made in the context establishment stage.

Credential Delegation

application that has permission to establish a security context with a server on behalf of a
l also has the ability to request that credentials be delegated to that serverip . But not all
re trusted to the extent that all credentials can be delegated to them. Thus, before a

s provider obtains a delegated credential to send to the peer, the provider checks that th
initiator—the client in the previous examples—has an

 - 193 -

Inside Java™ 2 Platform Security: Architecture, API Design, and Implementation, 2nd

cred ti
name th
specifyi
DelegationPermission instantiation:

 "\"ftp@EXAMPLE.COM\"

mes in this

SS-API does not allow nother
API, such as JSSE, might support this idea at some point in the future.

 Java GSS-A nge messages secure tween them, they
ty context using their credentials. As previously noted, the

and

establishment. This

fic

text that will
be
//
GSSContext context = manager.createContext(serverName,

// se
// es
 c
 c
 c

t,
e

er instance, all optional services will be available locally. They are mutual

 for

e context establishment occurs in a loop, in which the initiator, such as a client, calls
initSecContext, and the accepter, such as a server, calls acceptSecContext until

en als on behalf of the principal to the server. A DelegationPermission has a target
at is a String composed of two Strings designating service principals. When
ng such a String, each inner quote is escaped by a "\". Here is a sample

DelegationPermission(

 \"krbtgt/EXAMPLE.COM@EXAMPLE.COM\"");

This permission allows the Kerberos service principal ftp@EXAMPLE.COM to receive a
forwarded TGT, represented by the Ticket Granting Service
krbtgt/EXAMPLE.COM@EXAMPLE.COM. The use of two principal na
permission allows for finer-grained delegation, such as proxy tickets for specific services, unlike a
carte blanche forwarded TGT. Even though the G for proxy tickets, a

11.1.2 Establishing a Security Context

Before two applications can use PI to excha ly be
must establish a joint securi
org.ietf.jgss.GSSContext interface encapsulates the GSS-API security context
provides the security services that are available. Both applications create and use a
GSSContext object to establish and maintain the shared information that makes up the security
context. If the GSSContext is instantiated using the default GSSManager instance, the
Kerberos V5 GSS-API mechanism is guaranteed to be available for context
mechanism is identified by the Oid "1.2.840.113554.1.2.2" and is defined in RFC
1964 [76].

Before the context establishment phase is initiated, the context initiator may request speci
characteristics desired of the established context:

// Instantiate and initialize a security con

established with the server

krb5Mechanism, userCreds, GSSContext.DEFAULT_LIFETIME);
t desired context options prior to context
tablishment
ontext.requestConf(true);
ontext.requestMutualAuth(true);
ontext.requestReplayDet(true);

 context.requestSequenceDet(true);

Not all underlying mechanisms support all characteristics that a caller might desire. After the
context is established, the caller can check the characteristics and services offered by that contex
using various query methods. When using the Kerberos V5 GSS-API mechanism offered by th
default GSSManag
authentication, credential delegation, confidentiality and integrity protection, and per-message
replay detection and sequencing. Note that in the GSS-API, message integrity is a prerequisite
message confidentiality.

Recall that th

 - 194 -

Inside Java™ 2 Platform Security: Architecture, API Design, and Implementation, 2nd

the context is established. During the context establishment phase, the isProtReady meth
may be called to determine whether the context can be used for the per-message operations of

od

that aren't yet fully established.

the isProtReady method returns true, the query
routines determine the characteristics and services of the established context.

ns to the

ed.
l threads unless some

application-level synchronization is in place.

age GSSContext methods to
xt interface's wrap and

d quality of protection

e used.

 methods of the GSSContext interface, an
instance of the MessageProp class is used to indicate the QOP and confidentiality services to

ll

// perform wrap on an application-supplied message, appMsg,
// using QOP = 0, and requesting privacy service
byt
MessageProp mProp = new MessageProp(0, true);

g, 0, appMsg.length, mProp);
sendToken(tok);

In Section 8.5.3

wrap, for confidentiality, and getMIC, for integrity controls. This allows applications to use
per-message operations on contexts

After the context has been established or
can be invoked to

The application can also start using the per-message methods of wrap and getMIC to obtain
cryptographic operations on application-supplied data and then send the resulting toke
other application with which it has established a security context. The receiver calls the unwrap
or verifyMIC method to interpret each token. When the context is no longer needed, the
application should call dispose to release any system resources the context may be using.

A security context typically maintains sequencing and replay detection information about the
tokens it processes. Therefore, the sequence in which any tokens are presented to this context for
processing can be important. Also note that none of the methods in this interface are synchroniz
Therefore, it is not advisable to share a GSSContext among severa

11.1.3 Message Security

The MessageProp utility class is used within the per-mess
convey per-message properties. When used with the GSSConte
getMIC methods, an instance of this class is used to indicate the desire
(QOP) and to specify whether confidentiality services are to be applied to caller-supplied data
(wrap only). To request the default QOP, the value of 0 should b

When used with the unwrap and verifyMIC

be applied over the supplied message. In the case of verifyMIC, the confidentiality state wi
always be false:

e [] appMsg ...

byte [] tok = context.wrap(appMs

// release the local end of the context
context.dispose();

11.2 JSSE

, we described the mechanics of authentication supported by JSSE. This section

th,

provides API details and explains how to leverage the authentication and use it to provide
confidentiality and integrity controls so that data passing between communicating peers is
protected from unauthorized disclosure and is resistant to tampering. If the data is tampered wi
the integrity controls will indicate that the data has been corrupted. The core JSSE classes are in
the javax.net and javax.net.ssl packages.

 - 195 -

Inside Java™ 2 Platform Security: Architecture, API Design, and Implementation, 2nd

11.2.1 Establishing an SSL Context

An SSLSocket is created either by an SSLSocketFactory or by an
SSLServerSocket accepting an in-bound connection. (In turn, an SSLServerSocket
is created by an SSLServerSocketFactory.) Both SSLSocketFactory and
SSLServerSocketFactory objects are created by an SSLContext.

The simplest technique is to call the static getDefault method on either the
SSLSocke or class. These methods cretFactory SSLServerSocketFactory ate a
default SSLContext with a default KeyManager, TrustManager, and secure random-

 of JSSE, the key material used is found in the default

s to
xt class and then initialize the

conte t hree arguments: an
array of
SecureRandom
objects a g the appropriate interface(s) or using the
Key a
imple e ManagerFactory TrustManagerFactory can then
each be i gument to the
Tru t
getTrustManagers method (in TrustManagerFactory) and getKeyManagers

y) can be called to obtain the array of trust or key managers,

 addition of public socket-level functionality. (See, for example,
SSLSocketFactory in Section 11.2.4

number generator. For Sun's implementation
keystore/truststore.

The approach that gives the caller the most control over the behavior of the created context i
call the static method getInstance on the SSLConte

x by calling the instance's init method. The init method takes t
KeyManager objects, an array of TrustManager objects, and a

 random-number generator. The KeyManager and TrustManager
re created by either implementin

M nagerFactory and TrustManagerFactory classes to generate
m ntations. The Key and

nitialized with key material contained in the KeyStore passed as an ar
s ManagerFactory/KeyManagerFactory init method. Finally, the

method (in KeyManagerFactor
one for each type of trust or key material.

Once an SSL connection is established, an SSLSession is created that contains various
information, such as identities established, cipher suite used, and so on. The SSLSession is
then used to describe an ongoing relationship and state information between two entities. Each
SSL connection involves one session at a time, but that session may be used on many connections
between those entities, simultaneously or sequentially. The following sections describe the core
JSSE classes.

11.2.2 SocketFactory and ServerSocketFactory Classes

The abstract javax.net.SocketFactory class is used to create sockets. It must be
subclassed by other factories, which create particular subclasses of sockets and thus provide a
general framework for the

.) The javax.net.ServerSocketFactory
ed specifically for creating server class is analogous to the SocketFactory class but is us

sockets.

Socket factories are a simple way to capture a variety of policies related to the sockets being
constructed, producing such sockets in a way that does not require special configuration of the
code that asks for the sockets.

• Due to polymorphism of both factories and sockets, various kinds of sockets can be used
by the same application code just by passing various kinds of factories.

• Factories can themselves be customized with parameters used in socket construction. So,
for example, factories could be customized to return sockets with various networking
timeouts or security parameters already configured.

 - 196 -

Inside Java™ 2 Platform Security: Architecture, API Design, and Implementation, 2nd

• The sockets returned to the application can be subclasses of java.net.Socket (or
javax.net.ssl.SSLSocket) so that they can directly expose new APIs for
features as compression, security, record marking, statistics collection, or firewall
tunneling.

 such

 a subclass of the standard
l

lass but
ally for creating server sockets.

Instances of SSLSocket can be obtained in two ways. First, an SSLSocket can be created
n

SSLSocketFactory and SSLServerSocketFactory Classes

ory acts as a factory for creating secure sockets.
This class is an abstract sub .

ring secure sockets.
the like.

javax.net.ssl.SSLServerSocketFactory the

re

od

ts to specify

s
arameter.)

3. Cons ory with specifically configured behavior.

The default configured to support server authentication only so that sockets
l

d

11.2.3 SSLSocket and SSLServerSocket Classes

The javax.net.ssl.SSLSocket class,
java.net.Socket class, supports all the standard socket methods and adds additiona
methods specific to secure sockets. Instances of this class encapsulate the unSSLContext der
which they were created. There are APIs to control the creation of secure socket sessions for a
socket instance, but trust and key management are not directly exposed. The
javax.net.ssl.SSLServerSocket class is analogous to the SSLSocket c
is used specific

by an instance of SSLSocketFactory via one of the several createSocket methods o
that class. The second way to obtain an SSLSocket is through the accept method on the
SSLServerSocket class.

11.2.4

A javax.net.ssl.SSLSocketFact
class of javax.net.SocketFactory

Secure socket factories encapsulate the details of creating and initially configu
This includes authentication keys, peer certificate validation, enabled cipher suites, and
The class is analogous to
SSLSocketFactory class but is used specifically for creating server sockets.

The three primary ways of obtaining an SSLSocketFactory a

1. Getting the default factory by calling the SSLSocketFactory.getDefault
static method.

2. Receiving a factory as an API parameter. That is, code that needs to create sockets but
that doesn't care about the details of how the sockets are configured can include a meth
with an SSLSocketFactory parameter that can be called by clien
which SSLSocketFactory to use when creating sockets. (For example,
javax.net.ssl.HttpsURLConnection has
setDefaultSSLSocketFactory and setSSLSocketFactory method
that each has an SSLSocketFactory p

tructing a new fact

 factory is typically
created by the default factory do not leak any more information about the client than a norma
TCP socket would.

Many classes that create and use sockets do not need to know the details of socket creation
behavior. Creating sockets through a socket factory passed in as a parameter is a good way of
isolating the details of socket configuration and increases the reusability of classes that create an
use sockets.

 - 197 -

Inside Java™ 2 Platform Security: Architecture, API Design, and Implementation, 2nd

You can create new socket factory instances either by implementing your own socket factory
subclass or by using another class that acts as a factory for socket factories. One example of such a
class is SSLContext (Section 11.2.8), which is provided with the JSSE implementation as a

ts
r

ss
ation and last use. A

session also contains a shared master secret negotiated between the peers that is used to create

socket
implementation and is not exposed through the SSLSession API.

l via

. See the
java.net.URL, java.net.URLConnection, and

tion classes for more information about how HTTP URLs
are constructed and used.

On obtaining an HttpsURLConnection, you can configure a number of HTTP/HTTPS
network connection via the method

URLConnection.connect. Of particular interest are

• Setting the assigned HostnameVerifier

ample, you may wish to tunnel through a proxy
actory could

HttpsURLConnection to use additional proxies.

tFactory that is
assigned when the class is loaded. Future instances of will inherit

 is

setSSLSocketFactory method.

provider-based configuration class.

11.2.5 SSLSession Interface

A javax.net.ssl.SSLSession represents a security context negotiated between the
two peers of an SSLSocket connection. Assuming that the peers share compatible
SSLContext data, once a session has been arranged, it can be shared by future SSLSocke
connected between the same two peers. The session contains the cipher suite that will be used fo
communications over a secure socket, as well as a nonauthoritative hint as to the network addre
of the remote peer and management information, such as the time of cre

cryptographic keys for encrypting and guaranteeing the integrity of the communications over an
SSLSocket. The value of this master secret is known only to the underlying secure

11.2.6 HttpsURLConnection Class

The HTTPS protocol is similar to HTTP, but HTTPS first establishes a secure channe
SSL/TLS sockets before requesting/receiving data. The class

nds the javax.net.ssl.HttpsURLConnection exte
java.net.HttpsURLConnection class, which itself extends
java.net.URLConnection, and adds support for HTTPS-specific features

java.net.HttpURLConnec

parameters before initiating the

• Setting the assigned SSLSocketFactory

Setting the Assigned SSLSocketFactory

In some situations, it is desirable to specify the SSLSocketFactory that an
HttpsURLConnection instance uses. For ex
type that isn't supported by the default implementation. The new SSLSocketF
return sockets that have already performed all necessary tunneling, thus allowing

The HttpsURLConnection class has a default static SSLSocke
HttpsURLConnection

the current default SSLSocketFactory until a new default SSLSocketFactory
assigned to the class via the static
HttpsURLConnection.setDefaultSSLSocketFactory method. Once an
instance of HttpsURLConnection has been created, the inherited
SSLSocketFactory on this instance can be overridden with a call to the

 - 198 -

Inside Java™ 2 Platform Security: Architecture, API Design, and Implementation, 2nd

Setting the Assigned HostnameVerifier

If the host name of the URL does not match that in the credentials received as part of the SSL/T
handshake, it's possible that URL spoofing has occurred. If the implementation cannot determ
host name ma h with reasonable certainty, the SSL im

LS
ine a

tc plementation will perform a callback to the
instance's assigned HostnameVerifier for further checking. The host name verifier can

e

ovider na e
wing services:

 public and private keys suitable for the RSA

2withRSA, MD5withRSA, and
SHA1withRSA.

 class is an engine class (Section 10.2

perform whatever steps are necessary to make the determination, such as performing alternativ
host name pattern matching or perhaps popping up an interactive dialog box. An unsuccessful
verification will close the connection. See [100] for more information about host name
verification.

11.2.7 The SunJSSE Provider

Sun Microsystems' version of JSSE comes standard with a pr med Sun-JSSE. Th
SunJSSE provider package supplies the follo

• A key factory implementation supporting the RSA algorithm
• A key-pair generator for generating a pair of

algorithm
• A keystore supporting PKCS12
• Digital signature algorithms supporting MD

• Key manager and trust manager factories that handle X.509 certificates.
• SSLContext implementations for SSL, SSLv3, TLS, and TLSv1 protocols.

11.2.8 SSLContext Class

The javax.net.ssl.SSLContext) for an
. An instance of this class acts as a factory for SSL

orted.

ect

ing the

 an

ed from this context. You can control which protocols are enabled for

implementation of a secure socket protocol
socket factories. An SSLContext holds all the state information shared across all sockets
created under that context. For example, session state is associated with the SSLContext when
it is negotiated through the handshake protocol by sockets created by socket factories provided by
the context. These cached sessions can be reused and shared by other sockets created under the
same context.

Each instance is configured through its init method with the keys, certificate chains, and trusted
root CA certificates that it needs to perform authentication. This configuration is provided in the
form of key and trust managers. These managers provide support for the authentication and key-
agreement aspects of the cipher suites supported by the context. Currently, only X.509-based
managers are supp

11.2.9 Creating an SSLContext Obj

Like other JCA provider-based engine classes, SSLContext objects are created us
getInstance factory methods of the SSLContext class. These static methods each return
an instance that implements at least the requested secure socket protocol. The returned instance
may implement other protocols too. For example, getInstance("SSLv3") may return
instance that implements SSLv3 and TLSv1. The getSupportedProtocols method
returns a list of supported protocols when an SSLSocket or SSLServerSocket is created
from a socket factory obtain
an SSL connection by using the method setEnabledProtocols(String[]
protocols). Refer to the API documentation for this method in the SSLSocket and
SSLServerSocket classes for more information.

 - 199 -

Inside Java™ 2 Platform Security: Architecture, API Design, and Implementation, 2nd

Note: An SSLContext object is automatically created, initialized, and statically assigned to the
efault.

SLContext ly, unless you

Instance factory method, you must
pply the

xt getInstance(String protocol);
public static SSLContext getInstance(String protocol, String

);
public static SSLContext getInstance(String protocol,

 provider);

e

n if

"SSL" . Here is

SSLContext

,

which an ained. Likewise, the SecureRandom

p

onnection will be terminated. To authenticate the remote identity of a secure socket
s. You

SSLSocketFactory class when you call SSLSocketFactory.getD
 object directTherefore, you don't have to create and initialize an S

want to override the default behavior.

To create an SSLContext object by calling a get
specify the protocol name. You may also specify which provider you want to su
implementation of the requested protocol:

public static SSLConte

 provider

Provider

If just a protocol name is specified, the system will determine whether an implementation of th
requested protocol is available in the environment and, if there is more than one, if one is
preferred. If both a protocol name and a provider are specified, the system will determine whether
an implementation of the requested protocol is in the provider requested and throw an exceptio
there is not.

A protocol is a string, such as , that describes the secure socket protocol desired
an example of obtaining an SSLContext:

SSLContext sc = SSLContext.getInstance("SSL");

A newly created should be initialized by calling the init method:

public void init(KeyManager[] km, TrustManager[] tm
 SecureRandom random);

If the KeyManager[] parameter is null, an empty KeyManager will be defined for this
context. If the TrustManager[] parameter is null, the installed security providers will be
searched for the highest-priority implementation of the TrustManagerFactory, from

 appropriate TrustManager will be obt
parameter may be null, in which case a default implementation will be used.

If the internal default context is used—for example, when an SSLContext is created in the
internals of JSSE—a default KeyManager and TrustManager are created. The default
SecureRandom im lementation is also chosen.

11.2.10 TrustManager Interface

The primary responsibility of the javax.net.ssl.TrustManager is to determine
whether the presented authentication credentials should be trusted. If the credentials are not
trusted, the c
peer, you need to initialize an SSLContext object with one or more TrustManager
need to pass one TrustManager for each authentication mechanism that is supported. If
null is passed into the SSLContext initialization, a trust manager will be created for you.
Typically, an SSLContext has a single trust manager. It is also common for the trust manager
to support authentication based on X.509 public-key certificates. Some secure socket

 - 200 -

Inside Java™ 2 Platform Security: Architecture, API Design, and Implementation, 2nd

implementations may also support authentication based
mechanisms.

 on shared secret keys, Kerberos, or other

d

al factories can be implemented and
configured to provide additional or alternative trust managers that provide more sophisticated

ecific authentication policies.

stance(String algorithm);

);

s basic X.509-based certification path validity checking.

For many factories, such as the default SunX509 TrustManagerFactory from the
 in

e

11.2.11 TrustManagerFactory Class

The javax.net.ssl.TrustManagerFactory is an engine class for a providerbase
service that acts as a factory for one or more types of TrustManager objects. The SunJSSE
provider from Sun Microsystems implements a factory that can return a basic X.509 trust
manager. As of J2SE 1.4.2, Sun Microsystems also supplies a CertPath-based PKIX trust
manager, SunPKIX, in addition to the simple legacy SunX509 trust manager. Because
TrustManagerFactory is provider based, addition

services or that implement installation-sp

To create an instance of a TrustManagerFactory, the static getInstance method is
invoked, passing in an algorithm name string and an optional provider specification:

public static TrustManagerFactory
 getIn
public static TrustManagerFactory
 getInstance(String algorithm,
 String provider);
public static TrustManagerFactory
 getInstance(String algorithm,
 Provider provider);

A sample algorithm name string is

"SunX509"

A sample call is the following:

TrustManagerFactory tmf =
 TrustManagerFactory.getInstance("SunX509", "SunJSSE"

The preceding call creates an instance of the SunJSSE provider's default trust manager factory,
which provide

A newly created factory should be initialized by calling one of the init methods:

public void init(KeyStore ks);
public void init(ManagerFactoryParameters spec);

Which init method should be invoked depends on what is appropriate for the
TrustManagerFactory being used. (Ask the provider vendor.)

SunJSSE provider, the java.security.KeyStore is the only information required
order to initialize the TrustManagerFactory, and thus the first init method is th
appropriate one to call. The TrustManagerFactory will query the KeyStore for
information on which remote certificates should be trusted during authorization checks.

 - 201 -

Inside Java™ 2 Platform Security: Architecture, API Design, and Implementation, 2nd

In some cases, initialization parameters other than a Key
Users of that particular provider are expected to pass an im

Store may be needed by a provider.
plementation of the appropriate

parameters B, R, and S from any application that wishes to use that provider. Like all providers

that the provider

 and pass it to the second init. Here is what

hout having to be explicitly
 any other parameters. For example, they may access trust

om a local directory service via LDAP, may use a remote on-line certificate status-
king server, or may access default trust material from a standard local location.

authentication credentials that
t peer—
or more

 that
nager

anager is created.
on for the key manager to

cket
erberos, or other

nPKIX, in
y is
onal or

ssing
ethod:

ManagerFactoryParameters as defined by the provider. The provider can then call
methods in the ManagerFactoryParameters implementation to obtain the needed
information.

For example, suppose that the TrustManagerFactory provider requires initialization

that require initialization parameters other than a KeyStore, the provider will require that the
application provide an instance of a class that implements a particular
ManagerFactoryParameters subinterface. In our example, suppose
requires that the calling application implement and create an instance of
MyTrustManagerFactoryParams
MyTrustManagerFactoryParams may look like:

public interface MyTrustManagerFactoryParams extends
 ManagerFactoryParameters {
 public boolean getBValue();
 public float getRValue();
 public String getSValue():
}

Some trust managers are capable of making trust decisions wit
initialized with a KeyStore object or
material fr
chec

11.2.12 KeyManager Interface

The primary responsibility of the KeyManager is to select the
will eventually be sent to the remote host. To authenticate yourself—a local secure socke
to a remote secure socket peer, you need to initialize an SSLContext object with one
KeyManagers. You need to pass one KeyManager for each authentication mechanism

LContext initialization, no KeyMawill be supported. If null is passed into the SS
will be available. If the internal default context is used, a default KeyM

text has a single key manager. It is also commTypically, an SSLCon
support authentication based on X.509 public-key certificates. Some secure so
implementations may also support authentication based on shared secret keys, K
mechanisms.

11.2.13 KeyManagerFactory Class

The javax.net.ssl.KeyManagerFactory class is an engine class for a
providerbased service that acts as a factory for one or more types of KeyManager objects. The

anager. As of J2SE SunJSSE provider implements a factory that can return a basic X.509 key m
4.2, Sun Microsystems also supplies a Cert-Path-based PKIX key manager, Su1.

addition to the simple legacy SunX509 key manager. Because KeyManagerFactor
provider based, additional factories can be implemented and configured to provide additi
alternative key managers.

