

Lecture Notes in Computer Science 3189
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
New York University, NY, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y.Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

This page intentionally left blank

Pen-Chung Yew Jingling Xue (Eds.)

Advances in
Computer Systems
Architecture

9th Asia-Pacific Conference, ACSAC 2004
Beijing, China, September 7-9, 2004
Proceedings

Springer

eBook ISBN: 3-540-30102-X
Print ISBN: 3-540-23003-3

©2005 Springer Science + Business Media, Inc.

Print ©2004 Springer-Verlag

All rights reserved

No part of this eBook may be reproduced or transmitted in any form or by any means, electronic,
mechanical, recording, or otherwise, without written consent from the Publisher

Created in the United States of America

Visit Springer's eBookstore at: http://ebooks.springerlink.com
and the Springer Global Website Online at: http://www.springeronline.com

Berlin Heidelberg

Preface

On behalf of the program committee, we were pleased to present this year’s
program for ACSAC: Asia-Pacific Computer Systems Architecture Conference.

Now in its ninth year, ACSAC continues to provide an excellent forum for
researchers, educators and practitioners to come to the Asia-Pacific region to
exchange ideas on the latest developments in computer systems architecture.
This year, the paper submission and review processes were semiautomated using
the free version of CyberChair. We received 152 submissions, the largest number
ever. Each paper was assigned at least three, mostly four, and in a few cases even
five committee members for review. All of the papers were reviewed in a two-
month period, during which the program chairs regularly monitored the progress
of the review process. When reviewers claimed inadequate expertise, additional
reviewers were solicited. In the end, we received a total of 594 reviews (3.9 per
paper) from committee members as well as 248 coreviewers whose names are
acknowledged in the proceedings. We would like to thank all of them for their
time and effort in providing us with such timely and high-quality reviews, some
of them on extremely short notice.

After all of the reviews were received, there was a one-week electronic pro-
gram committee meeting during May 14 and May 21. All of the papers were
reviewed and discussed by the program committee, and the final set of papers
were selected. Program committee members were allowed to submit papers, but
their papers were handled separately. Each of their papers was assigned to at
least four committee members and reviewed under the same rigorous review
process. The program committee accepted 7 out of 11 “PC” submissions. In the
end, the program committee selected a total of 45 papers for this year’s program
with an acceptance rate close to 30%. Unfortunately, many fine papers could not
be accommodated in this year’s program because of our schedule.

In addition to the contributed papers, this year’s program included invited
presentations. We were very pleased that three distinguished experts accepted
our invitation to share their views on various aspects of computer systems ar-
chitecture design: James E. Smith (University of Winconsin-Madison, USA) on
Some Real Observations on Virtual Machines, Jesse Z. Fang (Intel, USA) on
A Generation Ahead of Microprocessor: Where Software Can Drive uArchitec-
ture to?, and, finally, Guojie Li (Chinese Academy of Sciences, China) on Make
Computers Cheaper and Simpler.

On behalf of the program committee, we thank all of the authors for their
submissions, and the authors of the accepted papers for their cooperation in
getting their final versions ready in time for the conference. We would also like
to thank the Web Chair, Lian Li, for installing and maintaining CyberChair, and
the Local Arrangements Chair, Wenguang Chen, for publicizing this conference.

Finally, we want to acknowledge the outstanding work of this year’s pro-
gram committee. We would like to thank them for their dedication and effort

VI Preface

in providing timely and thorough reviews for the largest number of submissions
ever in our conference history, and their contribution during the paper selection
process. It was a great pleasure working with these esteemed members of our
community. Without their extraordinary effort and commitment, it would have
been impossible to put such an excellent program together in a timely fashion.
We also want to thank all our sponsors for their support of this event. Last,
but not least, we would like to thank the General Chair, Weimin Zheng for his
advice and support to the program committee and his administrative support
for all of the local arrangements.

June 2004 Pen-Chung Yew
Jingling Xue

Conference Organization

General Chair

Weimin Zheng Tsinghua University, China

Program Chairs

Pen-Chung Yew
Jingling Xue

University of Minnesota, USA
University of New South Wales, Australia

Local Arrangements Chair

Wenguang Chen Tsinghua University, China

Local Arrangements Committee

Hongliang Yu
Jianian Yan
Jidong Zhai
Ruini Xue
Jiao Lin

Tsinghua University, China
Tsinghua University, China
Tsinghua University, China
Tsinghua University, China
Tsinghua University, China

Web Chair

Lian Li University of New South Wales, Australia

VIII Organization

Program Committee

Lars Bengtsson
Sangyeun Cho
Lynn Choi
Rudolf Eigenmann
Jean-Luc Gaudiot
Antonio Gonzalez

Gernot Heiser
Wei-Chung Hsu
Chris Jesshope
Angkul Kongmunvattana
Feipei Lai
Zhiyong Liu

Guei-Yuan Lueh
John Morris

Tadao Nakamura
Yukihiro Nakamura
Amos Omondi
Lalit M. Patnaik
Jih-Kwon Peir
Ronald Pose
Depei Qian
Stanislav G. Sedukhin
Naofumi Takagi
Zhimin Tang
Rajeev Thakur
Theo Ungerer
Winfried W. Wilcke
Weng Fai Wong
Chengyong Wu
Ming Xu

Yuanyuan Yang

Rumi Zahir
Chuanqi Zhu

Chalmers University of Technology, Sweden
Samsung Electronics, Co., Korea
Korea University, Korea
Purdue University, USA
University of California, Irvine, USA
Universitat Politecnica de Catalunya
& Intel Labs, Spain
National ICT Australia, Australia
University of Minnesota, USA
University of Hull, UK
University of Nevada, Reno, USA
National Taiwan University
National Natural Science Foundation
of China, China
Intel, USA
Chung-Ang University, Korea
& University of Auckland, New Zealand
Tohoku University, Japan
Kyoto University, Japan
Flinders University, Australia
Indian Institute of Science, Bangalore, India
University of Florida, USA
Monash University, Australia
Xian Jiaotong University, China
University of Aizu, Japan
Nagoya University, Japan
Chinese Academy of Sciences, China
Argonne National Laboratory, USA
University of Augsburg, Germany
IBM Research, USA
National University of Singapore, Singapore
Chinese Academy of Sciences, China
National University of Defense Technology,
China
State University of New York at Stony Brook,
USA
Intel, USA
Fudan University, China

Organization IX

Co-reviewers

Tom Adelmeyer
Alex Aletà
Jalal Almhana
Madhusudhanan Anantha
Juan Luis Aragon
Brian Armstrong
Eduard Ayguade
Faruk Bagci
Nitin Bahadur
Vishwanath P. Baligar
Bin Bao
Ayon Basumallik
Jürgen Beckeer
Ramón Beivide
Bryan Black
Tatiana Bokareva
Uwe Brinkschulte
Ralph Butler
Luis M. Díaz de Cerio
Jason Chang
Yen-Jen Chang
Mei Chao
Cheng Chen
Dong-Yuan Chen
Gen-Huey Chen
Haibo Chen
Howard Chen
Ronghua Chen
Tien-Fu Chen
Wen-Hsien Chen
Wenguang Chen
Yinwen Chen
Yung-Chiao Chen
Avery Ching
Seng-Cho Chou
Yang Wai Chow
Peter Chubb
C.G. Chung
Chung-Ping Chung
Sung Woo Chung
Josep M. Codina
Tim Conrad
Nawal Copty
Julita Corbalan

Toni Cortes
Alfredo Cristobal-Salas
Abhinav Das
Xiaotie Deng
Qiang Ding
Yingfei Dong
Klaus Dorfmüller-Ulhaas
David Du
Colin Egan
Kevin Elphinstone
Dongrui Fan
Hao Feng
Konrad Froitzheim
Rao Fu
Antonia Gallardo
Boon-Ping Gan
Enric Gibert
Marc Gonzalez
Charles Gray
Yi Guo
Weili Han
Wessam Hassanein
Guojin He
Gerolf Hoflehner
Scott Hoyte
Pao-Ann Hsiung
Wen Hu
Dandan Huan
Ing-Jer Huang
Junwei Huang
Lei Huang
Yi-Ping Hung
Wei Huo
Tomonori Izumi
Muhammad Mahmudul Islam
Yaocang Jia
Hong Jiang
Weihua Jiang
Yi Jiang
Troy A. Johnson
Edward Sim Joon
Sourabh Joshi
Roy Ju
Marcelo E. Kaihara

X Organization

Dongsoo Kang
Ryosuke Kato
Jörg Keller
Ihn Kim
JinPyo Kim
Sunil Kim
Chung-Ta King
Jon Krueger
Fumio Kumazawa
Ihor Kuz
Atul Kwatra
Hsiu-Hui Lee
Hung-Chang Lee
Sanghoon Lee
Yong-fong Lee
Jianping Li
Jie Li
Shengjun Li
Wei Li
Yingsheng Li
Yunchun Li
Weifa Liang
Shih-wei Liao
Wanjiun Liao
Björn Liljeqvist
Ching Lin
Fang-Chang Lin
Fang-Pang Lin
Hung-Yau Lin
Shian-Hua Lin
Xiaobin Lin
Bin Liu
Chen Liu
Jiangchuan Liu
Jyi-shane Liu
Michael Liu
Tao Liu
Zhanglin Liu
Jiwei Lu
Peng Lu
Zhongzhi Luan
Jesus Luna
Yuh-Dauh Lyuu
Takahiko Masuzaki
Ryusuke Miyamoto

Chi Ma
Xiaosong Ma
Erik Maehle
Mike Mesnier
Neill Miller
Do Quang Minh
Dave Minturn
Steven Molnar
Rafael Moreno-Vozmediano
Alberto J. Munoz
Hashem Hashemi Najaf-abadi
Gil Neiger
Anindya Neogi
Tin-Fook Ngai
Qizhi Ni
Rong Ni
Hiroyuki Ochi
Robert Olson
Ming Ouhyoung
Deng Pan
Zhelong Pan
Marina Papatriantafilou
Chan-Ik Park
Gi-Ho Park
Junho Park
Enric Pastor
Jan Petzold
Matthias Pfeffer
Andy D. Pimentel
Dhiraj Pradhan
Nol Premasathian
Rolf Rabenseifner
Ryan Rakvic
Rajiv Ranjan
Xiaojuan (Joanne) Ren
Won Woo Ro
Shanq-Jang Ruan
Hariharan Sandanagobalane
Kentaro Sano
Hartmut Schmeck
Ioannis T. Schoinas
Peter Schulthess
André Seznec
Hemal Shah
Shrikant Shah

Organization XI

Hong Shen
Sameer Shende
Jang-Ping Sheu
Xudong Shi
Mon-Chau Shie
Yong Shin
Tsan-sheng Shsu
Siew Sim
Mostafa I. Soliman
James Stichnoth
Feiqi Su
Yeali Sun
Kosuke Tsujino
Hiroshi Tsutsui
Kazuyoshi Takagi
Akihito Takahashi
Shigeyuki Takano
Santipong Tanchatchawal
Wei Tang
Hariharan L. Thantry
Ekkasit Tiamkaew
Apichat Treerojporn
Kun-Lin Tsai
Sascha Uhrig
Gladys Utrera
Alexander Vazhenin
Xavier Vera
Murali Vilayannur
Harsh Vipat
Jian Wang
Kuochen Wang
Peng Wang
Qin Wang
ShengYue Wang
Xiaodong Wang

Ye Wang
Yanzhi Wen
Sung-Shun Weng
Adam Wiggins
Weng-Fai Wong
Hsiaokuang Wu
Hui Wu
Jiajun Wu
Jiesheng Wu
Meng-Shiou Wu
Youfeng Wu
CanWen Xiao
Dai Xiao
Junhua Xiao
Yang Xiao
Wenjun Xiao
Jinhui Xu
Chu-Sing Yang
Xu Yang
Zhen Yang
Handong Ye
Chingwei Yeh
Kyueun Yi
Heng Zhang
Hongjiang Zhang
Hui Zhang
Minjie Zhang
Weihua Zhang
Xiaomin Zhang
Xingjun Zhang
Zhenghao Zhang
Qin Zhao
Yili Zheng
Yuezhi Zhou
Jiahua Zhu

This page intentionally left blank

Table of Contents

Keynote Address I

Some Real Observations on Virtual Machines
James E. Smith

1

Session 1A: Cache and Memory

Replica Victim Caching to Improve Reliability
of In-Cache Replication

Wei Zhang
2

Efficient Victim Mechanism on Sector Cache Organization
Chunrong Lai, Shih-Lien Lu

16

Cache Behavior Analysis
of a Compiler-Assisted Cache Replacement Policy

Xingyan Tian, Kejia Zhao, Huowang Chen, Hongyan Du
30

Modeling the Cache Behavior of Codes
with Arbitrary Data-Dependent Conditional Structures

Diego Andrade, Basilio B. Fraguela, Ramón Doallo
44

Session 1B: Reconfigurable and Embedded
Architectures

A Configurable System-on-Chip Architecture for Embedded Devices
Sebastian Wallner

58

An Auto-adaptative Reconfigurable Architecture for the Control
Nicolas Ventroux, Stéphane Chevobbe, Fréderic Blanc,
Thierry Collette

72

Enhancing the Memory Performance of Embedded Systems
with the Flexible Sequential and Random Access Memory 88

Ying Chen, Karthik Ranganathan, Vasudev V. Pai, David J. Lilja,
Kia Bazargan

Heuristic Algorithm for Reducing Mapping Sets
of Hardware-Software Partitioning in Reconfigurable System

Seong-Yong Ahn, Jun-Yong Kim, Jeong-A Lee
102

XIV Table of Contents

Session 2A: Processor Architecture and Design I

Architecture Design of a High-Performance 32-Bit Fixed-Point DSP
Jian Chen, Ruhao Xu, Yuzhuo Fu

115

TengYue-1: A High Performance Embedded SoC
Lei Wang, Hong-yi Lu, Kui Dai, Zhi-ying Wang

126

A Fault-Tolerant Single-Chip Multiprocessor
Wenbin Yao, Dongsheng Wang, Weimin Zheng

137

Session 2B: Power and Energy Management

Initial Experiences with Dreamy Memory
and the RAMpage Memory Hierarchy

Philip Machanick
146

dDVS: An Efficient Dynamic Voltage Scaling Algorithm
Based on the Differential of CPU Utilization

Kui- Yon Mun, Dae- Woong Kim, Do-Hun Kim, Chan-Ik Park
160

High Performance Microprocessor Design Methods Exploiting
Information Locality and Data Redundancy for Lower Area Cost
and Power Consumption

Byung-Soo Choi, Jeong-A Lee, Dong-Soo Har
170

Session 3A: Processor Architecture and Design II

Dynamic Reallocation of Functional Units in Superscalar Processors
Marc Epalza, Paolo Ienne, Daniel Mlynek

185

Multiple-Dimension Scalable Adaptive Stream Architecture
Mei Wen, Nan Wu, Haiyan Li, Chunyuan Zhang

199

Impact of Register-Cache Bandwidth Variation
on Processor Performance

Kentaro Hamayasu, Vasily G. Moshnyaga
212

Session 3B: Compiler and Operating System Issues

Exploiting Free Execution Slots on EPIC Processors
for Efficient and Accurate Runtime Profiling

Youfeng Wu, Yong-Fong Lee
226

Continuous Adaptive Object-Code Re-optimization Framework
Howard Chen, Jiwei Lu, Wei-Chung Hsu, Pen-Chung Yew

241

Initial Evaluation of a User-Level Device Driver Framework
Kevin Elphinstone, Stefan Götz

256

Table of Contents XV

Keynote Address II

A Generation Ahead of Microprocessor:
Where Software Can Drive uArchitecture To?

Jesse Z. Fang
270

Session 4A: Application-Specific Systems

A Cost-Effective Supersampling for Full Scene AntiAliasing
Byung- Uck Kim, Woo-Chan Park, Sung-Bong Yang,
Tack-Don Han

271

A Simple Architectural Enhancement
for Fast and Flexible Elliptic Curve Cryptography
over Binary Finite Fields

Stefan Tillich, Johann Großschädl
282

Scalable Design Framework for JPEG2000 System Architecture
Hiroshi Tsutsui, Takahiko Masuzaki, Yoshiteru Hayashi,
Yoshitaka Taki, Tomonori Izumi, Takao Onoye,
Yukihiro Nakamura

296

Real-Time Three Dimensional Vision
JongSu Yi, JunSeong Kim, LiPing Li, John Morris, Gareth Lee,
Philippe Leclercq

309

Session 4B: Interconnection Networks

A Router Architecture for QoS Capable Clusters
Madhusudhanan Anantha, Bose Bella

321

Optimal Scheduling Algorithms in WDM Optical Interconnects
with Limited Range Wavelength Conversion Capability

Zhenghao Zhang, Yuanyuan Yang
335

Comparative Evaluation of Adaptive and Deterministic Routing
in the OTIS-Hypercube

Hashem Hashemi Najaf-abadi, Hamid Sarbazi-Azad
349

A Two-Level On-Chip Bus System Based on Multiplexers
Kyoung-Sun Jhang, Kang Yi, Soo Yun Hwang

363

Keynote Address III

Make Computers Cheaper and Simpler
GuoJie Li

373

XVI Table of Contents

Session 5A: Prediction Techniques

A Low Power Branch Predictor to Selectively Access the BTB
Sung Woo Chung, Sung Bae Park

374

Static Techniques to Improve Power Efficiency of Branch Predictors
Weidong Shi, Tao Zhang, Santosh Pande

385

Choice Predictor for Free
Mongkol Ekpanyapong, Pinar Korkmaz, Hsien-Hsin S. Lee

399

Performance Impact of Different Data Value Predictors
Yong Xiao, Kun Deng, Xingming Zhou

414

Session 5B: Parallel Architecture and Programming

Heterogeneous Networks of Workstations
SunHo Baek, KyuHo Lee, JunSeong Kim, John Morris

426

Finding High Performance Solution
in Reconfigurable Mesh-Connected VLSI Arrays

Jigang Wu, Thambipillai Srikanthan
440

Order Independent Transparency
for Image Composition Parallel Rendering Machines

Woo-Chan Park, Tack-Don Han, Sung-Bong Yang
449

An Authorization Architecture Oriented
to Engineering and Scientific Computation in Grid Environments

Changqin Huang, Guanghua Song, Yao Zheng, Deren Chen
461

Session 6A: Microarchitecture Design and Evaluations

Validating Word-Oriented Processors
for Bit and Multi-word Operations

Ruby B. Lee, Xiao Yang, Zhijie Jerry Shi
473

Dynamic Fetch Engine for Simultaneous Multithreaded Processors
Tzung-Rei Yang, Jong-Jiann Shieh

489

A Novel Rename Register Architecture and Performance Analysis
Zhenyu Liu, Jiayue Qi

503

Session 6B: Memory and I/O Systems

A New Hierarchy Cache Scheme Using RAM and Pagefile
Rui-fang Liu, Change-sheng Xie, Zhi-hu Tan, Qing Yang

515

Table of Contents XVII

An Object-Oriented Data Storage System
on Network-Attached Object Devices

Youhui Zhang, Weimin Zheng
527

A Scalable and Adaptive Directory Scheme
for Hardware Distributed Shared Memory

Kiyofumi Tanaka, Toshihide Hagiwara
539

Session 7A: Potpourri

A Compiler-Assisted On-Chip Assigned-Signature Control Flow
Checking

Xiaobin Li, Jean-Luc Gaudiot
554

A Floating Point Divider Performing IEEE Rounding
and Quotient Conversion in Parallel

Woo-Chan Park, Tack-Don Han, Sung-Bong Yang
568

Efficient Buffer Allocation for Asynchronous Linear Pipelines
by Design Space Localization

Jeong-Gun Lee, Euiseok Kim, Jeong-A Lee, Eunok Paek
582

Author Index 597

This page intentionally left blank

Some Real Observations on Virtual Machines

James E. Smith

Department of Electrical and Computing Engineering
University of Wisconsin-Madison

jes@ece.wisc.edu

Abstract. Virtual machines can enhance computer systems in a number
of ways, including improved security, flexibility, fault tolerance, power ef-
ficiency, and performance. Virtualization can be done at the system level
and the process level. Virtual machines can support high level languages
as in Java, or can be implemented using a low level co-designed paradigm
as in the Transmeta Crusoe. This talk will survey the spectrum of vir-
tual machines and discuss important design problems and research issues.
Special attention will be given to co-designed VMs and their application
to performance- and power-efficient microprocessor design.

P.-C. Yew and J. Xue (Eds.): ACSAC 2004, LNCS 3189, p. 1, 2004.
© Springer-Verlag Berlin Heidelberg 2004

Replica Victim Caching to Improve Reliability
of In-Cache Replication

W. Zhang

Dept of ECE, SIUC, Carbondale, IL 62901, USA
zhang@engr.siu.edu

Abstract. Soft error conscious cache design is a necessity for reliable
computing. ECC or parity-based integrity checking techniques in use
today either compromise performance for reliability or vice versa. The
recently-proposed ICR (In-Cache Replication) scheme can enhance data
reliability with minimal impact on performance, however, it can only ex-
ploit a limited space for replication and thus cannot solve the conflicts
between the replicas and the primary data without compromising either
performance or reliability. This paper proposes to add a small cache,
called replica victim cache, to solve this dilemma effectively. Our exper-
imental results show that a replica victim cache of 4 entries can increase
reliability of Ll data caches 21.7% more than ICR without impacting
performance, and the area overhead is within 10%.

1 Introduction and Motivation

Soft errors are unintended transitions of logic states caused by external radiations
such as alpha particle and cosmic ray strikes. Recent studies [4,6,5,9] indicate
that soft errors are responsible for a large percentage of computation failures.
In current microprocessors, over 60% of the on-chip estate is taken by caches,
making them more susceptible to external radiations. The soft errors in cache
memories can easily propagate into the processor registers and other memory
elements, resulting in catastrophic consequences on the execution. Therefore,
soft error tolerant cache design is becoming increasingly important for failure-
free computation.

Information redundancy is the main technique to improve data integrity.
Currently the popular information redundancy scheme for memories is either
byte-parity (one bit parity per 8-bit data) [1], or single error correcting-double
error detecting (SEC-DED) code (ECC) [2,3]. However, both of these two schemes
have deficiencies. Briefly, parity check can only detect single-bit errors. While
SEC-DEC based schemes can correct single-bit errors and detect two-bit errors,
they can also increase the access latency of the L1 cache, and thus not suitable
for high-end processors clocked over 1GHz [7]. Recently, an approach called ICR
(In-Cache Replication) has been proposed to enhance reliability of the L1 data
cache for high-performance processors [7]. The idea of ICR is to exploit “dead”
blocks in the L1 data cache to store the replicas for “hot” blocks so that a large
percentage of read hits in the L1 can find their replicas in the same cache, which

P.-C. Yew and J. Xue (Eds.): ACSAC 2004, LNCS 3189, pp. 2–15, 2004.
© Springer-Verlag Berlin Heidelberg 2004

Replica Victim Caching to Improve Reliability of In-Cache Replication 3

can be used to detect and correct single bit and/or multiple bit errors. While the
ICR approach can achieve a better tradeoff between performance and reliability
than parity-only or ECC-only protection, it can only exploit a limited space
(namely the “dead” blocks in the data cache) for replication. In addition, since
the replica and the primary data are stored in the same cache, they inevitably
have conflicts with each other. The current policy adopted by ICR [7] is to give
priority to the primary data for minimizing the impact on performance. In other
words, the data reliability is compromised. As illustrated in [7], 10% to 35%
of data in the L1 data cache is not protected (i.e. having no replicas) by ICR
schemes, which may cause severe consequences in computation and thus are not
useful for applications that require high reliability or operate under highly noisy
environments.

This paper proposes a novel scheme to enhance the reliability of ICR further
by adding a small fully-associative cache to store the replica victims, which is
called the replica victim cache in this paper. Unlike the victim cache proposed
by jouppi [10] for reducing the conflict misses for a direct-mapped cache without
In-Cache Replication, the proposed replica victim cache is utilized to store the
replica victims, which are conflicting with the primary data or other replicas in
the primary data cache, for enhancing reliability of the ICR approaches signif-
icantly without compromising performance. Moreover, since the replica is used
to improve data integrity, the replica victim cache does not need to swap the
replica with the primary data when accessed. In contrast, the traditional victim
cache stores different data (i.e., victim) from the primary cache, and the victims
need to be swapped to the L1 cache in the case of a miss in the L1 data cache
that hits in the victim cache[10]. The paper examines the following problems.

How does reliability, in terms of loads with replica (see the definition in 4),
relate to the size of the replica victim cache, the size and associativity of
the primary cache? How much loads with replica can be increased by the
addition of a replica victim cache?
How to exploit the replicas in either the primary cache or the replica victim
cache to provide different levels of reliability and performance?
What is the error detection and correction behavior of different replica-based
schemes under different soft error rates?

We implemented the proposed replica victim caching schemes by modifying
the Simplesclar 3.0 [14]. The error injection experiments are based on random
injection model [5]. Our experimental results reveal that a replica victim cache
of 4 entries can increase the reliability of ICR by 21.7% without impacting per-
formance and its area overhead is less than 10%, compared to most L1 data
caches.

The rest of the paper is organized as follows. Section 2 introduces the back-
ground information about In-Cache Replication and its limitation. Section 3 de-
scribes the architecture of replica victim caching and different schemes to exploit
the replica victim lines for improving data reliability. The evaluation method-
ology is given in section 4. Section 5 presents the experimental results. Finally,

1.

2.

3.

4 W. Zhang

section 6 summarizes the contributions of this paper and identifies directions for
future research.

2 Background and Motivation

A recent paper [7] presents ICR (In-Cache Replication) for enhancing data cache
reliability without significant impact on performance. The idea of ICR is to
replicate hot cache lines in active use within the dead cache lines. The mapping
between the primary data and the replica is controlled by a simple function.
Two straightforward mapping functions are studies in [7], namely, the vertical
mapping (replication across sets) and the horizontal mapping (replication within
the ways of a set) [7] , as shown in figure 1. The dead cache lines are predicted by
a time-based dead block predictor, which is shown to be highly accurate and has
low hardware overhead [8]. The ICR approach can be used either with parity or
ECC based schemes and there is a large design space to explore, including what,
when and where to replicate the data, etc [7]. The design decisions adopted in
this paper is presented in table 1.

The results in [7] demonstrate that the ICR schemes can achieve better per-
formance and/or reliability than the schemes that use ECC or parity check alone,
however, it can only achieve modest reliability improvement due to the limited
space it can exploit. Since each L1 data cache has a fixed number of cache lines,
and each cache line can be either used to store the primary data to benefit per-
formance or to store the replicas for enhancing data reliability, ICR approaches

Fig. 1. Cache line replication (a) vertical replication (b) horizontal replication [7].

Replica Victim Caching to Improve Reliability of In-Cache Replication 5

give priority to performance by using several strategies. Firstly, the dead block
predictor is designed to be very accurate so that the blocks predicted dead will
most likely not be accessed in the near future. Otherwise, the primary data has
to be loaded from the higher level memory hierarchy, resulting in performance
penalty. Secondly, in case of a conflict between the primary data and the replica,
ICR gives higher priority to the primary data and the replica is simply discarded.
For instance, when a primary data is written to a cache block, which stores a
replica for another primary data, the replica will be overwritten by the coming
primary data. As a result, ICR approach can only the replicas that do not con-
flict with the primary data, resulting in moderate data reliability improvement.
The experiments in [7] also reveal that 10% to 35% of load hits in L1 cannot find
their replicas and ICR schemes have more than 20% unrecoverable loads under
intense error injection. With the trend of increasing soft error rate, the reliability
of ICR approaches need to be improved further, especially for applications that
demand very high data reliability or operate under highly-noisy environments.

3 Replica Victim Cache

While one straightforward way to enhance data reliability of ICR further is
to make more replicas in the L1 data cache by giving priority to replicas in
case of their conflicts with the primary data. This approach, however, can in-
evitably degrade performance and thus is not acceptable. Another approach used
in mission-critical applications is the NMR (N Modular Redundancy) scheme,
which replicate the data cache for multiple times. However, the NMR scheme is
too costly for microprocessors or embedded system with cost and area constraint.

This paper proposes an approach to enhance data reliability of ICR without
performance degradation or significant area overheads. The idea is to add a small
fully-associative replica victim cache to store the replica victim lines whenever
they are conflicting with primary cache lines. Due to the fully associativity of
the replica victim cache and data locality (replicas also exhibit temperal and
spatial locality, since they are the “images” of the primary data), a very large
percentage of load hits in the L1 can find their replicas available either in the
L1 data cache or in the replica victim cache.

Victim cache is not a new idea in cache design. Jouppi proposed the victim
cache to store the victim lines evicted from the L1 cache for reducing the conflict
misses [10]. However, the victim cache proposed by Jouppi cannot be used to
enhance data reliability, since there is no redundant copies in both the L1 cache
and the victim cache (i.e., only the blocks evicted from the L1 are stored in the
victim cache). While the original victim cache aims at performance enhance-
ment, the objective of the replica victim cache is to improve data integrity of
ICR approaches significantly without impacting performance. The replica vic-
tim cache is a small fully associative cache in parallel with the L1 data cache, as
shown in figure 2. In addition to In-Cache Replication, the replica victim cache
is used to store replicas for the primary data in the L1 in the following cases:

1. There is no dead block available in the L1 data cache to store the replica.

6 W. Zhang

Fig. 2. The architecture of replica victim cache.

The replica is replaced by the primary data since ICR gives priority to the
primary data.
The replica is replaced by another replica for another primary data (note
that for a set-associative data cache, multiple replicas can be mapped to the
same dead block with ICR approach [7]).

Since ECC computation has performance overhead, we assume all the cache
blocks of the L1 and the replica victim cache are protected by parity check. The
replicas (both in the replica victim cache and the L1 data cache due to ICR)
can be read at each read hits in the L1 for parallel comparison with the primary
data to detect multiple bit errors. Alternatively, the replicas can be read only
when the parity bit of the primary data indicates an error. The former scheme
can enhance data reliability greatly, but there is a performance penalty for the
parallel comparison. We assume it takes 1 extra cycle to compare the primary
data and the replica in our simulations. The latter scheme also improve the
reliability by being able to recover from single bit errors.

The paper examines the following problems.
1. How does the reliability, in terms of loads with replica (see 4), relate to the

size of the replica victim cache, the size and associativity of the primary cache?
How much loads with replica can be increased by the addition of a replica victim
cache?

2. How to exploit the replicas in either the primary cache or the replica victim
cache to provide different levels of reliability and performance?

3. How does the error detection and correction behavior of different replica-
based schemes under different soft error rates?

To answer the above questions, we propose and evaluate the following
schemes:

2.

3.

Replica Victim Caching to Improve Reliability of In-Cache Replication 7

BaseP: This is a normal L1 data cache without the replica victim cache.
All cache blocks are protected by parity. The load and store operations are
modeled to take 1 cycle in our experiments.
BaseECC: This scheme is similar to BaseP scheme except that all cache blocks
are protected by ECC. Store operations still take 1 cycle (as the writes are
buffered), but loads take 2 cycles to account for the ECC verification.
RVC-P: This scheme implements the In-Cache Replication and the proposed
replica victim caching. When there is a conflict between the primary data
and the replica, the replica victim is stored to the replica victim cache. If the
replica victim cache is full, the least-recently used replica is discarded. All
cache blocks are protected by parity and the replica is only checked if the
parity bit of the primary data indicates an error. Load and store operations
are modeled to take 1 cycle in our experiments.
RVC-C: This scheme is similar to RVC-P scheme except that the replica
is compared with the primary data before the load returns. The search of
replica can be executed simultaneously in both the L1 data cache and the
replica victim cache. If the replica hits in the L1 data cache, that replica is
used to compare with the primary data; otherwise, the replica in the replica
victim cache is used for comparison if there is a hit in the replica victim
cache. Note that we give priority to the replicas found in the L1 data cache,
because the L1 contains the most updated replicas while the replica victim
cache may not (because it only contains the most updated replica victims).
However, for the given primary data, if its replica cannot be found in the L1
data cache, the replica found in the replica victim cache must contain the
most updated value because every replica victim of the data must have been
written to the replica victim cache. We conservatively assume that the load
operations take 2 cycles, and store operations take 1 cycle as usual.

It should be noted that in addition to parity check and ECC, the write-
through cache and speculative ECC loads are also widely employed for improving
data reliability. For write-through caches, data redundancy is provided by prop-
agating every write into the L2 cache. However, write-through caches increase
the number of writes to the L2 dramatically, resulting in the increase of write
stalls even with a write-buffer. Thus both performance and energy consumption
can be impacted [7]. Another way to improve data reliability while circumventing
the ECC time cost is the speculative ECC load scheme, which performs the ECC
checks in the background while data is loaded and the computation is allowed
to proceed speculatively. While speculative ECC loads can potentially hide the
access latency, it is difficult to stop the error propagation in a timely manner
and may result in high error recovery cost. Since ECC computation consumes
more energy than parity check, it is also shown that speculative ECC load has
worse energy behavior than the ICR approach that uses parity check only (i.e.,
ICR-P-PS) [7]. Due to these reasons, we focus on investigating approaches to im-
prove reliability for write-back data caches, and we only compare our approach
directly with the recently-proposed ICR approaches, which have exhibited better

8 W. Zhang

performance and/or energy behavior than the write-through L1 data cache and
the speculative ECC load [7].

4 Evaluation Methodology

4.1 Evaluation Metrics

To compare performance and reliability of different schemes, we mainly use the
following two metrics:

Execution Cycles is the time taken to execute 200 million application in-
structions.
Loads with Replica is the metric proposed in [7] to evaluate the reliability
enhancement for data caches. A higher loads with replica indicates higher
data reliability, as illustrated by error injection experiments [7]. Since we
add a replica victim cache to the conventional L1 data cache architecture,
we modify the definition of loads with replica proposed in [7] to be the
fraction of read hits that also find their replicas either in the L1 data cache
or in the replica victim cache. Note that the difference between our definition
and the definition in [7] is that in our scheme, the replica of “dirty” data can
be found either in the L1 data cache or in the replica victim cache; while in
the ICR scheme [7], the replicas can be only found in the L1 data cache.

4.2 Configuration and Benchmarks

We have implemented the proposed replica victim caching schemes by modify-
ing the Simplesclar 3.0 [14]. We conduct detailed cycle level simulations with
sim-outorder to model a multiple issue superscalar processor with a small fully-
associative replica victim cache. The default simulation values used in our ex-
periments are listed in Table 2 (note that we do not list the configuration of the
replica victim cache in Table 2, since we need to make experiments with different
replica cache size).

We select ten applications from the SPEC 2000 suite [16] for this evaluation.
Since the simulations of these applications are extremely time consuming, we
fast forward the first half billion instructions and present results for the next 200
million instructions. Important performance characteristics of these applications
in the base scheme are given in Table 3.

5 Results

5.1 The Size of the Replica Victim Cache and Data Integrity
Improvement

Our first experiment is to investigate what is the appropriate size for the replica
victim cache. On one hand, the replica victim cache must be small to minimize

Replica Victim Caching to Improve Reliability of In-Cache Replication 9

the hardware overheads. On the other hand, the replica victim cache should
be large enough to accommodate the replica victims as many as possible. Due
to data locality, it is possible to use a small replica victim cache to store the
replica victims for the data, which is most likely accessed in the future. We
use an empirical approach to find the best size for the replica victim cache.
Specifically, we make experiments on two randomly selected benchmarks (i.e.,
bzip2 and equake) for replica victim caches with different sizes varying from 1
block to 16 blocks and the L1 data cache is fixed to be 16K-Byte, 4-way set
associative, as given in table 2. The loads with replica results are presented in
figure 3. As can be seen, the loads with replica increases dramatically when the
size of the replica victim cache is increased from 1 block to 2 blocks, because the
conflicts of replicas in the replica victim cache can be reduced by exploiting the
associativity. For the replica victim cache of 4 or more blocks, the loads with
replica is larger than 98.6%, which is tremendously larger than the loads with
replica achieved by ICR schemes. We use cacti 3.2 model [15] to estimate the
area overhead and the results are shown in table 4. As can be seen, the area
overhead of the 4-entry replica victim cache is less than 10%, compared to a
data cache of 16K, 32K or 64K bytes. Considering both reliability enhancement
and hardware overhead, we fix the size of the replica victim cache to be 4 entries.

10 W. Zhang

Fig. 3. Loads with replica for replica victim caches of 1, 2, 4, 8 and 16 blocks.

Figure 4 illustrates the loads with replica for a replica victim cache with 4
blocks for all the 10 benchmarks. The replicas can be found either from the L1
data cache (as the ICR approach) or from the replica victim cache. We find that
for each benchmark, replica victim cache can store a large portion of the replica
victims that are most likely accessed in the future, in addition to the replicas
produced by the ICR approach, resulting in significant enhancement on data
reliability. The average loads with replica with the replica victim cache is 94.4%,
which is 21.7% larger than the ICR approach alone.

5.2 Performance Comparison

Using the above settings for the replica victim cache, we next study the perfor-
mance of the replica victim caching. Since the replica victim cache is only used to
store the replica victims from the L1 data cache, there is no performance degra-
dation compared to the corresponding ICR approaches [7]. Therefore, we only
compare the performance implications of the four schemes described in Section 3.

As shown in figure 5, the performance of the RVC-P scheme is comparable
to the BaseP scheme and the performance of the RVC-C scheme is comparable
to the BaseECC scheme. Specifically, the average performance degradation of
RVC-P to BaseP and RVC-C to BaseECC is 1.8% and 1.7% respectively. It
should be noted that this performance degradation comes from ICR, not from
the replica victim caching. Since ICR relies on dead block prediction and there
is no perfect dead block predictor, some cache blocks in the L1 may be predicted

Replica Victim Caching to Improve Reliability of In-Cache Replication 11

Fig. 4. Loads with replica for replica victim caches of 4 blocks.

Fig. 5. Performance comparison of different schemes.

dead (and thus are utilized to store replicas) but are actually accessed later (i.e.,
not “dead” yet), which can result in performance degradation.

5.3 Error Injection Results

We conduct the error injection experiment based on random injection model [5].
In this model, an error is injected in a random bit of a random word in the
L1 data cache. Such errors are injected at each clock cycle based on a constant
probability (called error injection rate in this paper).

Figure 6 and figure 7 present the fraction of loads that could not be recovered
from errors (including single-bit or mult-bit errors) for BaseP, BaseECC, ICR-
P-PS, RVC-P and RVC-C for bzip2 and vpr respectively. In both experiments,
the data is loaded as a function of the probability of an error occurring in each
cycle and the error injection rate varies from 1/100 to 1/1000 and 1/10000.
Note that the intention here is to study the data reliability under intense error
behavior, thus very high error injection rates are used. As can be seen, BaseP
always has the worst error resilient behavior, since the parity bit can only detect

12 W. Zhang

single-bit errors. When the error injection rate is relatively low (i.e., 1/10000),
BaseECC has similar percentage of unrecoverable loads as RVC-C. However, as
the error injection rate increases, the difference between BaseECC and RVC-C
grows larger. Specifically, when the error injection rate is 1/1000, RVC-C can
reduce the unrecoverable load by 9.1% and 4.5% for bzip2 and vpr respectively,
compared to the BaseECC scheme. Similarly, the RVC-P scheme exhibits much
better error resilient behavior compared to BaseP and ICR-P-PS at different
error injection rate.

Fig. 6. Percentage of unrecoverable
loads for bzip2.

Fig. 7. Percentage of unrecoverable
loads for vpr.

5.4 Sensitivity Analysis

To verify the effectiveness of the replica victim cache of 4 blocks for L1 data
caches with different configurations, we also make experiments to study the loads
with replica by varying the L1 data cache size and the number of associativity.
In both experiments, the replica victim cache is fixed to be a fully-associative
cache of 4 blocks.

Figure 8 gives the loads with replica for L1 data caches of 8K, 16K, 32K,
64K and 128K bytes. The block size and the associativity of the L1 data cache
are 32 bytes and 4 way respectively. The results are very interesting. As can
be seen, bzip2 and equake exhibit different trends in loads with replica. As the
data cache size increases, the loads with replica of bzip2 decreases slightly, while
the loads with replica of equake increases slightly. The reason is that replicas
can be found in two places: the L1 data cache and the replica victim cache.
The number of replicas that can be stored in the L1 increases as the L1 data
cache size increases, however, the relative number of replicas that can be stored
in the replica victim cache decreases since the size of replica victim cache is
fixed. Therefore, the effect of increasing the L1 data cache size on the loads with
replica is dependent on these two factors. The breakdown of loads with replica
from the L1 data cache and from the replica victim cache for bzip2 and equake
are presented in figure 9 and figure 10 respectively. In figure 9, the decrease of
loads with replica from the replica victim cache dominates, and thus the total

Replica Victim Caching to Improve Reliability of In-Cache Replication 13

loads with replica decreases as the L1 data cache size increases. In contrast, in
figure 10, the increase of loads with replica from the L1 data cache dominates,
and hence the total loads with replica increases with the increase of the L1 data
cache size. However, for all the L1 data cache configurations, the replica victim
cache of 4 entries can achieve the loads with replica more than 98.1% on average,
which is substantially larger than what the ICR approach alone can achieve.

Fig. 8. Loads with replica for 4-way associative L1 data caches of 8K, 16K, 32K, 64K
and 128K bytes. The replica victim cache is fully associative with 4 blocks. The block
size of both the L1 data cache and the replica victim cache is 32 bytes. Insensitive to
the L1 data cache size, the addition of the fully associative replica victim cache of 4
blocks can achieve the loads with replica more than 98.1% on average.

Fig. 9. Loads with replica break-
down for L1 data caches of 8K, 16K,
32K, 64K and 128K for bzip2.

Fig. 10. Loads with replica break-
down for L1 data caches of 8K, 16K,
32K, 64K and 128K for equake.

We also study the loads with replica for L1 data caches with different asso-
ciativity and find similar results. Therefore, with the addition of a small fully-
associative replica victim cache of 4 entries, a very high loads with replica can
be achieved to enhance data reliability of ICR further for a variety of L1 data
caches.

14 W. Zhang

6 Conclusion

This paper studies the limitation of In-Cache Replication and proposes to add
a small fully-associative replica victim cache to store the replica victim lines in
case of their conflicts with the primary data. We find that with the addition of a
small replica victim cache of 4 entries, the loads with replica of the ICR scheme
can be increased by 21.7%. On average, 94.4% load hits in L1 can find replicas
either in the L1 data cache or in the replica victim cache. We also propose and
evaluate two different reliability enhancing schemes — RVC-P and RVC-C —
that are proven to be quite useful.

RVC-P is a much better alternative for ICR-P-PS where one may want simple
parity protection. It can enhance reliability significantly by providing additional
replicas in the replica victim cache without compromising performance. RVC-P
also has better performance than RVC-C or ECC based schemes (i.e., BaseECC).

RVC-C can increase the error detection/correction capability by comparing
the primary data and the replica before the load returns. Our error injection
experiments reveal that RVC-C has the best reliability and can be used for
applications that demand very high reliability or operate under highly noisy en-
vironments. Compared with the BaseECC scheme, the performance degradation
of RVC-C is only 1.7% on average.

In summary, this paper proposes the addition of a small fully-associative
replica victim cache to enhance data reliability of ICR schemes significantly
without compromising performance. Our future work will concentrate on study-
ing the reliability and performance impact of replica victim cache for multipro-
gramming workloads. In addition, we plan to investigate how to use a unified
victim cache efficiently to store both primary victims and replica victims and
the possibility to make a better tradeoff between performance and reliability.

References

1.

2.

3.

4.

5.

6.

7.

8.

P. Sweazey. SRAM organization, control, and speed, and their effect on cache
memory design. Midcon/87, pages 434-437, Septembe, 1987.
H. Imai. Essentials of error-control coding techniques. Academic Press, San Diego,
CA, 1990.
C.L. Chen and M.Y Hsiao. Error-correcting codes for semiconductor memory ap-
plications: a state of the art review. In Reliable Computer Systems - Design and
Evaluation, pages 771-786, Digital Press, 2nd edition, 1992.
J. Karlsson, P. Ledan, P. Dahlgren, and R. Johansson. Using heavy-ion radiation
to validate fault handling mechanisms. IEEE Micro, 14(1):8–23, February 1994.
S. Kim and A. Somani. Area efficient architectures for information integrity check-
ing in cache memories. ISCA, May 1999, pp. 246–256.
J. Sosnowski. Transient fault tolerance in digital systems. IEEE Micro, 14(1):24–
35, February 1994.
W. Zhang, S. Gurumurthi, M. kandemir and A. Sivasubramaniam. ICR: in-cache
replication for enhancing data cache reliability, DSN, 2003.
S. Kaxiras, Z. Hu, and M. Martonosi. Cache decay: exploiting generational be-
haviour to reduce cache leakage power, ISCA, June 2001.

Replica Victim Caching to Improve Reliability of In-Cache Replication 15

9.

10.

11.

12.

13.

14.
15.

16.

P.Shivakumar, M. Kistler, S. Keckler, D. Burger and L. Alvisi. Modeling the effect
of technology trends on soft error rate of combinational logic, DSN, June, 2002.
N.P. Jouppi. Improving direct-mapped cache performance by the audition of a
small fully-associative cache and prefetch buffers, ISCA, 1990.
M. Hamada and E. Fujiwara. A class of error control codes for byte organized
memory system-SbEC-(Sb+S)ED codes. IEEE Trans. on Computers, 46(1):105-
110, January 1997.
S. Park and B. Bose. Burst asymmetric/unidirectional error correcting/detecting
codes, FTC, June, 1990.
Understanding Soft and Firm Errors in Semiconductor Devices. Actel Whitepaper,
2002.
http://www.simplescalar.com.
S. Wilton and N. Jouppi. CACTI: An enhanced cache access and cycle time model.
IEEE Journal of Solid-State Circuits, Vol. 31(5):677-688, May 1996.
http://www.spec.org.

Efficient Victim Mechanism on Sector Cache
Organization

Chunrong Lai 1 and Shih-Lien Lu 2

1 Intel China Research Center, 8F, Raycom Infotech Park A, No.2 Kexueyuan South Road
ZhongGuanCun, Haidian District, Beijing China, 100080

chunrong.lai@intel.com
2 Microprocessor Research, Intel Labs
shih-lien.l.lu@intel.com

Abstract. In this paper we present an victim cache design for caches organized
with line that contains multiple sectors (sector cache). Sector caches use less
memory bits to store tags than non-sectored caches. Victim cache has been pro-
posed to alleviate conflict misses in a lower associative cache design. This pa-
per examines how victim cache can be implemented in a sector cache and pro-
poses a further optimization of the victim buffer design in which only the tags
of the victim lines are remembered to re-use data in the sector cache. This de-
sign is more efficient because only an additional “OR” operation is needed in
the tag checking critical path. We use a full system simulator to generate traces
and a cache simulator to compare the miss ratios of different victim cache de-
signs in sector caches. Simulation results show that this proposed design has
comparable miss ratios with designs having much more complexity.

1 Introduction

In a cache an address tag (or tag) is used to identify the memory unit stored in the
cache. The size of this memory unit affects how well a cache functions. For a fixed
size cache larger unit size needs less memory bits to store tags and helps programs
that possess special locality. However, larger unit may cause fragmentation making
the cache less efficient when spatial locally is not there. Moreover, transferring each
unit from lower memory hierarchy takes higher bandwidth. Smaller unit size allows
more units to be included and may help programs that spread memory usage.

Sector cache[1][2] has been proposed as an alternative to strike a balance of cache
unit sizes. A sector cache’s memory unit is divided into sub-sections. Each unit needs
only one tag thus saves tag memory bits. These sub-sections of a sector cache need
not to be simultaneously brought in the cache allowing lower transferring bandwidth.
Another advantage of sector caches is observed for multiprocessors systems because
they reduce false sharing[3][4]. Sector cache’s advantage is evident in that many
microprocessors employ sector caches in their designs. For example, Intel’s Pen-

P.-C. Yew and J. Xue (Eds.): ACSAC 2004, LNCS 3189, pp. 16–29, 2004.

© Springer-Verlag Berlin Heidelberg 2004

Efficient Victim Mechanism on Sector Cache Organization 17

tium® 41[5], SUN’s SPARC™[6] and IBM’s POWERPC™ G4™[7]/G5™[8] all
employ sector cache in their cache organization.

This work intends to propose and evaluate further optimization techniques to im-
prove performance of a sector cache. One of those designs is the victim cache[9]. A
victim cache includes an additional victim buffer. When a line is replaced it is put
into this small buffer which is full associative instead of just being discarded. The
idea is to share the victim buffer entries among all sets since only a few of them are
hotly contended usually. First, we discuss how victim buffer/cache idea can be ap-
plied in a sector cache. We evaluate two implementations of victim cache. One is
called “line-victim” and the other is “sector-victim”. We further propose a third vic-
tim mechanism design named “victim sector tag buffer”(VST buffer) for further util-
ize the sector cache lines. This design tries to address a sector cache’s potential dis-
advantage of having larger unit size and could be under-utilized.

Since there are many different names[3][6][10][11][12][13][14][15] used to de-
scribe the units used in a sector cache, we first describe the terminology used in this
paper. In our terminology a cache consist of lines which have tags associated with
each of them. Each line consists of sub-units which are called sectors. This naming
convention is the same as described in the manuals of Pentium® 4[5] and
POWERPC™[7][8]. An example 4-way set-associative cache set is shown in figure 1.
A valid bit is added to every sector to identify a partial valid cache line. We also use
the terminology s-ratio which is defined as the ratio between the line size and the
sector size. A sector cache with s-ratio equals to p is called p-sectored cache as [1].
The example in figure 1 it is a 4-sectored cache.

Fig. 1. Principles of sectored cache

This paper is organized as follows. In this section we introduce the concept of sec-
tor cache and victim mechanism. In the next section we first review other related
works in this area. We then describe in more detail of our design. In section three we
present the simulation methodology. In section four and five we introduce our simula-
tion results on different cache levels. Finally we conclude with some observations.

1 Pentium is a registered trademark of Intel Corp. or its subsidiaries in the United States and
other countries.

18 C. Lai and S.-L. Lu

2 Sector Cache with Victim Buffer

2.1 Related Work

Sector caches can be used to reduce bus traffic with only a small increase in miss
ratio[15]. Sector cache can benefit in two-level cache systems in which tags of the
second level cache are placed at the first level, thus permitting small tag storage to
control a large cache. Sector cache also is able to improve single level cache system
performance in some cases, particularly if the cache is small, the line size is small or
the miss penalty is small. The main drawback, cache space underutilization is also
shown in [13].

Rothman propose “sector pool” for cache space underutilization[13]. In the design,
each set of set-associative cache compose of totally s-ratio sector lists. Each list has a
fix number of sectors that the number is less than the associativity. S-ratio additional
pointer bits, associate with a line tag, point to the actual sector as the index of the
sector list. Thus a physical sector can be shared in different cache lines to make the
cache space more efficient. Unlike our victim mechanism who tries to reduce the
cache Miss ratio, this design more focus on cache space reduction. It depends on a
high degree set associative cache. The additional pointer bits and the sector lists will
make the control more complex. For example, the output of tag comparison need to
be used to get the respond pointer bit first then can get the result sector. This length-
ens the critical path. Another example is that different replacement algorithms for the
cache lines and sector list need to be employed at the same time.

Seznec propose “decoupled sectored cache”[1][11]. A [N,P] decoupled sectored
cache means that in this P-sectored cache there exists a number N such that for any
cache sector, the address tag associated with it is dynamically chosen among N possi-
ble address tags. Thus a log2N bits tag, known as the selection tag, is associated with
each cache sector in order to allow it to retrieve its address tag. This design increases
the cache performance by allow N memory lines share a cache line if they use differ-
ent sectors that some of the sectors have to be invalid at normal sector cache design.
Our concern about this design is that the additional tag storage, say N-l address tags
and s-ratio * log2N selection tags for each line, need large amount of extra storage.
Seznec himself use large(32 or 64) s-raio, which will make the validity check and
coherence control very complex, to reduce tag storage before decoupling. We tried to
implement this idea and saw the line-fill-in and line-replacement policy is important
for the performance. If with a line-based-LRU-like fill-in/replacement policy pro-
posed by ourselves, since Seznec did not give enough details of his policies, the de-
coupled sector cache will not perform better than our VST design, if with similar
extra storage, given s-ratio range of 2~8. And, an additional compare need to be per-
formed to the retrieved selection tag to ensure the sector data is right corresponded to
the address tag which causes the tag matching. This also lengthens the tag checking
critical path.

Victim caching was proposed by Jouppi[9] as an approach to reduce the cache
Miss ratio in a low associative cache. This approach augments the main cache with a
small fully-associate victim cache that stores cache blocks evicted from the main

Efficient Victim Mechanism on Sector Cache Organization 19

cache as a result of replacements. Victim cache is effective. Depending on the pro-
gram, a four-entry victim cache might remove one quarter of the misses in a 4-KB
direct-mapped data cache. Recently [16] shows that victim cache is the most
power/energy efficient design among the general cache misses reduction mechanisms.
Thus it becomes a more attractive design because of the increasing demand of low
power micro-architecture.

2.2 Proposed Design

In order to make our description clearer, we define several terms here. We call a ref-
erence to a sector cache a block-miss if the reference finds no matching tag within the
selected set. We call a reference a data-miss if the tag matches but the referenced
word is in an invalid sector. Thus a miss can be either block-miss or data-miss. Simi-
lar to [1][11] describe, for a P-sectored cache we divide the address A of a memory
block in four sub-strings (A3, A2, A1, A0) defined as: A0 is a log2SL bit string
which SL is the sector length, A1 is a log2P bit string show which sector this block is
in if it is in a cache line, A2 is a log2nS bit string which nS is the number of the cache
sets, A3 consists of the remaining highest significant bits. The main cache line need
store only the bits in A3. Figure 2 show tag checking of directed-mapped case. A2
identify the only position of the tag to be compared in the tag array. (A2, A1) identify
the only position the data sector can be. The data can be fetched without any depend-
ency on the tag comparison. The processor pipeline may even start consuming the
data speculatively without waiting for the tag comparison result, only roll back and
restart with the correct data in the case of cache miss which is rarely happened, as line
prediction.

Fig. 2. Directed mapped sector cache tag checking

In the case of set-associative cache, (A2, A1) can only select the conceptual “sec-
tor set”, then waiting for the comparison result of the address tags to get a line ID to
deliver the correspond sector. Figure 3 is such an example of a 2-way associate sector

20 C. Lai and S.-L. Lu

cache. In a lower-associate cache the sector data and the valid bits being select can be
got independently with the tag comparison.

Fig. 3. 2-way associate sector cache tag checking

In figure 3 a line ID is needed, in critical path, as selection signal of the MUX.
Line ID is founded after the tag comparison result. For a higher associate cache like a
CAM, where a simple MUX may not be used, the data and valid bits could be not
right at hand immediately. But Line ID retrieving still dominates in the critical path
there[17].

As mentioned by many researchers victim cache can reduce cache Miss ratio.
There are two straightforward victim designs for sector cache. One is line-victim
cache(LVC), the other is sector-victim cache(SVC). Figure4 show their tag checking.
Tag checking of the line victim cache is in the left and the other is in the right. The
most difference between them is the data unit associate with the victim tag. In line-
victim cache, the data unit is a cache line. And the data unit is a sector in the sector-
victim cache. Thus the lengths of the victim tags of LVC and SVC are different. For
same entries number LVC can be expected more cache misses saved due to more
storage there, where SVC can be expected a little faster tag checking and data retrieve.
Figure 4 do not connect the victim cache with main cache to avoid unnecessary com-
plexity and allow architects to decide if swap the victim data with the main cache data
when hit victim cache.

Both line-victim cache and sector-victim cache are paralleled accessed with the
main sector cache. A cache line is evicted to the line- victim cache in case of cache
replacement happens. As to the sector-victim cache, only the valid sectors in the
whole line are evicted to the sector-victim-cache. Also when a new line is brought
into cache, the sector-victim cache is checked to see if there are other sectors in the
same line. If so the victim sectors are also brought into the main cache line to main-
tain a unique position of a cache line.

Efficient Victim Mechanism on Sector Cache Organization 21

We know some of the requested data may still be in the data cache but it is just in-
accessible because it has been invalidated. This paper describes another approach,
called “VST buffer” to remember what is still in the data cache.

Fig. 4. Tag checking of line-victim cache and sector-victim cache

When a block miss happens and the set is full, a cache line must be replaced. Each
sector of the replaced line will be mark as invalid. A new sector will be brought into
the replaced line, and the cache tag will be updated. Thus some of the previously
replaced line’s sector data may still be in the data array since not all sector, of the
newly brought in cache line, is brought in. Only their valid bits are marked invalid.
VST buffer is used to keep track of these sectors whose data is still the data array.
Thus a VST entry consists of the victim tag, the victim valid bits and the “real loca-
tion” line ID in the cache set. For a directed mapped main cache the line ID field is
needless. The left side of figure 5 shows the VST buffer tag checking with a directed-
mapped main cache. As seen from the figure the VST buffer produce an additional
“VST hit” signal to be perform “or” operation with the main cache hit signal in the
critical path, without affecting the sector fetching and consuming. In either a VST hit
or a main cache hit the data can be processed continuously.

The right side of figure 5 shows the VST buffer tag checking of a set-associate
main cache. A VST hit not only leads to a hit result but also deliver a line ID to the
main cache selector to get the result data. This line ID signal is performed “or” opera-
tion with the main cache line ID signal to select final line. One extra cost here is when
a new sector is brought into the main cache, if a data miss happens, the VST needs to
be checked if the position contains a sector being victimized. If so the victim entry is
invalidated or thrashed. This does not increase cache-hit latency since it happens
when cache miss. Since there is already cache miss penalty the additional cost seems
to be acceptable.

When compare the cost of the three victim mechanism connected with a p-
Sectored Cache all compose of N entries. We see beside the similar comparators and
the control, the line- victim cache need N line tags, data of N * line size and N*P

22 C. Lai and S.-L. Lu

Fig. 5. Tag checking of Victim Sector Tag Buffer (VST buffer) with sector cache

valid bits; the sector-victim cache need N sector tags (each of it is log2P bits longer
than a line tag), data of N * sector size and N valid bits; and the VST buffer need N
line tags, N * P valid bits and N * log2Assoc bits of line IDs which Assoc is the cache
associativity. So the line victim cache needs most resource among them as VST
buffer need least resource.

In MP system, where the sector cache is proved efficient, there need additional
cache coherence protocol, like MESI, to maintain the cache coherence. We think the
victim mechanism will make the MP sector cache coherence protocol more complex.
But we will not discuss the details here since it is beyond this paper’s scope.

3 Simulation Methodology

Several SpecCPU2K[18] benchmarks (compiled with compiler option “–O3 –Qipo”),
Java workload SpecJBB2K[19] with Java runtime environment JSEV 1.4.1 which is
an integer benchmark, and two commercial-like floating-point benchmarks, one is a
speech recognition engine[20], the other is an echo cancellation algorithm[21] in
audio signal processing, are used in our study.

In order to consider all the effects, including system calls, we use a full system
simulator to generate memory reference traces. The simulator used is called
SoftSDV[22]. The host system runs Windows 2000 and the simulated system is Win-
dowsNT in batch mode using solid input captured in files. Then we run the traces
through a trace-driven cache simulator.

We generate both L1 memory reference traces and L2 memory reference traces.
After 20 billion instructions after system start up (the target application is configured
auto-run in the simulation) we collect 200 million memory references as our L1 traces.
We use 100 million references of them to warm up L1 cache and analysis the behav-
ior of the latter 100 million. The L1 sector cache we simulated is mainly configured
as below with small varieties: 16KBsize, 64B line size, 16B sector size, 4 way associ-

Efficient Victim Mechanism on Sector Cache Organization 23

ate, LRU replacement algorithm and write-back approach. For L2 cache behavior we
use a built-in first level cache together with trace generation. We warm up the built-in
cache with 1 billion instructions. Then we collect L2 traces consist of 200 million
read references. Also in our simulation we use 50 million L2 references to warm up
the L2 cache. The hierarchy consist L2 sector cache we simulated is mainly config-
ured as below with small varieties: L1: 16KBsize, 32B line size, 4-way associate,
LRU replacement algorithm and write-back approach. L2: 1MB size, 128 byte line
size, 32 byte sector size, 8-way associate, LRU replacement algorithm and write-back
approach.

4 Level 1 Sector-Cache Simulation Results and Discussion

We present the L1 simulation data as the Miss Ratio Improvement Percentage (MRIP)
of all benchmarks. The reason that we present L1 data first is that it is easier to corre-
late the observed L1 behavior back with the source code. Figure 6,7 are the MRIP
trends with various parameters as the variable. All the numbers are computed as the
geometric means of the different workload data also list in the paper. Figure 6 indi-
cates that with larger number of the victim mechanism entries the miss ratio im-
provement increases. Since VST requires no data array we can implement a much
larger victim buffer at the same cost of a smaller SVC/LVC and achieve the same (or
even better) performance improvement. For example 128 entries VST performs com-
parably with 64 entries SVC or 32 entries LVC. Figure 6 also explores the improve-
ment with several sector cache line sizes and sector sizes. We observed that VST
performs better with larger s-ratios. This is because of higher underutilization cache
space exist with higher s-ratio. On the other hand SVC and LVC performs better with
larger line and sector sizes. Figure 7 compares how the victim mechanisms affect
caches with different associativities or different cache sizes. It is not surprising to
learn that all three forms of victim mechanisms help the lower associative cache bet-
ter. This is because higher associativity already reduced much of the conflict misses
victim cache is targeting. It is also seen smaller L1 cache benefits more from the
victim mechanisms. As frequency of microprocessors continues to grow, smaller but
faster (lower associativity gives faster cache too) cache will be more prevalent.

Fig. 6. MRIP with victim entries or line/sector sizes (higher is better)

24 C. Lai and S.-L. Lu

We observe that LVC gives the best Miss ratio improvement at the highest hard-
ware cost. While the SVC approach we used for this study needs the second highest
hardware cost, it is not better than VST approach. The VST approach is a reasonable
approach in terms of hardware design complexity and overhead.

Fig. 7. MRIP with different associativities or L1 sizes

The cache miss ratios with different number of victim entries, correspond to the
left figure of figure 6, are listed in table 1. The data of other figures are listed in ap-
pendix. Table 1 also list corresponding block misses ratios for further investigation.

As shown in table 1, the benchmark “mesa” got most of cache misses reduction
with victim mechanism regardless LVC/SVC, or VST we used. “ammp” got least
misses reduction with LVC and “saec” got least misses reduction with SVC and VST.

For the workload “mesa”, we observed the block Miss ratio reduce much more
significantly with victim mechanism compared to the cache Miss ratio. Thus with

Efficient Victim Mechanism on Sector Cache Organization 25

victim mechanism the workload basically keeps more cache lines to save cache
misses in this level. Other issues, like quantitative spatial localities that make SVC
performs differently, say reduces different percentage of miss ratio reduced by LVC
with same entries, play minor role in this level.

In some cases (GCC with 8 victim entries), the VST buffer approach performs bet-
ter than LVC even without any data array. After investigation we concluded that the
VST buffer approach sometimes uses the victim buffer more efficiently and can avoid
be thrashed. Victim cache contains data that may be used in future. But the data can
also be kicked out of the victim cache before it is needed. For example, streaming
accesses, if miss the main cache, will evict main cache lines to update the victim
cache. Thus the victim cache gets thrashed and may lost useful information. It plays
differently in VST approach. We see in non-sector cache, streaming accesses are
mapping in different sets of cache which make it difficult to be detected. In a sector
cache the next sector of a cache is inherently subsequence of the previous sector.
Figure 8 shows the VST states with one by one streaming accesses (or sequential)
going to the cache, only one VST entry is enough handling them since the entry can
be re-used(disabled) after a whole main cache line fill-in. Thus the whole buffer will
keep longer history. This is right the case VST performs better than LVC for GCC.

Fig. 8. Avoid be thrashed by streaming access

5 Level 2 Sector-Cache Simulation Results and Discussion

We also explore the possibility of applying our proposed methods on level-two cache
design. This time only those references that missed the build-in level one cache are
collected in the trace file. Table 2 illustrates the tabulated result in terms of miss ratio
for various entries. Data with other parameters are also listed in appendix.

There are several observations made from the L2 data. First, LVC performs better
than SVC with same entries but worse than SVC with s-ratios, here 4 times, of entries,
same as be observed from L1 data. Second, in lower level set-associative cache, vic-
tim mechanism performs differently as L1. It does not save so many cache misses as

26 C. Lai and S.-L. Lu

L1 cache. This is not surprising since a small L1 already catch a significant part of
data locality and L2 reference patterns tend to be more irregular. Third, the VST
buffer performs well among the three victim mechanisms in this memory hierarchy
level. It can outperform LVC and SVC for the benchmark “ammp”. Even it is more
difficult to correlate the L2 references back with the source or binary, than L1 refer-
ences. We still ascribe the better VST performance to its property of avoiding be
thrashed. As to the workloads, “ammp” and “SAEC” get most significant cache
misses reduction here. This behavior is opposite to the L1 behavior. Also the signifi-
cant block miss reduction can not be observed in this level as the data in appendix
shows. Thus we suggest that the extra storage of LVC and SVC benefit more from the
general data locality; and VST benefit more from the cache underutilization whether
the reference pattern is regular or not.

6 Conclusion

We have described three possible implementation of victim buffer design in a sector
cache. They have different complexity and hardware overhead. Several up-to-date
applications are used to evaluate their performance in terms of miss ratio. Overall
three mechanisms have comparable cache misses reduction. For a directed-mapped
Level 1 cache, the mechanisms can save significant amount of cache misses.

Among the three mechanisms LVC gives the best performance with highest over-
head. Whether SVC is performance/cost effective or not rely on the quantitative spa-
tial locality of the workload.

Efficient Victim Mechanism on Sector Cache Organization 27

We also investigate several benefits of VST in this paper. Include the low-cost de-
sign, keeping longer victim history and be more able to capture irregular reference
pattern in lower memory hierarchy.

Acknowledgement. We thank the AudioProcessing group and the OpenRuntimePlat-
form group of Intel China Research center for giving us their up-to-date workloads
and providing helpful discussions on porting workloads to our simulator. We also
thank Zhu Ning and Peter Liou for providing necessary computing infrastructure
support.

References

[1]

[2]

[3]

[4]

[5]

[6]
[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

Andre. Seznec. “Decoupled sectored caches”. IEEE Trans. on Computers, February,
1997
D.A.Patterson, J.L.Hennessy, “Computer architecture: A quantitative approach”, Morgan
Kaufmann Publishers Inc., San Francisco,1996.
Kuang-Chih Liu, Chung-Ta King, “On the effectiveness of sectored caches in reducing
false sharing misses” International Conference on Parallel and Distributed Systems, 1997
Won-Kee Hong, Tack-Don Han, Shin-Dug Kim and Sung-Bong Yang, “An Effective
Full-Map Directory Scheme for the Sectored Caches”, International Confer-
ence/Exhibition on High Performance Computing in Asia Pacific Region, 1997
Hinton, G; Sager, D.; Upton, M.; Boggs, D.; Carmean, D.; Kyker, A.; Roussel, P., “The
Microarchitecture of the Pentium® 4 processor”, Intel Technology Journal, quarter,
2001, http://developer.intel.com/technology/itj/q12001/articles/art 2.htm
“UltraSPARC™ Iii User’s Manual”, Sun Microsystems, 1999
PowerPC™ , “MPC7400 RISC Microprocessor Technical Summary ”, Mororola, Order
Number: MPC7400TS/D, Rev. 0, 8/1999
Victor Kartunov, “IBM PowerPC G5: Another World”, X-bit Labs, Jan. 2004
http://www.xbitlabs.com/articles/cpu/display/powerpc-g5_6.html
N. Jouppi, “Improving direct-mapped cache performance by the addition of a small fully
associative cache and prefetch buffers”, International Symposium on. Computer Archi-
tecture 1990
Jeffrey B. Rothman, Alan Jay Smith: “Sector Cache Design and Performance”. Interna-
tional Symposium on Modeling, Analysis and Simulation of Computer and Telecommu-
nication Systems, 2000
Andre. Seznec. “Decoupled sectored caches: conciliating low tag implementation cost”.
International Symposium on. Computer Architecture, 1994
J.S.Lipty. “Structural Aspects of the System/360 Model 85, Part II: The Cache. IBM
Systems Journal, Vol. 7, 1968
Jeffrey B. Rothman and Alan Jay Smith. “The Pool of SubSectors Cache Design”. Inter-
national Conference on Supercomputing, 1999
Mark D. Hill and Alan Jay Smith. “Experimental Evaluation of On-Chip Microprocessor
Cache Memories”. International Symposium on Computer Architecture, June 1984
James R. Goodman. “Using Cache Memory to Reduce Processor Memory Traffic”.
International Symposium on. Computer Architecture 1983

28 C. Lai and S.-L. Lu

[16]

[17]

[18]
[19]
[20]

[21]

[22]

G. Albera and R. Bahar, “ Power/performance Advantages of Victim Buffer in High-
Performance Processors”, IEEE Alessandro Volta Memorial Workshop on Low-Power
Design, 1999
Farhad Shafai, Kenneth J. Schultz, G..F. Randall Gibson, Armin G. Bluschke and David
E. Somppi, “Fully Parallel 30-MHz, 2.5-Mb CAM”, IEEE journal of solid-state circuits,
Vol. 33, No. 11, November 1998
SPEC CPU2000, http://www.specbench.org/osg/cpu2000
SPEC JBB 2000, http://www.specbench.org/jbb2000
C.Lai, S. Lu and Q. Zhao, “Performance Analysis of Speech Recognition Software”,
Workshop on Computer Architecture Evaluation using Commercial Workloads, Interna-
tional Symposium on High Performance Computer Architecture, 2002
J. Song, J. Li, and Y.-K. Chen, “Quality-Delay and Computation Trade-Off Analysis of
Acoustic Echo Cancellation On General-Purpose CPU,” International Conference on
Acoustics, Speech, and Signal Processing, 2003.
R. Uhlig et. al., “SoftSDV: A Pre-silicon Software Development Environment for the
IA-64 Architecture”, Intel Technology Journal, quarter, 1999.
http://developer.intel.com/technology/itj/q41999/articles/art 2.htm

Appendix: More Simulation Data

Efficient Victim Mechanism on Sector Cache Organization 29

Cache Behavior Analysis of
a Compiler-Assisted Cache Replacement Policy*

Xingyan Tian1, Kejia Zhao1, Huowang Chen1, and Hongyan Du2

1 Department of Computer Science, National University of Defense Technology,
Changsha, Hunan, 410073, China
tianxingyan@nudt.edu.cn

2 Department of Computer Science, Changsha University,
Changsha, Hunan, 410003, China
csduhongyan@sina.com

Abstract. Recent research results show that conventional hardware-only cache
replacement policies result in unsatisfactory cache utilization because of cache
pollution. To overcome this problem, cache hints are introduced to assist cache
replacement. Cache hints are used to specify the cache level at which the data is
stored after accessing it. This paper present a compiler-assisted cache replace-
ment policy, Optimum Cache Partition (OCP), which can be carried out
through cache hints and LRU replacement policy. Presburger arithmetic is used
to exactly model the behavior of loop nests under OCP policy. The OCP re-
placement policy results in plain cache behaviors, and makes cache misses ana-
lyzing and optimizing easily and efficiently. OCP replacement policy has been
implemented in our compiler test-bed and evaluated on a set of scientific com-
puting benchmarks. Initial results show that our approach is effective on reduc-
ing the cache miss rate.

1 Introduction

Caches play a very important role in the performance of modern computer systems
due to the gap between the memory and the processor speed, but they are only effec-
tive when programs exhibit data locality. In the past, many compiler optimizations
have been proposed to enhance the data locality. However, a conventional cache is
typically designed in a hardware-only fashion, where data management including
cache line replacement is decided purely by hardware. Research results [1] reveal that
considerable fraction of cache lines are held by data that will not be reused again
before it is displaced from the cache. This phenomenon, called cache pollution, se-
verely degrades cache performance. A consequence of this design approach is that
cache can make poor decisions in choosing data to be replaced, which may lead to
poor cache performance.

* This work was supported by 863 National High Technology Program, grant No.
2002AA1Z2105

P.-C. Yew and J. Xue (Eds.): ACSAC 2004, LNCS 3189, pp. 30–43, 2004.

© Springer-Verlag Berlin Heidelberg 2004

Cache Behavior Analysis of a Compiler-Assisted Cache Replacement Policy 31

There are a number of efforts in architecture designed to address this problem, the
cache hint in EPIC [2,3] (Explicitly Parallel Instruction Computing) architectures is
one of them. Cache hints are used to specify the cache level where the data is stored
after accessing it. Intuitively, two kinds of memory instructions should be given cache
hints [12]: i) whose referenced data doesn’t exhibit reuse; ii) whose referenced data
does exhibit reuse, but it cannot be realized under the particular cache configuration.
It sounds as though the problem is pretty simple for regular applications, and existing
techniques for analyzing data reuse [4] and estimating cache misses [5, 6] suffice to
solve this problem. This plausible statement, however, is not true because a funda-
mental technique used in cache miss estimation — footprint analysis — is based on
the assumption that all accessed data compete for cache space equally. However, in
EPIC architectures, memory instructions are not homogeneous— those with cache
hints have much less demand for cache space. This makes the approach derived from
traditional footprint analysis very conservative. In summary, the following cyclic
dependence [12] exists: Accurate cache miss estimation must be known to cache hint
assignment, while accurate cache miss estimation is only possible when cache hint
assignment is finalized.

In this paper, we present a novel cache replacement policy, Optimum Cache Parti-
tion (OCP), to address the above problem. The OCP cache replacement policy can be
carried out through combining hardware cache replacement policy LRU (Least Re-
cently Used) with compiler generating cache hints. Presburger [15] arithmetic is used
to exactly model the behavior of loop nests under OCP policy. the OCP replacement
policy makes cache miss estimation simpler through simplifying cache behaviors
fundamentally.

We have evaluated the benefit of the OCP cache replacement policy on reducing
the cache miss rate through executing a set of SPEC benchmarks on Trimaran[7] and
DineroIV[8]. Trimaran is a compiler infrastructure for supporting state of the art
research in EPIC architectures, and DineroIV is a trace-driven cache simulator. Initial
experimental results show that our approach reduces data cache misses by 20.32%.

The rest of this paper is organized as follows. Section 2 briefly reviews the basic
concept of cache hint. Section 3 illustrates, through an example, a compiler-assisted
cache replacement policy, Cache Partition. Section 4 uses Presburger arithmetic to
analyze the relationship between reuse vector and cache miss rate, to estimate cache
hits and misses, and then an optimum cache replacement policy, Optimum Cache
Partition, is derived. Our implementation and experimental results are then presented
in Section 5. Section 6 discusses related work. Section 7 concludes this paper.

2 Cache Hints

One of the basic principles of the EPIC-philosophy is to let the compiler decide when
to issue operations and which resources to use. The existing EPIC architectures (HPL-
PD [2] and IA-64[3]) communicate the compiler decisions about the cache hierarchy
management to the processor through cache hints. The semantics of cache hints on
both architectures are similar. Cache hints are used to specify the cache level at which

32 X. Tian et al.

the data is likely to be found, as well as the cache level where the data is stored after
accessing it.

Fig. 1. Example of the effect of the cache hints in the load instruction ld.nt1

In the IA-64 architecture, the cache hints t1, nt1, nt2 and nta are defined. t1 means
that the memory instruction has temporal locality in all the cache levels. nt1 only has
temporal locality in the L2 cache and below. Similarly, nt2 respectively nta indicates
that there’s only temporal locality in L3 respectively no temporal locality at all. An
example is given in figure 1 where the effect of the load instruction ld.nt1 is shown.

Generating cache hints based on the data locality of the instruction, compiler can
improve a program’s cache behavior. As shown in figure 1, cache hints have two
effects on cache behaviors: i) when cache hits, it make the current reference line,
which is stayed in the cache, to be the replacing candidate, ii) when cache misses, it
make the current reference line, which is not in the cache, to pass through the cache
without being stored in the cache. Examples of these effects are given in figure 1a
and 1b.

With cache hints, our compiler can carry out the OCP cache replacement policy
through controlling cache staying time of accessed data, as a result, the cache pollu-
tion is reduced and cache miss rate is decreased availably.

3 A Compiler-Assisted Cache Replacement Policy:
Cache Partition

Let’s see a short memory access stream in Figure 2. For a 4-lines LRU cache, there
are 10 cache misses for the memory access stream in Figure 2,

For the same cache, if the cache is partitioned into three parts logically: 3 lines, 0
lines, 1 line, and then the three parts has been assigned to the three references, A, B

Cache Behavior Analysis of a Compiler-Assisted Cache Replacement Policy 33

and C respectively. In that case, memory access stream of the reference A can hold 3
cache lines at most, the reference C can only hold 1 cache line, the reference B can
not hold any cache line. Under this cache partition, the cache miss analysis of these 3
references is shown in Figure 3. It shows that the cache miss analysis of these 3 refer-
ences can proceed independently, there are no influence mutually.

Fig. 2. The top row indicates 10 memory reference instructions. The bottom row shows the
corresponding memory locations.

Making reasonable cache partition and limiting the appropriate number of cache
lines hold by each reference, cache misses can decrease obviously. The “limiting” can
be carried out by a compiler through appending cache hints to some memory instruc-
tions. For example, not to let reference B hold any cache line, a cache hint is ap-
pended to reference B instruction; To limit the number of cache lines hold by refer-
ences A and C, a cache hint is appended to reference A and C instruction condition-
ally.

Fig. 3. 4-lines LRU cache is divided logically into three LRU sub-caches, and cache misses
decrease from 10 to 6.

With cache hints, as above example shows, a compiler can construct a novel cache
replacement policy, where the cache has be partitioned logically into parts and each
reference data in a loop nested program can be limited within one part, as if there is a
sub-cache for each reference. Under this cache replacement policy, reference cache
behaviors will not influence each other, and cache misses of a reference can be ana-

34 X. Tian et al.

lyzed independently. The cache behaviors under the cache replacement policy are
more plain and more independent than only-LRU replacement policy.

Definition 1. For a LRU cache with N lines, a Cache Partition of a loop nest with m
references is a m-tuple where and cache lines hold by i-th

reference at any moment can not exceeds lines.
A Cache Partition (CP) is a cache replacement policy that achieves two aims for

the reference (i) there are lines in cache that can be hold by the reference
at any moment; (ii) the number of cache lines hold by the reference cannot ex-
ceed at any moment. The CP replacement policy, that can be carried out by a com-
piler through appending cache hints to some memory instructions, simplifies loop
nest cache behaviors, however there is a crucial problem: can it minify cache misses?
To address this problem, an analysis of cache misses under the CP policy is taken,
and an optimum CP policy is derived in the next section.

4 Cache Misses Analysis and Optimum Cache Partition

In this section, the Optimum Cache Partition is derived after cache misses analysis
under the CP replacement policy. A
matrix-multiply loop nest program
MXM(see Figure 4) is used as our
primary example, and all arrays
discussed here are assumed to be
arranged in column-major order as
in Fortran.

Fig. 4. Matrix-multiply loop nest, MXM

4.1 Terminology

Our research is based on analyzing references’ cache behavior using iteration spaces
and reuse vectors.

A reference is a static read or write in the program, while a particular execution of
that read or write at runtime is a memory access.

Throughout this paper, we denote the cache size as line size as the number
of cache lines as then

Iteration space. Every iteration of a loop nest is viewed as a single entity termed
an iteration point in the set of all iteration points known as the iteration space. For-
mally, we represent a loop nest of depth n as a finite convex polyhedron of the n-

dimensional iteration space bounded by the loop bounds

Each iteration in the loop corresponds to a node in the polyhedron and is
called an iteration point. Every iteration point is identified by its index vector

where is the loop index of the loop in the nest with the outermost

Cache Behavior Analysis of a Compiler-Assisted Cache Replacement Policy 35

loop corresponding to the leftmost index. In this representation, if iteration exe-

cutes after iteration we write and say that is lexicographically greater

than

Reuse Vector. Reuse vectors provide a mechanism for summarizing repeated
memory access patterns in loop-oriented code[4]. If a reference accesses the same
memory line in iterations and where we say that there is reuse in direc-

tion and is called a reuse vector. For example, the reference Z(j, i) in

Figure 4 can access the same memory line at the iteration points (i, k, j) and (i, k+1, j),
and hence one of its reuse vectors is (0, 1, 0). A reuse vector is repeated across the
iteration space. Reuse vectors provide a concise mathematical representation of the
reuse information of a loop nest.

A reuse vector is realized. If a reuse vector results in a cache hit we say that the re-
use vector is realized.

Hence, if we have an infinitely large cache, every reuse vector would result in a
cache hit. In practice, however, a reuse vector does not always result in cache hit. The
central idea behind our model is to maximize realized reuse vectors.

4.2 Cache Misses Analysis Under Cache Partition Replacement Policy

Under a Cache Partition replacement policy, memory accesses of
every reference in a loop nest can hold cache lines at most, and
cannot be influenced by other reference accesses, as if reference engrosses a

sub-cache, independently (see Figure 5). So, the cache behavior under
Cache Partition replacement policy is same as the cache behavior
of every reference in with cache lines respectively.

Fig. 5. Cache Partition Replacement Policy

Now, we use Presburger arithmetic[15] to exactly model the cache behavior of
reference in with cache lines. Mostly cache hits of a
reference in a loop nest are produced by one or two reuse vectors of the reference, so
we analyze primarily the cache behavior of a reference while only one or two reuse
vectors of the reference are realized, but these conditions, that more than two reuse
vectors are realized, are considered also. The cache behavior analyses have four steps:

36 X. Tian et al.

1)

2)

3)

4)

When a reuse vector of a reference is realized in whole iteration space, the cache-
hit iterations of the reference are formulated. For reuse vectors of the refer-
ence a formula is generated. represents all cache-hit itera-
tions when reuse vector is realized in whole iteration space;

The number of cache lines, that needed for to realize a reuse vector of
in whole iteration space, is counted;

After steps 1 and 2, a hits-cost pair, <Hits, Cost>, for every reuse vector of the
reference is constructed. This hits-cost pair <Hits, Cost> means that: if
cache lines assigned to is not less than the cost, namely then
would produce cache hit hits times in whole iteration space by it’s reuse vector

The set of hits-cost pairs of is noted as
According to the number of cache hits under the Cache

Partition replacement policy, is estimated, and then the Optimum Cache Parti-
tion, the Cache Partition that results in maximum cache hits, is derived.

The four steps are explained in further detail below.

1. Cache-Hit Iterations
When a reuse vector of reference is realized in whole iteration space S, the set
of cache-hit iterations of reference is formulated as

The above formula means that reference at iteration can reuse through reuse

vector if and only if there is another iteration that can be hit by through

reuse vector expressed as

The number of cache-hit iterations in can be calculated as following:
(consider

For a spatial reuse vector formulas (1) and (1.1) is unsuitable.

Cache behaviors of a loop nest with a spatial reuse vector are complicated. To get a
concise formula for a spatial reuse vector, we modified formula (1.1) by appending a
coefficient without a complicated model:

In formula (1.2), stands for iteration times of the reference in a single

cache line along the spatial reuse vector Among the times iterations in a sin-

gle cache line, there are iterations to be reused, so the cache hits number of a

spatial reuse vector has a coefficient

Cache Behavior Analysis of a Compiler-Assisted Cache Replacement Policy 37

When two reuse vectors and of reference are realized in whole iteration

space S, the set of cache-hit iterations of reference is formulated as

When k reuse vectors of reference are realized in whole iteration

space S, the set of cache-hit iterations of reference is formulated as

2. The Number of Cache Lines
This step is to count the number of cache lines that needed for to
realize a reuse vector of in whole iteration space. First, the iteration set

is defined. At any iteration if these data lines, accessed by at

these iterations in is hold by then the reuse vector would be

realized in whole iteration space. Furthermore, the number of cache lines in
is derived.

is similar as reference windows[14] which hold by a cache can result

in the reuse vector realized.

When cache lines in is not less than can hold all data lines
accessed at these iterations in and then the reuse vector would be real-

ized in whole iteration space.
To avoid plentiful calculation for we give a simple estimation formula

(3.1). We observe that is not greater than

that is the number of the iteration points

within a reuse vector in the loop nest iteration space, so can be estimated
as:

When two reuse vectors and of reference are realized in whole iteration

space S, the and is formulated as following: (consider

38 X. Tian et al.

When two reuse vectors of reference are realized in whole itera-

tion space S, the and is formulated as fol-

lowing: (consider

3. Hits-Cost Pairs Set
This hits-cost pair, <Hits, Cost>, means that: if cache lines assigned to is not
less than the Cost, namely then would produce cache hits Hits times in
whole iteration space by it’s reuse vectors. The set of hits-cost pairs of is noted as

The hits-cost pair <0, 0> means that: no cache line assigned to no cache hit
produced. describes the relations of between the number of cache lines
and the number of cache hits. To calculate in our experiments, these hits-cost
pairs, were ignored, there are

two reasons: i) the cache lines is not enough to realize more reuse vectors; ii) most
cache hits of a reference is produced by one or two reuse vectors of the reference.

4. Optimum Cache Partition
To assign cache lines to reference under the Cache Partition replacement
policy, the number of cache hits of the reference can be estimated as following:

Under the Cache Partition replacement policy, cache hits of a
loop nest can be estimated as follow:

Formula (6) estimates cache hits number of a loop nest program under a Cache
Partition. Different Cache Partitions can bring different cache hits number, a Cache

Cache Behavior Analysis of a Compiler-Assisted Cache Replacement Policy 39

Partition, that brings the most cache hits, is called Optimum Cache Partition replace-
ment policy.

Definition 2. Optimum Cache Partition of a loop nest. is a Cache Partition of a loop
nest, for any other Cache Partition if this inequation is always true, then

is called Optimum Cache Partition (OCP)fora loop nest.
Figure 6 shows all hits-cost pairs for a MXM program while one temporal reuse

vector or one spatial reuse vector is realized. The reference X(k, i) has a temporal
reuse vector a spatial reuse vector According to Formulas (1

~ 6), when a temporal reuse vector (0,0,1) is realized, there is a Hits-Cost pair <
990000, 1> that means if there is only 1 cache line assigned to reference X(k, i), X(k, i)
would produce cache hit 990000 times by temporal reuse vector (0,0,1); when a spa-
tial reuse vector (0,1,0) is realized, there is a Hits-Cost pair <742500, 100> that
means if there is 100 cache line assigned to reference X(k, i), X(k, i) would produce
cache hit 742500 times by spatial reuse vector (0,1,0).

If there is 132 cache lines in a cache, then Cache Partition
is a Optimum Cache Partition of the MXM loop nest, and under the OCP cache re-
placement policy the number of cache hits is estimated as following:

Fig. 6. Hits-cost pairs for a MXM program where cache line size Ls = 16
bytes, size of element in arrays is 4 bytes, then If there is 132 cache lines in a cache,

then Cache Partition is a Optimum Cache Partition.

The Optimum Cache Partition(OCP) of a loop nest is a compiler-assisted cache re-
placement policy, that simplifies loop nest cache behavior, facilitates cache hits esti-
mation, and decreases cache misses efficiently.

The OCP policy is carried out by the compiler according to following three pri-
mary steps: 1) Getting reuse vectors for loop nests. Reuse vectors can be calculated
automatically according to some research works on loop optimization; 2) The Opti-
mal Cache Partition is calculated automatically by the compiler; 3) Appending cache
hints conditionally to realize the OCP policy.

Appending cache hints to a reference to limit the number of cache lines hold
by the reference is a difficult work if the limited cache lines number is chosen
discretionarily. But under the Optimum Cache Partition replacement policy, the lim-

40 X. Tian et al.

ited cache lines number for a reference, is calculated based on it’s reuse vector,
and the condition for appending cache hints is straightforward.

Under OCP cache placement policy, if a reference is limited to hold cache
lines, and is realized it’s reuse vector then at any loop iteration point the condi-

tion of appending a cache hint to a reference is that the reference cannot
produce a new reuse along the reuse vector at the iteration point Formally,

when the point is out of the loop iteration space, the reference would be

appended a cache hint on iteration point

5 Experimental Results

5.1 Experimental Platform

We have implemented OCP cache replacement policy in the Trimaran compiler and
evaluated its performance by running some SPEC benchmarks. Trimaran is a com-
piler infrastructure for supporting state of the art research in compiling for EPIC ar-
chitectures. We have re-engineered the back-end of Trimaran. Implement of OCP
cache replacement policy needed to update nothing but appending cache hints to
some load/store instructions conditionally.

In the Trimaran compiler infrastructure, cache behavior is simulated in DineroIV
that is a trace-driven cache simulator. We have extended DineroIV to support cache
hints in memory instructions.

For a set associative cache, conflict misses may occur when too many data items
map to the same set of cache locations. To eliminate or reduce conflict misses, we
have implemented two data-layout transformations, inter- and intra-array padding[9].

5.2 Performance Results

We chosen 8 benchmarks from SPECint2000, and implemented OCP cache replace-
ment policy on their loop kernels. We experimented our approach on 4K bytes caches
with 64 bytes line size and varying associativity(4-way and full). Cache miss rates
under LRU cache replacement policy and that under OCP cache replacement policy
are compared in Table 1.

For a full associative cache, OCP policy is quite effective for all chosen bench-
marks with average 24.04% cache misses reduction. For 4-way associative cache,
OCP policy, reducing the number of cache misses by 16.59% averagely, is also quite
effective except vpr and vortex benchmarks. The percentage reduction achieved on a
4-way cache is lower than that achieved by a full associative cache. This could be due
to conflict misses produced by a set associative cache. The vpr and vortex bench-
marks were likely to produce more conflict misses under OCP policy than under LRU
replacement policy, so their cache miss rates under OCP is greater than under LRU in
Table 1.

Cache Behavior Analysis of a Compiler-Assisted Cache Replacement Policy 41

6 Related Work

Improving cache performance by cache hints has attracted a lot of attention from both
the architecture and compiler perspective. In [10], keep and kill instructions are pro-
posed by Jain et al. The keep instruction locks data into the cache, while the kill in-
struction indicates it as the first candidate to be replaced. Jain et al. also proof under
which conditions the keep and kill instructions improve the cache hits rate. In [11], it
is proposed to extend each cache line with an EM(Evict Me)-bit. The bit is set by
software, based on a locality analysis. If the bit is set, that cache line is the first can-
didate to be evicted from the cache. These approaches all suggest interesting modifi-
cations to the cache hardware, which allow the compiler to improve the cache re-
placement policy.

Kristof Beyls et al proposed a framework to generate both source and target cache
hints from the reuse distance metric in this paper [13]. Since the reuse distance indi-
cates cache behavior irrespective of the cache size and associativity, it can be used to
make caching decisions for all levels of cache simultaneously. Two methods were
proposed to determine the reuse distances in the program, one based on profiling
which statically assigns a cache hint to a memory instruction and one based on ana-
lytical calculation which allows to dynamically select the most appropriate hint. The
advantage of the profiling-based method is that it works for all programs. The ana-
lytical calculation of reuse distances is applicable to loop-oriented code and has the
advantage that the reuse distance is calculated independent of program input and for
every single memory access. But their work, generating cache hints from the reuse
distance, does have the cyclic dependency problem [12] mentioned in Section 1:
Accurate reuse distance estimation must be known to cache hint assignment, while
accurate reuse distance estimation is only possible when cache hint assignment is
finalized. They ignored the impact of cache hints on the reuse distance.

42 X. Tian et al.

Hongbo Yang et al [12] studied the relationship between cache miss rate and
cache-residency of reference windows, known that in order for an array reference to
realize its temporal reuse, its reference window must be fully accommodated in the
cache. And then they formulated the problem as a 0/1 knapsack problem. The rela-
tionship between cache miss rate and cache-residency of reference windows is similar
to the one considered in section 4.2, however our work has two major different as-
pects from their work:(i) we achieved cache hits analysis under the OCP cache re-
placement policy but they didn’t in their 0/1 knapsack problem; (ii) we considered the
impact of temporal and spatial reuse vectors on cache miss rate, while they have only
considered the impact of reference windows that are decided by temporal reuse vec-
tors.

7 Conclusions

EPIC architectures provide cache hints to allow the compiler to have more control on
the data cache behavior. In this paper we constructed a compiler-assisted cache re-
placement policy, Optimum Cache Partition, which utilizes the cache more efficiently
to achieve better performance. In particular, we presented a novel cache replacement
policy, Cache Partition, which could be carried out through cache hints. Under the
Cache Partition policy, we studied the relationship between cache hits rate and reuse
vectors of a reference, and constructed hits-cost pairs of the reference. A hits-cost pair
described a case: how many cache lines assigned to a reference could produce how
many cache hits. After formulating cache hits number of a loop nest program under a
Cache Partition, we could achieve Optimum Cache Partition replacement policy. To
the best of our knowledge, the OCP cache replacement policy is the simplest effec-
tive cache optimization with cache hints, that results in plain cache behaviors and
makes cache misses analyzing and optimizing easily and efficiently.

We evaluated our OCP cache replacement policy by implementing it in the Trima-
ran compiler and simulating cache behaviors in DineroIV. Our simulation results
show that OCP policy exploited the architecture potential well. It reduced the number
of data cache misses by 20.32% averagely.

References

1.

2.

3.
4.

Kathryn S. McKinley and Olivier Temam.: Quantifying loop nest locality using spec’95
and the perfect benchmarks. ACM Transactions on Computer Systems (TOCS), 17(4)
288–336, 1999.
V. Kathail, M. S. Schlansker, and B. R. Rau.: HPL-PD architecture specification: Ver-
sion 1.1. Technical Report HPL-93-80 (R.1), Hewlett-Packard, February 2000.
IA-64 Application Developer’s Architecture Guide, May 1999.
Michael E. Wolf and Monica S. Lam.: A data locality optimizing algorithm. In Proc. Of
SIGPLAN PLDI ’91, pages 30–44, Toronto, Ont., Jun. 1991.

Cache Behavior Analysis of a Compiler-Assisted Cache Replacement Policy 43

5.

6.

7.
8.

9.

10.

11.

12.

13.

14.

15.

Guang R. Gao, Vivek Sarkar, and Shaohua Han.: Locality analysis for distributed
sharedmemory multiprocesors. In Proc. of the 1996 International Workshop on Lan-
guages and Compilers for Parallel Computing(LCPC), San Jose, California, Aug 1996.
Somnath Ghosh, Margaret Martonosi, and Sharad Malik.: Cache miss equations: An
analytical representation of cache misses. In Conf. Proc., 1997 Intl. Conf. on Supercom-
puting,pages 317–324, Vienna, Austria, Jul. 1997.
The Trimaran Compiler Research Infrastructure. www.trimaran.org
Dinero IV Trace-Driven Uniprocessor Cache Simulator.
http://www.cs.wisc.edu/~markhill/DineroIV
G. Rivera and C.-W. Tseng.: Eliminating conflict misses for high performance architec-
tures. In ACM Internacional Conference on Supercomputing (ICS’98),1998
P.Jain, S.Devadas, D.Engels, and L.Rudolph.: Software-assisted replacement mecha-
nisms for embedded systems. In International Conference on Computer Aided Design,
pages 119-126, nov 2001.
Z.Wang, K.McKinley, A.Rosenberg, and C.Weems.: Using the compiler to improve
cache replacement decisions.In PACT’02, September 2002.
Hongbo Yang, R. Govindarajan, Guang R. Gao, and Ziang Hu.: Compiler-assisted cache
replacement: Problem formulation and performance evaluation. In Proceedings of the
16th International Workshop on Languages and Compilers for Parallel Compuing
(LCPC’ 03), College Station, Texas, Oct 2003.
Kristof Beyls and Erik H.D’Hollander.: Compile-Time Cache Hint Generation for EPIC
Architectures. In Proceedings of the 2nd International Workshop on Explicitly Parallel
Instruction Computing (EPIC) Architectures and Compiler Techniques, Istanbul, Turkey,
November 2002.
Dennis Gannon, William Jalby, and Kyle Gallivan.: Strategies for cache and local mem-
ory management by global programming transformation. Journal of Parallel and Distrib-
uted Computing, 5(5):587–616, October 1988.
W. Pugh.: Counting solutions to Presburger formulas: How and why. ACM SIGPLAN
Notices, 29(6):121-134, jun 1994.

Modeling the Cache Behavior of Codes with
Arbitrary Data-Dependent Conditional

Structures*

Diego Andrade, Basilio B. Fraguela, and Ramón Doallo

Universidade da Coruña
Dept. de Electrónica e Sistemas

Facultade de Informática
Campus de Elviña, 15071 A Coruña, Spain

{dcanosa,basilio,doallo}@udc.es

Abstract. Analytical modeling is one of the most interesting ap-
proaches to evaluate the memory hierarchy behavior. Unfortunately,
models have many limitations regarding the structure of the code they
can be applied to, particularly when the path of execution depends on
conditions calculated at run-time that depend on the input or intermedi-
ate data. In this paper we extend in this direction a modular analytical
modeling technique that provides very accurate estimations of the num-
ber of misses produced by codes with regular access patterns and struc-
tures while having a low computing cost. Namely, we have extended this
model in order to be able to analyze codes with data-dependent condi-
tionals. In a previous work we studied how to analyze codes with a single
and simple conditional sentence. In this work we introduce and validate
a general and completely systematic strategy that enables the analysis of
codes with any number of conditionals, possibly nested in any arbitrary
way, while allowing the conditionals to depend on any number of items
and atomic conditions.

1 Introduction

Memory hierarchies try to cushion the increasing gap between the processor and
the memory speed. Fast and accurate methods to evaluate the performance of
the memory hierarchies are needed in order to guide the compiler in choosing the
best transformations and parameters for them when trying to make the optimal
usage of this hierarchy. Trace-driven simulation [1] was the preferred approach to
study the memory behavior for many years. This technique is very accurate, but
its high computational cost makes it unsuitable for many applications. This way,
analytical modeling, which requires much shorter computing times than previous
approaches and provides more information about the reasons for the predicted

This work has been supported in part by the Ministry of Science and Technology
of Spain under contract TIC2001-3694-C02-02, and by the Xunta de Galicia under
contract PGIDIT03-TIC10502PR.

P.-C. Yew and J. Xue (Eds.): ACSAC 2004, LNCS 3189, pp. 44–57, 2004.
© Springer-Verlag Berlin Heidelberg 2004

*

Modeling the Cache Behavior 45

behavior, has gained importance in recent years [2,3,4]. Still, it has important
drawbacks like the lack of modularity in some models, and the limited set of
codes that they can model.

In this work we present an extension to an existing analytical model that
allows to analyze codes with any kind of conditional sentences. The model was
already improved in [5] to enable it to analyze codes with a reference inside a
simple and single conditional sentence. We now extend it to analyze codes with
any kind and number of conditional sentences, even with references controlled
by several nested conditionals, and nested in any arbitrary way. Like in previous
works, we require the verification of the conditions in the IF statements to follow
an uniform distribution.

This model is built around the idea of the Probabilistic Miss Equations
(PMEs) [2]. These equations estimate analytically the number of misses gen-
erated by a given code in set-associative caches with LRU replacement policy.
The PME model can be applied both to perfectly nested loops and imperfectly
nested loops, with one loop per nesting level. It allows several references per data
structure and loops controlled by other loops. Loop nests with several loops per
level can also be analyzed by this model, although certain conditions need to be
fulfilled in order to obtain accurate estimations. This work is part of an ongoing
research line whose aim is to build a compiler framework [6,7], which extracts
information from the analytical modeling, in order to optimize the execution of
complete scientific codes.

The rest of the paper is organized as follows. The next section presents some
important concepts to understand the PME model and our extension. Section 3
describes the process of formulation after adapting the previous existing model
to the new structures it has to model. In Sect. 4 we describe the process of
validation of our model, using codes with several conditional sentences. A brief
review of the related work is presented in Sect. 5, followed by our conclusions
and a discussion on the future work in Sect. 6.

2 Introduction to the PME Model

The Probabilistic Miss Equations (PME) model, described in [2], generates ac-
curately and efficiently cache behavior predictions for codes with regular access
patterns. The model classifies misses as either compulsory or interference misses.
The former take place the first time that the lines are accessed, while the lat-
ter are associated to new accesses for which the corresponding cache line has
been evicted since its previous access. The PME model builds an equation for
each reference and nesting level that encloses the reference. This equation esti-
mates the number of misses generated by the reference in that loop taking into
account both kinds of misses. Its probabilistic nature comes from the fact that
interference misses are estimated through the computation of a miss interference
probability for every attempt of reuse of a line.

46 D. Andrade, B.B. Fraguela, and R. Doallo

2.1 Area Vectors

The miss probability when attempting to reuse a line depends on the cache
footprint of the regions accessed since the immediately preceding reference to
the considered line. The PME model represents these footprints by means of
what it calls area vectors. Given a data structure V and a set-associative
cache, is the area vector associated with the access to
V during a given period of the program execution. The element, of
this vector represents the ratio of sets that have received lines from the
structure; while is the ratio of sets that have received or more lines.

The PME model analyzes the access pattern of the references for each dif-
ferent data structure found in a program and derives the corresponding area
vectors from the parameters that define those access patterns. The two most
common access patterns found in the kind of codes we intend to model are the
sequential access and the access to groups of elements separated by a constant
stride. See [2] for more information about how the model estimates the area
vectors from the access pattern parameters.

Due to the existence of references that take place with a given probability
in codes with data-dependent conditionals, a new kind of access pattern arises
in them that we had not previously analyzed. This pattern can ben described
as an access to groups of consecutive elements separated by a constant stride,
in which every access happens with a given fixed probability. The calculation
of the area vector associated to this new access pattern is not included in this
paper because of size limitations. This pattern will be denoted as
which represents the access to M groups of N elements separated by a distance
P where every access happens with a given probability (see example in Sect. 4).

Very often, several data structures are referenced between two accesses to the
same line of a data structure. As a result, a mechanism is needed to calculate
the global area vector that represents as a whole the impact on the cache of
the accesses to several structures. This is achieved by adding the area vectors
associated to the different data structures. The mechanism to add two area
vectors has also been described in [2], so although it is used in the following
sections, we do not explain it here. The addition algorithm treats the different
ratios in the area vectors as independent probabilities, thus disregarding the
relative positions of the data structures in memory. This is in fact an advantage
of the model, as in most situations these addresses are unknown at compile time
(dynamically allocated data structures, physically indexed caches, etc.). This
way, the PME model is still able to generate reasonable predictions in these
cases, as opposed to most of those in the bibliography [3,4], which require the
base addresses of the data structures in order to generate their estimations. Still,
when such positions are known, the PME model can estimate the overlapping
coefficients of the footprints associated with the accesses to each one of the
structures involved, so they can be used to improve the accuracy of the addition.

Modeling the Cache Behavior 47

Fig. 1. Nested loops with several data-dependent conditions

2.2 Scope of Application

The original PME model in [2] did not support the modeling of codes with
any kind of conditionals. Figure 1 shows the kind of codes that it can analyze
after applying our extension. The figure shows several nested loops that have a
constant number of iterations known at compile time. Several references, which
need not be in the innermost nesting level, are found in the code. Some references
are affected by one or more nested conditional sentences that depend on the
data arrays. All the structures are indexed using affine functions of the loop
indexes We assume also that the verification of the
conditions in the IF statements follows an uniform distribution, although the
different conditions may hold with different probabilities. Such probabilities are
inputs to our model that are obtained either by means of profiling tools, or
knowledge of the behavior of the application. We assume also the conditions are
independent.

As for the hardware, the PME model is oriented to set-associative caches
with LRU replacement policy. In what follows, we will refer to the total size of
this cache as to the line size as and will be the degree of associativity
or number of lines per set.

3 Miss Equations

The PME model estimates the number of misses generated by a code using the
concept of miss equation. Given a reference, the analysis of its behavior begins

48 D. Andrade, B.B. Fraguela, and R. Doallo

in the innermost loop containing it, and proceeds outwards. In this analysis, a
probabilistic miss equation is generated for each reference and in each nesting
level that encloses it following a series of rules.

We will refer as (R, RegInput, to the miss equation for reference R in
nesting level Its expression depends on RegInput, the region accessed since the
last access to a given line of the data structure. Since we now consider the exis-
tence of conditional sentences, the original PME parameters have been extended
with a new one, This vector contains in position the probability that the
(possible) conditionals that guard the execution of the reference R in nesting
level are verified. If no conditionals are found in level then When
there are several nested IF statements in the same nesting level, corresponds
to the product of their respective probabilities of holding their respective con-
ditions. This is a first improvement with respect to our previous approach [5],
which used a scalar because only a single conditional was considered.

Depending on the situation, two different kinds of formulas can be applied:

If the variable associated to the current loop does not index any of the
references found in the condition(s) of the conditional(s) sentence(s), then
we apply a formula from the group of formulas called Condition Independent
Reference Formulas (CIRF). This is the kind of PME described in [2].
If the loop variable indexes any of such references, then we apply a formula
from the group called Condition Dependent Reference Formulas (CDRF).

Another factor influencing the construction of a PME is the existence of other
references to same data structure, as they may carry some kind of group reuse.
For simplicity, in what follows we will restrict our explanation to references that
carry no reuse with other references.

3.1 Condition Independent Reference Formulas

When the index variable for the current loop is not among those used in the
indexing of the variables referenced in the conditional statements that enclose
the reference R, the PME for this reference and nesting level is given by

being the number of iterations in the loop of the nesting level and the
number of iterations in which there is no possible reuse for the lines referenced
by R. stands for the memory region accessed during iterations of
the loop in the nesting level that can interfere with data structure A.

The formula calculates the number of misses for a given reference R in nesting
level as the sum of two values. The first one is the number of misses produced
by the iterations in which there can be no reuse in this loop. The miss
probability for these iterations depends on the accesses and reference pattern in
the outer loops. The second value corresponds to the iterations in which there

Modeling the Cache Behavior 49

can be reuse of cache lines accessed in the previous iteration, and so it depends
on the memory regions accesses during one iteration of the loop.

The indexes of the reference R are affine functions of the variables of the loops
that enclose it. As a result, R has a constant stride along the iterations of
loop This value is calculated as where is the dimension whose
index depends on the variable of the loop; is the scalar that multiplies
the loop variable in the affine function, and is the size of the dimension.
If does not index reference R, then This way, can be calculated
as,

The formula calculates the number of accesses of R that cannot exploit either
spatial or temporal locality, which is equivalent to estimating the number of
different lines that are accessed during iterations with stride

3.2 Condition Dependent Reference Formulas

If the index variable for the curret loop is used in the indexes of the arrays used
in the conditions that control the reference R, the behavior of R with respect
to this loop is irregular. The reason is that different values of the index access
different pieces of data to test in the conditions. This way, in some iterations
the conditions hold and R is executed, thus affecting the cache, while in other
iterations the associated conditions do not hold and no access of R takes place.
As a result, the reuse distance for the accesses of R is no longer fixed: it depends
on the probabilities that the conditions that control the execution of R are
verified. If the probabilities the different conditions hold are known, the number
of misses associated to the different reuse distances can be weighted using the
probability each reuse distante takes place.

As we have just seen, eq. (2) estimates the number of iterations of the
loop in level in which reference R cannot explote reuse. Since the loop has

iterations, this means on average each different line can be reused in up to
consecutive iterations. Besides, either directly reference R or the

loop in level that contains it can be inside a conditional in level that
holds with probability Thus, different groups of lines will be accessed
on average, and each one of them can be reused up to times. Taking this
into account, the general form of a condition-dependent PME is

where (RegInput, is the weighted number of misses generated by
reference R in level considering the attempt of reuse of the ones
potentially possible. As in Sect. 3.1, RegInput is the region accessed since the
last access to a given line of the considered data structure when the execution

50 D. Andrade, B.B. Fraguela, and R. Doallo

of the loop begins. Notice that if no condition encloses R or the loop around it
in this level, simply

The number of misses associated to reuse distance weigthed with the prob-
ability an access with such reuse distante does take place, is calculated as

where yields the probability that R accesses each of the lines it can
potentially reference during one iteration of the loop in nesting level This
probability is a function of those conditionals in in or below the nesting level
analyzed. The first term in (4) considers the case that the line has not been
accessed during any of the previous iterations. In this case, the RegInput
region that could generate interference with the new access to the line when the
execution of the loop begins must be added to the regions accessed during these

previous iterations of the loop in order to estimate the complete interference
region. The second term weights the probability that the last access took place
in each of the previous iterations of the considered loop.

Line Access Probability. The probability that the reference R whose
behavior is being analyzed does access one of the lines that belong to the region
that it can potentially access during one iteration of loop is a basic parameter
to derive (RegInput, as we have just seen. This probability depends
not only on the access pattern of the reference in this nesting level, but also in
the inner ones, so its calculation takes into account all the loops from the
down to the one containing the reference. If fact, this probability is calculated
recursively in the following way:

where we must remember that is the product of all the probabilities associated
to the conditional sentences affecting R that are located in nesting level

This algorithm to estimate the probability of access per line at level has
been improved with respect to our previous work [5], as it is now able to integrate
different conditions found in different nesting levels, while the previous one only
considered a single condition.

Modeling the Cache Behavior 51

Fig. 2. CRS Storage Algorithm

Fig. 3. Optimized product of matrices

3.3 Calculation of the Number of Misses

In the innermost level that contains the reference R, both in CIRFs and CDRFs,
the number of misses caused by the reference in the imme-

diately inner level is this is, the first element in the area vector
associated to the region RegInput.

The number of misses generated by reference R in the analyzed nest is finally
estimated as once the PME for the outermost loop is
generated. In this expression, is the total region, this is, the region
that covers the whole cache. The miss probability associated with this region is
one.

4 Model Validation

We have validated our model by applying it manually to the two quite simple but
representative codes shown in Fig. 2 and Fig. 3. The first code implements the
storage of a matrix in CRS format (Compressed Row Storage), which is widely
used in the storage of sparse matrices. It has two nested loops and a conditional

52 D. Andrade, B.B. Fraguela, and R. Doallo

sentence that affects three of the references. The second code is an optimized
product of matrices; that consists of a nest of loops that contain references inside
several nested conditional sentences.

Results for both codes will be shown in Sect. 4.2, but we will first focus on the
second code in order to provide a detailed idea about the modeling procedure.

4.1 Optimized Product Modeling

This code is shown in Fig. 3. It implements the product between two matrix, A
and B, with a uniform distribution of nonzero entries. As a first optimization,
when the element of A to be used in the current product is 0, then all its products
with the corresponding elements of B are not performed. As a final optimization,
if the element of B to be used in the current product is 0 then that operation
is not performed. This avoids two floating point operations and the load and
storage of C(I,J).

Without loss of generality, we assume a compiler that maps scalar variables
to registers and which tries to reuse the memory values recently read in processor
registers. Under these conditions, the code in Fig. 3 contains three references to
memory. The model in [2] can estimate the behavior of the references A(I,K),
which take place in every iteration of their enclosing loops.

Thus, we will focus our explanation on the modeling of the behavior of the
references C(I,J)and B(K,J) which are not covered in previous publications.

C(I,J) Modeling. The analysis begins in the innermost loop, in level 2. In this
level the loop variable indexes one of the reference of one of the conditions, so
the CDRF formula must be applied.

As and is the component in vector
associated to the probability that the condition inside the loop in nesting

level 2 holds. This loop is in the innermost level. Thus,
then after the simplification the formulation is,

In the next upper level, level 1, the loop variable indexes one reference of one
of the conditions, so the CDRF formula has to be applied. Let
and then

In order to compute we need to calculate the value for two functions.
One is which for our reference takes the value where is the
element in vector The other one is the region accessed during
iterations of the loop 1 that can interfere with the accesses to C.

Modeling the Cache Behavior 53

The first term is associated to the autointerference of C, which is the access
to P groups of one element separated by a difference M and every access takes
places with a given probability. The second term represents the access to groups
of 1 element separated by a distance M. The last element represents the access
to P groups of elements separated by a distance N. Every access is going to
happen with a given probability

In the outermost level, the loop variable indexes the reference of the con-
dition. As a result, the CDRF formula is to be applied again. Being

and so the formulation is

As before, two functions must be evaluated to compute They are
and given by

The first term is associated to the autointerference of C, which is the access
to P groups of one element separated by a difference M and every access takes
places with a given probability. The second term represents the access to N
groups of elements separated by a distance M. The last element represents the
access to PN consecutive elements with a given probability.

B(K,J) Modeling. The innermost loop for this reference is also the one in level
2. The variable that controls this loop, J, is found in the indexes of a reference
found in the condition of an IF statements (in this case, the innermost one),
one conditional, so a CDRF is to be built. As this is the innermost loop, we get

Since and the
formulation for this nesting level is

The next level is level 1. In this level the variable of the loops indexes any
of the reference of any of the conditional, so we have to use the CDRF formula.
Being and the formulation is

We need to know and the value of the accessed regions
in order to compute

54 D. Andrade, B.B. Fraguela, and R. Doallo

The first term is associated to the autointerference of B, which is the access to
P groups of elements separated by a difference N and every access takes places
with a given probability. The second term represents the access to groups of
one element separated by a distance M. The last element represents the access
to P groups of one element separated by a distance M, every access takes places
with a given probability

In the outermost level, the level 0, the variable of the loop indexes a reference
in one of the conditions, so we have to apply again the CDRF formula. Being

so the formulation is

In this loop, is a function of and the value
of the accessed regions

The first term is associated to the autointerference of B, which is the access to
PN elements with a given probability. The second term represents the access to
N groups of elements separated by a distance M. The last element represents
the access to P groups of elements separated by a distance M, every access
takes places with a given probability.

4.2 Validation Results

We have done the validation by comparing the results of the predictions given
by the model with the results of a trace-driven simulation. We have tried sev-
eral cache configurations, problem sizes and probabilities for the conditional
sentences.

Modeling the Cache Behavior 55

Tables 1 and 2 display the validation results for the codes in Fig. 2 and 3,
respectively. In Table 1 the two first columns contain the problem size and the
third column stands for the probability that the condition in the code is ful-
filled. In Table 2 the first three columns contain the problem size, while the next
two columns contain the probabilities and that each of of the two condi-
tions in Fig. 3 is fulfilled. Then the cache configuration is given in both tables by

the cache size, the line size, and the degree of associativity of the cache,
K. The sizes are measured in the number of elements of the arrays used in the
codes. The accuracy of the model is used by the metric which is based on
the miss rate (MR); it stands for the absolute value of the difference between
the predicted and the measured miss rate.

For every combination of cache configuration, problem size and probabilities
of the conditions, 25 different simulations have been made using different base
addresses for the data structures.

The results show that the model provides a good estimation of the cache
behavior in the two example codes. The last three columns in both tables reflect
the corresponding simulation times, source code execution time and modeling
times expressed in seconds and measured in a 2,08 Ghz AMD K7 processor-
based system. We can see that the modeling times are much smaller than the
trace-driven simulation and even execution times. Furthermore, modeling times
are several orders of magnitude shorter than trace-driven simulation and even
execution times. The modeling time does not include the time required to build
the formulas for the example codes. This will be made automatically by the tool
we are currently developing. According to our experience in [2], the overhead of
such tool is negligible.

56 D. Andrade, B.B. Fraguela, and R. Doallo

5 Related Work

Over the years, several analytical models have been proposed to study the be-
havior of caches. Probably the most well-known model of this kind is [8], based
on the Cache Miss Equations (CMEs), which are lineal systems of Diophantine
equations. Its main drawbacks are its high computational cost and that it is re-
stricted to analyzing regular access patterns that take place in isolated perfectly
nested loops. In the past few years, some models that can overcome some of these
limitations have arisen. This is the case of the accurate model based on Pres-
burger formulas introduced in [3], which can analyze codes with non-perfectly
nested loops and consider reuses between loops in different nesting levels. Still,
it can only model small levels of associativity and it has a extremely high com-
putational cost. More recently [4], which is based on [8], can also analyze these
kinds of codes in competitive times thanks to the statistical techniques it applies
in the resolution of the CMEs.

A more recent work [9], can model codes with conditional statements. Still,
it does not consider conditions on the input or intermediate data computed by
the programs. It is restricted to conditional sentences whose conditions refer to
the variables that index the loops.

All these models and others in the bibliography have fundamental differences
with ours. One of the most important ones is that all of them require a knowledge
about the base address of the data structures. In practice this is not possible or
useful in many situations because of a wide variety of reasons: data structures
allocated at run-time, physically-indexed caches, etc. Also, thanks to the general
strategy described in this paper, the PME model becomes the first one to be
able to model codes with data-dependent conditionals.

6 Conclusions and Future Work

In this work we have presented an extension to the PME model described in [2].
The extension allows this model to be the first one that can analyze codes with
data-dependent conditionals and considering, not only simple conditional sen-
tences but also nested conditionals affecting a given reference. We are currently
limited by the fact that the conditions must follow an uniform distribution, but
we think our research is an important step in the direction of broadening the
scope of applicability of analytical models. Our validation shows that this model
provides accurate estimations of the number of misses generated by a given code
while requiring quite short computing times. In fact the model is typically two
orders of maginute faster than the native execution of the code.

The properties of this model turn it into an ideal tool to guide the opti-
mization process in a production compiler. In fact, the original PME model has
been used to guide the optimization process in a compiler framework [7]. We
are now working in an automatic implementation of the extension of the model
described in this paper in order to integrate it in that framework. As for the
scope of the program structures that we wish to be amenable to analysis using

Modeling the Cache Behavior 57

the PME model, our next step will be to consider codes with irregular accesses
due to the use of indirections or pointers.

References

1.

2.

3.

4.

5.

6.

7.

8.

9.

Uhlig, R., Mudge, T.: Trace-Driven Memory Simulation: A Survey. ACM Comput-
ing Surveys 29 (1997) 128–170
Fraguela, B.B., Doallo, R., Zapata, E.L.: Probabilistic Miss Equations: Evaluating
Memory Hierarchy Performance. IEEE Transactions on Computers 52 (2003) 321–
336
Chatterjee, S., Parker, E., Hanlon, P., Lebeck, A.: Exact Analysis of the Cache
Behavior of Nested Loops. In: Proc. of the ACM SIGPLAN’01 Conference on
Programming Language Design and Implementation (PLDI’01). (2001) 286–297
Vera, X., Xue, J.: Let’s Study Whole-Program Behaviour Analytically. In: Proc. of
the 8th Int’l Symposium on High-Performance Computer Architecture (HPCA8).
(2002) 175–186
Andrade, D., Fraguela, B., Doallo, R.: Cache behavior modeling of codes with data-
dependent conditionals. In Springer-Verlag, ed.: 7th Intl. Workshop on Software and
Compilers for Embedded Systems, SCOPES 2003. Volume 2826 of Lecture Note in
Computer Science. (2003) 373–387
Blume, W., Doallo, R., Eigenmann, R., Grout, J., Hoeflinger, J., Lawrence, T., Lee,
J., Padua, D., Paek, Y., Pottenger, B., Rauchwerger, L., Tu, P.: Parallel Program-
ming with Polaris. IEEE Computer 29 (1996) 78–82
Fraguela, B.B., Touri o, J., Doallo, R., Zapata, E.L.: A compiler tool to predict
memory hierarchy performance of scientific codes. Parallel Computing 30 (2004)
225–248
Ghosh, S., Martonosi, M., Malik, S.: Cache Miss Equations: A Compiler Framework
for Analyzing and Tuning Memory Behavior. ACM Transactions on Programming
Languages and Systems 21 (1999) 702–745
Vera, X., Xue, J.: Efficient Compile-Time Analysis of Cache Behaviour for Programs
with IF Statements. In: 5th International Conference on Algorthms and Archiectures
for Parallel Processing. (2002) 396–407

A Configurable System-on-Chip Architecture for
Embedded Devices

Sebastian Wallner

Department of Distributed Systems, Technical University Hamburg-Harburg,
Schwarzenbergstrasse 95, D-21073 Hamburg, Germany

{wallner@tu-harburg.de}

Abstract. This paper describes a novel Configurable System-on-Chip
(CSoC) architecture for stream-based computations and real-time signal
processing. It offers high computational performance and a high degree of
flexibility and adaptability by employing a micro Task Controller (mTC)
unit in conjunction with programmable and configurable hardware. The
hierarchically organized architecture provides a programming model, al-
lows an efficient mapping of applications and is shown to be easy scal-
able to future VLSI technologies where over a hundred processing cells
on a single chip will be feasible to deal with the inherent dynamics of
future application domains and system requirements. Several mappings
of commonly used digital signal processing algorithms and implementa-
tion results are given for a standard-cell ASIC design realization in 0.18
micron 6-layer UMC CMOS technology.

1 Introduction

We are currently experiencing an explosive growth in development and deploy-
ment of embedded devices such as multimedia set-top-boxes and personal mobile
computing systems which demands an increasing support of multiple standards
[1,2]. This flexibility requirement points to the need of various communication,
audio and video algorithms which differ in complexity. They have mostly a het-
erogenous nature and comprise several sub-tasks with real-time performance
requirements for data-parallel tasks [3]. A hardware which can cope with these
demands needs different processing architectures: some are parallel, some are
rather pipelined. In general, they need a combination. Moreover, various algo-
rithms needs different levels of control over the functional units and different
memory access. For instance, multimedia applications (like different video de-
compression schemes) may include a data-parallel task, a bit-level task, irreg-
ular computations, high-precision word operations and a real-time component
[4]. The addressed requirements becomes even more relevant when Quality-of-
Service (QoS) requirements e.g. varying the communication bandwidth in wire-
less terminals, variable audio quality or a change from full color to black/white
picture quality becomes a more important factor. A way to solve the flexibility
and adaptability demands has been to use General Purpose Processors (GPP)
or Digital Signal Processors (DSP), i.e. trying to solve all kinds of applications

P.-C. Yew and J. Xue (Eds.): ACSAC 2004, LNCS 3189, pp. 58–71, 2004.
© Springer-Verlag Berlin Heidelberg 2004

A Configurable System-on-Chip Architecture for Embedded Devices 59

running on a very high speed processor. A major drawback of using these general-
purpose devices is that they are extremely inefficient in terms of utilizing their
resources to best take advantage of data-level parallelism in the algorithms.
Todays demands motivate the use of hybrid architectures which integrate pro-
grammable logic together with different embedded resources and Configurable
Systems-on-Chip which can be realized by integrating reconfigurable (re-usable)
and programmable hardware components. In contrast to processors, they totally
lack programming models that would allow for device independent compilation
and forward compatibility to other architecture families.

The approach in this paper describes a Configurable System-on-Chip ap-
proach with configurable and programmable properties. The architecture com-
bines a wide variety of macro-module resources including a MlPS-like scalar pro-
cessor core, coarse-grained reconfigurable processing arrays, embedded memories
and custom modules supervised by a micro Task Controller. In the architecture,
functions can be dynamically assigned to physical hardware resources such that
the most efficient computation can be obtained. It can be forward compatible to
other CSoC families with variable numbers of reconfigurable processing cells for
different performance features. A major key issue for the CSoC system integra-
tion includes the coupling of the macro-module resources for efficient mapping
and transfer of data. The programming aspect is another important aspect in
this paper.

This work is organized as follows. Section 2 presents related work. Section 3
the reconfigurable processing array which based on previous research activities.
Section 4 introduces the CSoC architecture composition and the system control
mechanism in detail. The next section (section 5) presents the programming
paradigm. Algorithms mapping and performance analysis are present in Section
6. Finally, section 7 discusses the design- and physical implementation while
conclusions and future work are drawn in Section 8.

2 Related Work

There have been several research efforts as well as commercial products that have
tried to explore the use of reconfigurable- and System-on-Chip architectures.
They integrate existing components (IP-cores) into a single chip or explore com-
plete new architectures. In the Pleiades project at UC Berkeley [5], the goal is to
create a low-power high-performance DSP system. Yet, the Pleiades architecture
template differs from the proposed CSOC architecture. In the Pleiades architec-
ture a general purpose microprocessor is surrounded by a heterogeneous array of
autonomous special-purpose satellite processors communicated over a reconfig-
urable communication network. In contrast to the Pleiades system the proposed
architecture offers reconfigurable hardware and data-paths supervised by a flex-
ible controller unit with a simple instruction set which allows conditional recon-
figuration and efficient hardware virtualization. The reconfigurable architecture
CS2112 Reconfigurable Communication Processor [6] from Chameleon Systems
couples a processor with a reconfigurable fabric composed of 32-bit processor

60 S. Wallner

tiles. The fabric holds a background plane with configuration data which can
be loaded while the active plane is in use. A small state-machine controls every
tile. The embedded processor manages the reconfiguration and streaming data.
The chameleon chip has a fixed architecture targeting communication applica-
tions. The Configurable SoC architecture offers a micro Task Controller which
allows variable handling of different processing resources and provides forward
compatability with other CSoC architecture families for different performance
demands. The scalar processor core is not involved in the configuration process.
Furthermore, the configuration mechanism differs completely from the configu-
ration approach used by Chameleon Systems. MorphoSys from the University of
California Irvine [7] has a MIPS-like “TinyRISC” processor with extended in-
struction set, a mesh-connected 8 by 8 reconfigurable array of 28 bit ALUs. The
“TiniRISC” controls system execution by initiating context memory and frame
buffer loads using extra instructions via a DMA controller. MorphoSys offers dy-
namic reconfiguration with several local configuration memories. The suggested
architecture model includes a micro Task Controller with a simple instruction
set and a single local configuration memory in each cluster. It uses a pipelined
configuration concept to configure multiple reconfigurable processing cells. The
micro task program and the descriptor set can be reused in other CSoC families
without a recompilation task.

3 Background

The Configurable System-on-Chip architecture approach build on previous
research activities in identifying reconfigurable hardware structures and pro-
viding a new hardware virtualization concept for coarse-grained reconfigurable
architectures. A reconfigurable processing cell array (RPCA) has been designed
which targets applications with inherent data-parallelism, high regularity and
high throughput requirements [8]. The architecture is based on a synchronous
multifunctional pipeline flow model using reconfigurable processing cells and
configurable data-paths. A configuration manager allows run-time- and partial
reconfiguration. The RPCA consists of an array of configurable coarse-grained
processing cells linked to each other via broadcast- and pipelined data buses.
It is fragmented into four parallel stripes which can be configured in parallel.
The configuration technique based of an pipelined configuration process via
descriptors. Descriptors represent configuration templates abutted to instruc-
tion operation-codes in conventional Instruction Set Architectures (ISA). They
can be sliced into fixed-size computation threads that, in analogy to virtual
memory pages, are swapped onto available physical hardware within a few clock
cycles. The architecture approach results in a flexible reconfigurable hardware
component with performance and function flexibility. Figure 1 shows a cluster
with overall 16 processing cells.

A Configurable System-on-Chip Architecture for Embedded Devices 61

Fig. 1. The structure of a cluster with the configuration manager, the processing cells
with the switch boxes for routing, the dual-port scratch pad memories and the descrip-
tor memory. In order to adjust configuration cycles, three pipeline registers for every
stripe are implemented.

Some important characteristics of the reconfigurable architecture are:

Coarse-grained reconfigurable processing model: Each reconfigurable pro-
cessing cell contains a multifunctional ALU that operates on 48-bit or

data words (split ALU mode) on signed integer and signed fixed-point
arithmetic.
Computation concept via compute threads: An application is divided in sev-
eral computation threads which are mapped and executed on the processing
array.
Hardware virtualization: Hardware on demand with a single context mem-
ory and unbounded configuration contexts (descriptors) with low overhead
context switching for high computational density.
Configuration data minimization: Reuse of a descriptor, to configure several
processing cells, minimizes the configuration memory.
Library-based design approach: Library contains application-specific kernel
modules composed of several descriptors to reduce the developing-time and
cost.
Scalable architecture for future VLSI technologies: Configuration concept
easy expandable to larger RPCA.

The RPCA is proposed to be the reconfigurable module of the Configurable
System-on-Chip design. It executes the signal processing algorithms in the ap-
plication domain to enhance the performance of critical loops and computation
intensive functions.

62 S. Wallner

4 Architecture Composition

The CSoC architecture model is hierarchically organized. It is composed of a
micro Task Controller (mTC) unit which includes a set of heterogeneous pro-
cessing resources and the reconfigurable processing cell array. Figure 2 gives
a structure overview. To avoid that a global bus is becoming a bottleneck, a
high-speed crossbar switch connects the heterogeneous processing resources and
the RPCA. It allows multiple data transfers in parallel. Many algorithms in the
applications domain contains abundant parallelism and are compute intensive.
They are preferable spatially mapped onto the RPCA via a set of descriptors
while the other parts can be computed with the heterogeneous processing re-
sources [8]. An advantage of such a architecture partitioning is the more efficient
mapping of algorithms as the Fast Fourier Transformation example in section 6
illustrates.

Fig. 2. The hierarchically organized CSoC structure with the heterogeneous processing
resources and the reconfigurable processing cell arrays are connected via a crossbar
switch. The RCPA is partitioned in several clusters.

4.1 Configurable System-on-Chip Overview

The CSoC architecture consists of the mTC and two clusters of reconfigurable
processing cells. Every cluster comprises sixteen 48-bit coarse-grained reconfig-
urable processing cells. It offers variable parallelism and pipelining for differ-
ent performance requirements. A two channel programmable DMA controller
handles the data transfers between the external main memory banks and the
processing cell array. Figure 3 outlines the architecture overview.

In high performance systems high memory bandwidth is mandatory. Thus the
architecture uses a bandwidth hierarchy to bridge the gap between deliverable

A Configurable System-on-Chip Architecture for Embedded Devices 63

Fig. 3. The overall CSoC architecture with the mTC unit which includes the hetero-
geneous processing resources, two clusters of reconfigurable processing cells with the
scratch-pad memories (local RAM) and the Plasma scalar processor.

off-chip memory bandwidth and the bandwidth necessary for the computation
required by the application. The hierarchy has two levels: a main memory level
(External Memory Bank) for large, infrequently accessed data realized as exter-
nal memory block and a local level for temporary use during calculation realized
as high-speed dual ported scratch-pad memories (local RAM).

4.2 Processing Resource Implementation

Due to the application field in digital signal, image and video processing appli-
cations the heterogeneous processing resources comprises

two ALU (Arithmetic Logic Unit) blocks with four independent 48- or eight
24-bit adder units, saturation logic and boolean function,
a multiplier block with two 24-bit signed/unsigned multipliers,
a 24-bit division and square root unit,
a MIPS-I compatible 32-bit Plasma scalar processor core,
a lookup table with two independent Address Generation Units
(AGU),
two register banks of universal registers

The 32-bit Plasma scalar processor core can be used for general-purpose process-
ing or for tasks which can not be very well accomplished on the other processing
resources. It can directly address the local RAMs of the reconfigurable process-
ing cells. Bit computation is achievable with the ALU block. The lookup-table
and the address generation unit can be used to construct e.g. a Direct Digital
Frequency Synthesis (DDFS) generator which is frequently used in telecommu-
nication applications.

64 S. Wallner

4.3 System Control Mechanism and Instruction Set

The micro Task Controller is a global micro-programmed control machine which
offers a versatile degree of sharing the architecture resources. It manages the het-
erogeneous processing resources and controls the configuration manager without
retarding the whole system. The mTC executes a sequence of micro-instructions
which are located in a micro-program code memory. It has a micro-program
address counter which can be simply increment by one on each clock cycle to
select the address of the next micro-instruction. Additionally, the micro Task
Controller provides an instruction to initiate the configuration and control-flow
instructions for branching. The following four instructions are implemented:

GOTO [Address]: Unconditional jump to a dedicated position in the micro-
program code.
FTEST [Flag, Address]: Test a flag and branch if equal; If the flag is set
(e.g. saturation flag), jump to a dedicated position in the micro-program
code otherwise continue.
TEST [Value, Register, Address]: Test a 48/24-bit value and branch if equal;
The instruction is equivalent to the FTEST instruction. It tests the content
of an universal register.
CONFIG [Function Address]: Start address of the configuration context in
the descriptor memory; The configuration manager fetches the descriptors
in addiction to the descriptor type. The configuration process must only be
triggered. The configuration manager notifies the termination of the config-
uration process by a finish flag.

The instruction set allows to control the implemented heterogeneous processing
resources, the configuration manager and the data-streams. It allows conditional
reconfiguration and data dependent branching. If – then – else, while and select
assignations can be easily modeled.

5 Programming Paradigm

An application is represented as a Control Data-Flow Graph (CDFG). In this
graph, control (order of execution) and data are modeled in the same way. It
conveys the potential concurrencies within an algorithm and facilitates the paral-
lelization and mapping to arbitrary architectures. The graph nodes usually corre-
spond to primitives, such as FFT, FIR-filter or complex multiplication (CMUL).
For a given network architecture, the programmer starts with partitioning and
mapping of the graph in micro-tasks (subtasks), by allocate the flow graph nodes
to the reconfigurable and heterogeneous processing resources in the system. It
specifies the program structure: the sequence of micro-tasks that comprises the
application, the connection between them and the input and output ports for
the data streams. A micro-task processes input data and produces output data.
After a task finishes, its output is typically input to the next micro-task. Figure
4 shows an example composed of several micro-tasks with data feed-back.

A Configurable System-on-Chip Architecture for Embedded Devices 65

Fig. 4. An example of a cascade of computation tasks with data feedback. A task may
consists of a configuration and a processing part.

After the partitioning and mapping, a scheduling process produces the sched-
ule for the application which determines the order of the micro-task execution.
The schedule for a computation flow is stored in a microprogram as a sequence
of steps that directs the processing resources. It is represented as a mTC reser-
vation table with a number of usable reservation time slots. The allocation of
these time slots can be predefined by the scheduler process via a determined
programming sequence. The sequence consists of micro-instructions which can
be interpreted as a series of bit fields. A bit field is associated with exactly one
particular micro operation. When a field is executed it’s value is interpreted to
provide the control for this function during that clock period. Descriptor speci-
fication: Descriptors can be used separately or application kernels can be chosen
from a function library [8]. Plasma program: This is generated through the GNU-
C language compiler. The compiler generates an MIPS-I instruction compatible
code for the Plasma processor. The programming paradigm allows to find the
maximum parallelism found in the application. Exploiting this parallelism allows
the high computation rates which are necessary to achieve high performance.

6 Mapping Algorithms and Performance Analysis

This section discusses the mapping of some applications onto the Configurable
System-on-Chip architecture. First, the Fast Fourier Transform (FFT) is mapped
due to his high degree of important and tight real-time constraints for telecom-
munication and multimedia systems. Then other typical kernels are mapped and
some results becomes introduced.

The Sande and Tukey Fast Fourier Transformation (FFT) algorithm with
DIF (Decimation in Frequency) is chosen [9]. It can be more efficiently mapped
on the CSoC hardware resources due to a better processing resource utilization.
The butterfly calculation is the basic operation of the FFT. An implementation
use a DIF-FFT radix-2 butterfly. It is shown in figure 5a). The radix-2 butterfly
takes a pair of input data values “ X ” and “Y” and produces a pair of outputs

and where

66 S. Wallner

In general the input samples as well as the twiddle factors are complex and can
be expressed as

where the suffix indicates the real part and the the imaginary part of the data.
In order to execute a 24-bit radix-2 butterfly in parallel, a set of descriptors for
the RPCA and the mTC microcode for controlling the heterogeneous processing
resources and the configuration manager are necessary. The butterfly operation
requires four real multiplications and six real additions/subtractions. To map
the complex multiplication, two multiplier and two multiplier/add descriptors
as configuration templates are needed. It can be mapped in parallel onto four
processing cells of the RPCA. The complex- adder and subtracter are mapped
onto the ALU block. The whole structure is shown in figure 5b). The pipelined
execution of the radix-2 butterfly takes five clock cycles. The execution is best
illustrated using the reservation table. It shows the hardware resource allocation
in every clock cycle. Figure 6 shows the reservation table for the first stage of
an n-point FFT fragmented into three phases. The initialize phase is comprised
of static configurations of the processing resources. It initiates the configuration
which maps four complex multiplier onto the RPCA by using the CONFIG in-
struction. In the configuration phase, the configuration of the reconfigurable
array is accomplished. The process phase starts the computation of the n-points.
It is controlled by the FTEST instruction. The twiddle-factors are gener-
ated for each stage via the lookup-table and the address generation units.

The example in figure 7 shows the execution of the n-point radix-2 FFT.
Each oval in the figure corresponds to the execution of a FFT compute stage
(micro-task), while each arrow represents a data stream transfer. The exam-
ple uses an in-place FFT implementation variant. It allows the results of each
FFT butterfly to replace its input. This makes efficient use of the dual ported
scratch-pad memories as the transformed data overwrites the input data. The re-
order of the output data is simply arranged by reversing the address bits via the
scratch-pad memory data sequencer unit (bit-reverse addressing). For demon-
stration, a 64- point FFT computation, a 16x16 Matrix-Vector-Multiplication
(MVM), a 32-tap systolic FIR-filter and 32-tap symmetrical FIR-filter with 12-
bit integer coefficients and data and a 32-tap real IIR filter implementation are
mapped. Generally larger kernels can be calculated by time-division multiple
access (TDMA).

One key to achieve high performance is keeping each functional unit as busy
as possible. This goal can be quantified by efficiently mapping applications to
the CSoC model including how to partition the kernel structure or large compu-
tations. An important aspect is the resource occupancy of the architecture; the
percentage of used hardware resources which are involved to process a kernel or
an application. The occupancy of the architecture resources for several kernels

A Configurable System-on-Chip Architecture for Embedded Devices 67

Fig. 5. The butterfly structure for the decimation in frequency radix-2 FFT in a). In
b) the mapping of the complex adders onto the ALU block of the heterogeneous pro-
cessing resources and the complex multiplier which are mapped onto the reconfigurable
processing array. The implementation uses additional pipeline registers (Pipe Register)
provided by the configuration manager (light hatched) for timing balance.

are shown in figure 8 a). The hierarchically architecture composition allows to
map four complex radix-2 butterflies in parallel onto the CSoC with a single
cluster. As shown, the complex butterfly can be efficiently implemented due to
the mapping of the complex adders to the heterogeneous processing resources
and the complex multipliers to the reconfigurable processing cells. The resource
unit occupancy of the cluster (Reconfigurable Resources) is 75%. The expensive
multipliers in the reconfigurable processing cells are completely used.

The 16x16 MVM kernel is mapped and calculated in parallel with 24-bit
precision. The partial data accumulation is done via the adder resources in the
ALU block. A 48-bit MVM calculation is not feasible due to limited broadcast
bus resources in the cluster [8]. This results in a relative poor resource occupancy
as a 24-bit multiplier in the reconfigurable processing cells can not be used.
The FIR-filter structures can be mapped directly onto the RPCA. It can be
calculated with 48-bit precision. As a result of insufficient adder resources in
a reconfigurable processing cell, the 32-tap symmetrical FIR-filter can only be
calculated with 24-bit precision. The resource occupancy in a reconfigurable
processing cell is poor as a 24-bit multiplier can not be used [8]. The IIR-filter

68 S. Wallner

Fig. 6. The simplified reservation table of the first FFT stage to process four com-
plex butterflies in parallel. The hardware resources are listed on the left-hand side.
First the time slots for the reconfigurable processing array (four parallel stripes) with
the pipe stages (Stage), then the heterogeneous processing resources and the mTC
control-instructions are illustrated. The hatched area marks the initialization phase.
The reconfigurable processing array is configured after the fourth cycle. The Memory
Data Sequencer Units (M-DSU) starts after the configuration process (time slot 5) to
provide the input data. The heterogeneous and configurable processing resources are
statically configured.

Fig. 7. A FFT is split onto several compute stages (micro-
tasks) which are performed sequentially. The compute stages are separated into several
parts in the reservation table.

is composed of two parallel 32-tap systolic FIR-filters and an adder from the
ALU block. It can only be calculated with full 48-bit precision by using TDMA
processing. The lack of wiring resources (broadcast buses in a cluster) limits the
resource load in a cluster as the MVM and the 32-tap symmetrical FIR-filter
mapping illustrates. The wiring problem cannot always be completely hidden but
can be reduced as shown in the case of the mapping of the complex butterfly.

A Configurable System-on-Chip Architecture for Embedded Devices 69

Fig. 8. (a) Resource unit occupancy of selected kernels on the CSoC architecture with
a single cluster. The dark area shows the cluster utilization while the striped area
shows the functional unit utilization of the heterogeneous processing resources. (b)
Performance results for the applications using a single cluster. The results do not
include the configuration cycles. (c) Speedup results relative to a single cluster with
16 reconfigurable processing cells for selected kernels. Plot (d) shows the CSoC ASIC
prototype layout without the pad ring.

Achieved performance results for some of the kernels above are summarized in
figure 8 b). It shows the 24- and 48-bit realization of the MVM kernel.

The 48-bit MVM computation needs twice as much clock cycles as the 24-
bit realization due to the broadcast bus bottleneck. The other kernels can be
calculated with 48-bit precision. The 32-tap FIR-filter can be executed onto the
processing array by feeding back the partial data. The 64-point FFT uses four

70 S. Wallner

complex butterflies in parallel. The 32-tap IIR-filter needs more then twice as
much clock cycles due to the need of TDMA processing to compute the 32-
tap FIR-filters in parallel. Speedups with reconfigurable processing cell scaling
in four parallel stripes is shown in figure 8 c). The filter kernels have linear
speedups to N = 24 because they can be directly mapped onto the RPCA. The
MVM computation has linear speedup until N = 16. The increased number of
processing cells gives an performance decrease due to the broadcast bus bottle-
neck for a stripe. The FFT computation with the parallel implementation of the
butterflies shows a resource bottleneck in the reconfigurable processing cells for
N = 4 and N = 12. In this case, it is not possible to map complete complex
multipliers in parallel onto the RPCA. In the case of N = 20, the broadcast bus
bottleneck and a ALU adder bottleneck decrease the performance rapidly due to
the absence of adder resources for the butterfly computation. The performance
degradation in the N = 24 case results from the ALU adder resource bottle-
neck, the complex multipliers can be mapped perfectly onto four parallel stripes
with 24 processing cells. Scaling the number of clusters results in a near-linear
speedup for the most kernels unless a resource bottleneck in the heterogeneous
resources occurs.

