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Foreword 

It is now more than two decades since Ferid Murad and co-workers showed 
that nitric oxide (NO) could activate soluble guanylyl cyclase and raise 
intracellular levels of cyclic guanosine monophosphate (cGMP). We now 
know that the cGMP pathway is the effector mechanism for the great 
majority of the actions of NO. Several years later the seminal report by 
Furchgott and Zawadzki showed that endothelial cells release a relaxing 
factor endothelial-derived relaxing factor (EDRF) when stimulated with 
agonists. It is now clear, after reports by Furchgott, Ignarro and Moncada 
and their co-workers, that EDRF is the gas NO, formed from the amino acid 
L-arginine. Since the early 1980s interest in NO and its pathways of syn
thesis and action has increased enormously as the importance of the endo
genous release of this simple gas has become apparent. Moreover, in 1998 
the work of Murad, Ignarro and Furchgott on NO in the cardiovascular 
system was acknowledged by the Nobel Committee. 

NO has many roles in the human body. It is a very important vasodilator, 
acting as an endogenous "breaking mechanism" to sympathetic tone. It is 
also involved in the control of smooth muscle function in other structures 
of the body such as in the gastrointestinal and urogenital tracts. For exam
ple, we have all listened with interest at the success of the new antiimpo
tence drug, Viagra, which works by inhibiting the breakdown of cGMP and 
thereby increasing the effectiveness of NO. In addition, NO formed by 
immune cells kills invading pathogens and tumour cells. However, nowhere 
is the presence of NO felt more strongly than in the lung, where blood 
vessels, airways and resident as well as invading white blood cells release 
and respond to it. For this reason the following chapters are dedicated to the 
most important aspects of how NO regulates the physiology and pathophy
siology of the lung. In this setting, the biochemistry and pharmacology of 
the different isoforms of nitric oxide synthase (NOS) are discussed as well 
as synthetic nitro (NO) mimetics. Where possible, attention has been paid 
to discussing the relevance of the NO pathway in human tissues and in 
human disease states which specifically affect the lung, such as asthma, 
chronic obstructive pulmonary disease, pulmonary hypertension and adult 
respiratory distress syndrome. 

We hope that this book will be of interest to scientists and clinicians with 
interests either in the general role of NO in the human body or more speci
fically in the multitude of structures that constitute the lung. 

Jane A. Mitchell and Maria G. Belvisi 
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1. Introduction 

Nitric oxide (NO) is the ubiquitous activator of soluble guanylyl cyclase 
resulting in smooth muscle relaxation. In addition, NO can activate/inhibit 
a number of other proteins that influence cellular responses. Within a phy
siological setting, NO release by endothelial cells or nerves contributes to 
homeostatic processes in every organ system in the body. NO is also re
leased as a primary defence mechanism by immune cells. However, when 
NO production becomes excessive, its release can contribute to the pro
cesses of inflammation and/or cardiovascular dysfunction. 

The ability of NO to perform its different functions in the body is largely 
made possible by the presence of multiple isoforms of the enzyme NO 
synthase (NOS) which can be induced, upregulated or suppressed depend
ing upon requirement. This chapter will discuss the rele'/ance of the dif
ferent isoforms of NOS in the regulation of physiological and patho
physiological events. 
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Figure 1. Cellular location of eNOS, nNOS and iNOS. eNOS (type III) is a membrane bound 
protein due to a myristylation tether (M-tether). eNOS and nNOS contain FAD, FMN and BH4 
tightly bound to the enzyme. When cells are activated intracellular calcium is increased which 
binds to calmodulin and activates it. The calcium/calmodulin complex then binds to both eNOS 
and nNOS resulting in activation. In order for iNOS to be present in cells, they first need to 
be stimulated with an inducing agent, such as lipopolysaccharide (LPS). Transduction and 
transcription factors are activated resulting in the synthesis of new iNOS protein. iNOS protein 
has FAD, FMN, BH4 and calcium activated calcium tightly bound to the mature enzyme and 
therefore does not require additional cellular stimulation to produce NO. 

2. Nitric Oxide Synthesis by Different Cell Types 

The first examples of the actions of endogenously released NO in mam
mals were observed in isolated blood vessels. In these studies, activation of 
the endothelial layer resulted in relaxation of the underlying smooth muscle 
and an unknown factor, endothelial-derived relaxing factor (EDRF) was 
identified [1]. The identity of EDRF was not established until 1987 when 
Palmer and colleagues showed that it was indistinguishable from NO [2]. 
Around this time it was also found that NO was a neurotransmitter [3] used 
by the inhibitory non-adrenergic non-choline ric (iNANC) nerves [4] and 
in the central nervous system [5] and that it was an intermediate in the 
formation of nitrite and nitrate by activated macrophages [6]. The fact 
that these three cellular sources of NO (i.e. endothelial cells, neurons and 
inflammatory cells; see Fig. 1) had been identified was to influence the 
progress and direction of future biochemical studies of the enzymes that 
produce it. 
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3. Release of NO by Nerves: Neuronal (nNOS) NOS 

Despite endothelial cells being the first location identified for NO produc
tion, a neuronal source was initially used for characterisation and purifi
cation of NOS. In 1990, just one year after NO had been identified as a 
mediator release by rat cerebral tissue. Bredt and Snyder had purified NOS 
from this tissue [7]. This first NOS isoform was called neuronal NOS 
(nNOS) because of its cellular origin. nNOS is a homodimer with sub-units 
of approximately 150 kDa. It is a soluble protein that requires nicotinamide 
dinucleotide phosphate (NADPH), calcium, calmodulin [7, 8] as well as 
tetrahydrobiopterin (BH4) [9] for full activity. These characteristics were 
utilised in a number of variations on the original purification scheme which 
included columns packed with 2'5' ADP sepharose (which binds NADPH 
requiring proteins) and affinity columns for calmodulin. 

For nNOS, NADPH serves as an electron donor whilst calcium activated 
calmodulin binds to the relevant site on the enzyme producing a conforma
tional change consistent with activation. The nature of the requirement of 
nNOS for BH4 is less clear although it is thought that it may act as a redox 
reagent, like NADPH [9] and/or to stabilise the NOS protein [10]. 

Antibodies raised by Bredt and Snyder to purified nNOS showed immuno
histochemically localisation in rat brain in discrete neuronal populations, 
mainly in the cerebellum and the olfactory bulb; areas associated with 
roles in hormone release and visualisation, respectively. In these neuronal 
areas, a co-localisation with NADPH diaphorase staining was observed 
[11]. Although the functional relevance of diaphroase is unclear, all the 
NOS isoforms purified to date possess NADPH-dependent diaphorase 
activity [11 ~ 13]. 

Neuronal cDNA for nNOS was cloned and expressed in human kidney 
293 cells [14]. The cDNA coded a protein that had structural homology 
with cytochrome P450 reductase with recognition sites for L-arginine, 
NADPH, flavin adenine dinucleotide (FAD), flavin nucleotides, calmo
dulin and phosphorylation. In most cases FAD and flavin mononucleotide 
(FMN) are so tightly bound to NOS that they are purified along with the 
protein and so are not required as additional factors. nNOS activity has also 
been shown to be present in peripheral iNANe neurons purified from the 
rat anococcygeus [15], and the bovine retractor penis muscle [16]. NO 
release by iNANe nerves is particularly important in human airways where 
it serves as a bronchodilator. The role of NO released in the airway is 
discussed in detail elsewhere in the relevant chapters of this book. 

3.1. Regulation ofnNOS Expression 

Although nNOS is a constitutive form of the enzyme, its activity can by 
modulated by a number of different stimuli [17]. nNOS is upregulated at 
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the mRNA or protein level by stimuli including heat, electrical activation 
and light [18-20]. A reduction in the expression of nNOS is associated 
with mediators of sepsis including endotoxin and cytokines [17]. nNOS 
may also be increased as a response to injury after ischemia [21]. Indeed, 
several in vivo studies illustrate a time-dependent increase in nNOS mRNA 
after hypoxia [22-24]. Increased levels of enzyme in these models may be 
a result of specific hypoxia-induced factors acting on designated response 
elements in the nNOS gene, as occurs for other similarly regulated re
sponse proteins [25]. In support of this, sequence consensus for the binding 
of hypoxia inducible factor-l has been described on the nNOS gene. 

In addition to stress, nNOS can be modulated by a number of different 
chemical agents. Inhibition of glutamatergic transmission increases nNOS 
expression in cerebral nerves [26]. By contrast, increasing endogenous 
levels of acetylcholine (using a cholinesterase inhibitor) increases nNOS 
levels in the hippocampus [27]. Moreover, nNOS expression is increased 
by some sex hormones including estradiol and testosterone [28, 29] and 
reduced by corticosterone [30]. 

4. Release of NO by Endothelial Cells: Endothelial (eNOS) NOS 

Endothelial cells from all locations ofthe circulation express a distinct iso
form of NOS named eNOS. eNOS was initially thought to be, like nNOS, 
a soluble protein [31, 32]. However, subsequent studies clearly showed that 
the majority of eNOS resides in the particulate fractions of cells [33, 34]. 
The purified particulate eNOS was however, found to have a number of 
similarities to nNOS. For instance eNOS requires calcium, calmodulin, 
NADPH [35] and BH4 [36] for full activity. It is also similar in size to 
nNOS with a denatured molecular mass of approximately 135 kDa [35]. 
Nevertheless, eNOS and nNOS are the products of separate genes [37]. 
Bovine endothelial cDNA [37] coded a 4.8 kb transcript which gives rise to 
a protein with an approximate Mr of 135 kDa. The amino acid sequence 
predicted the same regulatory sites and NADPH-dependent diaphorase 
activity as previously published for the nNOS. Similar results have been 
published using human umbilical vein endothelial cell cDNA [38], with a 
predicted Mr of 144 kDa. eNOS cDNA, unlike nNOS cDNA, encodes for 
a N-myristylation site [39], which does not influence catalytic activity but 
results in the tethering of this isoform to the membrane fraction [39]. 

4.1. Regulation of eNOS Expression 

The mechanisms involved in the regulation of eNOS are still being investi
gated. However, physical forces of shear and strain increase its expression 
in endothelial cells in vitro and in vivo [40-42]. In addition a putative 
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shear stress response element has been described in the promoter region of 
both human and bovine eNOS gene [43,44]. Hypoxia upregulates eNOS 
expression in pulmonary endothelial cells [45] and some reports, but not 
others, have shown a similar phenomenon in endothelium from systemic 
vessels [17]. 

Some growth factors increase eNOS expression in endothelial cells. For 
example transforming growth factor (TGF-f3) increase eNOS mRNA and 
protein as a result of enhanced promoter activity [46]. There is some con
troversy surrounding the changes in eNOS expression in proliferating cells. 
For instance one study has shown that eNOS mRNA and protein are increas
ed in proliferating versus resting cells. This increased expression of enzyme 
is thought to be a result of increased mRNA stability [47]. By contrast, 
another group found that eNOS mRNA was actually less stable resulting in 
lower levels of enzyme in proliferating cells compared to resting cells [48]. 
These conflicting observations may reflect the complexity of responses 
produced by NO in different cells and also the variability in responses of 
cultures at different passages in different laboratories. 

There are now a number of studies reporting clear effects of different 
cytokines on the expression of eNOS [17]. For example, tumor necrosis 
factor a (TNF-a) can down-regulate eNOS [17] by destabilising mRNA. 
Whilst a combination of interferon (IFN) and endotoxin can up-regulate 
eNOS expression in bovine aortic endothelial cells [49]. This is not how
ever, a consistent observation. In a number of studies endotoxin adminis
tration in vivo results in the down-regulation of eNOS [50], an effect that 
may be attributed to increases in endogenous levels ofTNF. 

As is the case for nNOS, sex hormones have been shown to increase 
levels of eNOS. Indeed, pregnancy and estradiol, but not progesterone or 
testosterone, increase eNOS mRNA, protein and activity [51, 52]. Similar 
observations have been made in vitro using cultured immortalised endo
thelial cells. Here estrogen increased eNOS mRNA and activity by increas
ing the promoter activity via an estrogen responsive element [53]. 

5. Release of NO by Cells Induced to Express NOS: 
Inducible (iNOS) NOS 

During the 1980s, a number of experiments involving the measurement of 
nitrite/nitrate excretion by humans and laboratory animals in vivo and by 
macrophage cell lines in vitro provided a clear link between infection and 
NO formation [54, 55]. For instance, lipopolysaccharide (LPS) induces the 
synthesis of nitrates/nitrites by macrophages which was found to be depen
dent on the presence of L-arginine, and L-citrulline was formed as a bipro
duct [56]. Similarly, the cytotoxic ability of LPS-activated macrophages 
to inhibit mitochondrial respiration, metabolism and DNA synthesis in 
tumour cells was found to be L-arginine dependent, and associated 
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with the formation of citrulline and nitrite [57]. Moreover analogues of 
L-arginine where guanidino nitrogen groups had been substituted were 
found to inhibit both nitrite formation, and the cytotoxic activities of 
macrophages [57]. It is now clear that inflammatory and infective agents 
'induce' cells to express a distinct form of NOS, inducible NOS (iNOS), 
and that NO is the active intermediate in nitrite/nitrate production by 
macrophages. 

The induction of iNOS has now been demonstrated in most cell types 
in vitro [58-60] and in all organs of the rat in vivo [61]. However, there has 
been considerable controversy surrounding the relative ease of induction of 
iNOS in rat and murine tissues compared to human. Nevertheless there are 
a number of studies using different cell types, which clearly demonstrate 
that active iNOS is expressed in human tissues [58-60, 62]. 

iNOS, unlike its constitutive counterparts, can be regulated by anti
inflammatory steroids such as dexamethasone [63] and is not dependent on 
free calcium or calmodulin [64]. The production of NO, therefore only 
occurs after a lag phase, due to the necessary induction of iN OS protein and 
results in the release of relatively large amounts of NO. 

iNOS was purified first from the cytosol of the mouse macrophage cell 
line RAW 264.7, activated with LPS and IFN-y [65], and rat peritoneal 
macrophages activated with LPS. The protein found had an Mr of approx
imately 130 kDa. The active iNOS appeared as a dimer (approximate Mr 
250 kDa), requiring NADPH, BH4 , FAD and FMN, but not exogenous cal
cium or calmodulin for full activity [65]. Macrophage cDNA was cloned 
and expressed from LPS and IFN-y-treated RAW 264.7 macrophages [66]. 
The sequenced cDNA codes a protein similar to cNOS isoforms, with a 
predicted Mr of 130 kDa, and binding sites for FAD, FMN, NADPH and 
interestingly calmodulin [66]. Similar results were obtained with cDNA 
from IFN-y-stimulated smooth muscle cells [67]. Further studies demon
strated that the iNOS contains activated calmodulin which is extremely 
tightly bound [68], thereby explaining the lack of requirement for exogen
ous calcium for this isoform. 

5.1. Regulation of iNOS Expression 

Unlike studies on nNOS and eNOS expression, which display some level 
of controversy, there is a strong consensus of opinion that iNOS is induced 
by pro inflammatory cytokines and/or endotoxin. Specifically, interleukin-
1{3, TNF-a and IFN-yalone or in combination induce iNOS in a wide range 
of cell types [58-60]. Moreover, growth factors such as platelet-derived 
growth factor inhibit the induction of iN OS [59]. The large and increasing 
number of proinflammatory agents demonstrated to induce iNOS and the 
pathways involved in its induction are beyond the scope of this chapter and 
are fully discussed in detail elsewhere [58-60]. 
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6. Classification of NOS Isoforms 

After the different forms of NOS had been purified, antibodies were raised 
that recognised nNOS, eNOS or iNOS. Studies using these antibodies re
vealed that NOS isoforms were expressed in other cell types. For instance 
nNOS is present in epithelial as well as nerves of the airway and gut [17]. 
In addition to endothelial cells eNOS is present in bone cells [17]. More
over, iNOS is expressed constitutively in certain cells including those of 
the macula densor [58]. For these reasons the historical classification of 
eNOS, nNOS and iNOS has been modified to represent the order of pur i
fication of the enzyme. Thus, nNOS becomes NOSI, iNOS beomes NOS2 
and eNOS becomes NOS3. However, for the purposes of this chapter the 
original classification will continue to be used. 

7. Substrate and Substrate Analogue (i.e. Inhibitors) Interactions 
with Different NOS Isoforms 

In each case the substrate for NO formation by different NOS enzymes is 
L-arginine (see Fig. 2). The Km for L-arginine differs marginally between 
enzymes from 1-5 )lM. The exact way in which NO and L-citrulline are 
formed from L-arginine is not fully understood, though a proposed mecha
nism has been suggested [69, 70]. The initial step in NO biosynthesis is the 
conversion of L-arginine to the intermediate NG-hydroxy-L-arginine [69] 
by substitution of oxygen for one of the guanidino nitrogens. In addition, 
endogenous NG-hydroxy-L-arginine itself is a substrate for the enzyme 
[71]. Less is known of the conversion of NG-hydroxy-L-arginine to L
citrulline and NO, apart from a requirement ofNADPH. Inhibition of this 
step by carbon monoxide [70] though, suggests a role for the iron centre 

L-Arginine 
y 

~ 

Hydroxy-L-Arginine 
L-Citrulline 

NO 

NADPH 
Figure 2. Formation of NO from L-arginine. All NOS isoforms are FAO, FMN containing 
heme (Fe3+) proteins, which require activated calmodulin, NAOPH, and BH4 for full catalytic 
activity. Although the full process by which L-Arginine is converted to NO and L-citrulline is 
not known, the initial catalytic step is the conversion of L-Arginine to NG-hydroxy-L-arginine 
by substitution of oxygen for one of its guanidino nitrogens. 
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Table 1 

Substrate related inhibitors 

Non-selective 

iNOS selectivity 

nNOS selectivity 

Others 

Flavoprotein binders 

Calmodulin binders 

Hearn binder 

Depleter of BH4 

Inhibitors of iN OS 
Induction 

Inhibitor of NADPH 
Consumption 

Binding NO 

L-NMMA, Asymetric-dimethy-L-arginine, N -iminoethyl-L-
ornithine, N-amino-L-Arg, N-nitro-L-Arg, N-nitro-L-Arg methyl 
ester (L-NAME) 

Aminoguanidine, Isothioureas, 1400 W 

N-nitro-L-Arg-p-nitroanaline, 7-nitro indazole (and analogues) 

Diphenylene iodonium, Iodonium diphenyl, Di-2-thienyl 
iodonium 

Calcineurin, Trifluroperazine, N-( 4-aminobuty)-5-chloro-2-
naphthalensulfonamide, N-( 6-aminohexyl)-I-naphthalen
sulfonamide 

Carbon monoxide, NO 

2,4-Diamino-6-hydroxypyrimidine 

Corticosteriods, TGF-fJ-1I2/3, Interleukin (IL)-4, IL-IO, 
Prostaglandin E21Iloprost 

Imidazole, Phenylimidazole 

Haemo-proteins, Oxidised lipoproteins 

(Fe3+) of the enzyme. The formation of NO from L-arginine requires a five 
electron oxidation, and molecular oxygen is incorporated into both L
citrulline and NO, indicating NOS as a dioxygenase enzyme [72]. 

Analogues of L-arginine where groups are substituted on to one or more 
of the guanidino nitrogens, have generally proved to be inhibitors of NOS. 
Moreover, different analogues of L-arginine have varying potencies as 
inhibitors of eNOS and nNOS versus iNOS. This phenomenon was first 
described with NGmonomethyl-L-arginine (L-NMMA) versus NGnitro
L-arginine methylester (L-NAME). Indeed, L-NAME is a more potent inhi
bitor than L-NMMA of the constitutive forms of NOS (eNOS and nNOS). 
By contrast L-NMMA is either more potent than L-NAME or of similar 
potency to L-NAME as an inhibitor of iNOS. There are now a number of 
'selective' inhibitors for different forms of NOS (see Tab. I) [73-76). 

8. Effector Mechanisms Utilised by NO 

8.1. Activation of Guanylyl Cyclase 

Organic nitrates such as amyl nitrate or glycerol trinitrate, have been used 
clinically for the treatment of angina pectoris for over 100 years. The effects 
commonly seen with organic nitrate treatment are flushing, tachycardia and 
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Figure 3. Activation of soluble guanylyl cyclase by NO. NO diffuses through and between 
cells. Once in the cytoplasm, NO activates soluble guanylyl cyclase via modification of the heam 
centre. GTP is then converted to cGMP which can then go on to modulate a number of down
stream targets including G kinase (cGMP kinase) or ion channels. The intracellular levels of 
cGMP are tightly regulated by phosphodiesterase enzymes which metabolise it to GMP. Solid 
line indicates positive effects, while dashed line indicates negative effects. 

a fall in blood pressure. All organic nitrates relax vascular and non-vascular 
smooth muscle via the release of NO and activation of soluble guanylyl 
cyclase [77] causing an increase in intracellular cGMP (see Fig. 3). 

NO reversibly binds to heam in soluble guanylyl cyclase to form nitrosyl 
complexes, which activate the enzyme to cause cGMP production. It is now 
clear that NO formed endogenously by NOS produces many of its effects 
by activation of guanylyl cyclase. In many cases, cGMP mediates the 
effects of NO via activation of cytosolic G kinases [78]. Much of the evi
dence linking cGMP-mediated events to G kinase has come from the use 
of kinase inhibitors, such as cGMP analogues. However, these analogues 
are only selective for G kinase and have generally been used along-side 
selective/specifc inhibitors of other kinases (e.g. protein kinases A or C) to 
more conclusively demonstrate the involvement of G kinase in a particular 
response. 

One effect of G kinase activation is to reduce inositol triphosphate (IP 3) 
generation, which consequently results in inhibition of inositol phosphate 
accumulation. Indeed, NO has been shown to reduce inositol phosphate 
generation in a number of preparations including blood vessels and plate
lets [79, 80]. However, the intermediate steps between G kinase activation 
and inositol phosphate inhibition are not clear. It has been suggested that G 
kinase activation can result in phosphorylation and inhibition ofG proteins 
[81- 83]. Alternatively G kinase may modulate the activity of some forms 
of phospholipase C [84, 85]. It is not clear whether the putative actions of 
G kinase on G proteins or phospholipase enzymes are direct or indirect via 
intermediate candidates, such as the actin-binding protein VASp, whose 
phosphorylation correlates well with phospholipase C activity in plateletes 
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[86]. NO can also exert its inhibitory effects on calcium release via a G 
kinase-mediated phosphorylation of the IP3 receptor. G kinase-mediated 
phosphorylation of IP3 receptors has been demonstrated in smooth muscle 
and platelets [87 -89] but not in all cells. 

Recently a role for NO and G kinase in modulating calcium release from 
ryanodine sensitive stores has been established. Here, NO mediates the 
formation of cADP ribose (a metabolite of NAD+) , which directly affects 
ryanodine-sensitive calcium stores. More recently, it has been shown that 
NO can also directly activate ryanodine-sensitive calcium stores in skeletal 
(type 1) and cardiac (type 2) tissue by nitrosolating regulatory thiols [90]. 

Release/sequestration from/to intracellular stores and entrance from the 
extracellular environment manage intracellular calcium levels. In addition 
to the effects of G kinase on movements from intracellular stores, there 
is also evidence to suggest that NO can modulate calcium exchange with 
the extracellular environment. For instance NO has a dual action on store 
operated calcium channels. At low levels of NO and cGMP store-operated 
calcium channels are activated, whilst at high concentrations these channels 
are inhibited [91]. NO can also affect the functioning of second messenger
operated calcium channels, particularly those linked to muscarinic re
ceptors [92-94]. In addition NO, via G kinase activation, has been shown 
to activate second messenger operated calcium channels likened to growth 
factor receptors [95,96]. 

It should be remembered that there are some cells in which calcium 
homeostasis is relatively unaltered by NO [78], an effect, which may reflect 
the lack of G kinase-mediated pathways in those cells. 

8.2. Interactions of NO with Thiols 

NO signalling is achieved through both cGMP-dependent (as discussed 
above) and cGMP-independent mechanisms (see Fig. 4). An important 
example of cGMP-independent actions of NO are those achieved by 
nitrosylation of thiol groups leading to modification of protein function 
[97]. When NO combines with thiol groups, a stable bioactive NO-like 
moiety can be formed. Such molecules include S-nitroso-N-acetylpenicil
lamine (SNAP), S-nitrosoglutathione and S-nitrosocysteine. These modi
fied molecules have been suggested to have similar biological actions 
as EDRF and NO on smooth muscle preparations [98]. However, further 
studies using traditional bioassay techniques have concluded that this is 
not the case. A number of other molecules can be polynitrosylated by NO 
from iNOS induced in murine macrophages in vitro, or in the tracheal 
secretions of humans being treated with inhaled NO therapy [97,99, 100]. 
The various ways in which nitrosylation and polynitrosylation can mo
dify protein structure and function are discussed in detail elsewhere [97, 
99, 100]. 
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Figure 4. Effects of NO on cellular components. In addition to activation of soluble guanylyl 
cyclase, NO (either directly, or as peroxynitrite; ONOO-) can modulate a number of other 
proteins resulting in alterations in cellular function, some of these are shown in this figure. 

8.3. Mutagenesis of DNA 

NO can cause profound effects on living cells by directly modifYing 
nuclear components. Non-inherited genetic diseases and cancers involve 
the spontaneous mutation of DNA. Interactions of NO with isolated DNA, 
RNA and nucleotides or nuclear components in intact human cells, causes 
deamination leading to an increased number of mutations [100]. The 
mechanism by which this occurs is not completely understood but is 
thought to involve nitrosylation of nucleotide residues [97, 99]. 

8.4. Interactions between Superoxide Anions and NO: 
Formation of Peroxynitrite 

The combination of NO with superoxide anions leads to the detoxification 
of both, but a hydroxyl radical (a potent oxidant) may be formed as a bipro
duct of the reaction [101]. Superoxide anions can also combine with NO to 
form peroxynitrite, a potent oxidant which can contribute to many of the 
damaging effects of NO, leaving nitrotyrosylated proteins as a marker [102]. 
The relative effects of NO can therefore change depending on the availabil
ity of superoxide, which itself is removed by isoforms of superoxide dis
mutase (SOD) [103]. Thus the level of SOD activity present in tissues is a 
very important component in the overall effect of NOS activation. 

It has recently been suggested that NOS activity alone can result in the 
generation ofperoxynitrite. This is most likely to occur at low arginine con
centrations, when NOS is capable of producing superoxide anions along 
with NO [104]. The interactions between NO, superoxide and peroxynitrite 
are discussed in detail in chapter 2 in this book. 
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8.5. Direct Toxicity 

Large amounts of NO from iNOS have anti-bacterial, anti-fungal, and anti
viral properties. It is now thought that peroxynitrite, rather than NO itself, 
is responsible for some of the cytotoxic effects associated with immune 
cells expressing iNOS. Although the mechanisms involved in NO-mediat
ed cell/pathogen killing are not completely understood, NO has number of 
actions which contribute to this property. Binding of NO (or peroxynitrite 
[106]) to the Fe-S group of aconitase, an important enzyme in the tricar
boxylic acid - respiration cycle, inactivates this enzyme [105]. Aconitase is 
also an important iron-regulatory protein. These proteins bind to the iron 
response elements of RNA, encoding a number of proteins involved in iron 
homeostasis. Indeed, NO inhibition of aconitase in hepatoma cells, increas
ed its binding to the iron response element and subsequent suppression of 
ferratin synthesis [105]. 

In addition to effects on aconitase activity, NO or peroxynitrite can me
diate cellular toxicity by (i) inhibiting ribonucleotide reductase, an impor
tant rate-limiting enzyme in DNA synthesis, (ii) inhibition of mitochon
drial electron transport or (iii) damage to DNA. The latter mechanism is 
thought to involve the activation of poly adenosine diphosphate ribose 
synthase (PARS) [106]. Once activated PARS initiates continual cyclical 
DNA damage resulting in cellular depletion of adenosine triphosphate 
(ATP) and NAD+ and ultimately cell death [106]. 

8.6. Interactions with Enzymes 

There is now an increasing list of enzymes, which are activated or inhibited 
by NO. Indeed, NOS itself can be modulated by NO. NO can inhibit NOS 
activity directly or as a result of inhibition of the induction of iNOS [107]. 
In addition NO can stimulate or inhibit cyclooxygenase (COX) [107]. NO 
can activate COX by providing either hydroperoxide substrate by forma
tion of peroxynitrite [108], or free radical initiator substrate support. The 
inhibition effects of NO on COX may, however, be through nitrotyro
sylation or interaction with the haem centre [107]. Alternatively, NO can 
inhibit the induction of COX protein [109], though the mechanism by 
which this occurs is unknown. As previously mentioned, NO activates 
cGMP dependent kinase, directly interacts with nucleotides, effects iron 
homeostasis, and may also through nitrotyrosylation inhibit the binding of 
nuclear factor KB to DNA [99]. 

9. Concluding Remarks 

The synthesis of NO by mammalian cells was once thought to be impos
sible. However, it is now clear that this simple gas can regulate processes in 
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all bodily organs. Its primary targets seem to be vascular smooth muscle 
and circulating blood elements in the cardiovascular system, smooth 
muscle in the airways and the gastrointestinal tract, the central nervous 
system and invading pathogens or cancer cells. The functions of NO are 
partially achieved by a highly developed mechanism for the regulation of 
its release. Thus, small quanta of NO are formed by calcium activation of 
the constitutive forms eNOS and nNOS, whilst large cytotoxic amounts of 
NO are formed by the calcium-independent iNOS. A further layer of reg
ulation is provided for by the different transduction mechanisms utilised by 
NO in different cells. The most important effector pathway for NO is 
activation of the soluble form of guanylyl cyclase. 

We now seem to have a wealth of information relating to NO biology in 
health. However, we are only just beginning to understand how dysfunc
tions in the L-arginine - NO - cGMP pathway contribute to diseases in 
humans. A better understanding of the physiological and pathophysio
logical functions of NO in such diseases will undoubtedly lead to new 
therapies. 
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1. Introduction 

Reactive oxygen species (ROS) and reactive nitrogen species (RNS) have 
been implicated as contributing to the pathogenesis of a broad spectrum of 
diseases [1,2]. Historically, oxygen free radicals were primarily consider
ed to be aggressive species, indeed the superoxide (02-) theory of oxygen 
toxicity is based on this hypothesis, (reviewed in 3). There is circumstantial 
evidence to support this view, some of which will be reviewed elsewhere in 
this chapter. However, other roles for free radicals - or more appropriately 
ROS and RNS - have recently emerged, most notably as signal or second 
messenger molecules. It seems therefore that these species can have dif
fering effects which are dependent on their levels of production and on 
antioxidant defences. This chapter will mainly be concerned with the delet
erious consequences associated with these reactive species, particularly in 
the lung, with special reference to acute lung injury (ALI) and acute res
piratory distress syndrome (ARDS). 
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1.1. Definitions 

A biological definition of a free radical is "any chemical species capable of 
independent existence that contains one or more unpaired electrons" [4]. 
Classically, free radicals are thought of as highly reactive species, but this 
is often not the case. Ground state molecular oxygen and nitric oxide (NO) 
have unpaired electrons, and therefore are free radicals, although neither 
are particularly reactive species. However, other related reactive oxidants 
like ozone and peroxynitrite (ONOO-), or species such as hydrogen per
oxide (H20 2), with the potential to form reactive species, are not free radi
cals. For this reason, the terms reactive oxygen species (ROS) for oxygen 
containing species, and reactive nitrogen species (RNS) for nitrogen con
taining species, have been introduced to allow free radicals and other relat
ed species to be included within common definitions. 

2. Reactive Oxygen Species (ROS) 

Oxygen is an essential requirement for aerobic life forms, as the terminal 
electron acceptor at the end of the respiratory chain. During aerobic meta
bolism carbohydrate is oxidised whilst oxygen is reduced by the sequential 
addition of four electrons, leading to the formation of water. Various ROS 
are produced as intermediates during this process (equations 1-4): 

O2 + e- + H+ ~ HOi (hydroperoxyl radical) 

HOi ~ H++Oi-

(1) 

(2) 

(3) 

(4) 

Oi- although a free radical anion, is a weak oxidising agent, capable of oxi
dising thiols and ascorbic acid. It is, however, a much stronger reducing 
agent, capable of reducing several iron complexes. At physiological pH it 
is unstable and rapidly dismutates to H20 2 , a process which is accelerated 
by the antioxidant enzyme superoxide dismutase (SOD). 

H20 2 is an uncharged molecule, readily soluble in water, with the ability 
to enter and leave cells easily. It is not a very reactive species, but can ulti
mately lead to the formation of the most aggressive oxygen free radical 
known, the hydroxyl ("OH) radical. H20 2 levels are regulated in vivo by 
glutathione peroxidase, and catalase antioxidant enzymes. 

The 'OH radical can be formed via the iron (Fenton reaction) or copper 
catalysed decomposition ofH20 2 • This reaction emphasises the importance 
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of redox active transition metal ions in free radical chemistry and oxygen 
toxicity. The ·OH radical is an extremely reactive oxidant that attacks most 
biological molecules at almost diffusion-controlled rates. This extreme 
reactivity, however, limits its ability to cause damage at any distance from 
its site of formation, although it can initiate radical chain reactions such as 
lipid peroxidation [4]. Recently iron-independent mechanisms for in vivo 
·OH production have been proposed, either via the decomposition of 
peroxynitrous acid [5] or from the reaction of O2- with hypochlorous acid 
(a neutrophil derived oxidant) [6]. Both mechanisms are, however, still 
open to debate [7, 8]. 

Ozone is a powerful oxidant and toxic pollutant which has been implicat
ed in various respiratory disorders including asthma [9]. It is capable of 
causing oxidative damage to biomolecules such as DNA, lipids, and car
bohydrates [10, 11]. 

Ground state molecular oxygen (02) is classified as a free radical as it 
contains two unpaired electrons with parallel spins. This spin restriction 
limits its reactivity. It can, however, react by accepting electrons one at a 
time, in reactions involving transition metal ions such as iron and copper. 
More reactive forms of oxygen can also be formed, as a result of energy 
input into ground state oxygen, and are known collectively as singlet oxy
gen. Two forms exist, e Ig +02) is the most reactive, and is a free radical 
containing two unpaired electrons with opposite spins. It rapidly decays to 
the CL1g02 ) form, which is not a free radical as both electrons now occupy 
the same orbital. Singlet oxygen can also be formed from the interaction of 
H20 2 with the hypochlorite ion, a reaction that may be of biological signi
ficance. Its formation in vivo is most often associated with photosensiti
zation reactions. 

Hypochlorous acid is a potent bleaching agent, produced by the lyso
somal enzyme, myeloperoxidase, of activated neutrophils. Its key function 
is as a microbial killing agent. Production of this powerful oxidant can, 
however, also have detrimental effects. It readily oxidises or chlorinates 
many biological molecules including thiols, amines and nucleotides [12], 
and causes intramolecular crosslinking of proteins [13]. Hypochlorous acid 
can interact with other ROS or decompose to form other damaging oxidants 
including the ·OH radical (either independently [6] or via iron catalysis [8]). 
Recently hypochlorous acid has been shown to form a potent chlorinating 
and nitrating species on interaction with nitrite [13, 14]. 

2.1. Organic Oxygen Radicals 

Lipid peroxides can be formed in biological systems by a variety of mech
anisms. Purposeful enzyme catalysed lipid peroxidation occurs in both 
animal and plant tissues to produce bioactive substances collectively known 
as eicosanoids. Various ROS are also capable of initiating lipid peroxida-



24 G.1. Quinlan and N. 1. Lamb 

tion that can lead to deleterious consequences. Singlet oxygen is capable of 
reacting directly with carbon-carbon double bonds to produce lipid hydro
peroxides [16]. Other non-radical oxidants such as ozone, ONOO-, and 
hypochorite have also been implicated in lipid peroxidation processes 
[17 -19]. The ·OH radical, if formed locally reacts with unsaturated fatty 
acids resulting in the formation of peroxy radicals capable of initiating 
further peroxidation. Stable lipid peroxides can also be formed, these are 
not free radicals, but in the presence of iron or copper ion catalysts form 
alkoxyl or peroxyl radicals, which are also able to propagate the peroxida
tion process. 

2.2. Reactive Nitrogen Species (RNS) 

NO, contrary to popular belief is not a particularly reactive molecule, 
except under certain circumstances (reactions with other free radicals). It is 
an environmental pollutant and is also found in cigarette smoke. NO is pro
duced in vivo both constitutively and inducibly via the NO synthase (NOS) 
enzyme systems. Its biological functions are indistinguishable from those 
of endothelial-derived relaxing factor (EDRF) and may also function as an 
antioxidant by inhibiting the ROS producing enzyme xanthine oxidase 
[20], by scavenging O2- [21], and by acting as a chain breaking antioxidant. 

Nitrogen dioxide (N02) is a free radical gas, a pollutant, and a constituent 
of cigarette smoke. It is a powerful oxidant and may therefore be of some 
significance to respiratory diseases such as asthma [22]. N02 can be form
ed by reaction of nitrogen with molecular oxygen. However, this reaction is 
thought to be of little physiological relevance, as it is out competed by 
ONOO- formation [23]. 

ONOO- is not a free radical; it is however, a powerful oxidant, formed 
from the reaction of O2- with NO (reviewed in [23]), and possibly by NOS 
enzymes directly [24]. As an oxidant, ONOO- can damage lipids, DNA, 
and proteins [25-27]. It is also a nitrating and nitro sating species, able to 
nitrate tyrosine and tryptophan residues [28, 29], and nitrosate thiol groups 
to form nitrosothiols [30, 31]. It has been suggested that the major delete
rious effect associated with its formation in vivo, is not as an oxidant but 
rather as a nitrating agent of proteins, the modification of which can result 
in a loss of function. High and low molecular mass nitrosothiols may act 
as an in vivo sink for NO, indicating a positive role for ONOO- formation 
in vivo. Indeed, reports have shown the ability of ONOO- to induce vaso
relaxation, some via thiol dependent release of NO [32]. Other reports sug
gest further beneficial effects may be associated with the scavenging of 
O2-, as NO has been shown to protect against this type of ROS-mediat
ed lung injury [33, 34]. Additionally, physiologically relevant doses of 
ONOO- have been found to be cardioprotective in a cat model of 
myocardial ischaemia and reperfusion [35]. 
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Figure I. The interactions which may lead to the production of ROS and RNS in vivo are depicted. 
(LPO) lipid peroxidation, (GPx) glutathione peroxidase, (SOD) superoxide dismutase. 

2.3. Summary 

It is clear then that numerous ROS and RNS can be produced in vivo, and that 
there is a complex interrelationship between these species, which is further 
influenced by transition metal ion catalysts and antioxidants (see Fig. 1). 

3. ROS and RNS and Their Role in Lung Injury 

3.1. Acute Respiratory Distress Syndrome (ARDS) 

ARDS is an acute form of inflammatory lung injury, precipitated by a 
variety of predisposing causes, many not directly related to the lung. It is 
characterised by non-cardiogenic pulmonary oedema and carries with 
it a high instance of mortality (for reviews see [36, 37]). ROS and RNS 
have been implicated as contributory factors to the onset and progres
sion of ARDS, such species arise as a result of various processes (see 
Fig. 2). 
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Figure 2. Possible sources of ROS and RNS in ARDS are illustrated. 

3.2. Hyperoxia 

It is now known that the deleterious effects of oxygen are attributable to the 
reactive nature of its reductive intermediates, this was first proposed as a 
theory by Gerschman and colleagues in 1954 [38]. ROS and RNS arise in 
vivo principally as a result of normal cellular metabolic processes. 1 % of 
all oxygen consumed during aerobic respiration leaks from the respiratory 
chain of mitochondria as O 2-, which is scavenged by endogenous anti
oxidants. However, exposure to normabaric concentrations of oxygen great
er than those found in normal air during hyperoxia, leads to increased leak
age of O 2- from mitochondria and other organelles, with a consequent 
increase in H20 2 (for reviews see [39, 40]). The pathology of oxygen 
toxicity in the lungs of humans results in tissue damage and can lead to ALI 
[9]. Oxygen-induced lung damage leads to atelectasis, fibrin deposition, 
thickening and hyalinisation of alveolar membranes [41], and alterations in 
the composition and properties of surfactant [42]. Evidence for the involve
ment of oxidants in this form oflung injury is further strengthened by find
ings showing protection from oxygen toxicity after previous exposure to 
hyperoxia [43], endotoxin [44], or cytokines [45]. Protection results from 
the induction of lung antioxidant defences at the time of primary exposure. 
These defences include upregulation of antioxidant enzymes (SODs, cata
lase, glutathione peroxidases), iron-oxidising enzymes (caeruloplasmin) [46, 
47], and protective peptides [48]. Recently, inhibitors of anion exchange 
and L-arginine have been shown to attenuate this form of lung injury, im
plicating the O 2- anion and ONOO- in the injury process [49]. 

3.3. Ischaemia Reperfusion Injury 

When tissues are deprived of oxygen (ischaemia) or oxygen tensions are 
reduced (hypoxia), biochemical changes result in cell damage and death. If 
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oxygen is restored to tissues they can survive, but this is dependent on the 
length of time the tissue was deprived of oxygen and also on the type of 
tissue. However, studies have shown that on reoxygenation an additional 
cellular injury occurs which is mediated in part by the production of ROS 
and is known as ischaemialreperfusion injury [50]. Several mechanisms for 
ROS production in ischaemialreperfusion injury have been proposed but it 
is now thought that they may be formed as a result of changes to the mito
chondrial electron transport chain during ischaemialhypoxia, which result 
in increased leakage of O2- when tissues are reperfused. The formation of 
eicosanoids relies on single electron transfer reactions, these biosynthetic 
processes are upregulated during ischaemia and may lead to ROS forma
tion (reviewed in [51]). Inflammatory cell activation and ROS release 
during the respiratory burst may also be involved in ischaemialreperfusion 
injury, although some literature suggests that this is not a feature in the 
initial stages of injury [51]. Much research into ischaemialreperfusion 
injury has concentrated on the enzyme xanthine oxidase (XOD) and its role 
in ROS production during ischaemialreperfusion [50, 52, 53]. The enzyme 
exists in two isoforms, and is rate limiting in purine catabolism. The oxi
dase form of XOD is produced by limited proteolysis or oxidative modif
ication [54] as a result of neutrophil activation [55]. XOD catalyses the 
breakdown of purines to uric acid, coupled with the reduction of oxygen to 
O2- and H20 2 • Appreciable conversion of the enzyme occurs during isch
aemia, and when oxygen is reintroduced, ROS are formed. Additionally, 
levels of substrates (hypoxanthine and xanthine) for the enzyme become 
elevated during the ischaemic period due to aberrantATP metabolism [54], 
so increasing the prooxidant potential of XOD. Recently, substrate forma
tion rather than enzyme conversion has been shown to be of key importance 
in myocardial ischaemia/reperfusion injury [56]. A potential for XOD
mediated ROS production in patients with ARDS exists, as plasma and 
bronchoalveolar lavage fluid (BAL) hypoxanthine levels are found to be 
significantly elevated in non-surviving patients [57] and XOD is detectable 
in plasma from such patients [58]. Lung injury in the form of high per
meability pulmonary oedema is seen in animal studies where XOD and 
xanthine are instilled into the lungs of rabbits orrats [59, 60]. Further, lipo
polysaccharide (LPS)-induced pulmonary oedema in the mouse lung is 
associated with the induction of XOD activity [61]. 

The liver and the gut are particularly rich in XOD [62], which is present 
in relatively low amounts in the heart and lung [63], casting doubt on the 
role of XOD in ischaemialreperfusion injury in these organs. However, 
recent evidence shows that XOD has a heparin-like binding site and is 
capable of binding to endothelial cells [64]. So raising the possibility that 
XOD may be released into the circulation, and may subsequently bind to 
the endothelium within organs where it is not normally found. Indeed, 
recent studies in animal models of gut and liver induced surgical ischaemia 
show lung injury attributable to the activity of XOD [65]. Further, XOD 
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has now been demonstrated in animal [66], and human endothelial cells 
[67] where it contributes to lung injury through several mechanisms includ
ing oxidant formation [68]. XOD may contribute to ischaemiaireperfusion 
injury by promoting neutrophil sequestration in the lung by an Oi--depend
ent mechanism [69] and by contributing to their adherence to cultured 
endothelial cells in the presence of xanthine [70]. It may also promote cyto
kine production and NF -" B activation in lungs, as seen in a mouse models 
ofhaemorrhagic shock [71, 72]. 