An instance of this class is constructed in a similar manner to SSLContext, except for pa
an algorithm name string instead of a protocol name to the getInstance m

 - 202 -

Inside Java™ 2 Platform Security: Architecture, API Design, and Implementation, 2nd

public static KeyManagerFactory
 getInstance(String algorithm);

ic KeyManagerFactory
,

 String provider);
lic static KeyManagerFactory

 getInstance(String algorithm,

e string is

A sample call is the following:

eyManagerFactory kmf =
 KeyManagerFactory.getInstance("SunX509", "SunJSSE");

The preceding call creates an instance of the SunJSSE provider's default key manager factory,
hich provides basic X.509-based authentication keys.

 newly created factory should be initialized by calling one of the init methods:

public void init(KeyStore ks, char[] password);
ublic void init(ManagerFactoryParameters spec);

voke whichever init method is appropriate for the KeyManagerFactory being used.

For many factories, such as the default SunX509 KeyManagerFactory from the SunJSSE
ovider, only the KeyStore and password are required in order to initialize the

, and thus the first init method is the appropriate one to call. The
eyManagerFactory will query the KeyStore for information on which private key and
atching public-key certificates should be used for authenticating to a remote socket peer. The

password parameter specifies the password that will be used with the methods for accessing keys
om the KeyStore. All keys in the KeyStore must be protected by the same password.

 some cases, initialization parameters other than a KeyStore and password may be needed by
provider. Users of that particular provider are expected to pass an implementation of the

appropriate ManagerFactoryParameters as defined by the provider. The provider can
en call methods in the ManagerFactoryParameters implementation to obtain the
eded information.

me factories are capable of providing access to authentication material without having to be
tialized with a KeyStore object or any other parameters. For example, they may access key

aterial as part of a login mechanism, such as one based on JAAS. As indicated earlier, the
nJSSE provider supports a SunX509 factory that must be initialized with a KeyStore

eter.

javax.net.ssl.KeyManagerFactory class is an engine class for a
oviderbased service that acts as a factory for one or more types of KeyManager objects. The
nJSSE provider implements a factory that can return a basic X.509 key manager. Because it is

provider based, additional factories can be implemented and configured to provide additional or
ternative key managers.

public stat
 getInstance(String algorithm

pub

 Provider provider);

A sample algorithm nam

"SunX509"

K

w

A

p

In

pr
KeyManagerFactory
K
m

fr

In
a

th
ne

So
ini
m
Su
param

The
pr
Su

al

 - 203 -

Inside Java™ 2 Platform Security: Architecture, API Design, and Implementation, 2nd

11.3 Remote Method Invocation

Remote Method Invocation (RMI) enables objects in one Java virtual machine to seamlessly
invoke methods on objects in a remote Java virtual machine. To accomplish the remote

arshals the arguments to the method, using object serialization, and
ation across the wire to the server. On the server side, the call is

ing

ion, as appropriate.

ode

n
mission

java.net.Socket network communication: "connect" to make a remote call to an

ct when that remote

xported will be restored.

The class java.rmi.activation.Activatable and the RMI daemon, , were

ay

When it launches a JVM for an activation group, rmid uses the information in the group's

optional ActivationGroupDesc.CommandEnvironment that includes the command
d to the

n's

 is used to grant rmid

invocation, an RMI stub m
sends the marshaled invoc
received by the RMI system and connected to a skeleton, which is responsible for unmarshal
the arguments and invoking the server's implementation of the method. When the server's
implementation completes, either by returning a value or by throwing an exception, the skeleton
marshals the result and sends a reply to the client's stub. The stub unmarshals the reply and either
returns the value or throws the except

11.3.1 RMI Security Basics

This distributed programming model has obvious security implications. To mitigate the risks, all
programs using RMI must install a security manager, or RMI will not download classes—other
than from the local class path—for objects received as parameters, return values, or exceptions in
remote method calls. This restriction ensures that the operations performed by downloaded c
go through a set of security checks.

RMI imposes on clients access control restrictions that are not drastically different from that of a
applet. RMI requires the same SocketPer as the equivalent

object exported at a given host and port. On the server side, RMI requires the same
SocketPermissions as the equivalent java.net.Server-Socket network
communication: "listen" to export a remote object on a given port; "accept" to receive a
remote call made from a given host and port. Also, when an RMI call is dispatched to the exported
object on the server, the AccessControlContext that was in effe
object was e

11.3.2 RMI Activation

rmid
introduced with the 1.2 release of the J2SDK. Now programs can be written to register
information about remote object implementations that should be created and executed "on
demand." The RMI daemon provides a Java virtual machine from which other JVM instances m
be launched.

registered activation group descriptor,
java.rmi.activation.ActivationGroupDesc. The group descriptor specifies an

to execute to start the activation group, as well as any command line options to be adde
command line. This feature is very powerful, and thus its use should be guarded. Therefore, Su
implementation of the RMI activation daemon relies on security policy so that rmid can verify
whether the information in each ActivationGroupDesc is allowed to be used to launch a
JVM for an activation group.

The permission com.sun.rmi.rmid.ExecPermission
permission to execute a command to launch an activation group. The permission
com.sun.rmi.rmid.ExecOptionPermission is used to allow rmid to use
command line options, specified as property overrides in the group descriptor or as options in the
CommandEnvironment, when launching the activation group. Refer to the rmid javadocs
for the normative descriptions of these permission classes.

 - 204 -

Inside Java™ 2 Platform Security: Architecture, API Design, and Implementation, 2nd

11.3.3 Securing RMI Communications

RMI fully uses serialization to effect remote method invocations. In Section 9.6, we described the
zed objects may be

ntially shuttled

i.server.RMIClientSocketFactory implementation:

 Serializable {

nt port)

actory.getDefault();

 }

Implementing the equivalent server socket is not that much more complex. An implementation of
Factory follows:

 ServerSocket createServerSocket(int port)
 throws IOException {

 null;
 try {

 SSLContext ctx;

;

Stream("testkeys"),

 ssf = ctx.getServerSocketFactory();

security aspects of object serialization, highlighting the fact that seriali
vulnerable when they exist outside the JVM. When using RMI, objects are esse
back and forth between two Java virtual machines. While in transit, the serialized data may be
exposed to interlopers; as a result, the integrity or confidentiality of the data may be compromised.

In J2SE, RMI added support for custom socket factories for RMI-based communication. Thus,
instead of using standard sockets, an RMI application can export a remote object to use an RMI
socket factory that creates an SSL socket. Following is a simple example of a
java.rm

public class RMISSLClientSocketFactor
 implements RMIClientSocketFactory,

y

 public Socket createSocket(String host, i
 throws IOException {
 SSLSocketFactory factory =
 (SSLSocketFactory)SSLSocketF
 SSLSocket socket =
(SSLSocket)factory.createSocket(host,
 port);
 return socket;

}

java.rmi.server.RMIServerSocket

public class RMISSLServerSocketFactory
 implements RMIServerSocketFactory, Serializable {

 public

 SSLServerSocketFactory ssf =

 // set up key manager to do server
authentication

 KeyManagerFactory kmf;
 KeyStore ks
 char[] passphrase = "open sesame".toCharArray();
 ctx = SSLContext.getInstance("TLS");
 kmf = KeyManagerFactory.getInstance("SunX509");
 ks = KeyStore.getInstance("JKS");

new FileInput ks.load(
passphrase);
 kmf.init(ks, passphrase);
 ctx.init(kmf.getKeyManagers(), null, null);

 - 205 -

Inside Java™ 2 Platform Security: Architecture, API Design, and Implementation, 2nd

 } catch (Exception e) {
 e.printStackTrace();

}

imply sp factory
a.rmi.server.U ect default

w RMISSLClientSocketFactor
 new RMISSLServerSocketFactory());

 }
 return ssf.createServerSocket(port);
 }

To tie it together, the exported remote object must s ecify the two RMI socket
implementation classes when the jav nicastRemoteObj
constructor is invoked:

super(0, ne y(),

 - 206 -

Inside Java™ 2 Platform Security: Architecture, API Design, and Implementation, 2nd

Chapter 12. Deploying the Security Architecture
Security is the chief pretence of civilization.

—George Bernard Shaw

Chapter 3 provided an overview of the Java security architecture, and Chapters 4 through 6
supplied details. Chapter 7 showed how to customize the architecture: create new Permission
types, extend the SecurityManager, and so on. This chapter provides information about
deploying the security architecture.

Section 12.1 provides a link to Web pages that d
software.

ocument how to install the Java 2 platform
Sections 12.2 and 12.3 supply information that is relevant to various configuration

options and that is thus referred to by other sections of this chapter and others in the book. Section
12.2 specifies what the placeholder <java.home>, used throughout the book, refers to.
Section 12.3 tells how to set system and security property values and indicates the location of the

er.home system property. security properties file, as well as the default value for the us
Section 12.4 explains how to custom
security pro pecify

ize a deployment, including how to override or append
perties and how to s application-specific policies when you run an application.

Section 12.5 provides instructions for installing provider packages that supply concrete
implementations of a subset of the cryptography or other sec
Java 2 Security API or one of its extensions.

urity services defined as part of the

Section 12.6 discusses how to specify the security p
resource accesses are allowed for code from specifi

olicy indicating which security-sensitive
ed sources. The section defines the format to
t can be processed by the default Policy
 also tells how you can configure a different

 implementation, if you want to use one other than the default.

be used to specify the policy in one or more files tha
implementation and provides examples. This section
Policy

Section 12.7 explains how to make and use login configuration files for use by the Java
Authentication and Authorization Service. JAAS can be used for user authentication and
authorization and is described in Section 8.4.

Section 12.8 then describes two Java security command line tools: keytool and jarsigne
The keytool utility is used to manage a keystore, or database, of private keys and their
associated certificates authenticating the corresponding public keys. This utility also manages
certificates from trusted entities. The jarsigner tool is used to generate digital signatures
Java Arch

r.

for
ive (JAR) files and to verify the authenticity of signatures of signed JAR files.

Section 12.9 tells what X.500 Distinguished Names are and provides examples of their use.
Section 12.10 provides a little advice on managing security policies for nonexpert computer users.

12.1 Installing the Latest Java 2 Platform Software

Java 2 Platform, Standard Edition (J2SE), software for Windows, Solaris, a
from Sun Microsystems' Java Products and APIs Web site at

nd Linux is available

http://java.sun.com/products/

Generally, new versions of operating systems or Internet browsers—for example, upgrades that
you install or software that comes with a new computer system—already support the latest Java
Runtime Environm

 2
ent (JRE). However, to upgrade the JVM yourself, you can download and

install any of the following: (1) the JRE, for running Java applications and applets, (2) the SDK

 - 207 -

Inside Java™ 2 Platform Security: Architecture, API Design, and Implementation, 2nd

itself for development use, which also includes the JRE, or (3) the Java Plug-in, which upgrades
the JVM inside Microsoft Internet Explorer (IE), Netscape Navigator (Navigator), and Mozilla.

12.2 The Installation Directory <java.home>

e, if

, <java.home> refers to the following

Similarly, if you have JRE 1.4 installed on So directory named

Some items are customized by setting system properties, whereas others are customized by setting

12.3.1 Setting System Properties

d
 home directory /home/marys, enter

the following:

To set a system property dynamically, call the
 name and value:

pertyValue");

o specify the user home directory /home/marys would be:

lts to
ady

mentioned is the user.home system property, whose default value is described next.

The term <java.home> is used throughout this book to refer to the value of the java.home
system property, which specifies the directory where the JRE is installed. This is the top-level
directory of the JRE, or the jre directory in the Java 2 SDK (J2SDK) software. For exampl
you have J2SDK 1.4 installed on Solaris in a directory named /home/user1/j2sdk1.4.0
or on Win32 in a directory named C:\j2sdk1.4.0
directory:

/home/user1/j2sdk1.4.0/jre [Solaris]
C:\j2sdk1.4.0\jre [Win32]

laris in a
/home/user1/j2re1.4.0 or on Win32 in a directory named
C:\j2re1.4.0,<java.home> refers to the following directory:

/home/user1/j2re1.4.0 [Solaris]
C:\j2re1.4.0 [Win32]

12.3 Setting System and Security Properties

security properties. The following sections explain how to set values for both types of properties.

You can set a system property either statically or dynamically. To set a system property statically,
use the -D option of the java command. For example, to run an application named MyApp an
set the user.home system property to specify the user

java -Duser.home=/home/marys MyApp

java.lang.System.setProperty
method in your code, substituting the appropriate property

System.setProperty("propertyName",
 "pro

For example, a setProperty call corresponding to the previous example for setting the
user.home system property t

System.setProperty("user.home",
 "/home/marys");

Some system properties have default values. For example, the java.home property defau
the directory into which the Java 2 runtime environment was installed. Another example alre

 - 208 -

Inside Java™ 2 Platform Security: Architecture, API Design, and Implementation, 2nd

12.3.2 The Default user.home System Property Value

On a Solaris system, the user.home system property value defaults to the user's home
directory. On a Windows system, the property value defaults as follows, given user

s\Profiles\uName Multiuser Windows 95/98/ME

by a
nistrator when creating a user account. The following program demonstrates how to

 void main(Stri {
 System.out.println("user.home is " +

add a line to th es file. By default, the security properties file
va 2 release is installed at

location of the security properties file to be used can be specified by setting the

user.home
name uName:

C:\Documents and Settings\uName Windows 2000 and XP

C:\Winnt\Profiles\uName Multiuser Windows NT

C:\Window

C:\Windows Single-user Windows 95/98/ME

Thus, if the user name is cathy,user.home defaults to

C:\Winnt\Profiles\cathy Multiuser Windows NT

C:\Windows\Profiles\cathy Multiuser Windows 95/98/ME

However, it's always possible that the user.home value has been modified: for example,
system admi
determine what the user.home value is:

public class getUserHome {

 public static ng[] args)

 System.getProperty("user.home"));
 }
}

12.3.3 Setting Security Properties

Some aspects of Java security may be customized by setting security properties. As is the case for
system properties, a security property may be set statically or dynamically. To set a security
property statically, e security properti
shipped with the Ja

<java.home>/lib/security/java.security [Solaris,Linux]
<java.home>\lib\security\java.security [Win32]

where <java.home> refers to the directory where the JRE software is installed. However, the

java.security.properties system property. This feature first appeared in Sun's
J2SDK 1.4 implementation. Section 12.4.1 describes this in greater detail.

In the default security properties file, the defaults for various security properties are initially set.
r to change security property values. To
es file, add a line of the following form:

You can modify or add to the contents of the file in orde
specify a security property value in the security properti

propertyName=propertyValue

 - 209 -

Inside Java™ 2 Platform Security: Architecture, API Design, and Implementation, 2nd

For example, as described in Section 12.6.5, the value of the security property named
policy.provider specifies the canonical name of the Policy implementation class to be
installed. The default implementation from Sun Microsystems is specified in the security
prop

policy.provider=sun.security.provider.PolicyFile

plementation be used, change the value to indicate
a different class that extends the Policy class, as in the following:

 method, substituting the appropriate

For exam call corresponding to the previous example for specifying the

on and the various ways to
 details on how to

or will generally select

In order to secure a deployment, the first challenge is to ensure that the installation of the JRE is

essible

 a deployment.

s, which when
properties. The option to override

lied, respectively.
de or augment a

erties file as follows:

In order to specify that a different Policy im

policy.provider=com.example.MyPolicy

To set a security property dynamically, call the
java.security.Security.setProperty
property name and value:

Security.setProperty("propertyName",
 "propertyValue");

ple, a setProperty
com.example.MyPolicy implementation would be

Security.setProperty("policy.provider",
 "com.example.MyPolicy");

12.4 Securing the Deployment

The previous sections supplied background information about installati
set system and security property values. This section provides concrete
customize a deployment.

Typically, the default installation, such as the preinstalled JRE on Solaris or the JRE bundled with
Netscape Navigator, does not customize the security properties but rather relies on the default
settings provided by the J2SE platform vendor. The J2SE platform vend
security properties that suffice for general-purpose deployments. However, the default security
properties may not be appropriate when the deployment environment requires more stringent
controls.

appropriately secure. A common best practice is to install the JRE on a file system or in a
directory that only an administrator can modify. This could be a local file system or one acc
over the network. Once the installation is under administrative control, the next step is to
customize the security properties file such that it conforms to the deployment objectives. The
following sections describe critically important aspects of securing

12.4.1 Restricting Property Override Mechanisms

J2SE 1.4 introduced the system property java.security.propertie
specified enables an application to override or append security
versus append is determined by whether a double or single equals sign is supp

s used to overriWe use this syntactic convention whenever a system property i
ity property. secur

 - 210 -

Inside Java™ 2 Platform Security: Architecture, API Design, and Implementation, 2nd

For instance, the following augments the settings in the security properties file:

ile

be merged with and take precedence over the properties in the default
security properties file. Here, someURL is a URL specifying the location of the additional

 to false to inhibit the override

java -Djava.security.properties=someURL someApp

In this case, where a single equals sign precedes the security properties file URL, the specified f
will be used in addition to the installed security properties file. That is, the properties specified in
the alternative file will

security properties file. The URL can be any regular URL or simply the name of a security
properties file in the current directory

This mechanism is typically used when multiple instances of the Java runtime share a common
installation yet need to have instance-specific settings in the security properties file. Of course, not
all deployments need or desire this flexibility. Thus, the security property
security.overridePropertiesFile can be set
mechanism. By default, this property is set to true.

12.4.2 Configuring Application-Specific Policies

The policy files specified in the security properties file, as described in Section 12.6.1, are
systemwide in that this same set of po

lication. When
licy files will be used when running any applet or

app invoking an application, you may specify an additional or a different policy file
 argument,

llowing

of another policy file. In this case, where a
single equals sign precedes the policy file URL, the specified policy file will be used in addition to

 or

to be used. This can be done via the -Djava.security.policy command line
which sets the value of the java.security.policy system property, as in the fo
example:

java -Djava.security.manager -Djava.security.policy=someURL
someApp

Here, someURL is a URL specifying the location

all the policy files specified in the security properties file. The URL can be an absolute URL
simply the name of a policy file in the current directory.

The -Djava.security.manager argument ensures that the default security manager is
installed so that the application is run with a security policy in effect. This option is not required if
the application someApp itself installs a security manager (Section 6.1.2).

Note the double equals sign in the following command:

java -Djava.security.manager -Djava.security.policy==someURL
someApp

When a double equals sign precedes the policy file URL, only the specified policy file will be
used; all others will be ignored.

When running applets using appletviewer, you may specify the policy by using the -
Djava.security.policy argument, with one or two equals signs, as appropriate. Here is
an example:

appletviewer -J-Djava.security.policy=someURL someApplet

 - 211 -

Inside Java™ 2 Platform Security: Architecture, API Design, and Implementation, 2nd

Note: The policy file value given in the -Djava.security.policy option will be
ignored if the policy.allowSystemProperty security property value is set to false.
This property is by default set to true.

concrete implementations of
a subset of the cryptography or other security services defined as part of the Java 2 SDK Security

, see Sections

12.5 Installing Provider Packages

The term provider refers to a package or set of packages that supplies

API or one of its extensions (optional packages). For more information on providers
10.2 and 10.3

Several types of services can be implemented by provider packages: digital signature algorithms,
encryption algorithms, message digest algorithms, key generation and conversion services, and so
on. Some of these services are described throughout this book, especially in

Chapter 10.

The Java 2 runtime comes with several providers from Sun Microsystems already installed. O
of these is the SUN provider, which includes implementations of the Digital Signature Algorithm
(DSA), DSA key pair and algorithm parameter generators, a

ne

es
f various encryption and related

algorithms.

Section

KeyStore for handling keystores
of the proprietary JKS keystore type, and so on. Another is the SunJCE provider, which suppli
further cryptography services, including implementations o

An application may request a particular type of object implementing a particular service and get
an implementation from one of the installed providers. For example, as described in
10.4.4, the way to request a Signature

getInstance tic factory method on the c
 object for a particular type of signatur

call a
e algorithm is to

 sta lass and specify the

Signature dsa = Signature.getInstance("SHA1withDSA")

earched until one with a SHA1withDSA
est

entation from the
"SUN" provider:

ders
ecure

ns how to install providers. Installing a provider consists of two parts: installing
the provider package classes and configuring the provider to include it in the list of providers that

Signature
algorithm. An example is

When this call is made, the installed providers are s
algorithm is found, and that provider's implementation is used. If desired, a program may requ
an implementation from a specific provider: for example, if you want to use a provider whose
implementation has received government certification. To request a specific provider's
implementation, call the getInstance method that includes a provider argument. An example
is the following, which requests a SHA1withDSA signature algorithm implem

Signature dsa = Signature.getInstance("SHA1withDSA", "SUN")

End users are free to install whatever provider implementations they wish. The installed provi
may be updated at any time, transparently to applications: for example, when faster or more s
versions are available.

This section explai

are searched when services are requested.

12.5.1 Installing the Provider Classes

A provider must be installed before it can be used. If a requested provider is not installed, a
java.security.NoSuchProviderException is thrown, even if a different

 - 212 -

Inside Java™ 2 Platform Security: Architecture, API Design, and Implementation, 2nd

installed provider implements the requested algorithm. There are two ways to install provider
classes:

1. Place a zip or JAR file containing the classes anywhere on your CLA
2. Supply y on (op

SSPATH.
our provider JAR file as an installed or bundled extensi tional package).

The next step is to configure the provider, that is, to add the provider to a list of providers that will
lly. To install a

See the Java 2 SDK documentation for information on extensions.

12.5.2 Configuring the Provider

be searched when services are requested. You can do this statically or dynamica
provider statically, edit the Java security properties file (Section 12.3.3). One type of property that

g the provider master class:

terClassName

ifies its preference order, n. The preference order is the order in
which providers are searched for requested algorithms or other services when no specific provider

ed, followed by 2, and so on.

 of the provider's master class. The
provider's documentation will specify what you should put as the masterClassName. This

nd its constructor sets
Is to look up the

ovider.3=COM.abcd.provider.Abcd

r or
pe

me" is required, where providerName is replaced
by the provider name assigned by the provider vendor. Alternatively, an * can be used instead of

y

signedBy "sysadmin", codeBase "file:/home/sysadmin/*"
{

urityPermission
 "insertProvider.*";

can be set is the property definin

security.provider.n=mas

This declares a provider and spec

is requested. The order is 1-based; 1 is the most preferr

The masterClassName specifies the canonical name

class must be a subclass of the java.security.Provider class, a
the values of various properties that are required for the Java 2 Security AP
algorithms or other facilities implemented by the provider. Suppose that the master class is
COM.abcd.provider.Abcd. To configure Abcd as the third provider in the preference
order, add the following line to the security properties file:

security.pr

Alternatively, a provider can be registered dynamically by calling either the addProvide
the insertProviderAt method in the java.security.Security class. This ty
of registration is not persistent and can be done only by programs that are granted sufficient
permissions. In order to call either of these methods, a
java.security.SecurityPermission with target name
"insertProvider.providerNa

the provider name to indicate that any provider can be added.

