
Lecture Notes in Computer Science 4934
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Uwe Brinkschulte Theo Ungerer
Christian Hochberger Rainer G. Spallek (Eds.)

Architecture of
Computing Systems –
ARCS 2008

21st International Conference
Dresden, Germany, February 25-28, 2008
Proceedings

13

Volume Editors

Uwe Brinkschulte
Universität Karlsruhe (TH)
Institut für Prozessrechentechnik, Automation und Robotik
76131 Karlsruhe, Germany
E-mail: brinks@ira.uka.de

Theo Ungerer
Universität Augsburg
Institut für Informatik
86135 Augsburg, Germany
E-mail: ungerer@informatik.uni-augsburg.de

Christian Hochberger
Rainer G. Spallek
Technische Universität Dresden
Institut für Technische Informatik
01062 Dresden, Germany
E-mail: {christian.hochberger,rgs}@inf.tu-dresden.de

Library of Congress Control Number: 2008920680

CR Subject Classification (1998): C.2, C.5.3, D.4, D.2.11, H.3.5, H.4, H.5.2

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

ISSN 0302-9743
ISBN-10 3-540-78152-8 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-78152-3 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2008
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12227785 06/3180 5 4 3 2 1 0

Preface

The ARCS series of conferences has over 30 years of tradition in reporting top
notch results in computer architecture and operating systems research. It is orga-
nized by the special interest group on “Computer and System Architecture” of GI
(Gesellschaft für Informatik e.V.) and ITG (Informationstechnische Gesellschaft
im VDE - Information Technology Society).

In 2008, ARCS was hosted by the Technical University of Dresden, which has
one of the leading information technology schools in Europe. This year’s special
focus was on adaptivity and adaptive system architectures. A wide spectrum was
covered from pre-fabrication adaptation of architectural templates to dynamic
run-time adaptation of deployed systems. Like the previous conferences in this
series, this year’s event constituted an important forum for the presentation of
computer architecture research.

The call for papers resulted in a total of 47 submissions from around the
world. Every submission was reviewed by three members of the program com-
mittee or additional reviewers. The program committee decided to accept 19
papers, which were arranged into seven sessions with the result of a strong pro-
gram. The two keynote talks by Theo Ungerer of the University of Augsburg and
Chris Schläger of AMD Dresden focused our attention on the “Grand Challenges
of Computer Engineering” and on the “Impact of Operating Systems on Modern
CPU Designs (and Vice Versa)”.

The organizers gratefully acknowledge the support of ACM, IEEE, IFIP
TC10, CEPIS, and EUREL.

We would like to thank all those who contributed to the success of this con-
ference, in particular the members of the program committee and the additional
referees for carefully reviewing the contributions and selecting a high-quality
program. Our Workshop and Tutorial Chair Andreas Koch did a perfect job in
organizing the tutorials and coordinating the workshops. Our special thanks go
to the members of the organizing committee for their numerous contributions
as well as to Thomas B. Preußer for setting up the conference software and for
designing and maintaining the conference Web site. We would also like to thank
Julian Wolf for his thorough preparation of this volume.

We hope that all of the participants enjoyed a successful conference, made a
lot of new contacts, engaged in fruitful discussions, and had a pleasant stay in
Dresden.

December 2007 Uwe Brinkschulte
Theo Ungerer

Christian Hochberger
Rainer G. Spallek

Organization

Organizing Committee

General Chairs

Christian Hochberger TU Dresden, Germany
Rainer G. Spallek TU Dresden, Germany

Program Chairs

Uwe Brinkschulte Universität Karlsruhe (TH), Germany
Theo Ungerer Universität Augsburg, Germany

Workshops and Tutorials

Andreas Koch TU Darmstadt, Germany

Program Committee

Nader Bagherzadeh University of California, Irvine, USA
Michael Beigl University of Braunschweig, Germany
Mladen Berekovic IMAP, Belgium and Delft University of

Technology, The Netherlands
Guillem Bernat Rapita Systems and University of York, UK
Arndt Bode Technical University of Munich, Germany
Koen De Bosschere Ghent University, Belgium
Jiannong Cao The Hongkong Polytechnic University, China
Francisco J. Cazorla UPC, Barcelona
Alois Ferscha University of Linz, Austria
Werner Grass University of Passau, Germany
Jadwiga Indulska University of Queensland, Australia
Wolfgang Karl University of Karlsruhe, Germany
Spyros Lalis University of Thessaly, Greece
Paul Lukowicz University of Passau, Germany
Jianhua Ma Hosei University, Japan
Erik Maehle Universität zu Lübeck, Germany
Christian Müller-Schloer University of Hannover, Germany
Burghardt Schallenberger Siemens AG, München
Pascal Sainrat Université Paul Sabatier, Toulouse, France
Hartmut Schmeck University of Karlsruhe, Germany

VIII Organization

Karsten Schwan Georgia Tech, USA
Peter Steenkiste Carnegie-Mellon University, USA
Lothar Thiele ETH Zurich, Switzerland
Pedro Trancoso University of Cyprus, Cyprus
Gerhard Tröster ETH Zurich, Switzerland
Mateo Valero UPC, Barcelona
Lucian Vintan Lucian Blaga University of Sibiu, Romania
Klaus Waldschmidt University of Frankfurt, Germany
Stephan Wong Delft University of Technology,

The Netherlands
Laurence T. Yang St. Francis Xavier University, Canada

Additional Reviewers

Tanguy Risset
Dimitris Theodoropoulos
Julien Dusser
Andreas Hofmann
Akira Hatanaka
Jean-Philippe Diguet
Yoon Yang

Wen Hsiang Hu
Oliverio J. Santana
Filipa Duarte
Rubén González
Hans Vandierendonck
JungSook Yang
Mojtaba Sabeghi

Christine Rochange
Jun Ho Bahn
Pier Francesco Foglia
Joan Manuel Parcerisa
Liu Yang
Weigang Wu

Table of Contents

Invited Program

Keynote: Grand Challenges of Computer Engineering 3
Theo Ungerer

Keynote: The Impact of Operating Systems on Modern CPU Designs
(and Vice Versa) . 5

Chris Schläger

Part I Hardware Design

System Level Simulation of Autonomic SoCs with TAPES 9
Andreas Lankes, Thomas Wild, and Johannes Zeppenfeld

Topology-Aware Replica Placement in Fault-Tolerant Embedded
Networks . 23

Thilo Streichert, Michael Glaß, Rolf Wanka, Christian Haubelt, and
Jürgen Teich

Design of Gate Array Circuits Using Evolutionary Algorithms 38
Peter Bungert, Sanaz Mostaghim, Hartmut Schmeck, and
Jürgen Branke

Part II Pervasive Computing

Direct Backtracking: An Advanced Adaptation Algorithm for Pervasive
Applications . 53

Stephan Schuhmann, Klaus Herrmann, and Kurt Rothermel

Intelligent Vehicle Handling: Steering and Body Postures While
Cornering . 68

Andreas Riener, Alois Ferscha, and Michael Matscheko

Part III Network Processors and Memory
Management

A Hardware Packet Re-Sequencer Unit for Network Processors 85
Michael Meitinger, Rainer Ohlendorf, Thomas Wild, and
Andreas Herkersdorf

X Table of Contents

Self-aware Memory: Managing Distributed Memory in an Autonomous
Multi-master Environment . 98

Rainer Buchty, Oliver Mattes, and Wolfgang Karl

Part IV Reconfigurable Hardware

Dynamic Reconfiguration of FlexRay Schedules for Response Time
Reduction in Asynchronous Fault-Tolerant Networks 117

Robert Brendle, Thilo Streichert, Dirk Koch, Christian Haubelt, and
Jürgen Teich

Synthesis of Multi-dimensional High-Speed FIFOs for Out-of-Order
Communication . 130

Joachim Keinert, Christian Haubelt, and Jürgen Teich

A Novel Routing Architecture for Field-Programmable Gate-Arrays 144
Alexander Danilin, Martijn Bennebroek, and Sergei Sawitzki

Part V Real-Time Architectures

A Predictable Simultaneous Multithreading Scheme for Hard
Real-Time . 161

Jonathan Barre, Christine Rochange, and Pascal Sainrat

Soft Real-Time Scheduling on SMT Processors with Explicit Resource
Allocation . 173

Carlos Boneti, Francisco J. Cazorla, Roberto Gioiosa, and
Mateo Valero

A Hardware/Software Codesign of a Co-processor for Real-Time
Hyperelliptic Curve Cryptography on a Spartan3 FPGA 188

Alexander Klimm, Oliver Sander, Jürgen Becker, and
Sylvain Subileau

Part VI Organic Computing

A Reference Architecture for Self-organizing Service-Oriented
Computing . 205

Lei Liu, Stefan Thanheiser, and Hartmut Schmeck

Towards Self-organising Smart Camera Systems . 220
Martin Hoffmann, Jörg Hähner, and Christian Müller-Schloer

Using Organic Computing to Control Bunching Effects 232
Oliver Ribock, Urban Richter, and Hartmut Schmeck

Table of Contents XI

Part VII Computer Architecture

A Generic Network Interface Architecture for a Networked Processor
Array (NePA) . 247

Seung Eun Lee, Jun Ho Bahn, Yoon Seok Yang, and
Nader Bagherzadeh

Constructing Optimal XOR-Functions to Minimize Cache Conflict
Misses . 261

Hans Vandierendonck and Koen De Bosschere

Potentials of Branch Predictors: From Entropy Viewpoints 273
Takashi Yokota, Kanemitsu Ootsu, and Takanobu Baba

Author Index . 287

Keynote:
Grand Challenges of Computer Engineering

Theo Ungerer

University of Augsburg
Department of Computer Science, D-86159 Augsburg

ungerer@informatik.uni-augsburg.de

This talk presents the results of two years of discussions of distinguished mem-
bers of the common Section on Computer Engineering of the two national Ger-
man societies on Computer Science – the Gesellschaft für Informatik (GI) and
the Information Technology Society (Informationstechnische Gesellschaft ITG).
The target of the “Grand Challenges of Computer Engineering” initiative is to
provide research orientation to industry and to academic researchers as well as
to research funding agencies. Our topics were defined not from a sole scientific
perspective but with the vision to identify research areas that will safeguard em-
ployment and create new jobs within the next ten to twenty years. We restricted
our analysis to the area that we know – computer engineering.

In a series of workshops we agreed upon three exemplary Application Chal-
lenges in the domains smart machines and environments and eight more funda-
mental Grand Challenges that are shown in the figure below.

Fig. 1. Grand Challenges of Computer Engineering

More information is available at the websites of the Gesellschaft für Informatik
GI1 and of the Information Technology Society ITG2.

1 http://www.gi-ev.de/gliederungen/fachbereiche/technische-informatik-ti/fa-arcs/
2 http://www.vde.com/VDE/Fachgesellschaften/ITG/Arbeitsgebiete/Fachbereich+6/

Fachausschuss6.1.htm

U. Brinkschulte et al. (Eds.): ARCS 2008, LNCS 4934, p. 3, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Keynote:
The Impact of Operating Systems on Modern

CPU Designs (and Vice Versa)

Chris Schläger

Advanced Micro Devices Inc., Dresden
chris.schlaeger@amd.com

When the Mega-Hertz-race ended processor features started to dominate the
marketing messages of the CPU vendors. This brought a noticeable change to
the market. The continuous increase of clock frequencies and cache sizes made
it easy both for the customer as well as the CPU manufacturer. These changes
were easy to understand and communicate, and they were mostly invisible to the
operating systems. In recent years, features such as 64-bit instructions, multiple
cores, power management and virtualization support are the main selling factors.
These features are visible to the OS and need to be supported by the OS to be
exploitable.

The influence of the operating system interface of a CPU on its overall per-
formance has grown tremendously. For AMD as a hardware vendor, this created
a big challenge. The traditionally long feedback cycle between us and the OS
vendors had to be shortened dramatically. Instead of relying on outside OS de-
velopers we had to bring OS development in-house. Even if that meant that we
are developing something that we had no plans to ever sell. Pre-silicon hardware
profiling with real work loads has become instrumental for the success of a CPU
design.

The talk will describe the motivations for AMD to create the Operating Sys-
tem Research Center. It will also discuss how an in-house OS development can
impact key design decisions for upcoming CPU architectures and how the CPU
designers drive OS designs. It will also give an glimpse of the huge design space
that CPU designers are faced with today. It will highlight some key design deci-
sions and the impact on the success of the product. The talk will close with an
outlook on features that may end up in future CPU generations.

U. Brinkschulte et al. (Eds.): ARCS 2008, LNCS 4934, p. 5, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

System Level Simulation of Autonomic SoCs
with TAPES

Andreas Lankes, Thomas Wild, and Johannes Zeppenfeld

Institute for Integrated Systems, Technische Universität München
{andreas.lankes,thomas.wild,zeppenfe}@tum.de

Abstract. During the design process of modern SoCs (systems on chip),
system architects require the support of design tools and methods that
allow for a precise exploration of promising solutions. A trend towards au-
tonomic SoCs is being proposed, in which a system’s behavior is adapted
at run time to improve reliability or power consumption. However, this
opens ever more degrees of freedom in the definition of suitable architec-
tures. Not only must the allocation and binding of resources and tasks
be determined, but also the strategies by which an autonomic system
adapts to changing working conditions. This paper presents an exten-
sion to the TAPES system simulator in order to support the evaluation
of autonomic SoCs.

1 Introduction

The continued growth of chip complexity as described by Moore’s law has en-
abled the integration of multiple components on a single chip, resulting in so-
called systems on chip (SoCs). However, the design of SoCs is still a big challenge.
Resource allocation, task binding, definition of memory and communication ar-
chitectures etc. open up a huge design space that cannot be conquered by expe-
rience only. System architects therefore need the support of new methods and
tools during the exploration process to identify promising solutions. In order to
enable the interactive exploration of many alternatives, turnaround times should
remain in a timeframe of minutes while maintaining a high level of accuracy.

In order to handle reliability problems associated with decreasing feature sizes
and to provide more power efficient solutions, [1] proposes a paradigm shift in IC
design towards autonomic SoCs, which ensure reliable systems in spite of design
errors, manufacturing faults or soft errors. An autonomic SoC is a system that
can adapt itself to changing conditions, including variations in the workload or
the occurrence of errors. The autonomic system reacts to such changes by adapt-
ing its architectural parameters in accordance with a strategy designed to reach
a predefined optimization target. Possible objectives include guaranteeing reli-
able system operation, maintaining a certain level of performance or minimizing
the system’s power consumption. Combinations of such goals are also possible.

The design of such autonomic SoCs not only consists in the definition of a
suitable system architecture as is the case in conventional SoCs, but also in the
specification of a strategy that allows reaching the optimization target using

U. Brinkschulte et al. (Eds.): ARCS 2008, LNCS 4934, pp. 9–22, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

10 A. Lankes, T. Wild, and J. Zeppenfeld

autonomic principles. Therefore, during the design phase of autonomic SoCs,
the combined exploration of both architectural choices and system adaptation
strategies must be supported by evaluation methods and tools. To the best of our
knowledge there are currently no tools available which fulfill these requirements.
The objective of this work is therefore to create a system level simulator that
supports the simulation of autonomic SoCs.

The starting point for this work is the TAPES (Trace-based Architecture Per-
formance Evaluation with SystemC) system level simulator, which enables fast
and precise SoC performance analysis as part of the architecture exploration loop
[2]. In this paper we present an extension of TAPES to support the simulation of
autonomic SoCs. As one possible objective of such a system is the minimization
of power consumption, the simulator’s functionality to estimate the power con-
sumption of the simulated system should be noted here. This power estimation
functionality was presented in [3].

The paper is structured as follows: Section 2 presents related work regarding
autonomic computing and performance evaluation of SoCs. Section 3 sketches
the basic concepts of TAPES and the approach for extending it with support for
autonomic systems. Section 4 describes implementation aspects and Section 5
shows an experiment with the extended simulator. Section 6 concludes this paper
with possibilities for further improvement.

2 Related Work

Until recently, the focus for applying autonomic computing principles has mainly
been at the system level, especially targeting the manageability of a system’s soft-
ware components [4]. For example, the CARUSO project [5] proposes the use of
helper threads in a multi-threaded software environment to monitor an applica-
tion and decide if various self-x strategies should be applied. These threads are
responsible for dynamically adapting the system to changing operating condi-
tions by making use of e.g. the system’s reconfigurable hardware resources. The
rising chip complexity has led to the necessity for similar approaches directly in
the hardware components of a system [6]. Research has therefore been intensified
to enhance SoC hardware with autonomic principles, for example [1], which pro-
poses a new SoC architecture and design methodology to overcome the design
gap inherent in SoC design. This approach is discussed in more detail below.

Methods and tools that support system designers in exploring the design space
and help in evaluating architecture alternatives are the subject of intensive re-
search. [7] gives a broad overview of methods used in architecture exploration.
These range from analytic approaches to simulation based concepts. Examples
for analytic performance evaluation are [8], which is based on Network Calcu-
lus and uses performance networks for modeling the interplay of processes on
the system architecture, or SymTA/S [9], where formal scheduling analysis tech-
niques and symbolic simulation are used for performance and timing analysis.
In simulation based evaluation concepts, transaction level models (TLM, [10])
are widely used because they allow modeling computation and communication

System Level Simulation of Autonomic SoCs with TAPES 11

independently from each other and thus enable an easier modification of system
architectures. SystemC [11] has gained wide acceptance as the language for this
type of model. TLMs, however, are applied on different abstraction levels and for
very different purposes [12]. The performance simulation part of StepNP, a net-
work processor evaluation platform described in [13], uses a SystemC TLM that
captures the complete system functionality, executed on an instruction set simu-
lator. On the other end of the spectrum is the performance evaluation approach
TAPES [2], which abstracts the functionality of SoC architecture components as
processing latencies and captures their interaction on shared resources. The con-
tribution of this paper is the enhancement of TAPES with autonomic principles
for the simulation of time-variant systems. The details for capturing runtime
modifications to system parameters in TAPES are described in the following
section.

3 Concept

According to [1], an autonomic system can be split into two layers: the functional
layer (FL) and the autonomic layer (AL). The functional layer corresponds to a
non-autonomic SoC, with components refered to simply as functional elements
(FEs). The AL, which can be compared to the vegetative nervous system of a
human being, has the task of supervising and controlling the FL, and consists
of multiple autonomic elements (AEs), each responsible for the supervision of a
specific FE.

The two layers form a control loop (shown in Figure 1), which consists of the
following three parts:

Fig. 1. Control loop between FL and AL

1. Monitoring: The AE is provided with information on the FE’s state.
2. Evaluation: The AE applies the information provided by the monitor to a

set of rules and decides if an adaptation of the FE is required.
3. Actuation: The AE adapts the FE according to the decisions made.

We assume the following metrics as possible inputs to the rule set of the auto-
nomic element:

– Load and activity of the FEs

12 A. Lankes, T. Wild, and J. Zeppenfeld

– Occurrence of errors in the FEs
– Memory usage and buffer fill levels

In opposition to load and usage values, the occurrence of errors, such as timing
violations, must be modeled explicitly and cannot be extracted from the original
TAPES model. The actions that can be taken as a result of the evaluation
currently include the following:

– Deactivation and activation of CPUs and accelerators.
– Modifications to the clock frequency of CPUs and accelerators.
– Adapting supply voltages in accordance with clock frequency.
– Changing SoC bus properties (clock frequency, maximum burst length, uti-

lized bus width).

Note that these lists are not exclusive. They can easily be extended by further
metrics and actions as provided by a real system.

The TAPES simulator forms the basis for this work, and is extended according
to the concepts presented above. In TAPES, architectural resources are treated
as black boxes whose internal functionalities are abstracted as delays. They
interact via transactions on a bus-based communication architecture (original
simulation model shown in Figure 2). The number and type of resources can
be configured in a flexible manner. The functionality is specified using so-called
application traces, which encompass sequences of processing latencies interleaved
with transaction calls corresponding to the communication with other resources.
Transactions initiate the execution of traces in the target module and thus allow
capturing the behavior of the complete system. Note that no application data
is processed or exchanged in this simulation model. Only the required time for
processing and data transfer is recorded.

To demonstrate the trace-based approach of TAPES, Figure 3 shows a small
example of trace execution that captures the interaction of a CPU and an ac-
celerator from the original simulation model shown in Figure 2. The CPU trace
begins with processing data (DEL trace element, delay). This is followed by a
write operation to the accelerator (BWS, bus write of specific length), which can
be seen in the activity diagram of the write bus (pipelined bus). This transfer ini-
tiates the execution of a trace in the accelerator, which simulates the processing

Fig. 2. Original and extended TAPES simulation model

System Level Simulation of Autonomic SoCs with TAPES 13

Fig. 3. Trace execution in CPU and Accelerator

of data (DEL) and afterwards issues an interrupt to the CPU (INT, interrupt).
The CPU, which was originally simulating the processing of data (DEL), is now
waiting due to a semaphore trace element (not shown) until the accelerator is
ready to deliver its results. The interrupt causes the CPU to resume its trace
execution with a read access to the accelerator (BRS, bus read specific length),
followed by further processing of data (DEL).

The simulator provides information on the activities of system resources, data
processing latencies, fill levels of internal buffers and even the power consump-
tion of the simulated system. To explore different architecture variations, the
application traces as well as the key parameters of the architecture can be
freely configured. These include the number of CPUs, accelerators or memories,
the clock frequency of individual components, buffer sizes and the width of the
system bus.

4 Implementation

The original TAPES forms the basis of the functional layer of the extended sim-
ulation model, and is extended by an AL. In contrast to the functional elements
which are abstracted by delays, the modeled autonomic elements are fully func-
tional. As suggested in [1], the AL is composed of multiple AEs, each of which is
associated with a single FE. The extended simulation model in Figure 2 shows
the elements of both layers. Communication between AL and FL takes place
only between associated AEs and FEs. An AE gathers information monitored
from the corresponding FE and uses it to adapt the FE’s behavior. Globally this
means that the control loop between AL and FL is formed by multiple smaller
control loops between individual FEs and AEs. To allow for global decisions, all
AEs can communicate directly with each other.

Besides adding the AL to the simulation model, changes must also be made to
the FL. In order to allow the monitoring shown in Figure 1, appropriate interfaces
must be defined and implemented in the FEs. Similar interfaces are required for
actuation. All modifications to the TAPES simulator (implemented in SystemC
2.2) described above are realized in a modular fashion, i.e. it is possible to compile
the simulator both with and without the autonomic features.

14 A. Lankes, T. Wild, and J. Zeppenfeld

4.1 Monitoring

In order to decide whether the parameters of the associated FE must be adapted,
the AE requires information about the state of the FE. The associated exchange
of data can be realized either using polling (the AE periodically checks the state
of the associated FE), or by pushing (the FE actively transfers the data to its
AE every time the state or a monitored value changes). Pushing is used for the
current implementation, which constantly provides the AE with the current in-
formation on the FE. This allows strategies that react immediately on occurring
events. Listing 1.1 shows the interface class used for this communication channel.

// i n t e r f a c e c l a s s f o r an autonomic element o f a module
class ae modu l e i f : public s c i n t e r f a c e {

virtual void e r r o r o c cu r r ed () = 0 ;
virtual void current command (int command) = 0 ;
virtual void f i l l l e v e l (int queue , int f i l l l e v e l) = 0 ;

} ;

Listing 1.1. Interface class for autonomic elements

Various types of data which are transferred over this interface were already
detailed above (Section 3). The majority of this information is directly available
from the FEs. For example, the load or activity of the FE can be derived directly
from the object representing the currently executed trace element. However, the
occurrence of errors, such as timing violations, must be modeled explicitly. For
this purpose, one or more error models are added to the functional elements,
allowing the combination of multiple error types. So far these models are very
simple; they just read an error file that specifies the occurrence of errors. The sole
purpose of modeling errors is therefore to simulate the reaction of the autonomic
system, allowing AEs to take actions that potentially prevent the occurrence of
further errors. The effects of errors on the functional level are not modelled,
since the few clock cycles necessary for error correction are considered negligible
on the system level.

4.2 Evaluation

Based on the information provided by the FE and the rules programmed into
the AE, the AE decides whether the FE requires adaptation or not. If the in-
formation on the associated FE is not sufficient, an AE can access other AEs
for information on their associated FEs. Most of the data provided by the FEs
require processing before it can be applied to the rules that decide on the adap-
tation of the associated FE (see Figure 4). These rules define the strategy of the
autonomic system. Currently the rules are hard-coded into the source code of the
AEs. Consequently the exploration of different strategies requires recompilation
of the simulator.

The processing necessary for the evaluation of data arriving from the FEs
depends on the rules to be used. However, there are some basic processing steps

System Level Simulation of Autonomic SoCs with TAPES 15

Fig. 4. Block diagram of an autonomic element (AE)

that are helpful for all types of rules. Examples of such processing steps are
averaging over specified time periods, building up histories of values or counting
events within time windows. In order to simplify and accelerate the implemen-
tation of these rules, components providing these basic processing steps are im-
plemented. These processing components can be used in different combinations,
for implementing the rules in the autonomic layer.

In the following paragraphs three basic rules are presented that can be realized
using the processing components listed above. By combining these basic rules,
more complex adaptation strategies for autonomic systems can be formed.

The fill level of a buffer and the knowledge of the receiving module of the
buffered data, allows a prediction of the receiving module’s future workload. By
building up a history of buffer fill levels, it is possible to recognize trends of
buffer usage. Such a rule can be extended by also supervising the activity of the
receiver module mentioned above.

For an activity based rule it is best to look at the history of averaged busy
or idle values of an FE (see Figure 5). To get a criterion for deciding if the
throughput must be increased or decreased, ranges that change with the simu-
lation time can be defined. In Figure 5 these ranges, which are opened up by a
load interval and a time period, are called idle window and busy window. If the
graph of the average load lies completely within the busy window, the condition
for increasing the performance of the module is met. The same check can be
performed for the idle window. By changing the height (i.e. load interval) and

Fig. 5. Idle and busy window

16 A. Lankes, T. Wild, and J. Zeppenfeld

width (i.e. the number of averaging periods) of these windows, the conditions
can be parametrized.

As described above, an AE is notified about errors occurring in the associated
module. If the frequency of error events exceeds a certain threshold, the AE
can try to change parameters of the FE in order to reduce the occurrence of
these errors. For example in order to counter too frequent timing violations in a
real system’s component, the AL could decrease the clock frequency or increase
the supply voltage. In the simulation model the ability of the AE to influence
the errors depends on the utilized error models. If an error file is used (i.e. the
occurrence of errors is independent of the module’s current parameters), the AE
can only prevent errors by switching the associated module off.

4.3 Actuation

To enable the adaptation of an FE’s architectural parameters, an additional
communication channel is required between the AEs and their associated FEs.
While introducing this interface (see Listing 1.2) between the AEs and FEs is
fairly straightforward, providing a mechanism for changing FE parameters (i.e.
changing the functional behavior of the FEs) at run time is much more difficult.
First, a new parameter must be added to the FEs, allowing them to be activated
or deactivated. For this purpose the parameter power state is introduced, which
is tightly coupled with the power estimation functionality introduced in [3]. The
possible power states are ’running’, ’hot standby’, ’cold standby’ and ’dead’.

// i n t e r f a c e c l a s s f o r a module (e . g . cpu , acc , . . .)
class f e modu l e i f : public s c i n t e r f a c e {

virtual void s e t p owe r s t a t e (power s tat e s t a t e) = 0 ;
virtual void s e t c l o c k p e r i o d (int c l o ck p e r i od) = 0 ;
virtual void s e t v o l t a g e (int vo l tage) = 0 ;
virtual void s e t e x e c u t i o n v a l u e (int exec va lue) = 0 ;

} ;

Listing 1.2. Interface class for functional elements (e.g. CPU, ACC, ...)

State ’running’ is the active state in which the FE can execute traces, i.e.
process or transfer data. The other states are inactive states: ’hot standby’ and
’cold standby’ are sleeping modes, ’dead’ represents a broken device that has
permanently been shut down. While a resource is in an inactive state, it must be
guaranteed that no execution of traces or data processing occurs. Furthermore,
requests via point-to-point connections or the bus must be rejected by the mod-
ule. When deactivating a module of a system, another resource has to take over
its task of data processing. For example, if the CPUs of a network processor are
supported by an accelerator for encryption and this accelerator is shut down,
the CPUs must handle the encryption by themselves (i.e. in software).

System Level Simulation of Autonomic SoCs with TAPES 17

For the simulation model, this means that the execution of the traces must be
dynamic, allowing an adaptation when a resource is switched off. Unfortunately
in the original TAPES simulator, the trace execution is static, requiring the
introduction of a conditional trace element that allows branching in the execution
of traces. This new IF trace element calls a specific trace depending on the state
of a referenced FE. Besides the static trace execution of the original simulator,
there is an additional problem when deactivating FEs. As in a real system, a
module should only be switched off during simulation if it is not processing or
transferring any data. Consequently it must be ensured that a module is turned
off only if it is idle and contains no data.

When changing the clock frequency of a functional element, we must differ-
entiate between modules and the bus model. In the modules the change of this
parameter has an effect on the delay trace elements. As the delays of these trace
elements is specified in clock cycles, the delays have to be rescaled when the
clock frequency changes. Current executions of delay trace elements have to be
aborted and the remaining delay has to be scaled according to the new clock
period, before execution can be resumed. In the bus model the time required for
arbitration and data transfer depends on the clock period. The clock period of
the bus is assumed to be only adaptable between transfers. As the delay of a
transfer is calculated anew for each transfer, the delay is always based on the
current bus clock.

The voltage parameter of the modules, which is tightly coupled to the power
estimation functionality described in [3], also has to be adaptable in order to be
able to model dynamic voltage and frequency scaling (DVFS). As this parameter
has no effect on the functional behavior of a module, no additional effort is
required for enabling adaptation at runtime.

5 Experiment

One of the most important properties of autonomic computing is the increased
reliability of such systems. This increase of reliability is achieved by the ability
of these systems to adapt themselves at runtime to occurring errors, such as
timing violations. In the following experiment the adaptation process of such an
autonomic network processor architecture is investigated. The basic architecture
of this network SoC is shown in Figure 6. It consists of one bus, three CPUs,
two memory modules, one MAC-module for receiving and transmitting packets, a
buffer manager that autonomously stores/retrieves packets and a queue manager.
Listing 1.3 shows a section of the according system configuration file.

The task of this network processor is basic IP forwarding, which is assumed to
require 560 cycles on a CPU for every packet [14]. The rate of the incoming traffic
is 200MBit/s, the size of each packet is 64Bytes and a total of 4000packets are
simulated. In this example we want to model the occurrence of timing violations
in the third CPU. Since we use the simple error model described above, the
occurrence of these errors is specified in advance, as shown in Figure 6.

18 A. Lankes, T. Wild, and J. Zeppenfeld

< !−− xml con f i gu ra t i on f i l e o f s imu la t i on −−>
<a r c h i t e c t u r e>

<r e s ou r c e s>
< !−− number o f cpus −−>
<cpu>3</cpu>
< !−− number o f a c c e l e r a t o r s −−>
<acc>0</ acc>
< !−− number o f memories −−>
<mem>2</mem>
. . .

</ r e s ou r c e s>
<cpu>

< !−− base c l o c k f requency o f cpus in MHz −−>
<c lock>500</ c lock>

</cpu>
<bus>

< !−− c l o c k f requency o f bus in MHz −−>
<c lock>100</ c lock>
< !−− width o f data busses in b i t s −−>
<bus width>128</bus width>
< !−− max number o f bus words per bu r s t t r a n s f e r −−>
<bu r s t l en g th>8</ bu r s t l en g th>
. . .

</bus>
. . .

</ a r c h i t e c t u r e>
< t r a f f i c>
. . .

Listing 1.3. Section of the simulated system’s configuration file

For adaptation of the system at runtime there are two rules, programmed into
the autonomic layer: The first rule regards the occurrence of errors in the CPUs.
If there are more than two errors within a time window of 20us in a CPU, it will
be shut off. The second rule aims at keeping the CPUs’ utilization at approx.
85%, by adapting clock frequency and voltage accordingly. For homogeneous
traffic, a constant utilization of the CPUs results in a more or less constant

Fig. 6. Simulated network processor system and specified occurrence of errors

System Level Simulation of Autonomic SoCs with TAPES 19

Fig. 7. Load and clock frequency of CPUs

packet output rate. According to the second rule, the clock frequency of the
CPUs is reduced at the beginning, as depicted in Figure 7. Figure 6 shows the
point in time at which the rule regarding the errors is met and the corresponding
CPU is switched off (also visible in Figure 7). After shutting off the third CPU,
the system reacts to the decrease in throughput by increasing the clock of the
remaining CPUs.

The utilization of bus arbiter and read/ write buses are shown in Figure 8.
Immediately after the deactivation of CPU 3, the load of the arbiter drops sig-
nificantly. This decrease is caused by the missing arbitration requests of the
deactivated CPU. With the increased clock frequencies of the remaining CPUs
after the system’s adaptation, the arbiter’s load returns to the original level cor-
responding to the unchanged ingress load. The load of read and write buses are
subject to the same variations.

The average fill level of the CPU queue in the buffer manager is shown in
Figure 9. This queue stores the packet descriptors of packets waiting to be pro-
cessed by the CPUs. The peak in the fill level of the CPU queue originates from
the temporarily lower throughput of the processing resources (CPUs).

Figure 10 shows the packet latencies of the outgoing packets, the point in
time at which the CPU is shut off can easily be recognized by the significant
increase of the latency. However, the adaptation of the system, performed by the
autonomic layer, makes sure that this increase is just temporary by raising the
clock frequency of the remaining CPUs. Now that two CPUs have to keep up
with the same rate of incoming packets as the three CPUs before, the processing
of the packets has to be faster resulting in lower packet latencies. The point
in time of the system’s adaptation can also be seen in Figure 10 showing the

Fig. 8. Load of bus arbiter and read and write bus

20 A. Lankes, T. Wild, and J. Zeppenfeld

Fig. 9. Fill level of the CPU queue in the buffer manager

incoming and outgoing packet rates. The outgoing packet rate drops at first,
after the third CPU has been shut off, but then recovers after the adaptation of
the remaining CPUs’ performance.

The power consumption diagram (Figure 11) of the autonomic network pro-
cessor shows that the two CPUs require significantly more power to keep up
with the incoming packets, than the three CPUs. This is due to the significantly
increase of the CPUs’ clock frequencies as well as the associated increase of
the CPUs’ supply voltage. The power values of the diagram are normalized to
the mean power consumption of a non-autonomic network processor with the
same basic architecture (3 CPUs @ 500MHz) as the autonomic processor in this
example.

Simulating the system presented above takes approx. 1 second on an Intel
Pentium M 2.0GHz with 1024MB RAM running under LINUX (Kernel 2.6.20,
gcc 4.1). However for a simulator used in architecture exploration not only sim-
ulation performance is relevant, but also the effort required for modeling the
simulated systems. For setting up the basic architecture of the example above,
the system’s parameters have to be specified in the XML configuration file of
the simulator. Creating the rules for adaptation of the system at runtime re-
quires slightly more effort. The rules used in this autonomic system must be
programmed into the AEs associated with the CPUs. This can be done using
the basic components presented in Section 4.2. Since the rules are hard coded,
a recompilation of the simulator is necessary. Once these rules are implemented,
they can easily be varied by changing certain parameters of the processing com-
ponents (e.g. averaging period, ranges, etc.).

Fig. 10. Packet latencies and packet rate of incoming/outgoing packets

System Level Simulation of Autonomic SoCs with TAPES 21

Fig. 11. Power consumption of simulated system

6 Conclusion and Outlook

The contribution of this paper is the extension of the TAPES system simulator,
now providing the means to simulate autonomic SoCs. Such systems can adapt
themselves to varying amounts of incoming traffic or occurrences of errors by
changing their architectural parameters. The example in Section 5 shows that the
extended simulator supports the investigation of strategies for autonomic SoCs.
Evaluation of the simulated architectures is possible in terms of performance as
well as of power consumption. Our experiment shows that due to fast turnaround
times, an interactive exploration of autonomic architectures is possible.

Beyond the presented extensions to the simulator, additional enhancements
can be made. The introduction of dynamic error models, in which the error rate
depends on the current parameters of the corresponding FE, will enable an in-
vestigation of tradeoffs concerning power, performance and reliability. Secondly,
the consideration of time penalties required to change module parameters will
improve the accuracy of the simulation model. Finally, a simplified configuration
of autonomic rules will avoid recompilation.

References

[1] Lipsa, G., Herkersdorf, A.: Towards a Framework and a Design Methodology
for Autonomic SoC. In: The 2nd IEEE International Conference on Autonomic
Computing (June 2005)

[2] Wild, T., Herkersdorf, A., Lee, G.-Y.: TAPES - Trace-based architecture perfor-
mance evaluation with SystemC. Design Automation for Embedded Systems 10(2–
3), 157–179 (2006)

[3] Lankes, A., Wild, T., Zeppenfeld, J.: Power Estimation of Time Variant SoCs with
TAPES. In: DSD 2007: 10th EUROMICRO Conference on Digital System Design:
Architectures, Methods, Tools, EUROMICRO, pp. 261–264 (August 2007)

[4] Kephart, J.O., Chess, D.M.: The Vision of Autonomic Computing. Com-
puter 36(1), 41–50 (2003)

[5] Brinkschulte, U., Becker, J., Dorfmüller-Ulhaas, K., et al.: CARUSO - Project
Goals and Principal Approach. In: Workshop on Organic Computing, GI Jahresta-
gung, Ulm (September 2004)

22 A. Lankes, T. Wild, and J. Zeppenfeld

[6] De Micheli., G.: Robust System Design with Uncertain Information. In: MEM-
OCODE 2003: Proceedings of the First ACM and IEEE International Conference
on Formal Methods and Models for Co-Design (MEMOCODE 2003), p. 283. IEEE
Computer Society Press, Washington (2003)

[7] Gries, M.: Methods for evaluating and covering the design space during early
design development. Integr. VLSI J. 38(2), 131–183 (2004)

[8] Thiele, L., Wandeler, E.: Performance Analysis of Distributed Embedded Systems.
Embedded Systems Handbook (2005)

[9] Henia, R., et al.: System level performance analysis - the SymTA/S approach.
IEEE Proceedings Computers and Digital Techniques 152(2), 148–166 (2005)

[10] Cai, L., Gajski, D.: Transaction level modeling: an overview. In: CODES+ISSS
2003: Proceedings of the 1st IEEE/ACM/IFIP international conference on Hard-
ware/software codesign and system synthesis, pp. 19–24. ACM Press, New York
(2003)

[11] SystemC Homepage, www.systemc.org
[12] Donlin, A.: Transaction level modeling: flows and use models. In: CODES+ISSS

2004: Proceedings of the 2nd IEEE/ACM/IFIP international conference on Hard-
ware/software codesign and system synthesis, pp. 75–80. ACM Press, New York
(2004)

[13] Paulin, P.G., Pilkington, C., Bensoudane, E.: StepNP: A System-Level Explo-
ration Platform for Network Processors. IEEE Design and Test of Comput-
ers 19(6), 17–26 (2002)

[14] Ramaswamy, R., Wolf, T.: PacketBench: A tool for workload characterization of
network processing. In: IEEE 6th Annual Workshop on Workload Characteriza-
tion (WWC-6), Austin (October 2003)

www.systemc.org

Topology-Aware Replica Placement in
Fault-Tolerant Embedded Networks

Thilo Streichert, Michael Glaß, Rolf Wanka, Christian Haubelt,
and Jürgen Teich

Department of Computer Science 12
University of Erlangen-Nuremberg, Germany

{streichert,glass,wanka,haubelt,teich}@cs.fau.de

Abstract. Application details uncertain at design time as well as tol-
erance against permanent resource defects demand flexibility and re-
dundancy. In this context, we present a strategy for placing replicas in
embedded point-to-point networks where link as well as node defects
may occur at runtime. The proposed strategies for replica placement are
based on the partitioning of the network into biconnected components.
We are able to distinguish between different replication strategies, i.e.,
active and passive replication. Our experimental results show that the
reliability improvement due to the proposed replica placement strategies
is up to 23% compared to a randomized strategy.

1 Introduction

Many networked embedded systems such as sensor networks or networks in the
field of industry automation need to be flexible and extensible towards appli-
cations which are unknown at design time. In particular, new network nodes
need to be integrated and new tasks are to be placed onto the computational
resources in the network. On the other hand, such networks have to meet de-
mands concerning reliability/availability at a minimum of additional monetary
costs. But how is it possible to combine flexibility with reliability at a minimum
of extra monetary cost? Traditional approaches try to treat transient and per-
manent faults by introducing spatial or temporal redundancy at design time or
by applying coding techniques. In this contribution, we will propose an online
methodology that replicates the tasks executed by the network nodes in order
to tolerate permanent fail-silent faults of nodes and links. These replicated tasks
will be dynamically placed onto network nodes using underutilized computa-
tional reserves. That is, we need not explicitly extend the network with a node
and a spare node providing the same functionality. Instead, the functionality of
a new node or a new application will be distributed over the network making use
of free computational reserves in the network, i.e., reducing the amount of extra
cost. Moreover, it is possible to tolerate several subsequent permanent defects.

Using a two-phase online methodology (Fig. 1), we are able to integrate new
tasks into the network and to treat resource defects. After a defect of a node
or link in the network, the online methodology tries to activate replicas and

U. Brinkschulte et al. (Eds.): ARCS 2008, LNCS 4934, pp. 23–37, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

24 T. Streichert et al.

binding of new tasks

task replication

optimization of

task bindingnode

switching to replicas

defect?
link

fast repair

network topology
changed

(re)establishing task-to-task communication

new arriving tasks

optimization

Fig. 1. In case of topology changes, the fast repair phase activates replicated tasks
and reroutes the communication. If a new task arrives at one node in the network,
the network decentrally tries to bind the task onto one of its network nodes. The
optimization phase optimizes the binding of tasks and creates new replicas.

reroute the communication paths in a fast repair phase. The second phase called
optimization phase tries 1.) to optimize the binding of the tasks and 2.) to place
replicas in order to tolerate further resource defects. In this paper, we focus on
the algorithmic aspects of placement of replicas in order to tolerate node or link
defects.

As an introductory example, consider the networks and placement of tasks in
Fig. 2. Two cases are shown which are completely different in their reliability.
Both cases show a network with six nodes n1, . . . , n6 and two communicating
tasks t1 and t2, each having a unique replica t′1 and t′2, respectively. If in Fig. 2a)
node n2, node n4 or the link (n2, n4) fails, the functionality fails as well because
no connected component contains both tasks. In Fig. 2b) the placement of the
replicas t′1 and t′2 differs such that each node and link defect, even n2, n4 as
well as the link (n2, n4) may occur without loosing the functionality. Thus, the
reliability of the entire network depends heavily on the placement strategy of
replicated tasks and the underlying topology.

Therefore, we will study in this paper the impact of replica placement on the
network reliability and in summary, the contributions are:

1. Novel heuristics for placing replicas are presented which are based on the
partitioning of networks into so-called biconnected components.

n1 n1

a)

n3

n2 n4

n5

n6 n3

n2 n4

n5

n6

b)
t1

t′1

t2

t′2 t′2

t2

t′1

t1

Fig. 2. In a) neither the nodes n2, n4 nor the link (n2, n4) must fail. Otherwise, the
functionality provided by the communicating tasks t1 and t2 cannot operate any more.
In b), the nodes n2 and n4 as well as the link (n2, n4) may fail without loosing func-
tionality as the communication from task t1 to t2 may still be handled from replica t′

1

to t2 or from t1 to t′
2.

Topology-Aware Replica Placement in Fault-Tolerant Embedded Networks 25

2. Differences for placing passive replicas and active replicas are analytically
discussed and experimentally evaluated.

3. An experimental evaluation compares the presented heuristics with respect
to resulting reliability properties.

The remaining paper is structured as follows: Sec. 2 presents the related work in
the field of replica placement. Sec. 3 introduces our network model used through-
out this paper. Sec. 4 focuses on the main contribution of this paper, i.e., on dis-
tributed replica placement techniques. The proposed replica placement approach
is evaluated in Sec. 5.

2 Related Work

Replication has been a research topic in different areas, like distributed file
servers, content delivery networks, and databases. In databases for instance,
replication has been applied for performance reasons. In distributed systems,
replication or redundancy is usually introduced for fault-tolerance reasons and
obtained by replicating tasks or services as well as components or devices.

Independent of the kind of replication, i.e., active replication or passive repli-
cation, different strategies have been investigated for the placement of replicated
tasks. In the field of content-delivery networks, data objects are replicated on
servers in order to minimize the latency in case of an access by a client. A famous
approach that minimizes this latency is the Hot Zone algorithm [12] which is
derived from the Hot Spot [10] algorithm. The Hot Spot algorithm attempts to
place replicas close to the clients generating the highest amount of traffic. N
potential sites are sorted according to this amount of traffic and on the M sites
with the highest traffic replicas are placed. The Hot Zone algorithm partitions
the network into regions consisting of nodes with a low latency to each other.
Then, the Hot Zone algorithm places replicas into the most active regions.

A very good overview of different placement strategies, objectives and applica-
tion areas is given in [7]. The presented algorithms are executed in a centralized
way with global knowledge. But interestingly, the authors of [7] see a strong
relevance towards the research of distributed online-placement strategies which
is the scope of this paper. They argue that distributed approaches overcome
scalability problems of centralized approaches.

Heuristics which determine a placement of replicas in a distributed manner
have been presented by Douceur and Wattenhofer. They studied placement
strategies [4] based on hill-climbing algorithms which are applied in the dis-
tributed server-less file system Farsite [1]. The heuristics select replicas and swap
their placement in order to iteratively increase their availability. In particular,
one group of nodes contacts another group and each of it selects a file it man-
ages. The groups then decide whether to swap the files or not. For the selection
of files, three different strategies were applied: 1.) A RandRand -strategy swaps
two randomly chosen files. 2.) A MinRand -strategy swaps between a minimum-
availability file and any other file. 3.) A MinMax -strategy swaps between a

26 T. Streichert et al.

minimum-availability file and a maximum-availability file. The swaps are only
processed if they reduce the difference of the file availabilities.

In [3], a distributed algorithm with a loosely synchronized global database is
presented which tries to take placement decisions of data objects into account
by applying a randomized strategy. A more recent publication [9] proposes a
so-called sequential placement strategy which determines a binding of a primary
object with the help of a hash function calculated for that object. The idea of
sequential placement is to place replicas close to each other such that failures
can be detected and repaired very fast.

Unfortunately, all these heuristics fail in the context of embedded networks,
since they consider only the availability of a single data object on its own. But,
in the context of embedded networks an application consisting of distributed
communicating tasks works only correctly if all tasks are available. Moreover, in
the context of embedded systems based on point-to-point communication, there
is a high risk that networks split up into two parts due to a defect. Therefore, in
the following sections, we study novel heuristics for the placement and replication
of communicating tasks.

3 Computational Model

The considered systems are specified by the network model which separates
functionality from the network architecture. The network model consists of a
topology graph and a sensor-controller-actuator graph. The third component of
the network model is the set of mapping edges which denotes the binding possi-
bilities of tasks onto network nodes. Hence, we model also heterogeneous nodes
that cannot execute all tasks. The system model can be formally described as
follows:

Definition 1 (Network Model). The entire network model M(Gtg, Gsca, Em)
consists of a topology graph Gtg, a set of sensor-controller-actuator chains Gsca,
and a set of mapping edges Em.

Definition 2 (Topology Graph). The topology graph Gtg(N tg, Etg) consists
of network nodes ni ∈ N tg and edges etg

i ∈ Etg ⊆ N tg ∪ N tg. Edges etg
i between

the network nodes are undirected.

For modeling the functionality, we define a sensor-controller-actuator graph.

Definition 3 (Sensor-Controller-Actuator Graph). The sensor-controller-
actuator graph Gsca(T sca, Esca) consists of tasks ti ∈ T sca and edges esca

i ∈
Esca ⊆ T sca × T sca represent the data dependencies between the tasks.

Definition 4 (Mapping Edges). The set of mapping edges Em ⊆ T s × N tg

relate vertices of the sensor-controller-actuator chains with the vertices of the
topology graph. A mapping edge em ∈ Em starts at a vertex of the sensor-
controller-actuator graph and ends at a vertex of the topology graph.

Topology-Aware Replica Placement in Fault-Tolerant Embedded Networks 27

A mapping edge em ∈ Em indicates the possible implementation of a task onto
the corresponding resource. If a mapping edge (ti, ni) = em is selected, the task
ti of the sensor-controller-actuator graph is executed at the corresponding node
ni. This will be also denoted with ti �→ ni in the following.

In the following, we assume that at most two mapping edges em are selected,
one for the task ti and one for the replica t′i. The replicas can be either active
or passive and throughout the reminder of the paper, we define the property of
active and passive replication as follows.

Definition 5 (Active Replica). Active replicas t′i are executed on a node in
the same way as primary tasks ti. Thus, the active replicas produce the same
computational load ci as the corresponding primary tasks ti.

Definition 6 (Passive Replica). Passive replicas t′i are not executed on a
node, but stored in the memory of that node. In order to work like a primary
task ti, replicated tasks need to be activated. Thus, the passive replicas produce
no computational load ci unless they are activated.

Furthermore, the replica placement methodology presented here is based on the
following failure model :

Definition 7 (Failure Model). Only one node or communication link may
fail simultaneously and another subsequent defect of such a resource occurs after
the methodology from Fig. 1 has been processed.

Obviously, such a defect might result in a situation where more than one resource
is inaccessible due to the decomposition of a network into two or more parts. But
for the presented replica placement algorithms, this assumption is very important
and typically, the execution time of the online methodology is much shorter than
the time between two resource defects. Thus, this assumption does not reduce
the applicability of the presented approach.

4 Topology-Aware Replica Placement

According to the overall methodology presented in Fig. 1, the placement of
tasks and replicas is performed in two steps with competing objectives. The
placement of tasks is executed with the objective to improve the performance of
an application, i.e., reduce the traffic in the network and balance the load on the
network nodes such that the task response times and the overhead due to context
switches are reduced. Due to the fact that the run-time behavior is of major
interest, the task placement is prioritized and executed at first. Afterwards,
the replica placement phase places replicas onto the remaining computational
resources in the network. That is, the replica placement phase assumes a fixed
binding of tasks onto network nodes and each task already consumes a certain
part of the computational capacity of its host network node. With the objective
to increase the reliability of the entire functionality executed by the network,
the placement strategy binds replicated tasks onto network nodes.

28 T. Streichert et al.

In embedded networks tasks might be inoperable because the communication
partners are in separated connected components of the network after a resource
defect. Therefore, a novel strategy is proposed which 1.) identifies network par-
titions that will under no circumstances split up into disjoint components under
the above mentioned conditions and 2.) places replicas t′i with respect to these
partitions. These two parts are explained in the following subsections.

4.1 Identifying Network Partitions

With the help of our failure model, it is possible to identify network regions that
will under no circumstance decompose. Such components are called biconnected
components (e.g., see [2, Sec. 5.3]):

Definition 8 (Biconnected Component). Let G(V, E) be an undirected
graph where V is the set of vertices and E ⊆ V × V is the set of edges ei.
Two edges ei, ej are said to be biconnected if ei = ej or there exists a simple
cycle containing both ei and ej. A simple cycle is a path consisting of vertices
vk, vl, . . . , vk where no vertex except vk occurs twice. Each two distinct edges ei

and ej are in the same set Es ⊆ E iff they are biconnected. All vertices vj ∈ V
incident to the edges e ∈ Es belong to the set Vs ⊆ V . A maximal subgraph
Gs = (Vs, Es) is called a biconnected component.

For the following examinations, we define a set of nodes BCCi containing only
the nodes of a biconnected component Gs: BCCi = Vs . In networks with several
biconnected components, the following elements might occur which are critical
with respect to the reliability of the network:

Definition 9 (Articulation Point). An articulation point is a vertex whose
removal disconnects the graph.

Definition 10 (Bridge). A bridge is an edge whose removal disconnects the
graph.

In Fig. 3 a network with six nodes n1, . . . , n6 is shown. The biconnected compo-
nents in this network are given by the sets Vs1 = {n1, n2, n3}, Vs2 = {n4, n5, n6},
and Vs3 = {n2, n4} with their corresponding edges. Biconnected components
with more than two nodes have the important property that each node is con-
nected to any other node in the same biconnected component via at least two
disjoint paths. Thus, a node defect will result in a failure of the functionality of
the defect node but the functionality of the other nodes within this biconnected
component will not be inaccessible. In case of a link defect, no task bound onto
nodes within the biconnected component will be inaccessible. Note that bicon-
nected components with two elements are somehow an exception because a link
between the two nodes might decompose the two nodes. On the other hand, a
link defect in such a small biconnected component can be interpreted as a node
defect. Hence, the biconnected component will shrink from a node’s point of
view but will not decompose. However, the articulation points in Fig. 3 are n2
and n4. If one of these nodes is faulty, the network is divided into two parts.

Topology-Aware Replica Placement in Fault-Tolerant Embedded Networks 29

n1

n3

n2 n4

n5

n6

Articulation Point

Bridge

Biconnected Component

Fig. 3. Shown is a network with six nodes n1, . . . , n6, with two articulation points
n2, n4, one bridge (n2, n4), and three biconnected components given through their sets
Vs1 = {n1, n2, n3}, Vs2 = {n4, n5, n6}, and Vs3 = {n2, n4} and corresponding edges

The same holds true for the bridge between the nodes n2 and n4. If the link has
a defect, the network is divided, too.

Severl approaches for maintaining biconnected components exist: The first
approach for finding biconnected components in undirected graphs is based on
depth-first search. Such a sequential algorithm which solves the problem in O(n+
m) time where n is the number of vertices in the graph and m is the number of
edges has been presented in [6][2, Sec. 5.3]. If each node in the network knows
about the topology and changes to the topology are immediately announced to
each node in the network, this algorithm is applicable in our replica placement
strategy. A very efficient approach has been presented in [13] which allows for
adapting biconnected components after an edge insertion. Unfortunately, this
approach is not applicable to our case because we consider link defects, i.e.,
edges are deleted but not inserted. The algorithms presented in [5] and [11] are
distributed algorithms that solve the problem of finding biconnected components
concurrently in dynamic graphs.

4.2 Replica Placement Algorithms

After the biconnected components are identified in the network, each node host-
ing tasks ti searches for other host nodes for placing the replica t′i. This search
can be simply implemented with a sort of depth-first search. This search sends a
message msg to one neighboring node. The message msg consists of two ordered
lists msg.visited containing all visited nodes and msg.backtracking with nodes
which will be visited again if a search in a certain network direction was not suc-
cessful. Additional task parameters are stored in msg.constraints and contain
the following information: 1.) required resources like computational capacity or
dedicated I/O components and 2.) the current quality of the replica placement.
Based on the information in msg.constraints, the receiver of the message msg
can decide whether the replica will be accepted or not. If the receiver of msg
accepts the new replica, it sends a message back to the former host node such
that the task binaries can be transferred to the new host. In Alg. 1 the search
strategy for nodes is presented which is locally executed at each network node.

In algorithm Alg. 1 line 10, the replicas are accepted by a receiving node iff
certain constraints stored in msg.constraints are fulfilled. It has been mentioned
that these constraints cover resource constraints like required computational

30 T. Streichert et al.

Algorithm 1. In order to search for nodes which may host a replica, this
depth-first search algorithm processes messages msg.

if myNodeID in msg.visited then1

forall neighbors do2

if neighborID not in msg.visited then3

send msg to neighborID;4

return;5

delete myNodeID from msg.backtracking;6

send msg to last element of msg.backtracking;7

else8

if msg.constraints are fulfilled then9

allocate resources for the replica;10

notify former replica host11

delete msg;12

else13

push back myNodeID to msg.visited;14

push back myNodeID to msg.backtracking;15

forall neighbors do16

if neighborID not in msg.visited then17

send msg to neighborID;18

return;19

delete myNodeID from msg.backtracking;20

send msg to last element of msg.backtracking;21

capacity, necessary I/O components, etc. But it is also important that these
constraints contain information about the current placement of the replicas.
Therefore, criteria are explained in the following that allow for deciding whether
the new replica placement is better than the current placement.

The first group of algorithms requires reliability values of computational re-
sources in the network and respects these values during the placement process:
Max Rel: The Max Rel strategy tries to place tasks onto nodes with highest re-
liability as long as enough computational capacity is available and other resource
constraints are not violated. The host node of the replica t′i and its task ti must
not be the same. This strategy resembles the idea from [4] explained in Sec. 2.
This strategy is considered as a reference here, and the next three approaches
will be compared to it.
BCC Max1 Max Rel: The BCC Max1 Max Rel places a replica in a bicon-
nected component where the most adjacent tasks are located, i.e., tasks the
replica communicates with after activation of the replica. Within this bicon-
nected component, the replica is placed onto the most reliable node. As before,
the host node of the replica t′i and its task ti must not be the same.
BCC Max2 Max Rel: The BCC Max2 Max Rel places a replica in a bicon-
nected componentwhere themost tasks are located. In this case, data dependencies
between tasks are not respected. Within this biconnected component, the replica

Topology-Aware Replica Placement in Fault-Tolerant Embedded Networks 31

is placed onto the most reliable node. Again, the host node of the replica t′i and
its task ti must not be the same.
BCC Task Max Rel: The BCC Task Max Rel places a replica t′i in a bi-
connected component where the corresponding task ti must not be located in.
The idea is to distribute the tasks and replicas over the biconnected components
such that one component with the entire functionality survives. Within the bi-
connected component the replica is placed onto the most reliable node. If another
biconnected component without the task ti and a node with higher reliability is
found the replica t′i will be placed onto the new node. If only one biconnected
component exists, the replica is placed onto the node with the highest reliability
in this component.

In many cases, a network designer does not precisely know about the relia-
bility of the applied communication or computational resources. Therefore, the
following algorithms are investigated which do not require any reliability values,
e.g., failure rates, of the resources:
Random: The Random strategy places a replica t′i onto a randomly selected
node which does not execute the task ti. This strategy is just considered for
comparison of our approaches.
BCC Max1: The BCC Max1 strategy resembles the BCC Max1 Max Rel strat-
egy, but instead of selecting the node with highest reliability an arbitrary node
of the biconnected component is chosen.
BCC Max2: The BCC Max2 strategy is also similar to the BCC Max2 Max
Rel strategy, but neglects the reliability of the nodes.
BCC Task: The BCC Task strategy places the replica t′i in the biconnected
component next to the biconnected component hosting the task ti. If only one
component exists the replica t′i is placed onto an arbitrary node.

The entire replica placement approach is a greedy strategy which places a
replica onto a network node if it improves the current binding. Moreover, the
approach runs asynchronously and concurrently in the network.

4.3 Computational Load of Active and Passive Replicas

Typically, the computational capacity in embedded networks is restricted and it
might not be possible to execute the tasks and their replicas simultaneously (ac-
tive replication). Instead, it is possible to keep replicas passively in the memory
and activate them if the node executing the corresponding tasks will fail. In this
case, it has to be assured that the computational capacity of each node is not
exceeded after the replicas are activated. Therefore, we will consider two load
scenarios here: 1.) tasks are actively replicated such that each replica requires
memory as well as computational resources and 2.) tasks are passively replicated
such that only memory but no computational resources are required (unless a
node fails and the replica is activated).

In the following, we will formally describe the differences between active and
passive replication in the context of computational load. For simplicity, we as-
sume that each task can be executed by each node, i.e., other resource constraints
than the computational power do not exist.

32 T. Streichert et al.

Definition 11 (Normalized Load Constraint). Let the computational ca-
pacity of a node ni be 1. Let cj ∈ R

+ be the real-valued fraction of the capacity
of a task tj consumed if executed by node ni. All computational loads cj of tasks
executed by ni must not exceed the capacity:

∑
tj :tj �→ni

cj ≤ 1 tj �→ ni means
that task tj is executed by node ni.

Definition 12 (Active Replication Constraint). The sum of computational
loads cs of the tasks ts or active replicas t′s executed by node ni must not exceed
the capacity of ni:

∑
ts:ts �→ni

cs +
∑

t′
s̃
:t′

s̃
�→ni

cs̃ ≤ 1

By Def. 5, it is trivial that Def. 12 obeys Def. 11.
For the following considerations, we additionally assume that each node ni

knows whether a task tx is executed by a node nj in the same biconnected
component (ni, nj ∈ BCCr) or in a different biconnected component (ni ∈
BCCr, nj ∈ BCCs with BCCr 	= BCCs). If the nodes ni, nj are in different
biconnected components, the unique articulation point nAP

k ∈ BCCr required
for accessing BCCs is also known by ni ∈ BCCr .

Definition 13 (Passive Replication Constraint). Let cx be again the nor-
malized computational load of a task tx and its passive replica t′x after activation.
Then, for a node ni belonging to a biconnected component BCCr (ni ∈ BCCr),
the following equation must hold:

max
(
LRBCC

ni
, LRAP

ni

)
+ LTni ≤ 1 (1)

LRBCC
ni

denotes the load caused by the replicas placed onto node ni. The replicas
stem from the tasks of the nodes nk within the same biconnected component than
ni where nk is not an articulation point (ni, nk ∈ BCCr , nk /∈ BCCs with
BCCr 	= BCCs):

LRBCC
ni

= max
nk∈BCCr∧nk �=ni

∧nk /∈BCCs

(∑

t′
x:t′

x �→ni

∧tx �→nk

cx

)
(2)

LRAP
ni

denotes the load caused by the replicas placed onto node ni. This time the
replicas stem from the tasks of the nodes nk which are not in the same biconnected
component than ni (ni ∈ BCCr , nk /∈ BCCr):

LRAP
ni

= max
nAP

j ∈BCCr

∧nAP
j �=ni

(∑

nk∈BCCs

∧nAP
j ∈PATH(ni,nk)
∧BCCr �=BCCs

∑

t′
x:t′

x �→ni

∧tx �→nk

cx

)
(3)

PATH(ni, nk) denotes a set of nodes connecting ni ∈ BCCr and nk ∈ BCCs.
nAP

j is an articulation point as defined in Def. 9.
LTAP

ni
denotes the load caused by the tasks placed onto node ni: LTni =∑

tx:tx �→ni
cx

Theorem 1. If passive replication is applied then the passive replication con-
straint satisfies the normalized load constraint.

Topology-Aware Replica Placement in Fault-Tolerant Embedded Networks 33

Proof. The overall computational load of a node ni is composed of three different
loads: 1.) the load of replicas t′x �→ ni ∈ BCCr with tx �→ nj ∈ BCCr and
nj /∈ BCCs, 2. the load of replicas t′x �→ ni ∈ BCCr with tx �→ nj ∈ BCCs

(BCCr 	= BCCs), and 3.) the load of tasks tx �→ ni.
1. Given are two different nodes nk and ni belonging to the same biconnected

component ni, nk ∈ BCCr and nk belongs to no other biconnected component
BCCs, i.e., nk is not an articulation point. The tasks tx of node nk have repli-
cas t′x at node ni which do not cause any computational load unless they are
activated (see Def. 6). After a single defect of nk, the other nodes nj belonging
to the same biconnected component nj ∈ BCCr are still connected to ni (see
Def. 8). Thus, only the replicas t′x of the tasks tx of node nk will be activated.
Since each node nk might fail and may have replicas t′x of its task at ni, the
maximum computational load that will be added to the load of ni after a defect
of a node nk has to be considered. This is LRBCC

ni
.

2. Given are two different nodes nk and ni belonging to different biconnected
component ni ∈ BCCr, nk ∈ BCCs and BCCr 	= BCCs. BCCr has one or
more articulation points nAP

j ∈ BCCr. Since different biconnected components
are connected via one unique articulation point nAP

j , a single resource defect
leads to a situation where all tasks tx on nAP

j and behind this articulation
point are inaccessible. Thus, a failure of nAP

j ∈ BCCr leads to a failure of all
biconnected components BCCs accessible via nAP

j ∈ BCCr. Since one resource
may fail simultaneously, the network region accessible via another nAP

l ∈ BCCr

is still accessible in case of the a failure of nAP
j ∈ BCCr . Thus, network regions

accessible via different articulation points nAP
l ∈ BCCr fail exclusively from the

point of view of a node ni ∈ BCCr. The maximal computational load at node
ni coming from a network region if nAP

j ∈ BCCr fails is LRAP
ni

.
The load caused at a node ni ∈ BCCr due to a defect of nk ∈ BCCr is either

LRBCC
ni

or LRAP
ni

. This depends on whether nk is an articulation point or not.
Thus, the maximum of LRBCC

ni
and LRAP

ni
will be added to the load of ni.

3. Since all tasks tx executed by ni cause a computational load, the overall
load caused by the tasks is the sum of the corresponding cx.

As an example for the case covered by Eq. (1), consider the network in Fig. 4. The
network consists of eight nodes partitioned into three biconnected components
which are connected by two articulation points (nAP

2 , nAP
5). The task binding is

given and some of the replicas are already placed in the network Assume that
node n4 is asked whether it can host a passive replica of task t5 by the algorithm
shown in Alg. 1. The node n4 need to know that they access nodes outside their
own biconnected component via nAP

2 or nAP
5 . In detail, the nodes n1 and n3

can be accessed via a path containing articulation point nAP
2 whereas the nodes

n7 and n8 can be accessed via a path containing articulation point nAP
5 . Thus,

a defect of on single resource , e.g., nAP
2 or nAP

5 , can split the network such
that either the left or the right biconnected component is not accessible from
n4. But, it is not possible that the left and right biconnected component will

34 T. Streichert et al.

n1 n4

n6

Biconnected Component

n2

n3

n5

n7

n8

Articulation Point

t3

t4

t1 t2

t′1 t′2

t′3

t5

Fig. 4. The figure acts as an example for Eq. (3). From the point of view of node
n4, a single node defect might lead to failure of the functionality hosted in either the
right biconnected component, the left biconnected component, or node n6 but not all
together.

become unaccessible from n4 at the same time. If node n6 fails no task hosted
by other nodes will be inaccessible. Thus, node n4 has to calculate:

LRBCC
n4

= max(c3), LRAP
n4

= max(c5 + c1, c2), LTn4 = c4 (4)

If the following inequality holds true the replica of t5 can be placed:

max
(
LRBCC

n4
, LRAP

n4

)
+ LTn4 ≤ 1 (5)

5 Experimental Evaluation

With the help of extensive Monte-Carlo simulations, the different strategies have
been evaluated. For this purpose, we implemented a behavioral model of the
network and each node as well as each link in the network has been annotated
with a constant failure rate λ. Afterwards, the simulator randomly determines
the defect time of each node and link using the inverse function of the reliability
function R(t) = e−λt [8]: t = ln R(t)

−λ Note that the random values for R(t)
are uniformly distributed. The resources are ordered according to their defect
time t. Starting with the smallest defect time, the simulator removes at each
defect time the corresponding resource from the network topology. After each
removal of a resource, the online methodology (see Fig. 1) is processed and the
simulator checks if the entire functionality is still operable. If this is not the
case, the network has failed to operate. The defect time t of the last removed
resource which led to a network failure is called the time to failure TTF . In
order to determine the mean time to failure MTTF , the simulation is repeatedly
executed and the average of all obtained TTF values is calculated.

For the experimental evaluation of our methodology, we generated different
network system models and varied 1.) the number of mapping edges for each
task and 2.) the failure rate of the links (λ − Link) and the failure rate of the
nodes (λ − Node).

In the following figures, a relation of the failure rates is presented. A relation
of the failure rates λ − Node/λ − Link = 0.1 denotes a case where λ − Node

Topology-Aware Replica Placement in Fault-Tolerant Embedded Networks 35

a)

1

1.05

1.1

1.15

1.2

1.25

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
or

m
al

iz
ed

M
T

T
F

#Mapping Edges/Task

Max Rel
BCC Task Max Rel

BCC Max1 Max Rel
BCC Max2 Max Rel

b)

1

1.05

1.1

1.15

1.2

1.25

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
or

m
al

iz
ed

M
T

T
F

#Mapping Edges/Task

Random
BCC Task

BCC Max1
BCC Max2

c)

1

1.05

1.1

1.15

1.2

1.25

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
or

m
al

iz
ed

M
T

T
F

#Mapping Edges/Task

Max Rel
BCC Task Max Rel

BCC Max1 Max Rel
BCC Max2 Max Rel

d)

1

1.05

1.1

1.15

1.2

1.25

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
or

m
al

iz
ed

M
T

T
F

#Mapping Edges/Task

Random
BCC Task

BCC Max1
BCC Max2

Fig. 5. Depending on the number of mapping edges per task, the reliability improve-
ments a) compared to the reliability of the Max Rel strategy and b) compared to the
Random strategy for active replication as well as c) compared to the reliability of the
Max Rel strategy and d) compared to the Random strategy for passive replication are
presented

varies between 0.0001 and 0.0009 and λ − Link ranges from 0.001 to 0.009.
The number mapping edges is normalized with the number of tasks, i.e., if
#MappingEdges/Task = 0.3, each task can be executed by 30% of the network
nodes. If #MappingEdges/Task = 1 each task can be executed everywhere in
the network unless the nodes do not have enough computational resources. The
computational power of all network node is normalized to one and the load of a
task varies between 0.1 and 0.5.

At first, we consider the placement strategies where active replicas are placed
in the network. We normalized the MTTF values obtained with the proposed
strategies with the MTTF values of the reference strategies Random or MaxRel,
respectively. Fig. 5a shows the normalized MTTF for active replication over the
number of mapping edges per task where each node knows its failure rate. The
same case is presented in Fig. 5b) but here, the nodes do not know about their
failure rate. Fig. 5c),d) present the same results than Fig. 5a),b), but instead of
placing active replicas, passive replicas are placed within the network.

As mentioned above, we also varied the failure rate of nodes and links. There-
fore, the same results as in Fig. 5 and Fig. 5 are presented over the failure rate
relation λ − Node/λ − Link in Fig. 6. Fig. 6a),b) show the results for active
replication while Fig. 6c),d) show results for passive replication.

Our test-cases show that the BCC Task (Max Rel) strategy outperforms the
other distributed approaches to replica placement. Thus, a diverse placement

36 T. Streichert et al.

a)

1

1.05

1.1

1.15

1.2

1.25

0.001 0.01 0.1 1 10 100

N
or

m
al

iz
ed

M
T

T
F

Relation λ-Node/λ-Link

Max Rel
BCC Task Max Rel

BCC Max1 Max Rel
BCC Max2 Max Rel

b)

1

1.05

1.1

1.15

1.2

1.25

0.001 0.01 0.1 1 10 100

N
or

m
al

iz
ed

M
T

T
F

Relation λ-Node/λ-Link

Random
BCC Task

BCC Max1
BCC Max2

c)

1

1.05

1.1

1.15

1.2

1.25

0.001 0.01 0.1 1 10 100

N
or

m
al

iz
ed

M
T

T
F

Relation λ-Node/λ-Link

Max Rel
BCC Task Max Rel

BCC Max1 Max Rel
BCC Max2 Max Rel

d)

1

1.05

1.1

1.15

1.2

1.25

0.001 0.01 0.1 1 10 100

N
or

m
al

iz
ed

M
T

T
F

Relation λ-Node/λ-Link

Random
BCC Task

BCC Max1
BCC Max2

Fig. 6. Depending on the failure rate relation λ − Node/λ − Link, the reliability im-
provements a) compared to the reliability of the Max Rel strategy and b) compared to
the Random strategy for active replication as well as c) compared to the reliability of
the Max Rel strategy and d) compared to the Random strategy for passive replication
are presented

of tasks and replicas in the network is better than cumulating tasks in certain
biconnected components in the network. Comparing Fig. 5a) with Fig. 5c) and
Fig. 5b) with Fig. 5d), respectively shows the impact of passive replication to
tolerate permanent resource defects. In particular, passive replication together
with the BCC Task (Max Rel) strategy leads to an improvement of the MTTF
which is up to 10% higher than active replication. Of course, active replication
has advantages concerning transient faults and fault reaction times, but due to
the limited computational power of network nodes, passive replication is able to
improve the availability of the entire network functionality.

Fig. 6 shows that the benefit of our topology-aware replica placement strate-
gies decreases if network nodes are much more likely to fail than links between
these nodes. This behavior is due to the fact that the network decomposes very
fast, but no connected component is able to host all communicating tasks and the
network functionality cannot be provided any more. In this case, the potential
for increasing the MTTF compared to strategies without topology information
is low. On the other hand, if the probability of a link defect is higher than the
probability of a node defect, the network topology might become like a chain of
biconnected node groups. In such a network topology, our strategies are aware
of the node groups and are able to place tasks such that the MTTF is improved.
Note that this latter case where the failure rate of a link is higher than the
failure rate of a node is more realistic. Hence, our approach leads to a better
improvement of the normalized MTTF for more realistic cases.

Topology-Aware Replica Placement in Fault-Tolerant Embedded Networks 37

6 Conclusions

In this paper, we presented novel heuristics for placing replicated tasks in embed-
ded networks. With the goal to increase the mean time to failure and hence the
reliability of the network and to delay the failure of the network’s functionality,
different heuristics are proposed which are based on the partitioning of the net-
work into biconnected components. Moreover, we discussed differences of active
and passive replication and experimentally illustrated the impact of the passive
replication on the mean time to failure. All in all, replica placement strategies
based on biconnected components seem to be quite attractive, 1.) because they
run in a distributed manner, 2.) they improve the mean time to failure, and 3.)
they allow for distinguishing between active and passive replication.

