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PREFACE

On 14 October 1998, I coined the term “cognitive radio (CR)” to represent 
the integration of substantial computational intelligence—particularly 
machine learning, vision, and natural language processing—into software-
defi ned radio (SDR). CR embeds a RF-domain intelligent agent as a radio 
and information access proxy for the user, making a myriad of detailed radio 
use decisions on behalf of the user (not necessarily of the network) to use the 
radio spectrum more effectively. (This is the fi rst of several informal defi ni-
tions of cognitive radio. The technical defi nition is given in a computational 
ontology of the ideal cognitive radio, the iCR.) CR is based on “software 
radio.” (See J. Mitola, Software Radio Architecture, Wiley, Hoboken, NJ, 
2000).

Between 1998 and 2000, I refi ned cognitive radio concepts in my disserta-
tion research. At that time, I built a research prototype cognitive wireless 
personal digital assistant (CWPDA) in Java—CR1—and trained it, gaining 
insights into cognitive radio technology and architecture. While working on 
my dissertation, I described the ideal CR (iCR) for spectrum management at 
the Federal Communications Commission (FCC) on 6 April 1999 (see the 
companion CD-ROM or web site for the text of this statement) and in a public 
forum on secondary markets in a layperson’s version of a core doctoral 
program (FCC, Public Forum on Secondary Markets, Washington, DC, 21 
May 2000). It showed the potential economic value of iCR in secondary radio 
spectrum markets. I fi rst presented the technical material publicly at the 
IEEE workshop on Mobile Multimedia Communications (see J. Mitola III, 
“Cognitive Radio for Flexible Mobile Multimedia Communications,” Mobile 
Multimedia Communications (MoMUC 99), IEEE Press, New York, 1999). 



x     PREFACE

The FCC uses the term cognitive to mean “adaptive” without requiring 
machine learning. This text coins the phrase “ideal cognitive radio (iCR)” 
for a CR with autonomous machine learning, vision (not just a camera), and 
spoken or written language perception. There will be an exciting progression 
across aware, adaptive, and cognitive radio (AACR). Enjoy!

DISCLAIMER

This text was prepared entirely on the author’s personal time and with per-
sonal resources. The author is an employee of The MITRE Corporation on 
loan via the provisions of the Interagency Personnel Act (IPA) to the U.S. 
Department of Defense (DoD). This document has been “Approved for 
public release; Distribution unlimited” per DoD case number pp-05-0378 and 
MITRE case number 06-0696. “The author’s affi liation with DoD and The 
MITRE Corporation is provided for identifi cation purposes only, and is not 
intended to convey or imply MITRE or DoD concurrence with, or support 
for, the positions, opinions, or viewpoints expressed by the author.”

 Joseph Mitola III
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CHAPTER 1

INTRODUCTION

This book is about making radios so smart that they can autonomously dis-
cover how, when, and where to use radio spectrum to obtain information 
services without having previously been programmed to do so. Cognitive 
radio integrates machine perception software into wireless systems—radio 
nodes and networks. Radios today are evolving from awareness (e.g., of loca-
tion) toward cognition: the self-aware radio autonomously learns helpful new 
wireless information access and use behaviors, not just sensing the radio fre-
quency (RF) spectrum but also perceiving and interpreting the user in the 
user’s environment via computer vision, speech recognition (speech-to-text), 
and language understanding (Figure 1-1).

This progression of awareness and adaptation toward cognitive radio 
(AACR) leverages traditionally nonradio technologies: computer vision, nav-
igation, speech recognition and synthesis, and the semantic web [1]. Machine 
perception grounds the ideal cognitive radio’s “self” and its perception of its 
user’s communications needs, priorities, and intent in the world of space, 
time, and situation so that the ideal cognitive radio (iCR) more transparently 
and effi ciently accesses useful information via whatever wireless means might 
be made available. The wireless mantra “always best connected” (ABC) is 
transformed by the iCR focus on quality of information (QoI) to “always 
better informed” (ABI). This transformation is facilitated by semantic web 
technologies like the eXtensible Markup Language (XML) and the Ontology 
Web Language (OWL) [2] adapted to radio applications via a new metalan-
guage, Radio XML (RXML).

Cognitive Radio Architecture: The Engineering Foundations of Radio XML
By Joseph Mitola III Copyright © 2006 John Wiley & Sons, Inc.



2     INTRODUCTION

The iCR is a far-term vision. The path suggested in subsequent use cases 
evolves increasingly from aware and adaptive radios toward cognitive radio,
the AACR revolution. AACR technology can also power increasingly autono-
mous cognitive wireless networks (CWNs). The cognitive radio architecture 
(CRA) defi nes functions, components, and design rules by which to evolve 
software-defi ned radio (SDR) toward the iCR vision. The core technology of 
the CRA evolution is the <Self/>,1 defi ned in RXML, perceiving the radio 
spectrum, enabling vision and speech perception with embedded autonomous 
machine learning (AML) for RF awareness, cooperative networking, and 
mass customization of information services for the <Self/>’s own <User/>.

This initial chapter draws important distinctions among similar AACR 
concepts and sets the perspective for the balance of the book. The foundation 
chapters then further develop the use cases and technical ideas from radio 
technology, machine perception, machine learning, and the semantic web, 
organizing the approach into the CRA and illustrating this architecture with 
the research prototype CR1. The Java source code of CR1 illustrates the 
CRA principles in a simulated cognitive wireless personal digital assistant 
(CWPDA). Subsequent chapters on radio and user-domain skills develop the 
ideas further. Exercises engage the serious reader.

X - Unused Channels

Z - Subscribed Services

I - In Use by Others

B - Broadcast

Perceives Radio Domain

Perceives Scene as User Vision +

CWPDA

I I I IXX Z Z B BX X I X

FIGURE 1-1 Notional cognitive wireless personal digital assistant (CWPDA).

1 Terminated XML tags like <Self/> are ontological primitives of Radio XML.



1.1 PERCEPTION

SDRs sense specifi c radio bands but lack broad RF, audio, and visual percep-
tion. Perception technologies enable AACR to autonomously take the user’s 
perspective, to understand referents in speech and vision, recognizing QoI 
features of both RF and user sensor-perception domains with a goal of zero 
redundant instructions from the user to the AACR for information access. 
The iCR accesses information as presciently as the legendary Radar O’Riley 
of 4077 MASH®.

1.1.1 RF Perception

RF perception goes beyond the detection of expected signals on known fre-
quencies. It includes the extraction of helpful information from broadcast 
channels, deference to legacy (noncognitive) radios, reduction of noise, and 
minimization of interference not just by running the right SDR modules, but 
by autonomously constructing the RF behavior most appropriate to the 
setting. RF perception enables the iCR to characterize the signifi cant entities 
and relationships in the RF environment. RF perception goes beyond the 
traditional radio-domain sensing of signal-to-noise ratio (SNR), bit error rate 
(BER), code space, and the like. For example, to be most effective in the 
recently liberalized U.S. TV spectrum bands, an AACR not only senses 
broadcast channels but also computes the likelihood of hidden legacy TV 
receivers (“hidden nodes”), for example, based on detection of the TV below 
the noise level [3], directing energy away from hidden nodes.2 Such RF per-
ception grounds the iCR’s <Self/> with its <User/> in the domain (space ×
time × RF). The iCR’s computational models of RF entities include legacy 
transmitters, aware–adaptive radios (AARs), iCRs, multipath refl ectors, 
sources of noise or interference, and other relevant entities. The continuously 
increasing digital hardware capacity per gram enables increased wearable 
sensing with embedded RF scene perception from algorithms that model RF 
relationships. Thus, spectrum sharing of TV channels can evolve toward the 
iCR “radio etiquette,” autonomous polite use of available radio resources 
tailored to the situation.

Although it is possible to embed RF sensing and perception in hardware-
defi ned radio, the value proposition of iCR use cases accrues most dramati-
cally via SDR. For example, the iCR negotiates with alternative bearer 
networks on behalf of the user, downloading specialized air interfaces, and 
validating them before enabling them in the <Self/>’s embedded SDR. The 
iCR behaves as an autonomous RF access management agent.

2 This comment relates to an important use case supporting FCC policy referred to as the TV-
spectrum use case.

PERCEPTION     3



4     INTRODUCTION

1.1.1.1 GSM–DECT Priority
Network operators may not see the value of the CWPDA negotiating on 
behalf of the user. Sometimes the needs of the user contradict the needs of 
the service provider. Researchers have shown user-centric RF behaviors to 
be both easy to implement and valuable. For example, in 1997–1999 Ericsson®

provided dual-mode [4] GSM–DECT (Digital European Cordless Telephone) 
wireless badges to KTH, The Royal Institute of Technology at Kista 
(pronounced “sheesta”), a suburb of Stockholm. When initialized inside 
the Elektrum building, the badges used DECT’s free air time for network 
access. As the user lost DECT connectivity elsewhere on campus, the badge 
switched to GSM as planned. KTH paid Telia, the GSM service provider, for 
air time. Returning to the building, the badges stayed in GSM mode since 
GSM propagates well at Elektrum, so the badges rarely switched back to 
DECT, which cost the project a bundle, at least on paper. Reprogramming 
the badges to reacquire DECT whenever possible avoided the cost of GSM 
air time while indoors, reducing cost by a substantial fraction: Telia lost 
revenue from the displacement to a free RF band of what could have been 
cell phone traffi c.

1.1.1.2 Closer to Home
Past may be prolog. Suppose your 3G cell phone has IEEE 802.11 hot-spot 
capability and you have your own 802.11 networks at home and at work. 
Would you like your cell phone to switch to your free 802.11 network when 
possible, reducing cellular air time? I would. Why have cordless phones at 
home or a desk set at work when your 802.11-enabled cell phone can act as a 
cordless handset (for free)? Cellular service providers might not smile on such 
a phone. The hardware of a 3G hot-spot phone could access your free 802.11 
networks, saving cellular air-time costs. The software personality of that cell 
phone almost certainly would not allow that, however, for a mix of social, 
economic, and technical reasons. But a future AACR with fl exible 802.11 
access could use either the for-fee hot spot or your for-free home and 
work wireless access points, for example, via Voice over IP (VoIP). An iCR 
with suffi cient prior training and AML would not have to be programmed 
for that specifi c use case. It would discover the free RF access points through 
its ability to perceive the RF environment. It would discover the availability 
of your access points and autonomously synthesize a lowest cost (if that is 
your criterion) network interface that met your needs. How would the iCR 
know your needs? Such knowledge may be based on <Scene/> perception, 
the iCR perceiving itself, <Self/>, and its <User/> in a space–time–RF 
<Scene/>.

1.1.2 User <Scene/> Perception

Multisensory perception grounds the iCR’s <Self/> and its <User/> to the 
everyday world of physical settings with associated events, for example, defi ned 



as <Scenes/> in radio XML. Thus, the iCR manages wireless resources as an 
information services agent. Such an agent requires real-time perception and 
correlation of the current <Scene/> to similar <Scene/>s experienced previ-
ously, indexed effi ciently to infer the <Scene/>-dependent needs of the user.

To detect changes in the user’s communications needs, iCRs perceive the 
<Self/> and <User/> in the RF <Scene/> via vision, sound, email, and speech. 
The focused leveraging of knowledge representation, spatial–temporal task 
planning, and AML enables responsiveness without user tedium or expensive 
network customization staffs. AML technology thus offers mass customiza-
tion of iCR behavior. The sharing of knowledge among AACRs on behalf of 
their <Users/> creates ad hoc information services without the mediation of 
a for-fee service provider. This vision of the self-extending iCR may take 
decades to fully mature, but the radio knowledge, mutual grounding, and 
open architecture developed in this text assist more rapid technology evolu-
tion in this direction.

1.2 AWARE, ADAPTIVE, OR COGNITIVE?

There is a continuum from SDR to iCR with potentially many discrete steps, 
a few of which establish the technical foundation for evolution. Aware radios 
(ARs) incorporate new sensors that enhance wireless QoI. Embedding GPS 
in a cell phone, for example, enhances location QoI of the cell phone user. If, 
in addition, the cell phone assists the user with GPS navigation, then the cell 
phone itself is location aware.

Defi nition: A radio entity <Self/> is GPS aware if and only if (iff) an algo-
rithm in the <Self/> uses the GPS data for <RF/> or <User/>-QoI tasks.

As shown in Figure 1-2, the degree of location awareness ranges from 
convenient to cognitive.

1.2.1 Convenient

GPS may be embedded, but the radio’s location awareness may be nonexis-
tent: mere integration of GPS into a cell phone with latitude and longitude 
displayed is not location awareness. In such a confi guration, the embedded 
GPS display has no relationship to the cell phone itself other than sharing the 
mechanical enclosure. This product is convenient but is functionally equiva-
lent to a distinct GPS receiver in the user’s other pocket: convenient, but the 
radio’s <Self/>3 is not GPS aware.