For example, the following entry in Sun's policy syntax specifies that code loaded from a signed
JAR file relative to the /home/sysadmin/ directory on the local file system may call
methods in the Security class to add or remove providers. The JAR file's signature must be
verified using the public key referenced by the alias sysadmin in the relevant keystore. Polic
files and the default policy file format are described next:

grant

 permission java.security.Sec

 permission java.security.SecurityPermission
 "removeProvider.*";
};

 - 213 -

Inside Java™ 2 Platform Security: Architecture, API Design, and Implementation, 2nd

12.6 Policy Configuration

If a security manager is installed but no security policy is specified for running applets or
applications, the JRE will default to a sandbox security model. To utilize fully the Java 2 security
model, described in Chapters 3 through 7, a security policy should be crafted indicating which

ity-sensitive resource accesses are permitted. The security policy to be enforced must also be
specified to the JRE.

ly to
here and

ation is stored: for example, in a database, a directory service, a file system, or
other location. The default J2SE Policy implementation supports the specification of a security

secur

The design of the Policy API does not mandate how a security policy is expressed external
the Java runtime system. Thus, a Policy class implementation is free to specialize w
how policy inform

policy in one or more plain ASCII text files, in a particular syntax. Obviously, policy files should
be well protected from unauthorized access and disclosures.

Sections 12.4.2 and 12.6.1 explain how to indicate the locations of policy files tha
up the security policy to be used by the default

t together make
Policy implementation. Section 12.6.2

describes the syntax used to express policy information in such policy files, and Section 12.6.3
provides examples. Section 12.6.4 explains how property expansion can be used to simplify the
expression of security policy and security properties. Finally, Section 12.6.5 relates how to repla
the

ce

12.6.1 Configuring Systemwide and User-Specific Policies

<java.home>\lib\security\java.policy [Win32]

java.home property (Section 12.2

Policy class implementation.

The source location for the policy information used by the Policy object is up to the Policy
class implementation. The default implementation, from Sun Microsystems, obtains its
information from static policy configuration files, usually referred to as policy files. A policy file
can be composed using a simple text editor.

The location of the default system policy file is at

<java.home>/lib/security/java.policy [Solaris,Linux]

where <java.home> refers to the value of the system).
ample, if the java.home value is /home/cathy on a Solaris system or C:\cathy

a Windows system, the default system policy file is

 [Win32]

ions 12.3.1

For
on

ex

/home/cathy/lib/security/java.policy [Solaris, Linux]
C:\cathy\lib\security\java.policy [Win32]

The default user policy file is located at

<user.home>/.java.policy [Solaris, Linux]
<user.home>\.java.policy

where <user.home> refers to the value of the user.home system property (Sect
and 12.3.2).

The default object is initialized the first time its rmiPolicy getPe
or whenever its method is called. Initialization involve

ssions method is called
nd refresh s parsing the policy files a

then populating the object with policy information. When the object is Policy Policy

 - 214 -

Inside Java™ 2 Platform Security: Architecture, API Design, and Implementation, 2nd

initialized, the system policy is loaded, followed by the user policy. If neither policy is present, a

tion

built-in sandbox policy is used.

Policy file locations are by default given in the security properties file, whose name and loca
are given in Section 12.3.3. The policy file locations are specified as the values
whose names are of the form policy.url.n, where n is a number. The va

 of properties
lues are URLs and
efault system and

y

va.home and
yntax for

thus always use forward slashes, even on Windows systems. For example, the d
user policy files are defined in the security properties file as follows:

policy.url.1=${java.home}/lib/security/java.polic
policy.url.2=${user.home}/.java.policy

Here, ${java.home} and ${user.home} indicate the values of the ja
user.home system properties, respectively. The special ${propName} s
specifying property values is described in Section 12.6.4.

on, As an example of customizati to ignore the default user policy, delete or comment out the
multiple
ed

olicy
, until

d of the
 12.4.2

second line. To specify multiple policy files to form a composite security policy, provide
policy.url.n lines, each indicating a different URL. The content of all the designat
policy files will be used to populate the Policy object.

Note that n in policy.url.n must start with 1 and be consecutive integers. The first p
so onfile must be specified by policy.url.1, the second by policy.url.2, and

there are no more policy files. If you specify, for example, policy.url.1 and
policy.url.3 but not policy.url.2, policy.url.3 is ignored.

It is possible to specify that another policy file should be used in addition to or instea
ed in Sectionpolicy files specified in the security properties file. That case is describ .

and principals. In order
ing or writing a file, it must

 When the default Policy implementation is

12.6.2 Default Policy File Format

The policy configuration files for a JRE installation specify the permissions—which types of
system resource accesses—allowed for code from specified code sources
for a program to be permitted to perform a secured action, such as read
be granted permission for that particular action.
used, the permission must be granted by a grant entry in a policy file.[1]

[1] One exception is that code always automatically has permission to read files from its own
CodeSource (see Section 5.2.1) and the subdirectories of that CodeSource. It does not need
explicit permission to do so.

The syntax of a policy configuration file to be read by the default Policy implementation
includes a list of entries. It may contain a single keystore entry and zero or more grant entries.

Keystore Entry

A keystore is a protected database of private keys and their associated digital certificates, such as
X.509 certificate chains (Sections 8.1 and 8.2). The default keystore implementation in the J2SE

e keystore as a file (Section 12.8.1implements th). The keytool utility may be used to create
s used to look up
e entry must

ear in a policy configuration file if any grant or permission entries specify signer aliases.

and administer keystores. The keystore specified in a policy configuration file i
the public keys of the signers specified in the grant entries of the file. A keystor
app

 - 215 -

Inside Java™ 2 Platform Security: Architecture, API Design, and Implementation, 2nd

Only one keystore entry is allowed in the policy file; others after the first one are ignored. The
entry may appear anywhere outside the file's grant entries and has the following syntax:

keystore "some-keystore-url", "keystore-type";

ystore is located. The Here, "some-keystore-url" specifies the URL where the ke
"keystore-type" is optional and if present specifies the keystore type. The URL is
typically relative to the policy file location. Thus, if the policy file being processed is the one
specified in the security properties file (Sections 12.3.3 and 12.6.1 as

policy.url.1=http://foo.bar.com/fum/some.policy

and that policy file has an entry

keystore ".keystore";

the keystore will be loaded from

n as absolute, such as

"http://foo.bar.com/fum/.keystore";

d data format of the keystore information and the algorithms
ult type

ence to the certificate(s) containing the public key(s) corresponding to
y(s) used to sign the code. Certificates in a code source are referenced by symbolic

d principal qualifiers.
odeBase and signedBy name/value pairs qualify which code is granted the specified

permissions. To represent the set of certificates that may be part of a CodeSource, a policy file
ord, that are aliases that map to

order for the permission(s) to be

 entry:

incipal principal-class-name "principal-name",
 . . . {

http://foo.bar.com/fum/.keystore

The keystore URL can also be give

keystore

A keystore type defines the storage an
used to protect private keys in the keystore and the integrity of the keystore itself. The defa
supported in the J2SE is a proprietary keystore type named JKS.

Grant Entries

A policy configuration file contains 0 or more grant entries. Code being executed is always
considered to come from a particular code source, represented at runtime by an object of type
CodeSource. The code source includes not only the location (URL) from which the code
originated but also a refer
the private ke
alias names from the specified keystore.

Each grant entry may specify optional codeBase, signedBy, an
The c

simply includes a list of signer names, after the signedBy keyw
the actual certificates via a keystore. The alias design is useful because certificates can be large
and can contain binary data and unprintable characters, whereas a policy file should be easy to
view and to edit. Each grant entry may also specify one or more principal fields
indicating the list of principals that must be executing the code in
granted.

Following is the basic format of a grant

grant signedBy "signer-names", codeBase "URL",
 principal principal-class-name "principal-name",
 pr

 - 216 -

Inside Java™ 2 Platform Security: Architecture, API Design, and Implementation, 2nd

 permission permission-class-name "target-name", "actio
 si signer-names

n",
gnedBy " ";

class-name "target-name", "action",

present
edBy, codeBase, and principal fields are optional. All

tems must appear as is, although the case and order of the keywords are

bsence of the signedBy field signifies "any signer." That is, whether the code is signed
and by whom does not matter. Its value, when specified, is a comma-separated list of one or more

cates. When the signedBy value is a
comma-separated string containing names of multiple signers, for example

 permission(s) to
de"; that is, where

codeBase with a
he specified directory. A codeBase with a

g /* matches all files, both class and JAR files, contained in that directory. A codeBase

ry.

Not a s
be used ple, if the source location for co
syst i

grant codeBase "file:/C:/somepath/api/" {

-class-name/principal-name pair indicating a
cuted by the
ld is optional in that,
e code is considered

formal BNF (Backus Naur Form) grammar for the policy file format is given next. Terms

PolicyFile --> PolicyEntry | PolicyEntry; PolicyFile
; |

ntry} |
Entry {PermissionEntry} |

 ...
 permission permission-
 signedBy "signer-names";
};

A grant entry must begin with the keyword grant. In the preceding, italicized items re
variable values. The sign
nonitalicized i
insignificant.

The a

aliases that are mapped, using the keystore, to certifi

"Adam,Eve,Charles", the relationship is AND, not OR. That is, the specified list means
"signed by Adam and Eve and Charles."

A codeBase value indicates the code source location (URL); you grant the
code from that location. The absence of a codeBase entry signifies "any co
the code originates from does not matter.

The meaning of a codeBase value depends on th
g / matches all class files, not JAR files, in t

e characters at the end. A
trailin
trailin
with a trailing /- matches all files, both class and JAR files, in the directory and recursively all
files and subdirectories relative to the specified directo

e th t a codeBase value is always specified as a URL; thus, a forward slash / must alway
as the directory separator. For exam de on a Windows

em s C:\somepath\api\, the policy codeBase entry would look like this:

...
}

Each principal value specifies a principal
named principal of the specified class. The code must be considered to be exe

 the permissions. The principal fiespecified principal(s) in order to be granted
if it is omitted, it signifies "any principals"; that is, it doesn't matter whether th

h principals. to be executed by any principals or by whic

An in
that are not capitalized are terminals.

PolicyEntry --> grant {PermissionEntry}
 grant SignerEntry {PermissionEntry} |

rmissionEntry} | grant CodebaseEntry {Pe
 grant PrincEntry {PermissionEntry} |

baseEntry {PermissionE grant SignerEntry, Code
grant SignerEntry, Princ

 - 217 -

Inside Java™ 2 Platform Security: Architecture, API Design, and Implementation, 2nd

 grant CodebaseEntry, SignerEntry {PermissionEntry} |
 grant CodebaseEntry, PrincEntry {PermissionEntry} |
 grant PrincEntry, SignerEntry {PermissionEntry} |

try} |
 grant SignerEntry, CodebaseEntry, PrincEntry

onEntry} |

incEntry, SignerEntry

 grant PrincEntry, CodebaseEntry, SignerEntry

 keystore "url"

ry --> OnePrincipal | OnePrincipal, PrincEntry

OnePermission --> permission permission-class-name

 [, SignerEntry];

. The permission-
d be a

pes. The "action" is optional for some
types and required for others. For example, the java.io.FilePermission

ccess
is

not required ons such as java.lang.RuntimeP hat restrict
permission specified by the

"foobar", signedBy "FooSoft";

 grant PrincEntry, CodebaseEntry {PermissionEn

{Permissi
 grant SignerEntry, PrincEntry, CodebaseEntry
{PermissionEntry} |
 grant CodebaseEntry, SignerEntry, PrincEntry
{PermissionEntry} |

rant CodebaseEntry, Pr g
{PermissionEntry} |
 grant PrincEntry, SignerEntry, CodebaseEntry
{PermissionEntry} |

{PermissionEntry} |

SignerEntry --> signedBy (a comma-separated list of
strings)
CodebaseEntry --> codeBase (a string representation of a
URL)

tPrincEn
OnePrincipal --> principal [principal-class-name]
"principal-name"
PermissionEntry --> OnePermission | OnePermission
PermissionEntry

 ["target-name"] [, "action"]

A permission entry must begin with the keyword permission
class-name specified after the word permission in the previous grammar woul
specific permission type, such as java.io.FilePermission or
java.lang.RuntimePermission.

The "targe
permission

t-name" is required for all permission ty

requires the target to specify the file and the action that specifies the permitted type of file a
("read" or "write" or both "read" and "write", separated by a comma). An action

 for permissi ermission t
access just to a given target: You either do or do not have the
"target-name".

The signedBy name/value pair for a permission entry is optional. If present, it indicates a
signed permission. That is, the Permission class itself must be in a JAR file that was signed
by the entity referred to by the given alias(es) in order for the permission to be granted. For
example, suppose that you have the following grant entry:

grant {
 permission Foo
}

 - 218 -

Inside Java™ 2 Platform Security: Architecture, API Design, and Implementation, 2nd

This permission of type Foo is granted if the Foo.class permission is in a signed JAR file
that was signed by the private key corresponding to the public-key certificate specified by the
"FooSoft" alias.

not

nd

com.mypvr.PVRPermission
b site, the second copy absolutely must be authentic. The reason is that the presence

 first

of the
ause the

ate the class file to reflect a new design or

Items in a permission entry must appear in the following order:

permission-class-name

signedBy "signer-names"

sion, "target-name" is a file path.
On a Windows system, whenever directly specifying a file path in a string—but not in a

kslash in the

grant {

), which allows \ to be used as an escape character. For
 used to indicate a

12.6.3 Policy File Exam

entries in a policy file. As with Java programs, lines preceded with // are comments and are not

This per permission signer field is included to prevent spoofing when a permission class does
reside with the Java runtime installation. For example, a copy of the
com.mypvr.PVRPermission class can be downloaded as part of a remote JAR file, a
the user policy might include an entry that refers to it. Because the archive is not long-lived, the
second time that the class is downloaded, possibly from a
different We
of the permission entry in the user policy might reflect the user's confidence or belief in the
copy of the class bytecode.

We chose to use digital signatures to ensure authenticity rather than storing a hash value
first copy of the bytecode and using it to compare with the second copy. We did this bec
author of the Permission class can legitimately upd
implementation.

permission

"target-name"
"action"

A permission entry is terminated with a semicolon. Case is unimportant for the identifiers
(permission and signedBy) but is significant for permission-class-name. The
case sensitivity of the "target-name" and "action" fields is implementation dependent.

In the specification of a java.io.FilePermis

codeBase URL—you need to include two backslashes \\ for each single bac
path, as in this example:

 permission java.io.FilePermission
 "C:\\users\\cathy\\foo.bat", "read";
};

This is necessary because the strings are processed by a tokenizer
(java.io.StreamTokenizer
example, \n indicates a new line. The tokenizer requires two backslashes to be
single backslash. After the tokenizer has processed the preceding file path string, in the process
converting double backslashes to single backslashes, the result is
"C:\users\cathy\foo.bat".

ples

This section offers several examples of policy expressions. The first example shows two grant

interpreted:

 - 219 -

Inside Java™ 2 Platform Security: Architecture, API Design, and Implementation, 2nd

// If the code is signed by "Duke", grant it read/write
ss

// to all files in /tmp:

ission java.io.FilePermission "/tmp/*", "read,write";
};

to read the java.vendor

t {
 permission java.util.PropertyPermission "java.vendor",

};

";
};

ed to

can be verified by using the public key referenced by the alias name

ither or
lid:

 "removeProvider.*";

This policy code that is signed by can add or remove providers,

mission
 "insertProvider.*";

acce

grant signedBy "Duke" {
 perm

// Grant everyone permission
property value:
gran

"read";

Here are the contents of another sample policy file:

grant signedBy "sysadmin", codeBase "file:/home/sysadmin/*"
{
 permission java.security.SecurityPermission
 "insertProvider.*";
 permission java.security.SecurityPermission
 "removeProvider.*";
 permission java.security.SecurityPermission
 "putProviderProperty.*

This example specifies that only code that satisfies the following two conditions will be allow
add or remove providers or to set provider properties:

1. The code was loaded from a signed JAR file from within the /home/sysadmin/
directory on the local file system.

2. The signature
"sysadmin" in the keystore.

Because the code source contains two components, codeBase and signedBy, and e
both components may be omitted in a policy file, the following policy also would be va

grant signedBy "sysadmin" {
 permission java.security.SecurityPermission
 "insertProvider.*";
 permission java.security.SecurityPermission

};

 says that "sysadmin"
regardless of the code location. Here is an example without a signer:

grant codeBase "file:/home/sysadmin/-" {
 permission java.security.SecurityPer

 permission java.security.SecurityPermission
 "removeProvider.*";
};

 - 220 -

Inside Java™ 2 Platform Security: Architecture, API Design, and Implementation, 2nd

In this case, code that comes from the /home/sysadmin/ directory or any child subd
on the local file system can add or remove providers. The code does not need to be signed.

Following is an example that does not mention

irectory

:

 java.security.SecurityPermission

de, regardless of the code source or who is running the code,

rincipal javax.security.auth.x500.X500Principal

permits any code executing as the X500Principal whose common name (cn)

codeBase or signedBy

grant {
 permission
 "insertProvider.*";
 permission java.security.SecurityPermission
 "removeProvider.*";
};

Under this security policy, any co
may add or remove providers. Obviously, this policy is too liberal for most situations.

The following includes a principal-based entry:

grant p
"cn=Alice" {
 permission java.io.FilePermission "/home/Alice", "read,
write";
 };

This example
is "Alice" permission to read and write to /home/Alice. Note: X500Principals are
represented by X.500 Distinguished Names (Section 12.9).

The following example shows a grant statement with both code source and principal information:

grant codebase "http://www.games.com",
 signedBy "Duke",
 principal javax.security.auth.x500.X500Principal
"cn=Alice" {
 permission java.io.FilePermission "/tmp/games",
 "read, write";
 };

This example allows code downloaded from "www.games.com", signed by "Duke", and
executed by "Alice" permission to read from and write to the /tmp/games directory.

12.6.4 Property Expansion in Policy Files

To m ke both in
policy f
environ
file or in
property

${som

Suppose

permission java.io.FilePermission "${user.home}", "read";

a policy configuration and specification easier, the J2SE allows property expansion
iles and in the security properties file. Property expansion is similar to expanding
ment variables in a UNIX shell. When a string of the following form appears in a policy
 the security properties file, it will be expanded to the value of the specified system
:

e.property}

 that you have

 - 221 -

Inside Java™ 2 Platform Security: Architecture, API Design, and Implementation, 2nd

This t system
property lent
to

permi

To assis
recogniz n
entries a

permission java.io.FilePermission "${user.home}${/}*",
"read";

If you are using a Solaris system and the value of the user.home system property is
/ho e

permission java.io.FilePermission "/home/cathy/*", "read";

If yo ar ,
the expa

permi
"read

As a spe rant codeBase
"file:${java.home}/lib/ext/" is expanded, any file-separator characters in the

s.

lt is as follows, even if
java.h \ 0\jre

e/lib/ext/"

 and you shouldn't.

Beca
policy f
can all b
policy.expandProperties is
tru

 en ry, when processed, expands ${user.home} to the value of the user.home
. If that property's value is /home/cathy, the previous permission entry is equiva

ssion java.io.FilePermission "/home/cathy", "read";

t in the creation of platform-independent policy files, the special notation ${/} is
ed as a shortcut for ${file.separator}. Thus, you can write such permissio
s

m /cathy, the previous entry gets expanded to

u e using a Windows system and the user.home system value is C:\users\cathy
nsion result is

ssion java.io.FilePermission "C:\users\cathy*",
";

cial case, if a property in a codeBase string, such as g

codeBase value will automatically be expanded, or converted, to forward slash (/) character
The reason is that codeBase values are URLs and should always have forward slashes. Thus, if
the sample grant entry is used on a Windows system, the expansion resu

ome is set to C: j2sdk1.4. :

grant codeBase "file:C:/j2sdk1.4.0/jr

Thus, you don't need to use the notation ${/} in codeBase strings,

use property expansion can take place anywhere that a double-quoted string is allowed in the
ile, the fields "signer-names", "URL", "target-name", and "action"
e expanded. You can disable property expansion by setting to false the value of the

 security property. The default value of this property
(Se. ee Section 12.3.3 for information on setting the values of security properties.)

Nes p
"${us n if the foo property is
set to ho ther, it
simply l
result, in operty.

If a prop
For exam

grant codeBase "${foo}" {
 permission ...;

ted roperties are not supported and do not expand properly. For example,
er.${foo}}" does not result in "${user.home}", eve
me. The reason is that the property parser does not recognize nested properties. Ra

ooks for the first ${ and then keeps looking until it finds the first }. It tries to interpret the
 this case, ${user.$foo}, as a property but fails when there is no such pr

erty expansion is given in a grant entry and property expansion fails, the entry is ignored.
ple, suppose that the system property foo is not defined and you have the following:

 - 222 -

Inside Java™ 2 Platform Security: Architecture, API Design, and Implementation, 2nd

 permission ...;
};

All the permissions in this grant entry are ignored. On the other hand, suppose that you have the

ission Foo "${foo}";
 permission Bar "barTarget";

akes place after the tokenizer has processed the string. Thus,
bat", the tokenizer first processes the string, converting
ash, and the result is "${user.home}\foo.bat".

An alternative Policy class implementation can be specified to replace the default Policy
class. The security property polic cify the Policy class. For
example, the policy.provider property is set in the security properties file (see Section

following:

grant {
 perm

};

Only the permission Foo entry is ignored, and permission Bar is granted.

If the property file has a keystore entry keystore "${foo}" and the system property foo
is not defined, the keystore entry is ignored.

Expansion of a property in a string t
for string "${user.home}\\foo.
the double backslashes to a single backsl
Then ${user.home} is expanded, and the end result is
"C:\users\cathy\foo.bat", assuming that the user.home value is
C:\users\cathy. To achieve platform independence in this example, the string should
initially be specified without any explicit slashes, that is, by using the ${/} property instead, as
in "${user.home}${/}foo.bat".

12.6.5 Configuring an Alternative Policy Class Implementation

y.provider is used to spe

12.3.3) as follows:

icyFile

policy.provider=PolicyClassName

where PolicyClassName indicates the canonical name of the desired Policy
implementation class. The default security properties file entry for this property is

policy.provider=sun.security.provider.Pol

By changing the property value to specify another class, you substitute a new Policy class, as
in

policy.provider=com.example.MyPolicy

When the Policy object is to be initialized, this class is used rather than the default
implementation class, PolicyFile.