References

1. Adya, A., Bolosky, W.J., Castro, M.: FARSITE: Federate, Available, and Reliable
Storage for an Inclomplete Trusted Environment. In: Proceedings of the OSDI
(2002)

2. Aho, A.V., Hopcroft, J.E., Ullman, J.D.: The Design and Analysis of Computer
Algorithms. Addison-Wesley, Reading (1974)

3. Cuenca-Acuna, F.M., Martin, R.P., Nguyen, T.D.: Autonomous Replication for
High Availability in Unstructured P2P Systems. In: 22nd IEEE International Sym-
posium on Reliable Distributed Systems (2003)

4. Douceur, J.R., Wattenhofer, R.: Competitive Hill-Climbing Strategies for Replica
Placement in a Distributed File System. In: Welch, J.L. (ed.) DISC 2001. LNCS,
vol. 2180, pp. 48–62. Springer, Heidelberg (2001)

5. Hohberg, W.: How to find biconnected components in distributed networks. J.
Parallel Distrib. Comput. 9(4), 374–386 (1990)

6. Hopcroft, J., Tarjan, R.: Algorithm 447: efficient algorithms for graph manipula-
tion. Commun. ACM 16(6), 372–378 (1973)

7. Karlsson, M., Karamanolis, C., Mahalingam, M.: A Framework for Evaluating
Replica Placement Algorithms. Technical report, HP Labs, HPL-2002-219 (2002)

8. Laprie, J.C.: Dependability: Basic Concepts and Terminology - In English, French,
German, and Japanese. Springer, Heidelberg (1992)

9. Lian, Q., Chen, W., Zhang, Z.: On the Impact of Replica Placement to the Re-
liability of Distributed Brick Storage Systems. In: Proceedings of the 25th IEEE
International Conference on Distributed Computing Systems (ICDCS 2005), pp.
187–196. IEEE Computer Society Press, Washington (2005)

10. Qiu, L., Padmanabhan, V.N., Voelker, G.M.: On the Placement of Web Server
Replicas. In: Proc. of the IEEE INFOCOM conference, pp. 1587–1596 (April 2001)

11. Swaminathan, B., Goldman, K.: An Incremental Distributed Algorithm for Com-
puting Biconnected Components in Dynamic Graphs. Algorith. 22(3), 305–329
(1998)

12. Szymaniak, M., Pierre, G., van Steen, M.: Latency-Driven Replica Placement. In:
Proc. of the Symp. on Applications and the Internet (SAINT 2005) (2005)

13. Westbrok, J., Tarjan, R.E.: Maintaining Bridge-Connected and Biconnected Com-
ponents On-Line. Algorithmica 7(1), 433–464 (1992)

Design of Gate Array Circuits Using
Evolutionary Algorithms

Peter Bungert, Sanaz Mostaghim, Hartmut Schmeck, and Jürgen Branke

Institute AIFB, Universität Karlsruhe (TH), Karlsruhe Institute of Technology,
Germany

{peter.bungert,sanaz.mostaghim,
hartmut.schmeck,juergen.branke}@kit.edu

Abstract. In this paper, we study the design of combinational logic
circuits using evolutionary algorithms. In particular, this paper is about
fitness assignment methods and recombination operators for speeding up
the optimisation process. We propose a new fitness assignment mecha-
nism called MaxMin method and compare it with the straightforward
method used in the literature. The results show significant improve-
ments both in terms of computational time and quality of the solutions.
Furthermore, a new cross-over operator called area cross-over has been
introduced and compared with other typical operators. This operator is
particularly designed for gate matrices where two rectangular logic blocks
are exchanged between the individuals. We observe that the MaxMin
fitness assignment as well as the area cross-over operator considerably
improve the performance of the evolutionary optimisation.

1 Introduction

Two-dimensional arrays of gates are used in many devices like Field Programm-
able Gate Arrays (FPGA), Field Programmable Analog Arrays (FPAA) or mem-
ory chips. During circuit design, various aspects have to be considered, like few
successive logical levels, a minimal number of gates or a high operation frequency.
Here, we study combinational logic circuits without memory elements and aim at
achieving an optimal circuit design for a given truth table by using evolutionary
methods. The gates of such circuits may have different functionalities (types)
such as AND, OR, XOR, NOT and Wire1. A circuit is optimal, if it 1) performs
correctly as listed in the truth table and 2) has a maximum number of Wires,
i.e., has a low number of AND, OR, XOR, or NOT gates. In general, these two
optimisation goals are not conflicting and therefore it is not necessary to apply
a multi-objective optimisation algorithm.

For this optimisation problem, we study Evolutionary Algorithms (EAs) which
are known as powerful tools to solve a large range of optimisation problems [5].
Their use for the design of circuits has created the research area of “Evolvable
Hardware”, see e.g. [1,2,6,7,8]. In EAs, the evaluation mechanism and recom-
bination operators have a great impact on the quality of the solutions. In this
1 Wire is not a gate. It is a short circuit between input and output.

U. Brinkschulte et al. (Eds.): ARCS 2008, LNCS 4934, pp. 38–50, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Design of Gate Array Circuits Using Evolutionary Algorithms 39

particular application, finding an optimal design for a specific function gets very
complicated as the number of inputs and outputs grows. Thus, it is of great
importance to find a valid solution in a reasonable computational time.

In [7], Kalganova and Miller study EAs on combinational circuits where they
introduce the geometry mutation operator and a new fitness evaluation mecha-
nism to improve the quality of the solution. The geometry mutation changes the
size of the matrix at random by adding or deleting a column or a row. This oper-
ator adds flexibility in the design but in order to ensure that the new generated
solution with the new geometry represents a valid solution, a repair algorithm
is applied. The fitness evaluation mechanism is applied in two levels. The first
level is to obtain a correct design. As soon as a correct design has been achieved
the second level is added in a way to maximise the number of not involved gates.
Coello Coello et al. studied EAs and Ant Colony Optimisation for the automated
design of such combinational circuits [2,3]. In a more recent work, Coello Coello
and Aguirre [1] study a multi-objective approach where they treat each output
value of the function’s table as an objective. Hence the number of objectives in-
creases exponentially with the number of inputs but as the objective values are
binary (correct or not correct) a totally different multi-objective optimisation
mechanism than the typical ones [4] has been introduced by them. Most of their
work is based on typical evolutionary algorithms, they use operators and fitness
assignment methods without considering the particular aspects of the problem.
Here, we introduce new mechanisms in evolutionary algorithms which are par-
ticularly designed for the combinational circuit problem. We study a new fitness
evaluation mechanism called MaxMin fitness assignment for finding the correct
circuit in which we consider the number of correct outputs of each individual
and also the difficulty of finding the correct outputs. If an output is found by
a small number of individuals only, those individuals get a higher fitness value.
This is compared with standard fitness assignment mechanisms on two examples
and the new methodology is shown to have a great impact on the solutions and
the computational time.

Furthermore, we study a novel cross-over operator (called area cross-over)
which is designed particularly for a two-dimensional array of gates. We compare
the area cross-over with the typical one-point and two-point cross-over operators
and obtain results of better quality. The new methodologies are tested on two
typical examples such as a full adder and a multiplexer.

This paper is structured as follows. In Section 2, we briefly describe logic gate
arrays. Evolutionary algorithms and the new fitness mechanism and recombina-
tion operators are studied in Section 3. In Section 4, we examine and analyse the
new approaches on two different examples. Section 5 is dedicated to conclusion
and future work.

2 Gate Matrix

For the evolutionary design of combinational circuits the standard approach is
to evolve configurations of a two-dimensional array of customisable logic gates

40 P. Bungert et al.

and interconnections as shown in Figure 1. Circuits are composed from left to
right, the n inputs are applied to the left and m outputs are taken from the
right. Every matrix element consists of a single customisable gate representing
one of the following types: AND, OR, XOR, NOT, and Wire. Wire is not a real
gate. It directly connects the input to the output. In the cases of NOT and Wire
where only one input is required, the first input is used.

In Figure 1, the gates are illustrated by the boxes indicated by gcr. The
indices c and r are the column and row indices representing the location of the
gates. Each gate has two inputs (i1, i2) and one output, where I and O are
the input and output vectors of the circuit. Connections are made by selecting
one of the outputs from the previous column as the input for the next column.
The functionality of the circuit can be described by a truth table as shown in
Table 1. Obviously, this gate matrix could be viewed as a very specialised Field
Programmable Gate Array.

G11

G12

G13

G21

G22

G23 G33

G32

G31g

g

g g

g g

g

g

11

12

13

21

22g

23

31

32

33
3I

2I

1I 1O

2O

3O

1

1

1

2

2i

i

i

i

2i

i

Fig. 1. Matrix representing a gate array circuit

Table 1. Representation of a func-
tion by a generalised truth table

I1 . . . In Ô1 . . . Ôm

0 . . . 0 ô1,0 . . . ôm,0

0 . . . 1 ô1,1 . . . ôm,1

...
. . .

...
...

. . .
...

1 . . . 1 ô1,2n . . . ôm,2n

For illustration, a full adder is used as one of our standard examples in this
paper. The truth table and a correspondingly configured matrix for a full adder
are shown in Figure 2 and Table 2. In the table, I1, I2 and I3 are the inputs and
the carry-in to the adder and the two outputs are indicated by Ô1 (sum) and
Ô2 (carry-out).

G11

G12

G13

G21

G22

G23 G33

G32

G31g

g

g g

g g

g

g

11

12

13

21

22g

23

31

32

33

x0

1I

0y

0c

s1

c1

2I

I3

2O

O1XOR

&

XOR

&

OR

Fig. 2. Matrix for a full adder circuit

Table 2. Truth table for a full
adder circuit

I1 I2 I3 Ô1 Ô2

0 0 0 0 0
0 0 1 1 0
0 1 0 1 0
0 1 1 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1

Design of Gate Array Circuits Using Evolutionary Algorithms 41

3 Evolutionary Algorithms

In this section, we describe the evolutionary algorithm used to search for the
optimal circuit for a given truth table. We assume a population of N individuals
where each individual contains a chromosome representing the two-dimensional
circuit (matrix of gates) as explained in Section 2. In more detail, every gate of
the matrix is encoded as a triplet in which the first two elements are the inputs
and the third one is the type of the gate. Figure 3 shows an example of a typical
chromosome containing the triplets for representing each gate.

Type Type.i1 2i 2ii1

Fig. 3. Every gate encoded as a triplet in the chromosome

In order to evaluate the individuals, we compute their truth tables and com-
pare these with the given truth table. The number of correct outputs charac-
terises the degree of correctness. Together with the number of Wire-gates it
determines the fitness of an individual. In the following, we study a straightfor-
ward fitness assignment mechanism and then introduce a new approach called
MaxMin fitness assignment. For all our experiments, we use a generational al-
gorithm with one elite individual.

3.1 Fitness Assignment

As mentioned before, the objective of the optimisation is to obtain a circuit
computing the given truth table with a maximal number of wires. Therefore,
the straightforward method for circuit evaluation is to compute two values [1,7].
The first is based on the correctness of the circuit, i.e., the number of correct
outputs and the second relates to the number of Wires in the circuit. For a truth
table as shown in Table 1 this leads to the following evaluation:

Fs =
m∑

i=1

2n
∑

j=1

fs(i, j) + W with fs(i, j) =
{

0 if ôi,j �= oi,j

1 if ôi,j = oi,j
(1)

where ô and o are the desired and W denotes the total number of gates with the
selected type as wire:

W =
{

0, if circuit not correct
#Wires in circuit, if circuit is correct (2)

n and m are the numbers of in- and outputs, respectively.
The use of this value Fs in the selection scheme determines the fitness of in-

dividual s. The main issue in this evaluation scheme is that the individuals are
evaluated with preference on the correctness of the circuit. Table 3 shows an ex-
ample of a truth table of an individual for finding a full adder circuit. Since only
8 of the 16 output values are correct, wires are not considered and the evaluation
leads to the value 8.

42 P. Bungert et al.

Table 3. Truth table decoded from an individual for the adder circuit. The values in
parentheses show the correct outputs.

I1 I2 I3 O1 O2

0 0 0 (0) (0)
0 0 1 (1) 1
0 1 0 (1) 1
0 1 1 1 0
1 0 0 0 1
1 0 1 (0) 0
1 1 0 (0) 0
1 1 1 (1) (1)

3.2 MaxMin Evaluation Mechanism

The straightforward evaluation explained in the previous section depends only
on one individual and the number of its correct outputs. Here, we study a new
method where we consider all of the individuals of a population. The main idea
is to observe which output is correctly found by how many individuals. For
instance, if an output has been found by all the individuals, it should not have
the same influence as a difficult output which has been found by a small number
of individuals only. Those difficult outputs should have more influence on the
evaluation. Table 4 shows an example of 6 individuals for solving the full adder
circuit problem.

Individuals and their corresponding 16 output values in their truth tables are
shown in columns. Si,j in the last column shows the number of individuals which
found the correct output for each row:

Si,j =
N∑

k=1

f (k)
s (i, j) with f (k)

s = fs of individual k (3)

For example, individuals 2 and 4 find the correct output (1,5), therefore we
have a 2 in row 6 of the last column. In this table, the last two rows indicate
the quality value with respect to the previous evaluation and the corresponding
MaxMin quality (we explain this new evaluation later in this section). Here, we
can observe that individuals 2 and 4 have the highest number of correct out-
puts, namely 8. Individual 6 has the lowest number of correct outputs (only 4),
but three of these correct outputs do not appear in other individuals. Hence,
this solution is interesting for the optimisation. The new evaluation scheme is
designed to take such solutions into account. By using the MaxMin evaluation,
individual 6 gets the highest value, namely 21. The MaxMin value G

(k)
s for each

individual is calculated as below:

G(k)
s = N ×

m∑

i=1

2n
∑

j=1

f
(k)
s (i, j)
Si,j

+ W (4)

Design of Gate Array Circuits Using Evolutionary Algorithms 43

Table 4. Truth table for N = 6 individuals. The values in parentheses show the correct
outputs.

Oi,j Ind1 Ind2 Ind3 Ind4 Ind5 Ind6 Si,j

(1,0) 0 0 0 0 0 (1) 1
(1,1) (1) (1) (1) (1) (1) 0 5
(1,2) 1 1 1 1 1 (0) 1
(1,3) (0) 1 (0) 1 (0) 1 3
(1,4) (1) (1) (1) (1) (1) 0 5
(1,5) 1 (0) 1 (0) 1 1 2
(1,6) 0 0 (1) 0 0 0 1
(1,7) 1 1 (0) (0) (0) 1 3
(2,0) (1) 0 0 0 0 (1) 2
(2,1) 1 (0) 1 1 (0) 1 2
(2,2) 0 (1) (1) 0 0 0 2
(2,3) (0) (0) 1 (0) (0) 1 4
(2,4) 0 (1) 0 (1) (1) 0 3
(2,5) 0 0 0 0 0 (1) 1
(2,6) (1) 0 0 (1) 0 0 2
(2,7) (0) (0) 1 (0) 1 1 3
F

(k)
s 7 8 6 8 7 4 —

G
(k)
s 13.9 16.9 15.4 15.9 12.9 21 —

Here, as before, as soon as an individual finds the correct truth table, the term
related to the number of Wires (eq. 2) is added. In this approach, we maximise the
influence of the least solved (minimal) output, therefore we call itMaxMin method.

3.3 Recombination Operators

In this section, we study cross-over operators and introduce a new operator
called area cross-over. Typical cross-over operators, like one-point, two-point
and uniform cross-over have been used in the context of gate matrix design
optimisation [1,7]. Obviously, as the individuals represent the gate matrix (see

0

35

(a)

0

14

35

6

1

30

5

15

11

(b)

0

35

1

6

8

9

5

30

11 23

22

(c)

0

35

7

21

14

6

1 13

8

19

9 15

20

16 2210

5

30

(d)

Fig. 4. (a) The string representing an individual is shown on a matrix. The figure
illustrates the gate matrix where every box represents a gate. (b) Cutting point in
one-point cross-over. (c) Cutting points in the two-point cross-over. (d) Cutting region
of the area cross-over.

44 P. Bungert et al.

Section 2) and its geometry, the cross-over operators have a great impact on the
new generated solutions. Figure 4a shows the string representing an individual on
the gate matrix. If we apply, for instance, one-point cross-over to this individual,
the cutting point is located in a random position as shown in Figure 4b. The
two-point cross-over has two random cutting points as shown in Figure 4c.

In fact the cross-over operator exchanges two blocks of logical gates. Here, we
design the area cross-over which exchanges two rectangular areas on the gate
matrices of the two individuals. An example is shown in Figure 4d. The size of
the area is selected at random by defining two random points for the upper-left
and lower-right corners.

4 Experiments

In the experiment, we study two different circuits such as an adder and a
4–1–multiplexer. The adder circuit has been explained in Section 2 and is shown
in Figure 5 (as a black box). For a correct circuit, 16 different outputs have to
be tested. The multiplexer has 6 inputs and one output as shown in Figure 6.
In this case, 64 outputs have to be tested.

outinc

x y

c

s

full adder

1−bit

Fig. 5. A full adder

3i
2i

i1
0i

s0 1s

o

4−
1

M
ux

Fig. 6. A 4–1–multiplexer

We consider a matrix of 10×10 gates, i.e., 100 gates. For both the adder and
the multiplexer problems, we apply an evolutionary algorithm as described in
Section 3. We consider a population of 100 individuals. Mutation is applied to all
of the individuals, where the genes are randomly modified with a probability of
0.02. We compare the two evaluation mechanisms (the straightforward method
and MaxMin) and three different cross-over operators, namely one-point, two-
point, and area cross-over. The cross-over operators are applied to the population
with a probability of 0.8. Quality based roulette wheel selection has been used
for the selection mechanism. The evolutionary algorithms has been run for 2000
and 3000 generations for the full adder and multiplexer problems, respectively,
and results are averaged over 30 different runs.

4.1 Results

Figures 7 and 8 illustrate the quality values of the average and best solution
(averaged over 30 runs) in all the generations. 1P, 2P and Area indicate the

Design of Gate Array Circuits Using Evolutionary Algorithms 45

0 500 1000 1500 2000
10

15

20

25

30

35

Generation

Q
ua

lit
y

1−1P
1−2P
1−Area

(a) Simple - Best

0 500 1000 1500 2000

15

20

25

30

35

Generation

Q
ua

lit
y

2−1P
2−2P
2−Area

(b) MaxMin - Best

0 500 1000 1500 2000

15

20

25

30

35

Generation

Q
ua

lit
y

1−Area
2−Area

(c) Best - Comparison

0 500 1000 1500 2000

8

10

12

14

16

18

20

22

Generation

Q
ua

lit
y

1−1P
1−2P
1−Area

(d) Simple - Avg

0 500 1000 1500 2000
15

16

17

18

19

20

21

22

23

24

Generation

Q
ua

lit
y

2−1P
2−2P
2−Area

(e) MaxMin - Avg

0 500 1000 1500 2000

8

10

12

14

16

18

20

22

24

Generation

Q
ua

lit
y

1−Area
2−Area

(f) Avg - Comparison

Fig. 7. Quality values over generations for the full adder circuit. (a)–(c) illustrate the
best and (d)–(f) the average quality values of 30 runs.

46 P. Bungert et al.

0 500 1000 1500 2000 2500 3000
40

50

60

70

80

90

100

Generation

Q
ua

lit
y

1−1P
1−2P
1−Area

(a) Simple - Best

0 500 1000 1500 2000 2500 3000
40

60

80

100

120

140

Generation

Q
ua

lit
y

2−1P
2−2P
2−Area

(b) MaxMin - Best

0 500 1000 1500 2000 2500 3000
40

60

80

100

120

140

Generation

Q
ua

lit
y

1−Area
2−Area

(c) Best - Comparison

0 500 1000 1500 2000 2500 3000
30

35

40

45

50

Generation

Q
ua

lit
y

1−1P
1−2P
1−Area

(d) Simple - Avg

0 500 1000 1500 2000 2500 3000
62

64

66

68

70

72

74

76

78

80

Generation

Q
ua

lit
y

2−1P
2−2P
2−Area

(e) MaxMin - Avg

0 500 1000 1500 2000 2500 3000
30

40

50

60

70

80

Generation

Q
ua

lit
y

1−Area
2−Area

(f) Avg - Comparison

Fig. 8. Quality values over generations for the multiplexer circuit. (a)–(c) illustrate
the best and (d)–(f) the average quality values of 30 runs.

Design of Gate Array Circuits Using Evolutionary Algorithms 47

one-point, two-point and area cross-over operators and 1 and 2 refer to the
straightforward (simple) and the MaxMin evaluation mechanisms. The quality
value in Figures 7 and 8 is the sum of the correct outputs – if justified because
of a totally correct circuit – and the number of wires. The detailed values for
some of the generations are shown in the Tables 5 and 6.

We observe that for both problems and both evaluation methods the area
cross-over operator outperforms the one-point and two-point operators. Fig-
ures 7a, 8a, 7d, and 8d show that the quality values obtained by the area cross-
over for the best as well as the average of the runs are higher than the two-point
and one-point operators. This can be easily observed for the multiplexer prob-
lem where the optimal design of a multiplexer has more gates than the adder
problem. The optimal design for the full adder problem contains 5 gates, while
the multiplexer has about 11 gates. In the experiments, we also observe that the
results of the two-point cross-over are worse than one-point cross-over. These re-
sults can be derived for the MaxMin evaluation as shown in Figures 8b, 7b, 8e,
and 7e.

Furthermore, we compare the influence of the two evaluations mechanisms on
the solutions. From Figures 7c and 8c, it can easily be concluded that the new
MaxMin evaluation considerably improves the results. By considering the entire
population during the evaluation, we achieve a better convergence rate.

For the analysis of the convergence rate and the computation time, we exam-
ine the number of generations that the different methods need to find a correct
circuit. We test the two evaluation mechanisms and the three cross-over opera-
tors. As shown in Figures 9a and 9b the MaxMin evaluation (2) is able to find
the correct circuits in a very small number of generations compared to the other
method (1). Here, we can also see that the Area cross-over operator acceler-
ates the convergence of the results and this operator together with the MaxMin
method highly increases the convergence rate. This conclusion is valid for both
test problems. In these figures, we observe that the standard error of 30 runs is
lower for the MaxMin and the area cross-over cases than for the others.

Table 5. Quality values over the generations (adder)

1 - 1-Point 1 - 2-Point 1 - Area
Gen. 10 500 1000 2000 10 500 1000 2000 10 500 1000 2000
Avg. 10.52 19.73 20.65 21.09 10.39 19.01 19.56 19.57 10.95 20.78 21.54 21.92

σ 1.246 3.623 2.694 2.836 1.063 4.193 4.089 3.890 1.586 2.885 1.555 1.358
Best 14.20 30.40 32.28 32.74 13.86 29.02 29.96 30.52 14.06 31.96 33.56 34.06

2 - 1-Point 2 - 2-Point 2 - Area
Gen. 10 500 1000 2000 10 500 1000 2000 10 500 1000 2000
Avg. 15.54 22.89 22.87 22.95 15.61 22.56 22.70 23.07 15.54 22.62 23.08 23.44

σ 0.231 1.443 1.291 1.182 0.478 1.461 1.466 1.462 0.229 1.430 1.286 1.132
Best 14.24 33.02 33.42 33.66 14.64 32.66 33.16 33.54 14.18 32.42 33.34 34.26

48 P. Bungert et al.

1−1P 1−2P 1−Area 2−1P 2−2P 2−Area
0

200

400

600

800

1000

1200

1400

1600

1800

2000

G
en

er
at

io
n

(a)

1−1P 1−2P 1−Area 2−1P 2−2P 2−Area
0

1000

2000

3000

4000

5000

6000

7000

G
en

er
at

io
n

(b)

Fig. 9. Average value and standard error of the generation number where the respective
method could find the correct circuit. (a) Full Adder and (b) 4–1–Multiplexer.

Design of Gate Array Circuits Using Evolutionary Algorithms 49

Table 6. Quality values over the generations (multiplexer)

1 - 1-Point 1 - 2-Point
Gen. 10 1000 2000 3000 10 1000 2000 3000
Avg. 34.12 42.74 44.13 48.67 32.89 43.22 43.66 47.10

σ 1.413 4.750 6.988 10.699 0.882 6.112 7.739 10.613
Best 47.30 62.03 68.60 82.53 46.53 61.60 66.27 77.03

2 - 1-Point 2 - 2-Point
Gen. 10 1000 2000 3000 10 1000 2000 3000
Avg. 63.50 72.23 76.68 77.99 63.51 70.54 73.98 75.51

σ 0.042 7.709 7.089 6.101 0.049 6.760 5.959 5.886
Best 46.50 99.73 123.50 132.80 47.63 96.03 117.70 126.03

1 - Area 2 - Area
Gen. 10 1000 2000 3000 10 1000 2000 3000
Avg. 35.38 43.70 46.87 48.12 63.49 73.22 77.49 78.49

σ 1.003 5.289 9.188 8.477 0.048 6.542 6.045 4.737
Best 47.30 69.17 82.37 95.77 46.73 114.50 136.17 145.47

5 Conclusion and Future Work

In this paper, we propose evolutionary algorithms for the design of combinational
logic circuits. Particularly, we study different methods for improving the optimi-
sation performance both with respect to solution quality and time. A gate matrix
of logical gates is the basis of this design where the evolutionary algorithm is
used to find the optimal types and connections between the gates. In this paper,
a new population-based evaluation mechanism called MaxMin has been intro-
duced. The MaxMin evaluation scheme maximises the influence of the solutions
with correct outputs that had been found by a minimal number of individuals
in the current population. Indeed, we observe that in many cases, due to some
local optima, some of the outputs are very difficult to obtain. Therefore, those
solutions which are able to find those outputs should influence the population
(as done by MaxMin). This quality evaluation scheme is different from previ-
ously proposed methods and it is shown in this paper that it considerably im-
proves the optimisation performance, having positive effects on the computation
time, too.

Furthermore, we design a new cross-over operator for the gate matrix cir-
cuit representation in which we exchange two rectangular areas. This cross-over
operator (called area cross-over) has been compared with other typical crossover-
operators such as one-point and two-point. It is observed that the MaxMin eval-
uation in combination with the area cross-over operator significantly improve
the solutions and the computation time. The new methods and the comparisons
have been tested for the two test examples of full adder and multiplexer. For
future work, we are interested to study the new methods on other more complex
examples and on larger gate matrices than examined here.

50 P. Bungert et al.

References

1. Coello Coello, C., Christiansen, A., Hernández Aguirre, A.: Towards automated
evolutionary design of combinational circuits. Comput. Electr. Eng. 7, 1–28 (2001)

2. Coello Coello, C., Hernández Aguirre, A., Buckles, B.P.: Evolutionary Multiobjec-
tive Design of Combinational Logic Circuits. In: Lohn, J., et al. (eds.) Proceedings
of the Second NASA/DoD Workshop on Evolvable Hardware, pp. 161–170. IEEE
Computer Society Press, Los Alamitos (2000)

3. Coello Coello, C., et al.: Ant colony system for the design of combinational logic cir-
cuits. In: Miller, J.F., et al. (eds.) ICES 2000. LNCS, vol. 1801, pp. 21–30. Springer,
Heidelberg (2000)

4. Deb, K.: Multi-Objective Optimization using Evolutionary Algorithms. John Wiley
and Sons, Chichester (2001)

5. Goldberg, D.E.: Genetic Algorithms in Search, Optimization, and Machine Learning.
Addison-Wesley, Reading (1989)

6. Higuchi, T., Yao, X., Liu, Y.: Evolvable Hardware (Genetic and Evolutionary Com-
putation). Springer, Heidelberg (2006)

7. Kalganova, T., Miller, J.: Evolving more efficient digital circuits by allowing circuit
layout evolution and multi-objective fitness. In: Stoica, A., Lohn, J., Keymeulen, D.
(eds.) NASA/DoD Workshop on Evolvable Hardware, pp. 54–63. IEEE Computer
Society Press, Los Alamitos (1999)

8. Louis, S.J., Rawlins, G.J.: Designer genetic algorithms: Genetic algorithms in struc-
ture design. In: Belew, R., Booker, L. (eds.) International Conference on Genetic
Algorithms, pp. 53–60. Morgan Kaufmann, San Francisco (1991)

Direct Backtracking: An Advanced Adaptation
Algorithm for Pervasive Applications

Stephan Schuhmann, Klaus Herrmann, and Kurt Rothermel

University of Stuttgart
Institute of Parallel and Distributed Systems (IPVS)

Universitätsstr. 38
70569 Stuttgart, Germany

{firstname.lastname}@ipvs.uni-stuttgart.de

Abstract. The adaptation of pervasive applications is in the focus of
many current research projects. While decentralized adaptation is
mandatory in infrastructureless ad hoc scenarios, most realistic perva-
sive application scenarios are situated in heterogeneous environments
where additional computation power of resource-rich devices can be ex-
ploited. Therefore, we propose a hybrid approach to application config-
uration that applies centralized as well as decentralized configuration as
appropriate in the given environment. In this paper we introduce the
Direct Backtracking algorithm that represents an efficient way for cen-
tralized configuration and adaptation of pervasive applications in het-
erogeneous scenarios. In our evaluation, we show that compared with
other centralized algorithms, our algorithm significantly reduces adap-
tation latency as it avoids unnecessary adaptations that arise in many
other backtracking algorithms, without significantly increasing memory
waste. This is achieved by introducing two mechanisms: 1. proactive
backtracking avoidance and 2. intelligent backtracking.

1 Introduction

In recent years, automatic adaptation of pervasive applications that share the
resources of different devices has become a research field of increasing interest.
Besides our component system PCOM [1], many other research projects such as
Gaia [2], Aura [3], or Pebbles [4] deal with this issue. Two fundamentally differ-
ent approaches exist for adaptation of pervasive applications, namely distributed
and centralized adaptation. The distributed approach is generally applicable in
scenarios both with and without additional infrastructure. Unfortunately, this
approach needs extensive communication between devices. Furthermore, it as-
sumes a homogeneous environment and, thus, does not exploit additional com-
putation power available on resource-rich devices.

Our work focuses on heterogeneous pervasive computing environments where
resource-poor, potentially mobile devices as well as resource-rich infrastructure
devices are present. Many of today’s office or home scenarios satisfy these prop-
erties. In such scenarios, centralized adaptation can improve calculation speed

U. Brinkschulte et al. (Eds.): ARCS 2008, LNCS 4934, pp. 53–67, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

54 S. Schuhmann, K. Herrmann, and K. Rothermel

and decrease communication overhead dramatically. Due to the wide range of
different scenarios, we advocate a hybrid configuration approach that makes use
of decentralized as well as centralized algorithms to exploit the resources present
in the environment as effectively as possible.

In this paper, we present a new centralized configuration algorithm called
Direct Backtracking (DBT) that can be employed on resource-rich devices to
configure pervasive applications on near-by resource-poor devices. This comple-
ments our previous work on purely decentralized configuration [5] and enables a
range of configuration solutions with different degrees of decentralization since
both approaches may be combined to produce a hybrid configuration system.

We present two new innovative mechanisms in backtracking: 1. proactive back-
tracking avoidance and 2. intelligent backtracking. Both are used in our Direct
Backtracking algorithm to reduce configuration latency and avoid thrashing ef-
fects (repetitive unnecessary reconfigurations) dramatically. In our evaluation,
we show that Direct Backtracking displays vastly improved performance com-
pared to its nearest competitor (Synchronous Backtracking) and, therefore, en-
ables fast configurations and adaptations in much larger pervasive applications.
We also show that increased memory consumption of our algorithm does not
limit its general applicability in heterogeneous environments.

The paper is structured as follows: After a presentation of our system model
in Section 2, we take a look on related work in Section 3. Then, we explain our
algorithm in detail in Section 4. This is followed by an evaluation in Section 5.
Finally, we recapitulate our work in Section 6 and give a short outlook on future
works.

2 System Model

In many pervasive computing scenarios, a single device cannot provide the en-
tire functionality required by an application because of limited resources. Thus,
the main characteristic of a pervasive application is the fact that the required
functionality is distributed among multiple devices which have to collaborate.

We assume a component-based software model, i.e. an application consists of
components and each component instance requires a certain amount of resources.
Figure 1 shows our application model. An application is represented by a tree
of interdependent components that is constructed by recursively starting the
components required by a root instance, the so-called application anchor.

A single component is resident on a specific device which is represented by
a container that carries a unique identifier (ID). The number of components
per container is not restricted. Interdependencies between components as well
as resource requirements are described by directed contracts which specify the
functionality required by the parent component and provided by the child com-
ponent of this contract. A parent component may have an arbitrary number of
dependencies. Our algorithm follows a depth-first search approach. This means
that the algorithm proceeds from the top to the bottom of the tree and, within
a sublevel of the tree, from left to right. If there exists more than just one

Direct Backtracking: An Advanced Adaptation Algorithm 55

Fig. 1. Application model

component that provides the required functionality for a contract, the parent
component can choose among several options. In the following, this is called
multi-optional contract.

In a configuration process, the configuration algorithm tries to resolve all de-
pendencies by finding a suitable component for each contract. Whenever the
algorithm fails to find such a component for a contract (e.g., due to lack of re-
sources), an adaptation process has to be initiated to resolve this conflict. Within
this process, an instantiated component of another contract C has to be stopped
to free resources, and another component that fulfills C’s requirements with less
resources has to be instantiated afterwards. If the algorithm does not consider
whether the adapted contract requires the same resources as the contract which
could not be fulfilled, it is possible that many adaptations are needless since
they do not solve the conflict. So, the number of necessary adaptations increases
which leads to additional configuration latency (time before the configuration is
complete). This undesired effect is called thrashing.

As long as the anchor component is executed, its container ensures that depen-
dencies are recursively resolved by binding adequate components to them. Since
a parent component relies on its child components, it can only be instantiated
if all of its children have been instantiated previously. An application is success-
fully started if all dependencies have been resolved so that for each contract, a
suitable component which satisfies all requirements could be found.

We assume that a single device which performs centralized configuration and
adaptation has collected relevant data beforehand using a specific protocol1.
Thus, this device can create an internal representation of the application tree
1 This protocol is not further described here since it does not affect adaptation aspects

and does not produce considerable overhead.

56 S. Schuhmann, K. Herrmann, and K. Rothermel

Fig. 2. Exemplary application tree

that comprises dependencies, components, and incorporated devices with their
available resources. After a configuration is complete, another protocol has to
distribute the results of the configuration to the respective devices.

2.1 Example

Figure 2 shows an exemplary application tree that consists of the anchor Canchor

and six contracts C1 to C6 whose dependencies have to be satisfied in order to
start the application successfully. The contracts are ordered depth-first search
like, according to the sequence of the algorithm. Hence, the algorithm starts the
configuration process with C1, and finishes with C6. Contracts C1, C3, C4, and C6
are multi-optional, i.e. there exists more than one component that can satisfy the
required functionality. The components are resident on three containers DA, DB,
and DC . The contracts can be satisfied by certain amounts of specific resources.
For example, contracts C1, C3, and C6 can be satisfied by R3 which is available
on containers DA and DB. Let us assume that enough resources of R1 and R2
are available on the containers and, thus, only R3 can cause a conflict situation
due to missing resources. Both DA and DB have two instances of R3.

The thick lines show the components – resident on the denoted containers Dj –
which were chosen by the algorithm for C1 to C5 and, thus, only C6 has to be
instantiated. In this situation, DA as well as DB have only one free resource of
type R3 left, but two resources are needed for every container to instantiate C6.
Therefore, none of the components can be instantiated for C6 in this situation.
Hence, an adaptation of the current configuration is inevitable.

As a concrete example, consider an instant messaging application that requires
an input service, e.g. a keyboard or a touch screen, to write messages, and an
output service to display messages. If there exists more than one input device,
for instance, these devices represent several options of a multi-optional contract.

Direct Backtracking: An Advanced Adaptation Algorithm 57

An adaptation is necessary, for instance, if the current output device becomes
unavailable. Another example is a pervasive presenter [6] whose functionality
of displaying presentation slides is provided by the cooperation of distributed
devices.

The example described above could illustrate a similar presentation applica-
tion, where resource R3 represents display devices. DA and DB both have two
displays. Displays are needed for different tasks within the application, e.g. to
show images, videos, or presentation slides and, thus, are required in multiple
contracts. Additionally required input and output devices like microphones or
loudspeakers are represented by the other resources R1 and R2. Due to different
properties of the resources, e.g. the maximum output volume of a loudspeaker,
it is possible that different amounts of specific resources are required within a
contract, as it can be seen for contract C4.

3 Related Work

The adaptation of tree-based applications can be mapped to a Constraint Sat-
isfaction Problem (CSP) [5]. In case of a fully distributed application configura-
tion, this problem can be solved by distributed algorithms from the domain of
Artificial Intelligence [7]. Due to their decentralization, these algorithms cause
huge communication overhead for resolving dependencies between components.
In case of n devices that are involved in the application configuration, the worst-
case amount of messages to be sent is O(n2). In centralized algorithms, every in-
volved device has to send only one message to the configuration device to inform
this device about its available resources, which leads to a worst-case message
amount of only O(n). Furthermore, distributed algorithms do not take special
care of resource-rich devices that are present in heterogeneous environments.

Thus, we concentrate on centralized backtracking algorithms in this paper.
A survey of these algorithms is given by Baker [8]. The simplest centralized
backtracking algorithm is Synchronous Backtracking (SBT) [9]. SBT executes a
depth-first search in the application tree and has one huge drawback concerning
adaptations: Since it does not consider the cause of a backtracking process and
tries to adapt the first possible multi-optional contract, it suffers from thrashing.
Especially for huge applications with many multi-optional contracts, this leads
to an enormous overhead and, thus, increased latency.

Several approaches exist to avoid this thrashing effect. Synchronous Back-
jumping (SBJ) [10] searches for a multi-optional contract if it depends on the
same kind of resource as the contract that was the reason for backtracking.
It does not adapt contracts that are independent of the backtracking cause.
This helps to reduce thrashing, but it cannot avoid it completely since SBJ does
not keep previous intermediate results for subsequent adaptations. Furthermore,
SBJ builds up a stack during backtracking. This causes additional computation
overhead.

Dependency-Directed Backtracking (DDB) [11] solves the problem of thrashing
by storing a set of so-called nogoods which are partial configurations without a

58 S. Schuhmann, K. Herrmann, and K. Rothermel

solution for the complete application. Therefore, it can avoid infeasible solutions
subsequently. The drawback of DDB is its enormous memory consumption since
an ever-increasing set of nogoods has to be stored on a stack.

An advanced approach to remove thrashing completely without excessive
waste of memory is Dynamic Backtracking (DyBT) by Ginsberg [12]. Similar
to SBJ and DDB, this algorithm immediately moves to a point which conflicts
with the latest assignment in case of a conflict. DyBT neither forgets intermedi-
ate values, nor is it memory-intensive since it does not rely on a stack. It is an
iterative algorithm that stores a set of so-called culprits which represent forbid-
den assignments. DyBT does not only retain the chosen value for a contract C,
but also the culprit set of C. If the instantiation of a component for a contract
fails, the algorithm can easily decide which of the formerly configured contracts
conflict with this contract and directly jump back to them.

However, DyBT changes the order of contracts to resolve conflicts. This is not
an option in our problem of tree-based application configuration since parent-
child relationships and differences in resource consumption are encoded in the or-
der of contracts. This order needs to be preserved to ensure useful configurations.
So, DyBT cannot be used for configuration of tree-based pervasive applications.

Direct Backtracking proceeds similar to DyBT in general, but in addition, it
also adapts the adherent subtree of a component during an adaptation process.
Thus, Direct Backtracking does not need to perform any changes in the order
of components. Moreover, our algorithm applies two intelligent mechanisms that
render the configuration process more efficiently.

4 The Direct Backtracking Algorithm

In Section 4.1, the general configuration process of Direct Backtracking is de-
scribed. This is followed by the main contribution of this paper which are two
additional mechanisms of Direct Backtracking: a proactive mechanism to avoid
backtracking that is described in Section 4.2, and an intelligent backtracking
mechanism to handle conflict situations without thrashing which is presented in
Section 4.3. Finally, Section 4.4 presents an example for the adaptation process.

4.1 General Approach

Figure 3 illustrates DBT in C-like pseudo code. DBT includes five different
functions: start, create, started, stopped, and backtrack.

The start function initiates the configuration process and calls the create
function to resolve the first dependency of the anchor. Thereby, the function
getChild(i, j) returns the j-th option of the i-th dependency of the current
component. The selection of an option in case of a multi-optional contract is per-
formed within the function determOption(). This is carefully made to decrease
the number of conflict situations that make a backtracking process inevitable.
This fundamental mechanism of DBT is described in detail in Section 4.2.

If there are enough resources available to resolve a dependency within the
create function, two possibilities exist:

Direct Backtracking: An Advanced Adaptation Algorithm 59

1. The component to be started represents a leaf of the tree. In this case, the
started function is called subsequently to indicate this instantiation of a leaf
component to its parent component.

2. The component to be started represents an inner node (i.e., no leaf of the
tree). In this case, the create function is called recursively to instantiate the
components on the next lower level of the tree.

If not enough resources are available to instantiate a component at the moment,
the stopped function is called to indicate a resource conflict situation to the par-
ent component. In this case, DBT at first tries to instantiate the next compo-
nent option. If no further option exists, a backtrack process has to be initiated.

Fig. 3. Direct Backtracking

60 S. Schuhmann, K. Herrmann, and K. Rothermel

This function at first stops the adherent subtree of the selected backtracking
component C1, then stops C1 itself, and instantiates another component C2
and the previously stopped subtree components. C2 has been determined be-
fore within findBacktrackContract() that is further described in Section 4.3.
Afterwards, DBT retries to instantiate the component which could not be instan-
tiated previously. The algorithm terminates within the started function when the
anchor is reached and all dependencies of the anchor have been resolved.

4.2 Proactive Backtracking Avoidance

In case of a multi-optional contract for a certain dependency, the selection of a
component has to be made cautiously in order to avoid conflict situations right
from the start and reduce the number of situations in which backtracking is
necessary. For this purpose, Direct Backtracking contains a proactive mechanism
which carefully selects the component option to be instantiated in order to avoid
backtracking.

Within multi-optional contracts, options are ordered in a list according to
the container ID, i.e. a component on a container with a lower ID has higher
priority for the configuration algorithm. If there exist multiple options for a
specific dependency on one container, they are additionally ordered according
to their resource consumption: The component with least resource requirements
has highest priority.

Direct Backtracking performs the following steps on the ordered list of options
in the given order:

1. Initially, DBT selects the first component option in the list to be instantiated,
i.e. the highest-priority component.

2. If the currently selected option consumes the total free amount of a resource
R, the algorithm scans the ordered list of options for alternative components.
If there exists a component on another container whose instantiation would
still leave some amount of R unused on this container, DBT adjusts the
selected option in order to decrease the potential for future conflicts. This
adjustment of the option to be instantiated is performed to the highest-prior
component that fulfills the above condition of leaving some amount of R
unused.

3. For the currently selected option, DBT verifies that there are enough global
resources remaining to fulfill all missing contracts in theory after the initial-
ization of the chosen component C. This means that there have to exist at
least i free components among all devices with sufficient resources to ful-
fill the i dependencies of the application that have not been resolved yet.
Otherwise, C is not instantiated at this moment as this would yield a fu-
ture inevitable backtrack process. In this case, the algorithm selects the next
lower-prior option in the ordered list and continues with step 2.

If none of the options can be instantiated, a backtracking is necessary. DBT’s
intelligent backtracking process is described in the next subsection.

Direct Backtracking: An Advanced Adaptation Algorithm 61

4.3 Intelligent Backtracking

In case of a conflict situation, if none of the possible components for a contract C
could be instantiated, a backtracking has to be initiated. Thus, another contract
that can be adapted must be found. In many situations, there is more than just
one candidate for an adaptation. In such a case, DBT performs an intelligent
backtracking by carefully selecting a contract whose components can be adapted
with little overhead.

First, let us assume that the components of C which could not be instan-
tiated due to a shortage of a specific resource R form a set of components
S1 = {Cmp1, Cmp2, ..., Cmpi}. If C is not multi-optional, S1 includes only one
component. Now, DBT determines the set Ds = {D1, D2, ..., Dj} of containers
which host at least one component that is included in S1, i.e.

(∃k, j : k ∈ {1, ..., i} ∧ l ∈ {1, ..., j} ∧ Cmpk ∈ Dl) ⇒ Dl ∈ Ds (1)

Subsequently, DBT determines another set, S2. This set contains those multi-
optional contracts for which a component is currently instantiated that is resi-
dent on one of the containers included in Ds. Furthermore, only those contracts
are included in S2 for which an alternative component on another container Ctr
exists that can be instantiated now due to sufficient uninstantiated amount of
R on Ctr. The contracts in S2 are ordered in descending order according to the
amount of R that is consumed by the instantiated component. This means that
the instantiated component which consumes the largest amount of R is at the
beginning of the list because its termination would cause a considerable deallo-
cation of resources. This helps to decrease the number of needless adaptations
which would have to be revised later. If only one suitable component exists, the
backtracking target is found and the adaptation process can be initiated.

In case of more than one suitable backtracking targets that consume an identi-
cal amount of R, an additional selection criterion is necessary for weighting them
according to their suitability for adaptation. Since adaptation is simpler for con-
tracts with small adherent subtrees (as the subtree also has to be adapted),
DBT selects the component C that has least descendants (number of all child
components down to the leaves) and, hence, is closest to the bottom of the tree.
Thus, contracts with little adaptation overhead are preferred. In case of multiple
contracts with a subtree of the same size, the algorithm selects the one with the
highest priority, i.e. the one with lowest index.

If the resource conflict cannot be solved by adapting the first contract in S2,
DBT tries to solve it by adapting the second contract in S2, and so on. If the
conflict cannot be solved by adapting any contract included in S2, this indicates
that there are not sufficient resources in the environment. Thus, the algorithm
terminates unsuccessfully within the stopped function and informs the user of
this failure.

4.4 Example for Adaptation Process

Now let us revisit the example presented in Section 2.1 to see how the intelligent
backtracking mechanism of DBT performs in practice. In the situation depicted

62 S. Schuhmann, K. Herrmann, and K. Rothermel

in Figure 2, Direct Backtracking recognizes that the conflict arises for R3. S1
consists of the two possible components of C6. These components are resident
on DA and DB. Thus, we have a set Ds = {DA, DB}. Both of these devices lack
one instance of resource R3. According to the procedure described in Section 4.3,
DBT identifies C1 and C3 as possible contracts for adaptation. The currently
instantiated components of C1 and C3 both have allocated an identical amount
of one instance of R3. Hence, the subtree criterion has to be taken into account
and C3 is elected for adaptation because it has no adherent subtree which would
cause additional adaptation effort. Thus, DBT directly backtracks to C3, stops
the instantiated component on DB, instantiates the component on DA, and
returns to C5. Now, DBT is able to instantiate the component on DB to fulfill
C6, as sufficient free resources are available. Subsequently, the entire application
is successfully instantiated.

In the same situation, Synchronous Backtracking would at first try to adapt
contract C4 which is the next higher-priority multi-optional contract above C6.
But since C4 depends on a different resource, this adaptation of C4 does not
solve the problem. So, SBT has to initiate another backtracking process which
would adapt C3 as the next higher-priority multi-optional contract. This second
adaptation would resolve the conflict.

Since SBT always performs backtracking stepwise to the previous contract in
the tree, and because of the useless adaptation of C4, the backtracking function
is executed multiple times, while for DBT, only one direct backtrack to C3 is
necessary. Hence, due to its intelligent backtracking mechanism, DBT performs
adaptation of this exemplary application with less overhead and, thus, much
faster than SBT does. As DBT additionally avoids backtracking processes in
many situations due to the proactive mechanism described in Section 4.2, DBT’s
benefit even increases in many resource-constricted environments.

5 Evaluation

This section presents our evaluation results. We simulated the algorithm on a
discrete event PCOM simulator.

We compared Direct Backtracking to Synchronous Backtracking (SBT), the
centralized version of Asynchronous Backtracking [7] that was used previously
for distributed application configuration [5]. We chose to compare DBT to SBT
as this is the best centralized algorithm that is applicable to the problem of
adapting pervasive applications without excessive memory waste and computa-
tion overhead. As already mentioned in the related work section, a comparison
of Direct Backtracking to Dynamic Backtracking (DyBT) is not possible since
DyBT changes the order of the contracts to resolve conflicts, which is not an
option here.

5.1 Experimental Setup

The simulated environments are constructed as follows to support various dif-
ferent scenarios: We create an application that consists of n instances by adding

Direct Backtracking: An Advanced Adaptation Algorithm 63

n components to a binary application tree. Then, we create one container and
place the anchor on it. For the remaining (n-1) components, we create m ≤ n
containers and place the components on those containers in a round robin man-
ner. Then, we artificially create conflicts by replicating k random components
and by increasing their resource needs to two without increasing the available
resources on the containers. Thus, increasing k will lead to a higher potential for
conflicting selections during automatic configuration as it increases the number
of multi-optional contracts.

Now, we varied the height h of the binary tree from two, where an application
consisted of only 23 − 2 = 6 components (excluding the anchor component), up
to ten, which leads to 211−2 = 2046 components. For each tree height, we varied
the number k of replicated components and ran 10000 simulations.

Regarding real-life pervasive scenarios, environments typically exist of many
different devices with distinguished functionalities. They can be homogeneous as
well as heterogeneous. Frequently, devices with similar or even the same func-
tionality are available. This means that applications which use this functionality
also include multi-optional contracts.

Hence, it can be seen that the assumed simulated setting is realistic for per-
vasive computing environments.

5.2 Evaluation Results

We evaluated the algorithm on a common desktop PC2 and compared our algo-
rithm to Synchronous Backtracking, especially concerning the aspects of config-
uration latency, communication overhead, success quota, memory overhead and
size of the source code and got following results:

– Configuration latency: The main goal in the development of an advanced
centralized configuration algorithm was the reduction of the configuration
latency that is noticeable for the user. Figure 4 shows DBT’s latency for
three different heights of the binary tree and, thus, different application
sizes. The graph shows the latency relative to the respective SBT perfor-
mance. Thus, values above 1.0 indicate a DBT performance that is worse
than that of SBT, while values below 1.0 indicate better performance. It can
be seen that especially for a huge number of multi-optional contracts, there
is an immense improvement when using DBT since it performs proactive
backtracking avoidance, intelligent backtracking, and avoids thrashing by
considering the cause of a backtrack. The figure also shows that the relative
performance of DBT even increases with increasing application size. Accord-
ing to this figure, DBT induces just about 4.2 % of the latency of SBT if an
application consists of 62 contracts, whereas 14 contracts are multi-optional.
Nevertheless, it must be mentioned that for small fractions of multi-optional
contracts, SBT performs better than DBT by up to 20 %. This is because of
DBT’s additional checks for avoiding conflict situations and the process of
storing the backtracking causes. Since absolute latencies were very small in

2 PC with Dual Core Processor (2.2 GHz), 2.0 GB of RAM.

64 S. Schuhmann, K. Herrmann, and K. Rothermel

Fig. 4. Configuration latency of DBT (compared to SBT references)

those cases (in the range of few milliseconds), this overhead can be neglected.
With increasing tree height, the crossover point, which represents the frac-
tion of multi-optional contracts for which DBT starts to outperform SBT,
exponentially decreases, as it can be seen in Figure 5. This means that for
huge applications, even if just a small amount of contracts is multi-optional,
DBT is the better choice regarding configuration latency.

– Communication overhead: Compared to the other centralized backtrack-
ing algorithms presented in Section 3, no additional communication overhead
arises during runtime of our algorithm.

– Success quota: The scenarios have been created in a way that at least
one valid configuration exists for each scenario. In every single simulation
run, both SBT and DBT terminated successfully with a valid application
configuration.

– Memory overhead: Compared to SBT, DBT needs to store additional in-
formation about arising conflicts, especially the contract chosen for adapta-
tion and the contract to which the algorithm has to return after an adaptation
has been performed. We measured the average random access memory con-
sumption of the algorithm on a common desktop PC and compared it to SBT.
While memory consumption of SBT was almost independent from the appli-
cation size and the number of conflicts (the standard deviation was below 2 %
in all runs), the overhead of DBT increased with the application size and the
number of multi-optional contracts, but remained within acceptable limits.
The average memory overhead of DBT varies between 8.0 % for applications

Direct Backtracking: An Advanced Adaptation Algorithm 65

Fig. 5. Crossover points

Fig. 6. Memory overhead of Direct Backtracking

66 S. Schuhmann, K. Herrmann, and K. Rothermel

with 6 components and 27.6 % for large applications with 2046 components.
The maximum overhead of DBT compared to SBT in a single simulation run
was 38.5 %, the absolute amount of required memory was 19.2 Megabytes.
The results of the memory evaluation are shown in Figure 6.

– Source code size: While our Synchronous Backtracking implementation
needs 10.8 kB of disk space, Direct Backtracking consumes about 96.9 kB.

Regarding that the algorithm is optimized for use on resource-rich devices be-
cause of its centralized nature, the additional code overhead as well as the mem-
ory overhead do not prevent the use of DBT.

6 Conclusions and Future Work

We have presented Direct Backtracking (DBT), a new centralized algorithm for
efficient configuration and adaptation of tree-based pervasive applications. Our
approach avoids thrashing completely due to an intelligent backtracking mech-
anism, while memory and code overhead are of acceptable size. Furthermore,
DBT avoids adaptations in many situations as it employs a proactive backtrack-
ing avoidance mechanism.

We have shown that DBT significantly outperforms Synchronous Backtrack-
ing (SBT) for applications with various sizes, and especially for huge scenarios
with many multi-optional components where it causes less than 5 % of SBT’s
configuration latency. The small latency overhead of up to 20 % for scenarios
with a low fraction of multi-optional contracts can be neglected since absolute
latencies for these applications were very small. The additional memory and code
overhead of DBT is not significant as the algorithm is designed for centralized
configuration on resource-rich devices.

Our future work concentrates on the efficient support of hybrid configuration
and adaptation in homogeneous as well as heterogeneous environments by intro-
ducing a clustering scheme. Within each cluster, the cluster heads configure appli-
cations in a centralized way, while the different cluster heads perform distributed
configuration among each other. Direct Backtracking will be used as efficient cen-
tralized algorithm for configuration and adaptation on the cluster heads.

Acknowledgement

This work is funded by the German Research Foundation within DFG Priority
Programme 1140 - Middleware for Self-organizing Infrastructures in Networked
Mobile Systems.

References

1. Becker, C., et al.: PCOM - A Component System for Pervasive Computing. In:
Proceedings of the 2nd IEEE International Conference on Pervasive Computing
and Communications (PerCom 2004), Orlando, USA (2004)

2. Román, M., et al.: Gaia: A Middleware Infrastructure to Enable Active Spaces. In:
IEEE Pervasive Computing, pp. 74–83 (October-December 2002)

Direct Backtracking: An Advanced Adaptation Algorithm 67

3. Sousa, J.P., Garlan, D.: Aura: an Architectural Framework for User Mobility in
Ubiquitous Computing Environments. In: Proceedings of the 3rd Working IEEE/I-
FIP Conference on Software Architecture, August 2002, pp. 29–43. Kluwer Aca-
demic Publishers, Dordrecht (2002)

4. Saif, U., et al.: A case for goal-oriented programming semantics. In: UbiSys 2003:
Workshop on System Support for Ubiquitous Computing at UbiComp 2003, Seat-
tle, USA, pp. 1–8 (2003)

5. Handte, M., Becker, C., Rothermel, K.: Peer-based Automatic Configuration of
Pervasive Applications. In: IEEE International Conference on Pervasive Services
2005 (ICPS 2005), Santorini, Greece (2005)

6. Handte, M., et al.: 3PC/MarNET Pervasive Presenter. In: 4th IEEE International
Conference on Pervasive Computing and Communications (PerCom 2006), Pisa,
Italy (2006)

7. Yokoo, M., et al.: The Distributed Constraint Satisfaction Problem: Formalization
and Algorithms. IEEE Transactions on Knowledge and Data Engineering 10(5),
673–685 (1998)

8. Baker, A.B.: Intelligent Backtracking on Constraint Satisfaction Problems: Exper-
imental and Theoretical Results. PhD Thesis, University of Oregon (March 1995)

9. Brito, I., Meseguer, P.: Synchronous, asynchronous and hybrid algorithms for
DisCSP. In: Workshop on Distributed Constraints Reasoning (DCR 2004), Toronto,
Canada (September 2004)

10. Gaschnig, J.: A general backtrack algorithm that eliminates most redundant checks.
In: International Joint Conference on Artificial Intelligence, Menlo Park, p. 457
(1977)

11. Stallman, R.M., Sussman, G.J.: Forward Reasoning and Dependency-Directed
Backtracking in a System for Computer-Aided Circuit Analysis. Artificial Intel-
ligence 9, 135–196 (1977)

12. Ginsberg, M.L.: Dynamic backtracking. Journal of Artificial Intelligence Re-
search 1, 25–46 (1993)

Intelligent Vehicle Handling:
Steering and Body Postures While Cornering

Andreas Riener, Alois Ferscha, and Michael Matscheko

Johannes Kepler University Linz, Institute for Pervasive Computing,
Altenberger Str. 69, A-4040 Linz, Austria

Tel.: +43/732/2468-8555, Fax.: +43/732/2468-8524
{riener,ferscha,matscheko}@pervasive.jku.at

Abstract. Vehicle handling and control is an essential aspect of intel-
ligent driver assistance systems, a building block of the upcoming gen-
eration of ”smart cars”. A car’s handling is affected by (i) technological
(engine, suspension, brakes, tires, wheels, steering, etc.), (ii) environmen-
tal (road condition, weather, traffic, etc.), and (iii) human (attentiveness,
reactiveness, driver agility, etc.) factors, and their mutual interrelation-
ship. In this paper we investigate on how a driver’s endeavor for precise
steering interferes with lateral acceleration while cornering. Depending
on the steering ratio and the cruising speed, we identify that the readiness
of a driver to compensate lateral forces exhibits counterintuitive charac-
teristics. A driver body posture recognition technique based on a high
resolution pressure sensor integrated invisibly and unobtrusively into the
fabric of the driver seat has been developed. Sensor data, collected by two
32x32 pressure sensor arrays (seat- and backrest), is classified according
to features defined based on cornering driving situations. Experimen-
tal results verify an increased readiness to compensate lateral acceler-
ation with increasing driving speed, but only beyond a certain driver
specific ”break even” point. Above intelligent driver assistance, e.g. to
improve steering precision, to reduce or avoid over-steer or under-steer,
or to proactively notify electronic stability control (ESC), our results
also encourage for new modalities in driver-to-car and car-to-roadside
interaction.

Keywords: Embedded Systems, Intelligent Driver Assistance Systems,
Vehicle Handling, Car and Road Safety, Sitting Postures, Pattern
Recognition.

1 Motivation

Increasing car and road safety, reducing driver distraction and enhancing driving
comfort are the major reasons for transferring ubiquitous and pervasive comput-
ing applications into the automotive domain. Research, development and engi-
neering efforts towards these goals are, popularly speaking, often motivated to
establish a new generation of ”smart cars”. Of particular interest towards this

U. Brinkschulte et al. (Eds.): ARCS 2008, LNCS 4934, pp. 68–81, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Intelligent Vehicle Handling 69

vision are driver assistance systems that help to relieve the driver from manipula-
tive and cognitive load while driving, questing for new modalities in driver-to-car
(D2C) and car-to-roadside (C2R) interactions.

Steering, as one of the most crucial manipulative and cognitive issues in car
handling challenges the driver with a complex, multidimensional interaction pro-
cess. Both, driver experience and the contextual setting (like road and traffic
conditions, weather, sight, etc.) determine car handling performance. Hence, in
order to investigate on vehicle handling and driver engagement, dynamic models
have to developed which are capable of real time driver activity recognition and
multi-sensor based context recognition. An interesting aspect of such a model
is the impact of the cruising speed onto the driver comfort. This paper, in par-
ticular, addresses a thorough investigation of the potential correlation among
cruising speed while cornering against the driver’s body posture as an expression
of his or her feeling comfortable. The analysis in this paper is hence motivated
by the following hypotheses:

(i) Cruising speed and body posture while cornering seems to be correlated, as
observations from various driving situations suggest.

(ii) Increasing lateral acceleration while cornering directs to a higher level of
driver stress and thus, to an escalating risk of operating errors.

(iii) The time gap between a change in body posture and the corresponding
steering activity depends on the level of driving experience, and tends to
zero for a professional driver on a familar driving route.

(iv) The risk of casualities in road traffic can be reduced if the inter-relations
between driver’s body posture and cruising speed in cornering driving situ-
ations are evidenced.

Intelligent driver assistance could relieve the driver from the above noticed ma-
nipulative and cognitive issues by adaptively controlling the vehicle before ac-
tivities from the driver actually take place. This would also support efforts of
official authorities like governments and international policy makers to make
driving more safe, for instance as mentioned in the European Road Safety Ac-
tion Programme1.

In this work we investigate on our hypotheses from the following two points
of view (see Fig. 1 for an illustration of our assumptions):

(i) While cornering at low speed the driver has low or moderate ambition to
compensate centripetal force.

(ii) In high speed cornering situations the readiness to compensate lateral forces
is high.

We presume that our hypothesis establishes a qualitative attribute which
can be used for enhance intelligent driver assistance, e.g. to improve steering

1 Saving 20.000 lives on our roads - a shared responsibility. European Road Safety
Action Programme. URL: http://ec.europa.eu/transport/roadsafety_library/
rsap/rsap_en.pdf, visited Sept. 30, 2007.

70 A. Riener, A. Ferscha, and M. Matscheko

Cruising speed v

R
ea

d
in

es
s

to
C
o
m

p
en

sa
te

La
te

ra
l
Fo

rc
es

„break-even“ speed v

Moderate

High

Balanced

BE

Fig. 1. Hypothesis on correlation between body posture and cruising speed

precision, to reduce or avoid over-steer or under-steer, or to proactively notify
ESC. To this end we built up an experimental system in a car, recording a variety
of parameters like vehicle speed, steering angle, and body posture. During system
design we decided to integrate additional sensors (GPS-sensor, accelerometers,
videocameras, ECG device, etc.) to improve measurement results, increase re-
dundancy and to create a more general environment, also fitting demand for
further experiments. Vehicle-specific data is gathered via the OBD-interface2.
For body-posture capturing several techniques are available. However, most of
them require a person to wear one or more sensors or even put markers on its
body [1]. To avoid technology obtrusiveness as far as possible in our experiments,
we used a passive method for measuring body-postures by inspecting pressure
patterns on driver’s seat and backrest, dynamically collected from two force sen-
sor arrays (FSA). Our data acquisition system operates fully implicit, meaning
that it needs no active participation of the driver, and therefore leads to no
auxiliary user-distraction.

The rest of this paper is structured as follows: Section 2 motivates systems
design and hardware selection, section 3 starts with a description of hardware
assortment and discusses questions regarding data acquisition and processing.
Section 4 describes our experimental testbed and mentions the features, ex-
tracted from the various sensors and utilized for data processing and analysis.
Results of the experiment are announced in section 5. Section 6 concludes our
findings on our research hypothesis and suggests future work.

2 On-Board Diagnostics (OBD) is referring to a vehicle’s self-diagnostic and re-
porting capability. OBD field descriptions can be amongst others found at:
http://www.obd2crazy.com/techstd.html, visited Sept. 24, 2007.

http://www.obd2crazy.com/techstd.html

Intelligent Vehicle Handling 71

2 Driver Assistance Systems

A multitude of enabling systems for vehicles has been presented in the last
years, e.g. electronic anti-theft devices, rain-sensors for automatically control-
ling the windscreen wipers, ABS and ESP systems, navigation systems, parking
assistance systems, cruise control systems3, etc. All of them senses vehicle and
environmental parameters, but there is only minor work on assistance systems
considering the driver (or passengers) of a vehicle [1][p.29].

Contemporary systems primarily operate on speech ([2], [3]) or vision (face-
tracking, iris-scan or eye-tracking) recognition methods ([4], [5]). Each sense has
its benefits and drawbacks [6][p.374], especially speech modality has been early
considered as the most convenient in-car interaction modality because it is both
hands-free and eyes-free – this means that the hands can be kept on the steering
wheel and the eyes can be kept on the road [2][p.155]. Later research revealed that
speech recognition failed on its potentials, especially in the car domain, because
voice is influenced by a multitude of parameters, including user characteristics
like age, gender, mental workload, emotional stress, etc. In addition, ambient
noise is responsible for distortion of spoken instructions [6][p.368]. Finally, voice
interaction may distract the user from the driving task [2][p.156] and hence
increasing safety hazards.

In-car driver observation has been studied in [7] and [8], introducing a system
to predict driving maneuvers before they are actually induced by the driver.
This system video-captures the surrounding traffic, the driver’s head position
and viewpoint, and integrates this information with other real-time data acquired
from the car, such as brake, steering wheel angle, speed and acceleration throttle
signals.

Latest results come from more user-centered approaches like body posture
analysis systems as presented in [9] (color and thermal infrared video-based
system for real-time 3D tracking of body parts), [10] (vision system for tracking
roads, pedestrians and obstacles as well as the driver inside the car and try
to predict her intentions), [11] (side-mounted camera to detect safe and unsafe
periods of driver activity on it’s profile or silhouette) or [12] (stereo and thermal
infrared video capturing inside the car with the aim of increasing safety from
airbags). Cheng and Trivedi present in [1] a video-tracking system based on
markers to identify slow turns from the driver. A detailed survey about human
tracking and pose estimation, considering aspects like active/passive sensors,
different estimation models, etc., is given in [13], [14].

[15] considers not only the potential of driver assistance systems to alert the
driver in critical situations, but annotates also additional distraction and an-
nonyance if the driver is already aware of the situation (with the option that the
driver disables the system. . .). They presented a ”predictive” braking assistance
system based on a color camera for head tracking, a infrared camera for tracking

3 Robert Bosch GmbH, URL: http://rb-k.bosch.de//de/service/produktuebersicht/
produktuebersichtsicherheit.html, visited Oct. 3, 2007.

72 A. Riener, A. Ferscha, and M. Matscheko

driver’s feet and onboard vehicle sensors (CAN-bus4) for inspecting wheel speed,
acceleration, brake pedal pressure, etc.

There is still tremendous potential for innovative driver assistance systems,
especially if not based on video- or infrared-cameras for person tracking and
activity identification. Our approach is a passive one, inspecting sitting postures
from pressure mats, attached to driver’s seat and backrest, and enriched with
onboard vehicle data acquired via the OBD-interface.

3 Experimental Setup for In-Car Context Capturing

For implicit and passive data acquisition in our experimental setting (see Fig. 2)
we are basically interested in pressure forces, acquired from the vehicle seat. In
favour we used force sensor arrays (FSA), interconnected to a notebook computer
via USB interface. The utilized sitting posture system is robust, universal (it
could be used in any type of car for arbitrary style of sitting or driving) and
needs no active participation of the driver. To increase system stability and
performance, additional sensors (as described in paragraph 4.1 below) are taken
into consideration.

For data acquisition, the ”FSA Dual High Resolution System” from Vistamed-
ical5 has been adopted. It allows for recording of the loads on a thin flexible
sensor-mat, consisting of piezoresistive sensors. The matrix provided by the
1, 09mm thick mats is formed by 32 rows and 32 columns of sensors, each cov-
ering a range of 0 to 26, 67kPa6, and measuring an entire area of 430 ∗ 430mm2

(our tests have shown, that this size is almost sufficient, only exceptionally heavy
persons exceed the area). Each of the 1.024 sensors covers an area of 7.94mm2,
the inter-sensor distance is 5.74mm [17]. The sampling/update rate of the two
mats is generally below 1 second each (although sometimes connection errors
lead to a slight delay).

Software Portion: The FSA-system is shipped with a software package for
recording sensor data to a file system, but it is not suited for direct integra-
tion into the evaluation environment. In order to adapt to the specific needs of
the experiments, a data collection and evaluation application had to be imple-
mented on top of this system. Communication with the data collection box is
established through the OLE7 components included in the FSA software pack-
age. For that we had to extend the open source OLE framework included in the

4 Controller Area Network is a communication system, originally developed by Intel
Corporation and Robert Bosch GmbH, for connecting electronic control units in
vehicles, URL: http://en.wikipedia.org/wiki/Controller_Area_Network, visited
Nov. 27, 2007.

5 Vista Medical Europe, URL: http://www.vistamedical.nl, visited Oct. 2, 2007
6 Technical description of the mat system indicates a range from 0 to 200 mmHg.

Since kPa is a more proper SI unit, all Torr or mmHg values are conversed.
7 Object Linking and Embedding is a distributed object system and protocol by

Microsoft.

http://en.wikipedia.org/wiki/Controller_Area_Network
http://www.vistamedical.nl

Intelligent Vehicle Handling 73

Eclipse8/SWT9 packages. Acquisition of data from additional sensors has been
partly integrated into that application, but most of them were collected from
modified individual software components. All of them were time-synchronized
one against the others (accelerometer and OBD recording software had been
extended to store an extra timestamp in their data files, all other sensors came
with a dedicated timestamp-field in their datafile format).

Reference Weight: For the analysis of the correlation between body posture
and cruising speed it is necessary to determine the driver’s weight inside the car
(or on the driver’s seat respectively). After pressure mat calibration we applied a
reference weight to it: One person with given weight was placed onto the seat and
100 consecutive readings from the mat have been performed. The mean value
of the accumulated pressures has been set as reference factor for further weight
estimations as shown in equations (1) and (2).

pressure =
1

100

100∑

j=1

1024∑

i=1

sensori (1)

factorpressure =
weightreal

pressure
=

74.80kg

176.589
= 0.4235 (2)

Nevertheless, the weight of a test subject could not be exactly calculated from
the sum of weights of all charged individual sensors by reason of unbalanced load
sharing and ”dead space” between the sensors.

4 Evaluation with Experienced Drivers

4.1 Experimental Testbed

Restriction ”Turns”: In common road traffic we can distinguish between a
number of different types of turns, e.g. right-angled streets or crossings, freeway
entrance and exit ramps, U-turns, banked corners or ”normal” curves. In this
work we are focussed on driving situations while cornering left or right in curves
with different radii. As for experimental evaluation, a field study was conducted
in the driving safety center ”Wachauring” near Krems, Austria10 on a specified
race course with a length of about 1,150 meters. Beside pressure values from the
two force sensor mats (as described above in section 3) we used a number of
additional sensors to get a reliable measurement environment. This gives us the
opportunity for meaningful interpretations.

(i) An OBD-interface was used to acquire the following vehicle-specific data:
Cruising speed (km/h), Engine RPM (rpm), Engine Load (%), Throttle

8 Eclipse is an open-source, platform-independent software framework
9 The Standard Widget Toolkit (SWT) is a graphical toolkit for the Java platform.

10 URL: http://www.oeamtc.at/netautor/pages/resshp/anwendg/1104290.html#,
visited Sept. 24, 2007.

74 A. Riener, A. Ferscha, and M. Matscheko

Fig. 2. Experimental Setting on the ”Wachauring” near Krems, Austria

Position (%), Coolant Temperature (◦C), Intake Air Temperature (◦C), Air
Flow (gm/sec.), and a number of motor-specific data (fuel trim, various
sensor voltages, etc.). For the actual experiment we examined only vehicle
speed as relevant parameter.

(ii) A wireless 3-point ECG device ”Heartman 301” from Heartbalance AG11

was used to record driver’s vital data (heart frequency, heart rate variabil-
ity, etc.). (The results analyzing the influence of a users vital data and
our findings coming from the respective ECG pattern analysis are reported
elsewhere.)

(iii) A GPS receiver XGPS BT-929 with SiRF Star III chipset, mounted nearby
the rear window, was used to get precise vehicle positions. GPS time field
was consulted as external synchronization basis.

(iv) Acceleration and centrifugal forces were acquired with inertiacube high-
precision accelerometers12, placed on each axis of the vehicle.

(v) Videostreams from three Sony DCR-HC96E camcorders were used for visual
examination of results.

The test-drivers involved in the experiments are very renowned and champi-
onship winning rallye drivers (Max Lampelmaier and Hannes Danzinger). They
received instructions from the research groups staff, and were fully aware about
the purpose of the experiments.

4.2 Gathering Data from On-Board Sensors

Data from different types of sensors had been recorded including timestamps
for synchronization purposes. In a preprocessing step, data in different sensor
11 Heartbalance AG, URL: http://www.heartbalance.com/, visited Sept. 30, 2007.
12 Inertiacube3 from Intersense, URL: http://www.isense.com/products.aspx?

id=44&, visited Sept. 30, 2007.

http://www.heartbalance.com/

Intelligent Vehicle Handling 75

Table 1. Tabular specification of features

Time FSA11 FSA12 . . . FSA44 Accelerometer1 v GPS φ GPS λ
ms kPa kPa . . . kPa x y z km/h GRD GRD
540,687 5.444 19.144 . . . 0.000 -2.195 7.427 -3.456 118.648 1,519.736 4,812.780
540,890 5.420 19.026 . . . 0.004 -1.698 9.657 -0.201 119.528 1,519.739 4,812.781
541,109 10.086 24.365 . . . 0.004 -1.466 8.422 0.101 120.477 1,519.472 4,812.782
541,640 12.104 28.130 . . . 0.020 -0.368 8.729 3.824 122.778 1,519.778 4,812.786
541,828 12.081 28.277 . . . 0.000 -3.925 8.606 -3.213 123.593 1,519.751 4,812.786
. .

records were time-aligned and filtered to meet the formats of the statistical
analysis toolset.