3 <Self/> always refers to the radio’s own self-referential data structures and algorithms, not to 
a <User/>.

AWARE, ADAPTIVE, OR COGNITIVE?     5



6     INTRODUCTION

1.2.2 Aware

For RF-location awareness, the phone must associate some aspect of <RF/>
with <Location/>. For example, if the network determines the received signal 
strength indication (RSSI) at a given location by a query for (RSSI, Location) 
from the phone, then it is RF (RSSI)-<Location/> aware. The phone associ-
ates a <RF/> sensory parameter with <Location/> sensed simultaneously.

The phone is user-location aware if it associates some aspect of the <User/>
domain, such as broadcast radio preference, with location. Observations like 
(WTOP; Washington, DC) learned by the CWPDA support user-location 
awareness. A user-location aware network may associate user behavior, like 
placing a call, with user location, for example, to gather statistics on the 
space–time distribution of demand. Such user-location awareness enables 
better provisioning and thus better grade of service (GoS) [170]. User-
location aware networks are not new.

1.2.3 Adaptive

Adaptivity requires action. Specifi cally, if the phone itself uses location to 
optimize RF then the phone is RF-location adaptive. Suppose the phone 
could automatically change bands from UHF to VHF not when UHF fades, 
but when <Self/> detects a location and direction of movement where UHF 
is known to fade based on previous experience. Such a phone is RF-location 
adaptive, in this case band adaptive. 3G phones typically are mode adaptive, 
switching from a high data rate, high QoS mode to low data rate, stay-
connected modes during periods of weak RSSI.

1.2.4 Cognitive

Suppose the phone had learned RF-location adaptive behavior without having 
been preprogrammed. For example, the phone could create a database of 
location-indexed RSSI vectors (Latitude, Longitude, Time, RF, RSSI). 
Suppose the <Self/> includes a pattern recognition algorithm that detects a 
sequence of vectors along which UHF fades deeply for several minutes while 
at the same time VHF has strong RSSI. The pattern recognition algorithm 

+ GPS Module = Convenient

+ GPS        RF = RF-Location Aware

+ GPS        + RF Band Control = Adaptive

+ GPS        + Autonomous Adaptation = Cognitive

FIGURE 1-2 Wireless PDA plus GPS may be convenient, aware, adaptive, or 
cognitive.



might also determine that it takes 300–750 ms for the cell system to switch 
bands when UHF fades and that 80% of the time it has lost connectivity in 
400 ms. Suppose fi nally that the phone <Self/> decides that to be always best 
connected (ABC) it should request handover based on location rather than 
on RSSI. ABC is a motto of the European Union (EU) wireless research 
Framework program [5]. The phone might report weak RSSI to the network 
so it switches bands, not knowing that the phone has strong RSSI but antici-
pates weak RSSI soon. That phone would be exhibiting cognitive behavior 
with respect to RF-location because:

1. It observed RF parameters and associated location over time.
2. It associated RF features (e.g., RSSI) with location (i.e., the path over 

which UHF fades).
3. It detected a relationship among these data associations and its user’s 

need to be connected.
4. It reasoned over time to accurately diagnose that its user was not being 

connected because of a timing problem with handover.
5. It took effective action to achieve its goal (i.e., it reported low RSSI to 

obtain timely band handover to keep the user connected).
6. It achieved this specifi c behavior from general principles, not from 

having been specifi cally preprogrammed for this use case.

Professor Petri Mähönen of RWTH Aachen described a “little experi-
ment” in which he integrated a neural network controller into a cell phone 
and GPS to autonomously learn the association among time of day, vehicle 
speed, and the location of a long underground tunnel. The phone learned to 
turn itself off for the 5 minute tunnel transit to save battery life [6]. Network 
operators already may employ similar learning algorithms to optimize their 
use of radio resources; what is “best” for the network may not be “best” for 
the specifi c user, however.

A cell phone that learns can help the user in ways that do not help the 
network. Consider the previous example of the KTH GSM–DECT smart 
badge. Suppose the <User/> told the radio, “It costs 1 € per minute to use 
GSM, but DECT costs zero, so stay connected, but with cost as low as possi-
ble.” If from this and only this goal, the radio autonomously learns to use 
GPS location to switch to DECT when in or near KTH Elektrum, then it is 
behaving like an iCR. The cost-aware iCR researches tariffs for the user, 
learning that DECT air time is free while GSM is not. This book develops 
such entities with perception, planning, decision making, and actions that 
enable such implicit programming by communicating <User/> priorities via 
human language.

The iCR of the GSM–DECT example must know that the user’s text 
“GSM” or utterance “gee ess emm” in the instruction of the prior paragraph 
refers to specifi c internal signals and software in its own SDR subsystem that 

AWARE, ADAPTIVE, OR COGNITIVE?     7



8     INTRODUCTION

might be designated RF1.gsm.6545.v4, not “GSM.” A method of organizing 
such information into categories is called taxonomy. Taxonomy with a com-
prehensive semantics of the domain is called ontology [7]. If “GSM” invokes 
a map (<GSM/> <RF1  .  .  ./>) relating the user’s words to the signal path in 
the chip set, then the radio <Self/> and the <User/> are mutually grounded 
regarding GSM. Formally [8], ontology is an intensional semantic structure 
that encodes the implicit rules constraining the structure of a subset of reality. 
Therefore, ontology defi nes semantic primitives: data and rules. AACR ontol-
ogy structures the domains of <Space/>, <Time/>, <RF/>, and <Intelligent-
entities/>, especially the <User/> and the iCR <Self/>. To emphasize the 
ontological role, semantic primitives in this text use XML-style markup, 
<Semantic-primitive/>. Semantic web enthusiasts are developing tags and 
ontologies to enhance web access. This emerging semantic web offers founda-
tions, software tools [9], and lessons learned from which the specialized radio 
ontology kernel Radio XML (RXML) is defi ned in the companion 
CD-ROM.

The (Location, Time, RF, RSSI) association sketched above may be real-
ized in a hardware platform with a mix of application-specifi c integrated 
circuit (ASIC), fi eld programmable gate array (FPGA), digital signal proces-
sor (DSP) or general purpose processor (GPP), and associated fi rmware or 
software. The physical realization of AACR requires a mix of hardware–
software realizations for behavior that is affordable, effi cient, and fl exible. 
The optimal mix changes over time, so this text emphasizes functions and 
interfaces, not implementation details.

1.3 ADAPTATION

There may be much value to adaptation without cognition. The aware–
adaptive radio (AAR) is programmed to adapt itself to some aspect of a 
<Scene/>.

1.3.1 Adaptation Within Policy

A radio that senses an unused TV channel and adapts its transmission to use 
that RF channel for a low power ad hoc network is adapting to spectrum 
availability within a predefi ned policy constraint. The DARPA neXt Genera-
tion (XG) program defi ned a language for expressing <RF/> constraints to 
fl exibly implement the U.S. Federal Communications Commission (FCC) 
rules enabling the use of such TV channels for Part 15 networks [64].4 Many 
of the myriad other ways of adapting AAR RF behavior autonomously are 
developed in the sequel.

4 The use case supporting FCC policy is referred to as the XG or TV-spectrum use case.



1.3.2 Adaptation to the User

Radio adaptation is not limited to RF. A radio with soft biometrics such as 
face and speech recognition could adapt to an unknown <User/> by protect-
ing the Owner’s data.

When my wireless laptop was stolen, there was nothing but a password 
protecting my personal information from abuse. Suppose somewhere deep in 
the motherboard were soft biometric models of me at home, at work, com-
muting, and in recreational settings. The thief might hack the password but 
might not be able to fool the biometrics. If I were to introduce such a laptop, 
say, to my daughter to help her with her homework, the iCR laptop would 
adapt its biometric model of <User/> to include <Barb/>, but it should not let 
her access my business information without further permission. How can one 
create such fl exible yet trusted devices?

Historically, radio engineers have optimized the graphical user interface 
(GUI) to classes of users, but not to individual users. Cell phone GUIs are 
optimized for mass markets and military radios are optimized for military 
environments. As the complexity of function increases, the GUI complexity 
continues to increase, particularly in products where the user must set the RF 
air interface parameters (“modes”). A military iCR, though, may learn the 
“standard operating procedures” (SOPs) of the military user. Bands and 
modes for military SOPs may be published in a signal operating instruction 
(SOI). Instead of requiring the military user to enter parameter sets for an 
arcane SOP/SOI, the military iCR recognizes the user, time of day, and loca-
tion, learned the SOP with the user, accesses the SOI, and offers the following 
dialog between Sgt. Charlie and his iCR Sparky:

Charlie: “Hi, Sparky.”
Sparky (recognizing the GI’s voice and face): “Hi, Charlie. The schedule 

says today is a training day. Shall I load the SINCGARS training mode 
from the SOI?”

Charlie: “OK.”
Sparky: “What’s today’s training password?”
Charlie: “Today we are ‘Second Guessing’.”

Sparky verifi es Second Guessing against the password downloaded via the 
Army’s standard Single Channel Ground and Air Radio System (SINC-
GARS) secure network.5 Charlie does not waste time with radio trivia; if 
encumbered with protective gear he doesn’t need to type in the data load, 
potentially making an unfortunate mistake. Because of the unrealized poten-
tial of such speech, vision, and soft biometrics technologies, this book empha-
sizes such new iCR GUI ideas [10] with perception and AML to adapt to the 
specifi c <User/>, Charlie.

5 This vignette is the SINCGARS–Sparky use case.
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1.4 COGNITION

The value proposition of iCR needs further attention. Communications today 
are increasingly tedious. Commercial cellular users experience greater QoI 
with a briefcase full of GPS, AM/FM broadcast receivers, triband cellular, 
VHF push to talk, and cameras. The QoI entails increasingly complex control 
made transparent by the GUI (e.g., of cellular networks). But the mutual 
incompatibility of wireless PDAs, home wireless networks, business WLANs, 
wireless laptops, and so on burdens many users with tedium, limiting market 
penetration and decrementing QoI. AACR that perceives the user’s needs 
and learns to support them by connecting to information via any feasible RF
eases the burden of complexity, reduces costs, improves QoI, and enhances 
market value.

1.4.1 Perceiving User Needs

Is the user jogging or having a heart attack? Multiband cell phones and mili-
tary radios don’t care. But iCR user-perception technologies enable iCR both 
to sense such user states and to react, supplying contextually relevant personal 
information services, transforming radio from bit pipe to perceptive RF 
portal. A wearable iCR that “yells for help” as it detects a heart attack, so a 
nearby police offi cer instantly renders fi rst aid, contributes directly to per-
sonal health and wellbeing. A user surprised by a massive heart attack cannot 
dial 911. The iCR that can see and hear—sensing heart rate from the mul-
tipath signature of an ultra-wideband (UWB) personal area network (PAN) 
to infer the impending heart attack asks <User/>, “Are you OK?” and sensing 
gasping and struggling verifi es a health need. The iCR calls for help: “This 
is an emergency. I am iCR 555-1212. My owner is having a heart attack. He 
is incapable of communicating. This is not a drill. Please send a medical team 
immediately.”

Wearable cameras are in mass production. Vision subsystems that perceive 
motion via optical fl ow are available in chip-sized focal-plane arrays [256]. 
Thus, CWPDAs that see what the user sees are not far off. An iCR packaged 
as a CWPDA perceives user communications needs to a degree not practica-
ble with today’s radio technology. Some of the technology to make such 
behavior affordable and reliable is on the frontiers of computer science, so 
this book offers a radio-oriented introduction to these emerging technologies, 
suggesting architecture and migration paths for AACR evolution.

1.4.2 Learning Instead of Programming

The iCR might detect other potential sources of bodily harm. To preprogram 
all such scenes, the way Sparky was programmed to adapt to SOI, is combi-
natorially explosive. AML of specifi c user-RF needs, sharing among peer 
iCRs, and collaboration via CWNs are keys to the mass-customization value 



proposition. When an iCR fi rst observes a mugging, it extracts the distin-
guishing semantic features of the scene that precipitated the E911 call by the 
<User/>, for example, the words of the <Stranger/>. The next iCR that hears 
“Hey, Buddy, ‘c’m’ere; got the time?” from a dark alley might vibrate to warn 
the elderly <User/> and offer to initiate an E911 call. The architecture and 
research prototype CR1 illustrate such machine learning in simulated RF, 
audio, and video sensor-perception domains to enable iCR to learn autono-
mously instead of being programmed.

1.4.2.1 Learning by Being Told
Suppose in Boston, if bodily harm is imminent, the iCR can “yell for help” 
on a designated low power radio channel that all police monitor, just as air 
traffi c controllers monitor for “Mayday” distress calls. An iCR from the 
Midwest could learn such local customs from a Bostonian iCR. Sharing 
knowledge should be a trustable process to minimize false rumors. The 
Midwest iCR fi rst learns Boston police E911 RF channels from Scottie, the 
local iCR, verifying this from a regulatory authority (RA) trusted network.