3.4. Inflammatory Cells 

Activated neutrophils and macrophages contain a membrane-bound nicotin
amide dinucleotide phosphate (NADPH) oxidase enzyme, which produces 
Oi- (the respiratory burst), and contributes to bacterial cell killing [73]. 
Recently, similar enzyme systems have been found in other cell types includ
ing lung fibroblasts [74]. Increased levels of Oi- production have been 
demonstrated in animal models of ALI induced by oleic acid and endo
toxemia [75, 76], and the NADPH oxidase inhibitor apocynin is known 
to attenuate sepsis induced lung injury in guinea-pigs [77]. Under normal 
physiological conditions Oi- rapidly dismutates to H20 2 an effect which 
can also be seen during the respiratory burst of neutrophils [78]. H20 2 is 
detectable in breath condensates of patients with ARDS, at significantly 
elevated levels compared to ventilated non-ARDS control patients [79], 
and in patients with hypoxemic respiratory failure [80]. Additionally it can 
be detected in the urine of critically ill patients with sepsis and ARDS [81], 
(reviewed in [82]). The 'OH radical is formed from H20 2 in the presence of 
redox active iron, and recently this form of iron has been measured in 
human BAL fluid [83]. This may have implications for ROS mediated lung 
injury in acute inflammatory states such as ARDS and ALI. Indeed evi
dence for 'OH mediated damage to BAL fluid protein measured as non
enzyme formed tyrosine isomers (makers of 'OH formation), has been 
found in these patients [84]. The 'OH radical is also capable of initiating 
lipid peroxidation. Animal models of acute lung injury show increases in 
non-specific markers of lipid peroxidation, such as thiobarbituric reactive 
substances (TBARS) in lung tissue [85] and conjugated dienes in plasma 
[86], the levels of which are related to the degree oflung injury. In humans 
with ARDS, elevated plasma levels of TBARS have been found accom
panied by decreased levels of unsaturated fatty acids and vitamin E [87]. 
Plasma TBARS levels have also been shown to correlate well with the Mur
ray lung injury score in ARDS patients, although the mechanisms involved 
may not be entirely neutrophil dependent [88]. Mechanical ventilation may 
also contribute to plasma lipid peroxidation in such critically ill patients 
[89]. However, 4-hydroxy-2-nonenal (RNE) is a more reliable indicator of 
lipid peroxidation. It is a specific aldehydic n-6 fatty acid oxidation prod-
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uct, which has been demonstrated in vivo (reviewed in [90]). HNE can be 
cytotoxic, chemotactic, inhibit some enzymes and be produced by lung 
neutrophils in the rat [91]. Elevated levels of this bio-active aldehyde have 
been reported in the plasma of patients with ARDS [92]. HNE and other 
products of lipid peroxidation are markers of oxidative damage, but ad
ditionally may contribute to injurious processes in the lung. For instance, 
linoleic acid hydroperoxides which induce broncho- and vasoconstriction 
in isolated rat lungs [93], are toxic to endothelial cells [94], and lead to 
increased phospholipid oxidation [95]. The other oxidant produced by 
neutrophils is hypochlorous acid. Evidence to implicate this aggressive 
ROS in lung injury is strengthened by findings of subcellular matrix 
damage of the endothelium [96], and loss oflung surfactant surface tension 
function [97]. Recently, chlorinated tyrosine residues (markers of hypo
chlorous acid formation) on BAL fluid proteins have been detected in pa
tients with ARDS at significantly elevated levels compared to ventilated 
and normal control groups, findings suggestive of a role for this oxidant in 
lung injury seen in these patients [84]. 

It is now clear that RNS are formed in a variety of inflammatory disease 
states where NO may be formed in excess. Upregulation of inducible NOS 
leads to increased formation of NO. Under such conditions, where there are 
high levels of both NO and O2- , ONOO- formation is favoured. This reac
tion is very fast and 'out competes' SOD enzymes, and occurs at a much 
faster rate than iron catalysed ·OR formation. Promoting some to suggest 
that ONOO- is chiefly responsible for the oxidative damage seen in patho
logical conditions (reviewed in [2]). ONOO-is a powerful oxidant, but sup
portive evidence for its formation in vivo comes mainly from measurement 
of products formed due to its action as a nitrating species, in particular its 
ability to nitrate tyrosine residues [98]. The precise mechanism of the 
nitration reaction is unclear, but may involve an iron-dependent reaction in 
which nitronium ions are formed and react with tyrosine [98] or via the 
formation ofa reactive intermediate with carbon dioxide [99, 100]. Macro
phages [101], neutrophils [102], and cultured vascular endothelium [103], 
have all been implicated as sources of ONOO-. In addition nitrotyrosine 
has been detected by immunohistochemistry in lung slices [104] and by 
high-pressure liquid chromatography (RPLC) in BAL fluid proteins from 
patients with ARDS [84]. 

The mechanisms of ONOO- mediated lung injury are varied, and may 
include its ability as an oxidant to cause lipid peroxidation [105], gluta
thione depletion [106] and other forms of ·OR-like damage. It can nitrate 
lung surfactant proteins (SP-A) leading to a decreased ability to aggregate 
lipids [107] and decreased mannose binding ability [108] resulting in 
impaired surfactant function. It may also impair sodium transport [109] 
and surfactant synthesis by alveolar type II cells [110]. All these adverse 
effects might be exacerbated by the use of inhaled NO therapy, which is 
sometimes used as a treatment for pulmonary hypertension [111]. Indeed, 
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numerous studies in animals have demonstrated damage and dysfunction 
associated with inhaled NO treatment [111]. 

3.5. Antioxidants 

The extracellular iron-binding and iron-oxidising anti-oxidant proteins 
transferrin and caeruloplasmin, are compromised in patients with ARDS 
[112, 113] and free redox active iron can be detected in the plasma of some 
patients [114]. Likewise in BAL fluid of patients with ARDS, abnormali
ties in transferrin and caeruloplasmin are present [115]. Recently, redox 
active iron has been demonstrated in normal BAL fluid, and elevated levels 
of transferrin iron saturation have been found in BAL fluid from patients 
with ARDS [23]. Deficiencies in these antioxidants may therefore contri
bute to increased oxidative damage and nitration, via iron catalysed mecha
nisms, in these patients. Interestingly, plasma levels of the intracellular 
iron-binding protein ferritin have been shown to be a predictive mortality 
factor in ARDS [116]. Reduced glutathione contains a thiol group, it reacts 
with oxidants such as H20 2 , hypochlorous acid, and ONOO~, and protects 
proteins from aldehydic modification [117], and is a cofactor for the anti
oxidant protein glutathione peroxidase. Extracellular levels of glutathione 
are low except in lung lining fluid, but in patients with ARDS this is not the 
case as most of the glutathione is oxidised [118], suggestive of increased 
oxidative stress in the lungs of these patients. In plasma, glutathione levels 
are very low, but there are other high molecular mass thiol containing pro
teins (mainly albumin) which perform similar antioxidant functions, levels 
of which are reduced in patients with ARDS [119]. Other plasma and 
lipid phase antioxidants such as ascorbic acid and vitamin E are similarly 
reduced in these patients [120, 121]. To compensate for this deficiency in 
antioxidant levels treatment regimes involving the use of exogenous anti
oxidants such as N-acetylcysteine have been employed with limited suc
cess [122]. 

3.6. Other Lung Diseases 

ROS and RNS have been implicated in many other respiratory diseases 
including asthma and chronic obstructive pulmonary disease (COPD), in 
which iron [123], inflammatory cell activation [124] and ROS [124] pro
duction are implicated (for review see [125]). XOD formation may also 
contribute to oxidative stress in these patients [126]. The underlying mecha
nism of asthma is at present unclear, but ROS formed by inflammatory 
cells are implicated [127]. Further, lung cells recovered from asthmatics 
can generate increased amounts of ROS and have reduced antioxidant 
(SOD) activity [127], other antioxidants are also reduced in the plasma of 
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these patients (glutathione peroxidase) [128]. Elevated levels of inducible 
NOS and NO [129] are also seen, raising the possibility ofONOO- produc
tion in these patients. In addition, inhaled oxidant pollution gases are impli
cated in asthma (see previous sections), as are particulate air pollution 
products (PM lOs). Recent findings show that these particles exhibit oxi
dant activity [130]. 

Patients with cystic fibrosis experience elevated oxidative stress due to 
chronic lung inflammation, and inadequate absorption of dietary antioxi
dants. Increased levels of markers of oxidative damage to lipids and DNA 
are found in such patients [131, 132], which in the case oflipids correlates 
with pulmonary dysfunction. Markers of RNS formation are elevated in 
the lungs of patients with idiopathic pulmonary fibrosis implicating such 
species in the disease process [133}. Paraquat poisoning causes damage to 
pulmonary tissue via the redox cycling activity of this herbicide which 
results in the formation ROS capable of damaging DNA [134]. 

4. ROS and RNS as Second Messengers 

NO is a known second messenger, but recently other RNS/ROS have been 
attributed roles in intracellular signal transduction pathways. Many cellu
lar processes including apoptosis [135], are thought to be regulated by sub
toxic levels of ROS/RNS. Indeed the anti-apoptotic gene bcl-2 has been 
shown to operate by lowering intracellular ROS production [136, l37}. The 
level of oxidative stress is critical in the signalling process, low concen
trations of HzOz will induce apoptosis, but higher concentrations lead to 
unwanted cell death via necrosis [138], similar findings are seen with other 
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Figure 3. The role of ROS and RNS as second messengers in determining cellular fate are 
illustrated. 
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ROS and RNS (for reviews see 139). Transcription factors such as AP-l 
[140], and NFKB [141, 142] are redox-sensitive and can be activated by 
ROS/RNS, apoptosis may ultimately be regulated by mechanisms such as 
these (see Fig. 3). 

5. Concluding Remarks 

The direct measurement of oxidants and the detection of specific markers 
of oxidative damage in both acute and chronic lung injury, are suggestive 
of the production of ROS and RNS in these disease states. However, in 
humans the role of these species as contributors or consequential agents to 
disease processes still remains to be elucidated. In animal models the evi
dence is more obvious as both oxidants and antioxidants have been shown 
to exhibit profound and opposing effects in the lung. Much recent interest 
has centred on the contribution of ROS and RNS, at sublethal levels, to 
lung function and heart disease. It is now apparent that at low levels, many 
reactive species can act as second messenger molecules and may be involv
ed in many regulatory steps that determine cellular fate. Understanding 
these redox regulatory processes may lead to a better understanding of the 
role of ROS and RNS in lung injury and other disease processes. 
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1. Introduction 

Autonomic nerves regulate several aspects of airway function [I]. How
ever, for the purposes of this chapter, we will focus on the role of nitric 
oxide (NO)-containing nerves in the control of airway smooth muscle nmc-
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tion. Neural control of airway smooth muscle is very complex since in 
addition to cholinergic and adrenergic innervation there is a non-adrenergic 
non-cholinergic (NANC) innervation. The existence of a NANC nervous 
system in the gastrointestinal tract, which controls gut motility, sphincters 
and secretions had previously been established in vertebrates from fish 
to humans [2]. The airways develop embryologically from the foregut and 
so the existence of NANC nerves in the respiratory tract was not an un
expected finding. 

On the whole most experiments in the literature describing patterns of 
innervation in the airways have centred on developing in vitro systems of 
measuring smooth muscle relaxation. In this manner the effects of elec
trical field stimulation (EFS), which stimulates all nerves in a preparation, 
on isometric tension development by the trachealis or bronchial smooth 
muscle have been determined in the presence or absence of various drugs. 
From these experiments it was elucidated that the smooth muscle of mam
malian airways receives a dual contractile and relaxant innervation [3,4] 
(see Fig. 1). In general neural relaxation of airway smooth muscle is achiev
ed via activation of adrenergic and NANC neural pathways [5]. However, 
the sympathetic innervation to airway smooth muscle is species-dependent 
and may be sparse or even absent [6]. Moreover, in humans, sympathetic 
nerves innervate bronchial blood vessels, submucosal glands and para
sympathetic ganglia and there are few, if any, nerve fibres supplying the 
airways smooth muscle [7]. Therefore, at least in human airways the 
major neural bronchodilator pathway is the NANC system (see Fig. 1). 
This chapter will discuss the evidence that NO is the NANC neurotrans
mitter involved in neurally mediated relaxation of airways smooth muscle. 
Since in inflammatory airway diseases such as asthma, changes in bron
chial smooth muscle tone can occur very rapidly, it has been suggested that 
this could be due to a defect in the autonomic control of the airways smooth 
muscle [8]. This could manifest itself as an increase in the constrictor and 
a decrease in the dilator control of the airways. Therefore, if the NANC 
dilator innervation is dysfunctional in inflammatory conditions, its absence 
may lead to exaggerated bronchoconstriction [4]. 

Studies in animals have provided valuable information on the neural con
trol of the respiratory tract and many of these studies have taken place on 
dogs, cats and rodents with few studies performed on human airways until 
the last few years. These experiments have highlighted an obvious vari
ability in the innervation of the lung among species of animals, and any ex
trapolation between species in terms of either their physiological responses 
or the anatomical distribution of the nerves should be viewed with caution. 
In this chapter we illustrate the intra-species and regional differences in the 
relaxant innervation and the possible physiological and morphological 
changes that may be seen in the relaxant innervation to the respiratory tract 
under pathophysiological conditions. 
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2. Inhibitory (Relaxant) Mechanisms 

2.1. Amphibians and Reptiles 

The first studies investigating the inhibitory bronchodilator neural system 
in the lung were carried out in amphibians and reptiles [9, 10]. The lungs 
of the lizard and the toad have been studied using pharmacological and 
histochemical techniques. These studies provided evidence which sug
gested the existence of an inhibitory system with pre-ganglionic fibres pre
sent in the vagus and ganglion cells within the lung. In contrast to other 
species, it seems that the predominant inhibitory pathways in the lizard 
were the adrenergic fibres since noradrenaline evoked bronchodilation 
and adrenergic blocking agents significantly reduced, but did not abolish, 
nerve mediated relaxation [10]. This residual response was later confirmed 
to be non-adrenergic since it was not blocked in tissues pre-treated with 
6-hydroxydopamine [11-13]. In addition, morphological studies in amphi
bians demonstrated the existence oflarge opaque vesicles (80-200 nm in 
diameter) within autonomic nerve terminals in the respiratory tract sug
gestive of the NANC inhibitory system [11]. 

2.2. Birds 

The majority of studies on the neural innervation in birds have been carried 
out on the domestic chicken. Physiological studies have been carried out 
on the major bronchus of the chicken in vitro. EFS of this preparation 
in vitro elicited a primary response that was relaxant. However, although 
adrenergic agonists, either administered to the animal [14] or added to air
way smooth muscle in vitro, evoked relaxations, ultrastructural studies 
have failed to demonstrate axon profiles characteristic of adrenergic nerves 
[15]. Furthermore, the relaxant response obtained in response to EFS was 
not blocked by propranolol [16]. Interestingly, the chicken bronchus only 
produced a contraction (atropine-sensitive) when the muscle was relaxed 
prior to the EFS stimulus [16]. Therefore, from these studies it was suggest
ed that the major bronchus of the chicken is controlled by NANC 
inhibitory fibres that are dominant over the cholinergic constrictor re
sponse, a situation that is the reverse of that found in most species includ
ing human [17]. 

Following the above mentioned studies on amphibians, reptiles and 
birds the presence of the NANC inhibitory system was also detected in 
mammalian airways where it was first demonstrated in the guinea-pig 
[18-22]. 
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2.3. Mammals 

2.3.1. Guinea-pig: This species has been used extensively in pharmaco
logical studies involving the mechanisms contributing to neural relaxation 
of the airways. Most studies suggest that parasympathetic, adrenergic and 
NANC nerves innervate guinea-pig airway smooth muscle with the cholin
ergic system being dominant. The adrenergic inhibitory nerves have been 
demonstrated physiologically to be more frequent in the proximal portions 
of the trachea [19]. This has been confirmed by morphological studies 
which have demonstrated the proximal localisation ofthe adrenergic nerves 
and also showed a complete lack of adrenergic fibres in the distal airways 
[22]. It was presumed that this lack of adrenergic dilator fibres in the distal 
airways would be compensated for by an increased NANC innervation to 
the lower airways but functional data did not support this hypothesis. How
ever, in contrast to the findings of Coburn and Tomita [19] other studies 
have shown that the relative contribution ofthe two inhibitory neural inputs 
to the total relaxation response appeared to be similar in all regions of the 
guinea-pig trachea [23]. Furthermore, this study also demonstrated that 
both adrenergic and NANC inhibitory responses were frequency-depen
dent and that adrenergic nerves were activated at lower frequencies than 
NANC nerves. 

The first evidence to suggest the existence ofNANC inhibitory nerves in 
guinea-pig airways came from studies of EFS stimulated tracheal smooth 
muscle [19-21,24]. Coburn and Tomita [19] demonstrated a biphasic re
sponse to EFS that consisted of an initial contraction followed by a relaxa
tion. The contractile response was prevented by atropine whereas the relaxa
tion response was not affected by muscarinic receptor antagonists and 
only partially inhibited by fJ-adrenoceptor blockade or by reserpine pre
treatment establishing the existence of a NANC response in this species. 
The existence of NANC inhibitory nerves in guinea-pig trachea was also 
described in studies were luminal pressure changes were measured in a 
tracheal tube preparation after transmural stimulation. Neurally evoked 
contractile responses were inhibited by atropine and inhibitory responses 
were reduced, but not abolished by propranolol, guanethidine (adrenergic 
neurone blocker) or by pretreatment of the animals with 6-hydroxydopa
mine (which depletes catecholamines). These relaxations were blocked by 
tetrodotoxin indicating that these NANC responses were neural in origin 
[20,21]. 

Other investigators studied the inhibitory innervation of an in situ cervi
cal tracheal tube preparation in which vagal and sympathetic nerves could 
be selectively stimulated. In addition, the preparation allowed for stimula
tion of the cervical tracheal directly via transmural electrodes. These studies 
suggested that adrenergic relaxations (elicited via sympathetic nerve 
stimulation) accounted for 60-80% and NANC relaxations (elicited by 
vagal nerve stimulation) accounted for the residual (20-40%) of the re-
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laxation response elicited via transmural stimulation [25]. This data also 
confirmed an earlier study which suggested that the NANC inhibitory 
system in the guinea-pig trachea receives pre-ganglionic innervation from 
the vagus nerve [26]. In contrast, other investigators found that the NANC 
nerves are the major inhibitory neural input to airway smooth muscle and 
that these responses were more evident at higher frequencies of stimulation 
[27]. Importantly, the NANC relaxant response has also been demonstrated 
in vivo in this species [28]. 

The precise anatomical pathways of the NANC innervation have not 
been determined and there may be species differences. However, most in
formation has been gathered from studies undertaken in guinea-pig air
ways. The guinea-pig trachea receives NANC relaxant innervation from at 
least two extrinsic sources [29]. These two vagal pathways that serve the 
rostral portion of the guinea-pig trachea include a hexamethonium-sensi
tive relaxant innervation with pre-ganglionic fibres carried by the recurrent 
laryngeal nerves and capsaicin-sensitive vagal pathways carried by the 
superior laryngeal nerves. These pathways traverse through ganglia asso
ciated with the oesophagus [29]. Autonomic neurons often contain mul
tiple transmitter substances. This co-transmission probably is a mechanism 
via which nerves can achieve precise control over a target organ. This has 
given rise to the common assumption that the NANC transmitter sub
stance is colocalised with acetylcholine (ACh) (and possibly vasoactive 
intestinal peptide (VIP)) in post-ganglionic parasympathetic neurons. 
However, Canning and Undem [29] have suggested that the cholinergic 
contractile response and the NANC relaxation response of guinea-pig 
trachea are differentially sensitive to oesophageal removal. Therefore, it is 
now in doubt as to whether the NANC transmitter and ACh are in fact co
localised. 

2.3.2. Rabbit: NANC relaxant responses, evoked by EFS, can also be 
demonstrated in rabbit tracheal smooth muscle but not in bronchial smooth 
muscle or lung parenchymal strips [30, 31]. In the same studies, rat 
tracheal smooth muscle did not exhibit NANC inhibitory responses to 
EFS. 

2.3.3. Dog: Most studies in the dog have been carried out in isolated tra
cheal or bronchial strips in vitro in the presence and absence of adrenergic 
receptor antagonists. On the whole these studies suggest that the principle 
inhibitory innervation in dog airways is adrenergic and that the NANC 
nerves are either absent or have no significant functional role in regulating 
airway tone in this species [32-34]. 

2.3.4. Cat: Neural relaxation responses have been demonstrated in isolat
ed segments of cat trachea and bronchi pre-contracted with 5-hydroxy
tryptamine (5-HT) [35]. These experiments suggested that both adrenergic 
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and NANC nerves contributed to the relaxant response evoked by EFS. 
Moreover, experiments performed in the cat were among the first to 
demonstrate that the NANC inhibitory system could be demonstrated in 
vivo [36, 37] by stimulation of efferent vagal nerves. This response can be 
inhibited by the ganglion blocker hexamethonium, indicating that nerves 
containing the NANC transmitter have a pre-ganglionic parasympathetic 
origin [36]. Inhalation of capsaicin or mechanical stimulation of the larynx 
induces a similar bronchodilator response in cats after pre-treatment with 
atropine and propranolol indicating that reflex activation of these pathways 
is possible [38, 39]. 

2.3.5. Sheep: The autonomic innervation of sheep airway smooth muscle 
has also been studied by examining responses to EFS in isolated segments 
of the airway in vitro in the presence of adrenoceptor blockade. These 
studies suggested that sheep airways are innervated by both sympathetic 
and NANC inhibitory nerves with the adrenergic nerve population being 
more pronounced in the trachea compared to the bronchi [40]. 

2.3.6. Pig: Initially, experimental evidence pointed to the absence of 
NANC nerves in porcine airways. In these experiments the ganglion sti
mulant dimethylphenylpiperazinium bromide (DMPP), evoked frequency
related relaxations in the pig trachea in vivo that were completely blocked 
by propranolol. In addition, supramaximal bilateral vagal nerve stimulation 
failed to elicit airway smooth muscle relaxation following administration 
of propranolol [41]. Therefore, these authors concluded that NANC inhibi
tory nerves are not present in porcine airways. However, more recently, 
NANC relaxation responses have been demonstrated after EFS in porcine 
tracheal smooth muscle [42]. 

2.3.7. Cow: In the bovine trachea where there is little resting tone it is dif
ficult to demonstrate a neural inhibitory response in an already relaxed pre
paration. Therefore, experiments in which investigators have examined a 
NANC inhibitory response in vitro have usually used preparations which 
have high tone. In these experiments Cameron et al. [43] demonstrated the 
existence ofNANC inhibitory nerves in isolated bovine trachea. 

2.3.8. Horse: In equine tracheal smooth muscle which has been pre-treat
ed with indomethacin, atropine, phentolamine, EFS evoked a frequency
dependent relaxation response [44]. Following the addition of propranolol 
to the tissue baths, EFS still caused a frequency-dependent relaxation but 
the magnitude of the relaxation was less at each frequency in the trachea. 
These observations suggest the presence of both sympathetic and NANC 
inhibitory innervation in trachea of horses with an equal importance of 
each inhibitory system at this level. This response was mainly limited to the 
trachea and central bronchi with no detectable nerve supply to the peri-
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pheral bronchi [45]. Interestingly, this response is absent in the third genera
tion airways of horses with recurrent obstructive disease (heaves) [44]. 

2.4. Non-human Primates 

The baboon [46] and rhesus monkey [47] also have a NANC inhibitory 
system as the major inhibitory pathway in the relaxation of airway smooth 
muscle. In this way primates are very similar to humans with cholinergic 
excitatory constrictor nerves and NANC inhibitory nerves with no evidence 
for the existence of adrenergic nerves functioning in the control of airway 
smooth muscle tone. Therefore, because the pattern of innervation in non
human primates seems to be identical to that in humans they may be the 
species of preference for studying any abnormalities. Previously, most 
investigators have studied neural control in the guinea-pig which in addi
tion to the NANC system also has an adrenergic system [48, 49] or the dog 
which lacks NANC innervation to the airway smooth muscle [33, 50]. 

2.5. Human 

The existence of a NANC system was first reported by Richardson and 
Beland [17]. These workers demonstrated that EFS of isolated tracheal or 
bronchial strips evoked a biphasic response which consisted of a cholin
ergic contractile response and a relaxant response, in the presence of atro
pine, that was unaffected by propranolol and partially blocked by tetrodo
toxin (TTX) (Fig. 1). These findings were later confirmed by other workers 
[27,31,51,52]. Moreover, these responses can be elicited in both large and 
small airways, in humans down to an internal diameter of 0.5 mm [53, 54]. 
Furthermore, these NANC relaxant responses have also been described in 
vivo in humans by reflex stimulation of the larynx [55-57]. These studies 
involve stimulation of the laryngeal afferent pathways with capsaicin or 
mechanical irritation. Capsaicin inhalation induces a transient broncho
constrictor response in normal subjects [58] but following cholinergic in
hibition with ipratropium bromide and j3-adrenoceptor blockade with pro
pranolol, capsaicin causes a bronchodilator response in the presence of 
increased bronchomotor tone induced by leukotriene D4 (LTD4) [56]. This 
bronchodilator response is transient « 2 min) and does not totally reverse 
the bronchoconstrictor effect ofLTD4. This is in contrast to studies in cats 
[36,59], where the bronchodilator effect lasted for several minutes which 
may suggest the involvement of different transmitter substances mediating 
the NANC response in the two species. This bronchodilator response 
appeared to be neural in origin as capsaicin-induced bronchodilator res
ponses were blocked by local anaesthesia of the airway mucosa [56]. In 
similar experiments Ichinose et al. [57] demonstrated a bronchodilator re-
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Figure I. Schematic diagram describing the response of human airway tracheal smooth muscle 
to electrical field stimulation (EFS: 40 V; 0.5 ms, 5 Hz for 30 s). In vitro organ bath systems 
allow the measurement of airway smooth muscle tone on EFS which stimulates all the nerves 
in the preparation. In these experiments the tissue can be electrically stimulated and changes in 
isometric tension evaluated. From these experiments it has been elucidated that human smooth 
muscle receives a dual contractile and relaxant innervation (A). The contractile response is 
cholinergic in nature as it is blocked by the muscarinic receptor antagonist atropine (B). The 
relaxant response is non-adrenergic non-cholinergic in nature as it is not blocked by a and 
p-adrenoceptor antagonists (C). However, the response is neural in nature as it is blocked by 
tetrodotoxin (D). 

sponse to capsaicin inhalation in normal subjects after muscarinic and f3-
adrenoceptor blockade in airways constricted with prostaglandin F2a. 
Again, this NANC dilator response appeared to be transient and as de
scribed for cat airways in vivo the response was blocked by hexamethon
ium. Interestingly, localisation studies using fluorescence histochemical 
techniques have failed to reveal the presence of adrenergic nerves in tra
cheal or bronchial smooth muscle. Therefore, it seems that the NANC system 
provides the primary inhibitory control over human airways that, like 
baboon and monkey airways, seem to lack functional adrenergic innervation. 

However, contradictory results have been obtained by Hutas et al. [60] 
who demonstrated that f3-adrenoceptor blockade, in the absence of atropine, 
partially or completely blocked the neural relaxant response. These find
ings lead to the suggestion that the relaxant response before atropine was 
mainly due to the activation of adrenergic nerves and that NANC relaxa
tion responses are only evident after muscarinic receptor blockade. 
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3. NANC Mechanisms 

As described above, the first conclusive evidence that pointed to the exis
tence of a NANC relaxant response in airway smooth muscle came with 
the development of potent adrenoceptor antagonists. Neural relaxation re
sponses evoked by EFS in guinea-pig trachea were not altered in the 
presence of the muscarinic antagonist atropine and were only partially in
hibited by propranolol [19]. This response had stimulus characteristics 
similar to NANC inhibitory nerves described in other tissues such as the 
gut. Subsequently, NANC bronchodilator responses have been demonstrat
ed in airways smooth muscle in vitro by EFS in human, guinea-pig, cat, 
ferret, sheep, horse, mouse, cow, and pig [61]. NANC relaxations can also 
be demonstrated in situ [25] or in vivo by electrical stimulation of the cer
vical vagus nerve [36,37] and by reflex stimulation of the larynx [55-57]. 
The relaxant response is abolished by TTX and therefore is assumed to be 
neural in origin. In several species, both adrenergic and NANC pathways 
coexist, but in human airways, the NANC response is the only neural bron
chodilator mechanism [47]. In contrast, the dog [32-34] and rat [30] air
ways appear to lack a functional NANC relaxant response. However, the 
neural relaxant response is not always consistent throughout the airways 
in either the density of innervation or receptor population [31]. In human 
airways the NANC relaxant response is greatly reduced in the peripheral 
compared to central airways [4, 54]. 

Although identification of the mediators of this NANC response has 
been the subject of much research, the identity of the putative neurotrans
mitter or neurotransmitters has remained obscure until recently. Several 
candidates have been proposed to be mediators involved in the NANC re
sponse. y-amino-n-butyric acid (GABA), opiates and the prostaglandins 
were thought to be unlikely candidates for the role of NANC transmitter. 
GABA failed to mimic the effects of nerve stimulation, and naloxone 
(opioid receptor antagonist) and indomethacin (an inhibitor of prostaglandin 
production) failed to reduce or abolish the inhibitory response in bovine 
trachea [43]. More promising candidates have included adenosine-5'
triphosphate (ATP), and, more recently, VIP and NO. The reason these 
specific mediators were investigated to assess their involvement in the 
NANC relaxant response in the airways was because they have also been 
implicated in NANC neural relaxation responses of the gastrointestinal and 
genitourinary tract [62]. 

3.1. Involvement o/VIP in NANC Relaxant Responses in the Airways 

VIP is a 28 amino acid peptide, with a wide distribution in the peripheral 
nervous system, which was among the first peptides to be detected in the 
respiratory tract [63]. VIP-immunoreactive nerve fibres innervating airway 
smooth muscle have been demonstrated in many species including humans 
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[5, 64-72]. Furthermore, VIP is a potent relaxant of airways smooth 
muscle in vitro, an effect which is not altered by propranolol or indo
methacin [52, 73 - 76]. Several lines of evidence have implicated VIP as a 
neurotransmitter of NANC bronchodilator nerves in the airways but this 
seems to be species dependent [3, 4]. However, the role of endogenously 
released VIP is uncertain, since there are no potent and selective ant
agonists available. Two VIP antagonists have been described, [AC-Tyr\ 
D-Phe2]-GRF (1-29)-NH2 was found to be a VIP antagonist in rat pancreatic 
membranes [77], and [4-CI-D-Phe6, Leu17]-VIP a VIP antagonist both of 
guinea-pig pancreatic amylase secretion, and in colonic epithelial tumour 
cells [78]. In contrast, these antagonists had no effect on NANC relaxation 
responses to EFS in guinea-pig trachea in vitro and surprisingly they were 
also without effect on relaxation responses to VIP [78]. 

In the absence of a suitable antagonist for VIP, experiments have been 
performed to try to elucidate its role in neurotransmission using antibodies 
against VIP, desensitisation of VIP receptors and non-specific peptidases 
such as a-chymotrypsin which are known to degrade VIP. On the basis of 
experiments of this type VIP has been suggested as a candidate for the role 
of the neurotransmitter involved in NANC bronchodilator responses in the 
airways of several species. In fact, in vitro experiments have demonstrated 
that VIP is responsible for approximately 50% of the NANC relaxant re
sponse elicited by EFS in guinea-pig tracheal preparations in vitro [79, 80]. 
However, even after desensitisation or pretreatment of tissues with VIP 
antibody a major component of the NANC response was still evident 
suggesting that VIP may be involved in this response but not ruling out the 
possibility of the involvement of other transmitter substances. 

The evidence that has been presented in favour of VIP being involved in 
NANC neurotransmission is less convincing in all other species studied. 
VIP is a potent relaxant of cat isolated tracheal and bronchial smooth 
muscle [81] and causes bronchodilation in the cat in vivo [82]. Moreover, 
studies have demonstrated that VIP desensitisation [74] and incubation 
with VIP anti-serum [81] reduced the NANC relaxant response in feline 
airways. These results would seem to indicate that VIP is at least partly re
sponsible for the NANC relaxant response in cat airways. However, in con
trast, there is evidence arguing against a role for VIP as the NANC trans
mitter in cat airways. Firstly, although a-chymotrypsin abolished responses 
to exogenous VIP in cat trachea [82] there was no effect on the NANC 
relaxant response [83]. Secondly, both VIP desensitisation and VIP ant
serum did not affect NANC dilator responses in cat airways [84]. 

Interestingly, recent evidence suggests that in cat trachea, EFS in the 
presence of atropine and guanethidine, elicited a monophasic NANC rela
xation. By contrast NANC relaxation elicited in the peripheral airway was 
biphasic, which comprised of an initial fast component followed by a 
second slower component [85]. This secondary component of the NANC 
response in the peripheral airways was greatly attenuated by a-chymotryp-
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sin. Hence, these results suggest that at least two neurotransmitters, VIP 
and another transmitter (NO, see below), are involved in NANC neuro
transmission and that the contribution of these two transmitter substances 
to the NANC response differs in the central and peripheral airway of the 
cat [85]. 

VIP also has a relaxant effect on human airway smooth muscle in vitro 
[52, 73, 76, 86] and it has been suggested that VIP may be the neurotrans
mitter responsible for NANC relaxant responses. However, phosphorami
don, an inhibitor of neutral endopeptidase, significantly potentiated relaxa
tions to low concentrations of VIP with no effect on NANC responses [73]. 
In addition, relaxations evoked by VIP were abolished by a-chymotrypsin 
but NANC responses were unaffected in human tracheal and bronchial 
smooth muscle [53, 73, 76, 87]. These data support the view that VIP does 
not mediate any component ofthe NANC relaxant response in human air
ways. This is somewhat surprising as it has been demonstrated that there 
are large numbers of VIP-immunoreactive nerves in human airway smooth 
muscle [68]. However, the role of VIP in neurally evoked relaxation will 
remain elusive until definitive studies evaluating the effect of selective VIP 
receptor antagonists on NANC relaxations are performed. 

3.2. Involvement of NO in NANC Relaxant Responses in the Airways 

NO formed from L-arginine by NO synthase (NOS) is released from a wide 
variety of cells [88]. Several isoforms of NOS have now been isolated, 
purified, cloned and expressed [89]. The isoform present in endothelial 
cells is a 135 kDa protein located in the membrane fraction [90] whereas 
neuronal or brain NOS is a 155 kDa protein located in the soluble fraction 
[91-93]. Bacterial lipopolysaccharide (LPS) or cytokines induce macro
phages, vascular smooth muscle cells, endothelial cells, neutrophils, pul
monary epithelial cells [94, 95] and other cell types to express a different 
isoform of NOS (inducible (i) NOS) [88, 89]. Endogenously produced NO 
may play an integral role in many physiological and pathophysiological 
events in the lung. It seems to be involved in the neural NANC broncho
dilator system in human airways, in vasodilator mechanisms, in the regula
tion of airway and pulmonary blood flow, and is known to be produced as 
a consequence of the inflammatory process [96]. All isoforms of NOS are 
inhibited by guanidino nitrogen-substituted L-arginine analogues such as 
NG monomethyl-L-arginine (L-NMMA) and NG nitro-L-arginine (L-NA). 
These compounds have been used as tools to demonstrate the role of NO in 
numerous physiological and pathophysiological events. 

NOS inhibitors have been shown to inhibit the NANC neural relaxation 
response evoked by EFS in guinea-pig trachea in vitro by approximately 
50% [80, 97] suggesting a role for NO in neurotransmission. Similar 
results have been observed in human, cat, pig and horse airways (4) al-
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though, in contrast to guinea-pig airways, the inhibition evoked by NOS 
inhibitors was almost complete. Experimental evidence suggests that cer
tain substances (hydro quinone, superoxide anions) reduce relaxations to 
exogenous NO but not to NANC nerve stimulation. Therefore, it is still 
in doubt as to whether it is NO itself that is released as the NANC trans
mitter or NO attached to a carrier molecule (e.g. released as a nitrosothiol; 
see below). 

3.2.1. Guinea-pig: The peptidase-resistant component of the NANC relaxa
tion response to EFS, evoked in pre-contracted tissue, is attenuated in a 
concentration-dependent manner by L-NA or N-nitro-L-arginine methyl
ester (L-NAME) [76, 80,97]. The inhibition observed was approximately 
89% but this was of relaxations elicited by low stimulation frequencies 
(4 Hz) [97]. However, in some reports, L-NAME completely abolished 
NANC relaxation responses at lower frequencies of stimulation (1 Hz) 
[80]. In addition, L-NAME was more potent than L-NMMA in reducing 
NANC relaxations. The reason for this potency difference is not clear but 
it may be that L-NMMA is less effective as it can also act as a substrate for 
NOS [98] or that it is due to an effect other than inhibition ofthe enzyme. 
In fact, L-NMMA, but not L-NAME, has recently been shown to inhibit the 
endothelial cell L-arginine transporter [99] and so may inhibit its own 
transport into the cell. The effect of these NOS inhibitors is stereoselective 
since D-NA and D-NMMA are without effect [80, 97]. The inhibitory 
effects ofL-NA and L-NMMA are partially reversed by L-arginine but not 
D-arginine [76, 80,97]. There are several reasons why reversal by L-argi
nine is only partial. L-NAME and L-arginine may have different abilities to 
access intact cells. These enantiomer-specific effects are similar to those 
which have been observed in other tissues that exhibit NANC relaxant res
ponses such as the anococcygeus muscle [100, 101]. NOS inhibitors do not 
affect responses to sodium nitroprusside or isoprenaline, more evidence 
suggesting that a component of the NANC relaxation response in guinea
pig trachea is mediated by NO or an NO-related compound. 

Interestingly, there is some evidence in other organs e.g. gastrointestinal 
tract, that VIP stimulates the release of NO from gastric muscle cells, so 
that NO acts as an indirecttransmitter of relaxation [102]. However, in the 
airways, L-NA or L-NAME have no effect on relaxation responses to VIP 
[76, 80, 97]. Therefore, it is unlikely that NO is released as a secondary 
event by the release of VIP from airway nerves. 

More evidence implicating NO in the neural control of airway tone 
comes from immunohistochemical studies describing the presence of the 
enzyme NOS in nerve fibres that project to the airways. In the guinea-pig, 
the origin of NOS containing nerves has been demonstrated, by NOS
immunoreactivity and NADPH diaphorase staining, to be extrinsic ganglia 
Gugular, nodose, stellate ganglia) with no positive staining in the intrinsic 
parasympathetic ganglia [103]. 
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The release of the NANC transmitter in guinea-pig trachea is Ca2+

dependent since relaxant responses to NANC stimulation are reduced or 
abolished at low frequencies of stimulation by w-conotoxin which inhibits 
Ca2+ influx through neuronal N-type channels [80, 104]. With respect to the 
classical neurotransmitters, this could suggest that exocytotic release of 
transmitter is taking place. However, this may not be the case for NO as 
constitutive NOS contained in neurons is a Ca2+ -dependent enzyme and 
therefore the Ca2+ entry may be purely to activate the enzyme within the 
nerve terminals. 

3.2.2. Cat: In the cat trachea, the NOS inhibitor L-NAME completely in
hibited NANC responses as measured as changes in isometric force of 
contraction, evoked by EFS in tissues precontracted with 5-HT [84]. A ten
fold greater concentration of L-arginine, the substrate for NOS, reversed 
this inhibitory response. These results suggest that the NANC response 
evoked by EFS in cat trachea is mediated primarily by NO. 

In contrast, other workers have demonstrated that NOS inhibitors failed 
to effect NANC relaxation responses evoked by EFS of cat intrapulmonary 
bronchi pre-contracted with 5-HT at concentrations which abolished ACh
induced vascular relaxation in cat femoral artery and thoracic aorta [105]. 
In addition, NOS inhibitors had no effect on NANC relaxant responses 
evoked by vagal stimulation in mechanically ventilated cats in which air
ways tone had been elevated by 5-HT (l05). These results, in contrast to 
Fisher et a1. [84] do not appear to support a role for NO as a mediator of the 
NANC relaxant response in cat airways. 

More recently data has been presented which suggests that at least two 
neurotransmitters are involved in NANC neurotransmission [106]. These 
workers have demonstrated that EFS applied to the tracheal smooth 
muscle during contraction induced by 5-HT in the presence of atropine 
and guanethidine elicited a monophasic NANC relaxation. By contrast, 
NANC relaxation elicited in peripheral airway was biphasic, comprising 
an initial fast component which was blocked by L-NAME followed by a 
second slow component which was not affected by L-NAME [85]. These 
results indicate that at least two neurotransmitters, possibly NO or NO
containing compounds and VIP, are involved in NANC neurotransmission 
and the distribution of the two components differs in the central and peri
pheral airways. 

3.2.3. Pig: In pig tracheal smooth muscle, which has been pre-contracted 
with carbachol and where isometric force of contraction is monitored, EFS 
evokes a frequency-dependent relaxation response which is NANC in ori
gin [42]. This NANC response is completely inhibited by NOS inhibitors 
and reversed by L-arginine in a stereospecific manner [107]. In addition, in 
the presence of an NOS inhibitor VIp, the nicotinic cholinoceptor agonist 
DMPP and isoprenaline relaxed carbachol-induced tone in pig trachea im-
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plying that none of the aforementioned agents relax tracheal smooth 
muscle via a mechanism involving NO. These results seem to indicate that 
NO may be a transmitter involved in NANC neurotransmission in pig 
trachea. In fact, nerves immunoreactive for constitutive NOS have been 
localised in the bronchial wall of the pig adjacent to blood vessels, sub
mucosa and smooth muscle [3]. 

3.2.4. Rabbit: NANC relaxant responses, evoked by EFS, can also be 
demonstrated in rabbit smooth muscle but not in bronchial smooth muscle 
or in lung parenchymal strips [31, 108]. 

3.4.5. Horse: In equine tracheal smooth muscle which has been pre
treated with indomethacin, atropine, phentolamine and propranolol, EFS 
evoked a frequency-dependent NANC relaxation response in vitro [44]. 
This NANC relaxant innervation is mainly limited to the trachea and main 
bronchi. Interestingly, this response is absent in the third generation air
ways of horses with recurrent obstructive disease (heaves). Recently, it has 
been demonstrated that the NANC relaxation response is completely 
abolished by inhibitors of NOS suggesting that the NANC response is 
mediated by NO [45]. 

3.2.6. Ferret: NOS and VIP have been localised in a subpopulation ofneu
rons within the plexus of the ferret trachea. The nerve cell bodies were 
located in specific ganglia and in the nerve fibres associated with tracheal 
smooth muscle and blood vessel walls [109]. However, there is no func
tional evidence, as yet, for a NANC relaxant response. 

3.2.7. Human: There is a prominent NANC response in human airways 
in vitro which is blocked in a concentration-dependent manner by the NOS 
inhibitor L-NAME [73, 87]. This would seem to indicate that NO is the 
only demonstrable mediator involved in the NANC response in human 
tracheal smooth muscle. In these experiments, L-NAME had no significant 
effect on relaxation response curves to sodium nitropruside (SNP) in 
human tracheal and bronchial smooth muscle demonstrating that L-NAME 
inhibits NOS and does not act via blockade of NO-dependent responses or 
by inhibition of any responses that are guanosine monophosphate (cGMP)
dependent [73, 76]. L-NAME was also without effect on relaxation re
sponses to VIP and isoprenaline [76] which is in agreement with the data 
described for guinea-pig airways. D-NAME was ineffective at producing 
inhibition of the NANC response and the inhibitory effect ofL-NAME was 
partially reversed by L-arginine but not D-arginine [73, 87]. These effects 
which are enantiomer specific, are similar to those described in guinea-pig 
trachea [80, 97]. 

NANC relaxant responses may also be evoked by EFS in human peri
pheral bronchioles (0.5 to 2 mm inner diameter) and central airways (5 to 
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12 mm inner diameter) [53, 54]. Ellis and Undem [53] have suggested that 
the NANC innervation is quantitatively similar between central and peri
pheral airways. However, these authors did not compare NANC responses 
evoked by EFS in trachea and main bronchi. Other investigators have 
suggested that the NANC response diminishes as the size of the airway 
decreases [52]. NOS inhibitors seem to inhibit NANC relaxant responses 
to EFS in human bronchial smooth muscle in vitro [53, 76] and 3-morpho
linosydnonimine (SIN-I), an NO donor, relaxes both central and peripheral 
airways [53] suggesting that NANC responses may be mediated by NO. 
Ellis and Undem [53] have demonstrated that there was almost complete 
inhibition by L-NA of the TTX-sensitive portion of the NANC relaxant re
sponse in human peripheral and central airways pre-contracted with hist
amine (3 /-lM). This study is in agreement with studies on NANC responses 
of human tracheal smooth muscle [73]. In contrast, Bai and Bramley [76] 
found that L-NAME only inhibited approximately 50% of the neurally
mediated airways smooth muscle relaxation in human bronchi [76]. This 
study seems to suggest that a large TTX-sensitive residual relaxation per
sists after NOS inhibition in human bronchi. However, in this later study, 
the tissues were pre-contracted with methacholine before NANC responses 
were elicited and therefore atropine was not added to the bathing medium 
during the course of the experiment. The omission of atropine from the 
experiment could lead to a certain amount of functional antagonism being 
produced which may have reduced the magnitude of the inhibitory effect. 
Alternatively, in these experiments, ACh release from cholinergic nerve 
terminals could be acting at muscarinic cholinoceptors to release other 
neurotransmitters/mediators which may also have the ability to relax 
human airways smooth muscle. Finally, differences between studies may 
just simply reflect differences in tissue viability, the age group studied, the 
medical history of the patient or the time from organ removal to the start of 
the experiment. 