12.7 JAAS Login Configuration Files

As noted in Chapter 7, the Java Authentication and Authorization Service, initially an optional
package and subsequently integrated into J2SDK 1.4, can be used for user authentication and
authorization. JAAS authentication is performed in a pluggable fashion, so applications can

 - 223 -

Inside Java™ 2 Platform Security: Architecture, API Design, and Implementation, 2nd

remain independent from underlying authentication technologies. A system administrator
determines the authentication technologies, or LoginModules, to be used for each application
and configures them in a login configuration. The source of the configuration information, such as
a file or a database, depends on the implementation of the

uth.login.Configuration
from Sun Microsystems reads configuration information from configuration files. This section

nModule> <flag> <LoginModule options>;

e
configuration file entry is terminated by a semicolon. Following is an example:

Here, the entry is named Login, a e that an application would use to refer to

on entry contains a odules. Authentication proceeds down the
try

Each Login -specific entry has the following subparts:

ogy.

pt
 user name and password. Any vendor can provide a LoginModule

implementation that you can use. Some implementations, such as

javax.security.a class. The default implementation

describes such files.

12.7.1 Login Configuration File Structure and Contents

A login configuration file consists of one or more entries, each specifying which underlying
authentication technology should be used for a particular application or applications. The structure
of each entry is the following:

<name used by application to refer to this entry> {
 <Logi
 <optional additional LoginModules, flags and options>;
 };

Thus, each login configuration file entry consists of a name followed by one or more
LoginModule-specific entries, where each LoginModule-specific entry is terminated by a
semicolon, and the entire group of LoginModul -specific entries is enclosed in braces. Each

Login {
 com.sun.security.auth.module.UnixLoginModule REQUIRED;
 com.abc.AbcLoginModule REQUIRED;
};

nd that is the nam
this entry when instantiating a LoginContext. The name can be whatever name the
application and configuration file developer wishes to use. (Here, the term "application" refers to
whatever code does the JAAS login to authenticate the user.)

Each login configurati list of login m
list in the exact order listed, with the flag values controlling the overall behavior. The sample en
specifies that the LoginModules to be used to do the user authentication are the
UnixLoginModule in the com.sun.security.auth.module package and the
AbcLoginModule in the com.abc package and that these LoginModules are both
required to succeed in order for authentication to be considered successful.

Module

• LoginModule, a class implementing the desired authentication technol
Specifically, the class must be a subclass of the LoginModule class, which is in the
javax.security.auth.spi package. A typical LoginModule may prom
for and verify a

UnixLoginModule, KeyStoreLoginModule, and Krb5LoginModule,
are supplied with the JRE from Sun Microsystems, in the
com.sun.security.auth.module package.

 - 224 -

Inside Java™ 2 Platform Security: Architecture, API Design, and Implementation, 2nd

• Flag, a value indicating whether success of the preceding LoginModule is
REQUIRED, REQUISITE, SUFFICIENT, or OPTIONAL. If there is just one
LoginModule-specific entry, the flag for it should be REQUIRED.

 values for any desired options in the specified
LoginModule entation. This space-separated list of values is passed directly

tself
ions

The correct way to specify options in the
guration file is by using a name/value pairing—for example, debug=true—

Following is a description of the valid flag values:

hether it
odule list. It

e, even when faced with failure, because aborting at that point would give
ckers useful information, such as which module failed and why.

d, control
eed down the login

The overall authentication succeeds only if all REQUIRED and REQUISITE login modules
t

Djava.security.auth.login.config interpreter command line argument

2. java -Djava.security.auth.login.config==myjaas.config

rties file. An alternative approach for specifying the location of the

ecurity

• LoginModule options,
 implem

to the underlying LoginModule. Options are defined by the LoginModule i
and control the behavior within it. For example, a LoginModule may define opt
to support debugging/testing capabilities.
confi
where the option name, here debug, and value, true, should be separated by an equals
sign.

• REQUIRED. The login module is required to succeed. Regardless of w
succeeds or fails, however, authentication still proceeds down the login m
must continu
potential atta

• REQUISITE. The login module is required to succeed. If it succeeds, authentication
continues down the login module list. If it fails, control immediately returns to the
application; authentication does not proceed down the login module list.

• SUFFICIENT. The login module is not required to succeed. If it does succee
immediately returns to the application; authentication does not proc
module list. If it fails, authentication continues down the login module list.

• OPTIONAL. The login module is not required to succeed. If it succeeds or fails,
authentication still proceeds down the login module list.

succeed. If no REQUIRED or REQUISITE login modules are configured for an application, a
least one SUFFICIENT or OPTIONAL login module must succeed.

12.7.2 Login Configuration File Location

The configuration file to be used can be specified in one of two ways:

1. On the command line. You can use a -

to specify the login configuration file that should be used. For example, the following
specifies that the configuration file is the myjaas.config file in the current
directory:

MyApp

3. In the security prope
login configuration file is to indicate its URL as the value of a
login.config.url.n property in the security properties file. (The s
properties file is described in Section 12.3.3.) Here, n indicates a consecutively number
integer starting with 1. Thus, if desired, you can specify more than one login
configuratio

ed

n file by indicating one file's URL for the login.config.url.1
. If property, a second file's URL for the login.config.url.2 property, and so on

more than one login configuration file is specified—that is, if n > 1—the files are read
and concatenated into a single configuration.

 - 225 -

Inside Java™ 2 Platform Security: Architecture, API Design, and Implementation, 2nd

Here is an example of what would need to be added to the securi
indicate the login configuration file.

ty properties file in order to
samplejaas.config This example assumes that the

d
keytool jarsigner Policy

Tool is book.

file is in the C:\AcnTest directory on a Win32 system:

login.config.url.1=file:/C:/AcnTest/samplejaas.config

(Note that URLs always use forward slashes, regardless of what operating system the user is
running.)

12.8 Security Tools

To assist developers, the Java 2 SDK is delivered with these security tools: the keytool and
jarsigner command line tools and the Policy Tool utility, which is a graphical tool
invoked via the policytool command. We first describe keystore databases that may be use
by the tools and then the and security tools. The use of the

 is not covered in th

12.8.1 Keystore Databases

Recall from Section 12.6.2 that a keystore is a protected database that holds certificates and
private keys. The default Keystore implementation implements the keystore as a file, as
depicted in Figure 12.1. Access to a keystore is guarded by a password, which is chosen at the
time the keystore is created. A keystore so protected can be changed only by someone who can
provide the c

orrect password. In addition, each private key in a keystore can be guarded, for extra

security, by its own password. In the figure, E depicts an encryption function, the data in braces
represents the data protected, and the E subscript indicates the password required to access the
data.

Figure 12.1. Keystore

 - 226 -

Inside Java™ 2 Platform Security: Architecture, API Design, and Implementation, 2nd

Information from a keystore may be used by the security tools. For example, the jarsigner
tool may use a keystore to generate or verify digital signatures for JAR files. A JAR file packages
class files, images, sounds, and/or other digital data in a single file. The jarsigner tool
verifies the digital signature of a JAR file, using the certificate that comes with it, included in t
signature block file of the JAR file.

he
The tool then checks whether the public key of that certificate

is trusted, that is, whether it is contained in the specified keystore.

ent

y the certificate chain for the corresponding public key. Note: The keytool
and jarsigner tools do not currently handle secret keys.

g to an entity. It is
try into the keystore,
tity identified by the

te entries—are accessed via unique aliases. Aliases
e entry.
nkey

This command generates a new key pair, creates an X.509 self-signed, or signed by the private

lias duke -keypass dukekeypasswd -new
newpass

 for
tion

A keystore contains two types of entries: key entries and trusted certificate entries. A key entry
holds sensitive cryptographic key information and is stored in a protected format to prev
unauthorized access. Typically, a key stored in this type of entry is either a secret key or a private
key accompanied b

A trusted certificate entry contains a single public-key certificate belongin
called a trusted certificate because the keystore owner, by accepting this en

 certificate indeed belongs to the enindicates trust that the public key in the
subject—that is, the owner—of the certificate. The issuer of the certificate vouches for this by
signing the certificate.

All keystore entries—key and trusted certifica
are case insensitive; for example, the aliases Hugo and hugo refer to the same keystor

fy an alias when you add an entity to the keystore using the keytool -geYou speci
command to generate a key pair—public and private key—or the -import command to add a
certificate or certificate chain to the list of trusted certificates. Subsequent keytool commands
must use this same alias to refer to the entry. For example, suppose that you use the alias duke in
the following command:

keytool -genkey -alias duke -keypass dukekeypasswd

key, certificate containing the public key, and stores the private key and associated certificate in a
new keystore entry identified by the alias duke. The command specifies an initial password of
dukekeypasswd, which will be required by subsequent commands to access the private key
associated with the alias duke. To change the private-key password of duke, you use a
command like the following, which changes the password from dukekeypasswd to
newpass:

keytool -keypasswd -a

For better security, a password should not be specified on a command line or in a script unless
testing purposes or if you are on a secure system. If you do not specify a required password op
on a command line, you will be prompted for one.

Recall that a keystore is, by default, implemented as a file. Each keytool command has an
option for specifying the name and location of this persistent keystore file. During keystore
creation (described in Section 12.8.2), if you do not specify a -keystore option, the keystore
is, by default, stored in a file named .keystore in the user's home directory, as determined by
the user.home system property. (Section 12.3.1 tells how to set system property values, and
Section 12.3.2 tells what the default user.home property value is.)

The KeyStore class provided in the java.security package and described in Section
10.4.9 supplies interfaces for accessing and modifying the information in a keystore. Applications

 - 227 -

Inside Java™ 2 Platform Security: Architecture, API Design, and Implementation, 2nd

can choose various types of keystore implementations from various providers, us
 supplied in th

ing the
getInstance method e KeyStore class.

well as the
grity of the keystore itself.

ying types are not case sensitive; thus, "jks" would be considered

, from which it loads the keystore information. The jarsigner and

the
e

A keystore type defines the storage and data format of the keystore
algorithms used to protect private keys in the keystore and the inte

 information, as

Keystore implementations of different types need not be compatible in implementation details,
such as format. The SDK default implementation of the keystore uses a proprietary keystore type
named JKS. Strings specif
the same as "JKS".

The keytool tool works on any file-based keystore implementation, treating the keystore
location passed to it at the command line as a file name and converting it to a
FileInputStream
Policy Tool tools, on the other hand, can read a keystore from any location that can be
specified using a URL.

For keytool and jarsigner, you can specify a keystore type at the command line, via
-storetype option. If you don't explicitly specify a keystore type, the tools choose a keystor
implementation based simply on the value of the keystore.type security property. (Setting
security property values is described in Section 12.3.3.) For example, if you have a provider
package that supplies a KeyStore implementation for a keystore type called pkcs12, you can

s12

 the currently installed
he tool then uses the

e

KeyStore.getDefaultType());

d manage a keystore of private keys and their associated

include the following line in the security properties file to indicate that keystore type:

keystore.type=pkc

Each tool gets the keystore.type value and then examines all
providers until it finds one that implements keystores of that type. T
KeyStore implementation from that provider.

The KeyStore class defines a static method, getDefaultType, that lets programs retriev
the value of the keystore.type property. The following line of code creates a KeyStore
instance that handles keystores of the default keystore type:

KeyStore keyStore =
KeyStore.getInstance(

12.8.2 keytool

The keytool utility is used to create an
X.509 certificate chains authenticating the corresponding public keys. The utility can also manage
certificates from trusted entities. It can display, import, and export X.509 v1, v2, and v3
certificates stored as files and can generate new, self-signed v1 certificates.[2]

[2] derlying certificate package supports X.509 v3 format, keytool generates only
rtificates due to command line complexity in dealing with various extensions and

options. One can easily imagine extended or customized keytools that take advantage of the v3

 utility allows users to specify any key-pair generation and signature algorithm
ryptographic service providers that are registered, or configured, with the

ent. (See Section 10.3

 Even though the un
X.509 v1–formatted ce

format.

The keytool
supplied by any of the c
Java runtime environm for information about providers and Section 12.5 for

providers.) The default key-pair generation algorithm is
Digital Signature Algorithm (DSA). The size of a DSA key must be in the range 512 to 1,024 bits
and must be a multiple of 64. The default key size for any algorithm is 1,024 bits. The signature

information on installing and configuring

 - 228 -

Inside Java™ 2 Platform Security: Architecture, API Design, and Implementation, 2nd

algorithm is derived from the algorithm of the underlying private key. For example, if the
ing privatunderly e key is of type DSA, the default signature algorithm is SHA1withDSA; if the

 private key RSA, the default signature algorithm is MD5withRSA.

ol comma option names are preceded by a minus sign (-). The options for
d may be ed in any order. Refer to the on-line SDK documentation for a
nation of mands and command options.

 Key P

mple X ee Section 12.9

underlying is of type

All keyto
each comman

nd and
 provid
all comdetailed expla

Generating a air

Following is a sa .500 Distinguished Name (DN) string (s):

le lines are used here for legibility.

th

ts off

d,

R for the entity identified by the alias joe and puts the request in the
ubmit this file to a CA, such as VeriSign, Inc. The CA will authenticate
ficate describing the entity, usually offline, and then will return a

certificate reply containing one or m Once you receive a certificate reply from a

If the reply contains multiple certificates—a certificate chain—at one end of the chain is the end-

"CN=Gary Ellison, OU=Java Software, O=Sun, L=Santa Clara,
S=CA, C=US"

You can use the following command to generate a key pair—public key and associated private
key—for the entity specified by this DN and to assign the resulting key entry the alias mark:

keytool -genkey -dname "CN=Gary Ellison, OU=Java Software,
O=Sun,
L=Santa Clara, S=CA, C=US" -alias mark

Note: The command must be typed on a single line. Multip

When it generates a key pair, keytool creates a key entry in the keystore and populates it wi
the private key and a certificate containing the public key associated with the private key. The
certificate is self-signed. That is, a signature is generated for the certificate, using the private key
corresponding to the public key in the certificate.

Certificate Signing Requests and Certificate Chains

When a public/private key pair is first generated by keytool, the resulting key entry star
containing the private key and a single certificate, a self-signed certificate. A certificate is more
likely to be trusted by others if it is signed by a Certification Authority (CA). To get such a
signature, you first generate a Certificate Signing Request (CSR), via a -certreq comman
such as the following:

keytool -certreq -alias joe -file JoeJ.csr

This command creates a CS
file named JoeJ.csr. S
the information in the certi

ore certificates.
CA, you should import the reply, and the self-signed certificate will be replaced by a chain of
certificates.

entity certificate that is essentially the same as the certificate sent to the CA except that the
returned certificate has been signed by the CA, thereby binding the subject of the certificate with
the public key being certified. The next certificate in the chain binds the CA's public key. Often,
this is a self-signed certificate and also the last certificate in the chain. In other cases, the CA
might return a longer chain of certificates. (Sections 8.1 and 8.2 provide comprehensive coverage
of certificates and certification paths, respectively.)

 - 229 -

Inside Java™ 2 Platform Security: Architecture, API Design, and Implementation, 2nd

Many CAs return only the issued certificate, with no supporting chain, especially when the
hierarchy is flat, that is, without intermediate CAs. In this case, the certificate chain to rep
original self-signed certificate must be established—by

lace the
ported—

te reply, as
well as the alternative reply format, which is defined by the PKCS #7 standard and includes the

You can import certificates by using the -import command, specifying the name of the file
con

key o

This com the

blic key stored with the alias. If, on the other hand, the alias
,

its
Before you

d execute a -
ple of such a command and the

il: Wed Dec 24

ted
h might be the most trusted CA itself. You then have the option of

tes
rts keystore file

(The cacerts
file is described later.) If the reply is a single X.509 certificate, keytool attempts to establish a

keytool when the reply is im
from trusted certificate information already stored in the keystore. A single-certifica

supporting certificate chain in addition to the issued certificate, can both be handled by
keytool.

Importing Certificates

taining the certificate(s) to be imported. A sample import command is the following:

t ol -import -alias joe -file jcertfile.cer

mand imports the certificate(s) in the file jcertfile.cer and stores them in
keystore entry identified by the alias joe. You can import either a single certificate to be
considered a trusted certificate or a certificate reply received from a CA as the result of submitting
a CSR to that CA. Which is imported is indicated by the value of the -alias option. If the alias
exists in the database and identifies an entry with a private key, it is assumed that you are
importing a certificate reply. In that case, the keytool utility checks whether the public key in
the certificate reply matches the pu
identifies an existing trusted certificate entry, the new certificate will not be imported. Otherwise
a new trusted certificate entry with the specified alias will be created and associated with the
newly imported trusted certificate.

Before you import a certificate to your keystore as a trusted certificate entry, you should ensure
authenticity. For example, suppose that a certificate is in a file named /tmp/cert.
consider adding the certificate to your list of trusted certificates, you coul
printcert command to view its fingerprints. Here is an exam
resulting printout:

keytool -printcert -file /tmp/cert
Owner: CN=ll, OU=ll, O=ll, L=ll, S=ll, C=ll
Issuer: CN=ll, OU=ll, O=ll, L=ll, S=ll, C=ll
Serial Number: 59092b34
Valid from: Thu Sep 25 18:01:13 PDT 2002 unt
17:01:13
 PST 2002
Certificate Fingerprints:
MD5: 11:81:AD:92:C8:E5:0E:A2:01:2E:D4:7A:D7:5F:07:6F
SHA1:
20:B6:17:FA:EF:E5:55:8A:D0:71:1F:E8:D6:9D:C0:37:13:0E:5E:FE

In fact, before importing a certificate to the list of trusted certificates in the keystore, keytool
prints out the certificate information and prompts you to verify it. You should do so by, for
example, comparing the displayed certificate fingerprints with those obtained from another trus
source of information, whic
accepting the certificate as trusted or aborting the import operation.

When importing a certificate reply, the certificate reply is validated by using trusted certifica
from the keystore and, optionally, using the certificates configured in the cace
if the -trustcacerts option was specified for the -import command.

 - 230 -

Inside Java™ 2 Platform Security: Architecture, API Design, and Implementation, 2nd

trust chain, starting at the certificate reply and ending at a self-signed certificate belongin
trusted CA. The certificate reply and the hierarchy of certificates used to authentic
certificate re

g to a
ate the

ply form a new certificate chain that replaces the initial self-signed certificate in the

he reply is self-signed.

n the cacerts
 can be found, keytool

are prompted to verify it. As
cepting

se64

key entry referred to by the alias.

If the reply is a certificate chain, the root (final) CA certificate in t
However, the trust aspect of the root's public key does not come from the trust anchor itself,
because anybody could generate a self-signed certificate with the appropriate DN. When you
import such a certificate chain, keytool attempts to match the most trusted CA certificate
provided in the reply with any of the trusted certificates in the keystore or i
keystore file, if you used the -trustcacerts option. If no match
prints out the information of the most trusted CA certificate, and you
when verifying a trusted certificate entry you are importing, you then have the option of ac
the certificate or aborting the import operation.

Note: Certificates read by the -import and -printcert commands can be either in Ba
or binary encoded. Such encodings are briefly described in Section 8.1.3.

The cacerts Certificates File

A certificates file named cacerts resides in the security properties directory

<java.home>/lib/security [Solaris, Linux]
<java.home>\lib\security [Win32]

whe ctory where the Java 2 runtime environment is installed,
as d

re <java.home> refers to the dire
eescrib d in Section 12.2.

The cac trators
can con pe. The
cacerts keystore file ships with several most trusted CA certificates, including ones for
Ver

The init keystore file is changeit. System administrators should
chan a

When im a -
tru d
when es hain of trust, as described in the command description. Here is a
sam

keytool -import -trustcacerts -alias joe -file jcertfile.cer

Exp

 a file, use the -export command, as in

e -

erts file represents a systemwide keystore with CA certificates. System adminis
figure and manage that file by using keytool, specifying jks as the keystore ty

iSign and Thawte.

ial password of the cacerts
ge th t password and the default access permission of that file on installing the SDK.

porting certificates via the keytool -import command, you can include
stcacerts option to indicate that certificates in the cacerts file may be considere

tablishing a c -import
ple import command that includes such an option:

orting a Certificate

To export a certificate to

keytool -export -alias jane -file janecertfile.cer

This command exports jane's certificate to the file janecertfile.cer. By default, the command
outputs a binary-encoded certificate, but it will instead output a Base64 certificate if you use th
rfc option.

 - 231 -

Inside Java™ 2 Platform Security: Architecture, API Design, and Implementation, 2nd

Printing Keystore Contents

To print the contents of a keystore entry, use the -list command, as in

ed, the contents of the entire keystore are printed. The command by default
prints the MD5 fingerprint of a certificate. If the -verbose option is specified, it prints the

ool utility has the fo t-in default ng options:

keytool -list -alias joe

If an alias is not specifi

certificate in human-readable format.

Help Commands

The following commands output help information:

keytool
keytool -help

Default Values for keytool Options

The keyt llowing buil values for the followi

-alias mykey

-keyalg DSA

-keysize 1024

-validity 90

-keystore the file named .keystore in the user's home directory

-file stdin if reading; stdout if writing

keytool Usage Example

Following is an example of creating and managing a keystore that has your public/private key pair
and certificates from entities you trust. First, you need to create a keystore and generate the k
pair. You can use a command like the following, typed on a single line:

keytool -genkey -dname "cn=Mark

ey

Smith, ou=Accounting, o=Sun,

 -storepass ab987c -validity 180

does not

command creates a self-signed certificate, usi ature

nd is associated with the private

c=US"
 -alias business -keypass kpi135 -keystore
/working/mykeystore

This command creates the keystore mykeystore in the /working directory, if it
already exist, and assigns it the password (storepass) ab987c. It generates a public/private
key pair for the entity whose DN (dname) has a common name Mark Smith, organizational
unit Accounting, organization Sun, and two-letter country code US. It uses the default DSA
key generation algorithm to create the keys, both 1,024 bits long, the default key size.

The ng the default SHA1withDSA sign
algorithm that is used when the key algorithm is DSA. The certificate includes the public key and
the DN information. This certificate will be valid for 180 days a

 - 232 -

Inside Java™ 2 Platform Security: Architecture, API Design, and Implementation, 2nd

key in a keystore entry referred to by the alias business. The private key is assigned the
password kpi135.

In this case, a keystore with name .keystore in the user's home directory (Section 12.3.2

The command can be significantly shorter if more option defaults are accepted, as you are
prompted for any required values that are not specified and have no defaults. Thus, you could
simply type the following:

keytool -genkey

) is
t exist yet, and an entry with alias mykey is created, with a newly

generated key pair and a certificate that is valid for 90 days.

key command used at the beginning of this section. So far, all you have is a self-
signed certificate. A certificate is more likely to be trusted by others if it is signed by a CA. To get

icates.

d CA. Before you import the certificate reply from a CA, you need one or more

,
 key.

ertificate, you need a certificate for the issuing CA, the
f the issuing certificate is not self-signed, you need a

certificate for its signer, and so on, up to a self-signed m certificate.