7 Design and Physical Implementation

The CSoC architecture has been implemented using a standard cell design
methodology for an UMC 0.18 micron, six metal layer CMOS (1.8V) process
available through the european joined academic/industry project EUROPRAC-
TICE. The architecture was modeled using VHDL as hardware description lan-
guage. The RPCA and the mTC with the heterogeneous processing resources
are simulated separately with the VHDL System-Simulator (VSS). They were
then synthesized using appropriate timing constraints with the Synopsys Design-
Compiler (DC) and mapped using Cadence Silicon Ensemble. The first imple-
mentation includes a single cluster with 16 processing cells and the mTC unit
with the heterogeneous processing resources. The Plasma scalar processor in-
cludes a program cache. No further caches are implemented. The final
layout, shown in figure 8 d), has a total area of A cluster with 16
processing cells needs silicon area, the Plasma processor core in 0.18
micron CMOS technology approximately It can be clocked up to 210
MHz. After a static timing analysis with Cadence Pearl, the CSoC design runs
at clock frequencies up to 140MHz.

8 Conclusions and Future Work

A Configurable System-on-Chip for embedded devices has been described in this
paper. The CSoC introduces an architecture for telecommunication-, audio-, and
video algorithms in order to meet the high performance and flexibility demands.
The architecture provides high computational density and flexibility of changing
behaviors during run-time. The system consists of two clusters of reconfigurable

A Configurable System-on-Chip Architecture for Embedded Devices 71

processing cells, heterogeneous processing resources and a programmable micro
Task Controller unit with a small instruction set. The reconfigurable process-
ing array has been designed for data-parallel and computation-intensive tasks.
However, the CSoC architecture proposed here is different from many CSoC ar-
chitectures in an important and fundamental way. It is hierarchically organized
and offers a programming model. The architecture allows an efficient mapping
of application kernels as the FFT mapping have illustrated and is scalable by
either adding more reconfigurable processing cells in a cluster, by increasing the
number of clusters or by adding more processing units to the heterogeneous re-
sources. A major advantage of the CSoC architecture approach is to provide
forward compatability with other CSoC architecture families. They may offer a
different number of clusters or reconfigurable processing cells to provide variable
performance requirements. The micro-task program and the descriptor set can
be reused. A prototype chip layout with a single cluster has been developed using
a UMC 0.18 micron 6-layer CMOS process.

Apart from tuning and evaluating the CSoC architecture for additional ap-
plications, there are several directions for future work. One key challenge is to
extended the mTC instruction in order to enlarge the flexibility. Another chal-
lenge is to create an automatic partitioning and mapping tool to assist the user.
The programmable micro Task Controller and the reconfigurable processing ar-
ray with the descriptors as configuration templates can be a solid base for such
an intention.

References

1.

2.

3.

4.

5.

6.

7.

8.

9.

R. Berezdivin, R. Breinig, R. Topp, “Next-generation wireless communication con-
cepts and technologies”, IEEE Communication Magazine, vol. 40, no. 3, pp. 108-117,
Mar. 2002
K. Lewis, “Information Appliances, “Gadget Netopia”, IEEE Computer., vol. 31,
pp. 59-66, Jan. 1998
K. Diefendorff and P. Dubey, “How Multimedia Workloads Will Change Processor
Design”, IEEE Computer, 30(9) : 43-45, Sept. 1997
T. M. Conte, P. K. Dubey, M. D. Jennings, R. B. Lee, A. Peleg, S. Rathnam, M.
S. Schlansker, P. Song, A. Wolfe, “Challenges to Combining General-Purpose and
Multimedia Processors”, IEEE Computer, pp. 33-37, Dec. 1997
M. Wan, H. Zhang, V. George , M. Benes, A. Abnous, V. Prabhu, J. Rabaey, “Design
methodology of a low-energy reconfigurable single-chip DSP system”, Journal of
VLSI Signal Processing, vol.28, no.1-2, pp.47-61, May-Jun. 2001
B. Salefski, L. Caglar, “Re-Configurable Computing in Wireless”, 38th Design Au-
tomation Conference, Las Vegas, Nevade, USA, Jun. 2001
H. Singh, M. H. Lee, G. Lu, F. J. Kurdahi, N. Bagherzadeh, E. M. C. Filho, “Mor-
phoSys: An Integrated Reconfigurable System for Data-Parallel and Computation-
Intensive Applications”, IEEE Transactions on Computers 49(5): 465-481, May 2000
S. Wallner, “A Reconfigurable Multi-threaded Architecture Model”, Eighth Asia-
Pacific Computer Systems Architecture Conference (ACSAC 2003), Fukushima,
Japan, Springer LNCS 2823, pp. 193-207, Sep. 23-26 2003
A. V. Oppenheim, R. W. Schafer, “Discrete-Time Signal Processing”, Englewood
Cliffs, Prentice-Hall, 1989

An Auto-adaptative Reconfigurable Architecture
for the Control

Nicolas Ventroux, Stéphane Chevobbe, Fréderic Blanc, and Thierry Collette

CEA-List DRT/DTSI/SARC
Image and Embedded Computers Laboratory

F-91191 Gif-Sur-Yvette - FRANCE
phone: (33) 1-69-08-66-37

firstname.surname@cea.fr

Abstract. Previous works have shown that reconfigurable architec-
tures are particularly well-adapted for implementing regular processing
applications. Nevertheless, they are inefficient for designing complex
control systems. In order to solve this drawback, microprocessors are
jointly used with reconfigurable devices. However, only regular, modular
and reconfigurable architectures can easily take into account constant
technology improvements, since they are based on the repetition of
small units. This paper focuses on the self-adaptative features of a new
reconfigurable architecture dedicated to the control from the application
to the computation level. This reconfigurable device can itself adapt its
resources to the application at run-time, and can exploit a high level of
parallelism into an architecture called RAMPASS.

Keywords: dynamic reconfiguration, adaptative reconfigurable archi-
tecture, control parallelism

1 Introduction

The silicon area of reconfigurable devices are filled with a large number of com-
puting primitives, interconnected via a configurable network. The functionality
of each element can be programmed as well as the interconnect pattern. These
regular and modular structures are adapted to exploit future microelectronic
technology improvements. In fact, semiconductor road maps [1] indicate that
integration density of regular structures (like memories) increases faster than ir-
regular ones (Tab. 1). In this introduction, existing reconfigurable architectures
as well as solutions to control these structures, are first presented. This permits
us to highlight the interests of our architecture dedicated to the control, which
is then depicted in details.

A reconfigurable circuit can adapt its features, completely or partially, to
applications during a process called reconfiguration. These reconfigurations are
statically or dynamically managed by hardware mechanisms [2]. These architec-
tures can efficiently perform hardware computations, while retaining much of

P.-C. Yew and J. Xue (Eds.): ACSAC 2004, LNCS 3189, pp. 72–87, 2004.
© Springer-Verlag Berlin Heidelberg 2004

An Auto-adaptative Reconfigurable Architecture for the Control 73

the flexibility of a software solution [3]. Their resources can be arranged to im-
plement specific and heterogeneous applications. Three kinds of reconfiguration
level can be distinguished :

gate level: FPGA (Field Programmable Gate Array) are the most well-
known and used gate-level reconfigurable architectures [4,5]. These devices
merge three kinds of resources: the first one is an interconnection network,
the second one is a set of processing blocks (LUT, registers, etc.) and the
third one regroups I/O blocks. The reconfiguration process consists in using
the interconnection network to connect different reconfigurable processing
elements. Furthermore, each LUT is configured to perform any logical oper-
ations on its inputs. These devices can exploit bit-level parallelism.

operator level: the reconfiguration takes place at the interconnection and
the operator levels (PipeRench[6], DREAM [7], MorphoSys [8], REMARC
[9], etc.). The main difference concerns the reconfiguration granularity, which
is at the word level. The use of coarse-grain reconfigurable operators pro-
vides significant savings in time and area for word-based applications. They
preserve a high level of flexibility in spite of the limitations imposed by the
use of coarse-grain operators for better performances, which do not allow
bit-level parallelism.

functional level: these architectures have been developed in order to imple-
ment intensive arithmetic computing applications (RaPiD [10], DART [11],
Systolic Ring [12], etc.). These reconfigurable architectures are reconfigured
in modifying the way their functional units are interconnected. The low
reconfiguration data volume of these architectures makes it easier to imple-
ment dynamic reconfigurations and allows the definition of simple execution
models.

These architectures can own different levels of physical granularity, and what-
ever the reconfiguration grain is, partial reconfigurations are possible, allowing
the virtualization of their resources. Thus for instance, to increase performances
(area, consumption, speed, etc.), an application based on arithmetic operators
is optimally implemented on word-level reconfigurable architectures.

Besides, according to Amdahl’s law [13], an application is always composed
of regular and irregular processings. It is always possible to reduce and optimize
the regular parts of an application in increasing the parallelism, but irregular
code is irreductible. Moreover, it is difficult to map these irregular parts on

74 N. Ventroux et al.

reconfigurable architectures. Therefore, most reconfigurable systems need to be
coupled with an external controller especially for irregular processing or dynamic
context switching. Performances are directly dependent on the position and the
level of this coupling. Presently, four possibilities can be exploited by designers:

microprocessor: this solution is often chosen when reconfigurable units are
used as coprocessors in a SoC (System on Chip) framework. The micropro-
cessor can both execute its own processes (and irregular codes) and configure
its reconfigurable resources (PACT XPP-/Leon [14], PipeRench [15], Mor-
phoSys [8], DREAM [7], etc.). These systems can execute critical processings
on the microprocessor, while other concurrent processes can be executed on
reconfigurable units. However, in order to only configure and execute irreg-
ular code, this solution may be considered as too expensive in terms of area
and energy consumption, and would most likely be the bottelneck due to
off-chip communication overheads in synchronization and instruction band-
width.

processor core: this approach is completely different since the processor
is mainly used as a reconfigurable unit controller. A processor is inserted
near reconfigurable resources to configure them and to execute irregular pro-
cesses. Performances can also be increased by exploiting the control paral-
lelism thanks to tight coupling (Matrix [16], Chimaera [17], NAPA [18], etc.).
Marginal improvements are often noticed compared to a general-purpose
microprocessor but these solutions give an adapted answer for controlling
reconfigurable devices.

microsequencer: these control elements are only used to process irregular
processing or to configure resources. They can be found in the RaPiD ar-
chitecture, for instance, [10] as a smaller programmed control with a short
instruction set. Furthermore, the GARP architecture uses a processor in or-
der to only load and execute array configurations [19]. A microsequencer is
an optimal solution in terms of area and speed. Its features do not allow
itself to be considered as a coprocessor like the other solutions, but this ap-
proach is however best fitted for specifically controlling reconfigurable units.
Nevertheless, control parallelisms can be exploited with difficulty.

FPGA: this last solution consists in converting the control into a set of
state machines, which could then be mapped to an FPGA. This approach
can take advantage of traditional synthesis techniques for optimizing control.
However, FPGA are not optimized for implementing FSM (Finite State Ma-
chines) because whole graphs of the application must be implemented even if
non-deterministic processes occur. Indeed, these devices can hardly manage
dynamic reconfigurations at the state-level.

Reconfigurable devices are often used with a processor for non-deterministic
processes. To minimize control and configuration overheads, the best solution

An Auto-adaptative Reconfigurable Architecture for the Control 75

consists in tightly coupling a processor core with the reconfigurable architec-
ture [20]. However, designing for such systems is similar to a HW/SW co-design
problem. In addition, the use of reconfigurable devices can be better adapted
to deep sub-microelectronic technological improvements. Nonetheless, the con-
troller needs other physical implementation features rather than operators, and
FPGA can not always be an optimal solution for computation. Indeed, the con-
trol handles small data and requires global communications to control all the
processing elements, whereas the computation processes large data and uses lo-
cal communications between operators.

To deal with control for reconfigurable architectures, we have developed the
RAMPASS architecture (Reconfigurable and Advanced Multi-Processing Archi-
tecture for future Silicon Systems) [21]. It is composed of two reconfigurable
resources. The first one is suitable for computation purposes but is not a topic
of interest for this paper. The second part of our architecture is dedicated to con-
trol processes. It is a self-reconfigurable and asynchronous architecture, which
supports SIMD (Single Instruction Multiple Data), MIMD (Multiple Instruction
Multiple Data) and multi-threading processes.

This paper presents the mechanisms used to auto-adapt resource allocations
to the application in the control part of RAMPASS. The paper is structured
as follows: section 2 outlines a functional description of RAMPASS. Section 3
presents a detailed functional description of the part of RAMPASS dedicated
to the control. This presentation focuses on some concepts presented in [21].
Then, section 4 depicts auto-adaptative reconfiguration mechanisms of this con-
trol part. Finally, section 5 presents the development flow, some results and deals
with the SystemC model of our architecture.

2 Functional Description of RAMPASS

In this section, the global functionality of RAMPASS is described. It is composed
of two main reconfigurable parts (Fig. 1):

One dedicated to the control of applications (RAC: Reconfigurable Adapted
to the Control);
One dedicated to the computation (RAO: Reconfigurable Adapted to Oper-
ators) .

Even if the RAC is a part of RAMPASS, it can be dissociated to be integrated
with other different architectures with any computational grain. Each computa-
tion block can be either a general-purpose processor or a functional unit. The
RAC is a generic control architecture and is the main interest of this paper. In
this article, the RAO can be considered as a computational device adapted to
the application, with a specific interface in order to communicate with the RA C.
This interface must support instructions from the RAC and return one-bit flags
according to its processes.

76 N. Ventroux et al.

Fig. 1. Organization of RAMPASS

2.1 Overview

From a C description, any application can be translated as a CDFG (Control
Data Flow Graph), which is a CFG (Control Flow Graph) with the instructions
of the basic blocks expressed as a DFG (Data Flow Graph). Thus, their partition
is easily conceivable [22,23].

A CFG or a State Graph (SG) represents the control relationships between
the set of basic blocks. Each basic block contains a set of deterministic instruc-
tions, called actions. Thus, every state in a SG is linked to an action. Besides,
every arc in a SG either connects a state to a transition, or a transition to a
state. A SG executes by firing transitions. When a transition fires, one token
is removed from each input state of the transition and one token is added to
each output state of the transition. These transistions determine the appropri-
ate control edge to follow. On the other hand, a DFG represents the overall
corresponding method compiled onto hardware.

Consequently, whatever the application is, it can be composed of two different
parts (Fig. 2). The first one computes operations (DFG) and the second one
schedules these executions on a limited amount of processing resources (CFG).

Fig. 2. Partitioning of an application (a) in Control/Computation (b)

The first block of our architecture can physically store any application de-
scribed as a CFG. States drive the computation elements in the RAO, and events

An Auto-adaptative Reconfigurable Architecture for the Control 77

coming from the RAO validate transitions in the SG. Moreover, self-routing
mechanisms have been introduced in the RAC block to simplify SG mapping.
The RAC can auto-implement a SG according to its free resources. The RAC
controls connections between cells and manages its resources. All these mecha-
nisms will be discussed in future sections.

2.2 Mapping and Running an Application with RAMPASS

In this part, the configuration and the execution of an application in RAMPASS
are described. Applications are stored in an external memory. As soon as the SG
begins to be loaded in the RAC, its execution begins. In fact, the configuration
and the execution are simultaneously performed. Contrary to microprocessor,
this has the advantage of never blocking the execution of applications, since the
following executed actions are always mapped in the RAC.

The reconfiguration of the RAC is self-managed and depends on the applica-
tion progress. This concept is called auto-adaptative. The RAC Net has a limited
number of cells, which must be dynamically used in order to map larger applica-
tions. Indeed, due to a lack of resources, whole SGs can not always be mapped in
the RAC. Dynamic reconfiguration has been introduced to increase the virtual
size of the architecture. In our approach, no pre-divided contexts are required.
Sub-blocks implemented in the RAC Net are continuously updated without any
user help. Figure 3 shows a sub-graph of a 7-state application implemented at
run-time in a 3-cell RAC according to the position of the token.

Fig. 3. Evolution of an implemented SG in the RAC Net

Each time a token is received in a cell of a SG implemented in the RAC,
its associated instructions are sent to the RAO. When the RAO has finished its
processes, it returns an event to the cell. This event corresponds to an edge in
the SG mapped in the RAC. These transitions permit the propagation of tokens
in SGs. Besides, each block has its synchronization mechanisms. In this globally
asynchronous architecture, blocks are synchronized by 2-phase protocols [24].

78 N. Ventroux et al.

It is possible to execute concurrently any parallel branches of a SG, or any
independant SGs in the RAC. This ensures SIMD, MIMD, and multi-threading
control parallelisms. Besides, semaphore and mutex can be directly mapped in-
side the RAC in order to manage shared resources or synchronization between
SGs. Even if SGs are implemented cell by cell, their instantiations are concurrent.

3 Functional Description of the Control Block: The RAC

As previously mentioned, the RAC is a reconfigurable block dedicated to the
control of an application. It is composed of five units (Fig. 4). The CPL (Configu-
ration Protocol Layer), the CAM (Content Addressable Memory) and the Leaf-
Finder are used to configure the RAC Net and to load the Instruction Memory.

3.1 Overview

The RAC Net can support physical implementation of SGs. When a cell is con-
figured in the RAC Net, its associated instructions are stored in the Instruction
Memory as well as the address of its description in the CAM. Descriptions of
cells are placed in a central memory and each description contains the instruction
of the associated cell and the configuration of cells, which must be connected
(daughter cells). In order to extend SGs in the RAC Net, the last cells of SGs,
which are called leaf cells, are identified in the LeafFinder. These cells allow the
extension of SGs. When a leaf cell is detected, a signal is sent to the CAM and
the description of this cell is read in the central memory. From this description,

Fig. 4. The RAC block

An Auto-adaptative Reconfigurable Architecture for the Control 79

the daughter cells of this leaf cell are configured and links are established be-
tween the cells in the RAC Net. The CAM can also find a cell mapped in the
RAC Net thanks to its address. This is necessary if loop kernels try to connect
already mapped cells. Finally, the propagation of tokens through SGs, thanks
to events from the RAO, schedule the execution of instructions stored in the
Instruction Memory. In the next section, the details of each block are given.

3.2 Blocks Description

RAC Net, this element is composed of cells and interconnect components.
SGs are physically implemented thanks to these resources. One state of a SG is
implemented by one cell. Each cell directly drives instructions, which are sent
to the RAO. The RAC Net is dynamically reconfigurable. Its resources can be
released or used at the run-time according to the execution of the application.
Moreover, configuration and execution of SGs are fully concurrent. RAC Net
owns primitives to ensure the auto-routing and the managing of its resources
(cf §4.1). The RAC Net is composed of three one-hot asynchronous FSMs (5 ,8
and 2 states) to ensure the propagation of tokens, its dynamical destruction and
the creation of connections. It represents about one thousand transistors in ST

technology.

Instruction memory, the Instruction Memory contains the instructions,
which are sent by the RAC Net to the RAO when tokens run through SGs.
An instruction can eventually be either configurations or context addresses. As
shown in figure 5, the split instruction bus allows the support of EPIC (Ex-
plicitly Parallel Instruction Computing) and the different kinds of parallelism
introduced in the first section. Each column is reserved for a computation block
in the RAO. For instance, the instructions A and B could be sent together to
different computational blocks mapped in the RAO without creating conflicts,
whereas the instruction C would be sent alone. A bit of selection is also used to
minimize energy consumption by disabling unused blocks.

Furthermore, each line is separately driven by a state, e.g. each cell of the
RAC Net is dedicated to the management of one line of this memory. This mem-
ory does not require address decoding since its access is directly done through
its word lines. We call this kind of memory a word-line memory.

CPL, this unit manages SG implementation in the RAC Net. It sends all the
useful information to connect cells, which can auto-route themselves. It drives
either a new connection if the next state is not mapped in the RAC net, or
a connection between two states already mapped. It also sends primitives to
release resources when the RAC Net is full.

CAM, this memory links each cell of the RAC Net used to map a state of a
SG, with its address in the external memory. Again, it can be driven directly

80 N. Ventroux et al.

Fig. 5. Relation RAC Net/Instruction Memory

through its word lines. It is used by the CPL to check if a cell is already mapped
in the RAC Net. The CAM can select a cell in the RAC Net when its address
is presented by the CPL at its input. Besides, the CAM contains the size of cell
descriptions to optimize the bandwidth with the central memory.

LeafFinder, this word-line memory identifies all the leaf cells. Leaf cells are
in a semi-mapped state which does not yet have an associated instruction. The
research is done by a logic ring, which runs each time a leaf cell appears.

4 Auto-adaptative Reconfiguration Control

The first part of this section deals with the creation of connections between cells
and their configuration. A cell, which takes part in a SG, must be configured in
a special state corresponding to its function in the SG. Finally, the second part
focuses on the release of already used cells.

4.1 Graph Creation and Configuration

New connection. To realize a new connection e.g. a connection with a free
cell, the CPL sends a primitive called connection. This carries out automatically
a connection between an existing cell (the source cell), which is driven by the
LeafFinder, and a new cell (the target cell), which is a free cell chosen in the
neighborhood of the source cell. Thus, each daughter in the neighborhood of the
source cell are successively tested until a free cell is found. The RAC Net and its
network can self-manage these connections. In fact, carrying out a connection
consists of validating existing physical connections between both cells. Finally,
the path between the two cells can be considered as auto-routed in the RAC
Net.

An Auto-adaptative Reconfigurable Architecture for the Control 81

Connection between two existing cells. When the RAC finds the two
cells, which must be connected, two primitives called preparation and search
are successively sent by the CPL to the RAC Net. The first one initializes the
research process and the second one executes it. The source cell is driven by
the LeafFinder via the signal start and the target cell by the CAM via the
signal finish. According to the application, the network of the RAC Net can
be either fully or partially interconnected. Indeed, the interconnection network
area is a function of the square of the number of cells in the RAC Net. Thus,
a fully connected network should be used only in highly irregular computing
application.

If the network is fully interconnected, the connection is simply done by the
interconnect, which receives both the signals start and finish. On the other hand,
if cells are partially interconnected, handshaking mechanisms allow the source
cells to find the target. Two signals called find and found link each cells together
(Fig. 6). On the reception of the signal search, the source cell sends a find signal
to its daughters. The free cell receiving this signal sends it again to its daughters
(this signal can be received only one time). So, the signal find spreads through
free cells until it reaches the target cell. Then this cell sends back the signal
found via the same path to the source cell. Finally, the path is validated and a
hardware connection is established between the two cells. The intermediate and
free cells, which take part in the connection, are in a special mode named bypass.

Configuration. The dynamic management of cells is done by a signal called
accessibility. This signal links every cell of a SG when a connection is done. Each
cell owns an Up Accessibility (UA) (from its mother cells) and a Down Accessi-
bility (DA) (distributed to its daughter cells). At the time of a new connection,
a cell receives the UA from its mother cells and stores its configuration coming
from the CPL. In the case of multiple convergences (details on SG topologies
have been presented in [21]), it receives the UA as soon as the first connection
is established. Then, a configured cell is ready to receive and to give a token.
After its configuration, the cell transmits its accessibility to its daughters.

Fig. 6. Connection between the source cell (S) and its target cell (T)

82 N. Ventroux et al.

When the connection has succeeded, the RAC Net notifies the CPL. Conse-
quently, the CPL updates the CAM with the address of the new mapped state,
the LeafFinder defines the new cell as a leaf cell, and the Instruction Memory
stored the correct instructions.

When a connection fails, the RAC Net indicates an error to the CPL. The
CPL deallocates resources in the RAC Net and searches the next leaf cell with
the LeafFinder. These two operations are repeated until a connection succeeds.
Release mechanisms are detailed in the next paragraph.

4.2 Graph Release

A cell stops to deliver its accessibility when it no more receives an UA and does
not own a token. When a cell loses its accessibility, all the daughter cells are
successively free and can be used for other SG implementations. In order to
prevent the release of frequently used cells, which may happen in loop kernels,
a configuration signal called stop point can be used.

Due to resource limitations, a connection attempt may fail. For this reason,
a complete error management system has been developed. It is composed of
three primitives, which can release more or less cells. The appearing frequency
of connection errors is evaluated by the CPL. When predefined thresholds are
reached, adapted primitives are sent to the RAC Net to free unused resources.
The first one is called test acces. It can free a cell in a stop point mode (Fig. 7).
Every cell between two stop point cells are free. Indeed, a stop point cell is free
on a rising edge of the test acces signal when it receives the accessibility from
its mothers.

Fig. 7. Releasing of cells with test access

The second release primitive is named reset stop point. It can force the liber-
ation of any stop point cells when they do not have any token. This mode keeps
cells implied in the implementation of loop kernels and reduces the release. In
some critical cases (when resources are very limited), it can become an idle state.

Finally, the last primitive called reset idle state guarantees no idle state in
the RAC. This is done by freeing all the cells, which do not own a token. This

An Auto-adaptative Reconfigurable Architecture for the Control 83

solution is of course the more efficient but is very expensive in time and energy
consumption. It must only be used in case of repeated desallocation errors.

No heuristics decide how many cells must be reclaimed or loaded. This is
done automatically even if the desallocation is not optimal. That is why stop
point cells must be adequately placed in SGs to limit releases.

Non-deterministic algorithms need to make decisions to follow their pro-
cesses. This can be translated as OR divergences, e.g. events determine which
branch will be followed by firing transitions. To prevent speculative construc-
tion and to configure too many unemployed cells, the construction of SGs is
blocked until correct decisions are taken. This does not slow the execution of the
application since the RAC Net contains always the next processes. Moreover,
we consider that execution is slower than reconfiguration, and that an optimal
computation time is about 3ns. Indeed, we estimate the reconfiguration time of
a cell equals to 7.5ns and the minimum time between two successive instructions
for a fully interconnected network of 3ns + 1.5ns, where 1.5ns is the interconnect
propagation time for a 32-cell RAC.

5 Implementation and Performance Estimation

An architecture can not be exploited without a development flow. For this rea-
son, a development flow is currently a major research concern of our laboratory
(Fig. 8). From a description of the application in C-language, an intermediate
representation can be obtained by a front-end like SUIF [22,23]. Then, a paral-
lelism exploration from the CDFG must be done to assign tasks to the multiple
computing resources of the RAO. This parallelism exploration under constraints
increases performances and minimizes the energy consumption and the memory

Fig. 8. RAMPASS Development Flow Graph

84 N. Ventroux et al.

bandwidth. The allocation of multiple resources in the RAO can also increase
the level of parallelism. From this optimized CDFG, DFGs must be extracted in
order to be executed on RAO resources. Each DFG is then translated into RAO
configurations, thanks to behavioral synthesis scheme. This function is currently
under development through the OSGAR project, which consists in designing
a general-purpose synthesizer for any reconfigurable architectures. This RNTL
project under the ward of the French research ministry, associates TNI-Valiosys,
the Occidental Brittany University and the R2D2 team of the IRISA. On the
other hand, a parser used to translate a CFG into the RAMPASS description
language, has been successfully developed.

Besides, a functional model of the RAC block has been designed with Sys-
temC. Our functional-level description of the RAC is a CABA (Cycle Accurate
and Bit Accurate) hardware model. It permits the change of the size and the
features of the RAC Net and allows the evaluation of its energy consumption.
The characteristics of this description language easily allows hardware descrip-
tions, it has the flexibility of the C++ language and brings all the primitives for
the modelization of hardware architectures [25,26].

A lot of different programming structures have been implemented in the
RAC block, e.g. exclusion mechanisms, AND convergence and divergence, syn-
chronizations between separated graphs, etc. Moreover, an application of video
processing (spinal search algorithm for motion estimation [27]) has been mapped
(Fig. 9). The latency overhead is insignificant without reconfiguration when the

Fig. 9. Motion estimation graph

An Auto-adaptative Reconfigurable Architecture for the Control 85

RAC owns 32 cells, or with a 15-cell RAC when the whole main loop kernel
can be implemented (0.01%), even if we cannot predict reconfigurations. Finally
with a 7-cell RAC (the minimal required for this application), the overhead
raises only 10% in spite of multiple reconfigurations, since the implementation
of the SG must be continuously updated.

Besides, hardware simulations have shown the benefits of release primitives.
Indeed, the more cells are released, the more the energy consumption increases
since they will have to be re-generated, especially in case of loops. Simulations
have shown that these releases are done only when necessary.

Some SG structures implemented in the RAC Net need an imperative number
of cells. This constraints the minimal number of cells to prevent dead-locks. For
instance, a multiple AND divergence has to be entirely mapped before the token
is transmitted. Consequently, an 8-state AND divergence needs at least nine
cells to work. Dynamic reconfiguration ensures the progress of SGs but can not
prevent dead-locks if complex structures need more cells than available inside
the RAC Net. On the contrary, the user can map a linear SG of thousands of
cells with only two free cells.

6 Conclusion and Future Work

New paradigm of dynamically self-reconfigurable architecture has been proposed
in this paper. The part depicted is dedicated to the control and can physically
implement control graphs of applications. This architecture brings a novel ap-
proach for controlling reconfigurable resources. It can answer future technology
improvements, allow a high level of parallelism and keep a constant execution
flow, even for non-predictible processing.

Our hardware simulation model has successfully validated static and dy-
namic reconfiguration paradigms. According to these results, further works will
be performed. To evaluate performances of RAMPASS, a synthesized model and
a prototype of the RAC block is currently designed in a ST technology.

Moreover, the coupling between the RAC and other reconfigurable archi-
tectures (DART, Systolic Ring, etc.) will be studied. The aim of these further
collaborations consists in demonstrating the high aptitudes of the RAC to adapt
itself to different computation architectures.

Acknowledgements. We thank Dominique Lavenier (IRISA, France), Laurent
Letellier and Raphaël David (CEA, France) for helpful discussions and comments
on this work.

References

1.

2.

Semiconductor Industry Association. International Technology Roadmap for Semi-
conductors. Technical report, 2003.
K. Compton and S. Hauck. Reconfigurable Computing: A Survey of Systems and
Software. ACM Computing Surveys, 34(2):171–210, June 2002.

86 N. Ventroux et al.

3.

4.
5.
6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

R. Hartenstein. A Decade of Reconfigurable Computing: a Visionary Retrospec-
tive. In IEEE Design Automation and Test in Europe (DATE), Munich, Germany,
March 2001.
Xilinx, http://www.xilinx.com.
Altera, http://www.altera.com.
S.C. Goldstein, H. Schmit, M. Budiu, S. Cadambi, M. Moe, and R.R. Taylor.
PipeRench: A Reconfigurable Architecture and Compiler. Computer: Innovative
Technology for Computer Profesionals, 33(4):70–77, April 2000.
J. Becker, M. Glesner, A. Alsolaim, and J. Starzyk. Fast Communication Mech-
anisms in Coarse-grained Dynamically Reconfigurable Array Architectures. In
Workshop on Engineering of Reconfigurable Hardware/Software Objects (ENRE-
GLE), Las Vegas, USA, June 2000.
H. Singh, M.-H. Lee, G. Lu, F.J. Kurdahi, N. Bagherzadeh, and E.M. Chaves
Filho. MorphoSys: An Integrated Reconfigurable System for Data-Parallel
and Computation-Intensive Applications. IEEE Trans. on Computers, Vol.49,
No.5:465–481, May 2000.
T. Miyamori and K. Olukotun. REMARC: Reconfigurable Multimedia Array Co-
processor. In ACM/SIGDA Field Programmable Gate Array (FPGA), Monterey,
USA, February 1998.
D. Cronquist. Architecture Design of Reconfigurable Pipelined Datapaths. In Ad-
vanced Research in VLSI (ARVLSI), Atlanta, USA, March 1999.
R. David, S. Pillement, and O. Sentieys. Low-Power Electronics Design, chapter
20: Low-Power Reconfigurable Processors. CRC press edited by C. Piguet, April
2004.
G. Sassateli, L. Torres, P. Benoit, T. Gil, G. Cambon, and J. Galy. Highly Scalable
Dynamically Reconfigurable Systolic Ring-Architecture for DSP applications. In
IEEE Design Automation and Test in Europe (DATE), Paris, France, March 2002.
G.M. Amdahl. Validity of the Single-Processor Approach to Achieving Large Scale
Computing Capabilities. In AFIPS Conference Proceedings vol.30, Atlantic City,
USA, April 1967.
J. Becker and M. Vorbach. Architecture, Memory and Interface Technology Inte-
gration of an Industrial/Academic Configurable System-on-Chip (CSoC). In IEEE
Computer Society Annual Workshop on VLSI (WVLSI), Florida, USA, February
2003.
Y. Chou, P. Pillai, H. Schmit, and J.P. Shen. PipeRench Implementation of the
Instruction Path Coprocessor. In Symposium on Microarchitecture (MICRO-33),
Monterey, USA, December 2000.
B. Mei, S. Vernalde, D. Verkest, and R. Lauwereins. Design Methodology for a
Tightly Coupled VLIW/Reconfigurable Matrix Architecture: A Case Study. In
Design Automation and Test in Europe (DATE), Paris, France, February 2004.
Z. Ye, P. Banerjee, S. Hauck, and A. Moshovos. CHIMAERA: A High-Performance
Architecture with a Tightly-Coupled RFU. In the 27th Annual International Sym-
posium on Computer Architecture (ISCA), Vancouver, Canada, June 2000.
C. Rupp, M. Landguth, T. Garverick, E. Gomersall, H. Holt, J. Arnold, and M.
Gokhale. The NAPA Adaptive Processing Architecture. In IEEE Symposium on
Field-Programmable Custom Computing Machines (FCCM), Napa Valley, USA,
April 1998.
J.R. Hauser and J. Wawrzynek. GARP: A MIPS Processor with a Reconfigurable
Coprocessor. In IEEE Symposium on Field-Programmable Custom Computing Ma-
chines (FCCM), Napa Valley, USA, April 1997.

An Auto-adaptative Reconfigurable Architecture for the Control 87

20.

21.

22.

23.

24.

25.

26.

27.

D. Rizzo and O. Colavin. A Video Compression Case Study on a Reconfigurable
VLIW Architecture. In Design Automation and Test in Europe (DATE), Paris,
France, March 2002.
S. Chevobbe, N. Ventroux, F. Blanc, and T. Collette. RAMPASS: Reconfig-
urable and Advanced Multi-Processing Architecture for future Silicon System. In
3rd International Workshop on Systems, Architectures, Modeling and Simulation
(SAMOS), Samos, Greece, July 2003.
G. Aigner, A. Diwan, D.L. Heine, M.S. Lam, D.L. Moore, B.R. Murphy, and C.
Sapuntzakis. The Basic SUIF Programming Guide. Technical report, Computer
Systems Laboratory, Stanford University, USA, August 2000.
M.D. Smith and G. Holloway. An Introduction to Machine SUIF and its Portable
Libraries for Analysis and Optimization. Technical report, Division of Engineering
and Applied Sciences, Harvard University, USA, July 2002.
I.E. Sutherland. Micropipelines. Communications of the ACM, 32(6):720–738,
1989.
J. Gerlach and W. Rosenstiel. System level design using the SystemC modeling
platform. In the 3rd Workshop on System Design Automation (SDA), Rathen,
Germany, 2000.
S. Swan. An Introduction to System Level Modeling in SystemC 2.0. Technical
report, Cadence Design Systems, Inc., May 2001.
T. Zahariadis and D. Kalivas. A Spiral Search Algorithm for Fast Estimation of
Block Motion Vectors. In the 8th European Signal Processing Conference (EU-
SIPCO), Trieste, Italy, September 1996.

Enhancing the Memory Performance of Embedded
Systems with the Flexible Sequential and Random Access

Memory

Ying Chen, Karthik Ranganathan, Vasudev V. Pai, David J. Lilja, and Kia Bazargan

Department of Electrical and Computer Engineering
University of Minnesota

200 Union St. S.E., Minneapolis, MN 55455, USA
{wildfire, kar, pvasudev, lilja, kia}@ece.umn.edu

Abstract. The on-chip memory performance of embedded systems directly
affects the system designers’ decision about how to allocate expensive silicon
area. We investigate a novel memory architecture, flexible sequential and
random access memory (FSRAM), for embedded systems. To realize sequential
accesses, small “links” are added to each row in the RAM array to point to the
next row to be prefetched. The potential cache pollution is ameliorated by a
small sequential access buffer (SAB). To evaluate the architecture-level
performance of FSRAM, we run the Mediabench benchmark programs [1] on a
modified version of the Simplescalar simulator [2]. Our results show that the
FSRAM improves the performance of a baseline processor with a 16KB data
cache up to 55%, with an average of 9%. We also designed RTL and SPICE
models of the FSRAM [3], which show that the FSRAM significantly improves
memory access time, while reducing power consumption, with negligible area
overhead.

1 Introduction

Rapid advances in high-performance computing architectures and semiconductor
technologies have drawn considerable interest to high performance memories.
Increases in hardware capabilities have led to performance bottlenecks due to the time
required to access the memory. Furthermore, the on-chip memory performance in
embedded systems directly affects designers’ decisions about how to allocate
expensive silicon area. Off-chip memory power consumption has become the energy
consumption bottleneck as embedded applications become more data-centric.

Most of the recent research has tended to focus on improving performance and
power consumption of on-chip memory structures [4, 5, 6] rather than off-chip
memory. Moon et al [7] investigated a low-power sequential access on-chip memory
designed to exploit the numerous sequential access patterns in digital signal
processing (DSP) applications. Prefetching techniques from traditional computer
architecture have also been used to enhance on-chip memory performance for
embedded systems [8, 9, 10]. Other studies have investigated energy efficient off-chip
memory for embedded systems, such as automatic data migration for multi-bank
memory systems [11].

P.-C. Yew and J. Xue (Eds.): ACSAC 2004, LNCS 3189, pp. 88–101, 2004.
© Springer-Verlag Berlin Heidelberg 2004

Enhancing the Memory Performance of Embedded Systems 89

None of these previous studies, however, have investigated using off-chip
memory structures to improve on-chip memory performance. This study demonstrates
the performance potential of a novel, low-power, off-chip memory structure, which
we call the flexible sequential and random access memory (FSRAM), to support
flexible memory access patterns. In addition to normal random access, the FSRAM
uses an extra “link” structure, which bypasses the row decoder, for sequential
accesses. The link structure reduces power consumption and decreases memory
access times; moreover, it aggressively prefetches data into the on-chip memory. In
order to eliminate the potential data cache pollution caused by prefetching, a small
fully associative sequential access buffer (SAB) is used in parallel with the data
cache. VHDL and HSPICE models of the FSRAM have been developed to evaluate
its effectiveness at the circuit level. Embedded multimedia applications are simulated
to demonstrate its performance potential at the architecture level. Our results show
significant performance improvement with little extra area used by the link structures.

The remainder of this paper is organized as follows. Section 2 introduces and
explains the FSRAM and the SAB. In Section 3, the experimental setup is described.
The architecture level performance analysis and area, timing and power consumption
evaluations of the FSRAM are presented in Section 4. Section 5 discusses related
work. Finally, Section 6 summarizes and concludes.

2 Flexible Sequential Access Memory

Our flexible sequential and random access memory (FSRAM) architecture is an
extension of the sequential memory architecture developed by Moon, et al [7]. They
argued that since many DSP applications have static and highly predictable memory
traces, row address decoders can be eliminated. As a result, memory access would be
sequential with data accesses determined at compile time. They showed considerable
power savings at the circuit level.

While preserving the power reduction property, our work extends their work in
two ways: (1) in addition to circuit-level simulations, we perform architectural-level
simulations to assess the performance benefits at the application level; and (2) we
extend the sequential access mechanism using a novel enhancement that increases
sequential access flexibility.

2.1 Structure of the FSRAM

Fig. 1 shows the basic structure of our proposed FSRAM. There are two address
decoders to allow simultaneous read and write accesses1. The read address decoder is
shared by both the memory and the “link” structure. However, the same structure is
used as the write decoder for the link structure, while the read/write decoder is
required only for the memory. As can be seen, each memory word is associated with a
link structure, an OR gate, a multiplexer, and a sequencer.

1 Throughout the paper, all experiments are performed assuming dual-port memories. It is
important to note that our FSAM does not require the memory to have two ports. The reason
we chose two ports is that most modern memory architectures have multiple ports to improve
memory latency.

90 Y. Chen et al.

Fig. 1. The FSRAM adds a link, an OR gate, a multiplexer, and a sequencer to each memory
word.

The link structure indicates which successor memory word to access when the
memory is being used in the sequential access mode. With 2 bits, the link can point to
four unique successor memory word lines (e.g., N+1, N+2, N+4, and N+8). This link
structure is similar to the “next” pointer in a linked-list data structure. Note that Moon
et al [7] hardwired the sequencer cell of each row to the row below it. By allowing
more flexibility, and the ability to dynamically modify the link destination, the row
address decoder can be bypassed for many more memory accesses than previous
mechanisms to provide greater potential speedup.

Fig. 2. (a) Block diagram of the OR block, (b) block diagram of the sequencer.

The OR block shown in Fig. 1 is used to generate the sequential address. If any of
the four inputs to the OR block is high, the sequential access address (SA_WL) will
be high (Fig. 2.a). Depending on the access mode signal (SeqAcc), the multiplexers
choose between the row address decoder and the sequential cells. The role of the
sequencer is to determine the next sequential address according to the value of the
link (Fig. 2.b). If WL is high, then one of the four outputs is high. However if reset is
high, then all four outputs go low irrespective of WL. The timing diagram of the
signals in Fig. 2 is shown in our previous study [3].

The area overhead of the FSRAM consists of four parts - the link, OR gate,
multiplexer, and sequencer. The overhead is in about the order of 3-7% of the total
memory area for the word line size of 32 bytes and 64 bytes. More detailed area
overhead results are shown in Table 2 in Section 4.2.

Enhancing the Memory Performance of Embedded Systems 91

2.2 Update of the Link Structure

The link associated with each off-chip memory word line is dynamically updated
using data cache miss trace information and run-time reconfiguration of the sequential
access target. In this manner, the sequentially accessed data blocks are linked when
compulsory misses occur. Since the read decoder for the memory is the same physical
structure as the write decoder for the link structure, the link can be updated in parallel
with a memory access. The default link value of the link is 0, which actually means
the next line

We note that the read and write operations to the memory data elements and the
link RAM cells can be done independently. The word lines can be used to activate
both the links and the data RAM cells for read or write (not all of the control signals
are shown in Fig. 1).

There are a number of options for writing the link values:

1. The links can be computed at compile-time and loaded into the data memory
while instructions are being

loaded into the instruction memory.
2. The link of one row could be written while the data from another row is

being read.
3. The link can be updated while the data of the same row is being read or

written.

Option 1 is the least flexible approach since it exploits only static information.
However, it could eliminate some control circuitry that supports the runtime updating
of the links. Options 2 and 3 update the link structure at run-time and so that both
exploit dynamic run-time information. Option 2, however, needs more run-time data
access information compared to Option 3 and thus requires more control logic. We
decided to examine Option 3 in this paper since the dynamic configuration of the
links can help in subsequent prefetches.

2.3 Accessing the FSRAM and the SAB

In order to eliminate potential cache pollution caused by the prefetching effect of the
FSRAM, we use a small fully associative cache structure, which we call the
Sequential Access Buffer (SAB). In our experiments, the on-chip data cache and the
SAB are accessed in parallel, as shown in Fig. 3. The data access operation is
summarized in Fig. 4. When a memory reference misses in both the data cache and
the SAB, the required block is fetched into the data cache from the off-chip memory.
Furthermore, a data block pointed to by the link of the data word being currently read
is pushed into the SAB if it is not already in the on-chip memory. That is, the link is
followed and the result is stored in the SAB. When a memory reference misses in the
data cache but hits in the SAB, the required block and the victim block in the data
cache are swapped. Additionally, the data block linked to the required data block, but
not already in on-chip memory, is pushed into the SAB.

92 Y. Chen et al.

Fig. 3. The placement of the
Sequential Access Buffer
(SAB) in the memory hierar-
chy.

Fig. 4. Flowchart of a data access when using the SAB and
the FSRAM.

3 Experimental Methodology

To evaluate the system level performance of the FSRAM, we used SimpleScalar 3.0
[2] to run the Mediabench [1] benchmarks using this new memory structure. The
basic processor configurations are based on Intel Xscale [12], The Intel XScale
microarchitecture is a RISC core that can be combined with peripherals to provide
applications specific standard products (ASSP) targeted at selected market segments.
The basic processor configurations are as the following: 32 KB data and instruction
L1 caches with 32-byte data lines, 2-way associativity and 1 cycle latency, no L2
cache, and 50 cycle main memory access latency. The default SAB size is 8 entries.
The machine can issue two instructions per cycle. It has a 32-entry load/store queue
and one integer unit, one floating point unit, and one multiplication/division unit, all
with 1 cycle latency. The branch predictor is bimodal and has 128 entries. The
instruction and data TLBs are fully associative and have 32 entries. The link structure
in the off-chip memory was simulated by using a large enough table to hold both the
miss addresses and their link values. The link values are updated by monitoring the
L1 data cache miss trace. Whenever the gap between two continuous misses is 1x, 2x,
3x, 4x block line size, we update the link value correlated to the memory line that
causes the first miss in the two continuous misses.

3.1 Benchmark Programs

We used the Mediabench [13] benchmarks ported to the SimpleScalar simulator for
the architecture-level simulations of the FSRAM. We used four of the benchmark
programs, adpcm, epic, g721 and mesa, for these simulations since they were the only
ones that worked with the Simplescalar PISA instruction set architecture.

Since the FSRAM link structure links successor memory word lines (Section 3.1),
we show the counts of the address gap distances between two consecutive data cache
misses in Table 1. We see from these results that the address gap distances of 32, 64,
128, 256 and 512 bytes are the most common, while the other address gap distances
occur more randomly. Therefore, the FSRAM evaluated in this study supports address

Enhancing the Memory Performance of Embedded Systems 93

gap distances of 32, 64, 128 and 256 bytes for a 32-byte cache line, while distances of
64, 128, 256 and 512 bytes are supported for a 64-byte cache line.

For all of the benchmark programs tested, the dominant gap distances are between
32 and 128 bytes. Most of the tested benchmarks, except g721, have various gap
distances distributed among 32 to 256 bytes. When the gap increases to 512 bytes,
epic and mesa still exhibit similar access patterns while adpcm and g721 have no
repeating patterns at this gap distance.

Another important issue for the evaluation of benchmark program performance is
the overall memory footprint estimated from the cache miss rates. Table 2 shows the
change in the L1 data cache miss rates for the baseline architecture as the size of the
data cache is changed. In general, these benchmarks have small memory footprints,
especially adpcm and g721. Therefore, we chose data cache sizes in these simulations
to approximately match the performance that would be observed with larger caches in
real systems. The default data cache configuration throughout this study is 16 KB
with a 32-byte line and 2-way set associativity.

3.2 Processor Configurations

The following processor configurations are simulated to determine the performance
impact of adding an FSRAM to the processor and the additional performance
enhancement that can be attributed to the SAB.

orig: This is the baseline architecture with no link structure in the off-chip
memory and no prefetching mechanism.

FSRAM: This configuration is described in detail in Section 3.1. To summarize,
this configuration incorporates a link structure in the off-chip memory to exploit
sequential data accesses.

FSRAM_SAB: This configuration uses the FSRAM with an additional small, fully
associative SAB in parallel with the L1 data cache. The details of the SAB were given
in Section 3.3.

94 Y. Chen et al.

tnlp: This configuration adds tagged next line prefetching [14] to the baseline
architecture. With tagged next line prefetching, a prefetch operation is initiated on a
miss and on the first hit to a previously prefetched block. Tagged next line prefetching
has been shown to be more effective than prefetching only on a miss [15]. We use this
configuration to compare against the prefetching ability of the FSRAM.

tnlp_PB: This configuration enhances the tnlp configuration with a small, fully
associative Prefetch Buffer (PB) in parallel with the L1 data cache to eliminate the
potential cache pollution caused by next line prefetching. We use this configuration to
compare against the prefetching ability of the FSRAM_SAB configuration.

4 Performance Evaluation

In this section we evaluate the performance of an embedded processor with the
FSRAM and the SAB by analyzing the sensitivity of the processor configuration
FSRAM_SAB as the on-chip data cache parameters are varied. We also show the
timing, area, and power consumption results based RTL and SPICE models of the
FSRAM.

4.1 Architecture-Level Performance

We first examine the FSRAM_SAB performance compared to the other processor
configurations to show the data prefetching effect provided by the FSRAM and the
cache pollution elimination effect provided by the SAB. Since the FSRAM improves
the overall performance by improving the performance of the on-chip data cache, we
evaluate the FSRAM_SAB performance while varying the values for different data
cache parameters including the cache size, associativity, block size, and the SAB size.

Throughout Section 4.1, the baseline cache structure configuration is a 16 KB L1
on-chip data cache with a 32-byte data block size, 2-way associativity, and an 8-entry
SAB. The average speedups are calculated using the execution time weighted average
of all of the benchmarks [16].

Performance Improvement due to FSRAM. To show the performance obtained
from the FSRAM and the SAB, we compare the relative speedup obtained by all four
processor configurations described in Section 3.2 (i.e., tnlp, tnlp_PB, FSRAM,
FSRAM_SAB) against the baseline processor configuration (orig). All of the processor
configurations use a 16 KB L1 data cache with a 32-byte data block size and 2-way
set associativity.

As shown in Fig. 5, the FSRAM configuration produces an average speedup of
slightly more than 4% over the baseline configuration compared to a speedup of less
than 1% for tnlp. Adding a small prefetch buffer (PB) to the tnlp configuration
(tnlp_PB) improves the performance by about 1% compared to the tnlp configuration
without the prefetch buffer. Adding the same size SAB to the FSRAM configuration
(FSRAM_SAB) improves the performance compared to the FSRAM without the SAB
by an additional 8.5%. These speedups are due to the extra small cache structures that
eliminate the potential cache pollution caused by prefetching directly into the L1

Enhancing the Memory Performance of Embedded Systems 95

cache. Furthermore, we see that the FSRAM without the SAB outperforms tagged
next-line prefetching both with and without the prefetch buffer. The speedup of the
FSRAM with the SAB compared to the baseline configuration is 8.5% on average and
can be as high as 54% (mesa_mipmap).

Benchmark programs adpcm and g721 have very small performance
improvements, because their memory footprints are so small that there are very few
data cache misses to eliminate in a 16KB data cache (Table 2) Never the less, from
the statistics shown in Fig. 5, we can still see adpcm and g721 follow the similar
performance trend described above.

Fig. 5. Relative speedups obtained by the different processor configurations. The baseline is the
original processor configuration. All of the processor configurations use a 16KB data L1 cache
with 32-byte block and 2-way associativity.

Parameter Sensitivity Analysis. We are interested in the performance of FSRAM
with different on-chip data cache to exam how the off-chip FSRAM main memory
structure improves on-chip memory performance. So in this section we study the
effects of various data cache sizes (i.e., 2KB, 4KB, 8KB, 16KB, 32KB), data cache
associativities (i.e., 1way, 2way, 4way, 8way), cache block sizes (i.e., 32 bytes, 64
bytes) and the SAB sizes (i.e., 4 entries, 8entries, 16entreis) on the performance. The
baseline processor configuration through this section is the original processor
configuration with a 2KB data L1 cache with 32-byte block size and 2-way
associativity.

The Effect of Data Cache Size. Fig. 6 shows the relative speedup distribution among
orig, tnlp_PB and FSRAM_SAB for various L1 data cache sizes (i.e., 2KB, 4KB,
8KB, 16KB, 32KB). The total relative speedup is FSRAM_SAB with a L1 data cache
sizes over orig with a 2KB L1 data, which is divided into three parts: the relative
speedup of orig with a L1 data cache size over orig with a 2KB L1 data cache; the
relative speedup of tnlp_PB with a L1 data cache size over orig with a L1 data cache
size; the relative speedup of FSRAM_SAB with a L1 data cache size over tnlp_PB
with a L1 data cache size.

As shown, with the increase of L1 data cache size the relative speedup of tnlp_PB
over orig decreases. FSRAM_SAB, in contrast, constantly keeps speedup on top of

96 Y. Chen et al.

tnlp_PB across the different L1 data cache sizes. Furthermore, FSRAM_SAB even
outperforms tnlp_PB with a larger size L1 data cache for most of the cases and on
average. For instance, FSRAM with a 8KB L1 data cache outperforms tnlp_PB with a
32KB L1 data cache. However, tnlp_PB only outperforms the baseline processor with
a bigger size data cache for epic_decode and mesa_osdemo.

The improvement in the performance can be attributed to several factors. While
the baseline processor does not perform any prefetching, the tagged next line
prefetching prefetches only the next word line. The fact that our method can prefetch
with strides is one contributing factor in the smaller memory access time.
Furthermore, prefetching is realized using sequential access, which is faster than
random access. Another benefit is that prefetching with different strides does not
require an extra large table to store the next address to be accessed.

tnlp_PB and FSRAM_SAB improve performance in the case that the performance
of orig increases with the increase of L1 data cache size. However, they have little
effect in the case that the performance of orig increases with the increase of L1 data
cache size, which means the benchmark program has small memory foot prints (i.e.,
adpcm, g721). For adpcm, tnlp and FSRAM_SAB still improve performance when the
L1 data cache size is 2K. For g721, the performance almost keeps the same all the
time due to the small memory footprint.

Fig. 6. Relative speedups distribution among the different processor configurations (i.e., orig,
tnlp_PB, FSRAM_SAB) with various L1 data cache sizes (i.e., 2KB, 4KB, 8KB, 16KB, 32KB).
The baseline is the original processor configuration with a 2KB data L1 cache with 32-byte
block size and 2-way associativity.

The Effect of Data Cache Associativity. Fig. 7 shows the relative speedup distribution
among orig, tnlp_PB and FSRAM_SAB for various L1 data cache associativity (i.e.,
1way, 2way, 4way, 8way).

As known, increasing the L1 data cache associativity typically reduces the number
of L1 data cache misses. The reduction in misses reduces the effect of prefetching
from tnlp_PB and FSRAM_SAB. As can be seen, the performance speed up of
tnlp_PB on top of orig decreases as the L1 data cache associativity increases. The
speed up almost disappears when the associativity is increased to 8way for
mesa_mipmap and mesa_texgen. However, FSRAM_SAB still provides significant
speedups.

tnlp_PB and FSRAM_SAB still have little impact on the performance of adpcm
and g721 because their small memory footprints.

Enhancing the Memory Performance of Embedded Systems 97

Fig. 7. Relative speedups distribution among the different processor configurations (i.e., orig,
tnlp_PB, FSRAM_SAB) with various L1 data cache associativity (i.e., 1way, 2way, 4way,
8way). The baseline is the original processor configuration with a 2KB data L1 cache with 32-
byte block size and 2-way associativity.

Fig. 8. Relative speedups distribution among the different processor configurations (i.e., orig,
tnlp_PB, FSRAM_SAB) with various L1 data cache block sizes (i.e., 32B, 64B). The baseline is
the original processor configuration with a 2KB data L1 cache with 32-byte block size and 2-
way associativity.

The Effect of Data Cache Block Size. Fig. 8 shows the relative speedup distribution
among orig, tnlp_PB and FSRAM_SAB for various L1 data cache block sizes (i.e.,
32B, 64B).

As known increasing the L1 data cache block size typically reduces the number of
L1 data cache misses. For all of the benchmarks the reduction in misses reduces the
effect of prefetching from tnlp_PB and FSRAM_SAB. As can be seen, the
performance speed up of tnlp_PB on top of orig decreases as the L1 data cache block
size increases from 32-bytes to 64 bytes. However, the increasing of the L1 data
cache block size can also cause potential pollutions as for epic_encode and
mesa_mipmap. Tnlp with a small prefetching buffer reduces the pollution, and
FSRAM_SAB further speeds up the performance.

The Effect of SAB Size. Fig. 9 shows the relative speedup distribution among orig,
tnlp_PB and FSRAM_SAB for various SAB sizes (i.e., 4 entries, 8 entries, 16
entries).

98 Y. Chen et al.

Fig. 9 compares the FSRAM_SAB approach to a tagged next-line prefetching that
uses the prefetch buffer that is the same size as SAB. As shown, FSRAM_SAB
always add speedup on top of tnlp_PB. Further, FSRAM_SAB outperforms tnlp with a
bigger size prefetch buffer. This result indicates that FSRAM_SAB is actually a more
efficient prefetching mechanism than a traditional tagged next-line prefetching
mechanism.

tnlp_PB and FSRAM_SAB still have little impact on the performance of adpcm
and g721 because their small memory footprints.

Fig. 9. Relative speedup distribution among the different processor configurations (i.e.,
tnlp_PB, FSRAM_SAB) with various SAB sizes (i.e., 4 entries, 8 entries, 16 entries). The
baseline is the original processor configuration with a 2KB data L1 cache with 32-byte block
size and 2-way associativity.

4.2 Timing, Area, and Power Consumption

We implemented the FSRAM architecture in VHDL to verify its functional
correctness at the RTL level. We successfully tested various read/write combinations
of row data vs. links. Depending on application requirements, one or two decoders
can be provided so that the FSAM structure can be used as a dual-port or single-port
memory structure. In all our experiments, we assumed dual-port memories since
modern memory structures have multiple ports to decrease memory latency.

In addition to the RTL level design, we implemented a small 8x8 (8 rows, 8 bits
per row) FSRAM in HSPICE using technology to test timing correctness and
evaluate the delay of sequencer blocks. Note that unlike the decoder, the sequencer
block’s delay is independent of the size of the memory structure: it only depends on
how many rows it links to (in our case: 4).

By adding sequencer cells, we will be adding to the area of the memory structure.
However, in this section we show that the area overhead is not large, especially
considering the fact that in today’s RAMs, a large number of memory bits are
arranged in a row. An estimate of the percentage increase in area was calculated using

the formula where A1 = Total Area and A2 = area occupied

by the link, OR gate, MUX and the sequencer. Table 3 shows the results of the

Enhancing the Memory Performance of Embedded Systems 99

increases in area for different memory row sizes. The sequencer has two SRAM bits,
which is not many compared to the number of bits packed in a row of the memory.
We can see that the sequencer cell logic does not occupy a significant area either.

As can be seen, the percentage increase in area drops substantially as the number
of bits in each word line increases. Hence the area overhead is almost negligible for
large memory blocks.

Using the HSPICE model, we compared the delay of the sequencer cell to the
delay of a decoder. Furthermore, by scaling the capacity of the bit lines, we estimated
the read/write delay and hence, calculated an overall speedup of 15% of sequential
access compared to random access.

Furthermore, the power saving is 16% in sequential access at VDD = 3.3v in the
0.18 micron CMOS HSPICE model.

5 Related Work

The research related to this work can be classified into three categories: on-chip
memory optimizations, off-chip memory optimizations, and hardware-supported
prefetching techniques.

In their papers, Panda et. al. [4, 5] address data cache size and number of
processor cycles as performance metrics for on-chip memory optimization. Shiue et
al. [6] extend this work to include energy consumption and show that it is not enough
to consider only memory size increase and miss rate reduction for performance
optimization of on-chip memory because the power consumption actually increases.
In order to reduce power consumption, Moon et al. [7] designed an on-chip sequential
access only memory specifically for DSP applications that demonstrates the low-
power potential of sequential access.

A few papers have addressed the issue of off-chip memory optimization,
especially power optimization, in embedded systems. In a multi-bank memory system
Dela Luz et al. [11] show promising power consumption reduction by using an
automatic data migration strategy to co-locate the arrays with temporal affinity in a
small set of memory banks. But their approach has major overhead due to extra time
spent in data migration and extra power spent to copy data from bank to bank.

Zucker et al. [10] compared hardware prefeching techniques adopted from
general-purpose applications to multimedia applications. They studied a stride
prediction table associated with PC (program counter). A data-cache miss-address-
based stride prefetching mechanism for multimedia applications is proposed by
Dela Luz et al. [11]. Both studies show promising results at the cost of extra on-chip
memory devoted to a table structure of non-negligible size. Although low-cost hybrid
data prefetching slightly outperforms hardware prefetching, it limits the code that

100 Y. Chen et al.

could benefit from prefetching [9]. Sbeyti et. al. [8] propose an adaptive prefetching
mechanism which exploits both the miss stride and miss interval information of the
memory access behavior of only MPEG4 in embedded systems.

Unlike previous approaches, we propose a novel off-chip memory with little area
overhead (3-7% for 32 bytes and 64 bytes data block line) and significant
performance improvements, compared to previous works that propose expensive on-
chip memory structures. Our study investigated off-chip memory structure to improve
on-chip memory performance, thus leaves flexibility for designer’s to allocate
expensive on-chip silicon area. Furthermore, we improved power consumption of off-
chip memory.

6 Conclusions

In this study, we proposed the FSRAM mechanism that makes it possible to eliminate
the use of address decoders during sequential accesses and also random accesses to a
certain extent.

We find that FSRAM can efficiently prefetch the linked data block into on-chip
data cache and improve performance by 4.42% on average for an embedded system
using 16KB data cache. In order to eliminate the potential cache pollution caused by
the prefetching, we used a small fully associative cache called SAB. The experiments
show FSRAM can further improve the tested benchmark programs performances to
8.85% on average using the SAB. Compared to the tagged next-line prefetching,
FSRAM_SAB constantly performs better and can still speedup performance when
tnlp_PB cannot. This indicates that FSRM_SAB is more efficient prefetching
mechanism.

FSRAM has both sequential accesses and random accesses. With the expense of
negligible area overhead (3-7% for 32 bytes and 64 bytes data block line) from the
link structure, we obtained a speedup of 15% of sequential access over random access
from our designed RTL and SPICE models of FSRAM. Our design also shows that
sequential access save 16% power consumption.

The link structure/configuration explored in this paper is not the only way; a
multitude of other configurations can be used. Depending upon the requirement of an
embedded application, a customized scheme can be adopted whose level of flexibility
during accesses best suits the application. For this, prior knowledge of access patterns
within the application is needed. In the future, it would be useful to explore power-
speed trade-offs that may bring about a net optimization in the architecture.

References

[1]

[2]

C.Lee, M. Potkonjak, and W. H. Mangione-Smith. “Mediabench: A tool for evaluating
and synthesizing multimedia and communications systems.” In Proc. of the 30th Annual
International Symposium on Microarchitecture (Micro 30), December 1997
Doug Burger and Todd M. Austin. “The simplescalar tool set version 2.0.” Technical
Report 1342, Computer Sciences Department, University of Wisconsin, June 1997.

Enhancing the Memory Performance of Embedded Systems 101

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]
[14]

[15]

[16]

Ying Chen, Karthik Ranganathan, Amit Puthenveetil, Kia Bazargan, and David J. Lilja,
“FSRAM: Flexible Sequential and Random Access Memory for Embedded Systems.”
Laboratory for Advanced Research in Computing Technology and Compilers Technical
Report No. ARCTiC 04-01, February, 2004.
P. R. Panda, N. D. Dutt, and A. Nicolau. “Data cache sizing for embedded processor
applications.” Technical Report TCS-TR-97-31, University of California, Irvine, June
1997.
P. R. Panda, N. D. Dutt, and A. Nicolau. “Architectural exploration and optimizatioin of
local memory in embedded systems.” International Symposium on System Synthesis
(ISSS 97), Antwerp, Sept. 1997.
W. Shiue, C. Chakrabati, “Memory Exploration for Low Power Embedded Systems.”
IEEE/ACM Proc.of 36th. Design Automation Conference (DAC’99), June 1999.
J. Moon, W. C. Athas, P. A. Beerel, J. T. Draper, “Low-Power Sequential Access
Memory Design.”, IEEE 2002 Custom Integrated Circuits Conference, pp.741-744, Jun
2002.
H. Sbeyti, S. Niar, L. Eeckhout, “Adaptive Prefetching for Multimedia Applications in
Embedded Systems.” DATE’04, EDA IEEE, 16-18 february 2004,Paris, France
A. D. Pimentel, L. O. Hertzberger, P. Struik, P. Wolf, “Hardware versus Hybrid Data
Prefetching in Multimedia Processors: A Case Study.” in the Proc. of the IEEE Int.
Performance, Computing and Communications Conference (IPCCC 2000), pp. 525-531,
Phoenix, USA, Feb. 2000
D. F. Zucker, M. J. Flynn, R. B. Lee, “A Comparison of Hardware Prefetching
Techniques For Multimedia Benchfmarks.” In Proceedings of the International
Conferences on Multimedia Computing and Systems, Himshima, Japan, June 1996
V. De La Luz, M. Kandemir, I. Kolcu, “Automatic Data Migration for Reducing Energy
Consumption in Multi-Bank Memory Systems.” DAC, pp 213-218, 2002
Intel corparatin, “The intel XScale Microarchitecture technical summary”, Technical
report, 2001
http://www.cse.psu.edu/~mdl/mediabench.tar.gz
J. E. Smith, W. C. Hsu, “Prefetching in Supercomputer Instruction Caches.” In proceed-
ings of Supercomputing92, pp. 588-597, 1992
S. P. VanderWiel and D. J. Lilja, “Data Prefetch Mechanisms.” ACM Computing
Surveys, Vol. 32, Issue 2, June 2000, pp. 174-199
D. J. Lilja, “Measuring Computer Performance”, Cambridge University Press, 2000

Heuristic Algorithm for Reducing Mapping Sets of
Hardware-Software Partitioning in Reconfigurable

System

Seong-Yong Ahn1, Jun-Yong Kim2, and Jeong-A Lee1

1 Chosun University, School of Computer Engineering, South Korea
{dis, jalee}@chosun.ac. kr

2 Seoul National University, Dept. of Computer Engineering, South Korea
itecmdr@hanafos.com

Abstract. One of many technical challenges facing the designers of reconfigur-
able systems is how to integrate hardware and software resources. The problem
of allocating each application function to general purpose processors (GPPs)
and Field Programmable Gate Array (FPGAs) considering the system resource
restriction and application requirements becomes harder. We propose a solution
employing Y-chart design space exploration approach to this problem and de-
velop Y-Sim, a simulation tool employing the solution. Its procedure is as fol-
lows: First, generate the mapping set by matching each function in a given ap-
plication with GPPs and FPGAs in the target reconfigurable system. Secondly,
estimate throughput of each mapping case in the mapping set by simulation.
With the simulation results, the most efficient configuration achieving the
highest throughput among the mapping cases would be chosen. We also pro-
pose HARMS (Heuristic Algorithm for Reducing Mapping Sets), a heuristic
algorithm minimizing the mapping set by eliminating unnecessary mapping
cases according to their workload and parallelism to reduce the simulation time
overhead. We show the experimental results of proposed solution using Y-Sim
and efficiency of HARMS. The experiment results indicates that HARMS can
minimize the mapping set by 87.5% and most likely pick out the mapping case
with the highest throughput.

1 Introduction

When one considers implementing a certain computational task, obtaining the highest
performance can be achieved by constructing a specialized machine, i.e., hardware.
Indeed, this way of implementation exists in the form of Application-Specific Inte-
grated Circuits (ASICs). As, however, many reconfigurable devices such as Field
Programmable Gateway Array(FPGA) are developed and improved, many computa-
tional tasks can be implemented, or configured, on those devices almost at any point
by the end user. Their computation performance has not exceeded ASICperformance
but could surpass general purpose processors by factor of several hundreds depending
on applications. In addition to the performance gain, reconfigurable devices have the
advantage of flexibility, contrary to the fact the structure of ASIC cannot be modified

P.-C. Yew and J. Xue (Eds.): ACSAC 2004, LNCS 3189, pp. 102–114, 2004.

© Springer-Verlag Berlin Heidelberg 2004

Heuristic Algorithm for Reducing Mapping Sets of Hardware-Software Partitioning 103

after fabrication. Moreover, many independent computational units or circuits can be
implemented on a single FPGA within its cell and connection limits and many FPGAs
can be organized as a single system.

This novel technology brings about a primary distinction between programmable
processors and configurable ones. The programmable paradigm involves a general-
purpose processor, able to execute a limited set of operations, known as the instruc-
tion set. The programmer’s task provids a description of the algorithm to be carried
out, using only operations from this instruction set. This algorithm need not necessar-
ily be written in the target machine language since compilation tools may be used;
however, ultimately one must be in possession of an assembly language program,
which can be directly executed on the processor in question. The prime advantage of
programmability is the relatively short turnover time, as well as the low cost per ap-
plication, resulting from the fact that one can reprogram the processor to carry out
any other programmable task[1,3].

Reconfigurable Computing which promises performance and flexibility of systems
has emerged as a significant area of research and development for both the academic
and industrial communities. Still, there are many technical challenges facing the de-
signers of reconfigurable systems. These systems are truly complex when we face
how to integrate hardware and software resources[12]. Unfortunately, current design
environments and computer aided design tools have not yet successfully integrated
the technologies needed to design and analyze a complete reconfigurable system[11].

We propose a solution employing Y-chart design space exploration approach to
this problem assuming pre-configuration policy and Y-Sim, a simulation tool for
evaluating performance of the system. Its procedure is as follows: First, it generates
the mapping set by matching each functions in given application with GPPs and
FPGAs and estimates throughput of each mapping case in the mapping set by simula-
tion. With the simulation results, the most efficient configuration achieving the high-
est throughput among the mapping cases would be chosen. During the simulation, Y-
Sim resolves resource conflict problem arising when many subtasks try to occupy the
same FPGA.

We also propose HARMS (Heuristic Algorithm for Reducing Mapping Sets), a
heuristic algorithm reducing the huge size of a mapping set. Although each of map-
ping cases should be simulated to find an appropriate configuration, the elimination
of unnecessary mapping cases according to the workload and parallelism helps to
reduce the simulation time overhead significantly.

Section 2 summarizes previous related researches. Section 3 describes Y-Sim
which employs Y-chart design space exploration approach. Section 4 explains
HARMS and section 5 shows its efficiency with the minimization effect on simula-
tion. Section 6 draws conclusions from the solution proposal and reduction algorithm.

2 Related Researches

Lee et al proposed reconfigurable system substructure targeting multi-application
embedded system which executes various programs, such as PDA (Personal Digital

104 S.-Y. Ahn, J.-Y. Kim, and J.-A Lee

Assistant) and IMT2000 (International Mobile Telecommunication). They also pro-
posed dynamic FPGA configuration model which interchanges several func-
tional units on the same FPGA[5].

Keinhuis proposed Y-chart design space exploration[4]. This approach quantifies
important performance metrics of system elements on which given applications will
be executed. Keinhuis developed ORAS(Object Oriented Retargetable Architecture
Simulator), a retargetable simulator, based on Y-chart approach[6]. ORAS calculates
performance indicators of possible system configurations through simulation. How-
ever, simulation of reconfigurable system needs different simulation substructure
other than ORAS since ORAS is limited to a specific calculation model of Stream-
based Function.

Kalavade et al investigate the optimization problem in the design of multi-function
embedded systems that run a pre-specified set of applications. They mapped given
applications onto architecture template which contains one or more programmable
processors, hardware accelerators and coprocessors. Their proposed model of hard-
ware-software partitioning for multi-function system identifies sharable application
functions and maps them onto same hardware resources. But, in this study, target
applications is limited to a specific domain and FPGA is not considered[8].

Pruna et al. partitions huge applications into subtasks employing small size recon-
figurable hardware and schedules data flows. Their study, however, is limited to one
subtask - one FPGA configuration and multi-function FPGA is not considered[9].

3 Partitioning Tool

3.1 Design of Hardware Software Partitioning Tool

Y-Sim, a partitioning tool employing Y-chart approach, is designed to perform hard-
ware-software partitioning for reconfigurable systems. This tool breaks down given
application into subtasks and maps functions of each subtask and determines configu-
ration of elements in the reconfigurable system. Performance indicators of each con-
figuration is calculated to choose the best configuration. The same architecture model
and application model in the Y-chart approach are employed and shown in Table 1.

The architecture model contains architecture elements(AEs) which indicate proc-
essing units such as general purpose processors and FPGAs. Each architecture ele-
ment has its own AE_ID, and, in the case of FPGA, their maximum number of usable
cells (Usable_Resource) and functional element (FE). Functional elements have re-
source request information which indicates the number of cells needed to configure
the function. Functional elements also have execution time information which is
needed for executing each data unit. In the case of FPGAs, those functions don’t inter-
fere others but do in the case of general purpose processors. Exclusion is considered
in functional elements executed by general purpose processors. Fig. 1 shows an ex-
ample of hardware model which has three architecture elements, each of which has
two functional elements.

Heuristic Algorithm for Reducing Mapping Sets of Hardware-Software Partitioning 105

Fig. 1. An Example of Hardware Model

Fig. 2. An Example of Application Model

106 S.-Y. Ahn, J.-Y. Kim, and J.-A Lee

An application model is represented by processing elements(PE), subtasks of ap-
plication and the direction of data flow indicated by Next_PE_list. The flow of data
and the sequence of Processing Elements must have no feedback and no loop. Each
process element has its own identifier, PE_ID and its function specified by FEQ_list.
Fig. 2 shows an example of application model which has four process elements.

In Y-chart approach, mapping of Y-chart is done by generating mapping using ar-
chitecture model and application model. A mapping set consists of mapping cases
representing the configuration which directs Architecture elements to run identified
functions of subtasks.

Y-Sim simulates each mapping cases in mapping set. Y-Sim handles resource
conflict when many subtasks in given application simultaneously mapped on the
same hardware element. The basic process of simulation is to let data units flow from
the beginning of given application to the end of it. The measure of performance
analysis, the timing information for each mapping is gathered when each Architecture
Elements processes each data unit. Total elapsed time, one of the performance indica-
tors, is calculated when all the given data units are processed. Other performance
indicator includes throughput, the time taken to pass a data unit through the applica-
tion, delay resulted from requested resource conflict, parallelism and usage of each
architecture element. A system designer can choose the best mapping or the best
system configuration from the performance indicators.

3.2 Structure of Y-Sim

Y-Sim consists of application simulator, architecture simulator and architecture-
application mapping controller. The application simulator constructs application
model from given application and simulates the flow of data units. The architecture
simulator simulates each architecture element containing functional elements which
executes requested function of data unit they received. The architecture-application
mapping controller generates and maintains mapping information between subtasks
and architecture elements and route of data unit from application subtasks to their
mapped architecture elements. Fig. 3 shows the structure of Y-Sim constructed with
an application shown before.

Application Simulator: The application simulator simulates the flow of data unit
and controls the flow of data unit between processing elements which represent sub-
tasks of given application. Each processing elements add their function request to
data units received. The application simulator sends them to architecture-application
mapping controller. Data units routed to and processed in architecture simulator are
returned to the processing element and the processing element sends the data units to
the next process. The application simulator generates data units and give them to the
first processing element of generated application model and gathers processed data
units to calculate the time taken to process a data unit with given application model
and delay.

Architecture Simulator: The architecture simulator simulates the service of func-
tional element requests from application simulator and calculates execution time

Heuristic Algorithm for Reducing Mapping Sets of Hardware-Software Partitioning 107

taken to execute each data unit. When receiving a data unit, a processing element in
application simulator invokes application-architecture mapping controller to ask that
a functional element in an architecture element processes the data unit and other re-
quest should wait until the request is served. In addition, when the exclusion flag in
some functional elements is set, the architecture element exclusively executes the
functional elements. Because of the exclusion, hardware resource request conflicts are
occurred under the many subtask-to-one architecture element configuration and many
subtask-to-one functional element in an architecture element configurations. In fig 3,
for example, resource conflict would occur in some mapping because of subtask 1
and 3 issuing the functional element request to the same functional element. Y-Sim
takes into account the conflict and resolves it. After serving the request, the functional
elements record execution time in the data unit and return it to the application simula-
tor, which returns it to the processing element the data unit originated from. Each
architecture element records its time for each mapping case.

Fig. 3. The Structure of Y-Sim

108 S.-Y. Ahn, J.-Y. Kim, and J.-A Lee

Architecture-Application Mapping Controller: The architecture-application
mapping controller generates all the possible mapping using information of subtask
and functional elements of each architecture element and subtask information of
given application. The size of mapping set is where i is the number of functions
which subtasks of given application executes and j is the number of possible func-
tional elements which can execute functions of subtasks. The size of mapping set in
Fig. 3 is 2 since function 2 requested by subtask 2 can be executed in architecture
element 1 and architecture element 2. Y-Sim iterates each mapping case and during
the simulation, the architecture-application mapping controller routes data units sent
by processing elements in the application simulator to corresponding architecture
elements in architectural simulator. Performance indicators of each iteration are gath-
ered and used to choose the best mapping.

4 Simulation Time Reduction Heuristic

The architecture-application mapping controller generates mapping. Therefore,
as the number of subtasks of given application and the number of functional request
of each subtask increases and as more architecture elements and functional elements
in them are accommodated, the size of mapping set increases exponentially. The
performance of simulator is directly influenced by the size of mapping set and can be
improved if the size of mapping set is reduced before simulation. The simulation time
reduction algorithm basically decreases the size of mapping set. The simulation time
reduction algorithm, HARMS, decrease the size as follows: The algorithm first ex-
cludes impossible mapping cases by computing the available resources of FPGA (the
number of FPGA cells) and requested number of FPGA cells in functional elements.
Then it reduces mapping set by analyzing workload-time taken to process a data unit,
parallelism and their relationship which can be identified when each mapping case is
generated.

4.1 Mapping Set Reduction Based on Resource Restriction

Various functions can be configured and executed simultaneously on the same FPGA.
However, because FPGAs have restricted number of programmable cells, these func-
tions should be organized or synthesized to fit in the size of target FPGA. For exam-
ple, XC5202 from Xilinx has 256 logic cells and the circuit size of below 3,000
gates can be configured. XC5210 has 1296 logic cells and logic circuit from the size
of 10000 gates to 16000 gates can be configured. [10]

Because of this resource restriction, some mapping cases generated in architecture-
application mapping controller are impossible to be configured. The reduction is done
by comparing the number of cells in each FPGA of target system and the number of
FPGAs cell required to configure each mapping case.

Heuristic Algorithm for Reducing Mapping Sets of Hardware-Software Partitioning 109

4.2 Mapping Set Reduction with Analysis of Workload Parallelism

Reconfigurable Systems improve system performance by configuring co-processors
or hardware accelerators on reconfigurable devices such as FPGA. When a FPGA and
a general purpose processor execute the same function, FPGA has better performance
even though their shortcoming of low clock speed. [1,3]. In addition, reconfigurable
systems have higher parallelism because functions executed on a FPGA also can be
executed on a general purpose processors and simultaneously configured functions on
the same FPGA without interfering each other. In a reconfigurable system using
FPGA, Parallelism, P1 and P2, Workload, W1 and W2 and throughput T1 and T2 of
m1 and m2, two mapping cases in a mapping set, M has following relationship.

Throughput of a configuration accelerated with increased parallelism and de-
creased workload by FPGA is higher than a configuration without them. Heuristic
Algorithm for Reducing Mapping Sets (HARMS) is based on this relationship. As
shown later, HARMS exclude mapping cases which have more workload and less
parallelism than any other mapping case. HARMS is a heuristic algorithm because
some specific mapping cases have workload and parallelism which do not satisfy the
equation 1 and HARMS exclude such mapping cases.

5 Experimental Results

Section 5 shows the effectiveness and efficiency of the proposed algorithm, HARMS.
With simulation results, the efficiency of HARMS is presented showing the percent-
age of inefficient mapping cases that HARMS can eliminate. A specific case that
HARMS excludes the best mapping cases is also represented and its reason is ex-
plained.

5.1 Simulation Environments

We assume that the architecture model is based on a reconfigurable system which has
a general purpose processor and several FPGA and the application model is based on
H.263 decoder algorithm shown in Fig. 4 and picture in picture algorithm shown in
Fig. 5 used to display two images simultaneously on a television screen. A data flow
of the H.263 decoder is modeled to encompass a feedback loop so as the application
to be modeled as a streaming data processing model. The H.263 is a widely used for
video signal processing algorithm and its data flow is easy to identify[13]. Some
subtasks in picture in picture algorithm request the same functions and resource con-
flict usually arise when implemented on reconfigurable system. Therefore, these two
algorithms are appropriate to evaluate the performance of Y-Sim and the efficiency of

110 S.-Y. Ahn, J.-Y. Kim, and J.-A Lee

HARMS. For each algorithm the reconfigurable system of architecture model was
simulated and mapping cases was generated by Y-Sim.

Fig. 4. Picture in Picture Algorithm

Fig. 5. Picture in Picture Algorithm

Heuristic Algorithm for Reducing Mapping Sets of Hardware-Software Partitioning 111

5.2 Efficiency and Accuracy of HARMS

In order to show the efficiency and accuracy of HARMS, simulation result illustrates
that excluded mapping cases are not mostly the best mapping cases. The accuracy of
HARMS is shown as follows: First, we assume that the generated mapping cases of
H.263 decoder and picture in picture run on a reconfigurable system with one general
purpose processor and three FPGA. Then, the accuracy of HARMS is proved by
showing that reduced mapping set has the best mapping cases. Since HARMS doesn’t
analyze the structure of mapping cases, the best mapping case is excluded under some
specific system configuration. For these cases, a solution resolving this problem is
also presented.

5.2.1 Comparison of Before Running HARMS and After

Fig. 6 and Fig. 7 illustrate comparison of mapping set before and after applying
HARMS. The initial size of the mapping set of picture in picture model is 16384 and
the size is reduced to 1648 by resource restriction. HARMS reduce the size of the
mapping set to 240 and the reduced mapping set contains the best mapping case. As
the simulation results shows, HARMS reduces mapping set without excluding the
best mapping case.

Fig. 6. Comparison of mapping set of H.263 before and after running HARMS

112 S.-Y. Ahn, J.-Y. Kim, and J.-A Lee

Fig. 7. Comparison of mapping set of Picture in Picture before and after running HARMS

5.3 Efficiency of HARMS

This section shows the reduction ratio of mapping set when HARMS is applied. Table
2 shows simulation and reduction results of five system configurations of H.263 de-
coder and two cases of picture in picture algorithm. Each system configuration is as
follows:

Heuristic Algorithm for Reducing Mapping Sets of Hardware-Software Partitioning 113

H.263 (1) - two general purpose processors (GPPs) and two FPGAs.
H.263 (2) - one GPP and one FPGA.
H.263 (3) - one GPP and one FPGA.
H.263 (4) - Similar to H.263 (3) but smaller FPGA.
H.263 (5) - one GPP and three FPGAs.
Pip(1)-one GPP and one FPGAs,
Pip(2)-one GPP and three FPGAs,

The efficiency is the ratio of the size of mapping set HARMS applied on (Aft_size)
to the size of mapping set resource limitation is considered(Bef_size). The following
shows its equation

As shown in table 2, HARMS reduces the size of mapping set by about 80 percent.
In the case of H.263(5), architecturally same mapping cases appeared on different
mapping cases in the generated mapping set since the system has three same FPGAs
of the same size on which the same functional element can be configured. As a result
of redundant configuration, the efficiency of HARMS is comparatively low, 46.7%.
In the case of Pip(1), the size of mapping set is minimized by resource restriction that
the efficiency is very low, 7.7%.

6 Conclusion

This paper proposes Y-Sim, a hardware-software partitioning tool. With given appli-
cation model and architecture model, representing configuration of reconfigurable
system, Y-Sim explores possible mapping between architecture model and applica-
tion model and generate mapping set which represents possible mapping set of given
reconfigurable system. Then, Y-Sim simulates each mapping case in the mapping set
and finds the best one. Y-Sim takes resource restriction of FPGA such as the number
of usable cells into account and resolves resource conflicts arising when many sub-
tasks of given application share the same resource.

As more FPGAs are installed in a reconfigurable system and more functions are
configured on FPGAs, subtasks can be mapped on many FPGAs or general purpose
processors. Consequently, the size of mapping set increases exponentially and the
time taken to analyze performance of such system is heavily influenced by the size.
Generally, throughput of reconfigurable system using FPGA has positive relationship
to parallelism and negative relationship to workload. Based on this relationship, pro-
posed heuristic algorithm, HARMS efficiently reduces mapping set. Experimental
result shows that HARMS can reduce the size of the mapping set. For the various
architecture and application model of reconfigurable system running H.263 decoder
and picture in picture algorithm, HARMS reduces the size of mapping set by about
80% and up to 87.5%.

114 S.-Y. Ahn, J.-Y. Kim, and J.-A Lee

Acknowledgement. This work was supported by grant No. R04-2002-000-00081-0
from the research program of the KOSEF.

References

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

O.T. Albahama, P. Cheung, and T.J. Clarke, “On the Viability of FPGA-Based Inte-
grated Coprocessors,” In Proceedings of IEEE Symposium of FPGAs for Custom Com-
puting Machines, pp. 206-215, Apr. 1996
J-L, Gaudiots. “Guest Editors’ Introduction”, IEEE Transactions on Computers, VOL.48,
No.6, June 1999.
E. Sanchez. M. Sipper, J.-O. Haenni, J.-L. Beuchat, A. Stauffer, and A. Perez-Uribe,
“Static and Dynamic Configurable Systems”, IEEE Transactions on Computers VOL.48,
No.6, June 1999.
B. Kienhuis, E. Deprettere, K.A. Vissers, and P. Wolf. An approach for quantitative
analysis of application-specific dataflow architectures. In Proceedings of 11th Intl. Con-
ference of Applications-specific Systems, Architectures and Processors (ASAP’97),
pages 338-349, Zurich, Switzerland, 1997
S. Lee ; K.Yun ; Choi, Kiyoung ; S. Hong ; S. Moon ; J. Lee, “Java-based programmable
networked embedded system architecture with multiple application support.”, Interna-
tional Conference on Chip Design Automation, pp.448-451, Aug. 2000.
A.C.J. Kienhuis, Design Space Exploration of Stream-based Dataflow Architectures,
PhD thesis, Delft University of Technology, Netherlands, 1998.
S. Bakshi, D. D. Gajaski, “Hardware/Software Partitioning and Pipelining”, In Proceed-
ings of the 34th annual conference on Design Automation Conference, 1997, pages 713-
716
A. Kalavade, P. A. Subrahmanyam, “Hardware/Software Partitioning for Multifunction
Systems”, In Proceedings of International Conference on Computer Aided Design, pages
516-521, 1997,
K.M. Gajjala Purna and D. Bhatia “Temporal Partitioning and Scheduling Data Flow
Graphs for Reconfigurable Computers” IEEE Transactions on Computers, VOL.48, No.6,
June 1999.
XC5200 Series Field Programmable Gate Arrays Databook, ver 5.2, Xilinx Inc, Nov
1998.
S. Mohanty, V.K. Prasanna, S. Neema, J. Davis, “Rapid Design Space Exploration of
Heterogeneous Embedded Systems using Symbolic Search and Multi-Granular Simula-
tion”, LCTES’02-SCOPES’02, Berlin, Germany, June 2002.
Katherine Compton, Scott Hauck, “Reconfigurable Computing: A survey of Systems and
Software” ACM Computing Surveys, Vol.34, No.2 June 2002, pp.171-210
http://www.itut.int/itudoc/rec/h/h263.html

Architecture Design of a High-Performance
32-Bit Fixed-Point DSP

Jian Chen, Ruhao Xu, and Yuzhuo Fu

School of Microelectronics, Shanghai Jiao Tong University
1954 Huashan Road, Shanghai 200030, China

{chenjian, xuruhao, fuyuzhuo}@ic.sjtu.edu.cn

Abstract. In this paper, the architecture of a high-performance 32-
bit fixed-point DSP called DSP3000 is proposed and implemented. The
DSP3000 employs super-Harvard architecture and can issue three mem-
ory access operations in a single clock cycle. The processor has eight
pipe stages with separated memory read and write stages, which allevi-
ate the data dependency problems and improve the execution efficiency.
The processor also possesses a modulo addressing unit with optimized
structure to enhance the address generation speed. A fully pipelined
MAC (Multiply Accumulate) unit is incorporated in the design, which
enables 32 × 32 + 72 MAC operation in a single clock cycle. The pro-
cessor is implemented with SMIC 1.8V 1P6M process and has a
core size of 2.2mm by 2.4mm. Test result shows that it can operate at a
maximum frequency of 300MHz with the average power consumption of
30mw/100MHz.

1 Introduction

Digital signal processor finds its applications in a wide variety of areas, such as
wireless communication, speech recognition and image processing, where high
speed calculation capability is of primary concern. With the ever increasing
applications in battery-powered electronics, such as cellular phones and digital
cameras, the power dissipation of DSP is also becoming a critical issue. The
trend of achieving high performance mean while preventing power consumption
from surging is imposing a great challenge on modern DSP design.

Various approaches have been proposed to address the challenge by exploring
different levels and aspects in the entire DSP design flow. [1] [2] This paper, how-
ever, would focus its efforts on the architecture level design of a DSP to achieve
both performance and power consumption requirements. It presents the over-
all architecture of DSP3000, a high-performance 32-bit fixed-point digital signal
processor. It also proposes novel micro-architectures aiming at increasing the
performance and reducing chip area. Techniques to reduce power consumption
of the chip are described as well.

The rest of the paper is organized as follows. Section 2 gives a detailed descrip-
tion of the overall architecture of the processor as well as the micro-architectures

P.-C. Yew and J. Xue (Eds.): ACSAC 2004, LNCS 3189, pp. 115–125, 2004.
© Springer-Verlag Berlin Heidelberg 2004

116 J. Chen, R. Xu, and Y. Fu

in pipeline organization, address generation unit and MAC unit. Section 3 de-
scribes the performance of the implemented processor. Section 4 presents the
conclusion of the research.

2 Architecture of DSP3000

In order to enhance the performance, the design of the processor incorporates
the ideas of deep pipelining, two-way superscalar and super-Harvard structure.
Specifically speaking, the core of the DSP has eight pipe stages and two data-
paths working in parallel. It is also capable of accessing data in two different
data memory spaces simultaneously. Fig. 1 illustrates the major components of
the processor, which is composed of the DSP core, on-chip memories, instruction
cache and peripherals.

Fig. 1. The block diagram of DSP3000

The instructions are fetched from instruction cache by the instruction fetch
unit and passed to the instruction decode unit,where the instructions are decoded
into microcodes. This unit also has a hardware stack with a depth of sixteen to
effectively support hardware loops. The decoded instructions are issued to AGU
(Address Generation Unit) and DALU (Data Arithmetic Logic Unit) for cor-
responding operations. AGU is responsible for the calculation of the addresses
of both U and V memories that the core is going to access. Various addressing
modes, including register direct addressing mode and modulo addressing mode,
are supported by this module. Among them, modulo addressing mode is partic-
ularly important to the performance of the DSP and will be examined in detail
in section 2.2. DALU works in parallel with AGU and accomplishes the arith-
metic and logic operations such as MAC (Multiply Accumulate), accumulation

Architecture Design of a High-Performance 32-Bit Fixed-Point DSP 117

and shift. Besides, it also offers some powerful bit operations, such as bit set and
bit clear, to enhance the control capability of the chip so that the chip can also
be applied as an MCU (Micro Control Unit). The operation of MAC, critical
to the performance of DSP algorithms, is implemented with a novel structure,
which makes the chip finish MAC operation in one clock cycle and reduces the
chip area and the power consumption at the same time. This structure will be
highlighted in section 2.3.

2.1 Pipeline Organization and Write Back Strategy

The data-path of DSP3000 core is divided into eight pipe stages with their
names P1-P8 respectively, as is shown in Fig. 2. In order to coordinate the
operations between AGU and DALU, the execution actually occupies four pipe
stages, i.e., P4-P7. Basically, P4 and P5 in DALU simply pipe the instructions
down and do no extra operations except for some decode activities to prepare
for the operations begin on P6.The pipeline organization features the separated
memory read and write stages in AGU, which are introduced to deal with the
data dependence problems aggravated by the wide span of execution pipe stages.
This could be explained with the following instructions:

The first instruction accomplishes MAC operation with the data in register R0,
R1 and R5 and stores the result into register R5. Meanwhile two parallel move
operations load R0 and R1 with the data read from U and V memory respec-
tively. The second instruction subtracts R4 from R2 and stores the result into
R4. Also there are two parallel move operations in this instruction. The sec-
ond one of them stores the value of register R5, which is the result of the first
instruction, to V memory. If memory read and write are combined in a single
stage, this operation must start on the beginning of P6 stage since arithmetic
operation begins on this stage. Otherwise DALU may not get the desired data
from memory for corresponding operations. Yet, the desired value of R5 is not
available until the first instruction finishes the operation on P7. This would in-
troduce a stall or a NOP between the two instructions to avoid the data hazard,
reducing the instruction execution efficiency. With the separated memory read
and write strategy, however, the memory write operation happens on P7 stage.
The above data hazard can then be avoided by forwarding the accumulate result
to the input of memory write function unit.

The new memory access strategy, however, would give rise to memory ac-
cess contention problems if no other measures are taken. This problem can be
illustrated by the following instructions:

The first instruction writes the U memory indexed by AR6 with the value in R3,
while the second instruction reads the data from U memory to R4. These two

118 J. Chen, R. Xu, and Y. Fu

Fig. 2. The pipeline structure of DSP3000 core

instructions will cause the DSP core to access the U memory in different pipe
stages simultaneously. In order to avoid this contention, the pipeline incorporates
a buffer called write back queue in the write back stage P8, as is illustrated
in Fig. 3. When the control unit detects memory access contentions, it holds
the memory write operation and stores the corresponding data into the queue
while continues the memory read operation. That is to say, the memory read
instruction has a higher priority than the preceding memory write instruction.
The memory write operation can be resumed as soon as the address bus is free.In
order to prevent RAW(Read after Write) hazard during the execution of memory
read operation, AGU first searches the write back queue for the desired data.
If there is a hit, the data can be fetched directly from the write back queue.
Otherwise, it goes to memory to continue the read operation.

Fig. 3. The mechanism of write back queue

The depth of the write back queue is one, which could be proved by the fol-
lowing analysis. The contention problem could only happen in a read after write
situation. If the following instruction is a read operation, the write operation can
be still suspended in the write back queue and no new write instruction is pushed
into this queue. On the other hand, if the following instruction is a write oper-
ation, then the memory bus would be free for one clock cycle, during which the

Architecture Design of a High-Performance 32-Bit Fixed-Point DSP 119

suspended write operation can be finished. Consequently, the write back queue
is only one level deep, which will not lead to the hardware overhead. Besides
the benefit of increasing instruction execution efficiency, the proposed pipeline
organization also contributes to the saving of the power that would otherwise be
consumed on NOP instructions.

2.2 Modulo Addressing Unit in AGU

Modulo addressing is widely used in generating waveforms and creating circular
buffers for delay lines. [6] The processor supports two kinds of modulo addressing,
i.e., increment modulo addressing and decrement modulo addressing. Conven-
tionally, they are realized by creating a circular buffer defined by the lower
boundary (base address) and the upper boundary (base address + modulus -
1).When the calculated address surpasses the upper boundary, it wraps around
through the lower boundary. On the other hand, if the address goes below the
lower boundary, it wraps around through the upper boundary. [6] The modulo
addressing unit of the processor adopts this basic idea, yet it employs a modified
approach to improve the efficiency.

Fig. 4. The modified modulo addressing scheme

As is shown in Fig. 4, a bit mask generated according to value of modu-
lus divides the pre-calculated address data into two sections, the MSBs(Most
Significant Bit) and the LSBs(Least Significant Bit). The MSBs, together with
the succeeding K-bit zeros, form the base address of the circular buffer, where
2K > modulus and 2K – 1 <= modulus. The K-bit LSBs are zero extended to
32 bits before they are put into the Modulo Unit, where the modulo operation
is performed. The base address and the partial modulo address generated in
modulo unit are then ORed together to get the final address. With this scheme,
the low boundary of the circular buffer becomes zero from the Modulo Unit’s

120 J. Chen, R. Xu, and Y. Fu

perspective. Consequently, the following algorithm can be applied in the Modulo
Unit.
For increment modulo addressing:

For decrement modulo addressing:

It is required that Offset Value should be no larger than Modulus, or the result
is unpredictable. [6] The corresponding hardware implementation of increment
modulo addressing is shown in Fig. 5(a). The longest path of this structure
includes an adder, a subtracter and a multiplexer. Yet, further optimization
on the unit can be carried out by dividing the timing critical path into two
parallel data-paths to calculate the two possible addresses simultaneously, as is
illustrated below:

Fig. 5. The diagram of the modulo unit. An, En and Mn are the registers holding
the LSBs , the offset value and the modulus respectively. (a).The diagram of the direct
implementation of the unit. (b).The diagram of the proposed implementation of the
unit, where CSA stands for Carry Save Adder.

Architecture Design of a High-Performance 32-Bit Fixed-Point DSP 121

Datapath 1: LSBs + OffetValue
Datapath 2: LSBs + OffetValue – Modulus
The operation of Data-path2 can also be written as:
Datapath 2: LSBs + OffetValue+ ~ Modulus + 1

The first three operands in Datapath 2 can be compressed into two data by
one level CSA (Carry Save Adder) [3]. These two generated data can then be fed
into a 32-bit adder. The carry in pin of this cascading adder, which is usually
connected with 0, can be used to accept the remaining data 1. On the other hand,
the carry out signal of the adder actually reflects the greatness of Intermediate
and Modulus. That is, the signal is 1 if Intermediate is less than Modulus,
otherwise it is 0. Consequently, the carry out signal can be used as the select
signal of the multiplexer so that the compare unit can be removed. The proposed
modulo addressing unit structure is shown in Fig. 5(b). The critical path of this
structure includes an inverter, a one level CSA, an adder and a multiplexer.
Since one level CSA is actually an array of full adders, the delay of CSA equals
that of a full adder. Further more, the delay on the inverter is negligible when
calculating the entire delay of the timing path. Consequently, the delay on the
critical path of this structure is significantly reduced compared with that of the
former one. The implementation of the decrement modulo addressing follows
the same idea as that of the increment modulo addressing. It can be achieved
by adding control signals and multiplexers to the proposed structure so that
both kinds of modulo addressing can be accomplished by sharing most of the
components.

2.3 Fully Pipelined MAC Unit

In order to accelerate the operating speed of the DSP, MAC unit is divided into
two pipe stages and takes a latency of two clock cycles to complete the operation.
Instead of the conventional way to simply put multiplier and accumulator in
different pipe stages[6], however, a different approach is employed in the division
of the unit, as is shown in Fig. 6

In the first pipe stage, a radix-4 modified Booth encoder encodes the 32-
bit multiplier and multiplicand into 17 partial products [4] [5]. These partial
products are compressed to two 64-bit data by Wallace Tree constructed with 4-2
compressors [4]. Traditionally these two results are put into an adder to produce
the multiplication result. In this processor, however, the two results, together
with the third operand which is sign-extended to 72 bits, are fed into a one level
CSA, where they are compressed into another two intermediate results. In the
second pipe stage, a multiplexer selects the signals piped down from the previous
stage according to the SEL signal. If the SEL indicates a MAC or a multiplication
operation, the multiplexer selects the signals from CSA. Otherwise, two 72-bit
source operands are selected. A 72-bit adder then adds the selected signals to
get the final result.

Since the adder inherent in a multiplier is substituted with a CSA, which has
a delay of only one full adder, the proposed MAC structure achieves a more bal-
anced pipeline than the traditional one. With the proposed structure, one MAC

122 J. Chen, R. Xu, and Y. Fu

Fig. 6. The diagram of the proposed MAC unit, where PPRT stands for Partial
Product Reduction Tree.

operation only needs one 72-bit adder. With the traditional style, however, two
adders are involved in the MAC operation, one 64-bit adder for multiplication
and one 72-bit adder for accumulation. Consequently, this structure can sig-
nificantly reduce the area cost and the power consumption of the unit by the
removal of 64-bit addition operation. Although the latency for a single multiply
operation is increased, the fact that MAC is used more frequently than a single
multiply operation in DSP algorithms justifies such kind of trade off.

2.4 Cache Strategy

The DSP3000 possesses a bits instruction cache to enhance the per-
formance and reduce power consumption by preventing the core from accessing
external memory frequently. The cache is two-way set associative and adopts the
write-through scheme. It also employs the LRU (Least Recently Used) algorithm
to replace the data.

When cache miss occurs, the DSP core must enter wait state until the desired
instructions are fetched from external program memory, which may take tens of
clock cycles. In order to save power during that period of time, a clock gating
approach is employed to hold the core state. Fig. 7 shows the clock gating circuit
between the PLL and the DSP core. The signal is latched by a latch,
which is used to prevent glitches [7], and ANDed with the clock signal from PLL
to generate the core clock. In the real implementation, the latched signal of

is ORed with scan_en before it is ANDed with the clock to meet the
DFT(Design for Test) requirements. The scan_en signal is asserted only when the
chip is in scan mode. When cache control module detects a cache miss,
is pulled down before the end of the clock cycle and the core clock is stopped. In
that case, no operation would happen within the DSP core until the

Architecture Design of a High-Performance 32-Bit Fixed-Point DSP 123

Fig. 7. Clock gating structure designed to stop the clock of the core when cache miss
occurs

signal is released. With the proposed structure, the dynamic power consumption
on the clock tree during cache miss is eliminated and thus the average power
consumption on chip is further reduced.

3 Performance Analysis

The processor is modeled by Verilog-HDL and synthesized by Design Com-
piler with the SMIC (Semiconductor Manufacturing International Corporation)

general standard cell libraries. The physical implementations of the pro-
cessor, which include floorplanning, placement, clock tree synthesizing and rout-
ing, are carried out with Synopsys back end tools. Fig. 8 shows the final layout
of DSP3000. The processor is fabricated with SMIC 1.8V 1P6M process
and is tested on ADVANTEST T6672. The test result shows that processor can
operate at a maximum speed of 300MHz with the average power consumption
30mw/100MHz. Table 1 summarizes the main characteristics of the processor.

124 J. Chen, R. Xu, and Y. Fu

Fig. 8. The layout of DSP3000

Table 2 makes a comparison between DSP3000 and some other commercial-
ized DSPs. Several benchmarks are listed in the table, which include 256-point
complex radix-2 FFT with bit reversal, real coefficient FIR, complex FIR and
Delayed LMS(Least Mean Square) filter.All the benchmarks take the unit of
clock cycles per output sample unless otherwise noted. The data of the commer-
cialized DSPs are based on the benchmarks provided by the cited websites. Due
to the optimized MAC unit and enhanced AGU capability, DSP3000 exhibits
competitively low clock cycle latency and short execution time in running such
programs.

4 Conclusion

This paper presents the overall architecture as well as the novel micro-
architectures of DSP3000, which is a 32-bit fixed-point digital signal proces-
sor. With the improvement in pipeline organization, address generation and
MAC operation, the processor enjoys high efficiency in executing DSP programs

Architecture Design of a High-Performance 32-Bit Fixed-Point DSP 125

mean while achieves a low average power consumption. Test result shows it
can reach an operating frequency of 300MHz with average power consumption
30mw/100MHz. This processor can be applied in fields where high performance
and low power consumption are both required, such as mobile phones and digital
cameras.

Acknowledgement. This work was supported by National High Technology
863 Program under the grant of No.2002AA1Z.

References

1.

2.

3.

4.

5.

6.

7.

Sanjive Agarwala,etc.: A 600MHz VLIW DSP. IEEE Journal of Solid-State Circuits,
Vol.37,No.11 (2002)
Farooqui A.A., Oklobdzija V.G: General Data-path Organization of a MAC Unit
for VLSI Implementation of DSP Processors. Proceedings of the 1998 IEEE Inter-
national Symposium on Circuits and Systems, Vol. 2 (1998) 260–263.
Jan M. Rabeay: Digital Integrate Circuits-A Design Perspective. Second Edition.
Prentice Hall. (2003) 591–592
Norio Ohkubo, Makoto Suzuki, Toshinobu Shinobo,Toshiaki Yamanaka: A 4.4ns
CMOS 54 × 54-b Multiplier Using Pass-Transistor Multiplier. IEEE Journal of Solid-
state Circuits,Vol.30,No.3 (1995) 1013–1015
Wen-Chang Yeh and Chein-Wei Jen: High-Speed Booth Encoded Parallel Multiplier
Design. IEEE Trans. Computer.Vol. 49,No.7 (2000) 28–55
DSP56300 Family Manual-24-Bit Digital Signal Processor, Revision 3.0.Motorola
Inc. (2000) 4-1–4-10.
Darren Jose: How to successfully Use Gated Clocking in an ASIC Design. SNUG.
33 (2002) 609–633

TengYue-11: A High Performance Embedded SoC*

Lei Wang, Hong-yi Lu, Kui Dai, and Zhi-ying Wang

National University of Defense Technology, School of Computer,
Changsha, Hunan 410073, P. R. of China
wanglei@chiplight.com.cn

Abstract. TengYue-1 is a microprocessor subsystem for embedded
applications. Its heart is a 32-bit RISC microprocessor based on an instruction
set architecture (ISA) designed by us. Through a WISHBONE compatible
on-chip bus, the microprocessor, a universal memory controller, a LCD
controller and other peripheral I/Os formed the SOC. TengYue-1 has been
implemented and verified in SMIC 0.18um CMOS technology, and the
maximum clock frequency is 300MHz@1.8V. This paper presents the design
and implementation of TengYue-1. We used 9 ARM benchmarks to evaluate
the performance of the microprocessor and the results showed that it met our
goal. We also found a simple solution to the memory access conflict problem
caused by the microprocessor core and the LCD controller.

1 Introduction

Currently, embedded system is hailed by major semiconductors and mobile device
manufacturers. They need simple, light, and low power micro-controller, not high
performance general purpose microprocessor. Obviously, current design goal is lower
power and higher performance within given constraints. And both on-chip and
off-chip configuration of peripheral device must be possible for various market
demands.

TengYue-1 is a design for embedded systems based on above characteristics.
TengYue-1 is an ‘island’ containing a 32-bit RISC microprocessor core (named CH)
and other macro modules, such as a universal memory controller, a LCD controller
and several peripherals I/O devices. Hardware debugging support and a production
test interface are also included. TengYue-1 was implemented in SMIC 0.18um CMOS
technology. Maximum clock frequencies can be 300MHz@1.8v. The design is
oriented for authentication and data encryption/decryption in information security
application. Coprocessor interface and abundant peripherals make it easy for system
integration.

The remainder of this paper organized as follows. Section 2 shows the architecture
of TengYue-1, and section 3 describes the design of each component of TengYue-1 in

1

*
TengYue: In Chinese means jump over.

This work was sponsored by High-Tech Research and Development Program of China 863
(No. 2002AA1Z1080); NSFC (No.60173040)

P.-C. Yew and J. Xue (Eds.): ACSAC 2004, LNCS 3189, pp. 126–136, 2004.
© Springer-Verlag Berlin Heidelberg 2004

TengYue-1: A High Performance Embedded SoC 127

detail. Implementation scheme is explained in section 4. Section 5 gives the result of
performance evaluation. Finally, section 6 gives the conclusions.

2 Architecture of TengYue-1

As shown in Fig. 1, Tengyue-1 consists of a 32 bit RISC microprocessor core, a
universal memory controller, a LCD controller, two UART serial ports, an
interface, 32-bit GPIO interface, programmable interrupt controller, power
management unit and test interface.

The microprocessor core is the heart of TengYue-1. The instruction set architecture
is a typical RISC architecture. The instruction set is summarized in Table 1. At the
design of the instruction set, we emphasize design for pipelining efficiency and
efficiency as a compiler target. In contrast to ARM architecture [2], CH architecture is
simple and efficient for implementation. After detailed analyzing of the execution of
ARM instructions [3], on the base of ARM instruction set, we add shift instructions
and reduce the addressing modes of data manipulation instructions. Thus the length of
execution path is reduced. We increase the number of GPRs, to help the compiler to
exploit more parallelism.

Fig. 1. Architecture of TengYue-1

CH has 32 32-bit general-purpose registers (GPRs), named R0, R1... R31. These
GPRs can be mapped as two sets of 32-bit GPRs separately; each set contains 16
registers, for fast context switching in case of exception handling; or mapped as a
single set of 32 32-bit GPRs. CH uses Harvard architecture, with separated instruction
cache and data cache.

128 L. Wang et al.

As shown in Fig. 1, the grey area is the RISC microprocessor core. To achieve high
performance, we also have to pay attention to the clock frequency, execution
efficiency (measured in terms of IPC or CPI), die size and power consumption in the
design.

2.1 Microprocessor Core: CH

The 32-bit RISC microprocessor CH consists of two parts: the instruction pipeline
and the memory subsystem. We will discuss these two parts in the following
subsections.

2.1.1 Instruction Pipeline
In general, RISC architectures use pipelining as much as possible, in order to
parallelize tasks and to use existing hardware resources efficiently. This usually
results in a higher clock frequencies and therefore higher performance values.
However the use of long instruction pipeline has some drawbacks. The longer the
pipeline the more cycles is required to refill the instruction pipeline when executing a
taken branch. CH used a classical five-stage pipeline, including Instruction Fetch
stage (IF), Instruction Decode stage (ID), Execution stage (EXE), Memory Access
stage (MEM) and Write Back stage (WB), as shown in Fig. 2. As CH has a single
issue pipeline, the IF stage fetches one instruction from the instruction cache every
cycle. The ID stage performs the instruction decoding and prepares the register
operands. The instruction decoding can be done quickly because of the fixed
instruction set encoding. Hazards (structure hazards and data hazards) detecting and
resolving are also performed in ID stage. CH detects data hazards by Scoreboarding
[1] and resolves them with bypassing and forwarding or simply stopping the
successive instructions until the instruction that causes the hazards is completed. The
EXE stage contains an ALU, a barrel shifter and a multiplier, executing arithmetic
and logical instructions, shift instructions and multiplication instructions respectively.
The EXE stage also generates the address for load/store instructions. Memory is
accessed in MEM stage. In WB stage the results of the EXE stage or the data loaded
from memory are written back to the register file.

Precise exception can be easily implemented since the hazards detecting and
resolving algorithms are simple. When an interrupt or exception is detected, it only
needs to flush the pipeline before handling the interrupt or exception.

TengYue-1: A High Performance Embedded SoC 129

Fig. 2. Instruction Pipeline of CH

2.1.2 Memory Subsystem
The memory subsystem contains the instruction cache, data cache, write buffer and
the memory management unit (MMU). The instruction cache and data cache are both
8KB, 4-way set-associative and both use LRU replacement algorithm. The write
buffer has 32 16-byte entries. The instruction cache and data cache are both pipelined
so that it is impossible to offer a instruction every cycle. All units in the memory
subsystem can be enabled or disabled by user through configuring memory control
register. Instruction TLB (Translation Look-aside Buffer) and data TLB are both
full-associative.

The instruction cache uses virtual address as index and tag. A 7-bit identifier labels
different processes. Thus the instruction cache does not need to be flushed on a
context switch [1]. To avoid alias, the data cache uses physical address as index and
tag. Using physical address has two advantages. Firstly, this resolves consistency
problem of data cache; secondly, it is convenient for sharing data among processes (or
threads). On a context switch, the data cache does not need to be flushed, so new
processes can use the shared data without any costs [1].

Both the instruction cache and data cache use LRU replacement strategies. We
implemented a simple systolic array that can keep track of LRU information for a set
of cache lines. It can handle one cache access every cycle with less hardware cost [5].
The structure of a node of the array is shown in Fig.3 (b), where L is the LRU entry,
M is the MRU entry, and index is the cache line access order kept by the array. The
operation is illustrated in Fig.3 (a).

130 L. Wang et al.

Fig. 3. (a) Operation of systolic array; (b) systolic array for implementing LRU algorithm

The write buffer works with the data cache. As the data cache uses write through
policy. On write hit, the CPU write both the data cache and write buffer; On write
miss, the CPU write into write buffer only. Whenever there is read miss, the write
buffer is write back to the external memory before cache line refill begin. On read hit,
the cache line in the data cache is the newest one, same as the external memory.

The virtual address is 32-bit and the physical address is 26-bit. Virtual memory is
divided into pages. There are four kinds of page sizes: 1MB, 64KB, 4KB and 2KB.
Memory protection information is kept with page table. The virtual-physical address
translation is done by software. The TLB in the memory management unit acts as a
cache to keep the historical conversion results, so a hit in TLB can accelerate the
address translation.

2.2 Memory Controller

Interfaced with off-chip memory, the memory controller has 8 chip selects, each one
is individually programmable. The memory types supported by TengYue-1’s memory
controller include SSRAM, SDRAM, FLASH and ROM etc. As a universal memory
controller, the user can set the memory spaces mapped by the memory on each chip
select and the timing sequences of the controller’s interface by setting the chip select
control registers and timing control registers to accommodate to different memory.

Fig. 4 shows the structure of the memory controller. The CPU bus interface and the
memory interface are responsible for the communication with CPU and with memory
individually. The configuration registers contain the information such as the types of
memory, timing information, address mapping etc. All data paths and address paths
are controlled by a FSM, which generates sequence of control signals according to the
information stored in the configuration registers. The Power-on configuration block
latches the value of the memory data bus during reset, which determines initial
configuration of the memory controller and provides additional configuration bit for
the system. The refresh counter and SDRAM control module are responsible for
generating refresh cycles request and timing sequence for the attached SDRAM.

TengYue-1: A High Performance Embedded SoC 131

Fig. 4. Architecture of memory controller

The memory controller utilizes two clocks. One is the main clock of the system,
the clock of microprocessor; the other is derived from main clock by dividing the
main clock by two. The two clocks are required to be synchronized, but it’s hard to
keep strict synchronization in the actual physical circuits. We avoid the metastability
problem caused by signals transfer across clock domains by two-level
synchronization and this method works well in the implementation [4].

2.3 Peripherals

The peripherals of TengYue-1 include LCD controller, UART serial ports, SPI,
GPIO interfaces, and programmable interrupt controller, power management unit,
hardware debug and test interface. All peripherals are connected to the
microprocessor by the on-chip bus. The peripherals are mapped into the addressing
space of main memory and accessed by the microprocessor through load/store
instructions.

The LCD controller can provide independent horizontal/vertical synchronization
and combinational synchronization output signals. The size of screen and the
polarities of each video timing signal can be programmed by user, thus providing
compatibility with almost all available LCD displays. The LCD controller can support
a number of color modes, including 32bpp (bit per pixel), 24bpp, 16bpp, 8bpp
grayscale and 8bpp pseudo color. The color lookup table is inside the controller, to
reduce memory bandwidth request. Video memory and color table are both double
bank, which can be used to reduce flicker and cluttered images. This feature is good
for application such as video game and video stream application.

132 L. Wang et al.

TengYue-1 has power manager. It has three modes: run mode, idle mode and sleep
mode. These modes are used to reduce power consumption at times when some
functions are not needed. When the chip is under the latter two modes, it can be
awoken by interrupts or software conditions. The interrupt controller can connect up
to 32 external interrupts. The interrupt priority levels and response modes (level
sensitive or edge sensitive) can be programmed by the user. The hardware debug and
test interface help the test of the chip and accelerate the development of application.

2.4 On-Chip Bus

The WISHBONE compatible on-chip bus of TengYue-1 connects multiple master
devices to multiple slave devices. The microprocessor acts as the master device, while
the memory controller and the various peripherals are slave devices. The LCD
controller can access the memory directly through its own DMA channel, but it also
works as the microprocessor’s slave device. So it is not only a master device, but also
a slave device. When a slave device has multiple master devices, their access
sequence is decided by priority bit in the bus configuration register.

Fig. 5. TengYue-1 test chip’s GDSII-based plot

3 Implementation

We use Synopsys Design Compiler for synthesis. The synthesis methodology is a
combination of top-down and bottom-up synthesis. We use bottom-up synthesis for
the critical modules by constraining their ports, paths, load and fan-outs; other
modules are synthesized by top-down method. In the physical design, Physical
Compiler is used to generate cell placement, freezing the data cache and instruction
cache locations during the placement process and permitting the floorplanning to be

TengYue-1: A High Performance Embedded SoC 133

data-driven. We generated the balanced clock tree with Cadence’s CTGen. The
maximum simulated skew across the core was 125ps under the worst case process and
environmental conditions.

We fabricated the TengYue-1 in SMIC’s 0.18um CMOS technology. Fig.5 shows
GDSII-based plot of the test chip. Clock frequencies achieve 300MHz@1.8V; power
dissipation is 0.47mW/MHz. Die size is 4.9mm*4.9mm in the total. For the
microprocessor core, including instruction cache and data cache, die size is

4 Performance Evaluation

4.1 Microprocessor Core Performance

Analysis of the results for 9 ARM benchmarks showed that the microprocessor core
CH achieved an IPC count of about 0.64. All the benchmark programs are written in
C language and compiled by gcc. Fig. 6 shows the CPI of each program.

Fig. 6. IPC of benchmarks

4.2 Study of Memory Access Conflict Problem

Because the video memory of LCD is in the main memory, the memory controller has
two master devices: the microprocessor and the LCD controller. Thus there exists
conflict between memory access from the LCD controller and the microprocessor. If
the LCD controller occupied most of the memory bus cycle, then the performance of
CPU executing program or LCD driver maybe affected. For LCD driver, it can not
write display information in time. One solution to this problem is to isolate the video
memory of LCD from the main memory. The cost is adding another memory
controller and the on-chip bus becomes more complex.

In our design, the microprocessor core and the LCD controller share the memory
controller. To prove this method can satisfy the performance requirements of the
system, we built a queue model to simulate this problem, as shown in Fig. 7.

134 L. Wang et al.

Fig. 7. Queue model

Fig. 8. Simulation result (CPU average memory access delay)

Queue 1 contains the memory access request from the LCD controller. As the LCD
displays require pixel values being put on the screen in a fixed frequency, we suppose
the arrival interval of video memory access request to be a fixed length distribution.
Suppose the display period of the LCD selected is 156.25ns [7]. When the clock
period of the microprocessor is 5ns(200MHz), to 32 bpp mode, a 32-bit word must be

TengYue-1: A High Performance Embedded SoC 135

read out from memory every 31.25 cycles; to 16 bpp mode, a 32-bit word must be
read out from memory every 62.5 cycles; 24 bpp and 8 bpp mode can be such
deduced.

Queue 2 is for the microprocessor. We suppose that the arrival interval of memory
access request from the microprocessor is an exponential distribution.

The memory controller acts as the server and the service time is a fixed value: 10
cycles without burst mode and 13 cycles with burst mode [6]. The burst mode returns
four 32-bit words on one memory access while the non-burst mode returns just one.
Suppose that the LCD controller has enough buffers to cache pixel data, the
microprocessor doesn’t use burst mode and the LCD has higher priority when conflict
occurs.

We built a queue model by GPSS according to the previous assumptions and
simulated the memory access behavior of the LCD controller and the microprocessor
under different LCD display modes [8]. We studied the effect of memory access
conflict to the performance of system. Fig.8 shows the simulation result.

From Fig.8 we can conclude that the LCD controller brings considerable
impairment to the memory access of microprocessor when it doesn’t use burst mode.
In the worst case, about 33% load/store instructions of the microprocessor are delayed
with an average of 11 cycles. However, when burst mode is enabled, the delay of
memory access of the microprocessor is reduced to 1-2 cycles and the affected
instructions are only 8% of all load/store instructions under the worst case. The cost is
only three additional cycles to the memory access time of LCD controller.

Thus it can be seen that mapping the video memory to the main memory and
sharing the memory controller between the LCD controller and the microprocessor
can satisfy the performance requirement. The affection to the memory access of the
microprocessor brought by the LCD controller can be reduced and even ignored when
using the burst mode of the memory.

5 Conclusions

TengYue-1 is a high performance embedded SOC design. We studied the critical
issues of the design and improved the overall performance by reducing the
complexity of the hardware efficiently. This chip has been implemented and verified
in SMIC 0.18um CMOS technology, and the frequency can achieve 300MHz@1.8V.
TengYue-1 has a broad application prospect on RS encoding-decoding, information
encryption/decryption and safety authentication.

References

1.

2.

3.

Patterson D A, Hennessy J L. Computer Architecture: A Quantitative Approach. 2nd ed.
San Francisco: Morgan Kaufman Publish, 1996.
S. B. Furber, ARM System-on-chip Architecture. Addison Wesley Longman(2000), ISBN:
0-201-67519-6.
ARM Inc. ARM Architecture Reference Manual [Z]. ARM DDI 0100D, Write Paper,
2000

136 L. Wang et al.

4.

5.

6.
7.
8.

Clifford E. Cummings, Synthesis and Scripting Techniques for designing
Multi-Asynchronous Clock Designs, SNUG 2001 2.
J. P. Grossman, A Systolic Array for Implementing LRU Replacement, Project Aries
Technical Memo
Micron Technology, Synchronous DRAM Datasheet
NEC, TFT COLOR LCD MODULE datasheet
Robert C. Crain, SIMULATION WITH GPSS/H, Proceedings of the 1998 Winter
Simulation Conference

A Fault-Tolerant Single-Chip Multiprocessor

Wenbin Yao1, Dongsheng Wang2, and Weimin Zheng1

1 Department of Computer Science and Technology, Tsinghua University, P. R. China
2 Research Institute of Information Technology, Tsinghua University, P. R. China

{yao-wb, wds, zwm-cs}@tsinghua.edu.cn

Abstract. The microprocessor is a crucial component of a reliable system. With
improvement in semiconductor manufacturing, more and more transistors may
be integrated into a single chip with increased potential detriment to
dependability. Fault-tolerant single-chip multiprocessors offer an ideal
architecture for achieving high availability while maintaining high performance.
The design of a fault-tolerant single-chip multiprocessor is described - from
hardware redundancy to software support and firmware information strategies.
The design aims at masking the influences of errors and automatically
correcting system states, which differs from traditional approaches which
mainly target errors in the memory and I/O subsystems. Dynamic recovery and
reconfiguration are also described to provide adequate protection from
catastrophic failure of the system.

1 Introduction

The growth of dependency on computer systems demands microprocessors which
provide higher dependability whilst maintaining high computing performance. This is
particularly true for mission-critical applications. With the development of deep-
submicron technology, it is predicted that in the next 10 years a single chip can
contain more than one billion transistors[1]. However, shrinking geometries, lower
power voltages and high frequencies also have a negative impact on dependability.

Recently, as the trend toward thread-level parallelism matures, single-chip
multiprocessors(CMP) present a promising solution to partly mitigate these
influences[2-4]. CMPs integrating multiple processors into a single chip execute
several threads concurrently to achieve high computing performance. The advantages
of this technique include simplified design of critical paths and shrinking of
development time and cost.

From an architectural viewpoint, CMPs combined with fault-tolerant techniques
can further improve microprocessor dependability. Such designs follow two reliability
principles. First, they observe the classical maxim: “simple is reliable”. A design
achieves this goal by incorporating simple control logic and replacing the traditional
complex parallel structures with multiple simple processors. Second, CMPs, which
may use multiple identical processors for error detection and recovery, have inherent
features leading to flexible fault-tolerant architectures. Different fault-tolerant
strategies can be implemented neatly by reasonably dispatching available redundant
components.

P.-C. Yew and J. Xue (Eds.): ACSAC 2004, LNCS 3189, pp. 137–145, 2004.
© Springer-Verlag Berlin Heidelberg 2004

138 W. Yao, D. Wang, and W. Zheng

In this paper, we propose an architecture for a fault-tolerant single-chip
multiprocessor (F-CMP). Differing from the IBM pSeries 690[5] which pursues RAS
and can tolerate duration of repair, F-CMP provides high levels of reliability and
availability with strong automatic recovery capability. The architecture is
configurable and supports the replacement of faulty components and the degeneration
to lower reliability levels when uncorrectable errors occur. Users can also specify a
fault-tolerant mode corresponding to the dependability requirements of ant
applications. Fault-tolerant strategies have been designed with special characteristics
to tradeoff among hardware and software.

The rest of the paper is organized as follows. Section 2 presents an overview of F-
CMP architecture. Section 3 discusses the fault-tolerant design techniques used in F-
CMP, including hardware redundancy, firmware and software support. Section 4
describes the recovery strategies of F-CMP and Section 5 concludes.

2 System Overview

The F-CMP architecture is based on Tsinghua University’s Thump-107. The Thump-
107 is a RISC-based microprocessor targetting embedded applications. Its instruction
set is a superset of MIPS-4Kc and is compatible with MIPS 32-bit RISC architecture.
It has a 4k-byte instruction cache, a 4k-byte data cache and a 7-stage pipeline
structure able to execute up to seven instructions per clock cycle.

From an architectural point of view, F-CMP is a closely coupled multiprocessor
that contains four identical Thump-107 processors, a shared cache and necessary
control logic needed to realize the fault-tolerant strategies. A logical overview is
shown in Fig. 1.

F-CMP has six kinds of functional units:

Four identical Thump-107 processors
The Thump-107 processor is an independent 32-bit CPU core, which implements

the MIPS 4Kc instruction set plus four instructions for multimedia applications. In F-
CMP, the processors reuse the basic Thump-107 structure, adding two instructions
specially for implementing synchronization primitives used by a standard CMP.
These two instructions are the load locked(LL) and store conditional(SC) instruction,
respectively. Each processor also includes an 8k-bytes instruction cache, an 8k-bytes
data cache and corresponding control logic. The L1 cache is a write-through primary
cache that allows all processors to snoop on all writes performed.

Fault Handling Mechanism
A fault handling mechanism consisting of a crossbar and four sets of fault-tolerant

selectable logic was designed to detect computing errors by comparing results from
independent processors. Logically, the crossbar controlled by the centralized
arbitration controller connects the outputs of four identical processors with select
logic. Four fault-tolerant computing modes are provided: one-mode, dual-mode,
triple-mode and quadruple-mode redundancy, named after the numbers of
participating processors.

A Fault-Tolerant Single-Chip Multiprocessor 139

Fig. 1. Logical overview of F-CMP architecture

A shared secondary cache
Four processors share a unified L2 cache organized as two cache banks with

separate controllers. The L2 cache can protect data with standard CRC words and its
capacity is as large as 2M-bytes. In the non-fault-tolerant mode, the shared cache can
be organized as a unified interleaved cache. In the fault-tolerant mode, the L2 cache
consists of two independent sub-caches, each of which backs up the other. The main
cache bank and the backup bank make up a fault-tolerant memory subsystem.

A centralized arbitration controller
Besides controlling the crossbar to provide fault-tolerance, the centralized

arbitration controller manages access privileges on the shared bus. In F-CMP, three
logic data buses including a write-through bus and a read/replace bus and a backup
bus are used for data transmission. The backup bus is a standard data bus and may
take over the tasks of the other buses if necessary.

Main memory interface (MIU)
The MIU handles all the interfacing transactions from and to F-CMP, including

main memory accesses and external snoop processing.

I/O interface unit
The I/O interface unit handles all the input and output transactions of F-CMP.

140 W. Yao, D. Wang, and W. Zheng

3 Fault-Tolerant Design Techniques

F-CMP provides different levels of fault tolerance, including hardware redundancy,
software support and firmware-based recovery. The architecture also allows system
reconfiguration and dynamic graceful degeneration.

3.1 Fault-Tolerant Hardware Design

F-CMP provides some special structures to satisfy the requirements of different levels
of fault tolerance. Here, three fault-tolerant strategies are presented:

Fault-tolerant Computing
To achieve high reliability in the course of computing, three fault-tolerant

strategies based on comparison techniques are provided in F-CMP. Fig. 2 shows the
logic structure of different redundancy modes.

Fig. 2. Logical structure of fault handling mechanisms

In the fault handling mechanism, there are four sets of fault-tolerant logic.
However, at any time, only one set of logic is activated.

One-mode redundancy represents a standard single-chip multiprocessor, in which
every processor is an autonomous subsystem running applications independently. It is
a non-fault-tolerant mode. In dual-mode redundancy, two processors form a simple
comparison-based fault-tolerant subsystem while the others run as two independent
single-processor subsystems. Similarly, triple-mode redundancy includes an

A Fault-Tolerant Single-Chip Multiprocessor 141

autonomous single-processor subsystem and a voting fault-tolerant subsystem of three
processors. The most complex form, quadruple-mode redundancy, uses all the four
processors for fault-tolerant computing. In this mode, each pair of processors form a
simple comparison-based fault-tolerant subsystem, and their outputs are compared
once more to output a single result.

The fault-tolerant modes are controlled by an error-capture register (ECR).
According to the different connection of the output of the processors, one-mode, dual-
mode, triple-mode and quadruple-mode redundancy require 1 bit, 6 bits, 4 bits and 3
bits, respectively, in the ECR. As a result, the ECR has 14 controlling bits all
together, each of which corresponds to a computing mode.

Reliability Data Transmission
Connecting the processors, secondary cache and other control interfaces together

are a read/replace bus, a write-through bus and a backup bus, along with address and
control buses. While the read/replace and write-through buses are virtual buses, the
physical wires are divided into multiple segments using repeaters and pipeline
buffers. The backup bus is an independent physical bus, which implements standard
reads and writes. Thus it can be used to replace the other two logical buses. As a
result, the bus structure is actually a dual-bus system which protects transmitted
information.

The read/replace bus acts as a general-purpose system bus for moving data
between the processors, secondary cache and external interface to off-chip memory.
The processors can fetch required data from secondary cache via the read bus
simultaneously. Data from the external interface can be broadcast to both of the
processors while it is sending to secondary cache.

The write-through bus permits F-CMP to use a write-update coherence protocol to
maintain coherent primary caches. Data exchange among the processors is carried out
via a write-through bus under the control of the centralized bus arbiter. When one
processor modifies data shared by other processors, write broadcast over the bus
updates all copies while the permanent machine state is written back to the secondary
cache.

The backup bus design has two objectives. First, it can be used as an independent
read and write bus to speed up communications between two levels of cache. Second,
it can also be used as the single data bus when uncorrectable failures are detected on
the other logical buses.

As in other high reliability microprocessor systems, data on the bus is augmented
by a single-error-correct and double-error-detect Hamming ECC to further enhance
fault-tolerance.

Fault-tolerant Data Store
Both L1 and L2 caches have memory protection mechanisms designed to correct

single event errors. Several bits are added to the banks to replace faulty bits. These
techniques are analogous to the programmed steering logic in the structure of
POWER4[6]. The controlling logic is activated by built-in self-test at power on.

As mentioned above, beside a normal unified cache, an L2 cache consisting of two
banks can also implement a fault-tolerant memory subsystem by configuring one bank
to back up the other. As a result, F-CMP may run in multiple different storage modes
according the reliability states of caches. Possible storage configurations are shown in

142 W. Yao, D. Wang, and W. Zheng

Table 1, where and ‘×’ represent the availability and non-availability of the
corresponding components, respectively.

3.2 Firmware

Firmware was designed to record runtime error thresholds, indicating the number of
corrected errors in the F-CMP microprocessor. The error information recorded in
firmware becomes part of a system error log and is used for system reconfiguration.
The replaceable components include the processors, cache banks and buses. When
errors are detected in these components, error information is recorded in firmware.

Dynamic reconfiguration is implemented: firmware logs errors and is used to
decide the current fault-tolerant mode. Hardware and firmware track periodically
whether error numbers stay below a threshold. After exceeding this threshold, the
system will initiate additional runtime availability actions, such as a controlled shut-
down of processors and the replacement of a faulty cache line or a controlled shut-
down of banks or even the whole L2 cache.

3.3 Software Support

Depending on hardware redundancy to achieve high reliability is not enough and
software support plays a very important role on the design of F-CMP. Since each
processor in F-CMP has its own program counter and register file, it is easy to
execute multiple instruction streams in parallel. Actually, four independent
instructions streams --- generally called threads --- can be simultaneously issued to
the different processors to achieve software implemented fault tolerance (SIFT). The
operations are scheduled under the control of the operating system.

As the mentioned above, the fault-tolerant modes of F-CMP are controlled by an
error-capture register (ECR). This register is software-readable and can be reset by
operating system. At bootstrap, the operating system may set the fault-tolerant mode
of F-CMP according to application requirements and the current state of replaceable

A Fault-Tolerant Single-Chip Multiprocessor 143

components in the microprocessor. Hardware and software may cooperate to
implement runtime fault-tolerant handling, which is transparent to the users. F-CMP
may also degenerate into a lower fault-tolerant mode if uncorrectable failures are
encountered.

4 System Recovery Strategies

F-CMP implements concurrent error detection, dynamic fault isolation and error
recovery while running. The most important principle of system recovery strategies is
to guarantee the dependability of mission-critical applications even if system
performance must be lowered. As a result, the replaceable components are considered
first to take over from failed ones during the course of system reconfiguration. The
error recovery flowchart of F-CMP is shown in Fig. 3.

Fig. 3. Error recovery flowchart of F-CMP

While the numbers of errors are beyond the capability of the current fault-tolerant
mode, F-CMP may commence system degeneration. Corresponding to the fault-
tolerant levels, there are three kinds of system degenerations in the level of processors

144 W. Yao, D. Wang, and W. Zheng

and the buses and the caches. Processor-level degeneration has four forms: from
quadruple-mode to dual-mode or one-mode redundancy, and from triple-mode to one-
mode redundancy, and from dual-mode to one-mode redundancy, respectively. Bus-
level degeneration may go from dual-mode to one-mode redundancy. In the cache-
level degeneration, each cache line and bank and even whole caches may be removed
as uncorrectable errors increase.

Besides the system degeneration, F-CMP has dynamic reconfiguration capabilities,
viz. the state conversion between different fault-tolerant modes. Actually, the dual-
mode and triple-mode and quadruple-mode redundancy have different dependability
characteristics and complement each other. For applications requiring more processor
power, dual-mode is suitable because the two groups of processors may execute
different threads individually. But for other critical applications, triple-mode or
quadruple-mode may be much better. System reconfiguration controlled by software
includes two forms: conversion between dual-mode and triple-mode redundancy, and
conversion between quadruple-mode and triple-mode redundancy.

5 Conclusion

We have described a fault-tolerant single-chip multiprocessor aimed at providing
adequate protection from system failure. The design has configurable levels of
hardware redundancy, software support and firmware information techniques. The
architecture provides multiple fault-tolerant modes and is thus adaptable to different
mission-critical applications: it also allows smooth conversion between the different
modes. Since all the redundancy components and corresponding controllers exploit
the “simple design” principle, it is easy to validate the reliability of subsystems and
this leads to a high dependability system.

To verify the properties of the architecture, two related software tools have been
written. One is a behavior simulator written in C, which performs functional
validation. The simulator can simulate the operational behavior of F-CMP cycle-by-
cycle. The other tool is a dynamic runtime error injection system, which randomly
injects permanent and intermittent and transient errors into the system. Initial
validation tests showed that the F-CMP architecture improved system dependability
effectively for some mission-critical applications and reached the design target of
initial dependability.

References

1.

2.

3.

4.

Cristian Constantinescu. Trends and Challenges in VLSI Circuit Reliability. IEEE Micro.
Vol.23, No. 4(2003), 14-19
Sang-Won Lee, Yun-Seob Song, et al. Raptor: A Single Chip Multiprocessor. The First
IEEE Asia Pacific Conference on ASIC. (1999) 217-220
Lucian Codrescu, D. Scott Wills, James Meindl. Architecture of Atlas Chip-
Multiprocessor: Dynamically Parallelizing Irregular Applications. IEEE Transactions on
Computers. Vol. 50, No. 1 (2001) 67-82
John Nickolls, L. J. Madar III. Calisto: A Low-Power Single-Chip Multiporcessor
Communications Platform. IEEE Micro. Vol. 23, No. 4 (2003) 29-43

A Fault-Tolerant Single-Chip Multiprocessor 145

5.

6.

D. C. Bossen, A. Kitamorn, K. F. Reick, M. S. Floyd. Fault-tolerant Design of the IBM
pSeries 690 System using POWER4 Processor Technology. IBM J. RES. & DEV.
January Vol. 46, No. 1 (2002) 77-86
D. C. Bossen, J. M. Tendler, Kevin Reick. POWER4 System Design for High Reliability.
IEEE Micro. Vol. 22, No. 2 (2002) 16-24

Initial Experiences with Dreamy Memory and
the RAMpage Memory Hierarchy

Philip Machanick

School of ITEE, University of Queensland
Brisbane, Qld 4072, Australia
philip@itee.uq.edu.au

Abstract. This paper is a first look at the value of the RAMpage mem-
ory hierarchy to low-energy design. The approach used, dreamy memory,
is to put DRAM in a low-power mode, unless it is referenced. Simulation
results show that RAMpage provides a better overall speed-energy com-
promise than the conventional architecture used for comparison. The
most energy-efficient RAMpage configuration in dreamy mode ran 3%
faster and used 71% of the energy for DRAM of the best dreamy run
of the conventional model. As compared with the best non-dreamy run
time, the best dreamy time was 9% slower, but used under 17% of the
energy for DRAM. The lowest-energy dreamy simulation used less than
16% of the DRAM energy of the fastest non-dreamy version, a very useful
gain, given that DRAM uses significantly more power than the processor
in a low-energy design. The most energy-efficient variant ran 12% slower
than the fastest, allowing several trade-offs between speed and energy.

1 Introduction

The RAMpage memory hierarchy moves main memory up a level to replace the
lowest-level cache with an SRAM main memory, while DRAM becomes a paging
device. Previous work has shown RAMpage to be a potentially viable design in
terms of hardware-software trade-offs [16] and that it scales better as the CPU-
DRAM speed gap grows, particularly when taking context switches on misses to
DRAM [14]. In this paper, the value of RAMpage in hiding DRAM latency is
further explored by introducing the idea of dreamy memory.

Dreamy memory is kept in a low-power mode unless it is referenced. While
waking the memory up incurs significant overhead, RAMpage could hide this
overhead as has previously been demonstrated.

In desktop and server designs, with processor power consumption on the
order of tens of watts or even over 100W, reducing memory power usage is not a
major issue. However, with a low-energy design, DRAM energy usage becomes
significant. A 128Mbyte DRAM as simulated in this study uses about 0.5W, as
compared with a 500MHz processor of the ARM11 family [1], which uses about
0.2W. A small mobile device with a relatively modest memory therefore has to
allocate a significant fraction of its energy budget to DRAM.

P.-C. Yew and J. Xue (Eds.): ACSAC 2004, LNCS 3189, pp. 146–159, 2004.
© Springer-Verlag Berlin Heidelberg 2004

Initial Experiences with Dreamy Memory 147

In this paper, the approach investigated is to use the self-refresh mode com-
monly available in double-data rate synchronous DRAM (DDR-SDRAM), which
allows DRAM contents to be maintained with 1% of normal power [17], to imple-
ment dreamy memory. Simulations are based on parameters suited to a mobile
device. The aim is to reduce DRAM energy usage to as close as possible to that
of self-refresh mode, with performance as close as possible to that of full-power
mode.

The remainder of this paper is structured as follows. Section 2 presents more
detail of the RAMpage hierarchy and related research. Section 3 explains the
experimental approach, while Section 4 presents experimental results. In conclu-
sion, Section 5 summarizes the findings and outlines future work.

2 Background

2.1 Introduction

RAMpage was proposed [12] in response to the memory wall [21,9], which arises
mainly with high-end systems, where processor improvements have not been
matched by DRAM speed improvements. At the low end, energy use is a much
more significant problem. RAMpage’s ability to hide latency of (relatively) slow
DRAM can potentially be used to hide the latency of waking a DRAM up from
a low-power mode.

In this paper, low energy, rather than low power is the measure of interest, as
we are concerned with total energy use over time, rather than an instantaneous
measure.

The remainder of this section briefly surveys other approaches to low-energy
memory design, followed by an outline of the RAMpage approach to the problem.

2.2 Low-Energy Memory Design

There have been several approaches to reducing the energy needs of memory.
IRAM (Intelligent RAM) was originally proposed to address the memory wall

problem, by implementing a large DRAM on-chip with the processor, instead of
the traditional trend of increasing on-chip cache size. While the on-chip DRAM
is slower than an SRAM cache, it is faster than an off-chip DRAM [19]. More
recently, IRAM has been shown to offer the potential for reduced energy us-
age, because of DRAM’s lower energy requirement as compared to SRAM, and
elimination of off-chip buses [6].

At the low end, work has been done on variations on memory organization
like multiple banks (less commonly used banks can be put in low-power modes),
finding optimum combinations of number of banks and bus width, and exploring
compromises between performance-optimal and energy-optimal organization of
caches and DRAM [2]. One specific proposal for a low-energy design for system-
on-chip (SoC) applications is to organize static RAM into statically allocated
banks, based on predicted data referencing behaviour [4]. The main problem

148 P. Machanick

with this approach is that it requires static allocation, and does not allow for
changes in the relative sizes of the banks for different workloads.

The closest idea to that reported here are Power-Aware DRAM (PADRAM)
[11] and Power-Aware Virtual Memory (PAVM) [8]: page placement is used in
a memory in which different chips may be in different power modes. Frequently
accessed pages are in a DRAM which is not in a low-power mode (or less often
than other chips).

In a PADRAM study, it was shown that putting all DRAM into the lowest-
power mode resulted in execution time of 2 to 60 times that of full-power mode,
whereas a dynamic policy resulted in a relatively small speed loss, with signifi-
cant energy saving. While various details of the PADRAM study differed from
those reported in this paper (faster processor, smaller L2 cache, Rambus memory
with higher wakeup latency), the most significant difference is that no operating
system effects were modelled: single process execution times were reported, not a
mix of workloads [11]. In addition, only a hardware-managed L2 cache was mod-
elled, not a software-managed cache like the RAMpage SRAM main memory.
RAMpage, especially with context switches on misses, relies on a multiprogram-
ming workload to hide DRAM latency and is therfore able to get away with a
simpler approach to managing DRAM.