NO activates soluble guanylyl cyclase after binding to its haem moiety to 
initiate a three dimensional change in the shape of the enzyme which 
increases activity and consequently the production of cGMP. The rise in 
cGMP can initiate a whole series of events including relaxation of smooth 
muscle [110], but the mechanism by which this happens is unknown. 
However, it appears that neurally mediated NANC relaxations in human 
trachea are associated with a concomitant selective elevation of cGMP, but 
not cyclic adenosine monophosphate (cAMP) levels, which is inhibited by 
L-NAME [111]. This confirms the hypothesis that the L-arginine-NO
cGMP pathway, and not VIp, is responsible for mediating the NANC re
laxant response in this tissue. 

It is not certain from where the NO is formed or the location of the NOS 
enzyme. However, the NO released on EFS does not appear to be localised 
in the epithelium as its removal has no effect on the NANC response evok
ed by EFS at least in guinea-pig airways [112, 113]. Recently, in human 



56 M. G. Belvisi and A. Gibson 

trachea obtained at autopsy, neuronal NOS-immunoreactivity has been 
described in nerve fibres present in airway smooth muscle, around submu
cosal glands and blood vessels [114] and in some cases NOS is co-localis
ed with VIP. In addition, the density of neuronal NOS-immunoreactivity is 
reduced from proximal to distal airways and these data correlate with the 
functional data demonstrating a reduced NANC relaxation response in 
peripheral compared to central airways [54]. Therefore, in view of the 
extensive array of studies describing the localisation of neuronal NOS in 
neurons within the airways of several species [109, 103, 114, 115], and its 
correlation with functional data, it is more likely that NO is released from 
nerves to evoke an NANC relaxant response rather than another neuro
transmitter substance inducing the release of NO from another cell type 
e.g. endothelial, epithelial or airway smooth muscle cells. 

4. Distribution of NANC Responses in the Human Respiratory Tract 

In human airways in vitro NANC responses evoked by EFS were progres
sively reduced from main airways (trachea/main bronchi) through peri
pheral airways (3-10 mm) to distal airways « 3 mm) [54]. This functional 
decrease was associated with a decrease in the NOS-immunoreactive ner
ve density suggesting that the NANC neural relaxations are reduced going 
down the tracheobronchial tree apparently due to a decrease in the density 
of the 'nitrergic' innervation [54]. In contrast, Ellis and Undem [53] found 
no significant difference between NANC relaxations in human central 
(5-12 mm internal diameter) compared to peripheral (0.5-2 mm internal 
diameter) airways. However, responses in the smaller airways were not 
compared with those in the larger airways (trachea) where the differences 
may have been more profound. 

The reduction in NANC responses down the human tracheobronchial 
tree observed by Ward et a1. [54] in human airways are also consistent with 
a number of studies in other species. In feline airways both in vivo [36] and 
in vitro [75], the NANC response is reduced in distal bronchi. Similar 
results were found for the NO-mediated NANC response in equine airways 
[44, 116]. In guinea-pig airways NANC relaxant responses were obtained 
in trachea but not bronchial smooth muscle [117]. Undem et a1. [118], 
however, showed that when the non-cholinergic contractions were inhibit
ed by capsaicin desensitisation and the tone raised with histamine, NANC 
relaxations could be elicited by EFS in the mainstem bronchi. This data is 
supported by anatomical studies demonstrating the existence of NOS posi
tive nerves in the peripheral bronchi of the guinea-pig [114]. However, the 
NANC relaxant response to EFS in the guinea-pig trachea is still more 
prominent in the cervical compared to the thoracic trachea [119]. Reduced 
NANC responses have also been demonstrated in rabbit, monkey [31] and 
bovine [120] distal bronchi. 
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Therefore, results obtained in several different mammalian species all 
seem to support the theory that NANC nerves exhibit their primary in
fluence on airways located in the conducting airways rather than the gas 
exchange regions of the lung. However, the functional significance of this 
pattern of innervation is unclear. 

5. Nature ofthe Neurotransmitter 

As described in the previous section, there is now substantial evidence that 
the L-argininelNO system generates the neurotransmitter responsible for 
NANC relaxations in smooth muscle of the respiratory, gastrointestinal, and 
urogenital tracts [121, 122]. However, while this so-called 'nitrergic' neu
rotransmission process has provided a long-awaited explanation for the atro
pine-resistant parasympathetic relaxations first described some 100 years 
ago by Langley and Anderson [123], it has also challenged several of the 
existing dogma relating to neurotransmission; thus, the neurotransmitter is 
not stored, but is synthesised and released on demand, and release appears 
to occur by simple diffusion rather than by vesicular stimulus/secretion cou
pling. In addition, during the early investigations into nitrergic neurotrans
mission it became clear that a number of NO-scavengers (superoxide anions, 
hydroquinone, and carboxy-PTIO) could profoundly inhibit relaxations to 
exogenous NO, but had little or no effect on responses to nitrergic nerve sti
mulation [124-129]; these discrepancies were at variance with the criterion 
of mimicry usually expected between the putative transmitter (NO) and the 
nerve-mediated response, and questioned the whole concept ofnitrergic neu
rotransmission. Consequently, there has been a substantial effort to resolve 
this issue, and a number of possible explanations have been considered [130]. 

One possibility was that the NO radical generated by NOS would inter
act with a protective, carrier molecule prior to release into the junctional 
gap; this NO-adduct would be stable and resistant to attack by NO-scaveng
ers. Nitrosothiols have been considered as the most likely transmitter can
didates, and several physiologically relevant nitrosothiols (S-nitroso-gluta
thione; S-nitroso-cysteine; S-nitroso-coenzyme A) were found to relax 
nitrergically innervated tissues [125, 131-133], including airways smooth 
muscle [129, 134, 135]. However, while nitrosothiols do mimic the ability 
of nitrergic stimulation to relax these tissues, this is perhaps not unexpect
ed since they are all NO-donors. There is as yet no direct, convincing evi
dence that a nitrosothiol is the substance actually released from the nerves. 
Indeed, it has been shown that the chemical reaction of NO with cysteine 
occurs only slowly at neutral pH [128], and none of the nitrosothiols 
studied to data show true parallelism with the nitrergic transmitter [128, 
131, 133]. It has been suggested that the nature of the chemical entity re
leased from the nitrergic nerves may vary among tissues, and even within 
the same tissue under different experimental conditions [121]. 
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A second potential explanation has been provided by Wood and Garth
waite [136]. Mathematical analysis of the diffusion characteristics of NO 
(rapid and relatively unhindered by membrane barriers) indicated that in
activation of the radical would have very little effect on its biological actions, 
at least over short distances (up to 200 /lm). Thus, NO-scavengers would 
have a much greater effect on the actions of exogenous NO than on NO 
released from endogenous sources, adjacent to the target tissue. It is likely 
that this property of NO, again unique to the nitrergic neurotransmission 
process, does indeed provide an explanation for the lack of effect of 
NO-scavengers in certain circumstances. However, these calculations were 
based on the assumption that the half-life of NO lies in the range 0.5-5 sec; 
it has been argued that the NO-scavenger carboxy-PTIO would reduce the 
half-life of NO to around 70 /lsec and that this would be sufficient to limit 
its actions [137]. Thus, the validity of this explanation may depend on the 
reaction kinetics between NO and the NO-scavenger. 

Recent experimental findings have indicated a third possible explanation 
for the lack of mimicry. It has been proposed that the neurotransmitter 
released from the nitrergic nerves is indeed free radical NO, but that the 
reactive radical is protected from scavenger attack by 'guardian' molecules 
within the tissue, which do not interact with the NO itself, but with poten
tial scavengers [138-141]. Such 'guardian' molecules might include 
superoxide dismutase (SOD; protects NO from superoxide anions), a-toco
pherol (protects NO from carboxy-PTIO), reduced glutathione (protects 
NO from hydroquinone) and ascorbate (protects NO from superoxide 
anions, hydro quinone and carboxy-PTIO) [141]. Indeed, it has been 
demonstrated that in tissues in which SOD function has been depressed 
using the copper chelating agent diethyldithiocarbamate, nitrergic relaxa
tions do become sensitive to inhibition by superoxide anion generating 
agents such as pyrogallol and duroquinone [139, 140]. a-Tocopherol, re
duced glutathione, and ascorbate can protect exogenous NO [141], but it 
has yet to be demonstrated that depletion of these antioxidant systems leads 
to increased vulnerability of the nitrergic transmitter to attack. Neverthe
less, it does seem that the redox environment of the tissue acts to shield 
neurotransmitter NO from interaction with scavenger molecules; exogen
ous NO, on the other hand, would be vulnerable to attack before reaching 
the protection of the tissue. Again, this is an important new aspect of 
nitrergic neurotransmission. Not only would the antioxidant 'guardian' 
molecules allow neuronallygenerated NO to traverse the junctional gap and 
reach its target guanylyl cyclase in the smooth muscle cytosol, but they 
would also prevent the formation of potentially toxic metabolites. For 
instance, NO can react rapidly with superoxide anions to form the highly 
toxic peroxynitrite [142-145]; such a reaction would be prevented by suf
ficient tissue levels of SOD and ascorbate. A corollary ofthis would be that 
reduced tissue antioxidant status could have serious pathophysiological 
consequences. Thus, the balance of evidence now suggests that free radical 
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NO does act as the principal neurotransmitter released from nitrergic 
nerves. However, its contribution may depend on the tissue under investi
gation and on the experimental conditions used [121]. Recent work with cat 
trachea [129] has shown that the NO-scavenger carboxy-PTIO only par
tially suppressed the NOS-generated component of the relaxation to field 
stimulation, suggesting that both free radical NO, and other NO-containing 
substances, contribute to NANC relaxation in this tissue. 

In conclusion, investigations into the nature of the neurotransmitter 
actually released from the nitrergic nerves has identified several unique 
aspects of this novel neurotransmission process which must be taken into 
account when interpreting experimental results: it is possible that the 
nature of the transmitter may vary among tissues, depending on available 
carriers; the biophysical characteristics of NO, certainly in terms of its dif
fusion, may give rise to misleading results; and, the antioxidant status ofthe 
tissue might have important consequences for the efficacy and safety of 
NO when it functions as a neurotransmitter. 

6. Functional Significance of the NANC Response 

The exact role ofthe NANC relaxant response in health and disease has not 
yet been defined, however, there are several theories which have been put 
forward to explain the purpose of this phenomenon. Firstly, and probably 
the most obvious explanation is that the NANC inhibitory system may play 
an important physiological role in the regulation of bronc homo tor tone [4]. 
Alternatively Coburn and Tomita [19] hypothesised that may be important 
in the control of the cough reflex. Finally, a more heretical explanation that 
has been put forward is that the NANC relaxant response is an innocuous 
response remaining from a primitive inhibitory system that has been con
served through the evolutionary process [146]. 

7. NANC Inhibitory Pathways in Disease 

The NANC bronchodilator nerves are the only neural relaxant pathway in 
human airways therefore it is important to determine whether there is any 
defect in the ability of these nerves to function in diseased airways. In fact, 
it has been suggested that a defective function of the NANC nerves may 
contribute to bronchoconstriction and bronchial hyperresponsiveness in 
asthma [147]. On the basis of experiments performed in animals it seemed 
as though this hypothesis could be true. Inasmuch as NANC nerve sti
mulation potently inhibited antigen-induced bronchoconstriction and the 
increase in arterial plasma histamine in cats [148] suggesting that the trans
mitter substances responsible for the NANC dilator response prevent the 
release of mediators such as histamine from activated sensitised mast cells 
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[149]. Furthermore, the same workers also demonstrated that the broncho
dilator action of VIP and the neural relaxation response were reduced after 
allergen exposure and that the protease inhibitor, leupeptin, abolished the 
allergen induced NANC dysfunction in sensitised cats [150]. These results 
would seem to indicate that NANC relaxation is less effective in sensitised 
animals due to the degradation of the putative NANC neurotransmitter, 
such as VIP, by proteases released during the allergic response. VIP and 
related peptides are degraded by mast cell proteases such as tryptase and 
chymase [151]. This possible increase in mast cell proteases found in al
lergic conditions may contribute to bronchial hyperresponsiveness and to 
the decreased VIP-immunoreactivity seen in nerves in asthmatic airways 
[152], as mast cells are often found in close association with nerves [153]. 
However, these observations may be more relevant in structures (e.g. 
human pulmonary vessles rather than airways) and species (guinea-pig 
and cat airways) that receive a NANC innervation which is mediated by a 
neuropeptide which is susceptible to peptidases such as VIP. More recent
ly it has also been demonstrated that airway allergic inflammation also 
affects NANC relaxant responses mediated by NO in tissues from antigen 
exposed guinea-pigs [154]. This defect in the NANC relaxant response 
did not appear to be due to a decrease in the number of NOS-containing 
nerves but rather the scavenging of neural NO during the diffusion process 
from nerve endings to the effective sites of airway smooth muscle (see 
Fig. 2). 

However, in human airways in vitro NANC responses do not appear to be 
impaired in airways of patients with chronic airflow limitation [155]. 
Moreover, airways from mild asthmatic patients have been found to have a 
normal NANC response [156]. In addition, airways from patients who died 
during severe asthma attacks showed similar NANC inhibitory responses 
to control airways from non-asthmatic subjects [157]. In agreement with 
the in vitro data other investigators demonstrated that the degree of 
bronchodilator response observed in mild asthmatic patients was of similar 
duration and magnitude as that seen in normal subjects, suggesting that 
the NANC bronchodilator system was functioning in mild asthmatic sub
jects [55, 147]. 

A reduction in VIP-immunoreactivity has recently been reported in the 
airways of asthmatic patients with severe disease [152]. This loss of VIP 
may be due to the presence of human tryptase secreted from airway mast 
cells. However, more recently, preliminary data has emerged suggesting no 
difference in VIP-immunoreactivity in nerves from biopsy samples from 
normals and mild asthmatics [158]. If VIP was the neurotransmitter of 
NANC nerves in human airways this data may suggest that there could be 
a decrease in the NANC dilator response in asthma according to the sever
ity of the disease. However, as yet, there is no conclusive data implicating 
a role for VIP in NANC neurotransmission, at least in the nerves innervat
ing the airway smooth muscle, in human airways. 
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Figure 2. Schematic diagram describing the release of multiple transmitter substances (acetyl
choline, [ACh], vasoactive intestinal peptide [VIP], nitric oxide [NO]) from airway nerves. 
VIP and NO may be stored together or in different nerves and released on nerve stimulation to 
evoke relaxation (R) and act as a functional 'brake' for cholinergic nerve-induced bronchocon
striction by counteracting the constrictor (C) action of ACh on airway smooth muscle. There is 
no neural control of airway tone (at least in human airway) exerted due to the release of VIP. 
This may be because, in human airways, VIP may be broken down by mast cell tryptase and 
chymase or it may be that VIP-containing nerves are more important for controlling the proli
ferative actions of airway smooth muscle. Alternatively, it could be that VIP has a role as a 
neural vasodilator. In human airways, where nitrergic neurotransmission is dominant, mediators 
such as superoxide anions from activated inflammatory cells may rapidly degrade NO leading 
to unopposed cholinergic bronchoconstriction. 

In contrast to asthmatic airways, NANC responses were significantly 
reduced in tissues from patients with cystic fibrosis compared to NANC 
responses in normal donor tissue [159]. It is possible that 'nitrergic' neuro
transmission is impaired in inflammatory diseases of the airways, as pro
duction of superoxide anions by inflammatory cells, such as neutrophils 
and eosinophils, would lead to a rapid degradation of neurally released NO. 
This abnormality in the airway NANC innervation of cystic patients may 
lead to exaggerated bronchoconstrictor responses. Since the 'nitrergic' 
innervation appears to be dysfunctional in some inflammatory diseases it 
was tempting to suggest that NO functions as an endogenous braking 
mechanism in the airways and that its absence may therefore lead to exag
gerated bronchoconstriction. We investigated the effect of NOS inhibition 
(i.e. effectively removing NANC relaxation responses) on cholinergic con
strictor responses evoked by EFS in human donor tissue from trachea to 
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peripheral airways. L-NAME produced a concentration-dependent enhan
cement of cholinergic neural constrictor responses to EFS with no effect on 
cumulative concentration-response curves to ACh in guinea-pig and human 
airways [160-162]. In human airways, L-NAME evoked maximal enhance
ment of cholinergic contractile responses in main airways and this became 
smaller in segmental and subsegmental airways suggesting that the NO
mediated NANC response was less prominent in lower airways [163] and 
recently we have demonstrated this to be the case [54]. The mechanism of 
this modulation was determined by studying the effects of endogenously 
released NO on ACh release evoked by EFS from strips of human tracheal 
smooth muscle that had been denuded of epithelium. Overflow of 3H, evok
ed by EFS, in tissues previously loaded with eH]-choline, which seems to 
be a good marker for measurement of neuronally-evoked ACh release, is 
not affected by NOS inhibitors [163]. Therefore, it seems that endogenous 
NO does not modulate cholinergic contractile responses by pre-junctional 
inhibition of ACh release from the nerve terminal. In conclusion, it would 
appear that NO is probably modulating cholinergic neurotransmission 
post-junctionally by functional antagonism of ACh at the level of the air
way smooth muscle which could, in theory, oppose cholinergic broncho
constriction (see Fig. 2). 

8. Conclusions 

In this chapter we have illustrated the species differences in the neural con
trol of the relaxation of airway smooth muscle. This serves to remind us of 
the problems which might be encountered when studying neural relaxation 
responses in animal airways and extrapolating the findings to the human 
condition. 

In terms of the criteria for defining whether a substance is a neurotrans
mitter it seems that NO differs radically from the classical neurotransmit
ters such as ACh and noradrenaline. However, the criteria that are satisfied 
by NO for neurotransmitter status in the airways are as follows. The enzyme 
that is involved in the synthesis of NO from L-arginine has now been local
ised in neurons in the airways. Secondly, exogenously administered NO 
itself or alternatively nitrodilators have been shown to relax airway smooth 
muscle and therefore NO is able to mimic the effects of NANC nerve 
stimulation. Furthermore, inhibition of NO formation with an NOS inhibi
tor results in the attenuation of the nerve evoked relaxation of airway 
smooth muscle. However, this is where the similarity to classical neuro
transmitter substances seems to end. The most difficult concept to re
concile, in terms of the classical ideas of neurotransmission is the absence 
of a conventional stimulus-secretion coupling mechanism as the release 
of NO does not appear to involve vesicular, quantal release of neuro
transmitter. 
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However, although this substance seems an unlikely candidate, in that it 
is a gas which is not stored in synaptic vesicles or released by exocytosis, 
and which does not act at typical cell membrane associated receptors, NO 
may prove to have a more widespread and fundamental role than most clas
sical neurotransmitters. The discovery of NO as a transmitter substance 
revolutionises the classical pharmacological basis for neurotransmission 
and may lead to the identification of other equally unlikely candidates. 

In conclusion, the NANC bronchodilator mechanism has been identified 
as the predominant system in the neural control of human airway smooth 
muscle relaxation. However, the precise physiological or pathophysio
logical role of this system remains to be defined. The identification of a 
disruption in this pathway in tissue from patients with airway inflammation 
is interesting but the mechanism behind this dysfunction and the con
sequences of this are unknown and warrants further study. 
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1. Introduction 

Nitric oxide synthases (NOSs) had been localised in neuronal and non-neu
ronal tissues for many years before they had been identified. This paradox 
was possible, because the histochemical technique ofNADPH-diaphorase 
staining had been used to label subpopulations of neurons without knowing 
what their function was. About 25 years after the first description of 
the NADPH-diaphorase histochemistry, it became clear that the neurons 
labeled with this histochemical technique were identical to the neurons 
immunoreactive for neuronal NOS. Also the other isoforms that were 
cloned and sequenced from endothelial cells and macrophages display 
NADPH-diaphorase activity. Since the domain that generates nitric oxide 
(NO) from L-arginine is different from the domain of the enzyme that is 
responsible for the NADPH-diaphorase activity, which has also been found 
in other enzymes, it has been concluded that the NADPH-diaphorase shows 
a more widespread distribution than the NOS isoforms. However, each of 
the three isoforms of NOS has subsequently been found in several cells 
types other than the tissues from which they had originally been cloned. 
Thus, in some cell types in the respiratory tract the presence of all isoforms 
has been reported. Similarly, the initial discrimination between constitutive 
and inducible isoforms is less distinct than originally thought, since a con-
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stitutive expression of inducible NOS and an induction of the constitutive 
isoforms has been demonstrated. This differential expression of the NOS 
isoforms is even more complex under pathophysiological conditions such as 
airway inflammation in bronchial asthma or chronic infections in cystic 
fibrosis. Modem morphological techniques have contributed to our current 
view on the localisation of NOS isoforms and its functional implications, 
particularly through the description of the subcellular localisation. Indirect 
evidence for the effects of NO in the lung comes from localisation studies of 
the target molecule of NO, soluble guanylyl cyclase, which generates cyclic 
guanosine monophosphate (cGMP) as an intracellular messenger molecule. 

In the present chapter, these morphological techniques will be intro
duced briefly and the results obtained for each of the isoforms will be dis
cussed in detail. Finally, morphological alterations with regard to the 
distribution of the NOS isoforms in inflamed lungs and their pathophysio
logical implications will be reviewed. 

2. Methods to Localise NOS 

2.1. NADPH-Diaphorase Histochemistry 

The NADPH-diaphorase histochemical reaction is based on the property of 
the flavoprotein to catalyze the electron transfer to unspecific acceptors such 
as tetrazolium dyes, resulting in a dark blue formazan deposition. By a 
peculiar phenomenon, in paraformaldehyde-fixed tissues the NADPH-dia
phorase activity of other enzymes is lost, whereas the activity of the 
NADPH-diaphorase domain of the NOS is unaffected [1]. Although de
scribed already earlier [2], the occurrence of subpopulations ofNADPH
diaphorase stained neurons was first reported by Thomas and Pearse [3]. 
Since then, an indirect and a direct NADPH-diaphorase technique has 
been described. Due to the unspecific labelling observed with the indirect 
method [4, 5], only the direct method as described by Hope and Vincent [6] 
should be used. Despite some reports on differences between the location 
of neuronal NOS and NADPH-diaphorase in the cat spinal cord [7], it is 
still generally accepted that neuronal NOS and NADPH-diaphorase are 
identical [8-11]. 

The NADPH-diaphorase technique can also be used for electronmicro
scopy, although the use of the modified tetrazolium salt 2-(2' -benzothia
zolyl)-5-styryl-3-( 4' -phtalhydrazidyl) tetrazolium chloride (BSPT) as an 
electron acceptor has been recommended [12]. 

2.2. Immunohistochemistry 

The success of immunohistochemical techniques depends on the primary 
antisera. For the generation of antisera, the availability and choice of the 
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antigens used for immunisation is most critical. The first antisera to NOS 
isoforms were raised against purified proteins extracted from tissues. Since 
polyclonal antisera contain a mixture of antibodies directed against sever
al epitopes of the purified protein [13], the immunohistochemical labeling 
results often are better than with monoclonal antibodies. However, due to 
the 50-60% structural homology between the NOS isoforms, cross-reac
tivity has to be determined by Western Blot analysis, though it cannot be 
fully excluded. In practice, most of the immunohistochemical studies in the 
respiratory tract were performed using polyclonal antisera against purified 
proteins [14-17]. After the three isoforms of NOS had been cloned and 
sequenced, antibodies to synthetic peptides from the deduced amino acid 
sequences were raised. These antisera offer the theoretical advantage of a 
higher specificity, although the peptides do not necessarily form epitopes 
that resemble the natural proteins. Several of these antisera have success
fully been used for immunohistochemistry [14, 18]. 

Only few studies on the ultrastructural localisation of NOS isoforms in 
the lung have been published. In principle, anti-NOS antisera could be used 
for pre- and for postembedding immunohistochemistry. The studies publish
ed so far for the lung have used preembedding techniques [19-21]. 

2.3. In situ Hybridisation 

Once the isoforms of NOS had been cloned, cDNAs were available to identi
fy the NOS mRNA expressing cells. In these first studies, in situ hybrid
isation was used to correlate mRNA and protein expression in neuronal [22] 
and non-neuronal tissues [23]. These studies have confirmed a high degree 
of co-expression of NOS mRNAs and proteins, although in situ hybridisation 
occasionally appears to be difficult, because for the NOS proteins only a low 
level of synthesis is required. In another approach, in situ hybridisation has 
been employed using probes directed against a common sequence of the 
three NOS isoforms in order to reveal the presence of all isoforms [24]. 

Finally, in situ hybridisation is very useful tool to assess changes in 
the expression of NOS in pathophysiological conditions. The induction of 
increased expression of NOS mRNA has been shown in the nervous system 
in response to axotomy or inflammation [25, 26]. 

3. Localisation of NOS Isoforms 

3.1. Neuronal NOS 

Neuronal NOS has been localised to the airway innervation of humans [17, 
18,27, 33], as well as of other species such as rat [17], mouse [28] guinea
pig [16, 29], ferret [30, 31], frog [32] and pig [18]. Substantial species dif-
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Figure 1. NADPH-diaphorase staining of normal and inflamed human bronchi. (a) In a bron
chus from a healthy lung donor, NADPH-diaphorase staining is seen in nerve fibers (arrows) 
and in endothelial cells (arrowheads). The respiratory epithelium (ep) is devoid of labeling. 
(b) In the chronically inflamed bronchus of a patient suffering from cystic fibrosis, in addition 
to nerve fibers (arrows and endothelial cells (arrowheads), staining is also seen in the respira
tory epithelium (ep). Scale bar represents 50 /lm. 

ferences became apparent with regard to the extent of the innervation and 
the origin of nerve fibers. In human airways, nerve fibers containing neuro
nal NOS were shown both by immunohistochemistry and NADPH-dia
phorase histochemistry (Fig. 1) [17,27,33]. These nerve fibers are present 
in the airway smooth muscle, where NO has been shown to be the major 
mediator for the neural smooth muscle relaxation [34, 35]. The density of 
these nerve fibers decreases from trachea to small bronchi [27], which is 
associated with a reduced neural bronchodilation [33, 36] mediated by the 
inhibitory non-adrenergic, non-cholinergic (iNANC) system [for review 37]. 
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Figure 2. Localisation of (a) neuronal nitric oxide synthase (NOS)-immunoreactivity in nerve 
fibers in the airway smooth muscle in a human bronchus and correlation with (b) vasoactive 
intestinal peptide (VIP). Using a confocal laser scanning microscope, in these thin optical sec
tions NOS appears to be frequently colocalised with VIP (double arrows), but NOS can also be 
seen without VIP (arrow) and VIP without NOS (arrowhead). Scale bar represents 20 /.Lm. 

Co-localisation with vasoactive intestinal peptide (VIP) is frequently 
observed (Fig. 2; 38]. In human airways, NOS-containing nerve fibers are 
present around submucosal glands [27], although their functional role for 
the regulation of glandular secretion is not clear yet. In the guinea-pig, this 
type of nerve fibre has not been found, however a substantial number of 
nerve fibers immunoreactive for NOS were found in the lamina propria 
(Fig. 4) and occasionally also in the respiratory epithelium [16]. In the 
lamina propria, NO was shown to have potent effects on blood vessels, in 
the regulation of plasma extravasation [39]. 
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Figure 3. Most of the cell bodies of the (a) neuronal nitric oxide synthase (NOS)-immuno
reactive nerve fibres of human airways are localised in the local parasympathetic ganglia. 
Many of the cells are also immunoreactive for (b) vasoactive intestinal peptide (VIP; double 
arrowheads). Some of the cells display either NOS (arrowhead)- or VIP (arrow)-immunoreac
tivity. Note the VIP-immunoreactive nerve fibers (small arrows) innervating the cell bodies. 
Scale bar represents 20 /lm. 

The cell bodies of these neurons innervating the airways of humans [18, 
27], ferrets [30,31] and piglets [18] has been localised predominantly to 
the local parasympathetic ganglia (Fig 4). Contradictory results have been 
reported for guinea-pig airways. Shimosegawa et al. [29] have reported 
some NADPH-diaphorase stained neurons innervating the airways, whereas 
in studies of our laboratory [16,40,41], NOS immunoreactivity was only 
seen in neurons related to the pulmonary artery and vein, while the airway 
intrinsic ganglia were devoid of NOS staining. In this species, a projection 
of the relaxant innervation from the adjacent oesophagus was demonstrat-
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Figure 4. Electron microscopic micrograph of a guinea-pig bronchus. A nerve fiber bundle in 
the lamina propria innervates a mucosal blood vessel, endothelial cell (EC). The nerve fiber 
contains several axons, only one axon is immunoreactive for neuronal nitric oxide synthase 
(arrow). Magnification x 14500. 

ed [42, 43]. Additional sources [44] of NOS immunoreactive nerve fibers 
were shown in vagal sensory and sympathetic ganglia [45,46]. NOS im
munoreactive neurons have been demonstrated in vagal sensory ganglia in 
humans [27, 47, 48] and in rats [49], although in these species a projection 
to the airways has not been demonstrated. NO in sensory neurons could act 
as a neuromediator both at the peripheral and at the central ending [50]. 

A substantial NOS immunoreactive innervation has also been reported 
for the trunks of the guinea-pig pulmonary artery and vein [51] as well as 
for the pulmonary vessels with smaller diameters [52]. 
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The subcellular localisation of the neuronal isoform of NOS in the airway 
innervation has not been clarified so far. In the central nervous system, 
early reports have identified the NOS activity in the cytosolic fraction after 
preparative centrifugation [for review see 53]. However, in the N-terminus 
of neuronal NOS, a PDZ-domain has been identified, which is responsible 
for a membrane attachment of neuronal NOS by interaction with the post 
synaptic density proteins (PSD) 95 and 93 [54]. Ultrastructural studies to 
localise NOS using colloidal gold markers on postembedding or ultra thin 
cryostat sections have been reported for the gastrointestinal tract [55], but 
not for the lung. 

The presence of neuronal NOS has also been shown for non-neuronal 
tissues. In the respiratory epithelium of guinea-pig and rat, a constitutive 
NADPH-diaphorase staining and immunoreactivity for neuronal NOS has 
been shown [16, 17,39]. Neuronal NOS was also demonstrated as a 
constitutive isoform in normal endothelial cells [56], and in pulmonary 
arteries and veins of rats at all ages over 50% of endothelial cells display
ed a cytoplasmatic immunoreactivity [57]. 

3.2. Inducible NOS 

The inducible isoform of NOS has been identified as a separate, calcium
independent isoform, which could only be detected after endotoxin treat
ment (Fig. 5) [58]. Although a constitutive NOS-INADPH-diaphorase 
activity in macrophages has been reported, cloning and sequencing from 
macrophages [59-61] has revealed that the inducible NOS isoform is ex
pressed de novo at the transcriptional level. Soon it became clear that 
this isoform is not only localised to macrophages, but it can be induced 
in many cells [for review see 62]. In the respiratory tract, expression of 
the inducible isoform has been reported for alveolar type II epithelial 
cells [63], lung fibroblasts [64], airway and vascular smooth muscle 
cells [65-67], airway respiratory epithelial cells [68-71], endothelial 
cells [72] and neutrophils [73]. The stimuli that cause transcriptional 
activation in these cells vary widely and include endogenous mediators 
(such as chemokines and cytokines) as well as exogenous factors such as 
bacterial toxins, virus infection, allergens, environmental pollutants 
(ozone, oxidative stress, silica), hypoxia, tumors etc. [74-76]. Even in 
diseases that are not related to the lung, e.g. intestinal reperfusion, in
ducible NOS has been shown to be upregulated [77]. The expression of 
inducible NOS in these cells in the lung can be prevented by glucocorti
coids [78]. 

Under normal conditions, however, most investigators could not find an 
expression of the inducible isoform [79]. In respiratory epithelial cells of 
human lung, a 'constitutive' expression of the inducible isoform has been 
observed at the level of mRNA [80] and protein [17]. 
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Figure 5. Alveolar macrophages from the guinea-pig express inducible nitiric oxide synthase 
after stimulation with lipopolysaccharide and interferon (upper panel). Unstimulated macro
phages (lower panel) display no immunoreactivity. Scale bar represents 10 ~m in the upper 
panel and 20 ~m in the lower panel. 

Biochemical studies have suggested a cytoplasmic localisation of in
ducible NOS [for review see 53]. Morphological observations on the ultra
structural location of the enzyme have not been reported to date. 

3.3. Endothelial NOS 

Soon after the identification of NO as a messenger molecule generated 
by endothelial cells [81, 82], a calcium- and L-arginine-dependent enzyme 
[83] has been proposed and more than 95% of its activity has been localised 
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Figure 6. Immunohistochemical localisation of endothelial nitric oxide synthase in the guinea
pig pulmonary artery (a) and in cultured endothelial cells from porcine pulmonary artery (b). 
(a) Most of the endothelial cells display immunoreactivity for the endothelial isoform. (b) The 
cytoplasmatic, granular staining indicates that the endothelial isoform is located to the mem
brane of the Golgi apparatus. Scale bar represents 20 ~m. 

to the particulate fraction of the endothelial cells [84]. Indeed, when 
the enzyme had been cloned and sequenced [85-87], and specific antisera 
for the endothelial isoform of NOS had become available, abundant endo
thelial NOS immunoreactivity was demonstrated in endothelial cells of 
pulmonary vessels [Fig. 6]. In endothelial cells of submucosal blood 
vessels in the gastrointestinal tract, endothelial NOS has been localised to 
the Golgi apparatus and cytoplasmatic vesicles by immunohistochemistry 
at the electron microscopic level [88]. As demonstrated for endothelial 
cells from rat and bovine pulmonary artery, endothelial NOS is targeted to 
endothelial caveolae by palmitoylation [89]. 
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Quantitative developmental studies of mRNA and protein expression as 
well as immunohistochemical examination have shown that the endothelial 
isoform increases during fetal development and reach a maximum at the 
time of birth followed by a postnatal decrease [90-93]. These changes have 
been largely attributed to the enzyme localised in endothelial cells and func
tionally been related to the changes in the pulmonary vascular resistance 
occurring at the transition from fetal to neonatal life. 

In addition to the endothelial localisation, this isoform is constitutively 
expressed in respiratory epithelial cells [94]. Ultrastructural studies have 
revealed that endothelial NOS is localised at the basal membrane of ciliary 
microtubules [95], where it is thought to contribute to the regulation of 
ciliary beat frequence [96]. Thus, all three isoforms are localised to the 
respiratory epithelium [97] where they are cooperatively involved in the 
regulation of airway smooth muscle tone [98 -1 0 1]. In other cells of the 
lung, for example in alveolar macrophages, the occurrence of the endo
thelial isoform has not been reported to date. 

4. Localisation of NOS in Lung Disease 

4.1. Inflammation 

In lung diseases that are associated with acute or chronic inflammation, 
such as asthma [for review 102], bronchiectasis or cystic fibrosis, increas
ed levels of NO were measured in the exhaled air [103, 104]. These 
increases have been attributed to an induction of the inducible isoform in 
the respiratory epithelium [105]. Characterisation of the enzyme activities, 
however, has shown that the increased activity is calcium-dependent [106], 
indicating that endothelial, neuronal or a recently reported calcium-depen
dent inducible isoform [107] could be involved. This is in line with earlier 
findings of an induction of a calcium-dependent NOS in the lung in re
sponse to Propionibacterium acnes and endotoxin treatment [108]. On the 
other hand, concomitant with the transcriptional induction of the calcium
independent isoform in endotoxin treated animals, there was a decrease in 
the mRNA levels of neuronal and endothelial NOS in the lung [109]. For 
airway nerves, plasticity of neuronal NOS expression [110] during devel
opment as well as plasticity ofneuropeptide expression during allergic air
way inflammation [111] has been described. However, the changes in NOS 
innervation, that have been observed in other models of peripheral inflam
mation [112, 113], axotomy [114] or after capsaicin treatment [115] have 
not been reported for the lung. 
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4.2. Pulmonary Hypertension 

The potent vasorelaxant properties of NO have led to speculations that 
NOS deficiency may be involved in the pathophysiology of pulmonary 
hypertension. Indeed, in patients suffering from severe pulmonary hyper
tension with the typical signs of pathological alterations (thickening of the 
wall, plexiform lesions), there is an inverse correlation between the im
munohistochemical expression of endothelial NOS in the endothelial cell 
layer and both the severity of the histological alterations and the total pul
monary resistance [116]. These findings indicate that the pulmonary vaso
constriction and the thickening ofthe arterial vessel wall could be caused by 
a reduced expression of endothelial NOS. In contast, in experimental 
models of pulmonary hypertension, when pulmonary vasoconstriction is 
induced by chronic hypoxia, an increased expression of NOS was observed 
by immunohistochemistry [67]. Interestingly, this increase is due to an 
induction of NOS in the endothelium and in the smooth muscle cells of the 
pulmonary resistance vessels and of the airways, which do not express NOS 
under normal conditions [66]. From this immunohistochemical absence of 
NOS in the small pulmonary arteries, NO appears to be relatively unimpor
tant for the maintenance of the physiologically low pulmonary blood pres
sure. On the other hand, studies of exercise-induced pulmonary vasocon
striction in the presence of fJ-blockers have shown that endogenous NO 
actively dilates pulmonary vessels at rest [117]. From the studies that have 
been reported so far, the question whether reduced NOS expression contrib
utes to the development of pulmonary hypertension or whether pulmonary 
hypertension leads to induction of NOS, cannot be answered at present. 

4.3. Tumors 

NO has cytotoxic effects and inhibitory effects on cell growth and prolifer
ation. Both effects occur only at higher concentrations of NO. Thus, in the 
development of cancer or metastasis, impairment of NOS could be involv
ed. Tumors themselves have been shown to produce NO [118] and mainly 
the neuronal and endothelial isoforms were found to be expressed in tumor 
cells by immunohistochemistry. In vitro, NO produced by tumor cells has 
been shown to inhibit cell growth. In vivo, however, a stimulation of tumor 
growth and metastasis was observed [119]. This is in contrast to the 
observation that tumor cells expressing NOS are less capable of forming 
metastases [120, 121]. Highly metastatic cells do not express NOS, but 
when they are transfected with the inducible isoform of NOS, the meta
stases were abrogated [122]. Taken together, the expression of NOS and the 
role of NOS in tumors and in lung metastases is still very controversial and 
the question whether NO is beneficial or harmful for tumor growth and 
production of metastasis cannot be answered at present. 
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1. Introduction 

The pulmonary circulation is a low pressure, low resistance, high flow sy
stem regulated through both active and passive factors [1-4]. Active fac
tors alter pulmonary vascular resistance and tone by causing contraction or 
relaxation of vascular smooth muscle and include neural and humoral 
mechanisms, and gaseous regulators. Passive factors alter pulmonary vas
cular resistance and/or blood flow independently of changes in vascular 
tone and include variation in cardiac output, left atrial, airway and inter
stitial pressures, gravitational force, and vascular obstruction or recruit
ment. Although passive factors may be important, the pulmonary circula
tion is regulated overwhelmingly by active control mechanisms [1-4]. 
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Nitric oxide (NO) plays an important role in the regulation of pulmonary 
vascular tone [5]. It modulates adrenergic contraction, mediates cholin
ergic pulmonary vasodilatation and acts as a novel neurotransmitter of 
inhibitory nonadrenergic, noncholinergic (iNANe) nerves. NO serves as a 
second messenger molecule in the pulmonary vascular response to many 
vasoactive substances and inhibits hypoxic pulmonary vasoconstriction. 
Pulmonary vascular endothelial cells generate NO continuously. This basal
release of NO acts as braking mechanism to avoid an "overreaction" of 
pulmonary smooth muscle to vasoconstrictors. 

This chapter deals with the physiological regulatory mechanisms of 
pulmonary vascular tone with emphasis on the role of NO in this process. 

2. NO Inhibits Adrenergic Contraction 

2.1. Adrenergic Regulation of Pulmonary Vascular Tone 

Sympathetic nerves supplying the pulmonary vessels arise from nerve cell 
bodies in the first five thoracic ganglia, the satellite ganglia, and middle 
and inferor cervical ganglia [1-4]. Post-ganglionic fibers from these sites 
intermingle with parasympathetic nerve fibers to form anterior and poster
ior plexi, at the tracheal bifurcation [1, 4]. Nerve fibers arising from these 
plexi enter the lungs to form a periarterial plexus innervating the pul
monary vascular tree, and a peribronchial plexus which innervates the 
bronchial tree. The distribution and density of catecholamine-containing 
nerve fibers vary across species [2, 4], but pulmonary arteries of many 
species, including humans, are densely innervated with these nerve fibers. 
These nerve fibers extend to pulmonary arteries with an outer diameter of 
< 60 pm [2, 4]. 

Stimulation of sympathetic nerves in a perfused canine lobe causes a 
frequency-related increase in pulmonary vascular resistance independent 
of changes in respiration, bronchomotor tone and bronchial blood flow [6]. 
Sympathetic nerve stimulation also increases pulmonary input impedance 
[4, 5]. Thus, sympathetic activation increases pulmonary vascular resis
tance and decreases pulmonary vascular compliance, thereby increasing 
pulmonary arterial pressure. Both effects are mediated by a-adrenoceptors 
[3, 4, 7], primarily of the ai-subtype [3-5]. There appears also to be f3-
adrenoceptor-mediated pulmonary vasodilatation in response to sympathet
ic nerve stimulation which is observed in the presence of a-adrenoceptor 
blockade [3-5]. Further f3-adrenoceptor blockade enhances the constrictor 
response to sympathetic nerve stimulation [3]. 

Sympathetic nerves also influence basal pulmonary vascular tone, for 
example a-adrenoceptor antagonists cause pulmonary vasodilatation and 
{3-adrenoceptor antagonists induce pulmonary vasoconstriction, in con
scious dogs [8]. After left lung autotransplantation in dogs there is an 
increased response to a-agonists, which may be a manifestation of denerv-
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ation supersensitivity [4, 9]. Sympathetic nerves are likely to mediate 
pulmonary vasoconstrictor responses to cold exposure, reperfusion (hypo
perfusion followed by hyperperfusion) and pulmonary embolism [4, 9]. 

2.2. NO Inhibits Adrenergic Responses 

NO has an important modulatory role on the adrenergic response, exercis
ed through complex NO-smooth muscle and NO-adrenergic nerve inter
actions [5]. In 1983, Cocks and Angus [10] observed a marked potentiation 
in the contractile response to noradrenaline (NA) following removal of the 
vascular endothelium in canine and pig coronary arteries. This pheno
menon was later demonstrated in pulmonary vessels in response either 
to adrenergic agonists or to adrenergic nerve stimulation [4, 5]. Several 
mechanisms have been explored. Endothelium-derived vasodilator prosta
glandins are unlikely to be involved [4, 5]. Reduction ofNA degradation 
due to removal of endothelium may playa role, but is unlikely to be im
portant [11]. 

The role of endogenous NO in the modulation of adrenergic neural con
traction was demonstrated in vitro on pulmonary arteries from guinea-pig, 
rabbit and dog. Electrical field stimulation (EFS) of the intramural adren
ergic nerves of these vessels caused a frequency-dependent contraction, 
which was markedly enhanced by the NO synthase (NOS) inhibitors 
NG-monomethyl L-arginine (LNMMA) or NG-L-arginine methylester (L
NAME) in a concentration-dependent and L-arginine reversible manner 
[4,9]. D-NAME induced no such potentiation [9]. Further, exogenous NO 
applied as acid nitrite inhibited the adrenergic neural constriction in guinea
pig pulmonary arteries [12]. Whereas, NOS inhibition augments the pres
sor response to sympathetic nerve stimulation in vivo [4, 5]. 

Several mechanisms can explain NO-mediated inhibition of adrenergic 
contraction. An interaction between NO and adrenergic nerves has been 
suggested [9, 13, 14]. Immunohistochemical studies have localised neuro
nal NOS (nNOS) to both sympathetic and parasympathetic neurons [15, 
16]. There are both immunohistochemical and pharmacological data indi
cating that NO is a neurotransmitter of NANC vasodilator nerves in the 
pulmonary vessels (see section 4.3). It is possible that NO released from 
these nerve endings can diffuse either to the adrenergic nerves inhibiting 
NA release or to smooth muscle cells antagonising adrenergic neural con
traction. Supporting this possibility is the demonstration that the NOS 
inhibitor, L-NAME, markedly augmented EFS-induced adrenergic con
traction, but had no effect on exogenous NA-induced contraction in endo
thelium-denuded pulmonary artery rings [17]. Endothelially-derived NO 
may also play an important role in this process. Activation of endothelial 
aradrenergic receptors leading to the release of NO from endothelial cells 
has been reported to be responsible for the inhibition of adrenergic con-
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traction in the vascular bed of skeletal muscle [5, 9]. Although endothelial 
a2-adrenoceptors exist in pulmonary vessels, and NO does mediate aT 
adrenoceptor agonist-induced pulmonary vasodilatation [4, 5], their role in 
the modulation of adrenergic neural contraction is less important and 
appears to vary between species. This mechanism seems to contribute to 
the NO-mediated inhibition of adrenergic neural contraction in rabbit pul
monary arteries, but is unlikely to be important under physiological condi
tions in guinea-pig pulmonary arteries, since NA has little relaxant effect 
on these vessels, even when vascular tone is elevated [4, 5]. Pulmonary 
vascular endothelial cells release NO basally. Both endothelial shear stress, 
due to changes in perfusate velocity and viscosity, and mechanical deform
ation of the vessel wall have been demonstrated to release NO [18, 19], 
which also inhibits adrenergic contractions to EFS in systemic arteries 
[18]. This mechanism has not yet been confirmed in pulmonary vessels, 
but presumably should be operative. 