, so you probably will not need to import a VeriSign or Thawte certificate as a trusted

gned certificate from a different CA and your
ing that CA's public key, you will need to import

A certificate from a CA is usually either self-signed or signed by another CA, in which case you
also need a certificate authenticating that CA's public key. Suppose that company ABC, Inc., is a
CA and you obtain a file named ABCCA.cer that contains a purportedly self-signed certificate
from ABC, authenticating that CA's public key. Be very careful to ensure that the certificate is
valid prior to importing it as a trusted certificate. For example, you could execute a -
printcert command to view its fingerprints, as in the following:

keytool -printcert -file ABCCA.cer

used or created, if it doesn'

The rest of the examples in this section assume that you executed the -genkey command
without options specified and that you responded to the prompts with values equal to those given
in the -gen

such a signature, you first generate a CSR, using a command like the following:

keytool -certreq -file MarkS.csr

This command creates a CSR for the entity identified by the default alias mykey and puts the
request in the file named MarkS.csr. You then submit this file to a CA. The CA will
authenticate you as the requester, usually offline, and return a certificate, signed by it,
authenticating your public key. In some cases, it will return a chain of certif

You need to replace your self-signed certificate with a certificate chain, where each certificate in
the chain authenticates the public key of the signer of the previous certificate in the chain, up to
the most truste
trusted certificates in either your keystore or the cacerts keystore. You determine which
certificates are needed as follows:

• If the certificate reply is a certificate chain, you need only the top certificate of the chain
that is, the most trusted CA certificate authenticating that CA's public

• If the certificate reply is a single c
one that signed your certificate; i

ost-trusted CA

The default cacerts file in the JRE ships with a number of VeriSign and Thawte root CA
certificates
certificate in your keystore. But if you request a si
keystore does not contain a certificate authenticat
a trusted certificate from the CA.

 - 233 -

Inside Java™ 2 Platform Security: Architecture, API Design, and Implementation, 2nd

You can then verify the certificate by, for example, comparing the displayed certificate
fingerprints with those obtained from another trusted source of information, perhaps the CA itself.
If you trust that the certificate is valid, add it to your keystore, using a -import command:

keytool -import -alias abc -file ABCCA.cer

This command creates a trusted certificate entry in the keystore, with the data from the file
ABCCA.cer, and assigns the alias abc to the entry.

Once you have imported a certificate authenticating the public key of the CA to which you
submitted your CSR or if such a certificate is already in your keystore or in the cacerts file,
you can import the certificate reply, thereby replacing your self-signed certificate with a certificate
chain. This is the chain returned by the CA in response to your CSR, if the CA reply is a chain, or
one constructed, if the CA reply is a single certificate, using the certificate reply and trusted
certificates that are already available in the keystore in which you imported the reply or in the
cacerts keystore file.

For example, suppose that you sent your CSR to VeriSign. You can then import the reply by using
the following command, assuming that the returned certificate is named VSMarkS.cer:

keytool -import -trustcacerts -file VSMarkS.cer

The -trustcacerts option indicates that the import command may search the
cacerts file when searching for a certificate verifying VeriSign's public key.

Suppose that you have used the jarsigner tool to sign a JAR file (see Section 12.8.3). Clients
who want to use the file will want to authenticate your signature.

One way they can do this is by first importing your public-key certificate into their keystore as a
"trusted" entry. You can export the certificate and supply it to your clients. As an example, you
can copy your certificate to a file named MS.cer via the following:

keytool -export -alias mykey -file MS.cer

Given that certificate and the signed JAR file, a client can use the jarsigner tool to
authenticate your signature.

Suppose that your DN changes, perhaps because you have changed departments or moved to
another city. You may still use the same public/private key while updating your DN. For example,
suppose that your name is Susan Miller and that you created your initial key entry with the alias
sMiller and this DN:

"cn=Susan Miller, ou=Finance Department, o=BlueSoft, c=us"

If you later change from the Finance Department to the Accounting Department, you can still use
the previously generated public/private key pair but update your DN by following these steps:

1. Copy, or clone, your key entry:
2. keytool -keyclone -alias sMiller -dest sMillerNew

This command will prompt for the storepass password and for the initial and
destination private-key passwords, as they are not provided at the command line.

 - 234 -

Inside Java™ 2 Platform Security: Architecture, API Design, and Implementation, 2nd

3. Change the certificate chain associated with the copy so that the first certificate in the
chain uses your new DN. Start by generating a self-signed certificate with the appropriate
department name:

4. keytool -selfcert -alias sMillerNew -dname "cn=Susan
Miller,

5. ou=Accounting Department, o=BlueSoft, c=us"
6. Generate a Certificate Signing Request (CSR) by using the information in the new

certificate:
7. keytool -certreq -alias sMillerNew
8. Submit the CSR to a CA and import the CA certificate reply:
9. keytool -import -alias sMillerNew -file

VSSMillerNew.cer
10. You might want to remove the initial key entry that used your old DN:
11. keytool -delete -alias sMiller

12.8.3 jarsigner

The Java Archive (JAR) feature enables the packaging of class files, images, sounds, and other
data in a single file for faster and easier distribution. A tool named jar enables developers to
produce JAR files. The jarsigner tool can sign JAR files and verify the signatures and
integrity of signed JAR files. Attaching a digital signature to a JAR file helps to ensure that its
authenticity can be verified, by recomputing the signature based on the current JAR content and
comparing it to the stored signature. If the two do not match, either the content or the signature in
the JAR file was modified. Thus, as long as the private key is kept secret, someone without the
private key cannot forge a signed JAR file.

Basic usage of the jarsigner tool follows, along with examples. Refer to the SDK on-line
documentation for more information on jarsigner's options.

Signing a JAR File

The jarsigner tool uses private key and certificate information from a keystore to generate
the digital signatures for JAR files. Thus, when using jarsigner to sign a JAR file, you first
must specify the keystore location as a URL, as well as the alias for the keystore entry containing
the private key needed to generate the signature. For example, the following, typed on one line,
will sign the JAR file named MyJARFile.jar, using the private key associated with the alias
duke in the keystore named mystore in the /working directory:

jarsigner -keystore /working/mystore -storepass myspass
-keypass dukekeypasswd MyJARFile.jar duke

As no output file is specified, jarsigner overwrites MyJARFile.jar with the signed
JAR file.

You can use a -signedjar option to specify the name to be used for the signed JAR file if
you don't want the source file to be overwritten. For example, the following does not change
MyJARFile.jar and instead creates the signed JAR file MySignedJF.jar:

jarsigner -keystore /working/mystore -storepass myspass
-keypass dukekeypasswd -signedjar MySignedJF.jar
MyJARFile.jar duke

Because keystores may be of different types, the jarsigner tool has an option

 - 235 -

Inside Java™ 2 Platform Security: Architecture, API Design, and Implementation, 2nd

-storetype storetype

This option lets you indicate the type by replacing storetype in the preceding template with
the type. If you do not explicitly specify a keystore type, jarsigner chooses a keystore
implementation, based on the value of the keystore.type security property. This property,
as with all security properties, can be set via the methods described in Section 12.3.3. The value
can be obtained by calling either of the following:

java.security.KeyStore.getDefaultType()
java.security.Security.getProperty("keystore.type")

Currently, the SDK's default implementation of jarsigner can sign only zip files or JAR files
created by the SDK jar tool.[3] If the signer's public and private keys are DSA keys,
jarsigner signs the JAR file by using the SHA1withDSA algorithm. If the signer's keys are
RSA keys, jarsigner will attempt to sign the JAR file by using the MD5withRSA algorithm.
Providers must be statically installed with supporting implementations of these signing algorithms.
The default SUN provider makes both SHA1withDSA and MD5withRSA signing algorithms
available.

[3] JAR files are the same as zip files but also have a META-INF/MANIFEST.MF file. Such a file
will automatically be created when jarsigner signs a zip file.

The Signed JAR File

As described in Section 8.3.2, when jarsigner is used to sign a JAR file, the output signed
JAR file is exactly the same as the input JAR file, but it has two additional files placed in the
META-INF directory: a signature instructions file, or signature file, with an SF extension and a
signature block file whose extension varies, depending on the type of digital signature algorithm
used. For example, the extension would be DSA if the DSA algorithm was used. The base file
names for these two files come from the value of the -sigFile option. For example, suppose
that the option appears as follows and that the DSA algorithm was used:

-sigFile MKSIGN

The files are named MKSIGN.SF and MKSIGN.DSA. If no -sigfile option appears, the
base file name for the SF and DSA files is the first eight characters of the alias name specified on
the command line—or the alias name itself, if it has fewer than eight characters—all converted to
uppercase.

A signature instructions file (an SF file) looks similar to the manifest file that is always included
in a JAR file when jarsigner is used to sign the file. That is, for each source file included in
the JAR file, the signature file contains at least the file name, the name of the digest algorithm
used, such as SHA, and a digest value. In the manifest file, the digest value for each source file is
the digest (hash) of the binary data in the source file. In the SF file, however, the digest value for
a given source file is the hash of the lines in the manifest file for the source file. The SF file also,
by default, includes a header containing a hash of the whole manifest file. The presence of the
header enables verification optimization, as described later in the chapter.[4]

[4] The signed header can also be used to assist in sealing a Java software package stored inside a JAR
such that no other class can belong to the same package unless the other class is signed by the same
signature key.

A signature is generated for the SF file and is placed in the signature block file: the DSA file in
our example. The DSA file also contains, encoded within, the certificate or certificate chain from

 - 236 -

Inside Java™ 2 Platform Security: Architecture, API Design, and Implementation, 2nd

the keystore that authenticates the public key corresponding to the private key used for signing.
The jarsigner tool can use the certificate (chain) to verify the signature.

Multiple Signatures for a JAR File

A JAR file can be signed by multiple people simply by running jarsigner on the file multiple
times, specifying the alias for a different person each time, as in the following command
sequence:

jarsigner myBundle.jar susan
jarsigner myBundle.jar kevin

When a JAR file is signed multiple times, the resulting JAR file will contain multiple SF and
signature block files, one pair of files for each signature. In the previous example, the output JAR
file includes files with the following names if the DSA algorithm was used:

SUSAN.SF
SUSAN.DSA
KEVIN.SF
KEVIN.DSA

Verifying a JAR File

A sample command to verify the signature of the signed JAR file MySignedJF.jar is the
following:

jarsigner -verify MySignedJF.jar

Successful JAR file verification occurs if the signature(s) are valid and none of the files in the
JAR file when the signatures were generated have been changed since then. JAR file verification
involves the following steps:

1. Verify the signature of the SF file itself. The verification ensures that the signature stored
in each signature block file, such as one with extension DSA, was in fact generated using
the private key corresponding to the public key whose certificate or certificate chain also
appears in the DSA file. It also ensures that the signature is a valid signature of the
corresponding signature (SF) file and thus that the SF file is tamper free.

2. Verify the digest listed in each entry in the SF file with each corresponding section in the
manifest. The SF file may include a header containing a hash of the entire manifest file.
When the header is present, the verification can simply check to see whether the hash in
the header indeed matches the hash of the manifest file. If that is the case, verification
proceeds to the next step. Otherwise, the hash in each source file information section in
the SF file must be checked to determine whether it equals the hash of its corresponding
section in the manifest file. The hash of the manifest file stored in the SF file header
might not equal the hash of the current manifest file: for example, when one or more files
are added to the JAR file, using the jar tool, after the signature and thus the SF file
were generated. When the jar tool is used to add files, the manifest file is changed—
sections are added to it for the new files—but the SF file is not. Given that the interest
here is in only those signed files, a verification is still considered successful if signatures
and hashes of these files verify.

3. Verify each file mentioned in the SF file. The jarsigner utility reads each file in the
JAR file that has an entry in the SF file. While reading, it computes the file's digest and
then compares the result with the digest for the file in the manifest section. The digests
should be the same, or else verification fails. If any security-sensitive verification failures

 - 237 -

Inside Java™ 2 Platform Security: Architecture, API Design, and Implementation, 2nd

occur during the verification process, the process is stopped, and a security exception that
is caught and displayed by jarsigner is thrown.

Code Signing and Verification Example

Here is an example of signing and verifying a JAR file. Suppose that you have a JAR file,
bundle.jar, that you want to sign by using the private key of the user whose keystore alias is
jane in the keystore named mystore in the /working directory. Suppose that the keystore
password is myspass and that the password for jane's private key is j638klm. You can use
the following command, on a single line, to sign the JAR file and name the signed JAR file
sbundle.jar:

jarsigner -keystore /working/mystore -storepass myspass
-keypass j638klm -signedjar sbundle.jar bundle.jar JANE

The resulting SF and DSA files are JANE.SF and JANE.DSA.

To verify the signed JAR file sbundle.jar, you could use the following command:

jarsigner -verify sbundle.jar

If the verification is successful, the message jar verified displays. Otherwise, an error
message appears. You can get more information about the verification process by using the -
verbose option, as follows:

jarsigner -verify -verbose sbundle.jar

 198 Fri Sep 26 16:14:06 PDT 2001 META-INF/MANIFEST.MF
 199 Fri Sep 26 16:22:10 PDT 2001 META-INF/JANE.SF
 1013 Fri Sep 26 16:22:10 PDT 2001 META-INF/JANE.DSA
smk 2752 Fri Sep 26 16:12:30 PDT 2001 AclEx.class
smk 849 Fri Sep 26 16:12:46 PDT 2001 test.class

s = signature was verified
m = entry is listed in manifest
k = at least one certificate was found in keystore

jar verified.

If, when verifying, you specify the -certs option along with the -verify and -verbose
options, the output includes

• Certificate information, including the certificate type, for each signer of the JAR file
• The signer's DN (see Section 12.9) information if, and only if, the certificate is an X.509

certificate
• The keystore alias for the signer, in parentheses, if the public-key certificate in the JAR

file matches that in a keystore entry

Here is an example:

 - 238 -

Inside Java™ 2 Platform Security: Architecture, API Design, and Implementation, 2nd

jarsigner -keystore mystore -verify -verbose -certs
myTest.jar

 198 Fri Sep 26 16:14:06 PDT 2001 META-
INF/MANIFEST.MF
 199 Fri Sep 26 16:22:10 PDT 2001 META-INF/JANE.SF
 1013 Fri Sep 26 16:22:10 PDT 2001 META-INF/JANE.DSA
 208 Fri Sep 26 16:23:30 PDT 2001 META-
INF/JAVATEST.SF
 1087 Fri Sep 26 16:23:30 PDT 2001 META-
INF/JAVATEST.DSA
smk 2752 Fri Sep 26 16:12:30 PDT 2001 Tst.class

X.509, CN=Test Group, OU=Java Software, O=Sun Microsystems,
L=CUP,
 S=CA, C=US (javatest)
X.509, CN=Jane Smith, OU=Java Software, O=Sun, L=cup, S=ca,
C=us
 (JANE)

s = signature was verified
m = entry is listed in manifest
k = at least one certificate was found in keystore

jar verified.

If the certificate for a signer is not an X.509 certificate, no DN information is available. In this
case, just the certificate type and the alias are shown. For example, if the certificate was a PGP
certificate and the alias was bob, you would get this as output:

PGP, (bob)

12.9 X.500 Distinguished Names

In some cases, values for various properties or options are expected to contain X.500
Distinguished Name (DN) strings. For example, the keytool command for generating a key
pair requires a DN as the value of the -dname option indicating the DN of the entity for whom
keys should be generated. Another example is that of a policy file principal entry that indicates a
principal of type javax.security.auth.x500.X500Principal. The value for that
principal must be specified as a DN. A final example is when X.500 Distinguished Names are
used to identify entities for the subject and issuer (signer) fields of X.509 certificates.

A sample X.500 Distinguished Name (DN) string is the following:

"CN=Duke, OU=Java Software, O=Sun, L=Santa Clara, S=CA,
C=US"

The keywords CN, OU, and so on, are abbreviations for the following:

 - 239 -

Inside Java™ 2 Platform Security: Architecture, API Design, and Implementation, 2nd

• CN = commonName
• OU = organizationUnit
• O = organizationName
• L = localityName, indicating a city
• S = stateName, indicating a state or province
• C = country, expected to be a two-letter country code

DN keyword abbreviations are case insensitive; for example, the following are all treated the
same: CN, cn, and Cn. However, the order of the keywords does matter in that each
subcomponent must appear in the designated order CN, OU, O, L, S, C. However, not all
subcomponents need be present; subsets are allowed, for example,

"CN=Duke, OU=Java Software, O=Sun, C=US"

See [130] for more information about X.500 Distinguished Names.

12.10 Managing Security Policies for Nonexperts

This chapter has discussed the technical details of deploying the Java 2 security architecture, as
well as how to configure security policies, create keys and certificates, and sign JAR files
containing classes. The overall complexity might appear overwhelming to the nonexpert computer
user. This complexity is the natural result of having a feature-rich security architecture that must
cater to a wide range of needs, such as those that arise in programming secure enterprise
applications.

Two approaches are useful for the nonexpert when dealing with this complexity. One is to call in
professional care and management. In the case of an enterprise environment, system
administrators and information resource departments can be made responsible for establishing and
deploying security policies on behalf of other corporate employees. Technical details in this and
preceding chapters have shown that the Java security architecture design has taken this into
account and has introduced a number of ways for the user to defer or delegate security policy
decisions to another party. For example, employees can be instructed to configure their browsers
to point to a centrally controlled Web page to obtain the current security policy. Or the company
might want to customize a version of the browser, which it then distributes to employees.

Developers of enterprise applications can also incorporate security policy management in such a
way that the typical user does not have to deal with, or even be aware of, the underlying security
management features. In the case of the individual outside the corporate environment, Internet
service providers (ISPs) are also a good source for security advice and management. For example,
many ISPs already offer limited security mechanisms, such as firewalls and junk-mail filtering.
Thus, it is quite reasonable for them to offer security policy management help for executable
content and mobile code.

The second approach to security management for the nonexpert is to focus on the human interface.
Field experience and controlled studies have shown that it is extremely difficult for the vast
majority of computer and Internet users to understand security issues, which range from
terminology to solutions to consequences. Moreover, various users interpret things so differently
that it is very difficult to describe security in the same way to a diverse group of people. Thus, the
Java 2 platform has not attempted to provide a uniform human-computer interface to deal with
security policy and management. Instead, it expects that software vendors will integrate such
functionalities into their own system environments and customize the contents and presentations
to suit the particular set of users of their systems.

 - 240 -

Inside Java™ 2 Platform Security: Architecture, API Design, and Implementation, 2nd

Moreover, application developers can choose to embed security solutions in such a way that they
are invisible to users. For example, imagine a Java application that provides AOL-style Internet
access and user experience. Such an application might use many Java platform features, such as
dynamic component upgrading, and provide such services as secure access to e-mail messages.
Thus, the application will depend on extensive security technology, which calls for security
management. In this case, the application can "lock in" the particular security policies that are
needed to make it work and not provide any customization capability in this respect. As a result,
apart from the initial login process, users do not have to deal with any further security issues and
indeed might not even be aware that complicated security decisions are being made throughout the
application.

Security management and user interface remains an understudied subject, partly because the
Internet brought security into the mainstream for the first time, making it an everyday concern,
and partly because older technologies have generally not had security as a design goal. As time
goes by and extensive security solutions are deployed ubiquitously, developers will gain valuable
insight into this important aspect of security technology.

 - 241 -

Inside Java™ 2 Platform Security: Architecture, API Design, and Implementation, 2nd

Chapter 13. Other Platforms and Future Directions

changing and advancing the application of Java technology. Today, Java technology, in one form

p computers,
network appliances, routers, switches, blade servers, mainframes, and supercomputers. We

ting concurrently within a
ons for Java 2 Platform,

 adaptations that build on a common foundation and that

en

13.1 Introduction to Java Card

gy consists of three components:

Java

gement, security
enforcement, and other runtime features.

he

 and

s with
va Card technology has several unique benefits, such as

All progress is precarious, and the solution of one problem brings us face to face with another
problem.

—Martin Luther King, Jr.

In the first edition of this book, we concluded by describing industry trends that were both

or another, is woven into just about every conceivable device. No longer relegated to the desktop
or the browser, Java technology is wired into smart cards, cell phones, pagers, digital
communicators, personal digital assistants, set-top boxes, game consoles, deskto

described a trend whereby multiple server applications would be execu
JVM. This prediction has come to pass and is embodied in the specificati
Enterprise Edition (J2EE). This in turn generated performance, scalability, and manageability
requirements on Java virtual machine implementations. Today, high-performing JVMs, such as
Java HotSpot, are widely deployed in mission-critical application environments.

We spoke of Java technology being embedded in smaller, less computationally capable devices.
At the time, two early profiles of Java were beginning to take shape: PersonalJava Application
Environment and EmbeddedJava Application Environment. These early adaptations of Java have
since been replaced with more general
have since been formalized and specified as profiles within Java 2, Micro Edition (J2ME). Ev
smaller Java application execution environments have gained widespread adoption with the
success of Java Card technology.

In this chapter, we provide some general background on the various Java platforms, their
advancement, and descriptions of their security models and capabilities. Where possible, we detail
security technologies that are available or that are anticipated to emerge in the near term.

Java Card technology enables programs written in the Java programming language to run in smart
cards and other memory-constrained devices. Java Card technology is widely deployed in many
industry sectors, including mobile cellular handsets, health care identity cards, and financial
services. Java Card technolo

1. The Java Card Virtual Machine (JCVM) specification [126] defines a subset of the
programming language and virtual machine specifications that is suitable for smart card
applications.

2. The Java Card Runtime Environment (JCRE) specification [125] describes Java Card
runtime environment behavior: memory management, application mana

3. The Java Card Application Programming Interface (API) specification [124] describes t
set of core and extension Java Card packages and classes for programming smart card
applications.

These three components provide a secure Java platform for smart cards. The Java Card platform
separates applications, called applets, from the proprietary technologies of smart card vendors
provides standard system and API interfaces for applets.

The Java Card specifications enable Java technology to run on smart cards and other device
limited memory. The Ja

 - 242 -

Inside Java™ 2 Platform Security: Architecture, API Design, and Implementation, 2nd

• Interoperability. Applets developed with Java Card technology will run on any Java
Card technology-based smart card, independently of the card vendor and underlying
hardware.

• Security. Java Card technology relies on the inherent security of the Java programming
language to provide a secure execution environment.

• Multiapplication coexistence. Java Card technology enables multiple applications to

eserved even when power is removed from the card.
oved.
ation

that is persistent, the JCVM appears to run forever. When power is removed, the VM stops only

ten for the Java Card platform. An
applet instance's lifetime begins when it is successfully registered with the Java Card Runtime

k.Applet.register method.
od exist until deleted by the applet

.

alled once by the
JCRE for each applet instance created. The JCRE should not call the applet's constructor directly.

he applet is to create an instance of the Applet
nstance.

riate status word,
in which case the JCRE catches the exception and returns the status word to the card-accepting

 it
ect

coexist securely on a single smart card. New applications can be installed securely after a
card has been issued.