PAVM has been investigated in more detail, but using an actual implemen-
tation on Linux and an otherwise-conventional memory hierarchy. Exploiting
a combination of the different modes available in Rambus and dynamic page
placement strategies, with DRAM energy savings of up to 59% with a heavy
workload [8].

Since other low-energy techniques can apply to dreamy DRAM, approaches
in areas such as reducing energy to drive a bus to DRAM [20] and reducing cache
energy [10] have not been considered in detail as potential competing work.

2.3 The RAMpage Approach

RAMpage makes as few changes from a traditional hierarchy as possible. The
lowest-level cache becomes the main memory (i.e., a paged virtually-addressed
memory), with disk used as a secondary paging device. The RAMpage main
memory page table is inverted, to minimize its size. Further, an inverted page
table has another benefit: no TLB miss can result in a DRAM reference, unless
the reference causing the TLB lookup is not in any of the SRAM layers [16].

RAMpage has in the past been shown to scale well in the face of the grown
CPU-DRAM speed gap, particularly when context switches are taken on misses.
The effect of taking context switches on misses is that, if other work is available
for the CPU, waiting for DRAM can effectively be eliminated [14]. Performance
characteristics of RAMpage have previously been reported [16,13,14]. For pur-
poses of this paper, the key advantage of RAMpage is the ability to mask latency
of DRAM references, with the aim of keeping DRAM in a low-power mode unless
it is being referenced, without significant loss of speed.

Compared with most other approaches to low-energy memory systems, the
RAMpage approach is very simple. No special hardware is needed, other than

Initial Experiences with Dreamy Memory 149

the RAMpage design itself. DRAM is put into a low-power mode, and turned
on when it is referenced. As compared with the PADRAM approach, the archi-
tecture requires no complex dynamic placement strategy. Provided a process is
ready to run on a miss to DRAM, the extra wake-up latency can be masked.
PAVM is closer in philosophy, but RAMpage carries the idea further in man-
aging the lowest-level cache in software, which has potential for other wins, as
described in previous RAMpage work [16, 14].

The dynamic placement strategies of PADRAM and PAVM could be added
to RAMpage, combining their benefits with a software-controlled SRAM main
memory.

3 Experimental Approach

3.1 Introduction

This section outlines the approach to the reported experiments. Results are de-
signed to be comparable to previously reported results as far as possible. The
simulation strategy is explained, followed by some detail of simulation parame-
ters; in conclusion, expected findings are discussed.

3.2 Simulation Strategy

The approach followed here is similar to that used in previously reported work.
However, the processor speed characteristics are based on the ARM11 series [1]
running at 500MHz. This processor consumes 0.2W at this speed; this power
consumption makes the power needs of DRAM significant.

Simulations are trace-driven, and do not model the pipeline. It is assumed
that pipeline timing is less significant than variations in DRAM referencing.
Given that the ARM11 family only issues one instruction per clock and has
accurate branch prediction, this approach to simulation is unlikely to introduce
significant inaccuracies. For simplicity, the simulations do not use all features
of the ARM11 series. The ARM11’s two-level TLB is not simulated. Instead,
a relatively small 1-level TLB is simulated. The RAMpage hierarchy is more
disadvantaged by this approximation than a conventional hierarchy, since it relies
on the TLB for mapping pages in the SRAM main memory, rather than in
DRAM [15].

A standard 2-level hierarchy is compared to a similar version of a RAMpage
hierarchy, with and without context switches on misses. RAMpage without con-
text switches on misses is intended to convey the effects of adding associativity
(with an operating system-style replacement strategy). Adding context switches
on misses shows the value of having alternative work on a miss to DRAM. In all
cases, the effect of running with DRAM permanently on is compared with the
effect of running with DRAM in self-refresh mode, except when it is referenced.

In this study, given that energy and cost are more significant than for previ-
ous studies, L2 is reduced from 4 Mbytes to 1 Mbyte (the simulated 1MB SRAM

150 P. Machanick

consumes 0.8W [18]; 4 MB would use 3.2W, significant compared with a 0.2W
processor). This reduction disadvantages RAMpage more than the standard hi-
erarchy: part of the SRAM main memory is reserved for operating system data
and code: in addition to a page table, RAMpage reserves 32 Kbytes for the oper-
ating system. The ARM11 series includes 64K bytes of SRAM (tightly coupled
memory, TCM) which could be used for the operating system in RAMpage; the
page table would also fit for SRAM page sizes of 256 bytes or more. This option
was not explored in this study; using TCM, which operates at cache speed, in
RAMpage simulations would likely result in significant speed gains.

3.3 Simulation Parameters

The processor modelled in this paper is slower than in recent RAMpage work, if
comparable to one of the speeds in recent older work [16], to take into account
the slower speeds of low-energy designs.

A major difference from previously reported results, which used Direct Ram-
bus, is use of double-data-rate synchronous DRAM. The DDR-SDRAM mod-
elled [17] has average power usage of 200mA, and self-refresh mode which uses
2mA, both at 2.6V. In self-refresh mode, the external clock is turned off, and
contents of DRAM is maintained without external intervention. Actual DRAM
power usage varies according to the reference pattern, but for this preliminary
work, an average value is used, and the same value is used for entry to and exit
from self-refresh mode. In previous work, detail of the DRAM was not considered
important, as fixing DRAM speed while speeding up the CPU represented the in-
creasing CPU-DRAM speed gap. In this paper, DRAM detail is more important
because power usage is timing-dependent.

The following parameters are similar to previous simulations except as noted,
and are common across RAMpage and the conventional hierarchy:

L1 cache – 16 Kbytes each of data and instruction cache, physically tagged
and indexed, direct-mapped, 32-byte blocks, 1-cycle read hit time, 12-cycle
penalty for misses to L2 (or RAMpage SRAM main memory)
TLB – 64 entries, fully associative, random replacement, 1-cycle hit time,
misses modelled by interleaving a trace of page look-up software
DRAM – DDR400 SDRAM: 40ns before first reference starts, 64-bit 5ns
bus (data moves every 2.5ns: transfer rate approximately 0.3ns per byte;
DRAM time to exit self-refresh is and time to enter self-refresh mode
is 20ns)
paging of DRAM – inverted page table: same organization as RAMpage main
memory for simplicity, the workload is preloaded, so there are no page faults
to disk; for energy calculations, a 128MB DRAM is assumed
TLB and L1 data hits are fully pipelined: they do not add to execution time;
only instruction fetch bits add to simulated run time; time for replacements
or maintaining inclusion are costed as L1d or TLB “hits”

A context switch (modelled by interleaving a trace of text-book code) is
generally taken every 500,000 references, though RAMpage with context switches

Initial Experiences with Dreamy Memory 151

on misses also switches processes on a miss to DRAM. TLB misses are handled
by inserting a trace of page table lookup code, with variations on time for a
lookup based on probable variations in probes into an inverted page table [16].

Specific to conventional hierarchy. L2 cache is 2-way associative, 1Mbyte.
The bus connecting L2 to the CPU is 128 bits wide and runs at one third of the
CPU issue rate (6ns versus the CPU’s 2 ns). The miss penalty from L1 to L2
overall is 12 CPU cycles. Inclusion between L1 and L2 is maintained [7], so L1 is
always a subset of L2, except that some blocks in L1 may be dirty with respect
to L2 (writebacks occur on replacement).

The TLB caches translations from virtual pages to DRAM physical frames.

Specific to RAMpage hierarchy. The TLB maps the SRAM main memory.
Full associativity is implemented by a software miss handler. The operating
system takes up 9 SRAM main memory pages when simulating a 4 Kbyte-SRAM
page (36 Kbytes), up to 752 pages for a 128 byte block size (94 Kbytes).

The SRAM main memory uses an inverted page table. TLB misses do not
reference DRAM, if the original reference can be found in an SRAM level.

Inputs and variations. Traces used are from the Tracebase trace archive
at New Mexico State University1. Although these traces are from the obsolete
SPEC92 benchmarks, they are sufficient to warm up the size of cache used here,
because 1.1-billion references are used, with traces interleaved to create the effect
of a multiprogramming workload.

To measure variations on energy use, the size of the SRAM main memory
page (or L2 block size in the conventional model) was varied from 128 bytes to
4 Kbytes, and the simulation was instrumented to track energy use.

In dreamy mode, it was assumed that if a DRAM access started before the
previous one had completed, DRAM would still be awake. Otherwise, once a
DRAM reference completed, it was put into self-refresh mode. For comparison,
simulations were run with DRAM permanently in full power mode. The simu-
lator allows for a lag after references before entering self-refresh mode, but this
option is still to be explored.

Total energy was calculated by multiplying time in each mode by the power
of that mode.

3.4 Expected Findings

It was expected that speed differences would not be the most significant finding,
given that early studies [16,13] showed little difference between RAMpage and
the conventional model at the clock speed being modelled in this paper. It was
expected that the introduction of dreamy mode would have less of an effect on

See ftp://tracebase.nmsu.edu/pub/traces/uni/r2000/utilities/ and
ftp://tracebase.nmsu.edu/pub/traces/uni/r2000/SPEC92/.

1

152 P. Machanick

RAMpage than on the conventional model, given that RAMpage has been shown
to be more tolerant of an increased DRAM latency, especially when context
switches are taken on misses [14].

With a significantly smaller SRAM main memory than in earlier experiments,
it was expected that RAMpage, which pins parts of the operating system in
the SRAM main memory, would be less competitive on speed than in earlier
experiments even in dreamy mode, where the increased effective DRAM latency
would make this experiment closer to earlier ones with faster processors.

RAMpage, however, has the potential to show a better overall combination
of not only lower speed loss in dreamy mode and lower overall energy use in
dreamy mode, than the conventional hierarchy. Since RAMpage in general (and
more specifically when contect switches are taken on misses) spends a lower
fraction of its time waiting for DRAM, it is likely that it will need DRAM to be
in full-power mode less often than the standard hierarchy does.

4 Results

4.1 Introduction

This section presents results of simulations, with some discussion of their signif-
icance. The main focus here is on comparing the effects of varying the memory
hierarchy on energy and power use.

Figure 1 shows an overall comparison of all the variations measured. Of most
interest is the fact that it’s hard to tell apart speed variations of the best cases
for each configuration on the same scale, whereas energy variations for dreamy
and non-dreamy cases are clearly separated. This observation illustrates that
aiming to save energy while minimizing performance loss is achievable.

The remainder of this section presents more detail of results. Speed variations
are followed by energy variations. Finally, design trade-offs are considered.

4.2 Speed Variations

Speed variations are shown in Table 1. Speedups are shown for the non-dreamy
case of the best measured time versus each other time. For dreamy times,
speedups are given both relative to the same parameters with and without
dreamy mode (2nd-last column) and the best non-dreamy time (last column).
The best dreamy and non-dreamy times are highlighted.

The best dreamy run time is for RAMpage with context switches on misses,
with a 2KB SRAM page size. Execution time here is 9% slower than for the
best non-dreamy case (conventional hierarchy, 512B L2 block size). More speed
variation is accounted for by variations in the SRAM page or L2 block size than
by using or not using dreamy mode. The slowest dreamy simulated execution
time is 5.06s; the slowest non-dreamy time is 4.92s, a difference of under 3%.

The standard hierarchy’s best dreamy time (1KB L2 block size) is 15% slower
than the best non-dreamy time, while the best dreamy RAMpage time without
context switches on misses is 12% slower than the best non-dreamy time.

Initial Experiences with Dreamy Memory 153

Fig. 1. Comparison of speed and energy usage. In all figures, “CX” means with context
switches on misses.

154 P. Machanick

While RAMpage doesn’t do well with small SRAM page sizes – as reported
in earlier work [16] – time variations for cases with reasonable SRAM page sizes
are low considering the relatively large energy saving of dreamy mode. RAMpage
with and without context switches on misses does not differ as significantly as
in earlier studies with a large CPU-DRAM speed gap and large L2 [14]. Dreamy
mode does increase the effective CPU-DRAM speed gap: an extra miss penalty of
500 clock cycles similar to increasing the processor speed to the speeds previously
modelled. However, as expected, the smaller SRAM main memory used in this
study disadvantages RAMpage more than the conventional model.

More data is needed to understand why RAMpage with context switches on
misses is faster in some cases in dreamy mode. A possible explanation is that
dreamy mode, with its longer latency for DRAM accesses, loses less performance
to context switches before a working set has loaded fully into SRAM.

4.3 Energy Variations

Table 2 shows the simulated DRAM energy usage for each variation.
The lowest-energy non-dreamy case is the standard hierarchy with a 512B L2

block size, which also has the quickest execution time. For dreamy runs, however,
the lowest-energy case is RAMpage without context switches on misses for a 4KB
SRAM page size, as compared with the fastest case: 2KB page size, with context
switches on misses. The reason for this discrepancy results from the fact that in

Initial Experiences with Dreamy Memory 155

Fig. 2. All vs. Standard dreamy energy usage.

the 4KB case, DRAM is awake for a smaller total time (lower “awake” energy).
The time DRAM is awake depends on time that transfers take. A larger page
size may reduce the miss rate, but total transfer time may increase. Context
switches on misses hides this effect by doing other work on a miss. However,
increased energy is not disguised by overlapping transfers with other work.

Figure 2 compares energy use in dreamy mode for all variations with a break-
down of energy use by the standard architecture. Energy use increases signifi-
cantly for large cache block sizes in the standard architecture, which is less true
of RAMpage variations. The reason for this behaviour of the standard model
can be seen in Figure 2. As L2 block size increases, energy use while asleep de-
creases, but awake energy increases, corresponding to a larger fraction of time
being spent waiting for DRAM (as confirmed by the increase in execution time
for the standard dreamy simulations for larger L2 block sizes, in Figure 1(a)).

Figure 3 compares RAMpage variations. The increase in energy use for con-
text switches on misses with a 4KB page size needs further investigation. A likely
cause is increased contention for SRAM pages resulting from the higher context
switch rate. Large pages (or cache blocks) are likely to have the highest benefit
if their prefetch effect can be put to good use.

4.4 Overall Trade-Offs

In summary, the fastest time does not necessarily correspond to lowest energy
use, even if the system is not operating for as long overall. The quickest dreamy
run time was (context switches on misses, 2KB SRAM page size), while the
lowest-energy variant took (4KB SRAM page size, no context switches on
misses). The lowest-energy variant ran about 3% slower than the fastest dreamy
variant, or 12% slower than the fastest non-dreamy variant).

156 P. Machanick

Fig. 3. Comparison of RAMpage dreamy energy breakdown.

Electing to run RAMpage in its fastest dreamy mode would require 10%
more energy for DRAM than its fastest variant. However, the overall fastest
version (conventional, 512B L2 blocks) needs 6.6 times the energy of the most
energy-efficient version, or 6 times the energy of the fastest dreamy variation.

A designer therefore can balance choices between maximum speed (no dreamy
mode, standard two-level cache) and maximum energy saving (RAMpage with-
out context switches on misses, SRAM page size chosen for lowest energy). As
a compromise, it would be possible to use RAMpage with context switches on
misses, with sub-optimal energy use, but better performance.

These speed-energy trade-offs only represent DRAM energy. The CPU and
SRAM modelled use 1W (0.2W and 0.8W, respectively). For a run time of
the pair uses 2.57J whereas over the best run time of the total goes
to 2.36J. This difference is easily justified by saving over 1J in DRAM energy
but, nonetheless, a more comprehensive energy analysis of the whole system is
needed. For example, PADRAM runs uses more energy in its equivalent of a
simply dreamy mode than without [11], probably because of its relatively small
L2 cache. The relatively large L2 used here, on the other hand, uses more energy
than one would like for a low-energy design.

5 Conclusion

5.1 Introduction

This paper has presented an initial study of use of the RAMpage memory hi-
erarchy to reduce DRAM energy usage. The approach used was to simulate a
dreamy memory, in which DRAM is turned off except when referenced. The mo-
tivation for this study is previous results which have showed RAMpage to be
more tolerant of increased DRAM latency than a conventional hierarchy.

Initial Experiences with Dreamy Memory 157

The remainder of this section summarizes results, outlines future work and
presents overall conclusions.

5.2 Summary of Results

RAMpage, with the option of context switches on misses, presents some useful
trade-offs in choosing an energy-speed design trade-off. Assuming a relatively
low-energy processor design (as well as low-energy components for the remainder
of the system), dreamy energy savings could be significant. The fastest config-
uration uses almost 7 times the energy of the most energy-efficient one, for a
performance gain of only 12%. The performance cost of dreamy mode can be
brought down to 9% by a relatively modest compromise on energy saving: this
dreamy configuration still uses a sixth of the energy of the fastest version.

The best overall compromise is achieved by RAMpage with context switches
on misses, though by a less significant margin than in earlier studies, which
showed this variant to be most tolerant of high DRAM latencies [14]. A relatively
small SRAM layer makes RAMpage less competitive than in these earlier studies.

5.3 Future Work

It is important that, while the savings were achieved with modest speed loss,
overall energy usage should take into account other parts of the system, which
would use more energy if left in full power mode for a longer time. If energy for
the processor and L2 are added in, the fastest dreamy version also has the lowest
overall energy by a small margin 2.78J versus 2.82J for the version with lowest
DRAM energy). This should be compared against 3.58J for the best non-dreamy
version, a saving of 29% which is useful but not as dramatic as a factor of 6.

Results should be extended to a more detailed analysis of overall system
energy, including low-energy variations on caches, and low-energy versions of
faster processors. The simulated SRAM has a relatively low latency for waking
up from low-power mode (50% of the latency of an L2 hit). Since 1MB SRAM
(0.8W) uses more power than DRAM in full-power mode (0.52W) – as simulated
here – this would be a useful variation to explore.

A RAMpage implementation on the L4 Pistachio kernel [5] is planned. This
kernel is small enough to permit implementation of its minimum memory-
resident data and code in the 64KB static RAM memory in the ARM11 family.
Using this extra SRAM would also make it viable to implement RAMpage with
a smaller SRAM main memory, a significant factor in the overall energy budget
of this kind of system. L4 has been ported to the M5 architecture simulator [3]
by the NICTA group at University of New South Wales, creating the possibility
of RAMpage on a full-system simulator, a goal of earlier work.

The existing simulator will be used to experiment with further variations
on energy-efficient memories. For example, instead of an SRAM main memory,
main memory could be implemented in a small fast permanently powered up
DRAM, with the remaining DRAM operating as a dreamy paging device.

158 P. Machanick

5.4 Overall Conclusion

In this latest study, investigating dreamy memory model has shown the potential
for RAMpage in low-energy designs. While RAMpage did not run in the shortest
time in full-power mode (expected with a relatively slow processor), it did have
both the fastest and lowest-energy measurements in dreamy mode.

Results showed a fair fraction of the potential energy gain: full power mode
needed 100 times that of self-refresh mode; the lowest-energy case used less than
a sixth of full DRAM power. The aim of achieving close to an average of self-
refresh power use with as close as possible to full speed has been partially met.
More sophisticated approaches to minimizing power use (e.g., keeping power on
for a period after a reference, exploiting a wider range of low-power modes, and
dynamic page placement policies, as in PAVM) could further reduce energy use.

The design trade-offs discussed here represent a starting point: overall low-
energy system design requires design of the whole system to minimise energy
use. Just as Amdahl’s Law shows that focus on one area of speed improvement
has diminishing returns, we need to be careful not to interpret energy savings in
isolation. Nonetheless RAMpage shows promise in the area of low-energy design,
and this study will be followed up with others.

Acknowledgements. Financial support for this work has been received from
the University of Queensland. I would like to thank Gernot Heiser for proposing
that I investigate energy management using RAMpage.

References

1.

2.

3.

4.

5.

6.

ARM. The ARM11 Microprocessor and ARM PrimeXsys Platform. ARM, October
2002.
http://www.arm.com/pdfs/ARM11%20Core%20&%20Platform%20Whitepaper.pdf.
Luca Benini, Alberto Macii, and Massimo Poncino. From Energy-aware design
of embedded memories: A survey of technologies, architectures, and optimization
techniques. From ACM Trans. on Embedded Computing Sys., 2(1):5–32, 2003.
N. L. Binkert, E. G. Hallnor, and S. K. Reinhardt. From Network-oriented full-
system simulation using M5. From In Sixth Workshop on Computer Architecture
Evaluation using Commercial Workloads (CAECW), pages 36–43, February 2003.
Yun Cao, Hiroyuki Tomiyama, Takanori Okuma, and Hiroto Yasuura. From Data
memory design considering effective bitwidth for low-energy embedded systems.
From In Proc. 15th Int. Symp. on System Synthesis, pages 201–206, Kyoto, Japan,
2002.
Uwe Dannowski, Kevin Elphinstone, Jochen Liedtke, Gerd Liefländer, Espen
Skoglund, Volkmar Uhlig, Christian, Ceelen Andreas, and Haeberlen Marcus Völp.
From The L4Ka vision. From Technical report, University of Karlsruhe, System
Architecture Group, April 2001. From
http://i30www.ira.uka.de/research/documents/14ka/L4Ka.pdf.
Richard Fromm, Stylianos Perissakis, Neal Cardwell, Christoforos Kozyrakis, Bruce
McGaughy, David Patterson, Tom Anderson, and Katherine Yelick. From The en-
ergy efficiency of IRAM architectures. From In Proc. 24th Int. Symp. on Computer
Architecture, pages 327–337, Denver, CO, 1997.

Initial Experiences with Dreamy Memory 159

7.

8.

9.

J.L. Hennessy and D.A. Patterson. From Computer Architecture: A Quantitative
Approach. From Morgan Kauffmann, San Francisco, CA, 3rd edition, 2003.
Hai Huang, Padmanabhan Pillai, and Kang G. Shin. From Design and imple-
mentation of power-aware virtual memory. From In Proc. USENIX 2003 Annual
Technical Conference, pages 57–70, San Antonio, Tx, June 2003.
E.E. Johnson. From Graffiti on the memory wall. From Computer Architecture
News, 23(4):7–8, September 1995.
Stefanos Kaxiras, Zhigang Hu, and Margaret Martonosi. From Cache decay: ex-
ploiting generational behavior to reduce cache leakage power. From In Proc. 28th
Ann. Int. Symp. on Computer architecture, pages 240–251, G teborg, Sweden, 2001.
Alvin R. Lebeck, Xiaobo Fan, Heng Zeng, and Carla Ellis. From Power aware
page allocation. From In Proc. 9th Int. Conf. on Arch. Support for Programming
Languages and Operating Systems (ASPLOS-9), pages 105–116, Cambridge, MA,
November 2000.
P. Machanick. From The case for SRAM main memory. From Computer Architec-
ture News, 24(5):23–30, December 1996.
P. Machanick. From Correction to RAMpage ASPLOS paper. From Computer
Architecture News, 27(4):2–5, September 1999.
P. Machanick. From Scalability of the RAMpage memory hierarchy. From South
African Computer Journal, (25):68–73, August 2000.
P. Machanick and Z. Patel. From L1 Cache and TLB Enhancements to the RAM-
page Memory Hierarchy. From In Proc. Eighth Asia-Pacific Computer Systems
Architecture Conf., pages 305–319, Aizu-Wakamatsu City, Japan, September 2003.
P. Machanick, P. Salverda, and L. Pompe. From Hardware-software trade-offs in a
Direct Rambus implementation of the RAMpage memory hierarchy. From In Proc.
8th Int. Conf. on Architectural Support for Programming Languages and Operating
Systems (ASPLOS-VIII), pages 105–114, San Jose, CA, October 1998.
Micron Technology. From 256Mb: x4, x8, x16 DDR SDRAM, December 2003. From
Data Sheet,
http://download.micron.com/pdf/datasheets/dram/ddr/256Mx4x8x16DDR.pdf.
NEC. From MOS integrated circuit 4482182, 4482322,
4482362, December 2002. From Data Sheet No. M14522EJ3V0DS00,
http://www.necel.com/memory/pdfs/M14522EJ3V0DS00.pdf.
Ashley Saulsbury, Fong Pong, and Andreas Nowatzyk. From Missing the memory
wall: the case for processor/memory integration. From In Proc. 23rd Ann. Int.
Symp. on Computer architecture, pages 90–101, 1996.
Hojun Shim, Yongsoo Joo, Yongseok Choi, Hyung Gyu Lee, and Naehyuck Chang.
From Low-energy off-chip SDRAM memory systems for embedded applications.
From Trans. on Embedded Computing Sys., 2(1):98–130, 2003.
W.A. Wulf and S.A. McKee. From Hitting the memory wall: Implications of the
obvious. From Computer Architecture News, 23(1):20–24, March 1995.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

dDVS: An Efficient Dynamic Voltage Scaling
Algorithm Based on the Differential of CPU

Utilization*

Kui-Yon Mun, Dae-Woong Kim, Do-Hun Kim, and Chan-Ik Park

Department of Computer Science and Engineering/PIRL
Pohang University of Science and Technology

Pohang, Kyungbuk 790-784, Republic of Korea
{cipark}@postech.ac.kr

Abstract. Traditional dynamic voltage scaling algorithms periodically
monitor CPU utilization and adapt its operating frequency to the up-
coming performance requirement for CPU power management. Predict-
ing CPU utilization is usually conducted by estimating upcoming perfor-
mance requirement. In order for dynamic voltage scaling algorithms to be
effective, the prediction accuracy of CPU utilization must be high. This
paper proposes a power management algorithm that improves accuracy
of predicting future CPU utilization using process state information. Ex-
periments show that the proposed algorithm reduces power consumption
by 11%–57% without any performance degradation.

1 Introduction

In mobile battery-powered systems, power is considered as a precious resource,
and a CPU is known to consume more than 50 % of the whole system power [1].
Therefore, efficient CPU power management is required to reduce the power
consumption of a system. In CPUs based on CMOS logic, the peak frequency
is proportional to the supply voltage and power is proportional to the square
of the supply voltage. Dynamic voltage scaling (DVS) has been implemented in
most CPUs in order to control power consumption by dynamically changing its
operating frequency.

Dynamic power management through DVS is classified into two approaches:
an intra task approach and an inter task approach according to the location of
the power management algorithm (i.e., inside of a task or outside of a task). In
intra-task approaches, compiler or software tool analyzes a task and determines
when a CPU frequency has to be changed [2]. This approach can adjust the CPU
frequency with considerable accuracy because the performance requirement of a

The authors would like to thank the Ministry of Education of Korea for its support
toward the Electrical and Computer Engineering Division at POSTECH through its
BK21 program. This research was also supported in part by HY-SDR IT Research
Center, and in part by grant No. R01-2003-000-10739-0 from the Basic Research
Program of the Korea Science and Engineering Foundation.

*

P.-C. Yew and J. Xue (Eds.): ACSAC 2004, LNCS 3189, pp. 160–169, 2004.
© Springer-Verlag Berlin Heidelberg 2004

dDVS: An Efficient Dynamic Voltage Scaling Algorithm 161

task is analyzed in advance. However, this approach is impractical because all
applications have to be modified. Inter-task approach is divided into three ap-
proaches based on the type of information used for power management. The first
approach uses the deadlines of tasks [3,4]. It achieves power reduction by consid-
ering the worst case execution time of a task and uses that information to exploit
the slack time generated by the scheduler However, it requires the task deadline
information, which reduces its applicability. The second approach uses the tasks’
characteristics obtained from the analysis of events such as system calls and task
creation/exit/switch [5]. This approach allows different power management al-
gorithms to be applied to each task according to their characteristics. However,
the overhead of event monitoring and analysis may be significant. For example,
it would cost about 1% - 4% of the total CPU cycles, in order to monitor sys-
tem calls and scheduler of the kernel on Transmeta Crusoe’s CPU [5]. The third
approach periodically monitors the CPU utilization, and uses that information
to predict the expected CPU utilization [6,7]. The CPU frequency is changed
adaptively to the predicted CPU utilization. Because this operation must be re-
peated periodically, it is called an interval-based approach. This approach pro-
vides higher applicability than other approaches while achieving simplicity. How-
ever, this approach could suffer from inefficiency due to its inaccurate prediction.
We consider the interval-based approach promising because of its simplicity.

A careful investigation of existing interval-based approaches leads us to iden-
tify the reason for its inaccurate prediction. In Figure 1, we assume that there
are only three processes and and their utilizations are 0.2, 0.3, and 0.3
respectively, on each run. At every interval, the CPU utilization for the next in-
terval is computed as the exponential average (EXP) of the previous and current
CPU utilizations [8]. As shown in Figure 1(a), there exists a large gap between
the actual CPU utilization and the CPU utilization predicted by the EXP. We
think this is mainly caused by the fact that we computed EXP over all processes
regardless of their state. In Figure 1(b), after the fourth interval, and exist
in the request queue (RQ). EXP predicts that utilization is 0.2 and
utilization is 0.3, and computes the CPU utilization of the fifth interval as 0.5.
Thus, considering the states of processes in the computation of EXP improves
the prediction accuracy of the CPU utilization. Table 1 shows that there is a
very low probability of a process to remain in the ready-to-run state for two
consecutive intervals or more.

162 K.-Y. Mun et al.

Fig. 1. Predicting CPU utilization

This paper proposes a dynamic power management algorithm that improves
the prediction accuracy of existing interval-based power management algorithms
using process information. The remainder of this paper is organized as follows.
Section 2 describes the proposed algorithm. Section 3 evaluates the amount
of power consumption of the proposed algorithm and existing interval-based
algorithms under various types of workloads. Finally, the conclusion is presented
in Section 4.

2 The Proposed Algorithm

In this section, we propose an algorithm that improves the efficiency of a dy-
namic power management by only considering the processes that are likely going

dDVS: An Efficient Dynamic Voltage Scaling Algorithm 163

Fig. 2. Description of the proposed algorithm

to be executed in the next interval. This algorithm periodically keeps track of
utilizations of each process executed in previous intervals, finds the processes to
be executed in the next interval, and predicts the future CPU utilization as the
sum of their utilizations estimated by an existing interval-based approach. Thus,
the proposed algorithm requires process information, such as the process’s state,
its scheduling priority and its past utilizations. Table 2 shows the description of
the notations to be used in the subsequent section.

Figure 2 describes the proposed algorithm. First, it updates the utilization of
all processes executed in the current interval. Utilization of process is equal to

The execution time of each process in this algorithm should be normalized
by the maximum frequency because it is dependent on CPU frequency
when measured. For example, when the maximum frequency is 600 MHz and a
process was executed at 300 MHz for 10 ms, the execution time of the process
is 5 ms. Next, the proposed algorithm selects processes that are highly likely

164 K.-Y. Mun et al.

going to be executed. A process has three different states: READY to wait for
run, WAIT to wait for I/O’s completion or signals, and RUN to be executed
on a CPU. The kernel’s scheduler chooses a process with the highest scheduling
priority from the set containing all processes with a ready state. Thus, the next
process to be executed can be predicted by checking the priority of processes
before its execution. Therefore, the proposed algorithm chooses processes
with high scheduling priority from the set of processes with READY state. The
parameter is chosen empirically. Next, it estimates the utilizations of each
chosen processes. In order to predict them, it uses a per-Process Utilization Pre-
dictor (PUP). PUP predicts the utilization of a process on the next interval by
using its past utilizations. Any interval-based approach can be used as PUP.
Next, the proposed algorithm estimates the CPU utilization as the sum of the
utilizations of each process estimated by PUP. Finally, it computes the CPU
frequency in the next interval. Because the CPU utilization from the previous
step is based on the minimum frequency, the CPU frequency in the next interval
is equal to the multiplication of CPU utilization and the minimum frequency.
The proposed algorithm applies existing interval-based approaches to each pro-
cesses to be executed in the next interval instead of entire processes executed
in the past intervals. Because it only considers processes with READY state,
the creation/exit and state change of a process affects its prediction. Thus, in
the cases where the state of a process often varies or its lifetime is short, this
algorithm largely reduces the power consumption compared to existing interval-
based approaches. By contrast, in the case of a process that seldom changes its
state, both this algorithm and existing interval-based approaches show a similar
performance.

3 Performance Evaluation

3.1 Experimental Environment

The proposed algorithm has been evaluated on a Sony VAIO-C1VJ notebook
equipped with Transmeta’s Crusoe CPU. The CPU provides four pairs of differ-
ent frequency and voltage levels, which are (300 MHz, 1.3 V), (400 MHz, 1.35 V),
(500 MHz, 1.4 V), and (600 MHz, 1.6 V). Thus, the maximum CPU frequency is
600 MHz To set the frequency and voltage, TM5600 stays in the
sleep mode for and consumes energy. The experimental results
in this paper includes the overheads such as time and power. PAST, EXP, and
Proportional-Differential (PD) are used as PUPs of the proposed algorithm. PD
is one of the traditional control theories and estimates the change concerning the
direction of a slope [9]. PAST assumes that the future CPU utilization will be
the same as the previous one. Table 3 shows the formulas of PUP when PAST,
PD and EXP are used as the PUPs of the proposed algorithm.

The proposed algorithm is implemented within Linux kernel version 2.5.58
like Figure 3. The length of time quantum in Linux kernel is 10 ms (Q = 10). We
added a new data structure, called the utilization history table, to keep track of
the CPU utilization of each process. A process is allocated an entry in the table

dDVS: An Efficient Dynamic Voltage Scaling Algorithm 165

Fig. 3. Implementation of the proposed algorithm within Linux kernel

right after its creation and releases the entry before its termination. Each entry
of the table contains three fields: valid_flag, curr_util and prev_util. valid_flag
indicates whether the corresponding information is valid or not, curr_util refers to
the current utilization and prev_util holds the utilization of the previous periods.
CPU utilization information is updated in the timer interrupt handler. The timer
interrupt handler updates curr_util of the current process. This method has little
computational overhead. More precise CPU utilization can be measured if it is
updated every time processes change their states. A new kernel process is created
to carry out the proposed power management. It not only periodically monitors
the state of each process, but also adjusts the CPU frequency accordingly based
on the predicted CPU utilization.

Table 4 shows the execution time of an application and the computing over-
head when the proposed algorithm runs at different monitoring intervals. The
computing overhead is calculated by taking a ratio of the execution time of the
power management code to the total execution time. The interval length, de-
noted by I, is the interval at which the proposed power management code is

166 K.-Y. Mun et al.

executed. With an extremely short monitoring interval, the computing overhead
of the algorithm increases, but the accuracy of prediction becomes high enough.
For example, the 10 msec monitoring interval entails the 0.67% computing over-
head shown in Table 4. By contrast, with an extremely long monitoring interval,
the prediction accuracy becomes too low. For instance, Table 4 reveals that
the 200 msec monitoring interval prolongs the execution time of the application
by about 34 seconds, due to its inaccurate prediction. Because the number of
processes on READY queue at any given moment is generally less than so
the estimated CPU utilization is prone to be less than the practical CPU uti-
lization. The most desirable monitoring interval is observed to be 100 msec in
Table 4. Note that the 100 msec monitoring interval will be used in subsequent
experiments (I = 100).

Three types of applications have been used to verify the efficiency of the pro-
posed algorithm. The first type is a set of I/O intensive applications. They are
Ubench4.0.1/fsdisk and fstime.1 The second type is a set of interactive applica-
tions. In order to provide identical set of inputs to the applications we logged
our desired set of input using “Interactive Linux application Benchmark”2 before
carrying on with the experiments involving XPDF and LLL-1.4.3 The third stage
of the experiment was conducted using the Mplayer (Linux’s MPEG player4),
and Xmms (Linux’s MP3 player5). In order to make a fair comparison between
the power management policies, a MPEG video clip and a MP3 file are deliber-
ately chosen so that no frame drops will occur under any policies.

3.2 Experimental Results

In order to show the prediction accuracy improvement, the proposed algorithm
was compared to PAST, EXP, and PD. In the remaining sections, we abbrevi-
ated the proposed algorithm by prefixing the name of its PUP with ‘P’, that
is, PPAST, PEXP, and PPD. The experimental results of each application are
appraised by considering the power saving gains, performance impact and the

http://www.tux.org/pub/tux/benchmarks/System/unixbench, Unix Benchmark
http://opensource.nus.edu.sg/~ctk/benchmark/bench.html, Benchmarking of
interactive linux applications
http://users.pandora.be/thomas.raes/LSS/lss.html, Linux Lunar Lander
http://www.mplayerhq.hu/homepage/design6/info.html, Mplayer
http://www.xmms.org, XMMS

1

2

3

4

5

dDVS: An Efficient Dynamic Voltage Scaling Algorithm 167

computing overhead. When an application runs without any power management
policy (NPM), we assumed that the power consumption of NPM is 1. Thus,
the consumed power is normalized by that of NPM. The computing overhead is
calculated by taking the average of execution times of the power management
code over all intervals.

As shown in Table 5, the performance of I/O applications can be assessed by
their execution time. PPD, PEXP, and PPAST achieved a 15%–17%, 51%–57%
and 30%–37% power reduction over PD, EXP, and PAST respectively. An I/O
intensive process repeats the WAIT-READY-RUN cycle to handle I/O requests.
By considering the current states of the processes, we can figure out when an
I/O intensive process is going to take up a portion of the CPU time. This results
in reduced power consumption of I/O applications by 15%–57% without delay
in execution time.

Table 6 shows the experimental results when an interactive application, xpdf
or LLL, generates workload. In general, the proposed algorithm reduces power
consumption by 12.5%–54%. However, in the case of xpdf, PPAST consumes
more power than PAST. Note that the PAST increases the execution time of
the xpdf compared to other policies by 32.8 seconds in the worst case. This is

168 K.-Y. Mun et al.

a severe performance degradation. It seems that PAST predicts a lower CPU
utilization than the actual CPU utilization.

Table 7 shows the experimental results when the multimedia file chosen is
played with any frame drops. The proposed algorithm diminished the power con-
sumption by 11%–48% over PAST, EXP, and PD. However, the power reduction
rate of the multimedia application is less than that of the other applications. Be-
cause the multimedia application process stays in READY and RUN state after
its creation, a slight gap in the power reduction rate occurs.

As shown in the experimental results of Table 5–6, the proposed algorithm
achieves a large power reductions over existing interval-based approaches, such
as PAST, EXP and PD. Although the computing overhead increases to 3.5 times
in the worst case, each application runs without any delay in its execution time
and the power consumption also decreases as well.

4 Conclusion and Future Work

This paper proposed an efficient power management algorithm in order to im-
prove prediction accuracy using processes’ state information. The experiments
with the proposed algorithm revealed that the power consumption of the pro-
posed algorithm is reduced by 11%–57% when compared to the existing interval-
based algorithms such as PD, EXP and PAST. However, the efficiency of the
proposed algorithm is depended on the length of the monitoring interval. Choos-
ing the optimal interval length for each type of applications still remains as our
future work.

References

1.
2.

COMPAQ: Compaq presario based on amd mobile athlon 4 (2001)
Azevedo, A., Issenin, I.: Profile-based dynamic voltage scheduling using program
checkpoints. In: Proceedings of design automation and test in Europe. (2002)

dDVS: An Efficient Dynamic Voltage Scaling Algorithm 169

3.

4.

5.

6.

7.

8.

9.

Krishna, C.M., Lee, Y.H.: Voltage-clock-scaling adaptive scheduling techniques for
low power and real-time systems. In: Proceedings of the sixth IEEE real time
technology and applications symposium. (2000)
Okuma, T., Ishihara, T., H.Yasuura: Real-time task scheduling for a variable voltage
processor. In: Proceedings of the international symposium on system synthesis.
(1999)
Flautner, K., Mudge, T.: Vertigo: automatic performance-setting for linux. In:
Proceedings of operating systems design and implementation. (2002)
Govil, K., Chan, E., Wasserman, H.: Comparing algorithms for dynamic speed-
setting of a low-power cpu. In: Proceedings of the first international conference on
mobile computing and networking. (1995)
Pering, T., Burd, T., Brodersen, R.: The simulation and evaluation of dynamic volt-
age scaling algorithms. In: Proceedings of international symposium on electronics
of lower power and design. (1998) 76–81
Lu, Y.H., Benini, L.: Power-aware operating systems for interactive systems. IEEE
Trans. VLSI 10 (2002) 119–134
Kuo, B., Golnaraghi, F.: Automatic control systems. eighth edn. John Wiley &
Sons, Inc. (2003)

High Performance Microprocessor Design
Methods Exploiting Information Locality and
Data Redundancy for Lower Area Cost and

Power Consumption

Byung-Soo Choi1, Jeong-A Lee2, and Dong-Soo Har3

1 Ultrafast Fiber-Optic Networks Research Center
K-JIST(Kwangju Institute of Science and Technology)

1 Oryong-dong Puk-gu Gwangju, 500-712, Republic of Korea
bschoi@kjist.ac.kr

2 Department of Computer Engineering
Chosun University

375 Susuk-dong Dong-gu Gwangju, 501-759, Republic of Korea
jalee@chosun.ac.kr

3 Department of Information and Communications
K-JIST(Kwangju Institute of Science and Technology)

1 Oryong-dong Puk-gu Gwangju, 500-712, Republic of Korea
hardon@kjist.ac.kr

Abstract. Value predictor predicting result of instruction before real
execution to exceed the data flow limit, redundant operation table remov-
ing redundant computation dynamically, and asynchronous bus avoiding
clock synchronization problem have been proposed as high performance
microprocessor design methods. However, these methods increase area
cost and power consumption problems because of the larger table for
value predictor and redundant operation table, and the higher switch-
ing activity in asynchronous bus. To resolve the problems of data tables
for value predictor and redundant operation table, we have investigated
partial tag and narrow-width operand methods, which have been re-
cently proposed separately and present an efficient update method for
value predictor and a table organization method for redundant opera-
tion table, respectively. To reduce excessive switching activity of asyn-
chronous bus, we also propose a bus encoding method using frequent
value cache, which reduces the same data transmissions. The proposed
three methods – an efficient update method for value predictor, a ta-
ble organization method for redundant operation table, and a frequent
value cache for asynchronous bus – exploit information locality such as
instruction and data locality as well as data redundancy. Analysis with a
conventional microprocessor model show that the proposed three meth-
ods reduce total area cost and power consumption by about 18.2% and
26.5%, respectively, with negligible performance variance.

P.-C. Yew and J. Xue (Eds.): ACSAC 2004, LNCS 3189, pp. 170–184, 2004.
© Springer-Verlag Berlin Heidelberg 2004

High Performance Microprocessor Design Methods 171

1 Introduction

Until a few years ago, performance improvement has been a key research issue
in microprocessor design. Recently, however, the area cost and the power con-
sumption of a microprocessor have been increased drastically as the number of
transistors keeps increasing. As a result, research interest has been shifted to per-
formance improvement while maintaining the efficiency of area cost and power
consumption. In this paper, several design methods have been investigated for
a high performance microprocessor with an emphasis on achieving efficient area
cost and power consumption.

Among many design techniques for a high performance microprocessor, three
methods are investigated such as value predictor, redundant operation table, and
asynchronous dual-rail bus in this research. The value predictor predicts a result
of an instruction before the instruction is actually executed. Hence dependent
instructions can be executed at the same time when the instruction is executed.
On the other hand, the redundant operation table stores recently executed in-
structions in a table and checks whether the current executable instruction is
already stored in the table. In other words, the redundant operation table can
skip the real execution of an instruction by a simple lookup procedure with the
table, subsequently shortening the execution time of the instruction. Another
alternative design technique, the asynchronous dual-rail bus is a reliable bus
scheme for a complex system such as a futuristic high performance microproces-
sor. The asynchronous dual-rail bus can transmit data in a reliable fashion by
making use of the dual-rail encoding, which combines the data and the control
signals.

Analyzing the aforementioned three design methods from the area cost and
power consumption points of view, several attempts are made especially to find
some locality and redundancy of data used in each design method. Several infor-
mation localities and data redundancies were found, which causes extra area cost
and power consumption. More specifically, the value predictor and the redun-
dant operation table store the same or a little different instructions (instruction
locality), small operand values (operand data locality), and small result values
(result data locality), whereas the asynchronous dual-rail bus transmits the same
data items repeatedly (communication data locality). From what we observed
about these localities, a conclusion was reached that each design method can be
further enhanced for lower area cost and lower power consumption by exploiting
such localities to reduce redundancy.

In this paper, we propose three enhanced methods as follows. First, for value
predictors, we propose a method to combine the two previously proposed area
cost reduction methods such as partial-tag and narrow-width methods. Second,
we designed a partial resolution method to reduce the area cost of the tag fields
in the redundant operation table. Third, we applied the previously proposed
frequent value cache method into an asynchronous dual-rail bus to minimize the
communication data redundancy.

As the last step, we investigated total area cost and power consumption
reduction effects in a conventional microprocessor model. By using the proposed

172 B.-S. Choi, J.-A Lee, and D.-S. Har

methods, the total area cost and power consumption in a microprocessor model
would be reduced by about 18.2% and 26.5%, respectively.

This paper is organized as follows. Section 2 describes related work as three
high performance design methods, information locality, and data redundancy.
The proposed area and power reduction methods for value predictor and re-
dundant operation table are described in Section 3 and 4, respectively. Also a
designed power reduction method for asynchronous dual-rail bus is explained in
Section 5. Meanwhile, total area cost and power consumption reduction effects
in a microprocessor model are analyzed in Section 6. Section 7 concludes this
research.

2 Related Work

2.1 High Performance Design Methods

Value Predictor: Value predictors have been proposed to overcome the data
dependency problems in the instruction-level parallelism by predicting a result
value of an instruction before its actual execution [1], [2].
Redundant Operation Table: When the instruction-level parallelism in-
creases, there are many side effects. One of the side effects is the increased
number of redundant executions because of speculative executions due to branch
predictor or value predictor. Unfortunately, speculative or redundant operations
limit the performance improvement and increase the power consumption as well
[3]. To overcome such negative effects, many optimization methods have been
proposed [4], [5]. One typical solution is eliminating redundant operations, where
redundant executions of complex operations are replaced by simple table lookup
operations [6].
Asynchronous Dual-Rail Bus: Because of the steady increase of the number
of components in a chip, SOC design methods have been studied intensively
and will be used for a futuristic high performance microprocessor. To succeed
in the market, the time-to-market and the reliability of a SOC are very impor-
tant. To help the design efforts for a short design time and reliability of SOCs,
asynchronous design methods [7] have been studied recently. For a reliable asyn-
chronous bus structure in SOC designs, the dual-rail data encoding method [8]
has been intensively investigated.

2.2 Information Locality and Data Redundancy

Information Locality: Information localities in a microprocessor are defined,
which are related to instructions, operands of instructions, results of instruc-
tions, and communication data over bus. First, instruction locality is defined as
a small number of instructions is repeatedly or frequently executed, and usu-
ally the instructions are located closely to each other in a given time interval.
Second, operand locality is defined as the data value of the operand is small
in most instructions and can be represented with small number of bits. Third,

High Performance Microprocessor Design Methods 173

result locality is defined as the results of most instructions are small which can
be represented with small number of bits. Last, communication data locality is
defined as a bus transmits the same or very similar data repeatedly or frequently
in a given time interval.
Data Redundancy: Considering the above information localities, we can infer
that there are data redundancy in instructions, operands of instructions, results
of instructions, and communication data over bus, respectively. First, data re-
dundancy of instructions is occurred when the instruction addresses in a given
time interval are not so different, which can be inferred that the higher bits of
instruction address are the same. Hence the higher bits of addresses of executed
instructions in a given time interval are redundant. Second, data redundancy of
operands is occurred when most operands of executed instructions in a given time
interval require a small number of bits, and hence the higher bits of operands
are considered as redundant bits. Third, data redundancy of results is occurred
when the most results of executed instructions in a given time interval require a
small number of bits, and hence the higher bits of results are redundant. Last,
data redundancy of communication data is occurred when the most communi-
cation data in a given time interval are the same or similar, and hence most
communications are redundant.

3 Value Predictor

3.1 Table Structure

In this research, we explain only the stride predictor for the simplicity. The stride
predictor assumes that consecutive result values of an instruction have the same
stride value [1]. Usually, a value predictor exploits a large data table to store
required information and is referenced by the instruction address.

3.2 Combining Partial Tag and Narrow-Width Operand Method

Two Methods to Reduce Area and Power of Value Predictor: To reduce
the area cost and power consumption of value predictor, two methods have been
already proposed as follows.
Partial Tag Method: Instruction or data caches are usually based on a correct
association between an instruction address and an indexed entry because the
lookup data must be the same value as the previously stored value. In the value
predictor, however, a lookup data is a prediction value so that it does not always
require the correct association between a lookup address and an indexed data.
Based on such a loose association between a lookup address and an indexed data,
a value predictor does not necessarily use a full-tag, but can use a partial-tag,
which reduces the area cost of the tag part [9]. Briefly, the full-tag method takes
an address as a tag except for index bits, but the partial-tag method only uses
some part of a full-tag.
Narrow- Width Operand Method: Analysis of the result values of a program shows
that only a few result values require a full precision value supported by processor

174 B.-S. Choi, J.-A Lee, and D.-S. Har

Fig. 1. Combining Method of Partial-Tag and Narrow-Width Methods

registers. Taking into account such locality, the narrow-width operand method
classifies result values into two types as the narrow-width and the wide-width
result values according to the required number of bits [10]. For the purpose of
area cost reduction in data tables, the narrow-width operand method utilizes
both the narrow-width and wide-width tables for storing the narrow-width and
wide-width result values, respectively. If a result value of an instruction requires
fewer bits than the predetermined number of bits, prediction information of the
instruction is stored in the narrow-width table. Otherwise, prediction informa-
tion is stored in the wide-width table. Because the narrow-width table stores
fewer bits for each result value, it reduces the overall area cost of a data table.
Combining Partial Tag and Narrow-Width Operand Methods: To date,
two area cost reduction methods for value predictors have been proposed inde-
pendently. In the present research, a combining method with an efficient table-
update method is proposed to minimize the performance degradation. A simple
method combining these two methods is conceivable. However, such a simple su-
perposition method decreases the performance improvement ratio because two
prediction values are generated from the two tables.

We propose a new table-update method as shown in Figure 1. When the result
of an instruction is classified into a narrow-width result(wide-width result), the
instruction is stored in the narrow-width table (wide-width table). At the same
time, the wide-width table(narrow-width table) invalidates an indexed entry if
the entry contains the same partial-tag with the instruction. In short, depending
on the classification result of an instruction, only one of the two tables stores
the instruction, and the other table must invalidate a corresponding entry if the
tag is the same with the referenced address.

3.3 Analysis

To measure the effect of the proposed area reduction method, the die size and
the power consumption of value predictor are measured by using CACTI 3.2
[11]. We also investigated IPC value when the proposed method is used with a
SimpleScalar [12] model and SPEC 95 [13] benchmark programs. However, as
we expected, the IPC value changes very little about 1%. Hence we skip the
explanation of IPC variation when the proposed method is used.
Area Cost: Table 1 describes area cost reduction ratios over the conventional
stride predictor. The reduction of area cost is higher with the narrow-width

High Performance Microprocessor Design Methods 175

method than with the partial-tag method. The reason is as follows. The reduc-
tion ratio depends on the portion of the area cost reduced by the partial-tag and
the narrow-width methods. The partial-tag method can decrease the area cost of
the tag part only; however, the narrow-width method can decrease the area cost
of all result values. Meanwhile, the proposed combining method decreases the
area cost more than other area cost reduction methods. The proposed combining
method decreases the area cost by about 71% for the stride predictor.
Power Consumption: Table 1 also describes power consumption reduction ratios
over the conventional stride predictor. The reduction of power consumption is
higher with the partial-tag method than with the narrow-width method. The
reason is as follows. The power consumption of the tag part is larger than that
of data part since each tag comparison requires more power consumption. Mean-
while, the proposed combining method decreases the power consumption more
than other area cost reduction methods. The proposed combining method re-
duces the power consumption by about 61% for the stride predictor.

4 Redundant Operation Table

4.1 Table Structure

In a redundant operation table, operands are partitioned into two parts: an index
and a tag parts. Meanwhile, all operations are classified into integer or floating-
point operations. Hence redundant operation tables have different structures
depending upon the operation type.

4.2 Narrow-Wide-Width Table

A preliminary analysis of operands for integer and floating-point operations in a
SimpleScalar [12] microprocessor with SPEC [13] benchmarks reveals that most
operands can be represented with a small number of bits. A partial resolution
method is proposed to exploit this characteristics. The partial resolution method
eliminates the area cost to store redundant bits for consecutive 0s in the higher
bits for integer operands and the lower bits for floating-point operands in the
conventional wide-width redundant operation table. A wide-narrow-width redun-
dant operation table utilizing the partial resolution method is designed as shown
in Figure 2. The wide-narrow-width redundant operation table dynamically clas-
sifies operations into wide-width and narrow-width operations depending on the

176 B.-S. Choi, J.-A Lee, and D.-S. Har

Fig. 2. Wide-Narrow-Width Redundant Operation Table

operand bit width. When the operation requires narrow-width operands, the in-
struction is stored in the narrow-width redundant operation table. Otherwise, the
instruction is stored in the wide-width redundant operation table. Note that the
concept of the partial resolution method is similar to the partial-tag method [9],
which is proposed to apply for value predictors. The partial-tag method for value
predictors stores imprecise tag information, but the partial resolution method
for redundant operation table should store precise tag information. Hence, the
partial-tag method for value predictor cannot be directly used for the redundant
operation table.

4.3 Analysis

Note that we also investigated IPC value when the proposed method is used with
a SimpleScalar [12] model and SPEC 95 [13] benchmark programs. However,
since the IPC variance is very little, we skip the explanation of IPC variation
when the proposed method is used.
Area Cost: The area cost of the conventional wide-width redundant operation
table can be calculated easily. Meanwhile, the wide-narrow-width redundant op-
eration table consists of two subsidiary predictors, hence the area cost of it is
calculated by the summation of each area cost for narrow-width and wide-width
tables. Based on the above considerations and methods, the relative area cost
is measured as shown in Table 2. Note that the models containing above 512
entries are measured, since the redundant operation table usually requires many
entries. As the table explains, the proposed partial resolution method reduces
the area cost by 20%, for FP 2048-entry, at the maximum.
Power Consumption: Since the conventional wide-width redundant operation
table is referred for all lookups, it can be easily calculated the dynamic power
consumption of the wide-width table. On the other hand, since each subsidiary
table in the wide-narrow-width redundant operation table is referred with differ-
ent lookup ratios, the lookup ratio of each table should be considered. Hence the
total dynamic power consumption of the proposed wide-narrow-width redundant
operation table is calculated by the summation of each power consumption of
narrow-width and wide-width tables considering each lookup ratios. Based on
the above considerations and methods, the relative dynamic power consump-
tion reduction ratio is measured as shown in Table 2. As the table explains, the

High Performance Microprocessor Design Methods 177

Fig. 3. Frequent Value Cache augmented Bus Scheme

proposed partial resolution method reduces the dynamic power consumption by
about 34%, for INT 2048-entry, at the maximum.

5 Asynchronous Dual-Rail Bus

5.1 Frequent Value Cache

One-of-four data encoding method reduces the power consumption of the dual-
rail encoding method by decreasing switching activities [14]. Meanwhile, the data
pattern analysis illustrates that many data items are repeatedly transmitted in
accordance with the result in [15]. Hence we can conclude that the conventional
dual-rail and the previously proposed one-of-four data encoding methods waste
the power when the data bus transmits the same data items repeatedly.

To reduce such waste of power, we proposed a different method, which utilizes
a buffer to exploit the feature of repeatedly transmitted data item. The proposed
buffer stores data items and sends an index for a data item when the data item
to be sent is already stored in the buffer. Since the index requires fewer number
of bits than the data itself, the wasted bandwidth or the switching activity can
be decreased, resulting in low power consumption.

Figure 3 describes a frequent value cache(FVC) very briefly that stores data
items of each communication. The normal sender and receiver deliver a data
item with a normal fashion, while the Comp and Decmp deliver a data item
by a data itself or an index of FVC depending on the hit of FVC. When a
data itself is transferred, all bus lines are used; however, when an index of the
data item is transferred, only the index lines are used. Thus, the index lines are
used for both an index and a data item. To distinguish whether a transmitted
information represents an index or a normal data item, a control signal is used.

178 B.-S. Choi, J.-A Lee, and D.-S. Har

5.2 Analysis

Three measures as hit ratio, switching activity reduction ratio, and power con-
sumption reduction ratio are investigated. The hit ratio is the most important
one since it decides the switching activity reduction ratio that finally determines
the power consumption reduction ratio. To analyze, we investigated a memory
bus in SimpleScalar model [12] and SPEC95 benchmark [13] programs.
Hit Ratio: We found the following conclusions through investigating data pat-
terns over the above memory bus. First, even only one entry of FVC can detect
40% of the repeatedly transmitted data items. Second, over 256 entries can rep-
resent most data items.
Switching Activity: From the high hit ratio of the FVC, it is required to know
how much switching activity can be reduced. In the research, only the change
of signal levels between consecutive data items are measured to calculate the
switching activity ratio of a bus. The normal dual-rail bus utilizes all 32-bit log-
ical bits and each signal line causes two switchings, hence the switching activity
is 32 × 2. Meanwhile, FVC delivers an index for a hit case and a normal data
item for a miss case. In addition, the control signal changes for every commu-
nications, hence it changes two times for each communication. Therefore, the
switching activity when FVC is used is calculated by Equation 1.

Based on the above analysis, the switching activity reduction ratio of FVC
over the normal dual-rail bus model is calculated by Equation 2.

Analysis result illustrates that FVC reduces the switching activity of the con-
ventional model by 75% at maximum. However, the switching activity reduction
ratio is decreased after the maximum point because of the increased number of
index bits.
Power Consumption: The total power consumption should include the power
consumption of the FVC tables although the power consumption ratio of the ta-
ble would be below 5% as explained in [16]. In addition, the power consumption
of the bus itself should be considered as well. To measure the power consumption
of FVC table and bus lines, it is assumed that 0.25 micron technology is used,
and the length of the bus line is 10 mm, which follows the 2001 ITRS [17]. Power
consumptions of the normal model and the FVC model are as follows:
Normal Model: The power consumption is only caused by the dual-rail bus for
logical 32-bit bus lines. Based on the 0.25 micron technology, we assume that 10
mm bus lines consume about 0.4 nJ by using power measure tools.
FVC Model: The power consumption is caused by two parts as the FVC table
and bus lines. To measure the power consumption of the FVC table, CACTI
tool [11] is used. Since all entries should be checked at the same time, it is as-
sumed that the table is a fully-associative content address memory. The power
consumption of FVC model can be formulated as Equation 3. Specifically, the

High Performance Microprocessor Design Methods 179

Fig. 4. Power Consumption Variation

power consumption of the FVC table is multiplied by two because FVC model
requires two FVC tables for a sender and a receiver. Meanwhile, when the FVC
miss, each FVC table must be updated and it consumes more power. To in-
clude this power consumption to update FVC, we include the Miss_Ratio in
the equation.

Finally, it can be derived a power consumption reduction ratio of the FVC
model over the normal model as shown in Equation 4.

Figure 4 shows the power consumption reduction ratio when the FVC model
is used. From the figure, it can be concluded that FVC reduces the total power
consumption by about 14% and 22% at maximum for integer and floating-point
benchmarks, respectively.

6 Analysis in a Microprocessor

Until previous sections, it have been analyzed independently the area cost and/or
power consumption reduction ratios of the proposed methods for value predictor,
redundant operation table, and asynchronous dual-rail bus. Meanwhile, because
our main goal is to reduce the total area cost and power consumption of a high
performance microprocessor, it is needed to know how much area cost and power
consumption can be reduced when the proposed methods are used for each design
method.

6.1 Area Cost and Power Consumption Breakdowns

Because no processor has been implemented with the value predictor, redundant
operation table, and asynchronous dual-rail bus at the same time, it is required
to model a futuristic microprocessor to investigate the portions of area cost and
power consumption of each design method.

180 B.-S. Choi, J.-A Lee, and D.-S. Har

Fig. 5. Area Cost and Power Consumption Breakdowns of Alpha 21264 Model

Conventional Model: The Alpha 21264 microprocessor [18], [19] is selected
to find the breakdown of die size and power consumption of major blocks such
as cache and core parts. Because value predictor and redundant operation table
have similar structure with the cache, it can be assumed that the area cost and
power consumption of tables for value predictor and redundant operation table
are calculated by the relative area cost and power consumption over the cache.
Area Cost and Power Consumption Breakdown: Alpha 21264 utilizes 128Kbyte
Instruction and Data caches, which require about 30% of total area cost [18]
and consumes about 15% of total power consumption [19]. Figure 5(a) and 5(b)
show the breakdowns of area cost and power consumption of the Alpha 21264
model, respectively.
New Model: The new Alpha 21264 model consists of the old Alpha 21264 and
other three design methods. Because of such modification of the old Alpha 21264
model, the area cost and power consumption breakdowns will be changed.
Area Cost Breakdown: The area cost of caches is about 30% and the others
about 70% in the old Alpha 21264 processor. However, the value predictor and
redundant operation tables add more area cost as 164Kbyte and 144Kbyte, re-
spectively. In the old Alpha 21264 processor, 128Kbyte cache uses about 30%
of total die size, hence it can be inferred that the value predictor increases the
total area cost by about 38.4%, which is calculated by 30%*164/128. Also, the
redundant operation table adds about 33.8% of total area cost, which is calcu-
lated by 30%*144/128. Finally, the total area cost is increased by about 72.2%,
which is calculated by the summation of the extra area cost of value predictor
and redundant operation table. From this total area cost increase, it should be
rearranged the portion of area cost of each component as 17.4% for cache, 22.3%
for value predictor, 19.6% for redundant operation table, and 40.7% for others
as shown in Table 3. As shown in the table, it can be known that the portions of
area cost for value predictor and redundant operation table are large, about 42%.
Power Consumption Breakdown: On the other hand, the portions of additional
power consumption of value predictor and redundant operation table can be
calculated by the relative power consumption over cache. It is inferred that the
stride type value predictor consumes five times as much energy as cache from [4].
Hence, the value predictor consumes more energy by about 96.1%, which is calcu-
lated by 15%*(164/128)*5. Meanwhile, the redundant operation table also con-
sumes more energy by about 16.9%, which is calculated by 15%*(144/128). From
this increased total power consumption, it should be rearranged the portions of
power consumption of each block as 7.1% for cache, 2.3% for bus, 45.1% for value

High Performance Microprocessor Design Methods 181

predictor, 7.9% for redundant operation table, and 37.6% for CPU Core as shown
in Table 4. The extra power consumption caused by value predictor, redundant
operation table, and asynchronous dual-rail bus is very large, about 55%.

6.2 Reduction of Total Area Cost and Power Consumption

Area Cost Reduction: When the proposed area cost reduction methods for value
predictor and redundant operation table are used, the total area cost can be
reduced by about 18.2%, which is calculated by the summation of reduction
ratios of area cost for value predictor (22.3% * 64% = 14.3%) and redundant
operation table (19.6% * 20% = 3.9%), as shown in Table 3.
Power Consumption Reduction: Meanwhile, the proposed power consumption
reduction methods can decrease the power consumption of each design method
by about 52% for value predictor, 34% for redundant operation table, and
14% for asynchronous dual-rail bus, which are shown in Table 4. Therefore,
the proposed area cost and power consumption reduction methods reduce the
power consumption by about 23.45%(=45.1%*52%), 2.7%(=7.9%*34%), and
0.3%(=2.3%*14%), respectively, and finally the total power consumption by
about 26.5% as shown in Table 4.

Area Cost and Power Consumption Breakdowns:
Area Cost Breakdown: The portions of area cost of value predictor and redun-
dant operation table are changed as shown in Figure 6(a). As shown in the figure,
the total portion of area cost for value predictor and redundant operation tables
is reduced from 42% to 29%.

Reduction of Total Area Cost and Power Consumption:

182 B.-S. Choi, J.-A Lee, and D.-S. Har

Fig. 6. Area Cost and Power Consumption Breakdowns of Area Cost Reduced Alpha
21264 Model

Power Consumption Breakdown: The portions of power consumption of value
predictor, redundant operation table, and asynchronous dual-rail bus are
changed as shown in Figure 6(b). As shown in the figure, it can be known that
the total portion of power consumption of value predictor, redundant operation
table, and asynchronous dual-rail bus is reduced from 55% to 38%.

7 Conclusion

Throughout this research, we have pointed out that the low area and power de-
sign methods should be proposed for design techniques for a high performance
microprocessor. Among many techniques, three high performance design tech-
niques have been investigated.

Analysis of information locality and related data redundancy illustrates that
the area and power are wasted by the data redundancy in each high performance
design method. Therefore, the information locality was exploited and tried to
minimize data redundancy in each method. Finally, three different approaches
have been proposed for each method respectively.

First, to reduce the waste of area cost and power consumption in a value pre-
dictor, which is caused by data redundancy in tag and data part, we proposed a
combining method of previously proposed partial tag and narrow-width method
with an efficient table-update method. Structural and dynamic analysis show
that the proposed method reduces the area cost by about 71% and the power
consumption by about 61% over the conventional value predictor. Second, for
the redundant operation table, we designed a partial tag method. Although the
redundant operation table wastes area and power in both tag and data parts, a
redundancy minimization method only for tag part has been discussed. The pro-
posed method reduces the area cost by about 20% and the power consumption
by about 34% over the ordinal redundant operation table structure. Third, to
reduce the waste of power consumption of asynchronous dual-rail bus, we utilize
the frequent value cache with several circuits. Analysis results show that the
proposed method decreases the power consumption of a bus in a microprocessor
by about 14% for integer and 22% for floating-point data communications over
a memory bus in a microprocessor.

High Performance Microprocessor Design Methods 183

As well, we examined how much total area cost and power consumption
can be reduced when the proposed area cost reduction methods are used for
each design method. This analysis confirmed that the total area cost and power
consumption would be reduced by about 18.2% and 26.5%, respectively.

Acknowledgments. This work was supported in part by the Korea Science and
Engineering Foundation (KOSEF) through the Ultra-Fast Fiber-Optic Networks
Research Center at Kwangju Institute of Science and Technology.

References

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

Mikko H. Lipasti and John P. Shen: Exceeding the Dataflow Limit via Value Pre-
diction, Proc. of 29th Intl. Symp. on MICRO, (1996) 226-237
Sang-Jeong Lee, Yuan Wang, and Pen-Chung Yew: Decoupled Value Prediction on
Trace Processors, Proc. of 6th IEEE Intl. Symp. on HPCA (2000) 231-240
Rafael Moreno, Luis Pinuel, Silvia del Pino, and Francisco Tirado: A Power Per-
spective of Value Speculation for Superscalar Microprocessors, Proc. of ICCD,
(200) 147-154
Ravi Bhargava and Lizy K. John: Latency and Energy Aware Value Prediction for
High-Frequency Processors, Proc. of the 16th ICS (2002) 45-56
Ravi Bhargava and Lizy K. John: Performance and Energy Impact of Instruction-
Level Value Predictor Filtering, Proc. of the First Workshop of Value-Prediction
(2003)
Daniel Citron and Dror G. Feitelson: Hardware Memoization of Mathemati-
cal and Trigonometric Functions, Technical Report-2000-5, Hebrew University of
Jerusalem (2000)
Scott Hauck: Asynchronous Design Methodologies: An Overview, Proc. of the
IEEE (1995) Vol.83, No.1, 69-93
Tom Verhoeff: Delay-Insensitive Codes: An Overview, Distributed Computing
(1988) Vol.3, 1-8
Toshinori Sato and Itsujiro Arita: Partial Resolution in Data Value Predictors,
Proc. of ICPP (2000) 69-76
Toshinori Sato and Itsujiro Arita: Table Size Reduction for Data Value Predictors
by exploiting Narrow Width Values, Proc. of ICS (2000) 196-205
Premkishore Shivakumar and Norman P. Jouppi: CACTI 3.0: An Integrated Cache
Timing, Power, and Area Model, WRL Research Report 2001/2, COMPAQ West-
ern Research Laboratory (2001)
Doug Burger and Todd M. Austin: The SimpleScalar Tool Set, Version 2.0, Tech-
nical Report, CS-TR-97-1342, University of Wisconsin (1997)
SPEC CPU Benchmarks: Standard Performance Evaluation Cooperation
http://www.specbench.org/osg/cpu95
John Bainbridge and Steve B. Furber: Delay Insensitive System-on-Chip Intercon-
nect using 1-of-4 Data Encoding, Proc. of ASYNC. (2001) 118-126
Benjamin Bishop and Anil Bahuman: A Low-Energy Adaptive Bus Coding Scheme,
Proc. of the IEEE Workshop of VLSI (2001) 118-122
Tiehan Lv, Jorg Henkel, Haris Lekatsas, and Wayne Wolf: An Adaptive Dictionary
Encoding Scheme for SOC Data Buses, Proc. of DATE (2002) 1059-1064

184 B.-S. Choi, J.-A Lee, and D.-S. Har

17.

18.

19.

The Semiconductor Industry Association: The International Technology Roadmap
for Semiconductor (2001)
Srilatha Manne, Artur Klauser, and Dirk Grunwald: Pipeline Gating: Speculation
Control for Energy Reduction, Proc. of ISCA (1998) 122-131
Michael K. Gowan, Larry L. Biro, and Daniel B. Jackson: Power Considerations
in the Design of the Alpha 21264 Microprocessor, Proc. of DAC (1998) 726-731

Dynamic Reallocation of Functional Units in
Superscalar Processors

Marc Epalza1, Paolo Ienne2, and Daniel Mlynek1

1 Laboratoire de Traitement des Signaux 3,
2 Laboratoire d’Architecture des Processeurs,

Swiss Institute of Technology Lausanne (EPFL), 1015 Ecublens, Switzerland
{marc.epalza, paolo.ienne, daniel.mlynek}@epfl.ch

Abstract. In the context of general-purpose processing, an increasing
number of diverse functional units are added to cover a wide spectrum of
applications. However, it is still possible to design custom logic adapted
to a particular application that will perform far better than a processor.
In an attempt to give it some adaptability, adding some reconfigurability
can help improve performance. We propose to extend the possibilities of
complex multifunction units by dynamically reallocating existing com-
plex functional units as multiple simpler units. The fact that more than
one simple unit is involved in the “reconfiguration” process implies that
the decision is more global and needs to be taken for a longer period
of time. We show that in typical superscalar architectures, there are no
major impediments to implementing such a decision scheme, and that
on a specific reallocation opportunity we can achieve speedups of up to
56% over a mainstream superscalar processor and practically no losses.

1 Introduction

In general purpose processors, the quest for ever higher performance leads to
many trade-offs, since one aims to achieve the best average performance on a
variety of tasks essentially unknown to the designer. Many methods to extract
even more parallelism, such as speculative execution or Very Long Instruction
Word (VLIW) compiler technologies are complex and achieve diminishing re-
turns, since the resources available to the processor are fixed. Attempts to make
the processor adaptable to the program it is currently executing, through the
use of reconfigurable logic, have provided mixed results. We propose to intro-
duce some adaptability without using slow reconfigurable logic. To this end, we
focus on the large multi-function units present in a superscalar processor. As
an example, we expose a modification of a superscalar processor’s floating point
functional units (FPU) to allow some adaptation to the current workload.

Section 2 will lay out the constraints of the field and existing methods to
achieve high performance. Next, section 3 will present our proposal and its im-
pact on processor design. Our test methodology and reference processors will be
exposed in section 4, with simulation results shown in section 5. Section 6 will
bring our conclusions, the limitations of our approach, and our future directions
of study.

P.-C. Yew and J. Xue (Eds.): ACSAC 2004, LNCS 3189, pp. 185–198, 2004.
© Springer-Verlag Berlin Heidelberg 2004

186 M. Epalza, P. Ienne, and D. Mlynek

2 Background and Prior Art

2.1 Parallelism

The way to higher performance in general purpose processors is through forms
of parallelism, especially by trying to execute as many instructions as possible
at the same time. The theoretical limits in the parallelism offered by different
programs are far higher than those achieved in reality by current processors,
for a variety of reasons. In any case, the available hardware resources are fixed
by the processor’s designer, and cannot be tailored to a particular application.
They are chosen to get the best average performance. Superscalar processors,
executing many instructions out of order every cycle, extract as much parallelism
as possible during the execution of a program. This leads to complex designs,
but these optimizations don’t require changes to the software. In an attempt
to soften the restrictions of fixed hardware resources, configurable hardware has
been examined.

2.2 Reconfigurable Functional Units

Given the limitations of a fixed set of hardware resources, much research has
focused on adding some reconfigurability to a general-purpose system, usually
based on FPGA technology. FPGAs are most efficient for code with simple
control and large data parallelism (e.g., [2]).

One can distinguish three different approaches, each bringing closer integra-
tion with the processor, and thus more generality, at the expense of performance.
The first and second couple an FPGA and a normal processor, and distribute
the computing tasks according to what each can do best, the difference being
whether to integrate the FPGA onto the processor chip or not. There is little
automation possible, and selection and coding for the FPGA must be done by
hand, including the needed communication and synchronization with the pro-
cessor. With well chosen applications, the gains in performance can be of several
orders of magnitude [15]. In a single-chip solution, some automation is possi-
ble, usually with a smaller increase in performance than if optimizations are
performed by hand (e.g., [13]).

The last, most tightly coupled solution is to define the configurable logic
as simply an extra functional unit (FU) of the processor. This reconfigurable
functional unit can hold several instructions or sequences of instructions, that
can be provided by a special compiler, and loaded by the processor when needed.
Attempts to automate the process exist (e.g., [1], [16]), with gains similar to the
second solution above (e.g., [5]). In each of these cases, the approach is to couple
an existing FPGA-style block with a processor, in a more or less tightly coupled
way.

We propose to consider configuration possibilities as an issue in the design
of the processor’s functional units, instead of adding a block of existing fully
reconfigurable logic (such as FPGA technology) and trying to have the two
cooperate. This implies a reduction in the configurability available, albeit with
a significant gain in speed, which we hope to leverage.

Dynamic Reallocation of Functional Units in Superscalar Processors 187

2.3 Binary Compatibility

The issue of binary compatibility, ensuring that all code written for previous
versions of a processor family will work on the newest model, is a complex one.
However, it limits the innovation that can be implemented in the processor,
since no completely novel approach may be used. As a solution to this problem,
dynamic binary translation has been proposed. It aims to transform code for
one architecture into another in real-time during the execution of the program.
Several research projects exist [14], with one commercial implementation [8].

Our aim is to increase performance while avoiding code changes or having a
major impact on timing. The lack of code changes allows our improvements to
apply to all existing code and the re-use of all compiler achievements. Preserving
the general timing will avoid breaking or severely limiting the performance of
existing programs not suited to our modifications.

Fig. 1. Paths between reservation stations and functional units (top), and realloca-
tion possibilities (bottom). Each FPU can be reallocated as a number of extra ALUs
(xALUs). FPU operations have 5 stages, thus the FPU must be idle for 5 cycles before
reallocation is possible. Likewise, the xALUs have 2 stages, and must all be idle for 2
cycles at the same time to allow reallocation.

3 Proposed Modification

Studies on the ideal mix and functionality of functional units in a superscalar
processor have been performed [7]. These studies show that good gains can be ob-
tained by increasing the number of identical functional units, as well as the types
of instructions these units can execute. We are interested in looking for ways to
reconfigure expensive functional units to perform different operations. Given the

188 M. Epalza, P. Ienne, and D. Mlynek

Fig. 2. Left: Structure of a floating point multiply/divide unit, with assumed cycle
counts. Center and Right: Example of a 64 bit multiplier partial product reduction tree.
Center: Original Wallace tree structure (total delay Right: Proposed modification
(total delay CS As have a delay of CPAs have a delay of about For clarity,
the multiplexers from the Register file to the CPAs for the xALU configuration are not
shown.

speed disadvantage of fully programmable units, which are 5 to 10 times slower
than a dedicated custom logic in the same technology, we restrict ourselves to
very limited changes, while maintaining speeds close to non-configurable logic.

3.1 Basic Concept

Multifunction units, such as the FPUs in the Intel Itanium 2 processor, can
execute one of many different instructions each cycle. As shown in figure 1,
we propose to reallocate an FPU, with a latency of 5 (figure 1a) as several
extra ALUs (xALUs) with a latency of 2 (figure 1b). These extra ALUs are
assumed to perform all the operations normal Arithmetic Functional Units do.
Our approach differs from multifunction units since, due to these latencies, the
reconfiguration decision cannot be taken on a cycle-by-cycle basis, but with a
view to the next several dozen cycles. This longer view is necessary to offset the
idle time before reallocation, as we have to wait for the entire functional unit to
be idle before reallocating it. We trade a small decrease in speed to obtain some
configurability, with the hope that adapting to applications will offset the slightly
slower configurable functional units to offer a net gain in performance. We focus
on a processor’s floating point unit, since it is fairly large, and can often be
idle during a program’s execution, if the current application uses mostly integer
code. Simply adding extra ALUs would further increase power consumption and
area, with little impact on the results (section 5).

Dynamic Reallocation of Functional Units in Superscalar Processors 189

3.2 Standard Arithmetic Units

Current fast multipliers for fixed point numbers can be built from a tree of Carry-
Save Adders (CSA) that adds all the partial products into two words, with a final
Carry-Propagate Adder (CPA) for the last addition [10]. The exact structure of
the tree may vary to achieve better regularity, essential for good integration. A
division unit can have a similar structure, if a convergence algorithm is used.
This would lead to the common implementation of a Mul/Div unit [11], with
the tree structure qualitatively as in figure 2 (center). Each CSA or CPA block
might need an inverter to allow subtraction. The CSA tree has
levels.

A floating-point Mul/Div unit is essentially a fixed-point Mul/Div unit with
some extra logic to unpack the operands, perform Booth recoding if it is used,
normalize the result and re-pack it into floating-point notation, as shown in figure
2 (left). The presence of a full CPA adder allows the re-use of the unpack and
pack logic to include all floating point operations in the unit. It is also possible
to use the floating point unit for integer multiplication and division, as in the
Intel Itanium 2 processor [9].

3.3 Dynamic Functional Units

We propose to use the adders in an FPU as a number of xALUs, with character-
istics similar to normal ALUs. As a CSA cannot be used to perform a complete
addition, several CSAs in the tree could be replaced by CPA adders as in fig-
ure 2 (right) with only a minimal impact on the overall critical path, area and
power consumption. This figure shows the proposed modifications to the reduc-
tion tree, which affect only the steering of the data, not the logic performed
on it. The CPAs directly receive some of the partial products while the other
partial products go through the CSA tree to allow time for the far slower CPAs
to finish execution, resulting in only a small extra delay due to the unbalancing
of the tree. This requires some extra logic: to handle logic operations other than
add/subtract, to bring the operands for the extra instructions that will be exe-
cuted, to bypass the floating point logic, and to switch between the two different
modes of execution.

3.4 Effects on Functional Unit Latencies

Our reference for instruction latencies is the Intel Itanium 2 processor, one of the
fastest (and certainly the largest) existing processor [17]. This processor has a
latency of 1 for all ALU operations, and a latency of 4 for all FP operations and
Integer Mul/Div operations. These latencies are considered here representative
of current 64-bit processors, and the functional units are fully pipelined.

In deep sub-micron technology, such as wires account for about
2/3 of the delays, and the differences between and are not so
important in this regard. The increase in wiring to reach the xALUs is estimated
at about double that needed for normal ALUs. Thus, if a normal ALU has a

190 M. Epalza, P. Ienne, and D. Mlynek

latency of 1 cycle, split as 1/3 gates and 2/3 wires, doubling the wires gives a
xALU latency of 5/3. Taking the multiplexers to select the adders in the FPU
into account, a conservative estimate for the latency of all extra ALU units is to
double the latency of normal ALUs, for a latency of 2. As confirming this timing
would require designing the entire functional core of a superscalar processor, a
complex task beyond our means, simulations with a very conservative latency
of 3, where about 89% of the delay is in the wires, have also been performed.
Additionally, some of the bypass paths necessary to keep the pipeline as full as
possible, and counted in the above calculations, are likely to already be present
in the multiplier’s tree linking the xALUs together. This also means that the
overhead is less than that of simply adding extra ALUs to the processor.

The latency of the entire FPU being 4, we consider that the unpack stage
takes one cycle, the multiplier tree takes 2 cycles, and the normalization and
pack take the last cycle (figure 2 left). The replacement of some of the CSA
adders by CPA adders will increase the total delay of the multiplier tree. From
[10], considering that a CSA has a delay of a delay of for a 64-bit CPA
can be derived. The total delay for a 64-bit CSA tree with 9 levels (see section
3.2) and the final CPA, is thus (figure 2 center). We assume
this delay represents 2 cycles (figure 2 left), as both real processor data [9] and
arithmetic considerations [11] suggest. As shown in figure 2 (right), implementing
our modifications on the FPU to embed 3 CPAs in the compressor tree would
increase its delay to plus the delay a multiplexer in front of
each CPA (figure 2 right). To be on the conservative side, and since functional
unit latencies must be integral, we have assumed the total delay of the modified
tree to be equivalent to 3 cycles, an increase of 50%, or one cycle, for a
total delay of 5 cycles in the functional unit. This adds a margin of almost
40%, that is, many layers of logic, to the timing of the FPUs CSA tree. In any
case, the partial products reduction tree is a logarithmic tree which can be easily
unbalanced as needed to hide the delay of the CPAs, and so the inaccuracy due
to the delays of the multiplexors and the bypass paths should not be significant
overall.

Since the reconfiguration is achieved by switching the inputs of a few multi-
plexers, it takes only a single cycle, in addition to having to wait for the func-
tional units to be idle, with no changes to the pipeline except the activation of
the forwarding paths discussed above. The routing of the processor core must
be redone to take the new data paths into account, but this kind of work must
be done for newer technologies in any case. These numbers are summarized in
table 1.

3.5 Switch Decision Mechanism

Given the possibility of changing an FPU into a number of xALUs, the issue of
deciding when to perform this change, and when to change back, is posed. Since
this decision cannot be taken every cycle because it is a global decision affecting
several functional units (figure 1), an algorithm to adapt the resources to the
code running at a given moment is needed. The basis for the decision is the type

Dynamic Reallocation of Functional Units in Superscalar Processors 191

of instructions in the reservation stations. This gives a measure of the type of
instructions the processor can expect to be executing a few cycles later. In the
simplest case, the number of instructions of each type are then compared to the
number of available functional units of the same type to make a decision. A switch
is decided when the difference between the proportion of instructions of a type in
the reservation stations and the resources of that type becomes too large. In the
relatively common case that an instruction type should appear very infrequently,
such as an integer program with very few multiplications, the algorithm above
will not trigger a switch, since the threshold is not reached by a single instruction.
In this case, we must detect that an instruction cannot be executed due to
the absence of the correct resource type, and force a switch, regardless of the
contents of the reservation stations. In all cases, a switch decision must wait
until the functional unit(s) it wants to reallocate are completely idle, in which
case it takes only a single cycle. It would be possible to switch while the FPU is
still finishing the last calculation, during the normalization/pack stage, but this
would greatly increase the complexity of the control path without a great effect
on performance, through the pipelining of the switch logic and extra complexity
in the pipeline.

3.6 Additional Considerations

The act of switching one or more FPUs into a number of xALUs increases the
pressure on the memory system, as well as providing the need for extra issue,
dispatch and commit width. Though the memory bandwidth remains the same,
a higher number of Load/Store units are required to avoid stalling the processor
due to many memory requests. In our simulations, 4 such units (as in the Itanium
2) were a good balance between performance and complexity. The widest issue
rate in current processors is 8 instructions per cycle [17]. A larger issue rate
increased the gains of dynamic reconfiguration, but only slightly. Thus, the issue
and dispatch widths were kept at 8. The commit width need not be as large as
the issue/dispatch width, since the average number of instructions committed
per cycle is lower than the maximum. In our simulations, the highest average IPC
was slightly below 4 (vortex), leading to a commit width of 8 to avoid limiting
performance, as the simulator used requires it to be a power of 2, although a
value of 4 could be considered.

4 Experimental Methodology

All the results presented in section 5 were obtained through the use of the
Simplescalar tool set [3]. The models used for the hardware are detailed in section
4.2. On the software side, the SPEC CPU2000 [6] benchmarks were used for all
tests.

192 M. Epalza, P. Ienne, and D. Mlynek

Fig. 3. Simulation results for the SPEC benchmarks for the baseline mainstream (light)
and dynamic mainstream (dark) processors. There are large variations in the overall
IPC, with some significant gains by the dynamic model.

Dynamic Reallocation of Functional Units in Superscalar Processors 193

Fig. 4. Speedups between the baseline mainstream and the dynamic mainstream mod-
els. The integer benchmarks show universal gains, whereas the FP benchmark results
are more varied. Except for sixtrack, all negative speedups are very small, less than 1%
slower than the baseline.

4.1 Modifications to Simplescalar

The most accurate simulator in the Simplescalar tool set, sim-outorder, was
modified so that a number of FPUs can be turned into several xALUs. The
switch decision algorithm was also added to the simulator’s main loop, to choose
whether and how to change the allocation of resources during program execution.

4.2 Reference Processors and Models

Two different references, loosely inspired from mainstream and top server pro-
cessors available today, and considered representative of the state of the art in
general-purpose processors, were used:

Our mainstream reference is similar to the IBM Power4 processor (a single
core), and is close to the average resource configuration of current processors.
Each core is a 4-way superscalar processor, and has 2 ALUs, 2 load/store units,
one branch unit and 2 FPUs.

Our top reference is loosely based on the Intel Itanium 2 processor, one of the
fastest server processors available today, as measured by SPEC benchmarks. It
has 2 ALUs, 4 load/store units that can also perform ALU operations, 3 branch
units, and 2 floating point units that also take care of integer multiplication.
Although it is a VLIW processor, its resources represent well the most aggressive
configuration achievable nowadays.

194 M. Epalza, P. Ienne, and D. Mlynek

For a fair comparison, both reference models are given the same memory
access bandwidth and ports as our proposed model (4 or 5 load/store units and
a 128-bit wide access to memory), as well as the same issue/dispatch/commit
widths, giving us our baseline mainstream and baseline top models. Although
these models are somewhat unbalanced, not increasing the number of load/store
units would cripple the dynamic models, which are obtained by increasing the
FPU latency as explained in section 3.4 and adding dynamic reallocation. Super-
top is defined as a fully static top, with 4 additional ALUs and no reconfiguration,
and is used to show the small difference in performance compared to the dynamic
top. These characteristics are summarized in table 1.

4.3 SPEC CPU 2000 Benchmarks

All our tests considered the entire set of 26 benchmarks comprising the SPEC
CPU2000 suite. The binaries are provided for the DEC Alpha [4] Instruction Set
Architecture (ISA) on the Simplescalar WWW site [3], and have been compiled
using the ’peak’ configuration. The data sets chosen are the reference sets from
the SPEC suite, given the length of the full simulations, early Simpoints [12]
were used to provide statistically significant results for the mainstream model,
detailed in figures 3 and 4. Due to time constraints, and since they are only
intended to show the limits of reallocation, the top and supertop models were
simulated skipping a smaller number of instructions than Simpoint suggests.
Although the individual results may vary, the average over the 26 benchmarks
is similar to that obtained using early simpoints, and sufficient to show a trend
of diminishing returns.

5 Results

5.1 Performance Results

Figure 3 shows the results of our simulations for the mainstream model, using
the configurations in table 1, lines 3 and 5. The speedups when using perfect
memories, not shown, show little difference with those presented here, demon-
strating that reasonable memory latencies have little effect on the gains made
by dynamic reallocation. The best performing benchmark was vortex, with a
gain of 56%, since it uses many independent ALU operations and very few FP
instructions, thus being able to make good use of the xAL Us, and the worst was
sixtrack, with a loss of 3.8%, which is mostly composed of FP add and multiply,
and is thus strongly affected by the increase in FPU latency. The average gain for
the integer benchmarks was 19%, and 3.5% for the floating-point benchmarks.
The overall average for the entire suite was a gain of a little more than 10%. For
clarity, the corresponding speedups for the entire set of benchmarks are shown
in figure 4. There is a systematic gain, only seldom insignificant, and the rare
losses in heavily FP-oriented benchmarks are rather small, with the exception
of sixtrack.

Dynamic Reallocation of Functional Units in Superscalar Processors 195

Fig. 5. Left: Structural stalls for mcf (top) and wupwise (bottom). The left side is the
mainstream baseline case, the right side is with dynamic reallocation. Mcf is limited
by ALU instructions, and shows a large reduction in ALU stalls. Wupwise sees little
change in stalls, and thus cannot benefit from reallocation. Right: Instruction types
for galgel. As there is no region with few FP instructions and many ALU requests, the
allocation decision is to have no xALUs, resulting in lower performance.

Fig. 6. Instruction types (top) and resource allocation (bottom) for mcf (left) and
sixtrack (right). For mcf, as there are almost no FPU instructions, the configuration
is always to use 8 xALUs. When an FPU instruction arrives, the FPU is switched to
execute it, and then immediately switches back. In the case of sixtrack, the alloca-
tion of the FPU’s resources adapts to the instruction types: when there are few FPU
instructions, the units will be reallocated as xALUs.

196 M. Epalza, P. Ienne, and D. Mlynek

The results for the top model, described by lines 4 and 6 in table 1, show a
reduction in the gains obtained, due to far less usage of the xALUs, as there are
already 6 ALUs in the processor. Again, memory latency did not significantly
affect the speedups. The average gains were 3.7% for integer benchmarks, and
1.5% for floating-point, giving a total average gain of 2.5%. For comparison, the
Supertop model gives an average gain of 3.1% versus the baseline top, at the cost
of a larger set of functional units and resources on the die. If the xALUs latency
is increased to 3, the results show a reduction in the average gain from 10% to
7%, and in the maximum gain from 56% to 35%. Thus, although this delay is
somehow critical to our gain, the benefit of our system does not fully rely on
these timing assumptions. Losses are not affected, since these benchmarks rarely
use the xALUs, if ever.

5.2 Influence of Instruction Types

The large differences in speedups for the different benchmarks can be explained
by looking at the instruction types used in these benchmarks. We shall use
three benchmarks to illustrate this point: mcf, wupwise and galgel. The follow-
ing graphs show good examples of the different behaviors reallocation produces.
However, these are not necessarily representative of the overall benchmark re-
sults. Figure 5 (left) shows the number of structural stalls—i.e., the number of
instructions of each type which had all operands ready, but couldn’t execute due
to a lack of functional unit, for the first two benchmarks with the mainstream
model. The former, mcf, is limited here almost only by ALU instructions in ad-
dition to memory accesses, and thus benefits greatly from our proposal, since
both FPUs get reallocated into many xALUs, switching back regularly to service
the FP operations. This behavior is shown in figure 6 (left). The limitation by
the Load/Store units appears because all ALU instructions that were previously
waiting for a functional unit have been executed by one of the xAL Us, and the
memory accesses that had time to execute in the baseline case now stall the
processor while waiting for the Load/Store units, which are now far less nu-
merous than the ALUs. On the other hand, wupwise uses a fairly diverse mix
of instruction types, with a heavy emphasis on floating-point add and multi-
ply/divide instructions. The switching mechanism is constantly reallocating the
functional units to try to match the instruction mix at each moment in time. In
this case, the extra ALUs available at some moments cannot compensate for the
slowdown of the FPUs’ mul/div units and the delays in switching between the
two. To illustrate this, a short trace of the instruction types for galgel is shown
in figure 5 (right). The corresponding switch decision, not shown, is to never use
the xALUs, leading to a loss in performance due to a longer latency in the FPU.

5.3 Switching Dynamics

For the resource reallocation to work, the switch mechanism must configure the
hardware to make the best use of the configurable resources. Figure 6 (right)
shows a short trace from the sixtrack benchmark, taken after approximately

Dynamic Reallocation of Functional Units in Superscalar Processors 197

instructions. Figure 6 (top right) displays the number of instructions com-
mitted from the ALUs and the FPUs, while figure 6 (bottom right) shows the
configuration of the FPU over the same period of time.

The pattern shown is one of the startup loops in the application, and repeats
regularly around the instruction count shown. At around 200 cycles, there are
more FPU instructions than ALU ones, and the switching mechanism does not
allocate any xALUs. However, at 300 cycles, the situation reverses, and one
FPU is converted into 4 xALUs. A sharp spike in ALU instructions coupled
with a sharp drop in FP instructions at 450 cycles will cause both FPUs to be
reallocated as 8 xALUs for a brief moment, before resuming FP functions. A long
period of relative stability, between 650 and 850 cycles leads to a unchanging
configuration.

6 Conclusions and Future Work

We have proposed a method to gain some hardware adaptability to the code
running on a general-purpose processor that does not sacrifice the speed of the
configurable unit or compromise binary compatibility. This technique is distinc-
tive in requiring the logic of the superscalar processor to make more global
decisions than it normally does. The conditions for the simulations have been
derived from real data measured from technology. The results show the
use of a dynamic FPU is quite interesting in the case of processors with a modest
number of ALUs, and that naturally the interest declines with a large number
of ALUs already in the processor. Our idea, based on giving the processor more
possibilities for parallelism, should be seen as an example of the possibilities
in superscalar processors that can be exploited by multi-cycle reallocation de-
cisions. When superscalar processors will enter the embedded System-on-Chip
world, the common use of domain-specific instructions or coprocessors for these
applications will increase the opportunities for similar forms of reconfiguration.

We intend to apply control theory to the decision mechanism, in order to
better tailor the resources to the application. Simulations on a SMT processor
are expected to produce interesting results, due to the extra parallelism exposed
by the multiple threads. We also envision to research the possibility of using soft-
ware hints in the code to guide resource reallocation. While this would maintain
backward binary compatibility, it will require a recompilation and some analysis
of the code to produce better gains. In a similar vein, it might also be possible
to apply this method to VLIW processors, in which case the resource allocation
would simply be another information generated by the compiler.

Acknowledgment. We would like to thank the anonymous reviewers for their
insightful comments.

198 M. Epalza, P. Ienne, and D. Mlynek

References

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

K. Atasu, L. Pozzi, P. Ienne, Automatic Application-Specific Instruction-Set Exten-
sions under Microarchitectural Constraints, Proc. of the 40th Design Automation
Conference, June 2003.
M. Borgatti et al., A Reconfigurable Signal Processing IC with embedded FPGA
and Multi-Port Flash Memory, Proc. of the 40th Design Automation Conference,
June 2003.
D. Burger, T. M. Austin, The Simplescalar Tool Set, Version 2.0,
www. simplescalar. com
J. H. Edmondson, et al., Internal organization of the Alpha 21164, a 300-MHz
64-bit quad-issue CMOS RISC microprocessor, Digital Technical Journal, 1995.
S. Hauck, T. W. Fry, M. M. Hosler, J. P. Kao, The Chimaera Reconfigurable Func-
tional Unit, IEEE Symposium on Field-Programmable Custom Computing Ma-
chines, 1997.
J. L. Henning, SPEC CPU2000: Measuring CPU Performance in the New Millen-
nium, IEEE COMPUTER, July 2000.
S. Jourdan, P. Sainrat, D. Litaize, Exploring Configurations of Functional Units
in Out-of-Order Superscalar Processors, Proc. 22nd Annual Int’l Symposium on
Computer Architecture, June 1995.
A. Klaiber, The technology behind Crusoe processors, Transmeta Corporation, Jan.
2000.
C. McNairy, D. Soltis, Itanium 2 Processor Microarchitecture, IEEE Micro, March
2003.
A. R. Omondi, Computer Arithmetic Systems: Algorithms, Architecture and Im-
plementations, Prentice Hall, 1994.
B. Parhami, Computer Arithmetic Algorithms and Hardware Designs, Oxford Uni-
versity Press, 2000.
E. Perelman, G. Hamerly, B. Calder, Picking Statistically Valid and Early Simu-
lation Points, International Conference on Parallel Architectures and Compilation
Techniques, September 2003.
R. Razdan, M. D. Smith, A High-Performance Microarchitecture with Hardware-
Programmable Functional Units, Proc. of MICRO-27, Nov. 1994.
G. T. Sullivan, D. L. Bruening, I. Baron, T. Garnett, S. Amarasinghe, Dynamic
Native Optimization of Interpreters, IVME 03, June 2003.
R. D. Wittig, OneChip: An FPGA Processor With Reconfigurable Logic, IEEE
Symposium on FPGAs for Custom Computing Machines, 1995.
Z. A. Ye, N. Shenoy, P. Banerjee, A C Compiler for a Processor with a Recon-
figurable Functional Unit, ACM Int’l Symposium on Field Programmable Gate
Arrays, 2000.
In-Stat/MDR Workstation and Server Processor Chart,
http://www.mdronline.com/mpr/cw/cw_wks.html

Multiple-Dimension Scalable Adaptive Stream
Architecture1

Mei Wen, Nan Wu, Haiyan Li, and Chunyuan Zhang

Computer School, National University of Defense Technology
Chang Sha, Hu Nan, P. R. of China, 410073

wxxwm@263.sina.com

Abstract. Intensive processing applications, such as scientific computation,
signal processing, and graphics rendering, motivate new processor architectures
that place new burdens on the designer. These applications named Stream
Applications demand very high arithmetic rates and data bandwidth, but lack
data reuse. At present modern VLSI technology makes arithmetic units
relatively cheaper. MASA(Multiple-dimension scalable Adaptive Stream
Architecture) presented in this paper is a prototype that operate on streams
directly. It is different from DSP and special high performance single-chip
architecture because it combines flexibility and high performance. It has basic
features of all stream processing, provides bandwidth hierarchy, makes ALU
array execute with full loads and decomposes application into a set of
computation modules to execute space-multiplexing or time-multiplexing. The
multiple dimensions scalability of MASA, includes task-level, loop-level,
instruction-level and data-level, and enables it to meet the demand of stream
applications. This paper describes MASA architecture and stream model in the
first half, and explores the features and advantages of MASA through mapping
stream applications to hardware in the second half.

1 Overview

Under the power of Moore’s law, the number of transistors integrated on chips has
been increasing rapidly and the performance of chips has been enhanced constantly.
In a contemporary CMOS technology, a 32-bit integer adder requires less
than 0.05mm2 of chip area. Integrating more ALUs on single chip is not a problem any
more. On the other hand this situation brings some new problems to the computer
designer. One is how to support so many ALUs with enough instruction and data. The
long wire delay is becoming more and more unavoidable owing to the increase of the
density on chip. The other is how to make full use of the ability of chips’ integration,
that is, how to make full use of chips’ area to compute other than traditional general-
purpose architecture, for example only 6.5% of the Itanium 2 die is devoted to
arithmetic units[1], and large fraction of its die area is consumed by other processing
such as data cache, branch prediction, out-of-order execution and communication

1 This work was supported by the 973 Project(5131202) and the 863 Project(2001AA111050)
of China.

P.-C. Yew and J. Xue (Eds.): ACSAC 2004, LNCS 3189, pp. 199–211, 2004.
© Springer-Verlag Berlin Heidelberg 2004

200 M. Wen et al.

schedule. In addition, low efficiency is worth attention as the demands of applications
increase.

Under this condition, traditional microarchitecture has met the challenge. How is
the performance of microprocessors kept on scaling at the rate of 50% or even more
per year[2]? Many researches on new microarchitecture of billion or more transistor
chips are going on very well. And some technologies have come to life, such as
systolic arrays in 1970s, data flow in 1980s and vectors in 1990s.

Stream architecture operates on data streams. It is first applied in media processing
because of intensive computation, high data parallelism, and little data reuse. Stream
has various formats, fixed length or variable length, and supports for collections of
complex or simple elements. But data stream is consistent with the colloquial sense.
According to Webster, a stream is “an unbroken flow(as of gas or particles of
matter)”,a “steady succession (as of words or events)”,a “constantly renewed supply,”
or “a continuous moving procession (a stream of traffic)”[3]. The difference between
stream and data flow is that some architecture adopts instruction driven rather than
data driven. Though there are several kinds of stream architectures, the common
feature is to take stream as architectural primitives in hardware. Stream architecture is
suitable for VLSI technology and supports enough functional units to achieve the
needed arithmetic rates because it has scale register file architecture and so on. At the
same time its organization is quite simple, so it will be a hotspot in the near future.

MASA (Multiple-dimension Scalable Adaptive Stream Architecture) is a kind of
stream architecture. The definition of programming is expanded, meaning that almost
all parts are programmable, including inter-ALU switch, inter-arithmetic pages
communication and register organization. So it has perfect flexibility compared to
special architecture. It shares common characteristics of all stream processing,
provides multiple-level bandwidth hierarchy, make ALU arrays execute with full
loads. According to the demands of various applications, MASA decomposes
application into some modules to do space multiplexing or time multiplexing and can
be scaled in multiple dimensions (including task-level, loop-level, instruction-level
and data-level).

The remainder of this paper is organized as follows. Section 2(“related work”)
cites prior work in streaming and architecture that has inspired MASA. Section
3(“MASA microarchitecture”) presents MASA. Section 4(“the MASA’s stream
model”) discusses executing model of stream in MASA. Section 5(“stream
application studies”) analyses the computing process with mapping a typical
application onto the stream executing model of MASA. Compared with processing
model of scalar and vector, it explores the features and advantages of MASA. The last
section (Section 6) summarizes the conclusions drawn in this paper.

2 Related Work

MASA draws heavily on the prior work of numerous parallel models and
architectures. This section highlights only a few of those works.

Viram[4,5] adopts multiple-level vector pipeline and places large memory in the
chip. It integrates typical vector with PIM technology. However, it has limited
scalability.

Multiple-Dimension Scalable Adaptive Stream Architecture 201

Raw[6], as a typical representative of tiled architecture, implements thread-level
parallelism and is reconfigurable. But the connection of inter-tile is complex and the
cost of crossbar is very significant.

Score[7,8] exploits thread-level parallelism like Raw, and has good compatibility
by hiding the size of hardware from programmer. Although computer pages are
reconfigurable, the waste of logic is quite large and the implementation is hard.

Imagine[9,10,11], as a pioneer of stream architecture, expands vector technology.
The structure is very simple. It provides bandwidth hierarchy and resolves the
bottleneck very well. It performs time multiplexing for multiple kernels in single chip
and implements instruction-level and data-level parallelism, but task-level parallelism
is weak. On the basis of Imagine, a supercomputer called Merrimac[19] is developed.
One Merrimac stream processor is very similar to Imagine. MASA is influenced by
Imagine heavily.

VLIW[12] exploits instruction level parallelism well. A VLIW architecture is low
power efficiency, because in this case, a compiler performs scheduling of operations
rather than hardware in superscalar architecture. But the scalability is very poor. At
present many improved VLIW have come out such as dynamic VLIW technology
[13].

Trips[14,15] is a general-purpose chip facing 2010 which consists of one or more
inconnected grid processors working in parallel. It is a Polymorphous system,
meaning that hardware should adapt itself to a variety of runtime workloads.
However, it is essentially a reconfigurable array, just that the task of compiler and OS
is new. Anyhow, it is quite complex.

3 MASA Microarchitecture

The prototype microarchitecture of MASA is shown in Figure 1. MASA is a
programmable stream processor, which works as a stream coprocessor. Scalar
program is executed on the host processor. Actually, MASA implements logic stream
model in a single chip. The whole architecture can be divided into three layers by
different bandwidth levels, and each layer owns its special controller, communication
style and storage unit.

In the outer layer, scalar processor executes scalar instructions like MIPS and
transfers explicit stream instructions to instruction caches in each compute engine
(CE), which is a set of units executing thread-level tasks partitioned ahead. Compute
engine can complete a task independently, so that MASA may own only one compute
engine, adding the engine only when more task level computing is required. Stream
memory system transfers streams between stream register file (SRF) and off-chip
SRAM or SDRAM. MMU and compute engine are connected with multiple buses that
we call Multi Stream-bus. Engines get stream-bus ownership by asynchronous
request-answer signal’s competition. After request is granted, stream records are
transferred to SRF in the form of group or burst sequentially. Stream record is the
elementary particle of data block. Arbiter is responsible for the grant or other signals,
and the Arbiter principle can be either time-multiplexing or dynamic priority. Use
priority for each bus can be set dynamically, that means the priority may be modified
by the host processor. For each bus, the Arbiter has a special register to indicate the

202 M. Wen et al.

priority. Because of continuity of stream data, the bus interface of each engine has a
lot of buffers called stream buffers in order to hide the latency of memory access.

Fig. 1. Hypothetical, single-chip MASA system

The next layer is compute engine. Each engine consists of many arithmetic page
arrays (APAs), SRF banks and a control unit. Arithmetic page array, which contains
lots of arithmetic logic units, is the basic unit for executing kernel microcode
program. APA schedule unit determines which APA executes a certain kernel, that
means how to map the logic kernel to physical execute units. There is a scoreboard
making records about the information of APA’s status in the schedule unit. According
to the information from schedule unit, stream controller dispatches stream
instructions to one or more APAs. Scalar processor controls stream controller by
stream instructions. These instructions determine kernels’ process procedure and
which APA is distributed to which kernel. Kernels are space-multiplexed or time-
multiplexed that will be discussed in the next section. Instructions are combined as
VLIW, and microcode consists of a series of 256~512 bit instruction words. When
microcode is fetched from memory, it will be dynamically reorganized by an
instruction issue unit to adapt to the scalability. Since instruction buffer of APA is
limited and instruction will be regularly reused, an instruction cache is necessary, and
the basic access unit is no longer an instruction but the whole microcode of a kernel.
Instructions in the next execution that have been reorganized last time are fetched
from instruction cache, so we needn’t reorganize or distribute them again, otherwise it
will be sent to off-chip memory instead. All transfers of data are passed through SRF.
Stream data represents the principle of locality, so SRF is divided into several banks,
whose size is tens Kilo-words. So that MASA can effectively increase the SRF’s
bandwidth. Data in a logic kernel is not allowed to store across banks. According to
the destination of data, SRF may partition into main SRF (MSRF) banks and
communication SRF (CSRF) banks. The former is responsible for the exchange of

Multiple-Dimension Scalable Adaptive Stream Architecture 203

data between memory and engine, or dataflow between kernels. And the latter is
responsible for the communication of global data among computer engines. MASA
uses topology like tree to connect SRF to APA, which follows weak dependence and
unilateral transformation of stream. At this layer, both instruction and data are
transformed in the same data path, but in different time, so the execution of program
is divided into two parts: configuration time and execution time. Partition of kernels
and issue of instructions are completed in configuration time. After that, stream
controller answers for transferring data and executing program according to kernels
divided ahead. During this period, kernel program is kept unchangeable in APA and
data streams are transformed from SRF to APA in sequence.

The most inner of MASA is kernel layer. Microcodes are executed in APA in the
form of SIMD. Each APA consists of many arithmetic pages (APs) and one central
array controller. And each AP contains eight to sixteen arithmetic logic units,
including floating adder, floating multiplier, divider and some special function units.
Each ALU owns its local register file (LRF) to keep its local data. A LRF is keeping a
small suitable size that can be accessed fast enough. All ALUs in an AP are
connected by programmable switch net, so ALUs in an AP are able to communicate
each other fast and flexibly. But the communication between APs will take much
more cycles; fortunately the stream application limits these communications in a
negligible degree. VLIW codes of kernel program are buffered in array controller. AC
has special instruction RAM to hold thousands of VLIW, and that is also responsible
for decoding packed VLIW to control signals and transferring these signals to every
AP in an APA.

The bandwidth hierarchy of stream processor insures kernel program not to access
memory directly. The memory access latency can be effectively hidden by buffer and
soft pipeline etc. All inputs and outputs of kernels have to transfer through SRF as the
type of stream. Analogously, temporary results and local data that just exist or are
used in a kernel are limited in the fast LRF, so the bandwidth requirement for SRF
can be greatly reduced. By the way, operands’ fetch time is explicitly determined so
that no miss will happen. As a result, in kernel level all instructions’ executing time
are explicitly determined without any potential uncertain cycles, so in the control unit
we can get an accurate static VLIW schedule time table. For this static structure,
VLIW could be most efficient because it simplifies or cancels the hardware unit for
some dynamic schedule such as extra register renaming, dependence detection, issue
out of order and so on. Obviously, according to the features of stream algorithms,
MASA emphatically solves the problem of high bandwidth and multi-kernel
executing, so it can achieve very fast speed but simple structure which are of great
benefit to reduce area and power efficiency.

According to bandwidth hierarchy, MASA defines different layers of architecture.
In fact these layers correspond with different parallelisms that are task-level-
parallelism (TLP), instruction-level- parallelism (ILP) and data-level-parallelism
(DLP) strictly, which make us easily scale MASA in any dimension of these
parallelisms. It means MASA can be emphatically scaled in the most needed
dimension, so MASA’s scalability is much more powerful and efficient. However, the
most challenging work in scaling is how to partition basic APAs to different kernels
in balance. MASA could solve this problem by the explicit definition in program or
the cooperation of compiler and hardware (such as APA schedule unit). Therefore,
MASA is well adaptive.

204 M. Wen et al.

4 The MASA’s Stream Model

The definition of stream in MASA is similar to that in other stream architectures. It
consists of successive ordinal isomorphic elements. Stream has various formats, fixed
or variable length, and complex or simple elements.

MASA works as a coprocessor for a scalar processor. It receives stream data and
stream instructions from scalar processor, and transfers the results to the host. On the
other hand, scalar processor performs scalar programs.

The application of stream on MASA is divided into three levels: stream-thread
level, stream scheduling level and kernel execution level. The instance of the model is
shown in Figure 2.

Fig. 2. Hypothetical MASA model

At the top level, the stream-thread level programming is done using thread C- like
language. It is responsible for memory access scheduling in multi-buses and low-
intensity communication among threads. Task is scheduled at the thread level.
However, this level is not necessary, only used in large-scale computation. (For
instance, there are 2 or more engines in MASA).

The second level programming is done using extended streamC[16] language. A
stream task is decomposed to a series of computation kernels that deal with a great
number of stream data. It permits determining executing order and size of kernel
pattern by programmer. Program at stream scheduling level controls the whole flow
of a stream task’s execution, including communicating towards scalar processor,
loading stream across the high-speed bus from off-chip, storing stream to off-chip
memory, and starting kernel. The flow route of stream among kernels is similar to
dataflow graph. The kernel operates successive data in the input stream, and produces
the output stream as the input stream for other kernels. Similar to product line, each
kernel just processes one record of input stream every time, and then appends result to
the output stream. Kernels may be executed in two modes: time-multiplexing and

Multiple-Dimension Scalable Adaptive Stream Architecture 205

space-multiplexing mode. In the former mode kernels are executed one by one at
different time, and gain all the computing recourse exclusively. In the latter mode,
several kernels share the whole computing recourse at the same time, we call the set
of these kernels synchronous kernels. If adopting space-multiplexing mode, the output
record will be sent to next kernel directly, as it may be transformed through buffer in
time-multiplexing mode.

Computation kernels lie in the third level. It describes execution of single kernel in
kernelC[16] -like language. The details of arithmetic operation and data executing
mode are defined at this level. A kernel executed in AP is composed of VLIW
instructions to exploit the great instruction parallelism. Moreover, by requiring
programmers to explicitly use appropriate type of communication for each data
element, this level expresses the application’s inherent locality. All the temporary
values just generate and exist within kernel. Thus the model does not use inter-kernel
communication for temporary values.

Before the execution in chip, compiler and hardware decide how many APAs are
available to execute several kernels simultaneously or time-sharing, and how many
APAs each kernel occupies. Between APAs that implement different kernels, data is
transferred in the form of stream. When forming logic kernels, programmer should
consider the number of kernel’s arithmetic operations and the size of intermediate
results. An ideal kernel should have enough quantity of operation on local data but
small set of intermediate results between kernels. At the same time, the balance
between producer kernel and consumer kernel is important. We can introduce kernel
fission and fusion technology into decomposing kernels.

5 Stream Application Studies - Fluid Compute

Stream applications are defined as the applications that can be mapped to stream
programming model. Those focus on intensive computation domains, including
scientific computation, graph rendering, media processing and so on. Features of
stream application are obvious: First, computation is intensive and is limited within
given time. Second, data has little reuse and weak dependence. Third, it is easy to
divide program into some modules. Fluid compute is a typical scientific computation,
which is applied in many important domains, such as aerospace, space flight, machine
manufacture and so on. This paper takes numerical simulations of complex steady
flow in hypersonic free stream as a stream application to map to MASA. We analyze
kernel decomposing and intermediate result, and also compare MASA with some
other architectures.

The whole computation has three steps in terms of LU-SGS: First, input the
parameters and choose the format of space and time. Second, calculate the values of
basic controlling equation group. Third, advance by time and iterate to solve the
equations. Repeat the second and third steps till result is convergent[17]. Figure 3(a)
diagrams part of LU-SGS algorithm.

The program has some characteristics shown in the following:

Data represents locality and computation is advanced towards unilateral direction.
The value of each point only needs information of two or three points around, so it
can be paralleled on several points.

206 M. Wen et al.

The dependence distance of iteration is very small, because each iteration only
needs the results of one to three latest iterations. It is convenient to exploit kernel-
level parallelism by loop unrolling or software pipeline.
There is no dependence between fluxes computation, so they can be executed in
parallel as multiple tasks. The function in the program is easy to be divided into
some blocks in accordance with loop. As a result, they can be mapped onto several
kernels directly.
Computationally intensive. The application requires many arithmetic operations
per memory reference.
There is few conditional branch which may be converted to conditional instruction.
The characteristics of computation and data match MASA.

Fig. 3. (a) part of LU-SGS algorithm (b) complex steady flow computing

The main part of the computation is to calculate partial differential equation to get

six fluxes, that is where U is

conservative variable, E, F, G, are viscous or inviscid fluxes in the direction
of x, y, and z. Computation of three inviscid fluxes is most intensive. Figure 3(b)
shows how we map solving partial differential equation to the stream programming
model in brief. Where and q mean stress tensor and heat tensor respectively. H is
enthalpy of unit quality. mean density, pressure, three components of
the velocity and temperature respectively. e,E,H , k mean energy, enthalpy
and coefficient of viscosity respectively. Re , mean Reynolds
Number, Mach Number, heat ratio and Prandtl Number respectively.

Take 300 thousands points as input data, the computation of three inviscid fluxes is
1.5 to 2 billion single precision floating operations for each iteration, which mainly
contains addition and multiplication. The total computation for each iteration is about
2.5to 3.5 billion. The test program is small-scale, it needs 10000 steps to acquire
constringent result at least. 15000 steps are assumed, and the total amount of

Multiple-Dimension Scalable Adaptive Stream Architecture 207

arithmetic operations will be 4500 billion. It takes more than twenty hours, and the
cost of memory is about 300MB, when the program is run on Pentium 4.

Fig. 4. Stream-Based inviscid flux computing

Figure 4 shows how we map computation of a inviscid flux to the stream
programming model. The processing is composed of eight computation kernels that
operate on data streams in succession. Where input data is fetched from memory and
output data is stored to memory, rectangle represents stream in SRF, and a grid
represents a stream element. Temporary data required by arithmetic operations is
stored in LRF. For example, kernel3 receives 2 input streams and produces 1 output
stream, performing 205 arithmetic Ops.

Table 1 compares the memory, global register, and local register bandwidth
requirements of a stream architecture (MASA) with a vector processor and a scalar
processor for the kernel32.

The content illuminated in the left-most column of Table 1 is the number of
memory references, SRF references, and LRF references for the stream architecture.
During the entire period of pipeline, the stream architecture performs 35 memory
references as stated in Figure 4. Amortizing this across the eight kernels gives 4.375
memory references per kernel. The total SRF reference of the kernel3 is 59, that
contains 9 words read from the SRF and 50 words written to the SRF. The 615 words
of LRF bandwidth are used for each node to carry out the kernel that requires 205
arithmetic operations. The additional LRF accesses beyond the 615 come from

2 This number is set by 8 ALUs in an AP of MASA.

208 M. Wen et al.

register accesses to originally store data from the SRF into a local register file, and
register transfers required for other kernels.

The next two columns present the number of references for the same kernel on a
vector processor with an organization similar to the MASA processor. Considering
vector operations are primitive arithmetic operations instead of compound stream
operations, using global (vector) register file instead of local register files as a source
and sink of data for the arithmetic units, and software pipeline, the vector processor
requires respectively 13.5 times, 9.3 times as much memory bandwidth, global
register file bandwidth as a stream processor.

The last two columns of Table 1 compare these numbers to a scalar processor by
giving both the absolute number of references and the ratio to a stream processor (in
parentheses). The scalar numbers were generated by compiling the kernel3 for MIPS
using version 3.0.2 of the gcc compiler. The scalar processor requires respectively
65.8 times, 22.1 times as much memory bandwidth, global register file bandwidth as a
stream processor. Considering that the number of memory references for the stream
architecture is an average, and the kernel3 is run in the middle of pipeline, some data
required would be in SRF, need not access memory, so the number of memory
references for the scalar architecture is relatively magnified. However the difference
is still great. Cache in the scalar processor is useful to shorten the gap, but there is
little data reuse in stream application, so the benefit is limited.

MASA exploits the space parallelism that multi-kernels can run concurrently. The
advantages of this feature can be appreciated by comparing it with other typical
stream processors such as Imagine. Certainly, the advantage is at the cost of hardware
complexity.

When SRF is full of intermediate results, the kernel which is running have to be
changed to the other kernel to consume intermediate results. So each time the kernel
runs, the number of records operated is limited. We call the number kernel executing
granularity (KEG). Kernel executing granularity is limited by size of intermediate
results and SRF. Table 2 compares the intermediate result size per node, maximum
KEG and SRF requirement ratio of MASA with typical stream processor for inviscid
flux computing. We analyze the intermediate result of each fluid node. These two
processors are assumed to have the same computing ability and SRF size, though
MASA’s distributed SRF is different from Imagine’s central SRF in bandwidth and
utilization. In MASA, data between kernels running at the same time will be
transferred and consumed immediately, so this procedure can generate smaller
intermediate result. Therefore, smaller intermediate results could effectively increase
Kernel executing granularity and utilization ratio, decrease the cost of exchanging
kernels; and it also makes kernel operate on a longer stream that relieve the short
stream problem.

Multiple-Dimension Scalable Adaptive Stream Architecture 209

For the same kernel executing granularity, MASA can decrease the SRF’s size to a
half of typical stream processor or even smaller. This advantage makes it much easier
for larger scaling. Table 2 shows that kernel executing granularity is not linear with
the number of synchronous kernels.

Fig. 5. The number of synchronous kernels and Kernel executing granularity for inviscid flux
computing

According to different applications, as the number of synchronous kernels
increases, consolidated intermediate results will decrease rapidly. For example, in
table 2, typical stream processor’s max intermediate result is 94W, that it is only 52W
in column 2. As the number of synchronous kernels growing to 3, this value decreases
to 26W. Support that when all of 8 kernels in figure 4 are running in MASA at the
same time, intermediate result’s size will become a constant which is irrelative with
Kernel executing granularity. This means Kernel executing granularity may approach
infinity in theory as figure 5 shows. However along with the number of synchronous
kernels’ increasing, decomposition and schedule will become more complex
consequently. Also this complexity does not linearly increase and will go to

3

4
Data of typical stream processor is estimated according to paper [18].
128KB SRF is assumed.

210 M. Wen et al.

unacceptable at last. Furthermore, the load balance among kernels will be hard. In
making a design trade-off, we think it better that the number of synchronous kernels
should be fewer than 4 in middle-scale MASA.

6 Summary

MASA is a single-chip stream prototype architecture that supports the stream
programming model by providing a data bandwidth hierarchy matched to the
demands of typical computation-intensive applications. MASA supports multiple
kernels running simultaneously or in sequence, dataflow among kernels organized
around distributed SRF banks and all arithmetic operations are performed on streams
transferred to and from the SRF.

Stream programming model exposes the parallelism and locality of stream
applications in a manner that is well matched to the capabilities of modern VLSI
technology. Through the analysis of above, it is known that stream application could
be mapped to MASA model naturally, and a great number of ALUs on MASA will
work fully. For complex steady flow in hypersonic free stream, a typical scientific
computation, MASA infinitely reduces the demands for global register and memory
bandwidth over a scalar processor and vector processor. This enables stream
architecture to make efficient use of a large number of arithmetic units without global
bandwidth becoming a bottleneck. About this, MASA is similar to other stream
architectures.

Because MASA can do space multiplexing for multiple kernels, for some
applications with computation-intensive in limited time, such as game system, set-top
box, network switch and so on, they are easy to be mapped on MASA in order to
achieve higher executing efficiency than other similar stream architectures. Another
advantage is to reduce the demand of SRF size. As the number of kernels that run at
the same time increases, the size of intermediate result decreases rapidly to a constant.
So the runtime of the kernel each time trends to infinite ideally, kernel needs not to be
changed, and it reduces the cost of kernel trembling.

MASA exposes concurrency at multiple levels: at AP level, DLP and ILP are
exploited; at APA level, kernel level parallelism is exploited; at Engine level, TLP is
exploited. In every dimension, MASA takes full advantage of function unit to do
space multiplexing or time multiplexing for multiple kernels. The capability for
adaptation is very good.

There are a lot of problems to solve remaining in the research of MASA
architecture, such as the synchronous communication with scalar processor, the
decomposition of multi-kernels, the dynamic scheduling algorithm, the appropriate
size of register file at each level, the amount of ALUs in APA, the execution of
conditional stream, the structure of communication network and the optimization of
multiple-dimension scalability and so on.

Acknowledgements. The authors thank Tian Zhengyu for his knowledge of fluid
compute. We also thank the reviewers for their valuable feedback.

Multiple-Dimension Scalable Adaptive Stream Architecture 211

References

1.
2.

3.

4.

5.

6.

7.
8.

9.

U.J. Kapasi et al., programmable stream processor, IEEE computer, Aug 2003.
Bill Dally, Pat Hanrahan, and Ron Fedkiw, A Streaming Supercomputer, Whitepaper, Sep
2001.
H.Hoffmann et al., stream algorithms and architecture, MIT Laboratory for computer
science, 2003.
C. E. Kozyrakis et al., Scalable Processors in the Billion-Transistors Era: IRAM, IEEE
Computer, Vol 30 Issue 9, Sep 1997.
C. E. Kozyrakis, A Media-Enhanced Vector Architecture for Embedded Memory Systems
Report No. UCB/CSD-99-1059, Jul 1999.
M. B. Taylor et al., The Raw Microprocessor: A Computational Fabric for Software
Circuits and General Purpose Programs, IEEE Micro, 2002 ¾.
Score project, http://brass.cs.berkeley.edu/SCORE/
Eylon Caspi et al, A Streaming Multi-Threaded Model, the Third Workshop on Media and
Stream Processors, in conjunction with MICRO34, Austin, Texas, Dec 2001.
B.khailany, W.J.Dally et al., Imagine: media processing with streams, IEEE micro,
2001.3/4
U.J. Kapasi,W.J.Dally et al., the Imagine stream processor, Proceedings of 2002
International Conference on Computer Design
Imagine project, http://cva.stanford.edu/Imagine/project/im_arch.html
Joseph A.Fisher, Very Long Instruction Word Architectures and the ELI-512, 25 Years
ISCA: Retrospectives and Reprints 1998
Li Shen, The Research and Implementation on Key Issues of Dynamic VLIW
Architecture, Ph.D. Thesis, Dept. of Computer Science , National University of Defense
Technology, Dec 2003.
Trip project, http://www.cs.utexas.edu/users/cart/trips/
Karthikeyan Sankaralingam et al., Exploiting ILP, TLP, and DLP with the Polymorphous
TRIPS architecture, 30th Annual International Symposium on Computer Architecture,
May 2003.
Mattson, A Programming System for the Imagine Media Processor, Stanford Ph.D. Thesis,
2001
Zhengyu Tian, Numerical Simulations of Multiplex Unsteady Flow in Hypersonic Free
Stream , Master Thesis, Dept. of Aerospace and Material Engineering, National University
of Defense Technology, Dec 2003.
S. Rixner et al., A Bandwidth-Efficient Architecture for Media Processing, Int’l Symp,
Microarchitecture, IEEE Computer Society Press, 1998
W.J.Dally et al., Merrimac: Supercomputing with streams, SC’03, Nov 2003.

10.

11.
12.

13.

14.
15.

16.

17.

18.

19.

Impact of Register-Cache Bandwidth Variation
on Processor Performance

Kentaro Hamayasu and Vasily G. Moshnyaga

Dept. of Electronics Engineering and Computer Science, Fukuoka University
8-19-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, JAPAN

{hamayasu, vasily}@vlab.tl.fukuoka-u.ac.jp

Abstract. Modern general-purpose processors employ multi-port regis-
ter files and multiple functional units to support instruction-level paral-
lelism. Fixed (1 word per cycle) bandwidth between cache and register-
file might limit processor’s ability in spatial/temporal utilization. This
paper presents an experimental study of conventional super-scalar pro-
cessor architecture to determine benefits that we can expect to achieve by
enabling variable data bandwidth between the L1 data cache and the reg-
ister file. Our results demonstrate that by changing the bus width to 64,
128 and 256 bits we can reduce data traffic between the 32KB register-file
and 32KB cache up to 29%, 45% and 53%, respectively, while lowering
the program execution time by 8%, 13% and 17% on average in compar-
ison to conventional single-word cache access. An adaptive bandwidth
cache capable of adjusting the cache bandwidth to workload variation is
also proposed.

1 Introduction

1.1 Motivation

With the higher levels of processor performance and widespread of memory la-
tency tolerance techniques, memory bandwidth emerges as a major performance
bottleneck. To avoid long delays associated with memory accesses, modern high-
performance processors rely on caches. Conventional caches usually store multi-
word data blocks per line while delivering only a single word per access. To
select a target n-bit word among a number of candidate words, they employ a
multiplexor, as shown in 1. When processor contains a single ALU and a 2-read
1-write port register file, such cache organization is reasonable, since no more
than one data word is usually needed per cycle. The disparity between the size
of data block stored within cache and the size of data delivered to register file is
not only invisible but necessary in order to reduce the cost of bus and the I/O
pins. However, when processors contain 8 functional units and an 8 read 4 write
port register file (e.g. Alpha21264), the fixed (one word) cache bandwidth might
lead to performance loss, especially in applications where large Instruction-Level
Parallelism (ILP) is possible [1]. For example, Burger et al [2] report between
11% and 31% of the total memory stalls observed in several SPEC benchmarks

P.-C. Yew and J. Xue (Eds.): ACSAC 2004, LNCS 3189, pp. 212–225, 2004.
© Springer-Verlag Berlin Heidelberg 2004

Impact of Register-Cache Bandwidth Variation on Processor Performance 213

Fig. 1. Cache organization

are due to insufficient memory bandwidth. Rather than rely solely on wider and
faster caches and register files, an alternative is to use existing memory band-
width more efficiently. The main purpose of this paper is to investigate how
the cache/register-file bandwidth affects the performance of conventional super-
scalar processor across SPEC95 benchmarks and to propose cache architecture
capable to adapt the bandwidth to workload variation.

1.2 Related Research

A lot of work has been dedicated in the past to analysis of processor-memory
interface. McCalpin [3] used the STREAM benchmark to demonstrate that pro-
cessors had become increasingly unbalanced because of the limited memory
bandwidth. Burger, et al [2] simulated on SPEC benchmarks the data traffic
dependency on cache block size, associativity, replacement policy, write policy,
etc. and proposed three policies (dual-size fetching, subblock prefetching and
bus prioritization) to improve L1-L2 memory system interface. Huang and Shen
[4] studied what they called intrinsic bandwidth requirement by directly mea-
suring the reuse of values. Ding and Kennedy [5]evaluated the demand and
supply of data bandwidth of several scientific kernels through a performance
model called balance, and demonstrated the serious performance constraint due
to the lack of memory bandwidth. To reduce the memory transfers they advo-
cated compiler-based program transformation such as reuse-based computation
fusion and write-back reduction. Johnson, et al, [6] presented a framework for
automatic control of cache management techniques capable of determining data
placement in run-time. The need to use super-words (i.e. data objects with the
size larger than machine words) in order to improve the performance of media
programs has been studied in [7].

Several MIPS processor [8] utilizes multiple cache line sizes which are con-
figurable at boot time to minimize the cache miss rate. Virtual Cache Lines
(VCL) [9] supports a fixed cache block size for normal references, and fetches
multiple sequential cache blocks when the compiler detects high spatial reuse.
The line size is sent to the processor at run time by special instructions. The

214 K. Hamayasu and V.G. Moshnyaga

stride prefetching cache [10] also utilizes specific hardware to change the line
size based on profiling or other compiler transformations. In [11] is proposed to
vary line size based on spatial locality of the miss fetched data, which is detected
from the access pattern to the cache by the compiler. The selective sub-blocking
technique relies either on hardware [12], [13] or software [14] predictors to track
the portions of cache blocks that are referenced by the processor. On a cache
miss, the predictors are consulted and only previously referenced (and possi-
bly discontinuous) portions are fetched into the cache, thus conserving memory
bandwidth. A sectored cache [15]is proposed to access variable-sized fine-grained
data through the annotated memory instructions. The dual data cache [16] se-
lects between two caches, also in hardware, tuned for either spatial locality or
temporal locality. These techniques employ line-size selection algorithms that
are designed for affine array references and are thus targeted to numeric codes.
Run-time adaptive cache management scheme is presented in [6].

1.3 Contribution

This paper presents an experimental study of data cache accesses in conventional
super-scalar architecture to determine benefits that we can expect to achieve by
enabling variable data bandwidth between the L1 data cache and the register file.
Similarly to [1], we analyze performance of modern super-scalar processor using
a set of SPEC95 benchmarks. In contrast to previous studies which investigated
bandwidth variation between cache and main-memory, we centralize here on
bandwidth between data cache and register file. Moreover, unlike [14, 15], we
neither employ specific compiler transformations nor restrict ourselves to specific
multimedia applications. The study report on unexploited bandwidth potential,
observed on SPEC95 benchmarks, and proposes new cache architecture capable
of adapting the cache-register bandwidth to workload variation.

The paper is organized as follows. Section 2 presents our simulation method-
ology. Section 3 shows the results. Section 4 outlines the proposed adaptive
bandwidth cache. Section 5 concludes the paper.

2 Methodology

2.1 Simulation Environment

We used SimpleScalarfs [10] sim-outorder to collect our results. SimpleScalar pro-
vides a simulation environment for modern out-of-order processors with specula-
tive execution. The simulated processor contains a unified active instruction list,
issue queue, and rename register file in one unit called the reservation update
unit (RUU). The RUU is similar to the Metaflow DRIS (deferred-scheduling,
register-renaming instruction shelf) [11] and the HP PA-8000 IRB (instruction
reorder buffer). Separate banks of 32 integer and floating point registers make up
the architected register file and are only written on commit. Table 1 summarizes
the important features of the simulated processor. The baseline configuration
parameters are roughly those of a modern out-of-order processor.

Impact of Register-Cache Bandwidth Variation on Processor Performance 215

In our simulation we assumed that:

1.
2.

3.
4.

The size of the register file is sufficient for processing the programs;
The number of accessing ports in RF is sufficient to run the program without
port-sharing hazards;
Simultaneous register file accesses can be executed in parallel;
The data located in the same cache block can be loaded from the cache in
parallel.

We experimented with four sizes of processor-cache bus (32 bit, 64 bit, 128bit,
256bit), and four values of data cache associativity namely, (direct map
cache), and (set-associative cache).

2.2 Benchmarks

A goal of this study is to investigate the impact of cache-RF bandwidth on
processor performance even in applications outside the multimedia domain. We
experimented with seven typical SPEC95 benchmark programs representative
for both integer and floating point applications [13]. The training input sets
(train) were selected for the benchmarks because they did not take too long to
simulate to completion while maintaining behavior to simulating the reference

216 K. Hamayasu and V.G. Moshnyaga

data sets in full. Since our focus was on the processor-cache interface, we chose
the workloads that sustain high miss rates. Table 2 characterizes the benchmarks
in terms of the total amount of instructions executed, the percentage of memory
instructions and the ratio of load operations among the total memory operations.
Table 3 lists the average miss ratio obtained for 32KB cache (32B block size) by
using the sim-cheetah simulator [2]. Each benchmark was run to completion.

2.3 Evaluation Approach

Our goal was to simulate the impact of cache-RF bandwidth on the processor
performance. We modified the cache.c and sim-outorder programs of the Simple-
Scalar simulator [12] to dynamically count the data-transfers between register-file
and L1-data cache as well as bus utilization while varying the bit-sizes of bus,
which connects the register file and cache. The data bandwidth was measured
as the number of machine words which can be transferred in parallel between
the register-file and cache due to both load and store operations. For the given
bus limit of 256 bits, we used eight counters, which enumerated data transfers
of 1, 2, 3c 8 machine words in size, respectively. We assumed that the data size
of the first reference R[0] to cache block was always one word wide. Whenever
the next cache reference R[j] was encountered, we checked whereas it was of the
same type (e.g. load) and to the same cache block as the previous reference,
R[i-1]. If all these conditions held, we computed the word-distance (d) between
R[i] and the first reference R[0] to the block, and incremented the counter which
counted words of size d, while decrementing the counter which counted words of
size d-1. Thus, at the end of the program run, the counters indicated the data
traffic distribution across the eight bus sizes. The final results displayed also the
execution time (measured through the number of total clock cycles) taken by
the benchmark; the number of data cache accesses and the bandwidth utilization

Impact of Register-Cache Bandwidth Variation on Processor Performance 217

ratio (Rj) computed for each benchmark as where is
the number of data transfers of size and is the total number of transfers.

3 Results

Figures 2-3 list the simulation results in comparison to the results obtained for
conventional 32 bit register-cache communication. We observe that enlarging the
bit-width between the L1 data cache and the register file allows us to reduce both
the number of cache accesses and, the number of total clock cycles required by
the benchmarks. The reduction ratio strongly depends on the benchmarks and
the allowable bit-width of cache accesses. The number of cache accesses which
can be eliminated by adopting 64bit, 128bit and 256bit wide buses can vary from
31%, 47%, and 53%, respectively, for vortex, down to 8% for mgrid. Also, the
reduction in clock cycles can be as much as 13%, 18%, 19% (see li benchmark)
at 64bit, 128bit and 256bit bus size, respectively, and as low as 4%-6% (for

Fig. 2. Reduction in clock cycles in comparison to fixed 32 bit cache bandwidth (direct-
map data cache)

218 K. Hamayasu and V.G. Moshnyaga

Fig. 3. Reduction in cache accesses (direct-map data cache)

Fig. 4. Impact of cache associativity

applu). The right-most columns (ave.) in the figures show the average values
across the benchmark. As these results indicate, restricting the cache-register
file communication path to 32bits may slower the processor’s performance by
10-15% on average, while increasing the cache access count by 17-26%.

To investigate the influence of cache configuration on the results, we repeated
simulations by changing associativity of L1 data cache in the baseline processor
from 1 to 8. Figure 4 depicts the results for the 64 bit wide bus. We see that the
total number of clock cycles required by each program does not depend much on
cache associativity. The same trend has been observed for the number of cache
accesses as well.

Figure 5 shows the bus utilization statistics. The 32-bit wide cache accesses
are the most frequent; they consume from 55% up to 91% of the total data
traffic through the bus. When the bus becomes wider, the 64-bit data transfers
are replaced by larger data bundles. However, we should note, that accesses

Impact of Register-Cache Bandwidth Variation on Processor Performance 219

Fig. 5. Bit utilization for 64 bit wide bus (top) and 256bit wide bus (bottom)

wider than 8 bytes in size occur quite rarely (less than 10% of time) in all the
benchmarks, but vortex.

To summarize, the results presented in this section have three notable impli-
cations:

1.

2.

3.

The fixed 32-bit data width between the L1 data cache and register file
increases the number of cache accesses by 20-26% on average, slowing the
processor by 10-15% in comparison to multi-word transfers even for non-
multimedia applications. The required data cache-register file bandwidth is
thus significantly larger than that one provided by conventional caches.
The cache-register file bandwidth is application-dependent. Fixing the bus
size at either extreme (32 or 256 bits) leads either to a poor performance or
large area overhead, since multi-byte data transfer occur quite rarely.
For almost all the benchmarks, the dual-word data access per clock cycle is
sufficient for more than 80% of total cache references. This feature presents
an opportunity: if the cache and the register-file could support the dual
word traffic, the number of accesses could be reduced by 1/5 on average,
thus improving the performance.

These implications lead us to three requirements for on-chip L1-caches. (1)
The cache-register file bandwidth should be larger than that of traditional caches,
(2) the cache should be managed in such a way as to provide good performance
across the entire range of applications, and (3) it should use intelligent (or adap-
tive) fetching, adjusting its bit-width to application workload without a large

220 K. Hamayasu and V.G. Moshnyaga

overhead in area or power. As a solution we propose an adaptive bandwidth
cache, described in the next Section.

4 Adaptive Bandwidth Cache

4.1 Main Features

The key idea behind our adaptive bandwidth cache (or AB-cache) is to adjust
the size of data transferred from (or to) the cache based on spatial locality of
memory accesses. When programs have large spatial locality, the cache provides
an extended bandwidth, enabling two adjacent words to be accessed in parallel.
On the other hand, when spatial locality is small, it reduces the bandwidth down
to a single word per access. The AB-cache is software-centric; it relies on the
compiler to statically identify the spatial locality of adjacent memory references
and replace the next reference to the same cache block by a register transfer
operation. (The approach is similar to cache pre-fetching with the difference
that it pre-fetches the register-file not cache. Our approach lets software tell the
hardware when to perform dual-word fetch, so instead of accessing the same
cache block again, the hardware fetches the data directly from the register-file.
We augment the processor state with a special registers, dr,of f 1, which are set
by software to temporally keep information about destination register and offset
of the adjacent reference, respectively. Note, that software is only made aware of
the length of the cache block, but not the total cache capacity or associativity.
Table 4 outlines the instruction extensions for using the adaptive cache. (Only
word accesses are shown, but half-word accesses are handled analogously). Soft-
ware places values in the dr as an optional side effect of performing a load or
store. A dual-word load or store specifies a full effective virtual address in addi-
tion to off1 number. Figure 6 shows an example code and its transformation. As
we see the second and third memory references have been replaced by register
transfer operation, mv. Note that no additional instructions where added and
the performance is identical.

Impact of Register-Cache Bandwidth Variation on Processor Performance 221

Fig. 6. An example function entry code transformed for dual-word data transfers

Fig. 7. (a) Block-diagram of AB-cache; (b) internal structure of selection network

4.2 Hardware Architecture

Figure 7(a) depicts a block-diagram of the proposed AB-cache. Additionally to
the target address, it receives from CPU the block offset of the next reference
(of f 1) and the access mode indicator bit (M), both set by software. (Note that a
conventional memory reference has M=0). The values of the offset and off1
determine which words among the 2K candidates in the cache block are accessed
in parallel, while the access mode bit (M) indicates whether the cache operates
in a conventional (single word) mode or in a dual-word mode. For example, if
of f set=0, of f 1=1, then the second instruction (ldw) of the transformed code
in Fig.4,b will force the AB-cache to read two words (A0, A1) in parallel and
write them to registers and rd, respectively. Figure 7 (b) shows in details the
selection network structure, where triangles depict three-state buffers, D1,D2
denote decodes. In conventional access mode, the network disables unselective
lines from the bus to save power.

222 K. Hamayasu and V.G. Moshnyaga

4.3 Compiler Support

Determining whether a reference exhibits temporal or spatial locality, and
whether this locality is worth being exploited is a well documented research
topic [18]-[20]. Similarly to [19], we annotate the references as spatial, if the
coefficient of the innermost loop in the reference subscript is smaller than 4
(the cache block size usually considered, i.e.16 bytes corresponding to 4 single
precision data word). If the coefficient is parameter, the reference is not tagged
spatial. Finding temporal dependences such as self-dependence (x[i],c,x[i]) or a
uniformly generated temporal group-dependence (e.g. b(j,i), b(j,i+1)) amounts
to simple subscript analysis. These two types of dependences account for a sig-
nificant fraction of the dependences, as already mentioned in [20].

We use a two step approach to find adjacent cache references which can be
performed in parallel. First, we look for two reference, one of which dominates
the other, so all paths that cause the subordinate access to be executed cause the
dominant to reference to be executed first. Second, we try to prove that the two
references always point to the same cache line. In this case, the second reference
can be read in parallel with the first. To determine whether two references are to
the same cache block, we employ alignment and distance analysis. The former
determines the address alignment of each memory reference relative to a cache
boundary. The latter detects the byte distance of two static memory references.
A load instruction is considered aligned when its cache alignment is the same for
each dynamic execution of the instruction. If the difference between two static
memory references (address calculations) is constant, then we know the distance
between the references. In the initial compiler passes, when array indexes are
represented at a high level, we tag them with their source array to aid in distance
analysis. We use this tag once the array access has been decomposed into pointer
manipulation. For accesses of the form x[i] and x[i+c], our tagging allows us to
compute the distance as This pattern occurs very frequently in unrolled loops.

Once we know the distance, we can use the alignment to determine if two
references are to the same cache line. We find the alignment of the dominant
reference relative to the cache line boundary and then find the distance between
the subordinate access and the dominant access. Simple arithmetic indicates if
the references are on the same cache line. When the distance is 0, we can ignore
the alignment information.