NO can inhibit adrenergic contraction through either prejunctional or 
post junctional actions, or both. Both endogenous and exogenous NO in
hibit NA release from cardiac sympathetic nerves of rats and perivascular 
adrenergic nerves of dog mesenteric arteries [9, 13, 14]. In isolated dog 
intrapulmonary arteries and veins, removal of endothelium enhances, 
whilst effiuent from endothelium-intact donor aorta inhibits, EFS-induced 
NA release. This suggests that that both neuronal and endothelial-derived 
NO can act pre-junctionally to inhibit NA release in these pulmonary ves
sels [5, 9, II]. Similar mechanisms are unlikely to be operative in the 
pulmonary arteries of guinea-pigs and rabbits, however, since in vessels 
from these species, neither endothelial removal nor NO inhibition enhances 
NA release induced by EFS [4, 9, 12]. Moreover, in these studies exo
genous NO did not inhibit EFS-induced NA release [4, 9, 12]. 

NO may modulate pulmonary vascular tone through central or reflex 
pathways. Inhibition of NO by L-NMMA increases NA release in the medi
al basal hypothalamus [14]. L-NMMA also increases central sympathetic 
outflow, which is abolished by spinal cord transection and reversed by 
L-arginine [9]. Exogenous L-arginine decreases renal sympathetic nerve 
activity [9]. The NOS inhibitor, L-NAME, enhances the gain of barore
ceptor-cardiac reflex, which is reversed by the NO donor, sodium nitro
prusside (SNP) [20]. NO and the NO donor, S-nitrosocycteine, suppress 
carotid sinus baroreceptor activity [9]. 

Although several factors contribute to the NO-mediated inhibition of 
adrenergic contraction, the basal and mechanically-stimulated release of 
NO from endothelial cells is likely to be mainly responsible for the inhibi
tion. This could explain the uniform augmentation by NOS inhibitors of the 
contractile responses to vasoconstrictors with diverse mechanisms of 
action [4, 5]. 
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3. NO Mediates Cholinergic Responses 

3.1. Cholinergic Regulation of Pulmonary Vascular Tone 

Intrapulmonary arteries of many species are innervated with cholinergic 
nerves arising from the vagal nuclei of the brain stem [1,2,4,9]. The dis
tribution of these post-ganglionic nerve fibers along the pulmonary vascu
lar tree varies considerably between species [2, 4, 9]. The intrapulmonary 
arteries of rabbit, dog, monkey, sheep and cat are intensively innervated, as 
are those of human. However, cholinergic inervation of bovine, rat, mouse 
and guinea-pig intrapulmonary arteries is low or absent [2, 4, 9]. 

Although the pulmonary circulation of many species is innervated with 
cholinergic nerves, their functional significance is unclear. They do not 
appear to be important in the maintenance of low pulmonary vascular tone, 
since cholinergic blockade does not alter basal pulmonary arterial pressure 
or vascularresistance [4, 8, 9]. Earlier studies on the effects of vagal stimu
lation on the pulmonary circulation provided conflicting results. Vagal 
stimulation induces pulmonary vasoconstriction in perfused dog and guinea
pig lungs, but causes pulmonary vasodilatation in adult pig and fetal lamb 
lungs [4, 9]. Daly and Hebb observed increased, decreased, or biphasic 
changes in pulmonary artery pressure in response to vagal stimulation in 
the dog [21]. This is not surprising, since canine vagal nerves contain sym
pathetic nerve fibers [21]. Vagal stimulation is therefore likely to cause an 
adrenergic vasoconstriction as well as vasodilatation. Further, changes in 
cardiac output, airway pressure, and bronchial blood flow induced by vagal 
stimulation may also affect pulmonary arterial pressure. For example, 
vagally-induced increases in airway pressure would increase pulmonary 
vascular resistance and thereby confound any decrease in pulmonary arte
rial pressure induced by vagal stimulation [22]. In the perfused cat pul
monary vascular bed, vagal stimulation evokes an increase in pulmonary 
perfusion pressure under basal conditions, whereas perfusion pressure 
decreases under conditions of elevated vascular tone [23]. The pressor and 
depressor responses are blocked by phenoxybenzamine and atropine re
spectively, confirming that both adrenergic vasoconstriction and cholin
ergic vasodilatation are induced by vagal stimulation. After chemical sym
pathectomy with 6-hydroxydopamine, vagal stimulation induces a fre
quency-dependent decrease in lobar artery pressure under conditions of 
elevated vascular tone induced by the thromboxane mimetic U44169 or 
hypoxia. Exogenously-administered acetylcholine (ACh) mimics the re
sponse to vagal stimulation. The responses to both vagal stimulation and 
ACh are blocked by atropine and enhanced by physostigmine, a cholin
esterase inhibitor. Moreover, this vagally-induced vasodilatation is not 
affected by elevating airway pressure, nor by reducing systemic blood 
pressure [23]. Vagally-released ACh acts on the vascular endothelium to 
induce NO release which then causes vasodilatation [24]. 
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Vagal nerves also participate in reflex responses under both physiologi
cal and pathophysiological conditions. Stimulation of carotid chemorecep
tors during local hypoxic pulmonary vasoconstriction blunts the response, 
an effect probably mediated via cholinergic nerves, although inconsistent 
results have been reported [4, 9]. Depending on the level of pre-existing 
tone, exogenous ACh induces either vasoconstrictor or vasodilator re
sponses [4, 9]. ACh induces a pressor response under resting conditions, 
but causes a depressor response during elevated vascular tone [4, 9]. There 
also appears to be a species variation in the ACh response, as both the 
mechanism and characteristics of the vasoconstriction in the rabbit are dif
ferent from those in the feline pulmonary circulation [4, 9]. In humans, 
ACh induces a clear vasodilator response both under resting conditions and 
during acute hypoxic pulmonary vasoconstriction [25]. Human isolated 
pulmonary arteries relax in response to ACh in an endothelium-dependent 
manner [4, 9]. Endothelial removal converts the relaxation to a small con
tractile response [4, 9]. Muscarinic receptors mediating the increase in 
pulmonary vascular resistance appear to be M]-like receptors in rabbit, 
whereas both M]- and Mrreceptors are involved in canine pulmonary 
vascular beds [4, 9]. In isolated rabbit large pulmonary arteries, both the 
contractile and relaxant responses are mediated via Mrreceptors [9]. ACh 
elicited relaxation of the rat precontracted pulmonary vascular bed is 
mediated through M]-Receptors [26]. 

3.2. NO Mediates Cholinergic Responses 

ACh was the first endothelium-depenent vasodilator to be described [27]. 
Studies using NOS inhibitors have revealed that NO mediates the vaso
dilator response to exogenous ACh in the pulmonary vascular beds of 
various species in vivo and in situ, although inconsistent results have been 
reported [5, 9]; and NO also mediates the vasodilator response to neurally
released ACh. In the precontracted cat pulmonary vascular bed, vagal 
stimulation elicits a frequency-dependent relaxation, which is blocked by 
atropine and greatly inhibited by the NOS inhibitor, L-NAME [24]. This 
neural relaxation is also markedly inhibited by the guanylyl cyclase inhibi
tor methylene blue [28]. By contrast, in the same preparation L-NAME has 
no inhibitory effects on the dilator response to drugs with diverse mech
anisms of action, including adenosine, nicorandil, isoprenaline, sodium 
nitroprusside, prostaglandin E] (PGE]), or 8-bromo-cGMP. How ACh re
leased from cholinergic nerve terminals at the adventitio-medial border 
exerts its action on endothelial cells is unclear, since this presumably invol
ves diffusion through the smooth muscle layer. Upon reaching endothelial 
cells, ACh stimulates the phosphoinositide cycle generating inositol 1,4,5-
triphosphate to release calcium, which binds to calmodulin and activates 
NOS resulting in the release of NO. NO activates guanylyl cyclase and 
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elevates the intracellular level of cyclic guanosine monophosphate (cGMP) 
in vascular smooth muscle cells, which reduces intracellular free calcium 
and thus initiates vasodilatation. 

NO may modulate cholinergic responses via a prejunctional action. 
nNOS has been localised to cholinergic nerve endings [15, 16]. In myen
teric neurons, NO donors stimulate basal eH]-ACh release, but inhibit 
EFS-induced [3H]-ACh release [29]. The NOS inhibitors, L-NMMA and 
L-NAME, potentiate the EFS-induced [3H]-ACh release [9]; implying that 
NO induces basal ACh release, but inhibits depolarisation-induced release 
from cholinergic nerves. This mechanism has not been explored in pul
monary vessels. 

4. NO as an Inhibitory Non-Adrenergic, Non-Cholinergic (iNANC) 
Neurotransmitter 

4.1. NANC Nerves 

In addition to classic adrenergic and cholinergic innervation, there are 
neural mechanisms that are not inhibited by adrenergic and cholinergic 
blockade [4, 9]. NANC nerves may represent separate neural pathways, but 
are more likely to be manifestations of neural co-transmission in sym
pathetic, parasympathetic, and sensory nerves. NANC neural responses 
that are excitatory (eNANC, vasoconstrictor) and inhibitory (iNANC, vaso
dilator) have been demonstrated in pulmonary vessels of several species 
[5,9, 30-32], including human intrapulmonary arteries [32]. In rat small 
pulmonary arteries, EFS evokes an excitatory junction potential, which 
is insensitive to adrenergic, cholinergic, histaminergic, and serotonergic 
blockade, and unaffected by catecholamine depletion or sympathetic dener
vation, but which is abolished by tetrodotoxin and inhibited by a-, f3-me
thylene ATP [30], suggesting an adenosine triphosphate (ATP)-mediated 
eNANC transmission. In pre contracted pulmonary artery rings of cat, 
guinea-pig and human, EFS induces frequency-dependent relaxation, 
which is abolished by tetrodotoxin, but largely unaffected by treatment 
with a combination of adrenergic and cholinergic antagonists, indicating 
that the main component of this relaxation is mediated via iNANC mech
anism [5, 9, 30-32]. EFS also relaxes precontracted pulmonary arteries of 
dog, rabbit, and cow, but these responses are not of neural origin, since they 
are tetrodotoxin resistant [9]. 

4.2. NANC Neurotransmitters 

As mentioned in a previous section, eNANC neurotransmitters may be 
ATP in small pulmonary arteries of rat [30]. Other mediators proposed as 
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iNANC neurotransmitters include calcitonin gene-related peptide (CGRP), 
substance P (SP), a vasoactive intestinal polypeptide (VIP), ATP and NO 
[4, 9]. CGRP-like immunoreactive nerves are located around pulmonary 
arteries of several species [9]. CGRP-like immunoreactivity is released 
during stimulation of vagus nerve [33] and upon stimulation of the peri
vascular nerves of guinea-pig main pulmonary arteries [31]. CGRP is a 
potent vasodilator of guinea-pig main pulmonary arteries, mimicking the 
NANC vasodilator response [5, 9]. Pretreatment with capsaicin to deplete 
sensory neuropeptides including CGRP markedly inhibits the iNANC re
sponse in these vessels [4, 5, 9]. However, CGRP may not mediate the 
iNANC response in the branch pulmonary arteries of guinea-pig, as it does 
not mimic iNANC relaxation in these vessels. Further, the iNANC response 
in branch pulmonary arteries is partially endothelium-dependent, but 
CGRP is an endothelium-independent vasodilator in this vessel. Finally, 
capsaicin treatment in vivo and in vitro has no significant effect on the 
iNANC response in branch vessels [5, 9], but abolishes or greatly reduces 
the iNANC response in main pulmonary artery [4, 5, 9]. 

SP-like immunoreactive nerves have also been localised to pulmonary 
vessels of several species [2, 9]. SP is a potent vasodilator, and SP-like 
immunoreactivity is released during perivascular nerve stimulation by EFS 
in guinea-pig pulmonary artery [9, 31]. However, SP is unlikely to be 
important in mediating the iNANC vasodilator response, since the vaso
dilator response to SP is endothelium-dependent, whereas the iNANC re
sponse in this vessel is not [31]. Moreover, pretreatment with capsaicin to 
deplete SP from sensory nerves, or use of specific NKJ receptor antagonist 
to block SP action has no effect on the iNANC vasodilator response [4, 9]. 

VIP-immunoreactive nerve fibers are localised to pulmonary arteries of 
several species [4, 9], including human [34]. VIP-immunoreactivity is 
released from perivascular nerves of cat extrapulmonary arteries in re
sponse to EFS [35]. VIP is a potent pulmonary vasodilator in several spe
cies, including human both in vitro and in situ [4, 5, 9]. However, VIP is 
unlikely to mediate the iNANC vasodilator response in guinea-pig pul
monary arteries. VIP has minimal relaxant effects on these vessels, and 
a-chymotrypsin, which degrades VIP, has no effect on the iNANC response 
[4,9]. 

ATP may act as an iNANC transmitter in pulmonary vessels. ATP is 
released upon stimulation of perivascular nerves in rabbit pulmonary arte
ries by EFS [36]. The iNANC vasodilator response is significantly inhi
bited by the P2y-purinoceptor antagonist, reactive blue 2, in guinea-pig 
branch pulmonary arteries [5, 9]. ATP mimics the iNANC vasodilator 
response in these vessels [4, 9]. P2y-purinergic receptors that mediate the 
pulmonary vasodilator response to ATP have been identified on pulmonary 
vessels [4, 5, 9]. 
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4.3. NO as an iNANe Transmitter 

There is increasing evidence to support NO as an iNANC neurotransmitter 
in many organs [37]. Most ofthe direct evidence for the release of NO from 
iNANC nerve endings and for the increse in nNOS activity upon EFS 
comes from studies on enteric neuron and gastrointestinal tissues [37 -39]. 
There are also immunocytochemical and pharmacological evidence sup
porting NO as an iNANC neurotransmitter in pulmonary arteries. Immuno
cytochemical staining for nNOS and NADPH-diaphorase, which is a 
marker of NOS, has demonstrated NOS-immunoreactive nerves distributing 
around extra- and intrapulmonary arteries [40,41]. In precontracted, endo
thelium-denuded guinea-pig branch pulmonary arteries, the iNANC vaso
dilator response is markedly inhibited by the NOS inhibitors, L-NMMA or 
L-NAME, in an L-arginine reversible manner, D-arginine being inactive 
[4,9, 17]. Pyrogallol, an agent known to inactivate NO through superoxide 
radical generation, also inhibits this iNANC relaxation, which is restored 
fully by adding superoxide dismutase at the point of peak inhibition. Inhi
bition of the formation of cGMp, the second messenger of NO action, by 
methylene blue (5 p.M) causes >80% inhibition in iNANC relaxation. 
Additionally, iNANC-induced relaxation is significantly potentiated by 
zaprinast, a type V phosphodiesterase inhibitor which prevents cGMP 
degradation [17]. Further, iNANC relaxation is accompanied by a marked 
increase in tissue cGMP content, which is significantly inhibited by 
L-NMMA [17]. In endothelium-denuded pulmonary arteries, NOS inhi
bitors significantly augment adrenergic contraction, without any effect on 
basal vascular tone and contration evoked by exogenous NA, suggesting 
that there is neural release of NO, which acts as a functional antagonism to 
the adrenergic neural contraction [9, 17]. 

Both sympathetic and parasympathetic nerves contain NOS immuno
reactive neurons [15, 16]. Under in vitro conditions, application of EFS 
activates intramural adrenergic, cholinergic, and NANC nerves simultan
eously. NO can be released from adrenergic and/or cholinergic nerves as a 
co-transmitter with NA or ACh. However, NO is unlikely to be released 
from adrenergic nerves, since chemical sympathetic denervation by 6-
hydroxyl dopamine has no effect on EFS-induced relaxation in these 
vessels [9, 17]. It will be difficult to distinguish whether NO is released 
from cholinergic or NANC nerves until a method is developed to selec
tively destroy cholinergic nerves. Nevertheless, it is possible that NO can 
be released from separate NANC nerves. NOS immunoreactivity is co
localised with VIP-immunoreactive nerve fibers [15,41], suggesting NO 
may be co-released with VIP. This further supports an iNANC transmitter 
role for NO. 

The cellular source of NO has been a matter of debate, but recent evi
dence indicates that NO is released from intrinsic NANC nerves [38, 39]. 
The nNOS in nitrergic nerves is activated by calcium entry when the nerves 
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are depolarized, thereby releasing NO. Endothelium-derived NO may also 
playa part. In guinea-pig pulmonary arteries, the iNANC vasodilator re
sponse is partially mediated by ATP-induced NO release from vascular 
endothelial cells [5, 9]. Earlier studies have suggested that VIP released 
from NANC nerves causes NO production from smooth muscle cells [42]. 
But more recent data indicate that NO is generated in nitrergic neurons on 
demand [39]. 

4.4. NANC Regulation of Pulmonary Vascular Tone 

Although iNANC mediated pulmonary vasodilatation has bene demon
strated in vitro [4, 5, 17, 32], it has not been described in vivo. Therefore, 
the roles of this neural mechanism in the regulation of pulmonary vascular 
tone remain to be explored. Since the major part of the relaxant response 
of pulmonary vessels to EFS is mediated through an iNANC pathway, this 
neural mechanism may playa role in the regulation of pulmonary vascular 
tone and pulmonary blood flow. The role of NANC mechanisms in the 
maintenance of low basal pulmonary vascular tone is suggested by the 
demonstration that inhibition of NO production elevates pulmonary vas
cular blood pressure or pulmonary vascular resistance both in animals and 
humans [4, 5]. Although basal-release of NO from endothelial cells is 
mainly responsible in these circumstances, neuronally derived NO may 
also participate. The pulmonary circulation undergoes significant changes 
during the physiological adaptation to exercise, pregnancy, cold exposure 
and birth, to which NANC mechanisms may contribute. NO contributes to 
the pulmonary vasodilatation of exercise [4,9], and to the low pulmonary 
arterial pressure and low pulmonary vascular resistance of pregnancy [4] 
and plays an important part in the transitional adaptation of the fetal pul
monary circulation to adult [43]. ATP participates in the Orinduced pul
monary vasodilatation that occurs at birth [44]. NO, ATP, CGRP and SP 
inhibit the pulmonary vasoconstriction to hypoxia [4, 5], suggesting that 
these transmitters modulate hypoxic mvasoconstriction (HPV). CGRP 
counteracts the development of hypoxic pulmonary hypertension. CGRP
like immunoreactivity is increased in lung neuroendocime cells of rats 
exposed to chronic hypoxia [4,9]. Chronic infusion ofCGRP prevents, and 
immunoneutraIization with CGRP antibody, or infusion of CGRP receptor 
antagonist peptides, exacerbates hypoxic pulmonary hypertension in rats 
exposed to chronic hypoxia [4, 9]. A reduction in CGRP-containing NANC 
vasodilator nerves has been suggested to contribute to the development and 
maintenance of systemic hypertension in spontaneously hypertensive rats 
[4,9]. Hypoxia inhibits NANC neuroeffector transmission in non-vascular 
tissues [4, 9]. It is possible that the normal vasodilator action of iNANC 
nerves is inhibited during hypoxia and may be impaired with repeated hy
poxic episodes, thus promoting the development of hypoxic hypertension. 
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5. NO and Humoral Regulation 

5.1. Effects of Humoral Substances 

The pulmonary circulation is under continuous bombardment by a large 
body of vasoactive substances, including bioamines, kinins, peptides, 
purines and arachidonate metabolites [4, 5]. These substances influence 
pulmonary vascular tone by constricting or relaxing pulmonary vascular 
smooth muscle through the activation of specific receptors on smooth 
muscle and endothelial cells (Tab. 1 and 2). They can also increase or 
decrease pulmonary vascular resistance and/or compliance by changing 
cardiac output and bronchial tone, or closing or recruiting the pulmonary 
microvascular bed [4, 5]. The effects of these mediators and hormones on 
pulmonary vascular tone vary with species, age and pre-existing tone. In 
general, angiotensin II (A-II), neuropeptide Y (NPY), leucine-enkephalin, 
thrombin, thrombin receptor activation peptide, prostaglandins Dz, Ez and 
Fza are pulmonary vasoconstrictors, whereas atrial natriuretic peptide 
(ANP), VIP, CGRP, adenosine monophosphate (AMP), prostaglandins E J 

and Iz are pulmonary vasodilators. There are exceptions in that PGDz and 
PGEz cause pulmonary vasodilatation in fetal lambs, and PGIz increases 
pulmonary vascular resistance in rabbits [4, 5]. Bradykinin (BK), arginine 
vasopressin (AVP), endothelins, pituitary adenylyl cyclase activating 
peptide (PACAP), Sp, N-formal-methionyl-leucyl-phenylalanine (FMLP), 
histamine, 5-hydroxytryptamine (5-HT), platelet-activating factor (PAF), 
arachidonic acid, adenosine, ADP and ATP have dueal effects on pul
monary vascular tone, causing contraction when the vascular tone is low, 
but relaxation, when it is high [4, 5]. A detailed description of the effects 
of these humoral substances on pulmonary circulation is available else
where [4, 5]. 

5.2. Humoral Regulation of Pulmonary Vascular Tone 

Although the pulmonary vasculature responds to these mediators and auto
coids, the precise physiological and pathophysiological roles of most of 
them have not yet been defined. Inhibition of the production or blockade of 
the receptors of these substances has no effect on basal pulmonary vascular 
tone, suggesting that none in isolation is responsible for the maintenance of 
low pulmonary vascular tone, although they may be contributory if there is 
a synergistic interaction [45]. The maintenance of low pulmonary vascular 
tone seems to be the result of a balance between the vasoconstrictors and 
vasodilators, with the latter holding sway under normal physiological con
ditions [4, 5, 45]. Other factors such as recruitment and distention of the 
pulmonary vasculature, the meagerness of smooth muscle, low a-adren
ergic activity and the ability of pulmonary endothelial cells to take up and 
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remove both systematically or locally released vasoconstrictor substances 
may also contribute [4, 5,45]. 

Humoral mediators may be important in some pathological conditions. 
5-HT, histamine and thromboxane A2 (TxA2) mediate pulmonary hyper
tension during pulmonary embolism [4, 5, 45]. TxA2 and leukotriene B4 
(LTB4) may playa role in the early pulmonary hypertension seen in lung 
injury [4, 5, 45]. Many vasoactive substances, including A-II, ANP, AVP, 
ATP, ACh, BK, dopamine, endothelin (ET)-l, PAF, PGD2, PGI2 and SP 
have been reported to inhibit HPY, suggesting that these substances may 
modulate HPY. Some cyclooxygenase and lipoxygenase products may be 
involved in the etiology of hypoxic pulmonary hypertension [4, 5]. ET-I 
and PAF may mediate and/or contribute to the development of hypoxic pul
monary hypertension, whereas ANP and cGMP may be important inhibitors 
of hypoxic pulmonary hypertension. ET-I may play an important role in 
the occurrence and progression of other types of pulmonary hypertension. 
5-HT is likely to be involved in the pathogenesis of mono crotaline-induced 
pulmonary hypertension [4, 5]. ET-I and 5-HT have been reported to 
stimulate the proliferation of cultured pulmonary vascular smooth muscles 
[4, 5], which further supports their possible role in the development of 
pulmonary hypertension. 

5.3. NO and Humoral Regulation 

The importance of NO in the humoral regulation of pulmonary vascular 
tone is evidenced by the demonstration that many neural and humoral sub
stances exert their pulmonary vasodilator actions via endothelium-depend
ent mechanisms and NO generation (Tabs. 1 and 2). Substances that have 

Table 1. Autonomic receptors in pulmonary vessels 

Receptors Subtype Response Endothelium-dependency 

Adrenergic a, contraction no 
a2 contraction no 

relaxation yes 

f32 relaxation yes or no 

Muscarinic M, contraction no 
M3 relaxation yes 

Purinergic P2x contraction no 
P2y relaxation yes 

Tachykinin NK, relaxation yes 
NK2 contraction no 

VIP ? relaxation yes or no 

CGRP ? relaxation no 
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Table 2. Humoral receptors in pulmonary vessels 

Receptors Subtypes Responses Endothelium-dependency 

Adenosine AI contraction no 
A2 relaxation no 

Angiotensin AT contraction no 

ANP ANPA relaxation no 
ANPB relaxation no 

Bradykinin BI? relaxation yes 
B2 relaxation yes 

Endothelin ETA contraction no 
ETB relaxation yes 

Histamine HI relaxation yes 
Hz relaxation no 

5-HT 5-HTI contraction no 
5-HTI' relaxation yes 

Thromboxane TP contraction no 

Vasopressin VI relaxation yes 

been reported to induce pulmonary vasodilatation through endothelium
derived NO release include ACh, NA, BK, SP, ATP, ADP, histamine, 
5-HT, ET-I, ET-3, thrombin and arachidonic acid [4, 5, 24, 31]. Further, 
both blood flow and mechanical deformation of the vascular wall impose 
shear stress on vascular endothelial cells and induce release of NO [4, 5, 
18, 19]. Thus, an increase in pulmonary blood flow and possibly endo
thelium deformation due to pulmonary vasoconstriction causes NO release, 
which counteracts the increase in pulmonary blood pressure. Activation 
of calcium-activated K+ channels appears to be involved in shear stress
induced NO release [46]. 

5.4. Role of Basal Release of NO 

Accumulating evidence suggests that the basal-release of NO participates 
in the maintenance of pulmonary homeostasis, in the regulation of pul
monary vascular tone and in the modulation of pulmonary microvascular 
permeability. Infusion ofL-NMMA acutely or administration ofL-NAME 
orally for periods of 4 weeks causes a dose-dependent increase in systemic 
arterial blood pressure that is associated with a reduction in aortic cGMP 
content [4,5,47], indicating that basal release of NO plays an important 
role in the regulation of systemic blood pressure. The effects of basal NO 
released into the pulmonary circulation appears to vary between species. 
L-NMMA or NG-nitro-L-arginine (L-NA) increase baseline pulmonary 
arterial pressure in guinea-pigs, rabbits, and lambs [4, 5]. L-NA reduces 
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pulmonary vascular conductance with no change in pulmonary arterial 
pressure in pigs in vivo, suggesting an increase in pulmonary vascular re
sistance [4, 5]. Methylene blue also increases pulmonary arterial pressure 
in cats [4, 5]. By contrast, L-NA and L-NAME have no effect on pulmonary 
vascular resistance in dogs either under basal conditions or when the pul
monary venous pressure is slightly elevated to ensure that the circulation is 
under zone 3 conditions [48, 49]. L-NMMA and haemoglobin increase 
baseline vascular tone in isolated pulmonary artery rings from pigs, 
guinea-pigs and lambs, but not rats [4, 5]. L-NMMA and L-NA have no 
effect or slightly increse pulmonary perfusion pressure under basal condi
tions [4, 5], but increase pulmonary arterial pressure and vascular resi
stance under hypertensive conditions [50, 51] or when the venous pressure 
is slightly elevated in the rats [49]. Under the same conditions, the cyclo
oxygenase inhibitor, indomethacin, has no effect on baseline pulmonary 
vascular resistance in rats, but induces a rise in dogs [49]. Thus, vasodila
tor prostaglandins regulate basal canine pulmonary vascular tone, whereas 
NO performs this role in rats, cats, guinea-pigs, pigs, and sheep. Basal 
release of NO also plays an important role in the maintenance of low 
pulmonary vascular tone in humans [52, 53]. Infusion of L-NMMA into 
healthy volunteers or children with congenital heart disease; but with nor
mal pulmonary blood flow, pressure, and resistance, causes a dose-depend
ent increase in pulmonary vascular resistance [53], or decrease in pul
monary blood flow, with no change in pulmonary arterial pressure [52]. 
Moreover, the increased pulmonary vascular resistance is associated with a 
reduced plasma N03- level [53]. Together with the observation that basal 
release of NO inhibits the contractile response to adrenergic stimulation 
and other vasoconstrictors, such results indicate that NO plays an impor
tant part in the regulation of pulmonary vascular tone, both with or without 
elevated tone. Basal NO release increases when pulmonary arterial pres
sure or vascular resistance is increased, thus providing a tonic antagonism 
to the elevation in vascular tone. Basal NO release also plays an important 
role in the pulmonary vascular adaptation to exercise, pregnancy and 
during the transitional adaptation after birth [4, 5]. 

6. NO Modulates Hypoxic Pulmonary Vasoconstriction (HPV) 

6.1. HPV 

HPV is a physiological response whereby circulating blood is diverted 
away from hypoxic alveoli, thus optimizing the matching of perfusion 
and ventilation and maximizing arterial oxygenation. Because it is unique 
to the pulmonary circulation, HPV has been an area of intensive inves
tigation and much debate since it was first described by von Euler and 
Liljestrand [54]. 
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Despite over four decades of investigation, the mechanisms of HPV 
remain mysterious [4, 5]. Early work established that autonomic innerva
tion does not appear to be necessary for the pressor response of the adult 
lung to hypoxia [4, 5], suggesting that the response is intrinsic to the lung. 
Two main hypotheses have been proposed. Firstly, the mediator hypothesis 
suggests that endogenous vasoconstrictors or vasodilators are released or 
suppressed by hypoxia. The other proposes a direct effect of hypoxia and 
the pulmonary vascular smooth muscle, inducing contraction. 

Many vasoactive substances have been considered in the search for 
chemical mediators, including catecholamines, histamine, A-II, vasocon
strictor prostaglandins, 5-HT, PAF and ATP [4, 5]. None has proven essen
tial for HPY, although a number of such substances may have a modulatory 
role or may establish the background conditions that are necessary for HPV 
to occur. LTC4 and LTD4 are still under investigation, but their definitive 
role in HPV still remains to be confirmed. ET-l may play a role in the 
development of chronic hypoxic pulmonary hypertension, but is unlikely to 
mediate acute HPV response [4, 5]. 

Failure to identify conclusive mediator(s) promoted the alternative pro
posal that HPV represents a direct effect of hypoxia on pulmonary vascu
lar smooth muscle cells. In support of this hypothesis, small pulmonary 
arteries of cat and human contract in response to hypoxia in vitro [4, 5], and 
hypoxia contracts pulmonary vascular smooth muscle cells in culture [55]. 
Several possible mechanisms have been proposed to explain how hypoxia 
directly causes pulmonary vasoconstriction. The K+ channel hypothesis 
suggests that hypoxia closes oxygen-sensitive K+ channels, leading to smooth 
muscle depolarisation and Ca2+ entry, thus inducing contraction. Hypoxia 
inhibits both voltage-gated and Ca2+ -activated K+ channels, and induces 
depolarisation of pulmonary artery smooth muscle cells, but not renal nor 
mesenteric artery smooth muscle cells [4, 5, 56]. Hypoxia causes Ca2+ 

influx into pulmonary artery smooth muscle cells in adult rat and fetal 
lambs [4,5,56]. However, ATP-dependent K+ channels have been shown to 
mediate secondary vasodilatation rather than the initial constriction to 
severe hypoxia [4]. The "energy-state" hypothesis suggests that HPV is 
initiated by decreased oxidative phosphorylation [4, 5, 57]. The cyto
chrome P 450 hypothesis proposes that cytochrome P 450 acts a sensor which 
initiates HPV [58]. The redox hypothesis states that oxygen tension reg
ulates the production of reactive oxygen species or peroxide which control 
transmembrane Ca2+ flux and hence vascular tone through a direct action 
on sulfyldryl groups in the calcium channel protein of vascular smooth 
muscle [4, 5, 59]. All these hypotheses are still under exploration. 

6.2. NO Modulates HPV 

It has long been recognized that endothelium has an inhibitory role on HPV 
and hypoxic contractions [4, 5]. A role of endogenous NO in inhibiting 
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HPV was first suggested by Brashers et al. [60] who showed a marked 
potentiation of HPV by non-selective endothelium-derived relaxing factor 
(EDRF) inhibitors in the rat perfused pulmonary vascular bed. Sub
sequently, several groups have reported a marked augmentation ofHPV by 
inhibiting the NO pathway, either by the use of selective NOS inhibitors 
[4, 5, 61, 62] or by use of guanylyl cyclase inhibitors [63]. The precursor of 
NO, L-arginine, has no effect on baseline pulmonary hemodynamics, but 
inhibits HPV [62, 64]. The effect of L-arginine on HPV is inhibited by 
methylene blue and potentiated by zaprinast, a type V phosphodiesterase 
inhibitor that inhibits cGMP degradation [64]. Moreover, exogenous NO 
and cGMP inhibit HPV (4, 5]. Hypoxic contraction of pulmonary vessel 
rings in vitro is also potentiated by the removal of endothelium and by in
hibition of NO using L-NMMA, haemoglobin, and methylene blue [4, 5, 
65]. These results indicate that endogenous NO acts to attenuate HPV. Loss 
of this feedback mechanism would therefore potentiate hypoxia-induced 
contraction. The marked augmentation in HPV induced by NOS inhibitors 
in perfused pulmonary vascular beds can be explained through the inhibi
tion of either basal or stimulated NO release, or both. This contention is not 
necessarily contradictory to the demonstration that hypoxia inhibits endo
thelial NOS (eNOS) expression and activity in cultured pulmonary artery 
endothelial cells [66], since the inhibition of eNOS activity requires several 
hours hypoxic incubation [66]. By contrast, HPV is a rapid on/off response. 
Alternatively, even though enzymatic activity is inhibited to some extent, it 
may still increase in response to stimuli. For example, hypoxia inhibits 
cyclooxygenase activity in rat pulmonary arteries in vitro, whereas in vivo 
hypoxia results in a marked increase in tissue PGI2 production [4, 5]. 
During HPY, several factors, including endothelial shear stress resulting 
from changes in blood flow profile and endothelial deformation induced by 
smooth muscle contraction could stimulate NO release [19]. 

Whether acute hypoxia itself stimulates or inhibits NO production, and! 
or NO activity still remains open to speculation. Earlier studies have pro
vided conflicting results [4, 5]. Moderate (P02 = 40 mmHg) or severe 
(P02 = 4 -17 mmHg) hypoxia inhibit endothelium-dependent relaxation to 
methacholine, ACh, ATP, and A23187 and the associated cGMP accumula
tion in rabbit and rat extrapulmonary arteries and in small pulmonary 
artery rings of sheep [4, 5, 67, 68]. In porcine small pulmonary artery 
rings, hypoxia inhibits the relaxant response to ACh, reduces basal cGMP 
content, and augments the contractile response to phenylephrine, an effect 
abolished by endothelium removal [65]. By contrast, hypoxia does not 
inhibit endothelium-dependent relaxation to ACh and BK in isolated 
canine intrapulmonary arteries [69]. In the isolated extrapulmonary artery 
rings of rats, moderate hypoxia (48 mmHg) inhibits basal, but not ACh-, 
A23187- or SNP-induces tissue cGMP accumulation [70]. In cultured 
bovine pulmonary artery endothelial cells, moderate hypoxia (40 mmHg) 
increases basal, and potentiates BK-induced NO release, but severe hypoxia 
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(15 mmHg) inhibits BK-induced NO generation [4,5, 71]. In isolated per
fused bovine pulmonary artery and vein, both the activity and half-life of 
EDRF increase by reduction in oxygen tension in the perfusate [4, 5]. In 
isolated neonatal pig lung perfused with physiological salt solution, mode
rate hypoxia reduces both NO (the NO decomposition product) accumu
lation in perfusate and NO content in exhaled air, whereas in the isolated 
adult rat lung preparation, hypoxia (23 mmHg) reduces NO content in 
exhaled air, but has no effect on perfusate NO [72, 73]. Hypoxia can affect 
NO production and/or action at multiple steps; including NOS expression 
and activity, substrate and enzyme cofactor availability, NO half-life and 
signaling pathways, and the whole signal transduction cascade from re
ceptor occupation to NO action in the case of agonist-induced NO-release. 
Consequently, more studies are required before firm conclusions can be 
drawn. Further, NOS activity and endothelial response may vary with 
species, maturity or the severity of hypoxia. 

The effects of chronic hypoxia on NO production and/or activity are 
equally controversial. Both reduced and enhanced NO production and/or 
activity have been reported [4, 5]. Evidence supporting reduced NO pro
duction and/or activity include: a reduced or diminished endothelium
dependent relaxant responses to ACh, ATP or A-23187 observed in isolat
ed pulmonary artery rings and perfused pulmonary vascular beds of rats 
with hypoxic pulmonary hypertension [4, 5], and in intrapulmonary artery 
rings from patients with chronic obstructive pulmonary disease [74]. 
Hypoxia reduces eNOS mRNA, protein and enzyme activity in bovine 
pulmonary artery endothelial cells [66]. Hypoxia inhibits pulmonary artery 
endothelial L-arginine uptake [75] and L-arginine synthesis from citrulline 
[76], and patients with pulmonary hypertension display reduced eNOS 
mRNA and protein expression in pulmonary vessels [77]. The pulmonary 
circulation undergoes rapid adaptational changes during the transitional 
period from fetal to neonatal life. Changing from a hypoxic to normoxic 
environment results in marked pulmonary vasodilatation [4, 5]. There is 
evidence that NO mediates this oxygen-dependent pulmonary vasodilata
tion [4, 5]. Moreover, eNOS gene and protein expression and activity are 
upregulated by increasing oxygen tension in fetal pulmonary artery endo
thelial cells [78]. This may represent another piece of evidence for hypoxic 
inhibition of eNOS expression and activity. There are also data suggesting 
increased NO production and activity after chronic exposure to hypoxia. 
Chronic hypoxia augments endothelium-dependent vasodilator responses 
to ACh, BK, Sp, ET-l or A-23187 in rat and calf pulmonary vascular beds 
[4,5,50,51,79,80]. Chronic hypoxia also enhances the pulmonary vaso
constrictor response to L-NAME, suggesting an enhanced basal NO pro
duction [50, 51, 79]. Isolated lungs from rats with hypoxic pulmonary hyper
tension releases more NO [79]. Moreover, chronic hypoxia increases 
eNOS mRNA, protein expression and NOS activity in rat lung homogen
ates [81, 82]. Chronic hypoxia also increases inducible NOS expression 
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both at mRNA and protein level [81]. Chronic hypoxia does not appear 
to change the smooth muscle sensitivity to NO nor for function of the 
smooth muscle contractile/relaxant machinery in perfused pulmonary 
vascular beds, the relaxant response to NO donors, sodium nitroprusside, 
3-morpholinosydnonimine (SIN-I) or S-nitroso-N-acetylpenicillamine 
(SNAP) being unchanged by chronic hypoxia [4, 5, 80]. However, in extra
pulmonary arterial rings, chronic hypoxia diminishes the smooth muscle 
sensitivity to NO donors, probably through desensitization at guanylyl 
cyclase level [4, 5]. Again, this difference could be explained in several 
ways, and further research is needed to clarify this discrepancy. 

7. Summary 

Pulmonary vascular tone is under the regulation of adrenergic, cholinergic, 
and NANC vasodilator nerves and humoral mechanisms. Hypoxic pulmon
ary vasoconstriction also plays an important role in the active regulation 
of pulmonary vascular tone. Adrenergic nerves, HPV and vasoconstrictor 
humoral substances represent the vasoconstricting forces; whereas cholin
ergic, NANC mechanisms, vasodilator humoral substances, and basal and 
stimulated release of NO represent dilating forces. A balance between 
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Figure 1. A schematic diagram summarizing the roles of nitric oxide in the regulation ofpul
monary vascular tone. NA, noradrenaline; ATp, adenosine triphosphate; ACh, acetylcholine; 
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these opposing forces influences normal resting pulmonary vascular tone. 
Disturbance of this balance may result in and/or contribute to the devel
opment of some disease such as pulmonary hypertension. NO plays an 
important role in regulating pulmonary vascular tone (Fig. 1). It inhibits 
adrenergic contraction, modulates hypoxic pulmonary vasoconstriction 
and counteracts the contractile response to many pulmonary vasocon
strictors. NO mediates the pulmonary vasodilator response to cholinergic 
stimulation and to a variety of vasodilator substances, and acts as an novel 
iNANe neurotransmitter. 
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1. Introduction 

Increasing evidence points to an important role for nitric oxide (NO) in the 
regulation of pulmonary functions and in pulmonary disease [1-4]. NO is 
present in exhaled air of animals and humans [1, 5]. The respiratory tract, 
nerves endothelial cells, vascular and airway smooth muscle cells, inflam
matory cells (macrophages, neutrophils, mast cells) and the airway epi
thelium are sources for NO production [2]. The different effects of NO are 
mediated by the activation of soluble guanylyl cyclase, with as a con
sequence, an increase of cyclic guanosine monophosphate (cGMP) in the 
target cell. 

NO synthases (NOSs) catalyse the conversion of L-arginine to L-citrul
line and during this reaction NO is produced. NO is the product of the five
electron oxidation of one of the chemically equivalent guanidino nitrogens 
of L-arginine. NO can occur in biological systems in different forms, as 
NO- (nitroxyl anion) or NO+ (nitrosium) [4, 6]. In particular, the aqueous 
environment in the lung with an acidic pH can influence the type of NO 
metabolite produced [4, 6]. However, in most physiological systems NO 
has a short half-life (0.1-5 sec) [7, 8]. Different NOS isoforms have been 
isolated, cloned and sequenced [9-11]. Immunohistological studies have 
identified the presence of endothelial cell, neuronal and inducible NOS 
(eNOS, nNOS, iNOS) in human lung [12, 13]. Functionally, there are con
stitutive and inducible forms of NOS. The constitutive forms (eNOS and 
nNOS9 are normally expressed in endothelial and neuronal cells, but also 
in platelets, mast cells and neutrophils [2, 14]. These forms are calcium and 
calmodulin-dependent and produce picomoles of NO in response to cellular 
stimulation [15]. The inducible form of NOS is not dependent on intra-
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cellular calcium or calmodulin and requires a number of co-factors. The 
enzyme is regulated at the level of transcription and can be induced by cer
tain cytokines, for example interferon-y (IFN-y), interleukin-lfi (IL-IJ3) 
and tumor necrosis factor-a (TNF -a), and endotoxin lipopolysaccharides 
(LPSs) which probably act through the release of cytokines. The amounts 
of NO produced by the iNOS are much larger (nanomoles) than after 
activation of the constitutive enzymes. These high amounts of NO may 
contribute to the pathophysiological effects. Interestingly, glucocorticoids 
inhibit the induction of inducible, but not the activity of constitutive NOS. 
Furthermore, a number of cytokines, for example transforming growth fac
tors [16], IL-4 [17] and IL-IO [18] have been shown to inhibit the expres
sion of inducible NOS. 

Research on the role of NO has been particularly facilitated by the disco
very of analogues of L-arginine, which appeared to act as false substrates 
for the enzyme, thereby preventing the formation of endogenous NO. Ex
amples ofthese analogues are NG-monomethyl-L-arginine (L-NMMA), NG_ 
nitro-L-arginine (L-NA), NG-nitro-L-arginine methylester (L-NAME) [19]. 

2. NO and Asthma 

Expression of iNOS has been found in the epithelium of asthmatic patients 
but not in healthy subjects [12, 20]. Glucocorticoids inhibit the expression 
of iN OS [21,22]. From animal studies it appeared that NO is produced in 
upper and lower airways [24]. Alving et al. (1993) [25] compared the pro
duction of NO in exhaled air between breathing through the nose or the 
mouth. They suggested that in normal human airways the production of NO 
is restricted to the nasal mucosa. However, in mild asthmatics, the level of 
exhaled NO during oral breathing increased 2-3 fold, indicating the involv
ement of the lower airways [25]. These data may point to the involvement 
of macro phages, which produce high amounts of NO [26]. These cells are 
found in much higher number in the bronchial, compared to the nasal air
ways [27]. NO can have pro inflammatory effects. In particular, the high 
amounts of NO formed by the iNOS in asthmatic patients may be deleteri
ous. The increased release of NO from epithelial cells could increase air
way blood flow and cause hyperaemia and further airway oedema by plas
ma exudation. The level of exhaled NO is elevated in patients with asthma 
who are not receiving glucocorticoid therapy [25,28,29]. Glucocorticoids 
reduce exhaled NO levels in asthmatic patients [28, 30], suggesting that 
the increase in exhaled NO reflects iNOS activity. Kharitonov et al. [31] 
showed an increase in exhaled NO during the late asthmatic reaction after 
allergen challenge. This increase was absent during the early broncho
constrictor response, suggesting that iNOS had been induced after allergen 
challenge. The cellular source of iNOS is not clear. Structural cells, such as 
epithelial cells, smooth muscle cells and endothelial cells [32-34] or alter-
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natively, macrophages, mast cells, neutrophils and other inflammatory 
cells may contribute [34]. 