To share data accurately with peers, iCRs share the semantics of concep-
tual primitives, like “emergency” as <E911/> and “channel” as <ISM/> in 
megahertz (MHz) of Figure 1-3. Shared semantics may be implemented (1) 
by traditional standards that force the developer to hard-code the semantics 
into the SDR, or (2) by open computational ontologies with standard seman-
tics, for example, as promoted by the semantic web community. Both peer 
exchange and RA verifi cation mediated by shared semantics are examples of 
“learning by being told.”

X - Unused Channels

Z - Subscribed Services
I - In Use by Others
B - Broadcast

Perceives Radio Domain

Shares Konwledge
with Other iCRs

CWPDA

I I I IYX Z Z B BX X I X

Y - Police Monitor for Emergencies

<Hello> <Self>Scottie</Self>
<Home>Iowa </Home>

<Query><New?/>
</Query> </Hello>

<Hello> <Self>

<New> <E911> <RF>
<ISM> Y MHz </ISM>
</RF> </E911> </New> </Hello>

FIGURE 1-3 Shared ontology assures accurate learning.
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1.4.2.2 Learning by Observing
Complementing peer knowledge, iCRs also learn local radio-use patterns 
autonomously. With speech recognition, the iCR could learn radio-use pat-
terns by listening. Suppose a <User/> arrives at an automobile racing event. 
Racing crews employ pit-crew jargon that differs from radio broadcaster and 
emergency jargon:

Racing jargon: “We are a little loose in that fi rst turn.”
Broadcast jargon: “Mikes are hot; we go to the booth after the 

commercial.”
Emergency jargon: “We need rescue behind the BB grandstand. Heat 

stroke.”

Having learned these hugely redundant patterns, the iCR adapts its own 
<RF/> use patterns accordingly. It plans to “yell for help” on the channel 
where emergency jargon is most in use without having been told or pro-
grammed to do so. It fi nds the Motor Racing Network’s (“MRN”) local RF 
channels offering the <User/> behind the scenes insights.

Both learning by being told and learning by observing the local radio 
bands reduce user tedium. Speech technology for such AML is brittle. 
Although 800 directory assistance speech recognition (e.g., TellMe®) is nearly 
error free, raw error rates remain high in noisy multispeaker environments—
often only 50% successful transcription from speech to text, increasing to 
70–90% when trained to the user, background, and domain of discourse. The 
narrower and more redundant the domain, the better. Speech and text natural 
language follow Zipf’s Law [11], exponentially distributing word frequencies 
as a function of language, domain, and topic.

1. Language Structure: “The” is the most common word in written 
English.

2. Domain of Discourse: “Cognitive” and “radio” are the most common 
words in this text.

3. Topic Structure: Each paragraph or section obeys Zipf’s Law with sur-
prising consistency.

Thus, in spite of low speech-to-text transcription accuracy, narrow domains 
exhibit distinctive content words and phrases with such statistical strength 
that they can be reliably detected in discourse. This text explores whether 
such brittle technology can detect user communications needs, reducing 
tedium for the user. Suppose your PDA updated your appointment book 
when you said, “Yes sir, I will be there next Tuesday at 7 am.” The true iCR 
PDA later autonomously joins an ad hoc 802.11 network to advise the boss 
that you are stuck in traffi c because of a big accident on the Beltway, bypass-
ing cell phone system overload.



1.4.2.3 AML Versus Programming
Computer programming is today’s method of synthesizing SDR behavior. A 
local emergency channel defi ned in a public XG broadcast can be hard-coded 
and downloaded. Machine learning isn’t needed.

But computer programming is expensive and programming for generic 
use-cases requires compromises. Network operators can’t marshal suffi cient 
programming resources to customize software to narrow situations, so we go 
for the worst case or average case. For example, the statistics of WLANs in 
corporate LANs versus rural consumer settings call for different sizes of 
address space and degrees of protection. iCR autonomously generates 
protocol variants from experience to optimize for local conditions. Genetic 
algorithm research shows how to encode wireless features in a digital genome 
for off-line optimization [75, 76]. With RA supervision, such AML enhances 
CWNs autonomously.

Software tools reduce the costs of software development and maintenance, 
but the tools tend not to offer AML as an alternative to programming. 
Tools tend toward domain independence, speeding programming practice, for 
example, via refactoring existing code and composable behaviors. In contrast, 
iCR employs heavily domain-dependent AML, for example, coding wireless 
features into a genome with radio performance coded in the fi tness functions 
[74]. RF-domain dependence leverages a store of prior knowledge unique to 
radio for incremental autonomous knowledge refi nement and adaptation. As 
was fi rst encountered in Lenat’s AM-Eurisko investigations [320] and Davis’ 
Tieresias [318], and widely proved by expert systems of the 1980s and 1990s 
[12] and remaining true today [13], autonomous knowledge evolution works 
well somehow algorithmically “close to” a priori knowledge, but does not 
extrapolate well. Thus, AML is accurately characterized as brittle.

1.4.2.4 Overcoming Brittleness
Contemporary AML offers incremental methods not fully exploited in SDR, 
such as case-based reasoning (CBR) with reinforcement. CBR was the fi rst 
ML technology to formalize experience per se. CBR learning consists of 
remembering, retrieving, and adapting (“revising”) the most relevant histori-
cal “case” from a case base of experience, using an adapted case (“reuse”) 
and integrating feedback into the anthology of experience [14]. Although 
CBR is a form of generalization, CBR can learn from a single example while 
other ML techniques like artifi cial neural networks (ANNs) must generalize 
off-line from large numbers of examples during a training phase. CBR gen-
eralizes on-line when confronted with a new situation, learning exceptions 
from one (validated) instance. In the early to mid-1990s, CBR was commer-
cialized as a type of instance-based reasoning (IBR) [15, 16]. IBR relevant to 
AACR includes support vector machines (SVMs) [17] for transductive infer-
ence, inference from one observed specifi c case to another without mediating 
generalizations [18]. Relevance-based learning (RBL) [13, p. 689] formalizes 
knowledge bootstrapping. Redundant structured domains like emergency 
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radio offer regular patterns and repetition needed for ANNs to learn patterns 
over time. Hierarchical reactive planning and control systems in robots 
also learn from the environment [53]. This broad range of AML techniques 
adapted to SDR enables AACR evolution. The cognitive radio architecture 
(CRA) of this text facilitates experience aggregation to mitigate the brittle-
ness of AML, enhancing QoI through autonomous use of RF domain knowl-
edge for autonomously perceived user needs.

This book shows how the autonomous customization of AACR may shift 
from labor-intensive programming to RF- and user-domain-specifi c AML. 
The serious reader who does the exercises and experiments with CR1 could 
contribute to AACR evolution, reducing the cost of tailored services and 
successfully embedding emerging vision, speech, perception, the semantic 
web, and AML technologies.

1.4.3 The Semantic Web

The technical foundations of computationally intelligent software are being 
feverishly developed for semantic information retrieval from the ultimate 
large data store, the World Wide Web via ontological content tags, not merely 
text, pictures, and sound [1]. Computational ontologies are a version of the 
classic parlor game “Twenty Questions.” I’m thinking of something and you 
must guess what it is by asking me not more than 20 questions. The fi rst ques-
tion is free: “Is it a person, place, or thing?”

 <Universe/>:
  1. <Person/>
  2. <Place/>
  3. <Thing/>

Is a cell site a place or a thing? From the network operator’s perspective, 
a cell site is a place near a cell tower. From the equipment manufacturer’s 
perspective, a cell site may be a thing, the tower and associated equipment. 
A radio-aware user, complaining “Darn, I always get disconnected in this cell 
site,” refers to <Place> <Cell-site/> </Place>.

The recognition of user dissatisfaction depends on shared semantics. The 
user and the iCR must share the same meaning of <Cell-site/> as <Place/>
not <Things/> in the context “disconnected.” Shared semantics opens the 
envelope, defi ning new relationships among users, regulators, service provid-
ers, and network operators. Thus in some sense, this is an “idea generation” 
book, probing the art of the possible by sketching AACR evolution and iden-
tifying key questions, challenges, and the enabling technologies.

Thus, iCR is a semantics-capable software agent embedded in a SDR. The 
agent learns from users, iCRs, CWNs, and the RF environment. The conver-
gence of radio with the computational intelligence of the semantic web further 
blurs the distinctions among radio, laptop computer, wireless PDA, household 



appliance, and automobile, yielding computationally intelligent information 
environments with AACR throughout.

Since the semantic web is developing rapidly, it is unclear whether the tra-
ditional wireless community (think “cell phones”) or the traditional computer 
science community (think 802.11 “wireless LAN”) will lead iCR markets. 
Will the wireless community move from bit pipes to semantic cell phones? If 
so, then wireless giants like Ericsson, Nokia, Samsung, Lucent, and Motorola 
may lead the market for billions of new iCR class semantically aware cell 
phones.

On the other hand, the mobile semantic web may render cell phones to 
mere commodity hardware like 802.11 nodes from BestBuy® or Kmart®,
enabling semantic information networks in which Intel, Microsoft®, IBM®,
Dell®, Comcast® (home information services provider), or Disney® (content 
provider) become the market leaders.

Either way, the technical foundations of wireless on the one hand and 
computational intelligence on the other are developing quickly, driven by 
complementary market forces.

1.5 COGNITIVE RADIO AND PUBLIC POLICY

Ideal cognitive radios are aware, adaptive radios that learn from experience. 
AML enables wireless devices to discover and use radio spectrum by “being 
polite” to each other, employing self-defi ned radio etiquettes rather than 
predefi ned albeit fl exible air interfaces and protocols. But will regulators 
permit such technology to enter the marketplace and if so, when?

1.5.1 FCC Rule Making

The iCR with AML was fi rst proposed in 1998 [19] and presented to the U.S. 
FCC as “cognitive radio” contemporaneously. The FCC identifi ed the poten-
tial of AACRs to enhance secondary spectrum markets. Specifi cally, the FCC 
enables TV-aware radios to establish Part 15 (low power) ad hoc wireless 
networks. The FCC’s deliberations included Notice of Inquiry (NOI) [20] and 
Notice of Proposed Rule Making (NPRM) [21, 22] without requiring the CRs 
to learn. This is good for the evolution of AACR, authorizing aware–adaptive 
radios, but it could lead to confusion between iCR and FCC CR, with market 
hype over FCC CR yielding only the AAR. Thus, in this text the term iCR 
is reserved for radios that autonomously learn from the environment (user 
and RF in a specifi c context or <Scene/>), adapting behavior perhaps beyond 
current FCC rules.

1.5.2 Global Interest

RAs in the United States, in Europe, and in the Asia-Pacifi c regions share 
interest in AACR. The U.S. FCC support of cognitive radio complements 
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other regulatory administrations, such as the U.K. and Japanese RAs and 
Germany’s RegTP, addressing CR [23]. In addition, the European Commis-
sion (EC) funded the End to End Reconfi gurable (E2R) program with a 
cognition task that includes the autonomous acquisition of user profi les [24]. 
Subsequently, RWTH Aachen sponsored the Dagstuhl, Germany workshop 
[25]. The EC considered CR as a theme of its sixth and seventh research 
frameworks [26]. Finally, the Software Defi ned Radio (SDR) Forum formed 
a special interest group on cognitive radio applications in 2004 [27], meeting 
in the United States, Europe, and Asia.

1.6 ARE WE THERE YET?

The iCR is a visionary concept. How long will it take to “get there”? A wealth 
of relevant technologies is rapidly emerging to move the AACR community 
quickly into the products and services envisioned by the FCC CR and inevi-
tably closer to iCR.

The full realization of the iCR vision requires decades. As illustrated in 
Figure 1-4, the iCR is a far-term concept, a point on the horizon by which to 
navigate. The research prototype cognitive radio, CR1, companion to this 
text, illustrates architecture principles for navigating toward iCR.

The FCC rule for more fl exible use of TV band spectrum encourages near-
term AACR technology: proactive sensing of the RF spectrum, enhanced 
detection of legacy users, adaptive creation of ad hoc networks, and polite 
backoff from legacy users when detected. Such basic AARs were emerging 
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FIGURE 1-4 The vision of the ideal cognitive radio takes time to realize.



in 2003, for example, the Intel® TV band AAR for the PC motherboard [28], 
leveraging the 2003 Rule and Order (R&O) that made unused television 
(TV) spectrum available for low power RF LAN applications via a simple 
predefi ned spectrum-use protocol [64]. DARPA’s neXt Generation (XG) 
program developed a language for expressing such policies [29]. Other more 
general protocols based on peek-through to legacy users have also been pro-
posed [145]. But radio communications will not transition instantaneously 
from AAR to CR. An embryonic AACR may have minimal sensory percep-
tion, minimal learning of user preferences, and no autonomous ability to 
modify itself. RAs hold manufacturers responsible for the behaviors of radios. 
The simpler the architecture, the easier it is to assure compliant behavior, to 
obtain certifi cation by RAs, and to get concurrence for open architectures. 
An autonomous iCR might unintentionally reprogram itself to violate regula-
tory constraints, with high risk to the manufacturer. Meanwhile, as research-
ers explore ways for perception and AML to enable new services, the evolution 
toward AACR will become clearer. Although it is diffi cult to quantify time 
to the iCR, further research in that general direction seems valuable. The 
pace at which markets develop depends in part on the degree to which 
researchers collaborate to accelerate iCR. One tool toward this end used suc-
cessfully in the ITU, OMG, TIA, and SDR Forum is the open architecture 
standard.