5 Estimation

We developed a prototype compiler to output instrumented C-code and then
run the modified Simple-Scalar simulator to estimate benefits of the AB-cache.
No extra code transformations have been applied to facilitate the spatial reuse
and increase aligned memory operations. We simulated the baseline processor
architecture (Tables 1, and compared the results with the results reported
in Section 3 for the direct-map cache. We assumed that dual-cache load and
store instructions add 1 clock-cycle to the pipeline. Figure 6 outline the results.
Though the proposed cache performs by 5-10% worst in comparison to ideal

Impact of Register-Cache Bandwidth Variation on Processor Performance 223

Fig. 8. Normalized execution time (top) and cache access reduction (bottom) in com-
parison to potential results for 64 bit-wide bus

execution time (i.e. the total number of cycles) presented in Section 2, the benefit
of using it is high: in comparison to conventional cache it improves processor
performance by 5-15%, lowering the total number of L1 data by a half.

6 Conclusion

This study indicated that fixed 32-bit data width between the L1 data cache
and register file increases the number of cache accesses by 20-26% on average,
slowing the processor by 10-15% in comparison to multi-word transfers even for
non-multimedia applications. The results pointed out that the cache-register file
bandwidth should be at least twice larger than currently used one in order to
efficiently support even non-memory intensive applications. As a solution, we
presented a dual-word cache capable of adaptively adjusting the bandwidth to
workload variation. To use the AB-cache we need both the hardware and the
compiler modifications. However, it is quite promising. Even our preliminary
work had not incorporated program transformations (e.g. [5], [7], which proved
to be effective in to facilitating spatial reuse of memory accesses, we could reduce
the number of accesses to L1 data cache by half while improving the processor
performance by 5-15%.

The mechanism we discussed could be extended to achieve cache band-
width larger than dual-word. Large improvement is also expected from incor-
porating code transformations into the modified compiler. Furthermore, with a
proper modification of the register-renaming algorithms, we can eliminate many
register-transfer operations (currently added to the code) and reduce the num-
ber of data transfers at least twice. Moreover, the existing register files already

224 K. Hamayasu and V.G. Moshnyaga

support multi-word reads and writes so moving the data to and from dr regis-
ter looks redundant. Future work also will be dedicated to studying effects of
AB-cache on power consumption.

References

1.

2.

3.

4.

5.

6.

7.

8.
9.

H.Liao, A.Wolfe, Available Parallelism in video applications, Proc. Micro-97,
pp.321-329.
D.Burger, J.R.Goodman, and A.Kagi, Memory Bandwidth limitations of Future
Microrocessors, Proc. Annual 24th Int. Symp. On Computer Acrhitecture, pp.78-
89, 1996.
J.McCalpin, Sustainable memory bandwidth in current high-performance comput-
ers. http://reality.sgi.com/mccalpin_asd/papers/bandwidth.ps, 1995.
S.A.Huang and J.P.Chen, The intrinsic bandwidth requirements of ordinary pro-
grams. Proc. 7th Int.Conf. on Arch.Support for Programming Languages and Op-
erating Systems, 1996
Ding and K.Kennedy, Memory Bandwidth Bottleneck and Its Amelioration by a
Compiler, Proc. Int.Parrallel and Distributed Process. Symp., 2000.
T.L.Johnson and W.W.Hwu, Run-time adaptive cache hierarchy management via
reference analysis, Proc. Annual 24th Int. Symp. On Computer Acrhitecture, June
1997.
S.Larsen, S.Amarasinghe, Exploiting Superword Level Parallelism with Multime-
dia Instruction Sets, ACM SIGPLAN Conf.on Progr.Language Design and
Implementation, 2000, pp.145-156.
MIPS Corporation, MIPS R3000 hardware manual, MIPS Corporation.
K.Inoue, K.Kai, and K.Murakami, High bandwidth, variable line-cache architec-
ture for merged DRAM/logic LSIs, IEICE Transactions on Electronics, E81-C(9),
pp.1438-1447, Sep.1999.
T.-F.Chen and J.-L.Baer, Reducing memory latency via non-blocking and
prefetching caches, Tech.Rep. 92-06-03, Dept. Computer Science and Engineering,
Univ. Washington, Seattle, WA, June 1992.
A.Veidenbaum, W.Tang, R.Gupta, A.Nicolau, and X.Ji, Adapting cache line size
to application behavior, Proc. Int. Conf. on Supercomputing, pp.145-154, 1999.
D.Burger, Hardware Techniques to Improve the Performance of the Pro-
cessor/Memory Interface, Tech. Rep. Computer Science Dept., University of
Wisconsin-Madison, Dec. 1998.
S.Kumar and C.Wilkerson, Exploiting Spatial Locality in Data Caches using Spa-
tial Footprints, Proc. 25th Annual Int. Symp. On Computer Acrhitecture, pp. 357-
368, June 1998.
D.Agarwal, and D.Yeung, Exploiting Application-Level Information to reduce
memory bandwidth consumption, Technical Report UMIACS-TR-2002, Univ.of
Maryland, Inst. For Advanced Computer Studies, 2002.
A.R.Lebeck, D.Raymond, C-L.Yang, M.S.Thottethodi, Annotated Memory Refer-
ences: A Mechanism for Informed Cache Management, 1999
A.Gonzales, A.Aliagas, and M.Valero, A data cache with multiple caching strate-
gies tuned to different types of locality, Proc. 1995 Int.Conf. on Supercomputing,
pp.338-347, July 1995.
V. Popescu, M. Schultz, J. Spracklen, G. Gibson, B. Lightner, and D. Isaman. The
Metaflow architecture. IEEE Micro, pp.10-13, 63-73, June 1991

10.

11.

12.

13.

14.

15.

16.

17.

Impact of Register-Cache Bandwidth Variation on Processor Performance 225

18.

19.

20.

J.Ferrante, V.Sarkar, W.Trash. On Estimating and Enhancing Cache Effectiveness,
Proc.4th Workshop on Languages and Compilers for Parallel Computing, 1991.
O.Temmam and N.Drach, Software Assistance for Data Caches, Proc. IEEE
HPCA, 1995.
M.S.Lam, et al., The SUIF compiler System, 1992-2001. http://www-
suif.stanford.edu

Exploiting Free Execution Slots on EPIC Processors for
Efficient and Accurate Runtime Profiling

Youfeng Wu and Yong-Fong Lee

Corporate Technology Group (CTG), Software and Solutions Group (SSG)
Intel Corporation

2200 Mission College Blvd
Santa Clara, CA 95054

{youfeng.wu, yong-fong.lee}@intel.com

Abstract. Dynamic optimization relies on runtime profile information to
improve the performance of program execution. Traditional profiling
techniques incur significant overhead and are not suitable for dynamic
optimization. In this paper, we propose a new profiling technique that
incorporates the strength of both software and hardware to achieve near-zero
overhead profiling. The compiler passes profiling requests as a few bits of
information in branch instructions to the hardware, and the hardware uses the
free execution slots available in a user program to execute profiling operations.
We have implemented the compiler instrumentation of this technique using an
Itanium research compiler. Our result shows that the accurate block profiling
incurs very little overhead to the user program in terms of the program
scheduling cycles. For example, the average overhead is 0.6% for the
SPECint95 benchmarks. The hardware support required for the new profiling is
practical. We believe this will enable many profile-driven dynamic
optimizations for EPIC processors such as the Itanium processors.

1 Introduction

For EPIC processors like the Itanium ([3][13][18]), the compiler needs a certain
amount of knowledge about a user program to generate more efficient code. A static
compiler obtains this information from profiling the program with its training data. A
growing interest has been moving toward profiling and optimization at runtime with
actual input data. This “runtime profiling and optimization” environment requires the
collection of program profiles at runtime efficiently. The most commonly used
profiles are block/edge and path profiles. The best-known edge and path profiling
algorithms are from [4] and [5]. However, the instrumented code in the user program
typically incurs about 30% overhead with block/edge profiling and 40% with path
profiling. Our experience with Itanium processors shows that the overhead of block
profiling ranges from 14% to 42% for SPECint95 benchmarks. In the context of
dynamic optimization, this overhead is not acceptable during the execution of a
deployed user program.

Recent researches have focused on sampling based profiling to reduce the profiling
overhead ([1][19]). Sampling based profiling could potentially lose profile accuracy.

P.-C. Yew and J. Xue (Eds.): ACSAC 2004, LNCS 3189, pp. 226–240, 2004.
© Springer-Verlag Berlin Heidelberg 2004

Exploiting Free Execution Slots on EPIC Processors 227

It also requires operating system supports and incurs noticeable runtime overhead due
to software interrupts. We are interested in a method such that accurate profiles can be
obtained without OS support and without noticeable runtime overhead.

Here we present an approach that combines both hardware and software support to
greatly reduce profiling overhead. We first focus on block profiling, namely to find
the execution frequencies of the basic blocks in a user program, and later extend the
technique to edge profiling. To collect block profile information, the traditional
profiling technique inserts a load, an increment, and a store to each block that needs
profiling. In our new profiling technique, the compiler passes profiling requests as a
few bits in branch instructions to the hardware, and the hardware uses the free
execution slots available during the execution of the user program to collect profile
information. With this technique, the program execution with profiling can run almost
as fast as without profiling. This will enable many profile-driven dynamic
optimizations for EPIC processors such as the Itanium processors.

As an example, we look at the control flow graph (CFG) in Fig. 1. We only need to
profile blocks b, c, d, f, and h, and the frequencies for other blocks can be derived
from those of the profiled blocks. The traditional profiling technique would insert
three instructions in each of the profiled blocks to load a counter from memory,
increment the counter, and store the counter to memory. The inserted profiling code is
listed in Fig. 1(a). For our new technique, we first assign ID’s to the blocks that need
to be profiled. The ID’s are in the range of [1, ..., number of profiled blocks]. If a
block already has a branch instruction and the profile ID fits into the ID field, we
encode its ID in the field. The modified branch instructions are listed in Fig. l(b). At
runtime, the hardware derives the memory address of a profile counter from the ID
field in a branch instruction and automatically generates load/increment/store
instructions. These hardware-generated profile update operations are executed in free
execution slots available in the user program.

Our proposed technique achieves “near zero” profiling overhead by combining two
collaborative techniques: (1) powerful compiler analysis to insert minimal profiling
instructions, and (2) hardware that asynchronously executes profile update operations
in free execution slots available during the user program execution. The following are
several interesting issues solved in our approach.

We need an algorithm to select a minimal number of blocks to profile so that the
execution frequencies for other blocks can be derived from them. Furthermore, we
require as many selected blocks to contain branch instructions as possible. In the
following we will call a block selected for profiling a profiled block, which is further
classified as a branch block or a non-branch block depending on whether it contains a
branch instruction.

Although most profiled blocks have branch instructions in them, some may contain
no branch instructions to encode the profile ID’s. We provide an explicit instruction
(prof_id) to pass profile ID’s to the hardware for non-branch profiled blocks. Our
experiment shows that we only need to use the prof_id instructions in very few
blocks. We will use the term profiling instructions to refer to the instructions inserted
by the compiler for passing profiling needs to the hardware. They include the prof_id
instruction as well as the initprof and setoffset instructions that will be described later.
The hardware will translate the information carried by profiling instructions into
profile update operations to manipulate profile counters.

228 Y. Wu and Y.-F. Lee

Fig. 1. An illustration example

A branch instruction may allow only for a few bits of profile ID. The number of
profiled blocks in a function may be more than that the ID field can represent. We
apply an algorithm to partition a CFG into regions such that the ID field can
adequately represent the total number of ID’s in each region. We also pass additional
information in the region entry blocks to assist the hardware to derive profile counter
addresses from these ID’s.

The hardware intercepts profiling requests and generates instructions to update
profile counters. Although the profile update operations are inserted into free
execution slots available in a user program at runtime, they may have longer latencies
than instructions from the user program. We do not want their execution to delay the
user program. To achieve this, we devise a method for the hardware to arrange the
update operations so that they do not stall the execution of the user program.

The rest of the paper is organized as follows. Section 2 describes relevant
background material about Itanium. Section 3 discusses the architectural support.
Section 4 presents the details of our new profiling technique, including the compiler
algorithms for block selection and graph partitioning, and the hardware support.
Section 5 gives our experimental results. Section 6 extends our technique to do edge
frequency profiling. Section 7 describes related work. Section 8 gives concluding
remarks and future work.

Exploiting Free Execution Slots on EPIC Processors 229

2 Relevant Itanium Features

Itanium [13] provides many features to aid the compiler in enhancing and exploiting
instruction-level parallelism (ILP). These include an explicitly parallel instruction set
(EPIC), large register files, and architectural support for predication, speculation, and
software pipelining. An Itanium program must explicitly specify instruction groups,
each of which is a sequence of instructions that have no register flow and output
dependencies. Instruction groups are delimited by architectural stops in the code.
Because an instruction group has no register flow and output dependencies, its
instructions can be issued in parallel without hardware checks for register
dependencies.

The compiler divides an instruction group into bundles. A bundle contains three
instruction slots as shown below. Each instruction slot takes 41 bits. Most instructions
take one instruction slot, while those taking a link-time symbol as an operand may
take two slots. The template field specifies the mapping of instruction slots to
execution unit types.

We have observed a significant number of free execution slots available in many
machine cycles that can be utilized for profiling. The free execution slots arise from
the following causes:

Not all the possible mappings of instructions into functional units are
permitted. For example, a bundle can contain at most two load operations.
Thus an instruction group with three load instructions must be assigned into
two bundles. This would leave three free execution slots in the two bundles if
there were no other instructions in the group.
When the number of instructions in an instruction group is not a multiple of
the bundle size, the last bundle for the instruction group will have free
execution slots due to fragmentation.
The ILP available in applications may not be sufficient to fully utilize the
machine width all the time. This is especially the case for control-intensive
scalar code. Incidentally, an earlier study conducted by Diep et al. [9] reports
an IPC of 1.05–1.25 for four integer benchmarks and 1.0–1.9 for three
floating-point benchmarks on a 4-way PowerPC 620 processor. In [8] it is
reported that on large commercial applications, average cycles-per-instruction
(CPI) values may be as high as 2.5 or 3. With 4-way instruction issue, a CPI of
3 means that only one issue slot in every 12 is being put to good use.

To reduce code size, Itanium processors allow for in-bundle stops to pack
dependent instructions into the same bundle to reduce explicit no-ops. The hardware
dynamically inserts no-ops when the bundle is expanded before execution. We will
modify the no-op insertion logic to insert profiling operations when no-ops are
needed.

Another relevant Itanium architectural feature is the “multi-way branches”, in
which multiple branch instructions are placed in the same bundle and executed in the
same cycle. Multi-way branches are helpful in reducing control dependence height

230 Y. Wu and Y.-F. Lee

and should be used as much as possible to increase ILP. Our partitioning algorithm
will preserve multi-way branches.

3 Profiling Instructions and Registers

In this section, we outline extensions to the Itanium architecture required by our
profiling technique. We assume that the processor has a special 64-bit status register
dedicated for profiling. We call it the profile information register (pir). This register
contains the following fields with their respective widths in bit:

In addition to an extension to the branch instruction to use the 8-bit branch hints in
the current Itanium branch instructions for profile ID’s, we also need several new
instructions given in the following table.

Instructions
prof_id ID
initprof baseAddr
setoffset offset
startprof
stopprof

Descriptions
Pass the profile ID to the hardware.
Initialize pir.base_address as baseAddr.
Set pir.offset as offset.
Set pir.flag as 1 to activate or resume profiling.
Reset pir.flag as 0 to deactivate profiling.

By default, the value of the ID field in a branch instruction is zero. A non-zero ID
is set for a profiled block. We assume that the ID field uses K bits, where K >=1 and
is assumed to be K = 8 in this study. For a non-branch block, we use the instruction
“prof_id ID” to explicitly pass a profile ID to the hardware.

The pir register is preserved on function calls. On entering a function, the value of
pir except for its flag is initialized as zero. We require that each profiled function
execute the “initprof baseAddr” instruction in its entry block to initialize
pir.base_address. Normally, the “startprof” instruction is executed in the main
function of a program to activate profiling. The dynamic optimizer can execute the
“stopprof” and “startprof”instruction to stop and resume profiling.

We also need a few scratch profile registers, which will be described later. Note
that none of the profiling instructions will affect the correctness of the user program.
They can be safely ignored by a particular processor implementation if needed.

4 Details of Our Profiling Technique

With the new profiling instructions and registers, our technique performs compiler
analysis and instrumentation to place profiling instructions in a user program. The
compiler also allocates memory space for recording profile data. When the
instrumented program runs, the hardware intercepts the profiling requests and
translates them into profile update operations. The update operations are inserted into
the free execution slots available during the execution of the user program.

Exploiting Free Execution Slots on EPIC Processors 231

4.1 Compiler Instrumentation

The compiler instrumentation performs the following tasks:

Selecting profiled blocks
Partitioning CFG into regions
Inserting profiling instructions and adding profile ID’s to branch instructions
in profiled blocks

4.1.1 Selecting Profiled Blocks

The compiler first selects a set of profiled blocks. We extend the Knuth algorithm in
[12] to find the minimal set of profiled blocks in a function. The original Knuth
algorithm performs the following steps:

Partition the CFG nodes into equivalence classes. Nodes b1 and b2 are
equivalent, denoted by if there is another block b such that both b-
>b1 and b->b2 are CFG edges.
Construct a graph with the equivalence classes as nodes and the original CFG
blocks as edges. Select a maximal spanning tree from the graph. The original
CFG blocks corresponding to the edges on the spanning tree do not need
profiling, and all other blocks are profiled blocks.
For each block that does not need profiling, find a set of profiled blocks from
which the profile information for this block can be derived.

In general, it may be impossible to require that every profiled block contain a
branch instruction. We thus extend Knuth’s algorithm such that as many profiled
blocks have branch instructions in them as possible. This is achieved by modifying
the second step of the algorithm. Namely, during the maximal spanning tree
computation, we treat blocks containing no branch instructions as having a very large
weight. Consequently, it is more likely for these blocks to be included in the maximal
spanning tree and thus excluded from profiling.

Assume n branch blocks and m non-branch blocks in a function are selected for
profiling. Then the compiler allocates n + m memory locations to store profile
information for these blocks.

4.1.2 Partitioning CFG into Regions

The input to the partitioning algorithm is a CFG, and each CFG block is marked as
either a profiled block or not, and, for a profiled block, as either a branch or non-
branch block. We want to partition the CFG into single-entry regions such that the
number of regions is small and each region contains no more than branch
blocks.

Lee and Ryder have formulated the problem of partitioning an acyclic flow graph
into single-entry regions subject to the size constraint [14]. They proposed two
approximation algorithms for the problem, which was shown to be NP-hard. Here we
are interested in partitioning a cyclic flow graph, and only branch blocks will be
counted in the size constraint. Thus, we extend their algorithms by considering the
following factors:

232 Y. Wu and Y.-F. Lee

Rather than limiting the number of blocks in a region, we limit the number of
branch blocks.
Cycles are allowed within a region as long as the region has only one single
entry block.
When two or three blocks are grouped together to allow for multi-way
branches, we force them into the same region. This is to avoid using a block
later in the sequence as a region entry block. Otherwise, the profiling
instruction to be inserted in the region entry block will prevent it from being
grouped with the earlier branch(es).

The extended algorithms partition the CFG into single-entry regions such that each
region contains no more than branch blocks. Note that a region may contain any
number of non-branch blocks. Assume t regions are formed. We name the regions as
R0, R1,..., Rt-1. For profiling efficiency, we name the region headed by the function
entry block as R0. The number of branch blocks in Ri is denoted by NB(Ri) and the
number of non-branch blocks in Ri is denoted by NN(Ri). Let size(Ri) = NB(Ri) +
NN(Ri).

For each region Ri, the compiler assigns an ID number in the range of [1,..,
NB(Ri)] to each of the branch blocks, and an ID number in the range [NB(Ri)+1,
size(Ri)] to each of the non-branch blocks. Remember that ID=0 is assigned to
branches that do not need profiling. Let ID(b, Ri) be the ID number of a profiled
block b in Ri.

Assume the starting address of the profile storage is base_address. For the j’th
block bij in region Ri, the starting address of its profile counters is

4.1.3 Inserting Profiling Instructions and Modifying Branch Instructions

The compiler inserts an “initprof baseAddr” instruction in the function entry block to
load the base address of the profile counters storage into the profile information
register.

For each region Ri, 0<i<t, the compiler inserts a “setoffset instruction

in its entry block. We do not need to perform this operation for R0 since its offset is
zero.

For each profiled block bij in region Ri, if it is a branch block, the compiler
modifies the branch instruction of the block from “br target” to “br ID(bij, Ri),
target”; otherwise, the compiler inserts an instruction “prof_id ID(bij, Ri)” into the
block bij.

A profiled block may have more than one profiling instruction inserted. For
example, it is possible that an entry block with an “initprof instruction also has a
“prof_id” instruction inserted. We can combine the two instructions by extending the
initprof and setoffet instructions to carry an ID field. In this case, the following
peephole optimization can be applied.

If an “initprof addr” and a “prof_id ID” are in the same block, replace them
with “initprof addr, ID”.

Exploiting Free Execution Slots on EPIC Processors 233

If a “setoffset offset” and a “prof_id ID” are in the same block, replace them
with “setoffset offset, ID”.

With the peephole optimization, a profiled block will have at most one profiling
instruction inserted. These peephole optimizations have not been implemented for this
paper.

4.2 Profiling Hardware

At runtime, when a branch instruction “br ID, target” or “prof_id ID” retires, the
profiling hardware first checks pir.flag. If the flag is set, it then checks the ID value. If
the ID value is zero, the hardware does not need to profile the block. Otherwise, the
hardware generates the address of the profile counter as

address = pir.base_address + pir.offset + ID - 1
and performs the following update operation.

We want the hardware to perform the update operations asynchronously with the
user program so as not to impact critical user program execution. One way is to
utilize the free execution slots available in a EPIC processor. In this method, each
update operation can be implemented by the following sequence of operations
(assume the profiling hardware places the address of a profile counter into register
raddr):

These operations are placed into a buffer, and the dispatch unit of the processor
inserts the buffered operations into the user program execution stream whenever free
execution slots become available. Notice that the update operations do not have to
complete within a time limit if no free execution slots are available, as long as they
eventually complete. However, the buffer is of a limited size and it may fill up when
free execution slots are limited. When that happens, we can discard some of the
buffered operations. This will reduce profiling accuracy but may still be acceptable if
a majority of the profile update operations are performed. This approach is shown in
Fig. 2.

Note that we will need to use an address register and an accumulator register
during the three update operations (consisting of a load L, an increment I, and a store
S) to temporarily store the address and the loaded value. If we are to interleave the
operations from multiple updates, we will need multiple address and accumulator
registers for simultaneously executing the update sequences.

To minimize the impact of the update operations on the user program execution,
we mark the loads in the update operations to bypass the first level cache (L1) so they
won’t compete for cache resources with loads in user programs*. Therefore, we need
to arrange the corresponding increment and store operations C and C + 1 cycles,
respectively, later than the load instruction, where C is the L1 cache miss latency,

* Itanium processor allows a load to carry a hint to indicate no temporal locality at the L1
(ntl), L2 (nt2), or all cache levels (nta).

234 Y. Wu and Y.-F. Lee

such as 5 cycles. The update operations can be arranged in a simple pipeline to hide
the latencies.

Fig. 2. Profiling hardware

Assume we have C address registers and C accumulator registers that are used in a
round-robin fashion. Namely, if the update operations i (consisting of and use
register j, then the update operations i+1 (consisting of and will use the
register (j+1) modulo C. We will arrange the profile update operations buffer as a
circular buffer. Each entry is a three-instruction tuple, consisting of
where is the load for update i+C+1, is the increment operation for update i+1,
and is the store operation for update i. As long as we insert instructions into free
execution slots in the buffered instruction order, and we do not insert more than three
instructions in a single execution cycle, the update operations will produce the correct
profiling result. This pipelined execution is illustrated in Fig. 3 and it will hide the
entire C-cycle latencies of the loads. If we use more address and accumulator registers
we can insert more instructions in a single execution cycle.

Although we expect the current 6-wide issue Itanium processor to have enough
free execution slots for the profiling update operations, for a narrower processor that
do not have enough free execution slots available, we can use dedicated hardware to
perform the update operations. The dedicated hardware only needs to perform the
update efficiently so it can be easily built. With the dedicated hardware, little or none
of the profile update operations will be discarded, and the resulting profile data can be
more accurate.

Fig. 3. Pipelined execution of profile update operations

This approach uses the hardware as shown in Fig. 4 to perform the update
operations. After the profile counter ID is used to compute the profile data address

Exploiting Free Execution Slots on EPIC Processors 235

addr, the update operation ++(*addr) is sent to the profile update operations buffer
and performed by the dedicated hardware. The dedicated hardware performs the
update directly without bringing data to the processor and then writing it back.

Fig. 4. Dedicated profiling hardware

5 Experimental Results

We have implemented the compiler instrumentation described earlier in an Itanium
research compiler. Our experiment used the SPECint95 benchmarks as the test
programs.

Table 1 shows the compile-time statistics for our profiling technique. With the
extended Knuth algorithm, we need to statically select, on average, about 38% of the
blocks for profiling, and only 2.3% of the profiled blocks do not contain branch
instructions. The profiled blocks selected account for about 30% of the total dynamic
block frequency.

By using an 8-bit ID field in branch instructions, each function can be partitioned
into 1.15 regions on average. About 3.55% of the blocks are function entry blocks,
and 0.11% of the blocks are region entry but not function entry blocks. Overall, about
5.8% of the blocks need to have profiling instructions inserted.

Since the new profiling technique requires hardware support and we don’t have a
cycle-accurate simulator to evaluate this new technique, we use “schedule length” in-
crease as our metrics for the profiling overhead. For statically scheduled EPIC
microprocessors, the schedule length represents the portion of the execution time
spent in the CPU core, without considering such microarchitectural stalls as branch
miss, cache miss, etc. We believe that the new profiling technique should not
noticeably increase the stalls related to branch and cache misses, and therefore the
overhead in term of “schedule length” should be a good estimate of the actual
overhead in term of overall performance.

In Fig. 5, we compare the overhead of our new profiling technique with that of the
traditional block profiling (with Knuth’s optimization). Both are compared against the
baseline with no profiling. The traditional block profiling incurs about 22%

236 Y. Wu and Y.-F. Lee

Fig. 5. Comparing the overhead in our technique and traditional block profiling

slowdown on average, ranging from 14% for compress to 42% for m88ksim. By
contrast, our method has an average overhead of 0.6% because almost all the initprof,
setoffset, and prof_id instructions can be scheduled into free execution slots at
compile time, without increasing code size and execution cycles.

6 Extension to Edge Profiling

We may extend our technique for block profiling to do edge profiling. In this case, the
profiled edges can be identified with an algorithm proposed in [4]. The CFG
partitioning algorithm will be modified to use the number of profiled branch edges as
the size constraints. The branch instruction will carry one of the following hints:

“tk”, for profiling the taken edge when the branch takes
“nt”, for profiling the not-taken edge when the branch fall-through
“both”, for profiling the taken edge when the branch takes and the not-taken
edge when the branch fall-through

Exploiting Free Execution Slots on EPIC Processors 237

Fig. 6. An example of collaborative profiling

Notice that the “branch.both ID target” instruction may modify two profile
counters, one for the taken edge and the other for the fall-through edge. We require
that the two edges be assigned two consecutive IDs so the hardware can determine the
counter addresses easily.

We use the control flow graph (CFG) in Fig. 6 to describe the edge profiling
technique. In this CFG, we only need to profile the edges and and
the frequencies for other edges can be derived from those of the profiled edges. The
traditional edge profiling technique would insert three instructions in each of the
profiled edges to load a counter from memory, increment the counter, and store the
counter back to memory. The inserted profiling code is listed in Fig. 6 (a). Our new
technique only needs to modify three branch instructions as shown in Fig. 6 (b). The
processor derives the profile operations from the modified branch instructions and
executes them without impacting the execution of the user program.

7 Related Work

Software only approaches to profiling can be found in [4][5]. They slow down user
programs by about 30% so they may not suitable in the context of dynamic
optimization. The main problem with software only approaches is that the inserted
instructions compete with the user program for machine resources (e.g. the
architectural registers), and they impose dependence that may lengthen the critical
paths in the user program.

The sampling based profiling technique in [1][19] collects statistical block profiles
by periodic timing interrupts. This technique requires operating system support, and
the profile information collected may not be accurate enough for traditional profile-
guided optimizations although it is shown to be useful for code layout optimization.

238 Y. Wu and Y.-F. Lee

Bursy tracing [2] is a proposed technique to collect profile information via
software controlled sampling. It generates two versions of code, one for profiling and
one for optimized execution without profiling, and switch from the optimized code to
the profiling code infrequently to collect sampling based profile information
efficiently. The major drawback is the need to duplicate the code.

In [15] [16], a hardware approach is proposed for identifying hot regions and
collecting branch profiles for the hot regions. However, this approach requires
significant hardware and also needs operating system support. In addition, the profiles
collected by using this technique may not be complete and some edges in a hot region
may be missed due to cache conflicts and the lack of backup storage. Heuristic
patching of the profile may lead to inaccuracy.

Processors, such as Intel Pentium and Itanium, have software readable branch
target buffers (BTB). In [6] a technique is described on how to cheaply estimate a
program’s edge execution frequencies by periodically reading the contents of BTB. In
[7] a hardware called a profile buffer is proposed, which counts the number of times a
branch is taken and not taken. These techniques require software interrupt to examine
the hardware buffers to obtain sampled profiles.

In [10] a profiling technique is implemented for counting the number of times each
region exit takes. The dynamic compiler instruments region exit and an 8K entry 8-
way set associative hardware array caches counters indexed by the exit point
identifiers. This method is specifically targeted for dynamic region formation and
expansions.

In [11], the instrumented instructions are scheduled in a software pipelining
fashion and that together with speculation and predication reduce the overhead of
edge profiling to about 3.3% on an eight-wide machine, without considering cache
and branch overhead. However, this technique may generate more memory traffic
than necessary, as it may speculatively execute loads and stores for profiling.
Furthermore, this technique may still have the instruction cache penalty due to code
size expansion. In [17], it is reported that profiling instrumentation increases the text
size of a program by a factor of 2-3. On an Itanium processor, since the in-bundle
stops can be used to reduce explicit no-ops, the instrumentation code may still
increase code size even when it does not increase cycle count.

Our approach goes beyond static scheduling of instrumented code. It attempts at
minimal instrumentation in a user program and makes the hardware generate profile
update operations and then execute them asynchronously with the user program. Its
advantages include that the code size normally will not increase, and the update
operations normally will not impact user code. Since the simple profile update
operations are collected into a shared buffer, they can be easily pipelined to achieve
the maximal execution efficiency.

8 Conclusion and Future Work

We have presented a technique that combines strengths from both the software and
the hardware to efficiently collect accurate profiles. The compiler uses its powerful
analysis capability to determine the profiling locations and minimize the profiling
operations. The hardware uses runtime knowledge to discover free execution slots and
performs profile update operations, with little impact on the user program

Exploiting Free Execution Slots on EPIC Processors 239

performance. The program execution with profiling can run almost as fast as without
profiling. We believe this is the first approach that attains accurate profile information
with both hardware and software support. This will enable profile-driven dynamic
optimizations on EPIC processors.

In the future, we would also like to simulate the profiling hardware to measure the
buffer size and the memory traffic due to profile update operations. We have
implemented the needed compiler support for cycle-accurate performance simulation,
in which the new profiling instructions are emitted as special nops.

References

1.

2.

3.

4.

5.
6.

7.

8.

9.

10.

11.

12.

13.
14.

Anderson, J., L.M. Berc, J. Dean, S. Ghemawat, M.R. Henzinger, S.T. Leung, R.L. Sites,
M.T. Vandevoorde, C.A. Waldspurger, and W.E. Weihl, “Continuous profiling: where
have all the cycles gone?” In Proc. Symposium on Operating System Principles, Oct.
1997.
Arnold, Matthew, Barbara G. Ryder, “A framework for reducing the cost of instrumented
code”, Proceedings of the ACM SIGPLAN’01 conference on Programming language
design and implementation, p.168-179, June 2001, Snowbird, Utah, United States.
August, D.I.; Connors, D.A.; Mahlke, S.A.; Sias, J.W.; Crozier, K.M.; Ben-Chung Cheng;
Eaton, P.R.; Olaniran, Q.B.; Hwu, W.-M. W. “Integrated predicated and speculative
execution in the IMPACT EPIC architecture”, , 1998. Proceedings of 25th Annual
International Symposium on Computer Architecture, 1998, Page(s): 227 -237
Ball, Thomas and James Larus, “Optimally profiling and tracing programs,” ACM
Transactions on Programming Languages and Systems, 16(3): 1319-1360, July 1994.
Ball, Thomas and James Larus, “Efficient Path Profiling,” MICRO-29, December 1996.
Conte, T.M., B.A. Petal, and J.S. Cox, “Using branch handling hardware to support
profile-driven optimization,” In Proc. Annual Intl. Symposium on Microarchitecture,
Dec. 1996, pp 36-45.
Conte, T.M., K.N.Menezes, and M.A. Hirsh, “Accurate and practical profile-driven
compilation using the profile buffer,” In Proc. Annual Intl. Symposium on
Microarchitecture, Nov. 1994, pp 12-21.
Dean, J., J.E. Hicks, C.A. Waldspurger, W.E. Weihl, and G. Chrysos, “ProfileMe:
Hardware Support for Instruction-level Profiling on Out-of-Order Processors,” Micro-30,
Dec. 1997.
Diep, Trung A., Christopher Neslson, and John P. Shen, “Performance Evaluation of the
PowerPC 620 Microarchitecture. In Proceeding of the Annual International
Symposium on Computer Architecture, pp 163-174, June 1995.
Ebcioglu, K.; Altman, E.; Gschwind, M.; Sathaye, S. “Dynamic binary translation and
optimization,” IEEE Transactions on Computers, Volume: 50 Issue: 6, June 2001, Page(s):
529 -548
Eichenberger, A. and Sheldon M. Lobo, “Efficient Edge Profiling for ILP-Processor,”
PACT 98.
Knuth, D. E. and F. R. Stevenson, “Optimal measurement of points for program frequency
counts,” BIT 13 pp. 313-322 (1973).
Intel Corp, “Itanium Application Developers Architecture Guide,” May 1999.
Lee, Yong-fong and Barbara G. Ryder, “A Comprehensive Approach to Parallel Data
Flow Analysis”, Proceedings of the ACM International Conference on Supercomputing,
Pages 236-247, July 1992.

240 Y. Wu and Y.-F. Lee

15.

16.

17.

18.

19.

Merten, Matthew C., Andrew R. Trick, Christopher N. George, John C. Gyllenhaal, and
Wen-mei W. Hwu, “A Hardware-Driven Profiling Scheme for Identifying Program Hot
Spots to Support Runtime Optimization,” Proceedings of the 26th International
Symposium on Computer Architecture, May 1999
Merten, M.C.; Trick, A.R.; Nystrom, E.M.; Barnes, R.D.; Hwu, W.-M.W. “A hardware
mechanism for dynamic extraction and relayout of program hot spots,” 2000. Proceedings
of the 27th International Symposium on Computer Architecture, 2000, Page(s): 59 -70
Schnarr, Eric and James Larus, “Instruction Scheduling and Executable Editing,” Micro
29, Dec. 1996.
Schlansker, M.S., Rau, B.R. “EPIC: Explicitly Parallel Instruction Computing,”
Computer, Volume: 33 Issue: 2, Feb. 2000, pp 37-45
Zhang, Xiaolan, Zheng Wang, Nicholas Gloy, J. Bradley Chen, and Michael D. Smith.
“System Support for Automated Profiling and Optimization,” 16th ACM Symposium on
Operating System Principles, Oct. 5-8, 1997.

Continuous Adaptive Object-Code Re-optimization
Framework

Howard Chen, Jiwei Lu, Wei-Chung Hsu, and Pen-Chung Yew

University of Minnesota, Department of Computer Science
Minneapolis, MN 55414, USA

{chenh, jiwei, hsu, yew}@cs.umn.edu
http://www.cs.umn.edu/~hsu/dynopt

Abstract. Dynamic optimization presents opportunities for finding run-time
bottlenecks and deploying optimizations in statically compiled programs. In
this paper, we discuss our current implementation of our hardware sampling
based dynamic optimization framework and applying our dynamic optimization
system to various SPEC2000 benchmarks compiled with the ORC compiler at
optimization level O2 and executed on an Itanium-2 machine. We use our op-
timization system to apply memory prefetching optimizations, improving the
performance of multiple benchmark programs.

1 Introduction

Dynamic optimization presents an opportunity to perform many optimizations that
are difficult to apply at compile time due to information that is unavailable during
static compilation. For instance, dynamic link libraries limit the scope of procedure
inlining and inter-procedural optimizations, two optimizations that are known to be
very effective [2]. In addition, a typical shared library calling sequence includes ex-
pensive indirect loads and indirect branches. Such instruction sequences are good
targets for dynamic optimizations once the shared libraries are loaded.

Dynamic optimization also provides an opportunity to perform micro-architectural
optimizations. Recompiling a program to a new micro-architecture has been shown to
greatly improve performance [9]. Dynamic optimization provides a way to re-
optimize a program to new micro-architectures without requiring recompilation of the
original source code.

Finally, dynamic optimization can specialize a program to a specific input set or
user which has been applied successfully by Profile Based Optimization (PBO)
[2],[5] in the past, but are difficult to apply for due to concerns over excessive com-
pile time, instrumentation-based profiling overhead, complex build processes, and
inadequate training input data set [14]. Dynamic optimization can be used to deploy
more aggressive optimizations, such as predication [13], speculation [10], and even
register allocation and instruction scheduling according to current program behavior
and with less risk of degrading performance.

P.-C. Yew and J. Xue (Eds.): ACSAC 2004, LNCS 3189, pp. 241–255, 2004.

© Springer-Verlag Berlin Heidelberg 2004

242 H. Chen et al.

In short, dynamic object code re-optimization allows code to be generated specifi-
cally for a specific execution environment. It adapts optimizations to the actual
execution profiles, micro-architectural behavior, and exploits the opportunity to
optimize across shared libraries. However, a dynamic optimization system must
detect and apply optimizations efficiently to be profitable. If the overhead of the
system is greater than the time saved by optimizations, the runtime of the optimized
program will increase.

We present our design and implementation of our adaptive object-code re-
optimization framework to detect and deploy dynamic optimizations with a minimal
amount of overhead on modern hardware. Our prototype system detects time-
consuming execution paths and performance bottlenecks in several unmodified
SPEC2000 benchmarks by continuously sampling Itanium performance monitoring
registers throughout the program’s execution [6]. We use the collected information to
create executable traces at runtime, and deploy these optimizations by modifying
branch instructions in existing code to execute our instructions in place of hot paths in
the original code. We examine the overhead of our detection system, and show that
this technique can be applied with less than 2% of overhead while speeding up vari-
ous SPEC2000 benchmarks.

2 Background

Dynamic optimization has been presented in the past in frameworks such as Dynamo
[3] and Continuous Profiling and Optimization (CPO)[12]. Dynamo uses a method
similar to dynamic compilation used in virtual machines. Native binaries are inter-
preted to collect an execution profile and fragments of frequently executed code are
emitted and executed in place of interpretation. Dynamo requires no additional in-
formation beyond the executable binary to operate, and this allows it to be applied on
arbitrary binaries without needing access to the original code or IR. CPO presents a
model closer to traditional PBO where the original code is instrumented, and the
profile information is used to compile optimized versions of code. In CPO, profiled
information is used to drive PBO while the program is running and the compiled
result is hot-swapped into the program. The advantage of this scheme is that the IR
information makes application of many optimizations easier.

However, since the applied optimizations compete with the dynamic optimization
system’s overhead, interpretation and instrumentation-based profiling dynamic opti-
mizers often try to limit the time spent collecting profiled information, sometimes at
the expense of optimizations. For example, Dynamo only interprets unique execution
paths a small number of times before selecting traces to optimize to avoid interpreta-
tion overhead. Instrumentation incurs less overhead than interpretation, but even
efficient implementations of instrumentation [4] generate measurable overheads. This
may lead to profiling of initialization behaviors that do not represent dominant execu-
tion behavior. Even after attempting to reduce optimization system costs, the dynamic
optimization systems still produce a relatively high amount of overhead, which works

Continuous Adaptive Object-Code Re-optimization Framework 243

against the profitability of optimizations. In our system, we seek to limit the overhead
of the techniques used to profile and deploy dynamic optimizations.

Existing dynamic optimization systems can generally be broken down into three
stages: profiling/detection, optimization, and deployment. The detection stage deals
with the collection of information necessary to select and guide optimizations. The
optimization stage uses the collected information to select a set of optimizations to
deploy in a target program. The deployment stage handles the application of the se-
lected optimizations to a running program. Each of these stages requires runtime
processing which leads to a slowdown of the original program. We try to reduce tar-
get profiling and deployment costs to improve the performance of the entire dynamic
optimization system.

Our overall goal is to move towards a dynamic optimization framework that incurs
minimal overhead while providing good potential for optimization speedups. Other
techniques seek to perform similar goals [15], [16] using hardware. Like these
schemes, our work uses specialized hardware to collect information useful for our
planned optimizations. However, these schemes propose the implementation of new
hardware to process data. In contrast, our work gathers data from existing perform-
ance monitoring hardware and analyzes it using a user program. Previous work in
periodic sampling of hardware structures is presented in [1], [7], [8]. These schemes
concentrate on applying this information to guide static PBO rather than dynamic
optimizations.

3 Architecture

3.1 Overview

Our architecture performs three main tasks: detection, optimization, and deployment.
Detection deals with the collection of raw performance event information that is use-
ful for identifying and applying optimizations like D-cache misses, IPC, and branch
paths commonly leading up to performance events. Optimization deals with generat-
ing optimized code to replace existing executable code. Deployment deals with the
issues presented by redirecting execution from the original program to optimized
code.

The code for our dynamic optimizer is first executed when a program executes the
C run-time startup routines. We compile our own custom version of C run-time li-
brary to start a thread dedicated to dynamic optimization and initialize a shared mem-
ory area to place optimized code. The dynamic optimization thread begins monitoring
the behavior of the original primary thread, and generates and deploys optimized
code later in execution. After initialization of the dynamic optimization thread is
complete, the C run-time library startup routines continue and begin executing the
original program while the optimization thread begins detecting optimization oppor-
tunities.

244 H. Chen et al.

3.2 Performance Event Detection

3.2.1 Performance Monitoring Hardware
We use the Performance Monitoring Unit (PMU) on Itanium processors to collect
information and signal the operating system to collect and store profiled information.
The primary PMU features we use for the detection work are the performance-event
counters and the Branch Trace Buffer (BTB)[11]. The performance-event counters
are a set of registers that track the number of times performance events like cache
misses and branch mispredictions occur. These counters are used to throw interrupts
periodically after a number of events occur. For instance, we can choose to throw a
system interrupt once every million clock cycles, once every ten thousand D-cache
misses, or once every one-hundred branch mispredictions. During each interrupt, we
can save information about the type of interrupt and BTB information in memory for
later processing.

The BTB, not to be confused with a branch target buffer used in branch prediction,
is a set of eight registers that store the last four branches and branch targets. When the
performance monitor throws an interrupt, we use the BTB to find the last four taken
branch instructions and branch targets that lead up to the performance event interrupt.
By monitoring only taken branches, we can form longer traces than if we had moni-
tored all branches since not-taken branch information can easily be reconstructed by
scanning the instructions between the last branch target and the next taken branch
instruction. The BTB also allows us to generate an edge profile without scanning and
decoding the original source code.

A detailed discussion of PMU hardware on Itanium processors can be found in
[11].

3.2.2 Perfmon
Our hardware information is collected using perflib, a library from the Perfmon tool-
set. The Perfmon toolset configures and collects raw performance information from
Itanium programs running on 64-bit Linux. Perfmon sends system calls to a Linux
kernel driver to configure the PMU and automatically collects samples of the PMU
registers for later processing.

Once the PMU stores raw register information to memory, it can be consumed in-
dependently from the monitored program. All information collected by Perfmon is
done without modifying the original program binary. Perfmon is described in greater
detail in [20].

3.2.3 Hot Trace Selection
The goal of our hot trace detector is to find a small number of traces that lead up to
performance critical blocks. To collect these hot traces, we sample sets of four taken
branches and branch targets from the BTB at regular intervals and sort the results into
a hash table, while keeping track of the frequency of the different sample paths. The
most frequently sampled paths are marked for optimization in the table under the
assumption that they dominate execution time, and traces are selected to include these
hot spots.

Continuous Adaptive Object-Code Re-optimization Framework 245

Since the optimization and deployment of traces requires processing time, we limit
the traces we select to those we believe we can optimize profitably. The best traces to
optimize are the traces that contribute the most execution time for the remainder of
the program, and contain a performance event that we can optimize. The performance
monitoring hardware provides the information we need to see if a performance event
commonly occurs on any path we select. However, to predict which traces will con-
tinue to dominate execution time in the future and prevent optimizing traces with
performance events that only occur for very short periods of time, we perform addi-
tional work to estimate when program behavior is most stable.

3.2.4 Phase Change Detection
We assume that programs generally enter different “phases” of execution, periods of
time when characteristics like IPC, D-cache hit rate, and the current working set of
hot code follow similar patterns throughout a phase [17],[18]. Since our current op-
timizations focus on optimizing D-cache misses and improving IPC, we use the num-
ber of D-cache misses per cycle and IPC over time as metrics to guess when the be-
haviors we wish to optimize are most stable.

Our goal is to select hot traces to optimize the first time we encounter a new phase
and to keep it in our working set for the remainder of program execution. As long as
the execution of the program remains in a stable phase, no further changes are made
to the optimized traces. Changes in execution phases will be detected, and such
changes will trigger further optimizations.

Every second of execution time, we measure the number of D-cache misses and
IPC over the past second and compare it to previously measured values. If the D-
cache and IPC values are stable for several seconds (deviating less than a set percent-
age), we assume that the D-cache and general program behavior is stable enough to
select a set of hot traces that may execute for some time into the future, and select a
set of traces from the samples in the current stable phase.

Conversely, when D-cache and IPC values fluctuate, it indicates that program be-
havior has changed and that new hot traces may need to be selected or existing se-
lected traces may no longer be hot. When D-cache miss rate and IPC values deviate
from the previous few seconds, we recheck our collected sampled data to look for
new hot traces to add to our working set.

The weakness of this metric is that D-cache miss and IPC values are composite
values for all the code that is executing in a program over an interval. This can lead to
a false measurement of a stable phase since it is possible that program behavior has
completely changed but averages out to similar values. In practice, we found that a
stable D-cache miss rate and IPC values indicated a stable phase. We did not observe
this behavior in any of our measurements of SPEC benchmarks, but it remains a pos-
sibility for other programs.

A more likely problem with this metric is that program behavior patterns com-
monly have sub-patterns. For instance, an outer loop may contain two inner loops:
one with stable exploitable behavior, and one with unstable behavior. The stable sub-
phase, or repeated stable behavior contained within the larger phase, can be optimized

246 H. Chen et al.

despite instability in the D-cache and IPC metrics. However, this behavior was also
uncommon in the SPEC benchmarks we measured.

However, these problems indicate the potential need for deeper phase change de-
tection to fully exploit all the stable behavior in a program that may be further sup-
ported in future work studying phase detection of programs outside of the SPEC
benchmark suite.

3.3 Optimization

3.3.1 Trace Generation
Every time a set of traces is selected, executable code corresponding to each trace is
assigned a type name according to its behavior. For instance, a loop is a type assigned
to any trace that is completely enclosed in a trace. A subroutine is a type assigned to
traces that are targeted by “br.call” instructions and end with a “br.ret” instruction,
both indicators of a subroutine. Traces of different types are optimized in different
ways. Data prefetching loop optimizations are particularly applied only to loop-typed
traces, while inter-trace optimizations are more likely to be applied in subroutines.
Code is then generated in our trace buffer for our selected traces, a shared memory
area that contains our optimized executable code. The selected traces are then “cross-
patched” or set to return to original code if execution leaves the path of the trace.

3.3.2 Trace Cross-Patching
Cross-patching refers to patching optimized traces to branch to other optimized
traces. Ideally, once a good set of optimized traces is selected, control should rarely
return to the original program. To perform cross-patching, a graph is generated with
one node for each selected trace and edges to connected traces. When the code for the
trace is generated, the branch instructions in optimized traces are then modified to
branch to other optimized traces instead of returning to the original code.

3.3.3 Architecture Safe Optimization
Code scheduling/motion and other aggressive transformations may cause problems
for preserving the original order of architecture state changes. This may create prob-
lems if a user trap handler expects to have the precise architecture state at the excep-
tion. To avoid these problems, we first attempt optimizations that do not change ar-
chitecture states such as trace layout and data cache prefetching. Although data cache
prefetch transformations require some temporary registers to hold prefetch addresses,
we have the compiler (ORC compiler) reserve four general purpose and two predicate
registers for such a purpose. Due to the large register file in the Itanium architecture,
reserving a small number of registers has essentially no performance impact on the
compiled code. We have verified this by comparing the performance of compiled
code at various optimization levels with/without the reserved registers.

Continuous Adaptive Object-Code Re-optimization Framework 247

3.3.4 Data Prefetching
In our dynamic optimization system, we target D-cache misses for optimization be-
cause they are well known to be a common dominant performance problem in pro-
grams, but are difficult to detect statically [19]. Using our ability to detect instructions
that cause D-cache misses, our dynamic optimization system can take advantage of
information that is only available at run-time.

To detect which memory operation generates data cache misses during runtime, D-
cache miss events are sampled by the performance monitoring unit and associated
with the corresponding load/store instructions in the selected traces. Once a memory
operation is found with a miss latency that contributes greater than 5% of execution
time based on performance monitoring counters, the trace where this instruction re-
sides will be scheduled for optimization.

The optimizer then determines if any of the implemented prefetch optimizations
are appropriate. We implement three types of data prefetching for loops: array refer-
ence, indirect array reference, and pointer chasing.

Here is an example of the code generated in an indirect array reference before pre-
fetching:

A frequent D-cache missed indirect array reference will trigger two-level data cache
prefetching. The first level is a direct array reference prefetch to prefetch for the array
containing the addresses of the data. The second level prefetches the value at the
address from the array. Note that the first level runs a few iterations ahead of the
second level of prefetching. Here is an example of the prefetch code generated to
optimize the previous indirect array-reference code:

248 H. Chen et al.

This is an example of pointer chasing code before optimization:

For pointer-chasing prefetching, the key memory address which controls the memory
references (i.e.the possible “->next” pointer for linked lists) is found and prefetched
by assuming a constant stride:

3.4 Deploying Optimizations

3.4.1 Patching Branch Targets
We redirect execution from the original code to traces in our trace buffer by modify-
ing frequently executed branch instructions to branch to the corresponding optimized
code in the trace buffer. However, modifying executable instructions in a running
program creates a number of issues ranging from memory protection to updating the
I-cache line with the modified instruction.

Continuous Adaptive Object-Code Re-optimization Framework 249

3.4.2 Memory Protection
The memory protection on the original code pages is read-only by default. When we
wish to modify branch instructions in the address space of existing code, we make a
system call to allow writing to memory pages of the original code. We then replace
all branches at once, then restore write-protection to the original code to protect the
original code from accidental changes.

3.4.3 Branch Patching Distance
Most programs compiled for the Itanium architecture use a short branch, which al-
lows a relative branch distance of 20-bits or about a million bundles (i.e. 16 mega-
bytes). There are cases when the original code size is larger than 16 megabytes and a
branch cannot be easily patched by simply changing the address field of a branch
instruction. In some cases, the entire bundle containing the branch instruction must be
replaced with a long branch instruction to reach the memory space of the trace buffer.
The long branch instruction in the Itanium architecture allows the branch to reach
anywhere in the 64-bit virtual address space. One alternative to using a long branch is
to use an indirect branch instruction sequence, but this is more expensive, more likely
to be mispredicted, and is more difficult to patch atomically.

Since the Itanium uses an explicitly parallel instruction computing (EPIC) architec-
ture, instructions are combined into 128-bit “bundles” which usually contain three
instructions. Bundles with long-branch instructions can only contain two instructions.
If the second instruction in a bundle that was replaced contains a “nop” in the middle
slot, a common case, the entire bundle can be replaced at once. However, if the bun-
dle you wish to replace with a long branch uses all three slots, the trace patcher can-
not replace the instruction with a single instruction and we patch the target of the
short branch instruction with an unconditional long branch to our optimized traces.

3.4.4 Atomic Write Issues
Another issue with replacing instruction bundles is that bundles are 128 bits long
while the processor only supports 64-bit atomic write instructions. That means that
we need to take steps to prevent partially modified bundles from being executed. To
deal with this case, we first patch the first half of the bundle with an illegal bundle
type and handle the exception if the bundle is executed before we finish patching it.
We then modify the second half of the bundle with the replacement bundle, and com-
plete the process by modifying the first half of the long-branch instruction bundle.

It is also possible that a context switch occurs while a bundle is only partially exe-
cuted. This can happen if a cache miss occurs in a bundle. As long as the memory
operation occurs in the first slot, this bundle can still be replaced with a long branch
instruction. If the partially executed bundle is replaced with a bundle with a long
branch, the bundle resumes execution at the second slot in the bundle, the long branch
instruction.

3.4.5 Repatching Issues
When a phase changes, some previously optimized traces may not be “hot”. In gen-
eral we do not undo or remove existing patched traces for two reasons. First, when we

250 H. Chen et al.

optimize a trace, it often requires less execution time and therefore appears less “hot”.
However, removing the optimization would lead to the code taking more execution
time, so we are better off keeping the trace patched into the program. There are cases
when we attempt to optimize a trace, and it requires more execution time than before
due to additional cache misses. In the future, we plan to further explore the benefits of
tracking the performance of our optimization at run-time and removing optimizations
that appear to degrade performance.

Second, we found that phase behavior tends to repeat over time and previously
generated traces are often used again in the future. If existing traces are no longer hot,
the patched traces generally have very little performance impact. This can save some
processing work to regenerate the trace if the behavior becomes hot again. For long
running programs that exercise many different execution paths, this may lead to
fragmentation of generated traces that may affect I-cache performance. We plan to
explore the benefits of optimized trace layout management in memory in the future.

4 Experiments and Discussion

Our results are collected using ORC version 2.0 compiled SPEC2000 benchmarks
with -O2 and software pipelined loops disabled on a dual processor Itanium-2 ma-
chine. We compile using O2 because that is the typical optimization level used by
software vendors. Our current optimizer does not support register renaming in soft-
ware-pipelined loops, so we disable software pipelining at compile time. For SPECint
benchmarks, we found that disabling pipelining results in a slightly higher runtime
performance when measuring results using ORC.

4.1 Speedup and Coverage

Execution time is collected using the unix “time” command and averaged over sev-
eral runs. The reported execution time includes all detection, profiling, optimization
and deployment overhead. Relative speedup is calculated as ((baseline
time)/(optimized time) - 1) * 100%.

Figures 1 and 2 show the speedup of applying our system to various spec pro-
grams. We apply different sampling rates to collect data and select new traces every
second of execution time. Data that is “continuous” selects new phases upon a sus-
pected phase change while “single” data selects the first stable phase identified in a
program.

As Figure 3 shows, art, bzip, equake, fma, galgel, lucas, mcf, and swim benefit
from regular and indirect array reference prefetching. Mcf benefits primarily from
pointer reference prefetching. In Figure 2, at one hundred thousand cycles per sample
facerec speeds up by 10%. Although the D-cache miss rate of facerec appears to in-
crease in Figure 5, the actual execution time of the program decreases. The D-cache
miss rate increases but these misses overlap with each other more effectively than in
the original program leading to improved program performance. In contrast, equake’s
D-cache performance is noticeably improved in Figure 4. Lower sampling rates for

Continuous Adaptive Object-Code Re-optimization Framework 251

Figs. 1 (top) and 2 (bottom). Figure 1 shows the execution time of dynamically optimized
programs with data collected at different sampling rates. Figure 2 shows the relative speedup at
different sampling rates

Fig. 3. Relative speedup at one million cycles per sample

facerec do not improve performance because at slower sampling rates the primary
execution path is not optimized properly on the first pass and since we do not cur-
rently monitor the performance of generated traces, the problem is not corrected in
future intervals. Although this problem is most dramatic in facerec, this trend can be
seen in all the programs at a slower sampling rate. It may be valuable to study track-
ing and removal of sub-optimal traces in the future to deal with this problem.

252 H. Chen et al.

Figs. 4 and 5. Figure 4 shows the D-cache misses per cycle in Equake before and after
optimization at one sample every 100k cycles. Figure 5 shows the D-cache misses per cycle in
Facerec before and after optimization at one sample every 100k cycles.

Other benchmarks do not benefit from the implemented prefetching optimizations
and are primarily slowed down by the overhead of sampling, additional I-cache
misses from branching to our generated traces, and increased D-cache misses due to
ineffectual prefetches. The overhead of our optimization and patching is generally
very small, less than 1% of the original program’s execution time, so the majority of
the slowdown in programs can be attributed to these factors. The largest reported
slowdown is from gzip due to failed prefetching increasing D-cache misses. This
demonstrates the need for additional work in tracking the effectiveness of optimiza-
tions and removing optimizations that fail to improve performance.

In general, increasing the sampling rate results in higher overhead due to the time
required to store sampled PMU information. However, it also detects a set of hotspots
faster than slower sampling rates, which means hot traces may be applied earlier to a
program than at slower sampling rates. Mcf and art both have small loops that no-
ticeably speed up after being optimized and therefore benefit from higher sampling
rates. In contrast, equake and swim perform better at one sample taken every one
million cycles. At one sample every one million and hundred thousand cycles, these
two programs generally found similar hotspots, but at one-hundred thousand cycles
per sample, the overhead of sampling is about 5% higher than at one sample every 1
million cycles.

Using a rate of ten million cycles per sample, continuously selecting traces yields
worse performance than selecting a single set of traces once. At a rate of ten million
cycles per sample, the system starts with correctly selected paths and later selects sub-
optimal paths that degrade performance. Because traces occur after a fixed interval,
one second, the sampling error from the small pool of samples falsely detects traces

Continuous Adaptive Object-Code Re-optimization Framework 253

as hot. Since the sampling error of a program is related to the size of the footprint we
need to detect, this indicates that it might be worthwhile to estimate the size of the
working set and adjust the number of samples required to select hot-spots accord-
ingly. However, performance is improved for continuously selected traces due to the
ability to select new hot traces that do not occur earlier in execution.

The largest slowdown in figure 3 is parser at 5%. This is mainly due to generated
trace overhead from the selection of a large number of traces, and the lack of any
effective D-cache prefetching. However, other programs like gap, gcc, and gzip gen-
erate less than 2% overhead.

Finally, in some cases selecting a set of traces after the first detected hot phase per-
formed better than continuous selection. Continuous selection is sensitive to short
term behavior changes leading the optimizer to generate more traces and more over-
head than making a single selection.

4.2 Run-Time Overhead

The overhead for our run-time system is fairly stable, with the profiling thread gener-
ating a consistent 0.3%-0.6% overhead over no profiling. Optimization overhead is
proportional to the number of traces selected to optimize and consistently less than
1%. Turning off patching has a negligible effect on overhead indicating that the cost
of patching traces is much smaller than the cost of profiling and optimization.
Sampling overhead averaged approximately 4% at one sample every hundred thou-
sand cycles, about 1% at one sample every million cycles, and much less than 1% at
lower sampling rates. The overhead is not directly proportional to the sampling rate
because this includes the overhead of inserting branch information into the trace se-
lection table. Slowdowns of greater than 1% are primarily due to optimizations result-
ing in larger loops.

5 Summary and Future Work

Dynamic optimization promises to provide a useful mechanism for deploying aggres-
sive optimizations targeting run-time behavior. We present our system as a prototype
for finding and deploying optimizations, and support this claim by using our proto-
type to speedup various SPEC2000 benchmarks compiled by the ORC 2.0 compiler at
O2. We are able to speed up several benchmarks dominated by D-cache misses, while
maintaining a maximum slowdown of 5% in parser and crafty.

Future directions for this work include enhancements to our current system, moni-
toring current optimizations and tracking the performance of generated traces, im-
proving phase detection, evaluating other optimization techniques, and exploring
dynamic optimization opportunities in different environments.

254 H. Chen et al.

References

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

J.M. Anderson, L.M. Berc, J. Dean, S. Ghemawat, M.R. Henzinger, S.A. Leung, R.L.
Sites, M.T. Vandevoorde, C.A. Waldspurger and W.E. Weihl. “Continuous profiling:
where have all the cycles gone?” ACM Transaction on Computer Systems, vol. 15, no. 4,
Nov. 1997
A. Andrew, S. De Jong, J. Peyton, and R. Schooler “Scalable Cross-Module Optimiza-
tion”, In Proceedings of the ACM SIGPLAN ’98 conference on Programming language
design and implementation, PLDI’98, June 1998.
V. Bala, E. Duesterwald, S. Banerjia. “Dynamo: A Transparent Dynamic Optimization
System”, In Proceedings of the ACM SIGPLAN ’2000 conference on Programming lan-
guage design and implementation, PLDI’2000, June 2000.
Ball, T., and Larus, J. R. “Efficient Path Profiling,” In Proceedings of the 29th Annual
International Symposium on Microarchitecture (Micro-29), Paris, 1996.
P. Chang, S. Mahlke and W. Hwu, “Using Profile Information to Assist Classic Com-
piler Code Optimizations,” Software Practice and Experience, Dec. 1991.
H. Chen, W. Hsu, J. Lu, P. -C. Yew and D. -Y. Chen, “Dynamic Trace Selection Using
Performance Monitoring Hardware Sampling”, International Symposium on Code
Generation and Optimization, CGO 2003, March, 2003.
R.S. Cohn, D.W. Goodwin, P.G. Lowney, “Optimizing Alpha Executables on Windows
NT with Spike”, Digital Technical Journal, Vol 9 No 4, June 1998.
T. Conte, B. Patel, J Cox. “Using Branch Handling Hardware to Support Profile-Driven
Optimization”, In Proceedings of the 27th Annual International Symposium on Microar-
chitecture (Micro-27), 1994
A. M. Holler, “Optimization for a Superscalar Out-of-Order Machine,” In Proceedings
of the 29th Annual International Symposium on Microarchitecture (Micro-29), Decem-
ber 1996.
Intel, Intel IA-64 Architecture Software Developer’s Manual, Vol. 1: IA-64 Application
Architecture.
Intel, Intel IA-64 Architecture Software Developer’s Manual, Vol. 2: IA-64 System
Architecture.
T. Kistler, M. Franz. “Continuous Program Optimization: Design and Evaluation”, IEEE
Transaction on Computers, vol. 50, no. 6, June 2001.
S. A. Mahlke, D. C. Lin, W. Y. Chen, R. E. Hank, and R. A. Bringmann, “Effective
Compiler Support for Predicated Execution Using the Hyperblock”, In Proceedings of
the 25th Annual International Symposium on Microarchitectures. (Micro-25), 1992 .
S. McFarling, “Reality-Based Optimizations”, International Symposium on Code Gen-
eration and Optimization, CGO 2003, March, 2003.
M. Merten, A. Trick, E. M. Nystrom, R. D. Barnes, W. Hwu, “A Hardware Mechanism
for Dynamic Extraction and Relayout of Program Hot Spots”, In Proceedings, Interna-
tional Symposium on Computer Architecture, ISCA-27, 2000
S. Patel, S. S. Lumetta, “Replay: A Hardware Framework for Dynamic Optimization”,
IEEE Transaction on Computers, vol. 50, no. 6, June 2001.
T. Sherwood, E. Perelman, G. Hamerly, B. Calder. “Automatically Characterizing Large
Scale Program Behavior. International Conference on Architectural Support for
Programming Languages and Operating Systems, October 2002.
T. Sherwood, E. Perelman, and B. Calder. Basic block distribution analysis to find peri-
odic behavior and simulation points in applications. In International Conference on Par-
allel Architectures and Compilation Techniques, September 2001.

Continuous Adaptive Object-Code Re-optimization Framework 255

19.

20.

Y. Wu. “Efficient Discovery of Regular Stride Patterns in Irregular Programs”, PLDI
2002:210-221.
Hewlett Packard, “Perfmon Project Website”, webpage, http://www.hpl.hp.com/research
/linux/perfmon/index.php4.

Initial Evaluation of a User-Level Device Driver
Framework

Kevin Elphinstone1 and Stefan Götz2

1 National ICT Australia* * *
and

School of Computer Science and Engineering
University of NSW, Sydney 2052, Australia

kevine@cse.unsw.edu.au
2 System Architecture Group, Universität Karlsruhe, 76128 Karlsruhe, Germany

sgoetz@ira.uka.de

Abstract. Device drivers are a significant source of system instability.
In this paper, we make the case for running device drivers at user-level
to improve robustness and resource management. We present a frame-
work for running drivers at user-level whose goal is to provide similar
performance when compared to in-kernel drivers. We also present initial
promising performance results for the framework.

1 Introduction

Most modern operating systems feature monolithic operating system kernels.
Most modern architectures are designed to efficiently support this form of con-
struction. A kernel provides its services by combining the software that imple-
ments potentially independent services into a single large amalgamation. How-
ever, once we scale the size and complexity of a monolithic system to the levels of
current systems, extensibility becomes more difficult due to legacy structure, se-
curity becomes more difficult to maintain and impossible to prove, and stability
and robustness also suffer.

One promising approach to tackling the expanding complexity of modern
operating systems is the microkernel approach [1]. A microkernel-based OS con-
sists of a very small kernel at its core. The kernel only contains a minimal set of
services that are efficient and flexible enough to construct services for applica-
tions as servers running on the microkernel. Only the microkernel itself runs in
privileged mode. Although these servers provide operating system functionality,
they are regular applications from the microkernel’s point of view. Such a system
enables extensibility as servers can be added or removed, it provides security as
the core of the system is small enough to analyse or maybe even prove [2], and

* * * National ICT Australia is funded by the Australia Government’s Department of
Communications, Information and Technology and the Arts and the Australian Re-
search Council through Backing Australia’s Ability and the ICT Centre of Excellence
program.

P.-C. Yew and J. Xue (Eds.): ACSAC 2004, LNCS 3189, pp. 256–269, 2004.
© Springer-Verlag Berlin Heidelberg 2004

Initial Evaluation of a User-Level Device Driver Framework 257

stability and robustness is improved as services can be isolated from each other.
The modular structure that is encouraged, and even enforced by virtual memory
protection boundaries, improves maintainability.

Most microkernel based systems still include device drivers in the kernel.
Drivers are included for either security [3], performance reasons [4] , or because
the system’s focus was toward goals other than decomposition and minimisa-
tion, such as distribution [5,6,7]. It has been shown that device drivers exhibit
much higher bug rates (three to seven time higher) than other kernel code [8].
Microsoft has also identified drivers as the major cause of system instability and
has instigated their driver signing program to combat the problem [9]. It remains
to be seen whether signing a driver as having passed a quality control scheme
has an affect on driver correctness. Simply digitally signing a piece of software
obviously has no effect on the software itself.

This paper tackles the problem of device driver instability by running drivers
at user-level and hence subjecting them to the normal controls applied to applica-
tions. We also aim to provide a flexible driver framework for microkernel-based
systems that enables trade-offs between driver performance and containment.
Attempts thus far can be characterised as being too concerned with compati-
bility with existing driver collections [10] or having an alternative focus such as
realtime systems [11]. The achieved performance has been insufficient to make
the approach convincing.

Device drivers at user level could be treated almost like normal applications.
Like normal applications, drivers could be isolated from unneeded resources using
the processor’s virtual memory hardware. Being able to apply the principle of
least privilege would greatly minimise the potential damage a malfunctioning
driver could inflict. This is very much in contrast to the current situation where
drivers have access to all resources in the system. A single malfunction often
results in catastrophic failure of the entire system.

Developers of user-level drivers can use facilities usually only available to
normal applications. Standard debuggers can provide a much richer debugging
environment than usually available to kernel-level drivers (e.g., source level de-
bugging versus kernel dumps). Application tracing facilities can also be used to
monitor driver behaviour. Application resource management, such as CPU time
controls, can be used to control driver resource usage.

User-level drivers are not a completely new idea. Drivers in the past have
been incorporated into applications such as networking software (e.g distributed
shared memory applications) [8,12]. The inclusion in this case was to improve
performance by giving the application direct access to the device, and thus avoid-
ing kernel entry and exit. Such scenarios relied on near exclusive access to the
device in order to avoid issues in multiplexing the device between competing
clients. In most cases, specialised hardware was developed to provide concur-
rent access via specialised access channels, and to provide performance via a
specialised interface that required no kernel intervention.

We propose an architecture where the system designer can choose the most
appropriate configuration for drivers based on requirements of the targeted sys-

258 K. Elphinstone and S. Götz

tem. We envisage drivers incorporated into specialised applications where per-
formance is paramount. However, we also envisage drivers running as individual
servers to improve security and robustness, or drivers clustered into a single
server to reduce resource requirements. Immature drivers could be run in isola-
tion until mature enough to be combined with other components when required.

While we intend to take advantage of specialised hardware (such as myrinet
network cards which have their own programmable processors [13]), we also do
not intend to restrict ourselves to such hardware. For the results of this project
to be truly useful we must be able to support commodity hardware that is not
necessarily tailored to the environment we are developing. Commodity hardware
may not provide all features necessary for complete security. For instance, nearly
all hardware is unable to restrict what a driver can access via DMA. On such
a hardware platform, a malicious driver can always corrupt a system. However,
even limited success in supporting commodity hardware with little performance
impact would make our results applicable to the widest variety of platforms possi-
ble. Limited success could persuade more manufacturers to include the hardware
features required for complete security. Our group has begun exploring restrict-
ing DMA access using the limited hardware available in high-end servers [14].
However, we do not focus on this problem for the remainder of this paper.

Past approaches to drivers at user-level have usually taken a top-down ap-
proach. The system was designed with a specific target in mind, built, and
analysed. The results have varied widely. Some projects, specifically the user-
level networking with specialised hardware, have been successful [12,15]. Other
projects have been less successful and have usually disappeared without a clear
analysis of why success eluded them [10,16]. In this paper we identify the funda-
mental operations performed by device drivers, their relevance to performance,
and present how they can be implemented safely and efficiently at user-level.

In the remainder of the paper, Section 2 provides the background to run-
ning user-level drivers by describing a simple model of device drivers in existing
monolithic systems. We use it as a reference for the rest of the paper. Section 3
describes the experimental operating system platform upon which we developed
our driver framework. Section 4 describes the framework itself. The experimen-
tal evaluation and results follow in Section 5, with conclusions afterwards in
Section 6.

2 Simple Driver Model

To define common terminology, help convey the issues we have identified, and
introduce our framework itself, we present a simple model of a device driver
and highlight the issues within that model. This model initially assumes a tradi-
tional monolithic kernel whose kernel address space is shared between all process
contexts.

A driver broadly consists of two active software components, the Interrupt
Service Routine (ISR) and the Deferred Processing Component (DPC). We ig-
nore initialisation code and so forth. The ISR is responsible for reacting quickly

Initial Evaluation of a User-Level Device Driver Framework 259

and efficiently to device events. It is invoked almost directly via a hardware
defined exception mechanism that interrupts the current flow of execution and
enables the potential return to that flow after completion of the ISR. In general,
the length of the ISR should be minimised so as to maximise the burst rate of
device events that can be achieved, and to reduce ISR invocation latency of all
ISRs (assuming they are mutually exclusive).

The ISR usually arranges for a DPC to continue the processing required to
handle the device event. For example, a DPC might be an IP stack for a network
device. A DPC could also be extra processing required to manage the device
itself, or processing required to complete execution of a blocked kernel activity.
Another way to view a DPC is that it is the kernel activities made runnable as
a result of the execution of the ISR. It may be a new activity, or a previously
suspended activity. DPCs are usually activated via some kernel synchronisation
primitive which makes the activity runnable and adds it to the scheduler’s run
queue.

2.1 Driver Interfaces and Structure

A driver consists of an interface in order for clients (other components in the
kernel) to direct the driver to perform work. For instance, sending packets on
a network device. Drivers also expect an interface provided by the surrounding
kernel in order to allocate memory, activate DPCs, translate virtual addresses,
access the device information on the PCI bus, etc. We believe the following
interfaces are important to driver performance:

Providing work to the driver. Drivers provide an interface for clients to en-
queue work to be performed by the device. This involves passing the driver
a work descriptor that describes the work to be performed. The descriptor
may be a data structure or arguments to a function call. The work descriptor
identifies the operation and any data (buffers) required to perform the work.
Drivers and clients share the kernel address space which enables fast transfer
(by reference) and access to descriptors and buffers.

DPCs and offloading work. Drivers also produce work for clients. A com-
mon example is a network driver receiving packets and therefore generating
work for an IP stack. Like enqueueing work for the driver itself, an effi-
cient mechanism is required for the reverse direction to enqueue work for,
and activate, a DPC such as an IP stack. Work descriptors and buffers can
be handled in a similar manner to enqueueing work for the driver, i.e. de-
scriptors and buffers can be transferred and accessed directly in the kernel’s
address space.
Once work is enqueued for a DPC, the DPC requires activation via a syn-
chronisation primitive. Again, the primitive can rely on the shared kernel
address space to mark a DPC runnable and place it on the appropriate
scheduler queue.

Buffer allocation. The buffers containing the data that is provided to the
driver must be allocated prior to use and deallocated for reuse after process-
ing. Buffers may be produced by a client and consumed by a driver (or vice

260 K. Elphinstone and S. Götz

versa) and are managed via a memory allocator (e.g. a slab allocator) in the
shared kernel address space.

Translation. Buffers specified by user-level applications are identified using
virtual addresses. DMA-capable devices require these addresses to be trans-
lated into a physical representation. This translation can be done simply
and quickly by the device driver by accessing the page tables stored within
the kernel address space. Additionally, some driver clients deal only with the
kernel address space and can use physical addresses directly (or some fixed
offset).

Pinning. DMA-capable devices access physical memory directly without any
mediation via a MMU (though some architectures do possess I/O MMUs).
Coordination between the page replacement policy and the device driver
is required to avoid the situation where a page is swapped out and the
underlying frame is recycled for another purpose while an outstanding DMA
is yet to complete. Preventing pages from being swapped out is generally
termed pinning the page in memory. This can be implemented with a bit in
the frame table indicating to the page replacement algorithm that the frame
is pinned.

Validation. Validation is the process of determining whether a request to the
driver is permitted based on knowledge of the identity of the requester and
the parameters supplied. Validation is simple when a client issues a request
to a driver in a shared address-space kernel. The driver can implicitely trust
the client to issue sensible requests. It only needs to check the validity of a
request for robustness reasons or debugging. If needed, the client module in
the kernel is usually responsible for the validity of any user-level supplied
buffers or data which needs to reside in memory accessible to the user-
level application. Such a validation is simple and inexpensive to perform
within a shared address-space kernel — all the data required to validate an
application’s request is readily available.

It is clear that the model envisaged by computer architects is a fast hardware-
supported mechanism to allow privileged drivers to respond to device events, and
that the drivers themselves have cheap access to all the information required to
perform their function via the privileged address space they share with the ker-
nel. The high degree of integration with the privileged kernel allows drivers to
maximise performance by minimising overheads needed to interact with their
surrounds. This high degree of integration is also the problem: drivers detrimen-
tally affect security, robustness, and reliability of the entire system.

3 Experimental Platform

We chose the L4 microkernel as the experimental platform for developing and
evaluating our driver framework[1]. L4 is a minimal kernel running in privileged
mode. It has two major abstractions: threads and address spaces. Threads are the
unit of execution and are associated with an address space. A group of threads

Initial Evaluation of a User-Level Device Driver Framework 261

within an address space forms a task. Threads interact via a very light weight
synchronous interprocess communication mechanism (IPC) [17].

L4 itself only provides primitive mechanisms to manage address spaces.
Higher-level abstractions are needed to create a programming environment for
application developers. The environment we use is a re-implementation of a sub-
set of the SawMill multi-server operating system developed for L4 at IBM [10],
called Prime. The most relevant component to this paper is the virtual memory
framework [18], which we will briefly introduce here.

Dataspaces are the fundamental abstraction within the VM framework. A
dataspace is a container that abstracts memory objects such as files, shared
memory regions, frame buffers, etc. Any memory that is mappable or can be
made mappable can be contained by a dataspace. For a thread to access the
data contained in a dataspace, the dataspace is attached to, i.e. mapped into, the
address space. Address spaces are constructed by attaching dataspaces including
application code and data, heap and stack memory.

Dataspaces themselves are implemented by Dataspace Managers. Any task
within the VM framework can be a dataspace manager by implementing the
dataspace protocol. For example, a file system dataspace manager provides files
as attachable dataspaces by caching disk contents within its address space, and
using the underlying L4 mechanisms to map the cached content to clients who
have the dataspace attached. Dataspace managers map pages of dataspaces to
clients in response to the page fault handling mechanism which forwards page
faults on attached dataspaces to the appropriate dataspace manager that imple-
ments the dataspace.

The dataspace and dataspace manager paradigms provide a flexible frame-
work of object containers and object container implementors. Few restrictions
are placed on participants other than implementing the defined interaction pro-
tocol correctly. However, while clients with attached dataspaces see a logical
container, device drivers interacting with such a container require more infor-
mation about the current dataspace state for DMA purposes. In particular, they
have to know the translation between dataspace addresses and physical memory
which is only known by the dataspaces’ manager. In a traditional system we
have the kernel implemented page tables as a central authority for translation
information. With our VM framework, translation information is distributed
amongst dataspace managers which creates the problem of efficient information
retrieval. We describe our solution to this problem in Section 4

4 Driver Framework

As described in Section 2, the high degree of hardware and software integration in
classic system architectures creates an environment for efficient driver implemen-
tation. The challenge is to keep the high level of integration when transforming
drivers into user-level applications while enforcing protection boundaries between
them and the surrounding system. There are obviously trade-offs to be made be-
tween the strength of the protection boundary and the cost of interacting across

262 K. Elphinstone and S. Götz

it. A network driver interface that copies packets across protection boundaries
provides greater packet integrity and poorer performance compared to an inter-
face that passes packets by reference. In choosing trade-offs for this paper we
focused on maximising performance while still improving robustness. Drivers and
their clients may corrupt the data they produce and consume, but should not
be able to corrupt the operation of each other. However, our framework is not
restricted to the particular trade-offs we made for this paper. A system designer
can increase or decrease the degree of isolation between clients and drivers by
small changes in interfaces, their implementation, or the composition of drivers
and clients.

For this paper we took the following approach:

Minimise the cost of interaction between clients and drivers by interacting via
shared memory instead of direct invocation where possible. This sharing is
secure in that it is done such that clients cannot interfere with the operation
of drivers and vice versa. However, data buffers can be modified by clients
or drivers at any point in the interaction.
Minimise the cost of any overhead we must insert between clients and drivers
(or between drivers and the kernel) to support interaction across protection
boundaries.
For any overhead that we must insert to enable interaction, we attempt to
amortise the cost by combining operations or event handling where possible.

We now describe how we applied our approach to constructing a driver frame-
work with reference to the model introduced in Section 2.

4.1 Interrupts

Direct delivery of interrupts to applications is not possible on current hardware.
A mechanism is required for an ISR within a driver application to be invoked.
We use the existing model developed for L4 where interrupts are represented
as IPCs from virtual interrupt threads which uniquely identify the interrupt
source. The real ISR within the kernel masks the interrupt, transforms the in-
terrupt event into an IPC message from the interrupt thread which is delivered
to the application’s ISR. The blocked ISR within the application receives the
message, unblocks, and performs the normal ISR functionality. Upon comple-
tion, the driver ISR sends a reply message to the interrupt thread resulting in
the interrupt source being unmasked. The ISR can then block waiting for the
next interrupt IPC.

While L4 IPC is very light-weight, it is not “free”. We add a small amount
of direct overhead to implement this clean model of interrupt delivery. Indirect
overhead is incurred by context switching from an existing application to the
driver application upon interrupt delivery. We expect this overhead to be low
compared to the high cost of going off-chip to manage devices, and plan to reduce
the overall overhead by using interrupt hold-off techniques currently applied to
limit the rate at which interrupts are generated.

Initial Evaluation of a User-Level Device Driver Framework 263

4.2 Session-Based Interaction

Copying data across protection boundaries is expensive. Where possible, we use
shared memory to pass data by reference, or to make control and metadata in-
formation readily available to clients and drivers. Establishing shared memory is
also an expensive operation both in terms of managing the hardware (manipulat-
ing page tables and TLB entries), and in terms of performing the book-keeping
required in software. To amortise the cost of setting up shared memory we use
a session-based model of interaction with drivers.

A session is the surrounding concept within which a sequence of interactions
between client and driver are performed. It is expected that a session is relatively
long lived compared to the duration of the individual interactions of which we
expect many within a session. To enable pass-by-reference data delivery, one or
more dataspaces can be associated with a session for its duration. Dataspaces
can contain a shared memory region used to allocate buffers, a client’s entire
address space, or a small page-sized object. There are obviously trade-offs that
can be made between cost of establishing a session, and the size and number of
dataspaces associated with a session. To avoid potential misunderstanding, there
can be many underlying sessions within our concept of a session. For example,
an IP stack has a session with the network device driver through which many
TCP/IP sessions can be managed.

4.3 Lock-Free Data Structures

There are obvious concurrency issues in managing data structures in shared
memory. We make heavy use of lock-free techniques to manage data structures
shared between drivers and their clients. We use lock-free techniques for pre-
dominately two reasons: to avoid external interaction and to avoid time-outs
and recovery on locks.

Enqueueing work (packet/command descriptors and similar metadata) for
a driver by explicitly invoking it requires at least two context switches per en-
queued item. This would cause the high level of integration achieved in normal
systems to be lost. Lock-free queues (implemented with linked lists or circular
buffers) allow work to be enqueued for a driver (or a client) without requiring ex-
plicit interaction with the driver on every operation. This encourages a batching
effect where several local lock-free operations follow each other, and finally the
recipient driver is notified via explicit interaction (a queued-work notify event).

Lock-free techniques allow us to avoid dealing with excessive lock holding
times. It is much easier to validate potentially corrupt data in a lock-free queue
that is caused by a misbehaving client (we have to validate client provided data
anyway), than to determine if a client is misbehaving because a lock is found
held.

4.4 Translation, Validation, and Pinning

Drivers process work descriptors which can contain references to the actual
buffers to be processed. Buffers are specified as ranges of addresses within datas-

264 K. Elphinstone and S. Götz

paces. The dataspaces are associated with the surrounding driver-client session.
The dataspaces themselves are implemented by other applications (dataspace
managers). This creates an interesting problem. The knowledge of a dataspace’s
existence, who is accessing it, and what physical frames implement it at any
instant in time is known by the dataspace manager implementing the dataspace,
not the client using the dataspace, and not the driver accessing the dataspace
to process the requests of the client. In a traditional system, this information
(page tables and frame tables) is readily available to the driver within the kernel
address space. Ideally, we would again like to safely replicate the high degree of
integration between driver, clients, and information required to operate.

The validation of buffers specified by the client within the above framework
is simple. Given buffers are ranges of addresses within dataspaces, validation
is a matter of confirming the dataspace specified is associated with the session
between the driver and client.

The translation of dataspace pages to physical frames is required by drivers
of DMA-capable devices. This translation is only known by a dataspace man-
ager. Our approach thus far has been to avoid external interaction by the driver
as much as possible, however translation requires this interaction in some form.
To enable translation, the dataspace manager provides a shared memory region
between it and the device driver: the translation cache. The translation cache is
established between the manager and driver when a dataspace is added to a ses-
sion between the driver and client. Multiple dataspaces from the same manager
can share the same translation cache. The translation cache contains entries that
translate pages within dataspaces into frames1. The cache is consulted directly
by the driver to translate buffer addresses it has within dataspaces to physical
addresses for DMA. After the translation cache is set up, the driver only needs to
interact with the object implementor in the case of a cache miss. At present we
use a simple on-demand cache refill policy, but we plan to explore more complex
policies if later warranted.

In addition to translating a buffer address to a physical address for DMA, the
driver needs a guarantee for the duration of DMA that the translation remains
valid, i.e. the page (and associated translation) must remain pinned in memory.
In this paper we have not focused on the problem of pinning in depth. We see at
least two approaches to managing pinning for DMA. The first method is to use
time-based pinning where entries in the translation cache have expiry times. The
second method is to share state between the driver and dataspace implementor
to indicate the page is in use and should not be paged out.

Time-based pinning has the difficult problem of the driver needing to estimate
how long a DMA transaction might take, or even worse, how long it will take for
a descriptor in a buffer ring to be processed, e.g. on a network card. However,
time-based pinning has the nice property of not requiring interaction between

1 In our virtual memory framework, dataspaces can also be composed of other datas-
paces. In this case, the translation consist of a sequence of dataspace to dataspace
translations, and then a final dataspace to physical frame translation. However, we
ignore this scenario for the sake of clarity in the paper.

Initial Evaluation of a User-Level Device Driver Framework 265

driver and object implementor. Further discussion of time-based pinning can be
found our previous work [19].

State sharing to indicate to the dataspace manager that pinning is required
could be achieved with a pin-bit within translation cache entries. This requires
read-write shared memory between driver and dataspace implementor that was
not required up until this point. It should be clear that the pin-bit has direct
parallels with similar flags in a traditional frame table and thus warrants little
further discussion. Note that the pin-bit would only be advisory. The memory
implementor can enforce quotas on pin time or the amount of pinned memory
by disabling the driver and resetting the device (if permitted) to recover pinned
pages.

4.5 Notification

Unlike traditional systems where thread state and scheduler queues are readily
available in shared kernel space, in a system with drivers in separate protection
domains, system calls must be performed to manipulate the scheduler queues,
i.e. block and activate threads. System calls are significantly more expensive
than state changes and queue manipulations. An efficient activation mechanism
is required for ISRs to hand-off work to DPCs, and for both clients and drivers
to deliver work and potentially block as the sender and while activating the
recipient.

By using queues in shared memory for message delivery, we create the envi-
ronment required for user-level IPC (as opposed to IPC involving the kernel).
User-level IPC has been explored by others [20,21], mostly in the context of
multiprocessors where there is an opportunity to communicate without kernel
interaction via shared memory between individual processors. Our motivation
is two-fold. We wish to avoid kernel interaction (not activate the destination) if
we know the destination is active (or will become active), and we wish to enable
batching of requests between drivers and clients by delaying notifications when
possible and desirable.

Our notification mechanism is layered over L4 IPC. Blocking involves waiting
for a message, activating involves sending a message. To avoid notifications when
unnecessary, the recipient of notifications indicates its thread state via shared
memory. If marked inactive, a notification is sent; if not it is assumed that the
recipient is (or will be) active and the notification is suppressed.

The delay between setting the state and blocking waiting for IPC creates
a race condition if preempted between the modification and blocking waiting
for IPC. There is a potential for notification messages to be missed if sent to
a thread that has not yet blocked. However, if the sender does not trust the
recipient, it is not safe for the sender to block on or re-send notifications without
being vulnerable to denial-of-service attacks. Thus, recipients have to be able to
recover from missed notifications on their own. We resolve this race by using a
general mechanism called preemption control, which can make threads aware of
preemption. In the rare case that a preemption is detected, the recipient rolls
back to a safe active state from where it tries to block again.

266 K. Elphinstone and S. Götz

The notification bit creates opportunities for delaying notification (to in-
crease batching) or avoiding notification altogether. An example of avoidance is
where a network driver would eventually receive a “packet sent” or “transmit
queue empty” interrupt from the device. If such events are known to occur within
acceptable latency bounds, notifying such a device when enqueueing an outgo-
ing packet is unnecessary as the driver will eventually wake via the interrupt
to discover the newly enqueued packets. This allows a driver client to submit
requests continuously to maximise the batching effect.

5 Evaluation and Results

We evaluate our framework for running device drivers at user level in a network
context. Handling modern high-speed networks is challenging for traditionally
structured systems due to the very high packet rate and throughput they achieve.

Our test system consists of a user-level ISR that is comprised of generic low-
level interrupt handling in the L4 kernel and device-specific interrupt handler
for a dp83820 Gigabit ethernet card driver. The DPC is the lwIP IP stack and a
UDP echo service that simply copies incoming packets once and echoes them to
the sender. The driver and lwIP execute in separate processes which interact as
described in Section 4. Note that the echo service is compiled into the process
containing lwIP. The machine is a Pentium Xeon 2.66 GHz, with a 64-bit PCI
bus.

We chose this test scenario as we believe it to be the extreme case that will
expose the overheads of our framework most readily. The test does very little
work other than handle interrupts, and send/receive packets across a protection
boundary between the driver and lwIP, and then onto (or from) the network. In a
more realistic scenario, we would expect the “real” application to dominate CPU
execution compared to the drivers and IP stack. By removing the application,
the driver and lwIP stack (and our overheads) will feature more prominently.

We used the ipbench network benchmarking suite [22] on four P4-class ma-
chines to generate the request UDP load that we applied to the test system.
ipbench can apply specific load levels to the target machine, the packet size used
was 1024 bytes. We performed two experiments, (a) that uses random-interval
program counter sampling to develop an execution profile at an offered load of
450Mb/s using 100us interrupt hold-off, and (b) which ramps up the offered
load gradually and records throughput and CPU utilisation at each offered load
level. The load generators record echoed packets to calculate achieved through-
put, CPU utilisation is measured by using the cycle counter to record time spent
in a low priority background loop. Utilisation results obtained via random sam-
pling and the cycle counter agree within one percent. The second experiment was
performed for both and interrupt hold-off for Prime, and to compare,
Linux with our driver and Linux’s IP stack in-kernel, and user-level echo server.

The results show that for the profile experiment 68% of time was spent in
the idle thread. For the remaining 32% of samples, we divided the samples into
the following categories: IPC kernel code associated with the microkernel IPC

Initial Evaluation of a User-Level Device Driver Framework 267

path; Driver code associated with the network driver that would be common
to all drivers for this card independent of whether it runs in-kernel or at user-
level; IP code associated with lwIP that is also independent of running at user-
level or in kernel; Kernel code that is independent of system structuring, this
code is mostly related to interrupt masking and acknowledgement; User-level
Notification code that implements notification within our framework; User-level
Translation code that performs translation from dataspace addresses to physical
memory; User-level Interrupt code related to interrupt acknowledgement; User-
level Buffer code for managing packet buffers, including (de-)allocation, within
our framework.

Fig. 1. (a) Execution profile. (b) CPU utilisation and throughput versus load level for
Prime and Linux using and interrupt hold off.

The profile of execution within these categories is illustrated in Figure 1. The
component of execution unrelated to our framework (Kernel + Driver + IP)
forms 65% of non-idle execution time. Code related to our framework (Buffer +
Interrupt + Translation + Notification + IPC) forms the remaining 35% of non-
idle execution. Even when considering all framework related code as overhead
introduced by running drivers at user-level, this is not a bad result. The test
scenario we chose to analyse does so little work that we expect in a more realistic
scenario our framework will consume a smaller fraction of execution time.

Considering all framework related code as overhead is not a fair comparison
as two components of the framework (buffer management and translation) also
have to be performed in a traditional system structure. If traditional buffer
management and translation is comparable, then the overhead of running drivers
at user-level (Notification + IPC + Interrupt) is only 12% of non-idle time.

268 K. Elphinstone and S. Götz

Figure 1 also shows the result of the CPU utilisation and throughput ex-
periment. The thin diagonal line represents where achieved throughput equals
offered load. The lines beginning and rising above this reference represent CPU
utilisation. The lines that track the reference and diverge to the right represent
achieved throughput. We see that for interrupt hold off, both Prime and
Linux achieve similar throughput of approximately 460Mb/s and 480Mb/s re-
spectively. Prime uses much less CPU achieving the result (32% versus 72%).
However, we make no claim of a fair comparison as Linux has a heavier weight IP
stack, translation and pinning infrastructure, and uses a socket interface which
results in an extra packet copy compared to Prime. We simply observe that we
are currently competitive with a traditionally-structured existing system and
are optimistic we can at least retain comparable performance in more similarly
structured systems. For the hold-off results, we see Linux goes into live-
lock near 100% CPU after which throughput tapers off as offered load increases.
Prime achieves exactly the same throughput for and hold-off, though
CPU utilisation differs markedly (58% versus 32%).

6 Conclusions

We have constructed a framework for running device drivers at user-level. Our
goal was to preserve the high degree of system integration that enables high-
performance driver construction while at the same time confining drivers safely
to their own address space like normal applications. We analysed our framework’s
performance in the context of gigabit ethernet, and our initial results show mod-
est overhead in an execution profile in a test scenario designed to exacerbate the
overhead. In throughput oriented benchmarks, we demonstrated similar perfor-
mance to Linux in terms of achieved throughput. We plan to further explore
our framework’s performance by constructing more realistic test scenarios (e.g.
SPECweb), drivers and interfaces for other devices (e.g. disk). We also plan to
explore system structures more comparable to existing systems (e.g. driver, IP
stack, and web server all running as separate processes).

We eventually hope that our results will be encouraging enough to CPU
and system architects to consider exploring efficient control of DMA for protec-
tion purposes in commodity hardware. Such hardware would ensure that device
drivers are just normal applications under the complete control of the operating
system.

References

1.
2.

3.

Liedtke, J.: Toward real microkernels. Communications of the ACM 39 (1996)
Hohmuth, M., Tews, H., Stephens, S.G.: Applying source-code verification to a
microkernel - the VFiasco project. In: Proc. 10th SIGOPS European Workshop.
(2002)
Engler, D.R., Kaashoek, M.F., Jr., J.O.: Exokernel: An operating system archi-
tecture for application-level resource management. In: 15th Symp. on Operating
Systems Principles, Copper Mountain Resort, CO, ACM (1995)

Initial Evaluation of a User-Level Device Driver Framework 269

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.
14.

15.

16.

17.

18.

19.

20.

21.

22.

Accetta, M., Baron, R., Bolosky, W., Golub, D., Rashid, R., Tevanian, A., Young,
M.: MACH: A new kernel foundation for UNIX development. In: Proc. Summer
USENIX. (1986)
Cheriton, D.R.: The V kernel: A software based for distribution. IEEE Software
1 (1984) 19–42
Rozier, M., Abrossimov, V., Armand, F., Boule, I., Gien, M., Guillemont, M., Her-
mann, F., Kaiser, C., Langlois, S., Leonard, P., Neuhauser, W.: Chorus distributed
operating system. Computer Systems 1 (1988)
Tanenbaum, A.S., van Renesse, R., van Staveren, H., Sharp, G.J., Mullender, S.J.:
Experiences with the amoeba distributed operating system. Communications of
the ACM 33 (1990) 46–63
Chou, A., Yang, J., Chelf, B., Hallem, S., Engler, D.: An empirical study of
operating systems errors. (In: Proc. 18th Symp. on Operating Systems Principles)
Microsoft: Driver signing for windows. Available: http://www.microsoft.com/tech-
net/prodtechnol/winxppro/proddocs/code_signing.asp (2002)
Gefflaut, A., Jaeger, T., Park, Y., Liedtke, J., Elphinstone, K., Uhlig, V., Tidswell,
J., Deller, L., Reuther, L.: The SawMill multiserver approach. In: 9th SIGOPS
European Workshop, Kolding, Denmark (2000)
Härtig, H., Baumgartl, R., Borriss, M., Hamann, C.J., Hohmuth, M., Mehnert, F.,
Reuther, L., Schönberg, S., Wolter, J.: DROPS - OS support for distributed mul-
timedia applications. In: Proc. 8th SIGOPS European Workshop, Sintra, Portugal
(1998)
von Eicken, T., Basu, A., Buch, V., Vogels, W.: U-net: a user-level network interface
for parallel and distributed computing. In: Proc. 15th Symp. on Operating Systems
Principles, Copper Mountain, Colorado, USA (1995) 40–53
Myrinet: Myrinet. Website: www.myrinet.com (2002)
Leslie, B., Heiser, G.: Towards untrusted device drivers. Technical Report UNSW-
CSE-TR-0303, School Computer Science and Engineering, University of New South
Wales, Sydney, 2052, Australia (2003)
Felten, E.W., Alpert, R.D., Bilas, A., Blumrich, M.A., Clark, D.W., Damianakis,
S.N., Dubnicki, C., Iftode, L., Li, K.: Early experience with message-passing on
the SHRIMP multicomputer. In: Proc. 23rd Symp. on Computer Architecture.
(1996) 296–307
Rawson III, F.L.: An architecture for device drivers executing as user-level tasks.
In: USENIX MACH III Symposium. (1993)
Liedtke, J., Elphinstone, K., Schönberg, S., Härtig, H., Heiser, G., Islam, N., Jaeger,
T.: Achieved IPC performance. In: 6th Workshop on Hot Topics in Operating
Systems (HotOS), Chatham, Massachusetts (1997)
Aron, M., Liedtke, J., Park, Y., Deller, L., Elphinstone, K., Jaeger, T.: The SawMill
framework for virtual memory diversity. In: Australasian Computer Systems Archi-
tecture Conference, Gold Coast, Australia, IEEE Computer Society Press (2001)
Liedtke, J., Uhlig, V., Elphinstone, K., Jaeger, T., Park, Y.: How to schedule un-
limited memory pinning of untrusted processes or provisional ideas about service-
neutrality. In: 7th Workshop on Hot Topics in Operating Systems, Rio Rico,
Arizona (1999)
Unrau, R., Krieger, O.: Efficient sleep/wake-up protocols for user-level IPC. In:
International Conference on Parallel Processing. (1998)
Ritchie, D., Neufeld, G.: User level ipc and device management in the raven kernel.
In: Proc. USENIX Microkernels and Other Kernel Architectures. (1993)
Wienand, I., Macpherson, L.: ipbench. Website: http://ipbench.sourceforge.net/
(2002)

A Generation Ahead of Microprocessor: Where
Software Can Drive uArchitecture To?

Jesse Z. Fang

Intel

Abstract. The presentation will start with introduction of Micropro-
cessor Technology Labs at Intel to show the Intel’s efforts in the uArchi-
tecture and system software research areas. As all of you know, Moore’s
law successfully leads Intel microprocessor business in decades. Transis-
tor densities will continue to increase. However, device speed scaling will
not follow historical trends and leakage power remains an issue. Mean-
while, new usage models and workloads will continue to demand greater
performance. We can’t run business as usual. We need to develop uAr-
chitecture features more effectively with power constraints. Software in
both applications and systems will play more and more important roles
in uArchitecture research and microprocessor design. Emerging appli-
cations like mining, recognition and synthesis (MRS) will become the
next generation dominated applications. Study of the characterizations
of these applications is significant for the next generation of micropro-
cessor design. System software has been changing its landscape as well.
There are challenges and opportunities for microprocessor designers and
researchers to explore new uArchitecture features to meet the needs of
the new application and system software. The presentation will show the
potential direction of uArchitecture for such emerging applications also.
The talk will discuss the emerging paradigms of programming systems
and its impact to uArchitecture design by giving couple examples of how
compilation technologies enable HW design.

P.-C. Yew and J. Xue (Eds.): ACSAC 2004, LNCS 3189, p. 270, 2004.
© Springer-Verlag Berlin Heidelberg 2004

A Cost-Effective Supersampling for Full Scene
AntiAliasing

Byung-Uck Kim1, Woo-Chan Park2, Sung-Bong Yang1, and Tack-Don Han1

1 Dept. of Computer Science, Yonsei University, Seoul, Korea,
kimbu@yonsei.ac.kr,

2 Dept. of Internet Engineering, Sejong University, Seoul, Korea

Abstract. We present a graphics hardware system to implement
supersampling cost-effectively. Supersampling is the well-known tech-
nique to produce high quality images. However, rendering the scene
at a higher resolution requires a large amount of memory size and
memory bandwidth. Such costs can be alleviated by grouping subpixels
into a fragment with a coverage mask which indicates which part of
the pixel is covered. However, this may cause color distortion when
several objects either overlap or intersect with each other within
a pixel. In order to minimize such errors, we introduce an extra
buffer, called the RuF(Recently used Fragment)-buffer, for storing the
footprint of a fragment most recently used in the color manipulation.
In our experiments, the proposed system can produce high quality
images as good as supersampling with a smaller amount of memory size
and memory bandwidth, compared with the conventional supersampling.

Keywords: Antialiasing, Supersampling, Graphics Hardware, Render-
ing Algorithm

1 Introduction

With growth of user demand for high quality images, the hardware-supported
full scene antialiasing (FSAA) has become commonplace in 3D graphics systems.
Artifacts due to aliasing are mostly caused by insufficient sampling. To attenuate
such aliasing problem, supersampling has been practiced in the high-end graphics
system [2] and begins to be adopted by most pc-level graphics accelerator.

In supersampling, 3D objects are rendered at a higher resolution and then are
averaged down to the screen resolution [8]. Hence it requires a large amount of
memory size and memory bandwidth. For example, supersampling requires

times bigger both memory size and memory bandwidth than one-point sam-
pling. Some reduced versions of it have been practiced; sparse supersampling [2]
that populates sample points sparsely and adaptive supersampling [1] in which
the only discontinuity edges are supersampled. In multi-pass approach, the ac-
cumulation buffer [4] has been proposed in which one scene is rendered several
times and these images are then accumulated, one at a time, into the accumu-
lation buffer. When the accumulation is done, the result is copied back into the

P.-C. Yew and J. Xue (Eds.): ACSAC 2004, LNCS 3189, pp. 271–281, 2004.
© Springer-Verlag Berlin Heidelberg 2004

272 B.-U. Kim et al.

frame buffer for viewing. However, it is obvious that rendering the same scene
times takes times longer than rendering it just once. Both supersampling and
the accumulation buffer are well integrated into the Z-buffer (also called depth
buffer) algorithm that is adopted by most rendering systems for the hidden sur-
face removal. Moreover, Z-buffer algorithm handles correctly interpenetrating
objects.

Rather than rendering each subpixel individually, A-buffer approach [3]
groups subpixels into a fragment with a coverage mask that indicates which
part of the pixel is covered. Such a representation is efficient in reduction of the
memory and bandwidth requirements because it shares the common color value
instead of having its own color value per subpixel. To apply Carpenter’s blending
formulation [3] for antialiasing of opaque objects, fragments should be sorted in
the fragment list by their depth value. The fragment lists can be implemented
by a pointer-based linked list [6] or a pointer-less approach [9]. For reducing
noticeable artifacts, correct subpixel visibility calculations are more important
that correct antialiasing of subpixels. Therefore, the more concise depth value
representation has been practiced in [5].

This paper presents a cost-effective graphics hardware system that renders
the supersampled graphics primitives with full scene antialiasing. In our ap-
proach, an area-weighted representation of a fragment using a coverage mask
is adopted, as in A-buffer, to reduce the memory and bandwidth requirements.
This may cause color distortion when several objects either overlap or intersect
with each other within a pixel. In order to minimize such errors, we introduce
an extra buffer, called the RuF (Recently used Fragment)-buffer, for storing the
footprint of a fragment most recently used in the color manipulation. In addition,
we introduce the new color blending formulation for minimizing color distortion
by referencing the footprint of the RuF-buffer. In our simulation, we compared
the amount of memory size and memory bandwidth of the proposed scheme
with those of supersampling and investigated the per-pixel color difference of
the images produced from both methods. For various 3D models with 8 sparse
sample points, the proposed algorithm reduces the amount of memory size and
memory bandwidth by 35.7% and 67.1%, respectively, with 1.3% per-pixel color
difference as compared with supersampling.

The rest of this paper is organized as follows. In Section 2, we describe
the proposed graphics architecture. Section 3 explains fragment processing al-
gorithm for antialiasing. Section 4 provides the experimental results of image
quality, memory and bandwidth requirement. Finally, the conclusions are given
in Section 5.

2 The Proposed Graphics Architecture

In this section, we present the data structure and memory organization for pro-
cessing a pixel with subpixels individually or a fragment. We also describe the
proposed graphics hardware with the newly developed RuF-buffer.

A Cost-Effective Supersampling for Full Scene AntiAliasing 273

2.1 Data Structure and Memory Organization for a Pixel

Figure 1 shows the data structure and memory organization for representing a
pixel with subpixels individually and a fragment. Here we assumed that each
pixel has 8 sparse sample points. In supersampling method, each subpixel is
processed individually; the pair of color and depth value per subpixel is stored
into color buffers and depth buffers in the frame buffer. Hence, the required
memory size per pixel is bits where C and Z is color (32 bits) and
depth value (24 bits), respectively and is the number of sample points. In this
example, 8 × (32 + 24) bits = 56 bytes per pixel is required.

Fig. 1. Data structure and memory organization for a pixel.

In the proposed scheme, the data structure for a fragment is basically orig-
inated from the one of the A-buffer. Subpixels within a pixel are grouped into
a fragment that shares the common color value (C) with a coverage mask (M).
Moreover, we can easily compute the color contribution of a fragment within
a pixel since a coverage mask represents an area-weighted value. For handling
subpixel visibility correctly, depth value per subpixel is kept in-
dividually. An object tag (O) is the unique identifier per object and can be
generated sequentially by the rendering hardware incorporated with modelling
software [6]. It is used for post-merging fragments; if two fragments in a pixel
have the same object tag value then the footprint of both fragments can be
merged into the RuF-buffer. The RuF-buffer holds the footprint of a fragment
that is recently used in the color manipulation phase. The footprint of a frag-
ment consists of color, coverage mask and object tag of a fragment and it will
be used for correct handling the hidden surface removal. The required memory
size per a pixel is bits where M is the coverage
mask and O is the object tag (16 bits). Here, objects are assumed
to be enough for representing 3D model in a scene. Therefore, the memory size

274 B.-U. Kim et al.

of (2 × (32 + 8) + 8 × 24 +16) bits = 36 bytes per pixel is required when 8 sparse
sample points are used.

Table 1 shows the comparison of the memory requirement between super-
sampling and the proposed algorithm as the number of sample points increases.
As shown in the results, the reduction ratio of the memory requirement begins to
be larger as the number of sample points increases since our approach can save
the memory requirement for representing individual color value per subpixel by
sharing the common color value.

2.2 RuF-Buffer Graphics Architecture

Figure 2 shows the proposed graphics architecture with the conventional
geometric-processing and rasterizer-processing. We add the mask-buffer and the
RuF-buffer into the conventional architecture. Generally, 3D data are geometric-
processed with rotating, scaling and translation. The processed results are fed
into the rasterizer-processing. In rasterizer-processing, the fragments of each
polygon are generated by scan-conversion and then passed through occlusion
test such as Z-buffer algorithm and various image mapping such as texture
mapping or bump mapping. Finally, the color value of each pixel is manipulated
and stored into the color buffer in the frame buffer. When all the fragments are
processed, the color values in the frame buffer are sent to a display device.

Fig. 2. The proposed graphics architecture.

A Cost-Effective Supersampling for Full Scene AntiAliasing 275

3 Fragment Processing for Antialiasing

Figure 3 shows three phases of the newly introduced functional unit of fragment
processing: the occlusion test, the color manipulation, and the RuF-buffer record-
ing. Roughly speaking, the newly fragment incoming into the graphics pipeline
is tested with Z-buffer algorithm per subpixel. If it is totally occluded by the one
previously stored in the frame buffer, called a prepixel, then it will be discarded
and the next fragment will be processing.

Fig. 3. Functional units for fragment processing.

Otherwise, we calculate the visible fraction of an incoming fragment, called
a survived surface, and the hidden surface of the prepixel occluded by it. For
calculating color value of a pixel, the survived surface will be added into and
the hidden surface will be subtracted from the color buffer. In this phase, we
look up the RuF-buffer for investigating the color value of the hidden surface.
Finally, the survived fragment is merged into the RuF-buffer to allow more
opportunity by covering the larger portion within a pixel. In describing each
stage, the subscripts, and are used for denoting the attribute of an
incoming fragment, the prepixel in the frame buffer, and the footprint in the
RuF buffer. For instance, is for the coverage mask of an incoming fragment.
For simplicity, we assume that a coverage mask used in formulation returns the
area-weighted value; for instance, if the number of sample points is eight and
covers three subpixels then in formulation denotes the value of 3/8.

Detail descriptions of each stage in the fragment processing are presented as
follows:

The occlusion test : The depth comparison per subpixel between an incoming
fragment and a prepixel are tested with the conventional Z-buffer algorithm.
Then the mask composite for the survived surface and the hidden surface

276 B.-U. Kim et al.

are processed. Z-buffers are updated with new depth values of the survived
surface.

The color manipulation : The survived surface is visible fraction of an incom-
ing fragment. Hence, its area-weighted color value should be added into the color
buffer. In addition, the hidden surface of a prepixel occluded by the survived sur-
face should be subtracted from the color buffer. To look up the color value of
the hidden surface, we investigate the match between the hidden surface and the
footprint of the RuF-buffer through the mask comparison of
If is a subset of then we can totally remove the color contribution of the
hidden surface from the frame buffer using the formulation of Eq. 1.

However, since the footprint of the RuF-buffer may not provide any informa-
tion about some parts of the hidden surface we expand the formulation of Eq. 1
to compensate color value with a slight error. The fourth term of formation in
Eq. 2 compensates color value by subtracting the area-weighted color value for
the blind parts of the hidden surface from the frame buffer.

The RuF-buffer recording : Generally, the polygonal surfaces of an object
exist in a coplanar space. Therefore, each neighbored surface generates fragments
that share the same pixel on their boundary [3],[6]. So, they can be merged into
one in the post-processing. Fragments that come from the same object will be
merged into one since the same tagged object has same property. The merging
process can be computed as follows:

However, if the survived fragment has the different object tag then the RuF-
buffer is reset with the survived surface. The new object now begins to be drawn.

Figure 4 and Table 2 shows an example of fragment processing for each event
and its associated color manipulation. In this example, subpixels are located on
3×3 grid sample points and three consecutive fragments are incoming
into the graphics pipeline. In Figure 4, we assume that a fragment was already
processed in the previous phase; the frame buffer was initialized and then filled
with where of object one covers four subpixels with a color value
Hence, the color value of a prepixel in the frame buffer was computed as an
area-weighted value of and then the footprint of was stored in the RuF-
buffer. Now two fragments, and are newly fed into the graphics pipeline
sequentially.

The left on the figure shows the processing of a fragment which of object
has as a color value and covers four subpixels. The occlusion test is

A Cost-Effective Supersampling for Full Scene AntiAliasing 277

Fig. 4. Example of fragment processing

first processed, and then the survived and hidden masks are composited by Z-
buffer algorithm per subpixel. In this example, four subpixels of are survived
and three subpixels in a prepixel are occluded. Moreover, the information of the
hidden surface can be referenced through the RuF-buffer. Thus the new color
value can be computed by Eq. 1 without any color distortion. Finally, the
RuF-buffer is reset with the footprint of since the object tag of is different
to the one of the RuF buffer stored in the previous phase.

The right on the figure shows the processing of a fragment which of object
has as a color value and covers five subpixels. Similarly as in pro-

cessing, the hidden and survived surfaces are computed in the occlusion test; in
this example, five subpixels are survived and one subpixel is occluded. However,
in the color manipulation, the footprint of the RuF-buffer cannot provide any
information of the hidden surface So, the color value is compensated by
subtracting it from the prepixel; for instance, the color value of are used
in formulation instead of This causes color distortion with the mere color
difference of In RuF-buffer recording, the footprint of two
fragments and are merged into one since they have the same object tag,
and then it covers the entire portion of a pixel.

278 B.-U. Kim et al.

4 Empirical Results

In our experiments, the 3D models described with OpenGL functions are
geometric-processed and passed through scan-conversion in the Mesa library,
which is the OpenGL-clone implementation and can be accessed in public do-
main [7]. We modified the Mesa library to output the tracefile of a fragment with
a coverage mask. The resulted tracefile is fed into the simulator that implements
the proposed architecture in C. Then the final image of 200 × 150 resolution is
produced as shown in Figure 5.

Table 3 describes the characteristics of 3D models used in our experiments
where the number of vertices (V), triangles (T), fragments (F), and objects (O)
are provided. In our experiment, we decided to use eight-sparse sample point (8 ×
RuF) for the antialiasing architecture because it has been successfully practiced
in high-end graphics systems [2]. To provide an indication of the performance
in our approach, various supersampling methods are also simulated; one-point
sampling (1 × S, 1 subpixel per pixel), 8 sparse supersampling (8 × S, 8 subpixels
per pixel), 4 by 4 supersampling (4 × 4S, 16 subpixels per pixel), and 8 by 8
supersampling (8 × 8S, 64 subpixels per pixel).

4.1 Image Quality

We present the image quality with respect to the number of sample points. To
observe the quality of final scenes, the error metric of per-pixel color difference
is used as shown in Eq. 4.

where and are the pixels from the same location of a reference image and
a test image, respectively.

In order to make a small number of pixels with large difference more notice-
able, the square of the difference is made [5]. We compute the per-pixel color
difference for each 3D model where the reference image is produced by 8 × 8S,

A Cost-Effective Supersampling for Full Scene AntiAliasing 279

Fig. 5. The final images for each 3D model

Fig. 6. Performance of color difference and memory size.

it is regarded as to be an ideal image, and each test image is produced by 1 × S,
8 × S, 8 × RuF and 4 × 4S, respectively.

Figure 6(a) shows the results of the per-pixel color difference for each 3D
dataset with various sample points. As can be seen from the results, the per-
pixel color difference becomes to be smaller as the number of sampling points
increase. Moreover, the final images of 8 × RuF are almost as good quality as
8×S; both of them have the same number of sample points.

4.2 Trade-Off Between Image Quality and Memory Requirement

In order to show the cost efficiency of the proposed architecture, two graphs for
memory size per pixel and per-pixel color difference, respectively, are plotted
together in Figure 6(b). The per-pixel color difference between 8 × RuF and
8 × S is 1.3% but the memory size per pixel is 35.7%. That is, our approach
provides almost as good quality as supersampling with a less hardware cost.

280 B.-U. Kim et al.

4.3 Memory Bandwidth Requirement

Figure 7 shows the memory bandwidth requirements where two bar graphs for
supersampling (left) and the proposed scheme (right) are plotted as a pair for
each model. Arbitrary scenes for each 3D model are produced with both methods
where 8 sparse sample points are used. As shown in the results, the proposed ar-
chitecture can reduce the memory bandwidth requirement by 53.6% ~ 75.5% for
Castle and Rose+vase. The internal bandwidth is required for pixel processing
between the graphics pipeline and the frame buffer (includes the RuF-buffer and
mask-buffer). The external bandwidth is for swapping the front and back buffer
or for average-down filtering. In supersampling, the external bandwidth domi-
nates the memory bandwidth requirement. In other words, it implies that the
screen-size color buffer is very efficient in reducing the bandwidth requirement
since it does not require the overhead for average-down filtering process.

Fig. 7. The memory bandwidth requirement

5 Conclusion

In this paper, we present a graphics hardware system to implement supersam-
pling in cost-effective manner. For hardware-implementation aspect, our graphics
architecture uses same programming model as in Z-buffer algorithm for the hid-
den surface removal and adds only small additions to the conventional rendering
process such as mask comparison and composite. In addition, mask comparison
and composite can be simply processed with bitwise operations. In the color
manipulation, computing the color contribution of a fragment can be processed
through look-up tables, each entry of which holds the predefined floating point
number divided by the number of sample points.

To provide an indication of the performance in terms of cost-effective full
scene antialiasing, the results of memory requirement, bandwidth requirement,

A Cost-Effective Supersampling for Full Scene AntiAliasing 281

and per-pixel color difference are shown in Table 4 when 8 sparse sample points
are used. It shows that the proposed architecture can reduce the memory size
and the memory bandwidth size by 35.7% and by 67.1% with a slight color
difference of 1.3%, compared with the conventional supersampling. As shown in
the results, the proposed architecture can efficiently render the high quality scene
with an economic hardware cost. Moreover, the simplicity of rendering process
for our scheme allows us to have fast rendering through well-defined pipeline
with a single pass.

Acknowledgment. The authors are grateful to the anonymous reviewers of
the earlier version of this paper, whose incisive comments helped improve the
presentation. This work is supported by the NRL-Fund from the Ministry of
Science & Technology of Korea.

References

1.

2.

3.

4.

5.

6.

7.
8.
9.

Aila, F., Miettine, V., Nord, P.: Delay Streams for Graphics Hardware. ACM Trans-
actions on Graphics 22 (2003) 792–800
Akeley, K.: RealityEngine graphics. Computer Graphics (SIGGRAPH 93) 27 (1993)
109–116
Carpenter, L.: The A-buffer: an Antialiased Hidden Surface Method. Computer
Graphics (SIGGRAPH 84) 18 (1984) 103–108
Haeberli, P.E., Akeley, K.: The Accumulation Buffer: Hardware Support for High-
Quality Rendering. Computer Graphics (SIGGRAPH 90) 24 (1990) 309–318
Jouppi, N.P., Chang, C.F.: an Economical Hardware Technique for High-quality
Antialiasing and Transparency. In Proceeding of Graphics hardware (1993) 85–93
Lee, J.A., Kim, L.S.: Single-Pass Full-Screen Hardware Accelerated Antialiasing. In
Proceeding of Graphics hardware (2000) 67–75
The Mesa 3D Graphics Library. http://www.mesa3d.org
Watt, A.: 3D Computer Graphics. Third Edition (2000) Addison-Wesley
Wittenbrink, C.M.: R-Buffer: A Pointless A-Buffer Hardware Architecture. In Pro-
ceeding of Graphics hardware (2001) 73–80

A Simple Architectural Enhancement for Fast
and Flexible Elliptic Curve Cryptography over

Binary Finite Fields

Stefan Tillich and Johann Großschädl

Graz University of Technology
Institute for Applied Information Processing and Communications

Inffeldgasse 16a, A–8010 Graz, Austria
{Stefan.Tillich,Johann.Groszschaedl}@iaik.at

Abstract. Mobile and wireless devices like cell phones and network-
enhanced PDAs have become increasingly popular in recent years. The
security of data transmitted via these devices is a topic of growing im-
portance and methods of public-key cryptography are able to satisfy this
need. Elliptic curve cryptography (ECC) is especially attractive for de-
vices which have restrictions in terms of computing power and energy
supply. The efficiency of ECC implementations is highly dependent on
the performance of arithmetic operations in the underlying finite field.
This work presents a simple architectural enhancement to a general-
purpose processor core which facilitates arithmetic operations in binary
finite fields A custom instruction for a multiply step for bi-
nary polynomials has been integrated into a SPARC V8 core, which
subsequently served to compare the merits of the enhancement for two
different ECC implementations. One was tailored to the use of
with a fixed reduction polynomial. The tailored implementation was sped
up by 90% and its code size was reduced. The second implementation
worked for arbitrary binary fields with a range of reduction polynomials.
The flexible implementation was accelerated by a factor of nearly 10.

Keywords: Elliptic curve cryptography, application-specific instruction
set extension, binary finite fields, SPARC V8, multiply step instruction.

1 Introduction

Security for mobile and wireless applications requires the involved devices to
perform cryptographic operations. For open systems, the use of public-key cryp-
tography is practically inevitable. There are likely to be two groups of devices
which will participate in secure mobile and wireless environments [17]: end de-
vices and servers. End devices are often constrained regarding computing power,
memory for software code, RAM size and energy supply. Those devices require
fast, memory- and energy-efficient implementations of public-key methods. El-
liptic curve cryptography (ECC) reduces the size of the operands involved in
computation (typically 160–250 bit) compared to the widely used RSA cryp-
tosystem (typically 1024–3072 bit) and is therefore an attractive way to realize

P.-C. Yew and J. Xue (Eds.): ACSAC 2004, LNCS 3189, pp. 282–295, 2004.
© Springer-Verlag Berlin Heidelberg 2004

A Simple Architectural Enhancement 283

security on constrained devices. With typical processor word-sizes of 8–64 bit,
public-key cryptosystems call for efficient techniques to handle multiple-precision
operands. Binary finite extensionfields allow efficient representation and
computation on a general-purpose processor which does not feature a hardware
multiplier and are therefore well suited to be used as the underlying field of an
elliptic curve cryptosystem.

ECC implementations require several choices of parameters regarding the
underlying finite field (type of the field, representation of its elements, and the
algorithms for the arithmetic operations) as well as the elliptic curve (represen-
tation of points, algorithms for point arithmetic). If some of these parameters are
fixed, e.g. the field type, then implementations can be optimized yielding a con-
siderable performance gain. Such an optimized ECC implementation will mainly
be required by constrained end devices in order to cope with their limited com-
puting power. The National Institute of Standards and Technology (NIST) has
issued recommendations for specific sets of parameters [13]. As research in ECC
advances, new sets of parameters with favorable properties are likely to become
available and recommended. Therefore, not all end devices will use the same set
of parameters. Server machines which must communicate with many different
clients will therefore have a need for flexible and yet fast ECC implementations.

This paper introduces a simple extension to a general-purpose processor to
accelerate the arithmetic operations in binary extension fields Our ap-
proach concentrates on a very important building block of these arithmetic op-
erations; namely the multiplication of binary polynomials, i.e. polynomials with
coefficients in GF(2) = {0,1}. If this binary polynomial multiplication can be
realized efficiently, then multiplication, squaring and inversion in and
in turn the whole ECC operation is made significantly faster.

Two forms of a multiply step instruction are proposed, which can be im-
plemented and used separately or in combination. These instructions perform
an incremental multiplication of two binary polynomials by processing one or
two bit(s) of one polynomial and accumulating the partial products. A modi-
fied ripple-carry adder is presented which facilitates the accumulation with little
additional hardware cost. The proposed custom instructions have merits for im-
plementations which are optimized for specific binary finite fields with a fixed
reduction polynomial. Also, flexible implementations which can accommodate
fields of arbitrary length with a range of reduction polynomials benefit from
such instructions. Both types of implementations are general enough to support
different elliptic curves and EC point operation algorithms.

The remainder of this paper is organized as follows. Some principles of elliptic
curve cryptography in binary finite fields are given in the next Section. Section 3
outlines important aspects of modular multiplication in A modified
ripple-carry adder which facilitates the implementation of our enhancement is
presented in Section 4. Section 5 describes the proposed custom instructions
in detail and Section 6 gives evaluation results from our implementation on an
FPGA-board. Finally, conclusions are drawn in Section 7.

284 S. Tillich and J. Großschädl

2 Elliptic Curve Cryptography

An elliptic curve over a field can be formally defined as the set of all solutions
to the general (affine) Weierstraß equation

with the coefficients If is a finite field then the set of all
pairs satisfying Equation (1) is also finite. A finite field is also
called a Galois field. If the finite field is a binary extension field then
Equation (1) can be simplified to

The set of all solutions together with an additional
special point which is called the “point at infinity”, forms an Abelian group
whose identity element is The group operation is the addition of points, which
can be realized with addition, multiplication, squaring and inversion in
A variety of algorithms for point addition exists, where each requires a different
number of those field operations. If, e.g. the points on the elliptic curve are
represented in projective coordinates [2], then the number of field inversions is
reduced at the expense of additional field multiplications.

All EC cryptosystems are based on an computation of the form
with P and Q being points on the elliptic curve and This operation is
called point multiplication (or scalar multiplication) and is defined as adding
P exactly times to itself: The execution time of
the scalar multiplication is crucial to the overall performance of EC cryptosys-
tems. Scalar multiplication in an additive group corresponds to exponentiation
in a multiplicative group. The inverse operation, i.e. to recover given P and

is denoted as the elliptic curve discrete logarithm problem (ECDLP),
for which no subexponential-time algorithm has been discovered yet. More in-
formation on EC cryptography is available from various sources, e.g. [2,8].

3 Arithmetic in Binary Extension Fields

A common representation for the elements of a binary extension field is
the polynomial basis representation. Each element of can be expressed
as a binary polynomial of degree at most

A very convenient property of binary extension fields is that the addition of two
elements is done with a simple bitwise XOR, which means that the addition
hardware does not need to deal with carry propagation in contrast to a conven-
tional adder for integers. The instruction set of virtually any general-purpose
processor includes an instruction for the bitwise XOR operation.

A Simple Architectural Enhancement 285

When using a polynomial basis representation, the multiplication in
is performed modulo an irreducible polynomial of degree exactly In gen-
eral, a multiplication in consists of multiplying two binary polynomials
of degree up to resulting in a product-polynomial of degree up to
and then reducing this product modulo the irreducible polynomial in order
to get the final result. The simplest way to implement the multiplication of two
binary polynomials in software is by means of the so-called
shift-and-xor method [14]. In recent years, several improvements of the classical
shift-and-xor method have been proposed [7]; the most efficient of these is the
left-to-right comb method by López and Dahab [11], which employs a look-up
table to reduce the number of both shift and XOR operations.

A completely different way to realize the multiplication of binary polynomials
in software is based on the MULGF2 operation as proposed by Koç and Acar [9].
The MULGF2 operation performs a word-level multiplication of binary polyno-
mials, similar to the MUL operation for integers, whereby denotes
the word-size of the processor. More precisely, the MULGF2 operation takes two

words as input, performs a multiplication over GF(2) treating the words as
binary polynomials, and returns a word as result. All standard algorithms
for multiple-precision arithmetic of integers can be applied to binary polynomials
as well, using the MULGF2 operation as a subroutine [5]. Unfortunately, most
general-purpose processors do not support the MULGF2 operation in hardware,
although a dedicated instruction for this operation is simple to implement [12].
It was shown by the second author of this paper [6] that a conventional integer

286 S. Tillich and J. Großschädl

multiplier can be easily extended to support the MULGF2 operation, without
significantly increasing the overall hardware cost. On the other hand, Koç and
Acar [9] describe two efficient techniques to “emulate” the MULGF2 operation
when it is not supported by the processor. For small word-sizes (e.g.
the MULGF2 operation can be accomplished with help of look-up tables. The
second approach is to emulate MULGF2 using shift and XOR operations (see
[9] for further details).

In the following, we briefly describe an efficient word-level algorithm for mul-
tiple-precision multiplication of binary polynomials with help of the MULGF2
operation. We write any binary polynomial as a bit-string of its

coefficients, e.g. Then, we split the bit-string into
words of bits each, whereby is the word-size of the target proces-

sor. These words are denoted as with and representing
the most and least significant word of respectively. In this way, we can con-
veniently store a binary polynomial in an array of single-precision words
(unsigned integers), i.e. Based on the MULGF2 opera-
tion, a multiple-precision multiplication of binary polynomials can be performed
according to Algorithm 1, which is taken from a previous paper of the second
author [5]. The tuple represents a double-precision quantity of the form

i.e. a polynomial of degree The characters and de-
note the MULGF2 and XOR operation, respectively. In summary, Algorithm 1
requires to carry out MULGF2 operations and XOR operations in order
to calculate the product of two polynomials. We refer to the original
paper [5] for a detailed treatment of this algorithm.

Once the product has been formed, it must be reduced modulo the
irreducible polynomial to obtain the final result (i.e. a
binary polynomial of degree up to This reduction can be implemented
very efficiently when is a sparse polynomial, which means that has few
non-zero coefficients In such case, the modular reduction requires only a few
shift and XOR operations and can be highly optimized for a given irreducible
polynomial [14,7,8]. Most standards for ECC, such as from ANSI [1] and NIST
[13], propose to use sparse irreducible polynomial like trinomials or pentanomials.
On the other hand, an efficient word-level reduction method using the MULGF2
operation was introduced in the previously mentioned paper [5]. The word-level
method also works with irreducible polynomials other than trinomials or pen-
tanomials, but requires that all non-zero coefficients (except of are located
within the least significant word of i.e. for For example,
we used the trinomial for our ECC implementations, which satisfies
this condition for a word-size of

4 Modified Ripple-Carry Adder

A previous paper of the second author [6] presents the design of a so-called
unified multiply-accumulate unit that supports the MULGF2 operation. The

A Simple Architectural Enhancement 287

efficiency of that design is based on integration of polynomial multiplication
into the datapath of the integer multiplier. On the other hand, the datapath for
our proposed multiply step instructions can be integrated into the ALU adder
and does not require a multiplier. For SPARC V8 cores, the implementation of
our extension is relatively easy, as those cores already feature a multiply step
instruction for integer arithmetic. In comparison to the previous work [6], the
multiply step instructions offer a tradeoff of hardware cost against speed.

The simplest way to implement adders in general-purpose processors is in
the form of ripple-carry adders. For instance the SPARC V8 LEON-2 processor,
which we have used for our evaluation, employs a such an adder. Principally,
ripple-carry adders consist of a chain of full adder cells, where each cell takes
three input bits (usually labeled and and produces two output bits with
different significance (sum and The cells are connected via their carry
signals, with the of one stage serving as input for the next higher stage.

A conventional ripple-carry adder takes two values and a carry-in bit
and produces a sum and a carry-out bit which can be seen as the
bit of the sum. To generate a bit of the sum vector, each full adder cell performs
a logical XOR of its three inputs and This property can be exploited
to perform a bitwise logical XOR of three n-bit vectors with a slightly modified
ripple-carry adder. As explained in Section 3, this XOR conforms to an addition
of the three vectors if they are interpreted as binary polynomials.

The modification consists of the insertion of multiplexors into the carry-chain
of the ripple-carry adder as illustrated in Figure 1. The insert control signal
selects the carry value which is used. If insert is 0, the adder propagates the
carry signal, selecting as In this mode the adder performs a conventional
integer addition, setting and accordingly. If insert is 1, the carry is not
propagated, but the cins vector is used to provide the inputs for the full adder
cells. The sum vector is calculated as the bitwise logical XOR of the vectors
and cins. The value of is not relevant in this mode. In Figure 1 the bits with
the same significance of the three vectors are grouped together by braces. The
carry input of the rightmost full adder cell acts as for integer addition and
as least significant bit of the cins vector for addition of binary polynomials. The
insert signal of the modified adder therefore switches between the functionality
of an integer adder and and a 3:1 compressor for binary polynomials.

Ripple-carry adders have the disadvantage that the delay of carry propaga-
tion can be rather high. Embedded processors normally feature other, longer
combinational paths, so that the carry propagation delay is not the critical path
delay. If however the carry propagation path of the adder constitutes the crit-
ical path and the proposed modifications increase its delay significantly, other
approaches are possible to get the 3:1 compressor functionality for binary poly-
nomials. One solution is to modify a faster adder, e.g. a carry-select adder [3].
Another possibility is the use of dedicated XOR-gates without any modification
of the adder. Both of these options come with an increased hardware cost.

288 S. Tillich and J. Großschädl

Fig. 1. A 4-bit modified ripple-carry adder

5 Multiply Step Instruction

Our enhancement is basically the addition of one or two custom instructions
which can be realized with relatively little additional hardware. The basic idea
is to provide a multiply step instruction for multiplication of binary polynomi-
als. With a given word size of the processor, a multiplication of two
binary polynomials yielding a result can be implemented efficiently with
the proposed instructions. This word-size multiplication of binary polynomials
corresponds to the MULGF2 operation mentioned in Section 3, which is an
important building block for arithmetic operations in the field

The SPARC V8 Architecture Manual [16] defines a multiply step instruction
for integer multiplication (MULSCC) and our proposed instructions are a modifi-
cation thereof. MULSCC processes one bit of the multiplier and adds the resulting
partial product to an 64-bit accumulator realized by two hardware registers. In
the following, the register naming conventions of SPARC V8 will be used.

In order to perform a complete multiplication of two 32-bit binary polyno-
mials, three registers have to be employed. Two of those registers form a 64-bit
accumulator to hold the intermediate total during multiplication. These registers
will be named %o0 and %y, with %o0 holding the 32 most significant and %y hold-
ing the 32 least significant bits. The register %o1 will be used as the third register.
It contains the multiplicand during the whole course of the multiplication.

5.1 MULGFS Instruction

The first proposed instruction is named MULGFS and is only a slight variation of
the MULSCC instruction. It can be used in the following fashion the perform a
word-size polynomial multiplication (MULGF2 operation): At first, the multi-
plicand is loaded into %o1 and the multiplier is loaded into %y. Then the MULGFS
instruction is executed 32 times to process each bit of the multiplier in %y. In

A Simple Architectural Enhancement 289

each execution of the MULGFS instruction the value in the accumulator (%o0 and
%y)is shifted right by one. The bit which is shifted out of the accumulator, i.e.
the least significant unprocessed bit of the multiplier, is examined and a par-
tial product is generated: If the bit is one, it is the value of the multiplicand,
otherwise it is all zero. This partial product is added to the 32 highest bits of
the accumulator, which reside in %o0. After 32 MULGFS instructions, the value
in the accumulator must be shifted right by one to obtain the correct 64-bit
result. Following the SPARC conventions, the MULGFS instruction is written in
the following form in assembly code:

The first two registers are the source registers. The first one (%o0) contains
the highest 32 bits of the accumulator while the second one (%o1) holds the mul-
tiplicand. The third register is the destination register (%o0) which is normally
chosen to be the same as the first source register. The register for the 32 lowest
bits of the accumulator (%y) is read and written implicitly for multiplication
instructions in the SPARC architecture. In this case the 64-bit accumulator is
formed by%o0 and%y. On other architectures, different approaches may be fa-
vorable, e.g. on a MIPS architecture the multiplication registers %hi and %lo
could be implicitly used as accumulator. In detail, a single MULGFS instruction
performs the following steps:

1.

2.

3.

4.

The value in the first source register (%o0) is shifted right by one. The shifted
value is denoted as C.
The least significant unprocessed bit of the multiplier (last bit of %y) is
examined. The partial product (denoted as A) is set to the value of the
multiplicand (%o1), if the bit is one. Otherwise A is set to all zeros.
The contents of the %y register is shifted right by one with the least significant
bit of %o0 shifted in from the left. The bit of the multiplier, which has been
processed in the previous step, is therefore shifted out of %y.
A bitwise XOR of A and C is performed and the result is stored in the higher
word of the accumulator (%o0).

The MULGFS instruction does not require the insertion of a carry vector for
the adder. It is sufficient if the adder can suppress carry propagation whenever a
specific control signal is set. The changes to the processor for the implementation
of the MULGFS instruction are:

Modifications to the decode logic to recognize the new opcode, and to gen-
erate an insert control signal for the ALU.
Multiplexors to select the two operands for the adder and which allow shifting
of the value in the two registers which form the accumulator.
Gates which prevent carry propagation in the adder if insert is set.

290 S. Tillich and J. Großschädl

5.2 MULGFS2 Instruction

The second proposed instruction (named MULGFS2) is a variation of the MULGFS
instruction, which processes two bits of the multiplier simultaneously. In this
fashion two partial products are generated and addition to the accumulated
result can be done with a modified ripple-carry adder as specified as in Section 4.

A multiplication of two binary polynomials (MULGF2 operation) is done in
the same way as described in the previous Section with the exception that the
32 subsequent MULGFS instructions are replaced by 16 MULGFS2 instructions. If
only the MULGFS2 instruction is available, the final shift of the accumulator must
be done with conventional bit-test and shift instructions. On the SPARC V8
this requires four instructions. If the MULGFS instruction is available, then the
final shift can be done with a single instruction. The format for the MULGFS2
instruction remains the same as for the MULGFS instruction:

In detail, the MULGFS2 instruction works by executing these steps:

1.

2.

3.

4.

5.

The value in the first source register (%o0) is shifted right by two. The shifted
value is denoted as C.
The least significant unprocessed bit of the multiplier (last bit of %y) is
examined. If the bit is one, a partial product (denoted as B) is set to the
value of the multiplicand (%o1) shifted right by one. Otherwise B is all zeros.
The second lowest bit of the multiplier (penultimate bit of %y) is examined.
If is is one, the second partial product (denoted as A) is set to the value of
the multiplicand (%o1). Otherwise A is all zeros.
The contents of the %y register is shifted right by two with the following
bits set as the new MSBs: The one but highest bit is set to the value of
the least significant bit of %o0. The highest bit results from an XOR of the
second lowest bit of %o0 and the logical and of the least significant bit of the
multiplicand (%o1) and the second lowest bit of %y.
A bitwise XOR of A, B and C is performed and the result is stored in in the
higher word of the accumulator (%o0).

The MULGFS2 instruction performs the XOR of the three 32-bit vectors with
a modified ripple-carry adder. The required modifications to the processor are:

Changed decode logic to recognize MULGFS2 instructions, and to generate an
insert control signal for the modified ripple-carry adder.
Multiplexors to select the three operands for the adder and which allow
shifting by two of the values in the two registers which form the accumulator.
A modified ripple-carry adder as described in Section 4 which is controlled
by the insert signal.

The implementation of the MULGFS2 instruction for a SPARC V8 general-
purpose processor can be seen in Figure 2.

A Simple Architectural Enhancement 291

Fig. 2. MULGFS2 instruction implementation for a SPARC V8 processor

6 Experimental Results

Both MULGFS and MULGFS2 instructions have been implemented in the freely
available SPARC V8-compliant LEON-2 processor [4]. The size for both instruc-
tion and data cache have been set to 4 kB. A tick counter register, whose content
is incremented each clock cycle, has also been added to the LEON-2 to facilitate
the measurement of the execution time of software routines. A XSV-800 Virtex
FPGA prototyping board [18] has been used to implement the extended pro-
cessor for verification of the design and for obtaining timing result for different
realizations of ECC operations.

The ECC parameters given in Appendix J.2.1 of the ANSI standard X9.62 [1]
have been used. The elliptic curve is defined over the binary finite field
with the reduction polynomial Most of the examined implemen-
tation variants use a multiplication of two binary polynomials (MULGF2 oper-
ation) as a building block for operations where the size of the binary
polynomials equals the word-size of the LEON-2 processor, namely 32 bit.

Two principal implementations of ECC operations have been employed for
evaluation of the merits of the proposed multiply step instructions. One used the
left-to-right comb method with a look-up table containing 16 entries, as men-
tioned in Section 3, for polynomial multiplication and shift and XOR instructions
for reduction. This implementation was tailored to the use of with the
above reduction polynomial and therefore especially suited for constrained client
devices. The different variants used for evaluation are denoted with the prefix

292 S. Tillich and J. Großschädl

OPT in the rest of this text. The second implementation could work in a binary
extension field of arbitrary length with any reduction polynomial, which fulfills
the following requirement: It may only have non-zero coefficients for
Such an implementation is favorable for server machines in mobile and wireless
environments. The variants are based on the MULGF2 operation as a building
block for all multiplication, squaring and reduction. They vary only in
the implementation of the MULGF2 operation and are denoted with the pre-
fix FLEX. All OPT and FLEX implementations used the method described by
Lopez and Dahab to perform an elliptic scalar multiplication [10].

6.1 Running Times

Table 1 presents the running times of multiplication and squaring in
and of a complete elliptic scalar multiplication for the three variants of the flexi-
ble implementation. The running time is measured in clock cycles. The first col-
umn (FLEX1) gives the results for the pure software variant, where the MULGF2
operation has been implemented with shift and XOR instructions. The second
and third column list the running times for adapted versions, where the word-
size polynomial multiplication (MULGF2 operation) has been optimized. FLEX2
refers to the variant which made use of the MULGFS instruction as described in
Section 5.1. The results for FLEX3 are for an implementation which utilizes
both MULGFS and MULGFS2 instructions as outlined in Section 5.2. Both FLEX2
and FLEX3 necessitated only minor changes to the code of FLEX1.

The running times for the EC scalar multiplication from Table 1 are a rep-
resentative measure to compare the overall speed of the three implementations.
The use of the MULGFS instruction alone (FLEX2) yields a speedup factor of
nearly 7 over the pure software version. If both multiply step instructions are
available (FLEX3), the speedup factor is nearly 10. Note that squaring is a linear
operation and therefore performs much faster than multiplication.

The optimized implementation in pure software (OPT1) can be enhanced
with the proposed multiply step instructions. multiplication which uses
the MULGFS and MULGFS2 instructions is faster than the multiplication of the
original software implementation. Table 2 lists the running times of the three
versions, where OPT2 uses just the MULGFS instruction and OPT3 makes use of
both MULGFS and MULGFS2 instructions to speed up multiplication.

A Simple Architectural Enhancement 293

Note that the running time for the multiplication for OPT2 and
OPT3 are smaller than those of FLEX2 and FLEX3 because the former use a
reduction step which is tailored to the reduction polynomial EC
scalar multiplication is sped up by about 45% with the MULGFS instruction and
by 90% through the use of both MULGFS and MULGFS2 instructions. Additionally,
FLEX2 is about 15% faster than OPT1 and FLEX3 is about 40% faster.

6.2 Memory Requirements

Table 3 compares the size of the code and data sections of an SPARC executable
which implements the full EC scalar multiplication for the OPT and FLEX
variants. The executables have been obtained by linking the object files for each
implementation without linking standard library routines. The size of the code
and data sections have subsequently been dumped with the GNU objdump tool.
As the values for OPT2 and OPT3 and those for FLEX2 and FLEX3 are nearly
identical, only one implementation of each group has been listed exemplarily.

The executables of the FLEX2 and FLEX3 implementations are only half
the size of OPT1. This is mainly because OPT1 uses a hard-coded look-up
table for squaring and also features larger subroutines. OPT2 and OPT3 have
70% smaller code sections and a 50% smaller executable compared to OPT1.
In addition, OPT1 uses an look-up table for multiplication which is
calculated on-the-fly and requires additional space in the RAM. This memory
requirement is eliminated in OPT2, OPT3 and all FLEX variants.

The costs of additional hardware for implementation of both multiply step
instructions have been evaluated by comparing the synthesis results for the dif-
ferent processor versions. The enhanced version had an increase in size of less
than 1% and is therefore negligible.

294 S. Tillich and J. Großschädl

The OPT variants are the most likely candidates for usage in devices which
are constrained regarding their energy supply. To compare OPT1 with the en-
hanced versions OPT2 and OPT3, it is important to note that load and store
instructions normally require more energy than other instructions on a common
microprocessor; see e.g. the work of Sinha et al. [15]. Based on that fact it can
be established that OPT2 and OPT3 have a better energy efficiency than OPT1
for two reasons: They have shorter running times and do not use as many load
and store instructions, as they perform no table look-ups for field multiplication.