The following list indicates the table-structure of all utilized characteristics
used in the actual experiment (Measurement unit in brackets): (i) Time (ms),
(ii) to (xvii) FSA11, FSA12, . . . , FSA44 (kPa), (xviii) to (xx) Accelerometer-
data in x, y, and z (m/s2), (xxi) cruising speed (km/h), (xxii) GPS data latitude
φ (GRD) and (xxiii) GPS data longitude λ (GRD). Table 1 shows five data sets
out of the entire data table of 3, 786 rows as presented in Fig. 7.

Accelerometer: Intersense accelerometers provide data at a high resolution
of 180hz. The car itself acts as reference coordinate system, consequently all
accelerometer-readings (which came in x, y, and z) had to be normalized against
the vehicle coordinate system (x-coordinate is in vehicles direction of motion, y
is oriented in the right angle of x, z face upwards). For our calculations, only the
one accelerometer mounted on the left, front of the car has been utilized.

The normalized data stream from the accelerometer is synchronized against
mat data, acquired at a maximum of 10Hz, and then smoothed with a ramp
function. The new value for ai ramp is calculated from the original value ai and
the 8 sensor values aside this reading. Perhaps, using a gauss bell-shaped function
instead of the actual used one, could improve results.

ai ramp =
0, 2 × ai−4 + 0, 4 × ai−3 + 0, 6 × ai−2 + 0, 8 × ai−1

5
+

ai

5
+

0, 8 × ai+1 + 0, 6 × ai+2 + 0, 4 × ai+3 + 0, 2 × ai+4

5
(3)

Pressure Mats: FSA11, FSA12, FSA13, . . . , FSA44 indicate the fragments of
pressure-regions from the pressure mat (see Fig. 3) to give an estimation for the
direction of leaning. Each value stands for the sum of 64 sensor values in the
specified region. In the presented experiment two vertical regions left and right
(e.g. left as combination of the 8 left squares indicated by the dashed rectangle
in Fig. 3) had been distinguished.

Ideally, disjunction between the regions left and right should not be exactly at
the middle of the mat, but at the midpoint between the pelvic bones. But previ-
ous tests showed, that there is almost no difference between the absolute middle
of the mat and the midpoint calculated from the pelvic bones – therefore exact
calculation of regions based on pelvic bones had been ignored in the current test.

76 A. Riener, A. Ferscha, and M. Matscheko

B
A
C
K
W

A
R
D

 F
O

R
W

A
R
D

LEFT RIGHT

11 12 13 143 14111 22 1332 11 313322 13 14 11 12 3 3122 1312 32

21 22 23 24

31 32 33 34

41 42 43 44
LEFT RIGHT

Fig. 3. Fragmentation of pressure
mat to indicate direction of leaning

1519.4 1519.45 1519.5 1519.55 1519.6 1519.65 1519.7 1519.75 1519.8 1519.85
4812.72

4812.74

4812.76

4812.78

4812.8

4812.82

4812.84

4812.86

GPS longitude
G

P
S

 la
tit

ud
e

Fig. 4. GPS trace of a test run on the ”Wachau-
ring”

Since the mat sensors are intended to reason about the various ”leaning”postures,
we define lean left as a deviation from the initial symmetric pressure distribution
(indicating an up-right sitting position of the driver). Analogously, lean right is a
deviation of the sitting pressure distribution towards the right. (Formally, left and
right are with respect to the vehicles direction of motion (x-axis). If the (dynam-
ically evaluated) total pressure on the left side of the mat is higher than the pres-
sure on the right side (pressure(right) − pressure(left) ∈ [−50, 0[), this stands
for an inclination of the driver to the left), and vice versa (thus, pressure(right)−
pressure(left) ∈]0, 50] means an inclination to the right).)

Speed sensor: Vehicle speed has been acquired via OBD-interface13. Due to
rather poor update rate of this sensor – values are delivered only all 4 to 6
seconds –, speed is lineary interpolated between 2 readings.

GPS sensor: Fig. 4 shows the GPS trace of one test run. The direction of
driving on the course was counter-clockwise, implicating 4 left-curves and a slight
”s-shaped” turn in one lap. Each has a length of about 1,150 meters and a lap-
time of ≈ 38 seconds (and therefore average speed of ≈ 108km/h). Test runs (as
well as recordings) started at the service garage. The straight line, starting from
the bottom of the diagram, indicates the initial transfer to the route.

5 Results

The results from some of the experiments are presented in the plots from Fig. 5
to Fig. 10. The plots basically contain three variables: acceleration force (accy)
in the range [−20, 40]m/s2, vehicle speed (v) in the range [0, 125]km/h and

13 OBD ElmScan5 USB with ELM327 chipset, URL: http://allobd.com/proddetail.
asp?prod=ST-DElmScan5_usb, visited 27. Sept. 2007.

Intelligent Vehicle Handling 77

mat pressure on the left or right side of the mat (direction of inclination)
(prright norm) in the range [−50, 50]. A wide solid line illustrate the accelera-
tion force, a small dotted line stands for the vehicle speed, and a small solid line
represents the normalized pressure on the mat. (Acceleration force can also be
interpreted as steering ratio.)

The findings from the experimental data can be summarized as follows:

(i) Fig. 5 shows a short experiment of approx. 300 seconds (or 5 minutes).
The first 120 seconds were used for driver enrolment. After that the vehicle
began to move to the test track where the test run started. The experiment
stopped after finishing 3 laps. Acceleration force �= 0 was recognized in
periods where the vehicle moves. In parking positions, driver’s normalized
pressure indicates inclining to the right, probably influenced by a talk with
the co-passenger.

(ii) Fig. 6 shows interesting features for a more elaborate test run. The ad-
ditional vertical solid lines indicate recurrence of laps (12 laps could be
identified). Lap time is almost constant, at least for the last 7 laps, which
is a qualitative indicator for an experienced driver on the race course.

(iii) Fig. 7 is a magnification of Fig. 6 by factor 4 to allow for a better interpre-
tation. It shows nearly 4 complete laps of the experiment. Lap time varies
between 38, 046ms and 39, 766ms (the variance is small which refers to a
professional driver, as already mentioned above).

(iv) Fig. 8 shows approx. 10 minutes of an experiment, considering only passages
with vehicle-speed below the break-even speed vBE . The weight-dependent
value for the current driver (with weight (wD)) therefore had to be found. In
this experiment with race-driver Hannes Danzinger we calculated this value
as beeing ≈ 75km/h. (The euclidean distance between acceleration force
and normalized mat pressure is smallest at this speed. Evaluations has been
done for speed values from 0 to 120 km/h in steps of 1 km/h).
Of course, relationship of leaning and driving also depends on the geometry
of the curve. Lower speeds at a tight turn could probably directs to the same
result than high-speed driving in a wider turn or in a banked curve. In fu-
ture experiments, break-even speed vBE needs to be dynamically actualized
according to the curve parameters.
For low-speed cruising below vBE we can identify a inverse correlation be-
tween acceleration force and mat pressure (respective body pressure). Fur-
thermore, we can see that the values for acceleration force are mostly below
zero – this means that this turns are left-ones. Because they are driven at
low-speed, the consequence is, that all of this turns are sharp-edged ones.
In contrast p right norm is frequently above zero, an indicator for driver’s
direction of inclination toward right.

(v) Contrasting the observations from Fig. 8, Fig. 9 shows the interrelationship
between acceleration force and body postures only during high-speed driving
sections, Fig. 10 is a magnification of Fig. 9 by approximately a factor
of 10 and can be interpreted as follows: Cornering here shows significant

78 A. Riener, A. Ferscha, and M. Matscheko

0 ,5 1 1,5 2 2,5
-20

-10

0

10

20

30

40

x 105 time (ms)

ac
ce

le
ra

tio
n

fo
rc

e
(m

/s
2)

0

10

20

30

40

50

60

70

80

ve
hi

cl
e

sp
ee

d
(k

m
/h

)

Fig. 5. Recorded body movements on the
seat mat at the first minutes of the ex-
periment (vehicle starts to move after 120
seconds)

0 0,5 1 1,5 2 2,5 3 3,5 4 4,5 5 5,5 6
-20

-10

0

10

20

30

40

x 105 time (ms)

ac
ce

le
ra

tio
n

fo
rc

e
 (m

/s
2)

0

20

40

60

80

100

120

ve
hi

cl
e

sp
ee

d
(k

m
/h

)

Fig. 6. A whole test run (vertical solid
lines show recurrence of laps). Constant
lap time (at least from the 5th lap) is an
indicator for an experienced driver.

0 .25 .5 .75 1 1.25 1.5
-20

-10

0

10

20

30

40

x 105 time (ms)

ac
ce

le
ra

tio
n

fo
rc

e
(m

/s
2)

0 .25 .5 .75 1 1.25 1.5
0

20

40

60

80

100

120

ve
hi

cl
e

sp
ee

d
(k

m
/h

)

Fig. 7. Apparent resemblance of accelera-
tion force and body posture for ≈4 laps,
or 2.5 minutes

0 .1 .2 .3 .4 .5 .6
-20

-10

0

10

20

30

40

x 105 time (ms)

ac
ce

le
ra

tio
n

fo
rc

e
(m

/s
2)

0

10

20

30

40

50

60

70

80

ve
hi

cl
e

sp
ee

d
(k

m
/h

)
Fig. 8. Inverse correlation between accel-
eration force and persons bearing on low-
speed cruising below vBE (75km/h)

0 .5 1 1.5 2 2.5 3 3.5
-20

-10

0

10

20

30

40

x 105 time (ms)

ac
ce

le
ra

tio
n

fo
rc

e
(m

/s
2)

0

20

40

60

80

100

120

ve
hi

cl
e

sp
ee

d
(k

m
/h

)

Fig. 9. High correlation of acceleration
force and body posture while driving with
high speed (above 75km/h)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
-20

-10

0

10

20

30

40

x 105 time (ms)

ac
ce

le
ra

tio
n

fo
rc

e
(m

/s
2)

0

20

40

60

80

100

120

ve
hi

cl
e

sp
ee

d
(k

m
/h

)

Fig. 10. Detail view of an arbitrary 40
seconds clipping of Fig. 9. shows the con-
gruence between steering ratio and body
posture

Intelligent Vehicle Handling 79

correlation between vehicles acceleration force and persons sitting attitude.
Shape and peaks of the variables accy and prright norm are similar.

6 Conclusions

In this paper we attempted at the hypotheses that a driver’s readiness to com-
pensate lateral acceleration when cornering correlates with the driving speed.
To reason upon this hypotheses, we have developed an experimental sitting
posture recognition testbed: a real-time data acquisition system in a car and
a off-line evaluation environment. Experiments were conducted and preliminary
evaluations confirmed our research hypothesis: Low speed cornering is attempted
with moderate readiness to compensate centripetal force (see Fig. 8), while high
speed cornering leads to a increased readiness to compensate lateral forces (see
Fig. 9, 10).

The discovered correlation between steering ratio and body posture opens up
the opportunity for a number of intelligent vehicle control add-ons. Amongst
others, we identify the following:

(i) Adaptive steering angle when cornering: Similar in design to the AFS
(Adaptive Frontlight System) we can think of an adaptive, intelligent steer-
ing wheel with the objective to provide the driver with the best possible
steering behaviour by varying the influence of the steering ratio depend-
ing on context, like for example vehicle speed and the driver’s readiness to
compensate lateral forces.

(ii) Adaptive chassis frame: Adjust the chassis configuration from soft to
tough suspension, according to driver’s body postures on the mats. In a car
race, body postures while cornering are completely different from postures
exhibited during a family trip, even if the other parameters (steering ratio,
curve radius, vehicle speed) are equal.

(iii) Prevent wheels from spinning when accelerating or cornering
(TCS): Traction control systems are systems designed to prevent from loss
of traction. Body postures could affect a new generation of traction con-
trol systems adhering to excessive postures like frequent left/right inclining.
Hard steering maneuvers could proactively control the TCS in order to im-
prove prevention from losing traction.

(iv) Prevent wheels from blocking/locking (ABS/ESC): Anti-lock brak-
ing systems prevent wheels from locking while braking in order to improve on
maintaining steering control. Electronic stability control (ESC) is one step
beyond ABS and contains additional sensors (steering-wheel angle sensor,
gyroscope) to prevent the car from over-steering or under-steering. Again,
deriving action or maneuver intent from the driver’s body posture could
improve on the performance of these systems by just giving them informa-
tion way before the action is induced. The vehicle could already learn about
potential hazards the driver is facing, but not explicitly expressing via the
vehicle instruments (brake, steering wheel).

80 A. Riener, A. Ferscha, and M. Matscheko

Finally, beyond intelligent vehicle handling, our preliminary results encourage
to investigate on new modalities in driver-to-car and car-to-roadside interaction
as well as for improvements of driver assistance systems (enhanced steering pre-
cision, reduced or avoided over- or under-steering, proactively notifications of
electronic stability control, etc.).

As the next steps in the line of our investigations we aim at validating the
existence of a break-even speed vBE with further test runs involving different
drivers, different driving situations, different types of vehicles, and different driv-
ing purposes. In particular are we interested in an evaluation of the influence
of driving experience (e.g. newly licenced driver, professional driver, race driver,
etc.) on both, break-even speed and body postures.

Acknowledgements. We would like to acknowledge the valuable help and
support by Max Lampelmaier and Hannes Danzinger, both professional cham-
pionship winning race drivers, for their serving as test-persons in all our exper-
iments, and for the proliferation of a rich body of knowledge from professional
race driving.

References

1. Cheng, S.Y., Trivedi, M.M.: Turn-intent analysis using body pose for intelligent
driver assistance. IEEE Pervasive Computing 5(4), 28–37 (2006)

2. Graham, R., Carter, C.: Comparison of speech input and manual control of in-car
devices while on the move. Personal and Ubiquitous Computing 4(2/3) (2000)

3. McCallum, M., et al.: Speech recognition and in-vehicle telematics devices: Po-
tential reductions in driver distraction. International Journal of Speech Technol-
ogy 7(1), 25–33 (2004)

4. Stallkamp, J., et al.: Video-based driver identification using local appearance face
recognition. In: Workshop on DSP in Mobile and Vehicular Systems, Istanbul,
Turkey, Interactive Systems Labs, Department of Computer Science, TU Karlsruhe,
Germany, p. 4 (June 2007)

5. McCall, J., Trivedi, M.M.: Driver Monitoring for a Human-Centered Driver Assis-
tance System. In: HCM 2006: Proceedings of the 1st ACM international workshop
on Human-centered multimedia, pp. 115–122. ACM Press, New York (2006)

6. Erzin, E., et al.: Multimodal person recognition for human-vehicle interaction.
IEEE MultiMedia 13(2), 18–31 (2006)

7. Oliver, N., Pentland, A.: Graphical models for driver behavior recognition in a
smartcar. In: Proceedings of the IEEE Intelligent Vehicles Symposium, pp. 7–12
(October 3–5, 2000)

8. Oliver, N., Pentland, A.P.: Driver behavior recognition and prediction in a smartcar
(2000)

9. Cheng, S.Y., Park, S., Trivedi, M.M.: Multiperspective thermal ir and video arrays
for 3d body tracking and driver activity analysis. In: CVPR 2005: Proceedings
of the 2005 IEEE Computer Society Conference on Computer Vision and Pat-
tern Recognition (CVPR 2005) - Workshops, p. 3. IEEE Computer Society Press,
Washington (2005)

10. Trivedi, M.M., Gandhi, T., McCall, J.: Looking-in and looking-out of a vehicle:
Computer-vision-based enhanced vehicle safety. IEEE Transactions on Intelligent
Transportation Systems 8(1), 108–120 (2007)

Intelligent Vehicle Handling 81

11. Veeraraghavan, H., et al.: Driver activity monitoring through supervised and un-
supervised learning. In: Intelligent Transportation Systems, 2005. Proceedings, pp.
580–585. IEEE, Los Alamitos (2005)

12. Trivedi, M.: Occupant posture analysis with stereo and thermal infrared video:
Algorithms and experimental evaluation (2003)

13. Moeslund, T.: Computer vision-based human motion capture – a survey (1999)
14. Moeslund, T.B., Granum, E.: A survey of computer vision-based human motion

capture. Computer Vision and Image Understanding: CVIU 81(3), 231–268 (2001)
15. McCall, J.C., Trivedi, M.M.: Human Behavior Based Predictive Brake Assistance.

In: Intelligent Vehicles Symposium, pp. 8–12. IEEE, Los Alamitos (2006)
16. Park, S., Trivedi, M.: Driver activity analysis for intelligent vehicles: Issues and

development framework (2004)
17. Hermkens, J.: Tools for Professionals: FSA documentation. Vista Medical Europe

B.V., Industrieterrein 40, NL-5981 AK Panningen, The Netherlands (August 02,
2006)

U. Brinkschulte et al. (Eds.): ARCS 2008, LNCS 4934, pp. 85–97, 2008.
© Springer-Verlag Berlin Heidelberg 2008

A Hardware Packet Re-Sequencer Unit
for Network Processors

Michael Meitinger, Rainer Ohlendorf, Thomas Wild, and Andreas Herkersdorf

Technische Universität München, Arcisstraße 21
80290 Munich, Germany

michael.meitinger@tum.de

Abstract. Network Processors (NP) usually are designed as multi-processor
systems with parallel packet processing. This parallelism may lead to flows
with packets out-of-order when leaving the NP system. But packet reordering
has a bad impact on network performance, especially when using the dominat-
ing TCP protocol. In this paper, we describe a Hardware Re-Sequencer Unit for
Network Processors. Incoming packets will be tagged in the ingress path, pre-
serving the packet order with flow granularity. An Aggregation Unit reorders
the packet flows in the egress path if needed. In contrast to most other solutions
the way of the packet through the NP system is dispensable, which enlarges
design freedom in terms of e.g. load balancing. After explaining the general
concept, a SystemC model is presented. Simulation results are used for dimen-
sioning and a proof of concept with real traffic traces. General aspects concern-
ing the implementation are discussed.

1 Introduction

In modern networks line speeds are growing and with it also the processing power
needed for packet processing. Among all possible solutions Network Processors
promise the best tradeoff between performance and flexibility. To handle the process-
ing load all commercial Network Processors pursue a multi-core solution [1] for
parallel packet processing.

Additionally, the processors (sometimes called microengines or processing engines
(PE)) often support multithreading. This optimizes the resource utilization since a PE
can continue working on another packet while waiting for memory or coprocessor ac-
cess replies, for example. So if no special scheduling mechanisms are used, the pack-
ets can get allocated to different threads in different PEs. Since processing times can
differ due to different resource access times, the packet order cannot be guaranteed.

But packet reordering can have a great impact on the overall network performance.
Here, packet reordering means that packets of a flow are out-of-order. A flow, in turn,
is defined by its IP 5-tuple (IP source and destination address, source and destination
port number and transport layer protocol number). Especially the dominating TCP
protocol is sensitive to packet reordering. If packets are out-of-order, this may lead to
retransmission since late packets may be seen as being lost. Measurements on an
IXP2400 [2] have shown, that the retransmission rate in a 10-hop network due to

86 M. Meitinger et al.

packet reordering is 10% and more if there are no order ensuring mechanisms. This
can result in a significant network performance reduction of up to 60% in packet
throughput [3].

There are several attempts to reduce packet reordering as far as possible. The most
usual approaches are described in detail in the next chapter. The rest of the paper is
structured as follows: in chapter 3 we present the general concept of our Hardware
Re-Sequencer Unit. In chapter 4 our SystemC model is introduced and simulation re-
sults are presented. In chapter 5 we discuss some implementation aspects before con-
cluding our work.

2 Related Work

As described before, packet reordering may be a problem for network performance.
Although it is not mandatory to guarantee flow-based packet order in IP based
Ethernet networks, it can be crucial for service quality.

Basically there are two different approaches. Most implementations try to guaran-
tee packet order by using an appropriate scheduling mechanism. Every packet of a
flow is processed by the same PE. Since there is no parallel processing within this
flow, there is no possibility for packet reordering. The flows still must be distributed
among the different available PEs. This is usually done by calculating a hash value
based on the IP 5-tuple. The calculated hash value can be directly used as an index for
the PE that should be used. Results have shown that using a CRC16 produces a very
well balanced distribution of flows on the possible numerical range [4]. Nevertheless,
since there are typically many flows with low activity and some flows with very high
activity, the PE load may be unbalanced, resulting in an inefficient use of processing
power. Therefore if some very active flows are aggregated an overload situation for a
single PE may occur.

To prevent this situation, Dittmann [5] uses a dynamic configuration. Instead of us-
ing a small hash value directly as a static PE index, a larger hash value is used as an
ID which is associated to a PE by a lookup table. The association between ID (repre-
senting a flow bundle with the same hash value) and PE now can be changed by
dynamically changing the table entry. Newly activated IDs (i.e. IDs that have been in-
active for some time) are mapped to the PE with the smallest queue at the moment.
But flow bundles are also switched in overload situations which may lead to packet
reordering. This drawback is accepted for the benefit of performance.

Shi [6] reduces this drawback by not shifting flow bundles randomly between PEs,
but by identifying very active flow bundles with high packet rates. It is argued that
much less flows must be shifted since the effect on the PE load for the highly active
bundle is much greater now. The effect of packet reordering is therefore also lower,
albeit still possible.

Nevertheless, in all schemes the granularity of load balancing depends on the activ-
ity of single flows. In some cases this will lead to an inefficient load distribution
among all available PEs. Especially the bulk of non state-dependent packets (e.g. only
IP forwarding) can be sprayed on all PEs for an optimal load balancing. That is why
Wu [7] reconstructs the packet order per flow after spraying the packets on all avail-
able threads by a dispatcher for processing. A Content Addressable Memory (CAM)

 A Hardware Packet Re-Sequencer Unit for Network Processors 87

stores all active flows. When a packet arrives it is first checked if there are already
packets of that flow in the system or if a new CAM entry has to be created. A second
memory structure organizes the associated waiting queue by creating a centralized
linked list recording the original flow sequence. Flags indicate if a packet has already
been processed (set by the thread that is processing the packet) and if it is the first
packet in the linked list of a flow, i.e. the first packet that should be sent out after
processing. An egress scheduler checks all the packet entries for packets that can be
transmitted in a round robin manner. When all packets of one flow have left the sys-
tem, the CAM entry is deleted again. The use of the CAM enables a true flow solution
without any hash value and resulting collisions. Nevertheless the number of total
packets that can be managed at the same time is limited to the number of threads on
the PEs and the threads are blocked as long as the processed packets are waiting for
transmission.

3 Resequencing Concept

In our concept we want to combine the advantages of both basic approaches (schedul-
ing and re-sequencing). Basically we are following the same approach as Wu [7] with
the packets being re-sequenced after processing, enabling to spray packets of a flow
among multiple PEs. Nevertheless in contrast to Wu [7] we are able to combine our
approach with an additional scheduler to keep the ability for a dedicated scheduling of
certain classes of packets. Additionally, we overcome basic drawbacks of [7], mainly
the inefficient and limiting central management of all packets and the usage of a
CAM which may be resource-intensive, especially for a high number of flows in the
system at the same time. That is why we split our approach in two independent hard-
ware entities as shown in Figure 1:

• An Ingress Tagger calculating an ID by hashing the IP 5-tuple and assigning a con-
secutive sequence number per ID, storing the input order of a packet flow bundle.

• An Aggregation Unit, checking the packet sequence. Out-of-order packets are
stored in a buffer memory and re-sorted before transmission.

Since the re-sequencing information (ID and sequence number) is traveling with the
packet through the system (for example as an additional header in front of the packet)
there is no need for a centralized management. Additionally, we are hardly limited by

Fig. 1. Packet Re-sequencer Unit in a NP system

88 M. Meitinger et al.

a maximum number of packets that are in the system at the same time. The only criti-
cal factor is the size of the buffer memory connected to the Aggregation Unit which
depends on the degree of packet reordering. This will be examined using our SystemC
model, presented in the next chapter.

By using a hash-based approach we can prevent the need of the resource-intensive
CAM. Instead, we make use of conventional and comparatively cheap SRAM for
flow information storage.

3.1 Ingress Tagger

The Ingress Tagger creates a flow ID and a sequence number for each incoming
packet (see Figure 2a). The flow ID is calculated using a hash function on the IP 5-
tuple. Each hash function that will distribute all possible flows evenly over the avail-
able hash value range is suitable. For every ID a counter stores the actual sequence
number which is incremented when an associated packet arrives. The ID (hash value)
and sequence number (counter value) is added to the IP packet. In our FlexPath NP
system [8] this information is kept in a packet descriptor, a packet tag traveling
through the system that contains packet information like the packet data memory
pointer. Depending on the current system implementation, this information could
generally also be added as an additional internal header in front of the packet.

The width of the hash value may be adapted on the particular system and require-
ments. On the one hand, the more bits are used for the flow ID, the more counters are
needed, as the number of counters is the power of two of the bit width. On the other
hand the probability of a collision of active flows on the same hash value is rising
with a smaller hash bit width. The effects of these collisions are investigated using the
SystemC model in the next chapter.

3.2 Egress Aggregation Unit and Buffer Memory

The Aggregation Unit as the counterpart of the Tagger is placed in the egress path and
working in a similar way. Again there is a counter for each ID indicating the next se-
quence number to be transmitted (see Figure 2b). Based on this sequence number, the
Aggregator decides on each packet arrival if it is really the next packet that should be
sent out. Out-of-order packets must be stored in the buffer memory until all missing
packets have passed.

This strategy is sufficient as long as (i) the buffer memory can hold enough packets
for complete reordering and (ii) no packets are being lost within the PE cluster, which
may be the case if packets are discarded due to IP checksum errors or a routing
lookup miss. Since these packets already have passed the Ingress Tagger, the Aggre-
gation Unit will wait for packets that will never arrive. Following packets with the
same ID therefore will be blocked, leading to high latencies and a growing buffer.
We thus want to use timers to make sure that packets are not waiting too long in the
buffer. After a certain time, a packet that is still missing is defined as lost and all
packets in the buffer of this flow will be transmitted. Additionally, when reaching a
certain queue size, a missing packet is again defined to be lost, making sure that a
queue of a very active flow is not getting too big.

 A Hardware Packet Re-Sequencer Unit for Network Processors 89

Fig. 2. Ingress Tagger (a) and Aggregation Unit block diagram

0 1255

x packet waiting for

packets intended
to be late („lost“

packets)

packets intended
to be buffered

Fig. 3. Sequence number wrap-around and late packet definition (8 bit example)

Care must be taken of packets arriving after being classified as lost. Since the se-
quence number is wrapping-around after its highest value these packets might be seen
as future packets and not as ones that already should have passed. A solution is to
separate the sequence number range in two halves, separated by the next expected se-
quence number. Packets with a sequence number lower than the expected one (upper
half of the circle in Figure 3) will be seen to be late and will pass immediately. The
other packets will be treated as out-of-order packets and buffered if needed. The
sequence number range must be chosen large enough.

The buffer structure is a critical parameter in the system. It must be large enough to
hold all packets for re-sequencing. Since we do not store the whole packet, but only
the already mentioned packet descriptors in our FlexPath NP system [8], the size of
one buffer cell can be limited to 128 bit per packet. The packet data itself stays in the
NP’s main memory. When the whole packet must be stored, buffer dimensioning is
more critical because of the different packet sizes.

The queues may be arranged as ring buffers. Pointers can link a flow ID to one of
the queues for re-sequencing (compare Figure 4a). When a packet with the expected
sequence number arrives (e.g. ID#3, packet #4 in Figure 4a) at the aggregator, all
consecutive and already present packets will be sent out after this packet (compare
Figures 4a and b). The queue starting pointer of the ring buffer will be updated.
Packet transmission stops either when the queue is transmitted completely or when a

90 M. Meitinger et al.

missing packet in the queue is reached (ID#3, packet #6). This packet now becomes
the next expected packet and the following packet (packet #7) now is the new head of
the waiting queue.

In contrast to [7] where the transmission management is done by a round robin
scheduler checking every packet for transmission possibility, our approach is totally
event driven, i.e. whenever a packet arrives at the egress path it is checked for se-
quence and transmitted without delay if possible. Management and storage is only
needed for out-of-order packets and not for all packets in the system.

Fig. 4. Queuing example before (a) and after (b) transmission of packet #4 and #5

4 SystemC Simulations

4.1 Simulation Setup

For proof of concept and dimensioning issues, we have implemented a SystemC
model of a simple Network Processor containing several processing units and our
Packet Re-Sequencer Unit (see Figure 5).

For packet stimuli we use the pcap file format [9] which is a standard in packet
capturing. Real pcap traffic traces are available for download [10][11][12], recorded
for example on an internet backbone router, but packet files can also be generated ar-
tificially. This enables a stimulation of our system with realistic and representative
traffic.

Fig. 5. SystemC simulation model

 A Hardware Packet Re-Sequencer Unit for Network Processors 91

The pcap format contains packet data (often limited to the headers), packet infor-
mation like packet size and a timestamp. Based on these timestamps and the packet
data, the RX-module creates the packets and sends them to the system. A speedup
factor enables a faster replay for higher data rates, if needed.

After the ingress queue the packets are marked by the Ingress Tagger. We calculate
a 16 bit hash value based on the IP 5-tuple which can be reduced afterwards by cut-
ting the most significant bits from the calculated hash value. The resulting bit width is
defined by a special parameter. The hash function is a 16 bit sum up of the 5-tuple
with a 3 bit shift after each summation. Measurements on a trace file have shown that
this kind of hash value really creates a balanced distribution of the flows on the avail-
able hash values.

A dispatcher separates the high priority packets (IP Type of Service field > 0) from
the low priority packets. Whereas the ingress queue may throw away packets if full,
the following queues will give a backpressure if needed. So no packets can be lost by
the queues after tagging. The low priority packets will then be processed by a PE
cluster. For our simulations we have used 8 PEs with a random processing latency of
20-60 µs. The latency is saved for each flow, so that every packet of a flow has the
same latency but with a random jitter of ±5%, representing random effects like mem-
ory accesses, bus load etc. About 5% of the flows have a higher latency of up to
112 µs based on the packet length. Additionally, there is one reserved PE for high
priority packets. If this PE is still busy when another high priority packet arrives, it
will be processed by the next free PE (high and low priority PEs). The processing
time of the high priority packets is set to 20-60 µs again with a jitter of ±5%.

Due to the different processing times in the PE cluster packet reordering may
occur. The packets are re-sequenced by the Aggregation Unit before transmission.

With this setup we try to represent a realistic NP with a throughput of approxi-
mately 1 Gbps (depending on the current random processing times).

4.2 Trace File

For the first simulations we have chosen a trace file of a 100 Mbps trans-pacific line
with an average speed of 13.89 Mbps and a standard deviation of 1.10 M [10]. Over-
all the trace file has a record time of 15 minutes with about 3 million packets. Since
the approximately 14 Mbps in average are not enough to stress our system, we have
set the built-in speedup factor to 70. That raises our input data rate to 972 Mbps in av-
erage, whereas the simulated time is reduced to less than 13 seconds. This enlarges
the processing load and thus the probability of packet reordering as a kind of worst
case scenario. In fact, the peak data rates will exceed the Gigabit limit which leads to
packet loss. This is not typical for a normal NP operation but stresses the conditions
for dimensioning.

4.3 Simulation Results

Using this setup we have investigated the behavior of our system for different hash
function bit widths.

92 M. Meitinger et al.

In all cases the output throughput was about 906 Mbps, i.e. our PE cluster was at
least temporarily in overload, leading to a packet loss rate of 9%.

In Figure 6 the collision rate is given depending on the hash bit width. A collision
means that a packet is mapped to a hash value with at least one packet of a different
flow but the same ID processed and managed by the Re-Sequencer Unit at the same
time. A collision does not necessarily lead to a drawback by means of performance
and latency although it may. Problems may arise if a flow with a short processing
time and a flow with a long processing time collide. Because of the short processing
time the packets of the first flow may overtake the other packets in the NP system.
Because of the same ID the Re-Sequencer Unit will force all of these packets to leave
the system in input order, leading to a needless delay and a higher resource usage be-
cause of the buffering. For 8 bit the collision rate is up to 4% and declines strongly
with increasing bit width. For 12 bit it is already below 0.3% and for 16 bit the rate is
approaching zero (0.01%).

0,00%

0,50%

1,00%

1,50%

2,00%

2,50%

3,00%

3,50%

4,00%

4,50%

8 9 10 11 12 13 14 15 16

ID bit width

co
lli

si
on

 r
at

e

Fig. 6. Collision rate depending on ID bit width

To investigate the effect on the latency we measured the rate of packets stored
temporarily in the egress path to get re-sequenced (see Figure 7). For wide hash val-
ues as seen before, the collision rate is practically equal to zero, so we have a constant
packet part of 2.8% which is out-of-order after the PE cluster due to different process-
ing times. Superimposed are the effects of collisions especially for lower bit widths,
which raise this value up to 3.6% for 8 bit. The average Aggregation Unit buffer
queuing delay for out-of-order packets rises from 10µs (16 bit) up to 11.8µs (8 bit).
The maximum delay stays almost constant at 115µs for all cases.

Another interesting issue is the buffer size needed for re-sequencing. In all cases
there were no more than 16 packets buffered in the egress path at the same time.

 A Hardware Packet Re-Sequencer Unit for Network Processors 93

0,00%

0,50%

1,00%

1,50%

2,00%

2,50%

3,00%

3,50%

4,00%

8 9 10 11 12 13 14 15 16

ID bit width

pa
ck

et
s

ou
t o

f o
rd

er

Fig. 7. Percentage of packets needed to be re-sequenced depending on ID bit width

When reducing the effect of collisions by using at least 11 bit hash values, no more
than 10 packets were buffered to enable a complete re-sequencing.

On average, the effect of collisions seems to be negligible, at least for wide IDs.
Nevertheless there are some cases where the latency of a single packet is important,
especially with respect to Quality of Service (QoS). High priority packets might ex-
perience a large latency due to collisions. That is why we separated the high from the
low priority packets by reserving one bit from the ID indicating a low or high priority
packet. Now high priority flows can only collide with other high priority flows. As
expected the collision rate for high priority packets is much lower since there are
much less packets (see Figure 8). Only 1.8% of all packets have a high priority. For
the low priority packets, things get a bit worse, since there is now one bit less for the
hash function. Almost the same number of packets (98.2%) now must be spread
among a smaller range. The collision rates are now quite the same when compared to
the reference ID with one bit less, but the same hash size.

When investigating the number of out-of-order packets after processing (Figure 9),
we see that the high priority packets are hardly affected by the hash value. The
values are a bit lower (about 2.5%), mainly due to the usual in-sequence processing
by one reserved PE. The low priority packets again suffer from the reduced hash
value size.

The average buffer queuing delay for the low priority out-of-order packets again is
comparable to those already measured with the same hash size and stabilizing for
higher bit widths (12 bit and more) at 10µs in average. The high priority packets have
a lower latency again due to their usually in-sequence processing. So the average de-
lay for out-of-order packets is 7.6µs with a maximum of 54µs, both nearly stable for
all bit widths. Again the buffer size needed is in the range of 10-15 packets.

94 M. Meitinger et al.

0,00%

1,00%

2,00%

3,00%

4,00%

5,00%

6,00%

7,00%

8,00%

8 9 10 11 12 13 14 15 16

ID bit width

co
lli

si
on

 r
at

e
high priority
low priority
reference

Fig. 8. Collision rate with priority bit

0,00%

0,50%

1,00%

1,50%

2,00%

2,50%

3,00%

3,50%

4,00%

4,50%

8 9 10 11 12 13 14 15 16

ID bit width

pa
ck

et
s

ou
t o

f o
rd

er

reference
high priority
low priority

Fig. 9. Percentage of packets needed to be re-sequenced with priority bit

Based on the results a 12 bit flow ID with one bit reserved for low/high priority
resolution seems to be a good solution. It is a good tradeoff between resource utiliza-
tion and performance. The effects of collisions are very low to negligible. The next
step now is to verify this design decision on a broader set of trace files. We have used
some additional trace files and compared the results in Table 1. Besides a second
trans-pacific link we have tested another oc-48 backbone node. Samples 4 and 5 de-
rive from the University of North Carolina and contain the in- and outbound traffic of
the university’s border gateway to the internet. All samples had been scaled using the
speedup factor to reach approximately gigabit speed on average.

All results assert the usefulness of our concept. For all simulations full packet re-
sequencing can be sustained with a buffer size of no more than 12 cells.

 A Hardware Packet Re-Sequencer Unit for Network Processors 95

Table 1. Simulation results for different traffic trace files (ID bit width 12, incl. priority bit)

Trace file 1 2 3 4 5
Source [10] [10] [11] [12] [12]
Link 100 mbps 150 mbps oc-48 oc-3 oc3

Type Backbone Backbone Backbone Border
inbound

Border
outbound

Orig. average data rate
[Mbps]

13.89 118.07 121.31 19.26 30.54

Packets [million] 3.1 18.1 11.3 17.5 18.0
Orig. trace time [s] 900 900 300 3305 3308
Speedup factor 70 9 8 50 33
Sim. in data rate [Mbps] 972 1062 970 963 1008
Out data rate [Mbps] 906 1047 820 924 1007
Packet loss in PE Cluster[%] 9.3 1.8 14.4 4.6 0.05
coll. rate (low) [%] 0.62 0.45 0.73 0.58 0.42
coll. rate (high) [%] 0.002 0.006 0.038 0.21 0.20
Packets ooo after PE Cl. [%] 2.91 2.64 0.83 1.87 0.97
Max. buffer size (total) 10 12 12 12 9
Max. buffer size per queue 10 12 12 12 9
Max.# of active queues 3 4 3 5 4
Max.# of packets in System 28 25 29 27 27
Max.# of packets of one flow
(ID) in System 19 20 18 17 20

Max.# of active flows in
System 20 19 20 21 21

5 Implementation

At the moment, the implementation on a FPGA development board is in progress.
Based on the simulation results, we have chosen a 12 Bit ID with 1 bit priority field.
We are using an 8-bit sequence number. Since the simulations showed no more than
20 packets of one ID in the system at the same time (compare table 1), this gives a
more than comfortable security margin to prevent problems due to wrap-around ef-
fects. By this decision it should be always possible to decide if a packet with a given
sequence number is a still missing packet or a future packet. For the given bit widths
we need a total of 8 KB on-board SRAM to store the counter values of ingress and
egress part.

As the number of flows that has to be re-sequenced at the same time is limited to 5
in the simulations (see Table 1) we have decided to implement 8 re-sequencing
queues with a maximum buffer length of 32 entries, based on the maximum simulated
queue size of 12 entries per flow with a comfortable security margin. Since the mem-
ory usage of 8x32x128bit = 4 KB on-board SRAM is quite low, we have decided to
use static queues instead of dynamic ones organized with a linked list. The manage-
ment overhead for dynamic queues seems to be too high in this case. Nevertheless for
different application scenarios with more and/or larger queue sizes, this may also be
an option.

Again this shows the advantage of our concept compared to [7]. Since the percent-
age of out-of-order packets is small, most flows are still in sequence when leaving the
PE cluster. Re-sequencing queues are only needed for flows with out-of-order

96 M. Meitinger et al.

packets, which was limited to 5 in the simulations. In a CAM solution an entry for
every active flow in the PE cluster (maximum of 21 in the simulations) is needed.
Every entry must have 104 bit, which is the size of the IP 5-tuple. So, in our concept
the dimensioning is only influenced by the percentage of out-of-order packets. In [7]
it is dominated by the number of flows in the system, even when in-order. This usu-
ally correlates with the number of packets. That means that for larger systems with
more PEs, hardware accelerators etc., our approach should also scale better.

Despite the fact that the simulation results are very encouraging, it cannot be made
sure, that in a worst case scenario the overall buffer size is sufficient to store all wait-
ing packets. If the number of packets of all queues waiting in the buffer reaches the
memory size limit, all the packets will be sent out. Despite the fact, that this is a deg-
radation in terms of quality of service and packet reordering should be avoided, this
behaviour is acceptable in rare cases and covered using TCP/IP. Retransmission of
packets might be the case.

Packets that will end at the NP (i.e. with the NP’s IP address) and control packets
(ARP, ICMP) will not be managed by the Re-Sequencer Unit. These packets will be
tagged with flow ID #0, indicating that they should not be managed. This requires that
the other IP packets are not tagged with #0 (which must be considered in the hash
function). Additionally, these packets must be identified at the ingress path. In our
FlexPath project we use the Pre-Processor for this job. If not available, this must be
implemented in the Ingress Tagger. In the PE cluster generated packets (like ICMP
message) will also get ID #0, which ensures that they will be sent out immediately
without buffering.

6 Conclusion

In this paper we have introduced a Hardware Re-Sequencer Unit for use in Network
Processors. In difference to most implementations using a special scheduling we im-
prove the freedom of packet distribution on parallel working processing units. The
Re-Sequencer Unit guarantees that packet order is preserved reliably. The use of a
hash function to calculate a flow ID in contrast to using the 5-tuple reduces design
complexity while still enabling a high degree of Quality of Service. Simulations with
SystemC indicate that our unit works well in most cases. Extreme situations like
packet loss or a very high packet reordering are absorbed by a fail-safe implementa-
tion preventing the system from buffer overrun and disproportional packet latencies.

The next step now is to implement the design on a Xilinx Virtex-4 FPGA platform.
As soon as our demonstrator runs, we will validate the simulation results under real
conditions.

Acknowledgements

We would like to thank the German Research Foundation (DFG) for co-funding the
FlexPath NP project in which this work has been done.

 A Hardware Packet Re-Sequencer Unit for Network Processors 97

References

1. Shah, N.: Understanding Network Processors. Berkley Technical Report (September 2001)
2. Govind, S., Govindarajan, R., Kuri, J.: Packet Reordering in Network Processors. In:

IPDPS 2007 (May 2007)
3. Laor, M., Gendel, L.: The Effect of Packet Reordering in a backbone Link on Application

Throughput. IEEE Network (September/October 2002)
4. Cao, Z., Wang, Z., Zegura, E.: Performance of Hashing-Based Schemes for Internet Load

Balancing. IEEE INFOCOM, Tel Aviv, Israel (March 2000)
5. Dittmann, G., Herkersdorf, A.: Network Processor Load Balancing for High-Speed Links.

SPECTS 2002 (2002)
6. Shi, W., MacGregor, M.H., Gburzynski, P.: Load Balancing for Parallel Forwarding. IEEE

Transactions on Networking 13(4) (August 2005)
7. Wu, B., et al.: A Practical Packet Reordering Mechanism with Flow Granularity for Paral-

lelism Exploiting in Network Processors. In: IPDPS 2005(2005)
8. Ohlendorf, R., Herkersdorf, A., Wild, T.: FlexPath NP - A Network Processor Concept

with Application-Driven Flexible Processing Paths. CODES+ISSS, Jersey City, USA
(September 2005)

9. Libpcap homepage, http://www.tcpdump.org
10. MAWI Working Group Traffic Archive, http://tracer.csl.sony.co.jp/mawi/
11. CAIDA, traces of OC48 link at AMES Internet Exchange (AIX) (April 24, 2003), ac-

cessed via DatCat – Internet Data Measurement catalog, http://imdc.datacat.org
12. University of North Carolina at Chapel Hill, border link traces (September 25, 1999) ac-

cessed via DatCat – Internet Data Measurement catalog, http://imdc.datacat.org

Self-aware Memory: Managing Distributed
Memory in an Autonomous Multi-master

Environment

Rainer Buchty, Oliver Mattes, and Wolfgang Karl

Universität Karlsruhe (TH) – Institut für Technische Informatik (ITEC)
Lehrstuhl für Rechnerarchitektur und Parallelverarbeitung

Zirkel 2, 76131 Karlsruhe, Germany
{buchty,mattes,karl}@ira.uka.de

Abstract. A major problem considering parallel computing is main-
taining memory consistency and coherency, and ensuring ownership and
access rights. These problems mainly arise from the fact that memory
in parallel and distributed systems is still managed locally, e.g. using a
combination of shared-bus- and directory-based approaches. As a result,
such setups do not scale well with system size and are especially unsuit-
able for systems where such centralized management instances cannot or
must not be employed. As a potential solution to this problem we present
SaM, the Self-aware Memory architecture. By using self-awareness, our
approach provides a novel memory architecture concept targeting multi-
master systems with special focus on autonomic, self-managing systems.
Unlike previous attempts, the approach delivers a holistic, yet scalable
and cost-friendly solution to several memory-related problems including
maintaining coherency, consistency, and access rights.

1 Introduction and Motivation

An increasing problem in parallel, distributed system is how to assign and man-
age memory resources. Traditionally, this is done through a layered approach
where local memory is managed per node. Locally, memory is typically attached
using a shared bus, where appropriate coherency protocols (such as MESI) are
applied; above node level, directory-based methods are employed to enable co-
herency and consistency. Virtualization of the memory subsystem, i.e. forming
a system-wide, eventually shared, distributed memory resource from the indi-
vidual local memory entities, and securing access rights in such systems require
further assistance, typically realized through additional, OS-assisting software
layers, or underlying virtualization and abstraction layers.

This strategy becomes increasingly performance-hampering: bus-based meth-
ods are hardly applicable beyond dual-core systems as they require bus systems
running at a multiple of the required access speed, hitting technology bound-
aries. Likewise, in directory-based systems the directory itself and its connection,
i.e. network, speed, and latency, become a bottleneck.

U. Brinkschulte et al. (Eds.): ARCS 2008, LNCS 4934, pp. 98–113, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Self-aware Memory: Managing Distributed Memory 99

CPU SaM−Table

SaM−Requester
Instr.

Response Response

Request

CPU SaM−Table

SaM−Requester
Instr.

Response Response

Request
MemSaM−Table

SaM−Memory
Request MemOp

ResponseResponse

MemSaM−Table

SaM−Memory
Request MemOp

ResponseResponse

MemSaM−Table

SaM−Memory
Request MemOp

ResponseResponse

N
et
w
o
rk

Fig. 1. Structure of SaM

With the rise of multicore and upcoming manycore architectures, we already
observe a shift in computer architecture: instead of traditional bus-based ap-
proaches, these systems feature NoC-based interconnection between the individ-
ual cores and memory where each core not necessarily has exclusive access to
local memory. Examples for such architectures are e.g. MIT RAW [20] and the
late Intel Polaris being part of Intel’s Tera-scale computing program [9].

Our work is motivated by a special kind of NoC-connected SoC architec-
ture, the Digital On-demand Computing Architecture for Real-time Systems
(DodOrg) [2]. DodOrg comprises a heterogeneous grid of processing elements,
memory, and I/O cells. The processing cells can be e.g. standard CPU, DSP,
or programmable logic (FPGA) cells [16]. DodOrg employs techniques derived
from so-called organic or autonomic computing. Hence, no central management
instances or supervising OS are used. Instead, a lightweight control loop for
autonomous task-to-cell assignment and system surveillance is employed [3,4].

A memory management system fitting into such a system therefore also has
to act autonomously and without external assist by e.g. OS and higher software
layers. Since DodOrg was designed with focus on embedded real-time systems,
this must not induce significantly raised hardware costs.

The aforementioned memory management problems arise from the fact that
also in distributed systems memory is typically exclusively assigned and physi-
cally connected to a single processor, becoming the “housekeeper” of its assigned
entity. Combination of these individual memory entities into a global shared
memory resource requires the described multi-layer approach to ensure consis-
tency, coherency, and uphold access rights. Depending on the target platform,
such an approach is, however, not applicable.

In our paper, we describe a novel memory architecture concept, dubbed Self-
aware Memory (SaM), targeted at distributed multi-master systems. Unlike pre-
vious attempts, the approach delivers a holistic, yet scalable and cost-friendly
solution to several memory-related problems including coherency, consistency,
access rights. This is achieved by employing so-called self-awareness so that
the memory subsystem essentially becomes self-managing. As a beneficial side-
effect, this also reduces complexity on hardware and software level as previously

100 R. Buchty, O. Mattes, and W. Karl

required instances for ensuring consistency, coherency, and access rights are no
longer necessary in SaM.

This paper is structured as follows: we will first present related work in
Section 2, where we shortly discuss their benefits and drawbacks. To further
motivate our work, in Section 3 we provide a short introduction into an appli-
cation scenario, our Digital on-Demand Computing Architecture for Real-time
Systems (DodOrg), a so-called organic computing architecture which inspired the
development of Self-aware Memory. In Section 4 we will present our SaM archi-
tecture concept, architecture implications, and show how such a setup matches
the architecture requirements parallel systems in general, and specifically of ar-
chitectures like DodOrg. The existing prototype, current work, and initial results
derived from the prototype are shown in Section 5. The paper is concluded with
Section 6.

2 Related Work

In the past multiple concepts for a different usage of the memory in a system
were explored. With Intelligent RAM (IRAM) [13], Processing in Memory (PIM)
[17], Parallel Processing In Memory (PPIM) [15] and some other related projects,
computation of simple instructions is sourced out into small processing elements
integrated in the memory modules. FlexRAM [10] is another PIM-based archi-
tecture; it features a programming concept called CFlex [6]. All these approaches
share the same concept, i.e. offloading computation into memory and therefore
saving expensive transfer time from memory to processor and back. Although
these concepts are coined intelligent memory, this solely reflects the processing
“intelligence”. These concepts are all based on a static architecture and do not
expose any flexible or autonomous behavior.

Active Pages [12] are another concept for relocating processing of instructions
to the memory. In contrast to the aforementioned approaches, Active Pages are
based on so-called RADram (Reconfigurable Architecture DRAM) which means,
that the logic functions integrated in the memory can be changed during the ex-
ecution. This gives the possibility to specifically adjust the logic to the require-
ments of an executed program. The system is flexible, so the same hardware
can be used for more varying systems leading to lower costs. Another advantage
is that Active Pages integrates in normal systems by using the same interface
as conventional memory systems, hence, it is not replacing conventional archi-
tectures. Active Page functions are invoked through memory-mapped writes.
Synchronization is accomplished through user-defined memory locations.

A special kind of connecting memory to a system of several processors exists
in the parallel sysplex architecture of IBM mainframe computers. The so-called
coupling facility [14,7] is a central memory concurrently used from all subsystems.
It ensures the integrity and consistency of the data. This is achieved through
a special processor with attached memory, which is connected to all processing
elements of the sysplex configuration.

Self-aware Memory: Managing Distributed Memory 101

In contrast to this different projects, we introduce Self-aware Memory (SaM) –
a memory system with autonomous, intelligent, self-aware and self-managing
memory components. SaM features an easy to use memory concept in a shared
memory system which adopts the four basic Self-X principles of Autonomic Com-
puting [8]. By handing over memory control from the operating system to the
self-managing and software-independent hardware, SaM is fully transparent to
the programmer, i.e. no dedicated program support is required and is extraor-
dinarily well-suited for parallel and distributed systems. SaM therefore lays the
foundation for scalable, flexible on-demand computing systems.

3 The DodOrg Hardware Architecture

SaM was inspired by the requirements of the Digital On-demand Computing
Architecture for Real-time Systems (DodOrg). DodOrg comprises a grid of in-
dividual nodes called Organic Processing Cells (OPCs) featuring peer-to-peer
(P2P) connection of the cells [2]. Using a biologically inspired method, these
cells individually announce their suitability for processing tasks leading to a
decentralized, flexible, and fault-tolerant task distribution. As an effect of that
method, closely collaborating tasks typically are executed on neighboring cells
leading to the formation of so-called organs, i.e. clusters of cells performing a
meta-function.

Because of the dynamic behavior of this task allocation and organ formation,
traditional memory management techniques are not applicable. Instead, a sim-
ilarly flexible approach – SaM – was required, which does not only account for
the specific DodOrg requirements but also integrates nicely into the hardware
and communication infrastructure offered by the DodOrg architecture.

4 Self-aware Memory (SaM)

Key problem of shared memory in parallel, distributed systems is its construc-
tion from several local memory entities, requiring several layers of management
ranging to enable coherence and consistency, and enforcing access rights. Hence,
in SaM local memory no longer exists. Instead, the memory is turned into an ac-
tive, self-managing component interconnected through a network infrastructure
spanning on-chip and off-chip communication.

In traditional systems memory management, consistency, and coherency are
maintained by dedicated units embedded into a CPU’s memory management
unit, assisted by additional software layers. Within the focus of SaM, self-
managing means, that these issues are handled by the memory itself.

This is already very beneficial for parallel and distributed systems, because
now the management is no longer done by the individual processing units. No
additional hardware or software overhead is required on a processor’s side. Hence,
scalability of a system is effectively decoupled from the number of processors
and solely dependent on the capabilities of the used interconnection network
and memory entities.

102 R. Buchty, O. Mattes, and W. Karl

As a side effect of the self-managing aspect, the entire memory subsystem
is effectively abstracted and treated as a single virtual memory entity, i.e. a
uniform memory view is achieved and individual parameters or access methods
of the attached memory are hidden. Because of the self-managing aspect, it
is furthermore possible, to alter this memory entity by adding, removing, or
replacing individual memory units. Hence, in contrast to similar concepts as
outlined in Section 2, SaM is entirely transparent to the programmer, i.e. no
dedicated programming technique such as e.g. with FlexRAM [1] is required.

Such behavior is eminent for the creation of dynamic, flexible systems ranging
from traditional fault-tolerant systems to currently researched autonomous and
organic systems like the aforementioned DodOrg architecture. With the abstrac-
tion of the memory hardware, the programmer has only to provide the desired
memory capacities and capabilities such as size and access speed. Likewise, the
OS only needs to support respective calls, translating the program calls to ap-
propriate SaM protocol messages.

The implications of the SaM concept are that private local memory no longer
exists, but only a globally shared memory resource. Hence, a processor does not
have private access to an associated local memory as it is the case in traditional
computer systems and prior to use, any memory (besides a required bootstrap
memory) must be allocated first from the memory subsystem.

Given this basic introduction into SaM, we will in the following describe the
design considerations, anatomy, and use of a SaM-based system, and demon-
strate how SaM integrates into the DodOrg architecture framework.

4.1 Architectural Considerations

Driving force behind the design of our SaM concept was to provide a scalable,
flexible infrastructure at minimal costs and software overheat – not only within
the scope of our DodOrg project, but also for current and future parallel &
distributed systems. In the following, we’d therefore like to address certain design
aspects and their outcome with respect to system design.

Communication and Scalability. Memory allocation within SaM requires at
least three steps: first, the processor is sending out its request where it specifies
size and access parameters. The memory subsystem will then answer with an
according offer, leading to one or more responses depending of size and current
usage of the memory subsystem. From this choice, a best-fit selection is made
and the associated memory region is selected and subsequently gets assigned to
the requester.

To save bandwidth and communication efforts, we propose different scenarios
for such a request and its appropriate answer: for a first-time request, the request
is sent out as a broadcast to the network. Associated time-to-live or number-of-
hops can be used to limit the broadcast’s range. From the memory subsystem
then only positive answers are sent back. A timeout mechanism ensures that this
request phase will always terminate, even when no positive answer is received,
e.g. in case requested access times and/or latency cannot be met.

Self-aware Memory: Managing Distributed Memory 103

Such an allocation process can be viewed best as a brokering system where
a processor advertises its requirements and gets one or more offers from the
memory subsystem. The processor then evaluates these offers and acknowledges
fitting ones; finalizing, the memory subsystem grants these acknowledged mem-
ory regions and also stores ownership and access rights. CPU-wise, the only in-
formation stored is the translation table, i.e. which (virtual) memory addresses
map what memory entities and addresses within those entities.

It is also possible to send direct requests to individual memory entities. This
may be used in case when it is already known that a specific entity can pro-
vide desired resources, so that the initial broadcast and brokering phase is not
required. Freeing memory or updating rights and ownership will typically use
direct communication with the affected memory entities.

In addition, a multicast scheme – one message addressing several entities –
and the aforementioned servicing, i.e. sending out the message only to the service
node which then distributes it to its sub-nodes, are possible.

To further improve scalability and reduce communication, SaM specifically
supports servicing: for instance, in a tree-like memory structure the root node
will represent the entire tree and act as the sole communication partner between
the requesting processor element and the underlying memory hierarchy.

The SaM approach therefore scales well with the overall communication capac-
ity within a parallel computer system. Because the memory subsystem is fully
decoupled from the system’s processing elements, it is especially well suited
for systems where processing capabilities are dynamically added, removed, or
replaced. Using a metrics-based classification and a unified memory protocol
provides an abstract, uniform view of the memory subsystem.

Processor Impact. Although – by design of SaM – a processor does know
neither size nor structure of the attached SaM memory subsystem, memory
allocation and rights management works similar to conventional memory: the
processor needs to allocate a memory region of desired size and assign desired
access parameters (code or data segment, access rights). In conventional systems
this is typically handled by OS functions and, on hardware level, assisted by the
processor’s MMU.

Within SaM, the task of memory allocation and management becomes a func-
tion of the memory itself. To support this allocation process, we define a set of
processor instructions supporting the new allocation and management process
such as memory allocation and deallocation, or rights assertion. These solely
interact with the SaM-Requester, anything else is handled transparently within
the SaM infrastructure. In conventional systems, similar processor support ex-
ists, e.g. using machine status registers and supervisor-level instructions.

For a minimal setup, at least two instructions for allocating and freeing mem-
ory regions are required, possibly complemented by an additional instruction
supporting re-sizing and re-allocation. To enable a shared memory system, an-
other instruction for later access right change is required. Additional instructions
providing additional guidance to the memory subsystem might be introduced,
but are not mandatory.

104 R. Buchty, O. Mattes, and W. Karl

These instructions carry required parameters such as size and mandatory
access speed for a requested memory region in case of memory allocation.

4.2 Composition of a SaM-Enabled System

With SaM, the memory-modules are no longer directly associated to a single
processor but are part of a network. This network may be an exclusive mem-
ory network or embedded into existing connection resources, forming a virtual
memory network.

To achieve this, every memory entity is connected to a component called
SaM-Memory managing the connected memory and serving as an interface to
the memory network. Several different memories may coexist in the system, each
of them connected through an own SaM-Memory component to the network.

Processors (or any other memory-accessing entity) are likewise attached to
the memory network through a similar component called SaM-Requester. SaM-
Requester manages the memory accesses of a processor and handles the overall
access protocol of SaM. It also generates request messages to the memory sub-
system and processes the answers from the affected SaM-Memory components.

Both, SaM-Memory and SaM-Requester, employ dedicated units called SaM-
Table for storing internal information regarding memory allocation and owner-
ship, and hold information about their corresponding address space. A SaM-Table
therefore is basically a list of entries for address translation plus additional house-
keeping data for memory management and access security.

The network used for communication within the SaM infrastructure is not
specified; this was done deliberately to not restrict the usage of SaM to a special
type of network. While this leaves the most freedom for the implementer, of
course performance issues must be taken into account so that no performance
bottleneck arises from choosing the wrong network infrastructure.

In the following subsections we will present the individual components, their
integration into existing systems, and how memory access in a SaM-enabled
system takes place.

4.3 SaM-Table

As mentioned before, the SaM-Table component is used to store the management
data for individual memory segments accessed via SaM-Requester and SaM-
Memory. Per used (i.e. allocated and assigned) memory segment, it contains
an entry consisting of several parameters which are used to associate memory
regions and access rights.

In our current setup, each SaM-Table entry consists of ID, Segment, Address,
Length, Security, and Usage. Depending on whether the SaM-Table is used in a
SaM-Requester or a SaM-Memory, the parameters have slightly different mean-
ings, but for ease of development the overall structure remains identical.

For SaM-Memory, the ID field contains the network address of the owner,
i.e. the originally requesting processor or, more precisely, its associated SaM-
Requester. The Segment field contains an assigned identifier value; the Address
and Length fields store start address and length of the assigned memory region,

Self-aware Memory: Managing Distributed Memory 105

whereas the Security field stores the requested access rights such as e.g. exclusive
or shared access, read-only or read/write access. The Usage field denotes whether
an entry is valid or not.

When used within a SaM-Requester, the ID field contains the network address of
the assigned memory entity (SaM-Memory). The Segment field will hold the afore-
mentioned identifier value which is returned during the memory allocationprocess.
In the Address field, the start address of the assigned memory segment in the pro-
cessor’s logical address space is saved. Length and Access right fields stay identical.

Take notice of the fact that the effective physical memory address is neither
stored in the SaM-Table of the SaM-Requester. The actual place of the segments
are defined by the network address of the SaM-Memory and the segment number.
For the communication between SaM-Requester and SaM-Memory, solely the
addresses of the underlying network are used. The translation between these
different address spaces is done by the SaM-Requester and SaM-Memory with
the data of the SaM-Tables.

4.4 SaM-Requester

From a processor’s point of view the whole memory is abstracted and perceived as
a single memory entity; neither size of existing memory resources nor the actual
hardware structure of the memory subsystem is visible to the processor. To
achieve that, every processor has its own logical address space which is managed
by the SaM-Requester.

This unit basically performs address translation from local, logical address
space of the connected processor into the distributed SaM memory space,
i.e. which chunk of of the local address space maps to what physical memory
location. Hence, SaM-Requester may be considered a (partial) replacement for
a CPU’s memory management unit. The management data is stored within the
SaM-Requester’s associated SaM-Table.

For allocating new memory space, it generates a request and sends it to the
network. After that, it processes the received answers and reacts on them in a
way which is defined in its implemented algorithms. For managing the logical
address space and the allocated segments it uses a SaM-Table to store the data
in it. In different implementations there could be various algorithms to manage
the SaM-Table and optimize the usage of the address-space [19]. Which one of
them is the best often depends on the underlying structure of the system.

Since this allocation process takes a certain time, a defined time window
is opened during which answers to an allocation request are accepted. Upon
positive answer by the memory subsystem, SaM-Requester will assign the offered
memory region to a new segment of the processor’s logical address space. If no
suitable memory area is offered or if the request times out, this is signalled to
the processor which then enters an appropriate handler.

4.5 SaM-Memory

SaM-Memory is the vital component for creating an abstract and uniform mem-
ory access regardless of the attached memory’s type or access parameters and

106 R. Buchty, O. Mattes, and W. Karl

therefore providing additional memory management functionality. This is done
by actively managing the attached memory, hence, SaM-Memory requires de-
tailed knowledge about that memory, like size, usage, access parameters, and
physical condition. To keep track of these parameters, monitoring capabilities
are required.

SaM-Memory answers incoming requests generated by a SaM-Requester on
the basis of the current memory status as stored in the associated SaM-Table.
If an incoming allocation request can be fulfilled, SaM-Memory sends back a
positive answer and assigns the new segment to the requesting processor’s corre-
sponding SaM-Requester. Likewise, read/write accesses, access right updates, or
deallocation are processed. Typically, SaM-Memory will not respond to requests
it cannot fulfill; however, this behavior is configurable so that it e.g. may offer
insufficient resources for an incoming request, or sending out negative answers
to requests instead of leaving them unanswered.

For a more detailed description of memory access we would like to refer the
reader to the following section.

4.6 Memory Access in SaM

As said before, the SaM memory infrastructure may well consist of a variety
of individual memory entities scattered among one or more memory intercon-
nection networks. Naturally, these individual entities expose different size and
access parameters, such as access time and latency. Hence, memory allocation
requires additional guidance to account for the described memory subsystem
heterogeneity. For memory allocation therefore not only the requested amount
of memory must be provided, but also additional requirements such as maximum
tolerated latency, or minimal block-size of individual memory chunks.

This request is directed to the memory subsystem, where it is evaluated and
answered appropriately. This answer is then processed by the requesting entity
and acknowledged accordingly so that the memory subsystem will then reserve
a selected memory region and apply the specified access rights, so that for sub-
sequent memory accesses an automatic access right checking can be performed
and only rightful accesses take place.

In a system containing more than one memory units, a single request will
therefore result in several answers. From these answers a best-fitting choice is
selected which may lead to a requested memory size being assembled from indi-
vidual offered chunks.

This memory layout is then stored on the requester’s side and acknowledged
to the offering memory entities, which in term mark the corresponding memory
regions as used, and assign ownership and access rights accordingly.

Subsequent memory accesses then directly take place between the accessing
entity and the addressed memory. If allocated memory is no longer used, it
can be freed by the owner, the corresponding memory unit(s) will then unlock
the affected memory regions so that they can be offered to further allocation
requests.

Self-aware Memory: Managing Distributed Memory 107

Supervision of Memory Accesses. One big advantage of SaM is the implicit
enforcement of memory access rights. On each memory access, the addresses
will be checked two times: first, a processor’s request is checked by its associated
SaM-Requester. This unit will already reject accesses which do not comply with
data stored in its SaM-Table, e.g. in case the memory is not allocated at all or if
accesses beyond an allocated segment occur. Hence, it is ensured that spurious,
maybe malicious accesses of a single processor are already stopped at the source
and do not even enter the memory network.

A second check takes place at the addressed memory unit where the access
is matched against boundaries of the accessed segment, ownership, and access
rights stored in the corresponding SaM-Memory’s SaM-Table. This ensures that
only rightful accesses are actually performed.

So far, this does not protect against devices which generate malicious access
messages; because of the high level of abstraction, SaM can be easily enhanced by
additional cryptographic methods such as hashing and signing to enable proper
identification and authorization of incoming requests. Because this extra func-
tionality will be embedded into SaM-Memory and SaM-Requester, no software
overhead is required.

Shared Memory and Rights Management. To enable shared memory in
parallel systems, fine-grained rights management is required to control the mem-
ory accesses. Traditionally, this is done by the combination of software handlers
(shared access over a network) and hardware (MMU managing local memory
accesses). While this scheme can be used with SaM, it is unnecessarily complex
and does not make use of the specific features of the SaM concept.

As mentioned before, within SaM a processor first allocates desired memory
regions through its associated SaM-Requester. If that memory region is to be
shared with other processors, then the Security fields of the affected memory
units, i.e. their corresponding SaM-Memory component, have to be adjusted.

As of now, the simple case was implemented where a memory is either private
to a single processor or completely shared. To fully accommodate for the require-
ments of parallel systems, however, a more fine-grained method is required where
individual access rights can be assigned to each processor and memory region.
We are currently evaluating the options, how these increased functionality will
be implemented into SaM.

4.7 DodOrg Integration

The SaM extensions, i.e. SaM-Requester and SaM-Memory with their according
SaM-Tables, will be unique to the cell-specific part as they are only required
for memory cells and cells with memory-access capabilities such as processor or
DSP cells.

SaM does not require any alteration of the cell-uniform communication infras-
tructure of DodOrg cells. Virtual links, already provided by that infrastructure,
greatly enhance SaM’s performance as they enable direct communication be-
tween corresponding SaM-Requesters and Memories over the P2P network at
guaranteed communication times.

108 R. Buchty, O. Mattes, and W. Karl

5 Results

To show the basic functionality of SaM, we designed and implemented a pro-
totype using the United Simulation Environment (UNISIM) [5]. UNISIM con-
sists of a modular simulator and a library of predefined modules. Using these
predefined and additional user-programmed modules, a simulator framework is
programmed which is then compiled into an executable simulation application
by the UNISIM compiler.

The simulated hardware is divided into several components to ease develop-
ment of complex simulation engines, hence, each implemented by an own module
with well-defined interfaces enabling to simply replace modules or make further
use of them in other simulations.

5.1 Simulation Setup and Results

Our prototype simulator consists of a variable number of processors equipped
with SaM-Requester units and memory entities with their according SaM-
Memory units connected by a network. The prototype therefore also reflects the
basic structure of the DodOrg architecture, i.e. the connection of cells using a
communication infrastructure. The P2P nature of DodOrg’s communication in-
frastructure is not visible to the running application and abstracted on hardware
level, hence, restricting our SaM prototype to a globally shared communication
resource is a valid simplification for evaluating our SaM concept.

As a processor core we chose the DLX core which is provided together with
UNISIM. This core was extended in two ways: first, the processor model was
extended by dedicated functions for memory allocation and freeing. Second, the
SaM requester component was implemented, providing the required interfacing
to the communication infrastructure, most notably the memory allocation and
access protocol. Likewise, we extended a UNISIM-provided memory model by
the SaM memory component.

All SaM components are interconnected via a simple full-duplex communi-
cation model. The prototype offers the possibility to simply test and typical
conflicts of concurrent memory accesses from different cores. The progress of
requests and accesses of segments can be visualized and the limitation of the
network can be made visible.

The prototype is set up in a parameterizable and scalable way, so that any
number of processor and memory cores can be generated.

Aim of the described prototype is to properly evaluate the basic concept, i.e. to
not only demonstrate the basic functionality, but also determine the overhead
introduced by the new memory protocol and also addressing the question of
real-time behavior. We therefore concentrate on the aspects of memory access,
i.e. the eventual amount of overhead introduced by allocation and read/write
accesses.

In order to test different scenarios of memory accesses, we developed a set
of test programs as shown in Table 1, each demonstrating certain features and
testing the behavior of SaM. Because of the additional, SaM-specific commands

Self-aware Memory: Managing Distributed Memory 109

Table 1. Memory-related test programs performed on the prototype

Test Program Performed Test
request.s Basic request to two memory segments
read_write.s Simple read and write to and from a memory segment
mult_req.s Multiple requests to different memory components
req_eject1.s Memory request rejected without reaction of the program
req_eject2.s Abort of program after rejected memory request
inv_access.s Invalid memory accesses
inv_br_acc.s Invalid memory access due to wrongly calculated branch ad-

dress

used for memory allocation, the test programs were written in assembly language
and translated into their binary representation using a patched DLX assembler.

Depending on the test scenario (function test vs. performance evaluation),
these test programs were either executed on a single or all processors of the
simulation model and the simulation output was logged and analyzed, proving
the theoretically predicted behavior.

Only during the allocation process exists an overhead which directly corre-
sponds with the used allocation procedure. Two basic approaches exist, which
are round-robin and broadcast. For our prototype, we implemented the round-
robin allocation procedure and were able to observe the expected behavior: in
best case, the first addressed SaM-Memory will be able to fulfill the request and
sending back an acknowledgement message, hence, no subsequent requests are
sent. This scenario is comparable to memory allocation within a processor’s local
memory where a request either succeeds or fails.

If the first addressed memory cannot fulfill the request, the next in the queue
of the round-robin mechanism is used. For every try, another message has to be
sent to the memory and back to the requesting CPU. In worst case, the allocation
request therefore needs to be subsequently re-sent to all other memory cells until
the allocation either succeeds or fails. Hence, if n memory entities exist, it takes
a maximum amount of time of 2 ∗ n ∗ λnet for the allocation process to finish,
where λnet is the time for sending a message over the network. After that the
request is rejected. In general, a request can be completed in i ∗ 2 ∗ λnet, where
1 ≤ i ≤ m is the first memory which can fulfill the request. Simulation showed
this expected behavior.

Therefore, request time is limited by the time for the transfer of the request
over the network and the number of components. Bandwidth problems might
arise when multiple users access a shared communication infrastructure, e.g. a
shared bus. To account for that, the used communication infrastructure was a
simple shared bus model. If no other component wants to access the bus, it
can be used directly, otherwise the bus can be accessed by the components in a
round-robin order.

Under most pessimistic assumptions, i.e. a fully occupied bus, the maximum
waiting time for an individual access is 2 ∗ k ∗ λnet, with 0 ≤ k < n being

110 R. Buchty, O. Mattes, and W. Karl

the number of components with pending bus requests and having higher access
priority, i.e. their requests being performed before the actual request.

This leads to a worst-case time of (2∗n∗λnet)∗m for an allocation request to
finish – as also attested by the simulation infrastructure – in case the bus is fully
used with k = n−1 pending requests being executed prior to the current request,
and none or the very last memory element, i.e. i = m, in the round-robin queue
being able to fulfill the request. This extreme case, however, should not occur
very often in practice as it would indicate a severe mismatch between required
and provided bus bandwidth.

Once, memory is already assigned, subsequent accesses do not impose any
overhead, because the read/write message can be directly sent to the correspond-
ing memory component. To find the memory assigned to a given memory section,
the SaM-Requester performs a lookup in the corresponding SaM-Table; likewise,
the addressed memory will match the request against its own SaM-Table to en-
sure access rights. This will not contribute significantly to access latency, as such
mapping and checking is conventionally done by the CPU’s memory management
unit. No external overhead takes place, hence, like in conventional systems, data
access time is solely limited by the communication network’s bandwidth and the
addressed memory’s access latency.

The tests performed did not only cover individual allocation and access scenar-
ios, but we also addressed interference issues resulting from several simultaneous
or colliding requests, and parallel accesses from different processors. We could
demonstrate that not only the spreading or interleaving of allocated segments
over different memory components works well, but we furthermore could verify
the proper functioning of the SaM protocol with regard to memory allocation
and access.

Allocation requests can be accomplished up until no more space is left in the
memory subsystem, otherwise a defined error code is sent back to the processor
in case the desired amount of memory is not available. Like in conventional
approaches, this error code is then processed by the respective application.

Memory accesses may only be performed by the CPU holding appropriate
access rights. Neither should accesses to un-allocated memory enter the net-
work, nor should the memory itself answer illegitimate accesses. The first case
is handled by the SaM-Requester, which will not forward accesses for which no
corresponding entry exists in its SaM-Table. Likewise, SaM memory will match
incoming read/write accesses against its SaM-Table to either fulfill this request,
or send out a negative acknowledge.