Inhibition of endogenous NO production reduces plasma exudation in 
the airways, possibly by inhibition of its potent vasodilator activity. Also, 
neurogenic airway oedema can be prevented by inhibitors of NOS [35]. 
Interestingly, in ovalbumin sensitised guinea-pigs insufflation pressure and 
NO in exhaled air immediately increased in a dose-dependent manner, in 
response to challenge with nebulised allergen [5]. An immediate increase 
in NO levels paralleled the degree of bronchoconstriction. NO acts as a 
feedback against bronchoconstriction since inhibition of endogenous NO 
production leads to a substandial potentiation of the allergen-induced 
bronchoconstriction [23, 36]. 

3. Airway Inflammation and Peroxynitrite Production 

It has now been generally accepted that asthma is an inflammatory disease 
[37, 38]. The number of inflammatory cells is increased in the broncho
alveolar lavage (BAL) fluid of asthmatic patients. One of the major products 
that can be released by inflammatory cells is superoxide anion. Calhoun 
et al. [39] measured the superoxide production by bronchoalveolar cells 
obtained 12 min and 48 h after segmental antigen challenge. It was demon
strated that the superoxide anion production was significantly enhanced 
after the early and late phase. In addition to these in vitro observations 
superoxide production in vivo during asthma might also be increased [40, 
41]. Therefore, during asthmatic reactions the pro inflammatory mediators 
NO and superoxide are likely to be formed. In inflamed tissue NO can react 
very quickly with superoxide anions, leading to the formation of peroxy
nitrite [42]. 

(1) 

The rate constant for the reaction of NO" with O2 - is 6.7 x 109 limo lis which 
is close to the rate constant for diffusion of NO [43]. Peroxynitrite is a potent 
and relatively long lived oxidant with a half-live:<=;; 1 sec at pH 7.4 [44]. 

ONOO- + H+ ~ ONOOH (2) 

Since peroxynitrite is a highly reactive anion, it reacts and oxidises many 
cellular components such as lipids and proteins, thereby disturbing their 
function, and thus cellular homeostasis [42]. Peroxynitrite oxidises mem
brane lipids [45], tissue sulfhydryls [46] and is believed to damage mem
brane sodium channels in colon [47] and lung [48] and calcium channels in 
the myocardium [49]. Peroxynitrite is a potent oxidant that has bactericidal 
activity [50]. 
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Are there reasons to assume that peroxynitrite is formed under (patho)
physiological conditions? NO is a hydrophobic gas, it will accumulate in 
higher concentrations within the hydrophobic core of the membrane near 
the site of superoxide formation. McCall et al. [51] demonstrated in a 
bioassay that stimulated rat peritoneal neutrophils release the platelet in
hibitory factor, NO. As the degree of stimulation increased, the inhibitory 
action was progressively inhibited by concomitant release of superoxide 
anions, pointing to an interaction between NO and superoxide. Moreover, 
it has been reported that peroxynitrite is formed by macrophage-derived NO 
[52]. The peroxynitrite production was as high as 0.11 nmolll06 cells/ 
min. Rat lung contains approximately 107 macrophages (lining fluid = 
1 ].11), the average rate of peroxynitrite formation would be 1 ].1M/min within 
the whole lung and I mM/min in the epithelial lining fluid. Furthermore, 
immediate peroxynitrite production was detectable by luminol-enhanced 
chemiluminescence from cultured bovine aortic endothelial cells exposed 
to bradykinin or the calcium ionophore A23187 [53]. 

Overproduction or uncontrolled formation of peroxynitrite, is an impor
tant factor in the tissue damaging mechanisms during pathological situa
tions such as chronic inflammation. There are several reports suggesting 
the formation of peroxynitrite during the inflammatory process. The nitra
tion of tyrosine residues in proteins by peroxynitrite to 3-nitrotyrosine is 
an indication of the presence of peroxynitrite [42]. Immunoreactivity to 
nitrotyrosine residues and iNOS are colocalised in guinea-pig ileitis, 
suggesting that peroxynitrite is formed following iNOS induction [54]. 
Moreover, an increased immunofluorescence to nitrotyrosine residues was 
detected at the sites of inflammation in acute lung injury in rats and humans 
[55, 56], acute endotoxemia in rats [57], influenza-induced pneumonia in 
mice [58] and in rheumatoid patients [59]. Inhalation of silica produces a 
dramatic inflammatory and toxic response within the lungs of humans and 
laboratory animals. Interestingly, 24 h after silica inhalation, lung tissue 
and BAL cells from the rat produce significantly more peroxynitrite than 
controls [60]. The luminol-dependent chemiluminescence was markedly 
decreased by either superoxide dismutase or the NOS inhibitor (L-NAME). 
When the animals were pretreated with the steroid dexamethasone, there 
was a complete protection against the biochemical, cellular, and chemilu
minescence indices of damage caused by silica. The above mentioned data 
provided evidence that peroxynitrite can be formed by a number of cells in 
the lung after receptor or non-receptor stimulation. Peroxynitrite, unlike its 
precursor NO, is probably not an intercellular messenger molecule because 
of its limited stability and diffusion range, but from the presently available 
evidence one cannot exclude the possibility that peroxynitrite serves as 
an intra- or pericellular messenger [42]. Since the rate of peroxynitrite 
formation depends upon the production of superoxide and NO, it will 
increase 100-fold for every 10-fold increase in superoxide and NO. Thus 
relatively small increases in the rats of superoxide and NO production 
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may greatly increase rates of peroxynitrite formation to potentially cyto
toxic levels. 

At different levels in this cascade there are opportunities for therapeutic 
intervention. Steroids or aminoguanidine, drugs which inhibit the expres
sion/activity of iNOS, can be used to prevent NO production. The produc
tion of superoxide can be inhibited by apocynin or the inactivation of super
oxide may be enhanced by superoxide dismutase. This will lead finally to 
a diminished peroxynitrite production. Further, there are a number of drugs 
that can scavenge peroxynitrite e.g. urate, cysteine and penicillamine. 

It has also been reported that exogenously administered peroxynitrite 
mimics some inflammatory conditions. Indeed, intrarectally administered 
peroxynitrite in the rat induces transmucosal necrosis, acute inflammation, 
and exudative oedema 24 h later [61]. Resolution of oedema, mucin re
pletion, thickening of the muscularis mucosa and propria, and fibrosis were 
observed at 3 weeks. In guinea-pigs, peroxynitrite caused airway epithelial 
damage and hyperresponsiveness in vitro and in vivo [62]. Sadeghi-Hashjin 
et al. [62] showed that incubation of peroxynitrite on the mucosal side of 
the guinea-pig trachea caused a significant hyperresponsiveness, the maxi
mal contractions in response to histamine and methacholine were enhanced 
30% and 40% respectively. In the peroxynitrite-treated group, clear epi
thelial damage as well as eosinophil destruction were detected. Moreover, 
3,5, and 10 days after intratracheal instillation ofperoxynitrite (100 nmol), 
a significant rise in airway resistance to histamine of anesthetised animals 
was observed. It is suggested that the generation of peroxynitrite from NO 
and superoxide radicals during inflammatory processes induces epithelial 
damage, mediator release, and hence airway hyperresponsiveness. 

4. NO and Airway Hyperresponsiveness 

Evidence points to an important role for the airway epithelium in modulat
ing the responsiveness of the underlying smooth muscle. Hyperrespon
siveness of the airways, which is a feature of asthma, is associated with 
damage or loss of the airway epithelium in bronchial asthma [37, 63]. 
Removal of the epithelial layer from isolated airways of several mammalian 
species enhanced the contractile response to various bronchoconstrictor 
agents, including histamine, acetylcholine, 5-hydroxytryptamine and leuko
trienes C4 and D4 [64, 65]. In addition, arachidonic acid induces a relaxa
tion in intact tracheae and a contraction in epithelium-denuded tissues [66]. 
These findings led to the concept that intact epithelium may act as a protec
tive barrier between constrictors and airway smooth muscle [67-69] or it 
may modulate the airway tone through the release of relaxant bustances, 
which may include prostanoids and epithelium-derived relaxing factor(s). 
Major differences in contractile responses or perfusion pressures to agents 
applied from the serosal and the luminal side of intact guinea-pig trachea 
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have been detected [67, 69, 70]. The sensitivity was much less on the inside 
than on the outside and this difference disappeared when the epithelium 
was removed. It has been proposed that the epithelial layer produces an 
"epithelial derived relaxing factor", which is similar to EDRF [65, 68]. 
Whether this EDRF is similar to NO and whether any other relaxing sub
stances are involved is as yet not certain. Gao and Vanhoutte [71] demon
strated an inhibitory role for an endogenous NO-like substance during con
tractions of canine bronchi evoked by acetylcholine. However the epithelial 
layer did not seem to playa major role in this effect. A cultured human 
epithelial cell line produces nitrite spontaneously, which can be suppressed 
by an NO synthesis inhibitor and restored by L-arginine, suggesting the 
constitutive production of NO [72]. cNOS and iNOS are present in rat and 
human epithelial cells [12,20, 73]. A number of contractile agents, includ
ing histamine, stimulate cNOS [2]. Immunoreactivity for NOS has been 
demonstrated in epithelium of both large and small airways [73, 74]. 
Rengasamy et al. [75] showed NOS immunoreactivity within rat respiratory 
epithelium but not in the bronchial smooth muscle. In contrast, guanylyl 
cyclase activity was shown in respiratory smooth muscle but not in the 
epithelium pointing to a paracrine role of NO in bronchial function. Robbins 
et al. [76] clearly substantiated the role of iNOS in a murine epithelial cell 
line. Stimulation with a mixture of cytokines (IL-lf3, TNF-a and IFN-f), 
elevated nitrite levels by 873%, increased iNOS activity and the expres
sion of iNOS mRNA. Dexamethasone decreased these cytokine induced 
increases. Also in primary cultured human airway epithelial cells the same 
mixture of cytokines increased iNOS expression [76]. Human type II alveo
lar epithelial cells also express iNOS after exposure to LPS [12] or cytokines 
[77]. Cytokines released by mononuclear cells can therefore stimulate airway 
epithelial cells to express iNOS and to release NO. On the other hand, Guo et 
al. [78] demonstrated that NO synthesis in normal human airways is due to a 
continuous expression of the iNOS in airway epithelial cells. 

We have provided pharmacological evidence that one of the epithelium
derived relaxing factors might be NO [79]. In a perfused tracheal tube set 
up according to Pavlovic et al. [70], in which selectively the serosal 
(out)side or the mucosal (in)side of the trachea can be stimulated with 
drugs, it was demonstrated that luminal perfusion of guinea-pig tracheal 
tubes in vitro with NO synthesis inhibitors shifted the maximum effect of 
the histamine concentration-response curve upwards by 335%. This effect 
was mimicked by removal of airway epithelium, suggesting that the airway 
epithelial layer releases NO which counteracts the bronchoconstrictor 
effect of spasmogens [79]. Furthermore the effect of L-NAME was con
centration-dependently inhibited by co-incubation with L-arginine. In ac
cordance with the findings of Fedan et al. [80] and Sparrow and Mitchell 
[69], the intact preparations did not reach a clear plateau after a complete 
histamine concentration-response curve (up to 10-3 M). This is comparable 
with the observations in healthy humans in which a decrease in the forced 
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expiratory volume in one second (FEV1) greater than 20% is not obtained, 
even when very high concentrations of histamine are nebulised. In further 
experiments we investigated whether these effects were species specific. 
When 4th and 5th generation airways of the horse were incubated with 
L-NAME, the maximal contraction in response to histamine was increased 
by 250%. Similar findings have been observed in human bronchi [81]. This 
means that the effect with the NO synthesis inhibitors is not species specific. 

Interestingly the hyperresponsiveness after NOS inhibition is mediated 
by leukotrienes [82]. Preincubation of isolated trachea with a 5-lipoxygen
ase inhibitor (AA-861) or a leukotriene C4, D4, E4 receptor antagonist (FPL 
55712) totally blocked the L-NAME induced tracheal hyperresponsive
ness. These data are in line with the findings of Adcock and Garland [83] 
who demonstrated that guinea-pig tracheal hyperresponsiveness to hist
amine after cyclooxygenase inhibition was attributable to an augmenting 
effect of lipoxygenase products. Now, abundant evidence has been obtain
ed that leukotrienes are involved in airway hyperresponsiveness [84]. 
Recently, it became clear that NO can stimulate cyclooxygenase, an enzyme 
responsible for the synthesis of prostaglandins. Indeed, in previous studies 
we demonstrated that the histamine-induced contractions of the guinea-pig 
trachea were associated with the release of both prostaglandin E2 and NO 
[64, 85]. Also, enhanced tracheal contractions in animal models of airway 
hyperresponsiveness coincide with a decreased prostaglandin E2 and NO 
production [64, 85]. The L-NAME induced airway hyperresponsiveness 
was associated with a decrease in prostaglandin E2 production [82]. There
fore, inhibition of NO synthesis decreases cyclooxygenase activity and, 
maybe as a consequence, increases lipoxygenase activity. Alternatively, 
NO may have a tonic inhibition on the lipoxygenase pathway. The effects 
of inhibitors of NOS can also be observed in vivo. The administration by 
aerosol of NO synthesis inhibitors to spontaneously breathing anesthetised 
guinea-pigs resulted in a significant enhancement of lung resistance after 
increasing intravenous doses of histamine [l26~282%) [79]. Differences 
in endogenous NO production also contributes to strain-related differences 
in airway responsiveness in rats [86]. The Fischer strain is hyperresponsive 
to inhaled agonists in comparison to other strains such as the Lewis rat. Jia 
et al. [86] further showed that inhibition of NOS induced airway hyper
responsiveness to cholinergic receptor stimulation in vivo and in vitro in 
Lewis rats, but had almost no effect in Fischer rats. The effect of the NOS 
inhibitor was abolished by removal of the epithelium. Carbachol induced a 
NO dependent increase in cGMP levels in tracheal tissue but to a lesser 
extent in Fischer than in Lewis rats. Jia et al. [86] thus demonstrated the 
involvement of an endogenous NO-cGMP pathway in the regulation of 
airway responsiveness in Lewis rats. 

The role of cGMP in airway responsiveness was further substantiated by 
Sadeghi-Hashjin et al. [87]. We demonstrated that drugs that prevented the 
increase of cGMP after histamine stimulation of perfused isolated guinea-
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pig trachea, such as cystamine and methylene blue (guanylyl cyclase in
hibitors) or pyrogallol (a generator of superoxide that may inactivate NO) 
increased the contractile response to histamine. A functional role for endo
genous NO in the modulation of airway contractile responses has further 
been suggested by a number of different research groups [23, 88]. Interes
tingly, endogenous NO also has an inhibitory effect on bronchial ob
struction in a model of antigen-induced bronchoconstriction [23, 36]. The 
increased NO release during allergen challenge was likely to be due to 
actions of histamine and leukotrienes since the increase in exhaled NO con
centration was abolished by histamine and leukotriene receptor antagonists 
[23]. Inhalation of NOS inhibitors in asthmatic patients does not increase 
airway obstruction or increase the bronchoconstrictor responses to hist
amine [30]. However in asthmatic patients the level of exhaled NO is marked
ly elevated probably by enhanced iNOS activity [25, 28, 29]. Large amounts 
of NO downregulate cNOS [89-91], which may explain the absence of 
effect of NOS inhibitors in human. In the lung vasculature, NO has been 
implicated in the modulation of the pulmonary circulation [92] and in the 
vasoconstriction which follows hypoxia [93]. It is unlikely that the pulmo
nary vasculature contributes to the airway hyperresponsiveness since the 
effects observed in vivo were confirmed in vitro using a perfused tracheal 
tube in which the role of the vasculature can be excluded. 

Besides NO, the epithelium probably releases other factors that modify 
the level of intracellular cGMP. Hay and colleagues demonstrated in a 
coaxial bioassay system, that the guinea-pig tracheal epithelium releases a 
factor that can relax the rat aorta and increase the level of cGMP. However, 
both phenomena were not inhibited by methylene blue [94]. A comparable 
observation was found in the perfused guinea-pig trachea. The osmotic
induced release of an epithelium-derived relaxing factor by mannitol was 
suppressed by haemoglobin and methylene blue, but not by L-NMMA [68]. 
Thus, other (NO-related-)products that can modify cGMP levels in smooth 
muscle are released by the epithelial layer. A diminished production of 
epithelium-derived relaxing factors caused by destruction of the epithelial 
layer may contribute to the increased airway responses in asthmatic pa
tients. In addition, we demonstrated that histamine stimulates NO synthesis 
[85] and the release of histamine has been implicated in the bronchocon
striction after exercise, viral infections [95] and allergen exposure [96]. In 
asthmatic patients with an enhanced bronchial responsiveness, an increas
ed spontaneous histamine release by bronchoalveolar mast cells is found. 
Moreover, the concentration of histamine in bronchoalveolar lavage fluid 
in asthmatics is related to the level of airway responsiveness [37]. The 
histamine-induced increase in cGMP production in the cardiovascular [97] 
and respiratory system [98] has been shown to be an L-arginine dependent 
process. It is tempting to speculate that the epithelial layer by releasing NO, 
acts as a negative feedback system to histamine-induced contractions and 
that the combination of increased histamine levels and epithelial damage 
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induces airway hyperresponsiveness in asthamtic patients. A number of 
substances have been shown to induce tracheal relaxation after intraluminal 
perfusion in precontracted tissues, e.g. endothelin [99] and bradykinin 
[100, 10 1]. These relaxations are inhibited or reversed into contractions by 
inhibitors of NO synthesis, indicating that the relaxations are mediated by 
the release of NO. 

In standard organ bath experiments potassium induces an initial contrac
tion followed by a relaxation and a sustained contraction of intact tracheae 
[102]. We showed [103] that potassium induces a monophasic contraction 
when it was added on the serosal side. In contrast, potassium induced a 
relaxation when added on the inside. From these results it may be conclud
ed that depo I arisation of smooth muscle cells leads to a contraction, whereas 
depolarisation of epithelial cells results in a relaxation of tracheal tubes. 
This effect is mediated by NO since L-NAME prevents the relaxation. 
Epithelium removal caused a reversal of the relaxation into a potent con
tractile response. Addition of potassium on the inside of intact trachea does 
not stimulate the smooth muscle cells because incubation with L-NAME 
on the inside only prevented the relaxation. The relaxation did not reverse 
into a contraction as seen in epithelium-denuded tissues. From the present 
results it is likely that the epithelial layer acts as a firm barrier, since even 
a relative simple molecule as potassium is not able to penetrate through the 
epithelial layer [103]. 

5. NO and Virus-Induced Hyperresponsiveness 

Epidemiological studies have demonstrated a close temporal association 
between respiratory viral infections and exacerbations of asthma [104-
1 07J. In addition, in otherwise healthy people, respiratory infections induce 
airway hyperresponsiveness. Viruses have been identified in up to 50% of 
wheezing illnesses and asthma exacerbations occurring in childhood and in 
up to 20% of those in adults. Moreover, viral infections have been shown 
to develop into late asthmatic reactions [108]. Epithelial damage, airway 
inflammation and an enhanced release of reactive oxygen species by 
inflammatory cells are observed both during viral respiratory infections 
and asthma [37-39, 63]. We showed that intra-tracheal inoculation of 
parainfluenza type 3 virus to guinea-pigs induces a marked increase in 
airway responsiveness to histamine in vivo and in vitro [109-112]. After 
inhalation oflow doses of L-arginine this hyperresponsiveness is complete
ly blocked [85]. Moreover, the histamine-induced release of NO from 
virus-inoculated tracheal tubes was diminished by 75%. Therefore, it is 
likely that the deficiency in endogenous NO after a viral infection is due to 
a dysfunction of cNOS. Interestingly, Saiboku-to, a traditional Chinese 
herbal medicine that has been widely used in the treatment of asthma in 
Asian countries stimulates epithelial NO generation [113]. 
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There are at least three possible mechanisms which may account for the 
NO deficiency in virally infected airways. Firstly, the decreased NO pro
duction can be explained by substrate limitation, e.g. a decreased concen
tration of L-arginine in virus-treated animals. However, intracellular levels 
of arginine are already high and the supply of arginine is normally not rate
limiting for the constitutive enzyme [114]. On the other hand, it cannot be 
excluded that the activity of arginase, the enzyme that breaks down arginine, 
is increased. Arginase is widely distributed in the body including the lungs 
[115] and is elevated during growth of tissues and tumors [116]. Whether, 
the arginase activity is increased in the lungs during viral respiratory infec
tions needs to be investigated. 

Secondly, the epithelial layer is damaged in virus-infected animals [109, 
117]. Therefore, a likely explanation for the lack of NO in virus-treated 
animals, is a diminished activity or availability of the eNOS which might 
be due to epithelial damage. In biopsies of human airways, immunoreac
tivity to iNOS was seen in the epithelium in 22 of 23 asthmatic cases, but 
only 2 of 14 non-asthmatic controls [118]. Although, in normal subjects 
during symptomatic upper respiratory tract infections the concentration of 
NO in exhaled air is markedly increased [119], it cannot be excluded that 
the NO released by the activity of the constitutive enzyme is diminished 
during bronchoconstriction. Although eNOS has been described as con
stitutive, its expression can be regulated. MacNaul and Hutchinson [120] 
demonstrated that concurrent treatment of human aortic endothelial cells 
with IL-lj3, TNF-a, IFN-y, and LPS decreased the eNOS mRNA level 
[121-124] and eNOS protein [121]. In bovine cultured coronary venular 
endothelial cells LPS alone already causes down regulation of eNOS [91]. 
Interestingly, during viral infections IFN-y is produced. This might stimu
late iNOS and the high amount of NO could subsequently inactivate eNOS 
[89-91]. 

A third mechanism by which the concentration of NO can be decreased 
is the following. NO is inactivated by products released from inflammatory 
cells, i.e. superoxide anions [2, 125]. Parainfluenza type 3 virus activates 
inflammatory cells [40, 117] and the number of inflammatory cells is 
increased in lungs of virus-infected guinea-pigs [40, 110]. Naive guinea
pig tracheas incubated with inflammatory cells obtained from lungs of 
virus-treated animals become hyperresponsive to histamine [126]. Besides 
decreasing the NO concentration, the reactive peroxynitrite (ONOO-) is 
produced by the interaction of superoxide anions with NO [2, 127], which 
accordingly may lead to "additional" epithelial damage. Interestingly, 
Akaike et al. [58] recently demonstrated a role for peroxynitrite in the 
pathogenesis of influenza virus-induced pneumonia in mice. They showed 
by means of an immunohistochemical study formation of peroxynitrite by 
inflammatory cells, including macrophages and neutrophils, and of intra
alveolar exudate. There results suggest formation of peroxynitrite in the 
lung through the reaction of NO with superoxide, which is generated by 
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alveolar phagocytic cells and xanthine oxidase. Moreover, isolated guinea
pig epithelial cells themselves can release reactive oxygen species [128]. 
Therefore, a number of processes may act additively or synergistically 
during the development of virus-induced airway hyperresponsiveness. 
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1. Introduction 

Among its many roles in mammalian cells and organisms, mtnc oxide 
(NO) has a multitude of physiological and pathophysiological roles in the 
lungs and airways. In the airways, NO and NO-related compounds modu
late airway tone and microvascular leak from the airway circulation, media
te enhanced ciliary motility in response to various agents, and likely con
tribute to epithelial injury and denudation the setting of airway inflamma
tion. NO is synthesized by a family of NO synthases (NOSs) which are 
found in a variety of cell types in the lungs and airways, including bron
chial epithelial cells, endothelial cells and intrinsic airway postganglionic 
neurons [1,4, 7,8,14,22,24,27,32,45--47,50]. 

An increasing amount of evidence supports the idea that endogenously
produced NO is an important modulator of airway function both in the 
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basal state [2, 3,34,41,54,55] and in the setting of airway inflammation 
[15, 40]. For example, endogenously-produced NO can modulate airway 
responses to endogenous contractile stimuli, including vagal stimulation
induced contractile responses [2, 55]. Furthermore, in the setting of airway 
inflammation induced by viral infection or repeated antigen exposure, this 
endogenous NO-related bronchodilator mechanism may be dysregulated. 
In this review, the direct and indirect bronchodilator effects of endoge
nously-produced NO and the airway effects of exogenous (inhaled) NO and 
related compounds will be examined. 

2. Bronchodilator Actions of Endogenous NO 

2.1. Neural Inhibitory Non-Adrenergic Non-Cholinergic (iNANC) 
Bronchodilation 

The first evidence of a role for endogenously-produced NO in the modu
lation of airway tone was derived from descriptions of neural, non
adrenergic, non-cholinergic (iNANC) airway smooth muscle relaxation 
in response to vagal activation. In these experiments it was shown that 
inhibition of NOS with various analogues of L-arginine attenuated the 
smooth muscle relaxant response which occurred after iNANC stimula
tion in guinea-pig and human airway tissue [3, 34, 54]. In the guinea
pig, the iNANC response was only partially, 40-60%, blunted by NOS 
inhibition, suggesting an important role for another mediator; which is 
thought to be vasoactive intestinal peptide (VIP) [34, 54]. In contrast, in 
human tracheal strips, iNANC responses were found to be solely NO
dependent and were almost completely inhibited by pre-incubation with 
NG-nitro-L-arginine methyl ester (L-NAME), an L-arginine-analogue 
NOS inhibitor [3]. 

2.2. Paracrine Mediation of Airway Responses 

2.2.1. Role of NO in Airway Responses to VIP: In addition to directly 
mediating neural bronchodilator responses, it has been shown that NO also 
has an important paracrine role in mediating the effects of agents such as 
VIP, bradykinin, and endothelin. For example, the bronchodilator response 
of isolated, tracheally-perfused guinea-pig lungs to geometrically-in
creasing concentrations of VIP is blunted by approximately 100-fold 
in the presence of 200 mM NG-nitro-L-arginine (L-NA) in the perfusate 
(ICso 32 nmol/kg vs 0.39 nmol/kg in control lungs) (Fig. 1) [35]. This in
hibitory effect ofL-NA could be overcome and VIP responses restored by 
addition of excess L-arginine to the perfusate, which restores endogenous 
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Figure 1. Left: dose-response relationship for vasoactive intestinal peptide (VIP) with NCi -nitro
L-arginine (L-NA), with L-NA and L-arginine, and with no additives present in perfusion buffer. 
Right: dose-response relationship for isoproterenol with and without L-NA present in perfusion 
buffer. Closed circles, isoproterenol with L-NA; open circles, isoproterenol without L-NA; closed 
triangles, VIP with L-NA; open squares, VIP with L-NA and L-arginine; open triangles, VIP with
out L-NA. Results are expressed as group mean with 95% confidence intervals (CI). 

NO production. The role of NO as a paracrine mediator of VIP's effects was 
confirmed by the measurement of NO-equivalents by the Griess reagent 
method in the effiuent from isolated, perfused lungs: VIP administration 
was associated, in a time course that immediately preceded the onset of 
bronchorelaxation, with an increase in the local pulmonary elaboration of 
NO-equivalents from 0.11 ± 0.04 to 0.78 ± 0.15 )lM (p < 0.05). 

2.2.2. Role a/NO in airway responses to other agents: NO also appears to 
be critical in determining the bronchodilator response of airways to endo
thelin-l (ET-I), which has been reported to exert both bronchoconstrictor 
and bronchodilator effects [13, 37]. In isolated guinea-pig trachea at low 
resting tone, ET-I produces a dose-dependent constriction that is enhanced 
by removal of the epithelium, but not by pre-incubation with NG-monome
thyl-L-arginine (L-NMMA) or methylene blue. In contrast, at high resting 
tone, ET-I induces a concentration-dependent slow tracheal relaxation 
which can be markedly blunted by pre-incubation with 100)lM L-NMMA 
or 10 )lM methylene blue; removal of the epithelium changes this relaxant 
response to a more sustained constrictor response [13]. Similarly, it has 
been shown that bradykinin's relaxant effects on airway tone are partially 
NO-dependent [49]. 
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3. Modulation of Neural Constrictor Responses 

Besides its direct neural and paracrine bronchodilator effects, neurally re
leased NO also modulates bronchoconstriction in response to neural 
stimulation-induced acetylcholine release. In both guinea-pig and human 
tissues, inhibition of NOS by pre-incubation of tracheal strips with 
L-NMMA or L-NAME results in exaggerated constrictor responses to vagal 
stimulation [2, 55]. Since the enhanced constrictor response following NOS 
inhibition was not associated with any measurable increase in acetylcholine 
release per se, NO's modulatory effects do not appear to be mediated 
through interference with acetylcholine release. It is likely that NO modu
lates neural stimulation-induced bronchial responses at the level of the 
acetylcholine receptor or postreceptor subcellular signaling systems [55]. 

4. Modulation of Bronchoconstriction in Response to Exogenous 
Contractile Agonists 

Based on the above-described roles for endogenous NO in neural dilator 
and constrictor responses, and on the established responses of vascular 
smooth muscle to NO and NO-related compounds, subsequent studies on 
the bronchodilator role of NO in the airways focused on NO-mediated 
modulation of bronchoconstriction induced by exogenous agents. For 
example, Gao et al. described an important role for an endogenous NO-like 
substance in the attenuation of contractions in canine bronchial smooth 
muscle induced by exogenous acetylcholine in vitro [16]. 

4.1. Role of NO in Bronchial Responsiveness of Normal Airways 

Similar to its homeostatic role in airway responses to endogenous contrac
tile mechanisms, endogenously-produced pulmonary NO also has an im
portant modulatory action in bronchoconstriction induced by administra
tion of contractile agonists, such as histamine [38,41]. In isolated guinea
pig tracheal tubes in vitro, luminal perfusion with 120 11M L-NAME and 
L-NMMA enhanced maximal histamine responsiveness by 335% and 
250%, respectively (p < 0.01 for each vs control), and these effects were 
reversed in the presence of excess L-arginine (Fig. 2) [41]. This finding 
indicates that endogenously-produced pulmonary NO has a significant role 
in attenuating basal responsiveness to exogenous histamine. Moreover, 
removal of the tracheal epithelium was associated with increased basal re
sponsiveness to histamine and with loss ofL-NAME's enhancing effect on 
histamine-responsiveness. Thus, the airway epithelium was critical in this 
endogenous NO-dependent homeostatic mechanism, presumably as the 
source of NO. 
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Figure 2. Effect of L-NAME (120 11M) and L-Arg (200 11M) incubation on isolated perfused 
guinea-pig tracheal tubes with or without epithelium. L-NAME (arrow) incubation for 30 min 
increased the basal tone of the tracheae. The histamine concentration-response curve was shifted 
upwards after L-NAME incubation (closed circles) compared with tissues incubated with the sol
vent solution (open circles) **p < 0.01, two-way ANOVA. L-Arg incubation together with L-NAME 
(double arrows) for 30 min prevented the increase in basal tone (closed triangles) and suppressed 
the histamine concentration-response curve compared with the L-NAME group (A, closed circles), 
but the concentration-response curve was increased compared with tissues incubated with the sol
vent solution (A, open circles) or with L-Arg (open triangles). **p < 0.01, two-way ANOVA. (C) 
Epithelium removed resulted in an upward shift in the histamine concentration-response curve 
compared with tissues with epithelium (A, open circles). L-NAME incubation (arrow) for 30 min 
did not influence basal tone (closed squares) and did not result in an additional upward shift in the 
histamine concentration-response curve compared with epithelium-denuded tissues incubated with 
solvent solution (open squares). Each data point is the mean ± SEM. 

This homeostatic effect of NO has also been demonstrated in spon
taneously breathing guinea-pigs using measurement of lung resistance 
(Rtung) as an outcome index [41]. In these experiments, treatment with aero
solized L-NAME and L-NMMA was associated with markedly enhanced 
airway constrictor responses: The peak Rlung response to intravenous hista
mine was increased by 126% and 282% (p < 0.01 for each vs control), res
pectively. Furthermore, in animals rendered hyperresponsive by competi
tive NOS inhibition, administration of aerosolized L-arginine, the substrate 
of NOS, was associated with return of airway histamine-responsiveness to 
pre-L-NAME levels. 

We have confirmed a significant endogenous pulmonary NO-related 
modulatory effect on bronchoconstriction induced by both exogenous his
tamine and capsaicin in tracheotomised, mechanically ventilated guinea
pigs [38, unpublished observations]. Respiratory resistance (Rresp) respon
ses to histamine were enhanced by 30 ± 8% after intravenous treatment 
with L-NAME (10 mg/kg) over control responses (Fig. 3). Our data agree 
in a broad sense with those previously reported by Nijkamp et aI., although 
the magnitude of enhancement of the bronchoconstrictor response we 
observed was substantially less than that previously reported [41]. Indeed, 
others have been unable to replicate the findings reported by Nijkamp et al. 
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[12]. Although the differences in these various sets of observations are like
ly due to differences in the physiological parameter measured, i. e. Rresp vs 
R1ung , differing contributions of upper airway resistance in tracheotomised 
vs spontaneously-breathing animals, or differences in animal strains, no in
vestigative group has clearly resolved these conflicting issues. 

Besides demonstration of this endogenous, pulmonary, NO-related 
homeostatic mechanism, in our experiments we also observed significant 
transient elevations in the level of NO in mixed expired gas that were 
cotemporal with the increase in Rresp after administration of histamine 
(Fig. 4). Inhibition of endogenous pulmonary NO production with L
NAME, administered as an intravenous infusion, was associated with 
markedly reduced baseline expired NO levels and loss of the increase in 
expired NO during bronchoconstriction. Thus, the decrease in mixed expi
red NO levels after NOS inhibition and the loss of endogenous NO-related 
homeostatic bronchodilator effect are closely linked. We have documented 
significant, transient elevations of mixed expired NO levels with broncho
constriction induced by histamine, methacholine, capsaicin, substance P 
and leukotriene-C4 (unpublished observations). As with histamine, an in
crease in expired NO occurs during capsaicin-induced bronchoconstric
tion; NOS inhibition results in loss of the transient increase in expired NO 
levels that occurs with constriction as well as enhanced constrictor respon
ses to capsaicin. 

4.2. Role of NO in Enhanced Bronchial Responsiveness Associated 
with Airway Inflammation 

The importance of an endogenous pulmonary NO-related homeostatic 
mechanism has been further demonstrated by studies in which this mecha
nism is altered by airway inflammation. In vivo bronchial responsiveness to 
histamine and the sensitivity of tracheal tubes in vitro to histamine were 
both enhanced by infection with parainfluenza type 3 virus in guinea-pigs 

... 
Figure 3. Bronchial responsiveness to histamine (panels A, C) and peak nitric oxide (NO) levels in 
mixed expired gas (panels B, D) during histamine-induced bronchoconstriction before (baseline) 
and after NG-nitro-L-arginine methyl ester (L-NAME) administration in unexposed control guinea
pigs (n = 6) and antigen-exposed guinea-pigs 24 h after antigen exposure (n = 7). Histamine-indu
ced bronchoconstriction was associated with significant increases in expired NO at higher doses of 
histamine (30 and 100 nmol/kg) in both unexposed (panel B) and antigen-exposed animals (panel 
D). Only two unexposed animals and one antigen-exposed animal received the 100 nmol/kg dose 
of histamine. In both unexposed and antigen-exposed animals, administration ofL-NAME reduced 
basal expired NO and eliminated the increase in expired NO during bronchoconstriction. However, 
bronchial responsiveness to histamine was enhanced after L-NAME treatment in unexposed con
trol animals (panel A), but not in antigen-exposed animals, 24 h after antigen exposure (panel C). 
Note that histamine responsiveness data from the unexposed control group (panel A) are repro
duced in panel C for the sake of comparison. Rresp, respiratory resistance. *, p < 0.05 and **, 
p < 0.01, baseline vs post-L-NAME. 
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Figure 4. Time course of changes in respiratory resistance (Rresp, panel A) and expired nitric oxi
de (NO, panel B) following intravenous administration of 30 nmol/kg of histamine in unexposed 
and antigen-exposed guinea-pigs either 24 h or 96 h after antigen exposure. Following histamine 
administration at time = 0, the increase in Rresp (p < 0.01, peak vs baseline) was associated with a 
cotemporal increase in expired gas NO levels (p < 0.0 I, peak vs baseline); both Rresp and expired 
NO returned to baseline levels after 2-3 min. Histamine responsiveness was significantly en
hanced 24 h p < 0.01, antigen-exposed vs unexposed), but not 96 h, after antigen exposure, but the 
increase in expired NO with histamine-induced bronchoconstriction was unaffected by antigen 
exposure. 

[15]. In these studies, L-arginine exposure completely prevented the virus
induced airway hyperresponsiveness, whereas aerosolized L-NAME had 
no effect on histamine-responsiveness in virus-infected animals. Further
more, using an NO-sensitive electrochemical probe, these authors were 
able to measure increased NO production in vitro after histamine-exposure 
of isolated tracheal strips from animals not infected by virus. In contrast, 
the histamine-stimulated liberation of NO into the tissue perfusate was 
markedly diminished when tracheas from virus-infected guinea-pigs were 
studied, but could be restored by incubation with excess L-arginine (Fig. 5). 
Thus, virus infection-induced airway inflammation results in enhanced 
bronchial hyperresponsiveness to histamine; this occurs with both a loss of 
endogenous NO-related modulatory activity and a decrease in directly 
measured histamine-induced local airway NO production in vitro. 

We have reported a similar defect in the endogenous NO-related 
homeostatic mechanism in the setting of airway inflammation induced by 
repeated pulmonary exposure to antigen in guinea-pigs [38, 40]. Signifi-
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Figure 5. Histamine (10-3 M)-induced contraction and NO release, in the absence and presence of 
L-arginine (200 /-!M), of perfused isolated tracheal tubes obtained from control and virus-infected 
guinea-pigs. In control tissues the histamine-induced contraction was associated with a simulta
neous release of NO (open bars, A and B, n = 4). L-Arginine incubation had no effect on the con
traction or NO release (stippled bars, A and B, n = 4). The histamine-induced contraction in the 
virus-infected group was significantly enhanced (black bar, A, **p < 0.01, Student's unpaired t test, 
n= 5) and was associated with a significant decrease in NO production (black bar, B, ** P < 0.01, 
Student's unpaired t test, n = 5). Incubation of L-arginine completely prevented the enhanced con
traction and the decreased NO production (hatched bars, A and B, n = 5). 

cant bronchial hyperresponsiveness to histamine was induced, at 24 h after 
antigen exposure, in sensitized guinea-pigs and had largely resolved by 96 h 
after antigen exposure. Histamine-induced bronchoconstriction in antigen
exposed guinea-pigs was associated with significant increases in NO levels 
in expired gas which were proportional to the histamine dose and of 
similar magnitude to that observed in control, unsensitised guinea-pigs 
(Fig. 3). We assessed the modulatory role of endogenous pulmonary NO 
production through performance of two successive histamine dose-response 
curves, i.e. before and after an intervention. Intravenous administration 
of L-NAME (10 mg/kg), but not D-NAME, enhanced bronchial respon
siveness to histamine on the second dose-response curve in unsensitised 
guinea-pigs. In contrast, in antigen-exposed animals 24 h after antigen 
exposure, at a time when hyperresponsiveness to histamine was present 
following antigen exposure, L-NAME administration had no further en
hancing effect on bronchial responsiveness to histamine (Fig. 3). Further
more, 96 h after antigen exposure, i.e. when antigen-induced histamine 
hyperresponsiveness had resolved, inhibition of endogenous NO produc-
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tion with L-NAME was again associated with enhanced responsiveness to 
histamine. Thus, an endogenous pulmonary NO-dependent modulatory 
activity, as reflected by enhanced responsiveness to histamine after 
L-NAME, is transiently lost cotemporally with the induction of airway 
inflammation-associated bronchial hyperresponsiveness. Furthermore, 
baseline expired NO levels and the dose-dependent increase in expired NO 
levels with histamine administration are similar between control and anti
gen-exposed animals (Fig. 4), indicating that a simple deficiency of NO 
production does not fully explain this transient absence of an NO-related 
homeostatic mechanism. It remains undetermined whether this defect is 
related to a loss of NO's relaxant effect at the level of the bronchial smooth 
muscle, or a problem of access of endogenously-produced NO to its site of 
action, possibly due to airway edema and inflammation. 

5. Modulation of Airway Responses to Antigen Exposure 
in Sensitized Animals 

The above-described endogenous pulmonary NO-related homeostatic 
mechanism also appears to be important in modulating acute airway re
sponses to antigen challenge in sensitized guinea-pigs [40,42]. Persson et 
al. first reported dose-dependent increases in expired gas NO and airway 
opening pressure following antigen (ovalbumin) challenge in sensitized 
guinea-pigs [42]. We have also reported that intratracheal antigen exposure 
in sensitized guinea-pigs produced an acute allergic bronchoconstrictor 
response that was associated with a marked, transient elevation of mixed 
expired gas NO levels from 17 ± 1 to a peak of 56 ± 8 part per billion (Ppb) 
(p < 0.01, figure 6). The increase in expired NO was cotemporal with the 
increase in Rresp and correlated significantly with the magnitude of the 
acute bronchoconstrictor response, with a correlation coefficient of 
r = 0.77 (n = 12, P < 0.01). Inhibition of endogenous NO production by 
treatment with 30 mg/kg/day ofL-NAME infused over 48-72 h by a sub
cutaneously-implanted osmotic pump, reduced basal expired NO levels by 
67% (6± 1 ppb vs 18± 1 ppb in non-L-NAME treated animals, p < 0.01) 
and eliminated the increase in expired NO during the acute allergic bron
choconstrictor response (Fig. 6). Furthermore, inhibition of endogenous 
NO production was associated with an exaggerated acute increase in Rresp 

following antigen challenge (660 ± 60 vs 497 ± 42% of baseline in non
L-NAME treated animals, p < 0.05). Thus, the increased expired NO 
during the acute allergic bronchoconstrictor response is not simply a 
marker of the severity of physiological airway obstruction, but reflects this 
important endogenous NO-related modulatory activity. Interestingly, the 
modulatory effect of endogenous NO may be more important in the larger 
airways, given the lack of effect of NOS inhibition on the decline III 

dynamic respiratory compliance (Cdyn) following antigen challenge. 
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Figure 6. The effect ofNG-nitro-L-arginine methylester (L-NAME, a competitive inhibitor of NO 
synthase) on the increase in respiratory resistance (Rresp, panel A) and expired nitric oxide (NO, 
panel B) following antigen (ovalbumin) challenge in guinea-pigs. Treatment with L-NAME reduc
ed basal expired NO by 67% (p < 0.01), eliminated the increase in expired NO following antigen 
challenge and resulted in an enhanced Rresp response to antigen challenge (p < 0.05). Note that 
error bars for expired NO in L-NAME treated animals are present (panel B, filled circles), but are 
hidden by the data points. 

6. Bronchodilator Actions of Exogenous NO and NO-Related 
Compounds 

In addition to the sensitivity of airway tissue to the modulatory effects of 
endogenous NO, exposure of bronchial smooth muscle in vitro to exo
genous NO and NO-related compounds also produces relaxation [6, 10]. 
Furthermore, the administration of exogenous NO produces important 
bronchodilatory effects in intact animals and humans. Exogenous NO may 
be administered in either the gaseous form, i.e. inhaled NO, or as metabo
lically active adducts of NO and thiol-containing peptides and amino acids, 
such as the S-nitrosothiols, e. g. S-NO-glutathione. 

6.1. Inhaled NO in Animals 

The first evidence of a bronchodilatory effect of exogenous inhaled NO 
was reported in guinea-pigs by our group [9]. In mechanically ventilated, 
anesthetised guinea-pigs, Cdyn and Rlung were measured by plethysmogra-
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phy. In the absence of induced airway constriction, the inhalation of 300 
parts per million (ppm) of NO had a slight bronchodilatory effect as it re
duced R1ung from 0.138±0.004 to 0.125±0.002 cmHzO/mL/sec (p<0.05) 
(Fig. 7). In contrast to this slight bronchodilator effect in unconstricted air
ways, inhalation of 5-300 ppm of NO produced a rapid, dose-dependent, 
reversible decrease in R1ung in guinea-pigs receiving a continuous infusion 
of methacholine to induce airway obstruction (Fig. 8). Furthermore, over 
I h of treatment, there was no tolerance to the bronchorelaxant action of 
inhalation of 100 ppm NO nor was any substantial methemoglobinemia 
observed, as blood levels remained < 2%. Inhaled NO reversed changes in 
R1ung at concentrations that had no effect on Cdym indicating that the pre
dominant site of action of NO was in the larger, central airways. Finally, 
with respect to the combined effects of inhaled NO and other broncho
dilators, the actions of 100 ppm of inhaled NO and inhaled terbutaline were 
additive regardless of the sequence of administration. 