7 Conclusions

In this paper we presented an extension to general-purpose processors which
speeds up ECC over The use of multiply step instructions accelerates
multiplication of binary polynomials, i.e. the MULGF2 operation, which can
be used to realize arithmetic operations in in an efficient manner. We
have integrated both proposed versions of the multiply step instruction into a
SPARC V8-compliant processor core. Two different ECC implementations have
been accelerated through the use of our instructions. The implementation opti-
mized for and a fixed reduction polynomial has been sped up by 90%
while reducing the size of its executable and its RAM usage. The flexible imple-
mentation, which could cater for different fields lengths and an important set
of reduction polynomials, was accelerated by an factor of over 10. Additionally,
the enhanced flexible version could outperform the original optimized implemen-
tation by 40%. All enhancements required only minor changes to the software
code of the ECC implementations.

We have discussed the merits of our enhancements for both constrained de-
vices and server machines in a security-enhanced mobile and wireless environ-
ment. The benefits for devices constrained in available die size and memory
seem especially significant, as our multiply step instructions require little ad-
ditional hardware and reduce memory demand regarding both code size and
runtime RAM requirements. Additionally, the implementations which use our
instructions are likely to be more energy efficient on common general-purpose
processors.

Acknowledgements. The research described in this paper was supported by
the Austrian Science Fund (FWF) under grant number P16952-N04 (“Instruc-
tion Set Extensions for Public-Key Cryptography”).

References

1.

2.

American National Standards Institute (ANSI). X9.62-1998, Public key cryptogra-
phy for the financial services industry: The elliptic curve digital signature algorithm
(ECDSA), Jan. 1999.
I. F. Blake, G. Seroussi, and N. P. Smart. Elliptic Curves in Cryptography. Cam-
bridge University Press, 1999.

A Simple Architectural Enhancement 295

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

A. Chandrakasan, W. Bowhill, and F. Fox. Design of High-Performance Micro-
processor Circuits. IEEE Press, 2001.
J. Gaisler. The LEON-2 Processor User’s Manual (Version 1.0.10). Available for
download at http://www.gaisler.com/doc/1eon2-l.0.10.pdf, Jan. 2003.
J. Großschädl and G.-A. Kamendje. Instruction set extension for fast elliptic curve
cryptography over binary finite fields In Proceedings of the 14th IEEE
International Conference on Application-specific Systems, Architectures and Pro-
cessors (ASAP 2003), pp. 455–468. IEEE Computer Society Press, 2003.
J. Großschädl and G.-A. Kamendje. Low-power design of a functional unit for
arithmetic in finite fields and In Information Security Applications,
vol. 2908 of Lecture Notes in Computer Science, pp. 227–243. Springer Verlag, 2003.
D. Hankerson, J. López Hernandez, and A. J. Menezes. Software implementation
of elliptic curve cryptography over binary fields. In Cryptographic Hardware and
Embedded Systems — CHES 2000, vol. 1965 of Lecture Notes in Computer Science,
pp. 1–24. Springer Verlag, 2000.
D. Hankerson, A. Menezes, and S. Vanstone. Guide to Elliptic Curve Cryptography.
Springer Verlag, 2004.
Ç. K. Koç and T. Acar. Montgomery multiplication in Designs, Codes
and Cryptography, 14(1):57–69, Apr. 1998.
J. López and R. Dahab. Fast multiplication on elliptic curves over without
precomputation. In Cryptographic Hardware and Embedded Systems, vol. 1717 of
Lecture Notes in Computer Science, pp. 316–327. Springer Verlag, 1999.
J. López and R. Dahab. High-speed software multiplication in In Progress in
Cryptology — INDOCRYPT 2000, vol. 1977 of Lecture Notes in Computer Science,
pp. 203–212. Springer Verlag, 2000.
E. Nahum, S. O’Malley, H. Orman, and R. Schroeppel. Towards high performance
cryptographic software. In Proceedings of the 3rd IEEE Workshop on the Ar-
chitecture and Implementation of High Performance Communication Subsystems
(HPCS ’95), pp. 69–72. IEEE, 1995.
National Institute of Standards and Technology (NIST). Digital Signature Stan-
dard (DSS). Federal Information Processing Standards Publication 186-2, 2000.
R. Schroeppel, H. Orman, S. O’Malley, and O. Spatscheck. Fast key exchange
with elliptic curve systems. In Advances in Cryptology — CRYPTO ’95, vol. 963
of Lecture Notes in Computer Science, pp. 43–56. Springer Verlag, 1995.
A. Sinha and A. Chandrakasan. Jouletrack – A web based tool for software energy
profiling. In Proceedings of the 38th Design Automation Conference (DAG 2001),
pp. 220–225. ACM Press, 2001.
SPARC International, Inc. The SPARC Architecture Manual Version 8. Available
for download athttp://www.sparc.org/standards/V8.pdf, Aug. 1993.
A. Weimerskirch, D. Stebila, and S. Chang Shantz. Generic arithmetic
in software and its application to ECC. In Information Security and Privacy —
ACISP 2003, vol. 2727 of Lecture Notes in Computer Science, pp. 79–92. Springer
Verlag, 2003.
XESS Corporation. XSV-800 Virtex Prototyping Board with 2.5V, 800,000-gate
FPGA. Product brief, available online at http://www.xess.com/prod014_4.php3,
2001.

Scalable Design Framework for JPEG2000
System Architecture

Hiroshi Tsutsui1, Takahiko Masuzaki1, Yoshiteru Hayashi1, Yoshitaka Taki1,
Tomonori Izumi1, Takao Onoye2, and Yukihiro Nakamura1

1 Department of Communications and Computer Engineering, Kyoto University
Yoshida-hon-machi, Sakyo, Kyoto, 606-8501 Japan

{tsutsui, masuz, teru, taki}@easter.kuee-kyoto-u.ac.jp,

{izumi, nakamura}@kuee.kyoto-u.ac.jp
2 Department of Information Systems Engineering, Osaka University

2-1 Yamada-Oka, Suita, Osaka, 565-0871 Japan
onoye@ist.osaka-u.ac.jp

Abstract. For the exploration of system architecture dedicated to
JPEG2000 coding, decoding and codec, a novel design framework is con-
structed. In order to utilize the scalability of JPEG2000 algorithm ag-
gressively in system implementation, three types of modules are prepared
for JPEG2000 coding/decoding/codec procedures, i.e. software, soft-
ware accelerated with user-defined instructions, and dedicated hardware.
Specifically, dedicated hardware modules for forward and inverse discrete
wavelet transformation (shortly DWT), entropy coder, entropy decoder,
and entropy codec as well as software acceleration of DWT procedure
are devised to be used in the framework. Furthermore, a JPEG2000 en-
coder LSI, which consists of a configurable processor Xtensa, the DWT
module, and the entropy coder, is fabricated to exemplify the system
implementation designed through the use of proposed framework.

1 Introduction

The increasing use of multimedia information requires image coding system to
compress different types of still images with different characteristics by a single
processing flow besides attaining high coding efficiency. To fulfill this require-
ment, JPEG2000 is currently being developed by ISO/ IEC JTC1/SC29 WG1
(commonly known as the JPEG), and JPEG2000 Part I[l] was standardized
in January, 2001. Distinctively, in JPEG2000, discrete wavelet transformation
(shortly DWT) is adopted to decorrelate images spatially to improve compres-
sion efficiency. With the use of this transformation, so-called embedded stream
can be generated, in which code for low quality/bitrate image is included in that
for high quality/bitrate image. Therefore, JPEG2000 can be regarded as the
viable image coding scheme in the coming network era to be used in a variety
of terminals for different application fields. However, this fact also implies that
performance requirement for terminals and applications varies widely. Thus any
of single software or hardware implementation can hardly fulfill performance

P.-C. Yew and J. Xue (Eds.): ACSAC 2004, LNCS 3189, pp. 296–308, 2004.
© Springer-Verlag Berlin Heidelberg 2004

Scalable Design Framework for JPEG2000 System Architecture 297

requirements for all range of terminals and applications. On the other hand, it
is also impossible to arrange a full set of customized implementations for all of
terminals or applications in terms of man-power resources.

Motivated by this tendency, we propose a novel framework of JPEG2000
system architecture, providing the distinctive ability of architectural exploration
in accordance with the specification of each terminal. Through the use of this
framework, an efficient JPEG2000 system organization is obtained by referring
to performance requirements and limitations for implementation. The proposed
framework is based on Tensilica’s configurable processor Xtensa[2], which has
an ability to be customized for a specific application by equipping user-defined
instructions described in Tensilica Instruction Extension (TIE) language [3]. En-
hancing this distinctive feature to such an extent to equip specific hardware
modules prepared for procedures in JPEG2000, our framework provides scalable
solution for JPEG2000 system architecture.

For each procedure of JPEG2000 coding and/or decoding, either of software
implementation, software implementation accelerated by user-defined instruc-
tions, or hardware implementation is selectively employed. The implementation
scheme for all procedures are decided by referring to performance requirements
and/or limitations to design. In case extremely high processing performance is
needed far more than that of hardware implementation, it is possible to equip
two or more modules at the same time.

2 JPEG2000 Processing Flow

Fig. 1 depicts the procedures of JPEG2000 encoding scheme. First, a target im-
age is divided into square regions, called tiles. Tiles of each color component are
called tile components. Then 2-D forward DWT decomposes a tile component
into LL, HL, LH, and HH subbands by applying 1-D forward DWT to a tile
component vertically and horizontally. The low resolution version of the original
tile component, i.e. LL subband, is to be decomposed into four subbands recur-
sively. A subband is divided into code-blocks, each of which is coded individually
by entropy coder. The entropy coder adopted in JPEG2000 is context-based
adaptive binary arithmetic coder which consists of coefficient bit modeling pro-
cess to generate contexts and arithmetic coding process, known as MQ-coder, to
compress a binary sequence based on the context of each bit.

Decoding scheme of JPEG2000 is the reverse process of the encoding. During
this process, 2-D backward DWT is realized by applying a series of 1-D backward
DWTs (horizontal 1-D DWT and vertical 1-D DWT) to a tile component also
in the reverse order of 2-D forward DWT. The set of filter coefficients used in
1-D backward DWT is the same as that in the forward DWT. Fig. 2 depicts the
entropy coding and decoding procedure. Coefficient bit modeling is a common
process to encoding and decoding. MQ-decoder extracts binary sequences from
compressed data referring to contexts generated by the coefficient bit modeling
process, while MQ-coder generates compressed data from contexts and binary
sequences.

298 H. Tsutsui et al.

Fig. 1. Block diagram of JPEG2000 encoding

Fig. 2. Entropy coding and decoding

3 JPEG2000 System Framework

Our proposed framework is distinctive in that an efficient JPEG2000 encoding
and decoding system architecture can be explored by selecting implementation
scheme for each procedure considering performance requirements such as im-
age resolution or processing throughput and limitations to design such as power
consumption, process technology rule, or chip size. Three types of implemen-
tation schemes are prepared in our framework; software implementation, soft-
ware implementation accelerated by user-defined instructions added to Xtensa,
and dedicated hardware implementation. As for hardware implementation, mul-
tiple modules can be used at the same time if necessary. To embody such a
Plug-and-Play like feature, each hardware module is designed to have a generic
SRAM-based interface which can support various bus architectures by only de-
signing interface converters. Therefore, our framework makes it much easier to
design a JPEG2000 encoding and decoding system than conventional tedious
manual design tasks of each procedure, which would be implemented as soft-
ware or hardware. For forward/backward DWT and entropy coding/decoding,
common hardware components are prepared. These procedures handle relatively
large square regions of an image, called tile and code-block, respectively. Such
a procedure is inherently suitable as a component, and the overhead of data
transfer between the hardware component and memory can be concealed when
direct memory access (DMA) is applied effectively. In addition to these common
hardware components, an software module accelerated by user-defined instruc-
tions is prepared for DWT. Since the dominant operation in DWT procedure is
filter operation, a set of instructions for filter operation is added to the Xtensa’s

Scalable Design Framework for JPEG2000 System Architecture 299

Fig. 3. Basic structure of the proposed framework

original instruction set so that considerable performance improvement can be
achieved without any additional hardware component.

Moreover, to organize JPEG2000 codecs, an entropy codec hardware compo-
nent is prepared. This component is smaller than the simple combination of the
entropy coder and decoder in terms of the number of gates. As for DWT, the
differences between encoding and decoding are ordering of two 1-D DWTs ap-
plied in series, ordering of filter coefficients, and signs of several filter coefficients.
The first one seems to affect largely the DWT architecture. However, in the case
of lossy compression, the error introduced by employing same DWT ordering
for both forward and backward DWTs is quite slight. Therefore we employ the
same ordering of DWTs to make it easy to design forward and/or backward 2-D
DWT. As for other differences, we simply introduce multiplexers to select the
signs of filter coefficients, etc.

Fig. 3 illustrates the basic structure of the proposed framework. Each system
implementation exemplified in Fig. 3 is briefed below. Though only the case
for JPEG2000 encoders is explained, JPEG2000 decoders and codecs can be
implemented by the same way of the encoders.

Fig. 3(a) is a system implementation example where all modules are imple-
mented as software so that the system is composed only of a CPU and a main
memory. This solution is used when it is impossible to employ hardware modules
to the system due to die size limitation, the processing speed is not the key point
aimed at, or the CPU provides sufficient performance for application.

Fig. 3(b) is a system implementation example where only the entropy coding
(shortly EC in the figure) procedure is implemented by a hardware module.
The hardware implementation of the entropy coding makes a large contribution
to improvement of the speed, since this procedure is the most computationally
intensive one among all the procedures as its detailed discussion is given in the
next section.

Fig. 3(c) is a system implementation example where the entropy coder is
implemented by hardware module, and instructions for DWT’s filter operations
are added to Xtensa. Since DWT procedure handles a whole tile, the number of
cycles needed to execute the procedure in DWT, except for filter operations, such

300 H. Tsutsui et al.

as address calculation, memory accessing, and so forth, is still large. Performance
improvement in comparison with Fig. 3(b), however, can be achieved without
any additional hardware module.

Fig. 3(d) is a system implementation example where both the entropy coder
and DWT are implemented as hardware modules. In addition to the performance
improvement as the benefit of these modules, memory accessing bandwidth is
reduced.

Fig. 3(e) is a system implementation example where DWT is implemented by
hardware module, and the entropy coding procedure is implemented by multiple
hardware modules. This solution is the fastest among Fig. 3(a) through (e), and
attains very high throughput. In this case, an additional controller is needed to
manage these modules.

In this manner, our framework successfully provides scalable solution for
JPEG2000 system architecture with the use of common modules.

4 Analysis of JPEG2000 Encoding

To construct the framework, first we implemented software JPEG2000 encoder
and decoder, and analyzed computational costs of all procedures. Since DWT is
to be executed in fixed point arithmetic in our software, even embedded CPUs
which has no floating-point unit (FPU) can execute this software without any ad-
ditional cycles needed for floating arithmetic emulation. The main specifications
of our software are summarized in Table 1, and the result of profiling encoding
process by the instruction set simulator (shortly ISS) of the target CPU Xtensa
using a test image LENA is summarized in Table 2. The function encode is to en-
code whole image and does not include the routines for input/output from/to a
file. In the function entropy_coding, the entropy coding including coefficient bit
modeling and arithmetic coding by MQ-coder is executed. The function FDWT_97

Scalable Design Framework for JPEG2000 System Architecture 301

is to execute DWT on a tile component and includes FILTD_97 for 1-D DWT on
an array.

According to this table, it can be said that the coefficient bit modeling and
arithmetic coding procedures occupy 64.4% of total encoding cycles, DWT pro-
cedure occupies 20.2% of total encoding cycles, and FILTD_97 function occupies
69.1% of DWT processing cycles.

5 JPEG2000 Processing Modules

5.1 DWT Module

DWT hardware. When implementing DWT as dedicated hardware, the essen-
tial factor to be considered is memory organization for storing intermediate data
during recursive filter processing. There are two methods to store intermediate
data for DWT. One is to store the data to the main memory or a tile buffer
which is placed in a DWT hardware module. In this case, whenever vertical and
horizontal DWT is attempted, the data is read from the memory/buffer and the
transformed coefficients are written back to it. The other is the so-called line-
based method[4] which is to store the data to a line buffer containing several
lines in a tile. In this case, vertical and horizontal DWT can be done at the same
time by utilizing the line buffer, so that this method requests less amount of
data transfer over a bus than that using the main memory. Thus, we adopted
line-based method to implement DWT hardware module.

To implement DWT filters, we adopted straightforward finite impulse re-
sponse (FIR) filter, where, for calculating each transformed coefficient, weighted
addition of a coefficient sequence with the filter length is executed. Assuming
that the depth of input image is 8-bit, this module can implement one level 2-D
DWT over a tile whose width is 128 or less. The tile size of 128 ×128 is reason-
able since it is adopted in JPEG2000 Profile 0[5], which is intended mainly for
hardware implementation.

The architecture of our DWT hardware module is shown in Fig. 4, which
consists of a core module, a line buffer, and an IO controller. This core mod-
ule comprises the following sub-modules; an extension module which extends a
sequence of coefficients at the edges by the so-called periodic symmetric exten-
sion procedure, low-pass FIR filters whose filter length is 9, high-pass FIR filters
whose filter length is 7, and a pair of shift registers which receive output data
from vertical DWT and store vertically low-passed and high-passed 9 coefficients
to be fed to horizontal DWT.

The line buffer consists of 13 line memories each of which is a 15-bit 128-word
memory. The number of the additional 7 bits for the input bit depth, 8 bits, is
large enough to realize as high precision as floating point operations. Totally 9
coefficients, all of which belong to the identical column of an image, are loaded
to the core module from 9 lines of the line buffer every clock. Other 2 lines of the
line buffer are used for receiving transformed coefficients from the core modules
every clock. The other 2 lines of the line buffer are used for IO access between
the DWT and CPU.

302 H. Tsutsui et al.

Fig. 4. Architecture of our DWT module

This core module works as follows. The 9 coefficients from the line buffer are
transformed by the vertical DWT module and the results, i.e. low-passed and
high-passed coefficients, are stored into the shift registers. At the same time,
horizontal DWTs of vertically high-passed and low-passed sequences stored in
shift registers are executed alternately, so that LL, HL, HH, and HH coefficients
are output from the core module every 2 cycles.

As mentioned before, we employ the same 1-D DWT ordering for both for-
ward and backward 2-D DWT, so as to make the architecture of forward and
backward DWT almost identical. The proposed architecture of forward DWT
module is designed through the use of Verilog-HDL. When this hardware mod-
ule is used, the number of cycles needed for DWT with a test image LENA is
0.215 Mcycles, which is only 0.077 % of 278 Mcycles needed for software DWT.
The DWT module is synthesized into 17,650 gates by using Synopsys’s Design
Compiler with CMOS technology, with its critical path delay of 12 nsec.

Accelerated DWT software. According to the result of profiling, multiplica-
tions of fixed point variables and filter coefficients of Table 3; K, and
1/K; need 6961.86 Kcycles, 7787.56 Kcycles, 7502.93 Kcycles, 6930.11 Kcycles,
6775.10 Kcycles, and 6971.17 Kcycles, respectively through entire image. Total
of these values occupy 22.3% of execution cycles needed for function FILTD_97.
Thus we implement these multiplications by user-defined instructions described
in TIE. The circuits of the instructions consist of shifters and adders.

Custom instructions MUL_A, MUL_B, MUL_C, MUL_D, MUL_K , and MUL_R are to
multiply positive input by lifting constants; K, and 1 / K , respectively.
SMUL_A, SMUL_B, SMUL_C and SMUL_D are extended version of MUL_A, MUL_B, MUL_C
and MUL_D, which can multiply negative input as well as positive input by lifting
constants. At the final stage of lifting, target values must be shifted in right and
rounded. These operations are also implemented as custom instructions. SMUL_K
and SMUL_R are extended version of MUL_K and MUL_R. Same as SMUL_[A–D] , these

Scalable Design Framework for JPEG2000 System Architecture 303

instructions can handle negative values with equipping a right shifter and a
rounding circuit.

The result of simulation by ISS using a test image LENA shows that when
MUL_A, MUL_B, MUL_C, MUL_D, MUL_K, and MUL_R are equipped, the number of cycles
to call FILTD_97 function is reduced to 175.564 Mcycles (88.6%) from 192.440
Mcycles, and that when SMUL_A, SMUL_B, SMUL_C, SMUL_D, SMUL_K, and SMUL_R
are implemented, the number of cycles to call FILTD_97 function can be reduced
to 133.461 Mcycles (69.4%) from 192.440 Mcycles.

According to the synthesis results attained by the same manner as the hard-
ware DWT module, the critical path delay of MUL_A, MUL_B, MUL_C, MUL_D, MUL_K
and MUL_R is 6.2 nsec, ant that of SMUL_A, SMUL_B, SMUL_C, SMUL_D, SMUL_K and
SMUL_R is 9.5 nsec, The numbers of gates of custom instructions are summarized
in Table 4 and 5.

304 H. Tsutsui et al.

5.2 Entropy Coder, Decoder, and Codec

There are two reasons why the entropy coding of JPEG2000 incurs such a high
computational cost. One is that a context of a coefficient on a bit plane depends
on sign bits, significant states, and some reference states of the eight nearest-
neighbor coefficients. Therefore, there are many conditional branches and many
operations which crop variables into a bit. The other is that MQ-coder updates
its internal state after compression of every one binary symbol. When JPEG2000
entropy coder is implemented as hardware, MQ-coder may become the perfor-
mance bottle-neck of the total system since the MQ-coder requires at least 1
cycle to process 1 binary symbol. Needless to say, considering hardware uti-
lization efficiency coefficient bit modeling must be implemented with the same
throughput as the MQ-coder. In our hardware entropy coder, pixel skipping
scheme[6] is used to attain almost ideal performance.

Entropy Coder. Fig. 5 depicts the block diagram of our entropy coder, which
consists of a coefficient bit modeling module, an MQ-coder, an IO controller, a
plane controller, an FIFO, and a set of buffer memories. As buffer memories, the
entropy coder has a code-block buffer to store code-block data, plane buffers to
store bit plane as well as reference data needed to generate contexts, and stream
buffer to store encoded data called stream. The FIFO is used to suppress the
difference of the throughputs of the modeling module and the MQ-coder.

The above mentioned entropy coder is designed by Verilog-HDL. The result
of logic simulation using sample image LENA indicates that when this hardware
entropy coder is employed, the number of cycles needed for entropy coding of
whole image is about 3.20 Mcycles, i.e. only 0.360 % of 887.76 Mcycles needed
for software entropy coding.

The critical path delay is 7.0 nsec which is concluded by synthesis the entropy
coder with CMOS technology. The gate counts for this module is 7,901.

Next, let us discuss the size of memory for the entropy coder. The coder
requests 12 bit × (32 × 32) = 12,288 bit as the code-block buffer, 4 × (32 × 32)
= 4,096 bit as 4 plane buffers, and 2 × (32 × 32) = 2,048 bit as the double-
buffered bit plane buffer. Here, the code-block buffer must have 12 bit depth
in the case that the bit depth of input image is 8, and the number of guard
bits is 2, which is enough to avoid the overflow of the result of DWT. As for
the stream buffer for output, 8,192 bit is large enough when quantizer’s step
size equals 1, according to the software simulation. Consequently, 26,624 bit of
memory elements are needed in total. It must be noticed that the size of stream
buffer can be reduced when implementing it as an FIFO.

Entropy Decoder. Fig. 6 depicts the block diagram of our entropy decoder,
which is similarly organized as the entropy coder. The differences are that the
decoder does not equip FIFO, whereas controllers, MQ-decoder, and coefficient
bit modeling module of the decoder are customized for decoding. Our MQ-
decoder returns a binary to coefficient bit modeling module in 1cycle.

Scalable Design Framework for JPEG2000 System Architecture 305

Fig. 5. Architecture of our entropy coder

Fig. 6. Architecture of our entropy decoder

The entropy decoder is designed through the use of Verilog-HDL. The result
of logic simulation using sample image LENA indicates that when this hardware
entropy decoder is employed, the number of cycles needed for entropy coding of
whole image is about 5.03 Mcycles, i.e. only 0.283 % of 1776 Mcycles needed for
software entropy decoding.

The critical path delay is 7.0 nsec which is concluded by synthesis the entropy
decoder with CMOS technology. The gate counts for this module is
7,901.

Entropy Codec. In our framework, an entropy codec is also prepared in addi-
tion of the above mentioned entropy coder and decoder. By sharing some part of
circuits between MQ-coder and MQ-decoder and the circuits to generate contexts
of coefficient bit modeling for coding and decoding, we can successfully reduce

306 H. Tsutsui et al.

the number of gates of the entropy codec with maintaining its performance. The
comparison of the numbers of gates required for the dominant parts, which are
MQ-coder/decoder and coefficient bit modeling, among entropy coder, decoder
and codec is summarized in Table 6. The number of gates for MQ-codec is 88%
of that for the combination of MQ-coder and MQ-decoder, and the number of
gates of coefficient bit modeling for codec is 69% of that for the combination of
those for encoding and decoding.

Scalable Design Framework for JPEG2000 System Architecture 307

Fig. 7. Layout patterns for the LSI

Fig. 8. Photograph of the LSI

6 LSI Implementation Result

In order to demonstrate the practicability of the proposed framework, we fabri-
cated an JPEG2000 encoder LSI, which consists of our DWT hardware module,
hardware entropy coder module, and Xtensa. A photograph of the LSI and layout
patterns attained for the LSI are shown in Figs. 8 and 7, respectively.

Table 7 summarizes the specifications of the fabricated LSI. The LSI is with
1-Kword × 32-bit single port RAM as the code-block buffer and stream buffer
of the entropy coder. The line buffer of DWT module and the plane buffers of
entropy coding module are implemented by flip-flop (FF) arrays. The numbers
of gates and memory bits are summarized in Table 8. The critical path delay of
this LSI is 18 nsec, which assures 55.5 MHz operation.

308 H. Tsutsui et al.

The comparison between the number of cycles needed to encode the test
image LENA by software and that by using this LSI is summarized in Table 9.

7 Conclusion

In this paper, a novel design framework to realize an efficient implementation of
JPEG2000 encoder, decoder, and codec in accordance with the requirements and
constraints of each terminals and applications has been proposed. This frame-
work is distinctive in that for each procedure of JPEG2000 coding system, im-
plementation scheme can be selected among software implementation, software
implementation accelerated with user-defined instructions, and dedicated hard-
ware implementation, so as to optimize the system organization. To demonstrate
the practicability of the framework, we fabricated an LSI to exemplify a gener-
ated system implementation, in which our DWT hardware module and hardware
entropy coder module were implemented with configurable processor Xtensa.

Acknowledgement. The VLSI chip in this study has been fabricated in the
chip fabrication program of VLSI Design and Education Center (VDEC), the
University of Tokyo with the collaboration by Hitachi Ltd. and Dai Nippon
Printing Corporation.

References

1.

2.

3.

4.

5.
6.

ISO/IEC JTC1/SC29/WG1, “Information technology – JPEG2000 image coding
system: Core coding system,” Oct. 2002.
Tensilica, Inc., Xtensa Application Specific Microprocessor Solutions — Overview
Handbook, Sept. 2000.
Tensilica, Inc., Tensilica Instruction Extension (TIE) Language — User’s Guide,
Sept. 2000.
ISO/IEC JTC1/SC29/WG1, “JPEG2000 verification model 9.1 (technical descrip-
tion),” June 2001.
ISO/IEC JTC1/SC29/WG1, “Draft of FPDRAM-1 to 15444-1,” Dec. 2000.
Kuan-Fu Chen, Chung-Jr Lian, Hong-Hui Chen, and Liang-Gee Chen, “Analysis
and architecture design of EBCOT for JPEG-2000,” in Proc. of the 2001 IEEE
International Symposium on Circuits and Systems (ISCAS 2001), Vol. 2, pp. 765–
768, Mar. 2001.

Real-Time Three Dimensional Vision

JongSu Yi1, JunSeong Kim1, LiPing Li2, John Morris1,3, Gareth Lee4 and
Philippe Leclercq5

1 School of Electrical and Electronics Engineering,
Chung-Ang University, Seoul 156-756, Korea

2 Department of Computer Science, Harbin Normal University, Harbin, China 150080
3 Department of Electrical and Electronic Engineering,

The University of Auckland, New Zealand
4 Department of Computer Science and Software Engineering,
University of Western Australia, Nedlands, WA 6009, Australia

5 Department of Electrical and Computer Engineering,
University of Western Australia, Nedlands, WA 6009, Australia

Abstract. Active systems for collision avoidance in ‘noisy’ environ-
ments such as traffic which contain large numbers of moving objects will
be subject to considerable interference when the majority of the mov-
ing objects are equipped with common avoidance systems. Thus pas-
sive systems, which require only input from the environment, are the
best candidates for this task. In this paper, we investigate the feasibil-
ity of real-time stereo vision for collision avoidance systems. Software
simulations have determined that sum-of-absolute-difference correlation
techniques match well but hardware accelerators are necessary to gener-
ate depth maps at camera frame rates. Regular structures, linear data
flow and abundant parallelism make correlation algorithms good candi-
dates for reconfigurable hardware. The SAD cost function requires only
adders and comparators for which modern FPGAs provide good sup-
port. However accurate depth maps require large disparity ranges and
high resolution images and fitting a full correlator on a single FPGA
becomes a challenge. We implemented SAD algorithms in VHDL and
synthesized them to determine resource requirements and performance.
Altering the shape of the correlation window to reduce its height com-
pared to its width reduces storage requirements with negligible effects
on matching accuracy. Models which used the internal block memory
provided by modern FPGAs to store the ‘inactive’ portions of scan lines
were compared with simpler models which used the logic cell flip-flops.
From these results, we have developed a simple predictor which enables
one to rapidly determine whether a target appliction is feasible.

1 Introduction

A collision avoidance system for any mobile device - from a robot to a large ve-
hicle - requires the ability to build a three-dimensional ‘map’ of its environment.
Traditionally this has been accomplished by active sensors which send a pulse
- either electromagnetic or sonar - and detect the reflected return. Such active

P.-C. Yew and J. Xue (Eds.): ACSAC 2004, LNCS 3189, pp. 309–320, 2004.
© Springer-Verlag Berlin Heidelberg 2004

310 J. Yi et al.

systems work well in low density environments where the number of moving ve-
hicles is small and the probability that active sensors will interfere is small, so
that simple techniques prevent a sensor from being confused by sensing pulses
from other vehicles. For example, radar systems which detect impending air-
craft collisions appear to be effective as do ultrasonic systems in small groups
of robots. However, when the density of autonomous - and potentially colliding
- objects becomes large, active systems create ‘noisy’ environments. Heavy traf-
fic brings large numbers of vehicles with a wide range of speeds and directions
into close proximity. If all vehicles were equipped with active sensors, distin-
guishing between extremely weak reflections and primary pulses from distant
vehicles will present a daunting - and potentially insurmountable - problem for
intelligent sensors. Passive systems, on the other hand, are much less sensitive
to environmental interference. Stereo vision - or the use of pairs of images taken
from different viewpoints - is able to provide detailed three-dimensional maps of
the environment. Typical cameras can provide 30 or more images per second and
each pair of images can provide an almost complete map of the environment1.
However, processsing even small low resolution (200 × 200 pixel) images in soft-
ware takes more than a second in software - ignoring any post-processing needed
to determine the velocity of an approaching object and the optimum strategy
for avoiding it. This is well below the frame rates obtainable with commodity
cameras and may be far too slow to enable even relatively slow moving objects
to avoid each other. Thus hardware accelerators are required in order to obtain
real-time 3D environment maps. Software simulations have determined that cor-
relation techniques using a simple sum of absolute differences (SAD) cost func-
tion perform well[1,2]. Higher quality matching can be obtained with graph cut
algorithms [3], but the processing time is two orders of magnitude longer and the
algorithm lacks the regularity needed for efficient hardware implementation[4].
Area-based correlation algorithms attempt to find the best match between a
window of pixels in one image and a window in the other. Matching is simpli-
fied if the system is aligned so as to meet the epipolar constraint - implying
that matching pixels must be found in the same scan line in both images. The
matching process is illustrated in Figure 1 which shows how a right image win-
dow is shifted by an amount known as the disparity until the best match is found
with the reference window in the left image. In the SAD algorithm, the crite-
rion for the best match is minimization of the sum of the absolute differences of
corresponding pixels in a window,

is evaluated for all possible values of the disparity, and the minimum
chosen. For parallel camera axes, ranges from 0 for objects at infinity to
corresponding to the closest possible approach to the camera. In collision avoid-

1 Whilst complete maps are, in general, not attainable because some parts of the
environment are not visible to both cameras simultaneously, this does not present a
significant problem for the collision avoidance application.

Real-Time Three Dimensional Vision 311

Fig. 1. Correlation based matching: the window centred on pixel, P, in the right image
is moved through the disparity range until the best match (correlation) is found with
a window centred at P in the left image. Aligning the cameras to meet the epipolar
constraint ensures that P must lie on the same scan line in each image.

ance applications, is readily set by considering the closest safe approach of the
vehicle to an object. Correlation algorithms have regular structures and simple
data flow making them excellent candidates for implementation in reconfigurable
hardware. They also have abundant parallelism: can evaluated in par-
allel for each The cost function requires only adders and comparators
for which modern FPGAs provide good support. However accurate depth maps
require large disparity ranges and high resolution images - both of which provide
challenges to fitting a full correlator on a single FPGA. The aim of the study
presented in this paper was to provide a simple predictor which would determine
whether any given application, with its associated accuracy, speed, field of view,
etc., requirements could be fitted onto a single commercially available FPGA.

1.1 Stereo Hardware

Woodfill and von Herzen claimed that the Census algorithm implemented on an
FPGA could compute depth maps for 320 × 240 pixel images at 42 frames per
second for [5]. The Census transform simply orders corresponding pixels
in the left and right images and uses a single bit to indicate either ‘<’ or
producing a simple, fast circuit. However, its performance falls far below that
of SAD (or other correlation algorithms) and it is not very robust to noise [6].
Modifying the original ordering relation improves performance slightly, but not
enough to match SAD[7]. Recently it has been used by Plakas[8] for real-time
videoconferencing, but this is not a critical application and low performance
may be tolerable. In related videoconferencing work, Schreer et al. could pro-
duce ‘acceptable’ depth maps in real time on an 800MHz Pentium[9], but the
only statistics they provide are ‘accepted’ disparities, so it is unclear how their
pyramidal approach (which has error propagation problems) affects resolution
accuracy. In contrast, collision avoidance is a critical application: even if a sys-
tem is used merely to assist a human operator, accuracy and the absence of false
alarms become important.

312 J. Yi et al.

Fig. 2. Block diagram for SAD correlator: Note that the disparity calculator blocks
are the source of parallelism in this circuit: each one is independent and operates in
parallel.

2 Experiments

We have implemented SAD correlation algorithms in VHDL and synthesized
them to determine their resource requirements and performance. Several ap-
proaches to handling high resolution images (with long scan lines which must
be stored) have been investigated - storing scan lines in on-chip memory and
altering the window shape to reduce the number of scan lines which must be
stored.

2.1 SAD Correlator

A block diagram of the SAD circuit is shown in Figure 2. Pixels stream in from
both cameras into the long left and right shift registers which store sufficient
pixels so that all the pixels in a correlation window are available to the dispar-
ity calculators at the same time. The key parameters determing the size and
performance of an SAD correlator are:

sl - the scan line length,
wh - the window height,

Real-Time Three Dimensional Vision 313

ww - the window width and
- the maximum disparity.

The basic resources have the following sizes:
Basic resource requirements are indicated in Table 1. To a first approximation,
the resource requirements for an SAD correlator are given by:

where

wp = wh · ww = number of pixels in matching window
= cost of absolute difference circuit
= cost of an adder

= cost of a comparator

= cost of a pixel register

= cost of control and steering logic

This relation should be a good predictor for low values of all the application pa-
rameters, where all overheads can be lumped effectively into the single overheads
term. However, as packing density increases, poor placement would be expected

314 J. Yi et al.

to induce non-linear effects and to cause the overall cost to exceed that predicted
by this model.
Key contributors to the delay of the correlator are the wh × ww – 1 adders in
each disparity calculator. A simple VHDL model which performs the additions
in a loop adds a delay of to the circuit. This sequential adder has
two advantages:

1. the code in the VHDL model is trivial and
2. the sequential circuit generated2 is very regular.

However, it is well known that a tree adder takes exactly the same number
of circuit elements but improves the performance to [4]. The
tree adder can be modelled in VHDL[10] and simulated. However, synthesizers
tend to require ‘statically determinable’ numbers of circuit elements and are not
prepared to run recursive code to build the tree. Whilst hand-coding adders
for any particular window size is possible, stereo applications can have quite
variable requirements and hand-coding models for many window sizes is not
an attractive option. We overcame this problem by writing small programs in
Python and Java3 which generated the necessary VHDL code from a handful of
input parameters4. The data in Table 2 shows the benefits of using the various
adders. Two values for the tree adder are shown: one in which the model uses an
8-bit ripple-carry adder generated from full-adder blocks and the other in which
the ‘+’ operator is used. The latter model allows the synthesizer to produce
more efficient packing of individual 1-bit adders (cf. the column) and
uses the fast-carry logic to produce faster adders column). Note that the
synthesizer was able to produce a more compact circuit with the tree adder
using the ‘+’ operator, despite the triangular shape of the tree. Forcing the pixel
adders to use small blocks of columns (so that they can use the fast carry logic)
seems to have a good effect on overall routing, presumably because the placement
module is constrained - with fewer degrees of freedom, it has less opportunity to
produce a bad allocation of functions to logic blocks.
These results also show that a ‘useful’ circuit fits easily into a modern FPGA:
commonly available small CMOS cameras have scan lines of the order of 200 or
so pixels, implies that depths in the critical region may be measured to
~ 4% and a delay of 100ns allows a pixel clock of 10MHz - A 270 × 270 image at
30f ps requires a 2.2MHz clock. Simulation shows that 9 × 9 windows produce
good quality matching over a range of test images [2].
The last line in Table 2 shows an attempt to determine the largest value of
that the target chip could handle for the larger (9 × 9) window. At the
model will fit, using 95% of the slices in a Xilinx XC2V8000 ‘gates’). At

2

3

4

This assumes that synthesizers are not yet able to recognize the potential to improve
on the simple circuit as we have done by the procedure described next. We are
optimistic that this will change soon!
A consequence of the global distribution of the authors of this paper!
Both versions were designed for re-use, so require the operator and operand type
(e.g. bit width) as well as the circuit order.

Real-Time Three Dimensional Vision 315

Fig. 3. Performance vs Pixel size: 8 bits; Window: 3 × 3; Scan line length: 270
pixels

this point, routing constraints start to dominate and although a simple linear
model predicts that would also fit, there are insufficient routing resources
and the router fails.
Accuracy depends on the disparity range that can be used, so we ran trials to
determine the effect of increasing on resource usage and performance. Figure 3
shows the regular structure of an SAD correlator leads to close to the expected
linear relationship between and logic cells needed.

316 J. Yi et al.

Fig. 4. Resource Usage vs window size for various values

2.2 Using Block Memory

Typical FPGA logic cells contain look-up tables to implement the logic and a
small number of flip-flops. Generally, these flip-flops provide adequate memory
for the implementation of state machines, but the overall bit density is far too
low for them to be used efficiently as ‘plain’ memory. To address this problem,
modern FPGAs provide block memory - which can be configured in various
ways, including as shift registers. The next set of trials sought to determine
whether a practical circuit would fit onto a much smaller FPGA using the block
memory to store scan lines. The family of curves in Figure 4 were obtained
using the block memory on a Xilinx Vertex device to store the ‘idle’ (i.e. not
involved in current matching) portions of scan lines. Results are presented for
a much smaller (~ 10000 slices) suitable for an environment with cost or power
constraints. A practical device is still feasible, but the disparity range (which

Real-Time Three Dimensional Vision 317

Fig. 5. Resource Usage vs for various window sizes (wp = ww × wh)

affects distance accuracy) and the window size (which affects matching quality)
must be limited: but an 8 × 5 window (c f . Section 2.3) with is feasible.
Real-time performance is easily achieved - see Figure 5(b) - without the need for
pipelining. Accuracy and matching quality can be improved by using time series
images[11,12] so it may be more important to achieve real-time performance
than good initial matching.

2.3 Rectangular Windows

It is customary to use square matching windows in correlation-style stereo algo-
rithms, probably because this is the simplest approach in a software system and
there is little performance or other penalty. The matching process is generally
only using a small part of each scan line at any time - specifically ww from the
left image and from the right image. The remaining pixels are stored

318 J. Yi et al.

Fig. 6. Matching with rectangular windows: ‘Corridor’ data set[13]

in shift registers for use in subsequent cycles. In a simple model, these shift reg-
isters are trivially implemented in VHDL and synthesized to use the flip-flops in
logic cells. Once the epipolar constraint has been satisfied, matches for each pixel
should be found in the same scan line. Pixels in surrounding scan lines are only
used to support matching by reducing noise effects. We ran a set of experiments
to determine the effect of using different shaped matching windows: Figure 6
shows a large flat region with ~ 10% bad matches. Detailed examination of the
actual numbers shows that a ‘short’ (low wh) wide window produces similar
matching quality to a taller square one, i.e. the total number of pixels in the
matching window is the critical factor. This implies that a considerable amount
of space can be saved in an FPGA by using rectangular (wh < ww) windows
without sacrificing matching quality.

3 Estimating Resource Needs

It is common for papers demonstrating the ‘success’ of some application to simply
state a claim for that particular application, with little attention to extensions
and variations. For stereo applications, this is particularly frustrating because
every application presents its own criteria for accuracy, reliability, resources re-
quired, etc.Hence this work focussed on using the data gathered to enable fea-
sibility of a proposed application to be quickly estimated. Whilst this can, in
principle, be done by simply counting circuit elements needed to implement a
module and using those counts in Equation 1, a place and route tool has to work
from high level models and may have problems allocating and laying out circuits
that a human engineer may not. FPGA implementations are also constrained by
availability of routing resources and this factor is much harder to estimate than

Real-Time Three Dimensional Vision 319

logic cell needs, thus practical trials of the type we carried out here are needed
to determine real cost factors.

4 Conclusion

Accurate real-time 3D depth maps are feasible with modern FPGA technology.
Simulations of the effect of changing the window shape show that altering the
shape of the correlation window can be used to reduce the number of cells needed
for ‘inactive’ parts of scan lines. Since even a 200 pixel scan line uses space similar
to that required for a disparity calculator (working on a window large enough to
produce good matching quality), it is clearly better to use the space to increase
accuracy with more disparity calculators. Transferring the ‘inactive’ parts of scan
lines to on chip memory enables small real-time systems to be implemented in
quite small (i.e. 20% of current state-of-the-art) and thus economic systems.
The simple (unpipelined) circuits described here will provide real-time perfor-
mance at pixel clock rates up to ~ 10 MHz. For higher resolution images (and
thus higher pixel clock frequencies if the same frame rate is to be maintained),
an SAD correlator is easily pipelined. Three modules (SAD calculation, adder
and minimum detector) of are readily identified in the data path suggesting
that pixel clock rates of ~ 2 – 3 times greater (i.e. ~ 20 – 30MHz) are easily
attained. The tree adder is the slowest of these and additional pipeline stages
may be easily inserted within it. For large circuits, the minimum detector will
become the slowest element, but it is easily pipelined in the same way as the
adder. In fact, since the major calculation elements are mainly 8-bit adders, the
propagation delay for an 8-bit adder (plus pipeline overheads!) represents the
lower limit for pixel clock time.

Acknowledgements. John Morris was supported by the Foreign Professors
Invitation Program of The Korean IT Industry Promotion Agency at Chung
Ang University in 2003-4.

320 J. Yi et al.

References

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

Scharstein, D., Szeliski, R.: A taxonomy and evaluation of dense two-frame stereo
correspondence algorithms. International Journal of Computer Vision 47 (2002)
7–42
Leclercq, P., Morris, J.: Assessing stereo algorithm accuracy. In Kenwright, D.,
ed.: Proceedings of Image and Vision Computing’02. (2002) 89–93
Boykov, Y., Veksler, O., Zabih, R.: Fast approximate energy minimization via
graph cuts. In: ICCV 1999. (1999)
Morris, J.: Reconfigurable computing. In Oklobdzija, V.G., ed.: Computer Engi-
neering Handbook, CRC Press, CRC Press (2001) 37–1 – 37–16
Woodfill, J., Herzen, B.V.: Real-time stereo vision on the PARTS reconfigurable
computer. In Arnold, J., Pocek, K.L., eds.: Proceedings of IEEE Workshop on
FPGAs for Custom Computing Machines, Napa, CA (1997) 201–210
Leclercq, P., Morris, J.: Robustness to noise of stereo matching. In: Proceedings
of International Conference on Image Analysis and Processing’02. (2003) 89–93
Leclercq, P.: Evaluation of Stereo Matching Algorithm for Hardware Implementa-
tion. PhD thesis, University of Western Australia (2004)
Plakas, C., Trucco, E., Brandenburg, N., Kauff, P., Karl, M., Schreer, O.: Real-time
disparity maps for immersive 3-d teleconferencing by hybrid recursive matching and
census transform. In: VideoRegister01. (2001) xx–yy
Oliver Schreer, N.B., Kauff, P.: Real-time disparity analysis for applications in
immersive tele-conference scenarios - a comparative study. In: ICIAP2001. (2001)
x–x+5
Ashenden, P.J.: Recursive and repetitive hardware models in VHDL. Technical
Report TR160/12/93/ECE, Electrical and Computer Engineering, University of
Cincinatti, Cincinatti, Ohio 45221-0030 (1993)
Torreao, J.R.A.: Estimating 3D shape from the optical flow of photometric stereo
images. Lecture Notes in Computer Science 1484 (1998) 253–??
Barniv, Y.: Error analysis of combined stereo/optical-flow passive ranging. In:
SPIE Proceedings. Volume 1479., NASA/Ames Research Ctr., Moffett Field, CA,
USA (1991) 259–267
Gerdes, V.: Modular Rendering Tools. www-student.informatik.uni-bonn.de/
~gerdes/MRTStereo/index.html (2001)

A Router Architecture for QoS Capable
Clusters*

Madhusudhanan Anantha and Bose Bella

School of Electrical Engineering and Computer Science, Oregon State University,
Corvallis, Oregon 97331

madhusan@cs.orst.edu, bose@eecs.orst.edu

Abstract. Many web servers and database servers make efficient use
of clustering from cost, scalability and availability standpoints. Existing
cluster interconnects use switching schemes which minimize transmission
latency but do not provide any guarantee on the delay (e.g., Wormhole
switching). The variety of applications which are run on clusters mandate
that the cluster interconnect be capable of handling both best effort and
delay bound traffic. A new router architecture capable of providing soft
guaranteed service using wormhole switching was proposed. An im-
proved router model with preemption capabilities has also been proposed
in literature. In this paper a detailed analysis of the hardware complexity
of the preemptive router is presented and some architectural modifica-
tions to reduce the hardware complexity of the preemptive router are
proposed. An interconnection network simulator has been developed to
compare and analyze the performance characteristics of the proposed
router architecture.

1 Introduction

Commodity clusters have a high performance to cost ratio over commercial par-
allel computers. This has lead to their use in a lot of applications which require
high processing power. These include applications which they were not intended
for e.g., web-servers. The increase in multi-media applications has meant that
web-servers should be capable of handling time sensisitive traffic. Since existing
switching schemes do not provide a guaranteed delay and since the cost of pro-
viding different switching schemes for different traffic types using the network is
high we try to use one switching scheme with some modifications to handle all
traffic types. A new router architecture capable of providing such service using
wormhole switching with a rate-based scheduler was proposed in the MediaWorm
router design [8] . A preemptive router architecture, which can dynamically al-
locate a Virtual Channel(VC) to any traffic class, was proposed by Das et.al.
[1]. In this paper the hardware complexity of the premptive router is analyzed
and some architectural modifications to reduce the hardware complexity of the
router without sacrificing performance are proposed. An interconnection network

* This work is supported by National Science Foundation Grant CCR-0105204

P.-C. Yew and J. Xue (Eds.): ACSAC 2004, LNCS 3189, pp. 321–334, 2004.
© Springer-Verlag Berlin Heidelberg 2004

322 M. Anantha and B. Bella

simulator has also been developed to compare the performance characteristics
of the proposed router with the preemptive router.

In Sect.2 some background work in this area is presented. In Sect.3 we analyze
the hardware complexity of the router presented in Sect.2. Section 4 describes
the modifications to the router architecture. In Sect.5 we present an analytical
model to estimate the performance of the proposed router. Then, in Sect.6, we
describe the simulation frame work and compare the performance characteristics
of the modified router with the existing router. The conclusions and future work
are summarized in Sect. 7.

2 Background

2.1 Baseline Router Model

The most intuitive way to support QoS provisioning, in wormhole switched net-
works, is to attach a notion of priority to the traffic flows and add a rate based
scheduling scheme like Virtual Clock [4]. This allows us to provide soft guaran-
teed service to time bound data streams with minimal changes to the wormhole
router hardware.

Non-preemptive routers statically divide the VCs among the traffic classes.
This restricts the flexibility of the router to handle changes in the distibution
of traffic priority classes. The proposed solution to this problem is to use a
preemptive router model which allows several priority classes of traffic to share
the same VC, with the provision that higher priority message can preempt a
lower priority message. The preemptive model can dynamically handle changes
in traffic better than the non-preemptive model and hence is well suited for
this application. A pipelined router model with the aforesaid capabilites was
proposed in [8].

The modifications to this router model suggested in [1] are:

1.

2.

Preemption in the input buffer: Preemption in the input buffer occurs
when the header flit of a high priority message arrives at the input VC buffer,
which is being held by a lower priority message. When this happens the
router lets the higher priority flow use the buffer and resumes transmission
of the lower priority message after the higher priority message releases the
buffer.
flit acceleration mechanism: The next modification they proposed was
the use of a flit accelerate mechanism to reduce the probability of a higher
priority message getting struck at the later pipeline stages due to the pres-
ence of lower priority flows. Flit acceleration mechanism solved this problem
by boosting the priority of the lower priority flow holding the resource which
is needed by the high priority flow so that the blocking delay of the high
priority flow is minimized.

A Router Architecture for QoS Capable Clusters 323

3 Hardware Complexity Analysis

The architectural modifications proposed in Sect.2 incur a cost in implemen-
tation. In this section the harware complexity analysis of the flit preemption
logic and the flit acceleration logic is presented. This analysis is used to investi-
gate the possibility of modifications to the architecture to reduce the hardware
complexity without sacrificing performance. Throughout the analysis is the
number of dimensions in the interconnect and is the number of prioritized
flow classes. The complexity is expressed in terms of number of gates used for a
typical implementation.

3.1 Cost Analysis of the Flit Preemption Unit

Figure 1 shows a schematic of the flit preemption unit. The flit preemption unit
has to do the following tasks in a clock cycle.

1.
2.

3.

4.

check the extra buffer to see if there is a header flit.
if there is a header flit, check whether this flit can preempt a flow in the
virtual channel buffer.
if the tail flit of the preempted flow has already been received in which case
a dummy tail flit is not created.
it is clear that at any given clock cyle there is only one buffer with a header
flit in the extra buffer that needs to be processed.

It can be seen from Fig.1 the hardware complexity of the extra buffer and
history stack scale in the order of number of prioritized flow classes at each
input port. The hardware complexity of the flit preemption logic scales in the
order number of VCs per physical channel because it has to maintain status
information of all the VCs in the input buffer. However, this is fixed and its
hardware complexity is constant. The effective hardware complexity of the flit
preemption unit is:

Fig. 1. Modifications to Pipelined Router Model

324 M. Anantha and B. Bella

flit preemption
extra buffer
history stack
flit preemption unit (because

where is a constant.

3.2 Cost Analysis of the Flit Acceleration Unit

Figure 1 shows a schematic of the flit acceleration unit. The flit acceleration unit
has to do the following.

1.

2.

Check to see if any lower priority flow is occupying an output buffer. There
are possible channels that have to be checked for a given channel.
if there exists such a buffer then the accelerate flag is set in the buffer.

The effective complexity in the flit acceleration unit is in the flit acceleration
logic. Therefore it will suffice to compute the hardware complexity of the flit
acceleration logic. This unit must check other flows to check if any of
those flows is holding a resouce required by a given flow. This has to to done for
all the flows. Thus the hardware complexity of this unit is:

Therefore it can seen that the effective complexity of the flit acceleration unit
is higher than that of the flit preemption unit. In Sect.4 some modifications to
the router to reduce the hardware complexity are proposed.

4 Proposed Modifications

From Sect.3 it can be seen that hardware complexity of the flit preemption unit
is linear in the number of prioritized flow classes but the hardware complexity of
the flit acceleration unit is quadratic in the number of prioritized flow classes. In
this section we will propose modifications to the router architecture to replace
the flit acceleration logic with lesser complexity functional units which perform
the same function. These modifications are at the final stage in the router which
multiplexes flits from various output VCs onto the phyiscal channel.

4.1 Buffer Status Aware Link Scheduling

The operation of an asynchronous flow control protocol between two routers is
as follows:

1.

2.

3.

Router 1 makes the request(RQ) line high to request permission to transmit
a flit.
Router 2 sets the acknowledge(ACK) line to represent buffer availability and
hence permission to transmit.
Router 1 begins transmission if the ACK line has been set to allow trans-
mission of a flit. In which case the flit is transmitted as a series of phits.

A Router Architecture for QoS Capable Clusters 325

A priority based link scheduler always tries to pick flits from the highest
priority flow without considering the buffer occupancy status in the next router’s
input buffer. The disadvantage of this approach is that the router might keep
picking a flit from a high priority flow for which there is no buffer space in
the subsequent router repeatedly thereby wasting bandwidth and increasing the
delay for other flows. The availability of buffer space for a flow in the subsequent
router can be predicted from the value of acknowledgement received for the last
sent flit. Therefore, it would be useful to include this information to decide which
flow’s flits must be picked for transmission. A single bit called ACK status(1 =
buffer space available, 0 = no space) is associated with each VC in the output
buffer. The scheduler picks a flit using both this bit and the priority of the
flow in the buffer. Link scheduling algorithms which use both of these pieces of
information are proposed.

Highest Non N-Ack Flow.

1.

2.

3.

Get the list of channels ready for transmission at a given clock cycle. Let
{S} be the set of all channels which can be scheduled and {R} be the set of
ready channels. Assign
Pick a channel from {R} which has the
(1) Highest Flow class.
(2) Does not have an N-Ack (Negative Acknowledgement).
(3) Choose the first such channel in case of a tie.
Read the flit from this channel and record the ACK status for the next
iteration.

Fig. 2. Hardware implementing Highest Non N-ACK Scheduling

Discussion: Figure 2 shows a hardware implementation of the link schedul-
ing algorithm.The algorithm uses a tree shaped circuit to pick the “winner”
channel at a given clock when its starts flit transmission. At each clock cycle a
flit from the selected channel is transmitted and the ACK status of the trans-
mission is stored for use in a subsequent transmission.

326 M. Anantha and B. Bella

Note that only one bit is added to the lowest level processing units because
this level “filters” all channels that are ready and the subsequent levels work
by picking a flow to highest priority among the ready channels. Thus the only
addition in hardware complexity is the bits.

The disadvantage of this algorithm is that a high priority flow class which
received an N-ACK might not be picked for a long time if there are enough flits
from other flows. In essence, a high priority flow might “starve”. This disadvan-
tage becomes crucial in heavily loaded networks.

A simple fix to this problem lies in the introduction of new variables.

1.

2.
3.

cycle_Wait which keeps track of the number of cycles after receiving a N-ACK
and is updated each clock cycle.
max_count, maximum value after which cycle_wait update should stop.
cycle_Wait is initialized/reset after receiving a N-ACK after max_count was
reached and a re-transmission was tried.

Modified Highest Non N-Ack Flow.

1.

2.

3.
4.

Get the list of channels ready for transmission at a given clock cycle. Let
{S} be the set of all channels which can be scheduled and {R} be the set of
ready channels; Assign
Pick the channel of the Highest Flow class, among {R}, that does not have
a N-ACK or whose counter has reached max_count.
Choose the first such channel in case of a tie.
Read the flit from this channel and record the ACK status for the next
iteration.

Fig. 3. Hardware implementing the Modified Highest Non N-ACK Scheduling

Discussion: Figure 3 shows the hardware implementation of the modified
version of the algorithm. At each clock cycle a flit from the selected channel
is transmitted and the ACK status of the transmission is stored for use in a
subsequent transmission.

A Router Architecture for QoS Capable Clusters 327

Note that one counter and a register of size are added to the lowest
level processing units because this level “filters” all channels that are ready and
have the required counter constraints. The subsequent levels work by picking a
flow of the highest priority among the channels selected at level 1. Thus, the
only addition in hardware complexity is the bits.

4.2 Flexible Output Virtual Channel Allocation

In this section we discuss the next modification to the router. The main dis-
advantage of using the link scheduling algorithms we presented is that even
though they guarantee the presence of a free channel at the output VC buffer
the fixed connection scheme between the crossbar ports and the VCs could lead
to performance losses. This is because certain combinations of connections are
not possible and header still incurs a blocking delay. To remedy this situation a
dynamic mapping scheme between a crossbar port to a VC buffer is proposed.

Figure 4 shows a schematic of the proposed modification. The hardware ad-
dition to the router is a channel identifier at each crossbar output port which
contains the address of the channel allocated to this port. Each output port is
allocated a specific set of channels it can choose from and the size of this identi-
fier is and there are multiplexer circuits of complexity giving an
overall gate complexity of

4.3 Analysis

Figure 4 shows the router architecture with both of the modifications in place.
These changes are valid in the context of replacing the flit acceleration unit
because the main reason for introducing acceleration is to avoid the blocking of
high priority flows due to other lower priority flows. Since the link scheduling
algorithms work by maximizing the number of flits transmitted in a time frame
and since the probability of servicing high priority flows is high, the probability

Fig. 4. Modified Router Architecture

328 M. Anantha and B. Bella

of availability of a virtual channel is high. With a flexible channel allocation
scheme to take advantage of the high availability of free channels the probability
of blocking of a high priority flit is minimized. Therefore, we can see that this
combination of modifications replaces the flit acceleration unit functionally.

The effective hardware complexity of the modifications is the total of the
hardware complexities of the proposed modifications.

This hard-
ware complexity bound is therefore better than that of the flit acceleration unit

that has been replaced.

5 An Analytical Model

In this section a mathematical model for deadline missing probability in a single
router is proposed. It is extended to calculate the deadline missing probability
of a message which traverses routers to its destination. A router model with
a pipelined architecture with 5 stages and augmented with the modifications
proposed in Sect.4 is assumed. Stage 1 of the router performs flit de-multiplexing.
Stages 2 and 3 are the routing and arbitration units. Stage 4 contains the crossbar
and stage 5 contains multiplexes VCs over the physical channel. The model is
described for S classes consisting of (S—1) classes of real time traffic and one
class of best-effort traffic.

Note that a message entering the pipelined router can experience delay at
stages 1, 3 and 5. If the input VC buffer is full in stage 1, the message must wait
outside the router until adequate space is available. In stage 3, the message again
might be delayed because the destination crossbar ports are full. Crossbar output
port arbitration is performed at a message level granularity. So the message has
to wait until the required port is released by the message already holding it.
Finally in stage 5, multiple virtual channels compete for the physical channel
bandwidth. This is the delay experienced due to the link scheduler. The model
is based on the following assumptions:

1.

2.
3.
4.

5.

The arrival pattern of each class follows a poisson process with an average
arrival rate
Message length is M flits long.
Message destination is uniformly distributed.
The input and output virtual channel buffers in stages 1 and 5 can hold
flits.
Each class is assigned separate injection/ejection queues outside the router,
and these have infinite capacity.

The average message latency of a message of class is composed
of the average network latency, which is the time to traverse the router
(network), and the average waiting time, at the injection channel. Thus,

A Router Architecture for QoS Capable Clusters 329

Network latency can be calculated as follows

where is the network latency of a class message, is the blocking length
and is the effect of the bandwidth sharing mechanism.

Blocking occurs in stages 1,3 and 5 and the average blocking length can be
separated into three parts as

where Input, Arbiter and LC represent the corresponding blocking lengths at
stages 1,3 and 5. In (3), (4) and (5), the first term represents the probability
that the corresponding buffer is not empty, and the second term is the average
message length that will be affected due to blocking. For example, if the input
buffer is not empty, the header flit will face an average delay of M/2 flits.

In order to calculate the average blocking length the probability that the
input buffer is full, the probability that the output buffer is full, and the delay
due to bandwidth sharing have to be calculated. These terms can be calculated
as follows:

5.1 Average Blocking Length in Stage 1

The router uses a preemptive model of virtual channel allocation. The preemptive
model can dynamically allocate any virtual channel to any traffic class. Assuming
a buffer size of a flit is blocked if the input virtual channel buffer is full and
there are no flows whose priority is lower than this flit. In this case the flit will
have to wait for channel to be released and hence a delay is incurred. Therefore
the blocking delay is

where,
is full with no flows priority

and that a message is of flow class

5.2 Average Blocking Length in Stage 3

The header flit is blocked waiting at stage 3 if the arbiter has higher priority
flows in the arbitration slots which reserve all crossbar ports that this flow might

330 M. Anantha and B. Bella

require or if all the crossbar ports are occupied. The blocking delay is:

where M is the message length in flits, is the number of arbitration slots, is
the number of crossbar ports that could be assigned, is the probability that a
given output VC is full and

5.3 Average Blocking Length in Stage 5

Since a flexible virtual channel allocation scheme is used a flit is blocked waiting
at the last stage only if no virtual channels are empty in the output virtual
channel buffer.

where M is the message length in flits and is the number of virtual channels
in the VC buffer.

5.4 Deadline Missing Probability

Using the average blocking lengths at stages 1, 3 and 5 of the router pipeline the
probability of a packet of class missing a deadline can be calculated. The
average blocking length (delay) for a message in a router is:

Given a delay the actual time for transfer of the message is
given by:

where is the average number of cycles to transmit a flit of class
Equation (14) gives the average delay for a message of class through a

single router. The probability that the message misses its deadline is given by:

where is the probability of missing the deadline for a class message and
is the actual delay and is the probability that a class message

A Router Architecture for QoS Capable Clusters 331

traverses the router within the deadline and is the highest blocking length
such that

If a message were to traverse routers to its destination, the probability
that it misses its deadline can be calculated as the sum of the probabilities of all
combinations of delays at these routers such that the total delay is less than

is the maximum total length such that the message reaches on or before its

where

Equation (17) represents all possible combinations of delays at the routers.
We need a solution to to calculate the deadline missing probability. Since
it is tough to exactly calculate this parameter, we approximate this probability
using operational behaviour of a router. Under the uniform distribution assump-
tion this probability can be calculated as follows.

where, represents the worst case blocking length at a router and is the
blocking probability of a class message.

The probability of blocking of a class message can be calculated as follows.

and worst case blocking length is given by

Therefore we can roughly estimate the deadline missing probability of a class
message through a series of routers using (17), (20), (21) and (22).

332 M. Anantha and B. Bella

6 Performance Analysis

6.1 Simulation Framework

An interconnection network simulator has been developed to compare the perfor-
mance characteristics of the modified router with the QoS enabled architecture
discussed in Sect.2 and a router with the modifications we have proposed. For
our experiments we simulated a 8-port router and a 2 × 2 mesh network with
8-port routers. We have used 16 VCs per physical channel. The flit size is 128-
bits and all the messages are 36 flits long. Physical link bandwidth is 1.6 Gbps
and the flit buffers are 36 flits deep.

6.2 Workload

The workload includes messages from real time variable bit rate (VBR) traffic
and best-effort traffic. The real time traffic streams are generated as synthetic
MPEG streams at 30 frames/sec with different bandwidth requirements. Each
stream generates a frame of data which is fragmented into flits. Best effort traffic
is generated with a given injection rate and follows a poisson distribution. The
message destination is assumed to be uniformly distributed.

An important parameter that is varied is the input load which is expressed
as a fraction of the physical link bandwidth. For a specific input load, we vary
the ratio of the two classes where is the fraction of load for
VBR traffic and is the fraction of load for best effort component) to
generate mixed-mode traffic.

We vary the traffic ratio in 5 stages during the simulation to simulate dynamic
workload. The important output parameters we measured were the deadline
missing probability and deadline missing time. Deadline missing probability is
the ratio between the number of frames which missed their deadline out of the
total delivered frames. Deadline missing time is the average time by which the
packets miss their deadline. The deadline was set to 33.3 msec after receiving a
frame from the flow. We have assumed a core clock frequency of 100 MHz and
set the respective number of clock cycles for the deadline and the results are also
expressed in terms of clock cycles.

6.3 Single Router Results

The simulation test bed was used to study the performance of the proposed
router model with that of the existing router model. We ran the simulations at
80% and 85% network load. Figure 5.a shows the deadline missing probabilities
of the proposed router model to the existing preemptive router model and Fig.5.b
shows the deadline missing times of the two router models.

Figure 5.a shows that for both the routers the deadline missing probability
increases as the proportion of real time traffic increases. It also shows that at 80%
load the deadline missing probabilities of the models are close and the proposed
router starts to perform better as the proportion of real time traffic increases.

A Router Architecture for QoS Capable Clusters 333

Fig. 5. Single Router Results

This is the phase where the advantages of the modified link scheduler start
showing up as the scheduler tries to maximize the amount of data transmitted.
At 85% network loading the deadline missing probabilities of the proposed router
architecture and the existing router architecture are very close but the difference
in performance starts increasing because of the modified link scheduler.

Figure 5.b shows the deadline missing times of the two router models at 80%
and 85% loads are comparable. It also shows that the average deadline missing
time increases as the proportion of real time traffic increases. It is also seen
that the average deadline missing time increases as the ratio of real time traffic
increases.

6.4 A (2 × 2) Mesh Network Results

Figure 6 shows that at 80% load and at 85% network loading the deadline
missing probabilities of the proposed router architecture and the existing router
architecture are very close. Like the single router results it is seen that the
number of frames missing the deadline increases as the ratio of real time traffic
increases.

Fig. 6. Deadline Missing Probability (2×2 mesh)

334 M. Anantha and B. Bella

From the results of the simulation it can be seen that the proposed router
architecture achieves a slightly better performance than the existing model but
at a reduced hardware complexity.

7 Conclusions and Future Work

This paper addresses the issue of hardware complexity in QoS capable routers
to enable faster switching. The existing QoS capable router architecture was an-
alyzed to identify sources of hardware complexity. Techniques like Buffer Status
Aware Link Scheduling and Dynamic Output VC allocation were used to reduce
the hardware complexity without sacrificing performance. Simulation was used
to analyze the performance characteristics of the proposed router architecture.
An analytical model for analyzing QoS capable clusters has been developed.

We are currently working on the verification of the proposed analytical model.
It will be instructive to analyze the possibility of using adaptive routing and the
preemptive router model in order to improve the QoS capabilities of the cluster
interconnect.

References

[1]

[2]

[3]

[4]

[6]

[7]

[8]

Das, C. R., Kim, E. J., and Yum, K. H.: QoS provisioning in clusters: An investiga-
tion of Router and NIC design. Proceedings of the 28th International Symposium
on Computer Architecture, ISCA 01, Sweden, 2001
Duato, J., Yalamanchili, S., and Ni, L.: Interconnection Networks: An Engineering
Approach. Morgan Kaufmann Publishers, second edition, 2002.
Das, C. R., Kim, E. J., and Yum, K. H.: Calculation of Deadline Missing Probability
in a QoS Capable Cluster Interconnect. Proceedings of IEEE International Sym-
posium on Network Computing and Applications (NCA ’01), pp.34-43, February
2002, Cambridge, MA.
Zhang, L.: VirtualClock: A New Traffic Control Algorithm for Packet-Switched
Networks. ACM Transactions on Computer Systems, 9(2):101-124, May 1991.
Chien, A. A.: A cost and speed model for k-ary n-cube wormhole routers. Proceed-
ings of Hot Interconnects’93, August 1993.
Duato, J., Yalamanchilli, S., Caminero, M. B., Love, D. and Quiles, F. J.: MMR:
A High Performance Multimedia Router-Architecture and Design Tradeoffs. Pro-
ceedings of International Symposium on High Performance Computer Architecture.
Pages 300-309, January 1999.
Yum, K. H., Vaidya, A. S., Das, C. R. and Sivasubramaniam, A.: Investigation of
QoS support for traffic mixes with the MediaWorm Router. Proceedings of Inter-
national Symposium on High Performance Computer Architecture, pages 97-106,
January 2000.

Optimal Scheduling Algorithms in WDM Optical
Interconnects with Limited Range Wavelength

Conversion Capability*

Zhenghao Zhang and Yuanyuan Yang

Department of Electrical & Computer Engineering, State University of New York, Stony Brook,
NY 11794, USA

Abstract. In this paper we study optimal scheduling algorithms to resolve
output contentions in time slotted WDM optical interconnects with wavelength
conversion ability. We consider the general case of limited range wavelength
conversion with arbitrary conversion capability, as it is easier to implement and
more cost effective than full range wavelength conversion, and also includes
full range wavelength conversion as a special case. We consider the conversion
scheme in which each wavelength can be converted to multiple wavelengths
belongs to an interval and the intervals for different wavelengths are “ordered”. To
be specific, the conversion range of can be written as where

and are positive integers and if then
and We will present linear time optimal scheduling algorithms
for both buffered and unbuffered WDM switches. We will also give performance
studies of these switches when scheduled by these algorithms.

Keywords: Wavelength-division-multiplexing (WDM), optical interconnects,
scheduling, wavelength conversion, limited range wavelength conversion, bipar-
tite graphs, bipartite matching, matroid.

1 Introduction and Background

All-optical networking with wavelength-division-multiplexing (WDM) is emerging as
the candidate for future high-bandwidth communication networks. In this paper, we will
study time slotted WDM packet switching networks as it may offer better flexibility and
better exploitations of the bandwidth [9]. As in [9] [17], we assume that the duration of
an optical packet is one time slot and the traffic pattern is unicast, i.e., each packet is
destined to only one output fiber.

In a WDM switch, output contention occurs when more than packets on the same
wavelength are destined to the same output fiber. To resolve output contention we can
translate the wavelength of a packet to some other idle wavelength by wavelength con-
verters. We consider limited range wavelength converter which is capable of converting
a wavelength to a limited number of wavelengths, since it is more realistic and cost-
effective to provide wavelength conversion ability than full range wavelength converter

* The research work was supported in part by the U.S. National Science Foundation under grant
numbers CCR-0073085 and CCR-0207999.

P.-C. Yew and J. Xue (Eds.): ACSAC 2004, LNCS 3189, pp. 335–348, 2004.
© Springer-Verlag Berlin Heidelberg 2004

336 Z. Zhang and Y. Yang

which is capable of converting a wavelength to any other wavelengths [10,8]. Also,
full range wavelength converters can be regarded as a special case of limited range
wavelength converters.

Another way to resolve output contention is to temporarily store the contending
packets into the buffers, as practiced in all electronic switches. However, it is difficult
to directly apply it to WDM switches, since optical buffers are made of fiber delay lines
and quite costly and bulky [2]. Therefore we will consider unbuffered WDM switches
first. Later on we will also consider buffered WDM switches.

In these switches, scheduling algorithms are needed to smartly allocate the resources
(the wavelength channels) to the requests (the arrived packets) to optimize network per-
formance, such as network throughput. This problem was first realized by [17], in which
a simple algorithm, “storing the packet in the least occupied buffer”, was suggested.
However the authors didn’t show that the algorithm is optimal, in the sense that the
network throughput achieves maximum and total delay achieves minimum. In this paper
we will present algorithms that are optimal, for both buffered and unbuffered switches.

2 Wavelength Conversion

We make two assumptions about limited range wavelength conversion:

Assumption 1. The wavelengths that can be converted to by for where is
the number of wavelengths on a fiber, can be represented by interval
where and are positive integers in The wavelengths belong to this
interval is called the adjacency set of

Assumption 2. For two wavelengths and if then and

We call this type of wavelength conversion “ordered interval” because the adjacency
set of an wavelength can be represented by an interval of integers, and the intervals for
different wavelengths are “ordered”. The cardinality of the adjacency set is called the
conversion degree of the wavelength. Different wavelengths may have different conver-
sion degrees. The conversion degree of the interconnect, denoted by D, is defined as the
largest conversion degree of all wavelengths. The conversion distance of a wavelength
is defined as the largest difference between a wavelength and a wavelength that can be
converted from it.

We can use a bipartite graph to visualize the wavelength conversion. Let the left
side vertices represent input wavelengths and the right side vertices represent output
wavelengths. on the left and on the right are connected if can be converted to

Figure 1 shows such a conversion graph for The adjacency set of for
example, can be represented as [1,5], and the conversion degree of is 5.

Optimal Scheduling Algorithms in WDM Optical Interconnects 337

Fig. 1. Wavelength conversion in a 8-wavelength system with conversion distance 2.

Fig. 2. A wavelength convertible WDM optical interconnect.

3 Optimal Scheduling in Unbuffered WDM Switching Networks

3.1 Network Model

An unbuffered WDM switch with wavelength conversion is shown in Fig.2. It has input
N fibers and N output fibers. On each fiber there are wavelengths that carry inde-
pendent data. Thus, there are a total of Nk input wavelength channels and Nk output
wavelength channels. It can be seen from the figure that an input fiber is first fed into
a demultiplexer, where different wavelength channels are separated from one another.
An input wavelength is then fed into a wavelength converter to be converted to a proper
wavelength. The output of a wavelength converter is then split into N signals, which are
connected to each of the output fibers under the control of N SOA gates. The signal can
reach the output fiber if the SOA gate is on, otherwise it is blocked. Since the request
has only one destination, only one of the SOA gates is in on at a time. In the front of
each output fiber there is an optical combiner which multiplexes the signals on different
wavelengths into one composite signal and send to the output fiber. Apparently, it is
required that all signals to the optical combiner must be on different wavelengths.

To understand the problem that needs to be solved by the scheduling algorithm, we
can use the following example. Consider a simple interconnect with 2 input/output fibers

338 Z. Zhang and Y. Yang

and 4 wavelengths per fiber shown in Fig.3. Suppose under limited range conversion,
wavelength can be converted to where

as shown in the left part of the figure. At the beginning of a time slot, there are
4 packets on arrived at input fiber 1, destined for output fiber 2,2, 1, 1,
respectively. In the figure destination of a request is the number shown in the parenthesis.
There are 2 packets on and arrived at input fiber 2, and all destined for output fiber
2. We first notice that there is no contention at output fiber 1, since there are only two
requests destined to it, and they are on different wavelengths. These two requests can
both be granted and no wavelength conversion is needed. However, there are contention
at output fiber 2, since there are 4 requests, 2 on and 2 on destined for this output
fiber. Without wavelength conversion, one request on each of the wavelengths must be
dropped. With limited range wavelength conversion, 3 wavelengths, to can be
converted from and and therefore 3 of the 4 requests destined for output fiber 2
can be granted. We can assign channel to the request arrived at input fiber 1 on
assign channel to the request arrived at input fiber 2 on assign channel to the
request arrived at input fiber 1 on and reject the request arrived at input fiber 2 on

Based on these decisions, the wavelength converters are configured to convert input
wavelengths to proper output wavelengths, as shown in the figure. A SOA gate is set
to on if the request is granted and is destined to the output fiber connected to the gate.
We can see in the example that when contention arises at an output fiber, to maximize
network throughput, we attempt to find the largest group of requests that are contention
free.

Fig. 3. Requests and wavelength channel assignments of an example interconnect with 2 in-
put/output fibers and 4 wavelength per fiber. The number in the parenthesis are the destination of
a request.

3.2 The First Available Algorithm

First, notice that if only to maximize network throughput, the packets destined to different
output fibers can be scheduled independently, since a wavelength channel on output fiber

will not be assigned to a request destined to output fiber if Therefore from
now on we consider only one output fiber. The input to our scheduling algorithm will

Optimal Scheduling Algorithms in WDM Optical Interconnects 339

be the packets destined to this fiber. The output of the algorithm will be the decisions
about whether a packet is granted or not, and if granted, which wavelength channel it
is assigned to. To maximize network throughput, the algorithm should be able to find
the maximum number of packets that can be granted without causing contention for
any possible input pattern. The algorithm can be run independently and in a distributed
manner to speed up the scheduling process.

[13] showed that due to the properties of limited wavelength conversion, the optimal
scheduling can be found by a simple algorithm called the First Available Algorithm
shown in Table 1. This algorithm scans the wavelength channels on the output fiber from

to At step can be assigned to packet if (l) has not been assigned to any
wavelength channel yet, (2) the wavelength of can be converted to Moreover, the
key part of the algorithm is that, it will find such a packet on the lowest wavelength, or
the “first available” one.

The complexity of the algorithm is where is the number of wavelengths on
a fiber, since the loop is executed exactly times and the work within the loop can be
done in constant time. However, the scheduling time is not completely independent of
network size N, since to generate the input to the algorithm one might have to scan all
the input channels.

4 Simulations

We implemented the proposed algorithm in software and tested it by simulations. We
tested the interconnects of two typical sizes, one with 8 input fibers and 8 output fibers
and with 8 wavelengths on each fiber, and the other with 16 input fibers and 16 output
fibers and with 16 wavelengths on each fiber.

In the simulations, we assume that the arrivals of the packets at the input channels
are bursty: an input channel alternates between two states, the “busy” state and the “idle”
state. When in the “busy” state, it continuously receives packets and all the packets go to
the same destination. When in the “idle” state, it does not receive any packets. The length
of the busy and idle periods follows geometric distribution. The network performance
is measured by the blocking probability which is defined as the ratio of the number of
rejected packets over the number of arrived packets. The durations of the connections
are one time slot and for each experiment the simulation program is run for 100,000

340 Z. Zhang and Y. Yang

time slots. As a comparison, the results for an other type of wavelength conversion,
the “circular symmetrical” wavelength conversion which is slightly stronger than the
ordered interval wavelength conversion is also shown.

In Figure 4 we plot the packet loss probability of the interconnect as a function of
conversion distance. We tested under two traffic loads, where average busy period
15 time slots and average idle period 10 time slots, and where average busy
period 40 time slots and average idle period 10 time slots. We can see that the blocking
probability decreases as the conversion distance increases. But when the conversion
distance is larger than a certain value, the decease of blocking probability is marginal.
In this case there is little benefit for further increasing the conversion degree, which is
exactly the reason for using limited range wavelength converters other than full range
wavelength converters.

Fig. 4. Packet loss probability of WDM switch under bursty traffic where the packets have no
priority. (a) 8 × 8 interconnect with 8 wavelengths per fiber. (b) 16 × 16 interconnect with 16
wavelengths per fiber.

Optimal Scheduling Algorithms in WDM Optical Interconnects 341

Fig. 5. A buffered wavelength convertible WDM optical switch.

5 Optimal Scheduling in Buffered WDM Switch

5.1 Network Model

A buffered WDM switch is shown in Fig.5. We can see that the only difference between
Fig.5 and Fig.2 is the optical delay lines (ODL) placed in front of the output fibers. There
are B + 1 optical delay lines, capable of delaying a packet for 0 to B time slots. The
switching fabric is capable of connecting any input wavelength channel to any of the
B + 1 ODLs for any output fiber. So if a packet that cannot be sent to the output fiber
directly, it can be sent to one of the delay lines. A packet sent to delay line will come
out of the delay line after time slots. The outputs of these B + 1 delay lines are directly
combined together and sent to the output fiber.

Note that all the signals come out of the delay lines at the same time slot should be on
different wavelengths. As a result, not all wavelength channels on the B + 1 ODLs are
available to the new coming packets. Some of them, if assigned to the new packets, might
cause collision later. Given the buffer occupancy state, we can find the set of available
wavelength channels for newly arrived packets by scanning through the ODLs in linear
time. To be specific, wavelength channel on ODL b denoted by is not available
if we find that there is a packet that will come out of an ODL on wavelength after
time slots, for example, a packet on directed to ODL at the previous time slot.

After getting the available wavelength channels, if only to maximize network
throughput, we can simply run the First Available Algorithm described in the previ-
ous section. However, here we have another concern, since we also want to minimize
the total delay, or, to send as many packets to shorter delays as possible. We can check
the ODLs one by one, shorter ODLs first. By doing so we guarantee that the wavelength
channels on shorter ODLs are given higher priorities. When checking ODL we should
use as many wavelength channels on this ODL as possible, while making sure that all
the wavelength channels checked previously on shorter delay lines that were assigned to
some packets are still used, though not necessarily being assigned to the same packets.

To do so we can use the Scan and Swap Algorithm shown in Table 2. In the algorithm,
the wavelength channels that were checked and assigned to packets prior to ODL are

342 Z. Zhang and Y.Yang

called the compulsory channels, and the available channels on ODL are called the non-
compulsory channels. For simplicity we use the to denote the wavelength
channels where is the total number of compulsory channels and non-compulsory
channels. Lower wavelengths are scanned first. That is to say, for two channels denoted
by and if is on a lower wavelength then For channels on the same
wavelength, the compulsory channels are checked prior to the non-compulsory channel.
Compulsory channels on the same wavelength are checked in a arbitrary order. If the
wavelength of a packet can be converted to we say this packet is adjacent to The
first adjacent packet is the one on the lowest wavelength.

The algorithm outputs set initially set to be empty. Also, at the beginning all the
packets is set to be unmarked. Then the algorithm starts scanning the channels from first
to the last. When scanning to it checks if there is an unmarked packet adjacent to it

If yes, it adds to and mark the first such packet. Else it proceeds to the next
channel if is non-compulsory. Otherwise is a compulsory channel, it adds to
and swap out a non-compulsory channel in with the largest index. When the algorithm
terminates, will store the channels that can be assigned to the incoming packets. All
the compulsory channels will be in and the number of non-compulsory channels in

is maximum.

This algorithm needs to be executed B + 1 times. The output of the execution
will be the compulsory channels of the execution. The output of the
execution stores the wavelength channels that can be assigned to the incoming packets.
Then an assignment can be found by running the First Available Algorithm on these
channels and the incoming packets.

Optimal Scheduling Algorithms in WDM Optical Interconnects 343

5.2 Complexity Analysis

We now show that the running time of the Scan and Swap Algorithm is where is
the number of wavelengths.

The input to this algorithm are the set of compulsory channels, the set of non-
compulsory channels and the set of packets. We can use a vector to represent each
of these set, with element in the vector being the number of channels or packets on
wavelength We will refer to them as the “compulsory vector”, the “non-compulsory
vector” and the “packet vector” and denote them as C, N and R, respectively.

When running the Scan and Swap Algorithm, the channels will be added to set if
they can be covered along with all the vertices previously in Since algorithm makes
sure that all the compulsory channels are in only the status of the non-compulsory
channels needs to be recorded. For this, a stack can be used. When a non-compulsory
channel is added to its wavelength index will be pushed into this stack. In some
later steps we may decide to swap out some of the non-compulsory channels. By the
algorithm, they will be the ones that were most recently added to i.e., will be on the
top of the stack. Therefore to swap them out is simply to perform several pop operations.
When the algorithm terminates the content in the stack will be the desired output.

In the algorithm the packets that were chosen to match to some wavelength channels
need to be “marked”. We can use a vector called the “marked vector”, denoted
as D, to represent the set of marked packets, with each element being the number of
marked packets on the corresponding wavelength.

We can also use pointer which is the wavelength index of a packet immediately
following the packet that was just marked. That is to say, if the Scan and Swap Algorithm
just marked a packet on then if there are still unmarked packets on otherwise

Initially where is the smallest wavelength with
A more detailed Scan and Swap Algorithm, with implementation issues considered,

is shown in Table 3. The algorithm scans the wavelengths from to When scan to
first it checks whether the packet pointed by is in the conversion range of by

comparing with and If all the packets convertible to
must have all been marked or be used by the wavelength channels on lower wavelengths,
since we always try to mark the first available packets for any channel. Therefore, if
there are compulsory channels on or they cannot mark any new packet. By the
algorithm, we should swap out exactly non-compulsory channels, which is to perform

pop operations on the stack. If the packet is also out of the conversion
range of however, in this case all the packets convertible to are not marked, and
we set

Now the algorithm will try to find the first packets that are in the conversion set
of which is done by the while loop. The loop exits if enough packets are found, or
the last wavelength adjacent to has been reached.

In the second case, not enough packets were found, and we should pop the stack
several times accordingly. Then we should update pointer by moving it to the first
wavelength that has some packets.

In the first case, all the compulsory channels can find some packets to mark, and we
go on to check the non-compulsory channel on if there is such a channel
If the packet pointed by is within the conversion range of and there

344 Z. Zhang and Y. Yang

is still an unmarked packet this non-compulsory channel can be added in and
we push into the stack. Then we update the mark vector and accordingly.

Now we analyze the complexity of the Scan and Swap algorithm, when implemented
in this way. First, the push and pop operations takes time, since there are up to

non-compulsory channels, and a channel can be pushed in at most once because a
channel that was popped out will never be pushed in again. For other operations within
the for loop, except for the while loop, also need no more than time. One execution
of the while loop takes constant time. And, because each execution moves the pointer
down by one, the while loop is executed at most times. Combining these we conclude
that the running time of the Scan and Swap algorithm is

Optimal Scheduling Algorithms in WDM Optical Interconnects 345

Fig. 6. Packet loss probability of the WDM switching network under bursty traffic. The load is
(a) Average burst length is 5 time slots. (b) Average burst length is 40 time slots.

In our applications the Scan and Swap Algorithm needs to run B + 1 times. Thus,
when using this algorithm for optimal scheduling, we need O(kB) time, where B is the
length of the longest delay line and is the number of wavelengths per fiber,

5.3 Simulation Results

We implemented Scan and Swap Algorithm in software and conducted simulations. The
network in simulations has 16 input fibers and 16 output fibers with 16 wavelengths
on each fiber. The arrivals of connection requests at input channels are bursty: an input
channel alternates between two states, the “busy” state and the “idle” state. When it
is in the “busy” state it continuously receives packets and all the packets go to the
same destination; otherwise the input channel is in “idle” state and does not receive any
packets. The length of the busy and idle periods follows geometric distribution. The
network performance is measured by the packet loss probability which is defined as the

346 Z. Zhang and Y. Yang

Fig. 7. Average delay of the WDM switching network under bursty traffic. The load is
(a) Average burst length is 5 time slots. (b) Average burst length is 40 time slots.

ratio of the total number of successfully transmitted packets over the total number of
arrived packets. The durations of the packets are all one time slot and for each experiment
the simulation program was run for 100,000 time slots.

In Fig. 6 we show the packet loss probability of the network as a function of the
number of fiber delay lines. In Fig. 6(a) the average burst length is 5 time slots and the
average idle period is 1.25 time slots. In Fig. 6(b) the average burst length is 40 time
slots and the average idle period is 10 time slots. In both cases the traffic load is
As expected, packet loss probability decreases as the number of delay lines increases.
For example, in Fig. 6(a), when the conversion distance when B = 0 (no buffer),
the packet loss probability is about However, when B = 4, it is reduced to about

As the traffic becomes more bursty, i.e., as the average burst length increases, the
packet loss probability decreases much more slowly with the buffer depth, as can be

Optimal Scheduling Algorithms in WDM Optical Interconnects 347

observed in Fig. 6(b) where the curves are almost flat. This is because when the burst is
too long it will always exceed the buffer capacity.

We can also notice that with the same buffer length, a larger conversion distance
always results in a smaller packet loss probability. Also, when the burst is too long,
increasing buffer length does not yield too much benefit, but increasing conversion
distance always does. For example, in Fig. 6(b), when increasing buffer length
does not decrease much of the packet loss probability, but when we increase to 2, the
packet loss probability almost drops by This suggests that wavelength conversion
ability is more important than buffering in a WDM switching network. However, we
can observe that only a relatively small conversion distance is needed to achieve good
performance. As can be seen in Fig. 6, the packet loss probability for is already
very close to that for (full range conversion). This is exactly the reason to use
limited range wavelength converters instead of full range wavelength converters.

In Fig. 7 we show the average delay of a packet as a function of the number of fiber
delay lines. The traffic is the same as in Fig. 6. We can see that as the buffer length
increases the average packet delay also increases, since fewer packets are dropped and
thus more are directed to a buffer before being actually transmitted. For the same buffer
size, a larger conversion distance results in a shorter average delay. As in Fig. 7(a), when
B = 4, the average delay for is about 0.9 time slots and the average delay for

is only about 0.3 time slots.

6 Conclusions

In this paper we have presented optimal scheduling algorithms to resolve output con-
tentions in time slotted WDM optical interconnects with limited range wavelength con-
version ability. We gave the First Available Algorithm that runs in time for finding
an optimal scheduling in unbuffered interconnects where is the number of wavelengths
per fiber. We also gave the Scan and Swap Algorithm that runs in O(Bk) time for finding
an optimal scheduling in buffered interconnects where B is the buffer depth.

References

1.

2.

3.

4.

5.

6.

B. Mukherjee, “WDM optical communication networks: progress and challenges,” IEEE
Journal on Selected Areas in Communications, vol. 18, no. 10, pp. 1810-1824, Oct. 2000.
D. K. Hunter, M. C. Chia and I. Andonovic “Buffering in optical packet switches,” Journal
of Lightwave Technology, vol. 16 no. 12, pp. 2081-2094, 1998.
M. Kovacevic and A. Acampora, “Benefits of wavelength translation in all-optical clear-
channel networks,” IEEE Journal on Selected Areas in Communications, vol. 14, no. 5, pp.
868 -880, June 1996.
S.L. Danielsen, C. Joergensen, B. Mikkelsen and K.E. Stubkjaer, “Analysis of a WDM packet
switch with improved performance under bursty traffic conditions due to tuneable wavelength
converters,” Journal of Lightwave Technology, vol. 16, no. 5, pp. 729-735, May 1998.
N. McKeown, “The iSLIP scheduling algorithm input-queued switch,” IEEE/ACM Trans.
Networking, vol. 7, pp. 188-201, Apr. 1999.
W.J. Goralski, Optical Networking and WDM, 1st Edition, McGraw-Hill, 2001.

348 Z. Zhang and Y. Yang

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

R. Ramaswami and K. N. Sivarajan, Optical Networks: A Practical Perspective, 1st Edition,
Academic Press, 2001.
T. Tripathi and K. N. Sivarajan, “Computing approximate blocking probabilities in wavelength
routed all-optical networks with limited-range wavelength conversion,” IEEE Journal on
Selected Areas in Communications, vol. 18, pp. 2123–2129, Oct. 2000.
L. Xu, H.G. Perros and G. Rouskas, “Techniques for optical packet switching and optical
burst switching,” IEEE communications Magazine, pp. 136 - 142, Jan. 2001.
R. Ramaswami and G. Sasaki, “Multiwavelength optical networks with limited wavelength
conversion,” IEEE/ACM Trans. Networking, vol. 6, pp. 744–754, Dec. 1998.
Y. Yang and J. Wang, “WDM optical interconnect architecture under two connection models,”
Proc. of IEEE Hot Interconnects 10, pp. 146-151, Palo Alto, CA, August 2002.
Y. Yang, J. Wang and C. Qiao “Nonblocking WDM multicast switching networks,” IEEE
Trans. Parallel and Distributed Systems, vol. 11, no. 12, pp. 1274-1287, 2000.
Z. Zhang and Y. Yang, “Distributed scheduling algorithms for wavelength convertible WDM
optical interconnects,” Proc. of the 17th IEEE International Parallel and Distributed Pro-
cessing Symposium, Nice, France, April, 2003.
E.L. Lawler, “Combinatorial Optimization:Networks and Matroids,” Holt, Rinehart and Win-
ston, 1976.
F. Glover “Maximum matching in convex bipartite graph,” Naval Res. Logist. Quart., 14, pp.
313-316, 1967.
W. Lipski Jr and F.P. Preparata “Algorithms for maximum matchings in bipartite graphs,”
Naval Res. Logist. Quart.,14, pp. 313-316,1981.
G. Shen, et. al, “Performance study on a WDM packet switch with limited-range wavelength
converters,” IEEE Communications Letters , vol. 5, no. 10, pp. 432-434, Oct. 2001.

Comparative Evaluation of Adaptive and Deterministic
Routing in the OTIS-Hypercube

Hashem Hashemi Najaf-abadi1 and Hamid Sarbazi-Azad1,2

1 School of Computer Science, IPM, Tehran, Iran.
{h_hashemi, azad}@ipm.ir

2 Computer Eng. Department, Sharif Univ. of Tech., Tehran, Iran.
azad@sharif.edu

Abstract. The OTIS-hypercube is an interesting class of the optoelectronic
OTIS architecture for interconnection networks. In the OTIS architecture,
optical connections are used to connect distant processors while closer
processors are connected electronically. In this paper, we propose an adaptive
routing algorithm for the wormhole switched OTIS-hypercube. We then present
an empirical performance evaluation of adaptive wormhole routing in these
networks for different structural conditions and traffic loads. The effect of
maximum wire length and router delay on performance measures, such as
average message latency and bandwidth of the interconnection network, are
also briefly brought into consideration and compared with those of equivalent
hypercubes. In addition, the performance merits of adaptive wormhole routing
in the OTIS-hypercube are compared with those of deterministic routing using
extensive simulation experiments.

1 Introduction

The conveyance of data between processing elements, in an interconnection network,
is usually made through electrical conductance. But where communication distance
exceeds a few millimeters, optical interconnect provides speed and power advantages
over electronic interconnect [2, 3]. Therefore, in the design of very large multipro-
cessor systems, to interconnect physically close processors using electronic inter-
connect and to use optical interconnect for pairs of processors that are distant, seems a
reasonable option. Marsden et al. [4], Hendrick et al. [5] and Zane et al. [6] have
proposed such an architecture named the OTIS (Optical Transpose Interconnect
System) in which the processors are partitioned into groups. Within each group
electronic interconnect is used to connect the processors, and optical interconnect is
used to bring about connection between processors in different groups.

The significance of an architecture depends on whether that architecture can be
used to effectively solve problems that are of interest. The development of algorithms
for OTIS-based computers has been the focus of much attention. Algorithms for
OTIS-hypercubes have been developed by Sahni and Wang [10]. Algorithms for
OTIS-mesh computers (in this type of OTIS each group is a mesh instead of a
hypercube) have been studied more extensively by Zane et al [6], Sahni and Wang
[11, 12, 13, 14], Rajasekeran and Sahni [15] and Osterloh [16]. Sahni and Wang [11]

P.-C. Yew and J. Xue (Eds.): ACSAC 2004, LNCS 3189, pp. 349–362, 2004.
© Springer-Verlag Berlin Heidelberg 2004

350 H.H. Najaf-abadi and H. Sarbazi-Azad

have also developed a routing algorithm for the OTIS-mesh network. However, no
work has, to our best knowledge, investigated the appropriateness of these systems for
general purpose applications using realistic implementation assumptions, i.e. these
studies have considered topological and algorithmic issues in OTIS computers and no
study has been conducted to evaluate the performance of these systems in sight of
parameters such as bandwidth and message latency.

The layout of the paper is as follows. OTIS parallel computers and specifically the
OTIS-hypercube network are first described in detail. A deadlock-free adaptive
routing algorithm is then suggested for this network. Simulation results of different
cases of the network with different traffic loads are compared and a number of
observations, based on these results, are made. Finally, an overview of the
experimental results is provided and some concluding remarks are given.

2 Preliminaries

The reader is referred to [8] for an in-depth account of basic concepts such as
topology, routing algorithms, flow control, wormhole switching and virtual channels.
In this section, more specific concepts are described.

2.1 The OTIS-Hypercube Interconnection Network

In order to interconnect physically close processors using electronic interconnect and
distant processors with optical interconnect, various combinations of interconnection
networks have been proposed. In OTIS computers, optical interconnects are realized
via a free space optical interconnect system proposed by Marsden et al. [4]. In this
system, processors are partitioned into groups of the same size. Krishnamoorthy et al.
[17] have shown that when the number of groups equals the number of processors
within a group, the bandwidth and power efficiency are maximized, and system area
and volume are minimized.

In the OTIS-hypercube parallel computer, there are processors organized as
groups of nodes each. The processors in each group form an N dimensional hyper-
cube that employs electrical interconnect. The inter-group interconnections are
realized by optics. In the OTIS interconnect system, processor (i, j), i.e. processor j of
group i, is connected via optics to processor (j, i). A partial 3-dimensional OTIS-
hypercube is illustrated in Fig. 1. In this figure, the optical interconnections cor-
responding to group 0 are shown by dashed lines. Electronic interconnections in each
group are shown by solid lines. The address of each group is placed in parentheses
above the group. The address of each node in group (001) is displayed near the node,
and the nodes in other groups are assigned addresses in the same order.

2.2 Node Structure in the OTIS Architecture

A node, in the n-dimensional OTIS-hypercube, or for short, consists of a
processing element (PE) and a switching element (SE), as illustrated in Fig. 2. The PE

Comparative Evaluation of Adaptive and Deterministic Routing 351

Fig. 1. A 3-dimensional OTIS-hypercube with the optical connections exiting one of the sub-
graphs (numbers inside parenthesis are sub-graph addresses)

contains a processor and some local memory. A node is connected, through its SE, to
its intra-group neighboring nodes using n input and n output electronic channels. Two
electronic channels are used by the PE to inject/eject messages to/from the network.
Messages generated by the PE are transferred to the router through the injection
channel. At the destination node, messages are transferred to the local PE through the
ejection channel. The optical channel is used to connect a node to its transpose node
in another group for inter-group communication. The router contains flit buffers for
each incoming channel. A number of flit buffers are associated with each physical
input channel. The flit buffers associated with each channel may be organized into
several lanes (or virtual channels), and the buffers in each virtual channel can be
allocated independently of the buffers in any other virtual channel [8]. The concept of
virtual channels has been first introduced in the context of the design of deadlock free
routing algorithms, where the physical bandwidth of each channel is multiplexed
between a number of messages [7, 8]. However, virtual channels can also reduce
network contention. This is while it has been shown that virtual channels are
expensive, increasing node delay considerably [1]. So, the number of virtual channels
per physical channel should be reasonable. The input and output virtual channels are
connected by a crossbar switch that can simultaneously connect multiple input
channels to multiple output channels given that there is no contention over the output
channels.

352 H.H. Najaf-abadi and H. Sarbazi-Azad

Fig. 2. The node structure in the OTIS-hypercube

3 Deadlock-Free Wormhole Routing in the OTIS-Hypercube

3.1 Deadlock-Free Adaptive Routing

With fully adaptive routing, the header of a message can be routed through any
dimension that takes the message closer to its destination. But the actual dimension
that the message is routed through depends on which dimension has a free virtual
channel at the time. This is contrary to deterministic routing in which dimensions are
traversed strictly in a predetermined order.

In the case of OTIS interconnection networks, two basic adaptive routing
algorithms can be suggested. In the first algorithm, a message is routed adaptively in
the local sub-graph (group) in which it starts until it reaches the node that has the
same node address as the destination node. From that node, the optical channel is
taken into another sub-graph. In this sub-graph, the message is routed (once again
adaptively) until it reaches a node that has the same node address as the sub-graph
address of the destination node. Once there, the message takes its final optical hop to
the destination node. In the second algorithm, a message is first adaptively routed to a
node that has a node address equal to the sub-graph address of the destination. Once
there, the optical channel takes the message to the sub-graph of the destination node.
The message is then adaptively routed to the destination node within this sub-graph. It
is obvious that, although labeled adaptive, both algorithms make use of the optical
channels deterministically. The reason for this is that utilization of the optical
channels in any other manner will cause the routing algorithm to become non-
minimal.

Of the former algorithms, the one that takes a shorter path depends on the full
address (consisting of the sub-graph and node addresses) of the source and destination
nodes. When considering the OTIS-hypercube, this can be determined effortlessly. If
the number of differing bits of the full address of the source and destination nodes is
less than the number of differing bits of the full address of the source node and the
transpose of the address of the destination node, then the first routing algorithm will

Comparative Evaluation of Adaptive and Deterministic Routing 353

result in a shorter path. Otherwise, the second algorithm will. However, it should be
obvious that in the first routing algorithm, once the first optical channel has been
taken, the rest of the routing is identical to that of the second algorithm. Therefore, if
in each node, a message is routed according to the algorithm that takes a shorter path
to the destination of the message (without considering the source node), a more global
optimal routing algorithm is obtained.

In order for a routing algorithm to be deadlock-free, cyclic buffer dependencies
between messages and the virtual channels they allocate, must not occur. Duato [18]
has suggested a virtual channel allocation scheme for fully-adaptive deadlock-free
routing in the hypercube. In that scheme, all virtual channels except one are used for
adaptive routing, and the leftover virtual channel is used only by messages that are
traversing the lowest dimension they must traverse (just as they would have, if routed
deterministically). But in an OTIS-hypercube, the optic channels between the sub-
graphs (hypercubes) may also cause cyclic dependencies if no further restriction is
enforced on the virtual channels a message may traverse. To prevent the occurrence
of such cyclic dependencies, the virtual channels of each electronic physical channel
must be divided into two sets, i.e. each sub-graph must be split into two virtual
networks. A message, after being injected into the network, traverses the source sub-
graph through its first virtual network. But once an optical channel has been traversed
and the message has entered another sub-graph, that sub-graph is traversed through its
second virtual network.

According to the minimal routing algorithm described above, each message
traverses either one or two optical channels. Cyclic dependencies between messages
that traverse one optical channel can obviously not occur. But, for messages that
traverse two optical channels, that would not have been the case, had there been no
restriction on the usage of the virtual optical channels. Since a message that has
traversed its second optical channel has definitely entered its destination node, it can
not be part of a cyclic buffer dependency. Therefore, reserving one of the virtual
channels of each optical channel, specifically for such messages, eliminates the
possibility of the occurrence of cyclic buffer dependencies.
In each virtual network of each sub-graph, virtual channel allocation is performed
according to Duato’s scheme. Thus, since the minimum number of virtual channels
needed to implement Duato’s scheme is equal to two (with one virtual channel,
routing becomes fully deterministic) and there are two virtual networks per sub-graph,
the minimum number of virtual channels needed for adaptive routing in the OTIS-
hypercube is equal to four.

Fig. 3 displays the pseudo code of the minimal adaptive routing algorithm. In this
code, all messages are considered to be inserted into the virtual network (InNet=0).
The operator returns the number of one’s in the binary representation of
Offset, and the SelectOne() function adaptively selects a dimension, that has a free
virtual channel, corresponding to a one in the binary representation of the input
parameter. The ChannelsOfNet() function is considered to return the set of virtual
channels of the virtual network determined by the parameter passed to it. The
SelectVirtualChannel() function selects one of the free virtual channels passed to it.
The names of the other functions are descriptive of their operation.

Fig. 3. Adaptive deadlock-free wormhole routing algorithm for the OTIS-hypercube

354 H.H. Najaf-abadi and H. Sarbazi-Azad

Comparative Evaluation of Adaptive and Deterministic Routing 355

3.2 Deadlock-Free Deterministic Routing

With deterministic routing, the routing within each sub-graph is performed according
to a deterministic algorithm such as e-cube routing. However, for deadlock-free
deterministic routing, the minimum number of virtual channels per physical channel
in a hypercube is equal to one. Thus the minimum number of necessary virtual
channels for deadlock-free deterministic routing in an OTIS-hypercube is equal to
two.

3.3 Deadlock-Free Partially Adaptive Routing

A class of deadlock-free routing algorithms for the hypercube (that are not based on
adding virtual channels to the structure of the network) are the partially adaptive
routing algorithms, such as west-first and p-cube routing, presented by Glass and Ni
[19]. A partially adaptive routing algorithm in the OTIS-hypercube is such that
routing within each sub-graph is performed according to one of these partially-
adaptive routing algorithms. One virtual channel is sufficient for the implementation
of these algorithms in a hypercube. Thus, two virtual channels are sufficient to
implement such partially adaptive routing algorithms in the OTIS-hypercube. But, as
pointed out in [19], these partially-adaptive routing algorithms do not perform better
than deterministic routing for random uniform traffic. Therefore, in what follows, we
consider only the performance merits of adaptive and deterministic routing.

4 Empirical Performance Evaluation

To evaluate the functionality of the OTIS-hypercube network under different
conditions, a discrete-event simulator has been developed that mimics the behavior of
the described adaptive routing algorithm at the flit level in the OTIS-hypercube
network. The simulator has been coded in C++ and consists of a number of different
classes which are, at the highest hierarchical level, used to define the network class.
Specifically, in the constructor of the network class, objects of the node and channel
classes are defined. Each node has a number of pointers to its input and output
channels, and each channel has a pointer to the node it is an input channel to. The way
these pointers are initialized determines the topology of the network to be simulated.
Once the network has been constructed, messages are injected into the network by
injection events.

Four different types of event classes have been defined, namely, injection, header-
routing, handshaking and channel-switching events. An event is specified to occur at
a particular time and location. At each instance of time, all the events that must be
executed at that time are completed. Only then is the time counter incremented and
the events of the next time instance executed. This is while the execution of an event
may generate another event to be executed at a future time. For instance, the
execution of an injection event generates a header-routing event. That event, when
executed, causes a channel-switching and a handshaking event.

When a flit is transferred from one buffer to the next, a counter at the
corresponding virtual channel is decremented and a handshaking event, to be

356 H.H. Najaf-abadi and H. Sarbazi-Azad

executed at the next time unit, is produced. This event notifies the preceding buffer
allocated by the message that there is an empty space ahead into which it can transfer
a new flit. A header-routing event, to be executed at a time determined by the channel
cycle time of the network, is also produced. Once routed to a specific channel, a
message waits until that channel is switched by a channel-switching event. If there is
a free virtual channel available at the time of switching, it is allocated to that message
and a counter corresponding to the virtual channel is initialized to the length of the
message. The virtual channel on a physical channel is switched in a round-robin
manner and every time a virtual channel is switched onto the physical channel, the
corresponding counter is decremented if the buffer of that channel has a new flit and
that of the next allocated virtual channel is empty. The execution of all these events
put together, results in the simulation of the functionality of the entire interconnection
network.

In each simulation experiment, a minimum of 120,000 messages have been
delivered and the average message latency calculated. Statistics gathering was
inhibited for the first 10,000 messages to avoid distortions due to startup transience.
The mean message latency is defined as the average amount of time from the
generation of a message until the last data flit of that message is consumed at the local
PE at the destination node. The network cycle time is defined as the transmission time
of a single flit from one router to the next, through an electric channel. The
transmission time of a flit, through an optical channel is however a fraction of the
network cycle time. In what follows, the ratio of optical channel transmission time to
the network cycle time is referred to as the channel cycle ratio. Messages are
generated at each node according to a Poisson process with a mean inter-arrival rate
of messages per cycle. All messages have a fixed length of M flits. The

destination node of each message has been determined through a uniform random
number generator to simulate a uniform traffic pattern.

Numerous experiments have been performed for several combinations of network
size, message length and number of virtual channels. The results of which are studied
in the following subsections.

Fig. 4. Average message latency in OTIS-hypercubes with 4 virtual channels per physical
channel, message length of 32 flits, and different channel cycle ratios; (a) 4-dimensional OTIS-
hypercube, and (b) 6-dimensional OTIS-hypercube

Comparative Evaluation of Adaptive and Deterministic Routing 357

4.1 The Effect of Channel Cycle Ratio

Fig. 4 depicts message latency results for the 4-dimensional and 6-dimensional OTIS-
hypercubes for different cases of the channel cycle ratio with the number of virtual
channels per physical channel equal to 4. It is evident from these figures that
decreasing the channel cycle ratio results in an increase in the generation rate for
which saturation occurs. But the effect gradually diminishes and from a point
onwards, reducing the ratio any further has no effect on the saturation point.

In these figures, results obtained from deterministic routing when the effect of
decreasing the channel cycle ratio is maximum, are also displayed to illustrate the fact
that the effect of adaptivity is generally greater than the maximum effect of
decreasing the channel cycle ratio.

4.2 The Effect of the Number of Virtual Channels

Fig. 5 shows the average message latency of 4-dimensional and 6-dimensional OTIS-
hypercubes, with a channel cycle ratio of 0.1, for different numbers of virtual
channels per physical channel and a message length of 32 flits. It is observed that,
increasing the number of virtual channels initially causes a considerable increase in
the generation rate for which saturation occurs, but gradually looses its effect.
Eventually, the saturation point reaches the bandwidth of the system. At this point,
increasing the number of virtual channels, no longer has any effect on the saturation
point.

It is evident from Fig. 5 that the generation rate of the saturation point becomes
equal to the bandwidth of the corresponding network when the number of virtual
channels per physical channel is equal to 10. With this number of virtual channels, the
network saturates with a generation rate of 0.022 messages per node per cycle. It can
therefore be concluded that the bandwidth of a 4-D OTIS-hypercube (with messages
32 flits long) is approximately equal to 0.022. In the same figure the message latency
of deterministic routing in an OTIS-hypercube with a small number of virtual
channels is also depicted. This shows that, although two virtual channels are sufficient
to implement deterministic routing in the OTIS-hypercube, deterministic routing
performs considerably worse than adaptive routing even with four virtual channels.

The average message latency of a number of different sized OTIS-hypercubes
(with a large number of virtual channels and a channel cycle ratio of 0.1), are
depicted in Fig. 6. From this figure, it is evident that the bandwidth of the OTIS-
hypercube is almost independent of its size. Therefore, in regard to performance, the
OTIS-hypercube can be considered to be a scalable architecture.

Another network that possesses a very high degree of performance scalability is the
hypercube. This can also be observed in the results of Fig. 6 where the average
message latency of 6-D and 8-D hypercubes are depicted. These results show that
when not considering implementation constraints (considering the channel cycle time
of the fully-electronic hypercube and OTIS-hypercube to be the same), the OTIS-
hypercube possesses less bandwidth than a hypercube with the same number of nodes.
This may be due to the smaller number of channels in an OTIS-hypercube compared
to an equivalent hypercube (with the same number of nodes). But the interesting point
is that when the channel cycle ratio is reduced, the maximum bandwidth of the OTIS

358 H.H. Najaf-abadi and H. Sarbazi-Azad

Fig. 5. Average message latency of OTIS-hypercubes with a channel cycle ratio of 0.1 and a
message length of 32 flits, for different numbers of virtual channels per physical channel; (a) 4-
dimesnional OTIS-hypercube, and; (b) 6-dimesnional OTIS-hypercube

hypercube becomes almost equal to the bandwidth of an equivalent hypercube. This is
while, in a similar comparison of deterministic routing in hypercube and OTIS-
hypercube networks, the maximum bandwidth of the OTIS-hypercube is found to be
considerably less than that of the equivalent hypercube.

4.3 The Effect of Implementation Constraints

When implementation constraints are brought into account, considerable degradation
in the performance of the hypercube becomes apparent as a result of the lengthy
transmission time of long wires. But in the OTIS-hypercube, long electronic
interconnections do not exist. The maximum channel transmission time of the OTIS-
hypercube is therefore a fraction of that of a same sized hypercube. In Fig. 6, the
average message latency of the 3-D OTIS-hypercube (with a channel cycle ratio of
1.0) is once again compared with that of an equivalent hypercube. This time however,
the network cycle time of the OTIS-hypercube has been scaled to different fractions
of the cycle time of the hypercube. Considering the performance scalability of the
hypercube and OTIS-hypercube, and the fact that similar results to that of Fig. 7 have
been obtained for different message lengths, it can be concluded that for the
bandwidth of an OTIS-hypercube (with channel cycle ratio equal to 1.0) to be
comparable to that of an equivalent hypercube, it is sufficient that the network cycle
time of the OTIS-hypercube be roughly half that of the hypercube.

The network cycle time of a network consists of two important attributes, namely,
intra-node and inter-node latency. The inter-node delay time depends primarily on
topology and packaging. Specifically, the inter-node delay is proportional to the
maximum wire length in the layout of the network. It is shown in [20] that the
maximum wire length of the most compact layout, for the hypercube network, is
equal to N/3 + o(N). Therefore, inter-node delay in the hypercube is linearly
proportional to the number of dimensions of the network. In an OTIS-hypercube, the

Comparative Evaluation of Adaptive and Deterministic Routing 359

Fig. 6. The average message latency of
equivalent hypercubes and OTIS-
hypercubes with 30 virtual channels per
physical channel (the default channel cycle
ratio is 0.1).

Fig. 7. The average message latency of a
6-dimensional hypercube and its equi-
valent 3-dimensional OTIS-hypercube
(with 30 virtual channels) for different
values of the network cycle

number of dimensions of each sub-graph is equal to half that of an equivalent
hypercube. Thus, the maximum wire length (electronic) in an OTIS-hypercube is
approximately half that of an equivalent hypercube. On the other hand, according to
[1], the intra-node delay of a network (which is dominated by the crossbar and router
delays) is logarithmically proportional to the number of input and output channels to a
node in the network.

Therefore, in an OTIS-hypercube network, a channel cycle time equal to half that
of an equivalent hypercube may easily be achievable when the inter-node delay is the
dominant delay factor. Even then, decreasing the channel cycle ratio will result in
further superior performance by the OTIS-hypercube.

4.4 Performance-Cost Analysis

When the performance to cost ratio of the OTIS-hypercube is compared to that of an
equivalent hypercube, it is observed that, for low generation rates, the OTIS-
hypercube is superior to the hypercube, when the channel cycle ratio is equal to 1.0
(assuming the use of electronic channels for transpose communication). This is shown
in Fig. 8, where the inverse of average message latency is considered to be
representative of performance, and the number of physical channels entering (or
exiting) the nodes of a network is considered to be representative of cost. From these
results, it can be concluded that compared to a hypercube, the OTIS-hypercube
topologically performs better at a lower cost for low generation rates.

4.5 An Adaptive-Deterministic Comparison

As a rule, the bandwidth of a network is independent of the routing algorithm used in
the network. In other words, with a large number of virtual channels, the generation

360 H.H. Najaf-abadi and H. Sarbazi-Azad

Fig. 8. Performance to cost ratio of adaptive routing in the hypercube compared to that of the
OTIS-hypercube with a large number of virtual channels and the channel cycle ratio equal to
1.0

Fig. 9. OTIS-hypercube average message latency with different numbers of virtual channels per
physical channel for adaptive and deterministic routing (the default channel cycle ratio is 0.1).

average message latency of deterministic and adaptive routing in the OTIS-hypercube
are compared. The difference between adaptive and deterministic routing is more
noticeable when there are a small number of virtual channels per physical channel. It
is evident from the results of Fig. 9 that the network saturates at a higher generation
rate with adaptive routing. But since the routing algorithm has no influence on the
bandwidth of the network, a straightforward conclusion is that with adaptive routing
fewer virtual channels are needed for the saturation point of the network to reach its
maximum (the bandwidth of the network).

5 Conclusions

Unlike previous studies which have considered the topological and algorithmic issues
in OTIS computers, in this study, we have investigated these systems in view of more
realistic assumptions. An adaptive deadlock-free wormhole routing algorithm for the
OTIS-hypercube is presented and the performance of this algorithm under uniform
traffic is studied and compared to that of a deterministic routing algorithm.

Comparative Evaluation of Adaptive and Deterministic Routing 361

Results reveal that decreasing the ratio of the optic to electronic channel
transmission time is only of significance when the ratio is approximately less than
half. In view of performance, the OTIS-hypercube is observed to be a scalable
network. It has been shown that, for the bandwidth of an OTIS-hypercube to be
comparable to that of a same sized hypercube, it is sufficient that the network cycle
time of the OTIS-hypercube be half that of the hypercube. When implementation
factors are accounted for, we find this condition to be easily attainable. It has also
been shown that, even when the network cycle time of the OTIS-hypercube and the
optical channel transmission time are equal to that of an equivalent fully-electronic
hypercube, the performance-to-cost ratio of the OTIS-hypercube is higher than that of
the hypercube for low generation rates. Finally, the bandwidth of the network is found
to be independent of the routing algorithm used. Therefore, with adaptive routing
fewer virtual channels are needed for the maximum saturation point to be attained.

Our next objective is to conduct an analysis of the OTIS-hypercube under different
traffic patterns with different routing algorithms in order to evaluate the effect of
adaptivity and minimality of routing, on performance.

References

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

A. A. Chien, “A cost and speed model for k-ary n-cube wormhole routers”, In
Proceedings of Hot Interconnects’98, August 1993.
M. Feldman, S. Esener, C. Guest and S. Lee, “comparison between electrical and free
space optical interconnects based on power and speed considerations”, applied optics,
27(9): 1742-1751, May 1988.
F. Kiamilev, P. Marchand, A. Krishnamoorthy, S. Esener, and S. Lee, “performance
comparison between optoelectronic and VLSI multistage interconnection networks”,
journal of lightwave technology, 9(12): 1674-1692, Dec. 1991.
G. C. Marsden, P. J. Marchand, P. Harvey, and S. C. Esener, “Optical transpose
interconnect system architectures”, Optical Letters, 18(13): 1083-1085, July 1993.
W. Hendrick, O. Kibar, P. Marchand, C. Fan, D. V. Blerkom, F. McCormick, I. Cokgor,
M. Hansen, and Esener, “modeling and optimization of the optical transpose
interconnection system”, In optoelectronic technology Center, Program Review, Cornel
University, Sept. 1995.
F. Zane, P. Marchand, R. Paturi, and S. Esener, “Scalable network architectures using the
optical transpose interconnection system (OTIS)”, In proceedings of the second
International Conference on Massively Parallel Processing using Optical
Interconnections (MPPOI’96), pages 114-121, San Antonio, Texas, 1996.
W.J. Dally and C. Seitz, “Deadlock-free message routing in multiprocessor
interconnection networks”, IEEE Trans. Computers, 36 (5) (1987), 547-553.
W.J. Dally, “Virtual channel flow control”, IEEE Trans. Parallel and Distributed
Systems, 3 (2) (1992), 194-205.
J. Duato, “Why commercial multicomputers do not use adaptive routing”, IEEE
Technical Committee on Computer Architecture Newsletter, (1994), 20-22.
S. Sahni, C.-F. Wang, “BPC permutations on the OTIS-hypercube optoelectronic
computer”, Informatica, 22: 263-269, 1998.
S. Sahni and C.-F. Wang, “BPC permutations on the OTIS-mesh optoelectronic
computer”, In proceedings of the fourth international conference on massively parallel
processing using optical interconnections (MPPOI’97), pages 130-135, 1997.

362 H.H. Najaf-abadi and H. Sarbazi-Azad

12.

13.

14.

15.

16.

17.

18.

19.

20.

C.-F. Wang and S. Sahni, “Matrix multiplication on the OTIS-mesh optoelectronic
computer”, In Proceedings of the sixth international conference on Massively Parallel
Processing using Optical Interconnections (MPPOI’99), pages 131-138, 1999.
C.–F. Wang and S. Sahni, “Image processing on the OTIS-mesh optoelectronic
computer”, IEEE transaction on parallel and distributed systems, 11(2): 97-107, 2000.
C.–F. Wang and S. Sahni “Basic operations on the OTIS-mesh optoelectronic computer”,
IEEE transaction on parallel and distributed systems, 9(12): 1226-1236, 1998.
S. Rajasekeran and S. Sahni “Randomized routing, selection and sorting on the OTIS-
mesh”, IEEE transaction on parallel and distributed systems, 9(9): 833-840, 1998.
A. Osterloh, “Sorting on the OTIS-mesh”, In Proceedings of the International
Parallel and Distributed Processing Symposium (IPDPS’2000), pp. 269-274, 2000.
Krishnamoorthy, P. Marchand, F. Kiamilev, and S. Esener, “Grain–size considerations
for optoelectronic multistage interconnection networks”, Applied Optics, 31(26): 5480-
5507, Sept. 1992.
J. Duato, T. Pinkston, “A general theory for deadlock-free adaptive routing using a
mixed set of resources”, IEEE Transaction on Parallel and Distributed Systems, Vol. 12,
2001, pp. 1219-1235.
L. Ni and C. Glass, “The Turn Model for Adaptive Routing”, In Proc. of the
International Symposium on Computer Architecture, IEEE Computer Society, pp. 278-
287, May 1992.
Yeh, C.-H., E.A. Varvarigos, and B. Parhami, “Efficient VLSI layouts of hypercubic
networks,” Proc. Symp. Frontiers of Massively Parallel Computation, Feb. 1999, pp. 98-
105.

A Two-Level On-Chip Bus System Based on Multiplexers

Kyoung-Sun Jhang1, Kang Yi2, and Soo Yun Hwang1

1 Dept. of Computer Eng., ChungNam National University
sun@cnu.ac.kr, charisma@ce.cnu.ac.kr

2 School of Computer Sci. and Electronic Eng., Handong Global University
yk@handong.edu

Abstract. The SoC (System on a Chip) design paradigm becomes a promising
way of system integration as the level of design complexity is getting higher.
There may be many IP modules to be integrated on a single chip in the modern
SoC design. On-chip buses are usually used to interconnect the modules on a
chip. Many bus architectures have been proposed for the interconnection of
modules on a chip. We propose a two-level on-chip bus system that provides in-
ter-bus transactions with multiplexers rather than with tri-state buffers or MOS
switches such as in the segmented bus approaches. Our bus system can maxi-
mize the system throughput with concurrent inter-bus transactions as well as in-
tra-bus transactions while preserving the already developed on-chip bus proto-
cols for IP reuse. We present the performance simulation results of our
approach with several different configurations compared with the existing seg-
mented bus structures in terms of the total number of bus transactions executed
in a given time.

1 Introduction

Today’s deep submicron fabrication technologies enable design engineers to place
billions of transistors on a single chip. These high-integrated circuit technologies
make it possible for designers to integrate a number of function blocks like proces-
sors, memories, interfaces, and custom logic on a single chip. As the number of IP
blocks increases, the communication among function blocks becomes the new system
performance bottleneck [1].

The simplest way of connecting the multiple function blocks on a single chip is to
use a traditional system bus. But, the existing buses may not be the solution to the
communication traffic problem because only one pair of master and slave blocks can
send and receive data at a particular time. There are several types of on-chip bus pro-
posals like AMBA [2] from ARM, CoreConnect [3] from IBM, WISHBONE [4] and
etc. to resolve this problem. However, they are also limited in the sense that they do
not deal with communications among multiple buses on a single chip.

Bus segmentation that was proposed to reduce the average power to drive the long
bus lines may contribute to the performance improvement with concurrent bus trans-
actions [5]. However, the approach has limited concurrency due to the inherent nature
of the segmented bus. To improve system throughput further, we propose a new two-
level bus interconnection scheme. Our approach allows concurrent bus transactions

P.-C. Yew and J. Xue (Eds.): ACSAC 2004, LNCS 3189, pp. 363–372, 2004.
© Springer-Verlag Berlin Heidelberg 2004

364 K.-S. Jhang, K. Yi, and S.Y. Hwang

for a multiple bus clusters. We assume that the modules on a chip are clustered ac-
cording to their traffic patterns. Our bus system is constructed in a two-level manner
to separate local traffic from inter-bus traffic that is dealt with inter-bus connection
paths. Our inter-bus connection scheme employs multiplexers rather than tri-state
buffers or switches for reliable bus system operations and higher testability. With per-
formance simulations, we observed that our MUX-based two-level on-chip bus archi-
tecture improves bus throughput by about 1.5 times compared with the existing seg-
mented bus architecture. We also noticed from our preliminary implementations that
our approach is more effective in reducing clock period than the segmented bus ap-
proach.

In the next section, previous works on the segmented bus were described and ana-
lyzed. In section 3, we describe our two-level bus architecture with several configura-
tions. In section 4, we compare our bus structure with the existing segmented on-chip
bus structure based on performance simulation. Finally, we summarize this paper and
suggest future works.

2 Segmented On-Chip Bus System and Its Limitations

Several works on bus segmentation were proposed to reduce the average power con-
sumption to drive long bus lines [6, 7]. In addition, the approach achieves throughput
enhancement through parallelism [5]. The core idea of the existing segmented on-chip
bus approach is to partition a bus system into several bus segments considering traffic
localization. Each segment is a normal bus consisting of masters and slaves. Fig. 1
shows the segmented bus organization with four segments. Adjacent segments are
connected via switches or tri-state buffers. The internal bus transactions of different
segments can be performed concurrently while the switches connecting the segments
are turned off. For example, four concurrent intra-segment transactions can be per-
formed in the bus organization shown in Fig. 1 while all the switches connecting the
segments are off. In addition, an inter-segment transaction between two different
segments can also be performed through the switches connecting the corresponding
segments. Multiple inter-segment transactions may be performed concurrently if the
data paths of the transactions do not overlap. For example, we may perform the trans-
action between segments #1 and #2 and the transaction between segments #3 and #4
concurrently in the bus structure shown in Fig. 1.

The switches are controlled by a central arbiter that receives request signals and
target segment identifiers from local arbiters. To implement the segmented bus struc-
ture, only arbiters need to be modified and the inter-segment transaction is transparent
to all the function blocks in the system. Function blocks need not to be modified to al-
low inter-segment transactions on the segmented bus. In Fig. 1, CA represents central
arbiter and LA local arbiter. LA selects one of transaction requests based on its own
arbitration policy. If the transaction is an inter-segment, LA sends request to CA and
CA sends acknowledge to LA when the inter-segment transaction is ready to start. CA
has its own arbitration algorithm to select one transaction if several local arbiters ask
more than one inter-segment transactions at a time.

A Two-Level On-Chip Bus System Based on Multiplexers 365

Fig. 1. Segmented Bus Organization

Though the segmented bus is beneficial in many aspects, it has several limitations
as follows.

1.

2.

3.

If several adjacent segments are occupied with an inter-segment bus transaction,
other transactions (including inter- or intra- segment transactions) cannot be per-
formed at the moment. It is because the related segments form a single bus that al-
lows only one transaction at a time. For example, in Fig. 1, while segment #1 (mas-
ter) sends data to segment #3 (slave), segment#2 cannot start any bus transaction
until the inter-segment transaction between segments #1 and #2 finishes.

The effect of energy saving by the capacitive load reduction in the segmented bus
may be alleviated by unnecessary power consumption due to tri-state buffers. Note
that the undefined value (tri-state may result in an undefined value) of an input sig-
nal for CMOS logic makes a short circuit path between VDD and GND [9]. Such
an undefined value also makes the logic testing difficult since undefined signal
values prohibit the exact probing of logic values.

The clock period of the segmented bus system increases linearly as the number of
segments increases, since all the bus segments need to be driven together in the
worst case:

Thus, we proposed a new on-chip bus scheme that further improves parallelism
while guaranteeing no undefined state and reducing clock period. Our approach is a
two-level bus system using multiplexers instead of tri-state buffers in order to avoid
adverse effects.

366 K.-S. Jhang, K. Yi, and S.Y. Hwang

3 Proposed MUX-Based Two-Level Bus System

The proposed two-level MUX-based bus organization consists of local independent
buses that contain sets of closely communicating modules, multiplexers that route
inter-bus transactions between local buses, and a central arbiter that controls the mul-
tiplexer(s) for inter-bus connection at a higher level. Fig. 2 shows a simple MUX-
based bus organization with only one multiplexer set. In that case only one inter-bus
transaction can occur at a time while multiple local bus (intra-bus) transactions can be
performed concurrently in the local buses that are not involved in the current inter-bus
transaction.

Such a bus configuration has higher concurrency than the segmented bus because
the local buses that are not involved in an inter-bus transaction need not suspend as in
the case of the segmented bus organization. In addition, we can avoid unnecessary
power consumption by employing multiplexers rather than tri-state buffers. If more
than two inter-bus transactions are requested simultaneously the arbiter selects one of
them by an arbitration algorithm and controls the local arbiters and the multiplexers
accordingly.

Fig. 2. A simple MUX-based bus organization

We can try another bus configuration and obtain more concurrency if we add more
multiplexers as shown in Fig. 3 and Fig. 4. The bus configuration shown in Fig. 3
uses two 4-to-l multiplexers and four 2-to-l multiplexers to allow two concurrent in-
ter-bus transactions. Since up to two inter-bus transactions may occur simultaneously
in this configuration, we may expect more inter-bus transaction concurrency than in
the bus configuration with one multiplexer. If more than two buses request for the
same target local bus simultaneously, central arbiter selects one of them according to
an arbitration policy.

A Two-Level On-Chip Bus System Based on Multiplexers 367

Fig. 3. MUX-based bus organization with two concurrent inter-bus transactions

Fig. 4. Four concurrent inter-bus transactions in a structure with four 3-to-1 multiplexers

We can maximize inter-bus concurrency with four 3-to-1 multiplexers as shown in
Fig. 4. It is possible for such a bus configuration to have up to four concurrent inter-
bus transactions because the master part and the slave part in a local bus may be in-
volved in different inter-bus transactions. For example, the master part of Bus#1
sends the data to the slave part of Bus#2 while the master part of Bus#2 sends data to
the slave part of Bus#1 simultaneously. Fig. 4 shows an example of four concurrent
inter-bus transactions.

Our approach is similar to the segmented bus approach with a central arbiter and
local arbiters. But, our approach is different in that the master part and the slave part

368 K.-S. Jhang, K. Yi, and S.Y. Hwang

in a local bus can be involved in different inter-bus transactions resulting in maximal
inter-bus transaction concurrency.

Note that we can use the existing modules without modification as is the case with
segmented bus because the inter-bus transaction is transparent to each modules in-
volved. In addition, our bus architecture has higher possibility to achieve more con-
currency than the segmented bus especially when the local buses are also MUX-
based. The local on-chip bus may be a bi-directional bus that use one bus line for both
input and output data or a MUX-based bus that separates data-in and data-out bus
lines from each other. However, in order to achieve the maximum bus throughput, we
assume that the local buses are also multiplexer-based bus system.

Fig. 5. An internal structure for the multiplexer-based local bus

Fig. 5 shows the internal bus structure that can be used with our two-level bus to
maximize inter-bus transaction parallelism. The upper black MUX routed to the inter-
nal slave is used to select one from internal and external master requests while the
lower black MUX routed to the internal master is to choose one from internal and ex-
ternal slave responses. The most important benefit of this structure is that the master
part and the slave part in a bus can be involved in different inter-bus transactions, re-
sulting in maximum inter-bus transaction concurrency.

4 Experiments and Analysis

We did the performance simulations for each bus configuration shown in the previous
sections. The bus systems were modeled with VHDL in the behavioral level and
simulated by ModelSim II simulator to measure the bus system performance. In the
models we assumed that each bus transaction has the same length and target addresses
are generated based on uniform distribution random number function. Each local arbi-
ter selects one master if there is any intra-bus request. Or, the local arbiter selects one

A Two-Level On-Chip Bus System Based on Multiplexers 369

of masters requesting inter-bus transactions and forwards the request to the central ar-
biter. Central arbiter selects and grants one request for the same target bus based on a
round-robin policy. In experiments, we have two adjustable parameters for each local
bus: (1) idle time ratio (idle_ratio) that indicates how much portion of the time the lo-
cal bus is idle (2) inter-bus or inter-segment transaction ratio (inter_bus_ratio) over
the whole active bus transactions. So, the time spent for the inter-segment or inter-bus
traffic can be calculated by the formula, (1- idle_ratio) * inter_bus_ratio * simula-
tion_time. Our simulation assumes the number of segments or local buses is four and
we deal with the following four types of bus configurations. The number of local
buses can be larger than four to include more components in a system.

The existing segmented bus of Fig. 1 (segmented)

The MUX-based two-level bus with one multiplexer of Fig. 2 (mux1)

The MUX-based two-level bus with two multiplexer of Fig. 3 (mux2)

The MUX-based two-level bus with four multiplexer of Fig. 4 (mux4)

Fig. 6, Fig. 7 and Fig. 8 are graphical representations of the performance simula-
tion results for the varying idle ratio (10%, 30% and 50% respectively) and inter-bus
transaction ratio (X-axis). Y-axis indicates throughput, i.e. the time spent for transac-
tions (inter-bus transactions + intra-bus transactions) divided by the total simulation
time. We can see from the figures that the maximum throughput decreases as idle_ra-
tio increases (Note the scales of Y-axis from Figure 6 to Figure 8). In addition,
throughput goes down with the increase of inter_bus_ratio regardless of idle_ratio.
This implies that when inter_bus_ratio is high, throughput is limited largely by the
number of MUXes dedicated to inter-bus connections.

From the simulation results, we can confirm that mux4 is better than any other bus
configurations. The simulation graphs indicate that the structures, segmented, mux1,
mux2 and mux4 can be ordered by the system throughput as follows.

Fig. 6. Graphical Representation of Simulation Results for Idle Ratio=10%

370 K.-S. Jhang, K. Yi, and S.Y. Hwang

Fig. 7. Graphical Representation of Simulation Results for Idle Ratio=30%

Fig. 8. Graphical Representation of Simulation Results for Idle Ratio=50%

Especially, mux4 shows higher performance than segmented by 1.2 to 1.5 times. In
addition, we observe that the slope of mux4 configuration less steep than mux1 and
segmented. That means mux4 configuration is less sensitive to the variation of the in-
ter-bus transaction ratio than others. We can state that mux4 bus configuration pro-
vides relatively stable bus traffic quality compared with other on-chip bus configura-
tions for the fluctuating inter-bus transaction ratio.

For high inter-bus transaction ratio (0.9 or 0.8), segmented is slightly better for
mux1. This is because mux1 allow only one inter-bus transaction at a time, while seg-
mented permits two concurrent inter-bus transactions at a time. Note that higher inter-
bus (segment) ratio means most bus transactions are of inter-bus or inter-segment traf-
fic. Remember that since clustering is made reflecting the traffic locality, the likeli-
hood of high inter-bus transaction ratio is so small. Therefore, we can consider that
mux1 is better choice than segmented in a normal situation.

A Two-Level On-Chip Bus System Based on Multiplexers 371

During the simulation, we assumed that the arbitration decision of each local arbi-
ter and that of the central arbiter are independent. Thus, the selection of a master in
each local bus is determined based on just the local information of the bus. Such a
policy is so simple that it is easy to implement, but the policy has limited efficiency
for the maximal throughput of the whole system. We suppose that mux4 is just
slightly better than mux2 (especially for low inter-bus transaction ratio) due to this
simple arbitration policy.

Clock period is another factor to determine the system performance in a synchro-
nous system. We analyzed the circuit components affecting clock periods of the
aforementioned configurations. Our analysis is summarized in Table 1. The configu-
ration segmented seems to have more delay components than others since four sepa-
rate buses must act like a single bus in the worst case. In that case, the bus system
should drive four internal bus wires and three switches in a clock cycle. On the other
hand, MUX-based bus configurations have similar delay factors to determine clock
period regardless of the number of MUXes employed.

We implemented partially our proposed architecture (mux2) and the segmented bus
structure with synthesizable RTL VHDL targeting XILINX FPGA (XCV3000). Syn-
thesis results with XILINX design tool (ISE 6.2) show that segmented configuration
has about 2.5 times longer clock period than mux2 configuration. On area and power
consumption, two configurations exhibit similar results. This indicates that our ap-
proach is feasible and viable.

5 Summary and Future Works

As the system integration level gets higher, on-chip bus interconnection between
many IP modules is required for higher performance through exploiting the bus trans-
action parallelism. In this paper, we propose a new on-chip bus interconnection archi-
tecture that could maximize parallelism among buses or segments. We compare the
performance of our proposal with the existing segmented on chip bus proposal. Our
idea is based on the two-level bus system with multiplexers rather than tri-state buff-
ers or switches that cause some power consumption and testability problems. Our on-
chip bus system has more stability and testability as well as higher parallelism than
the segmented bus system. The performance simulation results show that our inter-
connect method has higher system performance by 1.5 times than that of existing
segmented bus approach. We can summarize the performance simulation results as
follows.

372 K.-S. Jhang, K. Yi, and S.Y. Hwang

1.

2.

Generally, the system performance relation is mux4 > mux2 > mux1 > segmented

The bus configurations mux4 and mux2 show more stable traffic quality than mux1
and segmented bus configuration for varying inter-bus transaction ratio.

The simulation result of our MUX-based bus (mux4) that allows four concurrent
inter-bus transactions was slightly better than our MUX-based bus (mux2) that allows
two concurrent inter-bus transactions due to the trivial arbitration policy. This implies
a further study on the arbitration algorithm is necessary to maximally exploit the topo-
logical benefits of MUX-based bus system.

Our preliminary implementation on segmented and mux2 shows that the clock pe-
riod of segmented configuration is about 2.5 times longer than that of our proposed
configuration mux2 while both approaches exhibit similar area and power consump-
tion. This indicates that our approach is feasible and viable.

We feel the necessity to adapt the idea to the popular existing MUX-based on chip
bus architectures like AMBA. Currently, we are working towards to hardware imple-
mentation of the proposed MUX-based two-level bus system. Finally, we hope to ap-
ply our bus system to the real world examples such as multimedia processing applica-
tion.

Acknowledgements. This work was supported in part by IT SoC Promotion Group of
Korean IT Industry Promotion Agency and partly by ETRI (Electronics and Commu-
nications Research Institute) in Korea.

References

1.

2.
3.

4.
5.

6.

7.

8.

9.

D. Langen, A. Brinkmann, and U. Ruckert, “High Level Estimation of the Area and
Power Consumption of On-Chip Interconnects”, Proc. of the Annual IEEE Interna-
tional ASIC/SOC Conference, Sep. 2000. pp. 297-301.
“AMBA 2.0 Specification,” http://www.arm.com/products/solutions/AMBA_Spec.html
“The CoreConnect Bus Architecture,”
http://www-3.ibm.com/chips/products/coreconnect/
“Wishbone,” http://www.opencores.org
T. Seceleanu, J. Plosila, and P. Liljeberg, “On-Chip Segmented Bus: A Self-timed ap-
proach”,IEEE ASIC SoC Conference 2002.
C.-T. Hsieh and M. Pedram, “Architectural energy optimization by bus splitting,” IEEE
Tran. CAD, vol. 21, no.4, APR. 2002.
J.Y. Chen, W. B. Jone, J. S. Wang, H.-I. Lu, and T. F. Chen, “Segmented bus design for
low-power systems” IEEE Tran. VLSI Systems, vol. 7, no.1, Mar. 1999.
K. S. Jhang, K. Yi, and Y. S. Han, “An Efficient Switch Structure for Segmented On-
Chip Bus”, Proc. of Asia-Pacific International Symposium on Information Technology,
Jan. 2004.
Gary Yeap, Practical Low Power Digital VLSI Design, Kluwer Academic Publisher,
1998.

Make Computers Cheaper and Simpler

GuoJie Li

Institute of Computing Technology
Chinese Academy of Sciences

Abstract. It is expected that 700-800 millions of Chinese people will
be connected to Internet in the next 15 years. What is really needed
is reducing the cost of computers so that information services will be
available for low income people rather than high performance only. In
this talk, we briefly examine the research and development of computer
architecture during the past decades and rethink the Moore’s Law from
the user’s point of view. To explain the design principle of low cost and
simplicity, we discuss the prospects of the new research direction by using
examples from our own work, such as low cost CPU design, massive clus-
ter computer (MCC) and reconfigurable computer system. Our research
shows that it is possible to design and implement the deskside Teraflops-
level supercomputer, which is less than $l00K, and PC of $150 in the
next 3-5 years.

P.-C. Yew and J. Xue (Eds.): ACSAC 2004, LNCS 3189, p. 373, 2004.
© Springer-Verlag Berlin Heidelberg 2004

A Low Power Branch Predictor to Selectively
Access the BTB

Sung Woo Chung and Sung Bae Park

Processor Architecture Lab., Samsung Electronics,
Giheung-Eup, Yongin-Si, Gyeonggi-Do, 449-711 Korea

{s.w.chung, sung.park}@samsung.com

Abstract. As the pipeline length increases, the accuracy in a branch
prediction gets critical to overall performance. In designing a branch
predictor, in addition to accuracy, microarchitects should consider power
consumption, especially in embedded processors. In this paper, we pro-
pose a low power branch predictor, which is based on the gshare predic-
tor, by accessing the BTB (Branch Target Buffer) only when the predic-
tion from the PHT (Prediction History Table) is taken. To enable this,
the PHT is accessed one cycle earlier to prevent the additional delay. As
a side effect, two predictions from the PHT are obtained at one access
to the PHT, which leads to more power reduction. The proposed branch
predictor reduces the power consumption, not requiring any additional
storage arrays, not incurring additional delay (except just one MUX de-
lay) and never harming accuracy. The simulation results show that the
proposed predictor reduces the power consumption by 43-52%.

1 Introduction

As the pipeline length of today’s embedded processors increases, the accuracy of
a branch prediction affects the performance more significantly. In addition to ac-
curacy, processor architects should consider the power consumption in a branch
predictor, which is reported to account for more than 10% of the total proces-
sor’s power consumption [1]. (In this paper, we define that a branch predictor
is composed of a PHT (Prediction History Table) and a BTB (Branch Target
Buffer)) Especially, in the embedded processor where the power consumption is
crucial, it is important to reduce the power consumption of the branch predictor
while maintaining the accuracy.