5.2 Simulation Conclusion

The simulation prototype clearly confirmed our theoretical assumptions regard-
ing the SaM protocol overhead, worst-case timing behavior, and proved the over-
all functionality of the SaM concept. Overhead only takes place for allocation
and deallocation (freeing) of memory. In our prototype, we chose a simple-
to-implement Round-Robin allocation procedure where a SaM-Requester will
sequentially address all present memory modules with the current allocation

Self-aware Memory: Managing Distributed Memory 111

request and directly receive the individual module’s answer. Once the request is
satisfied, no more allocation messages are generated.

The drawback of this method is that it only works on enumerated systems
where all memory modules are known such as e.g. on a single DodOrg hardware
chip. We are currently investigating broadcast-based methods which do not rely
on an upfront enumeration.

Once the allocation process is finished, subsequent memory accesses do not
carry additional overhead and are also independent of the chosen allocation strat-
egy; regarding memory read/write accesses, SaM is therefore not introducing any
more overhead.

Already this simple prototype shows the beneficial effects of introducing self-
managing features into the memory subsystem: any number of memories can
be shared by any number of processors without requiring an additional soft-
ware level to ensure access rights in this distributed system. SaM is completely
software- and OS-agnostic and therefore especially suitable for heterogeneous
systems employing several, or – in the case of dedicated hardware accelerators –
no operating system at all.

We further can show that any individual access to the SaM network has a
guaranteed upper bound dictated by the network traversal time and distance
(number of hops) between requesting and memory unit. This effect is not SaM-
specific but a general effect of any communication. However, this information is
vital for further work on the communication protocol as we can safely introduce
time-out intervals for allocation and access messages when switching to a more
sophisticated communication infrastructure model, and also use such information
for answering allocation requests and autonomous optimization processes.

5.3 Current Development

Ongoing development of the simulation prototype targets protocol refinements,
extended monitoring capabilities for improved measurements, and presentation
and visualization of the simulation process.

The protocol is currently extended beyond simple allocation and access to also
include assignment of access rights. With the introduction of more sophisticated
monitoring and detailed communication infrastructure models we then will be
able to perform detailed simulations of life-like systems where network-induced
side-effects such as race situations between different messages might occur.

We then will target the introduction of high-level self-managing aspects such
as autonomous memory layout optimization (defragmentation), access optimiza-
tion through autonomous migration and replication of data, which in term re-
quire to address consistency and coherency aspects.

6 Conclusion and Outlook

SaM provides a promising way to deal with memory resources in dynamic par-
allel systems: within SaM, no central memory management unit is required. In-
stead, the memory itself manages allocation, ownership, and access rights easing

112 R. Buchty, O. Mattes, and W. Karl

the construction of scalable parallel computing systems. Single memory entities
therefore are treated in a uniform way, regardless of their type: any memory
entity is only classified by its core parameters such as memory capacity, ac-
cess time, and access latency. The used communication protocol was specifically
designed with respect to scalability and minimal communication overhead.

So far, we successfully implemented memory allocation and access rights en-
forcement. Ongoing and future work specifically addresses the exploration of fur-
ther self-organizing features such as autonomous de-fragmentation, swapping, or
reaction to changed memory capacities and access parameters.

With a refined simulation prototype, more detailed simulations of network
infrastructures systems, also including cascading structures, will be possible. The
memory components may be connected to more than one network and build a
hierarchical structure. With autonomous extension of services – comparable to
the self-extending services in JINI [11,18] – services of not directly connected
components could be used by the processors.

References

1. Fraguela, B., et al.: Programming the FlexRAM parallel intelligent memory system.
In: Proceedeings of the 2003 ACM SIGPLAN Symposium on Principles of Parallel
Programming (PPoPP 2003), pp. 49–60 (June 2003)

2. Becker, J., et al.: Digital On-Demand Computing Organism for Real-Time Systems.
In: Karl, W., et al. (eds.) Workshop Proceedings of the 19th International Con-
ference on Architecture of Computing Systems (ARCS 2006), GI-Edition Lecture
Notes in Informatics (LNI), vol. P81, pp. 230–245 (March 2006)

3. Brinkschulte, U., Pacher, M., Renteln, A.: Towards an Artificial Hormone System
for Self-Organizing Real-Time Task Allocation. In: Obermaisser, R., et al. (eds.)
SEUS 2007. LNCS, vol. 4761, Springer, Heidelberg (2007)

4. Buchty, R., Karl, W.: A Monitoring Infrastructure for the Digital on-demand Com-
puting Organism (DodOrg). In: de Meer, H., Sterbenz, J.P.G. (eds.) IWSOS 2006.
LNCS, vol. 4124, p. 258. Springer, Heidelberg (2006)

5. European Network of Excellence on High-Performance Embedded Architecture and
Compilation (HiPEAC). UNISIM: UNIted SIMulation Environment

6. Fraguela, B.B., et al.: Programming the flexRAM parallel intelligent memory sys-
tem. In: Programming the flexRAM parallel intelligent memory system, pp. 49–60.
ACM Press, New York (2003)

7. Greis, W.: Die IBM-Mainframe-Architektur. Open Source Press (2005)
8. Horn, P.: Autonomic computing manifesto - ibm’s perspective on the state of in-

formation technology. IBM Research (October 2001)
9. Intel Corp. Intel Tera-scale Computing. (2007),

http://techresearch.intel.com/articles/Tera-Scale/1421.htm
10. Kang, Y., et al.: FlexRAM: Toward an advanced intelligent memory system. In:

International Conference on Computer Design (ICCD 1999), pp. 192–201. IEEE
Computer Society Press, Washington (1999)

11. Kumaran, S.I.: JINI technology. Prentice-Hall, Englewood Cliffs (2002)
12. Oskin, M., Chong, F., Sherwood, T.: Active pages: A computation model for in-

telligent memory. In: Proceedings of the 25th Annual International Symposium on
Computer Architecture (ISCA 1998). New York, June 27–July 1. ACM Computer
Architecture News, vol. 26,3, pp. 192–203. ACM Press, New York (1998)

http://techresearch.intel.com/articles/Tera-Scale/1421.htm

Self-aware Memory: Managing Distributed Memory 113

13. Patterson, D., et al.: A case for intelligent RAM. IEEE Micro 17(2), 34–44 (1997)
14. Raften, D.: System-managed cf structure duplexing. IBM e-server zSeries (June

2004)
15. Rangan, K., Abu-Ghazaleh, N., Wilsey, P.: A distributed multiple-SIMD processor

in memory. In: 2001 International Conference on Parallel Processing (ICPP 2001),
pp. 507–516. IEEE Computer Society Press, Washington (2001)

16. Schuck, C., Lamparth, S., Becker, J.: artNoC - A novel multi-functional router
architecture for Organic Computing. In: 17th International Conference On Field
Programmable Logic and Applications (August 2007)

17. Sterling, T., Brockman, J., Upchurch, E.: Analysis and modeling of advanced
PIM architecture design tradeoffs. In: SC 2004 Conference CD, Pittsburgh, PA.
IEEE/ACM SIGARCH (November 2004)

18. Inc Sun Microsystems. Jini architectural overview. Technical White Paper (1999)
19. Tanenbaum, A.S.: Modern Operating Systems, 2nd edn. Prentice-Hall, Englewood

Cliffs (2001)
20. Taylor, M.B., et al.: The Raw Microprocessor: A Computational Fabric for Software

Circuits and General Purpose Programs. In: IEEE Micro (March/April 2002)

Dynamic Reconfiguration of FlexRay Schedules
for Response Time Reduction in Asynchronous

Fault-Tolerant Networks

Robert Brendle, Thilo Streichert, Dirk Koch, Christian Haubelt,
and Jürgen Teich

Department of Computer Science 12
University of Erlangen-Nuremberg, Germany

robert.brendle@web.de, {streichert,dirk.koch,haubelt,teich}@cs.fau.de

Abstract. In this paper, we present fault-tolerance strategies for imple-
menting passive replication techniques in networked embedded systems
based on TDMA-communication such as FlexRay busses. In particular,
we assume that processes are replicated at different nodes for tolerating
node failures. Hence, if one node fails another node can execute the pro-
cess and requires the bandwidth for transmitting those messages created
by the process over the bus medium. Two concepts are introduced to
solve this problem: 1.) to replicate not only the processes but also the
messages and to reserve the required bandwidth a priori at design time or
2.) to reconfigure the TDMA-schedule and assign the bandwidth dynam-
ically to the nodes. Obviously, reserving bandwidth for each failure case
might lead to a huge overhead and to long response times. Therefore,
we provide different reconfiguration strategies for the recently developed
FlexRay bus. Moreover, the timing behavior as well as the implemen-
tation overhead are evaluated with the help of an experimental setup
consisting of five FlexRay nodes.

1 Introduction

Automotive embedded networks typically consist of heterogeneous electronic
control units (ECUs) which are networked in order to sense and control their
environment in an efficient manner. In contrast to other sensor networks which
connect different control units via dedicated point-to-point links, the automotive
domain mainly applies shared busses for establishing the communication among
ECUs. These busses can be either master-slave busses like the local interconnect
network (LIN) [1] or multi-master busses like CAN [2], TTP [3], or FlexRay
[4]. While CAN uses a priority based arbitration mechanism of the bus which
allows a fast access of high priority massages to the bus, TTP and FlexRay are
TDMA-based communication protocols, i.e., certain messages are only allowed
to be transferred in dedicated time slots. These slots belong to a static bus
schedule which is repeated periodically. Thus, a networked embedded system
has a scheduler at the sending ECU, one schedule for the communication and a
scheduler for the receiving ECU. Regarding these different schedules, networked

U. Brinkschulte et al. (Eds.): ARCS 2008, LNCS 4934, pp. 117–129, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

118 R. Brendle et al.

embedded systems can be further classified into synchronous and asynchronous
systems, i.e., systems where the schedules are synchronized or systems where the
schedules are executed independently in an asynchronous manner. Obviously, the
synchronization of different schedules is not only a technical problem but also
an algorithmic problem and a matter of future work. Nowadays, asynchronous
networks are state-of-the-art. In asynchronous systems, no synchronized sched-
ules need to be determined and the synchronization of different ECUs, gateways,
and busses, running at different speeds is not necessary. Here, we consider auto-
motive networks which are based on the FlexRay protocol where all ECUs and
the bus run in an asynchronous manner.

Another important aspect of such embedded networks is fault tolerance. Differ-
ent fault tolerance techniques for tolerating permanent, transient, or intermittent
faults are applied in such networks. In this contribution, we focus on permanent
faults which are typically handled by redundancy, i.e., processes are replicated
at different ECUs in the network and if one ECU fails another ECU will execute
the functionality. Obviously, this migration of processes from one node to another
has an influence on the bus schedule. As an exemplification, consider Fig. 1 which
shows two systems each with four nodes n1,. . . , n4 and a corresponding bus sched-
ule consisting of one TDMA cycle. The nodes host processes p1, . . . , p4 and each
process sends a message m1, . . . , m4. In order to tolerate defects, the processes are
replicated on a neighboring node, i.e., process p4 is replicated at node n3, process
p3 is replicated at node n2, and so forth. Assuming, for example, that node n3 fails
during operation would lead to a situation where the node n2 requires bandwidth
for transmitting message m3 of the replica p3′ and message m2 of the process p2.
In the system shown in Fig. 1a), message m3 of replica p3′ will be transferred in
slot s7 and m2 in s2. Thus, not only the processes need to be replicated but also the
slots in the bus schedule. This case is shown in Fig. 1a) where the slots required for
the replicated processes are statically assigned to the nodes. In Fig. 1b), the same
system is shown as in Fig. 1a) but the assignment of slots to nodes is different.
Here, it is assumed that the bus schedule can be reconfigured, i.e., if a node fails,
another node will execute those processes of the defect node and gets the slots of
the failed node. For example, if node n3 fails, node n2 will send the message m3 of
replica p3′ in slot s3 instead of the additional slot s7. Hence, the dynamic reconfig-
uration of bus schedules and the dynamic assignment of slots to nodes avoids the
need of reserving bandwidth in the TDMA schedule. This has a great advantage
with respect to the communication latency. In Fig. 1a), the worst case communi-
cation latency is 8 slots, while the worst case communication latency in Fig. 1b)
is only 4 slots.

This motivating example leads to the contributions of this paper: In order
to reduce the communication latency, we studied the capability of dynamically
assigning slots to nodes in a FlexRay-based network. For this purpose, differ-
ent platform-dependent and platform-independent solutions will be presented.
In particular, we provide solutions suitable for the E-Ray communication con-
troller by Bosch [5] and the MFR4200 by Freescale [6]. Moreover, the advantages
and drawbacks as well as the reconfiguration times for the different proposed

Dynamic Reconfiguration of FlexRay Schedules 119

Node n4Node n3Node n2Node n1

Node n4Node n3Node n2Node n1

s1: m1

TDMA Cycle

s6: n2 s7: n3 s8: n4s5: n1s3: m3 s4: m4s2: m2

Process p1' (mirrored):
TX: m1 (slot s8)

Process p3' (mirrored):
TX: m3 (slot s6)

Process p2:
TX: m2 (slot s2)

Process p3:
TX: m3 (slot s3)

Process p4:
TX: m4 (slot s4)

Process p2' (mirrored):
TX: m2 (slot s5)

Process p1:
TX: m1 (slot s1)

s2: m2 s4: m4s3: m3s1: m1

Process p4' (mirrored):
TX: m4 (slot s4)

Process p1' (mirrored):
TX: m1 (slot s1)

Process p3' (mirrored):
TX: m3 (slot s3)

Process p2:
TX: m2 (slot s2)

Process p3:
TX: m3 (slot s3)

Process p4:
TX: m4 (slot s4)

Process p2' (mirrored):
TX: m2 (slot s2)

Process p1:
TX: m1 (slot s1)

a) Node configuration with static slot binding

b) Node configuration with dynamic slot binding

TDMA Cycle

Process p4' (mirrored):
TX: m4 (slot s7)

Fig. 1. a) Typically, time slots are statically assigned to nodes and messages of redun-
dant tasks are sent redundantly. b) If slots can be assigned dynamically to nodes, the
response time will decrease.

solutions will be discussed. With the concepts and results of this paper, it is
Possible to build up efficient networked embedded systems using passive repli-
cation [7] for processes with data dependencies.

The structure of the paper is as follows: In Sec. 2, we give an overview about
the academic research in the field of fault tolerance and parameter determination
for TDMA-based busses. Afterwards, we briefly introduce the FlexRay protocol
(see Sec. 3) which is inevitable for the understanding of the following sections.
Sec. 4 proposes four different strategies for dynamically assigning bandwidth to
nodes. These four strategies are evaluated and discussed in Sec. 5.

2 Related Work

Recently published research work focuses on the analysis and optimization of the
FlexRay protocol. In [8], the authors present a methodology for analyzing the

120 R. Brendle et al.

real-time behavior of systems using the static and dynamic part of the FlexRay
protocol. Based on this analysis methodology, Pop et al. present in [9] heuristics
for determining the global parameters of the FlexRay bus which are suitable for
asynchronous networks, i.e., networks where nodes are not synchronized to the
bus schedule. The methods for analyzing and optimizing the bus-based system
are based on the assumption that processes are statically bound to the nodes in
the system. Thus, passive replication as presented in Fig. 1b) is not considered.

In another interesting publication [10], the same authors propose a methodol-
ogy for designing and scheduling time-triggered systems such that these systems
are able to tolerate transient faults. For this purpose, the design methodology
decides about the kind of redundancy, i.e., spatial or temporal redundancy and
determines a schedule according to real-time constraints. Although reconfigu-
ration strategies of the bus schedule can be combined with the methodology
presented in [10], the reconfiguration capability of busses is not studied in [10].

3 Basic Principles of the FlexRay Protocol

FlexRay is a cycle-based protocol. Each cycle consists of four segments: 1.) a
static segment, 2.) a dynamic segment, 3.) a symbol window, and 4.) the idle
time. While the static segment and the network idle time are required for a
correct network configuration, the dynamic segment and the symbol window
are optional. The duration of each segment is defined by a certain number of
so-called macro ticks. These are the smallest common time unit. A macro tick
consists of a variable number of micro ticks which varies between the nodes and
depends on the oscillators of the nodes. Due to the accuracy of the oscillators,
the length of a micro tick varies. Therefore, a time synchronization algorithm
determines in each cycle the duration of a macro tick in micro ticks. In Fig. 2,
such a cycle with its four segments is presented and explained in more detail in
the following:

– Static Segment. In the static segment of the FlexRay protocol, the data
is transmitted using a time division multiple access (TDMA) scheme. The
static segment consists of a constant number of equal slots of a fixed length.
Each slot is assigned to exactly one sending node in each cycle which is
denoted with a Frame-ID.

– Dynamic Segment. The dynamic segment is designated for transferring
event triggered messages. It consists of a fixed number of mini slots. The
length of a message for the dynamic segment may vary within certain bounds
and is always a multiple of a mini slot. Each node which eventually sends a
message in the dynamic segment has one or more Frame-IDs. The Frame-
IDs are equivalent to a priority necessary for the bus arbitration. At the
beginning of the dynamic segment, the node with the lowest Frame-ID is
allowed to access the bus. In order to notify the other nodes in the network
how long the bus will be occupied, the node sends the message length at the
beginning of the transfer. If no message needs to be transferred by the node,

Dynamic Reconfiguration of FlexRay Schedules 121

Fig. 2. Structure of a FlexRay cycle [4]

one mini slot will be wasted and in the next mini slot, the node with next
higher Frame-ID may send a message.

– Symbol Window. The symbol window is necessary for the network manage-
ment. For example signals like wake up or sleep messages can be transferred
for controlling each single node.

– Network Idle Time. The network idle time is necessary for the time syn-
chronization in order to correct the global time base. Moreover, it might be
necessary for node internal processes which do not send messages via the bus.

4 Dynamic Reconfiguration of the Slot Distribution

Assuming that processes are passively replicated in order to tolerate defects
of nodes, this section proposes four strategies for the dynamic assignment of
bandwidth to nodes. With these strategies, alternatives to an a priori reservation
of bandwidth are given that reduce the response time in asynchronous bus-based
systems.

4.1 Complete Reconfiguration

In the start-up phase, the communication controller of each single node passes
different operating states before it is ready to send and receive messages. In one
of these states, the communication controller is configured with the necessary
parameters for the arbitration of the bus according to the given bus schedule.
This configuration state is always executed after reset. Thus, one obvious strat-
egy to reconfigure the message buffers is 1.) to modify the configuration data in
the memory, 2.) to reset the communication controller, and 3.) to load the modi-
fied configuration data to the controller. As an example for this strategy refer to
Fig. 3. In Fig. 3a), three nodes n1, n2, n3 are shown. Node n1 executes process
p1 which periodically sends its message m1 in the slot s2 of the static segment.
Process p3 at node n3 sends a message m5 in aperiodic rounds in the dynamic
segment of a cycle. The main focus is set on process p2 running at node n2.

122 R. Brendle et al.

Fig. 3. Example for a complete reconfiguration

A replica of this process p2′ is bound onto node n1. The process p2 sends mes-
sage m2 in the static segment and message m4 in the dynamic segment. While
node n2 is active and has not failed, the replica p2′ sends no messages.

After node n2 has failed (cf. Fig. 3b)), the communication controller of node n1
will be reset for allocating the transmit buffers for slot s4 and s5. Afterwards, the
new configuration data for the required slots s4 and s5 is loaded to the controller.
Due to this reset and configuration procedure, node n1 loses its synchronization
with the bus. Hence, node n1 needs to be reintegrated into the network. During
this time, all processes executed on this node lose their ability to communicate
with the network. The other nodes in the network are not necessarily affected by
the reset of the controller. In the example shown in Fig. 3, the network needs to
be initialized completely because node n3 receives no sync messages and halts
itself. As soon as node n1 has finished its reconfiguration, the network will be
restarted and the processes p1, p2, and p3 can transfer their messages in their
former slots.

Dynamic Reconfiguration of FlexRay Schedules 123

Fig. 4. FlexRay schedule a) before and b) after the adaptation for the partial recon-
figuration in the dynamic segment

4.2 Partial Reconfiguration in the Dynamic Segment

In order to avoid a reset of the communication controller in case of a reconfigura-
tion, it would be necessary to reassign the transmit buffer at runtime. Although
the FlexRay specification [4] does not explicitly specify a reconfiguration of trans-
mit buffers for the static and dynamic segment, some communication controllers
like the MFR4200 by Freescale [6] support this reconfiguration at least in the
dynamic segment. This leads to the idea to send all messages in the dynamic
segment which might be sent by another node after a node failure. Due to the
different bus arbitration in the dynamic segment, it is inevitable to respect the
following constraints:

– Since low priority messages in the dynamic segment might not be sent, it
is necessary for a guaranteed transmission of messages to assign one of the
highest priorities to shifted messages. Moreover, the length of the dynamic
segment needs to be long enough.

– If a message in the dynamic segment will not be sent, the time between two
messages is not deterministic any more, i.e., the time interval decreases. This
might lead to problems if a time limit needs to be satisfied for node-internal
computation. In order to avoid this problem, the messages can be transmitted
in a continuous send mode, i.e., a message is read non-destructively from the
message buffer and sent in each cycle, no matter if the message has changed.

In Fig. 4, two schedules are shown: a) before, and b) after shifting messages
to the dynamic segment. The messages m1, m2, and m3 as well as the synchro-
nization messages of the nodes n1, n2 will be transferred in the static segment
at first. The dynamic segment is used for sending the messages m4, m5, and
m6. Note that message m6 can only be transmitted if m4 or m5 will not be
transferred. Otherwise, the time for the dynamic segment is not long enough.

After shifting the messages m1, m2, and m3 to the dynamic segment, only the
synchronization messages of node n1, n2 are sent in the static segment. Following
the upper constraints, the messages m1, m2, and m3 have the highest priority
and the length of the dynamic segment is enlarged.

124 R. Brendle et al.

Fig. 5. Example for handling a node defect by using secondary receive buffers

4.3 Reconfiguration with Secondary Receive Buffers

Another possibility is to assign secondary receive buffers in the dynamic segment
at design time to the nodes. If a node or process, respectively, does not receive
a message in its primary receive buffer, it will be possible to receive a message
in the secondary receive buffer.

In order to illustrate this strategy, Fig. 5 presents again a network with three
nodes and three processes. Node n1 hosts the process p1 and the replica p2′ of
process p2 which runs at node n2. This process transmits the messages m4, m5
and receives the message m2. Message m2 will be received either via the primary
receive buffer in slot s4 or via the secondary receive buffer in slot s5. Further-
more, node n1 executes an interrupt handler triggered by the communication
controller in order to activate p2′ in case of a node defect of n2. Here, node n1
checks whether message m2 of process p2 has been sent in slot s4 of the static
segment. As soon as the defect of node n2 has been detected, node n1 starts with
the activation of replica p2′. A reconfiguration of the communication controller is

Dynamic Reconfiguration of FlexRay Schedules 125

not necessary in this case because node p2′ does not transmit its message in slot
s4. Instead, the secondary receive buffer of process p3 in slot s5 is used. Thus, a
process migration is realized without the need to reconfigure each controller.

4.4 Partial Reconfiguration of the Static Segment

Since the current FlexRay specification [4] does not prohibit a reconfiguration
of the communication controller at runtime, it might be possible to reassign
message buffers of the static segment after a defect of a node. Interestingly,
the E-Ray controller by Bosch opposed to the MFR4200 does not prohibit this
reconfiguration. In combination with the previous strategy which uses secondary
receive buffers to transmit messages of the replicas, the time between a defect
and the termination of the reconfiguration can be drastically reduced.

As a scenario, consider the case shown in Fig. 6. The binding of the processes
p1, p2, p3 as well as the binding of replicas p1′ and p2′ onto the nodes n1, n2, n3
is the same as before. Starting from the initial configuration in Fig. 6a), node n2
fails. After such a failure, the reconfiguration of the communication controller is
processed in two phases (see Fig. 6b),c)): In the first phase (see Fig. 6b)), message
m2 will be sent by replica p2′ in the secondary slot s5, while the communication
controller of node n1 starts configuring a message buffer for slot s4. The process
p1 is not affected by this reconfiguration, but the message m2 delays the messages
m4 and m5 in the dynamic segment. As soon as the reconfiguration is finished,
message m2 can be sent in its original slot s4 in the static segment. Note that
the secondary slot in the dynamic segment still occupies one mini slot each cycle.
This is shown in the configuration in Fig. 6c).

5 Experimental Evaluation and Discussion

In order to evaluate the timing behavior of the reconfiguration strategies of
the FlexRay bus, we set up a network of four FlexRay nodes [11] and a PC
equipped with a FlexRay diagnostic card acting as a fifth FlexRay node. The
timing evaluation has been done 1.) with the help of a monitoring software [12]
sniffing at the bus and 2.) with the help of timers which were triggered when
entering and leaving a certain reconfiguration phase.

Complete Reconfiguration. The main advantage of this strategy is the flexibility
of the reconfiguration, i.e., after a reset, all message buffers can be reconfigured
and assigned to the nodes. Unfortunately, a reset disturbs the communication
of all processes hosted at that node. The duration is critical for the correct
operation of the network and denoted with treconf . It is composed of three time
values: treconf = treset + tconfig + tintegrate.

– The time value treset denotes the time interval from starting a software
routine that wants to reset the communication controller until entering the
reset state of the communication controller. In our experimental setup, we
measured a reset time of treset = 0.1ms.

126 R. Brendle et al.

Fig. 6. Example for the hybrid approach of using secondary receive buffers and partially
reconfiguring the static segment

Dynamic Reconfiguration of FlexRay Schedules 127

– The time value tconfig is the time which is required to load the new config-
uration to the communication controller. With our experimental setup, we
measured a configuration time of tconfig = 4.4ms.

– The last time value tintegrate depends on the global parameters of the FlexRay
network. It denotes the time to reintegrate a node after a reset, i.e., to synchro-
nize the local communication controller with the other controllers. In general,
the time for reintegrating a node into a running network lasts five bus cycles,
two cycles for synchronizing the internal clock with the network and three cy-
cles to check the correct synchronization of the clock with the network. Nor-
mally, the reintegration phase does not start with the beginning of a cycle.
Thus, another cycle has to be considered for the worst case integration time.
Note that the specification limits the cycle length to 16ms.

Partial Reconfiguration in the Dynamic Segment. At design time, this strategy
demands the reservation of message buffers which can be used in case of a defect.
These buffers will be reconfigured at runtime, i.e., they will be assigned to a new
slot in the dynamic segment. This time for reassignment of message buffers to
slots determines the latency for reconfiguration. It is obvious that the latency
may vary with this method because it depends on the number of message buffers
which need to be reassigned. Therefore, we determined the reconfiguration time
with one message buffer using our experimental setup which is treconf = 450μs.
Due to this short reconfiguration time, it might be possible to 1.) detect a missing
message in the static slot, 2.) to reconfigure the transmit buffer in the dynamic
segment, and 3.) to send the message in the dynamic segment by a replicated
process within the same cycle. Thus, no extra delay caused by the reconfiguration
would affect the operation of the system.

Reconfiguration with Secondary Receive Buffers. Since this strategy does not re-
configure the communication controller, no cycle gets lost until the first message
will be sent by the replica. Note that this strategy causes problems concerning
the message order and the time between two messages. Although the messages
will be sent in the same cycle, they will be sent at a different point of time within
this cycle. Moreover, a certain bandwidth will be unused before and after a node
defect. In the static segment, some slots remain unused after a node defect, but
additional bandwidth is required in the dynamic segment of the protocol. Oth-
erwise, low priority messages can be displaced by the high priority messages of
the replica. Also, exactly one mini slot needs to be reserved for the fault case.

Partial Reconfiguration of the Static Segment. While the previous three strate-
gies can be implemented for the MFR4200 communication controller by Freescale
as well as the E-Ray controller by Bosch, the partial reconfiguration is only pos-
sible with the latter controller. Due to the switching between two configurations,
at most one cycle gets lost. This is due to the configuration mechanism of the
E-Ray controller. In each cycle, the communication controller checks the config-
uration for a certain number of future slots. For example, in slot s16, the message
buffer will be checked for the slots s24 to s31. If the message buffer for slot s20
will be reconfigured at this time, the reconfiguration is valid in the next cycle.

128 R. Brendle et al.

Table 1. Time for Reconfiguration

Reconfiguration Strategy Time for Reconfiguration Overhead
Complete Reconfiguration 4.5ms + [5, 6) · cycle length ++

(determined for MFR4200)
Partial Reconfiguration 450μs ++
in the Dynamic Segment (determined for MFR4200)
Reconfiguration with -
Secondary Receive Buffers (no reconfiguration necessary)
Partial Reconfiguration [0, 1) · cycle length ++
of the Static Segment (determined for E-Ray)

By combining the partial reconfiguration of the static segment and the reconfigu-
ration with secondary receive buffers, it is possible to bridge the reconfiguration
time of the static segment. In this case, no message will get lost within a cycle
and the order of messages as well as the time between two messages will be the
same before and after reconfiguration.

The different reconfiguration strategies differ in their implementation and
timing behavior. Table 1 summarizes and compares the timing behavior as well
as the implementation overhead.

6 Conclusion and Future Work

In this contribution, we presented different strategies for reconfiguring FlexRay
schedules in order to reduce the message transfer latency or the cycle length,
respectively. Such techniques are essential for building fault-tolerant systems
using passive replication. Furthermore, we implemented the proposed strategies
for a network consisting of five FlexRay nodes and evaluated the timing behavior
of the reconfiguration process.

In the next step, we are planning to consider synchronous systems where
the node schedules are synchronized to the bus schedule. This next step reveals
two problems: 1.) the technical problem of synchronizing the nodes and 2.) the
algorithmic problem of determining a global schedule for the bus and the nodes.

References

1. LIN-Subbus: Local Interconnect Network, http://www.lin-subbus.org/
2. CAN: Controller Area Network, http://www.can.bosch.com/
3. Kopetz, H., Grünsteidl, G.: TTP - A Time-Triggered Protocol for Fault-Tolerant

Real-Time Systems. In: Proceedings of the 23rd IEEE International Symposium
on Fault-Tolerant Computing (FTCS-23), Toulouse, France, pp. 524–532 (1993)

4. FlexRay Organization Consortium, http://www.flexray.com
5. Robert Bosch GmbH: E-Ray User’s Manual, Rev. 1.2.3, 8 (2006)
6. Freescale Semiconductors: MFR4200 Data Sheet, Rev. 1, 12 (2006)

http://www.lin-subbus.org/
http://www.can.bosch.com/
http://www.flexray.com

Dynamic Reconfiguration of FlexRay Schedules 129

7. Wiesmann, M., et al.: Understanding Replication in Databases and Distributed
Systems. In: Proceedings of the 20th International Conference on Distributed Com-
puting Systems, EPFL Lausanne, ETH Zürich, pp. 184–191 (January 2000)

8. Pop, T., et al.: Timing Analysis of the FlexRay Communication Protocol. In: Pro-
ceedings of ECRTS Euromicro Conference on Real-Time Systems (2006)

9. Pop, T., et al.: Bus Access Optimisation for FlexRay-based Distributed Embedded
Systems. In: DATE 2007: Proceedings of the Conference on Design, Automation
and Test in Europe (2007)

10. Izosimov, V., et al.: Design optimization of time-and cost-constrained fault-tolerant
distributed embedded systems. In: DATE 2005: Proceedings of the conference on
Design, Automation and Test in Europe, Washington, DC, USA, pp. 864–869.
IEEE Computer Society Press, Los Alamitos (2005)

11. TZM - Technologie Zentrum Mikroelektronik, http://www.tzm.de
12. Vector Informatik, http://www.vector-informatik.com

http://www.tzm.de
http://www.vector-informatik.com

Synthesis of Multi-dimensional High-Speed
FIFOs for Out-of-Order Communication

Joachim Keinert1, Christian Haubelt2, and Jürgen Teich2

1 Fraunhofer Institute for Integrated Circuits IIS,
Am Wolfsmantel 33, 91058 Erlangen, Germany

Joachim.Keinert@iis.fraunhofer.de
2 Hardware/Software Co-Design, Department of Computer Science,

University of Erlangen-Nuremberg,
Am Weichselgarten 3, 91058 Erlangen, Germany

{haubelt,teich}@cs.fau.de

Abstract. Due to increasing complexity of modern real-time image pro-
cessing applications, classical hardware development at register transfer
level becomes more and more the bottleneck of technological progress.
Modeling those applications by help of multi-dimensional data flow and
providing efficient means for their synthesis in hardware is one possibil-
ity to alleviate the situation. The key element of such descriptions is a
multi-dimensional FIFO whose hardware synthesis shall be investigated
in this paper. In particular, it considers the occurring out-of-order com-
munication and proposes an architecture which is able to handle both
address generation and flow control in an efficient manner. The result-
ing implementation allows reading and writing one pixel per clock cycle
with an operation frequency of up to 300 MHz. This is even sufficient to
process very huge images occurring in the domain of digital cinema in
real-time.

1 Introduction

With increasing capacities of Field Programmable Gate Arrays (FPGAs), more
and more complex applications with growing demands can be realized. This can
also be observed in the domain of digital image processing where new stan-
dards and algorithms offer powerful functionality at the price of huge complex-
ity. JPEG2000 [1] for instance is a new compression technique which is currently
introduced in the domain of digital cinema. However, its huge computational
requirements and algorithmic complexity together with the large image sizes
attaining up to 4096 × 2140 pixels constitute severe challenges for a real-time
implementation.

As this complexity is more and more difficult to cope with by a low level de-
scription like classical Register Transfer Level (RTL) source code in VHDL, high
level synthesis is considered to play an important role in future system design.
Whereas transformation from sequential C-code into a parallel hardware imple-
mentation requires complex extraction of the contained parallelism, data flow

U. Brinkschulte et al. (Eds.): ARCS 2008, LNCS 4934, pp. 130–143, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Synthesis of Multi-dimensional High-Speed FIFOs 131

descriptions like Synchronous Data Flow (SDF) [2] or Kahn Process Networks
(KPN) [3] offer a natural representation of the inherent coarse grained paral-
lelism. For this purpose, the system is composed into a set of actors representing
processes which are interconnected by edges modeling communication.

In classical one-dimensional data flow, this communication is realized by help
of FIFOs which transport data elements, also called tokens, from a source ac-
tor to the corresponding sink. Image processing algorithms however work on
multi-dimensional arrays of pixels where the order by which the data is pro-
duced and consumed might differ (out-of-order communication). FIFOs however
only support strict in-order communication. Thus, the necessary pixel reorder-
ing either has to be hidden in the actor or leads to complex system descriptions.
In both cases, analysis and optimization being important in order to achieve
high-performance implementations are difficult.

In order to alleviate this situation, multi-dimensional data flow models of
computation like Windowed Synchronous Data Flow (WSDF) [4] have been pro-
posed. They take explicitly into account that a written or read token is part of
a whole array. This geometric information allows describing out-of-order com-
munication without hiding information in the actors. Consequently, the latter
one is explicitly available for analysis [5] and optimization. This however also
means that communication edges cannot be realized anymore by simple one-
dimensional FIFOs. Instead, multi-dimensional FIFOs [6] have to be deployed
which directly support out-of-order communication.

This paper focuses on the hardware implementation of such a FIFO in order
to contribute to a synthesis path from multi-dimensional data flow descriptions
to FPGA solutions. In particular, it shows how the occurring out-of-order com-
munication can be solved efficiently. Thanks to its explicit modeling, different
optimizations like relative address generation and fast flow control can be per-
formed. Special care is taken, that also applications processing very huge image
sizes in real-time can be taken into account. As a key result, an architecture is
proposed which can read and write one token per clock cycle at frequencies up to
300MHz, thus being sufficient to process images with 4096× 2140 at 30 frames
per second.

The remainder of this paper is as follows. After a comparison of our approach
with related work in Section 2, Section 3 introduces the out-of-order communica-
tion which we want to handle. Section 4 then presents a hardware architecture for
the corresponding multi-dimensional FIFO. The two major challenges, namely
address generation and flow control, are discussed in Sections 5 and 6. Section 7
finally presents the results obtained by our implementation.

2 Related Work

As the handling of today’s system complexity is a major challenge for future tech-
nological progress, communication generation for hardware implementations is
an important topic in many research approaches. Ref. [7] for instance investigates
for SDF graphs, how to efficiently transport huge amounts of data by splitting

132 J. Keinert, C. Haubelt, and J. Teich

the FIFO functionality into an FPGA internal pointer transport and an exter-
nal background memory for data storage. SA-C [8] allows generating hardware
accelerators for sliding window algorithms described by special loops. IMEM [9]
describes chains of local image processing algorithms and permits for efficient
synthesis of the underlying FPGA-internal memory structures. ADOPT [10]
investigates incremental address calculation when accessing multi-dimensional
arrays. All these approaches pay no special attention to out-of-order communi-
cation and the resulting scheduling challenges.

Ref. [11] describes the communication techniques deployed for translating se-
quences of loop nests into parallel hardware implementations using the DE-
FACTO compiler. Different degrees of communication granularity are supported,
ranging from individual pixels to complete images. A granularity however is only
allowed, if production and consumption is performed in the same order. Further-
more, for chip-internal communication, huge amounts of data are transmitted in
parallel requiring large register banks.

ESPAM is another loop-oriented design flow which takes out-of-order com-
munication into account [12,13]. Ref. [12] proposes to use a Content Addressable
Memory (CAM) storing the data values and an associated valid-bit. Whereas
this leads to the smallest achievable memory size, CAMs are very expensive in
terms of required hardware resources. Furthermore, the dynamic memory allo-
cation requires two clock cycles per write and four clock cycles per read due to
polling of the valid bit. One clock cycle is specified as 40 ns. Ref. [13] deploys
a normal RAM. The address generation bases on a hyper-rectangle comprising
all simultaneously life data elements. As in [12], a valid-bit is used to decide
whether the required data element or free space is available. A write operation
takes two clock cycles, a read three clock cycles, each having 10 ns.

In comparison with these approaches, the multi-dimensional FIFO we propose
offers the typical status information like full and empty signals, as well as the
amount of available data elements on the read side and free spaces on the write
side. Thus, no valid-bit is necessary and the source resp. sink can determine
very quickly whether a write or read is possible. As extremely huge image sizes
shall be processed, a static memory allocation is preferred against CAM which
is considered as being too expensive. The addressing scheme does not base on a
hyper-rectangle, but instead linearization in production order is applied as this
has come out to be more efficient for our applications [5]. In order to achieve
sufficient throughput, we require that each clock cycle a pixel can be read and
written simultaneously. Pipelining helps to achieve high synthesis frequencies.
Finally, communication on pixel granularity is allowed independently on the
production and consumption order.

3 Out-of-Order Communication

Out-of-order communication is a phenomenon which can be observed in various
image processing applications. Many camera sources for instance deliver the
images in a raster-scan order line by line, while the JPEG2000 compression

Synthesis of Multi-dimensional High-Speed FIFOs 133

standard [1] allows cutting these images into sub-images, so called tiles, which
are then processed sequentially. Similar situations occur, when composing the
code-blocks for entropy encoding or re-ordering the 8×8 blocks obtained from a
JPEG decoder into a raster-scan order suitable for display devices. In all cases,
the order by which the data elements are produced and read differs.

Figure 1 exemplarily shows the JPEG2000 tiling operation. The input image
is generated line by line in raster scan order whereas the sink reads the tiles
sequentially and applies the compression algorithm. In order to support this
operation, the source and sink shown in Fig. 1(a) cannot be connected any more
by a classical one-dimensional FIFO. Instead, the FIFO has to perform a data re-
ordering and is called multi-dimensional, because it is aware of the token position
in the multi-dimensional array. It is parameterized with the image size and the
execution order of both the sink and the source. The latter one is described by
dividing the array into a hierarchy of (hyper-)rectangles which are written and
read in raster-scan order [5]. In Fig. 1 for instance, the source generates the
complete image in raster scan order, whereas from the sink’s point of view it is
divided into six blocks forming the tiles.

0 1 2 3 4 5 6

9 10 11 12 13 14 15 16

18 19 20 21 22 23 24 25

27 28 29 30 31 32 33 34

8

17

26

35

7

src sink

(a) (b)

()0,1,0,1

=snki
r

x

y

()2,1,1,0=snki
r

Fig. 1. JPEG2000 tiling. (a) shows the data flow graph, (b) the consumption and
production order. The latter one is indicated by increasing numbers, the dashed lines
illustrate the read order. Each rectangle corresponds to a pixel.

The multi-dimensional FIFO hence has two different tasks, namely (i) correct
flow control and (ii) association of a memory cell to each data element. In other
words, the FIFO has to figure out, whether there is enough space to accept the
next token produced by the source and whether the data required next by the
sink is already available. Especially, if the tiles are huge sized, this decision must
be performed on the granularity of pixels instead of tiles, as the latter one would
lead to a significant increase in delay and buffer size. For each written and read
data element, the multi-dimensional FIFO has to derive the memory address of
the FIFO buffer where the corresponding token is stored.

In the next section, a hardware architecture of the multi-dimensional FIFO is
presented which fulfills these tasks.

134 J. Keinert, C. Haubelt, and J. Teich

4 HW-Architecture of the Multi-dimensional FIFO

As FIFOs have turned out to be an efficient medium for data transport and
synchronization, the multi-dimensional FIFO shall provide a similar interface:
Full and empty signals indicate whether the next token can be written or read.
Fill-level indicators show the amount of tokens which can be read by the sink
(rd count) and written (wr count) by the source before the FIFO gets empty or
full. Moreover, it shall be possible to read and write one token per clock cycle.

Figure 2 shows the corresponding hardware architecture. It consists of two
major parts, the memory where the tokens are stored and which can be both
FPGA internal or external, and the controller. The latter one is responsible for
the fill-level control and the address generation. For this purpose, it needs to
know the current position of the source and sink actors in the processed image.
This information is kept by so called iteration vectors isrc ∈ Isrc ⊂ INnsrc and
isnk ∈ Isnk ⊂ INnsnk where Isrc and Isnk are sets of indices with dimensions nsrc
and nsnk respectively. For the tiling shown in Fig. 1, isrc = (ysrc, xsrc) is a two-
dimensional vector indicating the row ysrc and the column xsrc of the next pixel
to produce. isnk = (tysnk, txsnk, rysnk, rxsnk) has four dimensions and specifies
the tile coordinates (tysnk, txsnk) and the position (rysnk, rxsnk) relative to the
tile borders of the next pixel to read (see Fig. 1).

The possible vector values are given by the image and tile extensions as well
as the number of tiles. For Fig. 1, this leads to 0 ≤ isrc ≤ isrc,max = (3, 8)
and 0 ≤ isnk ≤ isnk,max = (1, 2, 1, 2). Each time the wr en signal or the rd nxt
signal is set to one, the corresponding iteration vector is updated by a simple
lexicographic increment:

〈i (t + 1) , ej〉 =
{

(〈i (t) , ej〉 + 1) mod (〈imax, ej〉 + 1) if C1
i (t) otherwise

C1 : ∀j < k ≤ n : 〈i (t) − imax, ek〉 = 0
(1)

Example 1. Suppose, that the sink in Fig. 1 currently is processing pixel num-
ber 14 corresponding to an iteration vector of isnk = (0, 1, 1, 2). Applying equa-
tion (1), the iteration vector of the next sink invocation is given by succ (isnk) =
(0, 2, 0, 0). In other words, the sink starts the third tile by processing pixel 6.

5 Address Generation

For each token which is written into the FIFO or read from it, the corresponding
memory address has to be derived. For this task, we use linearization in produc-
tion order, as investigations in [5] have shown, that this leads to good memory
efficiency. This means that the generation of the source addresses is very sim-
ple, because for each produced source pixel, the write address has simply to be
increased by one. If the latter one exceeds the available buffer size B which can
be selected by the user, then a simple wrap around to the address zero has to
be performed.

Synthesis of Multi-dimensional High-Speed FIFOs 135

controller

(dual-ported)

FPGA-internal or external memory

src address

generation

snk address

generation

src fill level

control

snk fill level

control
src

snkfull

wr_count rd_count

empty

wr_en rd_nxt

wr_data rd_data

snk

iterator

src

iterator

Fig. 2. Hardware architecture of the multi-dimensional FIFO

The determination of the read address is unfortunately more complex because
of the occurring out-of-order communication. Due to the linearization in produc-
tion order, we first need to calculate the producing source invocation from which
we can then derive the memory address. Although it is easily possible to estab-
lish the corresponding mathematical relations (see also Section 6.1) we observed,
that their solution in general requires several multiplications or even integer di-
visions1. As especially the latter ones are very expensive in hardware and both
require in general several clock cycles, we invented another approach which for
practical applications came out to work very well.

We observed in fact, that relative address generation is efficiently possible de-
spite out-of-order communication. Take for instance the example given in Fig. 1.
Due to the linearization in production order, the address of a data element sim-
ply corresponds to the number of the producing source actor invocation which is
represented by Arabic numerals in Fig. 1. If we now follow the sink invocations
in the order indicated by the dashed flashes, we can observe, that the address of
the accessed data element can be easily derived from the address of the previous
invocation. In the concrete example, the address increment simply amounts one,
as long as we stay in the same line of the same tile. If we move to the next line
in the same tile, the address is increased by seven. Moving to the next tile in
horizontal direction means an address decrement of eight and so on. In other
words, relative address generation is easily possible by simply taking the value
of the sink iteration vector into account which tells us the current position of
the sink actor.

As however we want to process very huge images, we cannot just synthesize
a look-up table which associates to each sink iteration vector the corresponding
address offset, as this would be extremely expensive in terms of hardware re-
sources and synthesis time. Instead, we have to group as many identical address
offsets as possible.

1 Whereas for the example in Fig. 1 multiplications are sufficient, the re-ordering of
blocks into a simple raster scan order requires indeed integer divisions.

136 J. Keinert, C. Haubelt, and J. Teich

Figure 3(a) shows the pseudo-code for the corresponding algorithm generat-
ing nested if-then-else statements expressing the correct address increment. It is
started with j = 1 and obtains a table T : Isnk → ZZ which assigns to each sink
invocation isnk the address increment T (isnk) required in order to calculate the
data element address of the next invocation. Based on this table, the algorithm
groups identical address increment values in order to obtain a compact represen-
tation in form of nested conditionals. Therefore, line (05) checks whether there
exist two table entries which only differ in coordinate j and which do not have
the same value. If this is the case, a corresponding distinction in form of a con-
ditional has to be introduced. The latter one is generated in lines (06) and (08),
whereas line (02) outputs the assignment of the result variable addr inc.

In part (b) of Figure 3, the code generated by the above algorithm for the
tiling example in Fig. 1 is print off. As it can be seen, the number of required
if-statements is much smaller than the number of pixels forming the image. They
can hence be efficiently synthesized in hardware.

(00) create_cond(j,c){
(01) if j = nsnk + 1
(02) →addr_inc := T (c)
(03) else
(04) for 〈c, ej 〉 = 0 : 〈isnk,max, ej 〉 − 1

(05) if

⎧
⎪⎪⎨

⎪⎪⎩

∃k1, k2 ∈ Isnk (j, c) ,
〈k1, ej 〉 = 〈c, ej 〉,

k2 = k1 + ej :
T (k1) �= T (k2)

⎫
⎪⎪⎬

⎪⎪⎭

(06) →IF i_snk[j]<=〈c, ej 〉
(07) create_cond(j+1,c);
(08) →ELSE
(09) end if
(10) end for
(11) 〈c, ej 〉 = 〈isnk,max, ej〉;
(12) create_cond(j+1,c);
(13) end if
(14) }

(a)

IF i_snk[2]<=1
IF i_snk[3]<=0
IF i_snk[4]<=1
addr_inc := 1
ELSE
addr_inc := 7

ELSIF i_snk[4]<=1
addr_inc := 1

ELSE
addr_inc := -8

ELSIF i_snk[3]<=0
IF i_snk[4]<=1
addr_inc := 1

ELSE
addr_inc := 7

ELSE
addr_inc := 1

(b)

Fig. 3. (a) Coding of the address offsets by nested conditionals. The resulting code
output is indicated by the ”→”-sign. Isnk (j, c) = {isnk ∈ Isnk | ∀1 ≤ k < j : 〈isnk −
c, ek〉 = 0}. (b) shows the (reformatted) code generated by the algorithm for the
example given in Fig. 1. Else-statements immediately followed by an if-statement are
replaced by elsif -constructs.

The next section shows, how based on the introduced memory model, efficient
flow control can be realized. In other words, we want to solve the question when
the source or sink can be executed.

Synthesis of Multi-dimensional High-Speed FIFOs 137

6 Fill-Level Control

Whereas for one-dimensional FIFOs, the fill-level control is rather easy to imple-
ment, the out-of-order communication makes this task more challenging. Con-
sider for instance once again the tiling operation illustrated in Fig. 1. Then it can
be easily recognized, that each of the first three source invocations immediately
allows the sink to execute once. The source invocations 3-8 however do not allow
the sink to continue, because due to out-of-order communication, the latter one
requires the data element produced by source invocation 9. On the other hand,
once the sink has processed pixel 11, it can immediately continue with pixels 3-5
without waiting for the source, because they are already available.

A similar reasoning is valid for freeing buffer elements and hence for the
question, whether the source can still execute or has to wait due to a full buffer.
Because of the linearization in production order, pixels stored in the buffer can
only be freed in the same order in which they have been produced. In other
words, in Fig. 1 it is not possible to discard data elements 9-11 before 3-5, because
otherwise we would get holes in the address space which would be too complex
to handle in hardware. This however also means, that no buffer elements can be
freed, when the sink processes pixels 9-11. On the other hand, when discarding
pixel 8, also pixels 9-14 can be freed because they have already been processed.

This example clearly shows, that in contrast to one-dimensional FIFOs it is
not sufficient anymore to count the tokens stored in the buffer in order to derive
whether the source or the sink can execute. Consequently, in the architecture
shown in Fig. 2, both the source and the sink fill level control modules contain
their own counters indicating the number of possible source resp. sink invo-
cations. Both are initialized with the correct values during startup. If neither
initial tokens nor virtual border extension [4] occurs, the sink counter is set to
zero and the source counter equals the buffer size. Each time the source or sink
fires, the corresponding counter is decreased by one. Additionally, whenever the
source executes, it communicates the number of additional sink invocations to
the sink-level fill control and vice-versa.

The next subsection will show how the corresponding values can be derived.

6.1 Invocation Number Calculation

In order to determine the possible number of source and sink invocations, we
need to know the additional possible sink invocations Δsnk (isrc) resulting from
the source invocation isrc as well as the number of additional source invocations
Δsrc (isnk) due to execution of isnk.

Both questions can be answered by help of a Parametric Integer Program
(PIP) [14] which minimizes a system of linear inequalities in the sense of the
lexicographic order ≺. The latter one establishes an order on ZZn and is defined
as following:

ZZn
 i1 ≺ i2 ∈ ZZn

⇔ ∃k, 1 ≤ k ≤ n : 〈i1, ek〉 < 〈i2, ek〉 ∧ ∀1 ≤ j < k : 〈i1 − i2, ej〉 = 0

138 J. Keinert, C. Haubelt, and J. Teich

For example, i1 = (1, 1, 1, 2) ≺ i2 = (1, 2, 0, 0). Due to our definition of the
iteration vectors (see Section 4), i1 ≺ i2 also means, that i1 is executed before i2.

By help of a particular parametric integer program, we can now calculate
Δsrc (isnk). Given for instance the current sink iteration isnk,0 ∈ Isnk ⊂ INnsnk ,
then the following PIP searches for the lexicographically smallest source iteration
isrc ∈ Isrc ⊂ INnsrc whose data elements are still required2:

min≺ (isrc) (2)

isrc,max ≥ isrc ≥ 0 (3)
isnk,max ≥ isnk ≥ 0 (4)

isnk � isnk,0 (5)
Msrc · isrc︸ ︷︷ ︸

(a)

−Msnk · isnk︸ ︷︷ ︸
(b)

= 0 (6)

isnk,max ≥ isnk,0 ≥ 0 (7)

isnk,0 is considered as the PIP parameter whose possible range is specified by the
context [14] in equation (7). Equation (6) describes the data element mapping.
Part (a) calculates the coordinates of the pixel produced by the source invo-
cation isrc, part (b) the pixel coordinates accessed by the sink iteration isnk.
Together, they establish a relation between the sink iteration isnk and the cor-
responding source iteration isrc producing the required data element. Working
on m-dimensional images, Msrc is an m×nsrc matrix, Msnk an m×nsnk matrix.
For the example given in Fig. 1, we have

Msnk =
(

0 3 0 1
2 0 1 0

)

, Msrc =
(

0 1
1 0

)

.

Equations (3) and (4) specify the possible iteration range. Equation (5) finally
takes care, that only sink iterations which do not occur before isnk,0 are taken
into account. This relation can be transformed into a simple inequality as re-
quired for PIPs by establishing the following order:

Osnk (isnk) = 〈isnk, osnk〉

〈osnk, ej〉 =
nsnk∏

k=j+1

(〈isnk,max, ek〉 + 1) , 1 ≤ j ≤ nsnk

It can be easily seen, that isnk � isnk,0 ⇔ Osnk (isnk) ≥ Osnk (isnk,0). Equa-
tion (5) can hence be replaced by

Osnk (isnk) ≥ Osnk (isnk,0) (8)

The overall system of inequalities thus searches the earliest source iteration
(Eq. (2)) whose produced data element is required by a sink invocation isnk

2 We do not detail border processing or initial tokens in this paper.

Synthesis of Multi-dimensional High-Speed FIFOs 139

(Eq. (6)) which occurs not before isnk,0. In other words, let isrc = f (isnk,0) be
the solution of the above PIP. Then we know, that all data elements produced
before f (isnk,0) are not required anymore and can be discarded. If we now solve
the same PIP for the successor of isnk,0, we can derive the number of additional
data elements which can be discarded after execution of isnk,0and hence the
number of additional possible source invocations:

Δsrc (isnk,0) = Osrc (f (succ (isnk,0))) − Osrc (f (isnk,0)) .

Osrc : Isrc → IN0 is a function which enumerates all source invocations as shown
in Fig. 1. A similar reasoning can be performed for Δsnk (isrc).

6.2 Solution of the PIP

Solutions of parametric integer programs can be expressed symbolically by help
of nested conditionals. The latter ones can be obtained by help of the PIP-library
[15] which can solve parametric integer programs as those presented in the previ-
ous section. However, in practical implementations, we observed severe difficul-
ties. First, the expressions returned by the PIP-library are extremely complex.
Although we succeeded to perform various simplifications, for some examples
they stayed unsuitable for a hardware implementation. Secondly, even for very
small image sizes, we observed sometimes a tremendous calculation effort and
extremely huge memory requirements. Even worse, sometimes the PIP-library
failed completely.

Consequently, we have elaborated an alternative approach to solve the above
parametric integer program. It allows to derive f (isnk,0) by help of simulation
and bases on the buffer analysis presented in [5]. Whereas this does not allow
for symbolic solutions, it can process very huge image sizes in reasonable time.
As a result, we obtain a table T : Isnk → IN0 which assigns to each sink iteration
the resulting number of additional source invocations. By help of the algorithm
shown in Fig. 3, this table can be coded as nested conditionals which can be
efficiently synthesized in hardware.

6.3 Elimination of Modular Dependencies

Whereas for the example given in Fig. 1 determination of Δsrc (isnk) by the
above approach does not cause any difficulties, Δsnk (isrc) shows inherent mod-
ular dependencies. This is because the number of additional possible sink in-
vocations depends on the tile structure. Consider for instance the first row of
tiles in Fig. 1. Then for all tiles except the last one, we observe that whenever
the source has generated the last pixel of a tile, the sink can not only read this
pixel, but also all lines of the next tile except for the last line. Hence, in order
to determine the value of Δsnk (isrc), the multi-dimensional FIFO has to know
whether the source has produced the last pixel of a tile. Mathematically, this is
nothing else than checking whether

〈isrc, e1〉 mod 2 = 1 (9)
〈isrc, e2〉 mod 3 = 2 (10)

140 J. Keinert, C. Haubelt, and J. Teich

Unfortunately, this modular dependency increases the complexity of the re-
sulting hardware implementation. As the nested conditionals generated by the
algorithm shown in Fig. 3 do not contain any modulo function, they are trans-
lated into a possible huge amount of conditions. Equation (10) for instance can
be represented by 〈isrc, e2〉 = 2∨〈isrc, e2〉 = 5∨ This however increases the
required resources for a hardware implementation. Furthermore, even if the con-
ditions included a modulo function, this would not help much, as its hardware
realization is expensive too.

Fortunately, the situation can be easily improved by replacing isrc with a four
dimensional vector: i∗

src =
(
y∗
src,1, y

∗
src,2, x

∗
src,1, x

∗
src,2

)
with 0 ≤ i∗

src ≤ (1, 1, 2, 2).
This removes the modular dependencies, because they are now already occurring
in the source iterator. In other words, equation (10) for instance can be replaced
by x∗

src,2 = 2 which can be efficiently represented in hardware.

7 Results

In order to verify our concept of the multi-dimensional FIFO, we have imple-
mented it in VHDL and verified its functional correctness by help of different
Modelsim simulations. In order to get an idea about the achievable speed, we
have furthermore synthesized several configurations of the out-of-order commu-
nication shown in Fig. 1. As we want to process very huge images in real-time,
we have written the VHDL code in such a way, that critical operations can be
pipelined over several clock cycles. For instance, we allow the calculation of Δsnk
and Δsrc to take several clock cycles as this does not violate our requirement
to process one pixel per clock cycle. Additionally we have realized a pipelined
memory access as it is found in many high-speed memories: As for high frequen-
cies it is impossible to retrieve the desired data word within one clock cycle, the
interface is designed in such a way, that the memory controller can issue one
read request per clock cycle while it might take more than one clock cycle until
the requested data word effectively arrives. We deploy the same principle for
the sink address generation. Whereas both the sink address generation and the
data access might take more than one clock cycle, we have designed the FIFO
interface in such a way, that the sink can issue one read-request per clock cycle.

Tab. 1 shows the hardware results obtained after place-and-route with the
Xilinx ISE 8.2 tools. Two different configurations are tested, using a big and
a small tile size. The latter allows using internal block ram (BRAM) as FIFO
buffer, whereas this is infeasible for the big tile size. In the latter case, we assume
an external memory by assigning the address bits to FPGA pins. Note that an
external memory controller is not taken into account, because the generation of
FPGA output signals and sampling of FPGA input signals significantly com-
plicates the achievement of high frequencies due to tight phase requirements.
As however the proposed multi-dimensional FIFO is independent of the applied
memory controller, the latter one is omitted in order to avoid influence on the
synthesis timing.

Synthesis of Multi-dimensional High-Speed FIFOs 141

Table 1. Achievable frequency and required hardware resources after place-and-route
for an image size of 4096 × 2140 pixels

Virtex4 LX25-12 Virtex2 XC2V6000-6
Tile size MHz FF LUT MHz FF LUT

128 × 5 (BRAM) 300 503 (2%) 719 (3%) 193 503 (1%) 719 (1%)
128 × 5 (ext.) 300 471 (2%) 717 (3%) 195 471 (1%) 717 (1%)

1024 × 1070 (ext.) 262 612 (2%) 988 (4%) 174 612 (1%) 989 (1%)

As it can be seen, the proposed architecture for the multi-dimensional FIFO
achieves both for recent and older FPGA technology very good operation fre-
quencies. In the case of a Virtex4 device, the frequencies are even sufficient to
process an image with 4096 × 2140 pixels at more than 30 frames per second
which is a considerable throughput. Moreover, even with a Virtex2, 20 frames
per second are possible. Nevertheless, the resource consumption is acceptable,
needing not more than 1% of a Virtex2 6000 and not more than 4% of a Virtex4
LX25 which is a rather small chip.

Table 2 shows the overhead caused by the support of out-of-order commu-
nication. It compares the developed multi-dimensional FIFO with an ordinary
FIFO generated by the Xilinx CORE Generator [16]. In order to allow for a fair
comparison, the multi-dimensional FIFO is configured in such a way that data
production and consumption occur in the same order and can thus be realized by
an ordinary FIFO. Both FIFOs dispose of the same amount of memory equal-
ing 16384 items. The multi-dimensional FIFO is synthesized in two variants.
One uses the same pipeline settings required to achieve the high synthesis fre-
quencies of Table 1. The second takes into account, that identical consumption
and production order is less complex than out-of-order communication. Hence,
less pipeline steps are required. Nevertheless, as expected, the multi-dimensional
FIFO in both cases requires more resources and the achievable frequency is
smaller than for the CORE Generator FIFO. We identified as underlying reason
the address calculation which is more complex for out-of-order communication
compared to an ordinary FIFO. Consequently, the VHDL implementation needs
to deploy more complex logic structures. Unfortunately, the synthesis tool is not
able to remove this complexity even when the multi-dimensional FIFO is config-
ured for identical consumption and production order. Consequently, a possible
optimization strategy for complete systems is to replace multi-dimensional FI-
FOs with ordinary ones if no out-of-order communication is required.

However, whenever this is not possible like for the example shown in Fig. 1,
our implementation proves to achieve high throughput with acceptable resources.
Thanks to our static compile time analysis, we achieve higher synthesis frequen-
cies compared to [12,13] (see Section 2). Furthermore, our implementation does
not need any valid-bit and allows one read and write access per clock cycle which
is not possible in [12,13]. On the other hand, as [12] uses dynamic memory allo-
cation, it has an increased flexibility and possibly better memory utilization.

142 J. Keinert, C. Haubelt, and J. Teich

Table 2. Comparison of the multi-dimensional FIFO for out-of-order communication
with an ordinary FIFO generated by the Xilinx CORE Generator for a Virtex4 LX25-12
device

Frequency (MHz) FF LUT
Multi-dimensional, heavily pipelined 300 259 431

Multi-dimensional, less pipelined 305 212 395
CORE Generator 394 89 114

8 Conclusions

Due to the increasing complexity of modern image processing applications, classi-
cal hardware description at register transfer level gets more and more inadequate.
Modeling by help of multi-dimensional data flow and providing efficient means
for the required synthesis is one possibility to alleviate the situation, because
the application is described at a higher level of abstraction.

The paper in hand contributes to this new methodology by providing an ef-
ficient and fast implementation of a multi-dimensional FIFO which allows for
out-of-order communication. The latter one is required by different applications
like JPEG2000 or JPEG. As a major contribution, this paper presented an ar-
chitecture which is able to read and write one pixel per clock cycle. Usage of
linearization in production order leads to memory efficient solutions and trivial
source address generation. Determination of the corresponding sink address is
more challenging due to the occurring out-of-order communication, but can be
efficiently solved by relative address calculation. In order to solve the question,
how often the source or sink can still be fired before the FIFO gets full or empty,
a parametric integer program can be established. For its solution, two different
approaches are available, namely by help of the piplib library and by simulation.
Especially the latter allows to process huge images. The obtained synthesis re-
sults prove, that a very huge throughput can be achieved allowing to process
images with 4096× 2140 pixels in real-time.

References

1. ISO/IEC JTC1/SC29/WG1: JPEG 2000 Part I Final Committee Draft Version
1.0, N1646R (March 2002)

2. Lee, E.A., Parks, T.M.: Dataflow Process Networks. Proceedings of the IEEE 83(5),
773–801 (1995)

3. Kahn, G.: The semantics of a simple language for parallel programming. In: Pro-
ceedings of IFIP Congress 74, Stockholm, Sweden, pp. 471–475 (August 1974)

4. Keinert, J., Haubelt, C., Teich, J.: Modeling and analysis of windowed synchronous
algorithms. In: ICASSP2006, vol. III, pp. 892–895 (2006)

5. Keinert, J., Haubelt, C., Teich, J.: Simulative buffer analysis of local image pro-
cessing algorithms described by windowed synchronous data flow. In: IC-SAMOS,
pp. 161–168 (July 2007)

Synthesis of Multi-dimensional High-Speed FIFOs 143

6. Keinert, J., et al.: Actor-oriented modeling and simulation of sliding window image
processing algorithms. In: Proceedings of the 2007 IEEE/ACM/IFIP Workshop of
Embedded Systems for Real-Time Multimedia (ESTIMEDIA 2007), pp. 113–118
(2007)

7. Ko, D.I.: System Synthesis for Image Processing Applications. PhD thesis, Uni-
versity of Maryland (2006)

8. Draper, B., et al.: Compiling and optimizing image processing algorithms for FP-
GAs. In: Proceedings of Fifth IEEE International Workshop on Computer Archi-
tectures for Machine Perception, pp. 222–231(September 11–13, 2000)

9. Norell, H., Lawal, N., O’Nils, M.: Automatic generation of spatial and temporal
memory architectures for embedded video processing systems. EURASIP Journal
on Embedded Systems 2007, pages 10 (2007)

10. Miranda, M., et al.: ADOPT: Efficient hardware address generation in distributed
memory architectures. In: ISSS 1996: Proceedings of the 9th international sympo-
sium on System synthesis, p. 20 (1996)

11. Ziegler, H.E., Hall, M.W., Diniz, P.C.: Compiler-generated communication for
pipelined fpga applications. In: DAC 2003: Proceedings of the 40th conference
on Design automation, pp. 610–615. ACM Press, New York (2003)

12. Zissulescu, C., Turjan, A., Kienhuis, B., Deprettere, E.: Solving out of order com-
munication using CAM memory; an implementation. In: 13th Annual Workshop
on Circuits, Systems and Signal Processing (ProRISC 2002) (2002)

13. Zissulescu, C., Kienhuis, B., Deprettere, E.: Communication synthesis in a multi-
processor environment. In: International Conference on Field Programmable Logic
and Applications, pp. 360–365 (August 2005)

14. Feautrier, P.: Parametric integer programming. Operationnelle/Operations Re-
search 22(3), 243–268 (1988)

15. http://www.piplib.org/
16. Xilinx: CORE Generator, http://www.xilinx.com/

http://www.piplib.org/
http://www.xilinx.com/

A Novel Routing Architecture for
Field-Programmable Gate-Arrays

Alexander Danilin1, Martijn Bennebroek2, and Sergei Sawitzki1

1 NXP Semiconductors
Corporate Innovation and Technology, Research Division

High Tech Campus 32
5656AE Eindhoven, The Netherlands

{Alexander.Danilin,Sergei.Sawitzki}@nxp.com
2 Philips Research Europe

High Tech Campus 5
5656AE Eindhoven, The Netherlands
martijn.bennebroek@philips.com

Abstract. A novel routing fabric is introduced that offers high flexi-
bility at significantly lower silicon cost compared to routing fabrics cur-
rently incorporated in Field Programmable Gate Array (FPGA) devices,
IP cores, and IP-core wrappers. This fabric is entirely constructed from
multiplexers and unidirectional point-to-point connections, controlled by
configuration bits. Key in optimizing its efficiency is to derive an appro-
priate connectivity pattern between logic blocks. Although this problem
is complex in general, three guidelines have been identified to define
suitable patterns. For a fabric connecting 4-input Look-Up-Tables, area
savings of 60% are demonstrated when routing applications from the
MCNC benchmark set. The use of multiplexer-based routing is not lim-
ited to these basic logic blocks only, so the potential of its usage for more
complex logic blocks is illustrated as well. Benefits in timing closure, per-
formance, and power are briefly discussed.

1 Introduction and Previous Work

Reconfigurable logic offers great flexibility with respect to standard-cell logic
though at significant area, power, and delay penalties. The main culprit is the
configurable routing fabric that consumes most of the silicon area and, even
worse, is often not utilized efficiently when mapping applications. Therefore,
academic and industrial effort has been and still is devoted to further improve
routing fabrics traditionally in stand-alone devices but, more recently, also in
embedded IP cores and IP core wrappers. Most commercial Field Programmable
Gate Array (FPGA) devices, including the recent families of Xilinx and Altera,
use a Manhattan routing fabric [1] schematically depicted in Fig. 1. Such routing
fabrics are also known as mesh-based [1] or island-style [2]. Here, logic blocks
are connected by connection boxes to adjacent horizontal and vertical routing
channels.

U. Brinkschulte et al. (Eds.): ARCS 2008, LNCS 4934, pp. 144–158, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

A Novel Routing Architecture for Field-Programmable Gate-Arrays 145

Fig. 1. Diagram of Manhattan routing fabric. C — connection block, S — switch block.

The wire segments in a channel can be of various lengths, from short (span-
ning a single or few logic blocks) to medium (four to sixteen logic blocks) and
long (spanning half a die or even a full die). Switch boxes are located at the
channel intersections to enable wire segments to be connected in any direction,
horizontally or vertically, and thereby to route signals between any logic and/or
IO blocks in the two-dimensional array. The main challenge in designing (Man-
hattan) routing fabrics is to achieve routability for a wide variety of applications
with a minimum of routing resources such that the utilization density of logic
blocks is maximized (whereby signal speeds and power consumption are still
acceptable). In reality, Manhattan routing fabrics are designed based on best
practices and incorporate a wealth of routing resources that dominate the FPGA
area. For example, in [1] it is reported that 84% to 92% of the FPGA area is
consumed by the routing fabric. The FPGA architectures studied in [1] contain
logic blocks with clusters of six 4-LUTs. For FPGA architectures containing sim-
pler logic blocks, the area consumption may become even more extreme and (for
one of the FPGA architectures discussed later in this paper with only a single
4-LUT logic block) even amount to 95%. Manhattan routing fabrics themselves

146 A. Danilin, M. Bennebroek, and S. Sawitzki

Table 1. Definitions and related (standard-cell) area figures of Manhattan and
multiplexer-based routing fabrics for two (LUT4 and DSP1) logic block variants. The
routing resources have been chosen to enable routing of the applications listed in Table 2
and Table 4. For the DSP1 FPGA, the connectivity patterns of the routing multiplex-
ers have not yet been fully optimized (simple copy-paste from LUT4 case) which may
explain the limited 9% area savings.

FPGA Architecture

LUT4
DSP1(=cluster
of 4×LUT2)

Manhattan mux-based Manhattan mux-based

#direct L1,L2,L4 0,0,2,28 8,4,8,8

routing
horizontal tracks

#direct L1,L2,L4 0,0,2,28 8,4,8,8

resources
vertical tracks
#tristate &

140 & 120 72 & 90
per tile

pass-gate switches

#routing &
16 & 10 36 & 48

connection muxes
configura-

#logic block bits 17 17 (0 %) 27 27 (0 %)
tion bits

#routing bits 280 72 (-74 %) 317 226 (-29 %)
per tile

area con- normalized area 1.000 0.397 (-60 %) 1.000 0.911 (-9 %)
sumption routing area 0.948 0.345 (-64 %) 0.867 0.778 (-10 %)
per tile logic block area 0.052 0.052 (0 %) 0.133 0.133 (0 %)

are dominated by the massive amount of tri-state and pass-gate switches, and
associated configuration bits, in the (output-) connection and switch boxes. Un-
fortunately, the utilization of these switches is usually very low and, as shown
in this paper, typically range between 3% and 10%.

Various approaches have been proposed to reduce the number of switches, and
associated configuration bits in Manhattan routing fabrics. For example, in re-
cent FPGA device families of Xilinx and Altera, unidirectional wires have been
introduced next to traditional bidirectional wires to improve (area-)efficiency
[1,3]. In [4], it is stated that up to 26% fewer switches are required when introduc-
ing hierarchy in Manhattan routing fabrics (according to a so-called Mesh-of-Tree
approach). In the present work a simple 4-LUT logic block has been considered
for which the multiplexer-based routing fabric will be shown to require up to 74%
fewer routing bits and no switches at all. Alternative, non-Manhattan routing
fabrics have been proposed to bring down the number of configuration bits (and
area) by making use of crossbars between wire segments instead of Manhattan
switches. Examples are the crossbar-based routing fabrics proposed by M2000 [5]
and Leopard Logic [6] that make use of N ×M and 2×2 crossbars, respectively.
Like the Mesh-of-Tree Manhattan routing fabric, these crossbar-based routing

A Novel Routing Architecture for Field-Programmable Gate-Arrays 147

Fig. 2. Example of the multiplexer-based routing fabric in a single logic tile that con-
tains a simple (4-input LUT) logic block. Complete cores are generated by abutment
of logic tiles (and IO tiles at the core boundary) as illustrated in Figure 3.

fabrics incorporate hierarchy to improve routability and to prevent an explosion
of routing resources for large FPGA arrays. However, in hierarchical routing fab-
rics, logic blocks that are physically close in the layout may be logically located
in different hierarchical branches. Additional measures, like shortcuts or stag-
gering [4], need to be introduced to bridge such hierarchy gaps. Such measures
often will affect timing prediction and, therefore, complicate timing closure in
application mapping.

This paper introduces a novel routing fabric that provides sufficient routability
at relative low area cost. The work evolves from the research activities at Philips
Research and NXP Semiconductors to derive area-efficient architectures for use
as embedded FPGA cores. Unlike stand-alone FPGA devices, embedded FPGA
cores provide more freedom for architectural optimization as the application
domain is already known at FPGA core and SoC design time. Some initial results
on multiplexer-based routing fabric were presented in [7]. This work further
improves these results and puts the approach in a wider context.