1.6.1 Open Architecture Frames Collaboration

Evolution from AAR toward iCR may be accelerated by industry agreement 
on an open cognitive radio architecture (CRA), a minimal set of AACR 
functions, components, and interfaces. Standard functions relate to both use 
cases on the one hand and product components on the other. This text sketches 
the evolution of functions for RF and (1) user perception via speech, vision, 
and other sensors; (2) computational semantics; (3) space–time planning; and 
(4) AML in an open architecture framework.

How will the computational ontologists work with RF designers? When 
will the speech and signal processing community contribute to better lan-
guage perception to autonomously determine the wireless information needs 
of the user in a noisy subway station? Will the speech recognition of the 
CWPDA fare better than in the speech-capable laptop, where the technology 
is underused at best? Cell phones of 2006 sport digital video cameras but not 
digital image perception. To integrate audio, video, and RF perception in 
managable steps toward the iCR requires an architecture that delineates the 
common ground of these disparate disciplines. The functional architecture, 
inference hierarchy, and cognition cycle of this text defi ne that common 
ground.

Specifi cally the CRA defi nes functions, components, and design rules by 
which families of different designs may rapidly be evolved, employing best-
of-breed strategies. This text characterizes the technologies to be integrated 
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for AACR, defi ning interfaces among hardware–software components from 
disparate disciplines. Allocation of functions to components and the defi ni-
tion of technical interfaces among these components are major tasks of radio 
systems engineering. Since computational ontologies are critical for AACR 
evolution, we’re not in Kansas anymore, Toto. So this text draws together 
disparate technologies to promote radio engineering to rapidly integrate 
semantic web technical radio knowledge, autonomous agent, and robotic 
control technologies to evolve AARs toward iCRs. The open CRA is not a 
fi nal solution but a contribution to academic, government, and industry dialog 
for iCR sooner rather than later.

1.6.2 Research Prototypes Deepen Understanding

Radio research depends on learning by doing. Thus, CR1, the research pro-
totype iCR, is a working (if not perfect) Java program implementing ubiqui-
tous CBR, learning from every experience, adapting to the RF environment 
and user situation. CR1’s illustrative personalities offer information services 
perceived through learning, hiding details of radio bands and modes from the 
user in a simulated environment. The companion CD-ROM includes the Java 
source code, compiled classes, previously learned/trained personalities, and 
an integrated runtime system for hands-on experimentation.

1.7 KEY QUESTIONS

Thus, the text addresses the following central questions:

• What is iCR and how does it differ from software radio, software-
defi ned radio (SDR), and aware–adaptive radio (AAR)?

• What new services are enabled by iCR?
• How will emerging AACR services differentiate products and benefi t 

users?
• What is the CRA? How will it evolve through initiatives such as the SDR 

Forum’s CR special interest group [145]?
• What sensory perception and radio knowledge must be embedded into 

SDR for AAR and iCR? How does computational ontology represent 
this knowledge, and how is it related to the semantic web?

• What new sensors are needed for FCC CR, AACR, and iCR?
• What skills must a radio system’s organization add to its workforce for 

AACR—natural language processing (NLP), machine learning (ML), 
ontologists?

• How is regulatory rule making shaping AACR markets?
• What about U.S., European, and Asian R&D?



• How will today’s discrete cell phones, PDAs, and laptops merge into the 
iCR wardrobe?

1.8 ORGANIZATION OF THE TEXT

To address these questions, this text is organized into three parts: founda-
tions, radio competence, and user-domain competence. It includes conclu-
sions, a glossary, references, and a companion CD-ROM with CR1 source 
code, documentation, and supplementary materials.

1.8.1 Foundations

The foundations part begins with a technical overview of AACR. Since eco-
nomically viable progress depends on user acceptance, the section develops 
both radio-driven and user-driven scenarios, motivating an ontological view 
of data structures that the cognitive entity must defi ne, ground to the real 
world via sensory perception, and employ effectively. Chapter 3 develops a 
specifi c use case in suffi cient detail to introduce the main technical ideas. 
Although most of the use cases could be implemented by hard-coding the use 
case in C, C++, Java, or C#, the major differentiator between AAR and iCR 
is the AML technology introduced in Chapter 4, with radio examples. Chapter 
5 develops the OOPDAL loop, the software fl ow from stimuli to responses 
through a perception hierarchy with algorithms to Observe, Orient, Plan,
Decide, and Act while all the time Learning about the <Self/>, the <RF-
environment/>, and the <User/>. CR1 implementing this architecture is 
developed in the companion CD-ROM with suffi cient detail for experimenta-
tion and behavior modifi cation.

1.8.2 Radio Competence

The radio competence part develops radio-domain use cases in Chapter 6. 
Chapter 7 explicates the radio knowledge into structured knowledge chunks 
with related methods of using the knowledge, bite-sized for evolutionary 
implementation. Chapter 8 addresses the implementation of radio-domain 
competence, formalizing radio knowledge in RXML. It develops reasoning 
skills—logic, rule-based reasoning, pattern analysis—with autoextensibility 
through the creation and use of knowledge objects (KOs) evolved via radio-
domain heuristics (RDHs). If iCR were a fait accompli, you could buy iCRs, 
not just read books about them, so this research-oriented treatment develops 
key ideas for radio-domain skills in RXML, KOs, and RDHs so that AACR 
may bootstrap skill as experience accumulates. This is a snapshot of a work 
in progress, warts and all.
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1.8.3 User-Domain Competence

The user competence part begins with use cases in Chapter 9. The trans parent 
acquisition of knowledge from users depends on sensory perception, enabling 
iCR to see and hear what the user sees and hears via vision and language 
technologies discussed in Chapter 10. The emphasis is on the perception of 
the user in an archetypical setting called a <Scene/>—home, work, leisure, 
and so on. Chapter 11 develops methods for implementing user-domain com-
petence, grounding symbols, reasoning with user KOs, and evolving via user-
domain heuristics (UDHs). Chapter 12 builds bridges to the semantic web 
community, promoting the autonomous acquisition of knowledge from the 
semantic web.

1.8.4 Conclusion

The fi nal chapter offers suggestions for the further evolution of industrial 
strength AACR, with pointers to advanced topics, related architectures, tech-
nologies, and components. The main contribution of the companion CD-
ROM is to save the reader time in becoming familiar with hardware and 
software components from relevant disciplines from CR1 to robots to the 
semantic web. As an interdisciplinary pursuit, the treatment of each discipline 
has to be light, bordering on superfi cial to an expert, mitigated by the citations 
to the Web and the literature.

1.9 EXERCISES

The exercises with each chapter review the key points and explore topics further. 
After reading this chapter, the interested reader should be able to complete the fol-
lowing exercises.

1.1. Differentiate awareness, adaptation, and cognition as it applies to radio.
1.2. Discuss the difference between network-value-driven behavior and user-value-

driven behavior of AACR, explaining examples such as an autonomous CWPDA 
appliance.

1.3. Is it possible to “defi ne” cognitive radio? If so, give a precise defi nition, a math-
ematical defi nition if that is possible. If not, explain why not. If one could, but 
it would not be a good idea to try to enforce one, explain that view.

1.4. Informally, what is an ontological primitive? Why should a radio engineer 
care?

1.5. Find OWL on the Web. Play a game of 20 questions, tracing the evolution of 
the questions through OWL ontologies. Try something abstract like Superman 
and something concrete and medical like polio or DNA.

1.6. How is iCR like “customer-premises equipment” (CPE)? When the proverbial 
black handset was owned by the telephone company and leased to the con-



sumer, there were few choices, prices were high, but technology investments 
similarly were high, as attested by Bell Labs invention of the transistor. Not 
unrelated to the breakup of “Ma Bell,” the consumer could buy handsets CPE, 
connect computers to the telephone network using modems, and the like. How 
is the control of the behavior of cognitive devices similar to and different from 
CPE?

1.7. Discuss potential cell phone market disruption from iCR PDAs.
1.8. State a narrow defi nition of iCR from the viewpoint of a cell phone manufac-

turer and defi ne a roadmap toward iCR for that community based on that defi -
nition. The roadmap should specify a sequence of new capabilities over time, 
with time lines for technology insertion. Do not refer to www.wwrf.org.

1.9. Compare your answer to Exercise 1.8 to the perspective of WWRF.
1.10. State a narrow defi nition of iCR from the viewpoint of a major supplier of 

laptop computers such as Dell®. Defi ne a roadmap from a laptop product line 
on the manufacturer’s web site to an iCR laptop for global public safety 
markets.

1.11. Compare roadmaps and common ground of cellular and ISP markets.
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CHAPTER 2

TECHNICAL OVERVIEW

This chapter defi nes iCR in terms of functional capabilities, characterizing 
the related contributions and limitations of the enabling technologies. Think 
of this chapter as a needs summary and functional overview of AACR.

2.1 THE iCR HAS SEVEN CAPABILITIES

An ideal cognitive radio (iCR) may be defi ned as a wireless system with the 
following capabilities [145], each of which is necessary in evolving AACR 
toward iCR:

1. Sensing: RF, audio, video, temperature, acceleration, location, and 
others.

2. Perception: Determining what is in the “scene” conveyed by the sensor 
domains.

3. Orienting: Assessing the situation—determining if it is familiar. React-
ing immediately if necessary. Orienting requires real-time associative 
memory.

4. Planning: Identifying the alternative actions to take on a deliberative 
time line.

5. Making Decisions: Deciding among the candidate actions, choosing 
the best action.

Cognitive Radio Architecture: The Engineering Foundations of Radio XML
By Joseph Mitola III Copyright © 2006 John Wiley & Sons, Inc.
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6. Taking Action: Exerting effects in the environment, including RF, 
human–machine, and machine–machine communications.

7. Learning Autonomously: From experience gained from capabilities 
1–6.

Capabilities 1 and 2—sensing and perception—may be termed “observing.” 
Together, these seven capabilities comprise a cognitive system. Cognitive 
systems observe, orient, plan, decide, and act, all the time learning about 
themselves and their environments in order to be more effective over time. 
In 2004, DARPA’s view was that in order to be termed “cognitive” a system 
must learn to adapt its behavior through experience [30]. This text addresses 
these capabilities through a process of use-case development and refi nement, 
with the enabling technologies developed in greater detail later.

2.1.1 Wearability

The focus of iCR is on wearable wireless devices (e.g., CWPDAs) that 
perceive the world from the user’s viewpoint. Chapter 1 postulated the 
cell phone’s video port not on a handheld device but in a pair of glasses 
so that the CWPDA sees what the user sees, keeping the last few minutes 
of video from which to save the perfect snapshot or to adjust the 3G 
equalizer optimally for entering the building that vision perceives 
approaching.

2.1.2 Distribution of Intelligence 

CWPDAs may collaborate in ad hoc CWNs or they may be supported by a 
CWN operator or service provider. Computational intelligence in networks 
entails memory, perception, and adaptation pioneered by Theo Kanter of 
KTH [10]. Petri Mahonen led the 2004 workshop crystallizing the CWN [25]. 
Network intelligence offsets the need for computational intelligence in wear-
able devices. This architecture trade-off of network versus device is central 
to AACR evolution. Initially, AACR behaviors will be supported heavily by 
network resources. Over time the wearable devices themselves will exhibit 
increasing distributed intelligence. The iCR vision postulates maximal com-
putational intelligence in the wearable nodes, an intentionally extreme case. 
Migration paths from today’s single-provider networks may evolve iCRs that 
intelligently obtain access from the most advantageous network provider(s), 
although market pressures counter that migration. Academic focus on iCR 
characterizes the technology challenges of that limiting case. The isolation of 
such limiting cases supports the scientifi c method, isolating aspects of a 
problem, generating hypotheses, and testing.



2.2 SENSING AND PERCEPTION: WHAT AND WHOM TO PERCEIVE

The iCR perceives three distinct information spaces: the iCR itself (the 
<Self>), the <RF/> environment, and the <User/> in its environment.

2.2.1 Legacy Control Does Not Require Machine Perception

The AACR evolution begins with today’s mix of legacy hardware-defi ned 
radios (like push-to-talk sports and military radios) and emerging 
SDR devices like cell phones. Control of such traditional radios includes user-
oriented (input and output interfaces) and radio-oriented aspects (RF recep-
tion and transmission). The radio-oriented aspects are controlled via 
radio-engineering parameters: layers of the International Standards Organi-
zation (ISO) Open Systems Interconnect (OSI) protocol stack from physical 
(PHY), including media access control (MAC) if any, to applications. A 
single-band single-mode radio like VHF push-to-talk has null middle layers 
of the ISO stack with simple band and mode control parameters like on/off, 
audio volume control, squelch, and channel selection. User controls employ 
human–machine interface (HMI) principles, traditionally limited to micro-
phone/speaker, dials, buttons, and displays.