Some general purpose processors exploit the predecoding to detect whether
the instruction is a branch or not, resulting in the selective access to the branch
predictor(PHT and BTB) only when the instruction is a branch. In this case, the
access to the branch predictor should be preceded by the access to the instruction
cache. However, if the fetch stage is timing critical, the sequential access incurs
additional delay. In embedded processors such as ARM 1136 [8] and ARM 1156
[9], the fetch stage is timing critical, leading to the simultaneous accesses to the
branch predictor and the instruction cache. Accordingly the branch predictor

P.-C. Yew and J. Xue (Eds.): ACSAC 2004, LNCS 3189, pp. 374–384, 2004.
© Springer-Verlag Berlin Heidelberg 2004

A Low Power Branch Predictor to Selectively Access the BTB 375

should be accessed whenever instructions are fetched, resulting in significant
power consumption.

Note that all the predictions from the branch predictor are not used to fetch
the next instructions. In some processors that have timing margin in the fetch
stage, instructions are predecoded after instructions are fetched. If the instruc-
tion is predecoded as a branch, the prediction is used to fetch the next instruc-
tion. Otherwise, the prediction is not used and the instruction of subsequent
address is fetched. In other processors that have no timing margin in the fetch
stage, the predictions are used to fetch the next instruction only when there is
a hit in the BTB. In other words, a BTB hit is considered to indicate that the
instruction is a branch.

Banking could be considered to reduce the power consumption in the branch
predictor. However, the power reduction by banking is not more than 4% [1]
and banking requires additional chip area. The PPD(Prediction Probe Detector),
which is accessed earlier than the instruction cache, was proposed for a low power
branch predictor [1]. It detects whether the instruction is a branch instruction
in the fetch (branch prediction) stage to eliminate unnecessary accesses to the
branch predictor. However, the PPD itself consumes extra power. Moreover, it
may increase the pipeline latency, which may lead to the decrease the processor
frequency [2] [3].

In this paper, we propose a low power branch predictor. In the proposed
branch predictor, the BTB is accessed only when the branch prediction is taken.
To enable this without additional delay, the PHT is accessed one cycle earlier,
resulting in selective access to the BTB.

2 Branch Predictors for Embedded Processors

Static branch predictors have been used for embedded processors. In some em-
bedded processors, bimodal branch predictors, which are known as moderately
accurate, are adopted. Recently, however, the increased pipeline length of em-
bedded processors causes more performance penalty from branch mispredictions.
Accordingly, a more accurate branch prediction is necessary to reduce the CPI
loss that arises from the longer pipeline. Considering only accuracy, the tourna-
ment branch predictor [4], which was used for Alpha 21264, would be one of the
best choices. However, it requires too large chip area to be adopted in embedded
processors. The accurate branch predictor, which consumes reasonable area and
power, such as gshare [4], is being considered for embedded processors [9].

Fig. 1 depicts the PHT of the traditional branch predictor, called gshare
[4]. The PHT is an array of 2-bit saturating counters. It is indexed by the
exclusive OR of the PC with the global history. Each counter of the PHT is
increased/decreased when the branch is taken/untaken. The MSB (Most Signif-
icant Bit) of each entry determines the prediction (branch taken/untaken).

The branch predictor inevitably consumes unnecessary power. As shown in
Fig. 2, whenever there is an instruction in the fetch stage, the PHT and the BTB
should be accessed simultaneously. The reason is that there is no way to detect

376 S.W. Chung and S.B. Park

Fig. 1. The PHT of the Traditional Branch Predictor (Gshare Branch Predictor)

Fig. 2. Branch Prediction in the Traditional Branch Predictor

A Low Power Branch Predictor to Selectively Access the BTB 377

whether the instruction is a branch or not, in the early part of the fetch (branch
prediction) stage. If the instruction is a branch, the PHT will be reaccessed later
for training (update of the prediction information). Otherwise, there is no need
to update the PHT for training.

3 Low Power Branch Predictor

In the proposed predictor, the BTB is accessed only when the prediction from
the PHT is taken. To avoid the additional delay, the PHT should be accessed
one cycle earlier.

3.1 Early Access to the PHT

In the traditional predictor, the PHT is accessed every cycle when there is a
fetched instruction. To reduce the power consumption in the PHT, the proposed
predictor looks up two predictions at every access to the PHT, which is described
in Fig. 3. We double the width of the PHT but reduce the depth of the PHT
by half for a fair comparison. The dynamic power consumption of the 4096 X 2
PHT is more than that of the 2048 X 4 PHT, though the difference is just 4.2
% - This data is obtained using Samsung Memory Compiler [5].

Fig. 3. Branch The PHT of the Proposed Branch Predictor

Different from the traditional predictor, the PHT in the proposed predictor is
indexed by exclusive ORing of the PC excluding the LSB with the global history
excluding the LSB. Note that if the global history is not changed and only the
LSB of the PC is changed, two predictions can be acquired by accessing the
PHT only once. The proposed predictor assumes that the previous instruction is
not a predicted taken branch which changes global history. In other words, the
propose predictor assumes that there is always sequential access to the PHT. If

378 S.W. Chung and S.B. Park

the previous instruction is a predicted taken branch, the PHT is reaccessed with
new PC and new global history.

Fig. 4. Branch Prediction in the Proposed Branch Predictor

As shown in Fig. 4, the PHT lookup is done one cycle earlier compared to the
traditional predictor. After the PHT lookup, the prediction is selected between
the two predictors in the fetch (branch prediction) stage. Thus, the prediction can
be obtained just after the MUX delay, which is early in the fetch stage compared
to the traditional predictor (ex. in case of instruction and instruction
in Fig. 4). If the previous instruction (instruction in Fig. 4) is predicted
as taken, the PHT should be reaccessed with a new PC in the fetch stage for
the current instruction (instruction in Fig.4). Note that two predictions
can be used only when they are correctly aligned. For example, predictions for
instruction and instruction can be looked up by accessing the PHT just
once, whereas predictions for instruction and instruction can not
since they are misaligned in PHT as shown in Fig. 3.

If the PHT were sequentially accessed, the number of accesses to the PHT
would be decreased by 50% in the proposed predictor. Practically, however, the
PHT is not always sequentially accessed because branch instructions, regardless

A Low Power Branch Predictor to Selectively Access the BTB 379

of taken/untaken, change the global history (If the branch is predicted taken,
the PC is also changed). Accordingly, the number of accesses to the PHT is
decreased to ((total number of instructions)/2 + number of branch instructions).
Generally, branch instructions occupies only 0-30% of total instructions in most
applications [6] [7], resulting in substantial power reduction.

As explained above, the power consumption is reduced. How much is the ac-
curacy of the proposed predictor affected? If the previous instruction is predicted
untaken, the prediction for the current instruction is also sequentially accessed,
which does not make any difference. Thus, the prediction from the proposed pre-
dictor is same as that from the traditional predictor. If the previous instruction
is predicted taken, the PHT is reaccessed in the fetch stage for the predicted
address from the BTB. Though the prediction from the first access to the PHT
is different, the prediction from the second access to the PHT of the proposed
predictor is same as that of the traditional predictor. Therefore, the proposed
predictor never affects the accuracy of the branch prediction.

3.2 Selective Access to the BTB

In the traditional predictor, the BTB as well as the PHT should be accessed
every cycle. As mentioned in Sect. 3.1, the prediction is known early in the fetch
stage of the proposed branch predictor, which enables the proposed predictor
to selectively access to the BTB, as shown in Fig. 4. If the prediction is taken,
the access to the BTB is enabled. Otherwise, the access to the BTB is disabled
because the target address, which is obtained from the BTB, is useless. Though
the number of predicted takens is generally more than that of predicted untak-
ens, the predicted untakens still occupy 10-60% of total instructions, depending
on the applications [6] [7]. In other words, 10-60% of the BTB accesses can be
decreased, resulting in the power reduction of the BTB.

4 Analysis Methodology

We presented analytical model and ran the simulations to evaluate the power
consumption. Simulations were performed on a modified version of Simplescalar
toolset [10]. The power parameters were obtained from the Samsung Memory
Compiler [5] with Samsung 0.13 um generic process in a typical condition (25°C,
VDD=1.20V). The configuration of the simulated processor is based on the spec-
ification of ARM 1136 [8]. We selected four applications (gcc, mcf, perl_bmk and
vortex) from the Spec2000 benchmark suite [6]. Table 1 shows the sizes of the
PHT and the BTB, which are expected for embedded processors in the near
future. The power consumptions in Table 1 are normalized to the power con-
sumption in the case of the power consumption of the read operation for 4096
X 2 PHT (We normalized the value since it is not permitted to officially present
the absolute value by Samsung internal regulation).

380 S.W. Chung and S.B. Park

5 Analysis Results

5.1 Analytical Models

We present the notations in Table 2 for analytical models.
The total power consumption in the traditional branch predictor is

In the traditional branch predictor, the PHT and the BTB are read at every
instruction. The PHT is written (updated) for training when the instruction is
a branch and the BTB is written when a BTB miss prediction occurs.

The total power consumption in the proposed branch predictor is

In the proposed branch predictor, the number of read accesses to the PHT is
decreased. In addition, the number of read accesses to the BTB is decreased from
total number of instructions to the number of predicted takens, since the BTB

A Low Power Branch Predictor to Selectively Access the BTB 381

Fig. 5. Results from Analytical Models

is accesses only when the prediction from the PHT is taken. Thus the power
consumption in the proposed branch predictor is expected to be reduced.

In Fig. 5, we vary the branch instruction ratio and the predicted untaken
ratio to analyze the power consumption with analytical models. Each set of bars
is classified, according to the branch instruction ratio in a program. In each set,
all bars are normalized to the leftmost bar, which is the power consumption in
the traditional predictor. As shown in above formula, as the traditional predictor
is not related to the number of predicted untakens, leftmost one bar in a set is
responsible for the traditional predictor with various predicted untaken ratios.
Since the branch instruction ratio is 0-30% and the predicted untaken ratio is
0.1-0.6 in most applications [6][7], we showed the results in the range. In most
applications, the BTB miss prediction ratio is between 0-20% but it does not
affect the analysis result directly. Thus, the BTB miss prediction ratio is fixed
to 10%.

The decrease of the branch instruction ratio reduces the number of accesses
to the PHT and the increase of the predicted untaken ratio reduces the num-
ber of accesses to the BTB. Thus, as the branch instruction ratio decreases
and the predicted untaken ratio from the branch predictor increases, the power
consumption in the proposed predictor is more reduced.

The power consumption for training is same in the traditional predictor and
in the proposed predictor, since the PHT training is necessary whenever there
is a branch instruction and the BTB training is necessary whenever a BTB miss
prediction occurs. As shown in Fig. 5, the power consumption for prediction
(not training) in the PHT and in the BTB occupies 29-35% and 55-65% of the
total power consumption in the branch predictor, respectively. The proposed

382 S.W. Chung and S.B. Park

predictor reduces the power consumption not for training but for prediction. The
power reduction from prediction in the PHT is 11-16%, depending on the branch
instruction ratio. Moreover, the power reduction from prediction in the BTB
is 5-39%, depending on the predicted untaken ratio. Therefore, the proposed
predictor reduces the total power reduction of the branch predictor by 16-55%.

6 Simulation Results

Fig. 6 shows the simulation results with four applications from Spec2000 bench-
mark suite [6]. The power reduction from the PHT is 13-16%, depending on the
branch instruction ratio. The power reduction from the BTB is 30-36%, depend-
ing on predicted untaken ratio. The power reduction from the overall proposed
branch predictor is 43-52%. On average, the power reduction from the PHT,
from the BTB and from the overall proposed branch predictor is 14%, 32%, and
46%, respectively.

Table 3 shows the branch instruction ratio and the predicted untaken ratio
to compare the results from analytical models and results from simulations. If
the parameters in Table 3 are put in the analytical models, the results from
analytical models in Fig. 5 are similar to those from simulations in Fig. 6.

7 Conclusions

In this paper, we proposed a low power branch predictor for embedded proces-
sors by reducing the accesses to the PHT and the BTB without harming any

Fig. 6. Simulation Results

A Low Power Branch Predictor to Selectively Access the BTB 383

accuracy: 1) Two predictions are looked up by accessing the PHT once. 2) The
BTB is only accessed when the prediction from the PHT is taken, which does
not incur any additional delay, since the prediction is obtained one cycle earlier
compared to the traditional branch predictor.

We presented analytical models and analyzed the power consumption with
the models. We also ran the simulation to investigate the power consumption
in the real applications. Simulation results showed that the proposed predictor
reduces the power consumption by 43-52%. Considering that the branch pre-
dictor accounts for more than 10% of overall processor power, it is expected to
reduce overall processor power by about 5-7%. The proposed predictor is being
considered as a next-generation embedded processor.

Acknowledgments. We would like to thank Gi Ho Park for his helpful com-
ments; Woo Hyong Lee and for his survey of various branch predictors; Young
Min Shin for his helpful comments on the 0.13 um process; Young Chul Rhee,
Dong Wook Lee and Sang-Suk Kim for their assistances in setting up Samsung
Memory Compiler System.

References

Parikh, K. Skadron, Y. Zhang, M. Barcella and M. Stan : Power issues related to
branch prediction, Proc. Int. Conf. on High-Performance Computer Architecture,
(2002) 233-242
Daniel A. Jimenez : Reconsidering complex branch predictors, Proc. Int. Conf. on
High-Performance Computer Architecture (2003) 43-52
Daniel A. Jimenez, Stephen W. Keckler, and Calvin Lin : The impact of delay
on the design of branch predictors, Proc. Int. Symp. on Microarchitecture (2000)
67-76
S. McFarling : Combining branch predictors, WRL Technical note TN-36, Digital
(1993)
Samsung Electronics : Samsung Memory Compiler (2002)
Standard Performance Evaluation Corporation : SPEC CPU2000 Benchmarks,
available at http://www.specbench.org/osg/cpu2000
C. Lee, M. Potkonjak, W Mangione-Smith. : MediaBench : A Tool for Evaluat-
ing Synthesizing Multimedia and Communication Systems, Proc. Int. Symp. On
Microarchitecture (1997)
ARM Corp., ARM1136J(F)-S, available at
http://www.arm.com/products/CPUs/ARM1136JF-S.html

1.

2.

3.

4.

5.
6.

7.

8.

384 S.W. Chung and S.B. Park

ARM Corp., ARM1156T2(F)-S, available at
http://www.arm.com/products/CPUs/ ARM1156T2-S.html
Simpelscalar LLC, The Simplescalar Tool Set 3.0 available at
http://www.simplescalar.com

9.

10.

Static Techniques to Improve Power Efficiency of Branch
Predictors

Weidong Shi, Tao Zhang, and Santosh Pande

College of computing
Georgia Institute of Technology, USA

{shiw, zhangtao, santosh}@cc.gatech.edu

Abstract. Current power-efficient designs focus on reducing the dynamic
(activity-based) power consumption in a processor through different techniques.
In this paper, we illustrate the application of two static techniques to reduce the
activities of the branch predictor in a processor leading to its significant power
reduction. We introduce the use of a static branch target buffer (BTB) that
achieves the similar performance to the traditional branch target buffer but
eliminates most of the state updates thus reducing the power consumption of the
BTB significantly. We also introduce a correlation-based static prediction
scheme into a dynamic branch predictor so that those branches that can be
predicted statically or can be correlated to the previous ones will not go through
normal prediction algorithm. This reduces the activities and conflicts in the
branch history table (BHT). With these optimizations, the activities and
conflicts of the BTB and BHT are reduced significantly and we are able to
achieve a significant reduction (43.9% on average) in power consumption of the
BPU without degradation in the performance.

1 Introduction

Branch prediction has a huge impact on the performance of high end processors
which normally have a very deep pipeline, e.g. Pentium 4 which has 20 pipeline
stages. Branch mis-prediction penalty for such a deep pipeline is very high, so it is
critical to achieve accurate prediction. Many studies have been done to improve
branch prediction rate by complicated designs, for example, combining several types
of predictors together. Those designs often demand a significant silicon and power
budget. As claimed in [5], branch predictor can potentially take up to 10% of the total
processor power/energy consumption. With a new metric dimension of power, the
focus becomes how to maintain the same prediction rate as a complex branch
predictor but with significantly less power consumption and area.

In this paper, we propose two optimizations to reduce power consumption of the
branch predictor with no degradation in the IPC or prediction accuracy but significant
reduction in the branch predictor power consumption. The power consumption of a
branch predictor is dominated by the large branch target buffer (BTB) and branch
history table (BHT), both of which are introduced to achieve high prediction accuracy
in a high-performance processor. To optimize the power consumption of branch target
buffer, we introduce static branch target buffer that does not need state updates during
runtime except when the program phase changes; thus activities in it are reduced

P.-C. Yew and J. Xue (Eds.): ACSAC 2004, LNCS 3189, pp. 385–398, 2004.
© Springer-Verlag Berlin Heidelberg 2004

386 W. Shi, T. Zhang, and S. Pande

significantly. We use profiling to identify the branches that should reside in the
branch target buffer in each program phase and preload those branches into branch
target buffer when the program phase changes. The content of branch target buffer
never changes during one program phase. Using static branch target buffer, we are
able to maintain the performance of traditional branch target buffer at the same time
eliminate most of the power consumption due to the updates to traditional branch
target buffer.

To reduce power consumption of branch history table, we combine static branch
prediction with hardware dynamic branch prediction. With a hybrid static and
dynamic branch prediction, only branches that are hard to predict statically turn to
hardware prediction, reducing branch history table activities and collisions. Such a
hybrid predictor can often attain the same prediction rate as a pure hardware predictor
with a much smaller branch history table and much less predictor lookups and
updates, therefore consumes less power. Beyond traditional single direction static
branch prediction [6, 12], we propose a hardware-assisted correlation-based static
prediction scheme. This design can further improve static prediction rate and reduce
hardware branch predictor overhead and power consumption. Our correlation-based
static prediction encodes a branch correlation pattern into a branch instruction.
Hardware assists the static prediction by providing a short 2-bit global branch history
and uses it to reach a prediction according to the static correlation pattern.

The rest of the paper is organized as follows. In section 2, we present our study on
power-optimized branch target buffer design and our solution, i.e., static branch target
buffer. In section 3, we elaborate our correlation-based static prediction scheme.
Those branches that cannot be predicted statically will turn to hardware dynamic
predictor. So our predictor is a hybrid one. We describe the simulation environment
and the benchmarks in section 4, then present results on the effectiveness of the two
optimizations described earlier. Section 5 compares our work with previous work on
static branch prediction and other recent approaches on low power branch predictors.
Finally, in section 6, we conclude the paper.

2 Static Branch Target Buffer

To achieve a good address hit rate in branch target buffer, modern superscalar
processors normally have a very large multi-way branch target buffer. This large
buffer leads to high power consumption. Normally the power consumption of the
branch target buffer takes at least 50% of the total power consumption of the branch
predictor1. Thus, to design a power-efficient branch predictor, it is critical to reduce
the power consumption of branch target buffer.

An intuitive approach to reduce the power consumption of BTB is to reduce the
size of it. BTB is kept large because of two possible reasons. First, a large buffer
helps reduce conflict misses. Second, a large buffer helps reduce capacity misses. If
the main reason for a large BTB is the conflict misses, we can increase the
associativity of the BTB. However, according to our experiments, capacity misses are
major problems. Some programs have large working sets. To ensure a good address

1 In this paper, when we talk about branch predictor, we mean both branch direction predictor
and branch target buffer.

Static Techniques to Improve Power Efficiency of Branch Predictors 387

hit rate for those applications, a large BTB must be deployed. Figure 1 shows the
address hit rate for six SPEC2000 benchmarks. In this paper, we will mainly study
these six benchmarks because they exhibit relatively worse branch prediction
performance in our experiments. The configurations are 128-entry fully-associative
BTB, 256-entry fully-associative BTB, 512-set 1-way BTB, 512-set 2-way BTB and
512-set 4-way BTB. From Figure 1, for benchmarks like perl, vortex and gcc, even a
256-entry fully-associative BTB cannot achieve a comparable address hit rate to the
other configurations that have much less ways but a larger number of entries. Since a
fully-associative BTB does not have conflict misses, the above finding shows that
some benchmarks have large working sets and complex branch behaviors, requiring a
large BTB.

Fig. 1. Address hit rate of different BTBs

Fig. 2. Per-access Power Consumption and Delay of Different BTB Configurations

The address hit rate of fully-associative BTBs is very good for some benchmarks
like mcf. For those benchmarks, we can achieve a comparable address hit rate using a
fully-associative BTB with much less entries. However, Figure 2 shows per-access
latency (in ns) and per-access power consumption (in nJ) of different BTBs got using
CACTI timing and power model (version 3.0). From Figure 2, we can see fully-
associative BTBs are not power efficient comparing to multi-way BTBs and the per-
access delay of them are several times larger. Such kind of delay is intolerable to
high-end processors. So the conclusion here is that we have to maintain a large
enough BTB at the same time avoid introducing high associativity into the BTB.

Another way to reduce the power consumption of the BTB is to reduce its
activities. With clock gating used extensively in modern processors, the power

388 W. Shi, T. Zhang, and S. Pande

consumption of a particular function unit is significantly impacted by the activities it
undertakes. Unfortunately, to reduce activities of the BTB is also a hard problem. To
minimize pipeline stalls, the processor needs to know the target address of a branch as
soon as possible if the branch is predicted as taken. The target address is provided by
the BTB. In a traditional superscalar processor design, the processor will access BTB
during the instruction fetch stage, so that the predicted target address can be fed into
next fetch stage without stall. In [5], the authors proposed to reduce the activities due
to BTB lookups by only accessing it when necessary. Our work is built upon the
optimization proposed in [5]. We assume non-branch instructions have been filtered
using a mechanism similar to the one in [5] and they will not lead to BTB lookups.
Thus, our scheme can only deal with branch instructions. Except the work in [5], we
are not aware of other optimizations to reduce the activities of the BTB.

In this paper, we propose static branch target buffer to reduce the activities due to
BTB updates. Traditionally, whenever a branch instruction is completed, the BTB is
updated to remember its target address. With the optimization in [5] enabled, BTB
updates may account for half of the BTB activities. The basic idea is that if we fix the
content of the BTB, then no BTB updates are necessary. A naïve implementation
could be that the processor preloads BTB content when the program starts and the
BTB content is never changed during the program run. This naïve implementation
may work for small and simple programs but has great limitation for large and
complicated programs, which may run for a long time and change behavior
significantly. On the other hand, as shown in [13], although a complicated program
does not exhibit a globally stable behavior, its execution can be divided into phases,
in each phase the behavior is quite stable. In our static branch target buffer design,
program phases are dynamically identified and program phase changes are
dynamically detected in the processor. Upon a program phase change, the processor
loads the BTB content corresponding to the new phase then the BTB content is fixed
until next program phase change.

We use profiling to choose the proper branches to reside in the BTB for each
phase. We first categorize branches encountered in the phase according to the set
location it will reside in the BTB. For example, a 512-set BTB will have 512 different
set locations. Normally, there will be multiple branches belonging to one set location
due to collision. Next, we identify the most frequent ones belonging to a set location
through profiling. The number of branches chosen are equal to the number of ways in
the BTB. In that way, we choose a subset of branches which just fit into the BTB.

This idea works because program phase changes are infrequent events, otherwise,
the power consumed by preloading BTB may eliminate the savings from eliminated
BTB updates. We adopted the phase identification scheme from [13], which is very
cost effective. Our experiment shows that GCC has the most unstable phase behavior,
but on average the phases of GCC still have a length of about 1 million instructions.
As pointed out by [13], integer programs tend to have much shorter program phases
and much more program phase changes. For floating point programs, the length of
program phases is normally tens of million instructions. All of our examined
benchmarks are tough integer programs to stress test our scheme. Our static branch
target buffer design will achieve even better results with floating point benchmarks.

There are several pitfalls regarding to static branch target buffer idea. Since we fix
the BTB content for each phase now and it is possible that we cannot put all the
branches seen in the phase into the BTB, static BTB may degrade address hit rate and
runtime performance. However, sacrificing performance means the program will run

Static Techniques to Improve Power Efficiency of Branch Predictors 389

for a longer time thus the other components in the processor will consume more
power! Thus, although static BTB can reduce branch predictor power significantly, if
the performance is degraded a lot, we may end up consume more power in the whole
processor scale. Fortunately, we see near zero performance degradation under our
static branch target buffer design. The major reason is that the phase identification
scheme works well and captures program phases accurately. Another reason is that
lots of BTB misses are actually due to some branches continuously kicking each other
out of the BTB, reducing BTB effectiveness. That means fixing the content of BTB
may instead help in some cases.

Static branch target buffer also introduces additional overhead to context switches.
BTB content now becomes a part of process state. When a process is switched out, the
current BTB of the process has to be saved. After a process is switched back, the
corresponding BTB needs to be restored. However, context switches can be regarded
as rare events in a processor. For example, the default time slice in Linux is 100ms,
during which tens of million instructions could have been executed.

In our experiments, the power consumption of BTB preloading and phase
identification has been modeled and counted in the total power consumption of the
processor.

3 Correlation-Based Static Prediction

The power consumption of branch history table is another major source of branch
predictor power consumption. Branch history table and branch target buffer normally
take more than 95% of total branch predictor power. To reduce the power of BHT, we
propose static branch prediction. The basic idea is that those branches that can be
statically predicted will not go through the normal BHT lookup algorithm thus will
not access BHT. So the accesses to the BHT are reduced, leading to less BHT
activities thus reduced power consumption. The reduction of BHT accesses also leads
to reduction of conflicts in BHT. Thus, a small history table can always achieve the
same prediction rate as the traditional predictor with a much larger table. With the
same BHT table, static branch prediction may help achieve a better prediction rate
due to less conflicts in BHT.

The possible strategies of static branch prediction could be always predicting a
branch is taken, or always not-taken, or branches with certain op code always taken,
or branches with certain op code always not-taken, or always predict backward
conditional branches as taken. Another approach for static branch prediction is to rely
on compiler program analysis or profiling to come up with a direction hint to a
conditional branch. The hint can be encoded with a single bit in the branch
instruction. For example, when the bit is set, the corresponding branch is always
considered as taken, otherwise not taken. Through profiling, [11] shows that a large
percentage of branches are highly biased towards either taken or not-taken. In
particular, 26% of conditional branches have a taken-rate of over 95% and another
36% of branches have a taken-rate below 5%. Together, over 62% of conditional
branches are highly biased toward one direction. For such conditional branches, their
predictions can be hard encoded and this will reduce (1) accesses to the BHT; (2)
branch history table entries required for dynamic branch prediction; (3) potential
conflicts and aliasing effects in BHT [4, 6]. In our approach, we further extend

390 W. Shi, T. Zhang, and S. Pande

previous either taken or not-taken static prediction to correlation-based static
prediction.

Fig. 3. Example of branch correlation

[12] shows that many conditional branches can be predicted by using only a short
global history. This is the manifestation of branch correlation and gives the insight
that many conditional branches may have fixed prediction patterns under a short
global branch history. Figure 3 gives an example of branch correlation and prediction
pattern.

This leads to the design of correlation-based static branch prediction. Correlation-
based static branch prediction requires hardware assistance to record the recent global
branch history. In many branch predictors, e.g., gshare predictors, such information is
already there for dynamic branch prediction. The hardware chooses a prediction based
on the current global branch history and the correlation pattern provided by the branch
instruction. By using correlation-based static prediction, we can predict more
conditional branches statically, which could further reduce area and power
consumption of a dynamic branch predictor. The sources of power savings are listed
below.

Since many branches are predicted statically, the dynamic branch predictor can
maintain the same prediction rate using a BHT with less number of entries.
Static prediction can reduce destructive aliasing thus further alleviating the
pressure on the BHT size.
With static prediction, hardware only needs to look up BHT when a branch is not
statically predicted. This reduces the number of BHT lookups. For statically
predicted branches, the updates to the counters (or other finite state machines) are
also eliminated, but the updates to histories are still necessary.
Static correlation pattern is conveyed to the hardware using encoding space in the

displacement field of a conditional branch instruction, which is done by the compiler
(binary translator). Other instructions are not affected. Conditional branch instructions
in most RISC processors have a format such as [op code][disp]. For Alpha 21264
processor, the displacement field has 21 bits. However, most conditional branches are
short-range branches. This leaves several bits in the displacement field that can be
used for encoding correlation pattern for most conditional branches. In our
correlation-based static prediction scheme, we use four bits in the displacement field
(bit 4 to bit 1) to encode the prediction pattern based on two most recent branches.
There are four possible histories for two branches: 1) [not-taken, not-taken], 2) [not-
taken, taken], 3) [taken, not-taken], 4) [taken-taken]. Each bit of the four bits
corresponds to the static prediction result for one possibility. Bit 1 corresponds to case
1, and so on. If we statically predict the branch taken, the corresponding bit is set to 1,
otherwise, it is set to 0. Using the same example in Figure 3, the encoded correlation

Static Techniques to Improve Power Efficiency of Branch Predictors 391

pattern for the third branch could be 0101, assume through profiling, we found if the
branch history is [not-taken, taken], the third branch has a better chance to be not-
taken.

Compiler has the freedom to choose whether correlation-based static prediction
should be used. When it becomes unwise to use static prediction, e.g., hard to predict
branches, or the displacement value is too large, compiler can always turn back to
original branch prediction scheme. In our scheme, we take another bit (bit 0) of
displacement field to distinguish extended branches with correlation information from
original branches. Thus, besides the four bits of correlation information, we take five
encoding bits in total from displacement field for extended branches. Since bit 0 of
displacement field of original branches is used in our scheme, the compiler may have
to transform an original branch to chained branches due to reduced displacement
range, which is really rare.

First, we have to decide which conditional branches should use static branch
prediction and which should use dynamic branch prediction. A conditional branch is
classified as using static prediction if it satisfies the following criteria:

highly biased towards one direction (taken or not-taken) under at least one
correlation path (branch history). We maintain a history of two most recent
branches in our scheme.
branch target address’s displacement within the range permitted by the shortened
conditional branch displacement field. For alpha, the remaining width of
displacement fields is 16 bits (21-5). The displacement permitted is [-32768,
32767]. According to our experiments, most of conditional branches (above
99.9%) are satisfied.
To evaluate the potential gains offered by correlation-based static prediction, we

divide statically predictable conditional branches into three types:
Non-correlation based type. This corresponds to conditional branches that can be
statically predicted using a single-bit direction prediction. A conditional branch is
classified into this type if all the program paths (histories) yield the same biased
prediction, taken or not-taken.
Correlation-based type. For this type of branches, prediction is biased towards
different direction depending on the correlation path. For example, under one path
(history), the branch may be biased towards taken, while under another path
(history), it is biased towards not-taken.
Others. This type corresponds to the branches that cannot be categorized to type I
or type II. These branches are hard to be predicted statically.

Table 1 lists the total number of conditional branches for each type, and the total
number of dynamic executions made by the branches in each type for six SPEC2000
benchmarks running for 200 million instructions with fast-forwarding 1 billion
instructions. As shown in the table, many branches can be predicted statically.

One pitfall of encoding correlation information into the branch instruction is access
timing. As discussed earlier, to achieve best throughput, the processor has to know the
next PC address for instruction fetch at the end of current instruction fetch stage.
Traditionally, during instruction fetch stage, the processor has no access to specific
bits of the fetched instruction. To enable correlation-based static prediction, we use a
separate extended branch information table (EBIT) with a number of entries exactly
corresponding to the level-1 I-cache cache lines. Under our processor model, cache

392 W. Shi, T. Zhang, and S. Pande

line size is 32B and contains 8 instructions. We impose a limitation that in each cache
line, there is at most one extended branch instruction with correlation information,
which means that there is at most one extended branch instruction in every 8
instructions. The limitation has minor impact in our scheme. As shown in [5], about
40% of conditional branches have distance greater than 10 instructions. Moreover,
only a part of conditional branches will be converted into extended branches. Each
entry of EBIT is 8-bit information. Bit 7 indicates whether the cache line has an
extended branch instruction. Bit 6 to 4 encodes the position of the extended branch in
the cache line. Bit 3 to 0 records the correlation information for the extended branch if
there is one. The size of EBIT is 4K bits.

The EBIT is updated with new pre-decoded bits while an I-cache line is refilled
after a miss. During each instruction fetch stage, the EBIT is accessed to detect an
extended branch instruction and obtain the corresponding correlation information. If
the current instruction is an extended branch, further BHT look-up is not necessary.
Otherwise, BHT is accessed. Thus, the EBIT access is done before any necessary
BHT access. Since the EBIT is small, we assume EBIT access and BHT access
together can be done in instruction fetch stage. Note if the current instruction is an
original branch, we end up consuming more power since we have to access EBIT too.
The validity of correlation-based static prediction relies on the fact that a large
percentage of conditional branches can be predicted statically, as shown in Table 1.
The power consumption of EBIT is modeled and counted in our experiments.

After we identify all the statically predictable branches and their correlation
patterns, we use a compiler (binary-to-binary translator) to convert original branches
into extended branches with correlation information properly and get a new
transformed program binary. Then, performance results are collected using a modified
Simplescalar simulator supporting static branch target buffer and correlation-based
static prediction.

4 Experiments and Results

We use Simplescalar 3.0 plus wattch version 1.02 for performance simulation and
power analysis. Simplescalar is a cycle-accurate superscalar processor simulator and
Wattch is a power analysis model that can be integrated into Simplescalar simulator to
track cycle-by-cycle power usage. In Wattch power model, branch predictor power

Static Techniques to Improve Power Efficiency of Branch Predictors 393

consumption is modeled as three main components, branch direction predictor power,
BTB power, and RAS (return address stack) power. BTB and BHT dominate the
overall branch predictor power consumption (over 95%). We simulated a typical 8-
wide superscalar processor. We choose BTB and BHT configurations comparable to
the ones in [5].

We chose six SPEC2000 integer benchmarks that exhibit relatively worse branch
prediction performance. They are, eon-cook, mcf, perl, vortex, vpr, gcc. Each
benchmark was fast-forwarded 1 billion instructions then simulated for 200 million
instructions. The profile information for each benchmark is gathered using standard
test inputs. Then standard reference inputs are used to measure performance. Unless
explicitly stated, all the branch predictor power consumption results reported are
obtained under Wattch non-ideal aggressive clock-gating model (cc3). In this clock-
gating model, power is scaled linearly with the number of ports or unit usage. When a
unit is inactive, it will dissipate 10% of the maximum power. The power consumption
of BTB preloading, phase identification and EBIT is measured using Wattch array
structure power model.

Our scheme is built upon the scheme in [5]. We assume only branch instructions
will lookup BTB. Thus, BTB updates account for almost half of the BTB activities.

Fig. 4. Normalized Address Hit Rate for Static BTB

Fig. 5. Normalized IPC for Static BTB

First, we present the results for static branch target buffer. In our study, we assume
a 16K PAg direction predictor without static prediction. Three common BTB
configurations are examined: 512-set 1-way, 512-set 2-way and 512-set 4-way. Figure
4 shows the normalized address hit rate of static branch target buffer scheme. The
address hit rate is normalized to original branch target buffer design. From Figure 4,
the impact of our static branch target buffer to address hit rate is minor. For 512-set 1-
way configuration, the average degradation in hit rate is 0.66%. For 512-set 2-way
configuration, the average degradation is 0.51%. For 512-set 4-way configuration, the
average degradation is 0.15%. From the results, we also observe that the degradation
on address hit rate becomes even smaller with the increase of the number of entries in

394 W. Shi, T. Zhang, and S. Pande

BTB, since now more branches could be preloaded into BTB upon a phase change.
Mcf benchmark under 512-set 1-way configuration is a corner case in which the
address hit rate under static BTB is better than original BTB design. The reason may
be destructive aliasing effect. Now that we seldom update BTB, we have much less
chance to improperly kick out some branches from BTB.

Figure 5 shows the normalized IPC for static branch target buffer scheme. Note
any optimization of power consumption to one component of the processor should not
sacrifice the processor performance significantly. Otherwise, the program will run for
a longer time and the power savings from the optimized component may be easily
killed by more power consumption in other components. For 512-set 1-way BTB
configuration, the average IPC degradation of static BTB is 0.34%. For 512-set 2-way
configuration, the average IPC degradation is 0.69%. The IPC degradation should
become smaller with a larger BTB. 512-set 1-way configuration is better because of
the corner case benchmark mcf, which achieves better IPC under 512-set 1-way static
BTB. The reason is explained earlier. For 512-set 4-way configuration, the
degradation is very small thus is not visible in the graph.

Fig. 6. Normalized Power Consumption for Static BTB

Figure 6 shows the normalized power consumption for the whole branch predictor
(BTB + direction predictor) with static BTB design against one with original BTB
design. The power saving comes from mostly eliminated BTB updates. The power
consumed by BTB preloading and phase tracking reduces the saving but our
experiments show they have insignificant impact. After all, our implemented phase
tracking hardware is very simple and phase changes are very low-frequency events
during execution. For 512-set 1-way configuration, the average power reduction for
the branch predictor is 14.89%. For 512-set 2-way configuration, the average power
reduction is 22.41%. For 512-set 4-way configuration, the average power reduction is
27.88%. For each configuration, static BTB is able to reduce the BTB activities
(dynamic power) by almost half. A larger BTB leads to larger power reduction in
percentage because the percentage of BTB power is larger in the whole branch
predictor power.

Next, we present the results for correlation-based static prediction. Static prediction
works along with a dynamic hardware predictor, which handles branches not
predicted by static prediction. A large number of hardware branch prediction schemes
have been proposed in the literature. Each one may have its own trade-off in terms of
prediction rate, hardware overhead and power consumption. It is impossible for us to
examine all of them. In this paper, we limited our scope to two types of predictors,
i.e., gshare [9] and PAg [1, 2, 10]. We studied these two types of predictors rather
than the default tournament predictor in Alpha 21264 because they are the most basic
ones and they can represent two large categories of predictors, i.e. global history

Static Techniques to Improve Power Efficiency of Branch Predictors 395

based predictors and local history based predictors. We studied them separately to get
a deep understanding of the impacts of correlation-based static prediction to different
types of predictors. Further, we can derive the impact of our proposed technique to
more complicated predictors like the tournament predictor in Alpha, which is
basically composed of two global predictors and one local predictor.

Fig. 7. Normalized Direction Prediction Rate

Fig. 8. Normalized IPC

Figure 7 shows branch direction prediction rate under our correlation-based static
prediction and dynamic prediction hybrid scheme. The prediction rate is normalized
to original pure dynamic direction predictor. In the study of direction predictor, we
assume a 512-set 4-way BTB configuration. For gshare-based predictors, we
experimented two sizes, 4K and 16K. For PAg based predictors, we also explored two
configurations, 4K first level entries –11 bit local history and 16K first level entries –
13 bit local history. From the results, correlation-based static prediction helps
prediction rate for gshare-based predictor significantly. For a 4K size gshare
predictor, the average improvement in prediction rate is 4.39%. For a 16K size gshare
predictor, the average improvement is 2.32%. With the increase of predictor size, the
improvement on prediction rate due to correlation-based static prediction becomes
smaller. Correlation-based static prediction cannot achieve significant improvement
for PAg based predictors, since collision has much smaller impact to the performance
of PAg based predictors. For a 4K size PAg predictor, the average improvement is
1.37%. For a 16K size PAg predictor, the average improvement is 1.05%.

Figure 8 shows normalized IPC for the same configurations. Improved direction
prediction rate normally leads to improved IPC. For 4K gshare predictor, the average
improvement is 13.02%. For 16K gshare predictor, the average improvement is
8.61%. For 4K PAg predictor, the average improvement is 4.97%. For 16K PAg
predictor, the average improvement is 4.52%. The improvement on PAg predictors

396 W. Shi, T. Zhang, and S. Pande

normally is small since the prediction rate improvement is small. Benchmark vpr is a
corner case, in which correlation-based static prediction helps improve IPC over 20%
in all configurations. Destructive collision effect in vpr benchmark must be severe.

Fig. 9. Normalized Predictor Power Consumption

Fig. 10. Results for Combined Architecture

Figure 9 shows the normalized whole branch predictor power consumption under
correlation-based static prediction and dynamic prediction hybrid scheme. Our static
prediction helps reduce branch predictor power consumption significantly. First, those
branches that can be statically predicted will not look up the large BHT, so a large
part of BHT lookups are eliminated. Moreover, for a statically predicted branch, only
global or local history is updated for the branch, no update is performed to the
corresponding 2-bit counter or other finite state machines. For a two-level predictor
such as gshare or PAg, this means only the first level of the branch predictor needs
state updates. For 4K gshare predictor, the average power reduction is 6.2%. For 16K
gshare predictor, the average power reduction is 7.2%. For 4K PAg predictor, the
average reduction is 14.8%. For 16K PAg predictor, the average reduction is 22.2%.
The reduction for gshare predictors is much smaller since there is no local history
table and the power consumed by the EBIT is relatively large.

Our static BTB and correlation-based static prediction could be integrated together
into the processor, so that we can achieve significant branch predictor power
reduction at the same time with at least no performance degradation in branch
predictor. For some benchmarks, the performance of branch predictor is actually
improved. Figure 10 shows the results after integration. All the results are normalized
against original branch predictor design. We assume a 512-set 4-way BTB
configuration and a 16K PAg direction predictor. From the results, for all
benchmarks, our optimizations never degrade IPC, i.e., the processor performance.
For benchmark vpr, the performance is improved significantly instead. The average

Static Techniques to Improve Power Efficiency of Branch Predictors 397

power consumption reduction is 43.86%. We also show the energy-delay product
results, which is a metric to show the trade off between power consumption and
performance. The average reduction in energy-delay (ED) product is even better,
which is 47.73%.

5 Related Work

In [5], the authors use two major techniques to reduce branch predictor power
consumption, banking and PPD (prediction probe detector). PPD is a specialized
hardware that records whether lookups to the BTB or the direction-predictor is
necessary, therefore saving power by reducing lookups to BTB and BHT when
combined with clock gating. Our approach uses two static techniques to reduce the
activities of branch predictor further. We propose static BTB to eliminate most of the
BTB updates. We propose correlation-based static prediction to eliminate a large part
of BHT lookups and updates. Correlation-based static prediction also helps alleviate
pressure on the size of BHT, since collisions are reduced significantly. Our results
show that we can reduce branch predictor power consumption further upon the
optimizations in [5] by around 50% . Hybrid static and dynamic branch prediction has
been proposed before for reducing destructive aliasing [6, 22]. Using a profile-based
approach similar to ours in this paper, researchers are able to improve branch
prediction rate significantly by combining static prediction with some well-known
dynamic predictors. However, nobody has proposed using such a hybrid predictor for
reducing branch predictor power consumption. In our study, we characterize the
power behavior for static and dynamic hybrid branch predictor and claim that such a
hybrid predictor is beneficial for both reducing collision and power consumption. We
also extend the conventional static prediction by introducing a correlation-based static
prediction approach. Smith and Young [3,7,8] have studied branch correlation from a
compiler perspective. They have proposed a number of compiler techniques to
identify correlated branches using program analysis. Their study is different from ours
because their approach is to transform correlated branches in a manner so that they
can be correctly predicted under a dynamic hardware predictor rather than directly
encoding a correlation pattern into a branch instruction.

6 Conclusion

In this paper, we proposed two optimizations to reduce the power consumption of the
branch predictor in a high-performance superscalar processor. We raised the idea of
static branch target buffer to eliminate most of the update power of BTB. We also
pointed out that a hybrid branch predictor combining static prediction and dynamic
prediction not only can reduce branch predictor size and destructive aliasing but
branch prediction power consumption as well. We extended the conventional static
prediction by putting branch correlation pattern into spare bits in the conditional
branches when they are not used. Such correlation-based static prediction can further
improve static branch prediction rate comparing to single direction static prediction.
We explored the effects of the two proposed optimizations on the trade off between

398 W. Shi, T. Zhang, and S. Pande

performance and power consumption. Our simulation results show that the integration
of the proposed optimizations can reduce the branch predictor power consumption by
44% and branch predictor energy-delay product by 48% while never degrading
overall processor performance.

References

T. Y. Yeh, and Y. N. Patt. “Two Level Adaptive Branch prediction”. 24th ACM/IEEE
International Symposium on Microarchitecture, Nov. 1991.
T. Y. Yeh, and Y. N. Patt. “A Comparison of Dynamic Branch Predictors that Use Two
levels of Branch History”. 20th Annual International Symposium on Computer
Architecture, May 1996.
Cliff Young, Nicolas Gloy, and Michael D. Smith. “A Comparative Analysis of
Schemes For Correlated Branch Prediction”. ACM SIGARCH Computer Architecture
News, Proceedings of the 22nd annual International Symposium on Computer
Architecture May 1995, Volume 23 Issue 2.
S. Sechrest, C. C. Lee, and Trevor Mudge. “Correlation and Aliasing in Dynamic Branch
Predictors”. ACM SIGARCH Computer Architecture News, Proceedings of the 23rd
annual international symposium on Computer architecture May 1996, Volume 24 Issue
2.
D. Parikh, K. Skadron, Y. Zhang, M. Barcella, and M. Stan. “Power Issues Related to
Branch Prediction”. In Proc. of the 2002 International Symposium on High-Performance
Computer Architecture, February, 2002, Cambridge, MA.
Harish Patil and Joel Emer. “Combining static and dynamic branch prediction to reduce
destructive aliasing”. Proceedings of the 6th Intl. Conference on High Performance
Computer Architecture, pages 251-262, January 2000.
Cliff Young, Michael D. Smith. “Improving the Accuracy of Static Branch Prediction
Using Branch Correlation”. ASPLOS 1994: 232-241.
Cliff Young, Michael D. Smith. “Static correlated branch prediction”. TOPLAS 21(5):
1028-1075. 1999.
S. McFarling. “Combining branch predictors”. Tech. Note TN-36, DEC WRL, June
1993.
Shien-Tai Pan, Kimming So, Joseph T. Rahmeh, “Improving the Accuracy of Dynamic
Branch Prediction Using Branch Correlation”, ASPLOS 1992: 76-84.
Michael Haungs, Phil Sallee, Matthew K. Farrens. “Branch Transition Rate: A New
Metric for Improved Branch Classification Analysis”. HPCA 2000: 241-250.
D. Grunwald, D. Lindsay, and B. Zorn. “Static methods in hybrid branch prediction”. In
Proc. Of the International Conference on Parallel Architectures and Compilation
Techniques (PACT), Oct. 1998. Pages:222 – 229.
A. S. Dhodapkar and J. E. Smith, “Managing Multi-Configuration Hardware via
Dynamic Working Set Analysis,” Proc. of the 29 Intl. Sym. on Computer Architecture,
May 2002, pp. 233 –244.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

Choice Predictor for Free

Mongkol Ekpanyapong, Pinar Korkmaz, and Hsien-Hsin S. Lee

School of Electrical and Computer Engineering
Georgia Institute of Technology

Atlanta, Georgia 30332
{pop, korkmazp, leehs}@ece.gatech.edu

Abstract. Reducing energy consumption has become the first priority
in designing microprocessors for all market segments including embed-
ded, mobile, and high performance processors. The trend of state-of-the-
art branch predictor designs such as a hybrid predictor continues to fea-
ture more and larger prediction tables, thereby exacerbating the energy
consumption. In this paper, we present two novel profile-guided static
prediction techniques— Static Correlation Choice (SCC) prediction and
Static Choice (SC) prediction for alleviating the energy consumption
without compromising performance. Using our techniques, the hardware
choice predictor of a hybrid predictor can be completely eliminated from
the processor and replaced with our off-line profiling schemes. Our simu-
lation results show an average 40% power reduction compared to several
hybrid predictors. In addition, an average 27% die area can be saved in
the branch predictor hardware for other performance features.

1 Introduction

Advances in microelectronics technology and design tools for the past decade
enable microprocessor designers to incorporate more complex features to achieve
high speed computing. Many architectural techniques have been proposed and
implemented to enhance the instruction level parallelism (ILP). However, there
are many bottlenecks that obstruct a processor from achieving a high degree of
ILP. Branch misprediction disrupting instruction supply poses one of the major
ILP limitations. Whenever a branch misprediction occurs in superscalar and/or
superpipelined machines, it results in pipeline flushing and refilling and a large
number of instructions is discarded, thereby reducing effective ILP dramatically.
As a result, microprocessor architects and researchers continue to contrive more
complicated branch predictors aiming at reducing branch misprediction rates.

Branch prediction mechanisms can be classified into two categories: static
branch prediction and dynamic branch prediction. Static branch prediction
techniques [1,6,17] predict branch directions at compile-time. Such prediction
schemes, mainly based on instruction types or profiling information, work well
for easy-to-predict branches such as while or for-loop branches. Since the static
branch prediction completely relies on information available at compile-time,
it does not take runtime dynamic branch behavior into account. Conversely,

P.-C. Yew and J. Xue (Eds.): ACSAC 2004, LNCS 3189, pp. 399–413, 2004.
© Springer-Verlag Berlin Heidelberg 2004

400 M. Ekpanyapong, P. Korkmaz, and H.-H.S. Lee

dynamic branch prediction techniques [12,14,16] employ dedicated hardware to
track dynamic branch behavior during execution. The hybrid branch predic-
tor [12], one flavor of the dynamic branch predictors, improves the prediction
rate by combining the advantages demonstrated by different branch predictors.
In the implementation of a hybrid branch predictor, a choice predictor is used
to determine which branch predictor’s results to use for each branch instruction
fetched. Introducing a choice predictor, however, results in larger die area and ad-
ditional power dissipation. Furthermore, updating other branch predictors that
are not involved in a prediction draws unnecessary power consumption if the
prediction can be done at compile-time. Given the program profiling informa-
tion, a static choice prediction could be made by identifying the suitable branch
predictor for each branch instruction. For example, for a steady branch history
pattern such as 000000 or 10101010, the compiler will favor the local branch
predictor. On the other hand, for a local branch history pattern of 01011011101
and global branch history pattern of 0011100111000111001 (boldface numbers
correspond to the branch history of this target branch) it will bias toward the
global predictor over the local predictor, because the global pattern history shows
a repetition of the sequence 001 where 1 corresponds to the target branch.

The organization of this paper is as follows. Section 2 describes related work.
Section 3 is devoted to our schemes. Section 4 presents our experimental frame-
work. Results of power, areas and performance are presented in Section 5. Finally
the last section concludes this work.

2 Related Work

Most of the branch prediction techniques focus on exploiting the local behav-
ior of each individual branch as well as the global branch correlation to im-
prove prediction accuracy, either at static compile-time or dynamic runtime.
Static techniques include two major schemes— profile-guided and program-based
schemes. Profile-guided schemes collect branch statistics by executing and profil-
ing the application in advance. The compiler then analyzes the application using
these statistics as a guide and regenerates an optimized binary code. Program-
based schemes tackle branch prediction problems at source code, assembly, or
executable file level without any advanced profiling. One early study on using
profile-guided branch prediction was done by Fisher and Freundenberger [6] , in
which they showed that profile-guided methods can be very effective for condi-
tional branches as most of the branch paths are highly biased to one direction
and this direction almost remains the same across different runs of the program.
Ball and Larus [1] later studied a program-based branch prediction method by
applying simple heuristics to program analysis at static compilation time for
generating static branch predictions.

One important characteristics of branch prediction is that a branch can ei-
ther exhibit self-correlation or can be correlated with other branches. Yang and
Smith [17] proposed a static correlated branch prediction scheme using path pro-
filing to find the correlated paths. After identifying all the correlated paths, the

Choice Predictor for Free 401

technique either duplicates or discriminates the paths depending on the type
of correlation. Due to path duplication, their technique increases the code size
while reducing misprediction rate.

In spite of the hardware savings, static branch prediction is infeasible for all
the branches in a program since a branch can demonstrate very dynamic behav-
ior due to various correlations and will not be strongly biased to one direction
or another in their lifetime. Therefore, most of the sophisticated branch pre-
diction mechanisms focus on dynamic prediction mechanisms. Dynamic branch
predictors make predictions based on runtime branch direction history. Yeh and
Patt [16] introduced the concept of two-level adaptive prediction that maintains
a first level N-bit branch history register (BHR) and its corresponding en-
try pattern history table (PHT) as a second level for making predictions. The
BHR stores the outcomes of the N most recently committed branches used to
index into the PHT in which each entry contains a 2-bit saturating up-down
counter. They studied both local and global prediction schemes. Local predic-
tion schemes keep the local history of individual branches while global prediction
schemes store the global direction history of a number of branches equal to the
history register size.

McFarling [12] pioneered the idea of hybrid branch prediction that uses a
meta-predictor (or choice predictor) to select a prediction from two different
branch predictors. The two branch predictors studied in his paper were bimodal
and gshare branch predictors. The bimodal branch predictor consists of a 2-bit
counters array indexed by the low order address bits of the program counter
(PC). The gshare predictor, which was also christened by McFarling in the same
paper is a two-level predictor that exclusive-ORs the global branch history and
the branch PC address as the PHT index to reduce destructive aliasing among
different branches sharing the same global history pattern. The choice predictor,
also a 2-bit counters, is updated to reward the predictor generating correct pre-
diction. Chang et al. [3] studied branch classification. Their classification model
groups branches based on profiling data. They also proposed a hybrid branch
predictor which takes the advantages of both static and dynamic predictors.
Using the profiling data, they perform static prediction for those branches that
strongly bias to one direction in their lifetime. Their work is analogous to ours
in the sense that we both employ static and dynamic branch prediction method.
Comparison and simulation data will be presented and discussed in Section 5.
Another work presented by Grunwald et al. in [7] also adopts static prediction
for a hybrid predictor. Despite a large experimental data were presented, it re-
mains unclear about their algorithms with respect to how they derive the choice
prediction directions at static compile-time. In addition, they compared their
static prediction scheme with only McFarling hybrid prediction scheme, while
we compare our technique against several other hybrid branch predictors and
evaluate the impact to both power and die area. Recently, Huang et al. [4] pro-
posed an energy efficient methodology for branch prediction. Their baseline case
is a 2Bc-gskew-pskew hybrid branch predictor. They used profiling to find
out the branch predictor usage of different modules in a program and used clock

402 M. Ekpanyapong, P. Korkmaz, and H.-H.S. Lee

Fig. 1. Branch prediction lookup schemes.

gating to shut down the unused predictors of the above hybrid branch predictor.
Different from them, we considered many hybrid branch prediction schemes and
we collected profile data for each branch instead of for each module.

3 Static Prediction Generation

Profiling feedback is now a widely accepted technology for code optimization, in
particular for static architectures such as Intel/HP’s EPIC, we propose a new
methodology that utilizes profiling data from prior executions, classifies branches
according to the types of correlation exhibited (e.g. local or global), and then
decides which prediction result to use. During profile-guided recompilation, these
decisions are embedded in the corresponding branch instructions as static choice
predictions. For example, the branch hint completer provided in the Itanium
ISA [5] can be encoded with such information.

The basic branch prediction lookup scheme for a hybrid branch predictor
with a hardware choice predictor and our scheme with static choice prediction
are illustrated in Figure 1. In our scheme, the static choice prediction is inserted
as an extra bit in the modified branch target buffer (BTB) entry. For each
branch predicted, both the local and global predictors are accessed and the
prediction implied by the static choice prediction bit in the indexed BTB entry
is chosen. The critical path for this branch predictor is not lengthened with such
a mechanism, hence no impact to clock speed. Furthermore, using this bit to
clock gate the branch predictor might lead to further power reduction, however,
it is not explored in this paper.

Most of the hybrid branch predictors with a dynamic choice predictor [9,
12] update all the branch prediction components for each branch access. This
is because that, in a dynamic choice predictor, the choice predictor is updated
dynamically depending on the prediction results of both branch predictors and
for the further accesses to the same branch address there is uncertainty about
which branch predictor will be used, hence updating both of them will result in
more accuracy. In our model, we update only the branch predictor whose predic-
tion is used, since every branch is already assigned to one of the predictors and
updating only the assigned branch predictor is necessary. In our case, updating

Choice Predictor for Free 403

both branch predictors would not only consume more power but also increase
the likelihood of aliasing.

In the following sections, we propose and evaluate two enabling techniques —
Static Correlation Choice (SCC) prediction and Static Choice (SC) prediction
from power and performance standpoints.

3.1 SCC Model

In the SCC model, we profile and collect branch history information for each
branch. We apply this technique to a hybrid branch predictor that consists of a
local bimodal branch predictor [15] and a global two-level branch predictor [16].
The algorithm for the SCC model with the hybrid branch predictor is described
in the following steps:

1.

2.

3.

4.

If a branch is biased to one direction either taken or not taken during its
lifetime in execution, we favor its prediction made by the bimodal branch
predictor. The bias metric is based on a default threshold value that rep-
resents the execution frequency of the direction of a branch (e.g. 90% in
this study, this is based on our intuition that higher than 90% hit rate is
acceptable).
To model the bimodal branch predictor, we count the total number of con-
secutive taken’s and consecutive not taken’s for each branch collected from
profile execution. This count based on the local bimodal branch predictor is
denoted by For example, if the branch history of a particular branch
is 111100000101010: the number of consecutive ones is 4-1 = 3 and number
of consecutive zeros is 4, therefore,
To model the global branch predictor, we collect global history information
for each branch on-the-fly during profile execution and compare it against
all prior global histories collected for the same branch. If the last bits of
the new global history match the last bits of any prior global history, then
the new prediction is called to be within the same history group. There are

possible groups in total. For each branch that is included in a group, we
count the total number of consecutive taken’s and consecutive not taken’s.
At the end of the profile run, we sum up the consecutive counts including
taken and not taken for each history group and denote the value by
For example, assume we have four history groups and 11
for a profile run. For a particular target branch after the profile execution,
we have a branch history 101000001111 for the 00 group, 11111111110 for
the 01 group, 1110 for the 10 group, and 1000000 for the 11 group. Then
the summation for this global branch predictor, for this particular branch
would be Note that the history does not include the
direction of the current reference.

and values are collected after the profiling execution. The static
choice prediction is made off-line by comparing the values of and
The final choice, provided as a branch hint, as to which predictor to use for
each branch is determined by favoring the larger value. In other words, if

404 M. Ekpanyapong, P. Korkmaz, and H.-H.S. Lee

is greater than the choice prediction uses the prediction made by
the bimodal predictor otherwise the prediction of the global branch predictor
is used.

The SCC model basically targets McFarling’s hybrid branch predictor yet
collects these information at static compile-time. As aforementioned, McFarling’s
hybrid branch predictor consists of a bimodal local predictor and a gshare global
predictor. The justification behind the calculation of (a metric for bimodal
branch prediction) is that, for a bimodal predictor the more the branch result
stays in state 00 (strongly not-taken) or 11 (strongly taken), the more stable
the prediction will be. On the other hand, of a branch is the metric for the
global branch prediction and its calculation is based on counting the number of
occurrences of consecutive takens and not-takens (0’s and 1’s) for this branch
for the possible number of different branch histories depending on the length of
history. This is similar to the two-bit saturating counters which are chosen by
the global history register in the gshare scheme.

3.2 SC Model

In the SC model, static choice predictions completely rely on the results collected
from the software-based choice predictor of an architecture simulator. During
profiling simulation, we collect the information with respect to how many times
the choice predictor is biased to the bimodal predictor versus the global branch
predictor for each branch. The final static choice prediction then relies on the
majority reported from the profiling simulation.

4 Simulation Framework

Our experimental framework is based on sim-outorder from SimpleScalar toolkit
version 3.0 [11]. We modified the simulator to (1) model a variety of hybrid
branch predictors , (2) collect the profiling information for the SCC and SC mod-
els, and (3) perform static choice branch prediction. Table 1 shows the param-
eters of our processor model. The SPEC CPU2000 integer benchmark suite [8]
was used for our evaluation. All of the benchmark programs were compiled into
Alpha AXP binaries with optimization level -O3. All the data presented in Sec-
tion 5 were obtained through runs of one billion instructions. Since profiling is
involved, the experiments were performed among test, train and reference profil-
ing input sets while all the performance evaluation results come from reference
input set. In other words, we collected different profiling results in order to ana-
lyze the impact of our proposed mechanisms with different profiling input sets.

As our proposed technique provides an opportunity to eliminate the choice
predictor hardware, we evaluate and quantify the overall power improvement
using Wattch [2] toolkit due to the absence of a hardware choice predictor. We
modified Wattch to enable clock-gating in different functional blocks of a branch
predictor including the BTB, the local, global, and choice predictors, and return
address stack.

Choice Predictor for Free 405

5 Experimental Results

This section presents our performance and power analysis. In the first experi-
ment, we study the impact of our static models for choice prediction on per-
formance, including branch prediction rate and speedup. The train input set in
SPECint2000 benchmarks was used for collecting profile information, while the
reference input set was used for performance evaluation. Results show that our
prediction model performs on par or sometimes better than a hardware choice
predictor. It is reported in [10] that energy-delay product is sometimes mislead-
ing, hence we report the performance and energy separately.

Figure 2 summarizes the branch prediction miss rates from different branch
predictors for SPECint2000 benchmarks. For each benchmark program, ex-
periments are conducted with a variety of branch prediction schemes. Among
them are gshare10, gshare11, gshare12, hybrid_g10, hybrid_g10+scc, hy-
brid_g10+sc, hybrid_g11+scc, and hybrid_g11+sc. The gshare10, same
as McFarling’s gshare scheme [12], indexes a 1024-entry 2-bit counter array by
exclusive-ORing the branch address and its corresponding 10-bit global history.
Similarly, gshare11 and gshare12 perform the same algorithm by simply ex-
tending the sizes of their global history to 11 and 12 bits, thereby increasing
their corresponding 2-bit counter arrays to 2048 and 4096 entries, respectively.
The predictor, hybrid_g10 uses a hybrid branch predictor approach similar to
McFarling’s combining branch predictor [12]. It consists of a bimodal predictor,
a two-level predictor, and a choice predictor each of them with a size of 1024x2
bits. The hybrid_g10+sc is the same as hybrid_g10 except replaces the hard-
ware choice predictor with a profiling-based choice prediction mechanism using
the SC model described in Section 3. Likewise, hybrid_g10+scc uses the SCC
model for choice predictions. Predictors hybrid_g11+scc and hybrid_g11+sc

406 M. Ekpanyapong, P. Korkmaz, and H.-H.S. Lee

Fig. 2. Miss prediction rates with different branch predictors.

are extended versions of the hybrid_g10+scc and hybrid_g10+sc models, re-
spectively, as they increase the size of the two-level branch predictor to 2048x2
bits.

Moreover, we also implement the prediction model proposed by Chang et
al. [3] which we call SCDT model. In SCDT, profiling is used to classify branches
into different groups based on dynamic taken rates and for each group the same
branch predictor is used. If the dynamic taken rate of a branch is 0-5% or 95-
100% then this branch is predicted using the bimodal predictor, otherwise it is
predicted using gshare predictor. If there are a lot of branches that change their
behavior dynamically, then SCC captures such behavior better than SCDT. For
example, if the behavior of a branch has k consecutive 0’s and k consecutive 1’s,
a bimodal prediction will be better off since it might reduce aliasing in gshare.
By contrast SCDT will always use gshare. We also perform experiments using
a random choice model which we call RAND model and it randomly selects
a branch predictor statically. The hybrid_g10+scdt and hybrid_g10+rand
results are based on the SCDT and RAND models respectively.

As shown in Figure 2, increasing the size of the global branch predictor alone
does not perform as well as using a hybrid branch predictor. For example, the
gshare12 predictor consists of more prediction entries than the hybrid_g10
branch predictor provides (area comparison is shown in Table 2), but none of
the benchmarks shows the gshare12 branch predictor outperforming the hy-
brid_g10 branch predictor.

Also shown in Figure 2, instead of having a hardware choice predictor, we
can achieve comparable prediction rates using a static off-line choice predictor.
Our simulation results show that SCC does not perform as well as SC. This is
because the SC model can account for aliasing in its model and hence is more
accurate. The difference of these two models is less than 2% in branch miss
prediction rates.

Comparing between SCC and SCDT, both schemes provide comparable re-
sults. This suggests that branches with varying behavior, as explained earlier,

Choice Predictor for Free 407

Fig. 3. Normalized speedup with different branch predictors.

rarely occur in SPEC2000. Selecting branch predictors at random does not pro-
vide as good an average result as our SCC and SC.

We also show that instead of having a hardware hybrid choice predictor, we
can employ a static choice prediction and increase the size of the global branch
predictor. The hybrid_g11+sc model demonstrates the best prediction rate
among others for most of the benchmarks.

Figure 3 shows the normalized performance speedups of various prediction
schemes; the baseline in this figure is gshare10. The results show that the
speedup’s improve as the prediction rates increase. We expect the increase will
be more significant with deeper, and wider machine.

Previously, we explained that the motivation of our work is to reduce the area
and power consumption of a branch predictor while retaining the performance.
To this end, we use Wattch to collect the power statistics of the branch predictor
and other functional units of the processor. Both dynamic and static power
consumption were considered in our evaluation. For each functional block (such
as BTB, branch predictor, i-cache, and d-cache), the switching power consumed
per access is calculated along with the total number of accesses to that block.
Additionally, when a block is not in use, we assume an amount of static power
equal to 10% of its switching power is consumed. Note that this amount will
increase significantly when migrating to the future process technology. Thus,
the elimination of the choice predictor will gain more advantage in overall power
dissipation. We also want to mention that we examined the effect of our branch
prediction schemes on the power consumption of the branch direction predictor,
and we claim improvements on the power consumption of the branch direction
predictor.

Figure 4 shows the normalized power consumption values for different branch
predictors, relative to the power consumption of gshare10. From this Figure and
Figure 3, we can tell that for nearly all the benchmarks, hybrid_g10+sc yields
the best processor performance for little branch prediction power. We can use
Figures 3 and 4 as guides in a design space exploration framework, where the
power budget of the branch predictor is limited, and a specific performance con-
straint has to be satisfied. For example, the results in Figure 4 show that the
removal of the choice predictor in hybrid_g10 can reduce the power consump-

408 M. Ekpanyapong, P. Korkmaz, and H.-H.S. Lee

Fig. 4. Normalized power consumption of different branch predictors.

Fig. 5. Normalized processor energy with different branch predictors.

tion to a level comparable to that of gshare11. Similarly Figure 3 shows that
hybrid_g10+sc outperforms gshare11, for all the benchmarks. Hence we can
deduce that using hybrid_g10+sc is more advantageous in terms of both the
power dissipation and performance. We present the total energy consumption
of the processor in Figure 5. Despite the fact that gshare10 has lowest power
consumption, all other branch predictors outperform gshare10 in terms of total
energy consumption. When we compare the power consumption with static and
dynamic methods for the same type of branch predictor, static choice predic-
tor consumes less power. However the total energy consumption depends not
only the power consumption but also execution time. Hence hybrid_g10 model
which has better the performance on average than hybrid_g10+scc has smaller
energy consumption. Hybrid_g10+sc instead has the smaller energy consump-
tion than most of branch predictors including hybrid_g10 since it is faster and
consumes less power. Moreover hybrid_g11+sc which has higher branch predic-
tion’s power dissipation than hybrid_g10+sc outperforms all branch predictors
in terms of total energy consumption.

Next, we study the impact of profiling on the training input set of our SC
and SCC training. We aim to show how our models SCC and SC are affected as
a result of various training data. We use three different input sets for profiling:
test, train, and reference. The results show little impact on the branch predic-
tion outcomes. The results are detailed in Figure 6 where the baseline is again
gshare10. Figure 6 shows that SCC is less sensitive to profile information than
SC. This is because SC incorporates aliasing information in its model. Let us

Choice Predictor for Free 409

Fig. 6. Normalized speedup on different profiling input sets.

Fig. 7. CFG example showing aliasing impact.

consider the Control Flow Graph (CFG), which is shown in Figure 7. Assume
that branches and point to the same location in global branch predictor and
also are predicted accurately by a global branch predictor if there is no destruc-
tive aliasing. If branches and destructively interfere with each other, this
results in profiling say that loop A- C is called more frequently than loop B- C
hence static choice predictor will assign both branches and to local branch
predictor. However on the running input set, if loop C-A runs more often than
loop B-A then assigning both and to local branch predictor can reduce branch
prediction accuracy. Figure 6 also shows that if profile information has the same
behavior as the real input set, static choice predictor can outperform hardware
choice predictor in most benchmarks.

We then perform experiments using different hybrid branch predictors to
show that SC and SCC are equally compatible with different kinds of hybrid
branch predictors. In this set of experiments, gshare10 is our chosen baseline.
The results are shown in Figure 8. Note that hybrid_PAg is a hybrid branch
predictor similar to the one used in Alpha 21264 processor. It consists of a two-
level local predictor with a local history table size of 1024x10 bits, local predictor

410 M. Ekpanyapong, P. Korkmaz, and H.-H.S. Lee

Fig. 8. Normalized speedup on different hybrid branch predictors.

size of 1024x2 bit and with global and choice predictors of size 1024x2 bit.
hybrid_GAp stands for a hybrid branch predictor with a 1024x2 bit bimodal
predictor and four of 1024x2 bit counters instead of one such counter as in
hybrid_g10.

Since SCC is not intended to target hybrid_PAg, i.e it cannot exploit full
advantages from local branch predictor in hybrid_PAg, we exclude the result
of the SCC on hybrid_PAg. For example, if we have local history pattern of
1010101010, is 0 and SC will not choose local branch predictor but local
predictor in hybrid_PAg can predict this pattern accurately.

Results shown in Figure 8 also indicate that SC works well with hybrid_PAg.
We now report the power consumption of different branch predictors and

total energy consumption of the processor using these branch predictors. Figure 9
shows the normalized power consumption for different hybrid predictors relative
to gshare10. In this figure, we observe that for hybrid_g10, and hybrid_GAp,
using SC and SCC methods bring an improvement of 42% on average. The
average improvement for hybrid_PAg is around 37%. The power consumption
in hybrid_GAp is not too high compared with hybrid_g10 since clock gating
is applied to unused predictors. Figure 10 shows the total energy consumption of
the processor using these hybrid predictors. Using SC method with hybrid_PAg
branch predictor gives the best result in terms of the energy consumption of the
processor and this is due to the high speedup obtained using hybrid_PAg_sc
which is observed on Figure 8.

These results allow the possibility of replacing the hardware choice predictor
with our schemes, and reclaim in its corresponding die area. Assuming a static
memory array area model, as described in [13], for the branch predictor, the area
can be quantified as followings:

where is the number of words, is the number of bits and rbe is an
area unit of a register cell. The two +6 terms approximate the overhead for the
decoder logic and sense amplifiers. Based on equation 1, we derived the normal-
ized areas of different branch predictors relative to gshare10 in Table 2. Note
that the branch predictor area saved by using our profile-guided SCC and SC

Choice Predictor for Free 411

Fig. 9. Normalized power consumption of different hybrid branch predictors.

schemes for hybrid_g10 predictor is 33.18%. The saving is less for other predic-
tors because these predictors are comprised of more complicated local and global
predictors which consume a lot of area. One interesting result in the table shows
that the area of hybrid_GAp+sc/scc is smaller than the area of hybrid_g10.
This is due to the fact that fewer decoders are needed for hybrid_GAp+sc/scc
compared to hybrid_g10. The four 1024x2 bit tables in hybrid_GAp share the
same decoder, hence we need only one 10x1024 decoder and one 2x4 decoder for
hybrid_GAp, while hybrid_g10 needs three separate 10x1024 decoders (one
for each predictor).

6 Conclusions

In this paper, we study two profile-guided techniques: Static Correlation Choice
and Static Choice, for performing off-line static choice predictions. Our work of-
fers the possibility of eliminating the hardware choice predictor while achieving
comparable performance results. In other words, the branch prediction rates at-
tained by dynamic choice predictors can also be achieved using the two proposed

412 M. Ekpanyapong, P. Korkmaz, and H.-H.S. Lee

Fig. 10. Normalized processor energy with different hybrid branch predictors.

models, thus resulting in similar performance. The studies we carried out using
different input data further indicate that the SC and SCC techniques are largely
insensitive to profiling data. By using our techniques, we can reduct the power
dissipation of the branch predictor by 40% on average. Moreover, an average
saving of 27% in branch predictor area can be saved.

References

1.
2.

3.

4.

5.

6.

7.

8.

9.
10.

11.

12.

13.

T. Ball and J. R. Larus. Branch Prediction for Free. In PLDI-6, 1993.
D. Brooks, V. Tiwari, and M. Martonosi. Wattch: A Framework for Architectural-
Level Power Analysis and Optimizations. ISCA-27, June 2000.
P.-Y. Chang, E. Hao, T.-Y. Yeh, and Y. N. Patt. Branch Classification: a New
Mechanism for Improving Branch Predictor Performance. International Journal
of Parallel Programming, Vol. 24, No. 2:133–158, 1999.
Daniel Chaver, Luis Pinuel, Manuel Prieto, Francisco Tirado, and Michael C.
Huang. Branch Prediction on Demand: an Energy-Efficient Solution . In Proceed-
ings of the 2003 International Symposium on Low Power Electronics and Design,
2003.
Intel Corporation. IA-64 Application Developer’s Architecture Guide. Intel Liter-
ature Centers, 1999.
J. A. Fisher and S. M. Freudenberger. Predicting Conditional Branch Directions
From Previous Runs of a Program. In ASPLOS-5, pages 85–95, 1992.
D. Grunwald, D. Lindsay, and B. Zorn. Static Methods in Hybrid Branch Predic-
tion. In PACT’98, 1998.
John L. Henning. SPEC CPU2000: Measuring CPU Performance in the New
Millennium. IEEE Micro, July 2000.
R. E. Kessler. The ALPHA 21264 Microprocessor. IEEE Micro, March/April 1999.
H.-H. S. Lee, J. B. Fryman, A. U. Diril, and Y. S. Dhillon. The Elusive Metric for
Low-Power Architecture Research. In Workshop on Complexity-Effective Design,
2003.
SimpleScalar LLC. SimpleScalar Toolkit version 3.0.
http://www.simplescalar.com.
S. McFarling. Combining Branch Predictors. Technical Report TN-36, Compaq
Western Research Lab, 1993.
J. M. Mulder, N. T. Quach, and M. J. Flynn. An Area Model for On-Chip Memories
and its Application. IEEE JSSC, Vol. 26 No. 2, February 1991.

Choice Predictor for Free 413

14.

15.
16.

17.

Shien-Tai Pan, Kimming So, and Joseph T. Rahmeh. Improving the Accuracy
of Dynamic Branch Prediction Using Branch Correlation. Proceedings of the 5th
International Conference on Architectural Support for Programming Languages and
Operating Systems, 1992.
J. E. Smith. A Study of Branch Prediction Strategies. In ISCA-8, 1981.
T.-Y. Yeh and Y. N. Patt. Two-Level Adaptive Training Branch Prediction. In
MICRO-24, 1991.
C. Young and M. D. Smith. Static Correlated Branch Prediction. ACM TOPLAS,
1999.

Performance Impact of Different Data Value Predictors

Yong Xiao, Kun Deng, and Xingming Zhou

National Laboratory for Parallel & Distributed Processing
Changsha, P.R. China, 410073
yxiao1977@hotmail.com

Abstract. Data value prediction has been widely accepted as an effective
mechanism to exceed the dataflow limit in processor parallelism race. Several
works have reported promising performance potential. However, there is hardly
enough information that is presented in a clear way about performance com-
parison of these prediction mechanisms. This paper investigates the perform-
ance impact of four previously proposed value predictors, namely last value
predictor, stride value predictor, two-level value predictor and hybrid
(stride+two-level) predictor. The impact of misprediction penalty, which has
been frequently ignored, is discussed in detail. Several other implementation is-
sues, including instruction window size, issue width and branch predictor are
also addressed and simulated. Simulation results indicate that data value predic-
tors act differently under different configurations. In some cases, simpler
schemes may be more beneficial than complicated ones. In some particular
cases, value prediction may have negative impact on performance.

1 Introduction

The inevitably increasing density of transistors on one silicon die allows chip design-
ers to put more and more execution resources into single chip to improve perform-
ance. However, the presence of data dependences in programs greatly impairs their
effort. Value prediction is a speculative technique that uses the previous results of a
static instruction to predict the value of the instruction’s next output value. Recent
studies have shown bright future of using data value prediction to exceed the dataflow
limit [2, 3, 6, 10, 12, 13].

Previous studies have introduced many data value predictors. Performance impact
of each predictor has been thoroughly investigated respectively. Yet no works have
reported the performance comparison of these predictors in a clear way. Such study is
helpful in better understanding the effects of value prediction mechanisms and is of
great importance when designing an appropriate value predictor. In this paper, we
integrate value prediction mechanism in a pipeline implementation and investigate the
performance impact of different value predictors. Four previously proposed value
predictors, namely last value predictor [1, 2, 3, 4], stride value predictor, two-level
value predictor and hybrid (stride+two-level) predictor [4] are used as candidates.
Different implementation configurations are also discussed.

P.-C. Yew and J. Xue (Eds.): ACSAC 2004, LNCS 3189, pp. 414–425, 2004.

© Springer-Verlag Berlin Heidelberg2004

Performance Impact of Different Data Value Predictors 415

Simulation analysis indicates that we may need to re-evaluate the impact of data
value prediction on performance. With different misprediction penalties and imple-
mentation issues, these predictors showed different characteristics. Some predictors
may even cause performance degradation. To our surprise, complicated predictors
may obtain lower IPC (instructions per cycle) than simpler schemes in some experi-
ments. At last, many factors of value prediction implementation are still ambiguous
by now. Further research must be done to fully evaluate data value prediction.

The remainder of the paper is organized as follows: Section 2 discusses recent
relevant work in value prediction. Section 3 introduces the microarchitecture imple-
mentation. Section 4 summarizes our experimental methodology and presents per-
formance results. Section 5 presents a summary of this work, and proposes some
suggestions for future research.

2 Related Works

Value prediction is possible because of value locality - the property of recent values
to recur in computer system storage locations [1]. [1] indicates that a large fraction of
values computed by the same static load instruction are a repetition set within the 16
most recent values produced by the instruction. Follow-up studies [2, 3] extend value
prediction to all register writing instructions. Rychlik et al [5] present a value-
predicting wide superscalar machine with a speculative execution core. Their work
indicates that many predictions may be useless in enhancing performance.

Wang Kai et al investigate a variety of techniques to carry out highly accurate
value prediction [4]. Their simulation analysis shows that the four predictors used in
our paper have different static prediction rate and prediction accuracy. Yet the simu-
lation is made without pipeline involved. The limits of performance potential of data
value speculation to boost ILP are addressed in [6]. The impact on stride value pre-
dictor of some features, such as instruction window size and branch prediction accu-
racy are discussed and simulated within an idealized experiment environment.

However, there exists no formalized method that defines the effects of value
speculation on microarchitecture. Y. Sazeides thus proposes a methodical model for
dynamically scheduled microarchitectures with value speculation [7]. The model
isolates the parts of a microarchitecture that may be influenced by value speculation
in terms of various variables and latency events. Simulation results obtained with a
context-based predictor show that value speculation has non-uniform sensitivity to
changes in the latency of such events.

3 Microarchitecture

This section first describes a base-microarchitecture and then introduces the value
speculation microarchitecture used in the paper. Different data value predictors and
misprediction penalty considerations are also introduced respectively.

416 Y. Xiao, K. Deng, and X. Zhou

3.1 Base Microarchitecture

For base microarchitecture we consider an out-of-order superscalar processor model
used in SimpleScalar2.0 [15], where the Register Update Unit (RUU) structure unifies
issue resources and retirement resources. Memory instructions consist of two opera-
tions: address generation and memory access. Fast forward is implemented, thus data
dependent instructions can get executed in the same cycle when an instruction writes
back its result to physical registers. The pipeline is six-stage implemented: Fetch (F),
Dispatch (D), Issue (I), Execution (E), Write back (W) and Commit (C). The pipe-
lined execution of three data dependent instructions i, j and k is shown in Figure 1.
One-cycle execution latency is assumed for all instructions, which means the results
are available just after I-stage, so E-stage is not shown.

Fig. 1. Execution Example of Base Architecture

3.2 Data Value Predictors

Four previously proposed predictors, namely last value predictor (LVP), stride value
predictor (SVP), 2-level predictor (2LP), stride+2level hybrid predictor (S2P) are
used here as candidates.

Last value prediction predicts the result of an instruction based on its most recently
generated value. While stride value prediction predicts the value by adding the most
recent value to the stride, namely the difference of the two most recently produced
results.

The 2-level value predictor predicts the value based on the repeated pattern of the
last several values observed. It consists of two tables: a value history table (VHT) and
a pattern history table (PHT). The VHT stores up to four distinct values generated by
an instruction and keeps track of the order in which they are generated. Several satu-
rating counters maintained in PHT are used to decide whether a prediction should be
made or not.

The hybrid value predictor is a combination of SVP and 2LP. Compared to the
VHT in 2LP, the VHT of the hybrid predictor has two additional fields: state and
stride, for the stride prediction. 2LP is always accessed first, but its prediction is used
only if the maximum counter value is greater than or equal to the threshold value.
Otherwise, SVP is used.

The work done by Sang [16], where schemes in [1,4] are realized without pipeline
involved, is referenced here for comparison. Configurations for these predictors used
in the paper are summarized in Table 1. A maximum capacity of about 128K
(1K=1024) bytes is considered for each predictor. All predictors are directly mapped.

Performance Impact of Different Data Value Predictors 417

3.3 Microarchitecture with Value Prediction

The base machine model is modified to support result value prediction. In addition to
adding the value predictor, each RUU is expanded to hold the predicted value and
other information for speculative execution.

At fetch stage, instruction address is used to access the value predictor. And in our
experiments, the number of value predictions made in a cycle is unlimited. Once a
prediction is made, the predicted value will be available at dispatch stage. Later de-
pendent instructions will be able to get issued with the predicted value. The data
value predictor is updated when an instruction gets committed, namely the predictor
can not be updated speculatively. Speculative update will be studied in the future.

Instructions can be speculative or non-speculative, predicted or un-predicted.
Speculative instructions have at least one predicted source operand when they get
executed; predicted instructions have a predicted result. In our implementation, data
value prediction is performed only for load and simple ALU instructions. Branch
instructions, store instructions, nops and double-precision instructions are not consid-
ered for data value prediction. For the complexity brought by speculative memory
access, only simple ALU instructions and address generations can execute specula-
tively. Moreover, for configuration Conf4 (will be mentioned in section 4.2), when
none-zero misprediction penalty is used, address generation is not permitted to exe-
cute speculatively. Even if address generation is allowed to do speculative execution,
memory access can only be issued when all its operands are final.

A speculatively issued instruction is prevented from completing architecturally and
is forced to retain possession of its issue resources until its inputs are no longer specu-
lative. After execution, the speculative results are not broadcast on the result bus.
Instead, they are locally written back to the same RUU. Once a prediction is verified,
all dependent instructions can either release their issue resources and proceed into the
commit stage (in the case of a correct prediction) or restart execution with the correct
register values (if the prediction was incorrect). In our work, a predicted instruction
can only verify its direct successors. The verified instructions can do the activation
successively.

3.4 Misprediction Penalty Considerations

For misprediction penalty, two time and are considered,
stands for the latency between a predicted instruction finishes execution and depend-

418 Y. Xiao, K. Deng, and X. Zhou

ent speculatively executed instructions get verified. stands for the latency after a
speculatively executed instruction using an incorrectly predicted value gets verified
before it can reissue. and can be either 0 or 1 in our work. Latency that is
bigger than 1 will be too pessimistic for our processor model. Figure 2 illustrates the
pipelined execution of the three instructions used in figure 1 under all four combina-
tions of and R and V stand for reissue and verify respectively. For each
combination, two scenarios are considered: (1) both the outputs of i and j are cor-
rectly predicted, (2) both the outputs of i and j are mispredicted.

Fig. 2. Execution Example with Different and Configurations

Figure 2 indicates that when equals to 1, value prediction will not improve
performance and sometimes will cause performance degradation. Under such situa-
tions, value speculation is not beneficial. In our work, only is analyzed.

There can also be structural hazard penalties due to value speculation implementa-
tion, especially when the execution resources are limited. Such structural hazard is
also well simulated in the experiments.

4 Performance Evaluations

In this section we will introduce our experiment environments and present results
obtained from the simulation experiments.

Performance Impact of Different Data Value Predictors 419

4.1 Benchmarks

The precompiled SPEC CINT95 benchmark suite supplied by SimpleScalar [15] is
used in our simulation. Table 2 shows the benchmarks and the specific input sets
used. The last column gives the percentage of dynamic instructions that are eligible
for data value prediction. All benchmarks were run to completion.

4.2 Architecture Parameters

Our implementation has a 16K bytes directly mapped instruction cache. The first
level data cache is 4-way associative, 16K bytes for Con4, 64K bytes for other con-
figurations. Both caches have block sizes of 32 bytes and hit latency of 1 cycle. There
is a unified second level 256K bytes 4-way associative cache with 64 byte blocks and
a 6-cycle cache hit latency. The first 8 bytes of a data access request to memory will
need 18 cycles and the rest of the access will take 2 cycles for each 8 bytes. There is a
16 entry 4-way associative instruction TLB and a 32 entry 4-way associative data
TLB, each with a 30 cycle miss penalty. The branch target buffer (BTB) has 512
entries and is 4–way associatively organized. Moreover, an 8-entry return address
stack is used.

The latencies of functional units are set as below: Integer ALU 1 cycle, Integer
MULT 3 cycles, Integer DIV 20 cycles, FP Adder 2 cycles, FP MULT 4 cycles and
FP DIV 12 cycles. All functional units, except the divide units, are pipelined to allow
a new instruction to initiate execution each cycle.

Other architecture parameters are summarized in Table 3. Four configurations will
be simulated. Conf4, which is very conservative, only allows small window size and
issue width. While the next three configurations – Conf8, Conf8_bP and Conf8_bPvP
are much closer to those of modern processors. Here “bP” means perfect branch pre-
diction and “vP” means perfect value prediction. With perfect branch prediction, the
fetch engine will always get instructions from the correct path and no instructions
from the wrong path will be used. With perfect value prediction, value prediction will
be used only if the predicted value equals to the final result. Meanwhile the value
predictor will be updated immediately with the correct results along with the predictor
lookup process, and needs not wait until the instruction gets committed.

420 Y. Xiao, K. Deng, and X. Zhou

4.3 Experimental Results

Two kinds of configurations: (1) (2) are simu-
lated. To better understand the value speculation performance, we define two metrics:
speculation rate (SR) and reissue rate (RR). Speculation rate is defined as the percent-
age of speculatively executed instructions over all executed instructions including
those that are on the wrong path. Reissue rate is the percentage of speculative instruc-
tions that get reissued at least one time over all executed instructions.

4.3.1 Prediction Performance Using Conf4
Figure 3 shows the simulation results when Figure 4 shows the perform-
ance when In figure 3(b) and figure 4(b), for each benchmark, 4 groups of
results are given; from left to right, these correspond to predictor LVP, SVP, 2LP and
S2P respectively. Each group of results consists of 3 parts. The uppermost part (SR)
indicates the speculation rate. The next part (RR) indicates the reissue rate, and the
next part (delta) indicates the difference of speculation rate and reissue rate, namely
the percentage of speculative instructions that are executed correctly over all executed
instructions including those that are on the wrong path.

Fig. 3. Prediction Performance of Four Predictors Using Conf4,

Performance Impact of Different Data Value Predictors 421

Figure 3(a) indicates that S2P performs the best among all predictors, while LVP
performs the worst. When there is no misprediction penalty except the
penalty brought by structural hazards. So the more correct speculations/predictions
(delta in figure 3(b)) a scheme performs the more benefits it can obtain. Reissue rate
or incorrect prediction rate is not a decisive factor in such a situation.

Figure 4(b) shows similar trend as figure 3(b), except that both the value of SR and
RR are decreased a little. When equals to 1, address generation operations are
not allowed to execute speculatively, which is mainly responsible for the difference.
The impact of such factor needs further research.

Fig. 4. Prediction Performance of Four Predictors Using Conf4,

Figure 4(a) indicates that SVP obtains the highest average speedup among all four
predictors. This is mainly due to the fact that when misprediction penalty is not negli-
gible, prediction accuracy is more crucial than the amount. Although S2P still per-
forms the most correct speculations, the higher reissue rate (figure 4(b)) impairs its
benefit. A more noticeable fact is that value speculation may sometimes cause per-
formance degradation. For benchmark go and ijpeg, negative impact on the perform-
ance is performed by both 2LP and S2P. This can be explained by the high reissue
rate showed in figure 4(b). Especially for ijpeg by 2LP where RR is higher than delta,
it’s not surprising to obtain the worst performance.

4.3.2 Prediction Performance Using Conf8
In this subsection, Conf8 is used in our experiments. Figure 5 and Figure 6 show the
simulation results for and respectively. As more instructions are
allowed to be fetched and issued in one cycle, more instructions get executed specula-
tively. Meanwhile more wrong predictions are made. As a consequence, both SR and
RR are higher in figure 5 and 6 than those in figure 3 and 4.

From figure 5(a), we find again that S2P performs the best among all predictors,
while LVP performs the worst. Two other facts are worth mentioning here. First is
that the speedup obtained with Conf8 is lower than that with Conf4. One reason is
that with larger window size and issue width, the scheduling hardware has more op-
portunities rearranging instructions. Thus the effect of value prediction is weakened.
The relative higher reissue rate is also responsible for performance decline. The other
noticeable fact is the negative impact on benchmark perl by LVP and SVP. It is be-
cause that the number of instructions on the wrong path is greatly increased under
LVP and SVP, which in turn result in performance degradation.

422 Y. Xiao, K. Deng, and X. Zhou

Due to the lowest reissue rate and stable behavior among all benchmark programs,
LVP performs the best in figure 6(a). Meanwhile, SVP, for its bad performance with
compress and perl, takes the second place. For the relative higher reissue rate, more
programs perform worse with value speculation than in figure 4(a).

Fig. 5. Prediction Performance of Four Predictors Using Conf8,

Fig. 6. Prediction Performance of Four Predictors Using Conf8,

4.3.3 Prediction Performance Using Conf8_bP
Figure 7 and Figure 8 demonstrate the simulation results of using Conf8_bP for

and respectively. It is disappointing to find that all value predictors can
hardly obtain performance benefits in both cases. One possible explanation may be
obtained from figure 7(b) and 8(b). For many programs, the reissue rate is greatly
higher than delta, which means most speculatively executed instructions get incor-
rectly performed. To manage reissue rate under an acceptable level is of great impor-
tance in value prediction design.

Fig. 7. Prediction Performance of Four Predictors Using Conf8_bP,

Performance Impact of Different Data Value Predictors 423

Fig. 8. Prediction Performance of Four Predictors Using Conf8_bP,

4.3.4 Prediction Performance Using Conf8_bPvP
In this subsection, we will check the performance impact of perfect value predictors.
All predictors are configured to make predictions only if the predicted value equals to
the final result. Thus all speculatively executed instructions need not be reissued.
Results are presented in Figure 9.

Fig. 9. Prediction Performance of Four Predictors Using Conf8_bPvP,

We can see that the performances of programs are improved mostly, especially for
compress, ijpeg and m88ksim. However, for li and vortex, negligible benefits are
obtained. And for perl, negative effect is taken. One possible explanation is that under
such ideal simulation environments where branch prediction is perfect and instruction
window is very large, the original hardware itself is enough to obtain the best per-
formance through instruction rearranging. Also the speculatively executed instruc-
tions are useful only if they are on the critical path. Thus the high speculation rate
does not mean high performance gains.

5 Summary and Future Works

In this paper, we have discussed the pipelined execution of value speculation with
different misprediction penalties and different architecture configurations. And the
performance impacts of different data value predictors are studied in detail. We find
that with different misprediction penalties and implementation issues, these predictors
showed different characteristics. Some value predictors may even cause performance
degradation under some configurations. And to our surprise, complicated hybrid

424 Y. Xiao, K. Deng, and X. Zhou

value predictor, due to its high reissue rates, obtains lower IPC than simpler schemes
in some of the experiments. These observations are of great importance in future
value prediction research.

In the experiments, the speedup obtained with value predictor is moderate; benefits
are even negligible under ideal environments with large window size, high issue
width and perfect branch predictions. Reasons include: 1) unlike branch prediction, in
our six-stage pipeline implementation, the benefit of correct value prediction is mod-
erate; 2) the high reissue rate impairs the effect of value prediction; 3) many correct
speculative executions may not be useful, because they are not on the critical path; 4)
the relative low fetch bandwidth may also impairs the performance [9].

There are several directions for future work. One important work is to study the
impact of value prediction in future designs. As deeper pipeline will be widely used,
the benefit of correct value prediction may be larger. How to combine value predic-
tion with architectures that exploit higher level parallelism [10, 11, 13], such as trace
processor, to achieve higher speedups is still not clearly studied. Another direction
would be to design better confidence and filtering mechanisms [8, 14] to limit unnec-
essary value predictions. Moreover, exploiting new type of value predictions, such as
global stride locality [12], may improve the performance ulteriorly.

Acknowledgements. Thanks to the reviewers for their insight and helpful sugges-
tions. This research is supported by the National Natural Science Foundation of
China, NO. 90307001.

References

1.

2.

3.

4.

5.

6.

7.

8.

M. H. Lipasti, C. B. Wilkerson, and J. P. Shen. Value Locality and Load Value Predic-
tion. Proceedings of VIIth International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (ASPLOS- VII), 1996
M. H. Lipasti and J. P. Shen. Exceeding the Dataflow Limit via Value Prediction.
Proceedings of 29th International Symposium on Microarchitecture (MICRO-29), 1996:
226-237
M. H. Lipasti and J. Shen. Exploiting Value Locality to Exceed the Dataflow Limit.
International Journal of Parallel Programming, Vol. 28, No. 4, August 1998: 505-538
K. Wang and M. Franklin. Highly Accurate Data Value Prediction using Hybrid Predic-
tors. Proc. of the 30th Annual International Symp. on Microarchitecture, Dec. 1997: 281-
290
B. Rychlik, J. Faitl, B. Krug, J. P. Shen. Efficacy and Performance Impact of Value
Prediction. Proceedings of International Conference on Parallel Architectures and Com-
pilation Techniques, 1998
J. Gonzalez and A. Gonzalez. The Potential of Data Value Speculation to Boost ILP.
International Conference on Supercomputing, 1998
Y. Sazeides. Modeling value prediction. 8th International Symposium on High Perform-
ance Computer Architecture (HPCA-8), 2002
B. Calder, G. Reinman, and D. Tullsen. Selective Value Prediction. Proceedings of the
26th Annual International Symposium on Computer Architecture, June 1999

Performance Impact of Different Data Value Predictors 425

9.

10.

11.

12.

13.

14.

15.

16.

F. Gabbay and A. Mendelson. The Effect of Instruction Fetch Bandwidth on Value
Prediction. 25th International Symposium on Computer Architecture (ISCA), 1998: 272-
281
Y. F. Wu, D. Y. Chen, and J. Fang. Better Exploration of Region-Level Value Locality
with Integrated Computation Reuse and Value Prediction. ISCA-28, July 2001
S. J. Lee, Y. Wang, and P. C. Yew. Decoupled value prediction on trace processors. In
6th International Symposium on High Performance Computer Architecture, Jan. 2000:
231-240
H. Zhou, J. Flanagan, and T. M. Conte. Detecting Global Stride Locality in Value
Streams. The 30th ACM/IEEE International Symposium of Computer Architecture
(ISCA-30), June 2003
S. J. Lee, P. C. Yew. On Some Implementation Issues for Value Prediction on Wide-
Issue ILP Processors. IEEE PACT 2000: 145-156
R. Bhargava, L. K. John. Performance and Energy Impact of Instruction-Level Value
Predictor Filtering. First Value-Prediction Workshop (VPW1) [held with ISCA’03], June
2003: 71-78
D. C. Burger, T. M. Austin. The SimpleScalar Tool Set, Version 2.0. Technical Report
CSTR-97-1342, University of Wisconsin, Madison, June 1997.
S. J. Lee. Data Value Predictors. http://www.simplescalar.com/

Heterogeneous Networks of Workstations

SunHo Baek1, KyuHo Lee1, JunSeong Kim1, and John Morris1,2

1 School of Electrical and Electronics Engineering,
Chung-Ang University, Seoul 156-756, Korea

2 Department of Electrical and Electronic Engineering,
The University of Auckland, New Zealand

Abstract. Parallel systems built from commodity CPUs and network-
ing devices (Networks of Workstations or NoW) are easily and econom-
ically constructed. Rapid technological change means that as elements
are added to or replaced in such a system, it will inevitably become
heterogeneous.
This paper examines issues in effectively using all the processing power
of a heterogeneous NoW system. In particular, it examines the use of two
different parallel programming models: MPI, a popular message passing
system and Cilk, an extension to C with dataflow semantics. We consider
both the performance of the two systems for a set of simple benchmarks
representative of real problems and the ease of programming these sys-
tems. We show that, in many cases, Cilk both performs better than MPI
and, additionally, that it requires less programming effort to write pro-
grams that exploit the full power of a heterogeneous system.

Introduction1

Demand for personal computers has led to production volumes that have meant
that the most cost-effective way to obtain raw processing power is to buy com-
modity personal computers. The de facto requirement that most personal com-
puters are connected to networks of some type has also meant that networking
hardware (interfaces, routers, switches, etc.) is also readily available and eco-
nomic. Thus potentially powerful, but economic, parallel processors or Networks
of Workstations (NoWs) can be built from commodity PCs. In this paper, we
focus on systems built from commodity components containing only very small
numbers (say 1-2) processors on each system bus. Thus we assume either no or
very limited shared memory.
Rapid and continual technological advances also mean that more powerful pro-
cessors are almost continually available as manufacturers release new, faster
processor chips. Volume production of personal computers allows manufacturers
to rapidly incorporate the faster chips into systems - in fact, for many manufac-
turers the ability to release a system incorporating a faster processor as soon as
the new CPU chip is available is vital for survival. Thus, unless a system has
been put together from identical processors over a very short period of time,
it will inevitably be a heterogeneous one: as processors are added or replaced,

P.-C. Yew and J. Xue (Eds.): ACSAC 2004, LNCS 3189, pp. 426–439, 2004.
© Springer-Verlag Berlin Heidelberg 2004

Heterogeneous Networks of Workstations 427

the downward pressure on prices means that more cost-effective processors are
available. After quite a short period of time, it may even become impossible to
locate processors matching the original components of a NoW: in today’s market,
processors that lag behind the state-of-art quickly become ‘obsolete’ - despite
having considerable processing capability.
If the parallel processing run-time system (which could be a message passing
one such as MPI[1], one which creates an illusion of shared memory[2] or the
RTS supporting Cilk’s dataflow mode of operation[3]) naively distributes equal
amounts of work to each processor in a heterogeneous NoW, then the presence of
a final barrier at which results from all sub-calculations are gathered together to
generate the ultimate result leads to an system equivalent, at best, to

of the slowest processors. Parallel processing overheads will inevitably reduce
the NoW system’s power to considerably less than this. This obviously represents
a considerable waste of resources in a system where the power of individual
processors may vary by a factor of 10 or more. Thus, the ability to effectively
exploit the more powerful processors in a heterogeneous system is important: it
allows efficient systems to be built, maintained and augmented. Heterogeneity
may come from sources other than raw CPU clock speed. Cache sizes and speeds,
the mix of processing units in a superscalar, bus speeds, peripheral interface
efficiency (particularly network cards) and memory speed and capacity may all
change the ‘power’ of one element of a NoW relative to another. Relative powers
axe also problem dependent, so that simple load balancing schemes that rely on
knowledge of relative processing powers are unlikely to be effective over a wide
range of problems - as well as requiring significant set up or calibration effort.

1.1 Message Passing Run-Time Systems

A message passing run-time system provides one basic capability - the ability
to send a message from one process to another. Thus the RTS needs to pro-
vide send and receive primitives. Generally, these will provide synchronization
also: a process will block on a receive until the sending process has executed
the send, synchronizing two threads of computation as well as transferring data.
Providing very low level semantic support, message passing systems require more
programmer effort to manage data, threads of computation and synchronization.
This is usually reflected in higher program complexity - confirmed by our mea-
surements in Section 3.6.

1.2 Cilk’s Dataflow Model

Although Cilk is an extension of a weakly typed programming language, it has a
strong semantic model. Only when all their data is available, do threads ‘fire’ (be-
come ready for execution) Thus Cilk programs are data-driven as far as the main
computational units - the threads - are concerned and control-driven within each
thread. A quite small extension to C, Cilk is easy to learn but its safety (based
on the strict dataflow model) is compromised by the ability to use C pointers
(particularly global ones). On the other hand, it is able to leverage extensive

428 S. Baek et al.

experience in optimizing C compilers. A safer version of Cilk - Dataflow Java -
has been implemented and has been demonstrated to run in fully heterogeneous
environments consisting of processors running different operating systems [4], but
its performance could not match that of C-based Cilk.

2 Experiments

Programs for several simple problems were written in both C using an MPI
library[5] and Cilk. Some of the problems had parameters other than the basic
problem size which could be used to change the characteristics (numbers and
sizes of messages needed to transfer data between processors) and thus fully
explore the relative efficiencies of various strategies.
The essential characteristics of the problems used are described in the follow-
ing sections. The major basis for comparison was the speedup attainable for a
suitably large (and therefore interesting!) problem.
In addition to measuring performance, we assessed program complexities by
counting lines of code (separated into ‘core’ algorithm code and support code,
e.g. code to manage work queues) and variables used. We also examined the
effort needed to change a basic problem solution to better use the heterogeneous
environment and report the gains resulting from these changes.
MPI lends itself to simple work distribution schemes in which fixed blocks of
compuation are sent to individual processing engines (PEs). Prediction of the
optimum block size in a heterogeneous NoW environment is not a simple task:
we measured the relative performance of the PEs in our testbed when solv-
ing the test problems and observed a range of relative ‘powers’ (cf. Table 1).
Thus any assumption of fixed powers is treacherous. We partly overcame this
problem by probing: each PE was asked to solve the problem individually and
the performance factors used to determine load balancing factors. Using these
factors produced, as expected, much better speedups: without them (i.e. with
equal work loads) the system was essentially constrained to be copies of the
slowest processor. However, conflicts for the communications network, queuing
of large packets, etc., mean that simple pre-determined loading factors are not
ideal: better results can be obtained with dynamic load balancing schemes. The
Cilk RTS’s ‘work-stealing’ mode of operation is well suited to this and can lead
to near-optimum use of the system (cf. Figure 3). It’s ability to create work on
slave processors further helps load balancing. To achieve a similar effect with
MPI, we built a small work packet management suite of routines, which were
sufficiently generic that they could be used with many problems. They provided
a simple queue to which work descriptors could be added by the work generator
(usually the master PE) and extracted for despatch to slaves as needed. Because
this suite could have been transferred to a library and used without further al-
teration for many problems, its code was tallied separately in the code volume
comparisons (see Table 2).

Heterogeneous Networks of Workstations 429

2.1 Fibonacci

We used the naive recursive algorithm taught in every course on recursive pro-
gramming and then dumped by courses on algorithms and complexity! It is
simple, provides a simple demonstration of the difficulties of MPI vs Cilk pro-
gramming and can be parameterized to generate a wide range of loads on the
underlying communications system by adjusting the depth at which new parallel
computation threads are spawned.

2.2 Travelling Salesman Problem (TSP)

A classic ‘hard’ problem, TSP requires a search through permutations of a
list. As with Fibonacci, a simple recursive program solves the problem. In par-
allel, good speed-ups are trivially obtained with little communication overhead
by despatching sub-tours to be evaluated to individual PEs. The cost matrix
is moderately large but it only needs to be distributed to each PE
once. Sub-tour descriptors are short integer lists requiring short messages. An
optimization distributes the cost of the best tour obtained so far to all PEs,
enabling unprofitable searches (a sub-tour is already longer than the best tour
found so far) to be abandoned. This optimization dramatically speeds up exe-
cution although it generates more messages to stress the RTS/communication
system.

2.3 N-Queens Problem

Another ‘hard’ problem, N – Queens requires an exhaustive search to find all
the possible placements of non-threatening queens on an N × N chess-board. It
has no set-up costs (e.g. distribution of a cost matrix for TSP) and spawns
threads recursively at every stage: thus it has a ‘pure’ recursive code solution. It
seeks to find all the possible placements, so does not have a cut-off optimization
like TSP. Parallel overhead can be reduced in the Cilk version by introducing
a sequential depth - or point at which no more threads are spawned (as with
Fibonacci).

2.4 Matrix Multiplication

A simple, but important problem, matrix multiplication (MM) is trivially par-
allelized by dividing one of the operand matrices into bands and computing
sub-products on each PE. The other operand matrix is distributed to all PEs in
the initialization phase. It has communication cost and computa-
tion cost: with modern fast CPUs and relatively slow networks, this implies that
speedup will only be observed with matrices large enough to overcome fixed over-
heads. Large blocks of data are also transmitted: in our test problem, a 6Mbyte
block of data must be transferred to each PE at startup. Note that the algorithm
tested here starts with the two operand matrices on a ‘master’ PE and finishes
with the product on the same PE. Other work assumes distributed operand and
product matrices: for example, Beaumont et al.’s study showed how to find an
effective allocation in a heterogenous environment [6].

430 S. Baek et al.

2.5 Finite Differencing

This problem solves Laplace’s equation in a discrete form by updating a cell with
the average of the four nearest-neighbour cells. One application is determination
of heat flow through a conducting plate. The plate is represented by a rectan-
gular matrix of cells. Each PE is assigned a band of cells (a set of rows of the
matrix) to solve. The problem is solved iteratively: it converges when the cell val-
ues in successive iterations change by less than some accuracy criterion. Rows of
boundary cells are shared between nearest neighbours: in each iteration each PE
only needs to update its two neighbours with new cell values. This allows several
synchronization schemes. The simplest one uses a ‘master’ PE. Each PE sends
a signal to the master when its neighbours’ boundaries have been updated1. It
also sends a signal to the master which advises whether the band has converged
or not. When the master has received all the synchronization signals, if any of
the bands is yet to converge, the master signals each PE to calculate one more
iteration. An alternative scheme synchronizes between nearest neighbours only,
allowing a degree of asynchronous processing - processors may overlap compu-
tation and boundary value communication more efficiently. A further scheme
allows the individual processors to run completely asynchronously: each PE will
commence a new iteration whether boundary updates have arrived from neigh-
bours or not. Boundary updates are despatched to neighbours when they are
available.

2.6 Test Bed

Following usual practice when building NoW systems, we begged and borrowed a
collection of PCs of varying ages and capabilities. Components were replaced as
necessary to build working systems, not to produce a homogeneous system. The
memory of each system was increased to at least 128Mbytes. Again, no attempt
was made to ensure equality or fairness - except with respect to the minimum
amount of memory. None of the programs had working sets large enough to cause
significant amounts of paging. None of the benchmark programs used the disc
system for anything except initial program loading (which was not included in

1 An error in Cilk’s specification was discovered when this program was written: see
Appendix A.

Heterogeneous Networks of Workstations 431

the timed results) and trivial amounts of result logging. Thus the performance
(or lack of it) of individual discs did not affect the results. Note that the Cilk
program distribution system adds PEs to the system in the order in which they
responded to the initial broadcast. No attempt was made to control this order as
it mimics a real heterogeneous system in which PEs have been upgraded as old
components were replaced. One of the slower processors was always used as the
master and speedups are always referred to it. This arrangement is the optimal
one for MPI where the simplest programming solution often uses a master PE
for synchronization and data distribution but not for any significant amounts of
computation.

3 Results

With a heterogeneous NoW, there are two possible bases for measuring speedup:

simply counting PEs (i.e. making them all equal) so that for 16 PEs, a
speedup of 16 is ideal, and
weighting them by their ‘raw’ powers, cf. Table 1.

Thus two target speedup lines have been placed on speedup graphs - ‘Basic
speedup’ assumes that all PEs are equal and ‘Possible speedup’ considers indi-
vidual PE powers. In our system, the potential speedup for 16 PEs relative to
the slowest PE was ~ 25: it is slightly problem dependent due mainly to differing
cache utilization.

3.1 Fibonacci

This problem has the finest grain parallelism of all those tested: thus parallel
overheads are quite high. To contain these overheads, the level at which new
threads are spawned was controlled in both cases. For Cilk, this involved four
additional lines of code. In the MPI version, the generation of sub-tasks for
distribution has to stop at some level - otherwise most of the work goes into
generating them! Thus no speedup can be observed at all without controlling
this level, and so it is built into the general programming overhead. Figure
1 shows the results for the optimum spawning level for each system size (i.e.
number of PEs). Cilk generally shows a slight performance edge: the speedup
difference is very small for small numbers of PEs (with MPI occasionally being
slightly faster), but for larger systems, Cilk consistently produces measurably
better results.
Noting that the spawning level essentially controls the computational cost of
a thread: a lower spawning level generates fewer, more expensive threads, we
examined the effect of the spawning level on performance. Figure 2 shows that
although the returns are diminishing, a large number of smaller cost threads
increases performance. For fib(43), threads - or considerably
more than would be expected to be needed to keep 16 PEs busy. A simple model
which ensured that the slowest processor received, say 10, packets and the faster

432 S. Baek et al.

Fig. 1. Times and speedup for Fibonacci

Fig. 2. Fibonacci: Effect of varying the spawning level

ones proportionately more - so that a time within 10% of the optimum was
obtained requires only 250 packets for our system. However, going from

(or threads) produces a 20% improvement in
time for 16 PEs (cf. Figure 2(b)).
With large numbers of threads (representing small work quanta) spawned, idle-
initiated work-stealing in the Cilk RTS ensures that the heterogeneous system is
efficiently used. Small work quanta are always available to a PE which becomes
idle. However, if every PE is busy, they are executed locally with no communi-
cation overhead.

3.2 Travelling Salesman Problem

The unoptimized version of TSP shows excellent speedups because each spawned
thread at the top level represents a large amount of work for a small communica-

Heterogeneous Networks of Workstations 433

tion effort. The results are shown in Figure 3(a). For Cilk, speedups approached
the potential speedup. Note again the importance of creating sufficient threads,
as Figure 3(a) shows, significant improvement is obtained by increasing the se-
quential depth from 3 to 4, which increases the number of threads generated
from 990 to 7920. The unoptimized Cilk program is particularly simple: the core
has only two parallel statements, one to spawn the initial thread and the other to
spawn threads to work on sub-tours. Two sync statements are also needed2. The
MPI version did not distribute the generated sub-computations in as efficient a
way as the Cilk program and its speedup suffered.

Fig. 3. TSP (a) unoptimized, (b) compared with

Speedup - maximum speedup obtainable for equal machines
Possible speedup - maximum speedup considering individual PE capabilities
Note the large variation in times for the optimized algorithm - reflecting the number
of asynchronous processes present! Results from this optimization are very sensitive to
the the order in which sub-tours are evaluated leading to the occasional ‘super-linear’
speedups seen here.

An optimization to the simple TSP program broadcasts the best tour found so
far to all other processors. PEs use this value to cut off unprofitable searches
in which a sub-tour cost is already greater than the best tour seen already.
Whilst not altering the fundamental hard nature of the problem, it dramatically
increases the rate at which the search is carried out by cutting off large portions
of the search space: we observed speedups of nearly three orders of magnitude
using it - enabling a 14-city problem to be solved in about the same time as
the unoptimized version solves a 11-city one. However, it does generate a large
number of additional messages which affects the speedups shown in Figure 3(b).

2 The Cilk compiler could infer the need for these from a simple dataflow analysis
of the code (detecting definition-use pairs), but its authors presumably considered
that a programmer could do a better job of deciding the optimum placement of the
minimum number of sync’s.

434 S. Baek et al.

Adding this optimization to the Cilk programs was simple: a global variable was
created which stores the cost of the best tour found on any processor. When a
PE finds a better tour, it spawns a thread to update this value on each other
PE. Several PEs might be doing this at any time, but Cilk’s run-time model
ensures that once a thread is started, it runs to completion, so that all these
update threads are run in some order on each PE. The thread simply checks
to ensure that it does not replace a better minimum cost that some other PE
may have found. Two spawn statements (one ensures that the global best cost
is initialized correctly on each PE, the other updates the best cost) and 6 lines
of additional code suffice to produce a dramatic speedup.

3.3 N-Queens Problem

Cilk’s ability to generate large numbers of threads ensures good utilization of
all the PEs and speedups which are close to optimal and slightly better than
MPI’s. As with the other MPI implementations, a fixed number of computations
were allocated to each PE. Using relative PE powers to determine how many
computations are assigned to each PE is complicated by the fact that spawned
computations represent different amounts of work - some positions are declared
impossible at a high level in the tree and generate no further computation. In
Cilk, this does not affect efficient load balancing because if a large amount of
work is stolen by a slow PE, it will spawn several threads, some of which may be
stolen by faster PEs. Again, larger numbers of work packets benefited the MPI
implementation and brought its performance close to that of the Cilk version.

Fig. 4. Times and speedup for N-Queens

Heterogeneous Networks of Workstations 435

Fig. 5. Times and speedup for Matrix Multiplication

3.4 Matrix Multiplication

Since matrix multiplication is very regular with simple, predictable load pat-
terns, it might be expected that MPI’s direct message passing would have lower
overheads and produce better results. However, in a previous study[7], Cilk per-
formed better: this was attributed to Cilk’s synchronize-in-any-order dataflow
model resulting in cheaper synchronization for the final result. We repeated
these experiments for the current heterogeneous system with several different
approaches to load balancing: equal loads and balanced (or power-weighted)
loads (with no work stealing). As expected, for this problem, the equal loads
approach performs poorly when individual PE powers vary by a factor of ~ 2.44
and so we present only balanced load results.
Cilk programs exhibited slightly higher speedups with small numbers of PEs

With a small number of large messages, out of order completion has
relatively more effect and Cilk performs slightly better. However as the individual
slice computation time and message size drops, delays introduced by the strict
read order imposed by our MPI program become less significant and MPI’s sim-
ple direct message-passing model produces higher speedups. Speedups reached
peaked at 11 PEs with Cilk (vs 9 PEs with MPI): reflecting the increased compe-
tition for the common network in the initialization and completion stages of the
algorithm. Thus for small systems, Cilk was able to perform better, but MPI’s
best performance was significantly better than Cilk’s.

3.5 Finite Differencing

The simple, regular communication patterns required for this problem match
MPI’s capabilities well and this is reflected in the superior performance of MPI
using the simplest master synchronization scheme. Even an elaborate distributed

436 S. Baek et al.

Fig. 6. Time and speedup for several variants of finite differencing program

synchronization scheme in which each PE only synchronized with its two neigh-
bours did not allow Cilk to match the MPI results. Comparing the Cilk results
for the two synchronization styles is a textbook example of the cost of synchro-
nization in parallel systems! We did not implement the same scheme in MPI3.
Although there is a simple dataflow solution to this problem, it is usually avoided
as it requires unnecessary data copying. Our Cilk implementation used Cilk’s
ability to provide Active Messages[8] for the boundary updates and global point-
ers to the data arrays on each PE. This is a significant departure from Cilk’s
underlying dataflow model, so it is not surprising that its performance suffers.

3.6 Program Complexity

Whilst they are far from perfect metrics, we used counts of lines of code (LOC)
and variables to provide some estimate of relative programming difficulty. The
counts in Table 2 are for the ‘core’ code that solves the problem. Code that gen-
erated the test data set and code used for instrumentation (timing or measuring
other aspects of performance, e.g. counting iterations in Laplace) was not in-
cluded. The tallies were divided into two groups: basic code needed to solve the
problem (code that would be present in a sequential version of the same prob-
lem) and parallel overhead - code to initialize and configure the system, create
threads, transmit data, synchronize, etc. Disclaimer: software metrics is not an
exact science!4 The figures provided here are very basic and simply provide an
3

4

Our time was consumed by the absence of a ‘kill’ instruction (to invalidate all
spawned waiting threads when convergence has been reached) to support the Cilk
RTS’ requirement for all threads to fire and complete!
Our counts were generated by hand: we considered that the additional effort required
to remove instrumentation and diagnostic code in order to use a tool to obtain more
sophisticated counts was unwarranted.

Heterogeneous Networks of Workstations 437

indication of programming effort. A small amount of ‘noise’ - in the form of
individual programming style - was also added by the several authors of the pro-
grams used. However, the lower parallel programming overhead of Cilk is clear:
by providing a simple semantic model, it provides considerably more support for
a programmer than MPI. It is also notable that some of the optimizations are
trivially added to Cilk programs.
With MPI, in order to obtain good speedups, it was necessary to build simple lists
of ‘work packets’ which were distributed to each PE. The code to manage these
queues has been included in the column marked ‘Library’ in Table 2 because
generic code for this could be placed in a library so that each program could
only see create, add and get methods: effectively these methods would become
part of the MPI library.

4 Conclusion

With the exception of the finite differencing program, Cilk versions of the
programs were considerably easier to write. Implicit synchronization using a
dataflow model means fewer statements directing parallel execution are needed.
Most Cilk programs (fib, TSP and N-queens in the set used here) will run on any
number of processors (including a single PE) without any explicit consideration
of the current size of the NoW system. The program that we used for distributing
Cilk programs to individual PEs simply counts the number of PEs responding to
a broadcast request and the RTS uses this number when making work stealing
requests: thus Cilk programs work well in ‘flexible’ environments - where the
number of PEs may change from day to day. The implicit generation of large
numbers of threads by Cilk programs also leads to superior speedup numbers
in heterogeneous environments. In cases where explicit distribution of work to

438 S. Baek et al.

PEs is appropriate because obvious simple distribution policies are readily coded
(MM, Laplace), both Cilk and MPI require similar numbers of statements, i.e.
MPI has no significant advantage when it might be expected to have one.
When a strict dataflow model requires excessive data copying (Laplace), MPI
both allows (slightly) simpler implementations and provides better performance.
We note that both systems are C-based, so that hybrid programs which, for
example, used Cilk’s dataflow model when it was effective and MPI’s ‘direct’
transfer of data from source to destination when it provided better performance,
could readily be put together.
We speculate that the best way to improve the performance of MPI programs -
particularly in heterogeneous environments - is to simulate Cilk’s idle-initiated
work stealing mode of operation: generating large numbers of relatively fine-
grained work packets which are distributed to PEs on demand, i.e. as they
become idle. However to fully emulate Cilk’s flexibility - threads can be spawned
and stolen from any PE - would require duplicating a large part of the Cilk RTS.
It would seem more efficient to simply use the Cilk RTS!

Acknowledgements. John Morris was supported by the Foreign Professors
Invitation Program of the Korean IT Industry Promotion Agency at Chung
Ang University in 2003-4.

References

1.
2.

3.

4.

5.

6.

7.

8.

Snir, M.: MPI: The complete reference. MIT Press, MA: Cambridge, USA (1996)
Amza, C., Cox, A.L., Dwarkadas, S., Keleher, P., Lu, H., Rajamony, R., Yu, W.,
Zwaenepoel, W.: TreadMarks: Shared Memory Computing on Networks of Work-
stations. IEEE Computer 29 (1996) 18–28
Blumofe, R.D., Joerg, C.F., Kuszmaul, B.C., Leiserson, C.E., Randall, K.H., Zhou,
Y.: Cilk: an efficient multithreaded runtime system. In: PPoPP’95, Santa Barbara
(1995)
Lee, G., Morris, J.: Dataflow Java: Implicitly parallel Java. In: Proceedings of the
Australasian Computer Systems Architecture Conference. (1998) 42–50
Gropp, W., Lusk, E., Doss, N., Skjellum, A.: A high-performance, portable imple-
mentation of the MPI message passing interface standard. Parallel Computing 22
(1996) 789–828
Beaumont, O., Boudet, V., Rastello, F., Robert, Y.: Matrix multiplication on het-
erogeneous platforms. IEEE Transactions on Parallel and Distributed Systems 12
(2001) 1033–1051
Tham, C.K.: Achilles: A high bandwidth, low latency, low overhead network inter-
connect for high performance parallel processing using a network of workstations.
PhD thesis, The University of Western Australia (2003)
von Eicken, T., Culler, D.E., Goldstein, S.C., Schauser, K.E.: Active Messages: a
Mechanism for Integrated Communication and Computation. In: Proceedings of
the 19th Annual International Symposium on Computer Architecture, Gold Coast,
Australia. (1992) 256–266

Heterogeneous Networks of Workstations 439

A Cilk Signals

When writing the master synchronous version of the Laplace program, an error
was discovered in the implementation of Cilk. The language specifies a signal
which can be used to fire threads without transferring a data value. The syntax
adopted allows the number of signals needed to fire a thread to be specified when
it is spawned, e.g.

The thread SynchThread will be fired after signals have been sent to it. The
continuation s may be sent as an argument to several threads:

Note that the cardinality of the signal is not passed to CompThread: each in-
stance of it may send as many signals as it likes to SynchThread. As long as
SynchThread receives signals, it will eventually fire. This presents no problem
unless CompThread passes the continuation to a thread which is executed (by
stealing or explicit allocation) on another processor. When threads with contin-
uations migrate, Cilk versions from 2.0 on, have created a stub on the executing
processor and altered the continuation to address this stub. However, the stub
does not know how many signals it will be expected to pass to the original thread,
so it destroys itself after sending one signal. In the Laplace program, each iter-
ation sends two signals back to the master’s synchronization thread when the
boundaries of the two neighbouring PEs are updated.
We solved this problem by

defining a new ArgCont type which was used to transfer a continuation to
another thread and
creating a simple SendSignal thread which was used to transfer the signal
back to the master processor.

Use of the ArgCont type prevented the Cilk pre-processor from recognizing the
parameter as a continuation and creating a stub. The SendSignal thread was
executed on the master - where the original continuation had been created and
was valid.

Finding High Performance Solution in
Reconfigurable Mesh-Connected VLSI Arrays

Jigang Wu and Thambipillai Srikanthan

Centre for High Performance Embedded Systems,
School of Computer Engineering,

Nanyang Technological University, Singapore, 639798
{asjgwu, astsrikan}@ntu.edu.sg

Abstract. Given an mesh-connected VLSI array with some
faulty elements, the reconfiguration problem is to find a maximum-sized
fault-free sub-array under the row and column rerouting scheme. This
problem has already been shown to be NP-complete. The power aware-
ness problem of the reconfigurable array is first proposed in this paper.
A heuristic algorithm has been presented for the same. The algorithm
is simple but efficient. The performance of the proposed algorithm
is more powerful than that of the older algorithm, without loss of harvest.

Keywords: Degradable VLSI array, reconfiguration, heuristic algorithm,
fault-tolerance, NP-completeness.

1 Introduction

Area-time efficiency is one of the major considerations in VLSI designs. In recent
years, the growth of personal computing devices (portable computers and real
time audio and video-based multimedia products) and wireless communication
systems (personal digital assistants and mobile phones) has forced designers to
make high performance systems that consume less power. This necessitates the
need to minimize the number of switches employed to implement the interconnec-
tion between two processing nodes during rerouting. Hence, degradable arrays
that involve minimal number of switches will provide for higher performance
while improving the overall reliability.

Mesh is one of the most thoroughly investigated network topologies for multi-
processors systems. It is of importance due to its simple structure and its good
performance in practice and is becoming popular for reliable and high-speed
communication switching. It has a regular and modular structure and allows
fast implementation of many signal and image processing algorithms. With the
advancement in VLSI technologies, integrated systems for mesh-connected pro-
cessors can now be built on a single chip or wafer. As the density of VLSI arrays
increases, probability of the occurrence of defects in the arrays during fabrication
also increases. These defects obviously affect the reliability of the whole system.
Thus, fault-tolerant technologies must be employed to enhance the yield and
reliability of this mesh systems.

P.-C. Yew and J. Xue (Eds.): ACSAC 2004, LNCS 3189, pp. 440–448, 2004.
© Springer-Verlag Berlin Heidelberg 2004

Finding High Performance Solution 441

Reconfiguration in a mesh structure has been investigated extensively, e.g.,
[1-8] for redundancy approach and [9-12] for degradation approach. However,
no previous work has been carried out in order to provide high performance
sub-mesh for degradable VLSI arrays with faults. This paper proposes the prob-
lem of finding a fault-free sub-array which demonstrate higher performance in
a two-dimensional mesh-connected VLSI arrays. A simple but efficient heuris-
tic algorithm is proposed, which has higher performance requirements, while
maintaining the same harvest.

2 Preliminaries

Let host array H be the original array obtained after manufacturing. Some of
the elements in this array may be defective. A target array T is a fault-free
sub-array of H after reconfiguration. The rows (columns) in the host array and
target array are called the physical row (columns) and logical rows (columns),
respectively.

In this paper all the assumptions in architecture are the same as that in
[9-12]. Neighboring elements are connected to each other by a four-port switch.
A target array T is said to contain if each logical column in
T contains exactly one fault-free element from each of the rows. The previous
problem and the related algorithms are as follows.

Problem Given an mesh-connected host array, find a maximal
sized target array under the row and column rerouting scheme that contains the
selected rows.

The problem is optimally solved in linear time. Low proposed an algo-
rithm, called Greedy Column Rerouting (GCR), to solve Let
and denote the physical column index of the element and respectively.
All operations in GCR are carried out on the adjacent sets of each fault-free el-
ement in the row defined as

is fault-free and
The elements in are ordered in increasing column numbers for each

and for each
GCR constructs the target array in a left-to-right manner. It begins by

selecting the leftmost fault-free element, say of the row for inclusion into
a logical column. Next, the leftmost element in say is connected
to This process is repeated until a logical column is fully constructed. In
each iteration, GCR produces the current leftmost logical column. A detailed
description of GCR can be found in [11]. Theorem 1 describes the properties of
the GCR algorithm.

Theorem 1. GCR solves the problem in linear time and produces the
maximal sized target array[11].

As shown in Fig. 1, there are 6 possible types of link-ways for a target array.
They can be categorized into two classes based on the number of the switches

442 J. Wu and T. Srikanthan

used. In this paper, a link-way that uses only one switch to connect neighboring
elements in a target array is called a regular link-way, while a link-way using two
switches is called an irregular link-way. In Fig. 1, (a) and (d) are regular link-
ways, but the others are irregular. (a), (b) and (c) are used for row rerouting,
while (d), (e) and (f) are used for column rerouting. Obviously, the smaller the
number of irregular link-ways the target array has, the lesser is the system delay,
and therefore, the higher the performance.

Fig. 1. A target array and its possible link-ways.

In this paper, the maximal sized target array with the minimal number
of irregular link-ways is called the high performance target array or high
performance solution. The problem that we proposed is described as follows.

Problem Given an mesh-connected host array, find a high perfor-
mance solution under the row and column rerouting scheme that contains the
selected rows.

We aim to propose a heuristic algorithm to solve this optimization problem
in this paper.

Given a host array H of size let U be the set of logical columns that
pass through each of the rows. Thus, each logical column in U contains exactly
one fault-free element from each of the rows. Furthermore, the ith element in
each logical column resides in row for each We define a
partial order on the logical columns in U as follows.

Definition 1. For any two logical columns, and in U, and

1.

2.

3.

we say that if the ith element in lies to the left of the ith element
in for
We say that if the ith element in lies to the left of, or is identical
to, the ith element in for
We say that and are independent, if or

Assume and We use to indicate the area
consisted of the fault-free elements bounded by and (including and

Finding High Performance Solution 443

indicates the same area as above including but not including
and are called the left boundary of and the right boundary of

respectively.

3 Algorithms

Assume the solution of GCR is the target array T with logical columns:
We revise each for The proposed algorithm,

denoted as RGCR revises the solution of GCR to obtain an approximate high
performance solution. It starts from the logical column revises it and then
revises one by one. In each iteration, RGCR works in In
the first iteration, is set to be and is set to be a virtual column that
lies to the right of the nth physical column of the host array.

In RGCR, a priority to each element is assigned according to the
following function for each and for each

Suppose, the element and it has the largest physical column index (
it is the rightmost element) in the logical column In each iteration, the algo-
rithm RGCR calls a procedure REROUT to revise the current logical column.
RGCR starts off with as the start element for rerouting. The highest
priority element in say is connected to This process is repeated
such that in each step, REROUT attempts to connect the current element to
the highest priority element of that has not been previously examined.
If REROUT fails in doing so, we cannot form a logical column containing the
current element In that case, REROUT backtracks to the previous element,
say that was connected to and attempts to connect to the highest priority
element of that has not been previously examined. This process is
repeated until an element in a row is connected to an element in the next
row Suppose REROUT backtracks to and is an element of the first
row, then the next element to be chosen as the starting element for rerouting is
the element in And if REROUT fails for this case also, then the
element in is chosen to be the starting element for rerouting. Thus
the starting element alternates between left and right of This process
is repeated until a logical column is formed. REROUT will stop at the row
as at least the left boundary is a feasible logical column. When REROUT
terminate in this iteration, a new logical column based on denoted as is
obtained. We call the revised column of

In the next iteration, REROUT attempts to obtain the revised logical column
for The left boundary and the right boundary are updated to
and the just revised column respectively. The revision process terminates
when all logical columns have been revised. The resultant target

444 J. Wu and T. Srikanthan

Fig. 2. The formal descriptions of REROUT and RGCR. The examples for the so-
lutions of GCR and RGCR and the corresponding optimal solution for a 8 × 10 host
array with 12 faults.

axray, denoted as is called the revised target array of T. Fig. 2 shows the
detailed description of the algorithm RGCR.

It is easy to see that, in rerouting, the selection of the highest priority element
for inclusion into a logical column at each step is a greedy choice. Intuitively,
it uses as many vertical links (low power interconnects) as possible to form the
logical columns. Like GCR, it obviously runs in linear time, i.e., the running time
of the revision procedure is O(N), i.e. the number of valid interconnections in the
host array with N fault-free elements. In addition, there are also independent
logical columns in as each revised column is produced in the area bounded
by and In other words, the revised algorithm does not
decrease the size of the target array constructed by GCR. Hence, the harvest
remains the same.

To summarize, Fig 2 shows the running results of the algorithms described
in this section for a random instance of an 8 × 10 host array. The slant lines
represent the irregular link-ways. The shaded boxes stand for faulty elements

Finding High Performance Solution 445

and the white ones stand for the fault-free elements. There are 8 irregular link-
ways in the optimal solution for this instance. GCR produces a solution with
24 irregular link-ways while the proposed algorithm RGCR produces a nearly
optimal solution with only 11 irregular link-ways.

4 Experimental Results

The proposed algorithms and GCR are implemented in C and run on a Pentium
IV computer with one GB RAM. Both random fault model and clustered fault
model are considered. These are acceptable because the random faults often
occur during the system usage in real time configuration, while the clustered
faults are typically caused during fabrication process.

The whole experiment is divided into two parts - one is for uniform fault
distribution in the whole mesh, which is corresponding to random fault model.
In this, the algorithms are run for different sized mesh. And, the other is for
the uniform fault distribution in different localized portions of the mesh, which
is corresponding to the clustered fault model. In this, the algorithms are run in
256 × 256 sized array for different fault density. Data are collected for different
sized host arrays for three faulty density 0.1%, 1% and 10% of the size of the host
array (same as in [11,12]), averaged over 10 random instances with the decimal
being rounded off to the lower side in all cases.

In Table 1 and Table 2, the attribute No.ir denotes the number of the ir-
regular link-ways. imp stands for the improvement in No.ir over GCR. It is
calculated by

446 J. Wu and T. Srikanthan

In Table 1, data are collected for host arrays of different sizes from 32 × 32
to 256 × 256. For each algorithm, for smaller or medium host arrays, No.ir
increases with the increase in the number of faulty elements in the host array.
This is because that there will be a percentage faulty density beyond which No.ir
will fall, as No.ir is equal to 0 both for 0% fault and for 100% fault. While for
larger host arrays, No.ir first increases and then decreases due to heavy decrease
in target size as the fault density increases beyond a certain point. For example,
for GCR, No.ir is 33, 265 and 452 for size 32 × 32 and fault densities 0.1%, 1%
and 10%, respectively. But for size 256 × 256 and fault densities 0.1%, 1% and
10%, No.ir increase to 13827, 38155 and 34167, respectively.

The improvement of RGCR over GCR is significant, especially for the host
arrays of small size or small fault density, which is occurred more frequently
in applications. For example, the improvements are 100% and 80% for the size
32 × 32 with 0.1% faulty elements and for the size 64 × 64 with the same faulty
density, respectively.

In Table 2, data are collected for 256 × 256 sized host array, averaged over 10
random instances, each for a localized fault in the center 1/8, 1/4, 1/2, 3/4 and
full portion of the host array. Here, center 1/8, 1/4, 1/2, 3/4 and whole in Table
2, is the situation when faulty elements are located in center area consisting of

elements, elements, elements, elements and
the full host array, respectively. For center 1/8 and 1/4, considering 10% fault
density was not possible as 10% of 256 × 256 comes out to be 6554 elements,
while center 1/8 comes out to be a mesh, i.e., 1024 elements, and center

Finding High Performance Solution 447

1/4 comes out to be 64 × 64 mesh, i.e., 4096 elements. So it is clear that these
two cannot accommodate 10% faulty elements. Hence, the row for these cases is
marked as NA (Not Applicable).

From table 2, we observe that, for 1% faulty density and localized fault in
center 1/8 portion of the host array, No.ir comes out to be 0. This is because the
center gets so much concentrated with the faulty elements that no logical column
passes through that portion in which the faulty elements are located. GCR is not
better for performance because it uses the leftmost strategy. The improvement
over GCR is more significant for localized fault distribution than for random fault
distribution. For example, for 1% fault density, the improvements of RGCR for
center 1/8 and 1/4 fault distribution are 100% and 92%, respectively. While for
the fault distribution in center 3/4 and whole host array, the improvements are
62% and 56%, respectively. In other words, the improvement increases as the
spread of faulty elements in the host array decreases.

As can be seen from above tables, for a given percentage of faulty processors
in the host array, as the size of the array increases, the number of irregular links
in the target array increases. In all the cases, the revised algorithm gives much
better results than the older GCR algorithm. Even for arrays of a specific size,
as the percentage of faulty elements in the array increases, our new algorithm
performs much better than the old algorithm. We can therefore say that for all
cases our algorithms gives us a high performance solution that consumes much
low power than the solutions of the older algorithms like GCR.

5 Conclusions

High performance VLSI design has emerged as a major theme in the electronics
industry today. It can be achieved at all levels of the VLSI system. In this paper,
we have proposed a new problem based on a high performance solution for
reconfigurable VLSI arrays and have presented an algorithm for the same. The
proposed algorithm is based on a heuristic strategy that is easy to implement.
Its performance is very high and the harvest remains unchanged. Experimental
results reflect the underlying characteristics of the proposed algorithm.

References

1.

2.

3.

4.

T. Leighton and A. E. Gamal. “Wafer-seal Integration of Systoric Arrays”, IEEE
Trans. on Computer, vol. 34, no. 5, pp. 448-461, May 1985.
C. W. H Lam, H. F. Li and R. Jakakumar, “A Study of Two Approaches for
Reconfiguring Fault-tolerant Systoric Array”, IEEE Trans. on Computers, vol. 38,
no. 6, pp. 833-844, June 1989.
I. Koren and A. D. Singh, “Fault Tolerance in VLSI Circuits”, Computer, vol. 23,
no. 7, pp. 73-83, July 1990.
Y. Y. Chen, S. J. Upadhyaya and C. H. Cheng, “A Comprehensive Reconfigu-
ration Scheme for Fault-tolerant VLSI/WSI Array Processors”, IEEE Trans. on
Computers, vol. 46, no. 12, pp. 1363-1371, Dec. 1997.

448 J. Wu and T. Srikanthan

5.

6.

7.

8.

9.

10.

11.

12.

13.

T. Horita and I. Takanami, “Fault-tolerant Processor Arrays Based on the 1.5-track
Switches with Flexible Spare Distributions”, IEEE Trans. on Computers, vol. 49,
no. 6, pp. 542-552, June 2000.
S. Y. Kuo and W. K. Fuchs, “Efficient Spare Allocation for Reconfigurable Arrays”,
IEEE Design and Test, vol. 4, no. 7, pp. 24-31, Feb. 1987.
C. L. Wey and F. Lombardi, “On the Repair of Redundant RAM’s”, IEEE Trans.
on CAD of Integrated Circuits and Systems, vol. 6, no. 2, pp. 222-231, Mar. 1987.
Li Zhang, “Fault-Tolerant meshes with small degree”, IEEE Trans. on Computers,
col. 51, No.5, pp.553-560, May, 2002.
S. Y. Kuo and I. Y. Chen, “Efficient reconfiguration algorithms for degradable
VLSI/WSI arrays,” IEEE Trans. Computer-Aided Design, vol. 11, no. 10, pp. 1289-
1300, Oct. 1992.
C. P. Low and H. W. Leong, “On the reconfiguration of degradable VLSI/WSI
arrays,” IEEE Trans. Computer-Aided Design of integrated circuits and systems,
vol. 16, no. 10, pp. 1213-1221, Oct. 1997.
C. P. Low, “An efficient reconfiguration algorithm for degradable VLSI/WSI ar-
rays,” IEEE Trans. on Computers, vol. 49, no. 6, pp.553-559, June 2000.
Wu Jigang, Schroder Heiko & Srikanthan Thambipillai, “New architecture and
algorithms for degradable VLSI/WSI arrays”, in Proc. Of 8th International Com-
puting and Combinatorics Conference, 2002, Singapore (COCOON’O2), Lecture
Notes in Computer Science, vol. 2387, pp.181-190, Aug, 2002.
A. V. Aho, J. E. Hopcroft, and J. D. Ullman, “The design and analysis of computer
algorithms”, Addison-Wesley, Reading, Mass., 1974.

Order Independent Transparency for Image
Composition Parallel Rendering Machines

Woo-Chan Park1, Tack-Don Han2, and Sung-Bong Yang2

1 Department of Internet Engineering,
Sejong University, Seoul 143-747, Korea,

pwchan@sejong.ac.kr
2 Department of Computer Science,

Yonsei University, Seoul 120-749 Korea,
{hantack}@kurene.yonsei.ac.kr

{yang}@cs.yonsei.ac.kr

Abstract. In this paper, a hybrid architecture composed of both the
object-order and the image-order rendering engines is proposed to
achieve the order independent transparency on the image composition ar-
chitecture. The proposed architecture utilizes the features of the object-
order which may provide high performance and the image-order which
can obtain the depth order of all primitives from a viewpoint for a given
pixel. We will discuss a scalable architecture for image order rendering en-
gines to improve the processing capability of the transparent primitives,
a load distribution technique for hardware efficiency, and a preliminary
timing analysis.

1 Introduction

3D computer graphics is a core field of study in developing multi media comput-
ing environment. In order to support realistic scene using 3D computer graphics,
a special purpose high performance 3D accelerator is required. Recently, low cost
and high performance 3D graphics accelerators are adopted rapidly in PCs and
game machines[l,2,3].

To generate high-quality images, solid models composed of more than several
millions polygons are often used. To display such a model at a rate of 30 frames
per second, more than one hundred million polygons must be processed in one
second. To achieve this goal in current technology, several tens of the graphic
processors are required. Thus, parallel rendering using many graphics processors
is an essential research issue.

According to [4], graphics machine architectures can be categorized into the
three types: sort-first architecture, sort-middle architecture, sort-last architec-
ture. Among them, sort-last architecture is a scalable architecture because the
required bandwidth of its communication network is almost constant against the
number of polygons. Thus, sort-last architecture is quite suitable for a large-scale
rendering system.

P.-C. Yew and J. Xue (Eds.): ACSAC 2004, LNCS 3189, pp. 449–460, 2004.
© Springer-Verlag Berlin Heidelberg 2004

450 W.-C. Park, T.-D. Han, and S.-B. Yang

Fig. 1. An image composition architecture

One of the typical sort-last architectures is an image composition architec-
ture [5,6,7,8,9]. Figure 1 shows the overall structure of image composition archi-
tecture. All polygonal model data are distributed into each rendering processor
which generates a subimage with its own frame buffer, called a local frame buffer.
The contents of all the local frame buffers are merged periodically by the image
merger. During image merging, the depth comparisons with the contents of the
same screen address for each local frame buffer should be performed to accom-
plish hidden surface removal. The final merged image is then transmitted into
the global frame buffer.

In a realistic 3D scene, both opaque and transparent primitives are mixed
each other. To generate a rendered final image properly with the transparent
primitives, the order dependent transparency problem must be solved. That is,
the processing order depends on the depth order by a viewpoint, not on the
input order. Order dependent transparency problem may cause the serious per-
formance degradation as the number of transparent primitives increases rapidly.
Therefore, the order independent transparency, the opposite concept of the or-
der dependent transparency, is a major for providing high performance rendering
systems. But up until now we have not found any parallel 3D rendering machine
supporting hardware accelerated order independent transparency.

In this paper, we propose a new method of the hardware accelerated or-
der independent transparency for image composition in the parallel rendering
architecture. To achieve this goal, we suggest a hybrid architecture composed
of both the object order and the image order rendering engines. The proposed
mechanism utilizes the features of the object order which may provide high per-
formance and the image order which can obtain the depth order of all primitives
from a viewpoint for a given pixel.

Order Independent Transparency 451

The proposed architecture has object order rendering engines, from PE 0
to PE as in Figure 1 and one image order rendering engine, PE where
is the number of PEs. All the opaque primitives are allocated with each object
order rendering engine. All the transparent primitives are sent to the image
order rendering engine. Thus subimages generated from PE 0 to PE are
merged into a single image during image merging. This merged image is fed into
the image order rendering engine, PE With this single merged image and
the information of the transparent primitives, PE calculates the final image
with order independent transparency. We also provide a scalable architecture
for the image order rendering engines to improve the processing capability of
transparent primitives and load distribution technique for hardware efficiency.

In the next section, we present a brief overview of the object order ren-
dering, the image order rendering, the order independent transparency. Section
3 illustrates the proposed image composition architecture and its pipeline flow.
We describe how the proposed architecture handles the order independent trans-
parency. The timing analyses of the image merger and the image order rendering
engine, and the scalability are also discussed. Section 4 concludes this paper with
future research.