148 A. Danilin, M. Bennebroek, and S. Sawitzki

Fig. 3. Example of the output connectivity pattern of routing multiplexer 1 (in the
center of the 4-LUT logic tile) to its seven neighbouring tiles

The rest of this paper is organized as follows. The novel routing fabric is illus-
trated in section 2, for a basic 4-LUT architecture, together with an appropriate
Manhattan fabric against which it will be benchmarked. Section 3 presents the
results when mapping applications from the MCNC benchmark suite to both
fabrics. Here, the enhanced utilization of (area-costly) routing resources will be
quantified as well as the resulting (average) cost per routed net. In section 4,
the results of the implementation of the multiplexer-based routing fabrics for
complex logic blocks are presented. In the section 5, a brief discussion is in-
cluded on the additional (anticipated) benefits concerning performance, power,
timing-closure, and on the challenge for novel place and route algorithms.

2 Routing Fabrics

This section details the multiplexer-based routing fabric connecting 4-LUTs and
the Manhattan routing fabric used for comparison. Both routing fabrics have
been defined using an in-house toolset of NXP Semiconductors [8] and dimen-
sioned (e.g. the number of channel segments or routing multiplexers adapted)
to enable routing of applications from the MCNC benchmark set with minimum

A Novel Routing Architecture for Field-Programmable Gate-Arrays 149

1.5

1

0.5

0

-0.5

-1

-1.5
1.510.50-0.5-1-1.5

Y

X

Routing Multiplexer 1

3

4

5

2

6

8

7

5

4

3

2

1

0

-1

-2

-3

-4

-5
-5 -4 -3 -2 -1 0 1 2 3 4 5

Y

X

Routing Multiplexer 2

4 8 6

3

7

9

5

5

4

3

2

1

0

-1

-2
-5 -4 -3 -2 -1 0 1 2 3 4 5

Y

X

Routing Multiplexer 3

5 9

10

8

4

6

7

15

10

5

0

-5

-10

-15
-15 -10 -5 0 5 10 15

Y

X

Routing Multiplexer 4

6

10

5

7

9

11

8

Fig. 4. Output connectivity patterns of routing multiplexers 1 to 4 (in the center 4-
LUT logic tile) to, in total, 23 different surrounding tiles. The numbers indicate input
channels of receiving tiles.

overhead. Table 1 depicts some main characteristics of these routing fabrics. The
area numbers included in the table reveal that the multiplexer-based routing
fabric can achieve routing with only 36% of the area needed by the Manhattan
fabric.

2.1 Multiplexer-Based Fabric

Figure 2 depicts the multiplexer-based routing fabric for a single logic tile that
contains a simple (4-LUT) logic block. The fabric shown contains 16 multiplexers
(labeled 1 to 16) used for routing towards surrounding tiles. Within a tile, these
routing multiplexers are connected through two layers of additional connection
multiplexers, labeled 17 to 26, to all four inputs of a Look-Up-Table (4-LUT).
The 4-LUT supports the functionality of any 4-input logic operation and its
output is fed back to an input of all 8:1 routing multiplexers. The remaining
7 inputs of each routing multiplexer are connected to the outputs of routing
multiplexers in (different) surrounding tiles. Likewise, the output of each routing
multiplexer is connected to the input of routing multiplexers in 7 (different)
surrounding tiles. An example of the output connectivity pattern of routing
multiplexer 1 is shown in Fig. 3. The output connectivity patterns of multiplexers
2 to 4 are depicted in Fig. 4 and can be observed to partially overlap with

150 A. Danilin, M. Bennebroek, and S. Sawitzki

Fig. 5. Compound multiplexer-based connectivity pattern obtained by combining the
individual connectivity patterns displayed in Figure 4 after (from left to right) 1-, 2-,
and 3- hops. The colored indices indicate the number of paths leading to a X,Y position
from routing multiplexers 1 to 4.

Fig. 6. Manhattan connectivity pattern after (from left to right) 1-, 2-, and 3- hops.
The colored indices indicate the number of paths leading to a X,Y position using 4
horizontal and 4 vertical channels of length 4 each.

routing multiplexer 1 (in case of the orthogonal directions of multiplexer 3) and
to connect to more remote tiles. For convenience, routing multiplexers 5 to 16
just replicate the output connectivity patterns of 1 to 4 although, in principle,
all 16 multiplexers could have been given non-identical connectivity patterns. In
Fig. 5, the combined region covered by all 16 routing multiplexers is illustrated
when a going from a center 4-LUT through a first level of routing multiplexers
(hop 1), a second (hop 2) and third level of routing multiplexers (hop 3).

2.2 Manhattan Routing Fabric

Figure 7 depicts a single logic tile of the Manhattan routing fabric connecting
4-LUT logic blocks and used for comparison. This fabric closely resembles that
in [9] which has been argued to be beneficial for area and performance. As
detailed in Table 1, the Manhattan fabric contains 28 length-4 and two length-2
segments, 140 (bidirectional) tri-state switches in the switch box, 120 pass gates
in the output connection box (providing 100% 4-LUT output connectivity to all
four sides), and four 30:1 multiplexers in the input connection box (providing
100% input connectivity from all four sides). Figure 6 depicts the region covered

A Novel Routing Architecture for Field-Programmable Gate-Arrays 151

Table 2. Mapping results of various applications onto a LUT4-based FPGA archi-
tecture implemented with a traditional Manhattan and the novel multiplexer-based
routing fabric. As depicted in Table 1, the latter routing fabric reduces the total area
by 60%. Applications are from the MCNC benchmark set.

Benchmarks Manhattan Mux-based
avg. avg. avg. avg.

rel. Core seg- switch area area mux area area
total total % of size ment uti- per per uti- per per

Name #LUT4 #nets 2-term #tiles uti- liza- net 2-term liza- net 2-term
nets liza- tion net tion net

tion [μm2] [μm2] [μm2] [μm2]
tseng 1047 1099 55 % 33×33 26 % 5 % 3305 1408 49 % 1057 365
ex5p 1064 1072 55 % 33×33 37 % 8 % 4102 1535 60 % 1351 427
apex4 1261 1271 65 % 36×36 37 % 7 % 3960 1495 58 % 1305 420
misex3 1397 1411 76 % 38×38 34 % 7 % 3798 1395 55 % 1253 397
diffeq 1497 1561 63 % 39×39 27 % 5 % 3257 1575 52 % 1105 394
alu4 1522 1536 83 % 40×40 31 % 6 % 3602 1557 52 % 1194 389
seq 1750 1791 75 % 42×42 37 % 7 % 3803 1620 57 % 1241 405
apex2 1878 1916 74 % 44×44 36 % 7 % 3856 1656 56 % 1260 414
s298 1931 1935 98 % 44×44 29 % 6 % 3424 1456 48 % 1137 364
dsip 1370 1599 71 % 54×54 16 % 3 % 3412 1481 28 % 1155 370
bigkey 1707 1936 70 % 54×54 19 % 4 % 3379 1435 31 % 1054 359
frisc 3556 3576 71 % 60×60 40 % 8 % 4046 1688 57 % 1271 422
elliptic 3604 3735 66 % 61×61 34 % 6 % 3615 1664 53 % 1160 416
spla 3690 3706 79 % 61×61 43 % 9 % 4214 1660 61 % 1467 415
des 1591 1847 72 % 63×63 17 % 3 % 3629 1417 24 % 1099 354
pdc 4575 4591 77 % 68×68 47 % 10 % 4474 1834 64 % 1542 459
ex1010 4598 4608 70 % 68×68 37 % 7 % 3773 1739 57 % 1257 435
avg. 2238 2305 72 % 49×49 32 % 6 % 3744 1566 51 % 1230 400

by this fabric when going from a center 4-LUT onto the first level of adjacent
wires (hop 1), onto a second level of wires (hop 2, connected to the first level
by switches), and onto a third level of wires (hop 3). Comparison of Fig. 5 and
Fig. 6 shows that the multiplexer-based routing fabric may span a relative large
XY region (per hop) and, moreover, provides off-diagonal connections. These
characteristics prove beneficial for routability of the applications.

3 Results and Discussion

Table 2 presents the MCNC mapping results for the Manhattan and multiplexer-
based routing fabrics described above. To provide a fair comparison, the quality
of the in-house placer and router [8] as well as the number of tiles has been kept
identical when mapping each application to both fabrics. Columns 6 and 7 within
Table 2 confirm that the routing resources in the Manhattan fabric are not used
efficiently at all and vary between 16% and 47% utilization for the segments and
even between only 3% and 10% for the switches. In contrast, the multiplexers

152 A. Danilin, M. Bennebroek, and S. Sawitzki

Fig. 7. Tile implementation of the Manhattan routing fabric with a 4-input LUT logic
block

in the proposed fabric are used much more efficiently (between 24% and 64%).
The inherent area-efficiency of the proposed routing fabric can be ascribed to its
ability to route signal nets over (almost) independent channels thereby avoiding
congestion. This is illustrated in Fig. 8(b) where only a single channel is required
to route the indicated two-terminal net without affecting (blocking) channels at
intermediate (non-producer or non-consumer) tiles. As a consequence, the num-
ber of routing channels can be kept low (e.g. 16 in the example in Fig. 2) which
is a first condition for area efficiency. Second, the use of multiplexers enables to
minimize the number of configuration bits (74% lower as indicated in column 5
of Table 1). Third, the use of (unidirectional) point-to-point connections enables
routing of nets in all directions over all distances with a low number of hops
(as indicated by column 5 in Table 3). This favors low-cost routing of especially
two-terminal nets that, in practice, are dominant in most applications. Column
4 in Table 2 illustrates that, for the MCNC benchmark applications, on average
72% of all nets are two-terminal nets. In contrast, Manhattan routing fabrics
typically route signal nets over tracks that do affect the routability of interme-
diate (non-producer or non-consumer) tiles. This can be inferred from Fig. 8(a)
where the indicated two-terminal net can no longer be used to route the 4-LUT
output signal of six intermediate tiles (labeled 1 to 6). Consequently, the num-
ber of tracks in a channel should not be too low and, in practice, the channel is
often over-dimensioned to enhance routability. Additionally, the abundant use
of switches and associated configuration bits, causes a high silicon cost per track
(thus per signal net). Moreover, since these switches are not utilized efficiently

A Novel Routing Architecture for Field-Programmable Gate-Arrays 153

Fig. 8. Illustration of (hop 1) two-terminal connections in a Manhattan routing fabric
(a) and multiplexer-based routing fabric (b)

(only 6% on average, as indicated by column 7 in Table 2). For example, the
(hop 1) two-terminal net in Fig. 8 (a) requires only a single switch (and bit) at
the output connect box of the producer to connect to the length 4 routing track,
however, it wastes 29 output switches (and bits) to the remaining tracks. On the
six intermediate tiles, another six output switches (and bits) are wasted.

Three bidirectional (back-to-back tri-state) switches (and six bits) are required
to isolate the routing track. Finally, a single 30:1 multiplexer (requiring five bits)
is needed in the input connection box to connect the routing track to a 4-LUT
input of the consumer. The compound cost of this length 3 two-terminal net
can be easily calculated based on the identified resources and the result is listed
in column 3 of Table 3. The table also reflects that, due to the rigid choice of
length 4 (orthogonal) tracks, longer (two-terminal) nets can be realized only by
increasing the number of hops.

154 A. Danilin, M. Bennebroek, and S. Sawitzki

Fig. 9. Architecture of Manhattan routing fabric containing DSP logic block

Consequently, a two-terminal net of length 12 requires at least 2813 μm2 in the
Manhattan fabric, whereas, it may consume as little as 328 μm2 for the proposed
fabric. Note that the calculated costs per two-terminal nets matches the order of
magnitude of the derived costs listed in Table 2 and, moreover, suggest that most
two-terminal nets in both fabrics only require between 1 and 2 hops. It is impor-
tant to note that it proved far from trivial to define multiplexer-based routing
fabrics that are area efficient. First of all, one needs a flexible toolset capable of
defining non-traditional routing fabrics and performing placement and routing
exercises [8]. In addition, only “smartly” chosen connectivity patterns resulted in
area-efficient fabrics. It proved rather difficult to define these patterns up-front
as the point-to-point connections between routing multiplexers may be defined
in all directions over all possible distances. So far, three “connectivity rules” have
been defined. First, orthogonal directions should be (slightly) favored over non-
orthogonal directions. These experiments used placement and routing algorithms
that are based upon bounding-box cost functions. Such algorithms are known to
favor orthogonal connections and, therefore, perform well for existing Manhattan
routing fabrics (for which these algorithms have been developed). Second, con-
nectivity patterns should favor short point-to-point connections. Finally, short,
medium, and long point-to-point connections should be heavily interchanged.
In general, if we define the set of coordinate pairs (x, y) reachable from any
initial tile after n hops as {X ; Y }n, than multiplexer-based routing solves the

A Novel Routing Architecture for Field-Programmable Gate-Arrays 155

Fig. 10. Architecture of multiplexer-based routing fabric containing DSP logic block

optimization criteria | {X ; Y }n |→ max together with Xmax −Xmin → max and
Ymax − Ymin → max at lower area cost than Manhattan routing as long as these
connectivity rules are followed. Still, the problem of finding the connectivity
patterns {Xn, Yn} for every multiplexer 1 . . . n together with suitable value for
n is NP-complete.

It should be mentioned that in the current implementation of the multiplexer-
based routing fabric, connections of a tile located close to a core edge are simply
omitted (and thus non-available for routing) when extending across that core
edge. In principle, these connections should be redirected (folded or mirrored)
but, since experiments on oversized cores indicated no real changes in mapping
results, no effort has been spend on the edge connections in this study.

156 A. Danilin, M. Bennebroek, and S. Sawitzki

Table 3. Modeled area cost per two-terminal net for the 4-LUT FPGA architectures
with Manhattan and mux-based routing fabrics (detailed in Table 1). The underlying
models simply add up the areas of the routing resources (multiplexers, switches, config-
uration bits) involved in setting up two-terminal connections. Note that the maximum
length Lmax listed in column 5 corresponds to the mux-based channel in the positive
x-direction as indicated in Fig. 5 whereas in other directions the maximum length is
shorter.

Manhattan Mux-Based Ratio area
#Hubs Lmax cost per net #thru Lmax cost per net #thru per net

[tile edge] [μm2] tiles [tile edge] [μm2] tiles mux/switch
1 3 1253 6 12 328 0 26%
2 7 1773 14 24 428 1 24%
3 11 2293 22 36 527 2 23%
4 15 2813 30 48 627 3 22%
5 19 3333 38 60 727 4 22%
6 23 3854 46 72 826 5 21%

4 Extension to Complex Logic Blocks

The use of the proposed multiplexer-based routing fabric is not limited to the
simple 4-LUT logic blocks discussed so far. Logic blocks may be more complex
and comprise a cluster of multiple, intra-connected N-input LUTs, equipped
with dedicated logic. To illustrate this point, we considered the options for a
logic block containing four 2-input LUTs and a dedicated carry chain that has
been recently developed within Philips Research to optimally support DSP ap-
plications [10]. Figure 9 schematically depicts the Manhattan routing fabric,
including input and output connection boxes, as it has been implemented on a
recent test chip [10]. Some routing fabric details are listed in the 5th column of
Table 1.

Table 1 also lists some details of an alternative multiplexer-based routing
fabric that is schematically depicted in Fig. 10. The routing fabric strongly
resembles the 4-LUT multiplexer-based fabric depicted in Fig. 2 but contains
more routing and connection multiplexers to achieve routing of the increased
number of functional inputs (11) and outputs (5) of the DSP logic block. For
convenience, the 36 routing multiplexers are grouped into nine identical banks of
four multiplexers each. The connectivity patterns of the four routing multiplexers
within a bank simply replicate those derived for the 4-LUT case (displayed in
Fig. 4 and Fig. 5) and no further optimization has been attempted that might
lead to a further reduction in routing and/or connection multiplexers. Despite
this non-optimality, the multiplexer-based routing fabric already requires 29%
fewer configuration bits and 10% less routing area compared to its Manhattan
alternative (see Table 1). The multiplexer-based routing fabric is (tuned to be)
capable of routing the applications listed in Table 4. Again, routing resources are
found to be used more efficiently compared to the Manhattan fabric although, for
practical reasons, the utilization statistics could not be generated exhaustively

A Novel Routing Architecture for Field-Programmable Gate-Arrays 157

Table 4. Application mapping results for a DSP-tuned FPGA architecture with Man-
hattan and multiplexer-based routing fabrics. As depicted in Table 1, the latter routing
fabric consumes (at least) 9% less area. Unlike the 4-LUT results in Table 2, heavy
usage of the low-cost direct (point-to-point) connections in the Manhattan fabric (like
in routing the asu8 and des56 benchmarks) can cause the average area per two-terminal
net to become lower than in the multiplexer-based fabric.

Benchmark Manhattan Mux-based
% of Core size avg. area avg. area avg. area avg. area

Name #CLBs #nets 2-term #tiles per net per 2-term per net per 2-term
nets [μm2] net [μm2] [μm2] net [μm2]

Viterbi 153 641 35% 8×18 916 793 747 665
asu8 381 1661 80% 17×17 799 482 764 596
des56 594 1987 66% 24×24 987 613 790 625

at present. However, columns 6 and 8 in Table 4 implicitly demonstrate the
enhanced efficiency as, on average, multiplexer-based nets can be routed at lower
silicon cost compared to Manhattan nets.

5 Conclusions

This paper presents first results on multiplexer-based routing fabrics that of-
fer sufficient routability at significant lower silicon cost compared to common
Manhattan routing fabrics. For a fabric connecting basic (4-LUT) logic blocks,
area savings of 60% have been demonstrated for the MCNC benchmark set.
This saving is derived from the standard-cell area involved when implement-
ing both fabrics in a given CMOS node but does not include layout considera-
tions. Based on previous layout experiences [10], we feel confident that the order
of magnitude in area savings will not change significantly after layout. Key in
achieving area efficiency is in optimizing the connectivity pattern between the
logic blocks that, at present, requires a rather time-consuming empirical (trial-
and-error) approach. So far, three connectivity rules have been identified, which
(when implemented with an appropriate cost function in our semi-automated
architecture exploration flow) could provide further optimizations and reduce
the effort. The potential for a fabric connecting complex logic blocks is illus-
trated as well and the reported 10% in area savings is considered an upper
boundary as it has been obtained without optimization of connectivity pat-
terns. Although this paper focuses on area efficiency, multiplexer-based fabrics
potentially offer timing-closure, performance and power benefits as well. The
frequent use of pass gates in the switch boxes of Manhattan routing fabrics,
each replacing two back-to-back tri-state drivers for area reasons, is known to
complicate timing closure when routing applications. In practice, due to timing-
closure problems and the inherent area overhead, configurable logic runs at lower
speeds than (non-configurable) standard-cell logic. Since pass gates are excluded
in multiplexer-based fabrics and, moreover, heavy pipelining of signal paths is

158 A. Danilin, M. Bennebroek, and S. Sawitzki

possible at low cost (by adding by-passable latches to the multiplexer outputs
with limited area cost), timing- predictability, timing-closure and performance
should improve. Moreover, since the number of configuration bits is significantly
lower in multiplexer-based fabrics, the static power dissipation will be lower as
well. Future work will be required to quantify these anticipated performance and
power benefits. Finally, the results presented in this paper have been derived us-
ing traditional place and route algorithms that are based on bounding-box cost
functions. These algorithms typically have been developed and optimized for
Manhattan-like routing fabrics and, for example, favor the abundant orthogo-
nal connections. Since multiplexer-based routing fabrics allow for connections
to be defined in all directions and over all possible distances, alternative (non-
bounding box) algorithms may lead to further routing fabric optimizations. First
trials with algorithms favoring spherical (and shorter) connections look promis-
ing and will be further explored.

References

1. Lemieux, G., Lewis, J.: Design of Interconnection Networks for Programmable
Logic. Kluwer Academic Publishers, Dordrecht (2004)

2. Ahmed, E., Rose, J.: The effect of LUT and cluster size on deep-submicron FPGA
performance and density. IEEE Transactions on Very Large Scale Integration
(VLSI) Systems 12(3), 288–298 (2004)

3. Lemieux, G., et al.: Directional and single-driver wires in FPGA interconnect. In:
Proceedings of the IEEE International Conference on Field-Programmable Tech-
nology, pp. 41–48 (2004)

4. DeHon, A., Rubin, J.: Design of FPGA Interconnect for Multilevel Metallization.
IEEE Transactions on VLSI systems 12(10), 1038 (2004)

5. M2000 US6594810 patent: Reconfigurable Integrated Circuit with a Scalable Ar-
chitecture

6. Leopard Logic, US6940308 patent: Interconnect Network for a Field Programmable
Gate Array

7. Danilin, A., Bennebroek, M.: Multiplexer-Based Routing Fabric for Reconfigurable
Logic. In: Proceeding of the International Conference on Field Programmable Logic
and Applications 2007, pp. 27–29 (August 2007)

8. Danilin, A., Bennebroek, M., Sawitzki, S.: A novel toolset for the development
of FPGA-like reconfigurable logic. In: Proceeding of the International Conference
on Field Programmable Logic and Applications 2005, August 24–26, pp. 640–643
(2005)

9. Betz, V., Rose, J., Marquardt, A.: Architecture and CAD for Deep-Submicron
FPGAs. Kluwer Academic Publishers, Dordrecht (1999)

10. Bennebroek, M., Vranken, K., Danilin, A.: Stuck-At Fault Testing of FPGA Cores
using Standard Test Pattern Generation Tools. In: Proceedings of the 11th IEEE
European Test Symposium (2006)

A Predictable Simultaneous Multithreading
Scheme for Hard Real-Time

Jonathan Barre, Christine Rochange, and Pascal Sainrat

Institut de Recherche en Informatique de Toulouse,
Université de Toulouse - CNRS, France
{barre,rochange,sainrat}@irit.fr

http://www.irit.fr/TRACES

Abstract. Simultaneous multithreading (SMT) processors might be
good candidates to fulfill the ever increasing performance requirements
of embedded applications. However, state-of-the-art SMT architectures
do not exhibit enough timing predictability to allow a static analysis of
Worst-Case Execution Times. In this paper, we analyze the predictabil-
ity of various policies implemented in SMT cores to control the sharing
of resources by concurrent threads. Then, we propose an SMT architec-
ture designed to run one hard real-time thread so that its execution time
is analyzable even when other (non critical) threads are executed con-
currently. Experimental results show that this architecture still provides
high mean and worst-case performance.

1 Introduction

These last years, the complexity of embedded software has grown exponentially.
As an example, it is now expected that next-generation upper class cars will
include as much as 1GB binary code [1]. The explosion of the software size is
due to the implementation of more and more functionalities, either to improve
safety (e.g. anti-lock braking system), to augment the conveniences for the users
(e.g. automatic control of windscreen wipers) or to address environmental issues
(e.g. control of gas emissions).

In the same time, it is not desirable to increase the number of computing
nodes at the same pace because this might raise difficulties concerning intercon-
nections among others. Then one solution is to integrate several tasks in a single
computing node, as supported by the Automotive Open System Architecture
(AUTOSAR) and Integrated Modular Avionics (IMA) initiatives.

To support multitasking, it seems unavoidable that high-performance proces-
sors, like those now found in desktop computers, will more and more often be
used in embedded systems. We feel that simultaneous multithreading (SMT)
cores [16] might be good candidates, especially when tasks of different criticality
levels are to be executed on the same node. However, high performance pro-
cessors are generally incompatible with the predictability requirements of hard
real-time applications. Actually, the state of the art in the domain of Worst-
Case Execution Time computation cannot handle properly some mechanisms

U. Brinkschulte et al. (Eds.): ARCS 2008, LNCS 4934, pp. 161–172, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

http://www.irit.fr/TRACES

162 J. Barre, C. Rochange, and P. Sainrat

designed to improve instruction parallelism, e.g. speculative execution. Thread
parallelism adds new difficulties and we feel that it cannot be safely analyzed
by static WCET estimation techniques unless the hardware is designed for pre-
dictability. This is what this paper deals with.

We propose a WCET-aware architecture for a processor implementing simul-
taneous multithreading. This architecture is aimed at being able to execute one
thread with hard real-time constraints in parallel with less critical threads. The
issue is that the timing behavior of the hard real-time thread must be pre-
dictable through static analysis so that it can be proved that it will always meet
its deadlines. The solution resides in carefully selecting/designing the instruction
distribution and scheduling policies that control the sharing of internal resources
between concurrent threads.

We are aware that some applications would require that several threads with
hard real-time constraints be executed on the same processing node. Our ar-
chitecture provides timing predictability for a single critical thread, but it can
be considered as a first step towards designing an architecture that can handle
several critical threads.

The paper is organized as follows. In Section 2, we give some background infor-
mation on simultaneous multithreading. In particular, we review the resource dis-
tribution and scheduling strategies proposed in the literature and implemented
in commercialized SMT processors. Section 3 describes the architecture that we
propose to execute a real-time thread with a predictable Worst-Case Execution
Time, in parallel with non real-time threads. Experimental results are provided
and discussed in Section 4. Section 5 reviews related work and we conclude the
paper in Section 6.

2 Simultaneous Multithreading and Timing Predictability

Simultaneous multithreading (SMT) processors execute several threads concur-
rently to improve the usage of hardware resources (mainly functional units) [16].
Concurrent threads share common resources: instruction queues, functional
units, but also instruction and data caches and branch predictor tables. In this
paper, we focus on the pipeline resources (we leave the issues related to caches
and branch prediction for future work).

Two kinds of pipeline resources should be distinguished: storage resources (in-
struction queues and buffers) keep instructions for a while, generally for several
cycles, while bandwidth resources (e.g. functional units or commit stage) are typ-
ically reallocated at each cycle [14]. The sharing of storage resources is controlled
both in terms of space and time: there are several possible policies to distribute
the resource entries among the active threads (distribution policies) and to select
the instructions that will leave the resource at each cycle (scheduling policies).
Space sharing does not make sense for bandwidth resources since they are reallo-
cated on a cycle basis. Depending on their distribution and scheduling schemes,
the sharing of resources can be a major source of indeterminism to the timing
behavior of a thread.

A Predictable Simultaneous Multithreading Scheme for Hard Real-Time 163

In this section, we describe the most common distribution and scheduling
policies (either in research or in industrial projects) and we highlight the pre-
dictability problems that may arise when considering a hard real-time thread
executing along with arbitrary threads on an SMT processor.

2.1 Resource Distribution Policies

The most flexible scheme for distributing the entries of a resource (e.g. an in-
struction queue) among the threads is the dynamic distribution policy under
which any instruction from any thread can compete for any free entry.

This policy was the first considered in academic research. The dynamic dis-
tribution policy was implicitly retained to maximize the resource usage (which
is the primary objective of simultaneous multithreading), ensuring that any re-
source would be used if any thread needed it. However, since there is no limit on
the number of resource entries that can be held by a thread, some threads might
undergo starvation when the all the resource entries are used by other threads.
When starvation may happen depends on the respective behaviors of the con-
current threads. Considering a real-time thread, it cannot be guaranteed that
one of its instructions that would require an entry in a dynamically-distributed
resource get it immediately and the time it might have to wait before being ad-
mitted by the resource cannot be bounded (unless very pessimistically). Hence,
with dynamic distribution, the worst-case execution time of a thread cannot
be estimated due to the high variability of the delays to gain access to shared
resources. This policy is therefore not suitable for hard real-time applications.

The dynamic distribution with threshold policy was designed to minimize the
risks of starvation. Now each thread cannot retain more slots in a resource than
a given threshold (usually a percentage of the resource capacity, greater than one
over the number of threads). A single thread cannot monopolize all the entries.
This policy is used to control the instruction schedulers in the Pentium 4 Hyper-
Threading architecture [13].

In the context of hard-real time applications, dynamic distribution with
threshold still has an unpredictable nature: it cannot be determined whether
a thread will be allowed to hold as many resource entries as the threshold since
some entries might be used by some other threads. Then it might be delayed to
get an entry in a storage resource even if it has not reached its threshold and this
delay cannot be upper bounded. Hence, it is not possible to derive an accurate
WCET estimation for a real-time thread.

The distribution of resources can also be static: each resource is partitioned
and each thread has a private access to one partition. This completely prevents
starvation and ensures a fair access to the common resources to all threads.
The performance may not be optimal in this case since some threads may be
slowed down due to a lack of resource while other threads might underuse their
partition. Static partitioning is widely used to share instruction queues among
threads in SMT implementations [9][13], except in the out-of-order parts of the
pipeline (like the issue queues of the Power5 and the schedulers queues of the

164 J. Barre, C. Rochange, and P. Sainrat

Pentium 4). This is probably because a partitioned queue is easier to implement
than a dynamically shared queue.

Static resource distribution is naturally the most adequate to hard real-time
system since it is fully deterministic. Actually, each thread is granted a given
amount of resources which it cannot exceed and which cannot be used by another
thread. Then the behavior of this thread with regards to statically-partitioned
resources does not depend on surrounding threads.

2.2 Scheduling Policies

Besides to their distribution policy, shared resources are also controlled by a
scheduling policy that arbitrates between threads to select the instructions that
can leave the resource and go forward in the pipeline. Possible schemes are
overviewed in the next section.

The most common scheme is the very simple Round-Robin (RR) policy. It
gives each thread its opportunity in turn in a circular way, regardless of the
behavior of the other threads. One should distinguish the optimized round-robin
policy (O-RR) that skips the turn of a thread that has not any ready instruction
(or an empty thread slot) from the strict round robin (S-RR) algorithm that
might select an idle thread. As RR is completely oblivious of what happens in
the processor, it is reputed to exhibit moderate performance, in contrast with
context-aware policies.

Considering hard real-time applications and WCET calculation, S-RR is a
very predictable policy. It is very easy to determine when the instructions of a
real-time thread will be selected, since it is fixed that the thread can be selected
every 1/n cycles if the processor is designed to handle up to n active threads.
The O-RR algorithm slightly impairs predictability but the delay between two
successive active turns for a thread can still be upper-bounded. The access from
almost all the statically-shared queues to downstream resources is controlled by
an O-RR policy in the Intel Pentium 4 [13] and by an S-RR strategy in the
IBM Power5 [9].

The icount policy is another possible strategy that is widely considered for
scheduling the fetch queue in academic projects [2][3][5]. It is based on dynamic
thread priorities which are re-evaluated at each cycle to reflect the number of
instructions of each thread present in the pre-issue pipeline stages (the highest
priorities are assigned to the threads that have the fewest instructions in these
stages). Instructions of several threads can be fetched simultaneously, with the
constraint that the thread with the highest priority is satisfied first. Several vari-
ants of the icount strategy have been proposed in the literature: they use some
counters related to each thread as a basis for updating thread priorities. For ex-
ample, the brcount policy [17] considers the number of branches in the pre-issue
stages while the drca policy is based on the resource usage [5]). Unfortunately,
priority-based thread scheduling makes the timing behavior of one thread de-
pendent on the other active threads. Hence, icount and parented policies cannot
be used in the context of a hard real-time thread requiring WCET calculation.

A Predictable Simultaneous Multithreading Scheme for Hard Real-Time 165

Another policy, that we call the parallel scheme, equally partitions the band-
width among all the active threads by selecting the same number of instructions
for each thread. This means that all threads can have instructions progressing
in the pipeline at every cycle. As far as we know, this policy in only used in the
IBM Power5 to select instructions for commit [9]. Each core of this processor is
a 2-thread SMT that can commit a group of instructions from each thread at
each cycle. This policy is fully deterministic as the progression of one thread is
independent from the other threads.

3 A Predictable SMT Architecture

Our objective is to design a multithreaded (SMT) architecture that makes it
possible to analyze the Worst-Case Execution Time of real-time tasks. As a
first step, we propose an SMT processor where one hard real-time thread can
run along with other non critical threads. The hard real-time thread should
execute with no interference with the other threads to exhibit an analyzable
timing behavior. In the same time, performance should be preserved for the
other threads so that SMT benefits are not cancelled by our modifications in the
architecture.

3.1 Basic Pipeline Structure

To illustrate our approach, we consider the basic SMT pipeline structure shown
in Figure 1. In the fetch stage (IF), instructions of one thread are read from
the instruction cache and stored in the fetch queue (FQ). There, they wait to
be selected for decoding (ID), after what they enter the decode queue (DQ).
After renaming (RN), they are allocated into the reorder buffer (ROB). The
EX (execution) stage selects instructions with ready inputs and an available
functional unit from the ROB and issues them to functional units. Instructions
from the same thread might be executed out-of-order to improve instruction-
level parallelism. Terminated instructions are finally read from the ROB by the
CM (commit) stage and leave the pipeline.

EX

IF ID CM

S-RR MCF MCF

MCF+replay

RN

MCF

FQ DQ ROB

Fig. 1. A time-predictable SMT pipeline

166 J. Barre, C. Rochange, and P. Sainrat

3.2 Resource Distribution Policy

To achieve timing predictability, we statically partition each storage resource
(i.e. instruction and decode queues and the reorder buffer). As discussed in the
previous section, only static partitioning can make the timing behavior of a real-
time thread analyzable. This is illustrated in Figure 1 where a capacity of two
active threads is assumed: the fetch and decode queues and the reorder buffer
are statically-distributed in two partitions, one for each thread.

3.3 Thread Scheduling

At each cycle, the IF stage fetches a sequence of instructions from a single
thread:, the thread to be fetched is selected according to an S-RR policy.

As said previously, the fetch queue is statically partitioned. We must now spec-
ify the algorithm implemented to select the instructions to be decoded among
those stored in the fetch queue. To have the hard real-time thread (also referred
to as hrt-t in the following) processed in a way that does not depend on concur-
rent threads, we consider a partial fixed-priority scheme, where instructions from
hrt-t are selected in the first place. If there are less hrt-t instructions in the fetch
queue than the decode bandwidth, instructions from the non critical threads are
selected on an O-RR basis. We will refer to this scheme as the Most-Critical-First
(MCF) scheduling policy.

After decoding, instructions enter the partitioned decode queue. They are
selected for renaming using the predictable MCF strategy described above.
Once renamed, instructions are stored in the statically-partitioned reorder buffer
where they wait for their input operands. When an instruction is ready, it be-
comes eligible for being issued to a functional unit. Besides to the intra-thread
instruction scheduling policy (e.g. instructions are selected on an oldest-first ba-
sis), the thread scheduling policy has to arbitrate between the threads that have
some ready instructions. As far as the hard real-time thread (hrt-t) is concerned,
the delay for one of its ready instructions to be selected must not depend on con-
current threads. To achieve this, we complement the most-critical-first scheduling
with a Replay scheme. When an hrt-t instruction is ready for execution, three
situations can be observed:

– if the required functional unit is free, the instruction canbe issued immediately;
– if the required functional unit is already allocated to an instruction that also

belongs to the hard real-time thread, the execution is delayed. However, this
is statically analyzable since it only depends on the thread own behavior.

– if the required functional unit is used by an instruction from a non critical
thread, this instruction is squashed from the functional unit and switched
back to the ready state in the reorder buffer. This means that it will have to
be issued again later on. The functional unit is then immediately allocated to
the hrt-t thread. Due to the MCF scheduling, this situation can only happen
when a non critical thread executes an operation with a latency greater than
one cycle in a non pipelined functional unit (in our example core, this only
concerns divisions and loads/stores).

A Predictable Simultaneous Multithreading Scheme for Hard Real-Time 167

Finally, terminated instructions are selected for commit using a Most-Critical-
First scheme that ensures timing predictability for the hard real-time thread.

4 Performance Evaluation

4.1 Simulation Methodology

We carried out the experiments reported in this paper using a cycle-level simu-
lator developed as part of the OTAWA framework [6]. OTAWA is dedicated to
WCET calculation and includes several utilities among which a cycle-level sim-
ulator built on SystemC. The simulator models generic processor architectures
where each pipeline stage is seen as a box that reads instructions from an input
queue, processes them by applying a set of predefined actions, and writes them
to an output queue. Each queue is parameterized with a distribution policy and
a scheduling policy. This timing simulator is driven by a functional simulator
automatically generated from the PowerPC ISA description by our GLISS tool1.

4.2 Processor Configuration

For the experiments, we have derived our predictable SMT architecture from
a 4-way superscalar core, i.e. each stage is 4-instruction wide. The number of
simultaneous threads has been fixed to 2 or 4 threads.

We have considered a perfect (oracle) branch predictor and a perfect (always
hit) data cache. While we did not model the instruction cache (and in partic-
ular the related inter-thread interferences), we have considered a random 1%
instruction miss rate, with a 100-cycle miss latency.

Table 1 gives the main characteristics of the pipeline. The queues are statically
partitioned into 2 or 4 (number of threads). In the experiments, we consider two
architectures: (a) the baseline core implements the O-RR scheduling policy for
all the resources except for the issue to the functional units where instructions
are selected on an oldest-first basis, independently of the thread they belong to;
(b) the WCET-aware architecture is the one we designed to be time-predictable
and implements our MCF policy together with the Replay scheme.

4.3 Benchmarks

A workload is composed of two or four threads compiled into a single binary
code (this is because our functional simulator can only handle a single address
space). The source code of each thread is embedded in a function call and the
corresponding program counter is initialized at the entry point of this function.
To maximize the possible inter-thread interferences, we have considered concur-
rent threads executing the same function. The different functions used in the
experiments reported here are listed in Table 2 (their source code comes from
the SNU-RT suite2, a collection of relatively simple tasks commonly executed
on hard real-time embedded systems).
1 http://www.irit.fr/Gliss
2 http://archi.snu.ac.kr/realtime/benchmark

168 J. Barre, C. Rochange, and P. Sainrat

Table 1. Baseline configuration

Parameter Value
Pipeline width 4
Fetch queue size 16
Decode queue size 16
Reorder buffer size 16

Functional unit latencies MEM (pipelined) 2
ALU1 1
ALU2 1
FALU (pipelined) 3
MUL (pipelined) 6
DIV (pipelined) 15

Table 2. Benchmarks functions

Function Comments
fft1k Fast Fourier Transform
fir FIR filter with Gaussian number generation
ludcmp LU decomposition
lms LMS adaptative signal enhancement

All executables were compiled using -O directive that removes most of useless
accesses to memory while keeping the code algorithmic structure (which allows
performing the flow analysis on the source code).

4.4 Experimental Results

To serve as a reference, we have simulated each thread in parallel with dummy
threads, i.e. threads that do not execute any instruction nor allocate any dynami-
cally-shared resource and, therefore, do not interfere with the main thread. All
the storage resources were considered as partitioned. Raw results (execution time
of the main thread, expressed in cycles, measured on the baseline, unpredictable
architecture) are given in Table 3. The execution time of the reference thread is
always longer with 4 threads than with 2 threads because the overall capacity
of the resources is the same in both cases. Then, in the 4-thread configuration,
each thread has smaller private partitions.

Table 3. Reference execution times

2 threads 4 threads
fft1k 1 239 147 2 384 030
fir 25 022 47 897
ludcmp 4 165 8 205
fft1k 390 815 752 858

A Predictable Simultaneous Multithreading Scheme for Hard Real-Time 169

Table 4 shows how the same threads execute on the baseline (unpredictable)
SMT architecture when they are concurrent to other (identical) threads. The
reported execution times are those of the last completed threads: all the other
threads have a lower execution time. In each case, we indicate the increase in
the execution time over the reference measurements reported in Table 3.

Table 4. Execution times in the unpredictable SMT core

2 threads 4 threads

ff1k
1 345 598 3 009 002

+8.6% +26.2%

fir
26 548 60 691
+6.1% +26.7%

ludcmp
5 068 10 686

+21.6% +30.2%

lms
420 161 951 210
+7.5% +26.3%

Table 5. Percentages of instructions delayed by concurrent threads

delays (# cycles)
0 1-5 6-10 11-20 21-30 >30

fft1k
2 threads 93.93% 4.18% 1.25% 0.58% 0.04% 0.02%
4 threads 94.50% 5.29% 0.09% 0.11% 0.00% 0.00%

fir
2 threads 92.93% 5.88% 0.76% 0.38% 0.02% 0.03%
4 threads 96.66% 3.16% 0.09% 0.09% 0.00% 0.00%

ludcmp
2 threads 89.32% 9.83% 0.19% 0.43% 0.04% 0.19%
4 threads 98.88% 1.01% 0.08% 0.04% 0.00% 0.00%

lms
2 threads 92.16% 7.08% 0.47% 0.24% 0.03% 0.03%
4 threads 96.91% 2.89% 0.09% 0.11% 0.00% 0.00%

As expected, the global execution time for two or four ”real” threads is higher
than the execution time of one thread executed in parallel with dummy threads.
This is due to threads competing for accessing dynamically-shared resources.
Table 5 gives an insight into how often and how long instructions from one
thread are delayed due to instructions from concurrent threads. The numbers
indicate the percentage of instructions that have been delayed by n cycles to get
a resource (physical register or functional unit). It appears that about 10% of
the instructions are delayed by a concurrent thread in a 2-thread core. Note that
some instructions undergo severe delays (some delays as long as up to 90 cycles
have been observed).

The results achieved with our predictable core (with the Most-Critical-First
scheduling policy and the Replay scheme) are shown in Table 6. Again, the
execution times are those of the last completed thread. They do not concern
the hard real time thread that exhibits, in all cases, the same execution time as

170 J. Barre, C. Rochange, and P. Sainrat

Table 6. Execution times in the predictable SMT core

2 threads 4 threads

ff1k
1 867 441 3 503 297
+38.8% +16.4%

fir
37 401 68 023

+40.9% +12.1%

ludcmp
5 302 12 012

+4.6% +12.4%

lms
520 369 1 001 526
+23.8% +5.3%

the one given in Table 3. The performance loss (in terms of execution time
increase) against the baseline SMT architecture is indicated in each case.

Naturally, the scheduling schemes that we implemented to insure timing pre-
dictability for one critical thread do degrade performance. However, the loss is
moderate: 27% on a mean for a 2-thread core and 11.6% for a 4-thread core.
The reason why the loss is higher for the 2-thread core is that, in that case, a
quarter (instead of a half) of the statically-partitioned resources is dedicated to
the real-time thread. Then roughly 25% (instead of 50%) of the instructions are
prioritized at the expense of the other 75% (50%). This lets more opportunities
for non-critical instructions to execute normally.

5 Related Work

Crowley and Baer [7] consider analyzing an SMT processor using a widely used
approach for WCET computation (namely the IPET technique [11]). They ex-
press all the possible thread interleavings within the ILP (Integer Linear Pro-
gramming) formulation of WCET computation. Naturally, the size of the gen-
erated ILP specification grows exponentially with the size of the threads and,
unless considering very simple tasks (with few flow control), the problem cannot
be solved in a reasonable time. This assessment is at the root of our work on
predictable SMT architecture: we believe that the interleaving of threads must
be controlled at runtime (i.e. by the hardware) to make it efficient and deter-
ministic so that it can be taken into account when estimating the worst-case
execution times of tasks with strict deadlines. Other works aim to make the tim-
ing behavior of threads more predictable through the use of appropriate thread
scheduling strategies at the system level. Lo et al. [12] explore algorithms used to
schedule real-time tasks on an SMT architecture. However, they do not take into
account the possible interferences between active threads inside the pipeline and
their effects on the worst-case execution times. In [10], Kato et al. introduce the
notion of Multi-Case Execution Time (MCET): it is computed from the different
WCETs of the considered thread when it runs along with different concurrent
threads. We feel that the number of different possible WCET values for a thread

A Predictable Simultaneous Multithreading Scheme for Hard Real-Time 171

might be considerable as soon as each thread exhibits a large number of possible
execution paths (then the number of possible interleavings with other threads
might be huge). This is why we believe that these works require a predictable
architecture (like the one we propose in this paper) to get valid results.

In [8], the goal is to preserve as much as possible the performance of specified
prioritized threads, while still allowing other threads to progress. This goal is
close to ours except that it does not insure timing predictability and thus is not
appropriate in a strict real-time context. Some architectural schemes have been
proposed by Carzola et al. [2][3][4] to guarantee a quality of service for a set of
threads. This solution mainly targets soft real-time tasks and is out of the scope
of our work. The CarCore processor [18] features simultaneous multithreading
with two specialized pipelines: one for data processing instructions and one for
memory accesses. Instructions from four active threads can process in parallel
in the pipelines. This architecture can support one critical thread through a
priority-based instruction scheduling policy. Contrary to our architecture, the
CarCore processor cannot execute instructions out of order.

6 Conclusion

Higher and higher performance requirements, related to an ever increasing de-
mand for new functionalities, will make it unavoidable to use advanced process-
ing cores in embedded systems in the near future. Multithreaded cores might
be good candidates to execute several tasks of different criticality in parallel.
However, current simultaneous multithreading processors do not exhibit enough
timing predictability to fit certification requirements of critical applications. Ac-
tually we feel that the thread interleaving cannot be handled by usual static
analysis techniques. This is why we think that the solution does reside in the
design of specific hardware.

We have proposed a predictable SMT architecture where the policies imple-
mented to control the sharing of internal resources among threads are designed
to allow a predictable execution of a single hard real-time thread concurrently
with less critical other threads. All the storage resources (instruction queues and
buffers) are statically-partitioned and low-level thread scheduling is done using
a Most-Critical-First strategy that gives priority to the hard real-time thread.
This is complemented by the Replay scheme that ensures that an instruction of
the critical thread cannot be delayed by an instruction of a non-critical thread
for accessing a functional unit.

Experimental results show that, while the hard real-time thread executes as
fast as if it was alone in the pipeline, the performance loss for the other threads
is moderate. It is less than 12% for a 4-thread predictable SMT core.

As future work, we intend to address some issues that were ignored in this
preliminary study, like the strategy for sharing the instruction and data caches,
as well as the branch predictor, so as to maintain full timing predictability for the
critical thread. We will also investigate solutions that would allow the concurrent
execution of several critical threads.

172 J. Barre, C. Rochange, and P. Sainrat

References

1. Broy, M., et al.: Engineering Automotive Software. Proceedings of the IEEE 95(2)
(2007)

2. Cazorla, F., et al.: QoS for High-Performance SMT Processors in Embedded Sys-
tems. IEEE Micro 24(4) (2004)

3. Cazorla, F., et al.: Predictable Performance in SMT Processors. In: ACM Conf. on
Computing Frontiers (2004)

4. Cazorla, F., et al.: Architectural Support for Real-Time Task Scheduling in SMT
Processors. In: Int’l Conf. on Compilers, Architecture, and Synthesis for Embedded
Systems (CASES) (2005)

5. Cazorla, F., et al.: Dynamically Controlled Resource Allocation in SMT Processors.
In: 37th Int’l Symposium on Microarchitecture (2004)

6. Cassé, H., Sainrat, P.: OTAWA, a Framework for Experimenting WCET Compu-
tations. In: 3rd European Congress on Embedded Real-Time Software (2006)

7. Crowley, P., Baer, J.-L.: Worst-Case Execution Time Estimation for Hardware-
assisted Multithreaded Processors. In: HPCA-9 Workshop on Network Processors
(2003)

8. Dorai, D., Yeung, D., Choi, S.: Optimizing SMT Processors for High Single-Thread
Performance. Journal of Instruction-Level Parallelism 5 (2003)

9. Kalla, R., Sinharoy, B., Tendler, J.: IBM Power5 Chip: A Dual-Core Multithreaded
Processor. IEEE Micro 24(2) (2004)

10. Kato, S., Kobayashi, H., Yamasaki, N.: U-Link: Bounding Execution Time of Real-
Time Tasks with Multi-Case Execution Time on SMT Processors. In: 11th Int’l
Conf. on Embedded and Real-Time Computing Systems and Applications (2005)

11. Li, Y.-T. S., Malik, S.: Performance Analysis of Embedded Software using Implicit
Path Enumeration. In: Workshop on Languages, Compilers, and Tools for Real-
time Systems (1995)

12. Lo, S.-W., Lam, K.-Y., Kuo, T.-W.: Real-time Task Scheduling for SMT Systems.
In: 11th Int’l Conf. on Embedded and Real-Time Computing Systems and Appli-
cations (2005)

13. Marr, D., et al.: Hyper-Threading Technology Architecture and Microarchitecture.
Intel Technology Journal 6(1) (2002)

14. Raasch, S., Reinhardt, S.: The Impact of Resource Partitioning on SMT Processors.
In: 12th Int’l Conf. on Parallel Architectures and Compilation Techniques (2003)

15. Tuck, N., Tullsen, D.: Initial Observations of the Simultaneous Multithreading
Pentium 4 processor. In: 12th Int’l Conf. Parallel Architectures and Compilation
Techniques (2003)

16. Tullsen, D., Eggers, S., Levy., H.: Simultaneous Multithreading: Maximizing On-
Chip Parallelism. In: 22nd Int’l Symposium on Computer Architecture (1995)

17. Tullsen, D.,et al.: Exploiting Choice: Instruction Fetch and Issue on an Imple-
mentable Simultaneous Multithreading Processor. In: 23rd Int’l Symposium on
Computer Architecture (1996)

18. Uhrig, S., Maier, S., Ungerer, T.: Toward a Processor Core for Real-time Capable
Autonomic Systems. In: IEEE Int’l Symposium on Signal Processing and Informa-
tion Technology (2005)

Soft Real-Time Scheduling on SMT Processors
with Explicit Resource Allocation

Carlos Boneti1, Francisco J. Cazorla2, Roberto Gioiosa2, and Mateo Valero1,2

1 DAC, Universitat Politècnica de Catalunya
{cboneti,mateo}@ac.upc.es

2 Barcelona Supercomputing Center
{francisco.cazorla,roberto.gioiosa,mateo.valero}@bsc.es

Abstract. Several software or hardware approaches have been proposed
to reduce the execution time variability of SMT processors. Software
solutions rely on profiling the schedulable tasks to determine the ef-
fects of resource sharing over their performance, while the hardware ap-
proaches consider a fixed small number of tasks, avoiding the global
system-scheduling problem. Both approaches lack of generality or do not
take into account architectural details.

This work targets the scheduling of soft real-time tasks on an explicit
resource allocation processor, where the system is able to enforce hard-
ware allocation decisions. We propose a simple extension to the Earliest
Deadline First scheduler: Resource Aware EDF. RA-EDF uses resource
allocation mechanisms to ensure at least the minimum amount of re-
sources needed by a task to meet its deadline. It yields improvements
on every case when compared to previous task schedulers: 8% better on
average and up to 18%, requiring no additional profiling.

1 Introduction

SMT processors adapt a superscalar front-end to fetch from several threads while
the back-end is shared. They have high throughput but poor performance pre-
dictability. The scheduling of a task set in such processors involves two main
steps as shown in Figure 1 (a). In a first step, known as workload selection [10],
the Operating System (OS) scheduler selects a set of N tasks from the task set
of M tasks, where N is the number of contexts of the SMT processor and M is
usually greater or equal than N . This set of N tasks is called the workload. Next,
the OS passes the workload to the architecture. In a second step, known as re-
source sharing[10], the SMT internal resource allocation mechanism determines
how resources are distributed among threads, and how the threads are prioritized
at a hardware level. In current processors this resource allocation mechanism is
limited to the instruction fetch policy, like icount [19] or FLUSH++ [1] , while
the first step is performed roughly every time slice (typically between 1 and
100ms), the second step occurs every cycle.

The key issue in the interaction between OS and a traditional SMT system is
that the OS only assembles a workload of N tasks while it is the processor that

U. Brinkschulte et al. (Eds.): ARCS 2008, LNCS 4934, pp. 173–187, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

174 C. Boneti et al.

(a) Current approach (b) Our approach

Fig. 1. Collaboration between the OS job scheduler and the SMT hardware: steps
required to schedule a task set in classical SMT processors

decides how to execute this workload, implicitly by means of its internal resource
allocation policy. Hence, there are two different schedulers working, without any
collaboration with each other, and part of the traditional responsibility of the OS
“disappears” into the processor, sometimes reverting software priorities or simply
disregarding them. Consequently, the OS may not be able to guarantee time
constraints on the execution of a thread if that thread is running concurrently
with other threads, even though the processor has sufficient resources to do so.
In order to deal with this variability, several hardware (resource sharing policies)
and software approaches have been proposed [2] [3] [4] [6] [10] [15].

In this paper we address the problem of scheduling a task set in a SMT system
from the software and hardware layers in a collaborative way. Our proposal allows
better control of the underlying hardware resources (like the issue queues or the
registers) by the scheduling algorithm, increasing the task scheduling success
rate. Assuming that the Worst Case Execution Time (WCET) is given, for every
task, our mechanism does not require any additional profiling.

The original Earliest Deadline First (EDF) [12] algorithm only aims to de-
termine the order in which threads should be executed. This is not enough if
the task set is scheduled on an SMT processor due to the execution time vari-
ability of threads. We developed and evaluated a new scheduling algorithm,
called RA-EDF (Resource-Aware EDF), that uses the hardware support pro-
posed in [3]. RA-EDF, in addition to determine the execution order of threads,
determines the amount of resources to give to co-scheduled threads. We provide
EDF with knowledge of the processor resources and instruct it in how to split
resources among threads in order to meet their deadlines. This increases the
success rate when scheduling tasks, outperforming state-of-the-art scheduling
algorithms. The proposed scheduler algorithm obtains better results on every
case when compared to the previous proposed task schedulers: 8% average im-
provement, and up to 18% on success rate.

This paper is structured as follows: Section 2 presents some background on
real-time scheduling and the related work; Section 3 explains our proposal; Sec-
tion 4 presents our experimental setup while Section 5 provides the experimental
results; finally Section 6 is devoted to the conclusions.

Soft Real-Time Scheduling on SMT Processors 175

2 Background and Related Work

In this paper we focus on real-time SMT scheduling for independent tasks. In
this case real-time systems are characterized by a group of tasks, called a task set.
For each task, the scheduler knows three main parameters: first, the period (pi),
that is, the interval at which new instances of a task are ready for execution.
Second, the deadline (di), that is, the time before which an instance of the
task must complete. For simplicity, the deadline is often set equal to the period
resulting into an implicit-deadline system [7] [9]. This means that a task has to
be executed before the next instance of the same task. Third, the Worst Case
Execution Time (WCETi) is an upper bound of the time required to execute
any instance of the task, which should never be exceeded (for single threaded
executions). The WCET is known a priori and is not considered profiling.

In soft-real time scheduling, many algorithms (e.g., EDF [12] or LLF [5]) have
been used to schedule a task set in single-threaded systems. However, these al-
gorithms are no longer sufficient on SMT processors, since the execution time of
a thread is unpredictable when this thread is scheduled with other threads. The
high variability of SMTs implies that a real-time job scheduler for SMT proces-
sors is much more complex and challenging than for single-threaded processors.

2.1 Workload Composition

In [10] the authors make a detailed space design exploration of scheduling algo-
rithms. From the many proposed algorithms, the best one is GLOB SYM US,
while a second algorithm, called GLOB NOSYM US presents the best relation
between performance and complexity. GLOB SYM US is actually a hybrid im-
plementation that defaults to GLOB NOSYM US when at least one task has
Ui > N

2N−1 , being Ui the utilization of a task τi and N the number of available
hardware contexts, otherwise, it defaults to GLOB SYM PLAIN. The latter ex-
tends EDF selecting first the task with earliest deadline, and then, for the other
N-1 tasks, assign the tasks in order to maximize the symbiosis factor of the
running task set, which is defined in [16] as:

symbiosis factor =
N∑

i=1

realized IPC of τi

single-threaded IPC of τi
(1)

Here, IPC (Instructions per Cycle) is used as a measure of performance. Hence,
the higher is the symbiosis factor, the better should be the processor pipeline
utilization and, therefore, the higher the gain of throughput due to the SMT.
This algorithm is tuned to give the best processor utilization. Note, however,
that this requires the profiling of every N-way task combination (from the task
set of M tasks) in order to find task sets with best symbiosis, which leads to a
number of profiles equal to Cr(M, N) = (M+N−1)!

N !(M−1)! . For instance, with our 10
benchmarks, we needed to profile 55 different combinations. If, instead of 10,
we had 50 different benchmarks, we would need to profile 1275 different combi-
nations. Besides, if we took into consideration that the IPC of a workload may

176 C. Boneti et al.

change depending on the offset of the running threads, the profiling complexity
would explode. Running all the combinations of the MediaBench benchmarks
(as shown in the Table 2), in our hardware configuration, yielded a maximum
symbiosis of 1.70, a minimum of 0.94 and an average of 1.40.

GLOB NOSYM US (also called EDF US [18]) extends EDF by giving higher
priority to tasks with utilization greater than N

2N−1 (deadlines are set to −∞
and ties are broken arbitrarily).

2.2 Resource Allocation

Several hardware mechanisms have been proposed in order to bias the execution
of a thread in a given workload with different degrees of success. In [17] an
extension to the icount fetch policy is proposed by including handicap numbers
that reflect the priorities of jobs. Although this mechanism is able to prioritize
threads to some extent, running times of jobs are still hard to predict, making
this approach still unsuited for real-time constraints.

In [3] we proposed several mechanisms that allow the OS to establish the
amount of resources to give to the critical thread, controlling in this way the
interaction among threads, and the slowdown suffered by each thread in SMT
mode. The difference among these mechanisms is the information required from
the application: the higher the information used by the hardware mechanism,
the better the results, and the more complex the mechanism is. However, in that
paper we did not propose any scheduling algorithm. That is, the responsibility
of determining the amount of resources to give to each thread so that it meets
its deadline is left to the OS.

To our knowledge, there is no work aimed to bind the OS prioritization to
the hardware priorities in such a holistic level. Either resource aware hardware
or software schedulers were proposed. In this work, we aim to extend a software
scheduler in order to show that making this bridge is not only possible, but also
profitable and desirable. We developed a simulation environment that allows us
to use a larger number of software threads than available hardware contexts, we
evaluated costs of context switches and implemented different system schedulers,
binding the task priorities to the hardware allocation.

Such scheduler can be implemented in any explicit resource aware processor,
or even on SMT processors featuring priority control. However, for this research
we chose to use a simulated environment, as the use of a real system would imply
on the need for a deep characterization of the prioritization impact on different
workload and, therefore, would be out of the scope of this research.

3 Our Approach

In this paper we propose a scheduling policy that takes profit of SMT in-
processor resource allocation mechanisms to guarantee better schedulability. Our
mechanism allows a closer collaboration between the scheduling algorithm and
the SMT hardware. This tight collaboration shows many advantages: First, it

Soft Real-Time Scheduling on SMT Processors 177

achieves better success rate than all the proposals previously explained in the
Section 2. Second, no additional profiling, other than the WCET estimation, is
required from applications to carry out the scheduling task, assuming that there
is an estimate of the Worst Case Execution Time (WCET) of the tasks. Fur-
thermore, when shared resources cannot be controlled by software, it is often the
case that the internal hardware prioritization mechanism goes on the opposite
direction of the OS priorities, for instance, giving fetch priority of the task with
lesser OS priority. Our mechanism fully avoids this situation, as it binds the
OS priorities to the hardware mechanism. Our new scheduling algorithm uses
the hardware support we proposed in [3], which we call LVP or Low-Variability
Performance. We start by explaining in detail the LVP mechanism.

The basis of the hardware mechanism proposed in [3] is to partition the hard-
ware resources between the threads running on an SMT and reserve a minimum
fraction of the resources for a designated Most Critical Thread (MCT), enabling
it to meet its deadline. We proposed two hardware resource allocator denom-
inated static and dynamic LVP (Low Variation Performance), which differ on
what information the hardware mechanism expects to receive from the OS 1. In
the static approach, it is assumed that the OS job scheduler provides a resource
allocation that is fixed for an entire period. While in the dynamic approach, it
provides the target IPC for the MCT. In this approach the resource allocator
can dynamically vary the amount of resources dedicated to the critical thread,
therefore it was called dynamic. The Predictable Performance (PP) hardware,
proposed in [4] differs from the dynamic LVP version as it receives the percent-
age of the performance the thread must be run. That is, it takes into account
different program phases, being able to dynamically scale both resource alloca-
tion and the thread IPC. We chose to implement our algorithm with the static
LVP version of the hardware. We do not implement the dynamic LVP or the PP
hardware approach because, although they provide better results, they are more
complex and have lower applicability than the static LVP.

When the WCET of a task is determined, it is assumed that this task has full
access to all the underlying platform resources. However, when this task runs
with other tasks in a multithreaded environment, it only uses a certain fraction
of the resources. When the amount of resources given to a thread is reduced, its
performance may decrease as well. The relation between the amount of resources
allocated to a program and the performance is different for each program and
may vary for different inputs of the same program. In [3] we observed that in
an SMT system the relation between the amount of resources given to a thread
and its relative performance 2 follows a “super-linear” relation. That is, if we
reserve X% of resources to a given thread its relative performance is greater or
equal to X% of its performance when having all the resources. We also observed

1 Recall that in [2],[3] and [4] we only focus on the hardware part and do not deal
with the workload composition problem.

2 The relative performance is the IPC that a thread has when it is given X% of SMT
resources, with respect to its performance when it is run with all the resources. It
ranges between 0 and 1.

178 C. Boneti et al.

that the main shared resources to take into account are the physical registers,
the fetch bandwidth, and the instruction window. The proposed hardware splits
the shared hardware resources among running threads as indicated by the OS
job scheduler. That is, it allows the OS to specify the amount of resources to use
by each thread.

Our scheduling algorithm uses the hardware support proposed in [3] to take
profit of this relation. When the OS level job scheduler wants to execute a critical
task τi, given its WCETsti (Worst Case Execution Time in Single Thread mode)
and a deadline di, it simply computes the allowable performance slowdown that,
initially, is represented by, Si(0) = WCETsti

di
, and instructs the hardware to

reserve, for that hardware context, a percentage of the resources equivalent to
Si(0)3. For such a value of Si(0), each instance of this job should finish before its
deadline, supposing that the real execution time of this instance is its WCETsti.
Hence, Ti

Si(0)
= di

WCETsti
·WCETsti = di. Refer to Section 3.1 to further analysis

on the allowable slowdown calculation. We adapted the EDF [12] algorithm in
order to use this hardware support and called this new scheduling algorithm
RA-EDF. The acronym stands for Resource-Aware Earliest Deadline First.

The proposed method uses global scheduling: tasks are not bound to contexts
of an SMT and can be executed in any of the available contexts. For each work-
load we evaluate the Most Critical Thread (MCT) that is the thread with the
highest priority according to the scheduling algorithm under study. The MCT is
evaluated every time the running workload changes (whenever there is a context-
switch on a context). Therefore, at any given moment, there will be exactly one
thread running as MCT (also said that this thread has the MCT status) and as
we use a 2-context SMT, another as LPT (low priority thread).

3.1 The RA-EDF Scheduler

This algorithm improves the normal EDF scheduler [12] in order to make it
resource aware. It adds the concept of a most critical thread (MCT) and a lower
priority thread (LPT) running together in the SMT and it is aware of the sharing
of hardware resources across the processor contexts.

RA-EDF starts filling contexts, putting first the task with the closest deadline
and, therefore, the highest priority. This task is considered to be running as the
most critical thread (MCT). Then, the second closest deadline will occupy the
second hardware context, being the second highest priority task or, to keep the
notation of [3], the LPT. The MCT will receive an amount of resources large
enough to guarantee its deadline, i.e., RA(0) = Si(0), while the LPT will receive
the rest of the available resources. This logic can be easily expanded to a n-way
multithreaded processor as long as the first thread receives an amount larger or
equal to the resources needed to reach its deadline, while the other threads can
be considered as LPT and share the remaining resources.

3 Si(t) stands for the allowed slowdown that a thread can have to still fulfill its deadline
at a given instant t.

Soft Real-Time Scheduling on SMT Processors 179

After some time, one of the following things may occur:

– The task with nearest deadline finishes its execution. In this case, the second
closest deadline becomes the next deadline and, therefore, the previous LPT
becomes now the MCT. The resource allocation to the MCT context is re-
evaluated and the highest priority task receives the amount of resources
necessary to fulfill its deadline. The next task with the closest deadline is
put in the newly free context.

– The LPT finishes before the MCT. The next task with the closest deadline
is put in the newly free context.

As we can see, during its execution time, a task can run as MCT, LPT or,
more likely, both (note that the status are mutually exclusive). The resource
allocation that the MCT receives at a given period of time (RA(t)) is calculated
on the allowed slowdown (Si(t)) that a task τi can take at an instant t, in order
to fulfill its deadline, while the LPT runs with the remaining processor resources.
The allowed slowdown is evaluated every time the running workload changes or
when the scheduler runs (typically at time slices boundaries). In other words,
whenever jobs are changed on any of the hardware context, the Si(t) for the
thread with the nearest deadline (MCT) is evaluated or adjusted.

Conceptually the Si(t) calculation is very simple as it consists on the ratio
between the Remaining Computation time for a job τi (RCi) and the remaining
time to its deadline (TTDi), i.e. Si(t) = RCi

TTDi
. However, there are some

considerations to be made on each of its factors, as we will see below.
The Time to Deadline (TTD) is always evaluated as the difference between

the deadline di of a task τi and the current time t (TTDi = di − t). However, we
must take into account its range. When a task crosses its deadline boundary, the
TTDi becomes negative, invalidating the resource allocation calculation. The
action taken in this case may vary according to the system and is relatively
arbitrary. One may want to kill jobs that missed their deadlines, give them full
priority, the minimum priority (understanding that the task is probably close to
finish) or the last evaluated priority (probably very high).

The Remaining Computation time (RCi) evaluation represents the difference
between the total amount of work to be done and the one that was already
done. The simplest way to represent it, given our available data would be:
RCi = WCETsti − running time, where WCETsti represents the Worst Case
Execution time, in single-thread, for a given task. However, the running time
can be evaluated in few different ways. Among the many different possibilities,
we present here the one that yielded the best results.

In [3], we showed that the performance for the MCT is super-linear. Recall
that the MCT receives priority over the LPT when fetching instructions from
the instruction cache. As a consequence, the relation among resources given
to the LPT and its performance may, sometimes, be sub-linear. Based on this
conclusion, we chose to evaluate the remaining computational time for a given
job τi with different functions whether the task is running as a HPT or LPT.
When running as LPT, the worst case, where the performance becomes sub-
linear, is assumed. This correction basically makes that the time a thread runs

180 C. Boneti et al.

as low priority accounts for less processing time than while it is running as a
MCT. We believe that this is the most accurate evaluation. To summarize, the
allowed slowdown for a task τi, is given by the following formula:

Si(t) =
WCETi −

(∑m
γ=1(ωγ ∗ RAγ) +

∑l
γ=1(ωγ ∗ (1 − RAf

γ))
)

di − t
(2)

Here,
∑m

γ=1(ωγ ∗ RAγ) represents all the resources that a given thread i
received as a HPT, that is, the sum of all the intervals of size ωγ ran with
resource allocation RAγ when ti was the top priority task of the system. In
addition, we have

∑l
γ=1(ωγ ∗ (1− RAf

γ) as the total amount of processing done
when running as LPT. f is an empirical constant aimed to reduce the total
accounted resources for the LPT.

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 10
0Resource Allocation (%)

re
la

tiv
e

IP
C

 (
%

)

f =1

f = 0.7

0

Fig. 2. Accounted performance for LPT based MCT RA

We found, based on the results of [3] and on empirical data, that 0.7 is the
most appropriated value for the constant f . In Figure 2 we can see the accounted
IPC for LPT when the relation between the LPT performance and resources
allocated to the MCT is linear (f = 1) or sub-linear (f = 0.7). As we can see,
the same amount of resources for both f = 1 and f = 0.7 translates into a lower
performance accounted for the period a task was executed in LPT mode. For
simplicity, we only show experimental results for that option.

The other resource evaluation mechanisms that we tried were the simpler
versions of the previous formula, trying linear relation, or not even differentiating
between the time run as HPT or LPT. The results shown much less flexibility
and the success ratio were significantly smaller. Again, within this evaluation,
the only way that RCI can be negative is after a task misses its deadline.

We also observed that, for task sets with many tasks of relatively distant dead-
lines, the allowed slowdown can be very significant, giving less than half of the
resources to the MCT . As we understand that, in these cases, there is no sense
on giving less than 50% of the resources to the thread that is, by definition, the
highest priority of the workload, we artificially constrain the Minimal Resource
Allocation (MinRA) as 0.5. Hence, 0.5 ≤ RA(t) ≤ 1.0 for the RA version of our

Soft Real-Time Scheduling on SMT Processors 181

proposed algorithm. Therefore, the MCT resource allocation at a given moment
is expressed as follows: RA(t) = max(MinRa, Si(t))

It is also very important to observe that, even if the Si(t) calculation may
seem complex, it is done in software, by the OS job scheduler and the above
described sums are simply implemented as accumulators that are only updated
when the resource allocation for the MCT changes (because of a context-switch,
for instance) and the entire value of Si(t) is only evaluated for the MCT.

3.2 Example

Consider a set of 4 tasks with the deadlines, WCETs, and utilization as shown
in the Table 1. In a first step, the scheduler chooses the task τ1, the task with
closest deadline. It becomes the MCT. The operating system (OS) also chooses
to run, at lower priority, τ3, which is the task with second closest deadline. The
OS finally assigns a RA to the MCT. It is set to the MAX(S1, 0.5) and S1 is
calculated as S1 = 1−0

5−0 = 0.2. Therefore, the MCT receives RA = 0.5.

Table 1. Hypothetical task set

Task WCET Deadline Utilization Task WCET Deadline Utilization
τ1 1.0 5 0.20 τ2 0.5 7 0.07
τ3 4.0 6 0.67 τ4 2.0 8 0.25

Assume that, at a given instant, say Υ = 1.25, τ1 finishes. τ3 becomes the
task with the closest deadline and the MCT. The context where τ1 was run-
ning, receives now τ2. S3 is calculated as 4−(0+(1.25∗(1−0.50.7))

6−1.25 = 0.74, RA =
MAX(0.74, 0.5) = 0.74. This workload executes until the instant Υ = 3.8, when
τ2 finishes. τ4 starts to run on the free context and the new RA for τ3 is calculated
as follows: RA = MAX(S3, 0.5) where S3 = 4−((2.55∗0.76)+(1−0.50.7))

6−3.8 = 0.76.
This behavior repeats during the entire execution time.

4 Methodology and Experimental Environment

In this section we describe the experimental methodology used to evaluate the
performance of the proposed and the previous scheduling algorithms. Our ex-
perimental setup is similar to the experimental setup shown in [6]. This section
covers the definition of the task set, metrics, and the architecture simulator.

4.1 Task Sets and Metrics

In this paper, we use the MediaBench benchmark suite [11]. We compose task
sets with 2 different sizes: 4 and 12 tasks randomly chosen from the MediaBench
benchmarks shown in Table 2. Since in our experiments we use a two-way SMT,
it is a reasonable choice, as the 2-task scheduling defaults to no scheduling need

182 C. Boneti et al.

Table 2. MediaBench benchmarks used in this paper. (encoders and decoders have
the same input)

Benchmark Media Language WCET for a Benchmark Media Language WCET for a input
name 1GHz proc. name 1GHz proc.

adpcm c speech C 1.6772 ms adpcm d speech C 1.4599 ms clinton.pcm
epic c image C 17.8306 ms epic d image C 6.1524 ms test image.pgm
gsm c speech C 55.9323 ms gsm d speech C 50.8701 ms clinton.pcm
g721 c speech C 39.7142 ms g721 d speech C 18.1077 ms clinton.pcm

mpeg2 c video C 34.9833 ms mpeg2 d video C 2.5358 ms test2.mpeg

(as they don’t need to be multiplexed between the two hardware contexts) and
significantly larger task sets (say of hundreds of tasks), would take too long
(weeks) to simulate on a cycle accurate OS/architecture simulator. Right now,
one 12-task simulation takes around 6 to 10 hours to execute alone.

For a given task τi the utilization is defined as Ui = WCETsti/pi, where
WCETst is the Worst Case Execution Time (WCET) of the task in single-
thread mode and pi is the period of the task. As shown in [6], for a task set
the scalar utilization (SU) is defined as the sum of the utilization of each of its
tasks. In other words, given a task set with M tasks:

SU =
M∑

i=1

WCETsti
pi

(3)

The term serial utilization is also used in [10] with the exact same meaning.
In this work, we will use the two terms interchangeably.

We evaluate the performance of each scheduling algorithm under different
scenarios of increasing difficulty. We vary the scalar utilization from 1.0 to 2.6
with a step of 0.2, for a total of 9 scenarios. We do not present the results for
scalar utilization higher than 2.6 as, even if they were simulated, they fail to
add any new information: the processor is already saturated with a 2.6 serial
utilization. For each task set size and scalar utilization (SU) we created 50 task
sets. Thus, for each scheduling algorithm we ran 900 simulations (2 task set sizes,
times 50 task sets, times 9 scalar utilization). As evaluation metric we use the
Success Rate, which measures how many task sets are successfully scheduled. We
consider that a task set is successfully scheduled when all tasks in that task set
finish before their deadline.

4.2 Simulator

We use a trace driven SMT simulator derived from smtsim [19]. The simulator
consists of our own trace driven front-end and an improved version of smtsim’s
back-end. It allows executing wrong path instructions by using a separate basic
block dictionary that contains all static instructions.

Our baseline instruction fetch policy is icount [19]. Instructions are decoded
and renamed to track data dependencies. When an instruction is renamed, it
is allocated an entry in the window or issue queues (integer, floating point and

Soft Real-Time Scheduling on SMT Processors 183

load/store) until all its operands are ready. Each instruction also allocates one
Re-Order Buffer (ROB) entry and a physical register in the register file. ROB
entries are assigned in program order and instructions wait in this buffer until all
earlier instructions are resolved. When an instruction has all its operands ready,
it reads its source operands, executes, writes its results, and finally commits.