Commercial multiband multimode radios (MBMMRs) like most vintage 
2005 cell phones perceive RF but hide band and mode from the user except 
for status such as “Extended” or an icon for digital or analog mode. Military 
MBMMRs typically use a softcopy HMI display, which may be part of the 
radio or may be remote (e.g., in the cockpit for airborne radios). User control 
may include band, mode (e.g., air interface), and related parameters (data 
rate, voice versus data, etc.). In commercial MBMMRs like triband cell 
phones, the network sets the parameters for the user, while in military 
MBMMRs users set many of the parameters.

Contemporary radios may blindly attempt the best communications pos-
sible such as 50 W radiated power even if not needed (e.g., between vehicles 
20 meters apart). The knowledge of which bands and modes, powers, frequen-
cies, call signs, telephone numbers, and so on yield what kinds of connectivity 
is not in the radio but in the mind of the user. If an attempt to communicate 
fails, the process of establishing alternate communications can be labor inten-
sive. The user may give up on the military radio or cell phone, turning to 
land line, or just wait until later. Such primitive RF control and simple HMI 
suffi ced for infl exible hardware-defi ned legacy radios. Moore’s Law has 
both increased radio complexity and created technologies for coping with 
complexity.

2.2.2 Perceptive Control

The increased capability and complexity of radio technology warrant both 
enhanced HMI and autonomous situation-dependent control. Figure 2-1 
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shows iCRs that observe users in their natural environments to enable 
situation-dependent information access, employing radio control toward user-
optimized ends (not necessarily network-optimized ends), steps that are well 
beyond the network-optimized WWRF vision of “I” [140].

Unlike prior radio technology, iCRs are computationally aware of the 
<Self/> in the radio environment of multiple networks, autonomously collabo-
rating to enhance the wireless experience of all users in CWNs. The iCR 
<Self/> must discover its user, networks, and goals.

2.2.3 From Provider-Driven to Perceived-User Responsive

Items 4, 5, and 6 in Figure 2-1 illustrate the evolution of wireless devices from 
nonperceptive to <Self/>-, <RF/>-, and <User/>-perceptive. A radio following 
FCC spectrum-use rules can identify new opportunities for ad hoc networking 
in <RF> <TV-bands/> </RF>1 implemented as yet another preprogrammed 
MAC layer. This is an aggressive regulatory step, enabling user-oriented <TV-
band> behavior but not needing the radio to perceive <Self/> or <User/> per 
se. Similarly, in the GSM–DECT badges at KTH the initial personalities typi-
cally stayed in GSM mode inside buildings because GSM penetrates buildings, 
generating revenue for Telia. With SDR technology, KTH programmed those 
badges to regularly check the DECT RSSI, switching to DECT whenever 

1 <RF> <TV-bands/> </RF> encapsulates <TV-band/> within <RF/> in any subordinate rela-
tionship not just class–subclass or “is-a” but others such as exemplar, partial property inheri-
tance, and space–time ontology.

Observe User
in the space-time
Environment

Act for User
in the space-time
Environment

4 B
ette

r C
onnecte

d 5 Better Informed

6 A
utonom

ous
C

ollaboration

Observe Radio
in the RF Environment

Act for Radio
in the RF Environment

4 Change band/mode to stay connected/ to reduce cost to user/ user versus network goal

5 Change data rate, filtering, source, power to optimize type & quality of information (QoI)

6 Manage power, bandwidth, data rate, direction for a community of CR’s (CWN, FedNet)

FIGURE 2-1 iCRs enable user-centric, RF-aware, context-sensitive information 
access.



available, a pro-KTH behavior. This hard-coded behavior implemented the 
value system of fl ow 4 of Figure 2-1, needing no <Self/> or <User/> data struc-
tures, only the KTH-centric AAR behavior.

2.2.4 Self Perception

Additional wireless badge fl exibility could be achieved via a <Self/>, a soft-
ware object in each badge. Self-awareness data structures would include 
objects with relationships to the <Self/>, like <Telia/>, <KTH/>, and the 
<User/>, each noted in the format of a closed XML tag <.  .  ./> indicating that 
the name of the data structure defi nes the ontological primitive (Expression 
2-1).

Expression 2-1 XML Data Structure for a Badge’s <Self/>

<Self>
<Name >Badge-001 </Name >
<Owner> KTH </Owner>
<User> Chip </User>
<Optimization> <Lowest-cost/> </ Optimization>
</Self>

This badge’s <Self/> behavior is defi ned not by the preprogrammed pro-
Telia nor by the reprogrammed pro-KTH behavior, but by the more general 
<Optimization/> objective best supporting the <User/> <Optimization/>
value system. Normally, the <User/> might assert <Lowest-cost/>, resulting 
in the pro-KTH behavior. Alternatively, the <User/> might <Optimize/> for 
<Minimum-handover/> during an experiment that handover would disrupt, 
and for which the cost of GSM is warranted. Such situation-dependent objec-
tives are realized by situation-dependent choice among the fi xed pro-Telia 
and pro-KTH behaviors. Thus, the association of behaviors with relationships 
among <Self/> and <User/> in a <Scene/> enables greater fl exibility than 
either preprogrammed AAR. The AACR with <Self/> and <User/> data 
structures can respond to discovered objectives like <Lowest-cost/>.

2.2.4.1 Degrees of Self-Awareness: 
Aware, Adaptive, Self-Conscious
An AACR containing a <Self/> data structure could be self-aware. Built-in 
test (BIT) may aggregate self-descriptive data in a way that is tantamount to 
a <Self/>. The SDR Forum’s software communications architecture (SCA), 
for example, describes the self in terms of resources—components assembled 
by a factory entity [58, 70, 79]. In 2005, the Forum did not call SCA a <Self/>
but the self-describing XML data structures were tantamount to <Self/>. An 
AACR that modifi es its <Self/> data structure depending on its own percep-
tion of world states and events is self-adaptive. BIT that overcomes hardware 
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faults implements this level of self-adaptation. The SCA facilitates adaptation 
to the hardware and software resources available.

If an AACR can modify the <Self/> through learning about explicitly 
represented behaviors of the <Self/>, then it is self-conscious. Self-
consciousness entails explicit introspection. Questions like “Where am I?” 
are self-referential but not introspective. Questions like “Why did I do that?” 
are introspective, requiring self-conscious reasoning about the <Self/> over 
<Memory/> of <Behavior/> of the <Self/>.

Expression 2-2 Retrospective Behavior Trace

<Behavior> <Memory>
<Sensor> <Perception> <Action/> </Perception> </Sensor>.  .  .
</Memory> </Behavior>

The iCR may reason over a behavior memory trace (Expression 2-2) to 
infer why it took a specifi c <Action/>. “Why” here has very precise meaning. 
Algorithmic introspection entails examining branch points, diagnosing a 
failure or success, and identifying alternatives. If the <Self/> changes its 
internal structure to behave differently in similar circumstances in the future, 
then self-consciousness achieves introspective adaptation. Introspection con-
sumes substantial resources, potentially requiring resolution theorem proving 
or Turing computability: it may consume unbounded computing resources. 
Thus, practical iCRs need the ability to suspend introspection, safely per-
formed in a “sleep cycle” of no user activity, with a watchdog timer to wake 
up the iCR (e.g., for the next day’s activities).

2.2.4.2 The Autonomous Self
Radio control thus may migrate toward the autonomous iCR <Self/> using 
distributed RF control that optimizes situation-dependent <User/> goals. To 
stretch computational awareness to such an autonomous iCR, the following 
should be known to the <Self/>:

Expression 2-3 Data Structures for the Autonomous Self

<Universe>
<Self>  .  .  .  data structures  .  .  .

<Autonomous-control>  .  .  .  methods.  .  .</Autonomous-control>
</Self>

<User>  .  .  .  data structures  .  .  .  </User>
<Environment> <Users/> <RF/> <Self/> <Others/> </Environment>

</Universe>

This data structure asserts that the <Self/> has <Autonomous-control/> in a 
<Universe/> shared with </Users>. Initially, <Environment/> of AAR may 



be limited to the RF bands and modes of a service provider. The <Self/>
shares this <Environment/> with <Users/>, <RF/>, and unspecifi ed <Others/>.
Pro-provider <Autonomous-control/> could enable the AAR to be always 
best connected (ABC, a European Framework objective) with respect to the 
provider’s radio resources. The <Self/> that is autonomously controlled by 
iCR for the <User/> achieves new ideas like autonomous spectrum rental and 
open optimization of band/mode alternatives, optimizing ABC across multi-
ple service providers and free access bands like ISM, unused TV, possibly the 
U.S. Citizens Band for ad hoc voice networking, and so on. Pro-user <Autono-
mous-control/> could choose a private rental of IEEE 802.11 or DECT air 
time instead of a conventional service provider.

2.2.4.3 Self-Awareness Tensions
Monolithic network services are an economic engine of today’s wireless tech-
nology. Nonetheless, RFLAN manufacturers may expand their business 
models to the private rental of personal 802 radio access points expanding 
the Wireless Web. With greater AACR autonomy, service providers may 
expand services to heterogeneous networks. The autonomous <Self/> enables 
such new perspectives but creates market tension. What cellular service pro-
vider programs your cell phone to use your free 802.11 WLAN with VoIP 
when you are home? Historically that would be anathema. Today, a forward 
leaning service provider might offer <Home/>WLAN VoIP to gain market 
share. Some users might like the cost savings while some might not, which is 
why the phone should learn from the user. Thus, item 4 in Figure 2-1 is not 
just about mode change; it represents a shift of paradigm from the relatively 
blind use of a limited set of preprogrammed behaviors to the autonomous 
synthesis of more fl exible, user-adaptive RF capabilities.

The <Self/>, <User/>, <Environment/>, and <Autonomous-control/> with 
AML may yield aberrant behavior with legal fi nger-pointing among service 
provider and third party software developers. Since it is easy to envision the 
many problems with a shift toward self-awareness, one must clearly defi ne 
benefi ts and constraints for a managed evolution along AACR design points 
toward the iCR. One such sequence emphasizes QoI over mere QoS.

2.2.5 QoS or QoI

Specifi cally, Figure 2-1 broadens the set of behaviors of the iCR <Self/> from 
QoS to QoI.

2.2.5.1 QoS
Quality of service (QoS) includes data rate (Rb), bit error rate (BER), delay 
(dT), delay jitter (σT), and burstiness of the connection. Burstiness may be 
estimated as the peak data rate Rbmax divided by the long-term average data 
rate including overhead and outages, Ravg:
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B = Rbmax/Ravg (2-1)

Wireless typically falls short of wireline performance in one or more of these 
QoS parameters, sometimes by one or more orders of magnitude. In addition, 
grade of service (GoS), the probability of connection on the fi rst attempt, 
approximates 1.0 very well on wireline networks but falls off sharply on wire-
less networks when mobile and during periods of high demand. On the other 
hand, the probability of connecting to a wireline when you are driving your 
car is zero, while the probability for wireless is much greater than zero, so 
when viewed from a mobile consumer’s perspective, value of connection is 
much higher than GoS or QoS alone refl ects, suggesting a need to model 
quality of information.

2.2.5.2 Quality of Information (QoI)
The <User/> data structure must accurately model the user’s specifi c and 
context-sensitive information value system, QoI. Like QoS and GoS, QoI can 
be defi ned. Unlike those metrics, QoI must be defi ned in user-centric terms. 
QoI is the degree to which available information meets the specifi c user’s 
specifi c needs at a specifi c time, place, and situation. A mathematical frame-
work for QoI is

QoI =  Availability * Quantity * Relevance * Timelines * Validity
* Accuracy * Detail * Need (2-2)

Item 5 of Figure 2-1, “Change data rate, fi ltering, source, power to optimize 
type & quality of information (QoI),” requires a QoI metric that refl ects 
<User/> goals. QoI is defi ned with respect to a specifi c <User/> over a fi nite 
space–time epoch called a <Scene/>, a Subset of Space x Time for a Specifi c 
User:

 <Scene/> ≡ {<User/> ∩ {<Space/>} ∩ {<Time/>}} (2-3)

Equation 2-3 makes an ontological statement about referents in the real world, 
not symbols of a logic system. Specifi cally, the ontological primitive <User/>
refers to the person using the system. Thus, the intersections refer to a subset 
of physical space and ordinary time along with the person being served. In a 
programming language, plus in “A + B” operates on memory locations, not 
on the literals A and B. So too, <User/> refers to the “memory location” out 
there in the real world, everything inside the skin of that person, including 
his/her thoughts, perceptions, prejudices, and specifi cally information needs. 
Ontological statements in this book express the open set existential potential-
ity of the real world, not the closed set existentials and universals of symbolic 
logic. (See Open Sets in the companion CD-ROM for further treatment.)