A similar bronchorelaxant action of inhaled NO was reported by Hog
man et al. in a crossover trial of methacholine-induced bronchoconstriction 
with and without NO in mechanically ventilated, intubated rabbits [23]. 
The inhalation of 80 ppm of NO had no effect on basal respiratory compli
ance and resistance, measured using the technique of rapid airway occlusi
on during constant-flow inflation. However, the bronchoconstrictor effect 
of exposure to nebulised methacholine (4 mg/mL) was significantly blunted, 
as resistance only increased to 72 ± 26 cmH20/L/sec (mean ± 95% CI) in 
the presence of inhaled NO vs 107 ± 52 cmHzO/L/sec with methacholine 
alone (p < 0.01). Consistent with the above-described findings of Mehta et 
al. [40] and Dupuy et al. [9], the predominant action of NO appeared to be 
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Figure 8. (A) Dynamic compliance and (B) pulmonary resistance during a continuous infusion of 
methacholine interspaced with inhalation of varying concentrations of NO (5-300 ppm) at FI02 

0.30-0.32. "C" indicates the mean value of RL and Cdyn during the control period before each level 
of NO inhalation. "B" indicates baseline R, and Cdyn before (Bl) and after (B2) methacholine infu
sion, and after lung inflation with there times the tidal volume (B3) (n ~ 8, mean ± SE). *p < 0.05 
differs from "C" value at that level of NO inhalation. 

at the level oflarge airways, as inhaled NO had no significant effect on the 
methacholine-induced fall in respiratory compliance. 

Brown et al. used high-resolution computed tomography to assess the 
effects of inhaled NO on the caliber of airways larger than 1 mm in dia
meter during exposure of anesthetised, mechanically ventilated dogs to 
histamine and methacholine [5]. After preconstriction of airways to appro
ximately 60% of control airway area, 100-400 ppm of inhaled NO had 
a significant dose-dependent relaxant effect in the conducting airways 
(Fig. 9). At all concentrations, inhaled NO was more effective in reversing 
bronchoconstriction induced by histamine than by methacholine. Inhaled 
NO increased airway area to 11 0 ± 10 % of control airway area following 
histamine-induced constriction, but only to 75±2 % of control airway area 
following methacholine-induced constriction. Attenuation of histamine
induced bronchoconstriction by inhaled NO was significantly blunted by a 
continuous infusion of 10 mg/min of methylene blue, confirming a cGMP-
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dependent mechanism of NO's action. In this model, histamine's broncho
constrictor action appeared to be primarily mediated through central, vagal 
reflexes with little or no direct smooth muscle effect, as bronchoconstriction 
was completely blocked with atropine. Based on these findings, the authors 
suggest that the selectivity of NO's bronchodilator effects were due to a cen
tral, functional antagonism of the effects of histamine and were mediated 
through stimulation of vagal reflexes, as well as possibly due to a direct rela
xant action of NO at the level ofthe smooth muscle. Moreover, this central 
action of inhaled NO is consistent with the well-described actions of NO in 
neural dilator and constrictor airway responses (vide supra). 

Although several groups have suggested a greater action of both endo
genous and inhaled NO in the larger, central airways, Gwyn et al. have 
demonstrated a bronchodilatory effect of inhaled NO in the peripheral air
ways of anesthetised dogs, as assessed by the measurement of peripheral 
airway resistance (Rperiph) by a wedged bronchoscope technique [20]. These 
authors studied constrictor responses to acetylcholine, which acts directly 
on bronchial smooth muscle via muscarinic receptors, and hypocapnia, 
which does not appear to depend on activation of cholinergic reflexes. NO 
delivered directly to the peripheral airways via a bronchoscope, in concen
trations of 14.5 to 250 ppm, had no effect on baseline Rperiph, but it attenuat
ed the constrictor responses to hypocapnia, aerosolized acetylcholine, and 
aerosolized histamine by up to 74 ± 0%, 52 ± 0%, and 83 ± 6%, respec
tively. Thus, these investigators proposed that the peripheral airways, at 
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least in dogs, respond to levels of inhaled NO that are within the clinically 
useful range of less than 100 ppm. Given that they had previously reported 
only a small bronchodilator effect of 250 ppm of inhaled NO in canine 
peripheral airways preconstricted with intravenous histamine [36], these 
data suggest that direct airway smooth muscle effects of NO are not the 
basis for the observed attenuation of hypocapnic and acetylcholine-indu
ced bronchoconstriction. Furthermore, these investigators suggest that 
inhibition of cholinergic reflexes is also unlikely to be the mechanism 
of NO's peripheral airway action given that cholinergic reflex activity is 
limited in the lung periphery. Thus, Gwyn et al. hypothesize that the 
attenuation of peripheral bronchoconstriction by inhaled NO is mediated 
through relaxant actions on vascular smooth muscle, known to be sensitive 
to these relatively low concentrations of NO, and a resulting increase in 
blood flow to constricted segments, resulting in either washout of 
acetylcholine or attenuation of the degree of hypocapnia as a result of 
increased CO2 delivery. 

Consistent with these proposed mechanisms are the findings of Put ens en 
et al. [44], who described the effects of inhaled NO on ventilation-perfu
sion (V /Q) distributions, as assessed by the multiple inert gas technique, 
during methacholine-induced bronchoconstriction in mechanically venti
lated pigs. The inhalation of 20 and 80 ppm NO significantly reduced 
R'ung and increased lung compliance, and was associated with dose-de
pendent reductions in pulmonary vascular pressure (38 ± 2 to 31 ± 2 and 
30 ± 2 mmHg, with 20 and 80 ppm of NO, respectively, p < 0.05 for each 
vs control) and pulmonary vascular resistance (510 ± 55 to 332 ± 22 and 
329 ± 41 dyn sec/cm5, p < 0.05 for each vs control), as well as improve
ments in arterial oxygenation (Pa02: 65 ± 4 to 90 ± 5 and 104 ± 6 mmHg, 
p < 0.05 for each vs control), oxygen delivery, and shunt fraction (31 ± 2 to 
15 ± 2 and 11 ± 2%, P < 0.05 for each vs control). In addition, inhalation 
of 20 and 80 ppm NO reduced blood flow to shunt units by 14 and 
19% (p < 0.05) and increased perfusion of normal V/Q units by 12 ± 1 and 
18 ± 1 % (p < 0.05). Although nebulised terbutaline produced a similar 
reduction in airflow resistance as inhaled NO, it had no effect on pul
monary vascular hemodynamics, blood oxygenation of V /Q matching. 
Thus, the effects of inhaled NO on airway function may be due, in part, to 
the significant alterations of pulmonary hemodynamics and blood flow dis
tribution induced by NO. 

6.2. Inhaled NO in Humans 

Hogman et al. first described the effects of inhaled NO on airway function 
in humans using plethysmographically-measured specific lung conduc
tance (sGaw) [23 b]. The inhalation of 80 ppm NO had no effect on sGaw 
in healthy control subjects or in patients with a diagnosis of chronic 
obstructive pulmonary disease (COPD) whose when FEV, was 46± 14% 
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of predicted normal. In nonsmoking subjects with normal spirometry but 
hyperresponsive airways, the inhalation of NO reduced the dose-normal
ised effect of methacholine on sGaw to 45 ± 16% of that observed without 
NO inhalation. Furthermore, inhaled NO had a significant bronchodilator 
action in stable, moderate-to-severe asthmatics with a mean FEV] of 
52 ± 13%. However, in these subjects, the increase in sGaw from 0.4 ± 0.1 
to 0.6 ± 0.2 (kPa/sec) (p < 0.05) following NO inhalation was small rela
tive to the marked increase to 1.2 ± 0.3 (kPa/sec) with inhaled isoprena
line (Fig. 10). Although it may have no effect on basal airway tone in nor
mal subjects, a slight bronchodilator effect of 80 ppm of inhaled NO was 
found in normal humans with induced bronchoconstriction [48]. After the 
induction of long-lasting bronchoconstriction with aerosolized metha
choline, sGaw values at specific time points were 23% greater in the 
presence of inhaled NO than without NO (0.085 ± 0.037 vs 0.069 ± 0.028 
(cmH20/sec), p < 0.05). However, these authors also reported that the bron
chodilator action of NO was much less than that usually observed after 
inhalation of fJ-sympathomimetic drugs. 

Similarly, a minor but significant airway relaxant action of the inhalation 
of 100 ppm NO was reported after methacholine-induced bronchoconstric
tion in mild asthmatics not requiring regular steroid medication [28]. After 
preconstriction with methacholine to an FEV] < 80% of baseline, the inha
lation of NO for 9 min produced significant increases in FEV] (2.33 ± 0.18 
to 2.66 ± 0.18, P < 0.01) and FVC, although FEF25 and PEF were un-
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Figure 10. Specific airway conductance (SGaw) in two groups of adult patients with airflow limi
tations: bronchial asthma (closed circles) and chronic obstructive pulmonary disease (open circles). 
Mean values ± SEM are given for 10 min of air breathing through the system, after 10 min of nitric 
oxide (NO) at 80 ppm, and after inhalation of a fJ,-agonist. *p < 0.05, ***p < 0.0001. 
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Figure 11. Test subjects were assigned to responder (n ~ 6) and nonresponder (n ~ 7) groups. 
Responders' FEV, increased by > 350 ml from the level achieved after methacholine challenge to 
the level achieved during the first NO inhalation. For all subjects the largest FEV Io vital capacity 
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affected (Fig. 11). The improvement in spirometry was maintained after 
cessation of NO and was not enhanced by readministration of inhaled NO; 
the spirometric indices did, however, improve markedly and returned to 
baseline levels following administration of inhaled isoprenaline. In a post 
hoc subgroup analysis, subjects defined as NO-responders (increase in 
FEV, by 2 15% or 2 350 mL) were found to have significantly lower levels 
of bronchial responsiveness to methacholine as evidenced by a higher 
provoking concentration for a 220% fall in FEV, (PC20 , 6.8 ± 2.8 vs 
0.46 ± 0.16 mg/mL, p < 0.05) than non-responders, although baseline 
spirometry was similar between the two groups. 

Finally, in a study of pediatric subjects with mild asthma, all of whom 
were on regular antiinflammatory medication including inhaled steroids in 
the majority, there was no spirometric improvement after the inhalation of 
40 ppm NO [43]; in contrast, inhaled albuterol produced significant im
provement in all subjects. 

6.3. Bronchodilator Actions of Exogenous NO-Related Compounds 

Katsuki and colleagues first described the in vitro airway relaxant effects 
of the NO-releasing agents nitroprusside and nitroglycerin, on bovine and 
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guinea-pig trachea and the concomitant elevation in tissue cyclic guanosi
ne monophosphate (cGMP) levels [29, 30]. These findings have since been 
confirmed by many others [10, 19, 2S, 31, S3]. Although bronchial smooth 
muscle relaxes in response to the administration of NO and NO-containing 
and liberating agents, it is generally far less sensitive to these agents than 
is vascular smooth muscle [S2]. The first in vivo evidence for NO-conge
ner-related airway relaxation came from Wright et al. who reported that the 
infusion of nitroprusside in anesthetised, endotoxemic sheep produced 
bronchodilation, presumably mediated by the liberation of NO [S6]. 

Subsequently, several groups assessed the airway effects of other NO
containing compounds, the S-nitrosothiols (RSNO). Jansen et al. reported 
significant smooth muscle relaxant properties of RSNO on guinea-pig tra
chea in vitro [26]. Isolated tracheal rings were pre constricted (methacholine, 
histamine, leukotriene-D4 (LTD4)) and the dose of the RSNO required to 
produce a SO% relaxation (ICso) estimated by linear interpolation. All 
of the RSNO species studied were effective smooth muscle relaxants with 
the rank of effectiveness being S-NO-glutathione > S-NO-penicillamine 
> S-N-acetylcysteine = S-NO-homocysteine > S-NO-cysteine ~ S-NO
captopril. The effect of RSNO on airway tissue was partially mediated by 
activation of guanylyl cyclase and cGMp, as the relaxant effect was signifi
cantly, but not completely, inhibited by methylene blue (p < O.OS), and 
RSNO-induced, methylene blue-inhibitable increases in tissue cGMP could 
be measured (p < O.OOOS). The RSNO species were most active against 
LTD4-induced constriction, and progressively less so against contractions 
induced by histamine and methacholine. The authors suggested that the rela
xant properties ofthe various RSNO species (ICso 0.99-20 IlM) were likely 
of physiological significance in airway homeostasis and potentially ofphar
macological relevance as bronchodilators given their potency was interme
diate between that of two classical airway smooth muscle relaxants, iso
prenaline (ICso 0.016IlM) and theophylline (ICso 741lM) (Fig. 12). 

The observation that significant (nM -IlM) levels ofRSNO species, pre
dominantly the adduct of NO with glutathione, were present in the airway 
lining fluid of healthy human subjects provided insight into a potential 
physiological role of these biologically active, metabolically stable adducts 
of NO [18]. At physiological concentrations, exogenous S-NO-glutathione 
induced significant relaxation of preconstricted human bronchial tissue in 
vitro. These initial observations on the relaxant actions ofRSNO species on 
human bronchial tissue in vitro were extended by Gaston et al. [17]. As 
in guinea-pig trachea [26], various RSNO species produced significant 
relaxation of human bronchi; the order of potency as relaxant agonists 
in human bronchial tissue was S-NO-glutathione > S-NO-cysteine > S-NO
acetylcysteine ~ S-NO-BSA. Thus, these agents had a relaxant potency 
(ICso 3.3-36 IlM) intermediate between that of isoprenaline (ICso 0.020 
IlM) and theophylline (ICso 263 IlM). The bronchoconstrictor specificity of 
the relaxant action of RSNO species in human bronchi was different from 
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Figure 12. Tracheal relaxant effects of (S-NO-AC), isoproterenol and theophylline. The relaxant 
activity of S-NO-AC was compared against isoproterenol and theophylline in airways constricted 
with 3 ~ histamine. Concentration-effect relationships reveal an order of potency: isoproterenol 
(.A.) > S-NO-AC(e) > theophylline (+). The concentration-response curves for these agents are 
each significantly different from each other by twoway analysis of variance to p < .01. Results are 
expressed as mean ± SEM (n = 3-5). 

that described above in guinea-pig trachea; the relaxant effect was more 
marked after histamine-induced constriction than after constriction with 
either methacholine or LTD4 • As in guinea-pig airways, RSNO-induced 
human airway relaxation was associated with a four-fold increase in tissue 
cGMP levels; this increase could be significantly inhibited in the presence 
of methylene blue, but not haemoglobin (Fig. 13). In contrast, the relaxant 
action of the RSNO species in human bronchi was unaffected by either 
methylene blue or haemoglobin. These observations suggest that RSNO 
have a dilator mechanism of action other than simple NO release, as this 
latter mechanism would have been efficiently inactivated by hemoglobin 
binding of NO, and other than guanylyl cyclase activation, given the de
cline in cGMP levels without attenuation of the airway relaxant effect in the 
presence of methylene blue. Furthermore, the relatively similar potencies 
ofRSNO species of markedly different physical size suggested that RSNO
dependent effects were relatively independent of translocation into the cell. 
Alternate mechanisms that have been proposed include cGMP-indepen
dent pathways such as ADP-ribosylation and nitrosylation of iron-heme 
centers and sulfhydryl groups of proteins [21, 51]. 

Of note, only one study has compared the relative potencies of inhaled 
NO and other NO-containing species: in guinea-pigs, the bronchodilator 
effect of 100 ppm of inhaled NO was similar to that of aerosolized S-nitro
so-N-acetylpenicillamine (SNAP) [9]. 
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Figure 13. cGMP determinations after exposure to S-NO-AC. Bronchial rings incubated with 
S-NO-AC (100 flM) for 90 sec (shown) or 18 min (not shown) exhibited 4-fold increases in cGMP 
over basal levels. Increases in cGMP were attenuated significantly at 90 sec by pretreatment of the 
tissues with methylene blue (100 flM) for 30 min; the effects of methylene blue at 18 min did not 
reach statistical significance. Results are presented as mean ± SEM *p < 0.01 with respect to con
trol; *p < 0.05 with respect to S-NO-AC alone. 

7. Possible Mechanisms Involved in the Bronchodilator Response 
to NO and Sources of Endogenous NO 

A large body of evidence, collected by many different groups, in different 
species, in different preparations, in vitro and in vivo, supports a physiolo
gically and pathophysiologically significant bronchodilatory role of endo
genously produced NO in the lungs and airways, and an important effect on 
airway tone of exogenous NO. Although some of the airway relaxant effects 
of inhaled NO may be due to a direct smooth muscle action, it is highly 
likely that the significant physiological effects of inhaled NO at levels be
tween 15 and 100 ppm, especially in the preconstricted airways in animals 
and in the preconstricted or inflamed airways in humans, are mediated by 
mechanisms other than direct bronchodilation. Possible mechanisms in
clude alterations of pulmonary vascular hemodynamics thus modifying 
ventilation-perfusion matching in the lung, and modulation of central, 
neurogenic reflexes. Similarly, the effects of exogenous NO-containing 
adducts, such as the RSNO, are clearly not simply due to release of NO or 
to guanylyl cyclase activation. Regardless of these unsettled questions, NO 
and the NO-containing compounds are important endogenous bronchodi
lators and have a lesser role as exogenous bronchodilators. Although they 
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are not as potent as other agents in common clinical use, their limited side
effect profile is quite distinct. 

Although a direct muscle effect remains possible for the actions of endo
genous NO, other potential mechanisms of its homeostatic role include the 
modulation of airway microvascular leak [11, 33, 39], interaction with 
other effector mechanisms, such as neural cholinergic reflexes, the lipoxy
genase-Ieukotriene and neuropeptide systems. Even though the majority of 
cell types normally present in the airway and lung have been found to have 
the synthetic capacity to produce and release NO, the most likely sources 
of endogenous NO are intrinsic airway neurons, bronchial epithelial cells, 
and vascular endothelial cells. 

Finally, currently ongoing and future studies are likely to continue to 
focus on anatomic sources of the endogenous NO-dependent homeostatic 
mechanism, the mechanisms of NO's modulatory and bronchodilatory 
effects, the importance and utility of various measures of NO and NO-equi
valents, for example, mixed expired gas NO levels, and on the role of NO 
in the unique environment of the lung, where the interaction of airway and 
vasculature is being increasingly appreciated. 
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1. Introduction 

Nitric oxide (NO) is generated from L-arginine by the enzyme NO synthase 
(NOS) [1]. NO production requires many cofactors, including nicotinamide 
dinucleotide phosphate (NADPH), flavin mononucleotide (FMN), flavin 
adenine dinucleotide (FAD) and tetrahydrobiopterin [1, 2]. Three genes 
encoding NO synthases are expressed as enzymes in mammals [3,4]. These 
enzymes are denoted either by their historical order of cloning or by the cell 
type from which their eDNA was first cloned. Thus, the human genes en
coding neuronal NOS (nNOS), inducible NOS (iN OS), and endothelial 
NOS (eNOS) are termed NOS 1, NOS2, and NOS3, respectively. Of the 
three major NOS isoforms, eNOS and nNOS are calcium-dependent en
zymes, and are generally but not invariably expressed constitutively and 
denoted therefore eNOS. NOS2 was named "iNOS" to connote its inde
pendence of elevated intracellular Ca2~, the distingushing biochemical fea
ture primarily responsible for conferring the capacity of this isoform for 
more sustained catalysis than typically exercised either by nNOS or eNOS. 
Because iNOS is expressed in most cells only after induction by immuno
logic and inflammatory stimuly, the "i" doubles for "inducible". cNOS has 
been localised in vascular endothelium (eNOS), platelets, and neurons 
(nNOS) of the central nervous system [1]. 

With regard to the airways, NO is an important mediator of biological 
functions in the lung and regulates airway smooth muscle contractility, pul
monary vascular tone, mucus glands secretion, mucociliary clearance 
through effects on ciliary beat frequency, and immune responses [5-9]. In 



152 EI-Bdaoui Haddad 

the respiratory tract, NO is produced by autonomic neurons, fibroblasts, 
endothelial cells, vascular and airway smooth muscle cells, skeletal muscle 
cells, inflammatory cells and in airway epithelial cells [6]. NO is also an 
important mediator of inflammatory responses in the lungs and produces this 
effect by the formation of reactive nitrogen products that are released from a 
variety of inflammatory cells [10]. NOS is a key enzyme in the formation of 
NO and both the cNOS and iNOS isoforms have been described in human 
alveolar and bronchial epithelia cells [11]. The generation of NO by cNOS is 
rapid, occurring within seconds [12, 13]. cNOS produces small quantities of 
NO and is involved in a variety of normal physiological functions such as 
vasorelaxation, neurotransmission, platelet and leukocyte adhesion [14, 15]. 
On the other hand, the activity of iNOS can be increased several-fold by 
activation with cytokines or endotoxin [16--18]. Although maximal induction 
of iNOS requires several hours, cells will produce NO over a period of sever
al days [17, 18]. NO produced by iNOS plays an important role in host de
fence mechanisms against bacteria and viruses [19, 20]. 

2. Role of NO in Airway Inflammation 

There is increasing evidence that endogenously produced NO may have 
both beneficial and detrimental effects in asthma [21]. These differential 
properties have been attributed to a dual physiologic and pathologic role of 
NO, depending on the enzyme responsible for its generation. The constitu
tive isoforms (cNOS) are expressed in neurons and endothelial cells of the 
airway [22] and are involved in the physiologic regulation of the airway. 
iNOS is expressed in epithelial cells and inflammatory cells of the airway 
[16, 23], and may be responsible for the pathologic effects of NO in asthma. 
Biopsy samples from patients with bronchial asthma show increased iNOS 
expression in epithelial cells [24], and raised levels of NO are found in 
exhaled air of patients with bronchial asthma and allergic rhinitis [25-27]. 
NO has been reported to be increased in the exhaled air of asthmatics 
during late responses [28, 29]. These data suggest that increased NO pro
duction may represent a general feature of airway inflammation. Further
more, exhaled NO levels rise further during asthma exacerbations [30] and 
are lowered after treatment with corticosteroids [26]. Recently, it has been 
demonstrated that eosinophils themselves are a source of NO production in 
eosinophilic inflammation [31]. In contrast to many other organs where 
iNOS is not expressed unless induced by cytokines [32], NO is conti
nuously produced by iNOS in normal noninflamed upper and lower airway 
epithelium [33]. Placed in culture, the cells lose iNOS [33]. Thus, it is dif
ficult to tell whether iNOS in airway epithelium is expressed "constitutive
ly" or is continually "induced". 

The pathophysiological consequences, however, of increased NO pro
duction in allergic diseases are not yet knwon. The mechanisms by which 



Nitric Oxide and Airway Inflammation 153 

NO may be deleterious in asthma are poorly understood, but there is evi
dence to suggest that excess NO generation may enhance the inflammatory 
processes underlying asthma [34] as well as producing epithelial cell shed
ding [35], a characteristic feature of asthma. In laboratory animals, several 
lines of evidence suggest that iNOS-derived NO is capable of potentiating 
neurogenic plasma leakage in airways [36, 37]. Furthermore, it has been 
demonstrated in rat airways, that under "physiological" conditions endoge
nous NO suppresses plasma leakage but when iNOS is expressed, after 
lipopolysaccharide (LPS) stimulation, the increased production of NO 
enhances plasma leakage [38]. We have shown that ozone inhalation in
duces iNOS expression in vivo, suggesting the possible involvement of NO 
generation in ozone-induced pulmonary inflammation or lung damage 
[39]. NO can have both direct effects on cell signalling as well as indirect 
actions mediated by the reaction products formed when NO interacts with 
other molecules such as oxygen or superoxide [5]. NO rapidly reacts with 
proteins or with superoxide anions to form peroxynitrite (ONOO-). Most 
cytotoxic effects of high levels of NO are mediated by peroxynitrite 
[40-42]. Increased production of NO and superoxide, components of 
peroxynitrite, have been implicated in the pathogenesis of asthma [43-45]. 
Peroxynitrite formation has been shown to increase airway hyperresponsi
veness, and to cause epithelial cell damage, and eosinophil activation in 
guinea-pigs [46]. In asthma, there is increased peroxynitrite formation in 
the airways, as evidenced by a strong immunoreactivity for nitrotyrosine in 
the airway epithelium and inflammatory cells [47]. The potent oxidant 
peroxynitrite may therefore contribute to airway obstruction and hyper
responsiveness and epithelial damage in asthma. 

In contrast, there is also considerable evidence that NO may be broncho
protective in asthma [21] and have mast cell-stabilizing properties [48,49]. 
NO generated from nNOS is a neurotransmitter released by inhibitory 
nonadrenergic, noncholinergic (iNANe) nerves [7], counteracts cholinerg
ic bronchoconstriction [50] and inhibits both basal and neurogenic mucus 
secretion in ferret trachea in vitro [51]. Low levels (5-300 ppm) of inhaled 
NO, or an aerosolised NO-releasing compound are potent bronchodilators 
in guinea-pigs. The onset of bronchodilation was rapid, beginning within 
30 sec after commencing inhalation [52]. Furthermore, inhalation of high 
concentrations of NO has a small bronchodilating effect in patients with 
asthma [53, 54], and inhibition of its production with NOS inhibitors 
increased airway responsiveness in experimental animals and in patients 
with asthma [55-59]. 

3. Role of NO in Eosinophil Migration 

There is considerable evidence to suggest that NO generated from iNOS is 
able to enhance the inflammatory processes underlying asthma. In experi-
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mental animals, inhaled allergen challenge produces a rapid increase in 
exhaled NO associated with acute bronchoconstriction, and this rise 
returns to baseline within 20 min despite continuing bronchoconstriction 
[60, 61]. This acute increase in NO in experimental animals is also ob
served after challenge with other spasmogens, such as histamine and leuko
triene C4 [58]. Furthermore, iNOS activity is increased in the lung tissue of 
sensitised and challenged guinea-pigs [62], suggesting that NO is impor
tant in the pathogenesis of allergic lung disorders. Furthermore, it has been 
shown that exposure of rats to antigen leads to the expression of inducible 
NO synthase in the epithelium of the airways of sensitised animals 8 hours 
after antigen challenge [63]. In the same study, little or no expression of 
mRNA and practically no protein expression for NO synthase was found in 
inflammatory cells in the airways or in lung lavage after antigen challenge 
despite the fact that NO synthase can be expressed on inflammatory cells 
[64, 65]. These data suggest that epithelial cells are the main source of 
increased expression of iNOS. 

We have shown in Brown-Norway rats that there is enhanced iNOS gene 
expression in lung tissue following ovalbumin sensitisation alone, followed 
by a further increase in gene expression at 4 hours, with return towards 
baseline values by 24 hours after exposure to ovalbumin aerosol [66]. 
Immunohistochemical examination of the lungs revealed that the expres
sion was predominantly in macrophages but not in airway epithelium. In 
addition, the increase in iNOS mRNA expression was preceded by an 
increase in NF-KB DNA-binding in the lung. Our data concerning the 
expression of iNOS following allergen challenge are complementary of 
those of Yeadon and Price [67] who demonstrated that allergen challenge 
in the same strain of rats induced increased levels of calcium-independent 
NOS activity in lung tissue at 6 and 24 hours after allergen exposure. 
Therefore, enhanced production of NO following allergen challenge is 
likely to be the result of an increase in iNOS mRNA and protein expres
sion, together with increased NOS activity, particularly in macrophages. 
This increase in iNOS mRNA expression may be dependent on increased 
NF-KB binding. The increase in iNOS expression may underlie the increase 
in exhaled NO found after allergen challenge and may contribute to the 
development of allergen-induced airway hyperresponsiveness. 

In our model, lung macrophages appear to be an important source of 
iNOS following allergen challenge. Lung macrophages are known to 
express iNOS and release NO following stimulation with endotoxin or 
various cytokines including interferon-y (IFN-y) interleukin (IL)l/3 and 
tumor necrosis factor-a (TNF-a) [17, 32, 68]. However, there is no direct 
evidence that macrophages release NO on direct activation with allergen. 
Exposure of sensitised Brown-Norway rats to inhaled allergen increases 
the number oflow affinity immunoglobulin-(Ig)E receptor FCERII (CD23) 
on alveolar macrophages [69], an effect probably mediated by the release 
ofIL-4 [70]. Exposure of macrophages with upregulated CD23 expression 
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on exposure to IgE/IgE complexes induces nitrite production [71, 72], sup
porting a direct effect of allergen in inducing iNOS expression in these 
cells. Although airway epithelial cells can be induced to express iNOS 
mRNA and to release nitrite on exposure to cytokines [16,23], we found 
no increase in expression of iNOS following either allergen or endotoxin 
exposure in these cells. It is of interest that the pattern of expression of 
immunoreactive iNOS in the rats after endotoxin exposure [73] is different 
from that of allergen exposure. 

More direct evidence for a role of NO in airway eosinophilia arises from 
experiments examining the role of NOS inhibitors on airway inflammation. 
It has been shown in allergic Balb/C mice that iNOS inhibitors abolish 
murine airway neutrophilia and eosinophilia following allergen challenge 
[74]. The inhibitory effect of the selective iNOS inhibitor AMT (2-amino-
5 ,6-dihydro-6-methyl-4H -1 ,3-thiazine) on broncho-alveolar lavage (BAL) 
leukocyte accumulation was accompanied by a reduction of the lung 
mRNA levels of the chemokines lymphotactin, eotaxin, macrophage 
inflammatory protein (MIP) 1 a, MIP-l {3, MIP-2, Interferon inducible pro
tein-IO (IP-IO), monocyte chemotactic protein (MCP)I and TCA 3 [75]. 
These data would suggest the effect of AMT may be mediated partly 
through inhibition of chemokine expression. It should be noted that the 
protein levels for IL-4 and IL-5 production from activated lung T cells were 
increased and IFN-yproduction decreased in mice treated with AMT when 
compared to the control group [75]. Feder et al. [76] have also been able to 
show an inhibitory effect of non-selective NOS inhibitors on pulmonary 
eosinophilia in allergic B6D2FlIJ mice. Thise response is not due to an 
effect on bone marrow precursors because NOS inhibitors do not block 
eosinophil release from the bone marrow. Furthermore, these authors have 
shown that the NO contributing to the eosinophilia is not generated through 
the activity of iN OS because the selective iNOS inhibitor, L-NG-(1-Imino
ethyl) lysine (L-NIL), had no effect on eosinophil influx into the lungs. 
Contrary to the findings in allergic rats [66, 67], there was no increase in 
the level of iNOS protein or mRNA in the lungs or on the levels of nitrite 
in the (BAL) fluid [76]. However, serum nitrite levels were increased after 
ovalbumin (OVA) challenge. Similar findings have been reported in OVA
sensitised and challenged guinea-pigs where no detectable increase in NOS 
activity or mNRA was found in the lungs after antigen challenge even 
though increased NO was detected in the exhaled air [77]. The authors 
speculated that the localised production of NO, possibly from pulmonary 
vascular endothelial cells or mast cells, is involved in the extravasation of 
eosinophils from the circulation into the lung tissue. Indeed, mast cells 
have the capacity to synthesise NO [19, 78], and mast cells contribute to 
the development of pulmonary eosinophilia in allergic mice [79, 80]. NO 
derived from endothelial cells of lung capillaries and/or bronchial epi
thelial cells is under control of constitutive endothelial NOS [11, 81, 82] 
and may be a source of NO. Furthermore, there are several mechanisms by 
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which NO may recruit eosinophils into the lungs following in allergic 
reaction. As well as having local effects such as increasing vascular per
meability and oedema formation which may augment the migration of 
eosinophils from the blood into the lungs [83, 84], NO, under certain con
ditions, has also been demonstrated to increase the production of prosta
glandings through an action on cyclooxygenase enzyme [85], which may 
further contribute to the inflammatory process. Additionally, NO is chemo
tactic for a variety of cell types including eosinophils [86] and may, there
by, playa role in the recruitment of these cells into the lungs of allergic 
mice. Indeed, in experimental animals chronic treatment with L-NG-L-argi
nine methylester (L-NAME) inhibits eosinophil migration in vivo and ex 
vivo [87, 88], and this property appears to represent a direct effect of NO 
on the eosinophil itself. 

4. Effect of NO on Eosinophil Apoptosis 

Programmed cell death, or apoptosis, is an active process of cellular self 
destruction with unique morphologic and molecular characteristics in
cluding cell shrinkage, membrane blebbing, chromatin condensation, and 
DNA fragmentation [89]. Apoptotic cell death can result either from devel
opmentally controlled activation of endogenous execution programs or 
from transduction of death signals triggered by a wide variety of external 
stimuli or by withdrawal of survival factors such as growth factors or cyto
kines [90]. A key part of the pathway leading to apoptosis involves the 
activation of a series of proteolytic enzymes known as the caspases [91]. 

Inhibition of eosinophil apoptosis has been proposed as a key mecha
nism for the development of blood and tissue eosinophilia in diseases such 
as bronchial asthma and other allergic disorders [92, 93]. The delay of 
eosinophil death might be due, at least in part, to overproduction ofT cell
derived cytokines [93]. Besides cytokines, eosinophil apoptosis also seems 
to be regulated by members ofthe TNF/nerve growth factor (NGF) receptor 
superfamily, including the Fas receptor (CD95/APO-l) [94-97]. In al
lergic mice, the administration of an anti-Fas monoclonal antibody to the 
lungs produced a marked reduction in the number of eosinophils in the air
ways [98]. Furthermore, it was demonstrated that NO prevents Fas recep
tor-mediated apoptosis in freshly isolated human eosinophils through dis
ruption of the Fas receptor-mediated death signalling pathways [99, 100]. 
These data suggest that NO concentrations within allergic inflammatory 
sites may be important in determining whether an eosinophil survives or 
undergoes apoptosis upon Fas ligand stimulation. Similar data also suggest 
that the Fas activity is under the control of the NO signalling pathway in 
human leukocytes [101, 102]. 
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5. Effect of NO on T Lymphocytes 

Beside a direct effect on eosinophil migration and survival, there is evi
dence to suggest that endogenously released NO increases eosinophil 
recruitment into the lungs by modulating the proliferation and the cytokine 
activity ofT lymphocytes [34, 103]. NO inhibits the proliferation of cloned 
T-helper type 1 (Th1) cells and their production ofIL-2 and IFN-y [104, 
105]. By contrast, Th2 cells neither produce nor are affected by NO [104). 
The reduction in IL-2 production by NO was shown to be mediated through 
selective inactivation of the transcription factors NF-KB and NF-AT in the 
IL-2 promoter [106). The reduction in IL-2 and IFN-y production would 
result in increased antigen-driven proliferation ofTh2 cells as IFN-y from 
Th1 T cells can inhibit Th2 cells [107). In a human T cell line (Jurkat cells), 
the NO generating agent sodium nitroprusside induced a dramatic decrease 
ofIFN-y, while IL-l 0 was enhanced; and conversely the inhibition of iNOS 
activity using L-NG-monomethyl argine (L-NMMA) induced a clear in
hibition of IL-10 and IL-4, while IFN-y was enhanced [108). Thus, NO 
seems to be able to assume the polarisation of activated T cells to the type 
2 profile. Furthermore, sodium nitroprusside and S-nitroso-N-acetylpeni
cillamine (SNAP) increased the secretion of IL-4 in Th2 clones [106]. On 
the other hand, Th2 cytokines such as IL-4, IL-1 0 and IL-13 can inhibit the 
induction of iN OS and in this way may allow some activity ofThl cells [23, 
109, 110]. We have previously found that the sensitised and challenged 
Brown-Norway rat lung expresses the Th2 cytokines, IL-4 and IL-5 with a 
reduction in the expression of the Thl cytokine, IFN-y [111]. Thus, it is 
conceivable that the inhibition of IFN-y expression in sensitised and ex
posed rats may be due to enhanced iNOS activity, in addition to the en
hanced IL-4 expression in rat lung [66, Ill). Thus, iNOS may be involved 
in the complex balance between Thl and Th2 cells in immune and inflam
matory states, which ultimately favours a Th2 cell outcome. It should be 
noted that in human T cells and human T cell clones, NO-donors, 3-mor
pholinosydnonimine (SIN-I) and SNAp, markedly inhibited the release of 
IFN-y, IL-2, IL-5, IL-10 and IL-4 by anti-CD3 activated T cells [112]. 
Unlike in mice, preferential inhibition of Thrassociated cytokines in 
activated human T cells in vitro was not observed [112, 113]. 

6. Effect of NO on Mast Cells 

There is considerable evidence that endogenous NO regulates the reactivi
ty of mast cells in experimental animals [48, 114). NO is constitutively pro
duced by mast cells [115]. IgE-mediated mast cell degranulation results in 
the release of a wide variety of spasmogenic mediators in addition to a 
number of pro inflammatory cytokines [116]. IgE-stimulated mucosal mast 
cells expressed iNOS mRNA and protein and synthesised nitrites sug-
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gesting that NO derivatives generated by mast cells could participate in 
inflammatory reactions during allergic stimulation [117]. NOS inhibitors 
have been demonstrated not only to increase histamine release from acti
vated rat mast cells in vitro [118] but also to produce all the features of mast 
cell-induced inflammation in vivo [119], suggesting that endogenous NO 
may protect against the effects of inhaled allergen. In inflamed venules, the 
mast cell-induced histamine-dependent rolling, platelet activating factor 
(PAF)-dependent adhesion, and albumin leakage were completely inhibited 
by the addition of the NO donor spermine NO [48]. Furthermore, anti-IgE
induced or ionophore A23187-induced histamine release from human 
basophils and rat peritoneal mast cells is inhibited by exogenous NO [120]. 
These data would suggest that NO donors may be a reasonable therapeutic 
approach to reducing mast cell-dependent inflammation. It should be noted 
that the mast cell-regulating properties of NO may not be functionally 
important in vivo since endogenous NO neither protects against nor con
tributes to the processes underlying airway responses to inhaled allergen 
[121]. 

7. Effect of NO on Macrophage Function 

Alveolar macrophages are the predominant leukocytes found in the air 
space under homeostatic conditions, and most importantly, the alveolar 
macrophage has numerous regulatory characteristics [122]. Macrophages 
have the ability to make cytokines in response to both non-specific stimu
li, such as endotoxin, and specific antigen stimulation via IgE-mediated 
pathways [122, 123]. 

NO, generated from DETA NONOate (2,2-(hydroxynitrosohydrazono)
bis-ethanamine) inhibited LPS-stimulated inflammatory cytokine produc
tion (TNF-a, IL-lp, MIP-la) by human alveolar macrophages [124]. NO 
did not affect basal cytokine levels. These findings indicate that NO func
tions as antiinflammatory through downregulation of proinflammatory
cytokine secretion by stimulated normal human alveolar macrophages 
[124]. The release of macrophage pro inflammatory cytokines is generally 
secondary to increased gene transcription, which is controlled by activation 
of transcription factors such as NF-KB [125, 126]. Interestingly, endo
genous NO has been shown in human endothelial cells to inhibit the acti
vation ofNF-KB. This effect is mediated through increased mRNA expres
sion, stabilisation and increased transcription of the NF-KB inhibitor, 
IKBa, by preventing its degradation from NF-KB [127, 128]. Similarly, the 
NO donors, decreased TNF-a-induced vascular cell adhesion molecule 
(VCAM)-I, intercellular cell adhesion molecule (ICAM)-I, and E-selectin 
expression through increased expression of IKBa [129]. For a full review 
of the effect of NO on macrophage function, the readers are invited to con
sult recent reviews [130, 131]. 
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8. Conclusion 

Whilst this simple inorganic gas plays an important role in the physiology 
and pathophysiology of airway diseases such as asthma, the true extent of 
this role has yet to be determined. iNOS expression is induced by signals 
associated with inflammation such as in asthma and rheumatoid arthritis. 
Therefore iNOS inhibitors might constitute a therapeutic target. However, 
NO possesses both pro- and antiinflammatory properties. The antiinflam
matory role of iNOS emphasises the possibility of adverse consequences 
attendant on its inhibition. These dichotomies in NO function warrant cau
tion but do not preclude therapeutic intervention with either iNOS inhibi
tors, iNOS, cDNAs, NO, or NO donors. The development of more specific 
iNOS inhibitors will undoubtedly allow a more precise definition of the 
pro- and antiinflammatory roles of this molecule in airway diseases. 
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1. Introduction 

Nitric oxide (NO) is produced by many cells within the respiratory tract 
and endogenous NO may play an important signalling role in the physiolo
gical control of airway function and in the pathophysiology of airway 
diseases [1-3]. All three isoforms of NO synthase (NOS) exist within the 
respiratory tract [4-6]. The endothelial constitutive isoform (eNOS) is 
localised to bronchial endothelial cells and to epithelial cells [7] and the 
neuronal isoform (nNOS) to parasympathetic nerves and to epithelial cells 
[8, 9]. Inducible NOS (iNOS) may be localised to several cell types, includ
ing epithelial cells and macrophages [10-12] and may be expressed even 
in the normal human respiratory tract (Fig. 1). 

Gustafsson and colleagues first demonstrated that NO can be deteced in 
the exhaled air of animals and normal human subjects [13] and this has 
subsequently been confirmed in many studies [14-20]. Furthermore, the 
concentration of exhaled NO is increased in patients with inflammatory 
diseases of the airways, such as asthma [15,16,21] and bronchiectasis [22] 
and is reduced by glucocorticoid therapy [23, 24]. This suggests that ex-
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Figure 1. Sources of nitric oxide (NO) in the airways. NO is derived from constitutive (eNOS, 
nNOS) and inducible isoforms (iNOS) of NO synthase. 

haled NO may provide a non-invasive means of monitoring inflammation 
in the respiratory tract and the measurement of exhalend NO has attracted 
increasing interest [25]. 

2. How is NO in Exhaled Air Measured? 

Most studies have measured NO in exhaled air by chemiluminescence and 
detection depends on the photochemical reaction between NO and ozone 
generated in the analyser [26]. The specificity of exhaled NO measure
ments by chemiluminescence has recently been confirmed using gas chro
matography-mass spectrometry [19]. Several NO analysers are now com
mercially available, but may need to be converted for on-line measurement 
of NO in exhaled air. Most analysers are sensitive to < 1 part per billion 
(Ppb) of NO and this is adequate for studies of exhaled air. NO may be 
detected by direct expiration into the analyser (Fig. 2) or by collection into 
an impermeable reservoir or balloon for later analysis. 

Several technical factors may affect the measurement of exhaled NO and 
it is important that the technique should be specified, so that comparisons 
between studies is possible. Breath-holding results in an increase in ex
haled NO, which may reflect accumulation of NO in the upper or lower 
respiratory tracts [17, 27]. High concentrations of NO have been detected 
in the upper respiratory tract and nasopharynx, with particularly high con-
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Figure 2. Measurement of exhaled nitric oxide (NO) by chemiluminescence analyser using a single 
slow expiration. A: Seated subject expires slowly into the mouthpiece keeping flow and pressure 
constant. B: Schematic diagram of the chemiluminescence analyser. 

centrations in the paranasal sinuses [12, 28, 29]. This has suggested that 
exhaled NO may largely reflect NO derived from the upper airways, rather 
than the lower airways. The manoeuvres that block the upper respiratory 
tract markedly reduce exhaled NO concentrations [30] and much lower 
levels of NO are recorded from the lower respiratory tract of patients with 
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Figure 3. Expiration against resistance causes a closure of the soft palate and thus prevents conta
mination of exhaled air with the high concentration of nitric oxide (NO) within the nose. 

tracheostomies that exclude the upper respiratory tract [28, 29]. Expiration 
against a resistance prevents any nasal contamination, as this leads to iso
lation of the nasopharynx from the oropharynx by elevation of the soft 
palate (Fig. 3). Thus slow expiration against resistance produces levels of 
exhaled NO in the expired air that are identical to those measured by direct 
sampling via a bronchoscope from the lower respiratory tract in both nor
mal and asthmatic patients [3 I]. During quiet tidal breathing, however, 
there may be nasal contamination of the exhaled NO as there is a commu
nication between the nasopharynx and oropharynx. This means that collec
tion of expired air in a reservoir during tidal breathing may overestimate 
exhaled NO levels from the lower respiratory tract due to nasal contamina
tion. 

3. Factors Affecting Exhaled NO in Normal Individuals 

Breath-holding causes a marked rise in exhaled NO [17, 31] and values 
recorded with a nose-clip may be higher due to increased diffusion of NO 
from the upper respiratory tract into the nasopharynx. Flow, but not pres
sure, have an effect on exhaled NO, and increasing flow results in lower 
values of exhaled NO [27, 32]. In normal individuals there is marked ele
vation of NO in exhaled air with upper respiratory tract infections [33]. 
This may be a reflection of iNOS induction by virus infection in the upper 
airways. In normal subjects orally administered L-arginine results in an 
increase in exhaled NO, presumably reflecting increased synthesis due to 
provision of more substrate for NOS [34]. 

The effect of exercise is complex, with a progressive fall in exhaled NO 
with increasing exercise but correction for increased ventilation shows an 
increased production of NO [17, 35]. Hyperventilation at rest also in
creases exhaled NO, albeit to a lesser extent than exercise [17]. The mecha-
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nism for increased exhaled NO during exercise and hyperventilation is not 
yet certain, but may involve increased entrainment of NO from the upper 
respiratory tract. 