Processor Configuration
Pipeline depth 12 stages
Fetch/Issue/Commit 8 entries
Queues Entries 32 int, 32 fp, 32 ld/st
Execution Units 6 int, 3 fp, 4 ld/st
Physical Registers 120 integer, 120 fp
(shared)ROB size 512 entries
Branch Predictor 16K entries gshare
Branch Target Buffer 256-entry, 4-way assoc.
Return Address Stack 256 entries

Memory Configuration
Icache, Dcache 64 KB, 2-way,

8-bank, 64-byte lines,
1 cycle access

L2 cache 512 KB, 8-way, 8-bank,
64-byte lines, 20 cyc.acc.

Main memory latency 300 cycles
TLB miss penalty 160 cycles

(a) Main parameters (b) schematic view

Fig. 3. Baseline configuration

We use an aggressive configuration, shown in Figure 3(a): many shared re-
sources (issue queues register, functional units, etc.), out-of-order execution, wide
superscalar, and a deep pipeline for high clock frequency. These features cause
the performance of the processor to be very unstable, depending on the mix of
threads. Thus, we evaluate our proposals on an unfavorable scenario. If those
proposals work in this hard configuration, they will work better in narrower pro-
cessors with fewer shared resources. Figure 3 (b) gives a schematic view of our
processor while Figure 3 (a) shows our baseline configuration.

To be able to validate the system scheduling, we adapted the simulator, al-
lowing it to receive an input of μ traces (μ > η) and multiplex them over the η
processor contexts in a way similar to the operating system (OS) task-scheduler.
The context-switches are commanded by the task scheduling algorithm and can
be timely dependent (say, every 10 or 20ms) or after the execution of a task
instance (on a period), according to the scheduler characteristics.

Every context-switch clears the pipeline of the affected context, flushing the
active instructions. We also chose to be conservative concerning the memory im-
pact of this switch and assumed the worst case concerning the memory footprint
of the task running on the physical context. Therefore, we flush the cache and
completely invalidate TLB entries for a context after a context switch, as it is
done in some real processors [13]. The evaluation of the Worst Case Execution
Time (WCET) in single-thread mode takes into account this overhead. Another
key reason for clearing the cache is that the traces may have equal physical ad-
dresses, because they were not generated at the same time. In that case, extra

184 C. Boneti et al.

care must be taken in order to avoid false hits on the cache after multiplexing
some successive traces.

5 Experimental Results

Figure 4 shows the number of successfully scheduled task sets for the different
scheduling algorithms. We present the aggregated results for the two set sizes
shown in the Experimental Environment Section (4.1). Individually, for either 4
or 12-tasks sizes, RA-EDF yields an average improvement of 8% when compared
to the EDF. Due to space constraints, the charts for the individual sizes are not
shown.

Fig. 4. Number of successfully scheduled task sets for different serial utilizations and
scheduling algorithms (aggregated results for 4- and 12-tasks task sets: 100 task sets
in total)

The first thing to note is the unexpected behavior of GLOB SYM US and
GLOB NOSYM US. For the GLOB NOSYM US, recall that its behavior only
differs from the EDF for tasks presenting utilization superior to N

2N−1 . The
percentage of these tasks in our task sets is only of 11.3%, and therefore, the
results of this algorithm are very similar to those of the EDF. In average, RA-
EDF is 8% better than GLOB NOSYM US.

For GLOB SYM US, our results are quite different from the results of the
authors. We think that it is due to the fact that we use a different scenario and
a different metric (in [10], the authors consider that a task set is not schedulable
when more than 5% of the tasks in the task set are missed). For our scenario, in
average, RA-EDF yields results 26% better than the GLOB SYM US.

Moreover, one may observe that some task sets miss even when SU = 1.0.
This occurs because of priority inversion problems. The first two cases occurred

Soft Real-Time Scheduling on SMT Processors 185

when adpcm c was running with epic d. As we can see in the Table 3 (task set
1) the default icount policy prioritizes epic d, in order to increase the overall
processor throughput, disregarding the fact that adpcm c had a closer deadline
(due to the lack of collaboration between the OS and the processor schedulers).
For the third case, shown in the Table 3 (task set 2) the same problem occurs:
epic d was the task with the closest deadline and was scheduled with epic c, of
lesser priority. Internally, icount policy prioritized the latter in order to increase
the overall throughput. Observe that the symbiosis factor for these cases are
larger than one, meaning that scheduling those tasks together gives a higher
throughput than in single thread. This also explains why GLOB SYM US failed
in the same cases.

Table 3. Benchmark interactions without explicit resource allocation

Task set 1:
Bench. IPC Alone IPC Both Rel. IPC

adpcm c 4.181 1.281 0.306
epic d 1.642 1.333 0.812

Symbiosis factor: 1.118

Task set 2:
Bench. IPC Alone IPC Both Rel. IPC
epic d 1.642 0.787 0.479
epic c 3.175 1.912 0.602
Symbiosis factor: 1.081

Furthermore, EDF is not optimum when scheduling on a SMT processor, just
like on a multiprocessor system, anomalies like the Graham anomaly [8] or the
Dhall effect [14] may occur.

Another interesting fact is that, even if the 4- and 12-task simulations follow
the same trend of behavior, the 12-task sets yield better success rates. That
can be explained by the fact that 12-task task sets generally present tasks with
much lower individual serial utilization, being easier to accommodate a larger
individual slowdown (traded for a global throughput increase).

As we can see in the Figure 4, our EDF-based algorithm is better than the
others in all cases. Comparing to the original EDF algorithm, the RA-EDF has,
in average, 8% higher success rate4. The higher improvement is 18% with a
serial utilization (SU) of 1.8. In addition, RA-EDF successfully schedules task
sets when others fail because of priority inversion, as it is able to explicitly
control the resource allocation to the task with the highest priority.

We should observe that there is no case in which our proposed algorithm
has lower success rate than any of the others. Furthermore, using this resource
aware scheduling algorithms eliminates the priority inversion problems. That
is, in contrast to normal SMT processors, where the hardware scheduler (fetch
priority mechanism) and the OS scheduler are not aware of each other, there is
no case where a lesser priority thread consumes more resources than the higher
priority one. In addition, our solutions do not require profiling of the tasks to
schedule. For future work, we plan to expand this technique to an N-way SMT
machine: keeping one MCT and many LPT would make it feasible.
4 Recall that we consider a task set successfully scheduled when there is no missed

deadline.

186 C. Boneti et al.

Another key observation is the fact that we used a very aggressive WCET
estimate. The closer is the WCET to the average execution time, the harder
will it be to schedule the task set, as there will be close to zero extra time on
normal execution. On real systems, WCET are normally an upper bound on
the execution time, and, therefore, even more task sets would be scheduled on
the common case. Considering a soft real-time scenario, using this slack between
the WCET and the ”expected execution time” would be, on some cases, an
acceptable situation.

6 Conclusions

Current embedded systems require increasingly high throughput rates. To reach
those rates, current embedded processors use features similar to the ones used
in the high-performance processors. However, the use of these features impacts
the performance predictability and creates new problems for real-time system.
SMT processors are a clear example of this new trend. SMTs provide higher
throughput with reduced costs but make harder the problem of computing the
worst case execution time, generating task interference or even giving most of
the shared hardware resources to a task with lower priority when multiple tasks
are running on different hardware threads.

In this paper, we propose a new scheduling algorithm, the RA-EDF, to cir-
cumvent those problems. It is resource aware and does not require any profiling.
Through a special hardware support proposed in [3], RA-EDF is able to control
the hardware resources given to co-schedule threads. This hardware allows the
scheduling algorithm to control the resource allocation, which improves the suc-
cess rate when scheduling tasks. Our new scheduling algorithm yields higher suc-
cess rates on every case when compared to the previous proposed task scheduling
algorithms. RA-EDF improves 8% on average the original EDF.

Acknowledgments

This work has been supported by the Ministry of Science and Technology of
Spain under contracts TIN-2004-07739-C02-01 and TIN-2007-60625 and by the
HiPEAC European Network of Excellence. Carlos Boneti is granted by the Cat-
alonian Department of Universities, Research and Information Society (AGAUR)
and the European Social Funds.

References

1. Cazorla, F.J., et al.: Improving memory latency aware fetch policies for SMT pro-
cessors. In: Proceedings of the 5th ISHPC (October 2003)

2. Cazorla, F.J., et al.: Qos for high-performance SMT processors in embedded sys-
tems. IEEE micro. Special Issue on Embedded Systems 24(4), 24–31 (2004)

3. Cazorla, F.J., et al.: Architectural support for real-time task scheduling in SMT
processors. CASES-2005, 166–176 (2005)

Soft Real-Time Scheduling on SMT Processors 187

4. Cazorla, F.J., et al.: Predictable performance in SMT processors: synergy between
the OS and SMTs. IEEE Transactions on Computers 55(7), 785–799 (2006)

5. Dertouzos, M.L., Mok, A.K.: Multiprocessor online scheduling of hard-real-time
tasks. IEEE Trans. Softw. Eng. 15(12), 1497–1506 (1989)

6. El-Haj-Mahmoud, A., et al.: Virtual multiprocessor: an analyzable, high-
performance architecture for real-time computing. In: CASES (2005)

7. Goossens, J., Macq, C.: Limitation of the hyper-period in real-time periodic task set
generation. In: Teknea (ed.) Proccedings of RTS 2001, Paris, France, pp. 133–148
(2001)

8. Graham, R.L.: Bounds on multiprocessing timing anomalies. SIAM Journal on
Applied Mathematics 17(2), 416–429 (1969)

9. Goossens, J., Richard, P.: Overview of real-time scheduling problem. In: Proceed-
ings of the ninth international conference on project management and scheduling,
Nancy France (April 2004)

10. Jain, R., Hughes, C.J., Adve, S.V.: Soft real-time scheduling on simultaneous mul-
tithreaded processors. In: Proceedings of RTSS 2002 (2002)

11. Lee, A., Potkonjak1, M., Mangione-Smith, W.H.: Mediabench: A tool for evaluating
and synthesizing multimedia and communications systems. In: 30th MICRO, pp.
330–335 (1997)

12. Liu, C.L., Layland, J.W.: Scheduling algorithms for multiprogramming in a hard-
real-time environment. J. ACM 20(1), 46–61 (1973)

13. Marr, D.T., et al.: Hyper-threading technology architecture and microarchitecture.
Intel Technology Journal 6(1) (February 2002)

14. Dhall, S.K., Liu, C.L.: On a Real-Time Scheduling Problem. Operations Re-
search 26(1), 127–140 (1978)

15. Lo, S.-W., Lam, K.-Y., Kuo, T.-W.: Real-Time Task Scheduling for SMT Systems.
In: RTCSA 2005, pp. 5–10 (2005)

16. Snavely, A., Tullsen, D.M.: Symbiotic jobscheduling for a simultaneous mut-
lithreading processor. SIGPLAN Not. 35(11), 234–244 (2000)

17. Snavely, A., Tullsen, D.M., Voelker, G.: Symbiotic jobscheduling with priorities for
a simultaneous multithreading processor. In: Sigmetrics 2002 (2002)

18. Srinivasan, A., Baruah, S.: Deadline-based scheduling of periodic task systems on
multiprocessors. Inf. Process. Lett. 84(2), 93–98 (2002)

19. Tullsen, D.M., et al.: Exploiting choice: instruction fetch and issue on an im-
plementable simultaneous multithreading processor. SIGARCH Comput. Archit.
News 24(2), 191–202 (1996)

A Hardware/Software Codesign of a
Co-processor for Real-Time Hyperelliptic Curve

Cryptography on a Spartan3 FPGA

Alexander Klimm1, Oliver Sander1, Jürgen Becker1, and Sylvain Subileau2

1 Institut für Technik der Informationsverarbeitung, Universität Karlsruhe (TH),
Engesserstr. 5, 76131 Karlsruhe, Germany

klimm,sander, becker@itiv.uni-karlsruhe.de
2 Daimler AG, Hanns-Klemm-Str. 45, 71034 Böblingen, Germany

sylvain.subileau@daimler.com

Abstract. This paper describes the acceleration of calculations for
public-key cryptography on hyperelliptic curves on very small FPGAs.
This is achieved by using a Hardware/Software Codesign Approach start-
ing with an all-software implementation on an embedded Microproces-
sor and migrating very time-consuming calculations from software to
hardware. Basic GF(2n)-hardware extensions are connected to work in
conjunction with the Microprocessor and possible alternatives for con-
necting external hardware to the Microprocessor are investigated. The
performance of the hardware implementations compared to their coun-
terparts as a software approach are evaluated. Based on these results, a
coprocessor is devised and optimized for performance. The system uti-
lizes minimal resources and fits easily on a small FPGA. It allows for fast
Hyperelliptic Curve Cryptography (HECC) operations while running at
a very low clock speed of 33 MHz, thus making it suitable for usage in
embedded systems.

Keywords: Hyperelliptic Curve Cryptography (HECC), Public Key
Cryptography (PKC), reconfigurable hardware, FPGA, embedded
systems.

1 Introduction

The introduction of Public-Key Cryptography (PKC) to embedded systems pro-
vides essential benefits for the production of system units needing to meet secu-
rity requirements as well as for the logistics involved. Calculations for public-key
applications on today’s hardware platforms (i.e. microcontrollers) for embedded
applications are very computational intensive. The resources on these platforms
are also highly limited.

Neal Koblitz suggested in 1989 the usage of hyperelliptic curves for crypto-
graphic purposes. The same level of security compared to the widespread appli-
cations of elliptic curves is achieved while using keys of comparable bit lengths.
The size of the underlying finite galois fields is much smaller than of those used

U. Brinkschulte et al. (Eds.): ARCS 2008, LNCS 4934, pp. 188–201, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

A Hardware/Software Codesign of a Co-processor 189

for elliptic curve cryptography. This makes the usage of HECC (hyperelliptic
curve cryptography) particularly interesting for small platforms with very lim-
ited resources.

In the last couple of years implementations of HECC have been done in
software [1] as well as in hardware such as FPGAs [2]. In order to achieve
computational speeds suitable for real-time constrained applications, these im-
plementations call for either very powerful general purpose processors or large
FPGAs such as Xilinx’s Virtex series. To minimize the usage of hardware re-
sources as well as processor size, a hardware/software codesign-approach seems
to be mandatory. The feasibility of this approach has been shown in [3], using
an 8-bit microprocessor supported by a microcode instruction set coprocessor.

This paper focuses on accelerating calculations for public-key cryptography on
hyperelliptic curves (HECC) on FPGAs with minimal hardware resources, i.e.
Xilinx’s Spartan series, by using the Xilinx’s softcore processor MicroBlaze and
migrating very time-consuming calculations from software to hardware.

Possible alternatives for connecting external hardware to the MicroBlaze are
investigated. Hardware implementations of the underlying GF (2n)-arithmetic,
mainly a simple multiplication, are adapted to work in conjunction with the
MicroBlaze and its interfaces. The overall performance, namely the speed of the
computation in conjunction with the available hardware/software interfaces of
the system, is evaluated.

Based on these results, a coprocessor is devised and optimized for perfor-
mance. It allows for fast HECC operations while using minimal resources on a
small FPGA.

The paper is organized as follows: In section 2, a short introduction to HECC
is given. In the 3rd section the HW/SW codesign concept will be presented. This
chapter includes a description of the system used for HECC, as well as the setup
for the calculations’ speed measurements. Also the used SW implementation
and HW modules are described very briefly. In the 4th section, the results from
implementation to a real Spartan3 FPGA will be discussed. The paper is closed
with the conclusion and future work description in section 5.

2 Hyperelliptic Curve Cryptography

Hyperelliptic curves (HEC) are a generalization of elliptic curves (EC). Con-
trary to elliptic curves, hyperelliptic curves have a genus of (g > 1). For efficient
implementations of HECC (hyperelliptic curve cryptography) HEC’s of genus
g = 2 are targeted in this paper.

On elliptic curves an addition follows a unique geometrical mapping [4]. How-
ever for addition on HEC’s the same straight forward methodology is not possi-
ble. One further abstraction has to be used - the concept of divisors.

A divisor is a formal finite sum of points on a curve (see (1)). It’s degree is
the sum of the coefficients mi. The order of D on a point Pi is the integer mi.

D =
∑

miPi in F̄ (1)

190 A. Klimm et al.

The sum of all divisors forms an additive group. D0 is a subset of D, that
includes all divisors of degree 0. Using principle divisors [5] a ”Jacobian Group”
curve (see 2) is defined on which addition is performed. The set of all reduced
divisors on a HEC uniquely represents the Jacobian group. Solving the discrete
logarithmic problem [6] on this group is the basis of security of HECC.

J =
D0

P
(2)

3 Hardware/Software Co-design

Starting point of the design was an all-software implementation of HECC (see
chapter 3.2). On a PowerPC (32 Bit Processor running at 80 MHz) one scalar
multiplication required 90 ms. In table 1 a comparison of execution times of
one scalar multiplication in HECC is given. The implementation on the ARM7
processor has been done in [7].

Table 1. Execution times of HECC scalar multiplication in SW

Processor Fieldsize
PowerPC 32 Bit @ 80 MHz 90 ms 283

ARM7 32 Bit @ 80 MHz 71, 56 ms 283

The execution time of one scalar multiplication k ·Div1 is used as a reference
for the quality of an implementation regarding speed. To gain an advantage to
state of the art systems the maximum computation time of this HECC operation
has to be 50 ms or less.

To achieve this goal a HW/SW co-design approach is targeted. The Xilinx’s
MicroBlaze 32 Bit processor on a Spartan3 FPGA is used as a target processor.
Execution time of one scalar multiplication is measured and is used as a primary
reference. Parts of the algorithm are migrated into hardware and the performance
as well as the size of the system is evaluated successively. The evaluation’s main
criteria, is primarily the computational speed of the design because of the real-
time requirements from the target application. Another important aspect of the
evaluation is the security of the overall system. Hardware does have side-channels
that might leak information to an attacker, thus compromising the system (see
chapter 4.3).

Moving functionality into hardware naturally increases the amount of re-
sources needed on the FPGA. Therefore only functionality that is used most of-
ten or needs a lot of processor-time, is implemented in hardware (see chapter 3.3).
On the other hand it opens up the possibility to use different implementations
for subroutines (see chapter 4.1 and [8]).

A Hardware/Software Codesign of a Co-processor 191

3.1 System Architecture and Components

The overall system is implemented on Spartan3-5000 FPGA. This FPGA is
the biggest of the Spartan series and is only used for evaluation purposes. The
choice of this FPGA has the basis that a rapid prototyping platform with this
FPGA was available for real-world system integration and tests. Synthesis of the
finalized design has been successfully done for a Spartan3-400 also.

Mainly the system comprises a microprocessor, crypto hardware, and a hard-
ware timer to count clock cycles. In the following chapters the components will
be described briefly.

MicroBlaze. The MicroBlaze soft-core processor is a parameterizable 32 bit
RISC processor with Harvard Architecture. It has been developed specifically for
usage on Xilinx Virtex and Spartan-II/3 FPGAs [9] [10]. Additional hardware
can be added by connecting it via OPB (On Chip Peripheral Bus), FSL (Fast
Simplex Link) and LMB (Local Memory Bus). Due to the efficient usage of
FPGA resources, the processor can be clocked with up to 150 MHz. In this
design the clock frequency has been limited to 33 MHz.

Hardware Timer. In order to measure the computation time of an operation
a timer is required. For this issue, a simple binary counter is implemented. With
every clock cycle, a register is incremented by one. This register can be accessed
by the MicroBlaze via OPB. By writing a ’0’ into the register the timer is started.
No enable signal for the counter is used, it starts counting immediately. To get
the measured time, the register is read out by the MicroBlaze and the register’s
value is stored in the processor’s internal memory for further reference.

There is a certain constant offset in the measurement due to the clock cycles
needed to read out the timer’s internal registers. Test cases showed that with the
software driver that was used in this test scenario, the counter runs 3 additional
clock cycles, while the readout command is carried out. This bias is subtracted
when evaluating the result.

Cryptographic hardware. Some dedicated hardware for fast computation on
Galois Field in binary representation is included into the system. These hard-
ware implementations are directly interfaced to the MicroBlaze. The individual
modules being used, are described in detail in chapter 3.3, the interfacing is
described in chapter 3.4.

Communication. For debug issues and evaluation of the system, a UART
Interface and an interface for external output signals are included in the system.
These interfaces are exploited to transfer the calculation results to a PC for
verification. The external signals are used to drive LEDs to visualize the system’s
status.

3.2 Software Implementation

The HECC Software implementation for a 32 Bit RISC processor provides ba-
sic operations for HECC such as GF-addition, GF-multiplication coupled with

192 A. Klimm et al.

modular reduction, GF-inversion, divisor addition and divisor doubling on HEC,
as well as scalar multiplication. It has been placed at our disposal by the Daimler
AG in form of C-code within an ongoing joint project.

The GF-multiplication uses the Left-to-right Comb Method proposed in [11],
using a window size of 4. For reduction of the result, the ”Fast Reduction Mod-
ulo”-method is used (see [4], pp 55). Efficient GF-inversion in software is done
by using the extended euclidean algorithm.

The methods for divisor adding and divisor doubling follow the algorithms
proposed in [12]. Those operations are done in projective coordinates to save
costly inversions.

The implemented scalar multiplication is based on the ”Double and Add”
algorithm (see [6]) using a variant that has a scalar in NAF (Non Adjacent
Form) as input.

3.3 Algorithmic Hardware Modules

GF MAC Unit
Only the underlying GF (2n) arithmetic of HECC is implemented in hardware,
due to the fact that these calculations are performance intensive (i.e. hundreds
of field multiplications per one scalar multiplication). The following hardware
modules are included in the design.

Galois Field Adder (GF ADD). A GF addition r = a + b is achieved by a
bitwise XOR-ing inputs a and b. The realization of this function is simple com-
binatorial logic using 83 XOR gates for adding two 83 bit wide input datawords.
Therefore only a single clock cycle is needed for the add operation.

Galois Field Multiplier (GF MUL). The most often used sub-operation
within a scalar multiplication is the GF-multiplication. At the same time this
is also one of the most time consuming parts in the software implementation.
The operation a · bmodn is carried out by hardware GF-multiplier that has
been implemented at the research group COSIC at K.U. Leuven and is used
with their permission. The implementation is based on [13], a SHIFT & ADD
Algorithm with no windowing. With binary representation of the operands a and
b a multiplication is defined as:

a · b =

[
n−1∑

i=0

ai · 2i

]

· b (3)

= a0b + 2a1b + 4a2b + . . . + 2n−1an−1b (4)

If a · b > n(n being the field size) at step i, a reduction modn is done. This is
achieved within the last clock cycle of the SHIFT & ADD Algorithm by adding
the unique reduction polynom to the intermediate result (see chapter 3.3). The
duration of one GF-multiplication is proportional to the field size. Since the
finite field size is 83 bit it takes 83 clock cycles for one operation.

A Hardware/Software Codesign of a Co-processor 193

a(MAC)

b(MAC)

c(MAC) t(MAC)

enable(ADD)

GF_ADD

a

b t

en

GF_MUL
a

b t

Fig. 1. GF MAC unit

Multiply-Add Unit (GF MAC). The GF MAC unit is a combination of the
afore mentioned modules (see figure 1). By using the enable Port on GF ADD,
it is possible to include or exclude the final addition of c into the operation. If
the Adder unit is disabled the result is passed through the module immediately
and input c (MAC) is ignored, otherwise the addition is performed.

The GF MAC module can be used for calculating r = a · b + c as well as
r = a · b. Runtime of both operations is identical. They need n clock cycles for
n bit wide input data.

3.4 Co-processor Design

To exploit the modules mentioned above as a coprocessor, the interfacing to the
MicroBlaze can be achieved either over OPB, FSL or LMB. The LMB (Local
Memory Bus) is mainly used to interface instruction memory and data memory
to the processor. Therefore this option to connect a coprocessor has not been
evaluated.

In order to compare the different interfacing options and their effect on the
overall computation speed, a unified structure of the coprocessor is used (see
figure 2). It is not area-optimized for neither interface option, and only used
for evaluation purposes. All input data is stored in internal registers. In the
”CoProcessor WorkUnit” a simple FSM (Finite State Machine) controls the
data into the GF-Hardware block, retrieves the result and puts it into an internal
output register. The unit is independent of the interface that is used to connect
the coprocessor to the MicroBlaze.

The ”CoProcessor InterfaceUnit” accesses the internal registers of the WorkU-
nit and transfers the data to and from the main- and coprocessor. Only this unit
has to be adapted to the different interfaces used on the MicroBlaze. The input
operands, as well as the result, are 83 bit wide. Therefore they are divided into
three 32 bit words to use the 32 bit wide interfaces of the MicroBlaze processor.

OPB Hardware/Software Interface. The MicroBlaze’s OPB is a 32 bit on-
chip bus that follows the IBM Core ConnectTM On-Chip Bus Standard [14].
To connect the coprocessor via OPB the module is implemented as a slave, and

194 A. Klimm et al.

CoProcessor

Main-
Processor

(MicroBlaze)

CoProcessor
InterfaceUnit

CoProcessor WorkUnit

FSM

Internal Registers

Input
Register

Output
Register

GF-Hardware

Fig. 2. Schematic view to co-processor infrastructure

the IPIF interface provided by Xilinx is used. It provides software accessible
registers. C-macros are supplied to allow easy read/write access. The data is
transferred into the IPIF registers by a write access via OPB using Xilinx’s C-
macros that are provided for the IPIF interface [10]. The registers are mapped in
the CoProcessor WorkUnit ’s internal register. The interface includes a control
mechanism that checks if all required input data has been transferred and signals
to the WorkUnit. Also it prohibits multiple write accesses to the same input
register to avoid erroneous overwriting. As soon as all required data is received
by the coprocessor, the data is processed. Immediately after recieving the result
of the operation, the InterfaceUnit is cleared to receive new input data.

In the bus specification a Timeout signal is specified that aborts the read
access if the slave does not react within 8 clock cycles. While data is being
processed, read access by the main processor is blocked by asserting the signal
IP2BUS Toutsup. That way the Timeout signal is blocked, and the read access
is prolonged until the result of the calculation is available. The processor is
stalled when it is trying to read back the result before valid data is available.
Since the goal is not parallelization of the algorithm but simply speeding up
GF2n operations by using hardware, stalling the processor in this situation is
acceptable.

Because the IPIF registers are freely addressable the transferred data words
need not be transmitted in a certain order. They only have to be transferred to
the correct register.

FSL Hardware/Software Interface. The MicroBlaze processor provides 8
input FSL interfaces as well as 8 output FSL interfaces. Each one is a 32 bit
wide unidirectional Point-to-Point streaming (single master-single slave) inter-
face. The communication is FIFO based (First-In-First-Out memory). It can be
used to transmit data or control words. The FSL interfaces are marked by a

A Hardware/Software Codesign of a Co-processor 195

separate bit that is propagated along with the appropriate data. By checking
this bit a slave can determine if the current input is a data or a control word.

Every FSL is driven by a single master and can be read by a single slave.
This enables the use of a very simple protocol. The master pushes data into
the FIFO and the slaves reads it from the FIFO. To transfer data to and from
MicroBlaze’s memory, Xilinx provides appropriate C based macros, that supply
read/write blocking mechanism, if the main processor tries to push data into an
already full FIFO or tries reading an empty FIFO.

To transfer data to the coprocessor, all input operands are pushed into the
InterfaceUnit ’s FIFO. The data is immediately transferred sequentially to the
WorkUnit ’s internal registers. As before (see chapter 3.4) the operands are trans-
mitted in groups of three 32 bit data packets. In the InterfaceUnit those packets
are reassembled and put in the appropriate places of the registers in the co-
processor. Therefore the order of the data packets is fixed, no interleaving is
permitted.

As soon as data is available in the FIFO they are moved into the internal
registers. Right after the first two data words have arrived, the operation of the
data is started and the result is pushed into the output FIFO of the coprocessor.
When the GF MAC unit is used, the multiplication operation is started after
the first two data words have arrived. If a third data word is received it is read
from the FIFO during the execution of the multiplication.

Software Drivers. To use the coprocessor all the input operands for the GF
operation is put out from MicroBlaze to the coprocessor. This is done by using
the appropriate C-Macros for OPB and FLS respectively. As soon as all the
input data is recognized by the coprocessor (see chapter 3.4 and 3.4) it starts
the computation. Immediately after the main processor has transferred the input
data it polls the coprocessor’s internal output register (see figure 2) until a result
is available. The processor is stalled by the coprocessor until the result is valid
(see chapter 3.4 and 3.4). Since the result of the coprocessors calculation is used
as an input for the subsequent GF operation, stalling the processor does not
prolongate the execution time. It might be possible to structure the algorithm
otherwise to parallelize HW and SW computations. This has not been done in
order to have a very close comparison of HW vs. SW implementation. Since
Xilinx’s macros are used, there is no need to write low level drivers.

The driver for OPB interfacing is only responsible for the correct mapping of
input data to IPIF registers. For FSL interfacing the order of data transfers is
essential and must be ensured by the driver.

All data transfers are organized through software, no interrupts are used.

4 Test and Evaluation

The modules GF ADD, GF MUL and GF MAC were tested for computational
speed. GF MUL was implemented with an OPB interface as well as with a

196 A. Klimm et al.

FSL interface and was used as a benchmark to evaluate the difference in speed
caused by the differences between the possible interface structures. As expected,
experiments showed that the FSL interface is definitely faster than the OPB
interface. All further measurements were then done with the FSL interface only
since the ultimate goal is to find the fastest possible system for HECC in the
investigated HW/SW codesign scenario.

GF ADD was solely implemented as an OPB slave, since measurements of
computational time for an addition in software showed that the possible speed
up by using a hardware adder was probably only marginal (see chapter 4.1).
Since the ratio of speedup vs. resources is not very satisfiable, the approach of
using a hardware GF ADD unit was not further pursued.

All measurements were done on the above mentioned test platform (see chap-
ter 3.1). Its clock frequency was chosen with 33 MHz. An increase of the clock
frequency results in a proportional speed up of the computation time. This was
verified by increasing the frequency to 66 MHz. Since the modules will be im-
plemented in an embedded system the target frequency is well below 70 MHz.
The maximal frequencies of the individual modules can be found in table 2.

The duration of these computational segments have been measured:

– GF addition (u1 + u2)
– GF multiplication (u1 · u2)
– GF inversion

(
u1−1

)

– HECC DivisorAdd (P1 + P2)
– HECC DivisorDouble (2P1)
– HECC scalar multiplication (k · P1)
– HECC Proj to Affine (Transformation of one divisor from projective coor-

dinates into affine coordinates)

u: galois field element
P : divisor on an (hyper-)elliptic curve
k: scalar in binary representation

All measurements include fetching the data and transfer from internal mem-
ory, transfer to and from hardware units if required, as well as storing the pro-
cessed data in internal memory again.

Table 2. Frequency of Operations

fclk,max Max. propagation delay
GF ADD Logic only 11 ns
GF MULT 366 MHz —
GF MAC 366 MHz 11 ns

MicroBlaze1 85 MHz —

1 Valid for Spartan3 FPGAs, source: Xilinx Inc. XAPP477 v.1.0.1, S.2

A Hardware/Software Codesign of a Co-processor 197

4.1 Timing Analysis

A first comparison was done with the basic subroutines GF addition and GF
multiplication. The acceleration of one add operation using hardware support is
less than 14%. Since an adder operation in software is only 3 us not much time
is gained, but 83 additional XOR gates are needed. One GF multiplication has a
speed up factor greater than 100. As one can see in figure 3 one MAC operation
(see chapter 3.3) and one multiplication operation have identical execution time.
This is due to the fact, that the third operand is transferred to the GF MAC unit
during the multiplication part of the MAC operation. The transfer is done in
less than 83 clock cycles which are needed for one multiplication. No measurable
communication overhead for transferring the third operand is created.

9 4,57 3

0

1

2

3

4

5

6

7

8

gf-add gf-mult

[us]

So f t ware

OPB M ult .

F SL M ult

F SL M A C

Fig. 3. Basic GF(2n) operations using hardware acceleration

As expected the FSL interface is clearly faster than the OPB interface. More
than 1 us more is needed for the transfer of three 83 bit data words, consisting of
three 32 bit transfers each. The communication overhead (see figure 4) is the sum
of clock cycles needed to transfer data from the processor to the internal registers
of the cryptohardware and the clock cycles needed to feed the data from those
registers into the computational units for GF (2n) operations. Further measure-
ments (see figure 5 and 6) show, that the difference in communication duration
sums up to over 50 us for a single divisor operation and even some milliseconds
for one scalar multiplication The divisor operations are all done in projective
coordinates in order to save time consuming inversions. After an operation a
transformation of the result from projective coordinates to affine has to be done
once for the result. If this is done completely in software it needs 14,869 ms of
computation time. If the GF multiplication on this algorithm is done in hard-
ware this time frame still is 13,383 ms. About 27% of the processor time for one
scalar multiplication is spent on coordinate transformation alone (see figure 6).
A solution is using ITMIA (Itoh-Tsujii Multiplicative Inversion Algorithm). It
can be implemented [8] by using the fast GF multiplication in hardware. Now

198 A. Klimm et al.

clk

Fig. 4. Communication-Overhead OPB vs. FSL

Fig. 5. Basic HECC operations in projective coordinates

one inversion needs only 0,372 ms thus lowering the overall computation time of
one scalar multiplication to under 40 ms.

4.2 Area Utilization

The utilization of the hardware resources has not been optimized yet. Still the
hardware extensions take up very few slices on a Spartan3 FPGA (see table
3). Although a Spartan3S5000 was used, the design fits easily on a Spartan3-
500 without the need for area optimized implementation of the GF hardware
extensions. Again the interfacing of hardware extension via FSL does have an

A Hardware/Software Codesign of a Co-processor 199

Fig. 6. Scalar multiplication

Table 3. Utilized hardware resources

Slices FF 4 input LUTs
Available on...
Spartan 3S5000 33280 66560 66560

Used by...
MicroBlaze 1020 809 1590

GF MUL (FSL) 284 439 289
GF MAC (FSL) 280 444 464
GF ADD (OPB) 258 277 438
GF MUL (OPB) 541 629 669
Counter verylight 189 211 296

advantage over OPB interfacing. It uses much less resources. An adder is im-
plemented in the GF MAC unit. The whole unit including a GF adder and
multiplier needs only slightly more resources as one GF adder connected via an
OPB interface.

4.3 Side Channel Awareness

Moving cryptographic functionality into hardware demands the evaluation of
possible attacks on the design and the overall system. Side channel attacks on
hardware designs are a growing threat to embedded systems.

The FIFO in the FSL interfaces can be attacked by power analysis, since
it draws comparably high currents. Also it can be localized pretty easily in the
system. An attacker can therefore extract the type and sequence of operation car-
ried out on a device. From that knowledge the secret key might be reconstructed,

200 A. Klimm et al.

thus compromising the system. Therefore care must be taken to secure the sys-
tem as much as possible against side channel attacks. On algorithmic level, bal-
anced operations, key blinding, and other methods [15] can increase security
against those attacks. These security measures do cost extra resources and/or
computation time. Another crucial point is secure storage. This is a basic prob-
lem of all cryptographic implementations where secret information or parts of
secret information is stored somewhere in the system. This information must be
secured against unauthorized read and write access.

All of the above mentioned issues need to be addressed in future work.

5 Conclusion

In this paper the interfacing of software and hardware on a small Xilinx FPGA
in conjunction with HECC has been evaluated. It was shown that using the FSL
interface is the choice of options when interfacing a cryptographic processor to
an embedded MicroBlaze processor. Even with a very crude and simple copro-
cessor design it is possible to speed up HECC operations enough to be used
in embedded systems with the time constraints well under 0,2 seconds per one
scalar multiplication. At the same time not many resources on the FPGA are
used, due to the HW/SW codesign. The bottleneck of such an implementation is
still the communication between main processor and coprocessor. Reducing the
amount of data being transferred between those two will give an even greater
benefit in computation time and is being investigated. In conclusion, HECC on
very small FPGAs is feasible within fairly tight time constraints and using min-
imal resources on these devices, thus making it very interesting for embedded
systems that need security features based on cryptography.

References

1. Sakai, Y., Sakurai, K.: On the practical performance of hyperelliptic curve cryp-
tosystems in software implementation(special section on discrete mathematics and
its applications). IEICE transactions on fundamentals of electronics, communica-
tions and computer sciences 83(4), 692–703 (2000)

2. Wollinger, T., Paar, C.: Hardware architectures proposed for cryptosystems based
on hyperelliptic curves

3. Batina, L., et al.: Hardware/software co-design for hyperelliptic curve cryptography
(hecc) on the 8051μp. In: Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS, vol. 3659,
pp. 106–118. Springer, Heidelberg (2005)

4. Hankerson, D., Menezes, A., Vanstone, S.: Guide to elliptic curve cryptography.
Springer, New York (2004)

5. Wollinger, T.: Computer architectures for cryptosystems based on hyperelliptic
curves. Masterthesis, Worcester Polytechnic Institute, MA (April 2001)

6. Menezes, A.J., van Oorschot, P.C., Vanstone, S.A.: Handbook of Applied Cryptog-
raphy. CRC Press, Boca Raton (2001)

A Hardware/Software Codesign of a Co-processor 201

7. Pelzl, J., Wollinger, T., Paar, C.: Special Hyperelliptic Curve Cryptosystems of
Genus Two: Efficient Arithmetic and Fast Implementation. In: Nedjah, N. (ed.)
Embedded Cryptographic Hardware: Design and Security, Nova Science Publishers,
NewYork (2004)

8. Itoh, T., Tsujii, S.: Effective recursive algorithm for computing multiplicative in-
verses in gf(2m). IEEE Electronic Letters 24(6), 334–335 (1988)

9. Xilinx: Microblaze(tm) hardware reference guide. Document UG081 (2002)
10. Xilinx: Microblaze(tm) software reference guide (2002)
11. Hankerson, D., Hernandez, J.L., Menezes, A.: Software implementation of elliptic

curve cryptography over binary fields. In: Paar, C., Koç, Ç.K. (eds.) CHES 2000.
LNCS, vol. 1965, p. 1. Springer, Heidelberg (2001)

12. Batina, L.: Arithmetic and Architectures for Secure Hardware Implementations of
Public-Key Cryptography. PhD thesis, Katholieke Universiteit COSIC (December
2005)

13. Beth, T., Gollmann, D.: Algorithm engineering for public key algorithms. IEEE
Journal on Selected Areas in Communications 7(4), 458–466 (1989)

14. IBM: 64-Bit On-Chip Peripheral Bus, Architecture Specifications Version 2.1; SA-
14-2528-02 (April 2001)

15. Coron, J.S.: Resistance against differential power analysis for elliptic curve cryp-
tosystems. In: Koç, Ç.K., Paar, C. (eds.) CHES 1999. LNCS, vol. 1717, pp. 292–302.
Springer, Heidelberg (1999)

A Reference Architecture for Self-organizing
Service-Oriented Computing

Lei Liu, Stefan Thanheiser, and Hartmut Schmeck

Karlsruhe Institute of Technology - Institute AIFB
76128 Karlsruhe, Germany

{lei.liu,stefan.thanheiser,hartmut.schmeck}@kit.edu

Abstract. Service orientation promotes a new way to design and imple-
ment large-scale distributed applications across organizational and tech-
nical boundaries. However, it does not provide sufficient means to cope
with the increasing complexity in service-oriented applications. A promis-
ing way out of this dilemma is to enable self-organization in service-
oriented computing - as advocated in current research initiatives (e.g.
the Organic Computing project). Self-organization helps to keep system
complexity hidden from human system participants. In this paper, we
propose a reference architecture to establish controlled self-organization
in a service-oriented environment with respect to existing reference ar-
chitectures for SOC and self-organization.

Keywords: Service-oriented Computing, Organic Computing, Self-
organization, Reference Architecture, Reference Model.

1 Motivation

Today’s ever paced and changing business world demands for consistent IT in-
frastructures potentially spanning across organizational and technological
boundaries. Emerging technologies, i. e.SOC, drives further convergence of ex-
isting enterprise IT systems towards integrated enterprise-level business appli-
cations. In this context, the design paradigm service orientation provides basic
means for constructing business logic based on distributed business capabilities
from various enterprise IT systems across the Internet, which leads potentially
to a tighter alignment between business and IT [1]. Utilizing service orienta-
tion in the architectural design facilitates reusability, flexibility, interoperability,
and agility of IT architectures. However, this design paradigm does not address
the handling of system complexity resulting e.g. from interacting elements in
large quantities or changes in the system and its environment. In particular, the
lack of sufficient support to explicitly predict all eventualities at runtime, e.g.
by providing predefined programming models, makes human interaction with
SOC-based systems more complex. Hence, human participants are still strongly
involved in managing large-scale distributed systems to cope with increasing
system complexity.

U. Brinkschulte et al. (Eds.): ARCS 2008, LNCS 4934, pp. 205–219, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

206 L. Liu, S. Thanheiser, and H. Schmeck

A plausible way out of this dilemma lies in utilizing software components
exhibiting the characteristic of controlled self-organization. Such software com-
ponents are able to operate autonomously in their environment, while still being
under control of human system participants. This idea of building self-organizing
software components is a major objective of several academic and industrial ini-
tiatives - such as the Organic Computing research program (GI/ITG and DFG)
[2] or the Autonomic Computing initiative [3]. The automation of monitoring
and controlling software components establishes a range of self-x properties in
the system - including self-configuration, self-protection, self-optimization, and
self-healing. These self-x properties allow corresponding software components
to adapt their behaviour to external preferences transparently (either from hu-
man participants or from other external systems). However, the behaviour of
self-organizing technical systems can still be influenced by human participants
through operational policies as well as high-level system objectives.

This paper aims at extending the view presented in [4,5,6] and refining it
to a reference architecture for self-organizing SOC. In software engineering, a
reference architecture serves as an architectural blueprint for constructing soft-
ware systems targeting particular problem domain(s) with specific functional,
behavioural, and quality attribute requirements [7]. It outlines a set of necessary
software components, their externally viewable interfaces as well as interrelation-
ships existing between them (e.g. data flows). The major effort in this paper is to
infuse the design paradigm of Organic Computing into approaches of SOC to es-
tablish controlled self-organization, while keeping the system complexity hidden
from human system participants. To simplify requirements analysis and to bet-
ter illustrate the reference model, we chose to use Service-oriented Architecture
(SOA) as a representation of SOC-based systems in this paper.

The remainder of the paper is organized as follows. Section 2 determines key
design requirements to establish self-organization in a large-scale, distributed
service-oriented architecture. Section 3 provides an overview of related work
focusing on existing reference architectures for SOC and self-organization. Sec-
tion 4 will propose a reference architecture by discussing design patterns and
a high-level architecture with respect to the given design requirements. Finally,
Section 5 concludes the paper and gives an outlook on our future research.

2 Key Design Challenges

SOA provides a means for building large-scale distributed applications across
organization and technology boundaries by leveraging distributed business logic
that may be under control of different ownership domains. Compared to tradi-
tional distributed approaches, SOA serves business demands in a more efficient
and organized way by applying a set of design principles, such as service ab-
straction, reusability, and composability. Despite of the potential of SOA to
align business and enterprise IT, SOA still exhibits a set of characteristics that
make it complicated to apply self-organization to an SOA-based System. Parts of
these SOA characteristics are inherited from traditional distributed paradigms;

A Reference Architecture for Self-organizing Service-Oriented Computing 207

some others are more SOA-specific. In the following, we will review the key de-
sign challenges for a reference architecture aiming at controlled self-organization
in SOA.

Service autonomy. As one of the fundamental design principles for service
orientation, Autonomy refers to the desired behaviour of services to be responsi-
ble for their own operational status. Therefore, services may autonomously vary
their implementation, deployment, operation, and management independently
of their consumers. Generally, service autonomy raises the question of how to
establish proper operation status on the system level, especially in presence of
possible failures in the underlying service elements.

Dependency. Dependency is a phenomenon frequently observable in service-
oriented applications. It exists not only between service providers and service
consumers, but also between services and their underlying environment. Gener-
ally, we can identify the following two dependency types in SOA:

Functional Dependency. In the abstract layered SOA model, services build the
conjunction part between the business layer and underlying enterprise IT lay-
ers. The functional operability of a service relies on technical components from
the IT layers, such as application server or database server. In turn, the proper
operability of services ensures the functionality of business processes based on
them. In this context, services along with business processes, applications, and
infrastructural elements build a ’vertical functional link’ between functionally
interrelated SOA elements. All the SOA elements in the functional link are func-
tionally dependent on each other.

Weak Dependency. Apart from functional dependencies, there are weak depen-
dencies between system elements indirectly related to each other. Weak depen-
dency occurs, if two independent system elements functionally depend on the
same element in the system (e.g. two services running on the same application
server) or if they support the same system element (e.g., a web server and a
database server supporting the same Web service). Weak dependency does not
play a critical role for proper operation of service-oriented applications. It is
mainly used to determine the effective environment of a system element.

Decentralization and distribution. Service orientation can be regarded as an
evolution of traditional distributed application concepts. It imposes decentraliza-
tion by utilizing business capabilities provisioned by various distributed organiza-
tional units. From a system management point-of-view, system decentralization
requires appropriate management approaches to cope with the distributed nature
of service-oriented applications and to avoid situations like resource bottlenecks
or single-point-of-failure.

Dynamism. SOA dynamism can partly be derived from service autonomy: the
open architecture of an SOA allows for introducing/removing services as au-
tonomous functional units to/from the system at any time. Furthermore, each
service is free to adapt its behaviour autonomously to environmental changes. A
similar level of dynamism can be observed in other SOA elements, in particular

208 L. Liu, S. Thanheiser, and H. Schmeck

with respect to element variability and possible emergent behaviours on the sys-
tem level. Therefore, we need approaches to deal with system dynamism - both
at system level and at element level.

Heterogeneity and interoperability. The IT landscape for service-oriented
applications is heterogeneous with respect to the variety of elements on the
application layer and infrastructure layer in the abstract SOA model - different
platforms, different technologies, different capabilities. Although the standard-
based interactions help to reduce the impact of heterogeneous technologies on the
SOA-based system, this characteristic remains a challenge for designing generic
self-organizing approaches managing the system.

Robustness. The desirable reference architecture has to keep the balance be-
tween optimal and suboptimal but robust solutions. As aforementioned, a self-
organizing solution for service-oriented applications has to face a dynamic and
decentralized system. Both characteristics make it difficult to ensure the overall
optimal behaviour of the solution, which can only exist in a static and central-
ized environment. In contrast to such optimal but strongly restricted behaviour
in a service oriented environment we prefer a self-organizing solution exhibiting
potentially suboptimal but robust behaviour.

Scalability. A service-oriented application may scale from simple applications
leveraging a few services to large-scale enterprise-level applications involving a
set of back-end systems such as CRM, ERP. Hence, a solution for enabling self-
organization in SOA has to be able to deal with various scalability levels of the
targeted service-oriented application.

Transparency. This characteristic refers to the willingness of an autonomous
SOA element to reveal information about itself and to accept external opera-
tional objectives. The background for this request is the necessary collaboration
between interrelated components at runtime. In such a scenario, a component
can decide autonomously if it is willing to reveal its internal information and how
to reveal it. Depending on the different degrees of willingness, we can generally
distinguish between fully-transparent - if an element reveals its (consolidated)
internal information to each SOA system element and is ready to cooperate
with any other element, partly-transparent - if an element only reveals part of
its internal information e.g. to elements with functional dependency, and non-
transparent - if an element acts as a black box without exposing any internal
information except the predefined service messages.

3 Related Work

A reference architecture provides architectural patterns for building software
systems targeting certain problem domains. In recent years several organizations
have worked on various reference models as well as reference architectures for
SOA and self-organizing applications to establish a common understanding on
designing and implementing such systems.

A Reference Architecture for Self-organizing Service-Oriented Computing 209

3.1 Service-Oriented Computing

Several reference models and reference architectures exist in the context of
service-oriented systems. W3C has worked on the foundation for service orienta-
tion and defined Web services as well as the Web service architecture technology
stack addressing how a service-oriented architecture can be built upon this stack.
As work-in-progress, the technical committee from OASIS aims at conceptual-
izing a reference model and a reference architecture for SOA. They study the
concept of SOA from another point-of-view and emphasize the various aspects
in SOA and their relationships to each other.

A comprehensive reference architecture for SOA called ”Service-oriented So-
lution Stack” (S3) is proposed by Arsanjani et al. [8]. They divide a service-
oriented environment into nine independent layers. The five basic layers are from
top-down the consumers and business processes layers with more consumer con-
cerns, the services layer, and the service components and operational systems
with more provider concerns. The other four layers cut across the five basic
layers and support the aspects integration, quality of service, information ar-
chitecture, and governance and policies in the environment. The S3 reference
architecture addresses the management perspective with the quality of service
layer and the governance and policies layer, and outlines the connection between
these two layers. However, the S3 architecture is limited mainly to issues on an
abstract level and does not detail both layers on the component level. Similar
approaches are e.g. the integrated Service-oriented Architecture (iSOA) intro-
duced in the Karlsruher Integrated InformationManagement (KIM) project [9]
or the extended Service-oriented Architecture (xSOA) by Papazoglou [10].

3.2 Self-organization

Self-organization is a phenomenon often studied in the natural sciences, e.g. in
cybernetics focusing on the circular mechanisms to control complex systems. A
representative work in this research area is the viable system model (VSM) de-
veloped by S. Beer in the 1970s [11,12]. In the VSM, a viable system exhibits
a set of characteristics, among other things, adaptivity, self organisation, abil-
ity to communicate, and ability to learn. The VSM targets at viable systems
and has been applied successfully to various problem domains such as organi-
zation modelling. In general, the VSM encapsulates three interacting aspects
of viable systems: operation, control, and environment of the system. The five
subsystems - System 1 to System 5 - declared in the VSM cover these aspects
and their relationships to one another, as illustrated in Fig. 1. All the operating
components in the system are referred to System 1. In other words, System 1
may have several instances in a viable system. In the context of SOA, System 1
may contain e.g. a service providing certain business capabilities or application
server supplying the hosting environment for services. Each instance in System
1 is autonomous and may operate according to its local environmental situation
with limited view to the environment. To coordinate the operating components,
System 2 establishes the necessary communication and provides the necessary

210 L. Liu, S. Thanheiser, and H. Schmeck

interface to System 3, which supervises and controls all the activities in System
1 from a local perspective. So far, with System 1, 2, 3, the system is capable
of dealing with immediate and internal concerns taking place in the local envi-
ronment. To adapt to changes in the global environment, the VSM employs a
further System 4 to control and predict the system behaviour based on infor-
mation collected from global and local environments. The balance between the
internal operational status and given external operational goal is guaranteed by
System 5. With given operational policies, System 5 supplies and enforces logical
policies to the entire system. From this point-of-view, it creates a interface for
superior system to control the system behaviour externally. With System 4 and
System 5, the system is capable of controlling itself based on given policies as
well as on situations in the global environment. Furthermore, the VSM can be
applied in a recursive manner - in other words, each System 1 may contains a
viable subsystem consisting of all the 5 systems mentioned afore.

Fig. 1. The Viable System Model (VSM) [11,12]

More software centric reference architectures for self-organization are the
generic Observer/Controller architecture introduced in the OC priority program
[13] or the MAPE (monitor, analyse, plan, and execute) control loop from the
AC initiative [14]. OC is a vision for designing technical systems to adapt to
dynamically changing requirements of their environment by exhibiting various
so called self-x properties - e.g. self-configuring, self-protecting, self-healing, etc.
The major goal of the O/C architecture is to monitor technical systems and -
if necessary - to influence their behaviour to satisfy a particular operational
goal. The ’System under Observation and Control’ (SuOC), which can be a
large collection of interconnected active objects, makes up the basic system to
be managed by the O/C architecture. The ’Observer’ collects data from the
SuOC and computes a status model representing the current state of the sys-
tem. This status model is passed on to the ’Controller’. For taking a decision,
the Controller will consult its local knowledge base to check, if an intervention is

A Reference Architecture for Self-organizing Service-Oriented Computing 211

required to influence the system behaviour and which action is most appropriate.
The possible decision guidance can be e.g. the reported status model, the given
operational policies, as well as its experiences reflected by the action history.
The action to be imposed on the SuOC can be executed by e.g. influencing the
SuOC’s environment, by utilizing predefined controlling interface, or by directly
modifying a component’s behaviour in the SuOC. Together with the SuOC, the
Observer and the Controller build the basic architecture of an ’organic system’.

Rationale. All the related work discussed afore focus on self-organisation in
various problem domains. However, in the context of SOC, these work cannot be
applied directly to establish self-organisation in SOC. The major issues herein
are the autonomous and distributed nature of SOC elements, as discussed in
Section 2. The autonomy of SOC elements requires an in-depth control of their
functional components. This local aspect for self-organisation is well defined
by e.g. the Observer/Controller architecture of OC or the MAPE control loop
of AC. However, both approaches lack efficient support to enable collaboration
between related SOC elements. Decentralization in SOC and given dependencies
between various SOC elements make self-organisation depend to a large extent
on collaboration between SOC elements. This global aspect for self-organisation
is in turn well reflected by the VSM model, i. e., by its capabilities to interact
with the environment to control the system operational state. From this point-of-
view, a comprehensive concept for SOC has to combine approaches for enabling
self-organisation locally and on a global base. Thus, in the following sections, we
introduce the reference architecture for self-organising SOA utilizing the strength
of the models introduced in this section.

4 The Reference Architecture for self-organizing SOA

This section focuses on the desired reference architecture endowing SOC with
self-organizing capabilities. The key design challenges addressed in the last sec-
tion define the requirements for designing the reference architecture in detail.
Based on these requirements, we first introduce an abstract system model for a
self-organizing SOA on the meta level, before we go on discussing the structure
of self-organizing elements making up the reference architecture on the compo-
nent level.

4.1 An Abstract Meta Model for Self-organizing SOA

In previous work [5,6], we have applied the design principles of Organic Com-
puting to SOA to achieve controlled self-organization with so called ’Organic
SOA’ (OSOA). The basic idea of this concept is to equip each SOA element in
the system with an Observer/Controller (O/C) unit. This schema is applied in
a multi-level way with respect to the existing functional dependencies between
SOA elements. An O/C unit observes the behaviour of the corresponding SOA
element and tends to control its behaviour to match given operational direc-
tives. In this way, the O/C unit can cooperate with other relevant O/C units,
especially those in its immediate neighbourhood.

212 L. Liu, S. Thanheiser, and H. Schmeck

Fig. 2. Abstracted meta model for self-organizing SOA

Fig. 2 illustrates an OSOA with abstracted SOA elements and their manag-
ing elements including the aforementioned O/C unit. A similar approach is e.g.
introduced by Bouajila et al. in context of System on Chip [15]. In the abstract
model, each technical component in a real SOA-based application, such as a Web
service or a database server is abstracted to an element in the figure with incom-
ing/outgoing relationships to other elements. An incoming relationship indicates
that the corresponding element consumes services from other elements. Analo-
gously, an outgoing relationship indicates that the element delivers services to
other elements in the system. In analogy to real world service-oriented applica-
tions, each element from the layer n can consume services from elements in layer
n-1 only and deliver services to elements in layer n+1. To logically separate the
management concern from the original business-centric aspect of SOA, all man-
aging elements establishing self-organization in corresponding SOA components
make up a management overlay over the existing SOA layer, as illustrated in
Fig. 2. However, the overlay is not isolated from the SOA layer. It reflects the
element structure in the underlying SOA layer, especially various dependency
relationships between SOA elements. The mapping of relationships ensures a
context-aware management of corresponding elements in the SOA layer.

Managing the underlying SOA layer is achieved by the managing elements
and by their collaboration inside the overlay. In analogy to the VSM, each SOA
element along with its managing element in the overlay exhibits the aspects
operation, control, and environment in the OSOA. With respect to operation,
each element delivers service(s) to other elements in the system in different
ways - such as invoking particular business capabilities, hosting service, or plat-
form/infrastructure support. The control of such elements is achieved by the
corresponding managing element from the overlay. The environment of an SOA
element is defined by the group of elements to which it maintains either func-
tional or weak dependency relationships. In this way, an SOA element can de-
termine its immediate neighbourhood in the system. Furthermore, the definition
includes only the minimal set of interrelated elements in the system and so in-
duces a less complex state space. Hence, this definition allows for efficient and
effective coordination between the elements at runtime.

A Reference Architecture for Self-organizing Service-Oriented Computing 213

4.2 Architectural Pattern

The extraction of managing elements from the original SOA layer into a sepa-
rate overlay enables a clear separation between management-centric and service-
centric communication. In the overlay, communication between various managing
elements allows a managing element to cooperate with other elements to manage
one or more SOA elements in the underlying SOA layer.

In OSOA, each managing element has simultaneously a local and a global
context. Locally, each managing element interacts with its corresponding SOA
element in the underlying layer to provide self-organization capabilities. Glob-
ally, each managing element is situated in an environment consisting of elements
with functional/weak dependencies. These managing elements in the neighbour-
hood are all potential cooperation partners at runtime. To facilitate cooperation
at runtime, each managing element exposes a set of services to other managing
elements in the overlay while keeping its internal autonomous behaviour unaf-
fected. From this viewpoint, we can apply service orientation to the management
overlay to get it better organized.

Furthermore, employing design principles of service orientation in the overlay
keeps it flexible with respect to changes in the underlying SOA layer. Any change
in the SOA layer results in change(s) to the management overlay layer. E.g., if a
new element is introduced in the SOA layer, a corresponding managing element
will be added to the management overlay, too. This desirable capability can be
achieved e.g. by employing the service repository introduced in the W3C’s Web
service architecture. Furthermore, the open architecture of SOA allows integrat-
ing further services into the management overlay with particular capabilities
such as a service providing decision support in case of uncertainties/conflicts be-
tween managing elements or an ”information desk” service delivering a common
understanding on particular vocabularies to managing elements.

Rationale. Using service orientation for building the management overlay ad-
dresses many of the architectural design challenges discussed in Section 2. Among
other things, this approach addresses the following points:

– Decentralization and distribution: In OSOA, decentralized control of a
service-oriented application is enabled by distributed managing elements or-
ganized in compliance with the same service-oriented principles. This stream-
lines decentralized control essentially to cope with the inherent distributed
characteristics of service-oriented applications.

– Dynamism: A management overlay employing service-oriented design prin-
ciples reveals the dynamic characteristics of SOA-based systems. Various ap-
proaches from service orientation help the management overlay to cope with
the dynamism in the underlying SOA layer - such as the service registry
defined in the Web service architecture or the WS-Discovery specification
for discovering services.

– Heterogeneity and interoperability: The underlying SOA layer to be man-
aged is heterogeneous e.g. with respect to technical platforms, supporting
technologies. Service orientation resolves the heterogeneity by employing a

214 L. Liu, S. Thanheiser, and H. Schmeck

set of standards - such as XML, SOAP, WSDL. Applying service orientation
to the management overlay ensures that the communication between man-
aging elements in the layer can take place independently of their technical
implementation.

– Scalability: The managing elements in the overlay reflect the structure of the
underlying service-oriented application in the SOA layer. In other words, any
changes in the underlying service-oriented application results in analogous
changes in the overlay. This allows the management overlay to scale in ac-
cordance to the underlying system to be managed.

However, in comparison with traditional centralized management solutions
and in compliance with service orientation the decentralized architecture of the
overlay implies some trade-offs and limitations. Obviously, the decentralized con-
trol requires more communication and coordination efforts which may affect the
performance of the system. Moreover, each managing element has only a lim-
ited view on the entire system, which may lead to suboptimal decisions with
respect to centralized control. From this point of view, the management over-
lay is a trade-off between decentralized but robust control and centralized but
restricted control.

4.3 The Managing Element in OSOA

In the previous section, we have discussed how managing elements are organized
in the management overlay to enable decentralized control over the underlying
SOA-based system. In this section, we focus on the internal structure of manag-
ing elements. Fig. 3 shows the managing element as a set of interacting runtime
subcomponents. The component view of the managing element in the figure re-
flects the VSM to enable adaptive behaviour with respect to local operation and
global environment. In the following, we will rely on the VSM to outline the
internal structure of a managing element.

System 1 of the VSM contains all operative elements carrying out predefined
business capabilities. In our model, System 1 consists of operative subcompo-
nents - business capabilities and service interface that make up a normal ser-
vice in an SOA - and the local regulatory subcomponents concerning various
management aspects of operative subcomponents, e.g. availability management,
service-level management and cost management. Business capabilities define
functionalities the service offers to other components in the SOA, such as hosting
service of a Web server or database service of a database instance. A consumer
can access the business capabilities through the given service interface. The ser-
vice interface separates the invocation aspect from the operation aspect of the
business capabilities. This allows for defining invocation-related artefacts, such as
service level agreements, without affecting the operational part. Runtime-related
management aspects make up the local management part within System 1. Fig.
2 illustrates some of these aspects. These subcomponents perform low-level man-
agement operations only in the local context. They do not have any reference to
e.g. the global context or other external operational directives.

A Reference Architecture for Self-organizing Service-Oriented Computing 215

Fig. 3. Component view of a self-organizing component in OSOA with mapping to the
VSM

System 2 coordinates all the operative elements as well as the low-level man-
agement subcomponents and provides a regulatory centre for them. The internal
coordinator in System 2 coordinates the management subcomponents and takes
charge of their impact on the operative system. There are certain dependencies
between various management aspects. For instance, any changes in the service-
level may lead to changes in cost calculation. Such dependencies are covered by
the internal coordinator for the consistency across all the aspects.

In the VSM, System 3 implies the control of System 1 and 2 by managing
immediate internal activities in them. The control over System 1 is achieved by
three subcomponents: monitor, actuator and management interface. The moni-
tor employs various mechanisms such as events, log files, instrumentation APIs
to gather details about the runtime behaviour of the business capabilities. The
other subcomponent, the actuator, changes the runtime behaviour of the busi-
ness capabilities by executing given actions. This may take place by e.g. chang-
ing the configuration or invoking APIs in System 1. The management interface
provides the possibility of platform-independent access to the monitor and the
actuator. Existing approaches such as the WS-Management or the Web Service
Distributed Management (WSDM) specification can be applied to design the
management interface.

216 L. Liu, S. Thanheiser, and H. Schmeck

Additionally, System 3 contains all the subcomponents of an O/C unit ex-
cept for the predictor. Information about the runtime behaviour of System 1 is
collected by the filter via the management interface. The filter consolidates the
collected data based on given management objectives and delivers the consoli-
dated data to the data analyser. The data analyser uses the pre-processed data
to search for recognizable behaviour patterns by applying various mathematical
or statistical methods. The decision maker is responsible to select appropri-
ate actions according to various factors. Next to the data delivered by the data
analyser, there are several other subcomponents contributing to decision making.
The knowledge base delivers e.g. historical data about previous actions. In addi-
tion, a simulator enables e.g. an approximate evaluation of the action regarding
possible influence on the operative subcomponents in System 1. If the decision
maker has selected an action, it executes the action through the aforementioned
management interface.

System 4 looks outside as well as to the future of the local operative system.
It analyses the system environment on the global level and try to predict future
system behaviours. This increases the quality of decisions made by the decision
maker, because System 4 incorporates global context to support local decision-
making. Therefore, System 4 requires an understanding about its environment
and the appropriate capability to communicate with it. In our model, we use
the predictor to predict the behaviour of the underlying component in the next
sample time unit(s). The coordination with managing elements in the environ-
ment is carried out by the coordinator. In addition, the binding interface enables
managing elements to share information as well as to set up collaborations.

Until now, we have constructed a managing element that is adaptively aware
of local as well as global changes in the system. However, we still miss the aspect
of controlled self-organization in the model. This aspect is realized by System
5 in the VSM. In our model, System 5 consists of the objective function, the
management model and the control model. The objective function accepts policies
from an external source, e.g. from a human administrator or other superior
managing element. Since policies are used to influence the behaviour of the entire
system, the managing element is therefore controlled by an external instance in
this way. The input policies are further divided into a management model and
a control model. The management model decides e.g. the way in which the filter
collects runtime information or the way in which the data analyser should process
the consolidated runtime information. The control model controls the decision
maker and specifies e.g., how the various subcomponents like data analyser,
coordinator, predictor or similar should be combined to support decision-making.

The Environment forms the last part in our model. In the last section, we
defined the environment of a managing element as the group of all manag-
ing elements with either functional or weak dependencies. In our model, the
environment model always contains an up-to-date system model - including
the information about all related managing elements in the environment, re-
lationships to these elements, and other meta-level information. All this meta-
level information is exposed by the meta interface. The meta-level information

A Reference Architecture for Self-organizing Service-Oriented Computing 217

facilitates collaboration between managing elements at runtime. In combination
with other approaches such as dynamic discovery, the meta interface helps to
keep the overlay up-to-date without any manual procedures.

Rationale. In our model, we can generally classify all the subcomponents into
two groups. The subcomponents of System 1, 2, 3 establish self-organization in
the local context. In addition, the subcomponents of System 3, 4, 5 facilitate
the control of the underlying SOA element through coordination and collabora-
tion with other managing elements in its immediate neighbourhood. The overall
controlled self-organizing behaviour of a managing element is the result of col-
laboration between both groups on the higher level. The separation of local
self-organization from the coordination on a higher level enables clear design of
the system and increases modularity and reusability of the subcomponents.

To illustrate the functionality of the reference architecture in context of self-
organization, we consider a self-healing scenario in an SOA system. Initially,
a service and a business process negotiate a service-level agreement specifying
service-level objectives that both of them have to follow. With the given agree-
ment, System 5 of the service’s managing element will propagate an appropriate
policy to all other subsystems in order to align their behaviour. Among other
things, it specifies e.g. the type of metrics to be monitored by the filter in Sys-
tem 3, how the data analyser has to pre-process the collected data, and how
the decision maker can make decision based on estimated data. For example, for
managing availability, the filter has to monitor the number of processed requests
per time unit by the service. The data analyser then can perform time-services-
analysis on the monitored data. If the predictor in System 4 predicts a possible
violation of the SLA, the decision maker tries to solve the cause for it. Let’s as-
sume that the increased processing time per request is caused by low processing
priority of the service in the underlying Web server. In this case, the coordinator
will try to contact the underlying Web server specified in the environment model
to increase the priority of its corresponding service. This activity is possible e.g.
in combination with higher cost. If the coordinator can reach a new agreement
with the underlying Web server, the decision maker does not need to perform
any action in the service; otherwise it has to negotiate a new agreement with
the business process again.

5 Conclusion

In this paper, we have presented a reference architecture to enable controlled
self-organization in a service-oriented environment. The distributed and hetero-
geneous characteristics of service-oriented computing demand for comprehensive
management approaches. In our reference architecture, self-organization of SOA
elements is achieved by a separate management overlay observing and control-
ling the underlying SOA layer. In comparison to existing traditional management

218 L. Liu, S. Thanheiser, and H. Schmeck

solutions, our reference architecture represents a generic and technology-
independent approach that can be applied to each element in an SOA-based
system. Furthermore, utilizing service orientation in the management overlay
makes the overlay more flexible and agile.

Our future work will focus on the refinements of the reference architecture and
apply the reference architecture in simulation tools to verify the design and its
impact on the underlying SOA-based system. In particular, the following open
questions have to be addressed:

– In this paper, we assume that each SOA element can be equipped with a
corresponding management element in the management overlay. For legacy
systems inside SOA, this may pose a challenge due to missing interfaces
in the legacy SOA element. Therefore, it is essential to investigate how to
integrate such legacy elements into an OSOA landscape.

– In the management overlay, a managing element may receive concurrent or
even inconsistent instructions from other functionally dependent managing
elements. In this case, mechanisms are needed to solve conflicts and, if pos-
sible, to find the most adequate solution.

– The OSOA should be controllable by external policies supplied by human
system participants. Therefore, it is to investigate how the ”human-machine”
interaction can take place at runtime. In particular, how the human strategies
and operational goals can be translated into OSOA policies.

References

1. Cherbakov, L., et al.: Impact of service orientation at the business level. IBM
Systems Journal 44(4), 653–668 (2005)

2. Schmeck, H.: Organic Computing- a new vision for distributed embedded systems.
In: Proceedings Eighth IEEE International Symposium on Object-Oriented Real-
Time Distributed Computing (ISORC 2005), pp. 201–203. IEEE Computer Society
Press, Los Alamitos (2005)

3. Horn, P.: Autonomic Computing: IBMs perspective on the state of it (2001),
http://www-03.ibm.com/industries/government/doc/content/bin/auto.pdf

4. Liu, L., Schmeck, H.: A roadmap towards autonomic service-oriented architec-
tures. International Transactions on Systems Science and Applications 2(3), 245–
255 (2006)

5. Liu, L., Thanheiser, S., Schmeck, H.: Coping with the complexity of service-oriented
computing using controlled self-organization. In: Workshop Service Oriented Com-
puting: a look at the Inside 2007 (SOC@Inside 2007), Vienna (2007)

6. Thanheiser, S., Liu, L., Schmeck, H.: Towards collaborative coping with IT com-
plexity by combining soa and organic computing. System and Information Sciences
Notes 2(1), 82–87 (2007)

7. Kazman, R., Clements, P., Bass, L.: Software Architecture in Practice. Addison-
Wesley, Reading (2003)

8. Arsanjani, A., et al.: S3: A Service-oriented reference architecture. IT Profes-
sional 9(3), 10–17 (2007)

9. KIM: The Karlsruher Integrated InformationsManagement (KIM) project (2007),
http://www.kim.uni-karlsruhe.de

http://www-03.ibm.com/industries/government/doc/content/bin/auto.pdf
http://www.kim.uni-karlsruhe.de

A Reference Architecture for Self-organizing Service-Oriented Computing 219

10. Papazoglou, M.P.: Extending the service-oriented architecture. Business Integra-
tion Journal 2005(FEB), 18–21 (2005)

11. Beer, S.: Brain of the Firm, 2nd edn. John Wiley & Sons, Chichester (1981)
12. Beer, S.: Diagnosing the System for Organizations. Wiley, Chichester (1985)
13. Branke, J., et al.: Organic computing - adressing complexity by controlled self-

orgnization. In: 2nd International Symposium on Leveraging Applications of For-
mal Methods, Verification and Validation, pp. 200–206 (2006)

14. IBM: An architectural blueprint for Autonomic Computing (2005),
http://www03.ibm.com/autonomic/pdfs/AC7.pdf

15. Bouajila, A., et al.: Organic computing at the system on chip level. In: IFIP In-
ternational Conference on Very Large Scale Integration of System on Chip 2006,
Springer, Heidelberg (2006)

http://www03.ibm.com/autonomic/pdfs/AC7.pdf

Towards Self-organising Smart Camera Systems

Martin Hoffmann, Jörg Hähner, and Christian Müller-Schloer

Leibniz Universität Hannover
Institute of Systems Engineering, System and Computer Architecture

Appelstr. 4, 30167 Hannover, Germany
{hoffmann,haehner,cms}@sra.uni-hannover.de

Abstract. Smart Camera Systems consist of large numbers of net-
worked cameras which can adjust their fields of view by panning, tilting
and zooming. Each Smart Camera is an embedded systems that does
not just capture raw video streams but also analyses video data locally
using computer vision techniques. Apart from image processing tasks the
second important issue is the management of such systems, e.g. camera
alignment and calibration. Due to the increasing number of cameras in
these systems manual administration becomes hardly feasible. Therefore,
algorithms for autonomous system organisation are needed. As a basis
for these algorithms, in this paper we propose a distributed system archi-
tecture which is tailored to the requirements of Smart Camera Systems.
Inspired by self-organisation –a major paradigm of Organic Computing–
this paper presents an algorithm relying on our distributed architecture
for one important management problem in Smart Camera Systems, i.e.
the spatial partitioning of an area under observation.

Keywords: Distributed Smart Cameras, self-organising, spatial
partitioning.

1 Introduction

Future camera based surveillance systems, as for example used at airports and
train stations, will rely on several hundreds of distributed Smart Cameras [1,2].
Smart Cameras (SCs) are capable of analysing captured video data autonomously
and inform security staff in case of critical events. Current research advances in
computer vision make way for cooperative scene understanding, see e.g. [3]. There-
fore, Smart Cameras are able to detect for example intruders in non-public areas
and acts of violence, vandalism or even terrorism [4].

This paper focuses on a self-organising system infrastructure rather than on
computer vision techniques. We especially investigate SCs that are used for
surveillance of large areas, e.g. aprons of airports. In order to secure these wide
spaces, large numbers of spatially adjacent SCs carrying out coordinated surveil-
lance tasks are needed. E.g., these tasks may be target tracking or object iden-
tification. An overview of past and current research projects concerned with
automated scene understanding is given in Section 3. The amount of data col-
lected by SC systems can hardly be analysed by human staff – for privacy reasons

U. Brinkschulte et al. (Eds.): ARCS 2008, LNCS 4934, pp. 220–231, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Towards Self-organising Smart Camera Systems 221

as well as due to costs arising. An SC system offers many degrees of freedom
for configuration (heading and zoom setting for hundreds of cameras) so it is
hardly feasible to rely on human operators only. Organic Computing [5,6] offers
paradigms and algorithms that make way for the design of systems with certain
self-x properties. This paper describes an algorithm for self-organisation of SC
systems. Self-organisation for a single SC means, to find an optimal viewing an-
gle to increase the overall systems performance. Therefore, an algorithm dealing
with the question of how to partition an area under surveillance is subject of our
current research [7]. The design of this algorithm led to questions concerning the
overall system architecture.