If there is no information connectivity in the <Scene/>, then Availability =
0 = QoI. If the <Self/> connects the <User/> to all (Quantity = 1.0) the required 



(Relevance = 1.0) information (either via wireless connectivity or via a memory 
of suffi ciently recent information) then Availability = Quantity2 = 1.0. Timeli-
ness may be defi ned on a time line of information use. For information needed 
immediately, the Timeliness is inversely proportional to time delay dT. To 
avoid division by zero, there is no such thing as instantaneous information. 
Always dT > 0 since information transfer takes time even if the information 
itself is in memory. If shortest time delay is ε, the maximum contribution of 
timeliness to QoI is ε/dT. Timeliness is normalized by ε so the maximum 
timeliness is 1.0. If validity is +1 if judged to be true and −1.0 if not true, then 
QoI may be positive or negative refl ecting user judgment, not absolute truth.

Relevance is the degree to which the information corresponds to the need, 
measured by data mining metrics precision and recall. Recall is the fraction 
of relevant documents R retrieved from a corpus by a query to the total 
number T of relevant documents of corpus size N ≥ T. Precision is the fraction 
of relevant documents R to the number retrieved X. Recall (R/T) of 1.0 indi-
cates that all relevant documents have been retrieved, while precision (R/X)
of 1.0 indicates that no irrelevant documents have been retrieved and X = R.
Adapting these metrics to QoI, relevance is the product of precision and 
recall:

Relevance = 









 =R

T
R
X

R
TX

2

(2-4)

Accuracy refers to the quantifi able or numerical aspects of the informa-
tion. Accuracy is the expected or average error, while precision is the smallest 
error representable in the response. In QoI availability requires the precision 
of the information to support the accuracy. If the accuracy required by the 
user is met, the value of the accuracy metric is 1.0; otherwise accuracy mono-
tonically (if practicable) decreases with miss distance or error. Finally, if suf-
fi cient detail needed to amplify or justify the information is present, then 
Detail = 1.0, gradually dropping to zero if required elaborating detail is not 
available. Each of these parameters may be specifi ed in an information need, 
such as Expression 2-4.

Expression 2-4 Illustrative Information Need

 <Information-need>
 <Query> “Name of the largest state in the USA” </Query>
 <Quantity> name </Quantity>
 <Timeliness> 2 seconds </Timeliness>
 <Validity> Must be true </Validity>
 <Accuracy> Correct spelling </Accuracy>

2 Quantity (<Scene/>) is understood; QoI may be defi ned statistically over collections of likely 
<Scenes/>.
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 <Detail> Null (Do not need any other information) </Detail>
 </Information-need>

The response “Texas” was valid until “Alaska” became a state; in addition, 
Texas remains the largest state in the contiguous lower 48 states. Context 
might render Alaska false, or amplifying detail could name both Alaska and 
Texas with space–time validity subsets, for example,

<Response>{{<Texas ∩ {{<Time/> <3 Jan 1959} ∪ {<Space/> =
 <Lower-48-states/>}}} ∪ {Alaska}}</Response>

If the information were provided quickly and were spelled right, then QoI 
= 1.0. If the query were met a minute later because the CWPDA couldn’t 
reach the cell phone network or WLAN for that length of time, then the QoI 
is 2/60 = 1/30, substantially less than 1.0.

Intuitively, the degradation from 1.0 also depends on the urgency of the 
need. If the user were playing Trivial Pursuit with a few friends, then the 
penalty for time delay might not be great. If the user were playing “Who 
Wants to Be a Millionaire?” as a contestant on television and asked the 
CWPDA for help as a phone-in, then even a minute of excess delay could cost 
a bundle. Need could be expressed as a cost of failure in the need expression 
and refl ected as the inverse of the relative cost normalized to 1.0 in aggregat-
ing QoI so that perfect QoI is 1.0.

The iCR uses the QoI equation (2-2) to guide autonomous planning over 
memories and air interface(s) to maximize context-specifi c QoI.

2.2.5.3 Military VTC QoI
Consider a military example. After a period of learning about combat tele-
conferences, an iCR would know that it is better to drop from full motion 
video to a slow frame rate with superb voice quality than to use limited data 
rate for video. The iCR computational model of <Combat-teleconference/>
would include <Disadvantaged-user>, the <User/> with the low data rate and 
high BER. Fallback to high quality voice in lieu of video is true except in a 
<Scene/> when a new map is introduced. The discussion of the map makes 
no sense unless the remote <User/> sees the map. Detecting the new map 
requires content awareness. The iCR processes the video not just for MPEG 
coding, but to detect QoI related events like the presentation of a new <Map/>.
<Map/> detection is within the capabilities of supervised ML and pattern 
recognition.

How does the iCR know to look for a <Map/>? The iCR <Self/>
data structure could link the behavior {<Self/>, <Transmit/>, <Map/>} to 
<Disadvantaged-user/> explicating <Map age = new/>, with a priority <Goal/>
to move new <Map/> through the <RF/> with maximum resolution and 
speed. Later, <Map age = known/> when the <Disadvantaged-user/> has the 
map. This state change puts the information transfer priority back to high 



quality voice. A <Map/>-aware iCR might also suppress the hand and arm 
pointing to the map to a mere mouse pointer for <Disadvantaged-user> to 
further conserve bandwidth and to make the map easier to see. If data rate 
and BER improve, <Self/> can enable full motion video.

Like the military VTC, the architect trying to get approval for a design 
change from a high-end home owner on the other side of the world would 
learn the same thing about <Blueprints/> as the military iCR learned about 
<Maps/>. Alternative vignettes are included in the CD-ROM.

Thus, item 5 of Figure 2-1 harnesses computational intelligence to adapt 
the wireless system to the users’ needs for QoI, a paradigm shift from today’s 
relatively embryonic state in which users are constantly struggling to over-
come the shortfalls of wireless QoS.

2.2.6 From Hierarchical Control to Cooperation

Perception of the <Self/>, the <RF-environment/>, and the <User/> grounded 
in space–time enables a transition from pure hierarchical control of the pro-
verbial cellular telephone network to distributed collaboration. Item 6 of 
Figure 2-1 asserts that if iCRs are smart enough to do items 4 and 5, then 
armed with a common language (such as a Radio Knowledge Representation 
Language (RKRL) [145] or Radio XML, RXML), they may autonomously 
form not just ad hoc networks but user-oriented information sharing federa-
tions (FedNets [31]). To realize such collaborative networks, each iCRs needs 
an internal semantic model of <Others/>.

Expression 2-5 Cooperation Requires Knowledge of 
Other Intelligent Entities

<Entities> <Self/> <User/>
<Others> <Other-CRs/> <Legacy-radios/> <Other-people/>
</Others> </Entities>

Ad hoc networks share a RF band via specifi c modes and an ad hoc pro-
tocol such as Mesh NetworkTM [32]. This starting point may be augmented 
with QoI-driven knowledge about others in the <RF/> <Scene/>.

Expression 2-6 Ad Hoc Networking Using Knowledge of 
Cooperating Nodes

<Other-entities>
<Other-CR>

<CR#1> <Band/> <Mode/>
<Identity> CR5551212 </Identity>
<Location> GPS coordinates </Location>
<RSSI> -88 dBm </RSSI>
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<Will-relay-now> Yes </Will-relay-now>
<CR#2>  .  .  .  </Other-CR>  .  .  .</Other-entities>

Specifi cally, the iCRs exchange RF parameters to enable cooperation. 
Data structures representing these signifi cant others include the RF parame-
ters with which each can operate; if a legacy user is detected, the iCRs switch 
bands or modes to defer to the less fl exible legacy users. In addition, iCR 
networks exchange patterns of space–time loci of legacy transmitters (e.g., 
police use APCO 25 VHF near the bar at 2 am, closing time). A strong 
architecture validates data to avoid self-replication of errorful rumors. The 
discovery and reporting of legacy radios among iCRs reduces interference 
and speeds convergence characterizing <Legacy-users/> as comprehensively 
as <Other-CRs/> in Expression 2-6.

2.2.7 User Awareness

Perception technologies enable more than better user interfaces. A wearable 
video port integrated into eyeglasses detects a new person in a <Scene/>.
Recognizing the cultural prototype for introductions, the iCR transparently 
exchanges softcopy business cards. For example:

<Known-male-voice>: “Herrn Mueller, Fraulein Schmidt.”
<Unknown-female-voice>: “Guten Tag, Herrn Mueller.”
<Owner’s-voice>: “Es freut Mich sehr, Fraulein Schmidt.”

Even if you do not speak German, you may be aware that a man is called 
Herr and an unmarried woman is called Fraulein. The repetition of names 
with the <Owner/> acknowledging the new person provides an algorithmi-
cally recognizable spatial–temporal pattern. Because the owner’s voice is 
known with high confi dence and because of the structure of introductions, 
even relatively noisy visual and acoustic scenes may yield suffi cient reinforce-
ment to recognize <Introductions/>. The iCR initiates a search of IR, Blue-
Tooth, 802.11, and ad hoc TV bands to fi nd the RF business card for 
<Unknown-female> Fraulein Schmidt </Unknown-female>3. It “pings” these 
bands to establish <Self/> presence and interest in communicating. The 
AACR may then establish an ad hoc network with an older AAR of Fraulein 
Schmidt, exchange business cards, and project her business card into the 
Owner’s eyepiece.

“I see you are from Universität Karlsruhe. Do you know Professor 
Jondral?” the Owner says, switching to English since the business card shows 
both languages.

3 This vignette is referred to as the Introductions use case.



Without the ability to recognize introductions, the AACR either wastes 
battery life, constantly emitting pings in all the short-range “business card” 
bands, or waits to be pinged, using less energy but still requiring receivers to 
be powered up. Recognizing introductions, the iCR knows when to search for 
“Fraulein Schmidt” wirelessly and can keep a digital snapshot of her for 
future reference to enhance owner recall of names, a positive skill in business 
settings.

The level of user context sensitivity described in this abbreviated use case 
integrates radios more fully with the rest of the user’s information spaces so 
as to become information prosthetics [33]. Without machine perception, 
Figure 2-1 items 4–6 may not be practical. User adaptation has been promised 
for over a decade, but the instantiation of user profi les remains a daunting 
task [34]. Even profi les for location-aware services are not readily adapted to 
situation-dependent customer interests when users must take time to supply 
data for their own profi les. The iCR alternative incrementally infers and vali-
dates user preferences through perception-driven AML. The research proto-
type CR1 demonstrates how a CWPDA empowered with simulated sight, 
sound, and AML learns needs and detects situations. Thus, AML is one 
technical foundation for low cost mass customization of wireless system 
behaviors. In addition, the entities perceived in RF and user environments 
must match both the iCR’s own prior knowledge and the knowledge repre-
sentations used by radio networks via symbol grounding.

2.2.8 Grounding

The process of fi rmly linking syntactic (“formal”) expressions such as the 
<Self/>, <Owner/>, and <User/> data structures to real-world entities is called 
grounding [35]. Grounding is fundamental to perception. In logic, grounding 
is the process of establishing a valid interpretation of the statements of a 
(formal logic) language with respect to a “model” of those statements in some 
domain, typically the real world [36]. As Judea Pearl points out, it is not suf-
fi cient to simply associate the formal expressions with a model in the world: 
deep understanding requires an ability to perceive cause and effect—“how 
things work when taken apart” [37]. This book “takes radio apart,” explicat-
ing the knowledge needed for CWPDAs grounded in radio domains. It also 
“takes the user apart,” analyzing knowledge at levels of abstraction to realize 
helpful behaviors. There are several ways to ground the radio’s sensory 
perceptions.

2.2.8.1 Implicit Grounding
Legacy radio control includes physical buttons and computer commands, 
the syntactic expression of the user’s intent. Grounding the formal term 
<Authorized-user/> to people in the real world is informative. Legacy radio 
systems allow control by an <Authorized-user/>. If the radio has no user 
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authentication system, then any user is an <Authorized-user/>. This type of 
default grounding allows whoever possesses the radio to control it, no ques-
tions asked:

 <Authorized-user/> ≡ <Current-user/> (2-5)

Commercial GSM cell phones with built-in SIM cards (not removable ones) 
employ this kind of implicit grounding of control authority, as do most sports, 
public service, and amateur radios. <Authorized-user> is the simplest of 
symbols to ground. <Daughter/>, <Vacation/>, and <Car/> are much more 
diffi cult to ground.