Chronic cigarette smokers have lower levels of exhaled NO than non
smokers [21, 36, 37] and there is a close correlation between the reduction 
in exhaled NO and the number of cigarettes smoked [37]. Active smoking 
causes a further, but transient, fall in exhaled NO, indicating that exhaled 
NO is reduced by acute and chronic effects of cigarette smoking. Since 
cigarettes generate a very high concentrations of NO, it is possible that this 
is due to downregulation of NOS by NO, as has been demonstrated for both 
the constitutive and inducible enzymes [38-40]. The inhibition of endo
genous NO production in the respiratory tract may contribute to reduced 
mucociliary clearance in smokers, as endogenous NO appears to be impor
tant in ciliary beating [41] and possibly to an increased susceptibility to 
lower respiratory tract infections. 

Ethanol also has an effect on exhaled NO. Although there is no effect on 
exhaled NO in normal individuals, a significant decrease has been report
ed in asthmatic patients, suggesting that ethanol may inhibit iNOS expres
sion [42]. This is consistent with the demonstration that ethanol decreases 
iNOS expression in alveolar macrophages [43]. This is associated with 
decreased killing of microorganisms and might contribute to the increases 
susceptibility to infection with chronic alcoholism. 

4. Source of NO in Exhaled Air 

The cellular source of NO in the lower respiratory tract is not yet certain. 
Studies with perfused porcine lungs suggest that exhaled NO originates at 
the alveolar surface, rather than from the pulmonary circulation [44], and 
may be derived from eNOS expressed in the alveolar walls of normal lungs 
[4]. Studies in ventilated perfused lungs of guinea-pigs show that exhaled 
NO is reduced during perfusion with calcium-free solutions, suggesting that 
NO is derived from a constitutive NOS, which is calcium-dependent [18]. 
Airway epithelial cells may also express both eNOS and nNOS and there
fore contribute to NO in the lower respiratory tract [7, 9]. In inflammatory 
diseases, it is likely that the increase in exhaled NO is due to induction of 
iNOS. Indeed increased NOS activity has been demonstrated in lung tissue 
of patients with asthma, cystic fibrosis and obliterative bronchiolitis [45]. 
In asthmatic patients there is evidence for increased expression of iNOS in 
airway epithelial cells [10], although even epithelial cells from normal indi
viduals appear to express iNOS [11]. Proinflammatory cytokines induce 
the expression of iNOS in murine epithelial cells and cultured human air
way epithelial cells [9,46,47] and it is likely that these same cytokines are 
released in asthmatic inflammation. iNOS may be expressed in other cell 
types, such as alveolar macrophages and other inflammatory cells. Fur-
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thermore, glucocorticoids inhibit the induction of iNOS in epithelial cells 
in vitro [46,47] and in vivo [48] and reduce exhaled NO levels in asthma
tic patients to normal [24]. In bronchiectasis there is some evidence for 
iNOS expression in macrophages of affected lung [6]. 

The levels of NO in the nose and nasopharynx are much higher than 
those recorded in expiration at the mouth, suggesting that upper airway 
may be the major contributor to exhaled NO, at least in normal individuals 
[28-31, 49]. However, the lower respiratory tract is likely to contribute 
some of the exhaled NO, even in normal individuals. NO has been detect
ed in the exhaled air of tracheotomised rabbits, rats, guinea-pigs and 
humans [13, 28] and via bronchoscopy in normal individuals [31, 50]. The 
products of NO metabolism, nitrite and nitrothiols are also present in bron
choalveolar lavage (BAL) of normal subjects [51]. Simultaneous measure
ment of expired CO2 and NO demonstrate that the peak in exhaled NO pre
cedes the peak value of CO2 (end-tidal), suggesting that NO is derived from 
airways rather than alveoli [17]. Although it is likely that nasal NO contrib
utes to the levels of exhaled NO in normal individuals, it is unlikely to 
contribute to the elevated levels found in inflammatory airway disease. 
Direct sampling via fibreoptic bronchoscopy in asthmatic patients shows a 
similar elevation of NO in trachea and main bronchi to that recorded at the 
mouth, thus indicating that the elevated levels in asthma are derived from 
the lower airways [31, 50]. 

5. Functional Relevance of Exhaled NO 

NO gas may be a useful marker of airway and pulmonary disease, but it 
may also play a physiological and pathophysiological role. Endogenous 
NO may have both beneficial and deleterious effects on the airways [52] 
(Fig. 1). The high concentrations of NO generated in the paranasal sinuses 
may have a sterilising effect in the sinuses and upper respiratory tract, since 
NO is toxic to bacteria, parasites and viruses [53]. NO derived from the 
lower respiratory tract may also contribute to host defence and the fact that 
iNOS can be rapidly expressed in airway epithelial cells provides a rapid 
non-specific defence mechanisms in the respiratory tract. Targeted disrup
tion ("knock-out") of the iNOS gene in mice results in marked increase in 
susceptibility to infections [54, 55]. 

NO in the respiratory tract may also have an effect on the bronchial and 
pulmonary circulations [56-59]. NO is a potent vasodilator and the in
creased production of NO in asthmatic airways may underlie the hyper
aemia seen in asthmatic airways. Inhalation of high concentrations of NO 
from the upper respiratory tract and that derived from the lower respiratory 
tract may have effects on ventilation-perfusion (V/Q) matching within the 
lungs. Thus in inflammatory conditions, such as asthma, there may be 
increased V IQ matching due to pulmonary vasodilatation in response to 
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autoinhalation of endogenously generated NO, resulting in increased hypox
aemia due to shunting. The role of endoenous NO in V IQ matching remains 
to be determined. 

Although endogenous NO appears to be the major bronchodilator neuro
transmitter in humans [60, 61], high concentrations of inspired NO have 
only weak bronchodilator and bronchoprotective effects [62-64], so it 
is unlikely that endogenous NO is an important determinant of airway 
calibre. Indeed marked inhibition of endogenous NO production by nebul
ised NOS inhibitors has no detectable effect on airway function, even in 
patients with asthma [23, 65]. 

6. Effect of Disease on Exhaled NO 

The level of NO in exhaled air is altered in several diseases (Tab. 1). 

Table I. Factors affecting exhaled nitric oxide (NO) 

Increased NO 

Breath-holding 
Exerciseihyperventilation 
L-arginine (oral) 
Upper respiratory tract infections 
Asthma 
Allergen challence (late response) 
Bronchiectasis 
Lower respiratory tract infection 
Endotoxin 

6.1. Asthma 

Decreased NO 

Cigarette smoking 
Pulmonary hypertension 
Kartagener·s syndrome 
Cystic fibrosis 
Glucocorticoids 
NOS Inhibitors 

Several studies have reported an elevation of exhaled NO in patients with 
asthma [15, 16, 21, 66] (Fig. 4). The increase in exhaled NO does not 
appear to be related to asthma severity or to airway responsiveness (mea
sured by methacholine challenge) and exhaled NO is not elevated in asth
matic patients controlled with inhaled steroids [16]. Changes in bronchial 
calibre have no effect on exhaled NO as neither bronchoconstriction with 
histamine or methacholine, nor bronchodilatation with salbutamol have 
any effect on the measurement in asthmatic patients [67-69]. Immuno
cytochemical staining of bronchial biopsies has demonstrated increased 
expression of iNOS in epithelial cells in asthmatic compared to non-asth
matic subjects [10], suggesting that pro inflammatory cytokines present 
in asthmatic airways have induced its expression, resulting in increased 
NO production in the lower airways. After inhaled allergen challenge in 
asthmatic patients there is no change of exhaled NO during the early 
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Figure 4 (continued). This panel shows data from a group of normal control subjects (0), untreat
ed asthmatic patients (e) and asthmatic patients treated with inhaled steroids (0). 

bronchoconstrictor response, but a progressive elevation during the late 
response [67]. In patients who have no late response to allergen (single re
sponders), there is no change in exhaled NO throughout the study period. 
The suggests that increased NO is associated with the inflammatory late 
response and may be a reflection of iNOS expression in response to inflam
matory cytokines. In sensitised guinea-pigs allergen challenge is asso
ciated with increased NO production during the late response and this is 
preceded by iNOS mRNA expression [70]. Whether increased NO produc
tion is merely a marker of the cytokine-mediated inflammation, or con
tributes to the airway narrowing (secondary to vasodilatation and increased 
plasma exudation) during the late response is not yet certain and studies 
with NOS inhibitors are needed. There is also an increse in exhaled NO 
during exacerbations of asthma [71, 72] and when the dose of inhaled 
glucocorticoids is reduced [73]. By contrast, there is no increase in exhaled 
NO after bronchoconstriction induced by histamine (direct effect on airway 
smooth muscle) or by adenosine (via activation of airway mast cells [67, 
74]. These findings suggest that exhaled NO may reflect airway inflamma
tion in asthma and may be used as a means of monitoring inflammatory 
events in the lower airways. 

6.2. Bronchiectasis 

Elevated levels of exhaled NO has also been detected in patients with 
bronchiectasis and the level of NO is related to the extent of disease, as 
measured by a computerised tomography score [22]. As in asthma, the ele
vation of exhaled NO is not seen in patients treated with inhaled steroids 
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[22]. This suggests that exhaled NO in bronchiectasis may reflect active 
inflammation in the lower airways and may be used to monitor disease 
activity. 

6.3. Chronic Airways Disease 

Although the airways are inflamed in cystic fibrosis, surprisingly there is 
no elevation of exhaled NO [75, 76]. Indeed there appears to be a decrease 
in nasal NO in children with cystic fibrosis [76] and in exhaled NO in 
adults [77]. It is possible that exhaled NO levels become elevated during 
infective exacerbations and there are also anecdotal reports of elevated 
exhaled NO in association with lower respiratory tract infections [15]. 

In patients with chronic bronchitis and chronic obstructive pulmonary 
disease (COPD) there is an active inflammatory process, with a predomi
nantly neutrophilic inflammation [78]. Surprisingly exhaled NO has been 
reported to be normal in these patients [66, 79]. This may be because neu
trophilic inflammation is not associated with increased iNOS expression or 
that cigarette smoking may block any tendency for iNOS expression. 
However, it does suggest that exhaled NO might be used to discriminate 
asthma from COPD. 

6.4. Vascular Disease 

In patients with pulmonary hypertension, secondary to systemic sclerosis, 
there is a reduction in exhaled NO compared to normal subjects and to pa
tients with interstitial lung disease without pulmonary hypertension [80]. 
This may be a reflection of the reduced eNOS expression described in pa
tients with pulmonary hypertension [81]. The reduced endogenous produc
tion in the vessels of patients with pulmonary hypertension may contribute 
to the vasoconstriction of pulmonary vessels and to the increased prolifera
tion of vascular smooth muscle cells in this condition [82]. 

A reduction in exhaled NO has also been reported in systemic hyper
tension [36]; this is more difficult to explain, but may reflect a generalised 
defect in endothelial NOS function. 

6.5 Infections 

Endotoxin induces iNOS in animal lungs [83] and preliminary studies 
show that lipopolysaccharide inhalation in normal individuals results in an 
increase in exhaled NO [84]. Exhaled NO is also increased in an animal 
model of sepsis, suggesting that it may be useful in the early management 
of adult respiratory distress syndrome. 
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6.6. Nasal Disease 

High concentrations of NO have been detected in the nose of normal indi
viduals [28-30,49] and very high concentrations in the paranasal sinuses 
[12]. This may be inhaled into the lower respiratory tract and exhaled and 
may contribute to the exhaled NO measured at the mouth. It was suggested 
that the high concentrations of NO may be derived from bacteria which 
colonise the nose, as higher values were found in patients with penicillin
ase-resistant Staphylococcus aureus [28]. Bacteria may stimulate the local 
production of NO by induction of NO synthase [85] and bacteria them
selves may synthesise NO [86, 87]. However, treatment of normal subjects 
with a course of antibiotics fails to reduce nasal NO concentrations [29]. 

Elevated nasal NO has been described in patients with allergic and 
perennial rhinitis [88, 89] and may be due to allergic inflammation in the 
nose. This may reflect the increased expression of iNOS in epithelial cells 
of patients with allergic rhinitis [5]. Very low levels of NO have been 
detected in the nose of patients with Kartagner's syndrome, in which there 
is a congenital defect in ciliary activity [29]. Endogenous NO appears to be 
important in ciliary beating [41] and in the absence of NO there may be 
ciliary stasis. 

7. Effects of Therapy 

Exhaled NO levels are significantly lower in patients with asthma and 
bronchiectasis who are treated with inhaled glucocorticoids, suggesting 
that inhaled steroids reduce exhaled NO [16,22]. An oral glucocorticoid 
prednisolone (30 mg for 3 days) has no effect on exhaled NO in normal 
individuals, but decreases the elevated levels of exhaled NO in asthmatic 
patients [23]. This suggests that the exhaled NO in normal subjects is de
rived from constitutive NOS (unaffected by steroids), whereas the elevated 
levels in asthma are derived from iNOS, which is inhibited by glucocorti
coids. In asthmatic patients a double-blind study of inhaled budesonide 
shows a progressive reduction in exhaled NO down to normal values after 
three weeks of therapy [24]. The reduction in exhaled NO is progressive 
and may reflect direct inhibitory effects of glucocorticoids on induction 
of iNOS, via an direct blockade of the transcription factor nuclear factor
kappa B (NF-KB) and an indirect effect due to reduced synthesis ofthe pro
inflammatory cytokines that lead to iNOS expression in airway epithelia 
cells. Biopsy studies have confirmed that iNOS expression in asthmatic 
airway epithelial cells in reduced in patients treated with inhaled steroids 
[48]. NO production in rhinitic patients, measured by the concentration of 
nitrite and nitrate in nasal lavage fluid, is apparently unaffected by topi
cal glucocorticoids, suggesting that nasal NO may not be derived from 
iNOS or originates from cells that cannot be reached by topically applied 
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steroids [90]. However, measurement of nasal NO shows a reduction after 
topical steroids, although the reduction is relatively small in magnitude, 
suggesting that only a fraction of nasal NO is derived from the steroid
repressible iNOS expressed in the nasal mucosa [89]. NO is produced in 
high concentrations by an enzyme expressed in paranasal sinuses that has 
similarities to iNOS, but does not appear to be repressed by glucocorticoids 
[12]. 

Neither short-acting nor long-acting inhaled /3ragonists reduce exhaled 
NO in asthmatic patients [69]. This is in keeping with other studies show
ing no antiinflammatory effect of inhaled /3ragonists in asthma [91, 92] 
and add further support to the view that exhaled NO may be useful in asses
sing antiinflammatory effect of inhaled asthma treatments. 

Several analogues of L-arginine, such as NG-monomethyl-L-arginine 
(L-NMMA) and NG-nitro-L-arginine methylester (L-NAME) act as false 
substrates and block NOS activity. These NOS inhibitors have been in
valuable in investigating the role of endogenous NO in animal models and 
may have some therapeutic potential. Single inhalations of L-NMMA and 
L-NAME (via a nebuliser) result in reduced exhaled NO in normal and 
asthmatic patients [16,23,93]. Interestingly, there is no fall in forced ex
pired volume in one second (FEV1), even in asthmatic patients with highly 
reactive airways, suggesting that basal production of NO is not important 
in basal airway tone. Although infusion of L-NMMA in normal subjects 
causes an increase in blood pressure [94, 95], neither nebulished L-NAME 
nor L-NMMA have any effect on heart rate or blood pressure, suggesting 
that inhibition of NOS is confined to the respiratory tract. While L-NMMA 
and L-NAME are non-selective inhibitors of constitutive NOS and iNOS, 
aminoguanidine has some selectivity for iNOS [96, 97]. Inhalation of 
aminoguanidine has no effect on exhaled NO in normal subjects, but sig
nificantly reduces exhaled NO in patients with asthma [65], adding further 
support to the view that the elevated exhaled NO in asthma is derived form 
iNOS. 

8. Future Directions 

The measurement of exhaled NO has excited considerable interest as it may 
provide a simple noninvasive means of measuring airway inflammation. 
There is now persuasive evidence that levels of NO are increased in asso
ciation with airway inflammation and are decreased with antiinflammatory 
treatments. Correlation of exhaled NO with more direct measurements of 
inflammation in the airways, such as induced sputum, BAL and bronchial 
biopsies, is now needed. There is a correlation between exhaled NO and the 
number of eosinophil in induced sputum of asthmatic patients, but this is 
only a weak correlation and it is unlikely that expression of iN OS will reflect 
all of the inflammatory changes present in asthmatic airways [98]. 
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The great advantage of exhaled NO is that the measurement is comple
tely non-invasive and can therefore by performed repeatedly and also in 
children [75, 76] and patients with severe airflow obstruction [71], where 
more invasive techniques are not possible. The measurement, however, is 
not specific and exhaled NO is increased in inflammation due to asthma, 
bronchiectasis and respiratory tract infections. This means that absolute 
values are less important than serial measurements in individual patients. 
The value of this approach has been demonstrated in asthmatic patients 
where the dose of inhaled steroid is changed, resulting in increased levels 
when the dose is reduced and lower levels when the dose is increased [73]. 
Because exhaled NO is reduced by antiinflammatory treatments, it may be 
useful for monitoring whether therapy is adequate. The technique may also 
have application in the monitoring of antiinflammatory effects of new anti
asthma drugs, such as selective phosphodiesterase inhibitors, leukotriene 
antagonists and synthesis inhibitors and immunomodulators. Because the 
measurement is precise and reasonably reproducible, it may facilitate the 
measurement of dose-response effects with antiinflammatory treatments, 
that is difficult at present. Thus, it is possible to discriminate effects of 
budesonide 100 Ilg daily from 400 Ilg daily on exhaled NO which would be 
difficult using other clinical parameters unless very large numbers of pa
tients were selected [99]. 

The currently available analysers for exhaled NO are expensive, but in 
the future it is likely that technological advances will make it possible to 
miniaturise these analysers, so that they are portable and may even be used 
at home in conjunction with peak flow meters. This may lead to their appli
cation in epidemiological studies and this may be a useful screening mea
surement for community studies. 
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1. Introduction 

The nose has probably developed primarily to serve as a protection barrier 
for the lower airways and lungs. The sense of smell is also located in the 
nose, but may not be vital for the human species. The well-known protec
tive functions of the nose are heating, humidification and filtration of in
haled air. Recently, other protective and regulating functions pertaining to 
the nasal airways and the paranasal sinuses have been proposed, which 
involve high nitric oxide (NO) production in the paranasal sinus mucosa. 
Because this NO can travel with the airstream during inhalation it may play 
a physiological role not only in the sinuses themselves but also in other 
parts of the respiratory tract, including the lungs. 

2. Measurements of Nasal NO 

Airborne NO in the nasal airways can easily be measured with the use of 
chemiliminescence analysers [1, 2]. A simple approach has been to aspirate 
air from one nostril directly into the NO analyser by introducing a nasal 
olive connected to non-absorbing tubings [3]. This can be done during 
breathhold or during normal tidal breathing, but the measured NO levels 
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will be higher during breathhold, probably due to less admixture of air from 
the oral cavity, which contains much lower concentrations of NO [2]. To 
ensure that no contamination of air from the lower respiratory tract occurs, 
simultaneous measurement of carbon dioxide in air sampled from the nose 
may be performed [4]. Sampling at a fixed flow rate is advantageous, as the 
rate of NO release in the nasal airways can be calculated: the NO concen
tration in air aspirated from the nasal cavity will be inversely proportional 
to sampling flow rate [5]. Continuous sampling during breathhold from one 
nostril at a rather high flow rate (0.7-0.8 Umin) will give NO concentra
tions that are representative of NO release per time unit in the nasal airways 
[6]. Measurements using this method indicate that NO concentration ran
ges between 200-400 parts per billion (Ppb) in the nasal cavity of healthy 
subjects. All concentrations of NO given in this chapter are from studies 
using this method unless otherwise stated. 

As a measure of the actual NO concentration in the nasal cavity at a given 
time, a small volume not exceeding total nasal cavity volume can be aspi
rated in a syringe during breathhold and then injected into the NO analyser 
[6, 7]. The NO concentration obtained using this technique correlates nega
tively with nasal cavity volume, indicating that NO concentration in the 
nose depends not only on release rate but also on nasal cavity volume [6]. 
However, the NO release rate, as measured by continuous sampling at a 
relatively high sampling flow rate, will be much less influenced by changes 
in nasal cavity volume [6]. 

The principle of sampling a small volume of air from a body cavity where 
air exchange is low, and to measure the actual concentration of NO in this 
sample, can also be applied elsewhere, e.g. in the maxillary sinus [8], the 
intestines [9], and in the urinary bladder [10]. 

3. Anatomical Origin of NO in Normal Airways 

The presence of NO in exhaled air was discovered in 1991 [11], and some 
of the early follow-up studies suggested that the peripheral airways and the 
lungs might be the main origin of exhaled NO [12, 13]. However, it soon 
became clear that the major source of airborne NO in the respiratory tract 
of healthy subjects was to be found in the upper airways [2, 3, 14]. Thus, in 
intubated or tracheostomized patients only very low concentrations of NO 
were found in exhaled air [2, 3, 15, 16], and the search for the source of 
exhaled NO was concentrated to the nose. The exact site of origin of NO in 
the nose was at first difficult to establish, however, and the early finding 
that nasal administration of NG-nitro-L-arginine methylester (L-NAME), 
an NO-synthase (NOS) inhibitor, did not reduce nasal NO levels, was 
unexpected [8]. It had previously been shown that a topically administered 
nasal decongestant is unable to reach the paranasal sinuses [17]. Thus, one 
plausible explanation for the finding that intranasal administration of an 
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NOS inhibitor did not reduce nasal NO levels might be that the inhibitor 
did not reach the paranasal sinuses, and that these were the major site of 
NO production [8, 18]. This hypothesis was then tested. One of the maxil
lary sinuses in healthy volunteers was punctured and air was aspirated via 
a catheter: this air showed very high concentration of NO, levels that 
sometimes approached the highest permissible atmospheric pollution levels 
(25 ppm). Furthermore, an ongoing production was shown. Repeated aspi
ration of the total sinus air volume gave the same high concentrations of 
NO without any sign of decline [8]. The release of NO in one maxillary 
sinus (approximately 20 nmol/min) greatly exceeds the total release in the 
lower respiratory tract (5 nmol/min) [19]. 

The possible contribution of sinus NO to the levels found in the nasal air
ways was then examined. When air was aspirated from the maxillary sinus 
via the catheter the concentration of NO in the ipsilateral nasal cavity fell, 
whereas if air was instead injected into the sinus, there was a marked peak 
in nasal cavity NO concentration [18]. This clearly showed that the maxil
lary sinus is an important source of NO in the nasal airways. Since a high 
NO concentration has also been found in the sphenoid sinus [8], the 
paranasal sinuses are indicated as the major site of NO production in the 
upper airways. NO also seems to be produced in the nasal mucosa, albeit in 
much smaller quantities [8]. Interestingly, NO production in the upper air
ways can be detected directly after birth in humans [8, 20], in spite of the 
fact that the paranasal sinuses are poorly developed at this age. 

4. Nature of NO Formation in the Airways 

The human inducible NOS (iNOS) has been cloned and characterized in 
e.g. hepatocytes [21] and chondrocytes [22]. Human iNOS was first be
lieved to be expressed only in the presence of pro inflammatory cytokines 
such as interleukin-l f3 and tumour necrosis factor-a as had been described 
previously for rodent macrophage iNOS [23]. However, iNOS seems to be 
constitutively expressed in the epithelium ofthe human airways [8, 24, 25], 
although it can also be upregulated in inflammatory conditions [26, 27]. 
Despite this constitutive enzyme expression, healthy individuals show only 
minor release of NO in the lower airways, whereas high concentrations of 
NO are found in the upper airway lumen. This could be explained by the 
reported differences in the localization and density of iNOS in the epi
thelial cell layer in the upper and lower airways. Thus, this enzyme seems 
to be primarily basally located in the lower airways [25], whereas it is 
densely expressed in the apical part of the epithelium in the upper airways, 
especially in the paranasal sinuses [8]. 

Even though this airway NOS is constitutively expressed, it closely 
resembles iNOS with regard to antigenicity and mRNA sequence [8], and, 
like iNOS, its activity is Ca2+-independent [28]. The existence of several 
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closely related iNOS gene products has been suggested by studies at the 
molecular level. First, multiple iNOS-like sequences were found in the 
human genome, even mapped to different chromosomes [29]. Interestingly, 
this iNOS gene duplication seems to have occurred very recently in primate 
evolution, with an almost identical pattern in the chimpanzee and in 
human. This also fits well with the findings of large NO production in the 
upper airways of certain higher primates [30, 31], but not in other mammals 
[31, 32]. Second, several sites of alternative splicing have been found in 
human iNOS mRNA from airway epithelial cells, with an increase in alter
native splicing of iN OS mRNA after stimulation with cytokines [33]. Thus, 
different forms of iNOS may be present in the same cell. Third, structural 
diversity of iNOS at the protein level has also been suggested [34]. In the 
latter study, antigenic differences at the amino terminus were found be
tween a soluble and a membrane-associated iNOS in mouse macrophages. 
This heterogeneity could be due to differences in the amino acid sequence 
or to post-translational modification. However, no antigenic diversity was 
found among the soluble and particulate forms of iNOS when antibodies 
directed against the carboxyl terminus were used. In the human sinus 
epithelium, in studies that also used antibodies directed against the car
boxyl terminus of iNOS, strong apical staining closely related to the cell 
membrane was found as well as weaker staining in the cytosol [8]. Future 
studies will hopefully show precisely which forms of iNOS are expressed 
in the human upper airways epithelium, but functional data indicate that at 
least one form in the paranasal sinus mucosa is different from the classical 
iNOS. The picture has now become even more complicated, since some 
groups have also reported the expression of endothelial NOS in the nasal 
epithelium [35, 36]. However, since iNOS produces NO at a much higher 
rate than endothelial NOS, iNOS may still be the most important source of 
NO in the upper airways. 

An alternative explanation for the difference in upper and lower airway 
NO release could be that NO reacts rapidly with glutathione [37], which is 
present at much higher concentrations in the epithelial lining fluid in the 
lower respiratory tract [38] than in the upper airways [39]. A simple reab
sorption of NO into the lower airways mucosa does not seem to be an ade
quate explanation for low levels of exhaled NO, as it has been shown that 
NO is not absorbed to any great extent in the dead space area [40]. 

It has also been suggested that the NO in the upper airways could be of 
bacterial origin [14], as some bacteria can produce NO by reducing nitrite 
[41]. However, several studies have shown no effect of antibiotics on nasal 
NO levels in normal subjects [3,42], indicating that bacterial NO produc
tion is probably only of minor importance. 

Another source of NO in the upper airways is the oropharynx, 
where non-enzymatic NO formation from nitrite in the saliva has been 
shown [43]. It is also clear, that air from the stomach contributes with 
high amounts of NO in the case of regurgitation, since nitrite in swal-
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lowed saliva is effectively reduced to NO in the acidic environment of the 
stomach [44]. 

5. Regulation of NO Production in the Airways 

In certain inflammatory diseases, such as allergic asthma and rhinitis, 
iNOS expression is induced in both upper [26] and lower [27] airways 
epithelium. This expression has been shown to be sensitive to glucocorti
coid treatment [45], which thus leads to reduced NO release in the airways 
[46-49]. Local glucocorticoid treatment also reduces iNOS expression 
[24] and NO production [42] in normal lower airways, indicating a minor 
cytokine-induced iNOS expression even in healthy subjects. However, the 
major part of normal NO production in the upper airways of healthy 
subjects is glucocorticoid-resistant and remains more or less intact after 
both short term [50] and long term [28] systemic steroid treatment. This, 
again, indicates the unique features of the iNOS-like enzyme primarily 
found in the paranasal sinus epithelium. 

NO production by the iNOS isoenzyme is generally considered to be 
regulated by changing the expression of the enzyme, whereas the activity 
of the classical constitutive NO synthases - endothelial and neuronal NOS 
- is regulated by intracellular Ca2+ levels. The NOS described in the para
nasal sinus mucosa is constitutively expressed and Ca2+ -independent, 
suggesting that this enzyme has been adapted for continuous production 
of large amounts of NO. Normally, the substrates for NO synthesis 
(L-arginine, nicotinamide dinucleotide phosphate (NAL-argininePH) and 
O2) are present in excess, but for iNOS, which is a high-rate NO-pro
ducing enzyme, substrate concentration may be a rate-limiting factor. This 
seems to be the case for sinus NO production, since intravenous L-argi
nine infusion results in increased nasal NO concentration [28]. There are 
at least two common situations in which blood flow and hence substrate 
supply to the paranasal sinus epithelium may be greatly reduced. First, 
during and directly after heavy physical exercise, both nasal [51] and sinus 
[52] mucosal blood flow are significantly reduced, most probably due 
to increased sympathetic tone. Second, the use of a-adrenergic nasal 
decongestants also reduces nasal mucosal blood flow [53]. Because the 
arterial supply to the sinus mucosa first passes through the nasal mucosa 
and the ostia [54], it is not surprising that intranasal administration of 
a nasal decongestant also reduces blood flow in the sinus mucosa, even 
though the aerosol does not reach the paranasal simuses [53]. Thus, in 
these two situations substrate supply to the sinus epithelial iNOS may be 
insufficient and, indeed, heavy physical exercise acutely reduces nasal 
[5, 7, 55, 56] and sinus [7] NO concentration, an effect that seems to be 
only partly due to increased nasal cavity volume [7]. We have recently also 
shown that nasally administered a-adrenergic agonists acutely reduce 
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nasal NO release, again probably due to reduced blood flow into the sinus 
mucosa [6]. 

It has previously been suggested that physical exercise increases NO out
put in the lower respiratory tract [13, 57]. These studies, which measured 
NO content in orally exhaled air, actually showed reduced concentrations 
of NO. However, when exhaled volume was taken into account and total 
NO output was calculated, an increase was found. Such an increase can also 
be seen during voluntary hyperventilation at rest but not during dobutamine 
infusion which increases cardiac output but not ventilation, suggesting that 
increased exhaled NO output during physical exercise is more closely re
lated to increased ventilation than to increased pulmonary blood flow [56]. 
Furthermore, increased exhalation flow rate during a controlled single
breath exhalation manoeuvre also results in an increase in the calculated 
release rate of NO [58]. This indicates that the process of adapting the pul
monary circulation to higher blood flow during physical exercise does not 
involve increased NO production in the lungs, at least not as measured in 
exhaled air. Instead, due to increased exhalation flow rate, increased amounts 
of NO are released from the airways mucosa per time unit. The increased 
release rate could be due to a more marked gradient for NO concentration 
between the airways mucosa and luminal air, or possibly to more turbulent 
airflow at higher exhalation flow rates. 

6. Physiological Role of Upper Airway NO Production 

Over the last few years it has been shown convincingly that there is a sub
stantial NO production in the normal human upper airways, primarily in the 
paranasal sinuses, but what is the possible role of these high luminal NO 
concentrations? Already, several functions for NO in the respiratory tract 
have been suggested, and although epithelially-derived luminal NO may 
not playa vital role in every instance, some of these proposed functions are 
presented below (see also Figure 1). 

6.1. Host Defense 

One of the first functions of NO to be described was in primary host de
fence. It was discovered that activated mouse macrophages produce large 
amounts of NO, and that much of the antimicrobial activity of these cells 
against fungal, helminthic protozoal and bacterial pathogens depends on 
NO production [59]. Later, NO was also demonstrated to have antiviral 
activity [60]. The human nasal cavity normally carries a rich bacterial flora 
whereas the paranasal sinuses are considered to be sterile. This correlates 
well with the fact that the NO concentrations in the paranasal sinuses are 
higher than in the nasal cavity, where the exchange of air is more rapid. Fur-
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thermore, gaseous NO in concentrations relevant for the paranasal sinuses 
has been reported to have a bacteriostatic effect on Staphylococcus aureus 
[61], a common bacterial strain found in the nasal mucosa. This points 
towards a bacteriostatic role for NO in the human respiratory tract, at least 
within the parana sal sinuses. 

Children with Kartagener's syndrome, a triad consisting of situs inver
sus, sinusitis and bronchiectasis, have been found to have very low levels 
of nasal NO «20 ppb) [3]. Also, intermediate nasal NO concentrations 
(50-100 ppb) were found in patients with cystic fibrosis [48, 62], a disease 
characterised by e.g. chronic sinusitis. The intermediate nasal NO levels 
found in cystic fibrosis, which approximate those found in patients with 
acute or chronic sinusitis described below, may be the result of impaired 
NO diffusion from the paranasal sinuses. On the other hand, the very low 
NO levels found in patients with Kartagener's syndrome may represent a 
primary NO deficiency in the paranasal sinuses rather than a diffusion 
block, since low nasal NO concentrations are also found in patients whose 
sinuses have been shown to be open by radiographic examinations [84]. 
As patients with both Kartagener's syndrome and cystic fibrosis suffer 
from recurrent airways infections, a host defence role for NO is again 
indicated. 

Patients with Kartagener's syndrome also suffer from ciliary dysfunc
tion, and in patients with chronic sinusitis, a correlation was found between 
nasal NO levels and mucociliary function [63]. In pharmacological studies, 
NO has been shown to be involved in the regulation of ciliary motility, first 
in bovine epithelium in vitro [64] and recently also in human nasal mucosa 
in vivo [65]. Thus, NO may be involved in airways host defence in several 
ways. 

The bacteriostatic and mucociliary activity stimulating properties of NO 
in the airways may together constitute a significant contribution to the pri
mary host defence, at least in the upper airways. In humans, and possibly 
also in other higher primates in the upright body posture, the maxillary 
sinus ostia are in an unfavourable position: mucociliary clearance is more 
difficult due to gravital forces. Thus, sinus NO production may have devel
oped to help resist infections in the more vulnerable sinuses in these spe
cies. However, paranasal sinus NO may also exert protective effects in the 
lower respiratory tract, since this NO will be present in air inhaled through 
the nose. Indeed, a relation between very low nasal NO levels and the pre
sence of atelectasis or bronchiectasis has been observed [63]. Furthermore, 
a high incidence of aspirates and radiographic abnormalities in the para
nasal sinuses, which may lead to reduced nasal NO concentrations, has 
been found in patients with acute asthma [66], again suggesting a pro
tective effect of sinus NO in the lower airways. 
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NO in normal human respiratory tract. 
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Figure 1. Principal drawing showing concentrations and proposed functions of endogenous air
borne NO in the normal human respiratory tract. High NO production in the paranasal sinuses 
has been demonstrated and this NO travels during nasal breathing with inhaled air to the lower 
respiratory tract. Approximate maximal concentrations of NO in the paranasal sinuses, nasal 
cavity and trachea during normal tidal breathing are given. Maximal alveolar concentrations 
are probably low due to rapid binding to haemoglobin in this compartment. The most apparent 
candidate roles for luminal NO in the airways are to take part in the host defence in the parana
sal sinuses, and to improve pulmonary function. However, a host defence function in other part 
ofthe airways cannot be excluded. Mechanisms for the host defence function may include direct 
bacteriostasis and stimulation of ciliary beat. In the lungs, inhaled nasal NO may help to opti
mise the matching of ventilation and perfusion. 

6.2. Inflammation 

In some individuals, certain pathogens are able to invade the paranasal 
sinuses and cause acute sinusitis. During acute sinusitis in children [67], 
markedly reduced nasal NO concentrations have been found. It is not 
known whether these reduced NO levels preceded the development of 
acute sinusitis or if they are a result of the sinusitis. Since the NO con
centration within the sinuses under these conditions has not yet been re
ported, we cannot tell if the lower nasal NO concentration during sinusitis 
is due to impaired NO production in the sinus mucosa, or is just a sign of 
blocked communication between the sinuses and the nasal cavity, although 
the rapid restoration of nasal NO concentration with 15 days of antibiotic 
treatment suggests that the reduction in NO was caused by sinus blockage 
[67]. However, in patients with chronic sinusitis, where reduced nasal NO 
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levels have also been reported [68], a primary NO deficiency could pos
sibly be the cause of these chronic symptoms. It is at least theoretically 
possible that an initial infection or inflammation has caused permanent 
damage to sinus NOS activity. Although the reason for reduced nasal NO 
levels in sinusitis is presently unknown, it can be concluded that infec
tion/inflammation in the upper airways can sometimes lead to reduced 
nasal NO levels, which would not be expected in these situations. Further
more, in upper respiratory tract infections of viral origin, without any 
symptoms of sinusitis, nasal NO concentrations were not increased, but 
unchanged in both adults [68, 69] and children [67]. In contrast, both upper 
[70] and lower [2] respiratory tract infections increase NO release from the 
lower airways as measured in orally exhaled air, probably indicating an 
induction of iNOS expression in the tracheobronchial epithelium. This 
again, illustrates the different nature of the upper airway NOS compared to 
the iNOS in the lower airways. 

In allergic rhinitis, another inflammatory condition of the upper airways, 
conflicting data have been reported. In children with allergic rhinitis and 
asthma, there was no difference in nasal NO concentrations compared to 
those in nonallergic controls, in spite of clearly increased NO levels in oral
ly exhaled air [48]. However, other studies in adults with allergic rhinitis 
have shown increased nasal NO concentrations [49, 71]. The results remain 
to be explained, but the difference may be due to a functional difference 
between children and adults, or possibly, to the different methods used. 
Interestingly, in patients with acute rhinitis with clear-cut symptoms, nasal 
NO concentration is lower than in nonsymptomatic rhinitis patients [49, 
71]. This may be due to reduced communication between the paranasal 
sinuses and the nasal cavity in symptomatic rhinitis; this contention is fur
ther supported by the finding that treatment with a nasal decongestant 
increased nasal NO concentrations in patients with symptoms, probably by 
improving communication from the sinus, whereas in non-symptomatic 
patients a reduction was found [71]. The latter effect is similar to what is 
seen in healthy subjects [6]. 

It must be stressed that the nasal NO concentration depends on many 
processes: nasal cavity NO release; paranasal sinus NO release; transport 
of NO from the sinuses to the nasal cavity; and nasal cavity volume. This 
makes interpretations of nasal NO measurements difficult and it may be 
impossible - based on the relatively simple methods used to date - to draw 
any conclusions from minor changes in nasal NO concentration. 

If NO production is really increased in inflammation in the upper air
ways, what would be the role of epithelially-derived NO in the inflamma
tory process? An autotoxic effect of epithelial NO production has been 
suggested, primarily based on studies on Bordetella pertussis infections, 
but these mechanisms may also be relevant for the epithelial damage seen 
in asthma [72]. However, as discussed above, there is also a constitutive 
expression of iNOS in the airways epithelium generating large amounts 
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of NO, at least in the paranasal sinuses, without any sign of epithelial dam
age. It may be that the sinus epithelial cells have developed resistance to 
high intracellular concentrations of NO, or that this NO is primarily being 
released extracellularly and thus, that the build-up oftoxic intracellular NO 
levels is avoided. Another explanation could be that NO does not in fact 
have any toxic effects in the airways mucosa, but instead serves as a cyto
protective agent, mainly by reacting with and neutralizing reactive oxygen 
species [73]. 

An alternative pro inflammatory role for NO could be to potentiate vas
cular leakage, since it has been shown that intranasal administration of an 
NOS inhibitor reduces plasma protein extravasation induced by allergen or 
histamine challenge in the nasal mucosa [74]. However, other studies 
suggest that NO may act to suppress protein extravasation in the airways 
mucosa [75], again suggesting that NO can act as a pro- or antiinflamma
tory agent, depending on the circumstances. 

6.3. Aerocrine Messenger 

A few years after the identification of NO as the endothelium-derived rela
xing factor (EDRF), the vasodilatory property of NO was put to use. In
haled exogenous NO gas was used to selectively relax the pulmonary cir
culation after experimental induction of pulmonary hypertension [76, 77]. 
In these early studies rather high concentrations of NO were used (40-S0 
ppm), but it was later shown that inhalation of as little as 100 ppb of NO 
causes near maximal pulmonary vascular relaxation and improvement of 
arterial oxygenation in patients with severe pulmonary disease [7S]. 

In a parallel line of research, large amounts of NO were found in the 
nasal airways of normal subjects [2, 3], and it was soon suggested that inha
lation of nasal NO, leading to NO concentrations of 25-100 ppb at the 
level of the trachea, may have pulmonary effects [3, 14]. Indeed, in intubat
ed and mechanically-ventilated patients we were able to show clear-cut 
improvement of arterial oxygenation and, in some subjects, pulmonary vas
cular relaxation after reintroducing nasal air to the respiratory system [79, 
SO]. Although inhalation oflow doses of NO causes vasodilation in the pul
monary and also in the bronchial circulation [SI], NO gas even in high 
doses (90 ppm) does not seem to cause any vasodilation in the nasal vas
cular bed [6], which of course is an advantage, as vasodilation would lead 
to nasal congestion. 

We have also shown that in normal volunteers, nasal breathing results in 
higher arterial oxygen levels compared to oral breathing, even though ven
tilation was kept constant as monitored by end-tidal CO2 concentration 
[SO]. This could explain the improved endurance experienced by e.g. foot
ball players who apply plasters onto the nose to facilitate nasal breathing, 
since this may lead to increased inhalation of nasal NO and hence possibly 
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to improved arterial oxygenation. It may also give a background to the 
widely held belief that deep inhalation through the nose followed by 
exhalation through the mouth would enhance mental concentration, e. g. 
during the course of meditation: this breathing pattern will optimise the 
delivery of nasal NO to the lungs and thus improve arterial oxygenation 
[80]. This apparent use of NO as an aerocrine messenger to improve pul
monary function is a very recent development in mammals, and one can 
only speculate about the reasons for such an adaptation. However, since the 
mammalian lung developed for about 200 million years to function pri
marily in a horizontal position, and since high nasal NO concentrations are 
found above all in higher primates with an upright body posture, it may 
be speculated that the lung needed extra help to function properly in this 
new vertical position. Endogenous production and release of the airborne 
vasodilator NO at one site (the paranasal sinuses) and transportation with 
inhaled air to its site of action would be an ingenious way to achieve 
optimal matching of ventilation and perfusion in the lung. 

The possible importance of nasal NO for pulmonary function in humans 
indicates that the reintroduction of nasal NO into the air inhaled by intubat
ed patients may be of prophylactic value, not least with regard to the pos
sible bacteriostatic effects of NO. In addition, the introduction of nasal NO 
in these situations may help to counteract the rebound pulmonary hyper
tension often seen after the withdrawal of higher concentrations of exo
genous NO [82]. 

7. Conclusions and Future Research 

Several studies point towards an important role for NO as a protective agent 
in the airways. This role may include direct bacteriostasis and improved 
clearance by stimulation of ciliary beat. Furthermore, NO may act as an 
aerocrine hormone to optimise pulmonary function. The primary site of 
NO production in normal airways is the paranasal sinuses, at least with 
regard to delivery into luminal air. However, the exact gene product re
sponsible for the very rapid NO synthesis in the upper airways has not yet 
been identified, and future molecular studies should focus on the apparent 
diversity of iN OS-like enzymes in the airways of higher primates including 
humans. 

Since upper airway NO seems to possess several protective properties, 
situations in which NO delivery from the sinuses is impaired should be 
considered to entail an increased risk of complications in the respiratory 
tract. For example, there are indications of a correlation between low nasal 
NO concentrations and the development of pulmonary disease in children. 
As yet, we cannot tell ifthese low nasal NO levels are the cause or the result 
of airways disease and further studies are needed. For these studies, the 
nasal air sampling method must be further developed and standardised: 
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indeed the first steps have already been taken [83]. With a standardised 
method, results from different studies can be compared, and the signifi
cance of reduced nasal NO for the development of airways disease, espe
cially in children, may soon emerge. Already, measurements of nasal NO are 
used in the diagnosis of patients with suspected Kartagener's syndrome: 
in patients without situs inversus (50% of all patients with Kartagener's 
syndrome), the correct diagnosis is often delayed for several years. 

In the situation of tracheal intubation, when the nasal source of NO is 
effectively by-passed, the reintroduction of nasal NO may be advantageous. 
We have already shown that reintroduction of nasal air improves pulmo
nary oxygen uptake, and future studies will show if nasal NO is also able 
to reduce the high incidence oflower respiratory tract infections in intubat
ed patients. 

Even though NO derived from the paranasal sinuses seems to have main
ly favourable effects, increased NO production in other parts of the air
ways during the course of inflammation may promote the inflammatory 
response, for example by causing damage to the epithelial cell layer. Since 
gaseous NO is already used for treatment of respiratory complications and 
as a diagnostic marker of inflammation in the lower airways, the various 
factors that control the end results of endogenous NO synthesis and exo
genous NO delivery in the airways must be thoroughly studied in the future. 
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1. Nitric Oxide (NO) and the Pulmonary Circulation 

NO is a potent vasodilator found in the exhaled breath of humans and ani
mals [I]. Its importance in the normal regulation of pulmonary vascular 
tone was realised when NO was identified as the endothelium-derived re
laxing factor (EDRF) [2]. The endogenous synthesis of NO is achieved by 
the enzyme NO synthase (NOS) from the substrates L-arginine and mole
cular oxygen (02), This enzyme exists in three forms, neuronal NOS 
(nNOS), inducible NOS (iNOS) and endothelial (eNOS), which have been 
identified in different cell types [3]. eNOS and nNOS are constitutively 
expressed in endothelial cells and nerves, and are distinguished by a de
pendency on calcium/calmodulin. By comparison, iNOS is expressed in 
many cells including the airway epithelial cells. It is calcium independent 
and its expression is induced by endotoxin and cytokines [3]. 