This paper focuses two main aspects:

– the networked system architecture and SC node architecture
– a distributed algorithm (ROCAS) enabling SCs to self-organise their fields

of view

ROCAS is used for the evaluation of the SC node architecture. Since large sys-
tems of SCs are not at hand for testing purposes right now, we enhanced the
Network Simulator NS2 [8] to simulate our proposed architecture. The program
code running inside the simulator can directly be transferred to our existing SC
prototype, see [9]. Therefore, we assume simulation results to realistically reflect
the characteristics of our architecture under real world constraints.

Our SCs have fixed positions but make use of their PTZ (pan/tilt/zoom)
abilities to change their alignment. The distributed partitioning algorithm is a
special application enabling SCs to self-organise their fields of view in order to
reach a high surveillance coverage. In our distributed SC system, this is a non-
trivial task since SCs do not have global but local knowledge only. Since a single
point of failure is not acceptable for safety critical applications, we investigated
an approach relying on fully distributed SCs.

This paper is structured as follows. At first we present our system architecture
and related work. Afterwards, the Art Gallery Problem [10] will be introduced
as well as its differences from the spatial partitioning problem we investigated
further. In the end, we present experiments and results.

2 Architecture

The following Section consists of two parts. The description of an anticipated
networked system architecture is followed by the description of a single SC node
architecture.

2.1 Networked System Architecture

The left side of Fig. 1 shows the proposed system architecture. The architecture
relies on ad-hoc networked Smart Cameras (SCs). A set of SCs forms a Smart
Camera Sub System (SCSS). Smart Cameras are able to form clusters by electing
leaders, so called SCSS gateways (SCSS GWs). These SCSS GWs are in charge
of high-level tasks (alarm management, inter-SCSS communication).

222 M. Hoffmann, J. Hähner, and C. Müller-Schloer

Fig. 1. Networked system architecture (left) and Smart Camera prototype (right)

Future SCs will be able to analyse scenes cooperatively. In case a predefined
incident happens, an alarm is raised. This alarm is typically sent to a central
control room where human operators take appropriate steps. In addition to a cen-
tral control room, we propose the use of Mobile Alarm Management Terminals
(MAMTs). These mobile devices are carried by patrolling security personnel.
Thereby alarms can be distributed faster to nearby guards without having to
wait for feedback from the control room. By not relying solely on the operator
in the control room, we abolish the single point of failure of today’s surveil-
lance systems. For this paper, we investigate SCs inside a SCSS. For the current
stage of our work, we assume this system to be completely decentralised. Speak-
ing in terms of self-organisation as defined by Cakar et al. [6], we investigate
self-organisation without central control. A detailed discussion and an algorithm
allowing for self-organised spatial partitioning of SCs is introduced in Section 4.

2.2 Smart Camera Node Architecture

A picture of the SC prototype is shown in Fig. 1 on the right. The SC consists
of an off-the-shelf PTZ camera and a computing unit. The computing unit is a
miniature-sized, linux-based embedded PC (Pentium M running at 1.6GHz with
512MB RAM). This platform is used for the implementation of our SC node
software framework. This software framework has partly been implemented and
evaluated, see box I in Figure 2. Beginning from the bottom, we will shortly
describe the functionality of the components. The Sensor used is the IP camera
depicted in Fig 1. We use a combination of the open source tools VLC media
player [11] and Intel’s OpenCV [12] for Image Processing. VLC is a media player
that can be used for acquiring video streams from an IP camera. The incoming
data is converted by a wrapper and can then be passed on to a video filter
provided by OpenCV. OpenCV is a collection of Computer Vision algorithms
that enables our SC to detect faces or track objects as depicted in Fig. 4. In

Towards Self-organising Smart Camera Systems 223

Fig. 2. Smart Camera Node Architecture; Implemented and evaluated components (I)
and future enhancements (II)

our testbed, a model railway train is tracked by our SC prototype. Therefore,
an extensible control library for PTZ camera movement has been implemented.
Currently two different types of PTZ cameras can be used, see Fig. 3 for an UML
class hierarchy. This library offers a unified interface so our SC’s computing unit
can be attached to various PTZ IP cameras.

Fig. 3. Class hierarchy UML diagram of the Processing PTZ element

We currently use a single SC prototype to evaluate the sensor and actuator
parts of our SC node architecture. Since we aim at investigation of large networks
of SCs, we use a simulator for the evaluation of the remaining components.

224 M. Hoffmann, J. Hähner, and C. Müller-Schloer

Fig. 4. Laboratory testbed: model railway tracked by Smart Camera (indicated by an
ellipse)

2.3 Using NSClick to Simulate Smart Cameras

The Map Manager and Event Dispatcher components base upon the Click Mod-
ular Router, see [13]. Click is a flexible and extensible open source program for
IP based network programming. Click and our extensions can either be run in-
side a network simulator [9] or as a Linux kernel module on our prototype. Since
there is currently no large testbed of SCs available, our implementation has been
evaluated by simulation. For the simulation of large ad-hoc networks, the net-
work simulator NS2 is used [8]. In order to reach realistic simulation results, we
used a IEEE 802.11 based network as described in [14].

The Map Manager is in charge of holding all information provided by spatially
adjacent SCs. Neighbouring nodes exchange information about their position and
geometry of their field of view (FOV). This data is stored in the Neighbourhood
Cache. The Map Manager also maintains Aggregated Sensor Data. Currently, a
history of the neighbourhood cache is saved here. Future work includes event
management and therefore more sensor data needs to be held by the Map Man-
ager. The Conflict Detection component contains a distributed mutex algorithm
by Maekawa [15]. By using a distributed mutex algorithm, we aim at avoiding
conflicts arising from concurrent neighbouring SCs.

After introducing our system architecture, the following Sections presents a
broad overview of related work.

3 Related Work

Valera et al. present an overview of past, current and future surveillance systems
in [16]. They distinguish between Phase I, Phase II and Phase III systems, where
Phase III systems consist of autonomous, intelligent cameras. Phase I and Phase
II systems are surveillance systems as used today: hard-wired and non-intelligent,
broadcasting their video streams to control rooms. In the following section, we
shortly describe current research in the field of Phase III surveillance systems.
According to the structure of this paper, we start presenting SC architectures
first and come to algorithms in the end.

Towards Self-organising Smart Camera Systems 225

At Stanford Wireless Sensor Lab, Hengstler et al. developed so called Smart
Camera Motes [17]. These motes consist of a CCD-sensor, a movement sensor and
an ARM-microcontroller responsible for computing tasks. In case the movement
sensor recognizes action near the Smart Mote, the CCD-sensor is activated and
a set of pictures is taken and sent to a control room.

Rinner et al. are investigating Embedded SmartCams at the TU Graz [18].
They developed several SmartCam prototypes consisting of a CCD-sensor, DSPs
for the analysis of captured video data and a networking unit. These SmartCams
are able to cooperate in terms of tracking persons. These SmartCams are also
able to detect car accidents and lost cargo. Communication interfaces are pro-
vided via IEEE 802.x Ethernet.

The PRISMATICA project was funded by the EU and aims at increasing
security in public transport. [19] gives an overview of the achievements of the
PRISMATICA project. Within this project, PC-based, intelligent cameras have
been developed. These cameras provide far reaching data processing methods,
e.g. detection of intruders standing in forbidden areas, detection of persons going
in a reverse way. Results of this automated analysis are sent to a control room
via wireless links. Valera et al. present a communication architectures for these
intelligent cameras [16]. Field tests have been carried out in cooperation with
London Underground, the Paris Metro and Newcastle International Airport.

Systems mentioned above lack several abilities with respect to a self-organising
overall architecture. Velastin et. al state, this is due to the fact that “the work
on intelligent distributed surveillance systems has been led by computer vision
laboratories perhaps at the expense of system engineering issues”, see [2]. An
approach to building a reliable and scalable system is to use large numbers of
inexpensive and simple nodes instead of few complex nodes.

Apart from SC architecture, this paper deals with a distributed algorithm
increasing surveillance coverage. We therefore present a short overview of current
research.

Strategies to increase and measure surveillance coverage are proposed by
Mundhenk et al. [20]. Results published consider movement strategies of a single
pan/tilt camera. Cooperation between cameras is not discussed. The visualiza-
tion methods used by Mundhenk et al. have been proposed by Hew in [21]. Hew’s
approach of visualizing surveillance coverage by fading colors on a 2-dimensional
map has been used for the visualisation of our simulation results.

Erdem et al. developed an application, that determines where to place cameras
to satisfy task-specific and floor plan-specific coverage requirements, see [22].
The presented algorithms allow offline partitioning of a surveillance area under
constraints and consider viewing obstacles, the viewing field of cameras and
regions of special interest that need to be observable in high resolution. The 2D
camera model proposed is similar to our camera model, see Sec. 2.

Our work focuses on the online partitioning of a given surveillance area,
whereas Erdem et al. present a planning tool for statically configured surveil-
lance systems. Nevertheless, offline optimisation of camera alignment needs to
be considered in distributed, self-organising systems of SCs, too.

226 M. Hoffmann, J. Hähner, and C. Müller-Schloer

Erdems work is closely related to the Art Gallery Problem. We will shortly
describe the Art Gallery Problem in the following and present distributed algo-
rithm that aims at solving the problem of SC alignment on wide areas.

4 The Art Gallery Problem and ROCAS

In the 1970s, Victor Klee posed the question how many guards are needed to
completely observe an art gallery room. Vasek Chvátal showed in 1976, that �n

3 �
guards are occasionally needed and always sufficient to cover a polygon with
n vertices, i.e. an n-walled room. This computational geometry problem and
derivatives have thoroughly been discussed, see [10]. A related problem is the
adjustment of SCs FOV in such way so that optimal surveillance coverage is
reached. This problem can formally be described as follows:

Optimal partitioning of an area A means to find an adjustment for all SCs
on A, so that the surveillance coverage becomes maximal. Surveillance coverage
is maximal in case of the overlap of SCs being minimal. An SC is characterised
by a set of parameters (i.e. position and FOV). The set of all SC on A is SC,
i.e. the system configuration. FOV describes the mapping of an SC’s FOV onto
an area A, FOV : SC → A. FOV is the union of all FOV on A, FOV(SC)=⋃

SC ∈ SC FOV (SC) ∩ A. Intersection with A is necessary, since we are only
interested in solutions leading to an optimal coverage of A but still accept FOV
covering areas not in A. Goal is to find FOV(SC) = A. Achieving this goal
requires FOV being ideally suited for the coverage of A. Since this requirement
is usually not met in practice, a system configuration coming as close as possible
to cover A is searched.

Since finding optimal spatial surveillance coverage is a time critical task, we
investigated fast and lightweight heuristics to solve this problem.

4.1 A Self-organising Approach to the Art Gallery Problem:
ROCAS

The FOV of an SC can be simplified as an isosceles triangle. See Figure 5 for
the 2-dimensional geometry of an SC’s FOV . Each SC has a constant position
pi(xi, yi) and an initial value for its heading, δi. It also has a viewing angle αi,
and a depth of field τi, which is the distance between the SC and the farthest
object that can be seen by the SC. In future, an SC is supposed to change its
viewing angle and depth of field, but for now we assume these values to be fix.
One side with the length τi leads from the camera to direction δi and the second
side with same length to δi + αi. Since it is useful to define an angle for an SC’s
heading, we introduce the angle βi. βi = (δi + αi)/2 is simply the angle the SC
is directly looking at.

A first version of a distributed algorithm called ROCAS has been presented
in [7]. ROCAS stands for Robust Online Camera Alignment System. ROCAS
makes SCs exchange information about their position, geometry and heading
regularly. Each SC calculates the overlap between its own FOV and all the

Towards Self-organising Smart Camera Systems 227

neighbouring SCs FOV . A fast polygon clipping library is used for calculation
of spatial overlap, see [23]. In case overlap can be minimised, an SC tilts to the
nearest angle where overlap is minimal. Therefore, the SC iteratively increases its
heading β about ω (1◦ in the experiments) and calculates the resulting overlap
with neighbouring SCs. See Algorithm 4.1 for an overview of how ROCAS works.

Due to the local optimisation approach oscillations may occur in the system:
a set of SCs may periodically carry out slight changes. Therefore, strategies
to avoid this unwanted emergent behaviour of the system are needed. A first
approach is to prevent SCs to carry out non-significant changes to β by setting
up a threshold (3◦ in the experiments). Future work contains investigation of
more elaborate mechanisms.

Algorithm 1. Overview of the ROCAS algorithm
for 0◦ < β < 360◦

oldoverlap ← overlap
β ← β + ω
overlap ← calculate overlap with all neighbours
if oldoverlap > overlap
minimise overlap by changing own heading
send new geometry to neighbours
end if
end for

This algorithm allows Smart Cameras to take over the cooperative task of
partitioning an area under surveillance. This cooperative task serves as an eval-
uation example for the node architecture we presented in Section 2.
Future work includes further investigation on cooperative tasks. E.g., Smart
Cameras are expected to be able to track objects cooperatively. An anticipated
approach will be introduced shortly in the following.

5 Towards Object Tracking: SOM-Based Algorithm

Taking the SC system as a structure of units exchanging information and react-
ing in dependence of stimuli and neighborhood shows that it has certain affinity
to SOMs (Self-Organising Maps). Teuvo Kohonen described SOMs as a subtype
of artificial neural networks expedient for visualising low-dimensional views of
high-dimensional data, see [24]. We applied the concept of SOMs to our SC
partitioning problem. For our arrangement of SCs, the SOM’s input dimension
is 2D - as is the output dimension. Equivalent to the neurons, we take SCs as
iterative, competitive learning entities. A first goal is to achieve high coverage of
the entire area by the SCs. This happens during a training process with adapted
input signals, which are located in a defined input space. The input space in
general is bounded by a rectangle or another simple shape. In practice, these
shapes depend on floorplans of buildings or maps of the area under surveillance.

228 M. Hoffmann, J. Hähner, and C. Müller-Schloer

The possible input space is reduced to this area, where every point can be ob-
served by at least one camera. A significant difference to SOMs is that the input
space is adjusted by the training process, too. The input space is intended to
deliver signals that are not located in any FOV at that time. By using equally
distributed stimuli, an high surveillance coverage is achieved. In future, the SOM
based approach will be extended to target tracking. Objects to be tracked can
be interpreted as stimuli for the SOM-based recursive regression progress. SCs
in viewing range of a stimulus adjust their FOV in such way so that one SC
directly focuses the stimulus. Other SCs move their headings slightly towards
the stimulus. In Figure 5, the SC at p2 will directly focus pk whereas the SC
at p1 will move only slightly towards pk. Implementation and evaluation of this
approach is part of our future work.

Fig. 5. Two Smart Cameras and a stimulus

6 Experiments and Results

The experimental setup consists of SCs observing a wide area without any view-
ing and communication obstacles. For this purpose, SCs are ideally positioned
in a grid. Such scenarios can be found at aprons of airports or public transport
depots. A number of eight to 80 SCs forming a grid is therefore analysed in
detail. The density of nodes is kept constant, i.e. the observed area increases
with the number of SCs (75m by 100m for eight SCs to 250m by 300m for 80
SCs). SCs communicate using ad-hoc communication similar to IEEE 802.11
WLAN. Communication range is larger than the viewing range and we expect
a communication range of 160m in outdoor scenarios [14]. Metrics applied for
the measurement of the algorithm’s quality are the surveillance coverage as a
fraction of the optimum and the message complexity per node. Simulation has
been carried out for a loss-free as well as for a lossy communication channel.
The lossy communication channel drops 20% (equally distributed over time) of
all packets that are sent.

Figure 6 shows how surveillance coverage is increased by ROCAS in compar-
ison to an initial random SC alignment. ROCAS performs well even in large SC
systems with up to 80 SCs. Packet loss has only slight impact on the increase of
surveillance coverage. Surveillance coverage achieved is between 88% for the 80
SC scenario and up to 100% for the 8 SC scenario.

Towards Self-organising Smart Camera Systems 229

15

20

25

30

35

40

8 16 24 32 40 48 56 64 72 80

no of SCs

in
cr

ea
se

o
f

su
rv

ei
lla

n
ce

co
ve

ra
g

e
[%

]

lossy channel loss free channel

Fig. 6. Increase of surveillance coverage depending on the number of cooperating SCs

0

0,5

1

1,5

2

2,5

3

3,5

8 16 24 32 40 48 56 64 72 80
no of SCs

av
g

.n
o

o
f

m
es

sa
g

es
se

n
t

p
er

n
o

d
e

lossy channel loss free channel

Fig. 7. Average no of messages sent per node depending on system size

Message complexity is low for both scenarios using a lossy or a loss-free com-
munication channel respectively. Figure 7 shows, that nodes do not send more
than an average number of three messages even when a lossy channel is used.

230 M. Hoffmann, J. Hähner, and C. Müller-Schloer

7 Conclusion

In this paper we presented an overall architecture for a Smart Camera System.
Both the architecture of a single node as well as the networked system archi-
tecture have been described. A prototype and its abilities in terms of computer
vision have been shown. A short overview of related work in the area of SC sys-
tem architectures has been given. A sample application, the self-organised spatial
partitioning of an area under surveillance has been described and evaluated. Dif-
ferences and similarities to the Art Gallery Problem have been discussed. For
simulation of large networks of SCs we used a network simulator and shortly
described our enhancements.

Experiments have been carried out and results show, that even in a completely
decentralised system SCs are able to self-organise their FOV in order to reach
the highest possible surveillance coverage. The presented algorithm is robust
towards a lossy communication channel as has been shown by simulation.

The decentralised architecture allows to overcome drawbacks of common
surveillance systems. Apart from the distributed system scaling very well (evalu-
ation results for networks of up to 80 SCs are presented) there is no single point of
failure in our decentralised architecture. This is an important issue when safety
critical environments need to be secured.

Future work on SCs includes decentralised object tracking and the support
of mobile alarm management terminals. We also expect the SC system to be an
ideal testbed for several Organic Computing paradigms and algorithms that al-
low for self-x properties and the system’s dynamical adaption to changes in
its environment. Therefore, the proposed SC node architecture needs to be
enhanced.

References

1. Quaritsch, M., et al.: Autonomous Multi-Camera Tracking on Embedded Smart
Cameras. EURASIP Journal on Embedded Systems (2007)

2. Velastin, S., Remagnino, P.: Intelligent Distributed Video Surveillance Systems
(Professional Applications of Computing). Institution of Engineering and Technol-
ogy (2006)

3. Wolf, W.: Distributed Peer-to-Peer Smart Cameras: Algorithms and Architectures.
In: ISM 2005: Proceedings of the Seventh IEEE International Symposium on Multi-
media, Washington, DC, USA, p. 178. IEEE Computer Society Press, Los Alamitos
(2005)

4. Cupillard, F., Brémond, F., Thonnat, M.: Automated scene understanding for air-
port aprons. In: Measuring Behavior, Wageningen The Netherlands (2005)

5. Schmeck, H.: Organic computing-vision and challenge for system design. In: PAR-
ELEC, p. 3 (2004)

6. Çakar, E., et al.: Towards a quantitative notion of self-organisation. In: IEEE
Congress on Evolutionary Computation (2007)

7. Hoffmann, M., Hähner, J.: ROCAS: A robust online algorithm for spatial partition-
ing in distributed Smart Camera systems. In: Proceedings of ICDSC 2007, IEEE
Computer Society Press, Los Alamitos (2007)

Towards Self-organising Smart Camera Systems 231

8. Web: The Network Simulator - NS2, http://www.isi.edu/nsnam/ns/
9. Neufeld, M., Jain, A., Grunwald, D.: Nsclick: bridging network simulation and

deployment. In: MSWiM 2002: Proceedings of the 5th ACM international workshop
on Modeling analysis and simulation of wireless and mobile systems, pp. 74–81.
ACM Press, New York (2002)

10. O’Rourke, J.: Art gallery theorems and algorithms. Oxford Univ. Press, New York
(1987)

11. Web: VideoLAN - VLC media player, http://www.videolan.org/
12. Web: OpenCV, http://www.intel.com/technology/computing/opencv/
13. Kohler, E., et al.: The click modular router. ACM Trans. Comput. Syst. 18(3),

263–297 (2000)
14. Xiuchao, W.: Simulate 802.11b Channel within NS2. Technical report, School of

Computing, National University of Singapore (2005)
15. Maekawa, M.: An algorithm for mutual exclusion in decentralized systems. ACM

Trans. Comput. Syst. 3(2), 145–159 (1985)
16. Valera, M., Velastin, S.A.: Intelligent distributed surveillance systems: A review.

IEE Proceedings - Vision, Image, and Signal Processing 152(2), 192–204 (2005)
17. Hengstler, S., Aghajan, H.: A Smart Camera Mote Architecture for Distributed

Intelligent Surveillance. In: Working Notes of the International Workshop on Dis-
tributed Smart Cameras (DSC) (2006)

18. Bramberger, M., et al.: Distributed Embedded Smart Cameras for Surveillance
Applications. Computer 39(2), 68–75 (2006)

19. Velastin, S.A., et al.: PRISMATICA: A multi-sensor surveillance system for public
transport networks. In: IEE International Conference on Road Transport Informa-
tion and Control, 2004, pp. 19–25. IEE (2004)

20. Everist, J., et al.: Visual surveillance coverage: strategies and metrics. In: Casasent,
D.P., Hall, E.L., Röning, J. (eds.) Intelligent Robots and Computer Vision XXIII:
Algorithms, Techniques, and Active Vision. Proceedings of the SPIE, vol. 6006,
pp. 91–102 (2005)

21. Hew, P.C.: Visualisation of Surveillance Coverage by Latency Mapping. In: Pat-
tison, T., Thomas, B. (eds.) Australian Symposium on Information Visualisation
(invis.au 2003), Adelaide, Australia, ACS. CRPIT, vol. 24, pp. 11–16 (2003)

22. Erdem, U.M., Sclaroff, S.: Automated camera layout to satisfy task-specific and
floor plan-specific coverage requirements. Comput. Vis. Image Underst. 103(3),
156–169 (2006)

23. Vatti, B.R.: A generic solution to polygon clipping. Comm. of the ACM 35(7),
56–63 (1992)

24. Kohonen, T.: The self-organizing map. Proceedings of the IEEE 78(9), 1464–1480
(1990)

http://www.isi.edu/nsnam/ns/
http://www.videolan.org/
http://www.intel.com/technology/computing/opencv/

Using Organic Computing to Control Bunching
Effects

Oliver Ribock1, Urban Richter2, and Hartmut Schmeck2

1 oliver@ribock.de
2 Karlsruhe Institute of Technology – Institute AIFB

76128 Karlsruhe, Germany
{urban.richter,hartmut.schmeck}@kit.edu

Abstract. In this paper, the well-known emergent phenomenon of bun-
ching as appearing in lift group traffic control systems is taken as a
technical scenario for validating the generic observer/controller architec-
ture which has been designed as part of an anticipated organic frame-
work - providing generic toolbox mechanisms to observe, analyse, and
control emergent behaviour in self-organising systems. In particular, we
show how to control and prevent global, collective, unwanted behaviour
of groups of lifts, based on observations of the local behaviour of lift
cabins.

1 Introduction

Today’s technical systems are becoming increasingly complex. Future systems
will consist of a multitude of complex soft- and hardware components, which
interact with each other to satisfy global system functional requirements. This
trend bears the risk of more and more breakdowns and other unexpected be-
haviour. Organic Computing (OC) is driven by the vision of addressing the chal-
lenges of complex distributed systems by making them more life-like (organic),
i. e. endowing them with abilities such as self-organisation, self-configuration,
self-repair, or adaptation. This can only be achieved by giving the system el-
ements adequate degrees of freedom, some kind of awareness of their current
situation, and the ability to provide appropriate responses to dynamically chang-
ing environmental conditions. In self-organising systems this may result in an
emergent global behaviour, which can have positive as well as negative effects.
Therefore, we need an observer/controller architecture, which allows for monitor-
ing essential parameters of the self-organising system and for providing adequate
reactions to control the – sometimes completely unexpected – emerging global
behaviour.

Self-organising systems bear several advantages over classical, centrally con-
trolled systems: The failure of a single component should not cause a global
malfunction, the system should be able to adapt to changing circumstances and
much more. As a result, self-organisation is viewed to be a means of reducing
the complexity of computer systems. Nevertheless, self-organising systems are
complex systems themselves. However, the user does not have to manage this

U. Brinkschulte et al. (Eds.): ARCS 2008, LNCS 4934, pp. 232–244, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Using Organic Computing to Control Bunching Effects 233

complexity as, to a far extent, the system manages itself, that means the exter-
nally visible complexity is reduced.

But self-organisation and emergent phenomena also give rise to new problems
unknown in classical technical systems. As global emergent behaviour usually is
a non-linear combination of local behaviour both potential design directions turn
out to be highly non-trivial tasks: For a top-down approach it is hard to deduce
adequate local rules from a desired global behaviour, and in a bottom-up design,
quite often it remains unclear how to characterise how the local rules map to
global behaviour, see [1].

1.1 Controlled Self-organisation

Computer systems should not simply self-organise, they should use self-organisa-
tion to achieve a certain externally provided goal. Furthermore, the system has
to be capable to deal with (unanticipated) emergent behaviour and to adapt to
changing environmental requirements. Although OC systems will have certain
degrees of freedom for autonomous adaptivity, there remains the necessity of
potential intervention by a human user or operator. Therefore, OC systems are
assumed to support controlled self-organisation. This requires a range of meth-
ods for monitoring and analysing the system performance and for providing
appropriate control actions whenever necessary. The generic observer/controller
architecture as specified in [2,3] promises to provide the necessary components
for satisfying all these demands. Similar to the MAPE cycle (Monitor, Analyse,
Plan, and Execute) of Autonomic Computing (see [1]), a closed control loop is
defined to keep the properties of the system within preferred regions, working as
follows: Observe certain attributes of the system and act according to an evalua-
tion of the observation (which might include the prediction of future behaviour);
if the current situation does not satisfy the requirements, take action to direct
the system back into its desired range; observe the effect of the intervention and
take further action, if necessary.

Although the observing and controlling process is executed in a continuous
loop, the system under observation and control is assumed to be able to run
autonomously even if the observer and controller are not present. This allows
for autonomous operation and for carefully applied control as well, making sure
that the system always acts in the desired way. In [4] three different architectural
variants are suggested: central (one observer/controller for the whole system),
distributed (an observer/controller for each subsystem), and multi-level (one
observer/controller for each subsystem as well as one (or more) for higher ob-
server/controller levels). In particular, for larger and more complex systems it
will be necessary to build hierarchically structured observer/controller systems
instead of trying to manage the whole system with one observer/controller.

In this paper, the concepts of OC are applied to the technically oriented sce-
nario of a group of self-organising lifts. The effects of applying an observer/con-
troller architecture are carefully analysed and shown to lead to an improved
performance. The paper is structured as follows: In Sect. 2 we introduce our test
scenario of a group of self-organising lifts. Methods for analysing and evaluating

234 O. Ribock, U. Richter, and H. Schmeck

their performance are described in Sect. 3. This is followed by an explanation
of simple control mechanisms in Sect. 4, and a presentation of first experimen-
tal results in Sect. 5 validating the generic observer/controller architecture. The
paper concludes with a summary and a discussion of future work.

2 Lift Group Control

Beginning in 1975 the use of microprocessors with programmable features has
changed the lift operational controllers dramatically. Over the years many fea-
tures have been incorporated in lift systems to answer especially the demands of
high-rise buildings. In practice, under certain conditions, (simple) lift group con-
trol systems will exhibit a phenomenon called bunching. While ideally, different
lifts should arrive at a floor with a certain separation time, under heavy traffic
load conditions the lifts tend to synchronise and serve the floors at unequal in-
tervals in form of a wave. In an extreme case the lifts behave like a huge, single
lift with the capacity equal to the sum of the individual lifts. This phenomenon
is called bunching.

The probably most common definition of bunching is given by Al-Sharif and
Barney [5]: “When the time interval between cars leaving the main terminal
is not equal, bunching occurs and degrades the performance of the lift system.
[...] A typical case of bunching can be seen in lift systems when the lifts start
following each other (or even frog-leaping), as they answer adjacent calls in the
same direction. This has a detrimental effect on passenger waiting time. The
ultimate case is when all the lifts in the group move together, acting effectively
as one huge lift with a capacity equal to the summation of the capacities of all
the lifts in the group.” Bunching is defined by [6] and [7] in a very similar way.
Hence, to detect bunching effects the departure intervals at an arbitrary floor
are monitored and if lifts do not arrive at a floor with a certain separation time
equal to an average interval, then the lifts tend to synchronise and we call this
bunching. As bunching itself cannot be expected beforehand and its occurrence
cannot be predicted from the system description, it is considered as an emergent
phenomenon and it affects system performance.

2.1 Bunching Effects

Usually, the performance of lift traffic control systems is measured in terms of
the average waiting time (AWT) of the passengers (other performance measures
are possible, but not considered in this paper). Under the assumption of Pois-
son distributed arrival rates, it can be shown that best system performance is
achieved for constant inter-arrival times of the lifts. Since every deviation from
the equal distribution leads to a lower system performance, lift traffic control
systems are trying to maintain an equal distribution of the lifts throughout the
building.

How does bunching actually arise? Referring to the example from [8] we imag-
ine two buses b1, b2 serving a route of length l containing two stops s1, s2. The

Using Organic Computing to Control Bunching Effects 235

route is in form of a loop and both buses circle around the loop clockwise in
the same direction. The two stops are equally distributed over the loop, i. e. the
distances between them are in each case half of the loop: h�

1 = [s1, s2] = l
2 and

h�
2 = [s2, s1] = l

2 . The buses travel at the same speed, and it takes for both buses
the same time t� to travel from one stop to the other, i. e. the inter-arrival times
t12 and t21 between buses b1 and b2 (or between b2 and b1, respectively) at stop
s1 or s2 are equal to t�. To minimise the AWT, buses depart from the stops at
equal time intervals t�, i. e. they maintain a distance of t� or l

2 , respectively.
Caused by a random event as for example an old person who takes longer to

alight, b1 falls slightly behind schedule and is delayed. Now the distances among
the buses are shifted a little bit: b2 seems to chase b1, and b2 will arrive earlier
than b1 at the next stop. As a constant passenger arrival rate is assumed, there
will be more people waiting for b1 than for b2 at the next stop. Now b1 has to
spend more time than on average on picking up the passengers whereas b2 saves
time at every stop (since more passengers need more time to board). As a result,
b2 will catch up and pretty soon (with decreasing t12 or t21) the two buses will
travel in a convoy which increases waiting times of the passengers.

This scenario can easily be adopted to lift traffic control where events like
holding the door open to let another passenger board causes delays within the
schedule and the lifts to bunch. The common objective is to keep lifts in the
group as far apart as possible during usual traffic conditions. Within the example
stated above, bunching is clearly a self-aggravating situation that after a slight
incentive develops on its own.

2.2 Experimental Environment

Our lift group scenario is simulated using the REcursive Porous Agent Simu-
lation Toolkit (Repast)1 and hence written in Java. A group of lifts is serving
passengers which arrive at different floors within a building at a user-defined
rate. The number of lifts, the number of floors, and some other parameters can
be chosen freely. The different strategies of the lifts – how they serve the different
calls – are described in the following. Unlike classical lift control systems, which
are controlled centrally, here the lifts act in a fully autonomous and self-organised
way. In the simulation, bunching effects are easily produced accompanied by an
increasing AWT of the passengers. A brief overview of substantial characteristics
of the simulation model is given below.

Type of the building and traffic pattern: The building consists of one
lobby and an arbitrary number of floors. The lobby is the lowermost floor of the
building, where passengers start during up-peak and arrive during down-peak.
Every floor of the building is equal in terms of relevance for the passengers and
the lifts. We assume identical passenger arrival rates for all floors including the
lobby. Up-peak traffic in the morning rush hour, where every lift is filled up in
the lobby with passengers and stops at many different upper floors, or down-peak

1 http://repast.sourceforge.net

236 O. Ribock, U. Richter, and H. Schmeck

traffic, which shows a reversed situation, many arrival floors and one destination,
are ignored.

Lift system: The number of lifts in a group can be chosen as desired, however,
values should range between two to eight. Eight is the maximum number of lifts
efficiently operating together in a group in practice, referring to [7].

Passenger arrival model: During normal inter-floor traffic passengers ar-
rive at an arrival rate following the Poisson distribution: the time from one
passenger arrival to the next is based on an average passenger arrival rate
γ = average number of passengers

ticks that specifies how many passengers arrive on
average in the system per simulation tick (e. g. 4 persons/second). This time
is independent of the time elapsed since the last arrival. On passenger arrival,
both the floor where the passenger arrives as well as the target floor are chosen
randomly. The choice is based on a (discrete) uniform distribution, i. e. one floor
is chosen out of all floors with the same probability.

Lift strategies: A lift follows its currently assigned strategy, which is a sequence
of simple decisions resulting in an order to be executed. We have investigated
different strategies, but in the following we focus only on the default strategy:
within this strategy the lifts serve the hall calls on all floors sequentially in
travelling direction. Hall calls represent a floor where passengers are waiting to
be served and the calls are registered by passengers from outside the lift by
activating the up or down buttons. The destination floors are registered by the
passengers after they entered the car, therefore, these calls are called car calls.
Instead of serving the calls using a strategy like first come first serve, the calls
are sorted by floors for each travelling direction and the lifts serve those floors
with an active call in their travelling direction one after another. If there is no
further active call in the current direction, they will serve the next call in the
opposite direction, and, if the list of calls is empty they will remain at the current
floor. Furthermore, a lift is not affected by the behaviour of the other lifts in
the group, because there exists no communication between them. In contrast to
classical lift control, our lifts are not supervised by a central authority. Every
lift acts on its own, as if it would be the sole lift in the system, serves passengers
according to the described strategy, and decides by itself which call is served.
Replacing the central control authority constitutes a paradigm shift from central
to distributed lift control.

3 Quantitative Measures of Bunching

Measuring the extent of bunching quantitatively is quite essential in order to
compare the performance of different systems and be able to take appropriate
countermeasures. Al-Sharif has published several articles concerning the bunch-
ing of lifts and in particular its measurement. He focuses on up-peak traffic
conditions. However, the insights gained from the observation of bunching at
up-peak can be adopted to general traffic conditions.

Using Organic Computing to Control Bunching Effects 237

Al-Sharif’s measure is derived directly from the lift system behaviour. He
defines an ideal behaviour of the lift system under no bunching conditions, cal-
culates the deviation from the ideal state and uses this deviation as an indicator
for bunching (see [5,9] for more details). The ideal behaviour of a lift system
is defined as the departure of the lifts from the main terminal at equal time
intervals INT = RTT

N at which RTT is the round trip time, which is the time
in seconds for a single lift trip around a building from the time the lift doors
open at the main terminal, until the doors reopen, when this lift has returned
to the main terminal floor, and N is the number of lifts in the group. The time
between lift number i and lift number i+1 is defined as ti,i+1 which, in the ideal
case, should equal RTT

N . Thus the deviation of ti,i+1 from the ideal behaviour
can be expressed as (ti,i+1 − RTT

N). Since positive as well as negative deviations
are equally harmful, the absolute value is taken:

∣
∣ti,i+1 − RTT

N

∣
∣. The sum of all

these differences between the lifts in the group serves as an indication of the
system’s deviation from ideal performance.

The value of RTT is continuously measured during the operation and thus
adapting to changes in the system (for example changes in the passenger arrival
rate). Using normalisation the value of the bunching coefficient lies between 0.0
and 1.0 where 1.0 represents full bunching.

The general idea of quantifying the bunching effect is to define the ideal lift
system behaviour in terms of ideal parameter values and to compare these ideal
values to the actual parameter values obtained by observation. The deviations
from the ideal values indicate the current amount of bunching present in the
lift system. This essentially follows Al-Sharif’s definition and an approach intro-
duced in the United States patent number 5447212 [10]. This patent is based on
the same general thoughts as introduced by Al-Sharif, but measures the current
spacing between the lifts instead of the departure intervals at the main termi-
nal. The distances can be evaluated easily by counting the number of floors lying
between lifts with respect to their travelling direction.

3.1 An Observer for Lift Group Systems

In our simulation the group of lifts is augmented with an observer/controller
architecture following the generic model [2,3]. The system under observation
and control is formed by the lifts travelling in the building and the passengers
waiting at the floors and travelling in the lifts. However, the passengers are
neither controlled by the controller nor are they monitored by the observer (fixed
arrival rates are used for inter-floor traffic). The task of the observer is to monitor
the system in real-time and generate the system parameters based on the current
system state.

The only observed parameters are lift positions and lift travelling directions.
Parameters as the number of floors or the number of lifts are already taken into
account in the lift strategies. Hall or car calls are not observed, either.

During pre-processing, basic computations are performed like calculating the
distances between the lifts by transforming the current lift positions in the

238 O. Ribock, U. Richter, and H. Schmeck

building. Using the circle representation of the bus example above we calculate
for each lift li the distance di to its next lift li+1.

Subsequently, the current bunching value is measured within the data analy-
sing step by comparing the current situation to the ideal situation. Ideally, the
lifts are perfectly distributed throughout the building. Thus, in an ideal case,
consecutive lifts are separated by a constant distance d� = 2F−2

N with F being
the number of floors. In order to compare the current situation with ideal condi-
tions, the absolute deviations of the distances di from the ideal distance d� are
accumulated. By normalising with respect to the worst possible value of D the
current bunching value BV is obtained:

D =
N∑

i=1

|di − d�| (1)

BV =
D

Dworst
=

D

(N − 1) · d� + |(2F − 2) − d�| (2)

Finally, in the aggregating step, the obtained BV is filtered and smoothed with
the exponential moving average to reduce the effects of noise. This smoothing
method is very similar to the standard moving average, except that it puts
greater emphasis on more recent values.

4 Methods to Cope with Bunching

As bunching has negative effects on performance, various strategies for coping
with this effect have been suggested. We refer to [7] for more information and
just sum up some main ideas:

To achieve a uniform distribution of the lifts throughout the building, the lifts
are dispatched from the main terminal at equal intervals with early lifts waiting
longer than late lifts before their departure. The effect, however, is a decrease
in handling capacity, since lifts are waiting unproductively at the lobby.

Another relatively simple but very drastic approach is the idea of zoning
and spotting of the lifts. Zoning is used mainly at up-peak where bunching has
occurred to the greatest extent. The idea of zoning is to let the lifts serve only
certain floors of the building: For example, in a group of six lifts let three of
them serve the lower and three the upper floors. Spotting is a similar approach
designating each lift to serve a limited number of floors, only.

Another idea to reduce the effects of bunching is to assign hall calls to lifts with
regard to the expected result of bunching (which has to be measured/estimated
somehow). By calculating the estimated arrival time of the lifts (the time re-
quired to travel from a lift’s current position to a hall call), the hall calls are
assigned to maintain an equal spacing of the lifts. A problem within hall call
allocation arises from the uncertain destinations of the boarding passengers.
Therefore, some modern lift control systems provide means for the passenger to
register their destination outside the lifts before entering. Based on this infor-
mation the passengers are grouped with respect to their destinations and then
assigned to lifts (i. e. the passengers have to enter their assigned lift).

Using Organic Computing to Control Bunching Effects 239

The presented provisions differ in their dependence on the actual traffic pat-
tern. E. g. at normal inter-floor traffic, zoning shows very poor performance as
the passenger travel time is unnecessarily increased without reducing the AWT.
Hence, it should be beneficial for the performance of the lift system, if the con-
troller recognised the current traffic pattern as soon as possible to safely initiate
actions which could be harmful if applied in an improper situation. This is one
reason why controlling the lift by a central authority is a very demanding task,
in particular, if more information is available, the state space of the system in-
creases, and an optimal routing strategy has to be found in real-time. Instead of
developing another even more sophisticated central control strategy, we investi-
gate the idea of applying a control strategy based on the ideas of OC.

4.1 A Controller for Lift Group Systems

After the observer has finished evaluating the current system state, the controller
becomes active. The controller decides whether the measured situation satisfies
the system objectives. The decision is based on the bunching value only, and the
situation is considered undesirable if this value surpasses a certain predefined
threshold. If the controller decides to intervene, two different control strategies
may be triggered. We should mention that it is the goal to keep the self-organising
nature of the system and to interfere only slightly with the individual lift control.
Thus, we do not intend to implement orders like lift A, go to floor 5 within the
control strategies. Instead, we focus on interventions which influence the lift
behaviour indirectly. An example for such an indirect intervention would be the
hiding of the hall call at floor 4 from lift A and thus making lift A travel directly
to floor 5.

To maintain an equal spacing of the lifts the controller should restore the
initial situation. The controller has two possible (abstract) ways to intervene: it
could accelerate delayed lifts and/or slow down early lifts. A lift is considered
to be delayed, if the distance to the next lift in travelling direction is signifi-
cantly higher than the average distance. The basic idea behind both implemented
strategies is to accelerate delayed lifts. By passing a hall call we accelerate a lift,
and this lift saves time compared to the other lifts and finally speeds up.

Strongintervention: This strategy accelerates lifts by making them blind with
regard to hall calls. A blind lift will not serve any hall calls in the building and will
thus stop less frequent. Instead of blinding only one lift, several lifts are blinded
simultaneously, or can be blinded partially. At first, the controller sorts all lifts li
with respect to their decreasing distance di to the next lift in travelling direction.
Now, the controller blinds half of the lifts having the most distance ahead, i. e. the
lifts l1, . . . , l�N/2� (with N being the number of lifts), with decreasing intensity
(we assume w. l. o. g. that (l1, . . . , lN) is the sorted sequence). The amount of
blindness b(lj), which is assigned to the lifts, is defined as follows:

b(lj) =
{

1 − (1
�N/2� · (j − 1)) if j ≤ �N/2�

0 else
(3)

240 O. Ribock, U. Richter, and H. Schmeck

The blindness b(lj) of a lift determines the probability of serving a hall call,
e. g. a lift being 50% blind will pass a hall call with a probability of 50%. In other
words, a fully blind lift will deliver all remaining passengers in the lift without
picking new passengers up.2 On the one hand this process could be regarded as
hiding hall calls from a lift and therefore as a manipulation of the perception
of a lift’s environment. On the other hand, this represents a change of a lift’s
decision rules, since a blind lift does not distinguish between the separate hall
calls, i. e. its behaviour can be described in form of a changed strategy. Therefore,
it seems plausible to consider strongIntervention as manipulating (a parameter
of) the decision rules of the lifts. As drawbacks of this strategy we see that
there is no distinction between the hall calls – they are all treated in the same
way and waiting times of the passengers are not taken into account. Another
point regards the fact that always half of the lifts are blinded (if the controller is
active). Hence, it is possible that more lifts than necessary are set as blind and
this might lead again to an increase of the AWT.

Softintervention: This strategy is more sophisticated, performing relatively
precise interventions. Within this strategy, acceleration is performed by hiding
a hall call from a certain lift. Consequently, this lift will not serve the hidden
hall call but pass it. Hence, the next hall call in travelling direction of a delayed
lift is hidden in order to accelerate this lift. This procedure is performed for
several delayed lifts at a time. It is important to realise that in this case only
specific calls are hidden from a lift in contrast to treating all hall calls in the
same manner as in strongIntervention.

Therefore, this strategy is clearly an approach of changing the lift’s perception
of its surrounding. Certain hall calls are hidden from some lifts without altering
the environment (the hall calls are only hidden, but they exist further on) or
changing the decision rules of the lift. The decision rules are not modified, only
their input changes due to the hiding of calls. This means the behaviour of
a lift being influenced by the controller cannot be expressed in form of a lift
strategy showing equivalent behaviour. On the contrary, when softIntervention
is active, the lifts’ general strategy is not changed; they rather react to a feigned
neighbourhood.

It also has to be kept in mind that the current implementation of the con-
troller forms only a very basic realisation of the generic concept. Neither self-
optimising abilities nor learning methods that enable self-adaptation have been
implemented or investigated.

5 Experimental Results

We have used the simulation to find out whether the two strategies succeed in
reducing the emergent behaviour of bunching within the lift system. We exam-
ined the influence of controller and system parameters on the system behaviour

2 Serving a car call and a lift has to stop on a floor where passengers are waiting then
it is possible that these passengers enter the lift.

Using Organic Computing to Control Bunching Effects 241

Floors

Lifts

201510

636363

2000

1500

1000

500

0

M
e

a
n

 o
f
 p

a
s
s
e

n
g

e
r
s
'
A

W
T

Fig. 1. Preliminary investigations of parameters that influence the system behaviour
in scenarios with 3 or 6 lifts, 10, 15, or 20 floors, and a traffic intensity of 0.6

(e. g. the choice of different control strategies). In addition, we have checked the
correlation of the bunching value to the AWT, which could give us an indica-
tion of the quality of the bunching measurement with regard to representing the
amount of bunching.

Preliminary Investigations: Initially, several preliminary investigations have
been carried out to find reasonable levels for the parameters. To determine the
influence of the parameters on the system, we have calculated how all main
factors as well as all possible subsets of factor combinations affect the response by
use of regression models. As stated before, we chose the AWT of the passengers
during a simulation run as the response variable. That means, a lower response
corresponds to a better system performance.

The impact of variations of the number of floors, the number of lifts, and
the traffic intensity is as intuitively estimated. Increasing the number of floors
or the arrival rate results in a higher AWT. In contrast, more lifts lead to a
lower AWT. There is also interdependence among the number of floors and the
traffic intensity. If both are raised/lowered simultaneously, the AWT responds
stronger than at unilateral deviation. On the whole, the lift system shows intu-
itive response to variations of the building parameters. Their interactions have
heavy influence on the system and most likely superpose the other effects (e. g.
a scenario of 3 lifts, 20 floors, and a traffic intensity of 0.6 shows a collapsing be-
haviour, see Fig. 1). Hence, we performed another analysis based on the results
of the initial factorial experiment to get a better overview of the influence of the
controller strategy, the threshold of bunching for activating the controller, and
the interactions between strategy and threshold.

Effectiveness of the Control Strategies: The overall effectiveness of the
control strategies was tested by varying the threshold of bunching for activating
the controller. The simulation has been executed with a fixed scenario of 3 lifts,
10 floors, and a traffic intensity of 0.6. Obviously, a threshold of 0.0 means

242 O. Ribock, U. Richter, and H. Schmeck

B

A

strongInterventionsoftIntervention

1,00,90,80,70,60,50,40,30,20,10,01,00,90,80,70,60,50,40,30,20,10,0

55

50

45

40

35

M
e

a
n

 o
f
 p

a
s
s
e

n
g

e
r
s
'
A

W
T

Fig. 2. Effect of varying the threshold of bunching when the controller gets active (A)
on the AWT for both control strategies (B)

that the controller is always active while a threshold of 1.0 corresponds to a
completely deactivated controller.

The results of the runs are shown in Fig. 2. Since the choice of the controller
strategy has no effect in the case of an inactive controller, a threshold of 1.0
results in the same AWT for each strategy. The system performance is always
superior with an activated controller compared to an inactive controller. Differ-
ences are visible with respect to the extent of the advantage in terms of AWT. A
lower threshold results in a lower AWT. However, when the controller is always
activated (threshold equal to 0.0), the AWT increases again for both strategies.
Most likely, this is caused by passing hall calls unnecessarily at low bunching
conditions. As a result, the affected passengers have to wait longer without any
positive effect for the system, as the bunching is already at a low level. Addition-
ally, the strategy strongIntervention shows better results than softIntervention.
Regardless, we can conclude that the controller should not be always active,
because this increases the AWT compared to an on demand activation.

Examination of the Bunching Value: A correct representation of the bunch-
ing level by the bunching value is crucial for our work since all controller inter-
ventions are based on it. Therefore, we examined the bunching value with respect
to its quality to represent bunching within the lift system. Verifying the quality
of the bunching value is done by comparing the actual bunching with the mea-
sured bunching in terms of the bunching value. However, quantifying the current
level of bunching is a difficult task, since we know no other means to measure
it. Therefore, we use a different approach and compare the bunching value with
the performance of the lift system expressed in AWT of the passengers.

The underlying idea is that varying controller parameters will alter the effec-
tiveness of the controller which mainly changes the level of bunching within the
lift system. A resulting different bunching level will in turn affect AWT. In other

Using Organic Computing to Control Bunching Effects 243

words, varying controller parameters changes bunching which in turn changes
the AWT. Thus, there will be a verifiable connection between the bunching value
and the AWT, if the bunching value works. Hence, we calculated the correla-
tion between mean bunching value and AWT between different simulation runs
differing by controller parameter variations. Within this analysis, a Pearson’s
correlation coefficient of above 97% could be observed, which indicates a strong
relationship between the mean bunching value and the AWT. Thus the bunching
value as defined in this paper can be considered as a valid indicator.

6 Conclusion and Outlook

This paper investigated the potential of applying concepts of OC to a scenario
of a group of self-organising lifts, showing a macroscopic behaviour that depends
on local rules only. The lifts synchronise, move up and down together, and show
the emergent effect of bunching. Providing feedback and decision capabilities to
this group of lifts we have shown that bunching can be observed and prevented
autonomously with respect to a global objective function. We have used a metric
based on ideas of [10,11] to detect bunching effects. For controlling the lifts
we have implemented two simple methods that modify the perception of the
environment and thus affect the local behaviour of the lifts.

Our experimental results validate the idea of using the generic observer/con-
troller architecture to modify the environmental parameters of the system under
observation and control without modifying the local rules of the lift cabins di-
rectly. This led to significant improvements in the performance of the lift group
system. Future work will focus on the following topics:

1. Endowing the controller with adaptation capabilities as designated in the
generic architecture it should be able to recognise and react to different
traffic patterns. Our investigations have focused only on inter-floor traffic,
but it seems to be interesting whether bunching is the correct measurement
to characterise the effectiveness of the group behaviour during up-peak or
down-peak phases (this requires an extended observation model).

2. We have done first investigations of integrating a prediction module into the
observer that computes the bunching value with respect to history data. We
expect a better performance of observer and controller functionalities, but
this could not be verified so far.

Acknowledgement. We gratefully acknowledge the financial support by the
German Research Foundation (DFG) within the priority programme 1183
Organic Computing. We are especially indebted to Moez Mnif and Christian
Müller-Schloer, both from Leibniz Universität Hannover, and Jürgen Branke,
Universität Karlsruhe (TH), for their valuable suggestions. Also, we thank Chris-
toph Pickardt for his work on a lift simulation that serves still as our testbed of
investigations.

244 O. Ribock, U. Richter, and H. Schmeck

References

1. Kephart, J.O., Chess, D.M.: The Vision of Autonomic Computing. IEEE Com-
puter 36(1), 41–50 (2003)

2. Richter, U., et al.: Towards a generic observer/controller architecture for Organic
Computing. In: Hochberger, C., Liskowsky, R. (eds.) INFORMATIK 2006 – Infor-
matik für Menschen! GI-Edition – Lecture Notes in Informatics (LNI), vol. P-93,
pp. 112–119. Köllen Verlag (2006)

3. Branke, J., et al.: Organic Computing – Addressing complexity by controlled self-
organization. In: Margaria, T., Philippou, A., Steffen, B. (eds.) Proceedings of
the 2nd International Symposium on Leveraging Applications of Formal Methods,
Verification and Validation (ISoLA 2006), Paphos, Cyprus, pp. 200–206 (2006)

4. Çakar, E., et al.: Towards a quantitative notion of self-organisation. In: Proceedings
of the 2007 IEEE Congress on Evolutionary Computation (CEC 2007), Singapore,
pp. 4222–4229 (2007)

5. Al-Sharif, L.R., Barney, G.C.: Bunching factors in lift systems (2). Report 754,
Control Systems Centre, Control Systems Centre, UMIST, Manchester (1992)

6. Barney, G.C.: Elevator Traffic Handbook: Theory and Practice. Spon Press (2003)
7. Strakosch, G.R.: The Vertical Transportation Handbook, 3rd edn. John Wiley &

Sons, New York (1998)
8. Sheffi, Y.: Poker and random bunching. The Tech 126(50), 5 (2006)
9. Al-Sharif, L.R.: Bunching in lift systems. In: Barney, G.C. (ed.) Proceedings of

the 5th International Conference on Elevator Technologies (Elevcon 1993), IAEE
conference series, Vienna, Austria (1993)

10. Powell, B.A.: Measurement and reduction of bunching in elevator dispatching with
multiple term objection function (USP 5447212) (1995)

11. Al-Sharif, L.R.: Bunching in lifts. . .: Why does bunching in lifts increase waiting
time? Elevator World 11, 75–77 (1996)

A Generic Network Interface Architecture for
a Networked Processor Array (NePA)

Seung Eun Lee, Jun Ho Bahn, Yoon Seok Yang, and Nader Bagherzadeh

536 Engineering Tower, Henry Samueli School of Engineering
University of California, Irvine, CA 92697-2625, USA

{seunglee,jbahn,ysyang,nader}@uci.edu

Abstract. Recently Network-on-Chip (NoC) technique has been pro-
posed as a promising solution for on-chip interconnection network. How-
ever, different interface specification of integrated components raises a
considerable difficulty for adopting NoC techniques. In this paper, we
present a generic architecture for network interface (NI) and associated
wrappers for a networked processor array (NoC based multiprocessor
SoC) in order to allow systematic design flow for accelerating the design
cycle. Case studies for memory and turbo decoder IPs show the feasibility
and efficiency of our approach.

Keywords: Network-on-Chip (NoC), Interconnection Network, Network
Interface, Networked Processor Array (NePA), Multiprocessor System-
on-Chip (MPSoC).

1 Introduction

In order to meet the design requirements for computation intensive applica-
tions and the needs for low-power and high-performance systems, the number
of computing resources in a single-chip has been enormously increased. This is
mainly because current VLSI technology can support such an extensive integra-
tion of transistors and wires on a silicon. As a new SoC design paradigm, the
Network-on-Chip (NoC) [1][2][3][4] has been proposed to support the integration
of multiple IP cores on a single chip. In NoC, the reuse of IP cores in plug-and-
play manner can be achieved by using a generic network interface (NI), reducing
the design time of new systems. NI translates packet-based communication into
a higher level protocol that is required by the IP cores by packetizing and de-
packetizing the requests and responses of the cores. Decoupling of computation
from communication is a key ingredient in NoC design. This requires well de-
fined NI that integrates IP cores to on-chip interconnection network to hide the
implementation details of an interconnection.

In this paper, we focus on the architecture of NI in order to integrate IP
cores into on-chip interconnection networks efficiently. We split the design of a
generic NI into master core interface and slave core interface. First, we present
an NI architecture for an embedded RISC core. Then, an application specific
wrapper for a slave IP core is introduced based on the NI. In order to implement

U. Brinkschulte et al. (Eds.): ARCS 2008, LNCS 4934, pp. 247–260, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

248 S.E. Lee et al.

a wrapper, we start by choosing application-specific parameters and writing an
allocation table for architecture description. The allocation table is used for the
configuration of the modular wrapper and for the software adaptation. The main
contributions of this paper are a description of a generic NI architecture which
allows to accelerate the design cycle and a proposal of a systematic design flow
for an application specific interface.

This paper is organized as follows. Section 2 introduces an example of net-
worked processor array (NePA) platform and related works in NI. The prototype
of NI for OpenRISC interface is addressed in Sections 3. Section 4 describes a
modular wrapper for a generic NI and presents case studies based on the pro-
posed design flow. Finally, we conclude with Section 5.

2 Background

2.1 Networked Processor Array (NePA)

Since the focus of this paper is on developing a generic NI to support plug and
play architecture, a simple mesh based NoC architecture is assumed. As shown
in Fig. 1, NePA platform has a 2-dimensional m× n processor array with mesh
topology. Each router communicates with its four neighbors and each core is
connected to a router using an NI. The packet forwarding task follows a simple,
adaptive routing, that uses a wormhole switching technique with a deadlock- and
livelock- free algorithm for 2D-mesh topology [4]. The packet structure, shown
in Fig. 2, includes two major fields. One is the destination address (Δx, Δy) field
to indicate the destination node in the head flit. The address of the destination
node is represented by the relative distance of horizontal and vertical direction,

R

Core
(0,0)

R

Core
(1,0)

R

Core
(m,0)

R

Core
(0,1)

R

Core
(1,1)

R

Core
(m,2)

R

Core
(0,n)

R

Core
(1,n)

R

Core
(m,n)

NI R: Router ...

..

.
..
.

..

.

...
...

Fig. 1. A NePA architecture with mesh topology

A Generic Network Interface Architecture 249

Type (x, y) Tag N

Data 1

...

Data 2

Data N

Body Flit 1

Body Flit 2

Body Flit N

Head Flit

Type (x, y) Tag Data FlitSINGLE

BLOCK

Fig. 2. Message structure

so it is updated after each transition. The second field consists of a tag and the
number of data to be exchanged. The body flits deliver data to the destination
IP core.

2.2 Related Works

Since most of the published works have focused on the design of novel network
architecture, there has been relatively little attention to NI design. Bhojwani and
Mahapatra [5] compared three schemes of paketization strategy such as software
library, on-core and off-core implementation, and related costs in terms of latency
and area are projected, showing trade offs in these schemes. They insisted that
a hardware wrapper implementation has the lowest area overhead and latency.
Bjerregaard et. al. introduced Open Core Protocol (OCP) compliant NIs for NoC
[6][7][8][9] and Radulescu presented an adapter supporting DTL and AXI [10].
While standard interface has the advantage of improving reuse of IP cores, the
performance is penalized because of increasing latency [7]. Baghdadi proposed
a generic architecture model which is used as a template throughout the design
process accelerating design cycle. Lyonnard defined parameters for automatic
generation of interface for multiprocessor SoC integration [11]. However, they
limited the embedded IP cores to CPUs (ARM7 and MC68000) [12]. The designs
of wrapper for application specific cores still lack generic aspects and only tackle
restricted IP cores. This paper investigates the actual design of NI for NePA and
presents systematic design flow for arbitrary IP cores. The long-term objective
is to develop a tool that automatically generates an application specific wrapper
accepting as inputs the IP core interface specifications.

3 Network Interface Architecture

In the current prototype of NI, we limit the processing elements (PE) to Open-
RISC cores. A tile consists of an adaptive router [4], a network interface, Open-
RISC and program/data memory as shown in Fig. 3. Some parameters are
needed to build a packet header for sending/receiving data over a network. These
parameters are given by the PE (OpenRISC).

250 S.E. Lee et al.

Processing Element (PE)

Open
RISC
Core

Program
Memory

Data
Memory

Reg

Network
Interface

Router

N

S

W E

IN
T

FIFO

Fig. 3. A NePA tile architecture

3.1 Design of Network Interface

NI consists of a packetization unit (PU), a depacketization unit (DU) and PE
interface (see Fig. 4). NI is located between a router and a PE, decoupling the
communication and computation. It offers a memory-mapped view on all control
registers in NI. That is, the registers in NI can be accessed using conventional
bus interface. In this prototype, the parameters required to manage NI are given
by OpenRISC. Table 1 shows the registers details. With this interface model,
a simple implementation can be accomplished. All of the register accesses are
done by bus interface and BLOCK data transfer can be handled by the DMA
controller. DMA controller manages BLOCK data transfer from/to the internal
memory by controlling sReadAddrReg, rWriteAddrReg and the given number of
transferred data (this can be from the lower 16-bits of rDataReg or sDataReg
for receiving and sending, respectively). In order to achieve high performance,
all operations are completed in one cycle.

Packetization Unit. The packetization unit (PU) builds the packet header
and converts the data in the memory into flits. PU consists of a header builder,
a flit controller, a send DMA controller and registers. The header builder forms
the packet header based on the information provided by registers such as desti-
nation address, data ID, number of body flits and service level. DMA controller
generates control over the address and read signal for the internal memory by
referring the start address of the memory (sReadAddrReg) and the number of
data (sDataReg) for BLOCK data/program transfer. Flit controller wraps up
the head flit and body flits into a packet.

A Generic Network Interface Architecture 251

flit ctrl

header
builder

send
DMA

packet out

rType
rDataID

rData

rWriteAddr

receive reg

packet in

header
parser

sDestPE

sDataID

sData

sReadAddr

send reg

Status

status reg

interrupt

Address

Data

Interrupt

Address

Data

flit ctrl

receive
DMA

M
e

m
o

ry
 I

/F
P

ro
ce

s
so

r
I/

F

Packetization Unit (PU)

Depacketization Unit (DU)

sCmd

Register Access

Fig. 4. NI (network interface) block diagram

Table 1. Register Definition of the Network Interface

Name width R/W Offset Description

sCmdReg 8 W 0x00 command value
sStatusReg 4 R 0x04 status register
sDestPEReg 8 W 0x08 dest PEaddr of the corresponding packet
sDataIDReg 16 W 0x0C data ID /cmd opcode
sDataReg 32 W 0x10 SINGLE: data/ operand

BLOCK: number of flits
sReadAddrReg 32 W 0x14 start address of the sending data

rTypeReg 8 R 0x20 MSB 8 bit of header flit
rDataIDReg 16 R 0x24 data id/ cmd opcode of the received packet
rDataReg 32 R 0x28 SINGLE: data/ operand

BLOCK: number of flits
rWriteAddrReg 32 W 0x2C start address for storing BLOCK data

Depacketization Unit. The depacketization unit (DU) performs the receiving
data from interconnection network. DU includes a flit controller, a header parser,
a DMA controller and registers. The flit controller selects head flit from a packet
and passes it to the header parser. The header parser extracts control information
from the head flit such as address of source PE, number of body flits, and specific
control parameters. Also, it asserts an interrupt signal to the OpenRISC core
to get the local memory address for the packet. DMA controller automatically
writes the body flit data into the internal memory by accessing rWriteAddrReg
assigned by OpenRISC.

252 S.E. Lee et al.

Program 1. Send SINGLE Packet from OpenRISC
write sDestPEReg (destination address)
write sDataIDReg (data id/op code)
write sDataReg (data)
write sCmdReg (command)

Program 2. Send BLOCK Packet from OpenRISC
write sDestPEReg (destination address)
write sDataIDReg (data id/op code)
write sDataReg (number of data)
write sReadAddrReg (start address of data)
write sCmdReg (command)

Program 3. Receive Packet to OpenRISC
read rTypeReg
if SINGLE then

read rDataIDReg
read rDataReg

else
read rDataReg
write rWriteAddrReg (start address of data)

endif

3.2 Programming Sequence

Both sending and receiving packets are performed by accessing the correspond-
ing registers. Program 1 shows the programming sequence for OpenRISC core
to initiate a SINGLE packet. For sending a SINGLE data/command packet, all
the required parameters such as dest PEaddr, data ID/cmd Opcode and corre-
sponding 32-bit data are set to the associated registers. Finally, when the exact
value of MSB 8-bit for the current transmission is set into sCmdReg, a complete
SINGLE packet is generated by the NI, and injected into the network. For send-
ing a BLOCK packet (Program 2), sReadAddrReg is used for the NI to access
the internal memory. Latency for SINGLE and BLOCK transmission in NI are
4 and 5 cycles, respectively.

When a SINGLE packet arrives at the node, NI generates an interrupt. Si-
multaneously the necessary parameters are parsed from the received packet and
stored into the associated registers. At the interrupt service routine (Program
3), each stored parameter is accessed by the internal PE. When rDataReg is
accessed, all the procedures for the current packet is assumed to be complete.
On the other hand, for receiving a BLOCK packet, the only difference is to set
the corresponding write address (rWriteAddrReg) for internal memory access.
The NI will use this as the write address for storing the following data into the
internal memory. All the operations for receiving data are initiated by the cor-
responding interrupt generated by the NI. Latency to copy an incoming packet
into internal memory is 5 cycles as shown in Program 3.

A Generic Network Interface Architecture 253

Table 2. Physical Characteristics

NI 8-depth FIFO
Voltage 1.0V 1.0V

Frequency 719 MHz 1.8 GHz
Area 18,402 μm2 17,428 μm2

Dynamic Power 7 mW 10 mW

Leakage Power 184 μW 161 μW

3.3 Physical Characteristics

The NI was implemented using V erilogTM HDL and a logic description of our
design has been obtained by the synthesis tool from the SynposysTM using TSMC
90nm technology. Table 2 summarizes the physical characteristics of the NI and
FIFO. The SynopsysTM tool chain provided critical path information for logic
within the NI and FIFO up to 719MHz and 1.8GHz, respectively. NI including
two FIFOs has an area of approximately 0.053mm2 (NI Area + FIFO Area
× 2) using the 90nm technology. The ARM11 MPCoreTM and PowerPCTM

E405, that provide multi CPU designs, occupies 1.8mm2 and 2.0mm2 in 90nm
technology, respectively [13][14]. If the NI was integrated within a NePA, the
area overhead imposed by the NI would be negligible.

4 Generic Network Interface (NI)

Since NePA requires application optimization, different application specific cores
may be attached to interconnection network with minimum redesign of the spe-
cific interfaces. In the remaining parts of this paper, we classify the possible IP
cores for PE and define the parameters for wrapper in the context of the clas-
sification. Moreover, we provide a modular wrapper which can be configured at
design time.

4.1 Classification of IP Cores for PE

A node in NePA is a specific CPU or IP core (memory, peripheral, specific
hardware). We can classify IP cores into two categories: master (active) and
slave (passive) IP cores (see Fig. 5). Only the master IP cores can initiate a data
transfer over the network and the slave IP cores respond to requests from master
IP cores.

Master IP Core. A master IP core initiates communication over interconnec-
tion network and controls NI by accessing the associated registers. It sends data
packet over the network to be processed by another core and requests for packets
to be sent from the other core.

A master IP core can be easily integrated into NoC using current NI architec-
ture because it has the ability to access internal registers in the NI. A wrapper

254 S.E. Lee et al.

Master IP

Slave IP

Processing
Element (PE)

RISC

DSP

ASIP

Memory

co-processor

Peripheral

Fig. 5. Classification of IP cores

translates the protocol between IP core and NI. A master IP core is characterized
with the following parameters for the purpose of a wrapper design:

– Processor type (RISC, DSP, ASIP, etc.)
– Architecture (Von Neumann, Harvard)
– BUS type (x80 system, 68 system, etc.)
– Memory size and memory map
– BUS configuration (width, data/address interleaving, endian, etc.)

For instance, a wrapper for master IP core should translate different protocols
to the NI protocol according to the bus type. Architecture defines the number
of interface ports and memory size determines the address width. If there is
mismatch in data width, additional logic is required to adjust the data width.

Slave IP Core. A slave IP core can not operates by itself. It receives data
sent over network from other cores, processes the data, and sends computed
result over the network to another core. Memory, stream buffers, peripherals
and co-processors (DCT, FFT, Turbo decoder, etc.) are classified as slave IP
cores. Following parameters represent the characteristic of a slave IP core for a
wrapper design:

– IP type (memory, co-processor, peripheral, etc.)
– Number of control signals
– Memory size and memory map
– Internal register map
– Set of control output signals (busy, error, done, re-try, interrupt, etc.)
– Data interface (serial/parallel, big/little endian, burst mode, interleaved

data, etc.)

4.2 Modular Wrapper for Slave IP Cores

A slave IP core is not able to write registers in a current prototype of NI in
order to indicate a destination node or to set command register. With small
modification in the NI, these registers can be accessed by other cores through
networks, updating the register values. This is easily realized using the predefined
instruction set which access these dedicated registers (see dotted line in Fig. 4).
The opcode and operand of an instruction are located at Tag and Data fields in

A Generic Network Interface Architecture 255

Input
Control

Slave
IP

Core

group 1

group 2

input reg

group n

... ...
...

group 1

output reg

group n

...
...

...

Network
Interface

Output
Control

iFIFO

oFIFO
data

data

write
ctrl

read
ctrl

ctrl

status

data

control

status

Register Files

DONE

Fig. 6. Micro-architecture of a modular wrapper for a slave IP core

the SINGLE packet, respectively. Type field indicates that the packet contains an
instruction for NI control. The instruction decoder in the header parser fetches
opcode and operand from a packet and updates the internal send registers. For
instance, the core (0,0) can set sDestPEReg in NI (2,1) to 0x01 in order to
forward the computed results of core (2,1) to core (2,2) by injecting the following
packet into the network.

Type (Δx,Δy) Tag Data
NI access Opcode Operand
SINGLE 0x21 write (sDestPEReg) 0x01

There are two signal groups, control and data signals, in a slave IP core. The
input control signals initialize and manage a slave IP core. Also, a slave IP might
generate status signals to indicate its internal state (busy, error, done, etc.) or
to request special services (re-try, interrupt, etc.) for specific operations.

Fig. 6 shows the micro-architecture of a modular wrapper for a slave IP core
interface. The input control signals are grouped by their functionality and then
assigned to the application specific registers in the wrapper. These registers are
accessed by NI using SINGLE packet to initialize the control signals which are
allocated to dedicated signals and fed to the slave IP core completing initializa-
tion. Status signals have specific functions. For instance, the error signal requires
special services such as generating trap to another PE or stop the operation of
the slave IP core. The done signal initiates communication to another PE to

256 S.E. Lee et al.

transmit the results of the slave IP. These status signals need dedicated logic
for each signal. There are a set of status signals and associated control logic to
generate the controller for status signals.

Input data for a slave IP core is sent by other cores through network and
NI translates the incoming packet for the slave IP core. There are differences in
data width between the IP core and flit. In order to handle this mismatch, we
present two operation modes for the data interface:

– Unbuffered Mode: data is exchanged in data stream without intermediate
buffer.

– Buffered Mode: data is saved in the intermediate buffer temporarily.

In data interfacing, either unbuffered or buffered mode can be adopted. There
are trade offs in network utilization, latency, and hardware overhead. Choosing
appropriate interface mode is determined by an application designer and strongly
depends on the characteristic of an application. Some cores support reading in-
put data and writing output data concurrently, while they are processing. If the
bus width of a core is less than a flit width, the interface is completed in the un-
buffered mode removing the intermediate FIFOs in Fig. 6. The unbuffered mode
could waste the available bandwidth of the network since it might not utilize the
MSB parts of a flit. Other cores start execution after receiving all the input data
in a local memory. Similarly, the result of processing is saved in memory and
injected into network after completing the processing of data. Wrappers for these
cores are designed in the buffered mode adding the intermediate FIFOs in Fig. 6.
While the buffered mode operation increases network utilization by packing and
unpacking data into a flit according to the data width, it requires additional
FIFOs and packing/unpacking logic. The input and output controllers generate
signals for the slave IP core completing data exchanges. The input controller
reads data from the NI or FIFO and writes data to the slave IP core. On the
contrary, the output controller reads data from the slave IP core and passes data
to the NI or FIFO. In designing input and output controllers, designer should
keep track of the specification of an IP core such as timing, data rate, etc.

For the systematic design flow, we define an allocation table for our wrapper
design as shown in Table 3. Each line contains the specific parameters of an
IP core for a wrapper design. TYPE defines the type of IP core whether it is
master or slave. The input control signals are mapped to the iControl and the
number of iControl depends on the number of input control signals in the IP
core. The index i is used to access the internal register files using the specific
instruction. Similarly, oControl reflects the status signals from the IP core. Mode
defines the type of data transmission such as unbuffered and buffered mode.
iData and oData are used to describe the interface signals to the IP core in
order to complete data exchanges between NI and IP cores. The allocation table
will be used for the configuration of the wrapper and for the programming model
through the network.

A Generic Network Interface Architecture 257

Table 3. Allocation Table for Wrapper Design

Name Description
TYPE type of IP core (master/slave)
iControl i map for ith input register
oControl i map for ith output register
Mode type of data transmission (Unbuffered/Buffered)
iData signals for input data
oData signals for output data

Table 4. Allocation Table for Memory and Turbo Decoder

Name MEMORY TURBO DECODER
TYPE SLAVE SLAVE
iControl 1 BSIZE[15:0]

2 NONE PHYMODE[1:0], RATE[2:0], IT[4:0]
3 THRESHOLD[7:0], DYN STOP

oControl 1 NONE EFF IT[4:0]
Mode Unbuffered Buffered
iData DIN, ADDRESS, WE(I), CS(I) D[15:0], DEN(I), DBLK(I), DRDY(O)
oData DOUT, ADDRESS, OE(O), CS(I) Q[1:0], QEN(O), QBLK(O), QRDY(I)

4.3 Case Studies

In this section, we show example design flows for a memory and a turbo decoder.
We first generate the allocation table for the specific IP cores as shown in Table 4
and present the detail architecture for wrappers based on the modular wrapper.

A wrapper for a memory. Memory elements are important resources in com-
puting systems. Memory cores are embedded in the system in order to maintain
data during processing and are shared among a number of processing elements.
We assume synchronous SRAM model for the memory core. The core type is
slave and there are no control signals for initialization or status monitoring. By
assuming the data width to be 64-bits (the same with the flit width), data in-
terface is realized in the unbuffered mode removing the FIFOs between NI and
memory. The prototype NI already has the interface to memory core, generating
address and control signals. Memory core is integrated in the NePA by wiring
to the prototype NI.