2.2.8.2 Explicit Grounding
Explicit grounding of <Authorized-user/> may be based on authentication. 
Military radios historically have used physical cryptographic keys to limit 
access to the radio. More familiar to nonmilitary users is the grounding of 
<Authorized-user/> via a password. In this case:

 <Token-correct/> ⇒ <Authorized-user/> (2-6)

If the crypto-key <Token/> is correct, then the radio behaves as if the 
<Current-user/> is the <Authorized-user/> even if the person who inserted 
the key stole the key. The GSM cell phone with removable SIM card has this 
degree of trust. Explicit grounding is more secure than implicit grounding, 
but still cannot ground <Daughter/>. Perception technology offers an 
alternative.

2.2.8.3 Perceptual Grounding
Machine vision and speaker identifi cation enable sensory perception ground-
ing. Audio and video soft biometrics ground symbols through machine per-
ception. Suppose a salesperson introduces an iCR, Charlie, to its new owner. 
“Charlie, this is Joe. Joe, this is Charlie.” Through introductions, Charlie 
extracts a computational model of Joe’s face [38] and voice [39]. Although 
these soft biometric models will not differentiate Joe from billions of other 
people, such models typically differentiate Joe from his <Daughter>, co-
workers, and a thief.

Expression 2-7 Grounding by Learning Soft Biometrics

 <Authorized-user> <Name> Joe </Name>
<Face> new-face (video-stream) </Face>
<Voice> new-speaker (audio-stream) </Voice>

 </Authorized-user>

<Authorized-user/> with <Name> Joe </Name> is grounded by a computa-
tional model of facial features with an associated speaker model. In the 



<Introduction/>, Charlie grounds the new-face in its video stream and con-
temporaneous new voice to <Joe/>. The face–voice–name association grounds 
<Joe/> for continuing AML of the new owner’s needs and preferences. If this 
model is so embedded in the hardware that Charlie can’t lose this defi nition 
of Joe without being destroyed, then a thief cannot steal <Joe/>’s identity by 
merely hacking a password. Joe may ground his <Daughter/> by sensory 
perception in an <Introduction/> protocol. This may be a fi rst step in a 
process of mutual grounding.

2.2.9 Mutual Grounding

Mutual grounding is the exact match of symbols, semantics, and referents in 
communications between two entities. The two entities need not employ the 
same internal symbols for the same things, but each must know what to com-
municate to obtain desired behavior from the other.

2.2.9.1 Formal Domains
In an XG policy broadcast from a regulatory authority, the expression FCC: 
<VHFChannel-13/> means that the FCC refers to a particular RF carrier 
frequency, bandwidth, and signal format (e.g., NTSC or HDTV) as <VHF-
Channel-13/>. CR1: <VHF-1.13/> could mean exactly the same carrier, band-
width, and signal format. A common object request broker architecture 
(CORBA) Interface Defi nition Language (IDL) stub could equate the two 
for the mutual grounding of FCC and CR1 TV channels:

 Equals (FCC:<VHFChannel-13/>, CR1:<VHF-1.13/> (2-7)

FCC’s VHFChannel-13 is defi ned by an external (exogenous) source, the 
policy broadcast, while CR1’s VHF-1.13 is CR1’s internal (endogenous) 
representation.

The difference between <VHF-1.13/> and <VHFChannel-13/> is a differ-
ence in the assignment of formal symbols to things in the real world, a dif-
ference in explicit ontology. Each of these symbols refers to TV Channel 13, 
a space–time–RF entity of the real world (e.g., WBAL, Baltimore, MD in 
2005). In formal communications like XG, ontologies may be reconciled a 
priori, for example, in the ITU, OMG, and SDR Forum, and in the product’s 
design documentation and source code. A CORBA IDL stub [40] defers the 
binding of one formal symbol to another often until after both products 
already exist. Implicit ontologies, on the other hand, need mutual symbol 
grounding that is much more diffi cult to verify (e.g., in natural language).

2.2.9.2 Natural Language
Mutual grounding is extremely diffi cult in natural language. News broadcasts 
and textbooks employ grammatical natural language with relatively unam-
biguous antecedents simplifying mutual grounding. Informal language often 
is not very grammatical, replete with vague or ambiguous references that 
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complicate grounding. <Users/> employ informal language with chronic tech-
nology challenges (even given an error-free transcript) including errorful ref-
erence, anaphora, ellipsis, ambiguity, vagueness, and constructs that require 
stylized inferences [41]. Mutual grounding between the <User/> and the iCR 
<Self/> does not ground every conceivable symbol, but grounds the smallest 
set that the iCR needs for a given use case.

Sentences that entail a radio-use context may require general world knowl-
edge to properly interpret.

Sentence = “I want to see the Statue of Liberty fl ying to New York” (2-8)

This sentence has ungrammatical placement of the fi nal clause, implying the 
statue should fl y. The grammatically correct form places “Flying to New 
York” fi rst, indicating “I” will fl y, not the statue. Statue of Liberty and New 
York are both places and things related to QoI. Typically it is important for 
iCR to recognize location terms in communications. If the <User/> is inter-
ested in the Statue of Liberty or New York, the iCR must retrieve QoI-related 
information from peers, networks, and the Web, increasing quantity, time-
liness, and detail.

Suppose the <User/> wants a traffi c and weather radio station “on the 8’s.” 
They both should agree on the meaning of “traffi c” and “weather” so that 
traffi c and weather are mutually grounded. For example:

User: “Traffi c” ⇔ CR1:<Traffi c> Cars and trucks on highways 
 </Traffi c> (2-9)

User: “Weather” ⇔ CR1:<Weather> Rain, snow, clouds and 
 sun </Weather> (2-10)

The symbol ⇔ indicates mutual grounding of <Domain/>:<term(s)/> ⇔
<Domain/>:<term(s)/>. Thus, the user needing a weather report is mutually 
grounded with CR1 since both refer to the same sorts of things in the real 
world. In another <Scene/> to the same user, “traffi c” may refer to the rate 
at which calls are placed on a telephone system, not mutually grounded with 
CR1: <Traffi c>. By differentiating <Commuting/> scenes from <Research/>
scenes, CR1 can remain mutually grounded to be both helpful and as trans-
parent as possible, not tedious but asking appropriate grounding questions 
when necessary.

Grounding remains a research challenge in computer science and robotics. 
The Semantic Web addresses this by formal ontology resolution. Robots 
employ fi ducials, constrain tasks, and limit vocabulary for mutual grounding. 
Grounding is fundamental to iCR capabilities to observe (sense, perceive), 
orient, plan, decide, act, and learn. If internal symbols are improperly 
grounded the iCR may learn inappropriate behaviors. Mutual grounding of 
<Self/> in the environment, especially through learning and behavior resolu-



tion over time, remains a cutting edge research area. The approach of this 
text is to limit the mutually grounded symbols to those few with high redun-
dancy that achieve the use case to mitigate the limits of the technology.

2.3 IDEAL COGNITIVE RADIO (iCR) PLATFORM EVOLUTION

An evolutionary AACR strategy realizes the seven core iCR capabilities with 
incrementally evolving functionality for a sequence of use cases. The hard-
ware–software platform evolves sensors, perception subsystems, and informa-
tion architecture to ground those critical entities <Self/>, <RF/>, and <User/>
with suffi cient accuracy to reliably enhance wireless QoI per use case. Plat-
form evolution may be driven by scene perception, RF, or user interface.

2.3.1 Platforms Driven by Scene Perception

A sensor-rich hardware–software scene perception platform perceives the 
world to ground the <Self/>, <User/>, and other objects in <Scenes/> in two 
primary domains of discourse: (1) the wireless communications environment 
and (2) the user’s social environment. With this strategy, a communications 
context consists of a <Scene/> with perception–action linkages for communi-
cations services tailored to entities perceived in the <Scene/> given the oppor-
tunities and constraints of the <RF/> <Scene/>. More formally, a scene 
includes the wireless and user aspects:

 <Scene/> :: = <RF-environment/> ∪ <User-situation/> (2-11a)

 <Scene> <RF-environment/> <User-situation/> </Scene> (2-11b)

<Scene/> is an open-set construct (Equation 2-11a) expressed in RXML in 
Equation 2.11b. <Scene/> unites two quasi-orthogonal sets, one primarily 
physical <RF/> and the other the abstract reality of <User/> perception. The 
<User-situation/> defi nes perceived <Scene/> boundaries. Thus, <Home/>,
<Commuting/>, and <Work/> could be the major scenes of a <Work-day/>,
defi ned not in terms of home WLAN or cell phone coverage but by <User/>
perception and associated terminology and visual fi ducials of such 
<Scenes/>.

In a given <Scene/> the constituent subsets usually are not completely 
orthogonal. If the iCR is planning future connectivity, the current <RF-
environment/> is not the <Location/> of the future <Scene/>, so the intersec-
tion is empty (“null”). A <Primal-sketch/> locates a <Scene/> in space–time, 
placing entities in the scene and enabling the iCR to assist the user in plan-
ning. Thus <Scenes/> include the space–time coordinates of every experi-
ence, plan, action, and response from the environment. A corresponding 
CWPDA platform (sensors and perception subsystems) continuously locates 
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the <Self/> and <User/> in both physical and conceptual space–time. For 
example, it is insuffi cient to assert 10:54 am on 11 November 2004; the iCR 
must sense location to bind space–time: (10:54 am 11 Nov 04, Rome, Georgia, 
USA). Although 10:54 seems to be a point in time, there is an accuracy of 
the measurement implicit in “10:54” that implies a subset of time as well: it 
is not 10:55 or 10:53, but 10:54, implying a two minute subset of time in which 
some event occurred.

From these initial considerations, perception-driven platform iCRs should 
sense <RF-environment/> per Expression 2-8.

Expression 2-8 The iCR Platform Includes Sensors and Actuators

 <iCR-platform>
<User-situation> <Scene>
<RF-environment>

<RF-capabilities> <RF-sensors/> <Waveforms/>
</RF-capabilities>

<RF-knowledge/> </RF-environment>
<User-sensors> <Vision/> <Speech/> <Others-sensors/>

</User-sensors> <User-actuators/>
<Space-time-grounding>

<Space-grounding> <Vision> Location-reference </Vision>
</Space-grounding>

<Time-grounding> <Speech> Time-reference </Speech>
</Time-grounding>

</Space-time-grounding>  .  .  .  </Scene>
</User-situation>

 </iCR-platform>

In this expression, <Waveforms/> are <RF/>-actuators, while displays and 
speech synthesis are the <User-actuators/>. Waveform is a convenient term 
for a software-defi ned air interface {<Waveform/> ⇔ <Air-interface/>}. A 
mode may be characterized by channel symbol (MSK versus 16 QAM), band-
width, and so on. The perception-driven platform relates these mode differ-
ences in the <RF-environment/> to the <Scene/> perceived—<Home/>,
<Offi ce/>, and so on. Platform evolution evolves capabilities per scene possi-
bly beginning with <Home/> where time, home RF, and perceived family 
members drive QoI. The next platform increment could add <Work/> with 
the corporate WLAN and perceived places and co-workers driving QoI. 
<Travel/>, <Sports/>, and other scenes each bring new RF and scene percep-
tion needs to the platform.

2.3.2 RF-Driven Platforms

Traditional AACR platforms evolve RF alone via mode chip sets with a 
simple associated ontology:



Expression 2-9 Self with Explicit Knowledge of Waveforms

<Self>
<RF-capabilities>
<Waveforms>

<GSM>
<RF-low> 860000 <Units> kHz </Units> </RF-low>
<RF-high>  .  .  .
<Voice-connection>

<Data-rate> 13 kbps </Data-rate>
<Isochronous> Yes </Isochronous>
<Initiate-voice>

     Start-GSM-Voice(<TX-Channel#>, <RX-Channel#>)
</Initiate-voice>  .  .  .  {terminate-voice, etc.} </Voice-connection>

<RSSI> Get-RSSI() </RSSI>
<GPRS>

<Data-rate> 9 kbps </Data-rate>
<Isochronous> <False/> </Isochronous> </GPRS>

    {initiate and terminate data, etc.} </GSM>
<EDGE/>  .  .  .  <802.11g/>  .  .  .  </Waveforms> </RF-capabilities>  .  .  .  

</Self>

In Expression 2-9, Get-RSSI() senses GSM received signal strength. 
A sensory function is implemented in a <Waveform/> known to the <Self/>
through RXML and further defi ned, for example, using the SDR Forum’s 
SCA or OMGSRA. Shared RSSI values may be semantically aligned by 
RXML (e.g., RSSI units are in dBm). RXML also enables the discovery of 
RSSI units mismatch between dBm and dBW, facilitating ontology alignment 
[42]. The RXML-enabled traditional AACR platform may evolve fi rst to 
reason over RF parameters, then 2D maps and ultimately 3D spatial RF 
<Scenes/>. Higher fi delity RF space–time models require larger data sets and 
more computational resources to yield more accurate perception of RF, so 
the fi delity of RF reasoning can have a fi rst-order effect on <iCR-platform/>
memory and processing capacity.