2 Background

In this section, we present a brief overview of the object order rendering and the
image order rendering methods. We also discuss the order independent trans-
parency.

2.1 Object Order and Image Order Rendering Methods

Polygonal rendering algorithms can be classified into the object order rendering
and the image order rendering according to the rendering processing order for
the input primitives [10]. In the object order rendering the processing at the
rasterization step is performed primitive by primitive, while in the image order
it is done pixel by pixel. According to their features, an object order rendering
system is suitable for high performance systems and current design approaches
[1,2,3,5,9], while the image order is low cost systems and later approaches [11,12,
13,14]. In most of parallel rendering machines, an object order rendering engine
is adopted for each rendering processor for high performance computation.

The rendering process consists of geometry processing, rasterization, and
display refresh steps. In an object order rendering system, the processing order
at the rasterization step is performed primitive by primitive. Thus the geome-
try processing and the rasterization steps are pipelined between primitives and
the object order rendering and the display refresh steps are pipelined between
frames. An object order rendering system must have a full-screen sized frame
buffer, consisted of a depth buffer and a color buffer, for hidden surface removal
operations. To overlap the executions of the rendering and the screen refresh

452 W.-C. Park, T.-D. Han, and S.-B. Yang

steps, double buffering for the frame buffer are used. The front frame buffer de-
notes the frame buffer used in the rendering step and the back frame buffer is
used by the screen refresh step. Figure 2 shows the pipeline flow of the object
order rendering system between two frames.

Fig. 2. The pipeline flow of the object order rendering method between two frames

Fig. 3. The pipeline flow of the image order rendering method between two frames

In an image order rendering system, the processing order at the rasterization
step is performed pixel by pixel. For example, if the screen address begins from
(0, 0) and ends with the rasterization step is accomplished from (0, 0) to

In rendering pixel by pixel, the lists of the all primitives, after geometry
transformation, overlaying with a dedicated pixel must be kept for each pixel.
These lists are called the buckets and bucket sorting denotes this listing. Thus the
bucket sorting step including geometry processing and the image order rendering
step including screen refresh are pipelined between frames. Figure 3 shows the
pipeline flow of the image order rendering system between two frames.

The scan-line algorithm is a typical method of the image order rendering [10].
All primitives transformed into the screen space are assigned into buckets pro-
vided per scan-line. To avoid considering primitives that do not contribute to the

Order Independent Transparency 453

current scan-line, the scan-line algorithm requires primitives to be transformed
into the screen space and to sort the buckets according to the first scan-line in
which they appear. After bucket sorting, rendering is performed with respect to
each scan-line. Because the finally rendered data are generated by scan-line or-
der, screen refresh can be performed immediately after scan-line rendering. Thus
no frame buffer is needed and only a small amount of buffering is required. In
this paper, the scan-line algorithm is used in the image order rendering engine.

2.2 Order Independent Transparency

In a realistic 3D scene, both opaque and transparent primitives are mixed each
other. To generate a final rendered image properly, the order dependent trans-
parency problem should be solved. Figure 4 shows an example of order dependent
transparency with three fragments for a given pixel.

In Figure 4, A is a yellow transparent fragment, B is a blue opaque fragment,
and C is a red opaque fragment. We assume that A is followed by B and B is
followed by C in the point of depth value for the current view point. Then the
final color results in green which is generated by blending the yellow color of A
and the blue color of B. However, if the processing order of these three fragments
are C, A, and B, then a wrong color will be generated. That is, when C comes
first, the current color is red. When A comes next, the current color becomes
orange and the depth value of the current color is that of A. When B comes
last, B is ignored because the current depth value is smaller then depth value of
B. Therefore, the calculated final color is orange, which is wrong. Therefore, the
processing orders should be the same as the depth order to achieve the correct
final color.

The order dependent transparency problem may cause serious performance
degradation as the number of transparent primitives increases rapidly. There-
fore, the order independent transparency is a crucial issue for high performance
rendering systems. But, up until now we have not found any high performance
3D rendering machine supporting hardware accelerated.

Several order independent transparency techniques for object order render-
ing based on the A-buffer algorithm have been proposed [15,16,17,18,19]. But,
these algorithms require either, for each pixel, the infinite number of lists of all
the primitives overlaying with the dedicated pixel or multiple passes which are
not suitable for high performance. On the other hand, image order rendering

Fig. 4. An example of order independent transparency

454 W.-C. Park, T.-D. Han, and S.-B. Yang

techniques to support order independent transparency based on the A-buffer
algorithm have been proposed in [13,14]. However, high performance rendering
cannot be achieved with image order rendering technique.

3 Proposed Image Composition Architecture

In this section, an image composition architecture supporting hardware acceler-
ated order independent transparency is proposed. We discuss its execution flow,
preliminary timing analysis, and scalability.

3.1 Proposed Image Composition Architecture

Figure 5 shows the block diagram of the proposed image composition architec-
ture, which can be divided into rendering accelerator, frame buffer, and display
subsystems. The proposed architecture is capable of supporting hardware accel-
erated order independent transparency. To achieve this goal, hybrid architecture
made up of the object order and the image order rendering engines are pro-
vided. The proposed mechanism utilizes the advantages of both the object order
rendering and the image order rendering methods.

The proposed architecture has object order rendering engine(ORE)s from
PE 0 to PE and PE with an image order rendering engine(IRE). Each PE
consists of geometry engine(GE), either ORE or IRE, and a local memory which

Fig. 5. Block diagram of the proposed image composition architecture

Order Independent Transparency 455

is not a frame memory but a working memory for the PE. The rendering system
from PE 0 to PE is identical to that of the conventional sort-last architecture,
while PE is provided to achieve OIT. The local frame buffer(LFB) of each ORE
is double-buffered so that the OREs can generate the image of the next frame in
parallel with the image composition of the previous frame. One buffer is called
the front local frame buffer(FLFB) and the other is called the back local frame
buffer(BLFB). This double buffering scheme is also used in the buckets of IRE
and in global frame buffer(GFB).

In the proposed architecture, the rendering systems from PE 0 to PE
perform rendering all opaque primitives with an object order base and PE
performs rendering all transparent primitives with an image order base. Subim-
ages generated from PE 0 to PE are merged into a single image which is
transmitted into With this single merged image and the information of
the transparent primitives, IRE calculates the final image with order indepen-
dent transparency.

Pipelined image merger(PIM), provided in [6], is made up of a linearly con-
nected array of merging unit(MU)s. It performs image merging with BLFBs
and transmits the final merged image into GFB in a pipelined fashion. Each MU
receives two pixel values and outputs the one with the smaller screen depth. We
let the screen address begins from (0, 0) and ends with (v, w). denotes
the BLFB of PE 0, is the BLFB of PE 1, and so on. denotes the
MU connected with PE 0, is the MU connected with PE 1, and so on.

The execution behavior of PIM can be described as follows. In the first cycle,
performs depth comparison with (0, 0)’s color and the depth data of

and (0, 0)’s color and depth data of FGFB, respectively, and transmits the
results of color and depth data into In the next cycle, performs
depth comparison with (0, 1)’s color and depth data of and (0, 1)’s color
and depth data of FGFB, and transmits the results of color and depth data
into Simultaneously, performs depth comparison with (0, 0)’s color
and depth data of and the result values fed into the previous cycle, and
transmits the results of color and depth data into As PIM executes in this
pipelined fashion, the final color data can be transmitted into FGFB.

3.2 Execution Flow of the Proposed Image Composition
Architecture

All opaque primitives are allocated to each ORE and all transparent primitives
are sent to IRE. A primitive allocation technique for load balance on the opaque
primitives has been provided in [6]. In the first stage, from PE 0 to PE
object order rendering is performed for the dedicated opaque primitives with
geometry processing and rasterization steps. Simultaneously, PE executes the
bucket sorting for image order rendering through geometry processing with the
transparent primitives. As a processing result, the rendered subimages for the
opaque primitives are stored from to and the bucket sorted
result for the transparent primitives are stored in buckets, which reside in the
local memory of PE

456 W.-C. Park, T.-D. Han, and S.-B. Yang

In the next step, the subimages stored from to are merged
by PIM according to the raster scan order, from (0, 0) to and the final
merged image is transmitted into with a pipelined fashion. Simultane-
ously, IRE performs image order rendering with which hold the rendered
result of all opaque primitives and the bucket sorted results of all transparent
primitives. To perform simultaneously both the write operation from
and the read operation from IRE for two different memory addresses, a two-port
memory should be used in

Using the scan-line algorithm for image order rendering, IRE should check
all the color and depth values of the current scan-line of Therefore, they
should be transmitted completely from before performing rendering op-
eration for the current scan-line. Thus, IRE cannot perform rendering operation
until all color and depth values of the scan-line in are transmitted com-
pletely from But the transfer time between and is too
short to affect overall performance, as shown in Section 3.5. The final rendering
results of IRE are generated and transmitted into GFB scan-line by scan-line
order. Finally, GFB performs the screen refresh operation.

3.3 Pipeline Flow of the Proposed Image Composition Architecture

Figure 6 shows a pipelined execution of the proposed image composition archi-
tecture with respect to three frames. If the current processing frame is object
order rendering is performed from PE 0 to PE with all the opaque primi-
tives and PE executes the bucket sorting for image order rendering with all
the transparent primitives. The rendering results for the opaque primitives are
stored from to and the bucket sorted results for the transpar-
ent primitives are stored in front buckets. Simultaneously, for the frame,
image merging from to is performed by PIM according to the
raster scan order, and the final merged image is transmitted into with a
pipelined fashion. Simultaneously, IRE of PE performs image order rendering
with and the back bucket. The rendering results of IRE are generated
and transmitted into GFB scan-line by scan-line. For the frame, screen
refresh is performed with a final merged image in FGFB.

3.4 Example of the Order Independent Transparency

Figure 7 shows an example of the order independent transparency for the pro-
posed image composition architecture and illustrates the input and output values
of OREs and IRE for a given pixel. For the current viewpoint, the depth values
of A, B, C, D, E, F, and G are in increasing order, i.e., A is the nearest primitive
and G is the farthest primitive. We assume that A is yellow and transparent, B
is blue and opaque, C is red and transparent, D is blue and opaque, E is yellow
and opaque, F is black and opaque, and G is green and transparent.

Among the opaque primitives (B, D, E, and F) generated in OREs, B is the
final depth result of depth comparison. With the transparent primitives (A, C,

Order Independent Transparency 457

Fig. 6. Pipelined execution of the proposed architecture

and G) and B, image order rendering is performed in IRE. Therefore, green is
generated as the final color with order independent transparency.

3.5 Timing Analysis of PIM and Image Order Renderer

In [6] each MU performs depth comparison and data selection through a 4-stage
pipeline. Therefore, PIM, as a whole, constructs a pipeline, where
represents the number of PEs. The time, needed for merging one full-screen
image is equal to where and are horizontal and
vertical screen sizes, respectively, is the PIM clock period, and is the number
of PIM clocks required for overhead processing per scan-line in the GFB unit.
The first term represents the time for scanning the entire screen and the second
term represents the pipeline delay time. In [6] those parameters are

and Therefore, which is
shorter than the target frame interval(33.3 msec).

Because the current screen resolution exceeds several times the resolution
considered in [6] and the clock period of PIM can be shortened due to the
advances in the semiconductor and network technologies, those parameters are
not realistic for the current graphics environment and semiconductor technology.
These parameters will be fixed after developing a prototype by the future work.
However, considering the current technology, the parameters can be estimated
reasonably as and where and are not
considered because the effect of those parameters is ignorable. Therefore,

which is still sufficient time to support 30 frames per second.

458 W.-C. Park, T.-D. Han, and S.-B. Yang

Fig. 7. An example of the order independent transparency on the proposed architecture

IRE cannot perform rendering operation until all color and depth values of
the scan-line in are transmitted completely from denotes
the time taken for the transmission. denote the time needed to transmit the
rendered results of the final scan-line into GFB. and can be estimated
as and respectively. Then, the actual time
to perform the image order rendering at IRE is With

and in the case of [6] and
and in the case of the estimated parameters for the

current technology. Therefore, the performance degradation due to and
with is about 0.4 ~ 0.2%, which is negligible. Moreover, with

and in the case of [6] and
and in the case of the estimated parameters. Therefore, the
performance degradation due to and with is about 1.3 ~ 0.4%,
which is also negligible.

3.6 Scalability on the IRE

In Figure 5 only one IRE is used. Thus, when the number of the transparent
primitives is so large that all transparent primitives cannot be processed within
the target frame interval, the bottleneck point is the performance of IRE. Fig-
ure 8 shows the proposed image composition architecture with IREs. To achieve
scalable parallel processing for IRE, the per-scan-line parallelism is used for the
scan-line algorithm.

Order Independent Transparency 459

Fig. 8. Block diagram of proposed architecture with scalability on the IRE

In case that the full-screen consists of scan-lines, each IRE has a copy of all
transparent primitives and performs bucket sorting for all transparent primitives
with dedicated buckets instead of buckets. Then, each IRE executes
the image order rendering with an interleaving fashion. That is, IRE of PE
performs scan-line rendering with the scan-line, the scan-line, and so on.
IRE of PE performs scan-line rendering with the scan-line, the
scan-line, and so on. By this sequence, all scan-lines can be allocated to IREs.
Simultaneously, subimages stored in to are merged by PIM
according to the raster scan order. Then, the merged image is transmitted into
each LFB of IRE with an interleaving fashion. Therefore, overall performance of
the image order rendering can be achieved with scalability. Finally, the rendered
result of IREs are also transmitted into GFB with an interleaving fashion.

4 Conclusion

In this paper, the order independent transparency problem for image composi-
tion in parallel rendering machines has been resolved by using hybrid architec-
ture composed of both the object order rendering and the image order rendering
engines. The proposed architecture is a scalable one with respect to both the
object order rendering and the image order rendering engines.

460 W.-C. Park, T.-D. Han, and S.-B. Yang

References

l.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

M. Oka and M. Suzuoki. Designing and programming the emotion engine. IEEE
Micro, 19(6):20–28, Nov. 1999.
A. K. Khan et al. A 150-MHz graphics rendering processor with 256-Mb embedded
DRAM. IEEE Journal of Solid-State Circuits, 36(11):1775–1783, Nov. 2001.
Timo Aila, Ville Miettinen, and Petri Nordlund. Delay streams for graphics hard-
ware. In Proceedings of SIGGRAPH, pages 792–800, 2003.
S. Molnar, M. Cox, M. Ellsworth, and H. Fuchs. A sorting classification of parallel
rendering. IEEE Computer Graphics and Applications, 14(4):23–32, July 1994.
T. Ikedo and J. Ma. The Truga001: A scalable rendering processor. IEEE computer
and graphics and applications, 18(2):59–79, March 1998.
S. Nishimura and T. Kunii. VC-1: A scalable graphics computer with virtual local
frame buffers. In Proceedings of SIGGRAPH, pages 365–372, Aug. 1996.
S. Molnar, J. Eyles, and J. Poulton. PixelFlow: High-speed rendering using image
composition. In Proceedings of SIGGRAPH, pages 231–240, July 1992.
J. Eyles, S. Molnar, J. Poulton, T. Greer, A. Lastra, N. England, and L. Westover.
PixelFlow: The realization. In Proceedings of SIGGRAPH/Eurographics Workshop
on graphics hardware, pp. 57–68, Aug. 1997.
M. Deering and D. Naegle. The SAGE Architecture. In Proceeddings of SIG-
GRAPH 2002, pages 683–692, July 2002.
J. D. Foley, A. Dam, S. K. Feiner, and J. F. Hughes. Computer Graphics, Principles
and Practice. Second Edition, Addison-Wesley, Massachusetts, 1990.
J. Torborg and J. T. Kajiya. Talisman: Commodity Realtime 3D graphics for the
PC. In Proceedings of SIGGRAPH, pages 353–363, 1996
M. Deering, S. Winner, B. Schediwy, C. Duffy, and N. Hunt. The triangle proces-
sor and normal vector shader: A VLSI system for high performance graphics. In
Proceedings of SIGGRAPH, pages 21–30, 1988.
M. Kelley, S. Winner, and K. Gould. A scalable hardware render accelerator using
a modified scanline algorithm. In Proceedings of SIGGRAPH, pages 241–248,1992.
M. Kelley, K. Gould, B. Pease, S. Winner, and A. Yen. Hardware accelerated
rendering of CSG and transparency. In proceedings of SIGGRAPH, pages 177–
184, 1994.
L. Carpenter. The A-buffer, and antialiased hidden surface method. In Proceedings
of SIGGRAPH, pages 103–108, 1984.
S. Winner, M. Kelly, B. Pease, B. Rivard, and A. Yen. Hardware accelerated ren-
dering of antialiasing using a modified A-buffer algorithm. In Proceedings of SIG-
GRAPH, pages 307–316, 1997.
A. Mammeb. Transparency and antialiasing algorithms implemented with virtual
pixel maps technique. IEEE computer and graphics and applications, 9(4):43–55,
July 1989.
C. M. Wittenbrink. R-Buffer: A pointerless A-buffer hardware architecture. In
Proceedings of SIGGRAPH/Eurographics Workshop on graphics hardware, pages
73–80, 2001.
J. A. Lee and L. S. Kim. Single-pass full-screen hardware accelerated anti-aliasing.
In Proceedings of SIGGRAPH/Eurographics Workshop on graphics hardware,
pages 67–75, 2000.

An Authorization Architecture Oriented to Engineering
and Scientific Computation in Grid Environments

Changqin Huang 1,2, Guanghua Song1,2, Yao Zheng1,2, and Deren Chen1

1 College of Computer Science, Zhejiang University, Hangzhou, 310027, P. R. China
2 Center for Engineering and Scientific Computation, Zhejiang University,

Hangzhou, 310027, P. R. China
{cqhuang, ghsong, yao.zheng, drchen}@zju.edu.cn

Abstract. Large-scale scientific and engineering computation is normally ac-
complished through the interaction of collaborating groups and diverse hetero-
geneous resources. Grid computing is emerging as an applicable paradigm,
whilst, there is a critical challenge of authorization in the grid infrastructure.
This paper proposes a Parallelized Subtask-level Authorization Service archi-
tecture (PSAS) based on the least privilege principle, and presents a context-
aware authorization approach and a flexible task management mechanism. The
minimization of the privileges is conducted by decomposing the parallelizable
task and re-allotting the privileges required for each subtask. The dynamic au-
thorization is carried out by constructing a multi-value community policy and
adaptively transiting the mapping. Besides applying a relevant management
policy, a delegation mechanism collaboratively performs the authorization
delegation for task management. In the enforcement mechanisms involved, the
authors have extended the RSL specification and the proxy certificate, and have
modified the Globus gatekeeper, jobmanager and the GASS library to allow au-
thorization callouts. Therefore the authorization requirement of an application
is effectively met in the presented architecture.

1 Introduction

Grid Computing [1] emerges as a promising paradigm for coordinating the sharing of
computational and data resource and wide-area distributed computing across organ-
izational boundaries. The sharing of code and data on the grid gives rise to many
great challenges. Grid infrastructure software such as Legion [2] and Globus [3] en-
ables a user to identify and use the best available resource(s) irrespective of resource
location and ownership. However, realizing such a pervasive grid infrastructure pre-
sents many challenges due to its inherent heterogeneity, multi-domain characteristic,
and highly dynamic nature. One critical challenge is providing authentication, au-
thorization and access control guarantees.

Among relevant grid applications, due to the capability of full utilization of many
valuable resources, engineering and scientific computing is suited for being solved in
grid environments. This type of task is commonly either computation-intensive or

P.-C. Yew and J. Xue (Eds.): ACSAC 2004, LNCS 3189, pp. 461–472, 2004.

© Springer-Verlag Berlin Heidelberg 2004

462 C. Huang et al.

data-intensive, the problem granularity is widely large and computational tasks are
often long-lived. It needs be divided into many subtasks, and then be distributed to
many relevant nodes and run in parallel, and the management of subtasks is dynamic.
The issue needs not only fine-grained authorization for resource usage and manage-
ment but also fine-grained authorization for task management to meet the needs of
this type of application.

In this paper, we focus on the security requirements posed by engineering and sci-
entific computation applications in grid. We present the Parallelized Subtask-Level
Service Authorization (PSAS) architecture for fine-grained authorization policies and
enforcement mechanism for both resource usage/management and task management.
The context-aware authorization is exercised by mapping a community member to a
multi-value community policy and adaptive transition, and a delegation mechanism
collaboratively performs task management together with a relevant management
policy. It enforces these mechanisms to enable fine-grained authorization based on
Globus Toolkit version 2.2.

This paper is organized as follows: Section 2 reviews background and related work
in the arena of grid security. In section 3, the proposed authorization architecture and
overall policy are described. Context-aware authorization is presented in Section 4.
Section 5 describes the current implementation of the architecture within Globus.
Finally, conclusions and future work are addressed in Section 6.

2 Backgrounds and Related Work

2.1 Authorization in Grid Middleware

As the rapid advancement of the grid researches and applications, diverse grid mid-
dlewares are widely developed and deployed. At present, there are three main pieces
of grid middlewares, Globus [3], Legion [2], and UNICORE [17]. The Globus toolkit
is the most popular grid environment and the de facto grid standard. However its
current security services are yet poor, for example: use of static user accounts, coarse
granularity, and application dependent enforcement mechanisms. Globus has adopted
the Grid Security Infrastructure (GSI) [5] as the primary authentication mechanism.
GSI defines single sign-on algorithms and protocols, cross-domain authentication
protocols, and temporary credentials called proxy credentials to support hierarchical
delegation [6]. Main weaknesses of the Globus security services are described as
follows:
1.

2.

Globus deals with all privileges of subtask irrespective of the privilege difference
among its subtasks. That is, after the simple authentication is exercised, the re-
source allows the task to use all privileges of the user; similarly, so do subtasks run
in parallel. It violates commonly the least privilege principle [7].
The issues of the context-aware community policy are not concentrated on, so the
authorization of resource usage and task management is not flexibly characterized
by the community. The scenario is not suited for large-scale wide-area collabora-
tively scientific computation in Virtual organization.

An Authorization Architecture Oriented to Engineering and Scientific Computation 463

3. In Globus, normally, task management is only the responsibility of the users who
have submitted the job. Due to the dynamic environment and the long-lived feature
of engineering and scientific computation, this coarse-grain authorization for task
management cannot meet the need of agile job management in VO.

2.2 Related Work

In recent years, many grid security issues (architectures, policies and enforcement
mechanisms, etc) have been researched. And the related researches are making great
progress. Among many related works, main researches are presented in the following:

I. Foster et al. [5] provide the basis of current grid security: “grid-map” mecha-
nism, mapping grid entities to local user accounts at the grid resources, is a common
approach to authorization. A grid request is allowed if such a mapping exists and the
request will be served with all the privileges configured for the local user account.
Obviously, these authorization and access control mechanisms are not suitable for
flexible authorization decision.

L. Pearlman et al. [8] propose the Community Authorization Service (CAS) archi-
tecture. Based on CAS, resource providers grant access to a community accounts as a
whole, and community administrators then decide what subset of a community’s
rights an individual member will have. Drawbacks of this approach include that en-
forcement mechanism does not support the use of legacy application, that the ap-
proach of limiting the group’s privileges violates the least-privilege principle and that
it does not consider authorization issue of task management.

W. Johnston et al. [9] provide grid resources and resource administrators with dis-
tributed mechanisms to define resource usage policy by multiple stakeholders and
make dynamic authorization decisions based on supplied credentials and applicable
usage policy statements. This system binds user attributes and privileges through
attribute certificates (ACs) and thus separates authentication from authorization. Fine-
grained access decisions are enforced via such policies and user attributes. However,
It does not provide convenience for the use of legacy applications, and does not con-
sider authorization issue of task management.

R. Alfieri et al. [10] present a system conceptually similar to CAS: the Virtual Or-
ganization Membership Service (VOMS), which also has a community centric attrib-
ute server that issues authorization attributes to members of the community. M. Lorch
et al. [11] give the same architecture, called PRIMA. Except that in PRIMA the at-
tributes are not issued by a community server but rather come directly from the indi-
vidual attribute authorities, PRIMA and VOMS have similar security mechanisms.
They utilize expressive enforcement mechanisms and/or dynamic account to facilitate
highly dynamic authorization policies and least privilege access to resources. How-
ever, they do not consider authorization issue of task management, and in their study,
the overhead of authorization management is larger. They only support the creation
of small, transient and ad hoc communities.

Besides the typical paradigms mentioned above, M. Lorch et al. [12] enable the
high-level management of such fine grained privileges based on PKIX attribute cer-

464 C. Huang et al.

tificates and enforce resulting access policies through readily available POSIX operat-
ing system extensions. Although it enables partly the secure execution of legacy ap-
plications, it is mainly oriented to collaborating computing scenarios for small, ad hoc
working groups. G. Zhang et al. [13] present the SESAME dynamic context-aware
access control mechanism for pervasive Grid applications by extending the classic
role based access control (RBAC) [14]. SESAME complements current authorization
mechanisms to dynamically grant and adapt permissions to users based on their cur-
rent context. But, monitoring grid context in time is high-cost. K. Keahey et al. [15]
describe the design and implementation of an authorization system allowing for en-
forcement of fine-grained policies and VO-wide management of remote jobs. How-
ever, it does not specify and enforce community policies for resource usage and man-
agement currently. S. Kim et al. [16] give a WAS architecture to support a restricted
proxy credential and rights management by using workflow. It does not consider the
actual conditions of large-scale task running at many nodes in parallel, the large
overhead of fine-grained division of task and associated authorization confine its
application to a limited area.

3 PSAS Architecture

3.1 PSAS Architecture Overview

PSAS architecture is concerned with the different privilege requirements of subtasks,
user privilege of resource usage and resource policy in virtual community, task man-
agement policy and task management delegation. So PSAS architecture includes three
functional modules and a shared enforcement mechanism as shown in Figure 1.

To minimize privileges of a task, the parallelizable task is decomposed and the
least privileges required for each subtask is re-allotted after analyzing the source
codes of the task. This contribution is described in the part of Subtask-level authoriza-
tion module in the next sub-section. To apply a flexible task management, a delega-
tion mechanism collaboratively performs the authorization delegation for task man-
agement together with a relevant management policy. Its details exist in the part of
Task management authorization module in the next sub-section. A context-aware
authorization approach is another contribution based on PSAS architecture, and it is
presented in Section 4.

3.2 Privilege Management and Overall Authorization Policy

Besides the shared enforcement mechanism, in PSAS, there exist three modules to
implement Privilege management and overall authorization policy: Subtask-level
authorization module, Community authorization module, and Task management au-
thorization module.

An Authorization Architecture Oriented to Engineering and Scientific Computation 465

Fig. 1. PSAS architecture overview.

Subtask-level authorization module concentrates on minimizing privileges of
tasks by decomposing the parallel task and analyzing the access requirement. To
further conform to the least-privilege principle, a few traditional methods restrict the
privileges via the delegation of users themselves rather than the architecture, more-
over, they only restrict privileges of a whole specific task, not for its constituents
(such as subtask). In engineering and scientific computation application, a task is
commonly large-scale. It need be divided into many subtasks, and then be distributed
to many relevant nodes and run in parallel. Whilst, even though the task is the same,
privileges required for distinct subtasks may differ according to operations of these
subtasks. By the parallelization and analysis of the task, PSAS can obtain the task’s
subtasks and relevant required privileges: subtask-level privilege pair. The privileges
indicate the information about associated subtask required access to resources at cer-
tain nodes. Each task has a subtask-level privilege certificate for recording subtask

466 C. Huang et al.

and privilege pair. An example of this certificate is shown in Figure 2. To prevent
malicious third party from tampering with a subtask-level privilege certificate, a
trusted third party (PSAS server) signs the certificate. To control a subtask’s process
and verify the subtask-level privilege certificate, PSAS client will run during resource
utilization.

Fig. 2. An example of task and subtask-level privilege certificate.

Subtask-level authorization module contains PSAS privilege analysis module,
PSAS server, privilege combinator (shared by community authorization mechanism)
and PSAS client.

Community authorization module addresses community authorization mecha-
nism for community member. In Globus, “grid-map” mechanism is conducted, but it
is neglected that grid collaboration brings out common rules about privilege for re-
source usage, resource permission, and so forth, which makes grid security fall into
shortage of adequate availability. PSAS architecture imposes similar CAS [8] mecha-
nism with a combination of traditional grid user proxy credential and CAS, as well as
the task management policy is added into the community policy server. Two trusted
third parties (a community management server and a resource management server)
and two policy servers (a community policy server and a resource policy server) are
exercised. A community management server is responsible for managing the policies
that govern access to a community’s resources, and a resource management server is
responsible for managing the policies that govern resource permission to grid users.

An Authorization Architecture Oriented to Engineering and Scientific Computation 467

Two policy servers store the policy for community policy and resource policy respec-
tively. The ultimate privileges of a grid user are formed by the relevant proxy creden-
tial and the policy for this user, and the actual rights need accord with resource policy
by resource policy decision module during policy enforcement. The policy servers are
built or modified by the community administrators or certain specific users.

Community authorization module is composed of a community management
server, a resource management server, a community policy server, a resource policy
server, privilege combinator, and resource policy decision module.

Fig. 3. A task management delegation and the relevant change of the subject list.

Fig. 4. An example of task management description.

Task management authorization module is responsible for managing privilege
of task management, authorization to task management and related works. In dynamic

468 C. Huang et al.

grid environments, there are many long-lived tasks, for which static methods of pol-
icy management are not effective. Users may also start jobs that shouldn’t be under
the domain of the VO. Since going through the user who has submitted the original
job may not always be an option, the VO wants to give a group of its members the
ability to manage any tasks using VO resources. This module imposes a community
task management policy and task management delegation to describe rules of task
management, and both of the two mechanisms are beneficial to flexible task man-
agement in an expressive way. A community task management policy denotes the
rules of task management in the whole community, and it is combined into the com-
munity policy server. Task management delegation server records a variety of man-
agement delegation relations among community users. Once the delegation relation is
formed, this task will be able to be managed by the delegate user at its runtime. A
community management server is responsible for authenticating task management
delegation. To keep compatibility with special task management, the subject list only
consists of the owner of the task by default. Figure 3 shows a task management dele-
gation and the change of the subject list for task management privilege to this delega-
tion. Subtask-level privilege management RSL description server produces the task
management description, which is expressed by extending the RSL set of attributes.
An example of task management description is shown in Figure 4.

Task management authorization module includes a community task management
policy, task management delegation server and Subtask-level privilege management
RSL description server.

4 Context-Aware Authorization

Based on the PSAS Architecture, the dynamic authorization is able to complement
with a low overload; meantime, little impact is enforced on grid computation oriented
to scientific and engineering. The main idea is that actual privileges of grid users are
able to dynamically adapt to their current context. This work is similar to the study in
the literature [13]; however, our context-aware authorization is exercised by con-
structing a multi-value community policy. The approach is completed according to
the following steps:

1.

2.

Rank the privileges belonging to each item in a traditional community policy. We
divide the privileges of a community member into three sets of privileges: Fat Set,
medium Set and thin Set. Fat Set is rich set with the full privileges of this commu-
nity member, and is suited for the best context at runtime; for example, at some
time, the context is fully authorized nodes with least resources utilized, then the
node will be able to provide its user most privileges. Medium Set is a set of privi-
leges decreased, and Thin Set is the least privilege set for the community member.
When Thin Set is enforced, the subtask belonging to this community member will
use the less resources (i.e. less memory, less CPU cycles, etc) or be canceled.
Construct a multi-value community policy. After finishing the above, we must
rebuild the community policy. To keep compatible with the traditional policy, we

An Authorization Architecture Oriented to Engineering and Scientific Computation 469

only add two sub-items below each item, and the two sub-items are inserted for
medium Set and thin Set, respectively. We apply the policy language defined by
the literature [15], and introduce two new tags “$1” and “$2” as the respective be-
ginning statement. An example of a policy of resource usage and task management
is shown in Figure 5. The statement in the policy refers to a specific user, Wu
Wang, and in the first item, it states that he can “start” and “cancel” jobs using the
“test1” executables; The rules also place constraints on the directory “/usr/test1”
and on the count “<4”. In its multi-value community policy, corresponding Fat Set
maps to the first item without the change of privileges, its Medium Set and Thin
Set respectively map to the next two sub-items below the first item, and their au-
thorizations are changed. For instance, in its corresponding Thin Set, the empty
statement prevents him from doing any control using the “test1” executables, the
statement “memory<20” places a constraint of used memory <20M, and the state-
ment “directory=/tmp/test1” places a constraint of resource usage.

Fig. 5. A traditional policy and its corresponding multi-value community policy.

3. The context-aware authorization is conducted via the above multi-value commu-
nity policy at runtime. As shown in Figure 6, the model uses a Context Agent as an
entity to sense the context information. The Transition Controller accepts the trig-
ger from associated Context Agent and makes a decision of transition of privilege
set. In addition to these common policies, the Community Policy Server contains
transition policy, as a rule of state transition, and event policy, as a rule of sense
event. For example, when the memory of hosting node becomes exhausted, the
event notifies Context Agent and let it sense and trigger the Transition Controller.

5 Enforcement Mechanisms

Enforcement of fine-grained access rights is defined as the limitation of operations
performed on resources or tasks/subtasks by a user to those permitted by an authorita-
tive entity. Based on the Globus Toolkit 2.2, PSAS architecture implements the sub-
task-level authorization, flexible task management, and context-aware authorization.

470 C. Huang et al.

Fig. 6. The context-aware authorization model.

To implement task management authorization module, PSAS creates a job man-
agement controller- a component by extending jobmanager in GRAM. When the
jobmanager parses users’ job descriptions, the job management controller parses and
evaluates subtask-level privilege certificate, and makes a decision of certain task
management permission. The job management controller integrates with the jobman-
ager by an authorization callout API. The callout passes the relevant information to
the job management controller, such as the credential of the user requesting a remote
job, the action to be performed (such as start or cancel a job), a unique job identifier,
and the job description expressed in RSL. The job management controller responds
by the callout API with either success or an appropriate authorization error. This call
is made whenever an action needs to be authorized; that is, it happens before creating
a job manager request, and before calls to cancel, query, and signal a running job.
PSAS extends the GRAM protocol to return authorization errors with reasons of au-
thorization denial as well as authorization system failures. All of task management
delegations and community policies are described in complex task management
cases, and they are translated into a RSL regular description by Subtask-level privi-
lege management RSL description server.

To enforce subtask-level authorization module, PSAS employs the proxy certifi-
cate with an extension field in the form of standardized X.509 v2 attribute certifi-
cates, and makes signed subtask-level privilege certificate embedded into the proxy
certificate’s extension field. At the same time, PSAS architecture modifies the Globus
gatekeeper and jobmanager to put subtask-level authorization into practice. For PSAS
client needs to manage a subtask’s process and checks whether the subtask is running
according to the subtask-level privilege certificate, the GASS library is modified to
communicate with PSAS client, and the relevant callout APIs are created. After mu-
tual authentication between a user and a resource, the resource obtains subtask-level
privilege certificate located in the proxy certificate’s extension field. Then the sub-

An Authorization Architecture Oriented to Engineering and Scientific Computation 471

task-level privilege certificate is verified and finds out job identifier. Finally, PSAS
client guarantees a subtask’s process according to the subtask-level privilege certifi-
cate by interacting with GASS.

Community authorization module in PSAS is executed as in CAS [8]. The GSI
delegation feature is extended to support rich restriction policies in order to allow
grantors to place specific limits on rights that they grant. PSAS employs extensions to
X.509 Certificates to carry out restriction policies. However, there exist some differ-
ences between CAS and PSAS in the community authorization module. That is, the
CAS uses restricted proxy credentials to delegate to each user only those rights
granted by the community policy; but the latter regards the ultimate privileges as a
privilege combination of the “restricted proxy credentials” and the subtask-level
privilege certificate. Proxy credentials are separated from identity credentials. The
identity credentials are used for authentication, while the proxy credentials are used
for authorization. That makes the PSAS architecture more flexible. Similar to the
previous cases, the GASS library is modified to implement a policy evaluation, and
the relevant callout functions are designed for call in the Globus gatekeeper. To im-
plement the dynamic context awareness, Context Agent applies a context toolkit de-
scribed in the literature [18].

6 Conclusions and Future Work

In this paper, we propose a Parallelized Subtask-level Authorization Service (PSAS)
architecture to fully secure applications oriented to engineering and scientific comput-
ing. This type of task is generally large-scale and long-lived. It needs to be divided
into many subtasks run in parallel, and these subtasks may require different privi-
leges. The minimization of the privileges is conducted by decomposing the task and
re-allotting the privileges required for each subtask with a subtask-level privilege
certificate. With the aid of Context Agent, a multi-value community policy for re-
source usage and task management enables the context-aware authorization in addi-
tion to separating proxy credentials from identity credentials. The delegation mecha-
nism collaboratively performs the authorization delegation for task management to-
gether with a relevant management policy. To enforce the architecture, the authors
have extended the RSL specification and the proxy certificate and have modified the
Globus gatekeeper, jobmanager and the GASS library to allow authorization callouts.
The authorization requirement of an application is effectively met in the presented
architecture.

At present, the PSAS architecture is only a prototype, and many issues need to be
solved. So we plan, firstly, to improve the PSAS architecture in practice via complex
applications, and secondly, to further study the policy based context-aware authoriza-
tion of resource usage and task management based on performance metrics.

Acknowledgements. The authors wish to thank the National Natural Science Founda-
tion of China for the National Science Fund for Distinguished Young Scholars under
grant Number 60225009. We would like to thank the Center for Engineering and

472 C. Huang et al.

Scientific Compu-tation, Zhejiang University, for its computational resources, with
which the research project has been carried out.

References

1.

2.

3.

4.
5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

I. Foster, C. Kesselman, and S. Tuecke, The Anatomy of the Grid: Enabling Scalable
Virtual Organizations, International Journal of Supercomputer Applications, 15(3):
pp.200-222, 2001.
A. Grimshaw, W. A. Wulf, et al., The Legion Vision of a Worldwide Virtual Machine,
Communications of the ACM, 40(1): 39-45, January 1997.
I. Foster and C. Kesselman. Globus: a metacomputing infrastructure toolkit, International
Journal of Supercomputer Applications, 11(2): 115-128, 1997.
S. Tuecke, et al., Internet X.509 Public Key Infrastructure Proxy Certificate Profile. 2002.
I. Foster, C. Kesselman, G. Tsudik, S. Tuecke, A Security Architecture for Computational
Grids, Proc. of 5th ACM Conference on Computer and Communications Security Confer-
ence, 1998.
L. Kagal, T. Finin, and Y. Peng, A Delegation Based Model For Distributed Trust, IJCAI-
01 Workshop on Autonomy, Delegation, and Control, 2001.
J. R. Salzer and M. D. Schroeder, The Protection of Information in Computer Systems,
Proc. of the IEEE, 1975
L. Pearlman, V. Welch, et al., A Community Authorization Service for Group Collabora-
tion, Proc. of the 3rd IEEE International Workshop on Policies for Distributed Systems
and Networks, 2002.
W. Johnston, S. Mudumbai, et al., Authorization and Attribute Certificates for Widely
Distributed Access Control, Proc. of IEEE 7th International Workshops on Enabling
Technologies: Infrastructures for Collaborative Enterprises, 1998.
R. Alfieri, et al., VOMS: an Authorization System for Virtual Organizations, Proc. of the
1st European Across Grids Conference, 2003.
M. Lorch, D. B. Adams, et al., The PRIMA System for Privilege Management, Authoriza-
tion and Enforcement in Grid Environments, Proc. of the 4th International Workshop on
Grid Computing, 2003
M. Lorch and D. Kafura, Supporting Secure Ad-hoc User Collaboration in Grid Environ-
ments, Proc. of the 3rd IEEE/ACM International Workshop on Grid Computing, 2002.
G. Zhang and M. Parashar, Dynamic Context-aware Access Control for Grid Applications,
Proc. of the 4th International Workshop on Grid Computing, 2003.
R. Sandhu, E. Coyne, et al., Role-based Access Control Models, Proc. of the 5th ACM
Workshop on Role-Based Access Control, 2000
K. Keahey, V. Welch, et al., Fine-Grain Authorization Policies in the Grid: Design and
Implementation, Proc. of the 1st International Workshop on Middleware for Grid Comput-
ing, 2003.
S. Kim, J, Kim, S. Hong, et al., Workflow-based Authorization Service in Grid, Proc. of
the 4th International Workshop on Grid Computing, 2003.
M. Romberg, The UNICORE Architecture: Seamless Access to Distributed Resources,
Proc. of the 8th IEEE International Symposium on High Performance Distributed Com-
puting, 1999.
A. K. Dey, G. D. Abowd, The Context Toolkit: Aiding the Development of Context-
Aware Applications, Proc. of Human Factors in Computing Systems: CHI 99, 1999.

Validating Word-Oriented Processors for Bit and
Multi-word Operations

Ruby B. Lee, Xiao Yang, and Zhijie Jerry Shi

Princeton Architecture Laboratory for Multimedia and Security (PALMS)
Princeton University

{rblee, xiaoyang, zshi}@princeton.edu

Abstract. We examine secure computing paradigms to identify any new
architectural challenges for future general-purpose processors. Some essential
security functions can be provided by different classes of cryptography
algorithms. We identify two categories of operations in these algorithms that
are not common in previous general-purpose workloads: bit operations within a
word and multi-word operations. Both challenge the basic word orientation of
processors. We show how very complex bit-level operations, namely arbitrary
bit permutations within a word, can be achieved in O(1) cycles, rather than O(n)
cycles as in existing RISC processors. We describe two solutions: one using
only microarchitecture changes, and another with Instruction Set Architecture
(ISA) support. We generalize our solutions to define datarich execution with
MOMR (Multi-word Operands Multi-word Result) functional units. This can
address both challenges, leveraging available resources in typical processors
with minimal additional cost. Thus we validate the basic word-orientation of
processor architectures, since they can also provide superior performance for
both bit and multi-word operations needed by cryptographic processing.

1 Introduction

The dependence on the public Internet and wireless networks in modern society poses
a growing need for secure communications, computations and storage. To provide
basic security functions like data confidentiality, data integrity, and user
authentication, different classes of cryptographic algorithms can be used with security
protocols at network, system or application levels. Not only network transactions need
to be protected, all data and programs may also need these security functions. As
secure computing paradigms become more pervasive, it is likely that such
cryptographic computations will become a major component of every processor’s
workload. Understanding the new requirements of secure information processing is
critical for the design of all future processors, whether general-purpose, application-
specific or embedded. In this paper, we especially target the needs of high
performance microprocessors.

Basic security functions include confidentiality, integrity and authentication.
Confidentiality of messages transmitted over the public networks, and of data stored
in disks, can be achieved by encrypting the data, using symmetric-key cryptography
algorithms such as DES [1], and AES [2]. Data integrity, where data is not changed in

P.-C. Yew and J. Xue (Eds.): ACSAC 2004, LNCS 3189, pp. 473–488, 2004.
© Springer-Verlag Berlin Heidelberg 2004

474 R.B. Lee, X. Yang, and Z.J. Shi

transit or in storage, can be accomplished with one-way hash functions such as SHA
and MD-5 [1]. Authenticating users and devices remotely across the Internet can be
accomplished with public-key cryptographic algorithms such as Diffie-Hellman and
RSA [1]. They also allow digital signatures and the exchange of a shared secret key
across the Internet.

We observe two categories of new requirements imposed by these three classes of
cryptographic algorithms: bit-oriented operations and multi-word operations. Both
challenge the basic word-orientation of modern processors. Symmetric-key
cryptography introduces a new requirement: bit-level permutations. Previously, the
bit-oriented operations in general-purpose workloads were SHIFT instructions and
logical operations like AND, OR, XOR and NOT. These are supported efficiently by
simple single-cycle instructions. Public-key cryptography introduces the other new
requirement: multi-word arithmetic. While multiword integer arithmetic has been a
requirement in previous high-precision integer computations, its need remained
relatively low since the basic word size in general-purpose processors has increased
from 16 to 32 to 64 bits. Frequent use of public-key cryptography algorithms may
significantly increase the need for multi-word arithmetic. For example, multiplication
of two 1024-bit operands in RSA involves two 16-word operands, if each word is 64
bits. If a hardwired multiply instruction operates on two words, many such 64-bit
multiply instructions are needed, as well as add operations to accumulate the result.
Public-key algorithms based on Elliptic Curve Cryptography (ECC) often perform
polynomial operations requiring both bit-oriented and multi-word operations.

A key contribution of this paper is the observation that fast cryptographic
processing depends on a processor’s ability to support both complex bit-level
manipulations as well as multiword operations. These requirements have more impact
on performance than defining a new instruction or special-purpose functional unit for
accelerating a particular cryptographic primitive. They also challenge the atomic
word-orientation of processors, since they emphasize bit operations within a word,
and operations requiring operands much larger than a word.

A second contribution is showing how arbitrary bit-level permutations can be
accomplished very efficiently in only 1 or 2 cycles.

A third contribution is a generalized architectural solution that allows high-
performance processors to support datarich operations with flexible, multi-word
operands and multi-word result (MOMR) functional units. Our generalized solution
supports both high performance bit permutations and multi-word operations. Hence,
the basic word-orientation of processors is still a good design choice, since both bit-
oriented and multi-word oriented operations can also be supported very efficiently.

In Section 2, we describe past work on permutation instructions, including how our
recent past work has reduced the time taken to achieve any n-bit permutation down
from O(n) to O(log(n)) instructions and cycles. In Section 3, we propose two new
architectural methods for further bringing this down to O(1) cycles. One method is
purely micro-architectural, and the other involves new ISA. In Section 4, we describe
the changes in the datapath and control path needed to implement our two methods. In
Section 5, we generalize these two methods to solve the second challenge of
achieving multi-word operations efficiently in word-oriented processors. In Section 6,
we discuss performance, and conclude in Section 7.

Validating Word-Oriented Processors for Bit and Multi-word Operations 475

2 Past Work

Past work in accelerating cryptographic processing included many hardware ASIC
(Application Specific Integrated Circuit) implementations of specific ciphers. For
programmable solutions, new instructions were proposed to accelerate symmetric-key
ciphers in general-purpose processors [3], and in cryptographic coprocessors like
Cryptomaniac [4] for ciphers used in secure networking protocols. In contrast, we do
not propose any specific new instructions in this paper, but rather new methodologies
for bringing more data to the functional units. This datarich computation is done with
very low overhead, utilizing the datapaths and control already provided for
superscalar execution found in most microprocessors, including out-of-order
superscalar machines.

The datarich methodology allows us to accelerate both bit permutations used for
symmetric-key ciphers, and multi-word operations used in public-key ciphers. It
allows us to achieve one of our major contributions: performing arbitrary bit
permutations in 1 or 2 cycles – a significant improvement over our recent past work
achieving O(log(n)) instructions and cycles [5], which we describe further below.

Performing bit-level permutation has been a hard problem for word-oriented
general-purpose processors. Previously, processors only supported a very restricted
subset of bit permutations known as rotations. Here, every bit in the n-bit word is
moved by the same shift amount, with wrap-around. While some n-bit permutations
can be achieved with fewer instructions, allowing arbitrary, data-dependent n-bit
permutations is very slow. Conventional logical and shift instructions take O(n)
cycles to achieve any one of n! permutations [5]. Alternatively, table lookup methods
can be used, but this is limited to a few fixed permutations due to the high memory
space requirement, and cache misses cause performance degradation.

More recently, permutation instructions have been introduced into certain
microprocessors as multimedia ISA extensions to handle the re-arrangement of
subwords packed in registers. Examples are MIX and PERMUTE in HP’s MAX-2
[6], VPERM in Motorola’s AltiVec [7], and MIX and MUX in IA-64 [8]. However,
these instructions can only handle subword sizes down to 8 bits. They do not provide
a general solution for performing arbitrary bit-level permutations efficiently.

Very recently, researchers have tackled the general bit permutation problem, and
defined new permutation instructions that can achieve any n-bit permutation with only
log(n) instructions. Several approaches were proposed. The CROSS [9] and OMFLIP
[10] permutation instructions each performs the equivalent function of two stages of a
“virtual” interconnection network. A sequence of log(n) CROSS or OMFLIP
instructions can build a 21og(n)-stage virtual network that can achieve any one of the
n! permutations. Another approach was the GRP instruction [11], which partitions the
data bits into two groups. At most log(n) GRP instructions are sufficient to achieve
any one of n! permutations [11]. A third approach involves specifying the order of the
indices of the source bits in the permuted result. Examples are PPERM[11], and
SWPERM and SIEVE [12]. The XBOX instruction [3] is similar to PPERM.

A comparison of CROSS, OMFLIP, GRP, and PPERM is presented in [5].
CROSS, OMFLIP and GRP all achieve arbitrary 64-bit permutations in 6 instructions.
PPERM and SWPERM with SIEVE require more than log(n) instructions, but can be
executed in as few as 4 cycles on a 4-way superscalar machine. Unfortunately,
CROSS, OMFLIP and GRP cannot achieve speedup with superscalar machines, due

476 R.B. Lee, X. Yang, and Z.J. Shi

to the strict data dependency between the sequence of log(n) permutation instructions.
Below, we show how this data dependency can be overcome, so that arbitrary 64-bit
permutations can be achieved in 1 or 2 cycles, rather than log(n) = 6 cycles.

This paper extends the concepts we presented in [13] with new work on the
detailed ISA or microarchitectural changes required, and the detailed implementation
in an out-of-order processor.

3 Achieving Arbitrary 64-Bit Permutations in 1 or 2 Cycles

The reason log(n) instructions are needed to achieve any permutation of n bits is
because nlog(n) configuration bits are needed to specify an arbitrary n-bit permutation
[5][11]. Since a typical instruction reads up to 2 source operands and produces 1
result, a permutation instruction uses one source operand for the data and the other for
n bits of configuration. The intermediate result produced by one permutation
instruction is used as the data for the next. Hence, a sequence of log(n) instructions
are needed to supply the nlog(n) configuration bits and the data to be permuted, to
achieve any n-bit permutation [5]. If all nlog(n) configuration bits and the n data bits
to be permuted can be specified by a single instruction, then it may be possible to
execute any arbitrary n-bit permutation in 1 instruction. Hence, the main performance
limiter is the ISA instruction format and the datapaths that support only two n-bit
operands per instruction, and a design goal of not having to save states between
permutation instructions. This is a reasonable goal since it reduces context-switch and
operating system overhead.

Suppose that the latency through the permutation functional unit is not a cycle-time
limiter. Then, the problem reduces to the following: how can n(log(n)+l) bits be sent
from general registers to a permutation functional unit (PU) in a single instruction? If
each register is n bits, this means sending (log(n)+l) register values, or operands, to a
functional unit. We propose two methods to solve this problem. Method 1 identifies
instruction groups dynamically with microarchitecture techniques; method 2 employs
ISA techniques to identify instruction groups statically.

3.1 Datapath, MOMR, and Instruction Groups

We first define some new architectural terms: An (s,t) functional unit in a word-
oriented processor is a functional unit that takes s word-sized operands and produces t
word-sized results. A standard functional unit is a (2,1) functional unit.

An (s,t) datapath in a word-oriented processor is a datapath where s source buses
and t destination buses are connected to functional units. If the datapath contains a
register file, it has s read ports and at least t write ports for the results coming from the
functional units in one cycle. In general, a k-way multi-issue processor has a (2k,k)
datapath, supporting the simultaneous execution of k standard (2,1) functional units
each cycle.

A datarich or MOMR (Multi-word Operands Multi-word Result) functional unit in
a word-oriented processor is a functional unit that requires more than the standard two
word-sized operands and one word-sized result.

Validating Word-Oriented Processors for Bit and Multi-word Operations 477

A sequence of consecutive instructions is called an instruction group if the
instructions can be executed simultaneously by a datarich (or MOMR) functional unit.

Emerging secure computing paradigms may require extensive execution of
algorithms where performance can be improved by the use of datarich functional
units. Sometimes datarich functional units improve the performance, other times they
improve the cost-performance. Our thesis is that a k-way multi-issue processor with a
(2k,k) datapath can accommodate different types of datarich functional units, with
relatively minor changes to the pipeline control logic. In the rest of Section 3 and
Section 4, we illustrate two methods for datarich MOMR execution, using bit
permutation as the example. In Section 5, we generalize datarich MOMR execution to
operations with multi-word operands.

3.2 Method 1: Microarchitecture Group Detection

A permutation instruction is defined as follows:

PERM rs,rc,rd

where rs contains data source, rc contains configuration bits and rd is the result. For
example, PERM can be either a CROSS or OMFLIP instruction. Fig. 1(a) shows a 64-
bit permutation specified with a sequence of 6 PERM instructions in 2 groups of 3
instructions each. Each group provides the data source and 3 configuration words for
a (4,1) permutation unit, PU. The group is dynamically detected, and then its 3
instructions are transformed into 2 “internal” instructions. The first one supplies the
data source and one configuration word, and the second one provides the other 2
configuration words. When all the operands are ready, the two “internal” instructions
are issued for execution simultaneously on one (4,1) PU. Hence, the 6 instructions can
be transformed into 4 internal instructions in 2 groups and executed over 2 cycles. If
there are two or more (4,1) PUs, we can pipeline the executions of the 2 groups and
achieve a throughput of one permutation per cycle.

3.3 Method 2: New ISA for Group Identification

In the second method, we enhance the conventional RISC instruction encoding with 2
new subop bits, gs and gc, for identifying instructions which start a group (gs=1) or
continue a group (gc=1). The meanings of these 2 bits are shown in .

The permutation instruction is defined as:

PERM,subop rs1,rs2,rd

where subop contains the gs and gc bits. If gs is set, the instruction is the first in a 2-
instruction group, supplying the data word and one configuration word to the (4,1)
PU. If gc is set, it is the second instruction in a group, supplying 2 configuration
words for the (4,1) PU. We specify this 2-instruction group as follows:

PERM,gs rs,rc1,rd
PERM,gc rc2,rc3,rd

478 R.B. Lee, X. Yang, and Z.J. Shi

Unlike method 1, method 2 does not need the dynamic group detection and
instruction transformation. It also helps reduce static code size, since only 4
permutation instructions (rather than 6) are required in the program. Similar to
method 1, when all the source operands for the 2 grouped instructions are ready, they
are issued for execution together on one (4,1) PU.

Fig. 1. Instruction transformation for method 1

4 Microarchitectural Changes

In this section, we show how either of the two above methods can leverage the
resources already present in a superscalar processor, with minimal additional cost. We
first describe a typical superscalar processor in Section 4.1, then detail changes that
must be made to its datapath and control path in Sections 4.2 and 4.3, respectively.

Fig. 2. (a) Standard 2-way superscalar processor datapath; (b) with a (4,1) PU added

Validating Word-Oriented Processors for Bit and Multi-word Operations 479

4.1 Baseline Microarchitecture

Fig. 2(a) shows a standard 2-way superscalar RISC processor with a (4,2) datapath,
i.e., 4 register read ports, 2 write ports and associated data buses and bypass paths.

Fig. 3 shows the pipeline frontend of a generic out-of-order superscalar processor
[14]. A block of instructions is fetched from the instruction cache. These instructions
are then decoded and their operands renamed (to physical registers to eliminate
register-name dependencies) before entering the issue window. They will be issued
for execution when all their source operands and required functional units become
available (wakeup and select stage). Certain stages of the pipeline may take multiple
cycles. For an in-order issue processor, there are no rename or select stages.

Fig. 3. Generic out-of-order superscalar processor pipeline frontend

4.2 Changes to the Datapath

Fig. 2(b) shows a (4,1) permutation unit (PU) added to a standard (4,2) datapath of a
2-way superscalar processor. Fig. 4 shows an implementation of the PU based on the
butterfly network. There are 2 separate PUs, one contains a 6-stage butterfly network
and the other contains an inverse butterfly network. In a 2-way processor, we have
both of them in the datapath, but only one PU is used at a time, resulting in a 2-cycle
latency and a throughput of one permutation per 2 cycles. In a 4-way or wider
processor, we can use both of them in parallel. Then we can pipeline the permutation
operation and achieve one permutation per cycle throughput (Fig. 5).

Inclusion of a datarich (4,1) MOMR functional unit in a 2-way superscalar
processor causes minimal datapath overhead of one additional result multiplexer. All
the expensive register ports, data buses and bypasses required have already been
provided by the (4,2) datapath of the 2-way superscalar machine. Similarly, for the
inclusion of two (4,1) MOMR units in a 4-way superscalar processor. Two (4,1) PUs
leveraging the (8,4) datapath of a 4-way superscalar machine are sufficient to achieve
the ultimate performance of a different 64-bit permutation every cycle. A key benefit
of our solution is leveraging the existing resources of today’s microprocessors,
essentially all of which are at least 2-way superscalar.

4.3 Changes to the Control Path

We now show that even the required control path changes are minimal. Method 1,
which uses the microarchitecture to detect a sequence of dependent instructions that

480 R.B. Lee, X. Yang, and Z.J. Shi

Fig. 4. One implementation of (4,1) permutation FU

Fig. 5. Two (4,1) permutation FUs in 4-way superscalar processor

Fig. 6. Modified superscalar processor pipeline frontend

can be executed together, requires some modifications to the pipeline control front-
end as shown in Fig. 6. The sequence detection unit detects sequences of 3
permutation instructions. These sequences are then transformed to groups of 2
instructions by the code transformer. The muxes pick the correct inputs to the issue
window between the original instructions and the transformed instructions. A 1-bit

Validating Word-Oriented Processors for Bit and Multi-word Operations 481

field reserved for a C-bit is added to each entry in the instruction window to denote
whether the corresponding instruction and the following one are in a group. The
wakeup/select logic is also modified so that the 2 grouped instructions can be woken
up and executed together. For method 2, since instruction groups are explicitly
identified by instruction subop bits, the sequence detection unit, code transformer and
muxes are not needed. The rest of the control path is the same as for method 1.

Group sequence detection. Dynamic instruction group detection is needed only by
method 1. The group sequence detection unit (Fig. 7) recognizes 3 consecutive
permutation instructions in a fetch block that satisfy the following two criteria: they
have the same opcodes and the data source operand in a permutation instruction is the
result of the previous permutation instruction. It then sets C-bits for the first
instruction of the detected group sequence. For simplicity, sequences residing in two
fetch blocks are not recognized to avoid keeping additional states.

Fig. 7. Functions of sequence detection unit

Instruction transformation. The code transformer is also needed only by method 1.
It transforms the group of 3-instruction sequences into 2-instruction sequences (see
Fig. 1). The 2 new instructions are generated according to the C-bits produced by the
sequence detection unit and the renamed operands of the original 3 instructions. The
code transformer replaces the data operand in the second instruction with the
configuration operand from the third instruction before discarding the third
instruction. Then, it updates the C-bits in the newly generated instructions. An
instruction that has its C-bit set starts a group. Grouped instructions are adjacent in the
issue window. Fig. 8 shows the functions of the code transformer.

Fig. 8. Code transformer transforms 3-instruction sequence to 2-instruction group

Instruction wakeup. Fig. 9 shows the modified wakeup logic needed by both
methods to wake up the 2 grouped instructions together. This is necessary because
otherwise the 2 instructions might be issued separately, producing the wrong result.

482 R.B. Lee, X. Yang, and Z.J. Shi

Previously, an instruction is ready to issue when both of its source operands are ready.
The modified wakeup logic ensures that grouped instructions become ready only
when all the source operands in the group are ready.

Fig. 9. Modified instruction wakeup logic

Instruction select. We can modify the select logic for ALU1 and ALU2 to handle the
permutation unit as well. This is achieved by adding C-bit propagation to the original
select logic for ALU1 and ALU2 and 2 small control units, as shown in Fig. 10(a).
Assume the select logic for ALU1 selects instruction i. The control unit 1 tests the C-
bit of i. If i’s C-bit is set, then grant both instruction i and i+1 and bypass the select
logic for ALU2. Otherwise grant i and proceed to select logic for ALU2. Suppose
instruction j is selected for ALU2. The control unit 2 then tests the C-bit of j. We
grant instruction j only if j’s C-bit is not set.

Fig. 10. (a) Select logic with modifications on the original select logic for ALU1 and ALU2;
(b) Select logic with new set of logic for PU

Alternatively, we can add a new set of select logic for the PU, which deals only
with instructions with C-bits set, while the select logic for ALU1 and ALU2 deals
with normal instructions. The arbitration unit picks the result of either the select logic
for ALU1 and ALU2 or the new select logic. (see Fig. 10(b)).

If there are multiple issue queues, such as proposed in [14], we can devise an
instruction steering method so that the 2 permutation instructions in a group are
dispatched to the same queue. This is easy to achieve because the 2 grouped
instructions are adjacent. If the C-bit of the instruction at the head of a queue is set,
we grant this instruction together with the following one.

Validating Word-Oriented Processors for Bit and Multi-word Operations 483

4.4 Complexity and Delay of Control Path Modifications

The modifications to the control path consist of a small amount of combinatorial
logic, estimated at a few thousand gates for a 4-way superscalar processor. As
comparison, the issue logic of the Compaq Alpha 21264 processor, a 4-way
superscalar RISC processor, contains about 141000 transistors [15], making the
complexity of our modifications negligible.

In terms of delay, the sequence detection unit and the code transformer run in
parallel with the decode and rename logic. Due to their simple functions, they should
have no impact on the processor cycle time. Since the wakeup and select logic are
already in the critical path for back-to-back executions of dependent instructions, our
modifications may increase the cycle time. However, many methods have been
proposed to reduce the latency of issue logic by either simplifying the instruction
issue logic [14][16][17][18], or breaking wakeup/select to multiple stages [19][20] in
order to achieve fast instruction scheduling. By incorporating these methods, we can
integrate our modifications without affecting the processor cycle time.

5 Generalization to Multi-word Operations

We define multi-word operations as operations that use more than 2 word-sized
operands and produce more than 1 word-sized result, i.e., they are operations that
could use datarich MOMR functional units. Arbitrary bit permutation is one example
of multi-word operations since the configuration bits span multiple words. Other
multi-word operations include the multiplication of two 16-word operands in a 64-bit
processor, for a public key algorithm like RSA using 1024-bit keys. If larger hardware
multipliers can be accommodated within a high performance microprocessor, we can
speed up the multiword multiplication by producing longer (and fewer) partial
products with each instruction, resulting in fewer instructions needed to accumulate
the partial products to get the final result. In particular, if the implementation can
afford larger multipliers, we want to eliminate the ISA restriction of only performing
the multiplication of two word-sized operands per instruction.

5.1 Multiplication of Multi-word Operands

The use of MOMR methods for speeding up n-bit permutations was described in
Sections 3 and 4. We now describe how MOMR methods may be used to accelerate
the multiplication of multi-word operands. Let the original multiply instructions be:

MUL,L ra,rb,rc
MUL,H ra,rb,rd

Two 64-bit registers ra and rb are multiplied together to generate the low and high
64 bits of the result in rc and rd, in successive instructions. Actually, both halves of
the product are generated by the same hardware multiplier at the same time, and it is
only because of the ISA restriction of one word-sized result per instruction that two
separate instructions have to be used to generate the double-word result. If a (2,2)
instruction were available, then these two instructions can be executed together on

484 R.B. Lee, X. Yang, and Z.J. Shi

one multiplier simultaneously. Method 1 can recognize this case at run-time. Method
2 can specify this at compile time with the gs and gc bits:

MUL,L,gs ra,rb,rc
MUL,H,gc ra,rb,rd

A 2-way supercsalar processor with two (2,1) multipliers can achieve the same
performance as a single (2,2) MOMR multiplier, but with twice the area for two
multipliers. Hence, MOMR execution is more cost-effective.

Alternatively, an even higher performance microprocessor may be able to afford a
128-bit multiplier. Implemented as a (4,2) MOMR multiplier, we can execute 128-bit
versions of the Multiply Low and High instructions, in method 2 as follows:

MUL,L,gs ra1,rb1,rc1
MUL,L,gc ra2,rb2,rc2
MUL,H,gs ra1,rb1,rd1
MUL,H,gc ra2,rb2,rd2

The first two MUL,L instructions would be executed together as a group on a 128-
bit multiplier to generate the low 128 bits of the result. The next two MUL,H
instructions generate the high 128 bits of the result. To get the equivalent 256-bit
product using only 64-bit multipliers and conventional (2,1) instructions, we need to
do 8 multiply’s and 5 add’s. A 128-bit multiplier can also be used for (4,4) MOMR
execution, where all 4 instructions above belong to the same group and are executed
together. Larger multipliers can also be used, for even further speedup.

5.2 Datarich MOMR Execution

We now define generalized MOMR or datarich execution. In Table 2 and Table 3,
method 1 achieves a microarchitecture solution for MOMR execution, while method
2 yields an ISA solution, where the MOMR operations are explicitly specified with
new gs and gc bits in the instruction encoding. The steps in these 2 methods are listed
in Table 2. Method 1 requires a more complex group detection unit to recognize all
the supported multi-word operations. For method 2, a similar unit is also necessary,
but to check the correctness of groups. Examples of the criteria for recognizing or
checking instruction groups are given in Table 3. The first 3 columns specify the
instructions in the instruction stream, and the last 2 specify the data dependencies they
must satisfy.

In order to simplify the architectural solution, we require that instructions to be
executed together as a group be consecutive in sequential program order. That is, we
are not trying to look through the whole program to find instructions that may be far
apart which can be executed together in the same cycle. Rather, we target programs
which can be re-compiled, or new programs, so that instructions that can be
“grouped” for simultaneous execution are next to each other.

The ISA cost of method 2 is that we must define the gs bit for every instruction
that can serve as the start of a multi-word operation and the gc bit for all instructions
that can act as continuation instructions in a group. Encoding space may be tight in
existing ISAs and one or two unused bits per instruction may not be available.

When there are different instruction groups, the microarchitecture needed to
support method 2 is not significantly simpler than in method 1. However, method 2

Validating Word-Oriented Processors for Bit and Multi-word Operations 485

can specify MOMR execution opportunities that are too difficult for method 1 to
recognize dynamically. For example, it takes a long sequence of 64-bit multiply and
add instructions to get the result equivalent to the multiplication of two 128-bit
operands. With the gs and gc bits, method 2 only needs 4 instructions to specify this
operation (last 2 rows in Table 3). Therefore, method 2 can support a broader scope of
multi-word operations.

* Since a PERM group is composed of 3 serially dependent instructions, there must be data
dependencies (RAW hazards) between adjacent PERM instructions. No RAW hazard here
means no additional data dependencies other than those required for a serial chain. For multi-
word operations (all the rest), no RAW hazard means no RAW data dependencies.

6 Performance

We test two distinct aspects of our new architecture: support for fast bit permutations
and for multi-word operations. Table 4 illustrates the performance of our architecture.

486 R.B. Lee, X. Yang, and Z.J. Shi

For bit permutation, we test DES encryption (DES enc) and round key generation
(DES key) with the fastest software program on existing processors which uses table
lookup to perform bit permutations (columns a and b). We then test DES using an
enhanced ISA that has an OMFLIP permutation instruction [10] added to it (columns
c and d). For multi-word operations, we test integer Diffie-Hellman (column e).

We implement these programs using a generic 64-bit RISC processor. First, we
obtain the execution time, in cycles, of the programs running on a single-issue
processor with one set of (2,1) functional units, including a 64-bit ALU, a 64-bit
shifter, a 64-bit permutation unit (for columns c and d), and a 64-bit integer multiplier
(for column e). Second, the same programs are executed on a standard 2-way
superscalar processor with two sets of (2,1) functional units. The speedup is shown in
the first row of Table 4.

Then, we simulate the programs on an enhanced 2-way superscalar processor with
one MOMR functional unit. For DES, the MOMR unit is a (4,1) Butterfly
permutation unit as detailed in Sections 3 and 4. For DH (columns e), the MOMR unit
is a (4,2) multiplier as described in Section 5. This is a 128-bit multiplier, which we
are now able to utilize, but could not previously because of ISA limitations in a
standard 64-bit superscalar processor. We assume a latency of 3 cycles for a 64-bit
multiplier, and 5 cycles for the 128-bit multiplier. Either method 1 or 2 can be used in
the DES programs (columns a-d). Method 2 is used for the DH program which is re-
coded using the new ISA features to specify grouped instructions with the gs and gc
bits. The cache parameters used in the DES simulations are 16 kilobytes L1 data
cache and 256 kilobytes L2 unified cache with 10-cycle and 50-cycle miss penalties,
respectively.

The second row of Table 4 shows the speedup of our enhanced 2-way processor
with a MOMR functional unit over a single-issue machine. In all cases, our new
architecture achieves greater speedup over single-issue execution than the standard 2-
way superscalar processor (first row). The third row illustrates the additional speedup
provided by our 2-way MOMR architecture over standard 2-way superscalar
processors. For DES, the performance gain is very pronounced for key generation
(17X speedup in column b), where permutation operations are more frequent than for
encryption. The MOMR speedup is less when compared to the enhanced ISAs
(columns c and d) than when compared to existing ISAs (columns a and b). This is
because the introduction of new permutation instructions (CROSS or OMFLIP) in
columns c and d already yields huge speedup over the table lookup method (in
columns a and b). The number of instructions for a 64-bit permutation is reduced from
over 20 to at most 6, and most of the memory accesses are also eliminated, resulting
in much fewer cache misses. Even then, our MOMR execution achieves an additional
speedup of 13% to 19% by further reducing the cycles needed for a 64-bit
permutation from 6 to 2 cycles.

Validating Word-Oriented Processors for Bit and Multi-word Operations 487

For the integer DH, there is significant additional speedup of 2X over the standard
2-way superscalar processors. This is because our MOMR architecture allows the
inclusion of wider functional units such as 128-bit multipliers. This reduces the
overall number of instructions and cycles needed to complete a 1024 by 1024-bit
multiplication, which is a primitive operation in the exponentiation function needed
by public-key cryptography algorithms.

7 Conclusions

This paper makes several new contributions. First, we identify two categories of bit
and multi-word operations as new challenges for word-oriented processor architecture
for high-performance cryptographic processing. This insight is more useful from a
broad architectural perspective than just picking out special-purpose operations to
accelerate.

Second, we present two architectural solutions for achieving arbitrary 64-bit
permutations in O(1) cycles. This is a significant result since previously arbitrary n-bit
bit permutations took O(n) cycles. Even with our recent proposals of permutation
instructions [5][9][10][11][12], this took at least O(log(n)) cycles. We show how a
different 64-bit dynamically–specified permutation can be achieved every cycle by a
4-way superscalar processor with datarich MOMR execution. Our software solution
for achieving permutations is much more powerful than a hardware solution – the
latter can only achieve a few statically-defined permutations, while our solution can
achieve all possible dynamically-defined permutations. Furthermore, the incremental
cost is minimal, since we leverage common microarchitecture trends like superscalar
processors. Our result is also significant because it implies that word-oriented
processors have no problem supplying very high performance (1 or 2 cycles) for even
extremely challenging bit-oriented processing like arbitrary bit permutations.
Cryptographers can use bit permutations freely in their new algorithms if
microprocessor architectures include these bit permutation instructions.

Third, we define the concepts of datarich MOMR (Multi Operands Multi Result)
execution and instruction groups. MOMR functional units can achieve extremely high
performance for bit-level permutations as well as multi-word operations, with a single
coherent architectural solution. The MOMR feature enables a very flexible extension
of standard ISAs to support datarich operations of many flavors. We do not have to
decide whether instruction formats of future processors should support (3,1), (4,1),
(2,2), (3,2), or (4,2) functional units, all of which are useful for different operations.
They can all be supported on a 2-way superscalar machine with minimal changes. Our
proposal to base MOMR implementations on the (2k,k) datapath of a k-way
superscalar processor gives us the flexibility of supporting all MOMR functional unit
sizes covered by these existing datapath resources. We have also shown the control
path modifications needed to support MOMR; these are minimal when compared to
the complex pipeline control in typical superscalar, out-of-order machines.

Finally, a fourth contribution is the validation of the word as the atomic unit upon
which a processor is optimized, since we show how both bit and multi-word
operations can be achieved with MOMR execution for either superior performance or
enhanced cost-performance.

488 R.B. Lee, X. Yang, and Z.J. Shi

References

[1]
[2]

[3]

[4]

[5]

[6]

[7]

[8]
[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

B. Schneier, Applied Cryptography, 2nd Ed., John Wiley & Sons, Inc.,1996.
NIST (National Institute of Standards and Technology), “Advanced Encryption Standard
(AES) - FIPS Pub. 197”, November 2001.
J. Burke, J. McDonald and T. Austin, “Architectural support for fast symmetric-key
cryptography”, Proceedings of ASPLOS 2000, pp. 178-189. November 2000.
L. Wu, C. Weaver, and T. Austin, “CryptoManiac: a fast flexible architecture for secure
communication”, Proceedings of the 28th International Symposium on Computer
Architecture, pp. 110-119, June 2001.
R. B. Lee, Z. Shi, and X. Yang, “Efficient permutation instructions for fast software
cryptography”, IEEE Micro, vol. 21, no. 6, pp. 56-69, December 2001.
R. B. Lee, “Subword parallelism with MAX-2”, IEEE Micro, Vol. 16, No. 4, pp. 51-59,
August 1996.
K. Diefendorff et al, “AltiVec extension to PowerPC accelerates media processing”,
IEEE Micro, Vol. 20, No. 2, pp. 85-95, March/April 2000.
“IA-64 application developer’s architecture guide”, Intel Corp., May 1999.
X. Yang, M. Vachharajani, and R. B. Lee, “Fast subword permutation instructions based
on butterfly networks”, Proceedings of SPlE 2000, pp. 80-86, January 2000.
X. Yang and R. B. Lee, “Fast subword permutation instructions using omega and flip
network stages”, Proceedings of the International Conference on Computer Design, pp.
15-22, September 2000.
Z. Shi and R. B. Lee, “Bit permutation instructions for accelerating software
cryptography”, Proceedings of the IEEE International Conference on Application-
Specific Systems, Architectures and Processors, pp. 138-148, July 2000.
J. P. McGregor and R. B. Lee, “Architectural enhancements for fast subword
permutations with repetitions in cryptographic applications”, Proceedings of the
International Conference on Computer Design, pp. 453-461, September 2001.
R. B. Lee, Z. Shi, and X. Yang, “How a processor can permute n bits in O(1) cycles”,
Proceedings of Hot Chips 14 - A Symposium on High Performance Chips, August 2002.
S. Palacharla, N. P. Jouppi, and J. E. Smith, “Complexity-effective superscalar
processors”, Proceedings of the 24th Annual International Symposium on Computer
Architecture, pp. 206-218, 1997.
J. A. Farell and T. C. Fischer, “Issue logic for a 600-mhz out-of-order execution
microprocessor”, IEEE Journal of Solid-State Circuits, Vol. 33, Issue 5, pp. 707-712,
May 1998.
S. Onder and R. Gupta, “Superscalar execution with direct data forwarding”,
Proceedings of the 1998 ACM/IEEE Conference on Parallel Architectures and
Compilation Techniques, pp. 130--135, 1998.
D. S. Henry, B. C. Kuszmaul, G. H. Loh, and R. Sami, “Circuits for wide-window
superscalar processors”, Proceedings of the 27th Annual International Symposium on
Computer Architecture, pp. 236-247, 2000.
R. Canal, A. Gonzalez, “A Low-complexity issue logic”, Proceedings of the 14th
international conference on Supercomputing, pp. 327-335, 2000
J. Stark, M. D. Brown, and Y. N. Patt, “On pipelining dynamic instruction scheduling
logic”, Proceedings of the 33th Annual ACM/IEEE International Symposium on
Microarchitecture, pp. 57-66, 2000.
M. D. Brown, J. Stark, and Y. N. Patt, “Select-free instruction scheduling logic”,
Proceedings of the 34th ACM/IEEE International Symposium on Microarchitecture, pp.
204-213, December 2001.

Dynamic Fetch Engine for Simultaneous Multithreaded
Processors

Tzung-Rei Yang and Jong-Jiann Shieh

Department of Computer Science and Engineering, Tatung University

Taipei, Taiwan

Abstract. While the fetch unit has been identified as one of the major bottle-
necks of Simultaneous Multithreading architecture, several fetch schemes were
proposed by prior works to enhance the fetching efficiency. Among these
schemes, ICOUNT, proposed by Tullsen et al. were considered to be a great
scheme. The ICOUNT scheme works mainly because it favors the thread which
fast moving through the pipeline, thus use the resource effectively. We think it
is better letting the thread which tends to have more long latency instructions to
get the priority at adequate time since long latency instructions are very likely
on program’s critical path. We proposed a dynamic fetch scheme which gives
the long latency bound thread higher priority while the RUU or LSQ is under
low usage. Our motivation is to gain further performance by not only use the
resource effectively but also by the urgency of the instructions.

1 Introduction

Simultaneous Multithreading [2, 4, 6, 10, 12] is a processor design that attempts to
combine both the hardware features of superscalar and multithreaded processors, and
allows instruction-level and thread-level parallelism to be used interchangeably.

Simultaneous multithreaded processor can be roughly divided into two parts. The
fetch engine at the front end of the pipeline is composed of the fetch unit, the instruc-
tion cache, the decode unit, the register renaming unit and the branch predictor. This
part of the processor is responsible for fetching more instructions from multiple
threads as much as it can and feeding them to the execution engine which comprises
the instruction issue logic, the functional units and the memory hierarchy at the later
pipe-stages.

Take a look at the fetch engine, the fetch unit acts a more important role as it used
to be. The instructions fetched for delivering to execution engine are now from multi-
ple threads, thus there are likely more independent instructions capable of being is-
sued each cycle. While issuing becomes more efficient, it means that the fetch unit
now has to make more effort on fetching more instructions quickly to utilize the
shared processor resources. Besides, since the instructions are from different threads

P.-C. Yew and J. Xue (Eds.): ACSAC 2004, LNCS 3189, pp. 489–502, 2004.
© Springer-Verlag Berlin Heidelberg 2004

490 T.-R. Yang and J.-J. Shieh

now, the fetch unit needs to be smart enough to know which thread to fetch from. In
fact, the fetch unit becomes one of the major bottlenecks of the simultaneous multi-
threading architecture.

Prior works have shown that using intelligent fetch heuristics would do great helps
on increasing performance of simultaneous multithreading. It is meant to define a
scheme of designating priorities on threads to be fetched, letting fetch unit know
which thread the next to fetch from. Through the proposed schemes, ICOUNT [10]
proposed by Tullsen et al. has been identified as one of the best schemes of not only
the improvement it gained but also the efficiency of implementation.

ICOUNT scheme gives the highest priority to thread which has the fewest instruc-
tions in the decode stage, the rename stage, and the instruction queues. It works
mainly because the policy favors the threads fast moving through the pipeline. How-
ever, we think that favoring the fast moving through pipeline threads might degrade
the utilization of shared resources. Further, take the ready queue implementation heu-
ristics into consideration, long latency instructions, such as load instructions and
floating point instructions, are very likely on program’s critical path. If they do not
get their chance to be fetched into pipeline early, they may prevent more other in-
structions from the thread to be executed.

In order to further utilize the processor resources and gain more improvements, we
proposed a fetch scheme based on ICOUNT which aggressively attacks the resource
usage by letting more long latency instructions being fetched while the register update
unit (RUU) or load/store queue (LSQ) is under low usage. Otherwise, we let the
thread with fewest instructions in the decode stage, the rename stage, and the instruc-
tion queues has the highest priority as ICOUNT does.

This paper is organized as follows: Section 2 reviews the related works. Section 3
introduces more detailed simultaneous multithreading architecture. Section 4 dis-
cusses the fetch scheme of simultaneous multithreaded processor. Section 5 shows the
simulation methodology and results. Section 6 presents the conclusion.

2 Related Works

Hirata [4] presented the architecture which considered as predecessors of simultane-
ous multithreading with thread slots containing an instruction queue, decode unit and
program counter. Branch instructions were executed inside the decoding unit and data
dependencies were handled using scoreboarding that dispatched ready instructions to
standby stations in this architecture. A large register file organized in a bank per
thread is used to keep thread contexts.

Tullsen et al. [2, 6, 10, 12] proposed the simultaneous multithreading architecture
and firstly implemented it on MIPS R1000 and DEC Alpha platform. They also stud-
ied fetch policies for SMT processors and investigated several fetch policies, such as
ICOUNT, BRCOUNT, IQPOSN, MISSCOUNT which attempt to improve on the
simple round-robin priority policy by using feedback from the processor pipeline. In
particular, the ICOUNT fetch policy has been chosen by many researches as their
base fetch policy. They further identified the impact of long-latency loads in a simul-

Dynamic Fetch Engine for Simultaneous Multithreaded Processors 491

taneous multithreading processor in [11], and find that it is better to free the resources
associated with a stalled thread rather than keep the thread ready to immediately begin
execution upon return of the loaded data.

Luo et al. [7] proposed a fetch scheme that uses both fetch prioritizing and fetch
gating for simultaneous multithreading processors. Fetch prioritizing sets up fetch
priority for each thread based on the number of unresolved low-confidence branches
from the thread to find threads that are most likely in their correct paths, while fetch
gating prevents fetching from a thread once it has a stipulated number of outstanding
low-confidence branches.

Knijnenburg et al. [5] proposed a fetch policy based on a dynamic branch classifi-
cation mechanism that avoids issuing instructions to the pipeline if the instruction
may not belong to the correct execution path. In this way, the resources, such as in-
struction queues, may be freed from useless wrong path instructions.

El-Moursy et al. [3] proposed a front-end policy that reduces the required integer
and floating point issue queue size in simultaneous multithreaded processors. The
structure focus on both speed-enhancing and power-saving of the issue queue, that is,
they try to reduce the occupancy of the instruction issue queue by trying to limit the
unready instructions and data missing instructions in the queue for the same level of
performance.

Madon et al. [8] proposed an implementation of the simultaneous multithreaded
processor called SSMT (SimpleScacar Multithreaded) using SimpleScalar tool set.
The simulator is further enhanced by the Vortex Project [1] at the University of
Maryland.

Marr et al. [9] proposed a technique called Hyper-Threading which implements the
simultaneous multithreading architecture on modern x86 processors.

3 Simultaneous Multithreaded Processor Architecture

Before breaking into further discussions, we briefly describe the simultaneous multi-
threading architecture in this chapter.

3.1 Simultaneous Multithreading Architecture

The simultaneous multithreading architecture proposed by Tullsen et al. [6] can be
roughly divided into two major parts. The fetch engine at the front end of the pipeline
including the fetch unit, the instruction cache, the decode unit, the register renaming
unit and the branch predictor is responsible for filling the later pipeline stages with in-
structions. On each cycle, the fetch unit fetches instructions from multiple threads and
fills the instruction cache with them. After decoding, the register renaming logic re-
moves false register dependences by mapping the architectural registers to physical
renaming registers.

492 T.-R. Yang and J.-J. Shieh

Instructions are then fed to the execution engine which consists of the instruction
issue logic, the functional units, the memory hierarchy, the result forward mechanism,
and the reorder buffer. This part of the processor executes the instructions as quickly
as their inputs are ready. Processor resources are shared by multiple threads dynami-
cally. Instructions stay in either the integer or floating point instruction queues until
their operands become available, and are then issued from these queues to the corre-
sponding functional units.

Conventional superscalar architecture suffers from low instruction level parallelism
due to only fetch from one thread at a cycle. Simultaneous multithreading fetches
from several multiple threads and shares all major resources to the active threads. In
this architecture, instructions from all threads competing for the shared resources each
cycle.

3.2 Simplescalar Multithreaded Architecture

While Tullsen et al. construct simultaneous multithreading architecture we discussed
last section base on DEC Alpha platform, Madon et al. implement the architecture
called SSMT (SimpleScalar Multithreaded) [8] using SimpleScalar tool set which
simulates a superscalar architecture on a x86 machine.

The SSMT has been chosen as our base architecture since the hardware require-
ment of the simulator is quite easy to obtain. The important characteristics of the pre-
vious discussed architecture were maintained, such as fetching from multiple threads
and issue multiple threads per cycle and dynamic resource sharing, etc. However,
there are some differences of the two implementations. For example: the instruction
queues of SSMT were divided in different manner: load and store instruction are fed
into an independent Load/Store Queue (LSQ), while other instructions are delivered
to normal instruction queue. The pipeline stages are different, too.

We will have the simulator discussed more detail in chapter 5.

3.3 Bottlenecks of Simultaneous Multithreading Architecture

Although the simultaneous multithreading architecture dynamically sharing the proc-
essor resources to exploit both the thread-level parallelism came from multiple
threads and instruction-level parallelism from single thread and better utilizing the
resources, there are several bottlenecks identified.

Simultaneous multithreading improves performance in the benefits of dynamic
sharing of resources, but it does appear to have some potential drawbacks due to in-
ter-thread contention. Instructions competed for resources now coming from multiple
threads instead of a single one puts greater stress to the shared structures such as
caches, translation look-aside buffers and branch target buffers than traditional proc-
essors do. For example, sharing the cache with multiple threads, that is, partitioning
the cache into pieces for threads will eventually reducing the cache space used by
each thread, hence decrease the degree of locality and cause cache misses to arise.

Dynamic Fetch Engine for Simultaneous Multithreaded Processors 493

Instruction fetching unit is one of the major performance bottlenecks which also
widely studied. On one hand, the simultaneous multithreading fetch unit benefits from
inter-thread competition for instruction bandwidth by partitioning the bandwidth
among threads and finding more useful instructions to fill the issue slot, which is of-
ten difficult to fill if there is only one thread to be accessed at a time. On the other
hand, dynamic scheduler of simultaneous multithreaded processors which issuing
more instructions (from multiple threads) than traditional processors (from a single
thread) does put more stress on fetch unit. It must now fetch more quickly to keep
pace with the speed that consumed by later pipe-stages.

In order to improve fetch efficiency, the fetch unit must smart enough to determine
which thread to fetch from since there may be several threads running at any given
time. Several fetch schemes have been proposed to improve the simultaneous multi-
threading performance.

Another problem is the impact of the long-latency instructions. This happens when
the memory-bond threads or threads with high concentration of long-latency instruc-
tions fills the instruction scheduling window with instructions that cannot be issued
quickly hence prevent other threads to be fetched and even worse, stall the processor.
This problem can be solved by either increasing the size of instruction queue or good
fetch scheme design.

We are interested in thread priorities while fetching and proposed our fetch scheme
which will discuss further in the later chapter.

4 Dynamic Fetch Scheme

Since instructions from different threads are fed into the same shared instruction
queues in a simultaneous multithreaded processor, how the instruction fetch unit fills
these instruction queues affect the performance of a simultaneous multithreaded
processor seriously.

The fetch unit of a simultaneous multithreaded processor generally works as fol-
lows: fetch unit selects instructions from multiple threads each cycle. It will try to
take instruction from the first thread to fill the fetch bandwidth until it encounters a
branch instruction or the end of a cache line. As long as there is still available fetch
bandwidth, it will then take instructions from next thread, if any, yielding more issued
instructions per cycle and better utilization of the processor’s resources.

A priority based fetch scheme is to determine the priorities among threads to let the
fetch unit know which the next thread to fetch from.

Previous studies show that the fetch unit becomes one of the major bottlenecks of
simultaneous multithreading architecture. We believe a good fetch policy will eventu-
ally improves the performance of simultaneous multithreaded processor, and better
utilize the resource.

ICOUNT, with which highest priority is given to those threads that have the fewest
instructions in the decode stage, the rename stage, and the instruction queues, has
been widely used in researches not only because its efficiency but also the simplicity

494 T.-R. Yang and J.-J. Shieh

on implementation. It is fast because it gives fast moving through pipeline threads the
highest priority.

To our knowledge, there exists some point to argue with. First, long latency in-
structions, such as load instructions and floating point instructions, are very likely on
program’s critical path. Actually, ready instruction queues are often designed to give
these instructions higher priorities to improve the overall processor performance.
Second, an instruction will never get it chance to execute if it is not even being
fetched. That is, if a long latency instruction loses its opportunity to be fetched into
the pipeline, it will potentially block further instructions. This might decrease the
overall performance of execution of multiple threads.

But, if we just give the highest priority to the thread which is likely to have the
most long latency instructions, it will eventually clog the queue and degrade the per-
formance as [11] already specified. Thus we decide to monitor not only the numbers
but also the characteristics of the instructions in the decode stage, the rename stage,
and the instruction queues, that is, to keep track of the types of the instructions in
stages mentioned above as well.

Appending our considerations to ICOUNT, the dynamic priority rules becomes as
the following:

1.

2.

3.

4.

While LSQ under low usage, we let the thread which tends to have more load
higher priority. This is done by monitoring the number of load instructions
coming from each thread in the LSQ. Thread with more load instructions in the
LSQ is considered to have more load instructions by the principle of locality.
If RUU usage is low, we let the thread which tends to have more floating point
instructions higher priority. Similarly, we set a counter to monitor the number
of floating point instructions coming from each thread in the RUU. Thread with
more floating point instructions in the RUU is considered to have more floating
instructions.
A thread that tends to have many branch instructions gets higher priority since
branches pass through machine quicker and its help to reduce branch miss pre-
diction latencies. The concept has already embedded in the ICOUNT.
We maintain ICOUNT rules if none of the above conditions is taken into con-
sideration.

None of the implementation on each of these rules is more complex than ICOUNT
does. As a matter of fact, they monitor the instructions in the same pipe-stages but to
keep track of the instruction type.

We expect the policy above will further utilized the shared resource in simultane-
ous multithreaded processor and achieve higher performance.

5 Simulation and Results

In order to give a more clear view of how the parameters in our proposed policy affect
the overall performance, we construct two schemes step by step according to the rules
of proposed scheme.

Dynamic Fetch Engine for Simultaneous Multithreaded Processors 495

In this chapter, we will first introduce our simulation framework with the simulator
configurations and workloads in the first section. The two schemes we constructed
will be described in the next section along with the ICOUNT, which has been chosen
as our baseline scheme. The simulated results of the two schemes compared to the
baseline scheme will be shown in the last section.

496 T.-R. Yang and J.-J. Shieh

Dynamic Fetch Engine for Simultaneous Multithreaded Processors 497

Fig. 1. The Floating Point First + ICOUNT scheme

5.1 Simulation Framework

Our simulator is derived from the SSMT simulator which originally developed by
Madon [8] and further enhanced by the Vortex Project [1] at the University of Mary-
land. The simulator implements simultaneous multithreaded processor pipeline based
on the out-of-order processor model from SimpleScalar tool set. It duplicated the
SimpleScalar architecture’s physical context according to the number of execution
contexts to execute simultaneously. The characteristics of the simulated processor we
used are given in Table 1. Table 2 shows the configurations of latencies.

We have picked up 11 applications from the SPEC CPU2000 suite to construct our
workloads where 8 of them were integer based from CINT2000 suite and others were
floating point based from CFP2000 suite. The applications selected are listed in Table
3. All the benchmarks were running on a GNU/Linux x86 box using reference data
sets.

The workloads in our simulation are shown in Table 4 ~ 6. Table 4 lists 14 combi-
nations of two benchmarks. Among these combinations, five of them were formed by
two integer based applications; and three of them contained floating point based ap-
plications only; others were composed of an equal mix of integer and floating point
based applications. Table 5 lists seven combinations of four benchmarks. Three of
them were constructed by all integer applications, while others maintained an equal
mix of applications from integer and floating point based. Table 6 shows five combi-
nations of six benchmarks. Again, we had two combinations of all integer based ap-
plications and others were mixed with both kinds of applications.

5.2 Simulated Fetch Schemes

We formed two schemes from the policies proposed in section 4 and have them simu-
lated along with the ICOUNT scheme and a random scheme to give a more clear view

498 T.-R. Yang and J.-J. Shieh

Fig. 2. The Long Latency First + ICOUNT scheme

about the impact of the parameters in the policies we proposed. The four simulated
schemes are described as following:

1. Random Scheme: Random priorities are assigned to multiple threads each cycle.
To avoid instructions from a single thread clog the RUU, a thread will loss its oppor-
tunity if instructions from a single thread fill 70% of the RUU. Intuitively, instruc-
tions fetched may have a fair distribution among different threads in this scheme.

2. ICOUNT Scheme: We will simulate the ICOUNT.x.8 scheme specified in [10]
since we use it as our baseline scheme. It fetches up to 8 instructions from x threads
each cycle, and the highest priority is given to the thread with the least instructions in
the decode stage, the rename stage, and the instruction queues.

3. Floating Point First + ICOUNT Scheme: We then modify the processor and run
the simulation with the following rules: while the RUU usage is lower than 50%,
highest priority is given to thread tends to have more floating point instructions to
execute, otherwise, we assign the priority as ICOUNT formally does. We expect the
scheme to gain performance by further utilizing the RUU and floating functional
units. The scheme is shown in Figure 1.

4. Long Latency First + ICOUNT Scheme: At last, we apply all the rules proposed
in section 4.3 which benefits by not only utilizing the RUU but also the LSQ. It will
first assign the highest priority to the threads which tens to have more loads if the us-
age of LSQ is lower than 60%; else it will check the usage of RUU. If the usage of
RUU is lower than 50%, the highest priority is given to thread which most likely to
have floating point instructions to execute. Otherwise, the ICOUNT rules are applied.
The final scheme is shown in Figure 2.

5.3 Simulation Results

In this section we represent the results of simulation through Figure 3 to 7.
The weighted speedup is defined as:

IPC of proposed scheme / IPC of the base scheme

Dynamic Fetch Engine for Simultaneous Multithreaded Processors 499

Fig. 3. Speedups and instruction dispatch rates of the workloads with two integer based threads

Fig. 4. Speedups and instruction dispatch rates of the workloads with two floating point based
threads

Fig. 5. Speedups and instruction dispatch rates of the workloads with equal mixed threads

500 T.-R. Yang and J.-J. Shieh

Fig. 6. Speedups and instruction dispatch rates of the four threads workloads

Fig. 7. Speedups and instruction dispatch rates of the six threads workloads

Figure 3 gives the speedups of our schemes relative to baseline scheme in two
threads workload. All the workloads listed in this figure were integer based. Floating
Point First + ICOUNT scheme didn’t work in most combinations of thread, since
there are either none or very few floating pointing instructions in these workloads.
However, the Long Latency First + ICOUNT scheme which add the load instructions
into consideration gained the overall performance.

We think the combination mcf-gcc boost the IPC because mcf is a memory- inten-
sive application where as gcc is ILP-intensive application. ICOUNT scheme might
give the higher priority to gcc in most of the execution time thus block the instruc-
tions of the mcf thread from fetching into the pipeline. Our scheme provides the
ICOUNT scheme a reasonable feedback to balance the two threads.

Figure 4 gives the speedups of workloads which are all composed by floating point
based threads. Floating Point First + ICOUNT scheme didn’t work well in most com-
binations of thread. This may be because of lacking floating point functional units.
Increase the floating point units may help.

Dynamic Fetch Engine for Simultaneous Multithreaded Processors 501

The results of workloads which contain an equal mix of integer and floating point
based threads are shown in Figure 5. Both the Floating Point First + ICOUNT scheme
and Long Latency First + ICOUNT scheme gain improvements.

Our scheme works for four threads workload, too. Figure 5.6 gives the speedups of
our schemes relative to baseline scheme in four threads workload. Most of the per-
formances of the four configurations are increased.

Figure 7 gives the speedups of our schemes relative to baseline scheme in six
threads workload.

Through all the figures also gives the improvements of overall resource usage of
RUU/LSQ corresponding to the way workloads formed by representing the dispatch
rate. As we can see, the shared processor resources are further utilized in most cases.

6 Conclusion

While the simultaneous multithreaded processors gain performance by sharing the
processor resources dynamically to exploit thread-level parallelism along with in-
struction-level parallelism, it still has some potential drawbacks.

The fetch unit has been identified as one of the major bottlenecks of this architec-
ture. Several fetch schemes were proposed by prior works to enhance the fetching ef-
ficiency. Among these schemes, ICOUNT, proposed by Tullsen et al. in which prior-
ity is assigned to a thread according to the number of instructions it has in the decode
unit, register renaming unit and instruction queues were considered to be a great
scheme not only the performance but also the efficiency of implementation.

The ICOUNT scheme works mainly because it favors the thread which fast moving
through the pipeline, thus use the resource effectively, but this may degrade the usage
of shared processor resource. We think it is better letting the thread which tends to
have more long latency instructions get the priority at adequate time since long
latency instructions are very likely on program’s critical path.

We proposed a dynamic fetch scheme which gives the long latency bound thread
higher priority while the RUU or LSQ is under low usage. Our motivation is to gain
further performance by not only use the resource effectively but also by the urgency
of the instructions. The proposed scheme aggressively attacks the LSQ and RUU us-
age which does further utilize the shared processor resources and achieve overall per-
formance improvements. Further more, it maintains the characteristic of easy to im-
plement.

Experiments shows that our scheme achieves an average speedup of 6% and 17%
speedup in maximum with two threads workload; average speedup of 5% and 11%
speedup in maximum with four threads workload; average speedup of 4% and 9%
speedup in maximum with six threads workload. The resource usage is further utilized
in most cases, too.

502 T.-R. Yang and J.-J. Shieh

References

[1]G.. Dorai, and D. Yeung. Transparent threads: resource sharing in SMT processors for high
single-thread performance. In 2002 International Conference on Parallel Architectures and
Compilation Techniques (PACT’02), September 22 - 25, 2002

[2]S. Eggers, J. Emer, H. Levy, J. Lo, and R. Stamm, and D. Tullsen. Simultaneous multi-
threading: A platform for next-generation processors. Technical Report TR-97-04-02, Uni-
versity of Washington, Department of Computer Science and Engineering, April 1997.

[3] A. El-Moursy, and D. Albonesi. Front-end policies for improved issue efficiency in SMT
processors. 9th International Symposium on High-Performance Computer Architecture,
pages 31-40, February 2003.

[4]H. Hirata, K. Kimura, S. Nagamine, Y. Mochizuki, A. Nishimura, Y. Nakase, and T. Nishi-
zawa. An elementary processor architecture with simultaneous instruction issuing from mul-
tiple threads. In 19th Annual International Symposium on Computer Architecture, pages
136-145, May 1992.

[5]P.M.W. Knijnenburg, A. Ramirez, F. Latorre, J. Larriba, and M. Valero. Branch classifica-
tion to control instruction fetch in simultaneous multithreaded architectures. In International
Workshop on Innovative Architecture for Future Generation High-Performance Processors
and Systems (IWIA’02), January 10 - 11, 2002

[6] J. Lo, S. Eggers, J. Emer, H. Levy, R. Stamm, and D. Tullsen. Converting thread-level par-
allelism into instruction-Level parallelism via simultaneous multithreading. In ACM Trans-
actions on Computer Systems, pages 322-354, August 1997.

[7]K. Luo, M. Franklin, S. Mukherjee, and A. Sezne. Boosting SMT performance by specula-
tion control. In 15th Proceedings of International Parallel and Distributed Processing
Symposium (IPDPS), 2001.

[8]D. Madon, E. Sanchez, and S. Monnier, A Study of a Simultaneous Multithreaded Archi-
tecture. In Proceedings of EuroPar’99, Toulouse, Lectures Notes in Computer Science,
Volume 1685, Springer-Verlag, pages 716-726, August 31 - September 3 1999.

[9]D. Marr, F. Binns, D. Hill, G.. Hinton, D. Koufaty, J. Miller, and M. Upton.
Hyper-threading technology architecture and microarchitecture. Intel Technology Journal,
pages 4-15, February 2002.

[10] D. Tullsen, S. Eggers, J. Emer, H. Levy, J. Lo, and R. Stamm. Exploiting choice: In-
struction fetch and issue on an implementable simultaneous multithreading processor. In
23rd Annul International Symposium on Computer Architecture, May 1996.

[11] D. Tullsen, and J. Brown. Handling long-latency loads in a simultaneous multithreading
processor. In 34th Annual International Symposium on Microarchitecture, December, 2001

[12] D. Tullsen, S. Eggers, and H. Levy. Simultaneous multithreading: Maximizing on-chip
parallelism. In 22nd Annul International Symposium on Computer Architecture, June 1995.

A Novel Rename Register Architecture and Performance
Analysis

Zhenyu Liu and Jiayue Qi

Institute of Microelectronics of Tsinghua University, Beijing 100084, P. R. China
{liuzhenyu, qijy}@tsinghua.edu.cn

Abstract. In today’s superscalar processors, the register renaming scheme is
widely used to resolve data dependence constraints. The drawback of the
conventional design is that the bit-line load of the storage cell is so heavy that
the access time to these storage elements is more than one cycle, impacting the
IPC adversely. Moreover, in order to implement precise exception handling, the
conventional allocation and recovery strategy is very complex. A novel Rename
Register architecture is presented in this paper to overcome these problems.
This Rename Register has such features: 1) each storage cell has just one write
port, which reduces the bit line load and simplifies the circuit design, so the
access time of this Rename Register could be greatly improved; 2) the
allocation and recovery strategy of this Rename Register is low-complex. This
feature not only simplifies the Rename Register control circuit, but also
improves the exception handling speed.

1 Introduction

Contemporary superscalar microprocessors rely on aggressive execution reordering
mechanisms to achieve high performance. In superscalar architecture, crucial
problems include accommodating results of in-flight instructions and resolving the
data dependence between instructions in program. The register renaming
implementations can be divided into two categories: In the first category, such as
Pentium III and AMD K5 [1] [2], the physical registers are integrated into the reorder
buffer (ROB) to support register renaming; the second scheme, such as SPARC and
DEC 21264 [3][4], applies one dedicated Rename Register. In these designs, because
multiple function units may write their results to the same physical register entry, the
physical register bitcell must have several write ports. In order to bypass the in-flight
instructions’ results, multiple read ports are also needed. For example [3], the storage
cell of SPARC Rename Register with 4 write-ports and 10 read-ports is illustrated in
figure 1. In some aggressive designs, the port number of physical register is even
more [5].

The large number of ports, aside from increasing the device count linearly with the
number of ports, increases the layout area for the bitcell array almost quadratically
with the number of port [6], as additional ports increase each lateral dimension of a
bitcell linearly. What is more, the multiple write port structure makes it impossible to

P.-C. Yew and J. Xue (Eds.): ACSAC 2004, LNCS 3189, pp. 503–514, 2004.
© Springer-Verlag Berlin Heidelberg 2004

504 Z. Liu and J. Qi

Fig. 1. 14-port data storage bit cell

reduce the bitcell load through duplicating the bitcell. Compared with ROB integrated
renaming scheme, Rename Register scheme has fewer ports, but its allocation and
free strategy is more complex. Two auxiliary lists, free-list and recovery-list, must be
applied to maintain the precise state in case of exceptions and mispredictions. In some
processors, function units (FUs) have different word width. For example, in MIPS32
architecture, the results of the arithmetic and logic unit (ALU) and the load and store
unit (LSU) are 32-bit width, otherwise, the result width of the multiplication and
division unit (MDU) is 64-bit. This makes the circuit design even more difficult.

A simplified Rename Register structure is proposed in this paper to overcome these
draw-backs. This renaming scheme exploits the fact that the results produced by every
FU are committed in program order. We divide the Rename Register into several
partitions and each FU has its own private Rename Register partition. So every
partition has just one write port, this character even makes it feasible to reduce the bit
line load through duplicating bitcells.

Each partition is implemented as a circular FIFO queue with head and tail pointers.
One entry is made at the tail of RR partition for each dispatched instruction.
Instruction results are committed from the head of the RR partition to the Architecture
Register File (ARF). This scheme is similar to conventional ROB. The entry width of
each partition is equal to the execution unit result and depth of each partition could be
optimized to save area and improve access time.

This paper is arranged as follows: In section 2, the system microarchitecture and
structure of the Rename Register are presented. Dependency data bypass mechanism
is explained in this section. In section 3, precise exception handling is described in
details; the performance analysis in several conditions, such as level-1 D-Cache miss
and level-2 D-Cache miss, is discussed in section 4 and section 5 provides
conclusions.

2 Microarchitecture

In this section, the overview of the processor architecture is presented at first. Then
the detailed structure and the allocation scheme of this RR are described.

A Novel Rename Register Architecture and Performance Analysis 505

2.1 Overview of the Processor Architecture

In order to analyze the function and performance of the RR, We build a RISC
processor with the following features:

MIPS32Kc instruction set compliance,
Four function units: Jump_Branch_Unit (JBU), Arithmetic_Logic_Unit (ALU),
Multiply_Divide_Unit (MDU) and Load_Store_Unit (LSU),
MDU is non-pipelined,
Fix map mode applied in address mapping,
Out-of-order instruction execution.

The system block diagram is shown in figure 2. The dash line block is the Rename
Register designed in this paper. The function and performance of execution units are
listed in table 1 and the architecture configuration of this processor is shown in
table 2.

Fig. 2. The processor block diagram

Architecture registers are mapped to the Rename Register through Rename Table
(RT). When an instruction enters DE/RENAME stage, it changes its destination
architecture register’s rename record and gets its operands’ rename information from
RT.

The dispatch component (ALU_DP, MDU_DP and LSU_DP) fetches the ready
instruction from the head of the relative instruction queue (ALU_IQ, MDU_IQ and
LSU_IQ). The operands of the dispatched instructions could be fetched from two
places. If the operand is a result of an in-flight instruction and it is valid, this operand
is bypassed from the RR partition. Otherwise, this operand is obtained from ARF. In
the following sub-sections, we will describe how the dispatch components fetch the
correct operands.

Compared with the traditional designs, we divide the Rename Register into three
partitions: ALU Rename Register (ALU_RR), MDU Rename Register (MDU_RR)
and LOAD Rename Register (LOAD_RR). So each partition has just one write port,
which is the merit of this scheme. This architecture resolves the multiple write port
problem of the traditional design. For example, if one bitcell has 12 read ports, the bit
line load could be reduced through duplicating the storage cell (Fig 3). Because the
bitcell area increases quadratically with port number, duplication scheme reduces the
port number of every bitcell, total area of the storage array is still reduced.

506 Z. Liu and J. Qi

Fig. 3. Single write-port storage bit cell with duplicated storage cells

Because instructions dispatched to the same FU are committed in program order,
each partition is implemented as a circular FIFO queue. The commitment component
is in charge of retiring valid instructions from the heads of RR partitions. ROB just
stores the crucial tags of in-flight instructions. The results of committed instructions
could be obtained from the heads of RR partitions. In the following subsections, we
will illustrate the structure of IQ, RR and ROB and explain the principle of how to
implement the dependence data bypass.

A Novel Rename Register Architecture and Performance Analysis 507

2.2 Details of the Components

In order to implement this Rename Register design, other components, such as IQ,
RT, ROB and EXCP, must be devised deliberately. We also show the structure of
these components and explain how they work.

Rename Register Partition. Each RR partition is a circular FIFO. It has two
pointers: head pointer indicates the first entry to be committed and tail pointer
indicates the first empty entry to be allocated. Two flags, “empty” and “full”, are used
to present the status of the RR partition.

Every entry includes two fields, data field and valid field. The word width of the
data field is equal to the result of the execution unit. For ALU and LSU, their RR
partitions are 32-bit width. For MDU, because its result is 64 bits, MDU_RR is
designed to 64-bit width. The depth of each partition can be optimized through usage
statistic.

Once one instruction enters DE/RENAME stage, it is assigned one entry of RR
partitions depending on its execution unit. For example, ALU instructions get entries
from ALU_RR and MDU_RR is dedicated to MDU instructions. If the required
partition is in “full” status, this instruction must be stalled.

The valid field is 1bit width. The valid bit of one allocated entry is set when the
owner instruction writes its in-flight result to this entry. Now this entry’s data can be
bypassed to other consumer instructions in pipeline. So, each RR partition must have
multiple read ports for data forwarding. When one instruction is committed, its RR
partition entry is freed and the valid bit is reset.

The advantages of this scheme include: 1) the word width changeable feature
simplifies circuit complexity; 2) the depth optimization can efficiently reduce the
scale of RR partitions.

Rename Table Structure. In MIPS32Kc architecture, ARF includes Register File, Hi
Register, Lo Register and CP0. Because CP0 is seldom written, scoreboard strategy is
applied to it. So RT has thirty-four entries, where thirty-two entries for ARF (R0-
R31), one for Hi and one for Lo. Each entry includes three fields: (1) a valid bit to
indicate if the data in ARF is valid; (2) a map field (7 bits) to map this logic register to
a physical register in RR, the most significant two bits are used to address the three
partitions (00 indicates ALU_RR; 01 indicates LOAD_RR; 10 indicates MDU_RR);
(3) a tag field (7 bits) to record the ROB tag of the last instruction that modifies this
register.

When one instruction enters DE stage, it gets its operands map information from
RT and modifies the RT entry of its destination register. At the same cycle, this
instruction is assigned one available entry from the tail of ROB and one available
entry from the tail of the RR partition. The ROB tag of this instruction is stored in the
ROB tag field and the physical address of the RR entry is stored in the map field.

An example in figure 4 illustrates the procedure of physical register renaming. The
logical architect registers are denoted with lower case letters and the physical registers
use upper case. In the before side of the figure, the mapping table shows that register
r1maps to physical register LOAD_RR_R1 and its valid flag is reset. So r1 is mapped
to LOAD_RR_R1. Because the other operand r2 is valid, this operand is still mapped

508 Z. Liu and J. Qi

Fig. 4. Example of register renaming. Logical registers are shown in lowercase and physical
registers are in upper case

to r2. During renaming, the ‘add’ instruction’s source register r1 is replaced with
LOAD_RR_R1, the physical register where a value will be placed by a preceding
instruction. The destination register r3 is renamed to the first free physical register
ALU_RR_R9, and this renaming is recorded in the mapping table. Before this ‘add’
instruction is committed, any subsequent instruction that reads the value produced by
this ‘add’ will have its source register mapped to ALU_RR_R9, so that it gets the
correct value.

Instruction Queue Structure. Each FU has its own instruction queue and
instructions are steered to the proper instruction queue depend on their execution
units. In order to reduce power dissipation and circuit complexity, the issue strategy is
circular FIFO queue, which means that the dispatch logic fetches the ready instruction
from the head of each instruction queue and entries are allocated from the tail.

Every IQ entry must store the operand information, which is used during
instruction dispatch stage. The information includes: 1) operation code; 2) ARF
addresses of source operands; 3) RR addresses of source operands; 4) valid bits of
source operands 5) ROB tags of the operands; 6) the destination ARF address; 7) the
destination RR address; 8) the ROB tag of the instruction; 9) ALU and LSU can cause
exception, so ALU_IQ and LSU_IQ should store the instruction PC for exception
handling. The formation of ALU_IQ entry is shown in figure 5.

Fig. 5. ALU_IQ entry formation

A Novel Rename Register Architecture and Performance Analysis 509

IQ is also responsible for updating source dependence of instructions in the IQ
waiting for their source operands to become available. Every time an instruction is
committed, the ROB tag associated with this instruction is broadcast to all instructions
in IQs. Each instruction then compares the tag with the tags of its source operands. If
there is a match, the operand is marked available by setting its valid flag (RS_VALID
or RT_VALID). This means that this source operand is available and should be fetch
from ARF other than from RR partitions. Figure 6 illustrates the dynamic update logic.
TAG1 and TAG2 represent the ROB tags of the two committed instructions.
Reference [7] provides some methods to reduce the energy consumption of issue logic,
such as disabling the wake-up for empty and ready entries and dynamic resizing of IQ.
After applying these approaches, the IQ power consumption could be greatly reduced.

Dependency Data Bypass Mechanism. There exits two status of one source operand.
First, the producer instruction of this source has been committed. In this case, the
valid flag in IQ of this operand must have been set and this data should be fetched
from ARF. Second, the producer instruction is still in-flight. Now, the consumer
should check the RR partition entry allocated for the producer, if this producer has
generated the result, it can be bypassed from RR, otherwise the consumer must wait
until this source is generated. When all source operands of one instruction in the head
entry of one IQ are available, this instruction is ready to be dispatched.

Fig. 6. IQ dynamic update logic

ROB Structure. The entry in the conventional ROB [6] includes at least following
fields: (1) a result field to hold the value generated by the instruction that targets a
register (32bits); (2) a bit to indicate if the result field is valid (1bit); (3) the address of
the instruction (“PC value” 32bit); (4) exception codes (5 bits) and (5) architectural
register id (7 bits, used for updating the architectural register within the ARF at the
time of committing the instruction). If the depth of the ROB is D, the whole scale of
the ROB is (32+1+32+5+7)×D bits, which consumes a non-trivial fraction of the total
chip area and power. In the architecture presented in this paper, ROB scale is greatly
reduced. At first, the in-flight instruction results are stored in the Rename Register;
second, a dedicated exception component is applied to storage the exception message
of the first exception instruction. So ROB has just these fields: (a) the destination
architectural register ID (7 bits); (b) Rename Register partition ID (2 bits); (c) one bit
to indicate the validity of the entry. The ROB scale is reduced to (7+2+1) ×D bits.
The depth of ROB is much deeper than other storage component. For example, in our
design, the depth of ROB is 80. The area reduction of ROB causes the shortage of the

510 Z. Liu and J. Qi

bit line and word line of storage array. This optimization not only speeds up the
access time of ROB but also lowers the power dissipation.

Commitment fetch the valid instruction from the head of ROB and the result of this
instruction is fetched from the head of the RR partition denoted by the RR partition
ID. The destination address is denoted by the destination address field of this ROB
entry, where [0, 31] indicates architecture register file, [32, 63] indicates CP0 register,
[64] indicates HI, [65] indicates LO, [66] indicates HILO and [67] indicates memory.

It is obviously that the ROB and all Rename Register partitions are circular FIFOs.
This feature simplifies the management of RR and ROB, especially when the
exception occurs.

3 Precise Exception Handling Mechanism

In this design, a dedicated exception component is applied to implement precise
exception processing. As described in the following sub sections, this approach
greatly reduces the scale and complexity of ROB. In section 4, the synthesized result
shows that 80 entries ROB is reduced to 9% of total area, which dose not include
caches. Compared with our design, traditional design ROB occupies no trivial area.
For example, HP8000 ROB consumes 20% of whole die area [6].

3.1 Exception Component

In this microarchitecture, a dedicated exception component is applied to store the first
exception instruction according to the program order. In fact, just the information of
first exception is useful, because once this instruction is committed, it cancels the
following instructions in pipeline. Exception component has four fields:1) a valid bit
to indicate if the recorded exception information is valid; 2)a ROB tag (7bits) to store
the ROB tag of the exception instruction; 3)a code field(5bit) to indicate the exception
cause; 4) a PC field(32bits) to store the program counter of the exception instruction.
ALU and LSU can both generate exception, so exception component has two groups
of write ports. Figure 7 summarizes the port requirement.

Fig. 7. Port requirement of exception component

A Novel Rename Register Architecture and Performance Analysis 511

Through comparing the ROB tags of the being written exception instructions and
the stored exception instruction based upon the head and tail pointer of ROB, the
exception component decides which is the first exception instruction and stores its
information, such as PC, ROB tag and exception code.

3.2 Precise Exception Handling

For precise exception processing [10], Rename Register strategy is more complex
than ROB strategy. Conventional Rename Register applies RAM scheme [8] [9] or
CAM scheme [3] [4] [8]. In RAM scheme, the map table is a RAM where each entry
contains the physical register address that is mapped to the logical register. A shift
register, present in every entry, is used for checkpointing old mappings. The width of
individual entries is a function of the number of checkpoints because this number
determines the length of the shift register in each entry. The CAM scheme uses two
lists, free list and recovery list, to implement precise exception. When one exception
instruction enters the commitment, the old mapping is recovered from the recovery
list, this operation always takes more than one clock cycle.

In our design, the recovery operation is similar to ROB: When the valid of the
exception component is set and the ROB tag stored in the exception component is
equal to ROB head pointer, which means one exception instruction is being in
commitment stage. Such operations should be taken to keep the precise status: 1) all
entries in RT are set valid, that means all data stored in ARF are valid; 2) All RR
Partitions and ROB are set empty, which is done by setting all entries invalid and
equalizing the head and tail pointer; 3) The precise information, such as PC and
exception code, are stored in CP0. In this way, the interrupted process could be
resumed after the exception processing. These operations can be completed in one
clock cycle. What is more, there is no auxiliary complex logic to realize this strategy.

4 Experimental Results

The performance of a microarchitecture depends on two aspects:1) instructions issued
per-cycle (IPC); 2)critical path delay [8]. In this paper, we first compare the ordinary
in-order architecture with this design. Next, we use TMSC0.18 standard library to
synthesis this design with Synopsys DC and give the critical path delay and area
overhead. The synthesized result is a useful guide for the circuit design.

We choose some benchmarks to test the performance of our design and compare
them with the in-order architecture in different circumstances. During these
simulations, we also can get the usage statistic of the RR partitions. Five benchmarks
are applied, which include FFT, Taxis, Vector Multiplication, Matrix Multiplication
and Matrix Absolute Subtraction. These algorithms are widely used in digital signal
processing. Table 3 shows the percentage of instructions requiring different function
units in these test vectors.

The IPC of the design applying the novel Rename Register and the conventional
in-order with bypass architecture is compared in three cache statuses: (1) L1 cache
hit; (2) L1 cache miss, L2 cache hit; (3) L1 and L2 cache miss, L3 cache hit. The

512 Z. Liu and J. Qi

effect generated by cache miss is the problem that we are interested, because cache
miss not only reduces the performance but also affects the RR partition usage. The
performance comparison between these two architectures is shown in table 4.

Applying the Rename Register, the performance is improved 10%-20%, especially
when multi-cycle instructions are included, such as MDU instructions or L1-L2 cache
miss occurs. Diagrams of RR partition usage under these test vectors are illustrated in
figure 8.

Fig. 8. Rename Register partition usage diagrams. (a) IU_RR usage diagram (b) MDU_RR
usage diagram (c) LOAD_RR usage diagram

A Novel Rename Register Architecture and Performance Analysis 513

It is obviously that in different system configuration the partition usage status
changes greatly. For example, in FFT benchmark, when L1-cahche hit, the maxim
ALU_RR usage is 5 entries, otherwise, when L1-L2 cache miss and L3-cache hit, the
maxim usage is 32 entries. This feature provides a useful way to optimize the design.
In today’s processor, because IO speed is much lower than internal logic, when cache-
miss occurs, it must take tens of internal clock cycle to fill the missed cache line. The
stall generated in this condition can not be avoided with reasonable RR hardware
overhead. In these designs, the duty of RR is resolve the stall cause by data
dependence and multi-cycle components, such as MDU operation, FPU operation or
L1-L2 cache miss. In many embedded processors, there are no L2 and L3 caches. In
these processors, the scale of the Rename Register can be greatly reduced and IPC
will not be affected.

In order to provide useful data for hardware design, this design is synthesized with
TMSC 0.18um standard cell library to analyze the design area and work clock speed.
Besides cache (I-Cache and D-Cache), the total design area is 267926 gates. The area
percentage of components in this processor is shown in table 5.

In our design, we combine the Architecture Register with Rename Register into one
cluster, which is donated Regset. Function units get their operands from Regset, so
the access time of Regset is very important. After synthesized with TMSC 0.18um
standard cell library, in typical condition, the critical access time of the Rename
Register is 1.61ns.

5 Conclusion

Through the optimized partition scheme, the storage cell in Rename Register
partitions has just one write port. This architecture will bring following merits in the
Rename Register circuit design: 1) Without multiple write ports, the circuit is
simplified and the die area is greatly reduced; 2) the bit line load of the storage cell
can be reduced, so the read access time is improved; 3) the scale of every Rename
Register partition can be optimized flexibly depending on the usage; 4) the control

514 Z. Liu and J. Qi

logic of this Rename Register is as simple as ROB scheme. A synthesized result of
this processor presented in this paper also provides some useful guidance for the
circuit design.

Acknowledgement. Authors would like to thank Intel Corporation for its significant
contribution to this research.

References

1.

2.

3.

4.

5.

6.

7.

8.

9.

Case, B.: Intel Reveals Pentium Implementation Details. Microprocessor Report, Vol. 5,
No. 23 (1993) 9-17
Slater, M.: AMD’s K5 Designed to Outrun Pentium. Microprocessor Report, Vol. 8, No. 4
(1994) 1-7
Asato C.: A 14-Port 3.8ns 116-Word 64b Read-Renaming Register File. IEEE Journal of
Solid-State Circuits, Vol. 30, No. 11 (1995) 1254-1258
Kessler, R.E.: The Alpha 21264 microprocessor. IEEE Journal of Micro, Vol. 19, No.2
(1999) 24-36
Jolly, R.D.: A 9-ns 1.4-Gigabyte/s 17-ported CMOS register file. IEEE Journal of Solid-
State Circuits, Vol. 26, No. 10 (1991) 1407-1412
Kucuk, G., Ponomarev, D., Ghose, K.: Low-Complexity Reorder Buffer Architecture.
Proceedings of the 16th International Conference on Supercomputing (2002) 57-66
Folegnani, D., Gonzalez, A.: Energy-effective issue logic. Proceedings of 28th Annual
International Symposium on Computer Architecture (2001) 230-239
Palacharla, S.: Complexity effective superscalar processor. PhD Thesis, University of
Winsconsin, Madison (1998)
Yeager, K.C.: The MIPS R10000 superscalar microprocessor. IEEE Journal of Micro, Vol.
16, No. 2 (1996) 28-41
Wang, C.-J., Emnett, F.: Implementing precise interruptions in pipelined RISC Processors.
IEEE Journal of Micro, Vol. 13, No. 4 (1993) 36-41

10.

A New Hierarchy Cache Scheme
Using RAM and Pagefile

Rui-fang Liu1, Change-sheng Xie1, Zhi-hu Tan1, and Qing Yang2

1 National Storage System Lab.,
Huazhong University of Science and Technology, Wuhan, Hubei, China

{relyfang, csxie, stan}@hust.edu.cn
2 High Performance Computing Lab.,

University of Rhode Island, Kingston, RI 02881, U.S.A.
qyang@ele.uri.edu

Abstract. One newly designed hierarchical cache scheme is presented in this
article. It is a two-level cache architecture using a RAM of a few megabytes
and a large pagefile. Majority of cached data is in the pagefile that is nonvola-
tile and has better IO performance than that of normal data disks because of dif-
ferent data sizes and different access methods used. The RAM cache collects
small writes first and then transfers them to the pagefile sequentially in large
sizes. When the system is idle, data will be destaged from the pagefile to data
disks. We have implemented the hierarchical cache as a filter driver that can be
loaded onto the current Windows 2000/Windows XP operating system trans-
parently. Benchmark test results show that the cache system can improve IO
performance dramatically for small writes.

1 Introduction

Rapid advances in semiconductor technology have dramatically increased the speed
gap between RAM and disks because of the mechanical nature of magnetic disks [1].
Magnetic disks must rotate the spindle and seek for the right track for every access
[2]. As a result, disks have become the major performance bottleneck of a computer
system. Extensive research has been reported in the literature. Existing studies on
improving disk performance can be classified into two categories: improving the disk
subsystem architecture and improving the software that control and manage the disk
system [3].

RAID (Redundant Array of Independent Disks) is the most important architec-
tural advance in disks in recent two decades [4]. The wide use of RAID in the com-
puter industry has shown that RAID is a cost-effective way to obtain high perform-
ance and high reliability. The most popular RAID configuration is RAID5 in practical
applications. However, RAID5 performance suffers from “small write” penalty be-
cause for every small write, 4 disk operations are required to read old data/parity and
write new data/parity [5]. To mitigate the penalty, Stodolsky et al proposed a very
interesting solution to the small write problem by means of adding a log buffer in
controller’s memory for parity logging [6]. They have shown that the solution can

P.-C. Yew and J. Xue (Eds.): ACSAC 2004, LNCS 3189, pp. 515–526, 2004.

© Springer-Verlag Berlin Heidelberg 2004

516 R.-f. Liu et al.

eliminate performance penalty caused by the RAID architectures for small writes with
minimum overhead. Another interesting study was done by K.H. Yueng and T.S.
Yum who presented a dynamic parity disk array for engineering database systems [7].

Besides high reliability, the primary objective of the RAID architecture is to im-
prove throughput by means of parallelism rather than reducing access latency. In
office/ engineering environment, workloads are usually random and scattered with
moderate average throughput. For such workloads, performance enhancement due to
RAID is limited. In addition, in today’s commercial computing environment, write
traffic has dominated disk traffic and may potentially become a system bottleneck.
There has been a great amount of efforts to improve such write performance in file
systems that control and manage disks. Log-structured file systems (LFS) can provide
efficient writing even for small files [8]. LFS file systems have been implemented in
prevalent operation systems. NTFS improves write performance by using a write-
back caching strategy [9] that writes modifications to the cache and flushes the cache
to disk as a background thread. It also logs every transaction as a log record in a log
file and the file system check is based on the log record. In LINUX, ext3 and reiser
file systems are all supported [10]. Ext3 and reiser are used as default file system for
RedHat and SuSE LINUX distribution respectively. They all provide metadata jour-
naling. With metadata journaling, the file system metadata is going to be rock solid,
and exhaustive fsck is not needed. According to the logged metadata, fsck can finish
in a few seconds without scanning the entire file system.

Caching is the main mechanism for reducing response time [1] and large RAM
caches are generally used to speed up disk accesses. Such caches more effectively
improve read performance than write performance, since write requests must be fre-
quently written into disks to protect them from data loss or damage due to system
failures. NVRAM (Non-Volatile RAM) caches can be used to improve write per-
formance, but large NVRAM caches are prohibitively expensive for many applica-
tions. EMC Symmetrix 8000 has caches of 2GB to 32GB and claims to have 90% to
95% read hit rates for the largest cache size [11]. The large caches exploit spatial and
temporal locality to reduce accesses to the disks, but they increase the cost of system.

This paper presents a design and implementation of an efficient and inexpensive
hierarchical cache for improving disk IO performance on Windows 2000/Windows
XP. The design involves a new hierarchy cache using a RAM and one pagefile. While
our design is based on the DCD (Disk Caching Disk) architecture [12] proposed by
Hu and Yang, we proposed a new way of implementing the cache disk using pagefile
instead of physical disk or logical partition giving rise to greater flexibility and ease
to install and use. Users can install our hierarchical cache at any time without the
need of a new physical disk or doing a disk partition. The new cache structure can
potentially improve disk write performance by 2 orders of magnitudes in the of-
fice/engineering environment. The new hierarchy cache converts multiple small
writes into a large write thereby reducing the total access times. Measured perform-
ance results show that the server that loads the hierarchy cache driver runs signifi-
cantly faster than the traditional system. For small and bursting writes, the hierarchy
cache driver can improve synchronous writes by a factor of 6.5 in terms of response
time seen by users. It can reduce the mail server response time by a factor of 3.6 in

A New Hierarchy Cache Scheme Using RAM and Pagefile 517

heavy workload cases. The filter driver is a WDM (Windows Driver Model) filter
driver. It can be inserted into the disk driver stack transparently without requiring any
changes to the current operation systems.

The paper is organized as follows. The next section presents the overview of the
hierarchy cache and the system architecture, followed by the detailed descriptions of
the design and implementation of the hierarchy cache driver in Section 3. Section 4
discusses the benchmark programs and the measured results. We conclude the paper
in Section 5.

2 Theoretical Background

For disk accesses, there are 4 components that contribute to the total access time:
controller overhead, seek time, rotational latency and data read/write time. The
read/write time is a very small fraction even page-sized transfers often take less than
5% of the total access time. Disks spend most of their time waiting for seek and rota-
tion. Therefore, amount of data accessed for each disk operation affects greatly the
disk performance. The larger the data size, the better the I/O performance will be
since more data are transferred for each time consuming seek and rotation.

Fig. 1. Hierarchy cache architecture

The fundamental idea of the hierarchy cache is to use a pagefile, as an extension
of a small faster RAM buffer on top of data disks where a normal file system exists.
The RAM buffer and the pagefile together form a two-level cache to buffer write
data. Small writes are first collected in the small RAM buffer. When the RAM buffer
becomes full or the destaging is triggered, the hierarchy cache writes data in the RAM
buffer, in multiple large and sequential data transfer, into the pagefile. These large
writes finish quickly since they require only one seek instead of tens of seeks. As a
result, the RAM buffer is very quickly made available again to buffer new incoming
IO request packets. The hierarchy cache exploits the performance differences in dif-

518 R.-f. Liu et al.

ferent ways of disk accesses. The two-level hierarchy cache appears to the host as a
large virtual NVRAM cache with a size close to the size of the pagefile. When data
disks are idle or less busy, the hierarchy cache will destage from the pagefile to data
disks. The destaging overhead is quite low because most data in the pagefile are
short-lived and are quickly overwritten therefore requiring no destaging at all. The
pagefile is much larger than the RAM cache. So the hierarchy cache can filter many
IO requests, and take full advantage of spatial and temporal locality of disk accesses.
The pagefile is non-volatile and hence highly reliable, too.

The hierarchical cache presented here extends the concept of DCD by using a
pagefile as the cache disk as opposed to using a physical or logical partition as the
cache disk. The advantage of using the page file instead of a partition is its flexibility
and ease of use. Users can install the hierarchical cache any time without using a new
physical disk or doing disk partitions that may destroy the current data in the disks. A
pagefile has been employed to implement virtual memories in the past. Windows
utilizes a pagefile to expand the physical memory and LINUX uses it for a swap par-
tition where paging and swapping take place. In our implementation, we use the page-
file to expand the RAM cache. When we allocate space for the pagefile, we make sure
that its space is physically continuous. After we intercept an IRP (IO request packet)
from a user, we can keep the data in the pagefile, and we can exploit the speed differ-
ence between large sequential access and small random access of disks. By placing
the pagefile in the current data partition, we do not need change the partition layout of
the current system. The hierarchy cache filter driver will automatically manage the
two levels of the hierarchy cache represented by the pagefile and RAM cache.

3 Design and Implementation

This section describes the key data structures and algorithms used to implement our
hierarchical cache driver. As described above, we use a pagefile as the equivalent of
cache disk in DCD to avoid modifying the current system partition layout. The filter
driver can be inserted into the disk driver stack. It is a high level filter driver that
typically provides added-value features for disks. The filter driver is a kernel-mode
WDM driver and is source-code compatible with all Microsoft Windows operating
systems. The filter driver can filter all the IRP targeted to data disks and reroute the
IRP to the RAM cache or the pagefile according to the cache algorithm. There are
many layered device drivers to finish a read/write operation. These drivers form a
driver stack, and the IO manager of Windows will pass the IRP in the stacked drivers.
With the help of the stack driver architecture, we can easily intercept the IRP. In
order to develop the hierarchy cache driver, we use the Win2000 DDK (Device
Driver Kit) and Numega Driver Suite. Numega Driver Suite is an object-oriented
development tool for windows device drivers which can simplify the development of
filter drivers so that the developers can concentrate on the key functionalities.

A New Hierarchy Cache Scheme Using RAM and Pagefile 519

3.1 KHcDataDevice

KHcDataDevice is the son class of KFilterdevice that represents the virtual device
class of the filter driver. In the driver initialization, we create an instance of the class
and specify the target device when we initialize the instance. After that, we insert our
driver into the target device driver stack. Our filter driver handles all the target de-
vice’s standard dispatch routines, such as read, write, close, and create. After updat-
ing the new driver stack for the target device, the IRP is dispatched through the hier-
archical cache driver by IO manager automatically. The main definitions of the class
are as follows:

We can use m_pPageFile to access the pagefile and m_RamSector to access the
RAM. The member m_WriteInLastPos and m_ReadInLastPos record the read and
write times in last statistical interval. With the help of them, we can judge if the sys-
tem is idle or less busy. We can call the member function R2pfDestaging to destage
data from the RAM cache to the pagefile. In the idle time, we should execute
Pf2dDestaging to transfer data from the pagefile to data disks. m_HistorySecotro is
used to record all the sectors in the pagefile. We can search all the sectors in the page-
file through the list, when we handle the read/write operations.

3.2 RAM Image

The RAM image plays the role of the RAM cache in our hierarchical cache. It is a set
of contiguous memory locations reserved and allocated from the system nonpaged
pool by using ExAllocatePool upon initialization of the hierarchical cache driver.
m_RamSector is the hash table for the RAM. The disk is block device that is accessed
in unit of sectors (512 bytes). Therefore, we divide the RAM image into sectors with
the size of 512 bytes. After the filter driver intercepts a small write, it will allocate

520 R.-f. Liu et al.

proper sectors according to the request size. Then every sector should be inserted into
the proper hash table according to the sector offset. The hash table length is dynamic
and there is no need to worry about collisions and replacements. We keep the hash
table in sorted order when we insert a node into the list. In the mean time, we add two
pointers to the other lists for every sector node to keep the continuity of sectors. Then
every node is in the “+” lists. We introduce dynamic hash lists and serial sequential
list, so we can position the first sector of the IO request packet with the help of the
dynamic hash lists quickly, and we can get the continuous sectors according to the
serial sequential list.

3.3 PageFile

In our implementation, the pagefile plays the role of cache disk in the DCD architec-
ture [2] [3]. One pagefile can serve multiple data disks. We record the index informa-
tion in the superblock, and we divide the pagefile into zones. Every zone is responsi-
ble for a partition. When data are destaged from the RAM cache to the pagefile, we
write the pagefile in large writes (one segment: 64K). So we organize the pagefile
using segments. Every segment has two parts. The first 1K keeps the index of the
metadata of 126 sectors, and the other keeps the metadata contents. The detailed or-
ganization of the pagefile is shown in Figure 2.

Fig. 2. Organization of pagefile

3.4 Basic Operations

3.4.1 Write Operations
When the driver filters a write request, it will retrieve the request size first. If it’s a
large write, the filter will pass through the request to the target disk and register a
completion routine. When the request comes back, the completion routine will be
executed. In the routine, we scan the RAM cache for every sector first, and we scan
the pagefile later. If we find one sector, we must mark the sector stale. If the request
is a small write, the filter driver will judge if it has enough spare sectors in the RAM
cache. When the RAM cache is not large enough to hold the small write, it will start
the destaging process to move data from RAM cache to the pagefile in large write.
For every sector in the small write, we must record it in the hash tables. If the sector
is already in the RAM cache, we need only update the metadata. In the process of

A New Hierarchy Cache Scheme Using RAM and Pagefile 521

insertion, we must keep the table in sorted order. After inserting the sector in the hash
tables, the history list is also searched for the sector and marked stale if found.

3.4.2
When we intercept a read operation, the requested data may reside in one of multiple
of three different places: the RAM cache, the pagefile and the data disk. For every
sector in the read request packet, we search it in the RAM cache first. If we cannot
find, we continue to search it in the pagefile according to the history list. If failed in
the pagefile, the data will be read from the data disk. If the requested data is in the
pagefile, we must read the entire segment where the sector is located, copy the needed
sector from the segment, and update the hash tables to indicate that the segment is
now in the RAM cache. The segment will stay in the RAM for future accesses.

3.4.3 Destage

Read Operations

The hierarchical cache consists of a RAM cache and the pagefile of top of data disks.
There are two different destaging operations: destaging data from the RAM cache to
the pagefile and destaging data from the pagefile to the data disk. The RAM cache is
a few megabytes in size, and it is used to collect random small writes. When the RAM
cache is full, we replace the sectors according to the LRU algorithm. The sectors to be
destaged are combined to form a large chunk of data to be written into the page file
sequentially. At the same time, we record every sector that is destaged in the history
list. If the system is idle, the destaging thread will start after every 50 seconds to up-
date the data in the RAM cache. The process is same as the forced destaging process.
Destaging from the pagefile to data disks will happen in the system thread context.
The thread priority is lower. When the system is idle and the filter driver finds the
pagefile usage is higher than a predefined high water mark, the thread will start the
destaging process. The process will read the segments from the pagefile according to
the FIFO algorithm in large writes. In the previous destaging, we have combined the
continuous sectors. We will build new IRP for every continuous block in the seg-
ments. And then we dispatch the IRP to the lower target device. When the pagefile
usage is lower than the specified low water mark, the thread will stop destaging. We
must update the history list whenever we do the destaging.

4 Performance Evaluation

4.1 Experimental Setup

To evaluate the performance of the hierarchical cache, and to give a realistic per-
formance evaluation and comparison, we use different real world benchmarks to
evaluate the effects of the hierarchical cache on an IO subsystem. We measure the
performance results on a same server with or without the hierarchical cache filter
driver for comparison purpose. All the tests are performed on a Tiger 7200 PC server
with Pentium4 1.4G processor running Windows 2000 advanced server with service

522 R.-f. Liu et al.

pack 1. The server is configured with 256M-SDRAM and high-performance disk
with capacity of 60G. The disk is divided into three partitions. The first is the system
partition, and we deploy the Exchange 2000 mail server in the second partition. And
we place the data and the pagefile in the third partition. Two megabytes of system
RAM is allocated to play the role of the RAM cache. Because of the limitation of the
operating system, the maximum IO request packet size is 64K bytes, and the mini-
mum IRP size is 512 bytes. In the following tests, the block size varies between 512
bytes and 64K bytes.

4.2 Benchmarks and Results

4.2.1 NTIOGEN
NTIOGEN is ported from a popular benchmark of UNIX. The input parameters of
NTIOGEN are read/write percentage, IO block size, number of processes and ran-
dom/sequential percentage. The output parameters are average response time, IOs per
second, throughput. In the tests, we vary the block size while keeping other input
parameters unchanged to observe the relationship between the average response time
and the block size.

Fig. 3. Throughput comparison with different block size

NTIOGEN test results are shown in Figure 3 where the through is plotted against
block size. The workload in the tests is close to the realistic workload of a working
server. When there is a request, it is usually accompanied by a cluster of requests in a
short time frame. In addition, there is usually a relatively long period of idle time
between two consecutive request bursts. In the tests, the read/write ratio is 0/100, and
the random/sequential ratio is 50/50. We can see from Fig.3 that the speed-up varies
from 1 to 6 depending on the block size. The throughput increases as we use larger
block sizes. But when the block size is 64K bytes, the performance is almost identi-
cal. This is because the hierarchy cache driver bypasses all IO request packets that are
greater than 64K.

A New Hierarchy Cache Scheme Using RAM and Pagefile 523

4.2.2 ZDESTT
ZDESTT is Ziff Davis email server test tool. It is based on the client/server architec-
ture. The test platform includes the mail server, the controller and five clients. They
are connected through 100Mbps Ethernet switch. During the tests, the clients send
POP, SMTP or IMAP requests to the mail server and record the response time. All the
results are reported to the controller that analyzes the results.

Fig. 4. Departmental POP Test Result

Fig. 5. Enterprise POP Test Result

We use the standard test suites: departmental POP and enterprise POP. The latter is
a heavier workload. But the characteristic of both test suites is same. The test clients
will spend 70% of time on logging on the email server, and retrieving the emails from
randomly selected accounts using POP3 protocol. In this phase, all the requests are
read operations. And the test clients will spend 30% of time on sending emails to the
test accounts using SMTP protocol. In this phase, almost all requests are write re-
quests. In these tests, the IO requests are bursty.

We can see from Fig. 4 and Fig. 5 that the hierarchical cache driver can improve
the email server performance dramatically. On one hand, in the test using Departmen-
tal POP suite, the response time is reduced by approximately 30%. On the other hand,

524 R.-f. Liu et al.

the prototype hierarchical cache driver achieves a performance improvement as high
as a factor of 3.6 over the traditional device driver in the test using the enterprise POP
suite. In the latter test suite, the workload is heavier, and the small writes is more
intensive. The experimental results show that the more intensive the small write re-
quests are, the more effective the hierarchical cache driver is.

4.2.3 IOMETER
IOMETER is an IO performance analysis tool that was first developed and main-
tained by the enterprise server group of Intel Corporation. IOMETER is both a work-
load generator and a performance measurement tool. IOMETER simulates workloads
to stress the IO subsystem in specific ways. Under a simulated workload, IOMETER
gathers data such as throughput, latency, and CPU utilization. By running the same
workload on multiple system configurations, users can determine the optimum con-
figuration. IOMETER can generate and measure loads on single or multiple (net-
worked) systems.

Fig. 6. IOMETER Test Results Comparison

In the tests, IOMETER worker of dynamo generates sustained IO requests to
evaluate the sustained IO performance. The results reflect the extreme capability of
the IO subsystem. The workload settings are 100% random, 100% write, and one
hour of test duration. We performed tests with different block size on the two con-
figurations: one with the hierarchical cache filter driver and the other without. Fig. 6
shows slight performance improvement for the hierarchy cache. It improves the sus-
tained IO performance by about 15% when the block size is 4K. Compared with the
previous tests, the performance gain is limited. This is because that IOMETER sends
IO requests continuously in the tests so that the system keeps busy all the time. There
is no idle time for the idle destaging but forced to destage. The performance im-
provement results mainly from the reduced rotation and seeks time. The performance
is identical when the block size is 64K, because the filter driver will not buffer the IO
request that is equal to or larger than 64K.

A New Hierarchy Cache Scheme Using RAM and Pagefile 525

5 Conclusion

We have presented in this paper a design, implementation, and performance meas-
urements of a new disk cache architecture. A pagefile and a small RAM cache are
organized into a two-level hierarchical cache for disk accesses. Small writes are first
collected in the RAM cache. When the system is idle, the data will be destaged from
the RAM cache to the pagefile in large writes. The hierarchical cache exploits the
performance difference between difference data sizes and different ways of accessing
disks. One specific implementation has been carried out as a filter driver on the Win-
dows 2000/Windows XP. Experimental results show that the hierarchical cache can
improve the small write performance by a factor up to 6 for traffic intensive small
write requests. It can increase the mail server performance dramatically when there
are intensive random small writes. Moreover, the hierarchical cache driver is com-
pletely transparent to the file system and physical device. It does not require any
modifications to the original OS nor the existing partition layout. It therefore can be
inserted into the existing disk driver stack to obtain immediate performance gain.