It is possible to measure NO gas of the lower and upper airways of both 
healthy subjects and patients with respiratory disease. The maxillary sinuses 
of the nose have the highest concentration of NO production in the respira
tory tract. The high concentration of NO in these sinuses is an example of 
the host defence role of NO as it is thought to maintain sterility through its 
bacteriocidal activity [5]. 

The overall view is that the endothelium of arterial segments of the pul
monary circulation produce NO in functionally active levels [1]. This endo
thelial production of NO is responsive to the alveolar oxygen tension [6] 
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and contributes in certain species, including humans [1], to the basal pul
monary vascular tone. Therefore, the endothelial NO system in the lungs 
may offer a complementary system to hypoxic vasoconstriction in ensuring 
the matching of the distribution of ventilation and perfusion. 

There is evidence to suggest that defective endothelial NO production 
causes hypertension [7]. Patients with pulmonary hypertension have re
duced expression of eNOS [8]. However, in contrast Ca2+-dependent NOS 
is increased in inflammatory lung disease [9]. 

2. History of Inhaled NO 

In the isolated lung model, it has been shown that inhaled NO is not only 
taken up into the circulating red blood cells in the alveolar capillaries but 
also enters vascular smooth muscle cells of resistance arteries to reduce 
pulmonary vascular resistance (PVR) [10]. The first studies of the thera
peutic effects of inhaled NO were undertaken in patients with cardiac 
disease or severe primary pulmonary hypertension (PPH) undergoing diag
nostic right heart catheterisation. A comparison was made between the 
inhalation of a concentration of 80 parts per million (ppm) NO in air and an 
intravenous infusion of prostacyclin (PGI2), a powerful short-acting vaso
dilator [II]. Pepke-Zaba et al. found that NO acted as a selective pulmo
nary vasodilator in these patients and, unlike prostacyclin, had no effect on 
the cardiac output or systemic artery pressure [12]. In the PPH patients 
there was a significant fall in the PVR equivalent in response to the maxi
mum dose ofPGI2 • The absence of any effect on the systemic circulation is 
because inhaled NO is principally taken up in the red blood cells circulat
ing in the alveolar capillaries [13]. The inactivation is a result of the reac
tion of NO with oxyhaemoglobin to ultimately form nitrate anions and 
methaemoglobin (metHb). The metHb reductase in the red blood cells 
reduces metHb to haemoglobin, whilst the nitrate is excreted in the urine 
[14]. Some of the inhaled NO enters the urea cycle, up to 20% of the in
haled dose, but the pathways involved have not been fully elucidated [15]. 
Nitrate anions do not exert any vasorelaxation, thus confining the effects of 
inhaled NO to the pulmonary circulation. 

NO reacts with the haem moiety ofthe soluble guanylate cyclase enzyme 
in vascular smooth muscle cells [16]. Soluble guanylate cyclase is activated 
by NO to increase the intracellular concentration of cyclic guanine mono
phosphate (cGMP). The second messenger cGMP causes relaxation and 
reduction in tone of the smooth muscle cell [17]. The anatomical location 
of the pre-capillary resistance arteries within the acini of the lungs is 
closely associated with the bronchioli and alveoli. This means that the dif
fusion distance for the inhaled NO between the alveoli and the vascular 
smooth muscle cells is short. Inhaled NO therefore gains access to the 
resistance pulmonary arteries [10]. In addition to activation of guanylate 
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cyclase, NO has also been shown to initiate smooth muscle relaxation 
directly through activation of calcium-dependent potassium channels in 
smooth muscle [18]. 

3. Therapeutic Use ofInhaled NO 

3.1. Persistent Pulmonary Hypertension of the Neonate 

Persistent pulmonary hypertension of the neonate (PPHN) is a major cause 
of mortality in the newborn. These infants have a marked increase in pul
monary resistance which causes right to left shunting of blood across the 
patent ductus arteriosus and foramen ovale. Conventional treatment of 
PPHN has proved difficult as there are a number of separate causes and the 
natural history of the condition varies greatly. Intravenous vasodilators 
reduce pulmonary vascular resistance, however as they also reduce system
ic vascular resistance, the right to left shunt is usually worsened. They can 
also lessen ventilation-perfusion (V/Q) matching which further contribu
tes to the hypoxaemia. As a result of the "shunting" systemic oxygenation 
is not greatly improved with inhalation of 100% oxygen. The invasive 
approach to improve oxygenation with extra-corporeal membrane oxy
genation (ECMO) is an effective treatment of these infants, but is asso
ciated with a significant morbidity and is expensive [19]. 

As inhaled NO is a selective pulmonary vasodilator it decreases PVR, 
whilst systemic vascular resistance remains unaltered, and should thus 
reduce right to left shunt. Inhaled NO causes a rapid increase in systemic 
oxygenation in many infants with PPHN, but although inhaled NO signifi
cantly reduces the incidence of ECMO use and the associated mortality in 
PPHN it has no effect on overall mortality [19]. There are, however, a large 
number of infants that fail to improve with inhaled NO therapy. There are 
several reasons why this may be the case; poor lung inflation could result 
in inadequate delivery of NO to the pulmonary vasculature; thickening of 
the pulmonary arteries could continue to restrict the flow of blood even 
when relaxed by NO; inhaled NO could worsen ventilation-perfusion 
matching [19, 20]. 

Other causes of pulmonary hypertension in neonates, such as respiratory 
distress syndrome or congenital diaphragmatic hernia, can also be treated 
with inhaled NO. Again, although inhaled NO reduces the need for EeMO, 
it has no effect on mortality [21]. There are also indications that inhaled NO 
may be used in the treatment of hypoxaemia and pulmonary hypertension 
in premature neonates. However, as inhaled NO has been shown to increase 
the bleeding time in animals and healthy adults [22] there is the danger that 
giving inhaled NO to premature neonates will increase their risk of intra
cranial haemorrhaging [23]. Also, studies in lambs have shown that inhaled 
NO of concentrations of 80 and 200 ppm causes damage to the pulmonary 
surfactant system [24]. 
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The Federal Drugs Administration (FDA) is considering approval of 
inhaled NO for the treatment of PPHN and infantile respiratory distress 
syndrome. 

3.2. Acute Respiratory Distress Syndrome (ARDS) 

Acute respiratory distress syndrome (ARDS) is initially associated with 
acute pulmonary hypertension. The main pathophysiological change is the 
marked mismatch of the V IQ ratio and intra-pulmonary right to left shunt
ing of venous blood. This is a result of the alveolar inundation with an 
inflammatory exudate and the reduced lung compliance as a result of 
inflammatory infiltration and oedema of the interstitium of the lungs. 

Treatment with intravenous vasodilators, such as prostacyclin reduce the 
elevated pulmonary artery pressure, but can cause serious systemic hypo
tension, and disturb the matching between the distribution of ventilation 
and perfusion by dilating poorly ventilated regions of the lung. Normally 
hypoxic pulmonary vasoconstriction limits the disturbance of the matching 
between the ventilation and perfusion, but systemically delivered vasodila
tors override this effect with a fall in systemic oxygenation. 

By contrast inhaled NO in ARDS, which is accessible only to ventilated 
regions of the lungs, increases perfusion of these regions. This effectively 
improves gas exchange and lessens the intra-pulmonary shunting. By using 
the multiple inert gas elimination technique (MIGET) it has been shown 
that the improvement in systemic oxygenation seen when inhaled NO is 
used to treat ARDS, is due to an increase in V IQ matching. Redistribution 
of blood flow from poorly ventilated regions of the lung to well ventilated 
regions is achieved by inhaled NO. The reduction in PVR increases flow 
through the pulmonary vasculature, thus reducing right to left shunt of 
venous blood [25]. The large variation in the response to inhaled NO in 
ARDS, is probably associated with cause and severity of the disease. The 
dose of inhaled NO required to improve gas exchange in ARDS is lower 
than the dose necessary to reduce pulmonary artery pressure in PPHN [26]. 
With lower doses of NO there is probably selective vasodilation of well
ventilated regions of the lung, improving V/Q matching. The effective 
treatment regime may, therefore, depend upon the underlying cause of the 
disease. 

3.3. Airway Disease 

Patients with inflammatory airways diseases, such as asthma, have increas
ed levels of exhaled NO [27]. This is due to the increased production of 
NO in the lower airways. Selective inhibition of iN OS causes a decrease in 
exhaled NO in asthma, but not in normal control subjects, whereas non-
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selective NOS inhibition causes a decrease in NO production in both 
groups [28]. However the picture is not clear as in the severe inflammatory 
airways disease cystic fibrosis there is reduced expression of iNOS in the 
airway epithelium [29]. Besides acting on vascular smooth muscle cells, 
inhaled NO has also been shown to exert a weak bronchodilatory effect in 
bronchial asthma [30]. Inhalation of NO by patients with mild asthma 
during methacholine-induced bronchospasm resulted in a minor but signi
ficant reduction in airway tone [31]. 

Patients with chronic obstructive pulmonary disease (COP D) have irre
versible symptomatic airflow obstruction, which can cause hypoxaemia in 
those patients where the forced expired volume in one second (FEV \) is 
less than one litre. The disease is a major cause of mortality and morbidity. 
In those patients with persistent hypoxaemia where the arterial oxygen ten
sion (Pa02) is less than 7.3 kPa, long-term oxygen therapy (LTOT) im
proves survival and quality oflife [32]. Patients with COPD and secondary 
pulmonary hypertension tend to respond poorly to vasodilators. Treatment 
with inhaled NO can reduce the secondary pulmonary hypertension in 
COPD patients [33]. However in most patients with COPD inhaled NO has 
been associated with a worsening of arterial oxygenation possibly resulting 
from an overall vasodilation of the pulmonary vasculature adversely affect
ing V/Q matching [33]. New delivery systems are needed to overcome 
widespread distribution of inhaled NO throughout the aerated lung. De
livery of NO at the beginning of the breath may limit the exposure of high 
ventilated regions of the lungs to the inhaled NO, which whilst achieving 
vasodilation will not adversely affect gas exchange [34]. 

3.4. Primary Pulmonary Hypertension (PPH) 

The term primary pulmonary hypertension is used when pulmonary artery 
pressure is increased without a demonstrable cause. It is more common in 
females than in males (1.7 to 1), and the mean age of onset is 42 years [35]. 
There are several risk factors associated with PPH including anorectic use 
[36], and HIV infection [37]. The tendency to develop PPH can also be 
transmitted genetically as an autosomal dominant trait with incomplete 
penetrance [38]. Inhaled NO is effective in reducing pulmonary artery 
pressure in PPH whilst systemic pressure remains unaltered [12]. Although 
it is relatively simple to deliver precise concentrations of NO to patients on 
mechanical ventilation, this is not the case with spontaneously breathing 
patients. By giving NO as a bolus during inspiration with an oxygen de
livery device it has been possible to give inhaled NO therapy to ambulatory 
patients with PPH [39]. 
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4. Precautions with the Use of Inhaled NO 

In air NO reacts with oxygen to form nitrogen dioxide (N02). This is a 
second order reaction with respect to NO and thus the time it takes to yield 
the recommended upper limit for N02 inhalation of 5 ppm depends upon 
the initial concentration of NO [40]. In an inhaled delivery system both the 
NO and N02 concentration need to be closely monitored. To reduce the for
mation of N02 the amount of time that NO is an contact with oxygen 
should be minimised, and the inspiratory O2 should not be higher than cli
nically indicated. 

Abrupt withdrawal of inhaled NO therapy can lead to a dramatic reduc
tion in arterial oxygenation and increase in pulmonary artery pressure [41]. 
This may be due in part to a reduction of endogenous NO production to 
levels below that required to maintain normal vasculature tone. In cultured 
endothelial cells, NO release functions as a negative feedback mechanism 
by inhibiting NOS [42], and may be the mechanism by which exogenous 
NO inhibits endogenous NO production. Disruption of ventilation-per
fusion matching could also cause the rapid fall in arterial saturation asso
ciated with the cessation of treatment. The rebound phenomenon has been 
shown to be alleviated by the gradual weaning of the patient from NO [41]. 

5. Future of Inhaled NO Therapy 

Many of the problems associated with NO therapy can be overcome by 
giving NO as a short bolus during inspiration [34]. Giving a 6.7 ml bolus 
of 100 ppm NO has been shown to be as effective as continuous 40 ppm 
NO in reducing pulmonary artery pressure in the isolated blood free perfu
sed pig lung whilst reducing the amount of NO given over 20-fold [34]. As 
NO is only in contact with oxygen for a short time within inspiration there 
is no problem with the formation ofN02, and so the need for N02 monitor
ing is eliminated. Reducing the volume of NO used also overcomes the 
need for continual NO monitoring. This method of administration not only 
improves the safety of inhaled NO in ventilated patients, but also provides 
a delivery system for use by ambulatory patients. This strategy has been 
used successfully in the long term treatment a group of PPH patients [40]. 
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1. Introduction 

Since the discovery in 1987 that endothelium-derived relaxant factor (EDRF) 
is identical to the gaseous mediator nitric oxide (NO), we have learned that 
NO serves as a Ubiquitous signalling molecule in the cardiovascular, central 
nervous and immune systems. NO regulates vascular tone and prevents the 
adhesion of blood-borne cells to the endothelium. In the lung, the forma
tion of NO by the NO synthase (NOS) located in the endothelium (eNOS) 
helps to maintain a low vascular resistance and acts to oppose hypoxic pul
monary vasoconstriction. An enhanced formation of NO following the 
induction of the inducible isoform of NOS (iNOS), however, contributes to 
the pathophysiology of several diseases including circulatory shock. Al
though the inhibition of NO formation with agents which non-selectively 
inhibit all isoforms of NOS exerts some beneficial effects (due to the in
hibition of iN OS activity), they also exert side effects, which are secondary 
to the inhibition of eNOS activity. Using circulatory shock as one example 
of a disease associated with a significant overproduction of NO , this article 
reviews the effects and side effects of pharmacological approaches aimed 
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at enhancing (e.g. NO gas, NO donors) or reducing (NOS inhibitors) the 
formation and/or availability of NO. In addition, results of therapeutic 
approaches designed to limit the side effects of non-selective inhibitors of 
NOS activity by combining these agents with either the administration of 
NO donors or NO inhalation will be discussed. 

1.1. Biosynthesis of NO 

NO is generated from L-arginine by a family of enzymes collectively cal
led NOS. The oxidation of one of the guanidino nitrogen atoms of this 
semi-essential amino acid by NOS generates NO as well as L-citrulline. 
The haem-iron-dependent oxidation of L-arginine is coupled to the reduc
tive activation of molecular oxygen and requires input of reducing equi
valents shuttled from the electron donor nicotinamide dinucleotide phos
phate (NADPH) to the haem through the flavins, flavin adenine dinucleo
tide (FAD) and flavin mononucleotide (FMN). In addition to haem, flavins 
and NADPH, NOS also requires the presence oftetrahydrobiopterin (BH4), 

which appears to act both as allosteric effector and redox-active co-factor 
of the oxidation of L-arginine. Thus, NOS contains an oxygenase domain 
(containing the catalytic entre) and a reductase domain. The synthesis of 
NO from L-arginine and molecular oxygen involves the generation of 
NG-hydroxy-L-arginine and water (first step) and subsequently the oxida
tion ofNG-hydroxy-L-arginine in the presence of molecular oxygen to form 
NO, L-citrulline and water. When generated, NO diffuses to adjacent cells 
where it activates soluble guanylyl cyclase, resulting in the formation of 
cyclic guanosine monophosphate (cGMP), which in turn mediates many of 
the effects of NO. NO is generated by many mammalian cells by at least 
three different isoforms of NOS. Thus, it is not surprising that NO has 
many biological functions in the cardiovascular, nervous and immune 
systems [1]. eNOS in endothelial cells and nNOS in neuronal cells are 
expressed constitutively, and both enzymes require an increase in intra
cellular calcium (Ca2+) for activation. Activation of macro phages and many 
other cells with proinflammatory cytokines or endotoxin results in the 
expression of a distinct isoform of NOS (iN OS), the activity of which is 
functionally independent of changes in intracellular Ca2+ [see 2-6 for 
review]. 

1.2. Physiological Role of NO (Cardiovascular System) 

Activation of eNOS by shear stress results in a continuous release of NO 
(active vasodilatation) which regulates blood pressure and organ blood 
flow. NO also reduces the adhesion of platelets and polymorphonuclear 
leukocytes (PMNs) to the endothelium. The latter effect of NO is, at least 



Combination of NO and NO Synthase Inhibitors 211 

in part, due to the prevention by NO of the expression of the adhesion mole
cules P-selectin and intercellular adhesion molecule (ICAM-I) on the sur
face of endothelial cells. Interestingly, the enhanced expression of eNOS 
mRNA (e.g. following exposure to shear stress) is associated with a de
crease in the transcription of the genes for E-selectin and monocyte chemo
attractant protein 1 (MCP-I). In addition to preventing the adhesion of 
platelets to endothelial cells, NO also directly attenuates the activation of 
platelets. These effects of NO are associated with and/or due to prevention 
of (i) the expression of P-selectin (on platelets), (ii) secretion of platelet 
granules, (iii) intracellular calcium flux, as well as (iv) binding of glyco
protein lIb/IlIa to fibrinogen. It should be noted that both platelets and 
megakaryocytes are able to generate NO, as both cells contain a constitu
tive NOS (homologous to eNOS, but with a molecular weight of 85 kDa), 
and megakaryocytes also contain iNOS. NO can, in principle, also inhibit 
the activation of PMNs. Moreover, NO attenuates the expression of the 
adhesion molecules P-selectin, E-selectin and possibly vascular cell adhe
sion molecule (VCAM)-l and, hence, may interfere with rolling and 
attachment of PMN s to the endothelium [7]. • 

In the lung, the formation of NO by eNOS is important in maintaining a 
low vascular resistance. As the lung is the only organ which receives the 
entire cardiac output this function of endogenous NO is of utmost impor
tance, as a significant increase in pulmonary vascular resistance leads to a 
dramatic rise in the workload of the right ventricle and, when excessive, to 
right heart failure. Hypoxia of specific areas of the lung results in vaso
constriction which serves to divert blood away from poorly oxygenated 
alveoli and to well oxygenated areas ofthe lung. In isolated perfused lungs, 
agents which either inhibit the formation of NO or the generation of cGMP 
augment the degree of hypoxic vasoconstriction. In a rabbit model of uni
lateral alveolar hypoxia, inhibition of NO synthesis reduces the distribution 
of blood flow to hypoxic alveoli resulting in a rise in arterial oxygen 
tension [8]. Thus, endogenous NO opposes hypoxic vasoconstriction and, 
hence, maintains perfusion of hypoxic lung units. 

2. NO and the Pathophysiology of Septic Shock 

The syndrome of shock can be defined as a progressive failure of the cir
culation to provide blood and oxygen to vital organs. The most common 
cause of shock is the contamination of blood with bacteria (bacteraemia) 
resulting in systemic infection and ultimately shock (septic shock). 
Other causes of shock include severe haemorrhage (haemorrhagic shock), 
trauma (traumatic shock), failure of the heart to maintain a sufficient 
cardiac output (cardiogenic shock), interruption of the innervation of 
blood vessels (neurogenic shock) and severe allergic reactions (anaphylac
tic shock). 
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In 1990, several groups independently discovered that an enhanced for
mation of endogenous NO contributes to (i) hypotension [9] and vascular 
hyporesponsiveness to vasoconstrictor agents [10, 11] in rodents with 
endotoxic shock, (ii) hypotension caused by cytokines and endotoxin in 
dogs [12, 13], (iii) the reduction in liver protein synthesis [14], and (iv) pro
tection ofliver integrity in rodents with sepsis [15]. We know today that cir
culatory shock is associated with an enhanced formation of NO due to the 
early activation of eNOS and the later induction of iNOS activity in e. g. 
macrophages, vascular smooth muscle, hepatocytes, cardiac myocytes etc. 
[16]. This overproduction of NO may contribute to circulatory failure, 
myocardial dysfunction, organ injury and ultimately multiple organ dys
function syndrome (MODS; see below). The formation of NO also exerts 
beneficial effects in endotoxic shock including vasodilatation, prevention 
of platelet and leukocyte adhesion, improvement of microcirculatory blood 
flow and augmentation of host defence. Thus, it is not surprising that 
many colleagues have advocated the use of contrasting therapeutic ap
proaches including (i) inhibition of NOS activity, (ii) enhancement of the 
availability of NO (NO donors, NO inhalation) or (iii) a combination of 
both approaches. 

2.1. NO and Circulatory Failure 

The circulatory failure associated with shock of various aetiologies is cha
racterised by severe hypotension (peripheral vasodilatation), hyporeactivity 
of the vasculature to vasoconstrictor agents, myocardial dysfunction, mal
distribution of organ blood flow and reduced tissue oxygen extraction. 
There is now good evidence that an enhanced formation of NO contributes 
to several of these pathophysiological features of septic shock. For 
instance, an enhanced formation of NO due to activation of eNOS (acute 
phase of shock) and particularly following the induction of iNOS in the 
vascular wall (late phase of shock) importantly contributes to the hypoten
sion in animals (rat, dog, pig, sheep) and humans with septic shock [5]. 
Interestingly, endotoxin does not cause hypotension in mice in which the 
gene for iNOS has been deleted ("iNOS knockout" mice) [17]. Thus, the 
hypothesis [9] that an enhanced formation of endogenous NO importantly 
contributes to the hypotension associated with endotoxic shock, is now 
supported by numerous studies (in various different species from rodents 
to humans) using different pharmacological (e.g. prevention of iNOS 
expression, inhibition of iNOS activity with non-selective or iNOS-selective 
inhibitors, use of agents which scavenge NO etc.) or molecular biological 
approaches (e. g. gene-targeting of the iNOS gene). The peripheral vascular 
failure in animals and humans with septic shock also results in a pro
gressive attenuation of the pressor effects afforded by noradrenaline and 
other vasoconstrictor agents. This phenomenon, which has also been 
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termed "vasoplegia" also contributes to the therapy-refractory hypotension 
in septic shock. Clearly, the hyporeactivity of blood vessels obtained from 
animals exposed to endotoxic or haemorrhagic shock (for several hours) to 
catecholamines is largely, but not exclusively, due to an enhanced forma
tion of NO secondary to the induction of iN OS. In endotoxaemia, an NO
mediated vascular hyporeactivity occurs in conductance, resistance as well 
as venous vessels [18]. Prolonged periods of septic shock also cause the 
development of an endothelial dysfunction, which is characterised by the 
impairment of "endothelium-dependent vasodilatation" and therefore pre
sumably eNOS activity. The mechanism(s) of this endothelial dysfunction 
may include the downregulation of the expression of the eNOS gene by 
proinflammatory cytokines such as tumor necrosis factor (TNF)-a, endo
thelial cell damage due to cytotoxic effects of NO, peroxynitrite or oxygen
derived radicals, and (to a lesser extent) the inactivation of NO by oxygen 
radicals [5, 19]. 

2.2. NO and Multiple Organ Failure 

The progression of shock or systemic inflammatory response syndrome 
(SIRS) to multiple organ dysfunction syndrome (MODS) is associated 
with an increase in mortality from 25-30% (in the absence of MODS) to 
90-100% [see 20, 21 for review]. Although there are many investigations 
documenting the effects of various NOS-inhibitors on systemic or regional 
haemodynamics in animal models of endotoxic shock, there are few studies 
investigating the consequences of these interventions on the impairment 
of organ function associated with shock. Circulatory shock often results in 
a marked defect in tissue oxygen extraction resulting in tissue hypoxia and 
an increased venous oxygen concentration. As the local generation of 
large amounts of NO e.g. by activated macrophages, serves to kill bacteria 
or tumour cells as part of the host defence, it is not surprising that the 
generation of NO by iNOS in other cells is cytotoxic (suicide mechanism). 
Indeed, large amounts of NO cause an auto-inhibition of mitochondrial 
respiration by inhibiting several key enzymes in the mitochondrial respi
ratory chain (NADH-ubiquinone reductase, succinate-ubiquinone oxido
reductase) or in the Krebs' cycle (e. g. cis-acconitase) resulting in a shift 
in glucose metabolism from aerobic to anaerobic pathways [4, 19]. NO also 
causes DNA strand breakage which triggers a futile, energy-consuming 
repair cycle by activating the nuclear enzyme poly(ADP)ribosyltrans
ferase (PARS). Activation of PARS results in the rapid depletion of the 
intracellular concentration of NAD+ (its substrate) slowing the rate of 
glycolysis, electron transfer and ATP formation which ultimately results in 
cell death ("PARS suicide hypothesis") [22, 23]. Thus, the generation of 
large amounts of NO by iNOS may contribute to the defect in oxygen 
extraction and ultimately cell hypoxia and death by causing (i) maldistri-
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bution of regional blood flow (reduced oxygen supply), (ii) formation of a 
diffusion barrier for oxygen within the vascular wall (reduced oxygen 
transport), (iii) inhibition of the generation of ATP (reduced oxygen 
utilisation), and (iii) excesive and futile consumption of ATP. In concert 
with the severe hypotension (reduced perfusion pressure), these effects of 
the local overproduction of NO may importantly contribute to the organ 
injury and dysfunction associated with septic shock. Studies using in
hibitors of NOS activity in animals with endotoxic shock have yet to con
vincingly demonstrate that an enhanced formation of NO by iNOS con
tributes to multiple organ failure. There is evidence that some inhibitors 
of NOS activity (e.g. those which preferentially inhibit iNOS activity) 
reduce the organ dysfunction, while others (e.g. relatively selective in
hibitors of eNOS activity) may have no effect or even enhance the organ 
injury/dysfunction caused by endotoxic shock. Although selective inhibi
tors of iNOS activity reduce the liver dysfunction in endotoxaemia in 
rodents [24, 25], the degree of liver injury caused by endotoxin in mcie 
in which the iNOS gene was inactivated by gene targeting (iNOS knock 
out) is similar to the one elicited by endotoxin in wild-type mice [17]. 
There is little information regarding the effects of inhibitors of NOS 
activity on the lung dysfunction caused by endotoxin in animals. In the 
anaesthetised rat, endotoxaemia causes within 15 min an acute metabolic 
acidosis as indicated by falls in bicarbonate and base excess. This meta
bolic acidosis is compensated by a hyperventilation resulting in falls in 
arterial P02 • Treatment of lipopolysaccharide (LPS)-treated rats with the 
selective iNOS inhibitor l-amino-2-hydroxy-guanidine significantly 
attenuates the falls in bicarbonate and base excess as well as the second
ary fall in P02 [25]. As the fall in P02 observed in this study was second
ary to a metabolic acidosis rather than a direct dysfunction of the lung, 
this study demonstrates that endogenous NO contributes to the dys
function of various organs (e. g. liver, pancreas) and presumably the de
velopment of a defect in tissue oxygen extraction, but does not provide 
direct evidence that NO from iNOS contributes to the lung dysfunction 
associated with endotoxic shock. 

3. Modulation of NO Formation in Shock 

The controversy as to whether endogenous NO has beneficial or detrimen
tal effects in septic shock has fuelled the search for therapeutic interven
tions aimed at (i) reducing the formation of NO, (ii) enhancing the avail
ability of NO or (iii) combining both approaches. In principle, there are two 
approaches for reducing the formation of NO in septic shock, namely in
hibition of iNOS expression or inhibition of iNOS activity. The local or 
systemic availability of NO may be enhanced by using NO donors or NO 
gas inhalation either alone or in combination with NOS inhibitors. The 
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following paragraphs discuss the effects and side effects of therapeutic 
approaches aimed at modulating the formation of NO in animal models of 
endotoxic shock. 

3.1. Prevention of iN OS Expression 

The list of xenobiotics which prevent the induction of iNOS activity and 
protein is ever growing and now includes antibodies to TNF -a, soluble 
TNF -a receptors, the endogenous interleukin (IL )-1 receptor antagonist, 
IL-4, IL-lO, IL-ll, IL-13, platelet activation factor (PAF)-receptor anta
gonists, dihydropyridine-type calcium channel antagonists, ketokonazole, 
glibenclamide, N-acetylserotonin (an inhibitor of the salvage pathway for 
the generation of BH4), 2,4-diamino-6-hydroxy-pyrimidine (DAHP, an 
inhibitor of the activity of GTP cyclohydrolase and, hence, BH4, biosyn
thesis), tyrosine kinase inhibitors (genistein, tryphostins, erbstatin), inhi
bitors of the activation of the nuclear transcription factor NF1<:B (rotenone, 
PDTC, butyrolated hydroxyanisole) or inhibitors of lKB-protease (calpain 
inhibitor 1); to name but a few [26]. It should, however, be pointed out that 
agents which prevent the expression of iNOS have to be administered 
prior to endotoxin to prevent induction of iNOS, circulatory failure or 
MODS. In contrast, once hypotension (and presumably iNOS induction) 
has occurred, the administration of dexamethasone (and other agents 
which prevent the induction of iNOS) fails to improve haemodynamics 
and organ function. In contrast, inhibition of the activity of NOS offers the 
opportunity for a late intervention in animals and patients which have 
developed hypotension and early signs of the onset of organ dysfunction. 
Nevertheless, the above interventions have helped to elucidate the signal 
transduction events leading to the expression of iN OS in vitro and in vivo 
(Fig. 1). 

3.2. Non-selective, Competitive Inhibitors of NOS Activity 

The discovery of L-arginine-analogues which inhibit NOS activity includ
ing NG-methyl-L-arginine (L-NMMA) provided the first tool to explore 
beneficial or side effects of NOS inhibition in animals and humans with 
septic shock. The subsequent publication of papers describing the use of 
the NOS inhibitors NG-nitro-L-arginine (L-NA) and its methyl ester 
(L-NAME) [27], which in contrast to L-NMMA were cheap and readily 
available, stimulated numerous studies aimed at evaluating the role of 
NO in septic shock by using L-NAME. This was somewhat unfortunate, as 
L-NAME is a more potent inhibitor of eNOS than iNOS activity and hence, 
caused many adverse effects resulting from the inhibition of eNOS activi
ty including excessive vasoconstriction (e.g. fall in cardiac output, pulmo
nary hypertension, reduction in mesenteric blood flow, reduction in renal 
blood flow etc.) and enhanced adhesion of platelets and neutrophils to the 
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Figure 1. Schematic diagram illustrating the postulated signal transduction pathway( s) leading 
to the increased expression of inducible nitric oxide synthase (iNOS). 
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endothelium [see 19, 28]. Thus, it was not surprising that high doses of 
L-NAME or even L-NMMA increased mortality in mice and rabbits with 
endotoxic shock [29, 30]. The hypothesis that the basal relase of NO by 
eNOS has an important role in the regulation of regional blood flow (bene
ficial effects of NO), while the excessive generation of NO by iNOS con
tributes to some aspects of the pathophysiology of shock (harmful effects 
of NO), has stimulated the search for novel therapeutic approaches which 
maximise the benefits resulting from the inhibition of iNOS activity, 
while minimising the side effects arising from inhibition of eNOS activity. 
These therapeutic approaches include the development of selective inhibi
tors of iNOS activity or the combination of non-selective inhibitors of 
NOS activity with either NO donors (to minimise the systemic side effects 
arising from inhibition of eNOS activity, e.g. excessive vasoconstriction 
and adhesion of blood-borne cells to the endothelium) or NO gas inhala
tion (to minimise side effects resulting from excessive pulmonary vaso
constriction). 

3.3. Relatively Selective Inhibitors of iN OS A ctivity 

The following paragraphs highlight some aspects of the chemistry and 
pharmacology of NOS inhibitors which are relatively selective towards 
iNOS. For a more detailed and complete account of the chemistry and iso
enzyme selectivity of NOS inhibitors, the interested reader is referred to a 
recent, excellent review of this topic [31]. 

Aminoguanidine was the first relatively selective inhibitor of iNOS 
activity discovered [32]. Although aminoguanidine is a more potent inhibi
tor of iNOS than eNOS activity [33-35], aminoguanidine is not a very 
potent inhibitor of iN OS activity. In addition, aminoguanidine is not a very 
specific inhibitor of NOS activity, as this guanidine has many other phar
macological properties (e.g. inhibition of histamine and polyamine meta
bolism, inhibition of catalase activity). Interestingly, aminoguanidine also 
prevents the expression of iN OS protein by a hitherto unknown mechanism 
[36]. Other guanidines including (in the rank order of their potency as in
hibitors of iNOS activity in murine macrophages and smooth muscle cells) 
l-amino-2-hydroxy-guanidine, l-amino-2-methyl-guanidine, l-amino-l
methyl-guanidine and l-amino-l,2-dimethylguanidine also inhibit iNOS 
activity [25]. Of these, l-amino-2-hydroxyguanidine is more potent, more 
selective and more soluble in aqueus solutions than aminoguanidine itself 
and hence, may be more suitable than the respective parent compound [25]. 
There is now good evidence that aminoguanidine attenuates the circulatory 
failure and reduces mortality caused by endotoxin in rodents. Moreover 
l-amino-2-hydroxy-guanidine also reduced the liver and pancreatic dys
function caused by endotoxin in rats [25]. 

S-substituted isothioureas (ITUs) are non-amino acid analogues of 
L-arginine and also potent inhibitors of iNOS activity with variable iso-
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form selectivity [37-39]. The most potent isothioureas were those with 
only short alkyl chains on the sulphur atom and no substitutes on the nitro
gen atoms. For instance, S-ethyl-ITU is a potent competitive inhibitor of 
all isoforms of human and murine NOS [37]. In contrast to S-ethyl-ITU, 
aminoethyl-ITU and S-methyl-ITU are more selective inhibitors of iNOS 
than of eNOS activity [39]. Aminoethyl-ITU is metabolised to mercapto
ethyl-guanidine, which may represent the active principle of aminoethyl
ITU [31]. Clearly, both S-methyl-ITU as well as aminoethyl-ITU attenuate 
the circulatory failure caused by endotoxin even when given up to 2 h after 
administration of endotoxin in rats. Moreover, both isothioureas attenuate 
the multiple organ failure as well as the mortality caused by endotoxin in 
the rat [24, 38]. S-substituted ITUs and guanidines contain the amidine 
function, feature which they have in common with O-substituted isoureas 
and amidines themselves. Indeed, amidines including 2-iminopiperidine, 
butyramidine, 2-aminopyridine, propioamidine and (to a much lesser ex
tent) acetamidine inhibit NOS activity. Interestingly, both 2-iminopiperi
dine and butyramidine were more potent inhibitors of iNOS activity than 
L-NMMA in murine macrophages [40]. 

The number of novel NOS inhibitors which differ in chemistry and se
lectivity towards certain isoenzymes of NOS is ever increasing and their 
pharmacology has recently been reviewed elsewhere [31]. It should, how
ever, be noted that none of these agents are 100% selective inhibitors of 
iNOS activity and hence, may (at higher doses) cause side-effects due to 
inhibition of eNOS activity. 

3.4. Combination of Inhibitors of NOS Activity with NO Donors 

Any potential side effects of non-selective (or even iNOS-selective) NOS 
inhibitors may be overcome by combining these agents with NO donors 
which may improve regional haemodynamics and inhibit the adhesion of 
platelets and PMNs to the endothelium in the absence of NO synthesis by 
endothelial cells (due to eNOS inhibition). There is some evidence that NO 
donors per see may exert beneficial haemodynamic effects in animal 
models of endotoxic or septic shock. For instance, in a canine model of 
endotoxaemia the continuous infusion of low to moderate doses (lor 
2 J.lglkg/min) of the NO donor 3-morpholinosydnonimine (SIN-I) caused 
increases in cardiac index, stroke index and left ventricular stroke work 
index, without causing a significant alteration in systemic or pulmonary 
arterial pressures. Moreover, SIN-I increased mesenteric, but not renal 
blood flow. Infusion of SIN -1, however, had no effect on the increase in the 
plasma levels of TNF-a or lactate. In contrast, higher doses of the NO 
donor (4 J.lg/kg/min) caused reductions in blood pressure, cardiac index and 
stroke index. These results suggest that lower to moderate doses of the NO 
donor SIN-I improve the perfusion of the mesenteric vascular bed without 



Combination of NO and NO Synthase Inhibitors 219 

causing systemic haemodynamic side effects [41]. Similarly, the NO donor 
linsidomine (2 mg over 3 h) attenuated the fall in systemic and hepatic per
fusion associated with hypodynamic, endotoxic shock in rabbits. These 
beneficial haemodynamic effects of the NO donor were associated with a 
reduction in the degree of lactic acidosis caused by endotoxaemia in this 
species [42, 43]. These findings support the notion that NO donors may 
improve regional haemodynamics without causing a further deterioration 
in systemic haemodynamics in animals with endotoxic shock. Pre-treat
ment of rabbits with a high dose ofL-NMMA prior to injection ofLPS aug
ments the degree of (acute) hypotension and regional vasoconstriction as 
well as the mortality caused by endotoxaemia. These detrimental effects of 
the inhibition of NOS activity are abolished by co-administration of the NO 
donor S-nitroso-N-acetyl penicillamine (SNAP) [29]. These findings sup
port the view that the detrimental effects arising from inhibition of eNOS 
activity can be limited by the concomitant administration of an NO donor. 
Further studies are necessary to elucidate the effects of the co-administra
tion of NOS inhibitors (either non-selective or iNOS-selective) and NO 
donors on organ function in animal models of endotoxaemia and sepsis. 

3.5. Combination of Inhibitors of NOS Activity with NO Gas Inhalation 

There is now good evidence that the inhibition of the formation of NO by 
eNOS in the pulmonary vascular bed leads to pulmonary vasoconstriction 
[18,28]. As endotoxaemia per se leads (in many species including humans) 
to a rise in pulmonary vascular resistance, the administration of non-selec
tive NOS inhibitors in animals with endotoxaemia results in a further rise 
in pulmonary vascular resistance which (in some species such as the pig) 
may even lead to a fall in cardiac output due to a reduction in left ventric
ular filling pressures. The following paragraphs review the effects of NO gas 
inhalation on the alteration in pulmonary haemodynamics and gas ex
change in animals with endotoxic shock. In pigs with endotoxaemia, NO 
inhalation (10 parts per million (ppm)) selectively attenuates the pulmo
nary hypertension caused by endotoxin without affecting blood pressure 
or cardiac output. Moreover, inhalation of NO reduces the fall in pH and 
arterial oxygen tension suggesting that this intervention prevents the 
deterioration in gas exchange caused by endotoxaemia. In this model, 
endotoxaemia also results in a marked activation of the sympathetic system 
as indicated by an increase in the plasma levels of noradrenaline and neuro
peptide Y. Interestingly, this excessive activaton of the sympathetic system 
is also attenuated by inhalation of NO gas [44]. In pigs receiving a con
tinuous infusion of endotoxin, intermittent inhalation of NO gas (57 ppm) 
prevents the initial peak rise in pulmonary artery pressure and resistance 
and diminishes pulmonary shunting. Most notably, inhalation of NO gas 
also attenuates the degree of platelet activation caused by endotoxin [45]. 
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The severe pulmonary vasoconstriction caused by endotoxin in pigs is also 
associated with a decrease in right ventricular ejection fraction and an 
increase in right ventricular and diastolic volume. Inhalation of NO gas 
(40 ppm, after the onset of endotoxaemia) reduces the degree of pulmonary 
hypertension and significantly increases right ventricular ejection fraction 
[46]. Thus, inhalation of NO gas prevents or reverses the rise in pulmonary 
vascular resistance and the subsequent dysfunction of the right ventricle. 

These beneficial effects of NO inhalation in animal models of endo
toxaemia stimulated studies which compared the effects of intravenous 
infusion of the NOS inhibitor L-NMMA, with that of NO gas inhalation 
and with that of a combination of both interventions in pigs with endo
toxaemia [47]. The infusion of endotoxin (15 pg/kg/h for 3 h) causes a pro
gressive fall in blood pressure and cardiac output and a biphasic increase in 
mean pulmonary artery pressure (Fig. 2) and pulmonary vascular resis
tance. In these animals, a continuous infusion of L-NMMA (0.1 mg/kg/ 
min) significantly attenuates the fall in blood pressure, but does not affect 
the alteration in mean pulmonary artery pressure (Fig. 2), pulmonary vas
cular resistance or cardiac output caused by endotoxaemia. NO inhalation 
(50 ppm) does not affect the hypotension, but significantly blunts the 
biphasic rise in pulmonary artery pressure and pulmonary vascular re
sistance and delays the fall in cardiac output. Most importantly, the combi
nation ofL-NMMA and NO gas inhalaton prevents the fall in blood pres
sure, significantly improves cardiac output and attenuates the biphasic rise 
in pulmonary artery pressure and (Fig. 2) pulmonary vascular resistance 
[47]. Endotoxaemia also causes a decline in Pa02 (Fig. 3) and a rise in 
PaC02 • Infusion of L-NMMA neither affects the fall in Pa02 (Fig. 3) nor 
the rise in PaC02. In contrast, inhalation with NO gas alone as well as the 
combined administration of L-NMMA infusion and NO inhalation pre
vents the fall in Pa02 (Fig. 3) and attenuates the subsequent rise in PaC02. 
Infusion of endotoxin for 3 h results in a mortality of 58%, which is not 
affected by L-NMMA (63%). In contrast, treatment of endotoxaemic pigs 
with either NO inhalation alone or NO inhalation plus L-NMMA abolishes 
the mortality caused by endotoxin. Thus, this study demonstrates that the 
combined treatment with NO gas inhalation and systemic administration of 
L-NMMA is superior to either treatment alone in preventing the endotoxin
induced alterations in gas exchange, haemodynamics and mortality in 
anaesthetised pigs [47]. In a similar study, Weitzberg and colleagues [48] 
also demonstrate that the combination of the NOS inhibitor L-NAME 
(50 mg/kg/h) and NO gas inhalation (50 ppm) attenuates the degree ofpul
monary hypertension and improved gas exchange in pigs with endotoxic 
shock. Moreover L-NAME plus NO inhalation prevents the development 
of systemic hypotension, but impaired cardiac output and increased 
systemic and renal vascular resistance to supranormal levels [48]. Taken 
together, these studies demonstrate that NO gas inhalation may improve 
pulmonary and cardiac haemodynamics and attenuates the rise in pulmo-
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nary vascular resistance caused by inhibition of eNOS activity with non
selective inhibitors of NOS in pigs with endotoxaemia. When compared to 
other species, pigs are more likely to develop a rapid rise in pulmonary vas
cular resistance (and a subsequent dysfunction of the right heart) when 
exposed to infusion of endotoxin. Thus, the benefits arising from the inha
lation of NO gas (either alone or in combination of NOS inhibitors) may 
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well be greater in pigs than in other animals. Nevertheless, there is evi
dence that inhibition of NOS activity with L-NMMA in patients with 
septic shock also results in a significant rise in pulmonary vascular re
sistance [49]. If the ongoing multi-centre clinical trial which evaluates the 
effects of L-NMMA in patients with septic shock reveals that pulmonary 
vasoconstriction is, indeed, an important side effect of NOS inhibitors in 
humans, it may well be possible and useful to limit the rise in pulmonary 
vascular resistance caused by these agents by NO gas inhalation. 

4. Concluding Remarks 

Since 1990, numerous studies have documented that animal models of 
circulatory shock of various aetiologies are associated with an enhanced 
formation of NO. Similarly, patients with septic shock and IL-2 immuno
therapy exhibit elevated plasma levels of nitrite/nitrate. Although the 
enhanced formation of NO in animals and humans with septic shock con
tributes to hypotension and hyporeactivity of the vasculature to vasocon
strictor agents (vasoplegia), it is still unclear whether NO (from iNOS) con
tributes to the organ dysfunction/failure syndrome associated with severe 
septic shock. The inhibition of eNOS activity in animals with endotoxic 
shock results in excessive vasoconstriction (e. g. increase in pulmonary 
vascular resistance) and augments the adhesion of platelets and neutrophils 
to the endothelium. This side effect of non-selective inhibitors of NOS 
activity may be avoided by using selective inhibitors of iNOS activity or 
circumvented by combining these agents with NO donors or NO inhalation 
therapy. It should be stressed that the many reported adverse effects of NOS 
inhibition are, in most studies, due to the use of large quantities of 
L-NAME, an agent which is a more potent inhibitor of eNOS than iNOS 
activity. If the results of the ongoing clincial trial evaluating the effects of 
L-NMMA should reveal that this NOS inhibitor causes an increase in pul
monary vascular resistance, this adverse effect may well be prevented by 
inhalation of NO. Although there are few studies investigating the effects 
of NO donors (either alone or in combination with inhibitors of NOS 
activity) in animal models of shock, these agents should in principle be use
ful to overcome the "endothelial dysfunction" associated with shock. When 
given together with inhibitors of NOS activity, NO donors may also limit 
the systemic side effects arising from inhibition of eNOS activity. The 
results of the multi-centre trial ofL-NMMA in patients with septic shock 
are eagerly awaited. Obviously, the outcome of this clinical trial will impor
tantly influence any future strategies aimed at modulating the biosynthesis 
of NO in shock. 
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