• Compatibility with existing standards. The Java Card API is compatible with
international standards, such as ISO 7816 [55], for smart cards.

13.1.1 Virtual Machine Lifetime

In Java Card technology, the execution lifetime of the virtual machine is the lifetime of the card.
Most of the information stored on a card is pr
Persistent memory technology enables a smart card to store information when power is rem
Because the VM and the objects created on the card are used to represent application inform

temporarily. When the card is next reset, the VM starts up again and recovers its previous object
heap from persistent storage. Aside from its persistent nature, the Java Card virtual machine is just
like the Java virtual machine.

In Java Card technology, the term applet refers to an applet writ

Environment (JCRE) via the javacard.framewor
Applets registered with the Applet.register meth
deletion manager. The JCRE initiates interactions with the applet via the applet's public methods
install, select, deselect, and process.

An applet should implement the static install(byte[], short, byte) method. If
the install method is not implemented, the applet's objects cannot be created or initialized
When the applet is installed on the smart card, the static install method is c

The main task of the install method within t
subclass, using its constructor, and to register the i

Applets remain in a suspended state until they are explicitly selected. Selection occurs when the
JCRE receives a SELECT FILE Application Protocol Data Unit (APDU) [55] command in
which the name data matches the Application Identifier (AID) of the applet. Applet selection can
also occur on a MANAGE CHANNEL OPEN command. Selection causes an applet to become
the currently selected applet.

All APDUs are received by the JCRE and preprocessed. At any time during processing, the applet
may throw a javacard.framework.ISOException with an approp

device (CAD), or card reader.

When the JCRE receives a SELECT FILE APDU command in which the name matches the
AID of an applet, the JCRE calls the deselect method of the currently selected applet or, if
is multiply selected on more than one logical channel, its Multiselectable.desel
method. Applet deselection may also be requested by the MANAGE CHANNEL CLOSE
command. The deselect method allows the applet to perform any clean-up operations that
may be required in order to allow another applet to execute.

 - 243 -

Inside Java™ 2 Platform Security: Architecture, API Design, and Implementation, 2nd

Power loss occurs when the card is withdrawn from the CAD or if there is some other me
or electrical failure. When power is reapplied to the card, and on card re

chanical
set, the JCRE ensures that

(1) transient data is reset to the default value, (2) the transaction in progress, if any, when power

ct

r JCRMI is
ervice

l set of updates of persistent data. For example, transferring money from
one account to another is a banking transaction. It is important for transactions to be atomic:
Either all the data fields are updated, or none is. The JCRE provides robust support for atomic
transactions, so that card data is restored to its original pretransaction state if the transaction does
not complete normally. This mechanism protects against such events as power loss in the middle
of a transaction and program errors that might cause data corruption should all steps of a
transaction not complete normally.

13.1.3 Java Card's Applet Isolation and Object-Sharing Model

Isolation means that one applet cannot access the fields or methods of an applet in another context
unless the other applet explicitly provides an interface for access. The Java Card firewall provides
protection against the most frequently anticipated security concern: developer mistakes and design
oversights that might allow sensitive data to be leaked to another applet. To obtain an object
reference from a publicly accessible location, an applet must satisfy certain access rules before it
can use the reference to access the object. The firewall also provides protection against incorrect
code. If incorrect code is loaded onto a card, the firewall still protects objects from being accessed
by this code.

The JCRE maintains its own JCRE context. This context is much like the context of an applet but
has special system privileges so that it can perform operations denied to contexts of applets. At
any time, only one JCRE or applet context is active within the VM. A context switch occurs when
certain well-defined conditions are met during the execution of invoke-type bytecodes. During a
context switch, the previous context and object owner information are pushed on an internal VM
stack, a new context becomes the currently active context, and the invoked method executes in
this new context. On exit from that method, the VM performs a restoring context switch. The
original context of the caller of the method is popped from the stack and is restored as the
currently active context. Context switches can be nested. The maximum depth depends on the
amount of VM stack space available.

Any given object in the Java Card object space has a context and an owner associated with it.
When a new object is created, it is associated with the currently active context and is owned by the
applet instance that belongs to that currently active context. An object can be owned by an applet
instance or by the JCRE.

was lost or reset occurred, is aborted, and (3) the applet instance that was selected when power
was lost, or reset occurred, becomes implicitly deselected. (Note: In this case, the desele
method is not called.) If the JCRE implements default applet selection, the JCRE will also ensure,
when power is reapplied, that the default applet is selected as the active applet instance for the
basic logical channel and that the default applet select method is called. Otherwise, the JCRE
sets its state to indicate that no applet is active on the basic logical channel.

13.1.2 Java Card Remote Method Invocation

Java Card Remote Method Invocation (JCRMI), a subset of the Java Remote Method Invocation
(RMI) system, provides a mechanism for a client application running on the CAD platform to
invoke a method on a remote object on the card. The on-card transport layer fo
provided in the package javacard.framework.service by the class RMIS
and is designed as a service requested by the JCRMI-based applet when it is the currently selected
applet. The JCRMI message is encapsulated within the APDU object passed into the
RMIService methods.

A transaction is a logica

 - 244 -

Inside Java™ 2 Platform Security: Architecture, API Design, and Implementation, 2nd

The combined rules of context and object ownership within the firewall follow:

• Every applet instance belongs to a context.
• All applet instances from the same package belong to the same context.
• Every object is owned by an applet instance or the JCRE.
• An applet instance is identified by its AID.
• When executing an instance method of an object or a static class method called from

within, the object's owner must be in the active context.

No runtime context check is performed when a class static field is accessed, and no context switch
occurs when a static method is invoked. To enable applets to interact with each other and with the
JCRE, some well-defined yet secure mechanisms are provided so one context can access an object
belonging to another context:

• JCRE entry point objects
• Global arrays
• JCRE privileges
• Shareable interfaces

13.1.4 Java Card Security APIs

The Java Card API defines a security API, javacard.security, and a cryptography API,
javacardx.crypto, which supply functionality similar to their J2SE counterparts,
java.security and javax.crypto, respectively. Specifically, the APIs provide classes
and interfaces that contain publicly available functionality for implementing a security and
cryptography framework on Java Card. Classes in the javacard.security package
provide the definitions of algorithms that perform the security and cryptography functions.

The cryptographic capabilities of the Java Card security API include support for symmetric and
asymmetric signature algorithms, as well as key-agreement algorithms. The cryptography API
supports key encryption and cipher abstractions similar to those found in J2SE.

13.2 Introduction to Java 2 Micro Edition

J2ME is a subset of J2SE and is further categorized by two configurations: Connected Limited
Device Configuration (CLDC) and Connected Device Configuration (CDC). Within a device
configuration, a profile that specifies the available Java APIs is defined. For example, CLDC
defines Mobile Information Device Profile (MIDP), which is targeted for mobile phones. Due to
the limited computational resources available to these small devices, the granularity accorded to
the security model and support mechanisms varies. CLDC 1.0 specifies a rather coarse security
model similar to the sandbox of yore.

MIDP 2.0 defines a more advanced security model that incorporates the notion of trusted
applications. In MIDP, applications are referred to as MIDlet suites. Once a MIDlet suite is
determined to be trusted, access is allowed, based on the permissions accorded by the domain
policy. The protection domain owner defines how the device authenticates and verifies a MIDlet
suite so as to bind it to the protection domain. One such binding specified by MIDP 2.0 is an
X.509 PKI-based mechanism for determining whether a MIDlet is trusted. Under this mechanism,
which is similar to J2SE code signing, the authenticity and integrity of the MIDlet suite are
verified, and, if successful, the MIDlet suite is placed into the corresponding protection domain.

The configurations and profiles of J2ME are not static, and the future holds much richer security
functionality. Within the Java community, work is under way to define APIs for security and trust
services. The API defines an abstraction layer to access and use a security element integrated into

 - 245 -

Inside Java™ 2 Platform Security: Architecture, API Design, and Implementation, 2nd

the
specifica

J2ME-enabled devices are evolving to become trusted computing elements in a distributed
environment. Advances in cryptography have made it possible for devices constrained by resource
limitations, such as power, bandwidth, memory size, and computational horsepower, to perform
cryptographic functions locally. Elliptic curve cryptography (ECC) has reached a level of maturity
such that we can expect to see it implemented and deployed in small devices.

ECC offers cryptographic strength equivalent to the more prevalent cryptosystems in use today
but with considerably smaller key sizes. This reduction in key size makes strong cryptography
possible in resource-constrained environments. Specifically, we will soon be seeing J2ME devices
with implementations of ECC. This will likely include the Elliptic Curve Digital Signature
Algorithm (ECDSA) [2]. ECDSA can be used to provide applications with authentication and
integrity protection mechanisms. More important, ECC-capable TLS cipher suites are in the
process of being standardized by the IETF. Of course, for ECC cipher suites to be negotiated and
used between communicating peers, the TLS implementation of the peer must also support the
cipher suite. Thus, it is fair to expect such support to be available in J2SE shortly after the
standards are codified.

As is the case with any conforming Java platform, the JVM specification requires that type safety
be maintained and that invalid class files be rejected. This verification is traditionally performed
by the Java class file verifier. However, implementing class file and bytecode verification is
expensive in both time and space. The conventional verifier requires tens of kilobytes of code and
memory to implement an iterative dataflow algorithm.

This is not an option in a resource-constrained device. To remedy the situation, CLDC specifies an
alternative approach to verification, whereby the verification is split into two phases: off-device
preverification and runtime verification. By offloading the computationally intense preverification
step, the core runtime verification algorithm can be implemented in a few kilobytes of code and
consume only a few hundred bytes of memory, and it requires only a linear scan of the bytecode.
This saves both time and space at the expense of a slightly larger class file. To achieve this, the
preverification step annotates the class file with special attributes referred to as stack maps. Stack
maps describe the types of local variables and operand stack items. The information in the stack
map facilitates the runtime verification step.

13.3 Security Enhancements on the Horizon for J2SE

The primary focus of this book has been J2SE platform security. Throughout this text, we have
described the security features and the design underpinnings of J2SE. It would not be too great of
a stretch to suggest that J2SE is possibly the most secure and feature-rich development and
deployment environment ever created. However, that is no reason to sit idle and let the world pass
by. We now detail possible enhancements to the Java platform.

13.3.1 Virtual Machine Enhancements

They say that good things come in small packages. The partitioning of preverification and runtime
verification as specified by CLDC is a good example. The performance gain and the simplification
this provides certainly warrant consideration for future inclusion into J2SE. To better integrate this
into the development process,it is envisioned that the Java compiler (javac) will support the
generation of the stack map and that the class file specification will be revised to support the
necessary attributes to carry the information in a backward-compatible way.

device. A typical security element would be a smart card, but other security devices are
lly not precluded.

 - 246 -

Inside Java™ 2 Platform Security: Architecture, API Design, and Implementation, 2nd

13.3.2 Language Enhancements

J2SE provides a conservative and robust access control algorithm that can prevent some
programming mistakes from turning into security holes. Additional techniques that further this
effort are available. For example, recall that the doPrivileged primitive in a sense "enables"
all permissions granted to a piece of code. This mechanism of asserting privilege is necessary and
useful, but the common idiom of using anonymous classes for the PrivilegedAction
argument adds complexity to the readability of the code. A more suitable language construct, such
as a block construct with guaranteed prologue and epilogue execution semantics, would be simpler
to understand. Additionally, closures could simplify implementing privileged code by relaxing the
language requirements about variable usage within the scope of inner classes.

13.3.3 Trusted Computing Base Enhancements

In some cases, an application might want to enable only some of its granted permissions. This

leges by
exploiting advances in declarative paradigms and policy management.

Another way to reduce security liabilities is to subdivide the system domain. For convenience, the
system domain can be thought of as a single large collection of all system code. For better
protection, system code should be run in multiple system domains, where each domain protects a
particular type of resource and is given a special set of rights. For example, if file system code and
network system code run in separate domains, with the former having no rights to the networking
resources and the latter having no rights to the file system resources, the risks and consequences of
an error or security flaw in one system domain are more likely to be confined within its boundary.

Moreover, protection domains currently are created transparently as a result of class loading.
Providing explicit primitives to create a new domain might be useful. Often, a domain supports
inheritance in that a subdomain automatically inherits the parent domain's security attributes,
except when the parent further restricts or expands the subdomain explicitly.

Class loaders are very delicate in terms of their security implications, and the way the
ClassLoader classes are specified can be improved. Applets and applications can create class
loaders only if the system security policy is configured to allow this to happen, with the only
exception being URLClassLoader. Such a severe restriction might impede the development
of certain applications.

A way to handle nonclass content consistently is needed. When applets or applications are run
with signed content—classes and other resources—the JAR and Manifest specifications on
code signing allow a very flexible format. The classes within the same archive can be unsigned,
signed with one key, or signed with multiple keys. Other resources within the archive, such as
audio clips and graphic images, can also be signed or unsigned. However, it is unclear whether
images and audio clips should be required to be signed with the same key if any class in the
archive is signed. If images and audio files are signed with different keys, can they be placed in
the same appletviewer, or browser page, or should they be sent to different viewers? Such
questions are not easy to answer. Any response requires consistency across platforms and products
in order to be most effective. The current approach is to process all images and audio clips
whether or not they are signed. This temporary solution should be improved once a consensus is
reached.

selective enabling further reduces the security impact of making a programming mistake. This
reduction is possible today by supplying an AccessControlContext object to the
doPrivileged method. However, this mechanism is cumbersome to use. We contemplate
enriching the primitive so that it takes an additional parameter, possibly of type Permission,
PermissionCollection, or Permissions, that specifies the permissions to be
enabled. Alternatively, we envision simplifying the mechanics of reducing privi

 - 247 -

Inside Java™ 2 Platform Security: Architecture, API Design, and Implementation, 2nd

13.3.4 Evolution of Pluggable Security Providers

When we designed the Java security APIs, we envisioned an architecture that could withstand
evolutionary changes and technological advances. We also realized that we could not implement
everything; nor could we foresee the needs of everybody. Our solution to this realization was the
Service Provider Interface, which has proved to be very versatile. The Service Provider Interface
has been a boon to the Java security team, but even more important, it provides flexibility that
third-party developers require.

is exposed to applications by the Java Secure
n the cryptographic algorithms plugged into

Java Cryptography Architecture (JCA) to implement the various cipher suites. With the advent of
standardized ECC cipher suites, we expect to see JCA cryptographic service providers
implementing the underlying ECC signature and encryption algorithms. However, the
implementation of JSSE must also provide implementations of the ECC cipher suites. Currently,
JSSE does not expose a Service Provider Interface such that alternative implementations of the
TLS/SSL protocol can be plugged in. Certainly this is a desirable capability, as it provides a
degree of flexibility that is more amenable to integrating support for evolving standards. Thus, we
anticipate an exposed Service Provider Interface so that alternative implementations can plug in
under the JSSE API.

The Java GSS-API was developed and standardized in the security area of the IETF. Subsequent
to its being standardized, Java GSS-API was incorporated into J2SE. Unlike the majority of the
security APIs in J2SE, Java GSS-API does not expose a Service Provider Interface. Originally, we
expected to standardize the Service Provider Interface within the IETF. As a standards body,
however, the IETF is no longer interested in standardizing programming interfaces. Rather, the
IETF prefers to expend its energy on Internet protocols. That said, the need for an SPI still exists
for a variety of reasons. GSS mechanisms, such as SPKM [1], SPNEGO [4], and LIPKEY [33],
have been standardized and are actively being deployed. Without an open programming interface,
the Java GSS binding would eventually become obsolete. Given that, we expect a Java GSS-API
Service Provider Interface to be standardized via the Java community process.

13.3.5 Security Expressions

At approximately the same time as Java 2 was released, another significant innovation began to
mature: eXtensible Markup Language (XML) [17]. XML is essentially a language for describing
data. The success of XML is the result of many factors, but possibly the most obvious is the one it
shares with the Java programming language: ease of use. XML is a generalized markup language,
and considerable standardization work is either complete or nearing completion for specifying
XML syntax to describe and represent data that has been cryptographically secured. The XML
Signature [32] and the XML Encryption [31] specifications are now stable. Java APIs are being
created within the Java community for inclusion as core platform security APIs. Finally, the XML
Key Management Specification (XKMS) [49] is also stabilizing. XKMS specifies an XML syntax
and protocols for distributing and registering public keys. The design center for XKMS is to create
simple abstractions and mechanisms to obscure the complexity of PKI. Around the notion of
simplifying PKI, Java APIs are planned to support the protocol interaction with an XKMS trust
service for retrieving public keys and for processing of XML Signature key information.

Once the basic XML security plumbing is in place, it can be applied to higher-level infrastructure,
such as Web services. Industry research suggests that Web services will not be widely adopted
until the security substrate is standardized. Many near-term standards efforts are active in this
space. Java APIs are in the early standardization stages within the Java community process.

Recall that J2SE has integral support for TLS, which
Socket Extension (JSSE) API. JSSE relies primarily o

 - 248 -

Inside Java™ 2 Platform Security: Architecture, API Design, and Implementation, 2nd

13.3.6 Security Management

Most will agree that the more difficult it is to do or use something, the more likely it will not be
used. Two of the design tenets of J2SE are ease of use and ease of deployment. At times, these
heuristics are at odds with security requirements. Obtaining platform, network, and/or information
security is a complex undertaking. Many factors must be considered in order to deploy a system
securely. The security posture of most distributions of J2SE defaults to a restrictive sandbox
security model. This default posture is generally the safest stance a distribution can assume.
Although safe, it is very limiting. To accommodate the deployment requirements of a system, we
have crafted a variety of means by which to configure a system. However, the primitives are very
low level. To manage the security of the environment better, specialized deployment paradigms
have become prevalent. The three most common Java deployment paradigms are J2EE, Java Web
Start, and the Java Plug-in.

13.4 Brief Introduction to Jini Network Technology

The design center for Jini Network Technology, which was introduced in 1999, is that of a
dynamic adaptable network of available services [131]. Jini is based on the notion of a federation:
a collection of users and the resources they rely on. The goals of the Jini distributed system are

• Enabling users to share services and resources
• Ease of access to the resources
• Location independence and mobility
• Simplification of the administration of users, network available services, and the devices

that make up the network

One view of Jini is by its functional decomposition. Jini comprises an underlying infrastructure, a
programming model, and the clients and services making up the federation.

The infrastructure component of Jini can be further subdivided into (1) the discovery protocol,
which allows an entity wishing to join a Jini network to find a lookup service, and (2) the lookup
service, which acts as a place where services advertise themselves and clients go to find a service.
Jini infrastructure [123] is built on the Java RMI programming model.

Jini builds on the notion of a proxy, a local object that stands in for the remote object. While
presenting the same programmatic interface to the local code, the proxy handles any network-
related functions, transmitting any parameters to the remote service and receiving any return
values from that service.

Obviously, there are many threats to distributed systems, and Jini is no different. In the following
sections, we present an overview of the security architecture and components that make up the
Davis project. The Davis project is an effort by the Jini technology project team at Sun
Microsystems to address the need for a Jini technology security architecture, as well as to
contribute other improvements to Jini technology.

13.4.1 Overview of Jini Technology Security Architecture

Jini fully leverages code mobility to enable the adaptive and dynamic behavior of a federated
distributed system. The Jini technology security architecture ensures that proxies can be trusted
before using potentially threatening code. Jini technology also supports configurable security. This
enables a Jini client, service, or application to be deployed into environments that have varying or
evolving security requirements.

The Jini technology security architecture supplies a programming model that supports these
requirements. The programming model generally solves this problem by defining a constraints-

 - 249 -

Inside Java™ 2 Platform Security: Architecture, API Design, and Implementation, 2nd

based system that is used to express the network security requirements. The client's network
invocation constraints are conveyed by way of the proxy interface. The server's invocation
constraints are generally conveyed to the proxy when a remote object is exported.

13.4.2 Constraints Model

The types of invocation constraints that can be specified are extensible. For example, existing
invocation constraints include authentication, message integrity, and confidentiality. Both clients
and servers can specify such constraints, and it is the responsibility of the proxy implementation to
satisfy both parties' security constraints.

Jini technology relies on JAAS for the principals and credentials that will be used to effect
network authentication of a local entity and its remote peer. Jini technology does not specify
JAAS login modules to perform network authentication handshakes. The client's Subject is the
current Subject associated with the thread making the remote call. This is retrieved from a
thread by calling javax.security.auth.Subject.getSubject with the thread's
current access control context. The server's Subject is normally taken from the thread that was
current when the remote object was exported.

An entity may authenticate itself in a remote call as a subset of the Principals in its
Subject and only if that Subject contains the necessary public and/or private credentials
required for the authentication mechanism used by the proxy and server implementations.
However, additional principals and credentials might be derived, based on that authentication. The
principals and credentials used to authenticate the server normally are not provided directly to the
client making the remote call; instead, the client uses security constraints to restrict what they
must be. In the server, the result of authenticating the client is represented by a Subject
containing the subset of authenticated client Principals and any derived Principals, as
well as the public credentials used during authentication and any derived public credentials. This
Subject normally does not contain any private credentials and so cannot be used for
authentication in further remote calls, unless delegation is used. However, the Subject can be
used by the server for local authorization: for example, by binding the Subject to the running
thread with javax.security.auth.Subject.doAs. Thus, the server could rely on
the installed J2SE security policy to take into consideration the Principals contained in the
Subject when making policy decisions.

13.4.3 Establishing Proxy Trust

Clearly, the process as outlined requires that the proxy be trusted. Rather than having the client
directly determine whether it trusts the proxy, the approach taken is first to determine that the
client can trust the server, by requiring the server to authenticate itself, and then to determine that
the server trusts the proxy, by asking the server for a verifier and passing the proxy to that verifier.
If the client trusts the server and the server trusts the proxy, transitively, the client is inferred to
trust the proxy. However, there are questions to answer for both of these steps.

First is the question of how the client can reliably verify that the server authenticates itself, when
the client does not yet trust the downloaded proxy. To accomplish this, the proxy is required to
support some bootstrap remote communication mechanism that the client does trust. Specifically,
the proxy must be able to provide a bootstrap proxy that is trusted by the client. In the common
case of a smart proxy wrapped around a standard dynamic proxy—for example, a dynamic proxy
for a remote object exported to use Jini extensible remote invocation (Jini ERI)—the dynamic
proxy usually can serve as the bootstrap proxy if its invocation handler does not depend on any
downloaded code, on the assumption that the client will have configured in a trust verifier for such
dynamic proxies and their invocation handlers. However, there is no requirement that normal

 - 250 -

Inside Java™ 2 Platform Security: Architecture, API Design, and Implementation, 2nd

communication with the server use the same protocol used by the bootstrap proxy; the bootstrap
proxy could be used strictly for trust verification.