Acknowledgements. The authors would like to thank the anonymous referees for
their valuable comments on the original manuscript. Their detailed suggestions im-
prove the quality of this paper greatly. This research is mainly sponsored by National
Natural Science Foundation of China (No.60273073 and No. 60173043). Dr. Qing
Yang’s research is supported in part by National Science Foundation of USA under
grants CCR-0073377 and CCR-0312613 and Elake Data Storage System Corporation.

References

1.

2.

3.

4.

5.

6.

7.

8.

Richard Stacpoole and Tariq Jamil, Cache memories – Bridging the Performance Gap,
IEEE POTENTIALS, April/May 2000.
Y. Hu and Q. Yang, A New Hierarchical Disk Architecture, IEEE Micro, Vol. 18, No. 6,
November/December 1998.
Y. Hu and Q. Yang, DCD-Disk Caching Disk: A New Approach for Boosting I/O Per-
formance, 23rd Annual International Symposium on Computer Architecture, Philadelphia
PA May, 1996, pp. 169-178
P. Chen, E. Lee, G. Gibson, R. Katz, and D. Patterson, RAID: High-Performance, Reliable
Secondary Storage, ACM Computing Surveys 26(2), 1994, pp. 145-185
K. Treiber and J. Menon, Simulation Study of Cached RAID5 Designs, Proceedings of
International Symposium on High Performance Computer Architectures, Jan. 1995, pp.
186-197
D. Stodolsky, M. Holland, W. V. Courtright II, and G. A. Gibson, Parity Logging Disk
Arrays, ACM Transaction of Computer Systems, pp. 206-235, Aug. 1994.
K.H. Yueng and T.S. Yum, Dynamic Parity Logging Disk Arrays for Engineering Data-
base, IEE Proc.-Comput. Digit. Tech., Vol. 144, No. 5, September 1997
J. Ousterhout and F. Douglas, Beating the I/O Bottleneck: A Case for Log-structured File
Systems, Technical Report, Computer Science Division, Electrical Engineering and Com-
puter Sciences, University of California at Berkeley, Oct. 1988.

526 R.-f. Liu et al.

9.

10.

11.

12.

13.

Rajeev Nagar, Windows NT File System Internals: a Developer’s Guide, ISBN: 1-56592-
249-2, O’Reilly & Associates, 1997.
Daniel Robbins, Advanced File System Implementor’s Guide, URL: http://www-
106.ibm.com/ developerworks/linux/library/l-fs7, April 2001.
John L. Hennessy and David A. Patterson, Computer Architecture-A Quantitative Ap-
proach (Third Edition), ISBN: 1-55860-596-7, Elsevier Science Pte Ltd., 2003
T. Nightingale, Y. Hu and Q. Yang, The Design and Implementation of a DCD Device
Driver for Unix, 1999 USENIX Technical Conference, Monterey, CA, June, 1999
Q. Yang and Y. Hu, Disk Caching Disk: A New Device for High Performance I/O System,
U.S. Patent and Trademark Office, No. 5,754,888, Approved September 24th, 1997.

An Object-Oriented Data Storage System on
Network-Attached Object Devices*

Youhui Zhang and Weimin Zheng

Institute of High Performance Computing Technology
Dept. of Computer Science, Tsinghua Univ.

100084, Beijing, P.R.C
zyh02@mail.tsinghua.edu.cn

Abstract. This paper presents a cluster-based storage platform--OStorage that
employs Network-Attached Object Storage Device (NAOSD) as the low-level
storage device. Owing to some features of NAOSD, including object-like ac-
cess interface, simple computing abilities and self-management, OStorage sup-
ports structured-data directly to eliminate the data-model-mismatch problem of
conventional storage systems. In addition, the OStorage prototype implements
distributed data access, distributed transaction, some query functions and can
simplify the building of scalable Internet services. The performance analysis
shows that its access time increases with the system scale logarithmically,
which is better than the conventional systems. And experiments show that its
scalability is fairly satisfying.

1 Introduction

Today’s Internet services demand the storage platform to posses many features in-
cluding the ability to scale to large, high availability in the face of partial failure and
operational manageability. It is challenging for a storage platform to achieve all of
these properties. Many projects propose using software platforms on clusters to ad-
dress these challenges.

Lore[l] is a database management system (DBMS) for XML from Stanford. The
project focuses on defining a declarative query language for XML and developing
new technology for interactive searches over XML data. Porcupine [2] provides one
transactional record store, which combines the simplicity and manage -ability of the
file system interface with a select few features for managing record-oriented data.
Ninja [3] project implements DDS (distributed data structure) that presents a conven-
tional single- site data structure interface to service authors, but partitions and repli-
cates data across a cluster. Now a distributed hash table DDS is implemented.

However they use traditional block-based disks as low-level storage devices to
construct new storage systems, which will cause a data-model-mismatch problem
between applications and the storage systems. Because applications access storage
through server bottlenecks[4], that a single “server” computer copies and converts
data between the storage (peripheral) network and the client (local area) network.

Supported by High Technology and Development Program of China (No. 2002AA1Z2103).

P.-C. Yew and J. Xue (Eds.): ACSAC 2004, LNCS 3189, pp. 527–538, 2004.
© Springer-Verlag Berlin Heidelberg 2004

*

528 Y. Zhang and W. Zheng

As processor performance increases and memory cost decreases, system intelli-
gence continues to move away from the CPU and into peripherals. Storage system de-
signers use this trend toward excess computing power to perform more complex
processing and optimizations inside storage devices. Some research projects, includ-
ing NASD[5], Attribute based Storage[6], Active Disks[7], bring forward the idea of
Object-based Storage Device (OSD), which means that some overloads owned by tra-
ditional file servers are offloaded to peripheral storage devices.

Enlightened by this idea, we design a new network-attached object-based storage
device (NAOSD). Compared with the previous projects, NAOSD supports struc-
tured-data storage directly to eliminate the data-model-mismatch problem. It can
move portions of a server’s processing to a storage device to improve the system
scalability.

Then the usage of the prototype of NAOSD in cluster storage environments,
OStorage, is proposed. It owns the following features,

OStorage is an object-oriented data management layer as a cluster infrastructure
software with transaction support, specifically for the construction of Internet ser-
vices.
Peer-Client and modular design are adapted. Many storage properties, including
the storage capacity, network bandwidth and throughput, are highly scalable.
OStorage supports transparent persistence in the Java programming language. The
client interface is compatible with Java Data Objects API [8], an emerging stan-
dard for transparent data access in Java.
Data & Meta-data uniform storage and query location mechanisms are introduced
to improve the system scalability. The performance is analyzed in Part 3.4.
Now, OStorage has been achieved based on NAOSD prototypes. The usage shows

that its scalability of throughput is nearly linear. The rest of this paper is organized as
follows: Section 2 describes the features of NAOSD and system architecture of OS-
torage. The detailed design and implementation are introduced in section 3 that also
presents the performance analyses. Section 4 gives the performance data and the last
part summarizes this paper.

2 Cluster-Based Object Storage

2.1 Features of NAOSD

NAOSD owns the following basic features,
Object-like access interface: Object data, the variable-length data unit and its dif-
ferent attributes, is supported by NASOD directly. Moreover, NAOSD has the
ability to parse the object data to get one or more field values of its structure.
Simple Computing abilities: Query and sorting are both supported by NAOSD,
which act as a filter to data as it moves from the disk to upper-level services. This
reduces the amount of data on the interconnect and offloads the host processor. The
simplest example of this is a set select operation.
Data and meta-data uniform storage: Object field values can also been used to de-
fine different attributes of the object, which contain the access mode, its priority of
I/O and so on. That is, meta-data is a part of the object data.

An Object-Oriented Data Storage System on Network-Attached Object Devices 529

Fig. 1. IO-dense data access model

2.2 Potential Benefits of NAOSD

Three advantages are introduced when using NAOSD as the storage device:
Direct storage-device-to-service transfers are supported to eliminate the traditional
server bottleneck.
Some server functions are ported to the storage devices to leverage the parallelism
available in systems with large numbers of disks.
The amount of data on the interconnection is reduced. It is specially useful for
those data-intensive Internet services.
In the following lO-dense data access model, the performance of a server system

with a number of “dumb” block-level devices is compared with the same system with
the traditional devices replaced by NAOSD to determine the potential benefits.

As showed in Figure 1 the IO-dense service is running on the server. The service
receives requests, processes the data from storage devices and returns the last result to
requesters. Some parameters in Figure 2 are introduced to describe the whole model.
We assume that d is so small that data can been processed distributedly by devices.

Fig. 2. Parameters of distributed data access model for IO-dense applications

530 Y. Zhang and W. Zheng

and T are illustrated as follows.

That is, run time is determined by the minimum among device read rate, device in-
terconnection rate and the CPU speed of the device if the data process is parallelized
ideally.

Then the system throughput can been computed.

Therefore, some conclusions can been drew based on different assumptions.

1) Device read rate (R*I) is the minimum.

It means that the performance benefit will be introduced if the amount of process-
ing capacities of all NASODs exceeds that of the server.

2) CPU speed of the device (P/d) is the minimum.

The conclusion is as same as 1).

3) Data transfer rate (N) is the minimum.

We know,

So, it is still determined by the comparison between the amount of processing ca-
pacities of all NASODs and that of the server. Now many large scale storage systems,
including Compaq TPC-C, Microsoft Terra- Server, Digital TPC-C and Digital
TPC-D 300, satisfy this condition.

An Object-Oriented Data Storage System on Network-Attached Object Devices 531

2.3 Overview of OStorage

OStorage system is defined as a self-contained object-oriented data management layer
running on a server cluster to handle storage requests of Internet services running on
the same cluster. The clients in Figure 3 connect to service instances through Internet
by Internet application protocols such as HTTP, IMAP, etc.

Fig. 3. OStorage overview

Services are multiple instances of the same Internet service. They connect to OS-
torage components known as Peer Servers to access data. They are inherently identi-
cal to each other from users’ view, each presenting a single image of the whole system
and they communicate with each other in a peer-to-peer style.

There are also other components (the lower blocks, named Brick), which the ser-
vices do not connect to directly. Brick is the instance of NAOSD that provides storage
and query interfaces for structured-data employing the power of embedded proces-
sors.

Within the service process, a library named TODSLib maps user API calls to mes-
sages sent to Peer Servers and parse results from them. Currently a Java version of
TODSLib is implemented. As mentioned before, it implements transparent persis-
tence and is compliant with the Java Data Objects API.

The Meta-Server maintains system configuration and meta-data. It is replicated and
thus assumed fault-tolerant, providing a safe place for critical global information.
System configuration includes location (IP, port) and parameters of all components
such as Peer Servers and Bricks. This ensures centralized management of the whole
system.

532 Y. Zhang and W. Zheng

Fig. 4. Object references

3 Design and Implementation

3.1 Data Model

Objects managed by OStorage are put into name spaces known as Object Spaces.
Each object space has its own set of class hierarchy and objects. An Object Space is
analogous to a database or a table space in RDBMS, or a directory in file systems.
The list of all Object Spaces, class meta-data and permission rules of each Object
Space are all maintained by the Meta-Server. Data of an Object Space are stored on a
subset of all the Bricks, whose list is managed by the Meta-Server. Object (or persis-
tent object) is the granularity of most operations in OStorage. Every persistent object
is associated with a OID. An object has a number of value fields and can reference
other objects. Figure 4 illustrates an example of object references. A and B are active
persistent objects, with A referring to an inactive one, C. D and E are transient objects
not currently managed by TODSLib. However, they will become persistent by a make
persistent call to TODSLib.

When a transient object is made persistent, all objects reachable from it are also
made persistent (persistence by reachability). Persistent objects are long-lived and in-
dependent of life-cycles of the service instances or TODS runtime. Any modification
to the object will be written to the store implicitly at some time (e.g., when transaction
is committed). Persistent objects are loaded into memory automatically when needed.

Fig. 5. 128-bit OID format

An Object-Oriented Data Storage System on Network-Attached Object Devices 533

3.2 Object Identification

An Object ID is a 128bit integer, whose structure is shown in figure 5. Object Space
ID (OSID) indicates which Object Space this object belongs to. Class ID (CLID) ref-
erences to class definition in the Meta-Server, it is assigned when first object of its
class is inserted into the system. Node ID (NID) denotes the location of the object,
while Serial Number is the local ID of the object.

One thing to notice is that the OID is a physical ID, in the sense that it indicates on
which node the object is located. The system can directly find the object just by the
OID. This contrasts to the alternative approach of using a logical object ID or “path”
and thus needs to look up the real location of objects before accessing them, which
introduces more overhead and the problem of effectively and coherently caching the
lookups. Logical ID or text path are often introduced for user friendliness and location
transparency. The former is not a problem in OStorage because TODSLib completely
hides from users the details of fetching and storing persistence objects. OIDs are not
even seen by them. The latter reason is most justified for wide-area distributed sys-
tems, where nodes and network failures and changes are common. As OStorage is de-
signed for well managed cluster environment, it is found that an OID with more in-
formation greatly simplifies system design and improves performance.

3.3 Access Interface

Moreover OStorage supports non-transactional and transactional modes of access. It
is determined by whether data accesses are enclosed in a transaction.

For non-transactional accesses, data caching on Peer Servers are enabled, which
results in much better performance. However there is no guarantee about data consis-
tency under concurrent access. Different Peer Servers may report different value for
the same object at some moment due to asynchronous cache invalidation. Consistency
level of non-transactional access is PRAM Consistency [9], using parallel computing
terminology, i.e., writes made by each specific client are seen by others in the original
order, but the global order is not guaranteed.

Both Peer Servers and Bricks are designed to be transactional. Distributed transac-
tions on multiple Bricks are managed using the two-phase commit protocol. In current
prototype NAOSD is simulated on Berkeley DB[10], which is a embedded database
with commit/abort functions. When distributed transaction must be done, the corre-
sponding Peer Server acts as the transaction manager, and participating Bricks act as
resource managers. All status information of ongoing distributed transactions is stored
persistently in a simple database managed by the Peer Server, in order to make both
Peer Server and Brick failures recoverable.

Bricks provide upper-level services with the following interfaces:

BeginTransaction, prepareTransaction, commitTransaction,
rollbackTransaction

In addition to the location mechanism through OID, distributed query is achieved to
fetch objects from Bricks. It looks like a cursor operation in DBMS, which is man-
aged by one Peer Server to command Bricks to filter objects according to some field
condition. Then, services can browse all objects returned.

534 Y. Zhang and W. Zheng

One important feature of OStorage is that some common functions of services are
implemented in the storage layer, and NAOSD plays an important hole to simplify
this achievement.

3.4 Performance Model

Data & meta-data uniform storage and query location mechanisms are introduced in
previous sections and we give a performance model for them to argue OStorage owns
higher scalability as compared with conventional systems.

Our model contains N Peer Servers and n Bricks connected with a high perform-
ance network. The CPU speed ratio of Peer Server and Brick is m (m>1) and a fixed
amount of objects is stored in every Brick. In addition, the meta-data used to locate
objects can be stored in two ways. First, they are stored as the fields of data on Bricks
in uniform storage mode. Second, they are separated from the data and placed distrib-
utedly on every Peer Server in the conventional mode

Then, performance models of these two modes are computed respectively. At first
the data location flow of the conventional mode is described in Fig 6 and the flow of
uniform storage in Fig 7.

Some parameters are introduced to describe models.
time for Brick to browse the local meta-data, which is in direct ratio to the

number of objects and in inverse ratio to the CPU speed. Then time used by Peer

Server to query the local meta-data is

time used to access the local data and meta-data.

the point-to-point communication speed between nodes.

the broadcast speed among Peer Servers.

the broadcast speed between one Peer Server and all Bricks.

Time to locate one object in the conventional mode, can be presented as
the following equation.

The first term is the time spent by the Peer Server on looking for the local
meta-data. Its hit probability is 1/N, so the next term is the time to access the hit
meta-data. The third is the overhead of transmitting the location request to other Peer
Servers if the meta-data is missed locally. The last is the time spent by the target
Brick on reception and accessing the located object.

An Object-Oriented Data Storage System on Network-Attached Object Devices 535

Fig. 6. The data location flow of the conventional mode

Fig. 7. The data location flow of uniform storage and query location mechanisms

In the uniform storage mode time to locate one object, is computed by the

next equation.

The first term is the overhead for one Brick to broadcast the location request to all
others. The next two correspond to time consumed by every Brick to look for and ac-
cess the local data respectively.

536 Y. Zhang and W. Zheng

To simplify the analysis, is assumed a constant and binomial tree algorithm
[11] is adopted for the broadcast communication. So broadcast overhead can be de-
scribed as following equations.

Some other assumptions are also introduced as follows.

Based on these hypotheses, and can be computed.

So, increases with the system scale linearly while is logarith-
mical.

3.5 Prototype and Its Usage

The prototype of OStorage is implemented and its hardware platform contains a clus-
ter of PC servers connected with 100M Ethernet. The whole system is coded with
JDK 1.4 other than Bricks that are implemented in C language based on Berkeley DB.

The following features are achieved.
Structured-data storage functions, including object read/write/create/delete.
Soft consistency replication and linearizability are both implemented.
Distributed transaction and query.
Meta server is employed to manage the whole system to provide a global consis-
tent storage view of Bricks for Peer Servers.
Requests between TODSLib and Peer Servers can been sent in a burst mode, that
is, one session is connected at first and several requests can been transferred in one
time if possible to decrease the overload.

4 Results

Performance experiment results are presented in this section. Our test environment is
a 36-node server cluster and each node is equipped with 4 Intel Pentium III Xeon
processors at 750 MHz, 1 GB of RAM and a 36 GB 10000 RPM SCSI disk. The net-
work is 100M fast Ethernet. All nodes run Redhat Linux 7.2. The system and test
programs were run with Sun JDK 1.4.0-b92 for x86 Linux.

An Object-Oriented Data Storage System on Network-Attached Object Devices 537

Fig. 8. On-disk Read Payload

4.1 On-Disk Reads

This test is closer to actual operational environment. To approximate real-world
workload, we first populated each of the Bricks with 5000 objects of the object length
being tested. Then we access these objects randomly by Object ID we gather when
inserting them. Although random access is not a good “real-world” pattern, it effec-
tively shows the bottom-line performance we should expect. The Object Caches in
Peer Servers are turned off to show raw Brick read performance. It completes as many
as 2740 reads of 1KB object in a second. As object size increases, payload bandwidth
increases quickly, to 46MB/s when object size is 128KB. More detailed results are
showed in Figure 8. This throughput result is satisfying. Since actual work-load usu-
ally has good locality, the efficiency of the Buffer Cache will be much better, thus
overall throughput higher.

Fig. 9. Transactional Write

4.2 Transactional Writes

Transaction performance is directly tied to disk write performance because they in-
clude synchronous writes to the log file. Here we test inserting objects into Bricks by

538 Y. Zhang and W. Zheng

transactions. In each transaction, we insert four objects that are about 2K in size to-
tally. From the results shown in Figure 9, we can see that the transaction performance
grows linearly with Brick number, just as we expected. When all 36 Bricks participate
in, 396 transactions can be done in a second.

5 Conclusion

In this paper, we present the design and implementation of OStorage, a cluster storage
platform for Internet services. It is designed with the requirements of scalable services
in mind and appeals to many advantageous properties of modern server clusters. One
type of OSD, NAOSD is used as the low-level storage device, which supports struc-
tured-data directly to eliminates the data-model-mismatch problem. In addition, mov-
ing portions of an service’s processing to a storage device significantly reduces data
traffic and leverages the parallelism already present in large systems.

The user interface implements transparent persistence which relieves developers
completely from writing I/O code. Different levels of availability are supported that
make OStorage suits the requirements of different services.

References

1.

2.

3.

4.

5.

6.

7.

8.

9.

R. Goldman, J. McHugh, and J. Widom. From Semistructured Data to XML: Migrating
the Lore Data Model and Query Language. Proceedings of the 2nd International Work-
shop on the Web and Databases, Philadelphia, Pennsylvania (1999).
Robert Grimm, Michael M. Swift, and Henry M. Levy. Revisiting structured storage: A
transactional record store. Technical Report UW-CSE-00-04-01, University of Washing-
ton, Department of Computer Science and Engineering (2000).
Steven D. Gribble, Eric A. Brewer, Joseph M. Hellerstein, and David Culler. Scalable,
Distributed Data Structures for Internet Service Construction. In Proceedings of OSDI
2000. San Diego, CA (2000).

10.

11.

Garth A. Gibson, David F. Nagle, William Courtright II, etc. NASD Scalable Storage
Systems. In the Proceedings of USENIX 1999, Linux Workshop, Monterey, CA (1999).
G. A. Gibson, et al., A Case for Network Attached Secure Disks, Tech. Report
CMU-CS-96-142, Carnegie Mellon University (1996).
Elizabeth Shriver, A Formalization of the Attribute Mapping Problem. HP Labs Technical
Reports, HPL-1999-127.
Erik Riedel, Christos Faloutsos, Garth A. Gibson, etc. Active Disks for Large- Scale Data
Processing. IEEE Computer, Vol.34, No.6 (2001). 68-74.
C. Russell, Java Data Objects 1.0 Proposed Final Draft, JSR12, Sun Microsystems Inc.,
available from http://accessl.sun.com/jdo (2001).
M. Raynal and A. Shiper. A Suite of Formal Definitions for Consistency Criteria in Dis-
tributed Shared Memories. ISCA Proceedings of the International Conference PDCS, Di-
jon France (1996). 125-130.
Sleepycat Software Inc., Berkeley DB Programmer’s Tutorial and Reference Guide, avail-
able at www.sleepycat.com (2001).
Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest. Introduction to Algo-
rithms[M]. MIT Press (1990).

A Scalable and Adaptive Directory Scheme for
Hardware Distributed Shared Memory

Kiyofumi Tanaka1,2 and Toshihide Hagiwara1

1 School of Information Science, Japan Advanced Institute of Science and Technology,
1–1 Asahidai, Tatsunokuchi, Ishikawa, 923–1292 Japan

2 “Information and Systems”, PRESTO, Japan Science and Technology Agency
{kiyofumi,t–hagiwa}@jaist.ac.jp

Abstract. In hardware distributed shared memory in the style of CC-
NUMA, directory information that specifies locations of sharing proces-
sors is used for cache coherence. Structure of the directories affects the
size of hardware, time required for coherence transaction, and network
traffic. In this paper, we propose and evaluate a new scalable directory
scheme, “ adaptive hierarchical coarse directory”, that exploits hierarchy
in the system and exhibits appropriate values in terms of the above
three items. The directory has tolerance to many copies of a memory
block scattered in a large-scale parallel system. This characteristic makes
it easy for operating systems to allocate parallel threads in multitask-
ing/multiuser environment.

1 Introduction

In a distributed shared memory (DSM) system based on CC-NUMA (Cache
Coherent Non-Uniform Memory Access) system, sharing information must be
managed per block such as cache line, page, or object. Sharing information in-
dicates whether or not the block is shared and whether it has been updated or
not, and includes a directory that identifies the processors holding a copy of the
block. A directory scheme in hardware DSM affects the amount of hardware,
efficiency of coherence processing, and network traffic. For example, when the
amount of memory required for storing directories increases in proportion to
the number of processors in a system, the amount might get larger than that
of general-purpose program data, which is unrealistic from the point of view of
efficient use of memory. Therefore, it is difficult to apply the kind of directory
to a large-scale system.

We proposed a small-size directory scheme and communication methods co-
operating with the directory, and built a prototype parallel computer which im-
plemented them [1]. The preliminary evaluation based on the information gained
from the prototype showed that the directory with the communication methods
had better scalability on the amount of memory required, efficiency of coher-
ence processing, and network traffic in a large-scale system than other existing
directories such as a full-map directory scheme [2]. However, the directory has
a possibility of generating more traffic than other directory schemes when the

P.-C. Yew and J. Xue (Eds.): ACSAC 2004, LNCS 3189, pp. 539–553, 2004.
© Springer-Verlag Berlin Heidelberg 2004

540 K. Tanaka and T. Hagiwara

number of processors sharing a block is not large and the copies of the block are
scattered in the system. In this paper, we propose a new directory scheme which
is adaptive to the situation where our previous scheme might increase redundant
communications, and evaluate it quantitatively by using real programs.

In section 2, scalability issues of directory schemes in hardware DSM are
discussed. Section 3 describes the outline of a lightweight hardware DSM we
proposed. In section 4, we propose a new directory scheme. Section 5 compares
our scheme with other schemes in terms of the size, time, and traffic required
for coherence processing. Section 6 describes the related work and Section 7
concludes this paper.

2 Directory Schemes of Hardware DSM

The size of memory taken up by directories increases as the scale of the system
is enlarged. Therefore, the structure and size of a directory will affect the hard-
ware costs. Directory schemes are classified into two types: one type completely
identifies the processors that hold a copy of a memory block, and the other
incompletely. The former has a problem in that it requires a large amount of
memory for directory storage when there are many processors in a system, or a
problem in that an overhead of accessing a directory is large when the directory
size is larger than the bit width of a memory component or when the structure of
the directory is based on a linked list. On the other hand, there are two general
schemes for the latter: one in which the number of processors that can share a
block is limited and the other in which the processors that share a block are
identified roughly, that is, a group that includes all the processors which share a
block is indicated. Both take up relatively less memory than complete identifi-
cation methods but there are still significant overheads caused by broadcasting
or multicasting of coherence messages when many processors share a block.

Full-map directory [3], LimitLESS directory [4], chained directory [5,6] and
hierarchical bit-map directory [7] hold complete information on sharing. The full-
map directory assigns one bit to each processing node to indicate whether the
processing node holds a copy of the relevant memory block. Since this scheme
requires memory in proportion to the number of processing nodes, it is not
suitable for large-scale systems. Multistage accesses to the directory memory are
also required for getting one directory’s information if the number of processing
nodes exceeds the width of a single access, for example, 64 or 128 bits.

The LimitLESS directory places limitation on the number of processors that
can share a block in order to reduce the memory requirement. The directory has
the limited number of pointers to point to processors with the block copy. When
the number of copies exceeds the limit, a protocol processor or processing element
emulates the full-map scheme. Although this directory requires less memory than
full-map when the system has many processors, execution of the software brings
a large overhead.

Although the size of a chained directory is small because it is a pointer,
the structure generates long access latencies caused by sequential accesses to

A Scalable and Adaptive Directory Scheme 541

the linked directories. Therefore, it is important to keep the number of sharing
processors low by employing an invalidation protocol when this directory is used.

In the hierarchical bit-map directory, sharing information for a memory block
is distributed, that is, full-map information is partitioned into sub-bitmaps
among hierarchical levels in a tree network. The directory size, therefore, in-
creases with the scale of the system. It requires about bits for
each shared memory block in an tree with height More memory is thus
required than for a full-map directory. The scheme inherently increases commu-
nication latency, since it requires access to a part of the directory at every level of
the hierarchy. Accordingly, the directory should be stored in high speed memory
to prevent the high network latency from degrading system performance.

Consequently, when directories which have complete information on the lo-
cations of block copies are used in a large-scale system, the problems are that
the directory is large, that access latency is high, or that protocol processing
by a protocol processor/processing element induces large overheads of software
execution.

On the other hand, the limited directory [8] and pseudo-full-map directory
[9,10] obtain a size that is not proportional to the number of processors by
using incomplete information on sharing. The limited directory uses a limited
number of pointers to processors with a cached copy, and the directory size,
therefore, does not increase in proportion to the system scale. When the number
of copies reaches the limit, the next generation of a copy forces cache replacement
by victimizing an existing copy or broadcasting of a coherence message to all
processors, which leads to a lot of extra communication1. It is thus inevitable to
keep the sharing number low by using an invalidation protocol.

The pseudo-full-map directory reduces the required memory by holding a
bitmap per each level of the hierarchy in a tree interconnection network. There
are three schemes in the pseudo-full-map directory, LPRA (Local Precise Re-
mote Approximate), SM (Single Map), and LARP (Local Approximate Remote
Precise). LPRA scheme specifies near processors as precisely as possible and
more distant processors roughly. LARP specifies distant processors as precisely
as possible, and nearer processors roughly. In SM scheme, all network nodes at
a level use a unique bitmap. Here, directories for memory blocks are accessed
only at the respective home processors because each directory can be maintained
at its home processor. This directory scheme takes up the amount of memory
proportional to when the system has processors, and the incompleteness
of sharing information leads to redundant communications in cache coherence
transactions.

3 Lightweight Hardware DSM

We proposed a directory scheme, hierarchical coarse directory, which is of in-
complete sharing information [1]. The size is smaller than any other existing

1 Although the limited directory with broadcasting is of incomplete information, that
with replacement policy is regarded as of complete.

542 K. Tanaka and T. Hagiwara

directory schemes except ones based on broadcasting. Dynamic combining and
multicasting mechanisms of an interconnection network cuts down messages in-
creased by the incompleteness of the directory.

3.1 Hierarchical Coarse Directory

We assume that a tree structure can be physically embedded in the interconnec-
tion network. A home processor is statically assigned to each memory block. A
home processor records a “maximum shared distance” as directory information.
Here, the “maximum shared distance” is half of the number of hops between
the home processor and the most distant processor with a copy of the block. In
other words, the distance is the height of the minimum subtree which includes
all processors that have a copy of the block.

Figure 1 is an illustration of the hierarchical coarse directory structure. The
gray leaves in the figure represent processors which have a copy of the block2,
and the mesh areas indicate the shared area which includes all processors with
a copy. In figure 1(a), the home processor and one of its next-door neighbors in
the network hierarchy hold a copy. Therefore, the maximum shared distance is
one. On the other hand, the maximum shared distance in figure 1(b) is two since
the shared area is the subtree the height of which is two3.

Fig. 1. Hierarchical coarse directory.

The shared area may include processors that don’t have a copy (for example,
in the figure, the white leaves in the shared area). To the home processor, these
processors also seem to have a copy. The simplicity of the directory represen-
tation causes an inaccuracy, that is, an overestimation of the number of block

2

3

To be exact, a home processor has an original block. Here, we don’t distinguish
between the original block and its copy.
In the actual hardware implementation, the maximum shared distance is smaller by
one than the height of the subtree tree in order to simplify the calculating hardware.
Therefore, the distance in figure 1(a) is zero, and that in figure 1(b) is one.

A Scalable and Adaptive Directory Scheme 543

holders. However, the overestimation does not influence cache coherence. When
a processor that does not have a copy receives a coherence message from the
home processor, it has only to return a dummy acknowledgment message. The
procedure maintains coherence.

The hierarchical coarse directory is wide where is the num-
ber of processing elements and the network has a tree structure4. For
example, a four-bit directory for each memory block is sufficient to cover direc-
tory information for a massively parallel system that contains more than 64,000
processors connected by a binary tree network. Moreover, this directory sys-
tem accomplishes the reduction of required memory without limitations on the
number of copies.

3.2 Hierarchical Multicasting and Combining

Identical messages must frequently be transported to many or all processing ele-
ments during coherence processing such as invalidation or update. The transport
performance can be improved by utilizing hierarchical multicasting. For exam-
ple, when an invalidation is processed for a shared memory block, the home
processor assigned in advance to the memory block issues only a single invalida-
tion message. Each switching node in the network that has received the message
multicasts it in all the directions that lead to any node within the shared area.
Figure 2 (a) shows the multicasting operation when the maximum shared dis-
tance is two.

Fig. 2. Hierarchical multicasting and combining.

The directory scheme affects the multicasting method. In implementation of
multicasting, a directory with complete information, such as a full-map directory,
requires that a network packet for multicasting includes a group of destination
processor numbers or the directory itself. The former approach makes the multi-
casting method impractical when the number of destination processors is large.
For example, when the system has 1,024 processors that require 10 bits of a

4 This is because the height of the tree can be decreased by one from the point of view
of the actual hardware implementation, as mentioned before.

544 K. Tanaka and T. Hagiwara

processor number to identify any processor, and 200 processors share a mem-
ory block, total 2,000 bits (250 bytes) must be included in the packet header,
which is not small. The latter always requires the same number of bits as of
all processors, which may be far from insignificant, and makes a switch perform
an elaborate routing. On the other hand, the hierarchical coarse directory sys-
tem is well-suited to multicasting. It is only necessary for network packets to
include the directory information, that is, the maximum shared distance. The
network switching nodes multicast by comparing the maximum shared distance
with their own hierarchical level.

When two or more messages for an identical purpose are sent to a single pro-
cessor, the messages can be combined into a single message at any level of the
network hierarchy. This reduces the need for a series of processes at the desti-
nation processor. For example, every processor that has received an invalidation
message returns an acknowledgment message which indicates the completion of
invalidation processing within the processing node, even if it does not have a
copy of the indicated block. All the acknowledgment messages are directed to
the block’s home processor. Each switching node forwards an acknowledgment
message after it confirms the arrival of all acknowledgment messages from all
branches along which it sent the invalidation message. The process is shown in
Figure 2 (b).

The hierarchical coarse directory is also suited to the combining of messages.
The number of messages to be combined at a switching node depends on whether
the node is or is not a root of the shared subtree. When it is the root, the number
is where the network is When it is not, the number is On the
other hand, a switch must record the number of messages to be combined in
some way for a full-map directory system.

The hierarchical multicasting and combining schemes require no serialized
processing at a home processor. It takes only one round-trip latency between
the home processor and the most distant processor in the shared area for the
home processor to complete a coherence transaction, regardless of the number of
processors with a copy. The combination of the reduced size of the hierarchical
coarse directory and the hierarchical multicasting and combining make it possible
actually to employ not only an invalidation protocol but also an update protocol
even when there are a large number of sharing processors.

4 Adaptive Hierarchical Coarse Directory

The previous section indicated that the hierarchical coarse directory with mul-
ticasting and combining have quality of good scalability from the point of view
of directory size and latency for a coherence transaction. However, more packets
might be generated than other directory systems when copies are located irreg-
ularly or sparsely over the system, since the number of packets depends only on
the hierarchical distance between a home and a most distant sharing processor,
regardless of the number of sharing processors. This nature might influence other
local processing in the system. In this section, we extend the hierarchical coarse

A Scalable and Adaptive Directory Scheme 545

Fig. 3. Dummy sharing processors in the pseudo-full-map directory.

directory and propose a directory scheme which brings light traffic even if copies
are scattered.

The hierarchical coarse directory makes use of hierarchy of a tree intercon-
nection network as the pseudo-full-map directory does. The two directories bring
almost the same processing time for a coherence transaction by using multicas-
ting and combining. However, directory size of the hierarchical coarse directory
is smaller than that of the pseudo-full-map. This is because sharing informa-
tion of the former is more incomplete than that of the latter. On the number
of packets generated, the pseudo-full-map directory gives better results since it
has a bitmap corresponding to each hierarchy. However, accurate (or somewhat
accurate) information from the bitmaps can be applied only to either a path
from a home to the root of the shared area or the other paths. Therefore, the
number of packets does not depend on the number of copies.

Traffic generated by both of the directories is influenced by the locations of
copies. When the number of copies is two in the hierarchical coarse directory or
when that is in the pseudo-full-map with tree network, there is a possi-
bility that traffic occurs all over the network. For example, Figure 3 illustrates
sharing processors when there are three copies in the pseudo-full-map directory
system. The black leaves represent a home and processors which have a copy. The
gray leaves are dummy sharing processors which don’t have a copy but receive a
coherence request. A bitmap for each hierarchy is applied to the black internal
nodes at the corresponding level. In all schemes of the pseudo-full-map, that is
LPRA (Figure 3(a)), LARP (Figure 3(b)), and SM (Figure 3(c)), three copies
cause a number of network communications. The locations of copies depend on
the distribution of data in a running program, the algorithm of the computa-
tion, or scheduling by an operating system. Although applying optimization for

546 K. Tanaka and T. Hagiwara

spatial locality to the program and the scheduling is effective in the locations, a
directory system in which traffic is affected by the number of copies, not by the
location of copies, is desirable when the optimization is difficult to apply.

Agarwal et al. [8] indicated that, in an invalidation protocol, the number of
copies which should be invalidated when a block is updated is lower than four
in most cases. This knowledge is used in the limited directory which limits the
number of copies. However, when the limited directory is used simultaneously
with an update protocol, the number of copies tends to exceed the limit and
broadcasting frequently occurs, which leads to heavy traffic. A directory scheme
we propose in this section has a limited number of pointers. When the number
of copies is not more than the limited number, the pointers indicate processors
which have a copy directly. When the number exceeds the limit, as many shared
areas as the limit can be formed. When a processor which does not belong to
any shared area joins the sharing group, one of the shared areas is extended so
that the processor is included in the share area.

Let N be a number which corresponds to the limit of the limited directory.
A directory consists of N pointer fields and N + 1 maximum shared distances.
It does not include a pointer field for indicating the home because the location
is implicitly known. Therefore, the number of pointers is smaller than that of
maximum shared distances by one. Each pointer plays a role as a “home agent”,
in other words, “base”. A home agent and a maximum shared distance related
to the home agent form a “partial shared area”.

Initially, all pointers in a directory are invalidated. When a processor P starts
to share a block and creates a copy of it, the home of the block reconstructs the
directory according to the following algorithm.

if (One of partial shared areas includes P.)
Perform nothing.

else if (There is an invalid pointer field.) {
Set P to the pointer field.
Set the maximum shared distance zero.

}
else {

Calculate hierarchical distances between any two among home, all home
agents and P.
Select a pair (or a set of more than two) which generated a minimum
distance. (If there is a pair or set which generated the distance and
includes the home, select it.)
Select one in the pair (or set) as the surviving home agent. (Select the
home if it is in the pair or set.)
Update the corresponding maximum shared distance.
if (P is not in the pair (or set))

- Set P to a vacated pointer field.
Invalidate still vacated pointer fields.

}

A Scalable and Adaptive Directory Scheme 547

Fig. 4. Adaptive hierarchical coarse directory.

This scheme indicates the locations of copies accurately when the number of
copies is not more than N. When more than N, the shared area consists of N +1
partial shared areas. From the point of view of adaptability to copy creation
and utilization of maximum shared distances, we call the directory “adaptive
hierarchical coarse directory” . Figure 4 illustrates the directory when N is two.
In the figure, a home and two home agents form three partial shared areas.

The size of the adaptive hierarchical coarse directory depends on the number
of pointer fields. The size of the pseudo-full-map directory is in a tree
network the height of which is This size equals that of two pointers when
is two or four. From this point, the adaptive hierarchical coarse directory which
has two pointer fields is almost equal to the pseudo-full-map in the size. Here,
the directory includes the other three fields that hold each maximum shared
distance. The minimum width of the field depends on and N. For example,
on a quad tree network which has 65,536 processors, the pseudo-full-map needs

On the other hand, the adaptive hierarchical coarse
directory with N = 2 needs

When N is not large, it is really possible to perform multicasting and combin-
ing by adding the directory to a packet. Although it is desirable to give at least

pointer fields on a network system for preventing copies from
causing broadcasting over the system in the worst case, it is important to keep
a balance between the amount of memory for directories and the performance
improvement.

5 Evaluation of Scalability

In this section, we compare the adaptive hierarchical coarse directory with other
directories in terms of the size, latency and traffic in coherence transactions.

548 K. Tanaka and T. Hagiwara

Fig. 5. Directory size.

5.1 Directory Size

The size of an adaptive hierarchical coarse directory is compared with those
of other directories; a full-map directory, chained directory, hierarchical coarse
directory and pseudo-full-map directory. Figure 5 shows the directory sizes per
memory block when the network is a quad tree and the number of processors is
from 2 to 256. In the figure, The horizontal axis indicates the number of pro-
cessors, and the vertical axis indicates the bit width of the directories. “FMD”,
“CHD”, “HCD” and “PFD” mean a full-map directory, chained directory, hier-
archical coarse directory and pseudo-full-map directory, respectively. “AHCD1”
and “AHCD2” means the adaptive hierarchical coarse directory with N = 2 and
N = 3, respectively. Practically, the size of the chained directory per memory
block depends on the number of existing copies. Here, the size with no copies,
that is the size of a pointer, is given in CHD.

The figure indicates that the width of FMD is proportional to the number
of processors and that of PFD is proportional to the logarithm of the number
of processors, that is proportional to the height of the tree network. The width
of HCD is proportional to the logarithm of the logarithm of the number of
processors is the number of processors) and smaller than that of
the other directories. The width of AHCD1 is a little smaller than that of PFD.
Although AHCD2 is larger than PFD, the size is sufficiently small for large-scale
systems.

5.2 Time Required for Coherence Transaction

From the actual implementation of the hardware DSM system on the prototype
machine [1], various values were obtained, such as the time required for a message

A Scalable and Adaptive Directory Scheme 549

to pass through a switch. Using them, coherence processing (invalidation and
update) in a larger scale system is considered, and the adaptive hierarchical
coarse directory is compared with other directory schemes; full-map, hierarchical
coarse directory and pseudo-full-map directory. The adaptive hierarchical coarse
directory, hierarchical coarse directory and pseudo-full-map directory are used
with multicasting and combining.

We employed ABSS [11] that is the augmentation-based SPARC simulator
to generate traces of memory reference. In the simulation, the size of memory
(cache) block is 32 bytes and the number of processors is 256. Then, the trace
generated by ABSS is input to a directory simulator that computes the number
of cycles taken to complete a coherent transaction for each write to shared blocks.
In the directory simulator, the interconnection network is quad tree and the same
values as those of the prototype machine are used for the times required by the
system elements such as a memory controller, network interface and network
switch.

We applied the simulation system to several programs from the SPLASH-
2 benchmark suite [12]; FFT, LU, OCEAN, WATER-SPATIAL and WATER-
NSQUARED. Table 1 shows values of parameters in the programs we selected.
Table 2 shows the mean number of copies that should be invalidated or updated
per coherence transaction in execution of these five programs.

Table 3 shows the mean number of cycles per transaction. “FMD”, “HCD”,
“AHCD1” and “AHCD2” in the table are the same as section 5.1. “SM”,
“LARP” and “LPRA” are the tree methods in pseudo-full-map directory. In

550 K. Tanaka and T. Hagiwara

LU with an update protocol, AHCD2 is a little larger than SM and LARP.
However, we confirmed that AHCD with three pointers generated smaller value,
137.9 cycles in the same program. In other cases, AHCD2 roughly generates the
smallest or the secondly smallest value. From the results, AHCD with two or
more pointers generates small number of cycles on average.

5.3 Network Traffic

We show network traffic during coherence processing generated by the same
programs as in section 5.2. The same traces in section 5.2 are used. The directory
simulator calculates the number of switch-to-switch packets on all branches in
the quad tree interconnection network during a coherence transaction.

Table 4 shows the mean number of packets per transaction. Although AHCD2
is larger than the pseudo-full-map directory in LU with an update protocol, we
confirmed that AHCD with three pointers generated 217.2 packets in LU. In
other programs, AHCD2 is the smallest or the secondly smallest. From these
results, AHCD with more than one pointer generates small number of packets
on average.

6 Related Work

There are several directory schemes whose information dynamically changes from
complete to incomplete, by reconstructing the directory structure5.

In the superset scheme [8], pointers directly specify the location of sharing
processors when the number of copies does not exceed that of pointers. When
an overflow occurs, the directory is represented by a composite pointer that is
made out of two pointers. Each field of the composite pointer is in one of three
states: 0, 1, or X (both), and is thus composed of two bits. When a processor

5 Pseudo-full-map directory is originally of this type, which switches from a full-bit
vector to LPRA [9].

A Scalable and Adaptive Directory Scheme 551

joins sharing members, the processor number is compared with the pointer, and
bit fields which differ each other are set to X. This scheme makes a superset
of the processors that have a copy, and can point to copies at maximum
by using two pointers length of which is During a coherence transaction, a
coherence message is sent to all processors that correspond to any bit pattern
obtained by replacing each X field with 0 or 1. Hence, a processor which does
not hold a copy might receive the coherence messages. This leads to redundant
communications. This scheme generates traffic depending on the location of shar-
ing processors, not on the number of copies. In the worst case, sharing by two
processors can cause broadcasting for coherence processing. For example, when
processors whose number is “0000” and “1111” share a block, this is the case.

In the coarse vector scheme [13], when an overflow of sharing occurs, proces-
sors are grouped and a bit is assigned to each group. Groups are then identified
by the same way as a full-map scheme. The number of processors that the scheme
can cover is times as large as the bit width of the directory where is the size of
each group. All groups have the same fixed size. Here, redundant coherence mes-
sages might be sent as in the superset scheme since all processors in any group
in which at least one processor has a copy are regarded as a copy holder. On the
other hand, the adaptive hierarchical coarse directory can have groups (partial
shared areas) whose size differs and is variable. The size changes according to
the number of sharing processors in the neighborhood.

In the segment directory [14], after an overflow, a pointer field changes into
the structure which consists of a segment vector and a segment pointer. A seg-
ment is a part of all processors and contains consecutive K processors. There-
fore, when the number of processors is N, there are N /K segments. The segment
vector is a bit vector within a segment and has K bits. The segment pointer in-
dicates which segment the segment vector is applied to. The size of the segment
pointer is In this scheme, the size of a group (segment) is fixed. When
the size is large, it requires not a small number of bits for the segment vector.
Since this directory makes complete sharing information for a memory block,
the same number of directory elements as that of segments are needed to cover

552 K. Tanaka and T. Hagiwara

all processors. Each segment directory element is dynamically generated as the
need arises. When sharing processors are scattered, many directory elements are
generated and the total size of the directory for a memory block exceeds that of
full-map directory, which means that this structure is not suitable for an update
protocol.

Multilayer clustering [15] uses the level of the root of the minimum subtree
that includes all the sharers as the sharing information. This technique is the
same as the hierarchical coarse directory we proposed in [1]. Further, the mul-
tilayer clustering dynamically organizes several subtrees. In this scheme, only
symmetric nodes of a home processor can become a home agent that forms a
subtree. On the other hand, any node can be a home agent in the adaptive
hierarchical coarse directory.

7 Conclusion

In this paper, we described scalability issues of directory schemes in DSM sys-
tems and showed that the hierarchical coarse directory provided good scalability
in terms of directory size compared to other directories. However, there is a pos-
sibility that the directory generates more traffic than others when the number
of sharing processors is not large and the copies are scattered.

We proposed a directory scheme, “adaptive hierarchical coarse directoriy” to
alleviate the increase of network packets caused by scattered copies. When the
number of copies is small, particularly in an invalidation protocol, the directory
functions as a limited directory. On the other hand, when an update protocol
increases copies, it adaptively makes up sharing information which consists of
several partial shared areas.

The effectiveness of the adaptive hierarchical coarse directory was evaluated
by using SPLASH-2 programs. This directory with two pointers exhibited the
small number of cycles and packets required for processing an invalidation trans-
action. On the other hand, with an update protocol, it generated the small value
for four programs. For LU, the organization of two pointers was not adequate to
alleviate the time and traffic. However, three pointers well reduced them. The
characteristics of the directory can decrease an obstacle to other local process-
ing in a multitasking/multiuser environment when threads of a process are not
locally allocated by an operating system or when false sharing occurs.

References

1.

2.

3.

Tanaka, K., Matsumoto, T., Hiraki, K.: Lightweight Hardware Distributed Shared
Memory Supported by Generalized Combining. Proc. of 5th International Sympo-
sium on High-Performance Computer Architecture (HPCA), pp. 90–99, Jan 1999.
Tanaka, K., Matsumoto, T., Hiraki, K.: On Scalability Issue of Directory Schemes
of Hardware Distributed Shared memory. 9th Workshop on Scalable Shared Mem-
ory Multiprocessors (SSMM), Jun 2000.
Censier, L.M., Feautrier, P.: A New Solution to Coherence Problems in Multicache
Systems. IEEE Transactions on Computers, C-27(12), pp. 1112–1118, Dec 1978.

A Scalable and Adaptive Directory Scheme 553

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

Chaiken, D., Kubiatowicz, J., Agarwal, A.: LimitLESS Directories: A Scalable
Cache Coherence Scheme. Proc. of 4th International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS–IV). pp.
224–234, Apr 1991.
James, D., Laundrie, A.T., Gjessing, S., Sohi, G.S.: Distibuted–Directory Scheme:
Scalable Coherent Interface. Computer, 23(6), pp. 74–77, Jun 1990.
Thapar, M., Delagi, B.: Distributed–Directory Scheme: Stanford Distributed Di-
rectory Protocol. Computer, 23(6), pp. 78–80, Jun 1990.
Hagersten, E., Landin, A., Haridi, S.: DDM–A Cache-Only Memory Architecture.
Computer, 25(9), pp. 44–54, Sep 1992.
Agarwal, A., Simoni, R., Hennessy, J., Horowitz, M.: An Evaluation of Directory
Schemes for Cache Coherence. Proc. of 15th International Symposium on Computer
Architecture (ISCA), pp. 280–289, Jun 1988.
Matsumoto, T., Hiraki, K.: A Shared Memory Architecture for Massively Parallel
Computer Systems. IEICE Japan SIG Reports, 92(173), pp. 47–55, Aug 1992. (In
Japanese)
Matsumoto, T., Nishimura, K., Kudoh, T., Hiraki, K., Amano, H., Tanaka, H.:
Distributed Shared Memory Architecture for JUMP-1: a General-Purpose MPP
Prototype. Proc. of International Symposium on Parallel Architectures, Algorithms
and Networks (ISPAN), pp. 131–137, Jun 1996.
Sunada, D., Glasco, D., Flynn, M.: ABSS v2.0: a SPARC Simulator. Proc. of the
8th Workshop on Synthesis And System Integration of Mixed Technologies (SASIMI
’98), Oct 1998.
Woo, S.C., Ohara, M., Torrie, E., Singh, J.P., Gupta, A.: The SPLASH-2 Programs:
Characterization and Methodological Considerations. Proc. of 22th International
Symposium on Computer Architecture (ISCA), pp. 24–36, Jun 1995.
Gupta, A., Weber, W., Mowry, T.: Reducing Memory and Traffic Requirements for
Scalable Directory-Based Cache Coherence Schemes. Proc. of International Con-
ference on Parallel Processing (ICPP), pp. I-312–321, Aug 1990.
Choi, J.H., Park, K.H.: Segment Directory Enhancing the Limited Directory Cache
Coherence Schemes. Proc. of 13th International Parallel Processing Symposium
and 10th Symposium on Parallel and Distributed Processing (IPPS/SPDP), pp.
258–267, Apr 1999.
Acacio, M.E., Gonzalez, J., Carcia, J.M., Duato, J.: A New Scalable Directory Ar-
chitecture for Large-Scale Multiprocessors. Proc. of 7th International Symposium
on High-Performance Computer Architecture (HPCA), pp. 97–106, Jan 2001.

A Compiler-Assisted On-Chip Assigned-Signature
Control Flow Checking*

Xiaobin Li and Jean-Luc Gaudiot

Department of Electrical Engineering and Computer Science
University of California, Irvine

{xiaobinl, gaudiot}@uci.edu

http://pascal.eng.uci.edu

Abstract. As device sizes continue shrinking, lower charges are needed to activate
gates, and consequently ever smaller external events (such as single ionizing par-
ticles of naturally occurring radiation) will be able to upset the correct functioning
of complex modern microprocessors. Therefore, designers of future processors
must take this new fact into account and should incorporate in their design fault-
tolerant features which will allow processors to continue operating correctly even
when such faults have occurred. Many faulty conditions are control flow errors
which cause processors to violate the correct sequencing of instructions. Indeed,
they amount to between 33% and 77% of all run-time errors. We present here a
new compile-time signature assignment algorithm (the signature checking tech-
nique is a well-known approach to detect control flow errors). We also present the
theoretical proof as well as the fault detection coverage analysis of our algorithm.
We then describe the required enhancement to the basic microarchitecture: an on-
chip assigned-signature checker which is capable of executing three additional
instructions (SIC, SIJ, SIJC). This allows the processor to efficiently check the
run-time sequence and detect control flow errors.

1 Introduction

As computer systems have become irreplaceable tools of modern society, with the bene-
fits these systems bring to us comes a great potential for harm when they fail to perform
their functions or perform them incorrectly. This is further exacerbated by new tech-
nologies of integration as the number of transistors and the clock rate of processors have
shown an exponential growth rate [1]. However, smaller device sizes, reduced voltage
levels, and higher transistor counts correspondingly raise concerns of higher transient
faults rates. For one thing, radiation-induced soft errors are predicted to become increas-
ingly significant in the near future [2,3,4]. In order to handle these inevitable errors, we
must integrate in our design fault-tolerant features so that the processor can continue
to correctly perform its specified tasks despite the occurrence of logic errors [5]. Such
designs as Itanium [6], IBM Power4 [7], Fujitsu SPARC64 [8], etc., already include
transient fault detection and recovery mechanisms.

* This paper is based upon work supported in part by NSF grants CCR-0234444 and INT-0223647.
Any opinions, findings, and conclusions or recommendations expressed in this material are those
of the authors and do not necessarily reflect the views of the National Science Foundation.

P.-C. Yew and J. Xue (Eds.): ACSAC 2004, LNCS 3189, pp. 554–567, 2004.
© Springer-Verlag Berlin Heidelberg 2004

A Compiler-Assisted On-Chip Assigned-Signature Control Flow Checking 555

We concentrate here on protecting against control flow errors (those which cause a
processor to violate the correct sequencing of instructions). Indeed, abstractions of pro-
gram execution behavior can be formed based on various considerations which include
control flow, memory access, I/O, and object type or range [9]. The cause of control flow
errors could be the failure of any one of a variety of microarchitectural components such
as instruction cache, program counter operation, branch unit, etc. Indeed, it has been
found that these control flow errors account for between 33% [10] and 77% [11] of all
run-time errors.

Signature checking is a well-known technique used to detect control flow errors [9,
11,12,13,14,15,16,17,18,19]. It can be implemented as either assigned-signature control
flow checking or derived-signature control flow checking. In this paper, we focus on
the former because it could offer better fault detection coverage. At compile time, we
assign to each basic block a signature, and then at run time, an on-chip checker executes
three additional signature checking instructions in order to check run time-computed
signatures against assigned signatures. Any discrepancy indicates that an error occurred.

The goal of this paper is to describe the algorithm which protects against run-time
control flow errors and its simple implementation. In Section 2, we introduce the princi-
ples of signature checking. The compile time signature assignment algorithm is outlined
in Section 3. An on-chip checker with the ability to execute three signature checking
instructions and its possible implementation are described in Section 4. These three
instructions are proposed additions to a conventional instruction set. Conclusions are
presented in Section 5.

2 The Concept of Signature Checking

Signature control flow checking techniques are used to monitor the program execution
sequence in order to determine if a legal control flow is being followed. Various signature
checking techniques have been proposed in the past [9,11,12,13,14,15,16,17,18,19].
Basically, there are two phases of signature checking: compile-time signature generation
and run-time signature validation.

In the back end stages, in order to express the program control flow, compilers usu-
ally build a control flow graph (CFG), in which a node or a basic block is a sequence
of instructions with no branch-in except for the entry point and no branch-out except
for the exit point and directed edges are used to represent jumps in the program control
flow [20]. Fig. 1 illustrates this concept by a simple example. Thus, in the first phase
of signature checking, which is based upon the CFG, the compiler pre-computes the
signatures associated with each node of the CFG, and then either embeds signatures
into the original codes [9,11,13,14,16,19] or provides that information directly to the
watchdog [15,18]. At this point, we could have two techniques for pre-computing sig-
natures: the first, assigned-signature control flow checking [15,16,19], associates with
each node an arbitrary signature, for example, a prime number. Conversely, the second
technique, derived-signature control flow checking [9,11,13,14,18], derives signatures
from the nodes themselves, for example by deriving a checksum from the binary code
of the instruction inside a node and then using that checksum as the signature.

556 X. Li and J.-L. Gaudiot

Fig. 1. An example program and its CFG

During the second phase, the checking engine, which can be either the watchdog or
the host CPU, computes run time signatures and then check them against the compile
time pre-computed signatures. If the signatures differ, it means that an error occurred.

Although the second phase of the assigned-signature checking algorithm and the
derived-signature checking algorithm are essentially the same, assigned signature check-
ing techniques have two major drawbacks: the need for registers to hold signatures and
the performance overhead due to the need to execute extra instructions related to the
assigned-signature checking [9,19]. For example, in [19], the overhead in terms of code
size ranges from 26.6% to 61.9% while the overhead in terms of execution time ranges
from 16.2% to 58.1%. Conversely, derived signature checking techniques require a sig-
nature generator/checker circuit to process the signature and might not guarantee that
each node has a unique signature, which might consequently impact the fault coverage.

3 The Compiler-Assisted Signature Assignment Algorithm

The assigned-signature checking technique is based on a comparison between the com-
piler assigned signature with the one calculated at run time. Any difference between
these two signatures indicates that a control flow error has occurred. To address the
performance overhead associated with assigned-signature checking, we use additional
hardware to trade this off, as will be explained in Section 4.

3.1 The Control Flow Checking Algorithm

Compiler time assigned reference signature (S). As discussed before, the program con-
trol flow can be expressed as a CFG. We start with a given node of the CFG, and
assign to it a unique number, which is called the state code of the node1. This code is
denoted by D(i). Then, we compute the reference signature S(i) of this node by using
the following formula:

1 A simple way to assign unique state codes to nodes may be to number each node of the CFG
in sequence, as shown in Fig. 7.

A Compiler-Assisted On-Chip Assigned-Signature Control Flow Checking 557

Fig. 2. Proof of the control flow checking algorithm

where is the immediate predecessor of node in the CFG (note that is an
exclusive-OR function). Furthermore, we assume for the moment that each node has
only one immediate predecessor. More complex cases will be discussed later.

Run time signature (G). A global register holds the run time signature G of the node
currently executing. When the program execution changes the control flow to a new
node, e.g., G is updated by the following formula:

where S(i) is the reference signature of the current new node
Then, the core of the control flow checking mechanism consists in checking the run

time signature G against the static state code D(i) (the one assigned by the compiler) as
follows2:

Note that this comparison would take place whenever the run time control flow enters
a new node of the CFG.

Proof (of the control flow checking algorithm). Assume (Fig. 2) that, instead of trans-
ferring control from to (left side of Fig. 2), we had erroneously entered from
(right side of Fig. 2). Further assume that the reference signature of had been assigned
by the compiler to be The run-time signature G when the control
of program is at node is: which would be different from D(x) since the
state code is unique to each node. Then, after entering node the run time signature
would be updated by the following formula:

Since some bits of the result from are 1s, as shown by
{... 1...} in Fig. 2. Because of these bits which have the value ‘1’ instead of ‘0’, when
exclusive-ORed with D(i), they will flip the corresponding bits of D(i). As such, the final
result is: which means that a fault has been detected.

2 BNEZ is equivalent to “branch to target if the result is not equal to zero.” As such, if
the exception handler is triggered.

558 X. Li and J.-L. Gaudiot

Justifying signature (J)—Handling multiple-bmnch-in nodes. Now, we need to consider
the case when a node has multiple immediate predecessors. Indeed, in normally complex
CFGs, a node may have multiple immediate predecessors. We would call such a node a
multiple-branch-in (MBI) node: it is a node whose number of immediate predecessors
is greater than one. To simplify the discussion, we denote the set of pred(MBI) as3:

When dealing with such MBI nodes, as required in (1), we must choose one of the
immediate predecessors as the primary immediate predecessor (or primary node, for
short). Also, since there is more than one path up from an MBI node, we associate with
each immediate predecessor an additional parameter which we call the justifying signa-
ture. The justifying signature is used at run time to verify that all immediate predecessors
to the MBI node are legal antecedents to that node.

The following outlines the compile-time MBI node handling algorithm:

1.

2.

3.

Arbitrarily select a node from $ as the MBI node primary node (assume for the
rest of this discussion). Note that we leave the discussion of primary node selection
later.
The reference signature of the MBI node is governed by the selected primary node

For every node associate it with the justifying signature given by the fol-
lowing formula:

Note that now each node has two signatures: the reference signature S(k)
and the justifying signature J(k) as illustrated in Fig. 3 where and are the
MBI nodes4.

The run-time MBI node handling algorithm could be described as follows:

1. We denote control flow changes as: First, the run time signature is
updated according to the following formula:

2. Finally, the MBI node run-time control flow checking can be applied as discussed
before:

3.2 The Fault Detection Coverage of the MBI Node Handling Algorithm

Consider a general case of MBI node control flow change: According to the
relationship between the node and the node “MBI,” there are three possible cases:

Then the definition of an MBI node can be given as the cardinality of $, i.e., the number of
elements in the set $, is greater than one:
We use doubly circled nodes to represent primary nodes.

as:

3

4

A Compiler-Assisted On-Chip Assigned-Signature Control Flow Checking 559

Fig. 3. Analysis of the MBI node handling algorithm

1.

2.

If which means that the control flow change is legal, as discussed before,
we can easily prove that the updated run time signature is: G = D(MBI).
If which means that the control flow change is illegal, two cases must be
separately considered:
a)

b)

is an immediate predecessor of another MBI node, which means that J(K)
has been defined;

is not an immediate predecessor of any MBI node. Then, J(k) is null at
compile-time and then without loss of generality, J(k) will be a random number
at run-time (whatever is left in the corresponding storage cell at that time).

Justifying signature has been defined. Consider the control flow change: where
is an MBI node and its set of is However, i.e., the control flow

change is illegal, is instead an immediate predecessor of another MBI node, say
hence Moreover, has been selected as the primary node of and as the
primary node of Then, when entering the run time signature is updated by using
the following formula:

Therefore, two cases need to be considered:

1. As long as we end up with which means that a control
flow error has escaped detection. The faulty condition is satisfied
only if i.e., node is the same as node (remember that the state
code of each node is unique). Examples of illegal control flow changes such as

and are shown in Fig. 3. In both cases, two MBI nodes and
share node as their primary node.

Observation 1. When two MBI nodes, and share their primary node,
any illegal control flow change: and and any illegal

control flow change: and cannot be detected.

560 X. Li and J.-L. Gaudiot

Further, we denote the probability of these illegal control flow changes as

2. On the other hand, if i.e., no primary node sharing, we have:
which means that the control flow error can be successfully detected. An example
for this case is shown in Fig. 3 as the illegal control flow change:
To summary the above two cases, we can state the following:

Observation 2. The fault detection coverage may decrease if two MBI nodes share
the primary node. In another words, if a node has multiple branch-outs, for
example, the exit statement of the node is a conditional branch, and if more than
two (including two) branch destination nodes are MBI nodes, the node should
not be selected as a primary node.

Justifying signature is random. Consider the control flow change: where
is an MBI node and its set of Further assume that has been selected
as the primary node of However, i.e., the control flow change is
illegal. Also, is not an immediate predecessor of any MBI node such that J(i) has not
been defined and we deal with it as a random number. An example of an illegal control
flow change: is shown in Fig. 3. In this case, when entering the run-time
signature is updated by using the following formula:

Because of the randomness of J(i), two cases must be considered:

1.

2.

If we have which means that the control flow
error escapes detection;
If we have which means that the algorithm has
successfully detected the control flow error.

Fortunately, the probability for to be zero is very low: it can
happen only if Given the n-bit size of state codes and signatures,
the probability is:

In summary, the fault detection coverage of the MBI node handling algorithm is:

3.3 The If-Then-Else Node Handling Algorithm

As mentioned by Oh et al. in [19], primary nodes are randomly selected which would
contradict our Observation 2. Furthermore, randomly selecting the primary node may

A Compiler-Assisted On-Chip Assigned-Signature Control Flow Checking 561

Fig. 4. An example of ITE node with two justifying signatures

result in conflicts as illustrated in Fig. 4. Indeed, if had been selected as the primary
node for and for respectively, we would have to create two justifying signatures
for node as far as MBI node is concerned, thejustifying signature of is:

whereas as far as MBI node is concerned, the justifying signature of
is:
Hence, for the control flow change: J(2) should be used to update the

run-time signature whereas for the control flow change : only J’(2) is the
correct choice. Anything corrupted up to this level could result in faulty control flow
error detection. Simply speaking, for the legal control flow change: if the
justifying signature J’(2) had been used to update the run time signature, we would
end up with such that a control flow error could be flagged, a false alarm.
Unfortunately, such situations5 have not been addressed in [19].

The necessary conditions for a node associated with two6 justifying signatures are:

1.

2.

The exit of the node is a conditional branch, that is to say the node is an if-then-else
(ITE) node;
Both branch destinations are MBI nodes.

In short, we need to distinguish the two justifying signatures: one for the then-branch
flow (the resolved branch condition is not-taken), the other for the else-branch flow (the
resolved branch condition is taken).

Figure 5 shows a hardware-based algorithm7: at compile time, when an MBI node
traces back its immediate predecessors for the purpose of justifying signatures, the
associated directed edges are checked (directed edges are given by the CFG): if the edge
is a “taken” path, the associated justifying signature will be placed into the TJ register;
whereas if it is a “not-taken” path, the NTJ register is used for the associated justifying

These situations are not rare: conditional branches are extremely common in regular programs.
From the following discussions, we will see that a node with a conditional branch could be
associated with two justifying signatures.
If switch statements are allowed, that more than two justifying signatures are associated with
a node is possible. However, we assume that the compiler has converted all switch statements
into the equivalent if-then-else constructs, as presented in [14].
We have not, in this work, considered checking the flow of conditional branches. More specif-
ically, refer to Fig. 5, the case when a transient fault causes the ITE node to branch to the
else_node incorrectly whereas it should have branched to the then_node, has not been consid-
ered.

5

6

7

562 X. Li and J.-L. Gaudiot

Fig. 5. An hardware approach for ITE node with two justifying signatures (T = taken; NT =
not-taken; TJ = justifying signature for NTJ = justifying signature for

signature. At run time, the resolved branch condition is used to select the appropriate
justifying signature for updating the run time signature. More details will be given in
Section 4.

4 Hardware Enhancement for Control Flow Checking

As discussed before, the assigned-signature checking technique has an inherent perfor-
mance overhead drawback. However, with advances in CMOS technology, we have an
abundance of cheap hardware resources [1]. Moreover, our proposed mechanism can be
simply implemented in any modern microprocessor at little additional cost. Hence, in this
section, we first introduce three additional instructions dedicated to control flow check-
ing, and then design a simple hardware implementation to execute these instructions.
We will also provide a comprehensive control-flow checking algorithm based on these
hardware enhancements. In the end, we will show the benefit from trading hardware off
a reduction in performance overhead.

4.1 Additional Instructions

The three additional instructions dedicated to the assigned-signature control flow check-
ing are succinctly described in Table 1. Instruction SIC is used to check for control
flow errors in non-MBI nodes. Instruction SIJ is dedicated to signature justification.
Instruction SIJC is used to check for control flow errors in MBI nodes. The compiler is
responsible for the insertion of these additional instructions into the original program so
as to achieve run-time control flow checking. The detailed algorithm will be presented
in section 4.3.

4.2 Implementation of Additional Instructions — On-Chip Control Flow
Checker

A simple on-chip control flow checker to execute the above three additional instructions
can be easily designed. Assume a simple five-stage pipeline:

Our on-chip control flow checker would be
located in the “Decode” and “Execution” stages.

A Compiler-Assisted On-Chip Assigned-Signature Control Flow Checking 563

Fig. 6. On-chip control flow checker block diagram

As seen in Fig. 6, a total of five registers are needed to hold the necessary information:
register G is used for the run time signature; registers D/S and NTJ receive immediate
values from the imm1 field of their instruction words and registers D and TJ receive
immediate values from the imm2 field of the instruction words. For each instruction,
Table 2 shows the control signals generated by the opcode decoder (also shown in Fig. 6).

Operation of SIC instructions. When an instruction word SIC imm1, imm2 is de-
coded, its opcode field is fed into the opcode decoder. The decoder then generates the

564 X. Li and J.-L. Gaudiot

control signals specified in Table 2. The imm1 filed is received by the enabled register
D/S (D/S_en = enable and while the imm2 field is received by the
enabled register D (D_en = enable and

The content of register D/S goes into XOR1 along with the content of register G (G_en
= enable). The result is selected by mux2 (mux2_cs = 1). Now the enabled comparator
compares the two inputs which are received from mux2 and register D. These have
performed the run-time control flow checking. Also, we can see the result of XOR1 is
sent to modify register G since we have mux1_cs = 0 and G_en = enable.

Operation of SIJ instructions. When an instruction word SIJ imm1, imm2 is de-
coded, its opcode field is fed into the opcode decoder. The decoder then generates the
control signals specified in Table 2. The imm1 filed is received by the enabled register
NTJ (NTJ_en = enable and while the imm2 field is received by the
enabled register TJ (TJ_en = enable and

Operation of SIJC instructions. When an instruction word SIJC imm1, imm2 is
decoded, its opcode field is fed into the opcode decoder. The decoder then generates the
control signals specified in Table 2. The imm1 filed is received by the enabled register
D/S (D/S_en = enable and while the imm2 field is received by the
enabled register D (D_en = enable and

The content of register D/S goes into XOR1 along with the content of register G
(G_en = enable). Based on the resolved branch condition, either the content of register
NTJ or that of register TJ XOR2 with the result of XOR1. Once again, if no conditional
branch result from the branch unit, i.e., not an ITE node, the default “resolved branch
condition = NT” such that the content of register NTJ is selected at this point. MUX2
selects the result of XOR2 (mux2_cs = 0). Now the enabled comparator compares the
two inputs which are received from mux2 and register D. These have performed the
run-time control flow checking. Furthermore, we can see that the result of XOR2 is sent
to modify register G since we have mux1_cs = 1 and G_en = enable.

4.3 Using Additional Instructions

To summarize the above discussion, Algorithm 1 shows a comprehensive signature
assignment algorithm based on our hardware enhancement instructions. Returning to
the example of Fig. 1, our compiler algorithm would produce the modified diagram
shown in Fig. 7. The left-hand side illustrates the state code assignment results and the
primary node selection of the MBI node The right-hand side shows the CFG after
insertion of our control flow checking instructions.

A Compiler-Assisted On-Chip Assigned-Signature Control Flow Checking 565

Fig. 7. State code and signature assignment example

Comparing code size overhead. To compare our algorithm with that of Oh et al. in [19],
consider a typical node consisting of 7 to 8 instructions [1]. In order to check for control
flow errors, [19] adds 2 to 4 instructions to each node. The overhead is between 27%

566 X. Li and J.-L. Gaudiot

and 53%. (As shown in [19], for a number of benchmarks, the code size overhead is
between 26.6% and 61.9% whereas the execution time overhead is between 16.2% and
58.1%). Conversely, in our hardware-enhanced approach, the additional instructions are
a maximum of 1 or 2 for each node. Therefore, the overhead is only 13% to 27%, which
is a significant improvement over [19]. Furthermore, the execution time is given by the
following formula [1]:

With help from our on-chip control flow checker, we could expect a lower execution
time than that obtained in [19] when executing the program with the signature checking.
This is because we have a smaller instruction count given the same clock cycle time and
cycles per instructions.

5 Conclusions

Control flow errors have a high error occurrence ratio relative to other kinds of errors.
This is expected to continue increasing as design rules continue decreasing. Signature
checking is a well-known and effective technique to detect such errors. We have used this
approach to demonstrate our compiler-assisted assignment signature analysis. It includes
a compile time algorithm based on a control flow graph which assigns signatures to
nodes. We have also designed an on-chip checker for our dedicated instructions used for
control flow checking. A comprehensive signature assignment algorithm has also been
introduced, and a detailed performance overhead analysis has been presented.

References

1.

2.
3.

4.

5.
6.
7.

8.

9.

10.

Hennessy, J.L., Patterson, D.A.: Computer Architecture: A Quantitative Approach. Third edn.
Morgan Kaufmann Publishers, Inc. (2002)
Borkar, S.: Design Challenges of Technology Scaling. IEEE Micro (1999)
Yang, P., Chern, J.H.: Design for Reliability: The Major Challenge for VLSI. Proceedings of
the IEEE (1999)
Reinhardt, S.K., Mukherjee, S.S.: Transient Fault Detection via Simultaneous Multithreading.
In: 27th International Symposium on Computer Architecture. (2000)
Hennessy, J.: The Future of Systems Research. IEEE Computer (1999)
Quach, N.: High Availability and Reliability in the Itanium Processor. IEEE Micro (2000)
Bossen, D.C., Tendler, J.M., Reick, K.: Power4 System Design for High Reliability. IEEE
Micro (2002)
Ando, H., Yoshida, Y., Inoue, A., Sugiyama, I., Asakawa, T., Morita, K., Muta, T., Motokuru-
mada, T., Okada, S., Yamashita, H., Satsukawa, Y., Konmoto, A., Yamashita, R., Sugiyama,
H.: A 1.3-GHz Fifth-Generation SPARC64 Microprocessor. IEEE Journal of Solid-State
Circuits (2003)
Wilken, K., Shen, J.P.: Continuous signature monitoring: Low-Cost Concurrent-Detection of
Processor Control Errors. IEEE Transactions on Computer-Aided Design (1990)
Ohlsson, J., Rimen, M., Gunneflo, U.: A Study of the Effects of Transient Fault Injection Into
a 32-bit RISC with Built-in Watchdog. In: 29th International Symposium on Fault-Tolerant
Computing. (1991)

A Compiler-Assisted On-Chip Assigned-Signature Control Flow Checking 567

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Schuette, M.A., Shen, J.P.: Processor Control Flow Monitoring Using Signatured Instruction
Streams. IEEE Transactions on Computers (1987)
Mohmood, A., McCluskey, E.J.: Concurrent Error Detection Using Watchdog Processors –
A Survey. IEEE Transactions on Computers (1988)
Schuette, M.A., Shen, J.P.: Exploiting Instruction-Level Parallelism for Integrated Control-
Row Checking. IEEE Transactions on Computers (1994)
Warter, N.J., Hwu, W.M.W.: A Software Based Approach to Achieving Optimal Performance
for Signature Control Row Checking. In: 20th International Symposium on Fault-Tolerant
Computing. (1990)
Michel, T., Leveugle, R., Saucier, G.: A New Approach to Control Flow Checking with-
out Program Modification. In: 21st International Symposium on Fault-Tolerant Computing.
(1991)
Alkhalifa, Z., Nair, S., Krishnamurthy, N., Abraham, J.A.: Design and Evaluation of System-
Level Checks for On-Line Control Flow Error Detection. IEEE Transactions on Parallel and
Distributed Systems (1999)
Shirvani, P.P., McCluskey, E.J.: Fault-Tolerant Systems in a Space Environment: The CRC
ARGOS Project. Technical Report CRC-TR 98-2, Stanford University (1998)
Bagchi, S., Srinivasan, B., Whisnant, K., Kalbarczyk, Z., Iyer, R.K.: Hierarchical Error
Detection in a Software Implemented Fault Tolerance (SIFT) Environment. IEEE Transactions
on Knowledge and Data Engineering (2000)
Oh, N., Shirvani, P.P., McCluskey, E.J.: Control-Flow Checking by Software Signatures.
IEEE Transactions on Reliability (2002)
Aho, A.V., Sethi, R., Ullman, J.D.: Compilers: Principles, Techniques, and Tools. Addison-
Wesley Publishing Company (1986)

A Floating Point Divider Performing IEEE
Rounding and Quotient Conversion in Parallel

Woo-Chan Park1, Tack-Don Han2, and Sung-Bong Yang2

1 Department of Internet Engineering,
Sejong University, Seoul 143-747, Korea,

pwchan@sejong.ac.kr
2 Department of Computer Science,

Yonsei University, Seoul 120-749 Korea,
{hantack}@kurene.yonsei.ac.kr

{yang}@cs.yonsei.ac.kr

Abstract. Processing floating point division generally consists of SRT
recurrence, quotient conversion, rounding, and normalization steps. In
the rounding step, a high speed adder is required for increment oper-
ation, increasing the overall execution time. In this paper, a floating
point divider performing quotient conversion and rounding in parallel is
presented by analyzing the operational characteristics of floating point
division. The proposed floating point divider does not require any ad-
ditional execution time, nor does it need any high speed adder for the
rounding step. The proposed divider can execute quotient conversion,
rounding, and normalization within one cycle. To support design effi-
ciency, the quotient conversion/rounding unit of the proposed divider
can be shared efficiently with the addition/rounding hardware for float-
ing point multiplier.

1 Introduction

An FPU (Floating Point Unit) is a principal component in graphics accelerators
[1,2], digital signal processors, and high performance computer systems. As the
chip integration density increases due to the advances in semiconductor technol-
ogy, it has become possible for an FPU to be placed on a single chip together with
the integer unit, allowing the FPU to exceed its original supplementary function
and becoming a principal element in a CPU [2,3,4,5]. In recent microprocessors,
a floating point division unit is built on a chip to speed up the floating point
division operation.

In general, the processing flow of the floating point division operation con-
sists of SRT recurrence, quotient conversion, rounding, and normalization steps
[6,7,8]. SRT recurrence has been used to perform the division operation for the
fraction part and to produce the final quotient and its remainder as in a redun-
dant representation. In the quotient conversion step, the sign bit for the final
remainder can be calculated from both the carry part and the sum part of the
remainder in a redundant representation. Hence, a conventionally binary repre-
sented quotient is produced using the positive part and the negative part of the

P.-C. Yew and J. Xue (Eds.): ACSAC 2004, LNCS 3189, pp. 568–581, 2004.
© Springer-Verlag Berlin Heidelberg 2004

A Floating Point Divider 569

redundantly represented quotient and the sign bit of the final remainder. After
that, the rounding step can be performed using the results from the quotient
conversion step. For the rounding step, a high speed adder for increment oper-
ation is usually required, increasing the overall execution time and occupying a
large amount of chip area.

In some microprocessors, due to design efficiency, the rounding unit for a
floating point divider is shared with a rounding hardware for a floating point mul-
tiplier or a floating point adder [7,9]. The reasons for this sharing are as follows.
First, because the floating point division operation requires many cycles to com-
plete its operation, it does not need to be implemented by a pipeline structure.
Second, because the floating point division operation is not used more frequently
than other floating point operations, additional hardware for the rounding unit
in the floating point divider is not economical. Third, the hardware to support
the rounding operation for floating point division can be developed simply by
modifying the rounding unit for either a floating point multiplier or a floating
point adder. However, this sharing must not affect any critical path of the shared
one and should not complicate the control scheme. Therefore, an efficient sharing
mechanism is required.

In this paper, a floating point divider performing quotient conversion and
rounding in parallel is proposed by analyzing the operational characteristics of
floating point division. The proposed floating point divider does not require any
additional execution time, nor does it need any high speed adder for the rounding
step. Also it can execute quotient conversion, rounding, and normalization within
only one cycle, and can share the addition/rounding hardware logics for a floating
point multiplier presented in [11] by adding several hardware logics. The additive
hardware does not affect the execution time of the floating point multiplier and
can be implemented with very simple hardware logics.

In [9], quotient conversion and rounding can be performed in parallel, and
the addition/rounding hardware logics are shared with a floating point multiplier
presented in [10]. However, it requires a more complex processing algorithm. This
in turn requires additional hardware components which increase the length of the
critical path on the pipeline. Such increase causes one more unit of pipeline delay
in their approach and requires more hardware components than our approach.

The rest of this paper is organized as follows. Section 2 presents a brief
overview of the IEEE rounding methods and the integer SRT division method.
We also illustrate how the proposed floating point divider can share an addi-
tion/rounding unit of the floating point multiplier. Section 3 suggests a hard-
ware model which can execute rounding and quotient conversion in parallel and
its implementation with respect to IEEE four rounding modes. In Section 4,
conclusion is given.

570 W.-C. Park, T.-D. Han, and S.-B. Yang

2 Backgrounds and Basic Equations

In this section, the IEEE rounding methods and the SRT division algorithm are
discussed. An addition and rounding circuit for a floating point multiplier is also
illustrated to be shared with the proposed floating point divider.

2.1 The IEEE Rounding Modes

The IEEE standard 754 stipulates four rounding modes; they are round-to-
nearest, round-to-zero, round-to-positive-infinity, and round-to-negative-infinity.
These four rounding modes can be classified mainly into round-to-nearest, round-
to-zero, and round-to-infinity, because round-to-positive-infinity and round-to-
negative-infinity can be divided into round-to-zero and round-to-infinity accord-
ing to the sign of a number.

For the sake of the IEEE rounding, two additional bits, R and Sy, are
required. R is the MSB among the less significant bits other than LSB. Sy is
the ORed results of all the less significant bits except with R. The following
three algorithms are the results of the rounding operation with LSB, R, and Sy
when the MSB is zero, which is a normalized case, “return 0” means trunca-
tion, and “return 1” indicates increment as the result of any rounding operation.

Assume that two input significands, divisor and dividend have bits
each. To simplify the notation, the binary point is to be located between the
LSB and the R bit positions. Then, the R and the Sy bit positions become the
fraction portion. The significand bits above them, which are the most significant

bits, are the integer portion. The integer portion is represented with
subscript I and the fractional portion with subscript T. Figure 1 shows that
most significant bits of H are the integer portion while R and Sy in
H are the fractional portion

For the rest of this paper, denotes the boolean AND, denotes the
boolean OR, and denotes the boolean exclusive-OR. X denotes the “don’t
care” condition. If any overflow is generated from the result of Z operation then
overflow(Z) returns 1, otherwise it returns 0. denotes the value of the carry
signal from the bit position into the bit position.

A Floating Point Divider 571

Fig. 1. The definitions of and

2.2 SRT Recurrence

Division operation can be defined by the following equation [6]:

where The dividend and the divisor are the input operands.
The quotient and the remainder rem are the results of the division operation.
The unit in the last position, denoted by ulp, defines the precision of the quotient,
where for and fractional results.

The following recurrence is used at each iteration:

where is the quotient digit, numbered from the highest to the
lowest order, and is the partial remainder at iteration In order for the next
partial remainder to be bounded, the value of the quotient-digit is chosen
as follow:

The final quotient is the weighted sum of all of the quotient-digits selected
through the iteration such that

In general, to speed-up the recurrence, the partial remainder and the quotient
are represented as in the redundant forms. That is, the partial remainder consists
of the carry part and the sum part, and the quotient consists of the positive part
and the negative part.

2.3 Calculating the Final Quotient, R, and Sy

Suppose that the quotient obtained after the iteration is denoted by
and the partial remainder is denoted by Then because should be positive,
the restoration step for is required to produce the final quotient if is
negative. Therefore, considering the restoration step, and can be converted
as follows.

572 W.-C. Park, T.-D. Han, and S.-B. Yang

After the completion of SRT recurrence, the quotient and the remainder
values are generated in the redundant binary representations. The quotient value
from the result of SRT recurrence consists of the positive part and the
negative part Then and can be shown as follows.

where is represented in the one’s complement form.
The remainder value generated after the completion of SRT recurrence con-

sists of the carry part and the sum part Both and
are represented in the two’s complement form and have length of bits
each. and can be now represented as follows.

The integer portions of and are denoted as and respectively,
and can be then defined as follows.

Then, because is represented in the one’s complement form, when the values
in the redundant representation converted into the conventional binary repre-
sentation, ‘1’ should be added to the position of Also, if the remainder is
negative, ‘1’ should be borrowed from the quotient to restore the final remain-
der. Therefore, H which is the conventional binary representation of the final
quotient including R and Sy can be calculated as follows.

where is the restoration signal to the (–1)-th position of the quotient
and is identical to the sign value of the result of if the
result sum bits of are all zeros, otherwise Sy = 1.

Then, (1) can be converted as follows.

where R is the round bit and is the value of the carry signal from the (–1)-th
bit position to the 0-th bit position. Hence, the integer portion of H, can be
represented as follows.

A Floating Point Divider 573

2.4 The Addition/Rounding Unit for a Floating-Point Multiplier

In general, processing floating point multiplication consists of multiplication,
addition, rounding, and normalization steps. A floating point multiplier in [11,
12,13] can execute the addition/rounding operation within only one pipeline
stage and hence simplify the hardware design. The hardware model presented
in [11] is shown in Figure 2. The proposed floating point divider can share the
addition/rounding unit for a floating point multiplier to process the quotient
conversion, the rounding, and the normalization steps.

Sy which is calculated at the previous pipeline stage in parallel with a Wallace
tree is included in the input factors of the predictor logic in [11]. Because Sy
can be generated after SRT recurrence in floating point division, Sy must not be
included among the input elements for the predictor logic to perform addition
and rounding in parallel. This is considered in the proposed floating point divider
which is given in next section.

Fig. 2. The hardware model of the addition/rounding stage for a floating point multi-
plier.

3 The Proposed Floating-Point Divider

In this section, the operational characteristics in performing rounding and quo-
tient conversion in parallel are illustrated. Based on these characteristics, a hard-
ware model is presented. Finally, the proposed floating point divider is compared
with respect to cycle time.

574 W.-C. Park, T.-D. Han, and S.-B. Yang

3.1 Analysis for the Quotient Conversion and Rounding Steps

Depending on the MSB of H, the shifting operation for normalization is per-
formed. If then no bit shifting for normalization is required, otherwise
one bit shifting to the left should be performed in the normalization stage. The
former case is denoted as NS (no shift) and the latter case is denoted as LS
(left shift).

Normalization should be accounted for two different cases, i.e., the LS and
the NS cases. In the LS case, the result value of H after normalization is denoted
as For the NS case, the result value of H after normalization is denoted
as Suppose that are the integer portion of the R bit
value, and the Sy bit value in the case of LS, respectively. Then they can be
represented as follows.

and are defined similarly for the NS case as follows:

Suppose that Q is the result value after the rounding step which is performed
prior to the normalization stage. Then in the LS case, Q is represented by
Thus, can be written as follows according to (2) and (3):

Also, for the NS case, Q is represented by Thus, can be obtained as
follows according to (2) and (4).

3.2 The Proposed Hardware Model for Performing IEEE Rounding
and Quotient Conversion in Parallel

A hardware model capable of performing rounding and quotient conversion in
parallel is designed as shown in Figure 3. The proposed hardware model can be
implemented by adding some hardware to the hardware model in Figure 2.

A Floating Point Divider 575

Fig. 3. The proposed hardware model for performing IEEE rounding and quotient
conversion in parallel.

In sign_detector, the result value of in the (1) is calculated. The
zero_detector logic determines whether the remainder is zero. If the result of
zero_detector is zero, otherwise These logics can be implemented
by adding additional logics to the generator in Figure 2.

When and are added by the bit HA and the one bit FA, the
predictor bit is provided to the FA. Then the bit carry and the bit
sum are generated. Here, the LSB of the sum is represented by L as shown in
Figure 3. The bit carry and the most significant bit sum are added by a
single carry select adder which is drawn as a dotted box in Figure 3. The selector
selects one of the result values after executing addition and rounding from the
two inputs and If selector = 0, then is selected, otherwise is selected
as the output value of the multiplexer. The input values of and can be
represented as follows.

In Figure 3, the multiplexer output may be either
or depending on the value of selector. According
to (5) and (6), one of four possible cases, i.e.,

and needs to be generated to perform rounding and
quotient conversion in parallel. Therefore, if predictor and selector are properly

576 W.-C. Park, T.-D. Han, and S.-B. Yang

selected, then the result value Q after performing addition and rounding in
parallel can be generated. Note that Q is defined in Section 3.1.

To configure predictor, the following two factors should be considered. First,
the input signals of predictor must be generated before any addition operation
performed by the carry select adder. Second, the delay of the selector logic
which is finally configured after the determination of the predictor logic should
be negligible. Thus, predictor must be selected very carefully.

The input value of in the multiplexer is denoted by
Because the LSB position of E corresponds to the first bit positions of and

the integer value of E is Thus, the bit integer field can
be denoted as and Hence, can be represented as follows:

In the next subsections, the rounding position is analyzed, and predictor and
selector are determined according to all the three rounding modes.

3.3 The Round-to-Nearest Mode

In the round-to-nearest mode and the LS case, one of three possible cases, i.e.,
and needs to be generated according

to (5) to perform rounding and quotient conversion in parallel.
In the NS case, for increment as the result of
should be ‘1’ according to Algorithm 1. If the result of rounding is increment

and the NS case, ‘1’ should be added to the position of But because
should be ‘1’ for increment as a result of rounding in the NS case, adding ‘1’ to
the position of has the same most significant bit result when ‘1’ is added
to the position of Therefore, one of the three possible cases, i.e.,

and is required to be generated also in the NS
case.

According to (7), when predictor is selected to ‘0’, and
axe generated. Because the most significant bits of either

or are identical to the most significant bits of
can be generated. However, predictor is selected as follows to

simplify the selector logic.

Then, (2) can be converted as follows.

A Floating Point Divider 577

In the LS case, can be expressed as follows according to (5) and (10).

Then, selector and can be produced as follows.

In the NS case, is as follows according to (6) and (10).

Then, selector can be produced as follows.

3.4 The Round-to-Zero Mode

It is considered that the predictor of the round-to-zero mode is identical to that
of the round-to-nearest mode. Because for both the
LS and the NS cases, both selector and can be obtained by replacing both

and of (11) and (12) with
zeros. Therefore, selector and can be written as follows:

3.5 The Round-to-Infinity Mode

For a specific case such as if the predictor of the
round-to-nearest mode is used, then and Sy = 1. Thus
the rounding result in the round-to-nearest mode can be obtained by truncation
according to Algorithm 1. However, because the value of is Sy equal to ‘1’,
the rounding result in the round-to-infinity mode can be obtained by increment
according to Algorithm 3. Therefore, in the NS case, the case of and

can be occurred. Eventually, in the round-to-infinity mode,
the predictor of the round-to-nearest mode cannot be used. Thus, the predictor
is given as follows.

578 W.-C. Park, T.-D. Han, and S.-B. Yang

In Table 1, R, and predictor are illustrated as the values of
and The following two cases can be generated according to the values
of and First, and In this
case, which represents the carry value to the position of is 0, both R and
predictor are 1’s. Second, the value of has an identical value with predictor
for all the cases except the first case.

In the first case, the result of rounding is increment because R = 1 according
to Algorithm 3, predictor = 1 and Then, can be given as follows
according to (5) and (8).

Then, selector and can be produced as follows in this case.

In the NS case, can be written as follows according to (6) and (8).

Hence, selector is as follows in this case.

In the second case, the value of is identical to predictor. Then, can
be produced as follows.

A Floating Point Divider 579

Then, in this case, selector and can be determined as follows.

Thus, is also obtained as follows.

Hence, selector is represented as follows in this case.

3.6 Critical Path Analysis

There are two dataflows in Figure 4. The critical path latency of the left hand
side flow, denoted as is (predictor + FA + carry select adder + selector +
multiplexer). The right hand side flow, denoted as is (zero_detector +
selector + multiplexer). In and is ignored because both selector
and can be performed simultaneously and the delay characteristic of selector
is more complex than that of As aforementioned in Section 2.3, the result
values of and can be calculated with the result of
Because the latency of zero_detector is either equal to or longer than that of
sign_detector, sign_detector is not also included in

If we compare with it seems that the carry select adder and
zero_detector reveal similar delay characteristic, because both can be imple-
mented with a high speed adder. Thus, the critical path of the hardware model
in Figure 4 will be

is almost similar to the critical path of the hardware model in
Figure 2. Only the delay characteristics of predictor and selector are somewhat
different. The logic delay of predictor on is one gate delay for each round-
ing mode, otherwise that of is two gate delays in the case of the round-
to-infinity mode. For the selector of an additional exclusive-OR gate is
required due to identify the two cases in Table 1, as shown in Section 3.5. The
additive gate delay of amount to the gate delays of exclusive-OR minus
one gate delay. This additive delay is so small that it may not affect the overall
pipeline latency.

3.7 Comparison with On-the-Fly Rounding

In [14], on-the-fly rounding was suggested to avoid a carry-propagation addition
in rounding operation, by combining the rounding process with the on-the-fly
conversion of the quotient digits from redundant to conventional binary form.
The on-the-fly rounding requires one cycle for the rounding operation because the

580 W.-C. Park, T.-D. Han, and S.-B. Yang

rounded quotient is selected after the sign bit detection. This one cycle latency
is equal to the latency for the rounding operation of the proposed architecture.
But, the on-the-fly rounding requires four shift registers with somewhat complex
parallel load operations.

On the other hand, the proposed architecture can share the addi-
tion/rounding hardware logics for a floating point multiplier presented in [14].
Thus, the proposed architecture seems to require less hardware than the on-the-
fly rounding. Moreover, the proposed architecture achieves low-power consump-
tion over the on-the-fly rounding, because the parallel loading operations for
four registers could be generated at each iteration in case of on-the-fly rounding,
while only one rounding operation is required in the proposed architecture.

3.8 Comparison with Other Microprocessors

To complete double precision floating point division, the SRT recurrences on
the radix-4 case, on the radix-8 case, and on the radix-16 case take 29 cycles,
20 cycles, and 14 cycles, respectively. Because the proposed floating point di-
vider can perform quotient conversion and rounding within only one cycle, to
complete the floating point division operation, 30 cycles should be taken in the
radix-4 case, 21 cycles for the radix-8 case, and 15 cycles for the radix-16 case,
respectively. As shown in Table 2 in the radix-4 case, PowerPC604e [3] takes 31
cycles, PA-RISC 8000 [15] takes 31 cycles, and Pentium [7] takes 33 cycles to
complete the floating point division operation. In the radix-8 case, UltraSPARC
[4] takes 22 cycles. Also, R10000 [5] takes 19 cycles in the radix-16 case.

4 Conclusion

In this paper, a floating point divider which is capable of performing the IEEE
rounding and addition in parallel is proposed. Its hardware model is provided and
evaluated with the proofs for correctness of the model. The performance improve-
ment and cost effectiveness design for floating point division can be achieved by
this approach.

A Floating Point Divider 581

References

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

M. Kameyama, Y. Kato, H. Fujimoto, H. Negishi, Y. Kodama, Y. Inoue, and H.
Kawai. 3D graphics LSI core for mobile phone “Z3D”. In Proceedings of the ACM
SIGGRAPH/EUROGRAPHICS Conference on Graphics hardware, pages 60–67,
2003.
S. Oberman, G. Favor, and F. Weber. AMD 3DNow! technology: architecture and
implementations. IEEE Micro, 19(2):37–48, April 1999.
S. P. Song, M. Denman, and J. Chang. The powerPC604 RISC microprocessor.
IEEE Micro, 14(5):8–17, Oct. 1994.
M. Tremblay and J. M. O’Connor. Ultra SPARC I : A four-issue processor sup-
porting multimedia. IEEE Micro, 16(2):42–50, April 1996.
K. C. Yeager. The MIPS R10000 superscalar microprocessor. IEEE Micro,
16(2):28–40, April 1996.
M. D. Ercegovac and T. Lang. Division and square root: digit recurrence algorithms
and implementations. (Kluwer Academic Publishers, 1994).
D. Alpert and D. Avnon. Architecture of the Pentium microprocessor. IEEE Micro,
13(3):11–21, June 1993.
C. H. Jung, W. C. Park, T. D. Han, S. B. Yang, and M. K. Lee. An effective
out-of-order execution control scheme for an embedded floating point coprocessor.
Microprocessors and Microsystems, 27:171–180, April 2003.
J. A. Prabhu and G. B. Zyner. 167 MHz Radix-8 divide and square root using over-
lapped radix-2 stages. In Proceedings of the 12th IEEE Symposium on Computer
Arithmetic, pages 155–162, July 1995.
J. Arjun Prabhu and Gregory B. Zyner. 167 MHZ radix–4 floating point multiplier.
In Proceedings of the 12th IEEE Symposium on Computer Arithmetic, pages 149–
154, July 1995.
W. C. Park, T. D. Han, and S. D. Kim. Floating point multiplier performing IEEE
rounding and addition in parallel. Journal of Systems Architecture, 45:1195–1207,
July 1999.
G. Even and P. M. Seidel. A comparison of three rounding algorithms for IEEE
floating-point multiplication. IEEE Transactions on Computers, 49(7):638–650,
July 2000.
M. R. Santoro, G. Bewick, and M. A. Horowitz. Rounding algorithms for IEEE
multiplier. In Proceedings of the 9th IEEE Symposium on Computer Arithmetic,
pages 176-183, 1989.
M. D. Ercegovac and T. Lang. On-the-fly Rounding. IEEE Transactions on Com-
puters, 41(12):1497–1503, Dec. 1992.
P. Solderquist and M. Leeser. Division and square root: choosing the right imple-
mentation. IEEE Micro, 17(4):56–66, Aug. 1997.

Efficient Buffer Allocation for Asynchronous
Linear Pipelines by Design Space Localization

Jeong-Gun Lee1, Euiseok Kim2, Jeong-A Lee3, and Eunok Paek4

1 Department of Information and Communications,
Gwangju Institute of Science and Technology, Republic of Korea

eulia@gist.ac.kr
2 Samsung Advanced Institute of Technology, Republic of Korea

euiseok2003.kim@samsung.com
3 Department of Computer Engineering, Chosun University, Republic of Korea

jalee@chosun.ac.kr
4 Department of Mechanical and Information Engineering,

University of Seoul, Republic of Korea
paek@uos.ac.kr

Abstract. Asynchronous circuit design is very attractive as a high per-
formance design method since it can achieve average-case delay. However,
it is hard to make use of such an advantage in a pipelined architecture
due to the blocking/starvation effects between stages. In most of current
solutions, buffers are allocated to reduce the blocking/starvation effects
but it is difficult to find a distribution of buffers over an asynchronous
linear pipeline(ALP) that is optimal in terms of ‘time*area’ cost.
In this paper, we show that the design space of the buffer allocation on
an ALP is non-convex by introducing a term, called additional cycle time
reduction (ACTR) that can separate the effect of a simultaneous buffer
insertion from an individual buffer insertion. Furthermore, we propose a
hybrid algorithm such that hill-climbing search is first performed during
the early stage of buffer allocation while more sophisticated simulated
annealing is applied for the later stage. Such a hybrid approach makes use
of the characteristics of buffer allocation design space. Experiments and
comparison with conventional methods based on simulated annealing are
presented to show the efficiency of the proposed algorithm.

1 Introduction

Recently, asynchronous designs have been reconsidered as a high performance
and low power system design method by incorporating advanced circuit design
techniques. In particular, the benefit of average case performance, characterized
by data dependent operations, is very attractive in designing high-performance
systems. In order to achieve the expected average case performance of asyn-
chronous circuits, a lot of efforts have been made considering various aspects of
the design problem [6,7,8]. Difficulties arise, however, when those circuits and
blocks are combined in a pipeline, because the pipeline may not show the av-
erage case performance or may even show near worst-case performance due to

P.-C. Yew and J. Xue (Eds.): ACSAC 2004, LNCS 3189, pp. 582–595, 2004.
© Springer-Verlag Berlin Heidelberg 2004

Efficient Buffer Allocation for Asynchronous Linear Pipelines 583

blocking and starvation effects. Thus, it is strongly required to provide a way to
achieve a near average case performance for asynchronous pipelines.

Asynchronous FIFO buffers have been considered as one of the best ways
to achieve the average case performance in pipelines [5,6,9] as they help avoid
blocking and starvation effects between pipeline stages. However it is difficult to
answer the question, “How should the buffers be distributed in the circuit to ensure
optimum time performance and time*area performance?” [9]. The difficulty comes
from a non-convex characteristic and an enormous design space of the buffer
allocation problem.

In this paper we propose an efficient ‘performance*area’ optimization method
for an asynchronous linear pipeline (ALP) where the processing delay in each
stage varies. In particular, we investigate the characteristics of buffer design
space of ALPs and then suggest the localized space where the optima exist thus
avoid exploring the entire buffer design space. Finally we propose an efficient
buffer allocation algorithm exploring only a part of the design space based on
the localization.

The paper is organized as follows. In Section 2, the previous work on per-
formance analysis for an ALP is presented. An ALP model and its performance
characteristics are described briefly in Section 3. In Section 4, we analyze op-
timums on the buffer design space of an ALP and present how to localize the
search space. Section 5 proposes an efficient buffer allocation method based on
the results presented in Section 4. Experimental results of the proposed algo-
rithm are presented in Section 6. Finally, we conclude this paper in Section 7.

2 Related Work

Performance analysis and characterization have been done for asynchronous
pipelined circuits in order to improve the speed of those pipelines through an-
alytic approaches. In [2], the performance characterization of self-timed rings
was performed and three types of performance region were classified as “data-
limited” , “bubble-limited”, and “handshake-limited”. For each classified perfor-
mance region, the optimal number of tokens or stages was calculated in order to
obtain best performance. However, only a fixed delay was used as a processing
delay at each stage. In [3], asymptotic performance characteristics of an asyn-
chronous pipeline were derived with probabilistic processing delay distributions.
In [5], a coefficient variation for variable computation delay was used as an im-
portant factor affecting the system throughput. Using the coefficient variation,
approximate performance formulas were derived through the empirical analysis.
Then, the formulas were used to find the size of buffers required to achieve the
specific rate of average case performance. In this work, it is assumed that all
stages have identical and two-valued random delays only. Due to these restric-
tive and unrealistic assumptions, the formulas cannot be used effectively in real
world designs with heterogeneous and complex logic stages.

Most recently, the limit for the average case performance was theoretically
presented with diffusion equations [9] and percolation theory [11] independently.

584 J.-G. Lee et al.

Fig. 1. (a) An ALP, (b) A conceptual model of the ALP and a buffer configuration

3 Target Model and Problem Description

3.1 An ALP Model and Its Performance

Fig.1(a) shows a four-stages ALP where is a forward latency and is a
backward latency. The Sync module in the figure represents a synchronization
mechanism between stages. The simplest implementation of Sync is a C-element,
which is popular in asynchronous circuit design [4].

Each stage in the ALP has variable processing delays, that is, varies de-
pending on the data being processed in each stage. Fig.1(b) illustrates an ab-
stract model of an ALP. The first and the last stages communicate with in-
put/output environments respectively. A buffer can be inserted to a channel to
decouple operations of the two neighboring stages. To describe a buffer distri-
bution over channels, a non-negative integer vector BC, a buffer configuration,
is used. The dimension of BC is the same as the number of channels and
represents the number of buffers allocated to the channel

Performance Characteristics of an ALP: Two special performance features of
an ALP are shown in Figs.2. Parameters and in an ALP are assumed to be
random variables with a uniform distribution in the interval [2, 12]. The delay
of sf Sync is set to 0.5 unit delay, respectively. The environment is assumed to
respond to an ALP immediately.

The dashed line in Fig.2(a) shows the performance of an ALP when the
number of stages in an ALP increases. As the number of stages increase, the
probability of blocking/starvation between stages becomes higher and therefore
average cycle time becomes worse. Buffers can be used to reduce the block-
ing/starvation effects and improve the utilization of a functional logic in each
stage by temporarily storing data between stages.

The solid line in Fig.2(b) illustrates the performance of an ALP, when buffers
are sequentially inserted one by one to one channel in an ALP. The cycle time
and reduction rate decrease monotonically and eventually converges to a certain
point. The exponential decrease of efficacy with the number of buffers has also
been observed in the simulation studies by [5]. When buffers are sufficiently
allocated to all the channels in an ALP, the cycle time approaches to the average
case.

Efficient Buffer Allocation for Asynchronous Linear Pipelines 585

Fig. 2. Performance Impact of Pipeline Depth and Buffer Size

3.2 Terms and Problem Description

An ALP consisting of n stages has n+1 channels as shown in Fig.l(b). A buffer
design space is composed of a set of possible buffer configurations. Assume that
the number of available buffers is bn and the number of channels is cn. When

buffers are assigned to cn possible places, the number of with
repetition allowed from a set of cn channels is Thus the size of a
buffer design space is expressed by the following equation.

The equation implies that the size of buffer design space can increase signifi-
cantly fast as the number of channels or the number of available buffers increases.
For example, suppose that an ALP has 20 channels and 20 available buffers, and
that the simulation consumes 0.01 second for each buffer configuration. Then the
overall processing time required to determine an optimal buffer configuration is

(about 43 years).
As a cost function, ‘performance × area’ is used. For the performance metric,

average cycle time of an ALP under a given buffer allocation is evaluated. The
area is defined by the sum of functional logic and buffer area. The cost function
for a given buffer configuration, BC, is expressed by the following equation.

With this cost definition, the optimal buffer allocation problem is described
as “finding a buffer configuration BC with the lowest cost”

A buffer configuration in a buffer design space can be considered as a state
in a search-space search [1]. From a state, a set of buffer configurations can be
derived by inserting/eliminating a buffer to/from a certain channel. The action
of the buffer insertion or elimination is called a move. A set of states that can be
derived from a state S by a single move is called a neighbor set or neighborhood

586 J.-G. Lee et al.

Fig. 3. Interaction between buffer allocations

of S. A gain of a move from BC to BC’ is defined as the value of cost(BC)
- cost(BC’). Thus, a positive gain of a move implies that cost is reduced by
the move. The term, optimum is used to denote a local or a global optimum.
When we need to distinguish between local and global optima, we use ‘local’
or ‘global’ explicitly. In this paper, a set of local optimums does not include
global optimums. Finally, a convex design space is the space where only a single
optimum exists. A non-convex space includes multiple optimums so a search can
be trapped in a local optimum before reaching a global optimum in this space.

4 Buffer Allocation to an ALP

4.1 Local Optimums in a Buffer Design Space

Let us consider an ALP shown in Fig.3(a). Each stage is assumed to have a vari-
able delay generation function that is identical across all the stages. It is easy
to see that a local optimum can differ from a global optimum when we compare
two simple cases of buffer allocation. One is allocating a single buffer and the
other is simultaneously allocating two buffers. Let us assume that in the first
case, “Buffer allocation I” shown in Fig.3(b) results in the biggest cost reduction.
Also assume that in the second case, “Buffer allocation II” in Fig.3(b) gener-
ates the biggest cost reduction. Allocation of one buffer between stages s3 and
s4, that enabled the biggest cost reduction in one-buffer allocation, prevents us
from reaching the optimum in two-buffer allocation. However this phenomenon
is unavoidable in a neighborhood-based search because it decides a search direc-
tion based only on neighbors reachable by a single move. Thus, this kind of a
neighborhood-based search is easy to be trapped in a local optimum.

The best (optimum) position of one buffer changes when the other buffer
is allocated additionally because the cost reduction of one buffer allocation is
affected by the other buffer allocation. In order to quantify such an interaction
between buffer allocations, we define a quantity called additional cycle time
reduction (ACTR). Fig.4 shows a possible ACTR for the case of two-buffer allo-
cation. ACTR shown in this figure is calculated by varying the channel positions
of two buffers and is expressed in the following equation.

Efficient Buffer Allocation for Asynchronous Linear Pipelines 587

Fig. 4. Quantity of ACTR

The function CTR takes a multi-set1 CP of channels as arguments and re-
turns cycle time reduction achieved by allocating a buffer to each channel in CP
(negative numbers can be used in the set CP to denote a buffer elimination).
ACTR can be positive or negative depending on a buffer distribution over the
channels, and it can be thought as an additional effect caused by an interaction
between the two concurrent buffer insertions.

Particularly, a positive ACTR implies that considering multiple moves si-
multaneously makes cycle time to be reduced further and results in a more cost
reduction that is not foreseeable by any single move of a local search. These kinds
of interactions are the main causes of producing local optima in the buffer de-
sign space of an ALP since ACTR is the only way of generating local optima
by invisible additional cost reduction. The following proposition addresses the
relationship.

Proposition 1. A buffer configuration BC is a local optimum iff the following
two conditions are satisfied.
1. The cost of BC is lower than the costs of all of its neighbors.
2. A positive ACTR is caused by a set of buffer insertions / eliminations that are
simultaneously performed from BC and such set of moves leads to another buffer con-
figuration BC’ whose cost is lower than that of BC.

Notice that a local optimum is described in terms of ACTR. In the following,
through observing the behavior of cycle time reductions and ACTR effects in
buffer design space, the characteristic of buffer design space is investigated.

4.2 A Characteristic of a Buffer Design Space

When only a single channel is concerned, thanks to the monotonicity of cycle
time change as shown in Fig.2(b), the cost also monotonically changes. Conse-

1 A multi-set is a set that may have duplicates. For example, A = {1,1,2,2,2,3} is a
multi-set and it is not the same as {1, 2, 3}.

588 J.-G. Lee et al.

Fig. 5. A sequential buffer allocation and its corresponding cost reduction

quently, an optimal number of buffers at the channel can be found by checking
the gradient on the cost surface.

When all the channels are concerned, however, finding a global optimum be-
comes computationally difficult due to the non-convexity of design space. Nev-
ertheless, as shown in Fig.5, when the buffers are inserted sequentially to the
channels from a zero buffer configuration (BC = 0) while making the biggest
cost reduction in each step, an initial part of the design space looks like a convex
space. The cost decreases monotonically up to a certain value due to the high
efficacy of initial buffer insertions.

As more buffers are inserted to each channel, the efficiency shrinks and the
cost reduction becomes limited, and ACTR effects begin to generate local optima
by satisfying the first condition of Proposition 1. In other words, initial insertions
to each channel show relatively higher tendency of being on a way to a global
optimum than later insertions. In an optimally buffered ALPs, latest insertions
to each channel are prone to move away from a global optimum. Therefore, latest
allocations to each channel need to be rearranged to find a global optimum. Since
cycle time reduction achieved by these recent allocations is too small to reduce
cost, the quantity of an ACTR becomes small too.

The graph drawn in Fig. 6 shows an experimental evidence for the aforemen-
tioned claim. In this graph, the ‘Max(Avg) Variation Effect’ shows maximum
(average) quantity of cycle time reduction achieved by a single buffer insertion
at each sequential insertion step. Similarly, ‘Max(Avg) ACTR Effect’ is defined
as maximum (average) quantity of cycle time reduction additionally achieved by
simultaneous multiple buffer insertions.

As buffers are inserted to ALPs, the difference between a variation effect and
an ACTR effect becomes smaller as well as their absolute values. There exists
a point where cycle time reduction by single buffer insertions is not enough to
reduce the overall cost. In the vicinity of this point, ACTR may shape like hills
that correspond to local optima. Note that the quantity of ACTR at this point
is so small that taking a small uphill move can lead to a global optimum.

Efficient Buffer Allocation for Asynchronous Linear Pipelines 589

Fig. 6. A sequential buffer allocation and its corresponding ACTR

The equation (1) says that the cost reduction between two optima is de-
termined by cycle time reduction CTR(CP), where CP is a set of moves that
connects two optima. In the vicinity of the point where cycle time reduction
saturated, the cycle time reduction of an individual move increases cost of the
corresponding state and this causes uphill as a result. For CTR(CP) to be suf-
ficient in order to reduce cost further, that is implying that a more optimized
buffer configuration is obtained by accepting the set of moves, ACTR should be
large enough to compensate the cost increases by the individual moves. Since the
ACTR becomes small at the vicinity of the point, the cost increases by the indi-
vidual moves is limited by the ACTR. In consequence, uphill height is also likely
to be small. Finally, it implies that a search can escape from a local optimum
with a small uphill potential barrier and this is substantiated by experiments in
Section 6.

Fig. 7 shows the simplified cost reduction graph where the part of non -
monotonous cost surface is enlarged. In this figure, the horizontal axis repre-
sents the number of buffers inserted to a buffer configuration. The bowl shape
of the cost line indicates an optimum since there is no move that can result in
cost reduction. Since the cost reduction of moves can be described by a gain,
the region in which optima appear can be detected by tracing the gain history
presented as the shadowed graph embedded in Fig.5.

4.3 Localization of a Region

In the proposed buffer allocation algorithm, a buffer design space can be par-
titioned into two sorts of disjoint subspaces: (1) an Optimum Region (OPR)
including optima and (2) a Non Optimum Region (NOPR) containing no opti-
mum. OPR and NOPR are demarcated by a cost boundary as shown in Fig.8,
where the horizontal axis represents the number of buffers inserted.

590 J.-G. Lee et al.

Fig. 7. Cost line and local optimums

Fig. 8. Partitioning a design space

Definition 1. OPR is a set of buffer configurations whose costs are lower than
a given cost boundary. Between any two buffer configuration and of
OPR, there exists at least one sequence of moves that passes through only buffer
configurations in OPR

Definition 2. NOPR is a set of buffer configurations that are in a buffer design
space but not in any OPR.

As shown in Fig.8(a), the proposed search starts from a non-buffered config-
uration. In average-case optimized circuits, lots of buffers are allocated to each
channel in order to reduce starvation/blocking effects caused by processing time
variations. Thus, the non-buffered configuration is in NOPR in general. From the
initial buffer configuration in NOPR, a search procedure based on single move
decides the next buffer configuration simply by taking the biggest cost reduction
till it reaches an optimum within an OPR. Once the search reaches OPR, a more
refined search algorithm is executed within OPR.

The cost boundary between OPR and NOPR should be carefully selected
since it plays a critical role in providing the optimality of search solutions as
well as the efficiency of search. Selecting a very low cost boundary may result in
a very small OPR. A small OPR means that only a small part of design space

Efficient Buffer Allocation for Asynchronous Linear Pipelines 591

Fig. 9. The proposed buffer allocation algorithm

is explored with a high complexity search and hence high efficiency is expected.
However, the boundary can yield multiple OPRs and causes a search to be
trapped in an OPR that does not include a global optimum or a near optimum.
Fig.8(b) shows a case of multiple OPRs due to a cost boundary that is too low.
Since there is a possibility that an optimum or a near optimum does not belong
to OPR the search procedure is exploring within, the quality of solution may
deteriorate.

There are two ways to solve this problem. One is making a cost boundary
high enough so that it does not yield multiple OPRs. However, a higher bound-
ary increases the size of OPR and the search becomes inefficient. The other is
allowing a probabilistic transition from one OPR to another even though such
a transition increases cost over the given boundary. In this case, some moves
enabling an escape from OPR are allowed with a small probability while most
of the time the search process works mainly within the OPR. The escaping
probability should be determined carefully as well.

5 An Efficient Buffer Allocation Algorithm

Fig.9 shows a top-level flow of the proposed buffer allocation algorithm. In Line
1, the initial buffer configuration BC is set. From Line 2 to Line 7, the search
inserts a buffer sequentially to a channel selected for maximum cost reduction
in each loop. The while-loop is repeated until negative gain appears. In Line 8,
after completing the loop, LBC, for instance, corresponds to buffer configuration
A in Fig.7. As shown in Fig.7, the cost boundary can be derived by adding the
uphill potential barrier to the cost of LBC in our algorithm. The uphill potential
barrier should be decided as small as possible while making it possible to reach
other optima below the boundary cost.

Within the while loop, the gain obtained by each allocation is stored to
stat temporarily in Line 6. Gain information in stat is used at Line 2 to check
whether BC reached an OPR or not. The gain history is also used to derive a
cost boundary in Line 9. After completing the loop, a target OPR is decided as
a set of buffer configurations that are reachable from LBC without making a
move that goes over the derived cost boundary.

592 J.-G. Lee et al.

Fig. 10. An SA algorithm

Finally, in Line 10, a simulated annealing (SA) algorithm is executed so that
the search is performed mainly within the target OPR with only a small escaping
probability. LBC becomes an initial solution and the cost boundary is used for
calculating an initial temperature for the SA. More detailed descriptions on the
derivation of a cost boundary and initial temperature calculation for SA are as
follows.

Cost Boundary Derivation : To make the algorithm efficient, a cost boundary
should be chosen as small as possible. In this paper, we use a heuristic and
experimentally validated cost boundary; where is the
difference between the maximum and the minimum gain among the latest
gains in stat. The number is set to the number of channels in an ALP.

can be seen as an approximation of the uphill potential barrier. A
move is allowed only when a newly generated configuration by the move has a
cost lower than once a high complexity search starts from
LBC. Empirical results show that is a reasonable approximation of the
maximum uphill potential barrier from LBC.

Applying Simulated Annealing : A traditional SA algorithm is presented in Fig.10.
In simulated annealing, an energy function plays the same role as a cost function,
hence in what we proposed, the energy function is implemented by the cost
function defined in Section 3.2.

As mentioned earlier, LBC is used as an initial configuration for the SA.
An initial temperature is derived using the cost boundary and the probability
of escaping from an OPR. As shown in Line 5 - 7 of Fig.10, a decision on ac-
ceptance/rejection of a new configuration is made based on an energy function
and a random number. If the new configuration decreases energy, then be-
comes negative and accepts the new configuration unconditionally. Otherwise,
acceptance of an uphill move depends on the probability, From the ex-
pression, we can derive an initial temperature T using two parameters:
the escaping probability from an OPR and an uphill potential barrier is
replaced by since the is considered as the maximum uphill potential
that specifies the boundary of an OPR.

Efficient Buffer Allocation for Asynchronous Linear Pipelines 593

The escaping probability should be set to a small value in order to keep
the boundary more or less strict. If escaping probability is set to 5%, an initial
temperature is given as follows;

Generally, an initial temperature for simulated annealing is set to the higher
value than a standard deviation, of cost values in a design space or
where P denotes the initial probability of accepting solutions. The conventional
value of P is 0.9 and thus is about 20 [10,12].

6 Experiments and Discussion

The proposed algorithm is implemented as a C++ program. Experiments are
run on a 750MHz Sun Blade system. Since the previous work focused on math-
ematical analysis [5,9,11], there are no available benchmarks and comparable
results. The test data in Table 1 are synthesized by varying “area of a buffer
cell” and “range of variable processing delay in a stage” for an ALP consisting of
ten stages. Each letter ‘L’, ‘M’, and ‘H’ in the name of test data corresponds to
the delay range [10, 20], [5, 25], and [1, 29], respectively. The last single-digit in
each test data name represents an area of a unit buffer cell. Three experiments
are performed for each test data to eliminate a probabilistic variations of results
by SA algorithm and the average over those three runs are presented in Table 1.

To show the effectiveness of the proposed method, we also show the results
obtained by a conventional SA procedure in terms of solution quality and search
time. As we mentioned in Section 4, ACTR is a proper metric for limiting the
height of uphills to move from an OPR to another and was used to calculate
an initial temperature for conventional SA. The initial temperature is calcu-
lated using a ‘maximum ACTR’ in a non-buffered configuration and ‘50% ac-
ceptance rate’. That is, Naturally, a
non-buffered configuration is used as an initial configuration. When is evalu-
ated on the test data, it is about two to four times higher than the ACTR-based
initial temperature. When is used, temperature is over twenty times higher.

Except for the initial temperature calculation and the initial configuration
assignment, the same cooling schedule is used for both conventional SA and
the SA part of the proposed buffer allocation algorithm. Since there are many
possible cooling schedules, overall execution times are variable. However, the
initial temperatures are comparable between conventional and proposed SA.
Consequently, the reduction rate of initial temperatures can be considered as a
real contribution of this paper.

Over the synthesized test data, the proposed algorithm reduce the search
time by 47% (1.98 speedup) in average while the optimality of solutions is kept
when compared to the pure SA algorithm. Note that the reduction rate of the
search time is not proportional to that of the temperature. This happens because
that the number of iterations in the inner loop (Line 2 to Line 8 in Fig. 10) of an
SA algorithm tends to increase as temperature decreases.

594 J.-G. Lee et al.

Thanks to “a low initial temperature at the beginning of the SA procedure”
in the proposed algorithm and “a localized search space”, the SA procedure
shows the fast convergence to a solution, compared with the conventional SA.
The fast convergence allows further optimization of SA procedure. When the
temperature is high, search behavior is unpredictable and the behavior shows
divergence during the initial search. When the temperature is low, however, the
repetitive oscillating configuration transitions (moves) can be thought as in the
way of search convergence. Consequently, the proposed algorithm can further
reduce the search time by employing a more restrictive steady-state checking
rule (at Line 8 in Fig. 10) in the SA algorithm without loss of optimality.

The proposed algorithm is modified to have a strict equilibrium steady-state
checking rule limit the number of iterations that does not introduce more cost
reduction. In this case, the proposed algorithm runs 3.76 times faster without
loss of optimality as shown in Table 1 when compared with the conventional
SA without the strict termination rule. When we apply the same steady-state
checking rule to the conventional SA, it resulted in significantly worse solutions
due to the diverging behavior of a high temperature search although the search
time is reduced.

To see the effects of a boundary escaping probability, more experiments are
performed with 1% probability of escaping a boundary instead of 5%. In this case,
a speedup ratio of search time reaches up to 4.34 without loss of optimality as
shown in the last row of Table 1. Consequently, we guess that the uphill potential
barrier between optima is very small. Further analysis is required to find the
lowest escaping probability from OPR while keeping the quality of solutions.

7 Summary and Conclusions

In this paper, we have analyzed a buffer design space of an ALP and developed
an effective way to reduce the search space. In the proposed approach, a buffer
design space is partitioned into two subspaces, an OPR and an NOPR, according

Efficient Buffer Allocation for Asynchronous Linear Pipelines 595

to the characteristics (monotonicity, convexity) of the cost surface. Then a hybrid
search algorithm has been devised. It performs a hill climbing search in an NOPR
and high-complexity search in an OPR. As a high-complexity search method,
an SA algorithm is adopted. The proposed algorithm shows a speed up of up to
4.34 times without the loss of optimality, when tested with synthetic test data,
compared to a conventional SA algorithm.

Future work is under way to develop a new heuristic search procedure to
be applied to OPR instead of SA since SA still takes a long time to allocate
buffers into a pipeline of only ten stages. Finally, it will be also interesting to do
mathematical or theoretical analyses on a buffer design space of an ALP showing
a dynamic average-case performance behavior.

References

1.
2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

N.J. Nilsson, “Principles of Artificial Intelligence,” Springer-Verlag, 1980.
T.E. Williams, “Analyzing and improving the latency and throughput performance
of self-timed pipelines and rings,” In Proc. of International Symposium on Circuits
and Systems, pp.665-668, vol. 2, May 1992.
M.R. Greenstreet, “STARI: A Technique for High-Bandwidth Communication,“
PhD. Thesis, Princeton University, Jan. 1993.
S. Hauck, “Asynchronous Design Methodologies: an Overview,” In Proceedings of
the IEEE, vol.83, no.1, pp. 69-93, 1995.
D. Kearney, “Performance Evaluation of Asynchronous Logic Pipelines with Data
Dependant Processing Delays,” In Proc. of the Second Working Conference on
Asynchronous Design Methodologies, pp.4-13, London, May. 1995.
D. Kearney and N.W. Bergmann, “Bundled Data Asynchronous Multipliers with
Data Dependent Computation Times,” In Proc. of International Symposium on
Advanced Research in Asynchronous Circuits and Systems, pp.186-197, Apr. 1997.
S.M. Nowick, K.Y. Yun et al, “Speculative completion for the design of high-
performance asynchronous dynamic adders,” In Proc. of International Symposium
on Advanced Research in Asynchronous Circuits and Systems, pp.210-223, Apr.
1997.
W.C. Chou, P.A. Beerel, et al., “Average-case optimized technology mapping of
one-hot domino circuits,” In Proc. of International Symposium on Advanced Re-
search in Asynchronous Circuits and Systems, pp.80-91, Apr. 1998.
D. Kearney, “Theoretical Limits on the Data Dependent Performance of Asyn-
chronous Circuits,” In Proc. of International Symposium on Advanced Research in
Asynchronous Circuits and Systems, pp.201-207, Apr. 1999.
S.M. Sait, H. Youssef, “Iterative Computer Algorithms with Applications in Engi-
neering,” IEEE Computer Society Press, 1999.
M.R. Greenstreet and B. Alwis, “How to Achieve Worst-Case Performance,” In
Proc. of International Symposium on Advanced Research in Asynchronous Circuits
and Systems, pp.206-216, Mar. 2001.
C.-C. Chang, J. Cong, Z. Pan and X. Yuan “Multilevel Global Placement With
Congestion Control,” IEEE Tranc. on Computer-Aided Design of Integrated Cir-
cuits and Systems, pp.395-409, Vol. 22, No. 4, Apr., 2003.

This page intentionally left blank

Author Index

Ahn, Seong-Yong 102
Anantha, Madhusudhanan 321
Andrade, Diego 44

Baek, SunHo 426
Bazargan, Kia 88
Bella, Bose 321
Blanc, Fréderic 72

Chen, Deren 461
Chen, Howard 241
Chen, Huowang 30
Chen, Jian 115
Chen, Ying 88
Chevobbe, Stéphane 72
Choi, Byung-Soo 170
Chung, Sung Woo 374
Collette, Thierry 72

Dai, Kui 126
Deng, Kun 414
Doallo, Ramón 44
Du, Hongyan 30

Ekpanyapong, Mongkol 399
Elphinstone, Kevin 256
Epalza, Marc 185

Fang, Jesse Z. 270
Fraguela, Basilio B. 44
Fu, Yuzhuo 115

Gaudiot, Jean-Luc 554
Götz, Stefan 256
Großschädl, Johann 282

Hagiwara, Toshihide 539
Hamayasu, Kentaro 212
Han, Tack-Don 271, 449, 568
Har, Dong-Soo 170
Hayashi, Yoshiteru 296
Hsu, Wei-Chung 241
Huang, Changqin 461
Hwang, Soo Yun 363

Ienne, Paolo 185

Izumi, Tomonori 296

Jhang, Kyoung-Sun 363

Kim, Byung-Uck 271
Kim, Dae-Woong 160
Kim, Do-Hun 160
Kim, Euiseok 582
Kim, Jun-Yong 102
Kim, JunSeong 309, 426
Korkmaz, Pinar 399

Lai, Chunrong 16
Leclercq, Philippe 309
Lee, Gareth 309
Lee, Hsien-Hsin S. 399
Lee, Jeong-A 102,170, 582
Lee, Jeong-Gun 582
Lee, KyuHo 426
Lee, Ruby B. 473
Lee, Yong-Fong 226
Li, GuoJie 373
Li, Haiyan 199
Li, LiPing 309
Li, Xiaobin 554
Lilja, David J. 88
Liu, Rui-fang 515
Liu, Zhenyu 503
Lu, Hong-yi 126
Lu, Jiwei 241
Lu, Shih-Lien 16

Machanick, Philip 146
Masuzaki, Takahiko 296
Mlynek, Daniel 185
Morris, John 309, 426
Moshnyaga, Vasily G. 212
Mun, Kui-Yon 160

Najaf-abadi, Hashem Hashemi 349
Nakamura, Yukihiro 296

Onoye, Takao 296

Paek, Eunok 582
Pai, Vasudev V. 88
Pande, Santosh 385

598 Author Index

Park, Chan-Ik 160
Park, Sung Bae 374
Park, Woo-Chan 271, 449, 568

Qi, Jiayue 503

Ranganathan, Karthik 88

Sarbazi-Azad, Hamid 349
Shi, Weidong 385
Shi, Zhijie Jerry 473
Shieh, Jong-Jiann 489
Smith, James E. 1
Song, Guanghua 461
Srikanthan, Thambipillai 440

Taki, Yoshitaka 296
Tan, Zhi-hu 515
Tanaka, Kiyofumi 539
Tian, Xingyan 30
Tillich, Stefan 282
Tsutsui, Hiroshi 296

Ventroux, Nicolas 72

Wallner, Sebastian 58
Wang, Dongsheng 137
Wang, Lei 126
Wang, Zhi-ying 126

Wen, Mei 199
Wu, Jigang 440
Wu, Nan 199
Wu, Youfeng 226

Xiao, Yong 414
Xie, Change-sheng 515
Xu, Ruhao 115

Yang, Qing 515
Yang, Sung-Bong 271, 449, 568
Yang, Tzung-Rei 489
Yang, Xiao 473
Yang, Yuanyuan 335
Yao, Wenbin 137
Yew, Pen-Chung 241
Yi, JongSu 309
Yi, Kang 363

Zhang, Chunyuan 199
Zhang, Tao 385
Zhang, Wei 2
Zhang, Youhui 527
Zhang, Zhenghao 335
Zhao, Kejia 30
Zheng, Weimin 137, 527
Zheng, Yao 461
Zhou, Xingming 414

This page intentionally left blank

This page intentionally left blank

This page intentionally left blank

This page intentionally left blank

This page intentionally left blank

This page intentionally left blank

Lecture Notes in Computer Science

For information about Vols. 1–3092

please contact your bookseller or Springer

Vol. 3232: R. Heery, L. Lyon (Eds.), Research and Ad-
vanced Technology for Digital Libraries. XV, 528 pages.
2004.

Vol. 3220: J.C. Lester, R.M. Vicari, F. Paraguaçu (Eds.),
Intelligent Tutoring Systems. XXI, 920 pages. 2004.

Vol. 3208: H.J. Ohlbach, S. Schaffert (Eds.), Principles
and Practice of Semantic Web Reasoning. VII, 165 pages.
2004.

Vol. 3207: L.T. Jang, M. Guo, G.R. Gao, N.K. Jha, Embed-
ded and Ubiquitous Computing. XX, 1116 pages. 2004.

Vol. 3206: P. Sojka, I. Kopecek, K. Pala (Eds.), Text,
Speech and Dialogue. XIII, 667 pages. 2004. (Subseries
LNAI).

Vol. 3205: N. Davies, E. Mynatt, I. Siio (Eds.), UbiComp
2004: Ubiquitous Computing. XVI, 452 pages. 2004.

Vol. 3203: J. Becker, M. Platzner, S. Vernalde (Eds.), Field
Programmable Logic and Application. XXX, 1198 pages.
2004.

Vol. 3198: G.-J. de Vreede, L.A. Guerrero, G. Marín
Raventós (Eds.), Groupware: Design, Implementation and
Use. XI, 378 pages. 2004.

Vol. 3194: R. Camacho, R. King, A. Srinivasan (Eds.), In-
ductive Logic Programming. XI, 361 pages. 2004. (Sub-
series LNAI).

Vol. 3192: C. Bussler, D. Fensel (Eds.), Artificial Intel-
ligence: Methodology, Systems, and Applications. XIII,
522 pages. 2004. (Subseries LNAI).

Vol. 3189: P.-C. Yew, J. Xue (Eds.), Advances in Computer
Systems Architecture. XVII, 598 pages. 2004.

Vol. 3186: Z. Bellahséne, T. Milo, M. Rys, D. Suciu, R.
Unland (Eds.), Database and XML Technologies. X, 235
pages. 2004.

Vol. 3184: S. Katsikas, J. Lopez, G. Pernul (Eds.), Trust
and Privacy in Digital Business. XI, 299 pages. 2004.

Vol. 3183: R. Traunmüller (Ed.), Electronic Government.
XIX, 583 pages. 2004.

Vol. 3182: K. Bauknecht, M. Bichler, B. Pröll (Eds.), E-
Commerce and Web Technologies. XI, 370 pages. 2004.

Vol. 3181: Y. Kambayashi, M. Mohania, W. Wöß (Eds.),
Data Warehousing and Knowledge Discovery. XIV, 412
pages. 2004.

Vol. 3180: F. Galindo, M. Takizawa, R. Traunmüller
(Eds.), Database and Expert Systems Applications. XXI,
945 pages. 2004.

Vol. 3178: W. Jonker, M. Petkovic (Eds.), Secure Data
Management. VIII, 219 pages. 2004.

Vol. 3177: Z.R. Yang, H. Yin, R. Everson (Eds.), Intelli-
gent Data Engineering and Automated Learning –IDEAL
2004. XVIII, 852 pages. 2004.

Vol. 3175: C.E. Rasmussen, H.H. Bülthoff, B. Schölkopf,
M.A. Giese (Eds.), Pattern Recognition. XVIII, 581 pages.
2004.

Vol. 3174: F. Yin, J. Wang, C. Guo (Eds.), Advances in
Neural Networks - ISNN 2004. XXXV, 1021 pages. 2004.

Vol. 3172: M. Dorigo, M. Birattari, C. Blum, L.
M.Gambardella, F. Mondada, T. Stützle (Eds.), Ant
Colony, Optimization and Swarm Intelligence. XII, 434
pages. 2004.

Vol. 3170: P. Gardner, N. Yoshida (Eds.), CONCUR 2004
- Concurrency Theory. XIII, 529 pages. 2004.

Vol. 3166: M. Rauterberg (Ed.), Entertainment Computing
– ICEC 2004. XXIII, 617 pages. 2004.

Vol. 3163: S. Marinai, A. Dengel (Eds.), Document Anal-
ysis Systems VI. XII, 564 pages. 2004.

Vol. 3159: U. Visser, Intelligent Information Integration
for the Semantic Web. XIV, 150 pages. 2004. (Subseries
LNAI).

Vol. 3158: I. Nikolaidis, M. Barbeau, E. Kranakis (Eds.),
Ad-Hoc, Mobile, and Wireless Networks. IX, 344 pages.
2004.

Vol. 3157: C. Zhang, H. W. Guesgen, W.K. Yeap (Eds.),
PRICAI 2004: Trends in Artificial Intelligence. XX, 1023
pages. 2004. (Subseries LNAI).

Vol. 3156: M. Joye, J.-J. Quisquater (Eds.), Cryptographic
Hardware and Embedded Systems - CHES 2004. XIII, 455
pages. 2004.

Vol. 3155: P. Funk, P.A. González Calero (Eds.), Advances
in Case-Based Reasoning. XIII, 822 pages. 2004. (Sub-
series LNAI).

Vol. 3154: R.L. Nord (Ed.), Software Product Lines. XIV,
334 pages. 2004.

Vol. 3153: J. Fiala, V. Koubek, J. Kratochvíl (Eds.), Math-
ematical Foundations of Computer Science 2004. XIV,
902 pages. 2004.

Vol. 3152: M. Franklin (Ed.), Advances in Cryptology –
CRYPTO 2004. XI, 579 pages. 2004.

Vol. 3150: G.-Z. Yang, T. Jiang (Eds.), Medical Imaging
and Augmented Reality. XII, 378 pages. 2004.

Vol. 3149: M. Danelutto, M. Vanneschi, D. Laforenza
(Eds.), Euro-Par 2004 Parallel Processing. XXXIV, 1081
pages. 2004.

Vol. 3148: R. Giacobazzi (Ed.), Static Analysis. XI, 393
pages. 2004.

Vol. 3146: P. Érdi, A. Esposito, M. Marinaro, S. Scarpetta
(Eds.), Computational Neuroscience: Cortical Dynamics.
XI, 161 pages. 2004.

Vol. 3144: M. Papatriantafilou, P. Hunel (Eds.), Principles
of Distributed Systems. XI, 246 pages. 2004.

Vol. 3143: W. Liu, Y. Shi, Q. Li (Eds.), Advances in Web-
Based Learning – ICWL 2004. XIV, 459 pages. 2004.

Vol. 3142: J. Diaz, J. Karhumäki, A. Lepistö, D. Sannella
(Eds.), Automata, Languages and Programming. XIX,
1253 pages. 2004.

Vol. 3140: N. Koch, P. Fraternali, M. Wirsing (Eds.), Web
Engineering. XXI, 623 pages. 2004.

Vol. 3139: F. Iida, R. Pfeifer.L. Steels, Y. Kuniyoshi (Eds.),
Embodied Artificial Intelligence. IX, 331 pages. 2004.
(Subseries LNAI).

Vol. 3138: A. Fred, T. Caelli, R.P.W. Duin, A. Campilho,
D.d. Ridder (Eds.), Structural, Syntactic, and Statistical
Pattern Recognition. XXII, 1168 pages. 2004.

Vol. 3137: P. De Bra, W. Nejdl (Eds.), Adaptive Hyperme-
dia and Adaptive Web-Based Systems. XIV, 442 pages.
2004.

Vol. 3136: F. Meziane, E. Métais (Eds.), Natural Language
Processing and Information Systems. XII, 436 pages.
2004.

Vol. 3134: C. Zannier, H. Erdogmus, L. Lindstrom (Eds.),
Extreme Programming and Agile Methods - XP/Agile
Universe 2004. XIV, 233 pages. 2004.

Vol. 3133: A.D. Pimentel, S. Vassiliadis (Eds.), Computer
Systems: Architectures, Modeling, and Simulation. XIII,
562 pages. 2004.

Vol. 3132: B. Demoen,V. Lifschitz (Eds.), Logic Program-
ming. XII, 480 pages. 2004.

Vol. 3131: V. Torra, Y. Narukawa (Eds.), Modeling De-
cisions for Artificial Intelligence. XI, 327 pages. 2004.
(Subseries LNAI).

Vol. 3130: A. Syropoulos, K. Berry, Y. Haralambous, B.
Hughes, S. Peter, J. Plaice (Eds.), TeX, XML, and Digital
Typography. VIII, 265 pages. 2004.

Vol. 3129: Q. Li, G. Wang, L. Feng (Eds.), Advances
in Web-Age Information Management. XVII, 753 pages.
2004.

Vol. 3128: D. Asonov (Ed.), Querying Databases Privately.
IX, 115 pages. 2004.

Vol. 3127: K.E. Wolff, H.D. Pfeiffer, H.S. Delugach (Eds.),
Conceptual Structures at Work. XI, 403 pages. 2004. (Sub-
series LNAI).

Vol. 3126: P. Dini, P. Lorenz, J.N.d. Souza (Eds.), Service
Assurance with Partial and Intermittent Resources. XI,
312 pages. 2004.

Vol. 3125: D. Kozen (Ed.), Mathematics of Program Con-
struction. X, 401 pages. 2004.

Vol. 3124: J.N. de Souza, P. Dini, P. Lorenz (Eds.),
Telecommunications and Networking - ICT 2004. XXVI,
1390 pages. 2004.

Vol. 3123: A. Belz, R. Evans, P. Piwek (Eds.), Natural Lan-
guage Generation. X, 219 pages. 2004. (Subseries LNAI).

Vol. 3122: K. Jansen, S. Khanna, J.D.P. Rolim, D. Ron
(Eds.), Approximation, Randomization, and Combinato-
rial Optimization. IX, 428 pages. 2004.

Vol. 3121: S. Nikoletseas, J.D.P. Rolim (Eds.), Algorith-
mic Aspects of Wireless Sensor Networks. X, 201 pages.
2004.

Vol. 3120: J. Shawe-Taylor, Y. Singer (Eds.), Learning
Theory. X, 648 pages. 2004. (Subseries LNAI).

Vol. 3118: K. Miesenberger, J. Klaus, W. Zagler, D. Burger
(Eds.), Computer Helping People with Special Needs.
XXIII, 1191 pages. 2004.

Vol. 3116: C. Rattray, S. Maharaj, C. Shankland (Eds.),Al-
gebraic Methodology and Software Technology. XI, 569
pages. 2004.

Vol. 3114: R. Alur, D.A. Peled (Eds.), Computer Aided
Verification. XII, 536 pages. 2004.

Vol. 3113: J. Karhumäki, H. Maurer, G. Paun, G. Rozen-
berg (Eds.), Theory Is Forever. X, 283 pages. 2004.

Vol. 3112: H. Williams, L. MacKinnon (Eds.), Key Tech-
nologies for Data Management. XII, 265 pages. 2004.

Vol. 3111: T. Hagerup, J. Katajainen (Eds.), Algorithm
Theory - SWAT 2004. XI, 506 pages. 2004.

Vol. 3110: A. Juels (Ed.), Financial Cryptography. XI, 281
pages. 2004.

Vol. 3109: S.C. Sahinalp, S. Muthukrishnan, U. Dogrusoz
(Eds.), Combinatorial Pattern Matching. XII, 486 pages.
2004.

Vol. 3108: H. Wang, J. Pieprzyk, V. Varadharajan (Eds.),
Information Security and Privacy. XII, 494 pages. 2004.

Vol. 3107: J. Bosch, C. Krueger (Eds.), Software Reuse:
Methods, Techniques and Tools. XI, 339 pages. 2004.

Vol. 3106: K.-Y. Chwa, J.I. Munro (Eds.), Computing and
Combinatorics. XIII, 474 pages. 2004.

Vol. 3105: S. Göbel, U. Spierling, A. Hoffmann, I. Iurgel,
O. Schneider, J. Dechau, A. Feix (Eds.), Technologies for
Interactive Digital Storytel ling and Entertainment. XVI,
304 pages. 2004.

Vol. 3104: R. Kralovic, O. Sykora (Eds.), Structural In-
formation and Communication Complexity. X, 303 pages.
2004.

Vol. 3103: K. Deb, e. al. (Eds.), Genetic and Evolutionary
Computation– GECCO 2004. XLIX, 1439 pages. 2004.

Vol. 3102: K. Deb, e. al. (Eds.), Genetic and Evolutionary
Computation – GECCO 2004. L, 1445 pages. 2004.

Vol. 3101: M. Masoodian, S. Jones, B. Rogers (Eds.),
Computer Human Interaction. XIV, 694 pages. 2004.

Vol. 3100: J.F. Peters, A. Skowron,
B. Kostek, M.S. Szczuka (Eds.), Trans-
actions on Rough Sets I. X, 405 pages. 2004.

Vol. 3099: J. Cortadella, W. Reisig (Eds.), Applications
and Theory of Petri Nets 2004. XI, 505 pages. 2004.

Vol. 3098: J. Desel, W. Reisig, G. Rozenberg (Eds.), Lec-
tures on Concurrency and Petri Nets. VIII, 849 pages.
2004.

Vol. 3097: D. Basin, M. Rusinowitch (Eds.), Automated
Reasoning. XII, 493 pages. 2004. (Subseries LNAI).

Vol. 3096: G. Melnik, H. Holz (Eds.), Advances in Learn-
ing Software Organizations. X, 173 pages. 2004.

Vol. 3095: C. Bussler, D. Fensel, M.E. Orlowska, J. Yang
(Eds.), Web Services, E-Business, and the Semantic Web.
X, 147 pages. 2004.

Vol. 3094: A. Nürnberger, M. Detyniecki (Eds.), Adaptive
Multimedia Retrieval. VIII, 229 pages. 2004.

Vol. 3093: S. Katsikas, S. Gritzalis, J. Lopez (Eds.), Public
Key Infrastructure. XIII, 380 pages. 2004.