In order to access the memory core through the network, a master IP core
should activate the node which contains the memory core. In case of writing,
the base address is set to the desired value by sending SINGLE packet to the
node which contains WRITE instruction to the rWriteAddrReg register in the
NI. Then, BLOCK data is sent to the the memory core (Program 4). For read
operation, four registers in the NI are accessed through the network setting des-
tination address, base address of read operation, number of data, and command
register. After updating the command register (sCmdReg), the NI automatically

258 S.E. Lee et al.

Program 4. Write to the memory core through network
SINGLE: write (rWriteAddrReg) // set start address
BLOCK: write (Data) // send data to memory

Program 5. Read from the memory core through network
SINGLE: write (sDestPEReg) // set return PE address
SINGLE: write (sReadAddrReg) //set read address
SINGLE: write (sDataReg) // set number of read data
SINGLE: write (sCmdReg) // initiate read packet

reads the data from the memory and sends the data to the destination node
(Program 5).

A wrapper for a Turbo decoder. Demands on high data rate in portable
wireless applications make error correcting techniques important for a commu-
nication system. An error correction technique known as Turbo Coding has a
better error correction capability than other known codes [15]. In this paper,
turbo decoder [16] used in wireless systems, either in the base station or at
terminal side, is embedded in NePA. The core is a stand-alone turbo decoder
operating in a block by block process. The core type is slave and there are six
signals which are used for initialization and mode selection. We map the input
control signals to three groups which are accessed by a packet. The status sig-
nal is mapped to a output control signal group. Since we adopt the buffered
operation mode, the FIFOs are inserted in the modular wrapper.

The input controller unpacks 64-bits incoming flits into 16-bits input data
and generates control signals (DEN and DBLK). It also observes the signal
DRDY in order to monitor the state of the core. The output controller packs
2-bits output into 64-bits flit and forwards the flit to the output FIFO. The

Program 6. Initialize the turbo decoder through network
SINGLE: write (iControl 1) // set iControl1 value
SINGLE: write (iControl 2) // set iControl2 value
SINGLE: write (iControl 3) // set iControl3 value
SINGLE: write (sDestPEReg) // set return PE address
SINGLE: write (sReadAddrReg) // set address to oFIFO
SINGLE: write (sDataReg) // set number of data

Program 7. Write to the turbo decoder through network
SINGLE: write (rWriteAddrReg) // set address to iFIFO
BLOCK: write (Data) // write data to iFIFO

Program 8. Read from the turbo decoder through network
SINGLE: write (sDestPEReg) // set return PE address
SINGLE: read (oControl 1) // read oControl1 value
SINGLE: write (sCmdReg) // initiate read packet

A Generic Network Interface Architecture 259

data communication is completed by NI accessing the FIFOs. In addition, the
output controller generates DONE signal to notify that decoding of one block is
completed. The DONE signal updates the sCmdReg and the NI starts to send
a packet to the destination node automatically reading the output FIFO.

Before starting turbo decoding, the decoder is initialized by sending packet
which access the input control signals (Program 6). We also set up the destination
node (sDestPEReg) that receives the results of turbo decoding. The read address
(sReadAddrReg) is set to the output FIFO and the number of data (sDataReg)
is fixed to the block size.

In order to feed data to the turbo decoder, the write address (rWriteAddr-
Reg) is set to the input FIFO and BLOCK data is sent to the turbo decoder
(Program 7). Internal state of the decoder is accessed using the output control
register (oControl 1) as shown in Program 8.

5 Conclusions

In this paper, we proposed the network interface architecture and modular wrap-
per for NoC. The NI decouples communication and computing, hiding the im-
plementation details of an interconnection network. For a generic NI, we have
classified the possible IP cores for PE and introduced an allocation table for a
wrapper design. The allocation table is used for the configuration of the mod-
ular wrapper and for the software adaptation. The case studies in memory and
turbo decoder cores demonstrated feasibility and efficiency of the proposed de-
sign flow. In addition to being useful for designing NI, the proposed design flow
can be used to generate wrapper and NI automatically.

References

1. Dally, W.J., Towles, B.: Route packets, not wires: On-chip interconnection net-
works. In: Proc. of the DAC 2001, pp. 684–689 (2001)

2. Tabrizi, N., et al.: Mars: A macro-pipelined reconfigurable system. In: Proc. CF
2004, pp. 343–349 (2004)

3. Lee, S.E., Bagherzadeh, N.: Increasing the throughput of an adaptive router in
network-on-chip (noc). In: Proc. of the CODES+ISSS 2006, pp. 82–87 (2006)

4. Lee, S.E., Bahn, J.H., Bagherzadeh, N.: Design of a feasible on-chip interconnec-
tion network for a chip multiprocessor (cmp). In: SBAC-PAD 2007: Proc. of the
19th International Symposium on Computer Architecture and High Performance
Computing, pp. 211–218 (2007)

5. Bhojwani, P., Mahapatra, R.: Interfacing cores with on-chip packet-switched net-
works. In: Proc. of the VLSID 2003, pp. 382–387 (2003)

6. Bjerregaard, T., et al.: An ocp compliant network adapter for gals-based soc design
using the mango network-on-chip. In: Proc. of the 2005 Int’l Symposium on System-
on-Chip, pp. 171–174 (2005)

7. Ost, L., et al.: Maia: A framework for networks on chip generation and verification.
In: Proc. of the ASP-DAC 2005, pp. 49–52 (2005)

8. Stergiou, S., et al.: xpipes lite: A synthesis oriented design library for networks on
chips. In: Proc. of the DATE 2005, pp. 1188–1193 (2005)

260 S.E. Lee et al.

9. Bhojwani, P., Mahapatra, R.N.: Core network interface architecture and latency
constrained on-chip communication. In: Proc. of the ISQED 2006, pp. 358–363
(2006)

10. Radulescu, A., et al.: An efficient on-chip ni offering guaranteed services, shared-
memory abstraction, and flexible network configuration. IEEE Trans. Computer
Aided Design of Integrated Circuits and systems 24(1), 4–17 (2005)

11. Lyonnard, D., et al.: Automatic generation of application-specific architectures
for heterogeneous multiprocessor system-on-chip. In: Proc. of the DAC 2001, pp.
518–523 (2001)

12. Baghdadi, A., et al.: An efficient architecture model for systematic design
ofapplication-specific multiprocessor soc. In: Proc. of the DATE 2001, pp. 55–62
(2001)

13. ARM: Arm11 mpcore, http://www.arm.com
14. IBM: Ibm powerpc 405 embedded core, http://www.ibm.com
15. Vucetic, B., Yuan, J.: Turbo codes: Principles and applications. Kluwer Academic

Publishers, Dordrecht (2000)
16. TurboConcept: High speed wimax convolutional turbo decoder,

http://www.turboconcept.com

http://www.arm.com
http://www.ibm.com
http://www.turboconcept.com

Constructing Optimal XOR-Functions to
Minimize Cache Conflict Misses

Hans Vandierendonck and Koen De Bosschere

Dept. of Electronics and Information Systems (ELIS)/HiPEAC, Ghent University,
St.-Pietersnieuwstraat 41, B-9000 Gent, Belgium

{hans.vandierendonck,koen.de.bosschere}@elis.ugent.be

Abstract. Stringent power and performance constraints, coupled with
detailed knowledge of the target applications of a processor, allows for
application-specific processor optimizations. It has been shown that
application-specific reconfigurable hash functions eliminate a large num-
ber of cache conflict misses. These hash functions minimize conflicts by
modifying the mapping of cache blocks to cache sets.

This paper describes an algorithm to compute optimal XOR-
functions, a particular type of hash functions based on XORs. Using
this algorithm, we set an upper bound on the conflict reduction achiev-
able with XOR-functions. We show that XOR-functions perform better
than other reconfigurable hash functions studied in the literature such
as bit-selecting functions.

The XOR-functions are optimal for one particular execution of a pro-
gram. However, we show that optimal XOR-functions are less sensitive
to the characteristics of the execution than optimal bit-selecting hash
functions. This again underlines that XOR-functions are the best known
hash functions to implement reconfigurable hash functions.

1 Introduction

The design of embedded systems is strongly dominated by power and perfor-
mance constraints. To maximize performance and minize power to the fullest
extent, it is necessary to apply application-specific optimizations to the proces-
sor. The optimizations that are applied depend on the executing program: the
optimizations act differently for different programs. In the context of caches,
attention has been drawn to application-specific reconfigurable hash functions
to minimize conflict misses.

The literature focusses on two types of reconfigurable hash functions: bit-
selecting functions and XOR-functions. Bit-selecting functions determine each
set index bit by selecting one of the address bits. XOR-functions involve some
computation: each set index bit is the XOR of a subset of the address bits. The
conventional modulo-power-of-2 indexing belongs to both categories.

A particular sub-class of XOR-functions, namely permutation-based functions
where the XOR is performed on at most 2 address bits, are particularly interest-
ing to implement reconfigurable hash functions in hardware, yielding circuitry
that is less complex than that of reconfigurable bit-selecting functions [1].

U. Brinkschulte et al. (Eds.): ARCS 2008, LNCS 4934, pp. 261–272, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

262 H. Vandierendonck and K. De Bosschere

Although XOR-functions require less hardware support than bit-selecting
functions, the problem remains of constructing hash functions that minimize the
number of conflict misses. A heuristic algorithm for constructing XOR-functions
is described in [1,2]. It is, however, very hard to state how good a heuristic al-
gorithm actually is if it is not known what the optimum is. To close this gap,
we present an optimal algorithm for computing XOR-functions. With this algo-
rithm, we further reduce the number of conflict misses and we can evaluate how
near to optimal the heuristic algorithm is.

The optimal XOR-function is optimal with respect to one particular execu-
tion of a program by nature of the algorithm. The same property is true for the
heuristic algorithm: the estimates are valid only for a single run of a program. In
practice, however, the hash functions should work properly across multiple pro-
gram executions. We show that optimality is lost due to changing the program’s
input data set, but the net conflict reduction of applying a hash function remains
impressive. Furthermore, the optimal XOR-function removes more conflicts than
a heuristically constructed XOR-function, regardless of the input data set.

The remainder of this paper is organized as follows. Section 2 describes related
work. The optimal algorithm is explained and illustrated in Section 3. It is
evaluated in Section 4 and the paper concludes with Section 5.

2 Background and Related Work

XOR-functions are generally represented by a matrix [3,4]. When n address bits
are mapped onto m set index bits (m < n), then the XOR-function is a n × m
binary matrix. The bit in column c and row r is 1 if the r-th address bit is
included in the XOR computing the c-th set index bit.

Permutation-based functions are a subset of the XOR-functions that obey
spatial locality [4]. Their matrix representation is characterized by a diagonal of
ones, and otherwise zeroes, in the lower m rows. In a 12 × 6 permutation-based
function, only the cells with a dot can be chosen freely:

H =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 0 0 1
0 0 0 0 1 0
0 0 0 1 0 0
0 0 1 0 0 0
0 1 0 0 0 0
1 0 0 0 0 0
.
.
.
.
.
.

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (1)

Note that the rows are numbered from the top down (the top row involves
address bit 0) and the columns are numbered from right to left.

Constructing Optimal XOR-Functions 263

Permutation-based functions are non-overlapping with bit-selecting functions,
except for the conventional modulo-power-of-2 indexing that belongs to both
classes of functions.

Reconfigurable hash functions are implemented in hardware by adding a small
amount of configuration memory and a multiplexer to every address line of the
cache memory [5,1]. The multiplexer selects one out of a set of address bits.
The select input of the multiplexer is stored in the configuration memory. As
the configuration remains fixed during long periods of time, the multiplexer
introduces marginable latency [5].

Reconfigurable permutation-based functions can be implemented with less
hardware than reconfigurable bit-selecting functions, provided that the number
of inputs per XOR is restricted to 2 [1]. This implies that, in the example above
(Equation 1), only one of the dots in a single column can be 1. Note that allowing
more inputs per XOR-gate allows small additional reductions of the conflict
misses, but the complexity of the hardware implementation of the reconfigurable
XOR-functions increases strongly [1].

Several algorithms have been described to optimize hash functions to a partic-
ular program execution. Most of these are profile-based approaches that analyze
reuse edges in the memory access stream [6,5,1]. Another algorithm analyzes only
the strides [7]. The algorithm of Patel et al [5] computes an optimal bit-selecting
function. It is a guide to our algorithm for optimal XOR-functions.

3 Optimal Algorithm for XOR-Functions

We present an algorithm for computing optimal XOR-functions. The algorithm
achieves simultaneous simulation of all hash functions in a given class by cleverly
encoding the conflict miss count for each hash function in a symbolic expression.
The algorithm combines the reuse-edge analysis of [1] with the symbolic modeling
of conflict miss counts of [5].

3.1 Definitions

The execution of a program is represented by a trace of memory accesses. The
trace length is denoted N . Each memory access refers to an address. Addresses
are denoted in bold, e.g. a. The i-th address in the trace is ai for 0 ≤ i < N .

3.2 Data Reuse and the Structure of the Algorithm

Caches exploit temporal locality [8]: each cache block is typically used multiple
times during a given time span. This reuse makes temporarily storing the cache
block in a local memory efficient.

Reuse behavior in a memory access trace can be analyzed using reuse edges
[9,10]. The reuse edge points from one access to a cache block to the previous
access in the trace relating to the same cache block. The position of this access
in the trace is denoted r(i), so there is an edge from i to r(i). Note that r(i) is

264 H. Vandierendonck and K. De Bosschere

undefined if the i-th address in the trace is the first access to a cache block. The
actual reuse of the block depends on the cache blocks accessed in the portion of
the trace that is covered by the reuse edge. If any of these cache blocks maps
to the same set of the cache as the current cache block, then it displaces the
current cache block from the cache.

These observations lead to the following structure of an algorithm for con-
structing hash functions [1,2]. The algorithm analyzes the memory access stream
one memory access at a time. If the currently analyzed cache block has not been
accessed before (it is not possible to construct a reuse edge), then a compulsory
miss occurs [8].

If a reuse edge exists, it marks the set of cache blocks that can intervene in the
reuse of the current block: If any of these cache blocks map to the same cache
set as the current block, then a conflict miss occurs for the current block. This
rule can be used to decide if a conflict miss occurs for a particular hash function.
The optimal algorithm uses this rule to compute the set of hash functions where
a conflict miss occurs. In principle, one can iterate over all hash functions and
over all blocks spanned by the reuse edge to compute this set of hash functions.
A more appropriate solution is obtained by symbolically modeling the set of
hash functions incuring a conflict miss. This symbolic model is built on the miss
conditions.

3.3 Recapitulation of Miss Conditions for Bit-Selecting Functions

The set of hash functions incurring a conflict miss for particular reuse edge is
denoted by a symbolic expression. The symbolic expression contains unknowns
describing the hash function. In the case of bit selecting functions, the unknowns
describe the bits that are selected by the hash function. For an n-bit address,
there are n boolean variables y0, . . . , yn−1. Variable yi is true when address bit
i is selected by the hash function.

The symbolic expression for the set of hash functions incuring a conflict miss
is built in two steps. First, we define the direct conflict pattern DCP [5]. DCPi,j

expresses whether the addresses ai and aj are mapped to the same set index:

DCPi,j =
n−1∧

k=0

(γk yk)
′

where γk = 1 when the k-th address bits of ai and aj are equal. The rationale
is that, for a conflict miss to occur, the set indices of ai and aj must be equal.
This happens when the hash function selects only address bits that are equal in
ai and aj .

The total conflict pattern CPi accumulates the occurence of a conflict miss
across all accessed blocks spanned by a reuse edge. A conflict miss occurs for the
reuse edge if one or more of the accessed blocks cause a direct conflict:

CPi =
i∨

j=r(i)+1

DCPi,j

Constructing Optimal XOR-Functions 265

where r(i) is the position in the trace of the previous use of the block accessed
at position i in the trace.

A total conflict miss count (CMC) is computed for the whole trace. The
CMC evaluates to the total number of conflict misses for any hash function:

CMC =
N∑

i=0

CPi

The boolean values 0 and 1 in CPi are reinterpreted as arithmetic 0 and 1 in
the equation above.

3.4 Miss Conditions for Permutation-Based Functions

Hash functions have different degrees of freedom, so they are described using
a different set of variables. The degrees of freedom for an n-to-m permutation-
based hash function are the unknown bits in the matrix representation (Equa-
tion 1), so there are m(n − m) boolean variables yi,j with 0 ≤ i < m and
m ≤ j < n. Variable yi,j is 1 if there is a 1-bit on row i and column j in the ma-
trix model of the XOR-functions (Equation 1). It is 0 otherwise. Note however
that we need an additional restriction on the variables yi,j variables: at most
one of the variables yi,j for m ≤ j < n and i fixed can be one, as we allow only
2-input XORs.

The DCP is a little more complex in the case of permutation-based hash
functions. Let us consider only the k-th set index bit for the moment. The k-th
set index bit is the XOR of address bit k with one of the address bits m, . . . , n−1,
or none of these bits. The k-th set index bits of ai and aj differ when one of the
address bits k and the selected bit differ, but not both (property of the XOR).
The extra bit differs between ai and aj when

∨n−1
l=m γl yk,l = 1, so we can write

the DCP for permutation-based functions:

DCPi,j =
m−1∧

k=0

(

γk ⊕
(

n−1∨

l=m

γl yk,l

))′

(2)

3.5 BDD and ADD Data Structures

As in [5] we represent the direct conflict pattern (DCP) and total conflict pat-
terns (CP) using binary decision diagrams (BDD) [11]. The conflict miss count
(CMC) evaluates to an integer and is represented by an arithmetic decision
diagram (ADD) [12].

The BDDs and ADDs turn out as relatively simple symbolic expressions in
the case of bit-selecting functions. Therefore, a straightforward encoding into
BDDs is used: the BDD is a binary tree, where an internal node at any level of
the BDD tests the value of one of the boolean unknowns and branches two-ways.
Each terminal node corresponds to a hash function. The path from the root of

266 H. Vandierendonck and K. De Bosschere

Let n = length of vectors
Let ai = block address of reference i
Let CMC = conflict miss count, initially all
zeroes

for each reference i in program trace do
if ai was accessed before then

CPi = 0
for each aj on stack above ai do

compute DCPi,j

CPi = CPi ∨ DCPi,j

od
move ai to top of stack
CMC = CMC + CPi

else /* compulsory miss */
push ai on stack

fi
od

Fig. 1. The profiling algorithm

the BDD or ADD to the terminal node tells what bits are selected by the hash
function by the yi variables that are 1.

The BDDs and ADDs for XOR-functions are more complex and BDD/ADD
computation time dominates the algorithm. We optimize the size of the BDD
using the constraint that at most one of the variables yi,j is 1, where m ≤ j < n
and i fixed.

The BDD/ADD is an m-level tree where each level of the tree corresponds to
one of the columns of the hash function. The BDD branches (n − m + 1)-ways
at each level. (n − m) branches correspond to XORing the fixed address bits
with one of the address bits m, . . . , n − 1, in which case exactly one of the yi,j

variables is 1, with i equal to the level in the tree. The (n − m + 1)-th branch
corresponds to the case where the fixed bit is not XORed with any other address
bits: all yi,j variables are 0.

The structure of the BDD and ADD is illustrated in Figure 2. Here, n = 4
address bits are hashed into m = 2 bits. The top level of the tree selects between
the possible cases for the hashed bit 0 (column 0 in the matrix representation).
The possible cases are: (i) XOR address bit 0 with address bit 2 (y0,2 = 1),
(ii) XOR address bit 0 with address bit 3 (y0,3 = 1) or (iii) do not XOR address
bit 0 with any other address bit (y0,2 = 0 and y0,3 = 0).

3.6 The Algorithm

The algorithm is presented in Figure 1. Some optimizations are useful to speedup
the algorithm.

The total conflict pattern is computed over the list of blocks that are spanned
by a reuse edge. It is not uncommon that this list contains many duplicates.

Constructing Optimal XOR-Functions 267

Table 1. Computation of DCPs and CPs on an example trace

Conflict pair DCP CP

1100-0100 y
′
0,3y

′
1,3 y

′
0,3y

′
1,3

0100-1101 y0,3y
′
1,3

0100-1100 y
′
0,3y

′
1,3 y

′
1,3

0100-1001 (y0,2 + y0,3)y
′
1,2y

′
1,3 (y0,2 + y0,3)y

′
1,2y

′
1,3

1100-0100 y
′
0,3y

′
1,3

1100-1001 y0,2y
′
1,2

1100-1101 0 y0,2y
′
1,2 + y

′
0,3y

′
1,3

0,k
y

0,2

1,21,2 1,2

0,3

1,31,3 1,3

0,3

1,31,3 1,3

0,2

1,21,2 1,2

‘

‘‘ ‘

‘

‘‘ ‘

y

yy y

y

yy y

y

yy y

y

yy y

1,k
y

1,k
y

1,k
y

01413 2 3 0 3

Fig. 2. The ADD computed for the example

Constructing the DCP for each of these duplicates is a waste of time, as the
total conflict pattern ORs all these DCPs.

Filtering out duplicates from the list of blocks is straightforward when using a
stack. The stack is ordered such that more recently used blocks are placed above
less recently used blocks.

The DCP degrades to a special case if it is computed for a pair of addresses
where only the m low-order address bits differ, In this case, XORing the low-order
address bits with high-order bits cannot solve the conflict, because the operation
performed on the low-order address bits (toggle or not toggle) is the same for
both addresses. This can also be seen by setting all γl = 0 with m ≤ l < n in
Equation 2.

3.7 Example

We present a simple example to illustrate the analysis of conflict misses and the
construction of the ADD. We assume that 4 address bits are mapped to 2 set
index bits (n = 4, m = 2). The ADD has 2 levels (m = 2). Each node branches 3-
ways (n−m+1 = 3). Furthermore, we assume that a program accesses following
block addresses: 12, 4, 12, 13, 4, 9, 4, 12. The computation of the DCPs and CPs
is illustrated in Table 1.

The CMC for this example is shown in Figure 2. There are two optimal hash
functions in the example, achieving zero conflict misses. These hash functions

268 H. Vandierendonck and K. De Bosschere

can be constructed by tracing the path from the root node of the ADD to the
terminal node. They are:

H0 =

⎡

⎢
⎢
⎣

0 1
1 0
0 0
1 1

⎤

⎥
⎥
⎦ H1 =

⎡

⎢
⎢
⎣

0 1
1 0
0 0
1 0

⎤

⎥
⎥
⎦

4 Experimental Evaluation

We characterize the algorithm for optimal XOR-functions using benchmarks
from the PowerStone [13], MediaBench [14] and MiBench [15] suites. Many of the
PowerStone benchmarks are trivial. We use them to make a comparison to prior
work [5,6]. The other benchmarks are run with large data sets when available.
The benchmarks are compiled for the SA-110 ARM processor by the ARM C
compiler using optimization level 2. They are simulated using the PowerAnalyzer
simulator (http://www.eecs.umich.edu/~panalyzer/).

We compute hash functions for demand-fetching data caches with sizes of
1 KB, 4 KB and 16 KB. The cache block size is 32 bytes. All caches are direct
mapped.

Optimal bit-selecting functions are computed using the algorithm of Patel et
al [5]. Heuristic XOR-functions are computed from a profile that is measured
as in [1]. Then, a XOR-function is proposed by randomly generating a large
number of XOR-functions and estimating their performance using the profile
information. The number of randomly generated XOR-functions is determined
emperically and it was found that 10000 functions is sufficient to obtain high-
quality XOR-functions [2].

4.1 Minimizing Conflict Misses

XOR-functions obtained using heuristics remove more conflict misses than bit-
selecting functions [1]. We evaluate first if optimally determined XOR-functions
provided an added benefit over heuristic XOR-functions. Table 2 shows the
misses per kilo-uop incurred in the different cache configurations, averaged over
the PowerStone benchmarks. Optimal bit-selecting functions incur fewer misses
than conventional modulo indexing, heuristic XOR-functions incur still fewer
misses and optimal XOR-functions incur the fewest misses of all. This behavior

Table 2. Misses per kilo-uop averaged over the PowerStone benchmarks

Hash 1 KB 4 KB 16 KB
modulo 21.32 8.63 2.03
bit-select 18.17 7.64 1.88
heur. XOR 16.35 6.87 1.78
opt. XOR 16.21 6.79 1.76

Constructing Optimal XOR-Functions 269

Table 3. Misses per kilo-uop for the 4 KB cache and the PowerStone benchmarks

Bench- modulo bit- heur. opt.
mark index select XOR XOR

adpcm 4.07 4.07 1.40 1.40
bcnt 79.80 17.30 17.30 17.30
blit 202.74 27.91 27.91 25.28
compress 14.77 14.77 11.62 11.60
crc 1.70 1.62 1.62 1.62
des 10.60 10.60 8.97 8.73
engine 3.87 0.03 0.03 0.03
fir 0.20 0.16 0.16 0.16
g3fax 2.24 2.24 0.68 0.68
jpeg 4.56 4.56 4.02 4.01
pocsag 1.44 0.96 0.96 0.96
qurt 1.88 1.88 1.88 1.88
ucbqsort 6.63 0.26 0.26 0.26
v42 17.94 17.74 16.73 16.50
average 8.63 7.64 6.87 6.79

is consistent across all cache configurations, although the difference between the
hash functions diminishes quickly with increasing cache size.

The relative performance between the hash functions is valid too for every
single benchmark. Table 3 shows the per-benchmark misses per kilo-uop for the
4 KB cache. The difference between two hashing functions can be large, i.e., it
succeeds in removing conflict misses or it does not succeed. E.g. the optimal bit-
selecting function for g3fax is modulo indexing incurring 2.24 misses per kilo-uop.
On the other hand, a heuristically found XOR-function incurs only 0.68 misses
per kilo-uop, which is also the optimum. Another example involves bcnt, where
any type of hash function performs well.

4.2 Impact of Cross-Profiling

The hash functions are determined for one particular run of the benchmark, using
one particular input data set. In practice, applications execute many different
data sets, which may lead to a shift in the optimal hash function. We analyze
the impact of the input data set using cross-profiling, i.e. we determine the hash
functions using a different (smaller) data set than the data set used to present
results.

Table 4 shows the misses per kilo-uop for the 4 KB cache and media bench-
marks. When considering only the self-profile, we can draw the same conclusions
as for the PowerStone benchmarks. The input data set, however, has a large
impact on the conflict-avoidance properties of the hash function. The relative
performance of the hash functions remains unaltered, underlining again the per-
formance of XOR-functions.

270 H. Vandierendonck and K. De Bosschere

Table 4. Misses per kilo-uop for the 4 KB cache and the media benchmarks

Self-profile Cross-profile
Bench- modulo bit- heur. opt. bit- heur. opt.
mark index select XOR XOR select XOR XOR

susan 6.78 4.60 4.53 4.46 8.09 4.84 4.78
jpeg enc 20.12 11.94 7.03 6.95 20.12 7.67 7.42
jpeg dec 16.53 16.27 12.38 12.17 23.88 16.87 17.23
adpcm dec 1.49 1.49 0.05 0.05 1.49 0.05 0.05
adpcm enc 0.86 0.86 0.03 0.03 0.86 0.03 0.03
epic dec 4.47 4.29 3.31 3.29 4.64 3.85 3.41
mb/jpeg dec 20.63 16.89 12.76 12.25 22.16 21.03 16.95
average 13.24 9.31 6.53 6.40 14.39 8.25 7.65

The misses per kilo-uop become significantly higher when applying cross-
profiling. The misses raise by 1.25 and 1.72 per kilo-uop on average for optimal
and heuristic XOR-functions, respectively. The misses raise by 5.08 misses per
kilo-uop for optimal bit-selecting functions, which is worse than the baseline
modulo index.

XOR-functions prove to be much more resilient to changing the input data
set of a program than optimal bit-selecting functions. This is not surprising
since XOR-functions can be applied without knowledge of the running program
too [3,16]. They eliminate conflict misses by randomizing the accesses to the
cache, which works for all programs with a high conflict miss rate.

4.3 Performance Improvement

We compute the performance improvement of the hash functions on a processor
model that ressembles the XScale processor. Our processor model is an inorder-
issue processor that fetches 1 instruction per cycle and can issue up to 2 instruc-
tions per cycle. The branch predictor is a 128-entry bimodal branch predictor.

-10%

-5%

0%

5%

10%

15%

20%

25%

s
u
s
a
n

jp
e
g

e
n
c

jp
e
g

d
e
c

a
d
p
c
m

d
e
c

a
d
p
c
m

e
n
c

e
p
ic

d
e
c

m
b
/j
p
e
g

d
e
c

a
v
e
ra

g
e

IP
C

Im
p

r
o

v
e
m

e
n

t

heuristic XOR-self

optimal XOR-self

heuristic XOR-cross

optimal XOR-cross

Fig. 3. IPC improvement for different XOR-functions

Constructing Optimal XOR-Functions 271

The memory hierarchy consists of 4 KB level-1 caches backed by memory with
a 32-cycle memory access time. We assuem the same cache access latency in all
configurations.

Figure 3 shows the IPC improvement of this processor when different hash
functions are applied relative to the IPC of the processor with a conventional
modulo index function. These results confirm the previous findings: XOR-
functions improve performance by minimizing the number of conflict misses.
We observe again that the choice of profiling input has an important impact on
the quality of the XOR-function. Differences in conflict reduction between the
heuristic and optimal XOR-functions remain present but their effect is smaller
in the IPC metric than it is in the cache miss rate metric.

5 Conclusion

Reconfigurable hash functions are an application-specific processor optimization
that provides large cache conflict miss reductions. We consider hash functions
that are XOR-functions, but the set of allowable functions are restricted such
that the XOR is performed on at most two address bits and one of the address
bits is fixed. Previous work has shown that this is an interesting class of functions.

This paper presents an algorithm to compute an optimal XOR-function yield-
ing maximal conflict miss avoidance. The algorithm models the occurence of
conflict misses using symbolic expressions. Evaluating the expression for a par-
ticular hash function yields the number of conflict misses incurred by that hash
function.

Our algorithm produces hash functions that reduce more conflict misses than
any other algorithm described in the literature. XOR-functions halve the number
of cache misses for a set of embedded benchmarks accessing a 4 KB cache.

The optimal algorithm yields XOR-functions that outperform those of heuris-
tic algorithms by a small margin. Yet, this small margin is sufficiently large (0.60
misses/Kuop) to motivate the use of the slower optimal algorithm.

Hash function construction algorithms generally are profile-based algorithms,
which make their results dependent on the input data set used during profiling.
The optimal XOR-functions are less sensitive to variations in the input data
set than hash functions constructed using other algorithms described in the
literature.

Acknowledgments

Hans Vandierendonck is Post-Doctoral Fellow with the Fund for Scientific
Research-Flanders (FWO). This research is sponsored in part by the Institute
for the Promotion of Innovation by Science and Technology in Flanders (IWT),
Ghent University and HiPEAC.

272 H. Vandierendonck and K. De Bosschere

References

1. Vandierendonck, H., Manet, P., Legat, J.D.: Application-specific reconfigurable
XOR-indexing to eliminate cache conflict misses. In: Design, Automation and Test
Europe, pp. 357–362 (March 2006)

2. Vandierendonck, H.: Avoiding Mapping Conflicts in Microprocessors. PhD thesis,
Ghent University (2004)

3. Rau, B.R.: Pseudo-randomly interleaved memory. In: Proceedings of the 18th An-
nual International Symposium on Computer Architecture, pp. 74–83 (May 1991)

4. Vandierendonck, H., De Bosschere, K.: XOR-based hash functions. IEEE Transac-
tions on Computers 54(7), 800–812 (2005)

5. Patel, K., et al.: Reducing cache misses by application-specific re-configurable
indexing. In: ICCAD 2004: ACM/IEEE International Conference on Computer-
Aided Design, pp. 125–130 (November 2004)

6. Givargis, T.: Improved indexing for cache miss reduction in embedded systems. In:
Design Automation Conference (2003)

7. Abraham, S.G., Agusleo, H.: Reduction of cache interference misses through selec-
tive bit-permutation mapping. Technical Report CSE-TR-205-94, The University
of Michigan (1994)

8. Smith, A.J.: Cache memories. ACM Computing Surveys 14(3), 473–530 (1982)
9. Temam, O.: Investigating optimal local memory performance. In: Proceedings of

the 8th International Conference on Architectural Support for Programming Lan-
guages and Operating Systems, pp. 218–227 (November 1998)

10. Vandierendonck, H., De Bosschere, K.: An optimal replacement policy for balanc-
ing multi-module caches. In: Proceedings of the 12th Symposium on Computer
Architecture and High Performance Computing, pp. 65–72 (October 2000)

11. Bryant, R.E.: Symbolic boolean manipulation with ordered binary-decision dia-
grams. ACM Comput. Surv. 24(3), 293–318 (1992)

12. Bahar, R., et al.: Algebraic decision diagrams and their applications. In: ICCAD
1993: Proceedings of the 1993 IEEE/ACM international conference on Computer-
aided design, pp. 188–191 (1993)

13. Scott, J., et al.: Designing the low-power M Core architecture. In: Proceedings of
the IEEE Power Driven Microarchitecture Workshop, pp. 145–150 (June 1998)

14. Lee, C., Potkonjak, M., Mangione-Smith, W.H.: MediaBench: A tool for evalu-
ating and synthesizing multimedia and communications systems. In: Proceedings
of the 30th Conference on Microprogramming and Microarchitecture, pp. 330–335
(December 1997)

15. Guthaus, M.R., et al.: MiBench: A free, commercially representative embedded
benchmark suite. In: IEEE 4th Annual Workshop on Workload Characterization
(December 2001)

16. Topham, N., González, A., González, J.: The design and performance of a conflict-
avoiding cache. In: Proceedings of the 30th Conference on Microprogramming and
Microarchitecture, pp. 71–80 (December 1997)

Potentials of Branch Predictors:
From Entropy Viewpoints

Takashi Yokota1, Kanemitsu Ootsu1, and Takanobu Baba1

Department of Information Science, Utsunomiya University,
7–1–2 Yoto, Utsunomiya-shi, Tochigi, 321–8585 Japan

{yokota, kim, baba}@is.utsunomiya-u.ac.jp

Abstract. Predictors essentially predicts the most recent events based
on the record of past events, history. It is obvious that prediction perfor-
mance largely relies on regularity–randomness level of the history. This
paper concentrates on extracting effective information from branch his-
tory, and discusses expected performance of branch predictors. For this
purpose, this paper introduces entropy point-of-views for quantitative
characterization of both program behavior and prediction mechanism.
This paper defines four new entropies from different viewpoints; two
of them are independent of prediction methods and the others are de-
pendent on predictor organization. These new entropies are useful tools
for analyzing upper-bound of prediction performance. This paper shows
some evaluation results of typical predictors.

1 Introduction

Predictors are inevitable in the state-of-the-art microprocessor cores. Prediction
mechanism is essential for any speculation features in the micro-architecture.
However, the effect of speculation essentially incorporates prediction accuracy.
More precise prediction does better performance and vice versa.

One of the essential and fundamental properties of today’s most predictors
is that they predict based on the past events (i.e., history). Many prediction
methods have been proposed, however, most of them discuss relative performance
improvements to some typical and well-known prediction method. Until now, no
one knows the possible performance of predictors, i.e., the absolute maximum.
For example, assuming that predictor A performs 5% better than predictor B,
we cannot discuss any more for further improvements, because we cannot know
possible maximum performance.

This paper presents theoretical views on branch predictors so that we can
discuss potentials of branch predictors. Our major focus is to represent infor-
mation of past events and to clarify possible maximum performance of branch
predictors. We introduce classical information theory originated by Shannon.
Originally, an information entropy quantitatively represents essential informa-
tion of the forthcoming symbol, based on the existing data.

A branch predictor intends to extract essentially the same information with
Shannon’s entropy, based on the past branch results. Shannon discussed rela-
tively large set of symbols S, say the alphabet. Fortunately, a branch predictor

U. Brinkschulte et al. (Eds.): ARCS 2008, LNCS 4934, pp. 273–285, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

274 T. Yokota, K. Ootsu, and T. Baba

uses a binary symbol, i.e., a branch will be taken or untaken. This one-bit symbol
helps us to discuss potentials of prediction performance.

The remainder of this paper is organized as follows. We first give the overview
of Shannon’s information theory and describe our targeted branch predictors in
Section 2. After the preliminaries, we discuss information from two aspects:
entropies that are independent of prediction mechanisms (in Section 3), and en-
tropies based on predictor organization (in Section 4). Section 5 shows evaluation
results from various perspectives. Section 6 shows related work, and Section 7
concludes this paper.

2 Preliminaries

2.1 Information Entropy

This paper stands on Shannon’s information entropy[1]. This subsection sum-
marizes the fundamentals. Assume that we are discussing an entropy H(S) of a
Markovian information source S that produces a string of symbols. Instead of
the entropy of S itself, we first discuss the augmented adjoint source of S. An
n-th order augmented adjoint source of S, denoted by S

n
, generates n consecu-

tive symbols. The entropy of the n-th order augmented adjoint source H(S
n
) is

given as the following equation:

H(S
n
) = −

∑

i

p(Sn
i) log2 p(Sn

i), (1)

where p(Sn
i) represents the probability of an individual symbol Sn

i that comprises
consecutive n original symbols.

H(S
n
) represents information in consecutive n symbols, and it monotonically

increases as n increases. Differential coefficient of H(S
n
) at n shows net infor-

mation of single symbol. Thus, when (n+1)-th order augmented adjoint entropy
H(S

n+1
) is given, the n-th approximation of the entropy H(S) of the objective

Markovian information source is given by

Hn(S) = H(S
n+1

) − H(S
n
). (2)

Therefore, the true value of the targeted entropy is given by limiting n to infinity:

H(S) = lim
n→∞Hn(S). (3)

The entropy H(S) provides essential information of the next symbol. The
entropy also presents the predictability of the forthcoming symbol.

2.2 Branch Predictors

This paper discusses performance issues in branch predictors. Our approach in
this paper is to discuss generic and practical issues. To simplify the discussion

Potentials of Branch Predictors 275

branch result
1:taken/0:not-taken

history register

PHT (Pattern History Table)

PC (Program Counter)

miscllaneous information

entry selection
function

update function

prediction function (0)

prediction function (1)

prediction function (2)

prediction function (2^m-1)
(m-bit width)

...

prediction
result

1 01 1 0 1...

Fig. 1. Generalized organization of table-formed branch predictor

without loss of generality, we assume some typical organization and mechanisms
in branch predictors.

Until now, there have been a variety of prediction methods proposed. They
mainly claim their performance improvement and compete each other. Champi-
onship Branch Prediction (CBP [2,3]) hosted competitions under certain regu-
lations, where many powerful predictors were discussed. We could analyze the
state-of-the-art predictors, but it is difficult to stay in generality and fairness
due to wide variations. We prefer general and fundamental discussion, instead
of specific discussion on a particular predictor. General but deep discussion of
fundamental predictors will give us generalized knowledge on predictors.

We specifically use table-formatted predictors as shown in Figure 1. A pre-
dictor is organized by three major functions; entry selection, prediction, and
update functions. The prediction function includes one or more sub-functions,
where each prediction function is basically independent from each other. The
entry selection function selects an appropriate prediction function according to
the given selection rule. Update function updates the prediction function. Fol-
lowing the conventions in two-level predictors, we use m bits of ‘history register’
(HR for short) as a result of selection function to point one of the prediction
functions. We also use ‘pattern history table’ (PHT) that is an aggregation of
prediction functions. Each entry of PHT consists of a prediction function. We use
bimodal (bimode)[4], two-level (2level)[5], gshare (gshare)[6], and perceptron
(perceptron)[7,8] branch predictors. All of them follow the simple organization
shown in Figure 1.

bimode, 2level and gshare differ in selection function; bimode uses a simple
hash function of program counter, 2level uses the latest m results of branch
execution, and gshare uses the exclusive-or result of branch history and program
counter. However, they typically use the same prediction function, i.e., a two-
bit saturation counter that counts the number of ‘taken’ results. If the result is
untaken, the counter is decremented.

perceptron uses hash function of program counter as its selection function. Its
prediction function is distinguishing; it is based on a neural-network Perceptron.
Each prediction function makes use of the latest h branch results and correspond-
ing h weight values. Each weight value wi is a signed integer with an arbitrary
length, say 8 bits. The predictor calculates the weighted sum: s =

∑
i wi · bi

276 T. Yokota, K. Ootsu, and T. Baba

processor core
execution unit

branch result
branch predictor

additional information

prediction result

program

Fig. 2. Processor core as an information source to branch predictor

where bi is 1 if the corresponding branch result is ‘taken’ and bi = −1 other-
wise. If the resulting sum s is positive, ‘taken’ is predicted, otherwise ‘untaken’
is predicted. Each PHT entry consists of a set of weight values. Update function
modifies each of weight values according to the prediction result (hit or mishit).

3 Entropies Independent of Prediction Mechanisms

Section 2.1 discusses information in a string of symbols that are generated se-
quentially. We can apply the discussion to a string of branch results by sim-
ple substitution of ‘branch results’ for ‘symbols.’ And, by careful observation
of program execution but prediction mechanisms, we offer the following two
entropies.

3.1 Execution Unit as Information Source

First viewpoint is an execution unit in a processor core. As the processor execute
a program, branch instructions are executed according to the program. The
execution unit explicitly generates branch results so that the results are used for
prediction in the branch predictor. Figure 2 illustrates it.

We can discuss entropy for the series of branch results. We consider Markovian
information source B, i.e., the execution unit. By considering n consecutive
branch results, we can define n-th order augmented adjoint information source
B

n
. By simple application of Section 2.1, we can define the entropy of the n-

th order augmented adjoint source H(B
n
), and the n-th approximation of the

targeted entropy H(B), i.e., Hn(B). The essential entropy H(B) is given by
limiting n to infinity as Equation (3). We call the new entropy Branch History
Entropy (BHe).

3.2 Branch Instructions as Information Sources

Another viewpoint is individual branch instruction. Each branch instruction has
its own branch history. Thus, we can define an entropy for each branch instruc-
tion. We consider that each branch instruction is a Markovian information source
Ii. By applying the original entropy definition given in Section 2.1, we can de-
fine the entropy of i-th branch instruction, H(Ii). Overall entropy is given as
the average of H(Ii), i.e., H(I) = 1

Nb

∑
i ni·H(Ii) where ni is the execution count

Potentials of Branch Predictors 277

F

T

b

c

d

e

a 1

1

0

1

0

1

1

1

1

1

0

1

1

1

0

1

T

F

T

F

T

F

T

F

A B A A B A Apath:

0

1

1

1

1

1

0

1

1

1

0

1

1101011111011101

1011011...

1111...

11...

0100100...

1111111...

011111011101...

H(Ia)

H(Ib)

H(Ic)

H(Id)

H(Ie)

H(I)
=avg(H(Ii))

H(B)

Branch Instr. Entropy (BIe)

Branch History Entropy (BHe)

Fig. 3. Example path repetition and BHe, BIe entropies

of the i-th branch instruction and Nb is the total number of branch executions.
We call the entropy Branch Instruction Entropy (BIe).

3.3 Fundamental Properties of Proposed Entropies

These entropies have a common important feature: they are independent of any
prediction mechanisms. They represent essential information that is extracted
through the program execution, i.e., they represent program behavior.

BHe represents information only from the branch history. This means that
BHe shows the certainty degree of the forthcoming branch result, with no any
additional hints. The branch history itself contains no information on individual
branch instruction but sequence of branch results. In practical situations, a string
of branch history often shows a particular execution path.

On the other hand, BIe is basically defined for each branch instruction. It
essentially does not represent ‘execution path’ information, but it represents the
local regularity of program behavior.

We claim that BHe represents information of global history, and BIe shows
local (or per address) history information. We will discuss further with a practical
example.

As an example situation, assume that a loop has two frequently-executed
paths A and B that show branch history ‘1101’ and ‘0111,’ respectively. These
paths are regularly executed as simple repetition of A→A→B. Figure 3 shows
BHe and BIe in such situation. Solid vertical arrows show loop iterations and
circles designate branch instructions and their branch decisions. Each horizontal
dotted line shows per-address branch history at the corresponding
instruction.

Executed paths are recorded in the BHe trace. Each BIe trace shows local
history at the corresponding branch instruction. In this example, high regularity
in path execution reflects the regularity of the local history. This observation tells
us that BHe and BIe are not strictly orthogonal but correlated at a considerable
level.

278 T. Yokota, K. Ootsu, and T. Baba

branch result

PHT entriesPC (Program Counter)

miscllaneous information entry selection
function

prediction function (0)

prediction function (1)

prediction function (2)

prediction function (2^m-1)

...

1011101101111011...

11111...

11101...

00100...

10111...

Fig. 4. Flow of branch result information

4 Entropies in Predictor Organization

4.1 Information to Each Prediction Function

We will enter specific discussion on fundamental organization of predictors as
given in Section 2.2. A string of branch results, originated by the processor
core, inherently contains the first-order information. We can consider that the
information flows along the predictor organization. Figure 4 illustrates the flow.
The information is first poured into the ‘entry selection function’ and it reaches
individual entry of PHT, i.e., a prediction function. The original information
is divided and only a segment of information is delivered into each prediction
function.

This observation drives us to different entropy definition. Each prediction
function has its own information of branch results, on which we can define en-
tropy. Similarly to the Branch Instruction Entropy discussion, we can define
entropy of each prediction function. Input sequence to a prediction function Ei

has entropy H(Ei). The overall entropy is given by the average of H(Ei), i.e.,
H(E) = 1

Ne

∑
i ei · H(Ei) where ei is the reference count of the i-th prediction

function Ei and Ne denotes the total number of references to PHT. We call the
entropy Table Entry Entropy (TEe).

4.2 Information in Imbalanced References

TEe represents net information at each effective prediction function, however,
we cannot know how many prediction functions effectively operate. In general,
when a program uses a small number of prediction functions, the program has
small working-set and high levels of prediction performance can be expected.
But the working-set does not always represent prediction performance, because
a program may have large working-set with high predictability. In other words,
we need another metric that represent the net usage of prediction functions in
order to represent program behavior adequately.

We define Table Reference Entropy (TRe). TRe represents effective num-
ber of active entries. Following to the discussion in the previous section, ei is
the number of references to i-th prediction function, and Ne is the total num-
ber of PHT references. ri = ei/Ne shows the probability of reference on the
i-th prediction function (entry). Table Reference Entropy is given by H(R) =

Potentials of Branch Predictors 279

1
1

1

1

1
1

A B A A B A Apath:

1

1

1
1

1101011111011101

111...
111...

11...

11...

011111011101...

H(E7D)
H(EFB)

H(EEB)

H(EBE)

H(E)
=avg(H(Ei))

H(B)

Table Entry Entropy (TEe)

Branch History Entropy (BHe)

1 01 1 1

(7D)

(FB)

(F7)

(EE)

(DD)

(BA)

(75)

(EB)

(D7)

(AF)

(5F)

(BE)

0 0 0 000... H(EF7)
1 1 1 111... H(EEE)

0 0 00... H(EDD)
1 1 11... H(EBA)
1 1 11... H(E75)

1 1 11... H(ED7)
1 1 11... H(EAF)
0 0 00... H(E5F)

branch result

... P
H

T
 e

nt
ry

Fig. 5. Example path repetition and BHe, TEe entropies

−
∑

i ri log2 ri. The first-order information bifurcates at the entry selection func-
tion, and some portion of the original information is lost. TRe compensates this.

4.3 Discussion

TEe and TRe have different standpoints, but their origin is common, i.e., the
first-order branch information. TEe shows the practical information poured into
each prediction function, i.e., ‘per-predictor’ information. This is very likely to
BIe as a (quasi-)orthogonal measure to BHe. Low TEe means that each predictor
input has low information and, thus, the predictor is ease to predict.

Figure 5 shows the same example with Figure 3, but the figure shows se-
quences of branch history at each prediction function. The first-order informa-
tion is delivered to individual PHT entry, which is prediction function, similarly
to individual branch instruction. Most paths contain several or more lengths of
branch history, thus, the first-order information is delivered to more destina-
tions than those in the BIe condition. However, we can expect lower information
entropy, thus higher prediction accuracy, from this entropy.

We can further discuss TEe and TRe entropies under the specific branch pre-
diction mechanisms given in Section 2.2. bimode and perceptron predictors use
a hash function of program counter. If these predictors have sufficient PHT en-
tries, most of active entries correspond to their own branch instructions and,
thus, TEe is very close to BIe. If only a limited number of instructions dominate,
TRe becomes low.

In 2level predictors, history register (HR) shows the latest m branch results.
Since TRe is based on the values of HR, the entropy is just the same as m-th
order augmented adjoint source entropy, i.e., H(S

m
) given by Equation (1).

gshare predictor uses an XOR’ed value of branch history and program counter.
This scatters the use of PHT entries. Thus, TRe shows wide variations of local
history at branch instructions.

280 T. Yokota, K. Ootsu, and T. Baba

0.90

0.95

1.00

0.00
0.10
0.20
0.30

0.00
0.05
0.10
0.15
0.20

0.00
0.05
0.10
0.15

2.00
4.00
6.00
8.00

 0 1000 2000 3000 4000 5000 6000

time [M branches]

hit ratio

BHe (Branch History Entropy)

BIe (Branch Instruction Entropy)

TEe (Table Entry Entropy)

TRe (Table Reference Entropy)

Fig. 6. Time sequence plot of prediction hit ratio, BHe, BIe, TEe and TRe

5 Evaluation

5.1 Evaluation Environment

We extended the sim-bpred simulator in the SimpleScalar toolset[9] so that
our defined entropies are measured. We also implemented the perceptron pre-
dictor in sim-bpred. PISA instruction set was used. Some programs in SPEC
CPU2000[10] benchmark are compiled by gcc 2.7.2.3 PISA cross compiler. The
benchmark set has variety of problem size: we used ‘train.’

Entropies and prediction hit ratio are measured in every 1,000,000 (1M)
branches time-window. Size of the time-window is important for accuracy of
the measured entropy. Although more samples produces more precise results,
long time-window may bury important characteristics of ‘phases’ in program
execution. We consider the 1 million branch time-window is proper[7,8].

Predictors use the same size of PHT entry, 212 = 4096 entries, thus HR is 12-
bit width. Theoretical entropy definition (Equations (2) and (3)) is not practical,
because actual H(S

n
) does not smoothly increases as n increases. We measured

14-, 15-, 16-, 17-, and 18-th order augmented adjoint entropies and the essential
entropy is calculated by the least-square method of these five entropies.

5.2 Potentials of Branch Predictors

We firstly show time-sequence curves of predictor hit ratio and some of proposed
entropies in Figure 6. We can find that these curves are considerably correlated
to each other. We will discuss potentials of branch predictors by analyzing cor-
relations in detail.

Potentials of Branch Predictors 281

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

B
Ie

 [b
its

]

BHe [bits]

(y
=x

)

Fig. 7. Correlation between BHe and BIe

0.75

0.80

0.85

0.90

0.95

1.00

0.94 0.95 0.96 0.97 0.98 0.99 1.00

pr
ed

ic
to

r
hi

t r
at

io

expected hit ratio from BIe

(a) bimode

0.75

0.80

0.85

0.90

0.95

1.00

0.94 0.95 0.96 0.97 0.98 0.99 1.00

pr
ed

ic
to

r
hi

t r
at

io

expected hit ratio from BIe

(b) perceptron

0.75

0.80

0.85

0.90

0.95

1.00

0.94 0.95 0.96 0.97 0.98 0.99 1.00

pr
ed

ic
to

r
hi

t r
at

io

expected hit ratio from BIe

(c) 2level

0.75

0.80

0.85

0.90

0.95

1.00

0.94 0.95 0.96 0.97 0.98 0.99 1.00

pr
ed

ic
to

r
hi

t r
at

io

expected hit ratio from BIe

(d) gshare

Fig. 8. Expected hit ratio from BIe and predictor hit ratio

As discussed in Section 3.3, BHe and BIe have different standpoints, but they
are not always orthogonal. Figure 7 shows the correlation between BHe and BIe.
Each dot shows BHe and BIe at the corresponding time-window. Dots widely
scatter, but clear correlation is observed.

The important fact is that most dots are below the y = x line. This means that
BHe is larger than BIe at most measured points. Since BHe and BIe correspond
global and local history, respectively, this result says that local history shows
higher level of regularity, i.e., higher predictability, than global history.

282 T. Yokota, K. Ootsu, and T. Baba

0.75

0.80

0.85

0.90

0.95

1.00

0.94 0.95 0.96 0.97 0.98 0.99 1.00

pr
ed

ic
to

r
hi

t r
at

io

expected hit ratio from TEe

(a) perceptron

0.75

0.80

0.85

0.90

0.95

1.00

0.94 0.95 0.96 0.97 0.98 0.99 1.00

pr
ed

ic
to

r
hi

t r
at

io

expected hit ratio from TEe

(b) gshare

Fig. 9. Expected hit ratio from TEe and predictor hit ratio

Essential entropy definition for binary-event system is given by the original
information entropy; f(p) = −p log2 p− (1− p) log2(1 − p), where p denotes the
probability of the event. When an entropy value ε is given, we can estimate
the originated probability p by the inverse function of f(p), f−1(ε). We call the
estimated probability expected hit ratio in this paper.

Table 1. Summary of prediction hit ratios and expected hit ratios from proposed
entropies

actual hit ratios expected hit ratios
benchmark bimode 2level gshare percep- BHe BIe TEe

tron (2level) (gshare)
(CINT2000)
164.gzip .9241 .9370 .9363 .9467 .9702 .9853 .9893 .9890
175.vpr(pl) .8963 .8720 .8812 .9333 .9532 .9777 .9782 .9808
175.vpr(rt) .8707 .9013 .8965 .9110 .9402 .9720 .9847 .9837
176.gcc .9134 .9098 .9140 .9760 .9758 .9890 .9890 .9892
181.mcf .8959 .9382 .9261 .9468 .9723 .9806 .9905 .9892
197.parser .8939 .9203 .9252 .9509 .9601 .9837 .9894 .9912
254.gap .9359 .9475 .9519 .9799 .9832 .9927 .9937 .9942
255.vortex .9769 .9318 .9642 .9976 .9881 .9989 .9949 .9967
256.bzip2 .9824 .9820 .9841 .9877 .9913 .9937 .9947 .9956
300.twolf .8123 .7979 .8042 .8902 .9108 .9636 .9758 .9839
(CFP2000)
168.wupwise .8556 .9275 .9540 .9859 .9874 .9962 .9990 .9994
171.swim .9913 .9926 .9941 .9972 .9963 .9976 .9978 .9979
172.mgrid .9745 .9755 .9754 .9807 .9791 .9811 .9846 .9860
173.applu .7569 .9719 .9736 .9985 .9899 .9986 .9991 .9993
177.mesa .9829 .9861 .9876 .9930 .9965 .9985 .9984 .9987
179.art .9071 .9911 .9910 .9916 .9959 .9980 .9985 .9986
183.equake .8839 .9660 .9763 .9801 .9881 .9937 .9980 .9981
188.ammp .9659 .9787 .9800 .9854 .9820 .9905 .9922 .9931
301.apsi .9727 .9707 .9833 .9925 .9845 .9919 .9915 .9925

Potentials of Branch Predictors 283

Figure 8 shows correlation of the expected hit ratio by BIe and actual predic-
tion hit ratio. Similarly to Figure 7, each dot represents expected hit ratio by
BIe and predictor’s performance (hit ratio) at the corresponding time-window.
Each graph in the figure shows the y = x line. The line represents performance
criterion: dots located above the line show that the predictor performs beyond
expectation. In Figure 8 cases, no predictor exceeds the criteria and the y = x
line shows potential performance.

Expected hit ratio can also be derived by other entropy metrics; BHe and
TEe. These entropies also show similar graphs to that of BIe. Figure 9 shows
TEe results of perceptron and gshare predictors. Note that expected hit ratio
by BIe shows a generic criterion that is independent of predictor organization,
and that expected ratio by TEe shows a specific potential.

Actual and expected hit ratios in each application are summarized in Table 1.
Each fraction shows an average value throughout the whole execution of the
corresponding application. In most applications except 255.vortex, TEe is the
best in expected hit ratio. Practically, TEe values show potentials of predictors.
Note that BIe values are very close to those of TEe; their difference is less than
1 percent in most applications. However, populations of those entropies are very
different: population of BIe is the number of executed branch instructions in the
time-window, and TEe population scatters according to the changes in history
register. As a typical example of 164.gzip, populations of BIe and TEe are
about 100 and 1,000, respectively. This means that, in actual programs, branch
instructions act very regularly as well as prediction functions.

6 Related Work

Major contribution of this paper can be described in two perspectives; first one
is quantitative representation of program behavior from a sequence of branch
results, and the other one is estimation of potential prediction performance.

Many researches have concentrated to imbalanced feature in program execu-
tion. Tyson et al.[11] show some imbalanced feature in taken/untaken sequences
of branch results. They show four typical cases; long consecutive takens, long
consecutive untakens, a small number of untakens in long consecutive takens,
and other patterns. Kise et al.[12] discuss a new predictor based on extremely
biased branches. Such classifications help prediction, but no quantitative discus-
sions are made on imbalanced features.

Periodicity is possibly a quantitative measure of program behavior. Freitag et
al.[13] proposedDynamicPeriodicityDetector (DPD)byexaminationof sequences
of data values that appear during program execution. Fourier Analysis Branch
(FAB) predictor, proposed by Kampe et al.[14], uses the Fourier coefficients for
representing periodicity for branch prediction purpose. Periodicity offers quanti-
tative representation, however, it does not show essential information.

Mudge and Chen et al.[15,16] present limits in the prediction performance
based on prediction using the Partial Matching (PPM) method. They use m-th
order Markov predictor and underlying idea is very similar to ours. Driesen et

284 T. Yokota, K. Ootsu, and T. Baba

al.[17,18] discuss limits of indirect branch prediction from a different point of
view from that used in this paper. Jha et al.[19] also use a Markovian model to
represent an optimal prediction mechanism for a given history length. Vintan
et al.[20] discuss prediction limits based on unbiased branches. Idealistic pre-
dictors discuss substantial limits on prediction performance in Championship
Branch Prediction competitions (CBP [2,3]). These researches are not success-
ful for quantitative representation of regularity/randomness features in program
execution, as our defined entropies do. Our preliminary results are found in
[21,22,23]. Our approach to the limits on prediction is unique in its theoretical
and quantitative approach based on information entropy.

7 Concluding Remarks

Prediction performance essentially relies on the nature of past events. Thus, mod-
ern predictors enter detailed discussion to effectively extract useful information
on prediction. But theoretical limit on prediction performance was unclear.

This paper introduces information entropy concept to clarify theoretical lim-
its in branch prediction. Our approach has two aspects: one is independent of
prediction methods and the other one is dependent on predictor organization.
We proposed two entropies, BHe and BIe, to represent global and local features
in branch history. Furthermore, we defined TEe and TRe entropies for typi-
cal table-formatted predictors. BHe, BIe and TEe entropies can derive expected
prediction performance, i.e., limits on prediction. BHe and BIe show prediction
limits by global and local history, respectively. TEe shows theoretical limits on
the predictor organization.

Potentials in branch prediction are calculated on a time-window basis. This
offers a detailed criterion for program execution phases as well as applications
themselves. Evaluation results reveal the potentials are high and we have still
large rooms to improve prediction performance.

Acknowledgments. This research was supported in part by Grant-in-Aid for Sci-
entific Research ((B)18300014, (C)19500037) and Young Scientists ((B)17700047)
of Japan Society for the Promotion of Science (JSPS), and by Eminent Research
Selected at Utsunomiya University.

References

1. Shannon, C.E.: A mathematical theory of communication. Bell System Technical
Journal 27, 379–423, 623–656 (1948)

2. The 1st JILP Championship Branch Prediction Competition (2004),
http://www.jilp.org/cbp/

3. The 2nd JILP Championship Branch Prediction Competition (2006),
http://camino.rutgers.edu/cbp2/

4. Smith, J.E.: A Study of Branch Prediction Strategies. In: Proc. 8th Int’l Symp.
Computer Architecture, pp. 135–148 (May 1981)

http://www.jilp.org/cbp/
http://camino.rutgers.edu/cbp2/

Potentials of Branch Predictors 285

5. Yeh, T.-Y., Patt, Y.N.: Two-Level Adaptive Branch Prediction. In: Proc. 24th
ACM/IEEE Int’l Symp. Microarchitecture, pp. 51–61 (November 1991)

6. McFarling, S.: Combining Branch Predictors, Technical Report TN–36, Digital
Equipment Corp., Western Research Laboratory (June 1993)

7. Jiménez, D.A., Lin, C.: Dynamic Branch Prediction with Perceptrons. In: Proc.
7th Int’l Symp. High-Performance Computer Architecture, pp. 197–206 (January
2001)

8. Jiménez, D.A.: Piecewise Linear Branch Prediction. In: Proc. 32nd Annual Int’l
Symp. Computer Architecture, pp. 382–393 (2005)

9. SimpleScalar LLC, http://www.simplescalar.com/
10. Standard Performance Evaluation Corporation, SPEC CPU2000 V1.3 (2004),

http://www.spec.org/cpu2000/
11. Tyson, G., Lick, K., Farrens, M.: Limited Dual Path Execution, Technical Report

CSE–TR–346–97, University of Michigan (1997)
12. Kise, K., et al.: The Bimode++ Branch Predictor Using the Feature of Extremely

Biased Branches. IPSJ SIG Techical Report 2005(7), 57–62 (2005)
13. Freitag, F., Corbalan, J., Labarta, J.: A Dynamic Periodicity Detector: Application

to Speedup Computation. In: Proc. 15th Int’l Parallel and Distributed Processing
Symp. (April 2001)

14. Kampe, M., Stenstrom, P., Dubois, M.: The FAB Predictor: Using Fourier Analysis
to Predict the Outcome of Conditional Branches. In: Proc. 8th Int’l Symp. High-
Performance Computer Architecture, pp. 223–232 (February 2002)

15. Chen, I-C.K., Coffey, J.T., Mudge, T.N.: Analysis of Branch Prediction via Data
Compression. In: Proc. 7th Int’l Conf. Architectural Support for Programming
Languages and Operating Systems, pp. 128–137 (October 1996)

16. Mudge, T., Chen, I.-C., Coffey, J.: Limits to Branch Prediction, Technial Report
CSE–TR–282–96, University of Michigan (February 1996)

17. Driesen, K., Hölzle, U.: Limits of Indirect Branch Prediction, Technical Report
TRCS97–10, Computer Science Department, University of California, Santa Bar-
bara (June 1997)

18. Driesen, K., Hölzle, U.: Multi-stage Cascaded Prediction, Technical Report
TRCS99–05, Computer Science Department, University of California, Santa Bar-
bara (February 1999)

19. Jha, S., Lu, Y., Clarke, E.: Formal Analysis of Branch Prediction Algorithm, Tech-
nical Report, Computer Science, Carnegie Mellon University (1998)

20. Vintan, L., et al.: Understanding Prediction Limits Through Unbiased Branches.
In: Jesshope, C., Egan, C. (eds.) ACSAC 2006. LNCS, vol. 4186, pp. 480–487.
Springer, Heidelberg (2006)

21. Yokota, T., et al.: Entropy Properties in Program Behaviors and Branch Predic-
tors. In: Proc. 18th IASTED Int’l Conf. Parallel and Distributed Computing and
Systems, pp. 448–453 (November 2006)

22. Yokota, T., Ootsu, K., Baba, T.: Introducing Entropies for Representing Program
Behavior and Branch Prediction Performance. In: Proc. 2007 Workshop on Exper-
imental Computer Science, ACM digital library (June 2007)

23. Yokota, T., Ootsu, K., Baba, T.: Proposal of Entropies for Representing Program
Behavior and Branch Prediction Performance. IPSJ Transactions on Advanced
Computing Systems (to appear)

http://www.simplescalar.com/
http://www.spec.org/cpu2000/

Author Index

Baba, Takanobu 273
Bagherzadeh, Nader 247
Bahn, Jun Ho 247
Barre, Jonathan 161
Becker, Jürgen 188
Bennebroek, Martijn 144
Boneti, Carlos 173
Branke, Jürgen 38
Brendle, Robert 117
Buchty, Rainer 98
Bungert, Peter 38

Cazorla, Francisco J. 173

Danilin, Alexander 144
De Bosschere, Koen 261

Ferscha, Alois 68

Gioiosa, Roberto 173
Glaß, Michael 23

Hähner, Jörg 220
Haubelt, Christian 23, 117, 130
Herkersdorf, Andreas 85
Herrmann, Klaus 53
Hoffmann, Martin 220

Karl, Wolfgang 98
Keinert, Joachim 130
Klimm, Alexander 188
Koch, Dirk 117

Lankes, Andreas 9
Lee, Seung Eun 247
Liu, Lei 205

Matscheko, Michael 68
Mattes, Oliver 98
Meitinger, Michael 85
Mostaghim, Sanaz 38
Müller-Schloer, Christian 220

Ohlendorf, Rainer 85
Ootsu, Kanemitsu 273

Ribock, Oliver 232
Richter, Urban 232
Riener, Andreas 68
Rochange, Christine 161
Rothermel, Kurt 53

Sainrat, Pascal 161
Sander, Oliver 188
Sawitzki, Sergei 144
Schläger, Chris 5
Schmeck, Hartmut 38, 205, 232
Schuhmann, Stephan 53
Streichert, Thilo 23, 117
Subileau, Sylvain 188

Teich, Jürgen 23, 117, 130
Thanheiser, Stefan 205

Ungerer, Theo 3

Valero, Mateo 173
Vandierendonck, Hans 261

Wanka, Rolf 23
Wild, Thomas 9, 85

Yang, Yoon Seok 247
Yokota, Takashi 273

Zeppenfeld, Johannes 9

	front-matter
	fulltext
	Keynote: Grand Challenges of Computer Engineering

	fulltext2
	Keynote: The Impact of Operating Systems on Modern CPU Designs (and Vice Versa)

	fulltext3
	System Level Simulation of Autonomic SoCs with TAPES
	Introduction
	Related Work
	Concept
	Implementation
	Monitoring
	Evaluation
	Actuation

	Experiment
	Conclusion and Outlook

	fulltext4
	Topology-Aware Replica Placement in Fault-Tolerant Embedded Networks
	Introduction
	Related Work
	Computational Model
	Topology-Aware Replica Placement
	Identifying Network Partitions
	Replica Placement Algorithms
	Computational Load of Active and Passive Replicas

	Experimental Evaluation
	Conclusions

	fulltext5
	Design of Gate Array Circuits Using Evolutionary Algorithms
	Introduction
	Gate Matrix
	Evolutionary Algorithms
	Fitness Assignment
	MaxMin Evaluation Mechanism
	Recombination Operators

	Experiments
	Results

	Conclusion and Future Work

	fulltext6
	Direct Backtracking: An Advanced Adaptation Algorithm for Pervasive Applications
	Introduction
	System Model
	Example

	Related Work
	The Direct Backtracking Algorithm
	General Approach
	Proactive Backtracking Avoidance
	Intelligent Backtracking
	Example for Adaptation Process

	Evaluation
	Experimental Setup
	Evaluation Results

	Conclusions and Future Work

	fulltext7
	Intelligent Vehicle Handling: Steering and Body Postures While Cornering
	Motivation
	Driver Assistance Systems
	Experimental Setup for In-Car Context Capturing
	Evaluation with Experienced Drivers
	Experimental Testbed
	Gathering Data from On-Board Sensors

	Results
	Conclusions

	fulltext8
	A Hardware Packet Re-Sequencer Unit for Network Processors
	Introduction
	Related Work
	Resequencing Concept
	Ingress Tagger
	Egress Aggregation Unit and Buffer Memory

	SystemC Simulations
	Simulation Setup
	Trace File
	Simulation Results

	Implementation
	Conclusion
	References

	fulltext9
	Self-aware Memory: Managing Distributed Memory in an Autonomous Multi-master Environment
	Introduction and Motivation
	Related Work
	The DodOrg Hardware Architecture
	Self-aware Memory (SaM)
	Architectural Considerations
	Composition of a SaM-Enabled System
	SaM-Table
	SaM-Requester
	SaM-Memory
	Memory Access in SaM
	DodOrg Integration

	Results
	Simulation Setup and Results
	Simulation Conclusion
	Current Development

	Conclusion and Outlook

	fulltext10
	Dynamic Reconfiguration of FlexRay Schedules for Response Time Reduction in Asynchronous Fault-Tolerant Networks
	Introduction
	Related Work
	Basic Principles of the FlexRay Protocol
	Dynamic Reconfiguration of the Slot Distribution
	Complete Reconfiguration
	Partial Reconfiguration in the Dynamic Segment
	Reconfiguration with Secondary Receive Buffers
	Partial Reconfiguration of the Static Segment

	Experimental Evaluation and Discussion
	Conclusion and Future Work

	fulltext11
	Synthesis of Multi-dimensional High-Speed FIFOs for Out-of-Order Communication
	Introduction
	Related Work
	Out-of-Order Communication
	HW-Architecture of the Multi-dimensional FIFO
	Address Generation
	Fill-Level Control
	Invocation Number Calculation
	Solution of the PIP
	Elimination of Modular Dependencies

	Results
	Conclusions

	fulltext12
	A Novel Routing Architecture for Field-Programmable Gate-Arrays
	Introduction and Previous Work
	Routing Fabrics
	Multiplexer-Based Fabric
	Manhattan Routing Fabric

	Results and Discussion
	Extension to Complex Logic Blocks
	Conclusions

	fulltext13
	A Predictable Simultaneous Multithreading Scheme for Hard Real-Time
	Introduction
	Simultaneous Multithreading and Timing Predictability
	Resource Distribution Policies
	Scheduling Policies

	A Predictable SMT Architecture
	Basic Pipeline Structure
	Resource Distribution Policy
	Thread Scheduling

	Performance Evaluation
	Simulation Methodology
	Processor Configuration
	Benchmarks
	Experimental Results

	Related Work
	Conclusion

	fulltext14
	Soft Real-Time Scheduling on SMT Processors with Explicit Resource Allocation
	Introduction
	Background and Related Work
	Workload Composition
	Resource Allocation

	Our Approach
	The RA-EDF Scheduler
	Example

	Methodology and Experimental Environment
	Task Sets and Metrics
	Simulator

	Experimental Results
	Conclusions

	fulltext15
	A Hardware/Software Codesign of a Co-processor for Real-Time Hyperelliptic Curve Cryptography on a Spartan3 FPGA
	Introduction
	Hyperelliptic Curve Cryptography
	Hardware/Software Co-design
	System Architecture and Components
	Software Implementation
	Algorithmic Hardware Modules
	Co-processor Design

	Test and Evaluation
	Timing Analysis
	Area Utilization
	Side Channel Awareness

	Conclusion

	fulltext16
	A Reference Architecture for Self-organizing Service-Oriented Computing
	Motivation
	Key Design Challenges
	Related Work
	Service-Oriented Computing
	Self-organization

	The Reference Architecture for self-organizing SOA
	An Abstract Meta Model for Self-organizing SOA
	Architectural Pattern
	The Managing Element in OSOA

	Conclusion

	fulltext17
	Towards Self-organising Smart Camera Systems
	Introduction
	Architecture
	Networked System Architecture
	Smart Camera Node Architecture
	Using NSClick to Simulate Smart Cameras

	Related Work
	The Art Gallery Problem and ROCAS
	A Self-organising Approach to the Art Gallery Problem: ROCAS

	Towards Object Tracking: SOM-Based Algorithm
	Experiments and Results
	Conclusion

	fulltext18
	Using Organic Computing to Control Bunching Effects
	Introduction
	Controlled Self-organisation

	Lift Group Control
	Bunching Effects
	Experimental Environment

	Quantitative Measures of Bunching
	An Observer for Lift Group Systems

	Methods to Cope with Bunching
	A Controller for Lift Group Systems

	Experimental Results
	Conclusion and Outlook

	fulltext19
	A Generic Network Interface Architecture for a Networked Processor Array (NePA)
	Introduction
	Background
	Networked Processor Array (NePA)
	Related Works

	Network Interface Architecture
	Design of Network Interface
	Programming Sequence
	Physical Characteristics

	Generic Network Interface (NI)
	Classification of IP Cores for PE
	Modular Wrapper for Slave IP Cores
	Case Studies

	Conclusions

	fulltext20
	Constructing Optimal XOR-Functions to Minimize Cache Conflict Misses
	Introduction
	Background and Related Work
	Optimal Algorithm for XOR-Functions
	Definitions
	Data Reuse and the Structure of the Algorithm
	Recapitulation of Miss Conditions for Bit-Selecting Functions
	Miss Conditions for Permutation-Based Functions
	BDD and ADD Data Structures
	The Algorithm
	Example

	Experimental Evaluation
	Minimizing Conflict Misses
	Impact of Cross-Profiling
	Performance Improvement

	Conclusion

	fulltext21
	Potentials of Branch Predictors: From Entropy Viewpoints
	Introduction
	Preliminaries
	Information Entropy
	Branch Predictors

	Entropies Independent of Prediction Mechanisms
	Execution Unit as Information Source
	Branch Instructions as Information Sources
	Fundamental Properties of Proposed Entropies

	Entropies in Predictor Organization
	Information to Each Prediction Function
	Information in Imbalanced References
	Discussion

	Evaluation
	Evaluation Environment
	Potentials of Branch Predictors

	Related Work
	Concluding Remarks

	back-matter

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