Second is the question of how to reliably obtain a verifier from the server. (The proxy is not sent
to the server, because an untrusted proxy could use a writeReplace serialization method to
replace itself on the wire with a trusted proxy; the proxy needs to be checked in the client.)
Authentication of the server and object integrity should be required during the remote call through
the bootstrap proxy to obtain the verifier from the server, so that the remote call and the verifier
object received from it can be trusted. To accomplish this, the client is responsible for specifying
the server principals it trusts and for mandating constraints that ensure integrity protection and the
server authentication.

13.4.4 Dynamic Policy

Once a proxy has been determined to be trustworthy, the client can dynamically grant the proxy
permissions so that the proxy can interact with the remote peer and use the Principals and
credentials contained in the client's Subject. It is important to delay granting such permissions
until after the trust decision, so that an untrusted proxy cannot abuse the grants in a way that might
cause harm. Jini technology specifies a dynamic policy interface that a security policy provider
can implement. Additionally, Sun's implementation of Jini includes a generic wrapper policy
provider that implements the interface, and it can be wrapped around an arbitrary Policy
instance. The implementation supports dynamic grants at runtime to protection domains with a
given class loader and set of Principals. Thus, the intent is that you receive a proxy, verify
that it can be trusted, then grant it permissions, and then make calls through it.

One final note: For deployments having known trusted CodeSources, an implementation of an
RMIClassLoader provider can be configured such that code is downloaded only from
CodeSources that have been granted sufficient permission. This approach effectively
eliminates denial-of-service attacks from untrusted code.

The preceding description of the Jini technology security architecture only skims the surface. The
reader is encouraged to visit the Jini community Web site, www.jini.org, for additional
information.

13.5 Brief Introduction to J2EE

J2EE, a superset of J2SE, manages the security of container-resident applications. J2EE provides a
component-based development and deployment model. Three container types are prevalent today:
JavaServer Pages (JSP), Java servlets, and Enterprise JavaBeans (EJB). The J2EE platform
manages the underlying infrastructure for the components so that the application developer can
focus on the application functionality and not be concerned with managing the security and
computing infrastructure. When a component is installed into the container, the security
requirements of the component are declared within a deployment descriptor. Once deployed, the
container ensures that the security requirements of the component are met prior to dispatching into
the component and throughout the life cycle of component invocations and interactions.

This model has proved very successful, and with success come new challenges. Success in the
enterprise has generated new platform requirements. For instance, enterprises have begun to
deploy access management systems that enable a cohesive and unified security posture. To
integrate J2EE within such an environment, future versions of the J2EE platform specification will
incorporate the Java Authorization Contract for Containers, which fully integrates the security
policy capabilities of J2SE with the container-managed notions of J2EE. The realization of this
particular specification manifests itself as implementations of Permission, Policy, and

 - 251 -

Inside Java™ 2 Platform Security: Architecture, API Design, and Implementation, 2nd

management interfaces that a provider must make available to allow container deployment tools to
create and manage permission collections corresponding to roles.

The J2EE platform manages peer authentication for the hosted components. Presently, the
authentication mechanisms are fixed by the platform specification to the most common
mechanisms. We anticipate that new authentication technologies will need to be supported in the
near term. To accommodate advances in authentication technologies, a Java authentication Service
Provider Interface is being developed within the Java community process.

13.6 Client Containers

Client containers have been a part of the application delivery model since the inception of Java.
The appletviewer utility program was the original client container. As the utility and
popularity of Java began to take hold, browser vendors added integral support for applets by
integrating Java runtime environments into their Web browsers. As Java matured, it became even
more popular within corporate intranets; thus, Sun developed the Java Plug-in (JPI) applet
container to meet the needs of enterprises. Enterprises generally have stringent application
delivery, manageability, and compatibility requirements that the JPI specifically addresses. For
example, the Java Plug-in has provisions for specifying the version information so that a
compatible Java runtime can be selected and even installed. The Java Plug-in has become the de
facto Java runtime environment for the most popular browsers in use today. The JPI can be
installed as the default VM such that it is invoked when the browser encounters an <APPLET>
tag.

Applets are a wonderful delivery and deployment mechanism, but in many scenarios, a stand-
alone application is a better solution. However, applications have the same delivery,
manageability, and compatibility requirements as applets. To address this problem, an application
container, Java Web Start (JWS), was developed by the Java community.

The Java Plug-in has some rather unique and difficult integration requirements. For example, the
JPI must ensure that applets adhere to the Java security model as well as enable applets to interact
with the Document Object Model [120]. This requirement places restrictions on what an applet
can access within the containing document and also on access to the applet by other document
elements, such as scripts. Similarly, JWS has unique security requirements. For example, JWS
must ensure that the permissions accorded an application are valid according to the policy and that
the user accepts the signing certificate.

To that end, both JPI and JWS implement custom ClassLoader and SecurityManagers
to address the unique interaction and security requirements of a client container. For example, the
JPI must ensure that cached JAR files are accessed only by classes in accordance with
CodeSource implication rules. Also, at times, the JPI may encounter an applet that requires
more permission than is accorded by the current policy, and thus a dialogue may be needed to give
the user the opportunity to override security policy. The JPI can capture the override such that it
can persist so that the user will not be prompted again in the future.

User management of security policy is not always the best solution to these sorts of problems. We
should see alternative solutions forthcoming. Advances in policy expression languages and
certificate status and revocation checking should greatly simplify the user's burden.

Security management is not just for end users. Application developers often do not want to
become experts in security simply to write secure applications. They would benefit, for example,
from interfaces that they can call to obtain security services, such as encryption algorithms, key
sizes, and protocol types, without having to know the specifics. Such simple security APIs should
greatly increase productivity, as well as the security quality of the resulting applications.

 - 252 -

Inside Java™ 2 Platform Security: Architecture, API Design, and Implementation, 2nd

13.7 Final Remarks

Throughout the chapters of this book, we have delved into the architectural underpinnings of the
Java security architecture, presented overviews of the relevant APIs, and provided insight into our
design philosophy. We have described the platform security from the lowest substrate the Java
programming language and Java virtual machine provide, through to the application programming
interfaces and up to the security policy expressions. We have touched on security mechanisms,
including cryptography, object security, network authentication, and security protocols. We have
highlighted the fundamental and the practical application of these technologies.

Over the last few decades, the importance of information, computer, and network security has
come to the forefront of our attention. Networks and computers are integral components of our
daily lives. Our financial, medical, transportation, and even our health care systems all rely on
secure network computing technology. Compromise of these systems could be catastrophic, and
so we are always searching for better ways to secure our systems. What this suggests is that
security is an ongoing process that must constantly be evaluated, corrected, adapted, and refined.
The future holds great promise along with equally great challenges.

 - 253 -

Inside Java™ 2 Platform Security: Architecture, API Design, and Implementation, 2nd

Bibliography
[1] C. Adams. The Simple Public-Key GSS-API Mechanism (SPKM). Request for Comments (RFC)
2025, Internet Engineering Task Force, October 1996.

[2] ANSI. Public Key Cryptography for the Financial Services Industry: The Elliptic Curve Digital
Signature Algorithm, ANSI X9.62, 1998.

[3] K. Arnold and J. Gosling. The Java Programming Language, Second Edition. Reading, Mass.:
Addison-Wesley, 1998.

[4] E. Baize and D. Pinkas. The Simple and Protected GSS-API Negotiation Mechanism. Request for
Comments (RFC) 2478, Internet Engineering Task Force, December 1998.

[5] D. E. Bell and L. J. LaPadula. Secure Computer Systems: A Mathematical Model. Journal of
Computer Security, 4(2–3): 239–263, 1996. A modern reprint of the same-titled technical report, ESD-
TR-73-278, Vol. 2, Bedford, Mass.: The MITRE Corporation, 1973.

[6] S. Bellovin. Security Problems in the TCP/IP Protocol Suite. Computer Communication Review,
19(2): 32–48, April 1989.

[7] S. Bellovin. Using the Domain Name System for System Break-ins. Proceedings of the Fifth
Usenix UNIX Security Symposium, June 1995.

[8] S. M. Bellovin and W. R. Cheswick. Network Firewalls. IEEE Communications, 50–57, September
1994.

[9] S. Bellovin and M. Merritt. Limitations of the Kerberos Authentication System. Proceedings of the
Winter 1991 Usenix Conference, 253–267, Dallas, January 1991.

[10] S. Bellovin and M. Merritt. Encrypted Key Exchange: Password-Based Protocols Secure Against
Dictionary Attacks. Proceedings of the IEEE Symposium on Research in Security and Privacy, 72–84,
Oakland, Calif., May 1992.

[11] S. Bellovin and M. Merritt. Augmented Encrypted Key Exchange: A Password-Based Protocol
Secure Against Dictionary Attacks and Password File Compromise. Proceedings of the 1st ACM
Conference on Computer and Communications Security, 244–250, Fairfax, Va., November 1993.

[12] B. N. Bershad, S. Savage, P. Pardyak, E. G. Sirer, M. Fiuchynski, D. Becker, S. Eggers, and C.
Chambers. Extensibility, Safety, and Performance in the SPIN Operating System. Proceedings of the
15th ACM Symposium on Operating Systems Principles, 251–266, Copper Mountain Resort, Colo.,
December 1995. Published as ACM Operating System Review 29(5): 251–266, December 1995.

[13] K. J. Biba. Integrity Considerations for Secure Computer Systems. U.S. Air Force Electronic
Systems Division Technical Report 760372, Bedford, Mass.: Hanscom Air Force Base, April 1977.

[14] M. Blaze, J. Feigenbaum, and A. Keromytis. The KeyNote Trust-Management System Version 2.
Request for Comments (RFC) 2704, Internet Engineering Task Force, September 1999.

[15] J. Bloch. Effective Java. Boston, Mass.: Addison-Wesley, 2001.

[16] S. Boeyen, T. Howes, and P. Richard. Internet X.509 Public Key Infrastructure LDAPv2 Schema.
Request for Comments (RFC) 2587, Internet Engineering Task Force, June 1999.

[17] Tim Bray, Jean Paoli, C. M. Sperberg-McQueen, and Eve Maler. Extensible Markup Language
(XML) 1.0, Second Edition. W3C Recommendation, October 2000.

 - 254 -

Inside Java™ 2 Platform Security: Architecture, API Design, and Implementation, 2nd

[18] D. F. C. Brewer and M. J. Nash. The Chinese Wall Security Policy. Proceedings of the IEEE
Symposium on Security and Privacy, 206–214, Oakland, Calif., April 1989.

[19] M. Burrows, M. Abadi, and R. M. Needham. A Logic for Authentication. ACM Transactions on
Computer Systems, 8(1): 18–36, February 1990.

[20] CCITT Recommendation X.509. The Directory Authentication Framework, 1988.

[21] J. S. Chase, H. M. Levy, M. J. Feeley, and E. D. Lazowska. Sharing and Protection in a Single-
Address-Space Operating System. ACM Transactions on Computer Systems, 12(4): 271–307,
November 1994.

[22] S. Chokhani and W. Ford. Internet X.509 Public Key Infrastructure Certificate Policy and
Certification Practices Framework. Request for Comments (RFC) 2527, Internet Engineering Task
Force, March 1999.

[23] D. D. Clark and D. R. Wilson. A Comparison of Commercial and Military Computer Security
Policies. Proceedings of the IEEE Symposium on Security and Privacy, 184–194, Oakland, Calif., April
1987.

[24] F. Cristian. Understanding Fault-Tolerant Distributed Systems. Communications of the ACM,
34(2): 57–78, February 1991.

[25] D. Crocker. Standard for the Format of ARPA Internet Text Messages. Request for Comments
(RFC) 822, Internet Engineering Task Force, August 1982.

[26] I. B. Damg ard. Design Principles for Hash Functions. Advances in Cryptology: Proceedings of
Crypto '89, Vol. 435 of Lecture Notes in Computer Science, 416–427. New York: Springer-Verlag,
October 1989.

[27] S. Deering and R. Hinden. Internet Protocol, Version 6 (IPv6) Specification. Request for
Comments (RFC) 1883, Internet Engineering Task Force, December 1995.

[28] T. Dierks and C. Allen. The TLS Protocol Version 1.0. Request for Comments (RFC) 2246,
Internet Engineering Task Force, January 1999.

[29] W. Diffie and M. E. Hellman. New Directions in Cryptography. IEEE Transactions on
Information Theory, IT–22(6): 644–665, November 1976.

[30] D. Dolev and A. C. Yao. On the Security of Public Key Protocols. IEEE Transactions on
Information Theory, IT–29(2): 198–208, March 1983.

[31] D. Eastlake and J. Reagle. XML Encryption Syntax and Processing. W3C Proposed
Recommendation, October 2002.

[32] D. Eastlake, J. Reagle, and D. Solo. XML-Signature Syntax and Processing. Request for
Comments (RFC) 3075, Internet Engineering Task Force, March 2002.

[33] M. Eisler. LIPKEY—A Low Infrastructure Public Key Mechanism Using SPKM. Request for
Comments (RFC) 2847, Internet Engineering Task Force, June 2000.

[34] C. Ellison, B. Frantz, B. Lampson, R. Rivest, B. Thomas, and T. Ylonen. SPKI Certificate Theory.
Request for Comments (RFC) 2693, Internet Engineering Task Force, September 1999.

[35] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns. Reading, Mass.: Addison-
Wesley, 1995.

 - 255 -

Inside Java™ 2 Platform Security: Architecture, API Design, and Implementation, 2nd

[36] M. Gasser. Building a Secure Computer System. New York: Van Nostrand Reinhold, 1988.

[37] J. A. Goguen and J. Meseguer. Security Policies and Security Models. Proceedings of the IEEE
Symposium on Security and Privacy, 11–20, Oakland, Calif., April 1982.

[38] J. A. Goguen and J. Meseguer. Unwinding and Inference Control. Proceedings of the IEEE
Symposium on Security and Privacy, 75–86, Oakland, Calif., April 1984.

[39] L. Gong. Collisionful Keyed Hash Functions with Selectable Collisions. Information Processing
Letters, 55(3): 167–170, August 1995.

[40] L. Gong. New Security Architectural Directions for Java (Extended Abstract). Proceedings of
IEEE COMPCON, 97–102, San Jose, Calif., February 1997.

[41] L. Gong. Java Security: Present and Near Future. IEEE Micro, 17(3): 14–19, May/June 1997.

[42] L. Gong, P. Lincoln, and J. Rushby. Byzantine Agreement with Authentication: Observations and
Applications in Tolerating Hybrid Faults. Proceedings of the 5th IFIP Working Conference on
Dependable Computing for Critical Applications, 79–90, Urbana-Champaign, Ill., September 1995.

[43] L. Gong, T. M. A. Lomas, R. M. Needham, and J. H. Saltzer. Protecting Poorly Chosen Secrets
from Guessing Attacks. IEEE Journal on Selected Areas in Communications, 11(5): 648–656, June
1993.

[44] L. Gong, M. Mueller, H. Prafullchandra, and R. Schemers. Going Beyond the Sandbox: An
Overview of the New Security Architecture in the Java Development Kit 1.2. Proceedings of the
USENIX Symposium on Internet Technologies and Systems, 103–112, Monterey, Calif., December
1997.

[45] L. Gong, R. Needham, and R. Yahalom. Reasoning about Belief in Cryptographic Protocols.
Proceedings of the IEEE Symposium on Research in Security and Privacy, 234–248, Oakland, Calif.,
May 1990.

[46] L. Gong and X. Qian. Computational Issues of Secure Interoperation. IEEE Transactions on
Software Engineering, 22(1): 43–52, January 1996.

[47] L. Gong and R. Schemers. Implementing Protection Domains in the Java Development Kit 1.2.
Proceedings of the Internet Society Symposium on Network and Distributed System Security, 125–134,
San Diego, Calif., March 1998.

[48] James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. The Java Language Specification, Second
Edition. Boston, Mass.: Addison-Wesley, June 2000.

[49] Phillip Hallam-Baker. XML Key Management Specification (XKMS 2.0). W3C Working Draft,
March 2002.

[50] N. Haller, C. Metz, P. Nesser, and M. Straw. A One-Time Password System. Request for
Comments (RFC) 2289, Internet Engineering Task Force, February 1998.

[51] M. A. Harrison, W. L. Ruzzo, and J. D. Ullman. Protection in Operating Systems.
Communications of the ACM, 19(8): 461–471, August 1976.

[52] C. Hawblitzel, C-C Chang, G. Czajkowski, D. Hu, and T. von Eicken. Implementing Multiple
Protection Domains in Java. Proceedings of the USENIX Annual Technical Conference, 259–270, New
Orleans, La., June 1998.

 - 256 -

Inside Java™ 2 Platform Security: Architecture, API Design, and Implementation, 2nd

[53] M. P. Herlihy and J. D. Tygar. How to Make Replicated Data Secure. Advances in Cryptology.
Proceedings of Crypto '87, Vol. 293 of Lecture Notes in Computer Science, 379–391. New York:
Springer-Verlag, 1987.

[54] R. Housley, W. Ford, T. Polk, and D. Solo. Internet X.509 Public Key Infrastructure Certificate
and CRL Profile. Request for Comments (RFC) 3280, Internet Engineering Task Force, April 2002.

[55] International Standards Organization. ISO 7816 Parts 1–6. July 1987.

[56] International Telecommunication Union. ITU-T Recommendation X.509: The Directory: Public-
Key and Attribute Certificate Frameworks, 2000.

[57] A. K. Jones. Protection in Programmed Systems. Ph.D. dissertation, Pittsburgh, Penn.: Carnegie-
Mellon University, June 1973.

[58] J. Kabat and M. Upadhyay. Generic Security Service API Version 2: Java Bindings. Request for
Comments (RFC) 2853, Internet Engineering Task Force, June 2000.

[59] B. Kaliski. The MD2 Message-Digest Algorithm. Request for Comments (RFC) 1319, Internet
Engineering Task Force, April 1992.

[60] S. Kent. Privacy Enhancement for Internet Electronic Mail: Part II—Certificate-Based Key
Management. Request for Comments (RFC) 1422, Internet Engineering Task Force, November 1993.

[61] S. Kent and R. Atkinson. Security Architecture for the Internet Protocol. Request for Comments
(RFC) 2401, Internet Engineering Task Force, November 1998.

[62] S. Kent and J. Linn. Privacy Enhancement for Internet Electronic Mail: Part II—Certificate-Based
Key Management. Request for Comments (RFC) 1114, Internet Engineering Task Force, November
1989.

[63] D. E. Knuth. The Art of Computer Programming, Vol. 2: Seminumerical Algorithms, Revised
Edition. Reading, Mass.: Addison-Wesley, 1969.

[64] D. E. Knuth. The Art of Computer Programming, Vol. 3: Searching and Sorting. Reading, Mass.:
Addison-Wesley, 1973.

[65] J. Kohl and C. Neuman. The Kerberos Network Authentication Service (V5). Request for
Comments (RFC) 1510, Internet Engineering Task Force, September 1993.

[66] A. G. Konheim. Cryptography: A Primer. New York: John Wiley, 1981.

[67] H. Krawczyk, M. Bellare, and R. Canetti. HMAC: Keyed-Hashing for Message Authentication.
Request for Comments (RFC) 2104, Internet Engineering Task Force, February 1997.

[68] L. Lamport. Password Authentication with Insecure Communication. Communications of the
ACM, 24(11): 770–772, November 1981.

[69] B. W. Lampson. Protection. Proceedings of the 5th Princeton Symposium on Information Sciences
and Systems, Princeton University, March 1971. Reprinted in ACM Operating Systems Review, 8(1):
18–24, January 1974.

[70] B. W. Lampson. A Note on the Confinement Problem. Communications of the ACM, 16(10): 613–
615, October 1973.

 - 257 -

Inside Java™ 2 Platform Security: Architecture, API Design, and Implementation, 2nd

[71] B. Lampson, M. Abadi, M. Burrows, and E. Wobber. Authentication in Distributed Systems:
Theory and Practice. ACM Transactions on Computer Systems, 10(4): 265–310, November 1992.

[72] C. E. Landwehr. Formal Models for Computer Security. ACM Computing Survey, 13(3): 247–278,
September 1981.

[73] S. Liang and G. Bracha. Dynamic Class Loading in the Java Virtual Machine. Proceedings of the
ACM Conference on Object Oriented Programming Systems, Languages, and Applications, 36–44,
Vancouver, British Columbia, October 1998.

4] T. Lindholm and F. Yellin. The Java Virtual Machine Specification, Second Edition. Reading,
ass.: Addison-Wesley, 1999.

[75] J. Linn. Privacy Enhancement for Internet Electronic Mail: Part I: Message Encryption and
Authentication Procedures. Request for Comments (RFC) 1421, Internet Engineering Task Force,
February 1993.

[76] J. Linn. The Kerberos Version 5 GSS-API Mechanism. Request for Comments (RFC) 1964,
Internet Engineering Task Force, June 1996.

[77] J. Linn. Generic Security Service Application Program Interface Version 2. Request for
Comments (RFC) 2743, Internet Engineering Task Force, January 2000.

[78] T. M. A. Lomas, L. Gong, J. H. Saltzer, and R. M. Needham. Reducing Risks from Poorly Chosen
Keys. Proceedings of the 12th ACM Symposium on Operating System Principles, Litchfield Park, Ariz.
Published in ACM Operating Systems Review, 23(5): 14–18, December 1989.

[79] D. McCullough. A Hookup Theorem for Multilevel Security. IEEE Transactions on Software
Engineering, 16(6): 563–568, June 1990.

[80] G. McGraw and E. W. Felten. Java Security: Hostile Applets, Holes, and Antidotes. New York:
John Wiley, 1997.

[81] C. Meadows. Using Narrowing in the Analysis of Key Management Protocols. Proceedings of the
IEEE Symposium on Security and Privacy, 138–147, Oakland, Calif., May 1989.

[82] A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone. Handbook of Applied Cryptography. New
York: CRC Press, 1997.

[83] R. C. Merkle. Secrecy, Authentication, and Public Key Systems. Ann Arbor, Mich.: UMI Research
Press, 1982. Stanford University. Revised from 1979 Ph.D. thesis.

[84] R. C. Merkle. A Fast Software One-Way Hash Function. Journal of Cryptology, 3(1): 43–58,
1990.

[85] C. H. Meyer and M. Schilling. Secure Program Load with Modification Detection Code.
Proceedings of the 5th Worldwide Congress on Computer and Communication Security and
Protection–SECURICOM 88, 111–130, Paris, 1988.

[86] J. K. Millen, S. C. Clark, and S. B. Freedman. The Interrogator: Protocol Security Analysis. IEEE
Transactions on Software Engineering, SE-13(2): 274–288, February 1987.

[87] S. P. Miller, C. Neuman, J. I. Schiller, and J. H. Saltzer. Kerberos Authentication and
Authorization System. Project Athena Technical Plan Section E.2.1. Cambridge, Mass.: Massachusetts
Institute of Technology, October 1988.

[7
M

 - 258 -

Inside Java™ 2 Platform Security: Architecture, API Design, and Implementation, 2nd

 - 259 -

[88] M. Moriconi, X. Qian, R. A. Riemenschneider, and L. Gong. TSecure Software ArchitecturesT.
TProceedings of the IEEE Symposium on Security and PrivacyT, 84–93, Oakland, Calif., May 1997.

[89] J. Myers. TSimple Authentication and Security Layer (SASL)T. Request for Comments (RFC) 2222,
Internet Engineering Task Force, October 1997.

[90] M. Naor and M. Yung. TUniversal One-Way Hash Functions and Their Cryptographic
ApplicationsT. TProceedings of the 21st Annual ACM Symposium on Theory of ComputingT, 33–43,
Seattle, May 1989.

[91] National Institute of Standards and Technology. TDigital Signature StandardT, January 2000. U.S.
Federal Information Processing Standards Publication, FIPS PUB 186-2.

[92] National Institute of Standards and Technology. TAdvanced Encryption StandardT, November 2001.
U.S. Federal Information Processing Standards Publication, FIPS PUB 197.

[93] National Institute of Standards and Technology. TSecure Hash StandardT, August 2002. U.S.
Federal Information Processing Standards Publication, FIPS PUB 180-2.

[94] R. M. Needham and M. D. Schroeder. TUsing Encryption for Authentication in Large Networks of
ComputersT. TCommunications of the ACMT, 21(12): 993–999, December 1978.

[95] B. C. Neuman and T. Ts'o. TKerberos: An Authentication Service for Computer NetworksT. TIEEE
CommunicationsT, 32(9): 33–38, September 1994.

[96] P. G. Neumann. TComputer-Related RisksT. Reading, Mass.: Addison-Wesley, 1995.

[97] J. Postel. TInternet ProtocolT. Request for Comments (RFC) 791, Internet Engineering Task Force,
September 1981.

[98] M. O. Rabin. TFingerprinting by Random PolynomialsT. Technical Report TR-15-81, Center for
Research in Computing Technology, Cambridge, Mass.: Harvard University, 1981.

[99] M. Reiter. TSecure Agreement Protocols: Reliable and Atomic Group Multicast in RampartT.
TProceedings of the 2nd ACM Conference on Computer and Communications SecurityT, 68–80, Fairfax,
Va., November 1994.

[100] E. Rescorla. THTTP over TLST. Request for Comments (RFC) 2818, Internet Engineering Task
Force, May 2000.

[101] S. Ritchie. TSystems Programming in JavaT. TIEEE MicroT, 17(3): 30–35, May/June 1997.

[102] R. L. Rivest. TThe MD5 Message-Digest AlgorithmT. Request for Comments (RFC) 1321, Internet
Engineering Task Force, April 1992.

[103] R. L. Rivest and B. Lampson. TSDSI—A Simple Distributed Security InfrastructureT. Technical
report, Cambridge, Mass.: Massachusetts Institute of Technology, October 1996.

[104] R. L. Rivest, A. Shamir, and L. Adleman. TA Method for Obtaining Digital Signatures and Public-
Key Cryptosystems. T TCommunications of the ACMT, 21(2): 120–126, February 1978.

[105] RSA Laboratories. TPKCS #1: RSA Encryption Standard, Version 1.5.T, November 1993.

[106] RSA Laboratories. TPKCS #5: Password-Based Encryption Standard, Version 1.5.T, November
1993.

Inside Java™ 2 Platform Security: Architecture, API Design, and Implementation, 2nd

 - 260 -

[107] RSA Laboratories. TPKCS #7: Cryptographic Message Syntax Standard, Version 1.5.T, November
1993.

[108] RSA Laboratories. TPKCS #8: Private-Key Information Syntax Standard, Version 1.2.T, November
1993.

[109] RSA Laboratories. TPKCS #10: Certification Request Syntax Standard, Version 1.7. T, May 2000.

[110] J. H. Saltzer. TProtection and the Control of Information Sharing in MulticsT. TCommunications of
the ACMT, 17(7): 388–402, July 1974.

[111] J. H. Saltzer and M. D. Schroeder. TThe Protection of Information in Computer SystemsT.
TProceedings of the IEEET, 63(9): 1278–1308, September 1975.

[112] V. Samar and C. Lai. TMaking Login Services Independent from Authentication TechnologiesT.
TProceedings of the SunSoft Developer's ConferencTe, San Jose, Calif., March 1996.

[113] R. S. Sandhu. TThe Typed Access Matrix ModelT. TProceedings of the IEEE Symposium on
Research in Security and PrivacyT, 122–136, Oakland, Calif., May 1992.

[114] F. B. Schneider. TImplementing Fault-Tolerant Services Using the State-Machine Approach: A
TutorialT. TACM Computing Surveys T, 22(4): 299–319, December 1990.

[115] B. Schneier. TApplied CryptographyT. New York: John Wiley, 1994.

[116] M. D. Schroeder. TCooperation of Mutually Suspicious Subsystems in a Computer UtilityT. Ph.D.
dissertation. Cambridge, Mass.: Massachusetts Institute of Technology, September 1972.

[117] M. I. Seltzer, Y. Endo, C. Small, and K. A. Smith. TDealing with Disaster: Surviving Misbehaved
Kernel ExtensionsT. TProceedings of the 2nd USENIX Symposium on Operating Systems Design and
Implementation T, 213–227, Seattle, Wash., October 1996. Published as TACM Operating Systems
ReviewT, 30, special winter issue, 1996.

[118] A. Shamir. THow to Share a SecretT. TCommunications of the ACMT, 22(11): 612–613, November
1979.

[119] R. Shirey. TInternet Security GlossaryT. Request for Comments (RFC) 2828, Internet Engineering
Task Force, May 2000.

[120] Johnny Stenback, Philippe Le Hégaret, Arnaud Le Hors. TDocument Object Model Level 2
HTML Specification Version 1.0. W3C Proposed RecommendationT, November 2002.

[121] Sun Microsystems. TJAR File SpecificationT. TJ2SE documentationT, 1999.
HTUhttp://java.sun.com/j2se/1.4/docs/guide/jar/jar.htmlUTH.

[122] Sun Microsystems. TThe Java Extension Mechanism ArchitectureT. TJ2SE documentationT, 1999.
HTUhttp://java.sun.com/j2se/1.4/docs/guide/extensions/spec.htmlUTH.

[123] Sun Microsystems. TJini Architecture Specification Version 1.2T, December 2001.
HTUhttp://wwws.sun.com/software/jini/specs/jini1.2html/jini-title.html UTH.

[124] Sun Microsystems. TJava Card 2.2 Application Programming InterfaceT, June 2002.
HTUhttp://java.sun.com/products/javacard/specs.html UTH.

[125] Sun Microsystems. TJava Card 2.2 Runtime Environment SpecificationT, June 2002.
HTUhttp://java.sun.com/products/javacard/specs.html UTH.

Inside Java™ 2 Platform Security: Architecture, API Design, and Implementation, 2nd

 - 261 -

[126] Sun Microsystems. TJava Card 2.2 Virtual Machine SpecificationT, June 2002.
HTUhttp://java.sun.com/products/javacard/specs.html UTH.

[127] U.S. General Accounting Office. TInformation Security: Computer Attacks at Department of
Defense Pose Increasing RisksT. Technical Report GAO/AIMD-96-84, Washington, D.C., May 1996.

[128] U.S. National Bureau of Standards. TData Encryption Standard T, January 1977. U.S. Federal
Information Processing Standards Publication, FIPS PUB 46.

[129] L. van Doorn, M. Abadi, M. Burrows, and E. Wobber. TSecure Network ObjectsT. TProceedings of
the IEEE Symposium in Security and PrivacyT, 211–221, Oakland, Calif., May 1996.

[130] M. Wahl, S. Kille, and T. Howes. TLightweight Directory Access Protocol (v3): UTF-8 String
Representation of Distinguished Names T. Request for Comments (RFC) 2253, Internet Engineering
Task Force, December 1997.

[131] J. Waldo. TThe Jini Architecture for Network-Centric ComputingT, TCommunications of the ACM,T
42(7): 76-82, July 1999.

[132] D. S. Wallach, D. Balfanz, D. Dean, and E. W. Felten. TExtensible Security Architectures for
JavaT. TProceedings of the 16th ACM Symposium on Operating Systems PrinciplesT, 116–128, Saint-
Malo, France, October 1997.

[133] M. V. Wilkes. TTime-Sharing Computer SystemsT. London: MacDonald, 1968.

[134] W. A. Wulf, R. Levin, and S. P. Harbison. THYDRA/C.mmp—An Experimental Computer SystemT,
New York: McGraw-Hill, 1981.

[135] F. Yellin. TLow Level Security in JavaT. TProceedings of the 4th International World Wide Web
ConferenceT, 369–379, Boston, Mass., December 1995.

[136] P. R. Zimmerman. TThe Official PGP User's GuideT. Cambridge, Mass.: MIT Press, 1995.

	Preface
	How This Book Is Organized
	Acknowledgments
	About the Authors

	Preface to the First Edition
	Acknowledgments for the First Edition

	Chapter 1. Computer and Network Security Fundamentals
	1.1 Cryptography versus Computer Security
	1.2 Threats and Protection
	1.3 Perimeter Defense
	Figure 1.1. Perimeter defense
	1.3.1 Firewalls
	Figure 1.2. Firewall deployment

	1.3.2 Inadequacies of Perimeter Defense Alone

	1.4 Access Control and Security Models
	1.4.1 MAC and DAC Models
	Figure 1.3. MAC security model

	1.4.2 Access to Data and Information
	1.4.3 Static versus Dynamic Models
	1.4.4 Considerations for Using Security Models

	1.5 Using Cryptography
	1.5.1 One-Way Hash Functions
	Figure 1.4. One-way hash function

	1.5.2 Symmetric Ciphers
	Figure 1.5. Symmetric cipher

	1.5.3 Asymmetric Ciphers
	Figure 1.6. Asymmetric cipher used for encryption and decryp

	1.6 Authentication
	Figure 1.7. Use of authentication server

	1.7 Mobile Code
	1.8 Where Java Technology–Based Security Fits In

	Chapter 2. Basic Security for the Java Programming Language
	2.1 The Java Programming Language and Platform
	2.2 Original Basic Security Architecture
	2.3 Bytecode Verification and Type Safety
	2.4 Signed Applets
	Figure 2.1. JDK 1.1 security model

	2.5 Further Enhancements

	Chapter 3. Java 2 Security Architecture
	3.1 Security Architecture Requirements of Java 2
	3.1.1 Flexible Access Control
	3.1.2 Separation of Policy Expression from Policy Enforcemen
	3.1.3 Flexible and Extensible Policy Enforcement
	3.1.4 Flexible and Customizable Security Policy
	3.1.5 Robust and Simple Internal Security Mechanisms

	3.2 Overview of the Java 2 Security Architecture
	3.3 Architecture Summary
	3.4 Lessons Learned

	Chapter 4. Secure Class Loading
	4.1 Class Files, Types, and Defining Class Loaders
	4.2 Well-Known Class Loader Instances
	4.3 Class Loader Hierarchies
	4.3.1 Class Loader Inheritance Hierarchy
	Figure 4.1. Subclassing Classleader

	4.3.2 Class Loader Delegation Hierarchy
	Figure 4.2. Class loading relationship

	4.4 Loading Classes
	4.4.1 Finding a Class
	Figure 4.3. ClassLoader searching for classes

	4.4.2 Defining the Class
	4.4.3 Other ClassLoader Methods

	4.5 SecureClassLoader Details
	4.6 URLClassLoader Details
	4.7 Class Paths

	Chapter 5. Elements of Security Policy
	5.1 Permissions
	5.1.1 Permission Class Hierarchy
	Figure 5.1. Common Permission subclasses

	5.1.2 Common Permission Classes
	java.security.Permission
	java.security.BasicPermission
	java.security.AllPermission
	java.security.UnresolvedPermission

	5.1.3 Permission Sets
	5.1.4 Implications of Permission Implications
	5.1.5 Positive versus Negative Permissions

	5.2 Describing Code
	5.2.1 CodeSource
	5.2.2 Testing for CodeSource Equality and Using Implication
	5.2.3 Principal

	5.3 ProtectionDomain
	5.3.1 ProtectionDomain Constructors
	5.3.2 ProtectionDomain implies Method
	5.3.3 ProtectionDomain Finer Points

	5.4 Security Policy
	Figure 5.2. Policy matrix

	5.5 Assigning Permissions
	5.6 Dynamic Security Policy

	Chapter 6. Enforcing Security Policy
	6.1 SecurityManager
	6.1.1 Example Use of the Security Manager
	6.1.2 SecurityManager API
	6.1.3 The checkPermission Methods

	6.2 AccessControlContext
	6.3 DomainCombiner
	6.4 AccessController
	6.4.1 Interface Design of AccessController
	6.4.2 The Basic Access Control Algorithm
	Figure 6.1. Stack frame snapshot
	Figure 6.2. Stack frame execution context

	6.4.3 Method Inheritance
	Figure 6.3. Method inheritance

	6.4.4 Extending the Basic Algorithm with Privileged Operatio
	6.4.5 Privileged Actions Programming Idioms
	6.4.6 The Inherited Access Control Context
	6.4.7 The Privileged Access Control Context
	6.4.8 The Full Access Control Algorithm
	6.4.9 SecurityManager versus AccessController
	6.4.10 A Brief History of Privileged Operations

	Chapter 7. Customizing the Security Architecture
	7.1 Creating New Permission Types
	7.2 Customizing Security Policy
	7.2.1 Customizing Security Policy Enforcement
	7.2.2 Customizing Security Policy Decisions
	Locating Security Policy
	Bootstrapping Security Policy
	Spanning Permissions

	7.3 Customizing the Access Control Context

	Chapter 8. Establishing Trust
	8.1 Digital Certificates
	8.1.1 X.500 Distinguished Names
	8.1.2 X.509 Certificate Versions
	8.1.3 X.509 Certificate Contents
	8.1.4 Obtaining Certificates

	8.2 Establishing Trust with Certification Paths
	Figure 8.1. Certification path
	8.2.1 Core Certificate API
	8.2.2 Basic Certification Path Classes
	8.2.3 Certification Path Validation Classes
	8.2.4 Certification Path Building Classes
	8.2.5 Certificate/CRL Storage Classes
	8.2.6 PKIX Classes

	8.3 Establishing Trust in Signed Code
	8.3.1 Securing Messages with Digital Signatures
	8.3.2 JAR File Format Overview
	8.3.3 Runtime Trust Establishment

	8.4 User-Centric Authentication and Authorization Using JAAS
	8.4.1 Subjects and Principals
	8.4.2 Credentials
	8.4.3 Pluggable and Stacked Authentication
	Figure 8.2. Pluggable authentication
	Figure 8.3. Stacked authentication

	8.4.4 Callbacks
	Figure 8.4. Callback design and usage

	8.4.5 Authorization
	8.4.6 Principal-Based Access Control
	8.4.7 Access Control Implementation

	8.5 Distributed End-Entity Authentication
	8.5.1 java.net.Authenticator
	8.5.2 Single Sign-on in a Kerberized Environment
	Kerberos V5
	Generic Security Service API (GSS-API)
	The Kerberos Login Module

	8.5.3 JSSE Authentication Mechanisms
	Authenticating the Server

	Chapter 9. Object Security
	9.1 Security Exceptions
	9.2 Fields and Methods
	9.3 Static Fields
	9.4 Private Object State and Object Immutability
	9.5 Privileged Code
	9.6 Serialization
	9.7 Inner Classes
	9.8 Native Methods
	9.9 Signing Objects
	Figure 9.1. Signed object

	9.10 Sealing Objects
	9.11 Guarding Objects
	Figure 9.2. Guard and GuardedObject

	Chapter 10. Programming Cryptography
	10.1 Cryptographic Concepts
	10.2 Design Principles
	Figure 10.1. JCA architecture

	10.3 Cryptographic Services and Service Providers
	Table 10.1. Java 2 SDK 1.4 Engine Classes
	Figure 10.2. API class and corresponding SPI class

	10.4 Core Cryptography Classes
	10.4.1 Security
	10.4.2 Provider
	10.4.3 MessageDigest
	10.4.4 Signature
	10.4.5 Algorithm Parameters
	AlgorithmParameterSpec
	DSAParameterSpec
	AlgorithmParameters
	AlgorithmParameterGenerator

	10.4.6 Key and KeySpec
	Key
	PublicKey and PrivateKey
	KeySpec

	10.4.7 KeyFactory and CertificateFactory
	KeyFactory
	CertificateFactory

	10.4.8 KeyPair and KeyPairGenerator
	10.4.9 KeyStore
	10.4.10 Randomness and Seed Generators

	10.5 Additional Cryptography Classes
	10.5.1 Cipher
	Creating a Cipher Object
	Initializing a Cipher Object
	Encrypting and Decrypting Data
	Wrapping and Unwrapping Keys
	Managing Algorithm Parameters
	Cipher Output Considerations

	10.5.2 KeyGenerator
	Creating a Key Generator
	Initializing a KeyGenerator Object
	Creating a Key

	10.5.3 SecretKeyFactory
	10.5.4 KeyAgreement
	Creating a KeyAgreement Object
	Initializing a KeyAgreement Object
	Executing a KeyAgreement Phase
	Generating the Shared Secret

	10.5.5 Mac
	Creating a Mac Object
	Initializing a Mac Object
	Computing a MAC

	10.6 Code Examples
	10.6.1 Computing a Message Digest
	10.6.2 Generating a Public/Private Key Pair
	10.6.3 Generating and Verifying Signatures
	10.6.4 Reading a File That Contains Certificates
	10.6.5 Using Encryption
	Generating a Key
	Creating a Cipher

	10.6.6 Using Password-Based Encryption
	10.6.7 Additional Sample Programs

	10.7 Standard Names
	10.7.1 Message Digest Algorithms
	10.7.2 Key and Parameter Algorithms
	10.7.3 Digital Signature Algorithms
	10.7.4 Random-Number Generation Algorithms
	10.7.5 Certificate Types
	10.7.6 Keystore Types
	10.7.7 Service Attributes
	10.7.8 Cipher Algorithms, Modes, and Padding
	Algorithms
	Modes
	Padding

	10.7.9 Key-Generator Algorithms
	10.7.10 Secret-Key Algorithms
	10.7.11 MAC Algorithms

	10.8 Algorithm Specifications
	10.8.1 SHA-1 Message Digest Algorithm
	10.8.2 MD2 Message Digest Algorithm
	10.8.3 MD5 Message Digest Algorithm
	10.8.4 Digital Signature Algorithm
	10.8.5 RSA-Based Signature Algorithms
	10.8.6 DSA Key-Pair Generation Algorithm
	10.8.7 RSA Key-Pair Generation Algorithm
	10.8.8 DSA Parameter-Generation Algorithm

	Chapter 11. Network Security
	11.1 Java GSS-API
	11.1.1 Using Kerberos Credentials with Java GSS-API
	Delegation of Credentials
	Mitigating Single Sign-On Risks
	Credential Acquisition
	Context Establishment
	Credential Delegation

	11.1.2 Establishing a Security Context
	11.1.3 Message Security

	11.2 JSSE
	11.2.1 Establishing an SSL Context
	11.2.2 SocketFactory and ServerSocketFactory Classes
	11.2.3 SSLSocket and SSLServerSocket Classes
	11.2.4 SSLSocketFactory and SSLServerSocketFactory Classes
	11.2.5 SSLSession Interface
	11.2.6 HttpsURLConnection Class
	Setting the Assigned SSLSocketFactory
	Setting the Assigned HostnameVerifier

	11.2.7 The SunJSSE Provider
	11.2.8 SSLContext Class
	11.2.9 Creating an SSLContext Object
	11.2.10 TrustManager Interface
	11.2.11 TrustManagerFactory Class
	11.2.12 KeyManager Interface
	11.2.13 KeyManagerFactory Class

	11.3 Remote Method Invocation
	11.3.1 RMI Security Basics
	11.3.2 RMI Activation
	11.3.3 Securing RMI Communications

	Chapter 12. Deploying the Security Architecture
	12.1 Installing the Latest Java 2 Platform Software
	12.2 The Installation Directory <java.home>
	12.3 Setting System and Security Properties
	12.3.1 Setting System Properties
	12.3.2 The Default user.home System Property Value
	12.3.3 Setting Security Properties

	12.4 Securing the Deployment
	12.4.1 Restricting Property Override Mechanisms
	12.4.2 Configuring Application-Specific Policies

	12.5 Installing Provider Packages
	12.5.1 Installing the Provider Classes
	12.5.2 Configuring the Provider

	12.6 Policy Configuration
	12.6.1 Configuring Systemwide and User-Specific Policies
	12.6.2 Default Policy File Format
	Keystore Entry
	Grant Entries

	12.6.3 Policy File Examples
	12.6.4 Property Expansion in Policy Files
	12.6.5 Configuring an Alternative Policy Class Implementatio

	12.7 JAAS Login Configuration Files
	12.7.1 Login Configuration File Structure and Contents
	12.7.2 Login Configuration File Location

	12.8 Security Tools
	12.8.1 Keystore Databases
	Figure 12.1. Keystore

	12.8.2 keytool
	Generating a Key Pair
	Certificate Signing Requests and Certificate Chains
	Importing Certificates
	The cacerts Certificates File
	Exporting a Certificate
	Printing Keystore Contents
	Help Commands
	Default Values for keytool Options
	keytool Usage Example

	12.8.3 jarsigner
	Signing a JAR File
	The Signed JAR File
	Multiple Signatures for a JAR File
	Verifying a JAR File
	Code Signing and Verification Example

	12.9 X.500 Distinguished Names
	12.10 Managing Security Policies for Nonexperts

	Chapter 13. Other Platforms and Future Directions
	13.1 Introduction to Java Card
	13.1.1 Virtual Machine Lifetime
	13.1.2 Java Card Remote Method Invocation
	13.1.3 Java Card's Applet Isolation and Object-Sharing Model
	13.1.4 Java Card Security APIs

	13.2 Introduction to Java 2 Micro Edition
	13.3 Security Enhancements on the Horizon for J2SE
	13.3.1 Virtual Machine Enhancements
	13.3.2 Language Enhancements
	13.3.3 Trusted Computing Base Enhancements
	13.3.4 Evolution of Pluggable Security Providers
	13.3.5 Security Expressions
	13.3.6 Security Management

	13.4 Brief Introduction to Jini Network Technology
	13.4.1 Overview of Jini Technology Security Architecture
	13.4.2 Constraints Model
	13.4.3 Establishing Proxy Trust
	13.4.4 Dynamic Policy

	13.5 Brief Introduction to J2EE
	13.6 Client Containers
	13.7 Final Remarks

	Bibliography