2.3.2.1 Reasoning Over RF Parameters
RF perception includes reasoning over RF parameters. Simplifi ed models of 
fi rst-order objects in the RF scene may suffi ce for entry-level AACR use 
cases. The platform implications of RF parameter sensing and use include 
both RF architecture and computational resources. First, RF chip sets must 
bring their intrinsic ability to sense the RF environment into the realm of 
sensory perception through an API (e.g., via RXML declaration). Some chip 
sets indicate whether a network is present, but provide few engineering details 
like RSSI or equalizer tap settings to an API. Subsequent use cases show how 
this level of detail empowers iCRs to enhance QoI. Traditionally, RSSI, BER, 
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and number of taps are the concern of the radio engineer and network, but 
not of the radio itself, but iCR puts more “engineer” inside the radio.

Next, additional memory speed and processing capacity are needed to 
store and use the RSSI, BER, equalizer taps, and so on for QoI use cases. 
Such data might be acquired by AACRs in support of CWNs reasoning about 
dead spots and relay roles of AACR nodes. The iCR itself also employs this 
knowledge to fi ne-tune its own real-time performance, perhaps by distilling 
the knowledge during sleep periods for rapid use of RF sensory perceptions 
in real time.

2.3.2.2 Reasoning About Spatial RF Entities
An AACR may reason about its own experience in a 3D spatial <RF-
environment/>. RSSI tagged with the place and time of the observation and 
the estimated location of the distant RF entity enable temporal pattern detec-
tion algorithms to fi nd regularities in space–time use of RF, such as high RSSI 
because of good propagation at certain times of the day (e.g., night propaga-
tion of VHF from a distant broadcast station). Such other RF entities are 
described in the spatial RF scene. As entities are added, additional memory 
and processing resources are consumed. The TV-band use case may benefi t 
from spatial reasoning about the location of known TV transmitters. The 
Self’s ability to transmit to potentially hidden TV receivers could be modeled 
in a generic fl at earth, 2 1–2 D COST 256 statistical model or full 3D cityscape 
<Scene/>. CAD-CAM rendering of the cityscape explicitly represents large 
multipath refl ectors like buildings at the expense of orders of magnitude more 
memory and processing resources. Grounding of RF entities in a CAD-CAM 
cityscape scene may mitigate interference to legacy TV receivers. With addi-
tional Moore’s Law cycles, the cost–benefi t balance will tend to tip in the 
direction of higher fi delity on-board autonomous 3D spatial reasoning about 
RF entities.

2.3.2.3 Learning Errors in 3D RF
Learning errors may be diffi cult to diagnose and to correct in 3D RF settings. 
Suppose the learning concerns two TV stations A and B in a fringe area of 
a big city. The stations may be marginally receivable by legacy TV receivers 
at street level but above the fi fth fl oor people on the North receive TV-A well 
and on the South receive TV-B well. The AACR with only a 2D fl at earth 
model that has never been on one of the upper fl oors may learn erroneously 
that it is OK to create an ad hoc network on the TV channels occupied by 
TV stations A and B. The AACR with the 3D model is better able to interpret 
a measurement of zero RSSI taken at street level with a propagation model 
that shows 10 dB reception, amending the conclusion that it is OK to form an 
ad hoc network at street level but not on the upper fl oors of this building. 
Model errors engender interference. Suppose users report such problems to 
the RA via the Web. The polite AACRs could check the web site and back 
off if legacy users experience interference from TV-A ad hoc networking 



above the fi fth fl oor of that particular building. If a 2D AACR updates its 
propagation model to refl ect TV-A interference, it overstates the legacy recep-
tion, precluding a workable ad hoc network.

Initially, trade-offs will favor computational intelligence in the CWNs 
where the cost advantages of centralized databases and retrospective pattern 
matching may be amortized over all users. Over time, the computational 
resources in the iCR nodes will continue to increase to enable initially limited 
reasoning over simple space–time settings. Initially in networks, later in iCR 
vehicles, and ultimately in the CWPDA iCR, there will be suffi cient memory 
and processing resources to address full 3D RF with many RF entities within 
the <iCR-platform/>.

2.3.3 Use Case-Driven Platform

Now consider the platform implications of a specifi c use case. This case con-
cerns Sue and her four-year-old child, Bernie.4 The child wears a cell phone 
to help Sue monitor Bernie. Sue is doing laundry on the fi rst fl oor of a six-
story apartment building. Bernie wants to go outside into the interior court-
yard to play with the other kids. Sue would like her cell phone to keep track 
of Bernie who is only 10 feet away, but on the other side of a wall.

2.3.3.1 Conventional HMI Limits Wireless Timeliness QoI
Sue thinks, “The salesperson said these phones can form a network like my 
BabyCam, but how do I turn on that feature?” She pushes Help. “BabyCam 
Mode: Select Mode/ Video/ Short Range. Enter the baby’s cell phone number.” 
OK, let’s give it a try. The baby’s cell phone rings. Nothing. Sue looks at the 
baby’s cell phone. “Please enter your password and PIN to approve an inbound 
charge to this normally outbound cell phone.” “Gee, they didn’t tell me it was 
going to cost me to set it up,” Sue thinks, but she keeps on trying. “Download 
in progress.” The network is downloading the TV ad hoc networking protocol 
to the baby’s cell phone. After a few minutes, Sue’s video screen shows what 
Bernie is doing. Bernie walks out of the gate and onto the street. Sue looks 
up from doing the laundry and screams at the sight of an oncoming car viewed 
from Bernie’s wearable cell phone. Bernie is chasing a ball down the street.

2.3.3.2 Advanced HMI Enhances Time-Sensitive Content
Consider the same vignette with speech, video, and soft biometrics to move 
these two phones toward iCR. When the devices were sold, the salesperson 
introduced the two phones, Bert and Ernie, to Sue. The two AACR vision 
systems isolate Sue in the scene and take soft biometrics of her. Bert says, 
“Why are you buying two of us?” Sue says, “One of you is for my son, Bernie.” 
“How old is he?” “He’s four.” “We can do BabyCam if you like.” Sue tells 
the salesperson to enable BabyCam and location reporting.

4 The subsequent vignettes are referred to as the Bernie–Sue BabyCam use case.
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At home, Sue introduces the two phones to Bernie. They take soft biomet-
rics of Bernie. Sue and Bernie go to the fi rst fl oor to do the laundry. “Don’t 
go out of the courtyard.” Bert knows what a courtyard is from scene model-
ing, uploaded at the point of sale with vision optimized to recognize specifi -
cally doors, gates, windows—anything that could pose danger to a four year 
old. “Ernie, can you and Bert BabyCam for me?” Bert and Ernie check the 
TV bands. TV-A has negative RSSI here. Bert and Ernie probe the band and 
agree to use high power from Sue to Bernie so her signal will penetrate the 
wall, but the asymmetric multipath from Bernie to Sue through the window 
enables Ernie to put his MIPS into a high performance equalizer, keeping 
Bert’s radiated power low, minimizing interference to TV-A users on the 
upper fl oors. Bernie’s scene shows in Sue’s cell phone display which she 
perches up with the laundry detergent. Someday it will be wearable, but not 
in this vignette.

Ernie beeps. Sue looks up to see the face of one of Bernie’s friends. “What 
was that?” Sue asks. Ernie says, “Bert is near a door, gate, or window so he 
sent an alert.” Sue says, “Bernie, you stay away from the gate, OK, Honey?” 
Bernie says, “OK” but heads for the gate chasing the ball. Bert beeps again, 
more shrilly as the video fl ow indicates Bernie is headed out the gate. “Bernie, 
you get back here right now. Let that ball go,” Sue yells as she rushes out of 
the laundry room to grab Bernie and close and lock the gate. Sue doesn’t 
think twice of the MIPS or battery power needed for that life-saving scenario 
as she scolds Bernie not to do that again. “You could have been killed if you 
had gone out into that street.” Then a big hug.

Which of these two scenarios is closer to the “killer app”? What does it 
take in the way of sensors and perception to make this dream a reality? The 
video didn’t break up because the BabyCam was made reliable by iCR col-
laboration. The legacy TV users didn’t complain because of the asymmetrical 
link created through detailed understanding of the relationship between radi-
ated power, multipath signature, and equalization, trading radiated power for 
MIPS. They used video scene modeling to analyze the RF environment as 
well as to keep track of Bernie. The <iCR-platform/> vision, speech, and 
scene perception made the use case possible.

2.3.4 iCR Objective Platform

Scene perception, RF, and user interface evolution each lead to the iCR objec-
tive platform with the capabilities to sense <RF-environment/> and <User-
situation/> as outlined above. The iCR CWPDA platform has the radio 
waveforms, high fi delity RF sensing, and rich suite of audio, video, location, 
and other perception subsystems, listed in Figure 2-2, the original concept for 
iCR [145]. Over time, iCR will evolve to a wireless fashion statement, an 
intelligent wearable information appliance that dramatically enhances its 
user’s capabilities, a RF information prosthetic. The CWPDA personal 
area network (PAN) interconnects the CWPDA ensemble of glasses and a 



belt-pack integrating fourth generation (4G) and beyond wireless [221] with 
the wireless Web.

With iCR built on a PAN and designed as a fashion statement, readout 
could be in your sunglasses, the core module worn in the small of your back, 
powered via micro-power generators in your shoes, mouse-like control via 
movement of your wrist, and typing by just placing your fi ngers on some 
convenient surface and then typing away while sensors in wristbands read out 
your keystrokes. Cranial implants aren’t out of the question, but I don’t want 
one myself. My kid might, though. Forward-looking science fi ction in such 
historically stogy journals as the IEEE Spectrum envision mind-expanding 
use cases [43].

2.4 THE serMODEL OF MACHINE LEARNING FOR iCR

Platforms described above can observe, orient, plan, decide, and act, but 
not necessarily learn. This section formulates iCR learning as stimulus–
experience–response models (serModels). serModels relate <User/> interac-
tion to information from <Waveform/> use, measuring, learning, and 
enhancing QoI.

2.4.1 The serModel

A serModel is a map from a set of stimulus channels via experience to 
response channels:

 serModel: {Stimuli} * {Experience} ⇒ {Response} (2-12)

RF Bands and Modes
  GSM (IS-136, etc)
  GPRS (UWC-136 ...)
  3G (W-CDMA …)
  RF LAN
  AM Broadcast
  FM  Broadcast
  NOAA Weather
  Police, Fire, etc.

Environment Sensors
Location:
  GPS (Glonass, …)
  Accelerometer
  Magnetometer (North)
Positioning:
    Environment Broadcast
    (Doors, Coke Machines, ...)
Timing:
  Precision Clock
  GPS Clock Updates
Other:

Ambient Light
  Digital Image, Video Clip
  Temperature

Effectors
  Speech Synthesizer
  Text Display
  RF Band/ Mode Control

Local Sensors
  Speech Recognizer
  Speaker ID
  Keyboard, Buttons

FIGURE 2-2 An illustrative cognitive radio platform.
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This serModel generalizes the artifi cial neural network (ANN), rule-based 
inference, logic programming, and reinforcement learning [53]. In the limit, 
iCR is not programmed at all, but like an infant, learns all behavior through 
serModels. Such an iCR may learn from stimuli and experience either to react 
quickly or to formulate sequenced response steps—plans.

The serModel extends SDR development from programming to teaching 
based on radio engineering methods for SDR including:

1. Linear transfer functions  (H(jω)) [45].
2. State machine/Message Sequence chart (MSC): ITU Specifi cation and 

Description Language (SDL) Z.100 [44].
3. Kalman fi lter discrete matrix operations (x = Ax + By +  .  .  .) over vector 

spaces [46].
4. Structured design [47], structured programming [48], object-oriented 

design [49], and programming [50].
5. Unifi ed Modeling Language (UML) [51] software design tools [52].
6. serModel: learning to pair stimuli and experience with appropriate 

responses.

Methods 1–5 do not require machine learning; even the adaptation of the 
Kalman fi lter optimizes the preprogrammed trajectory but cannot learn to 
initialize itself or to autonomously change modalities. The serModel, on the 
other hand, establishes iCR as a learning machine. Learning formulations are 
well known to biologists studying intelligent behavior of animals [54], but 
typically not to radio engineers developing RF hardware or software. 
<Scenes/> defi ne stimuli, while experience invokes <Scene/> memory with 
positive and negative reinforcement in a serModel. Populations of iCRs with 
different serModels constitute iCR population genetics [55].

The serModel autonomously acquires knowledge by evolutionary adapta-
tion in lieu of programming and design releases. The serModel is more than 
a new name for the venerable input–output map or transfer function. Input–
output maps are programmed by people, while the serModels are learned, 
either by the iCR or through the evolution of a population of iCRs. Such large 
collections of complex adaptive systems can solve NP-hard problems at a 
degree of randomness called the edge of chaos [56].

2.4.2 serModels of Radio

Commercial 3G/4G cell phones have dozens of modes in RF bands [57] 
approaching the complexity of military radios [58]. For dynamic spectrum 
use cases, AACRs also access nontraditional bands such as TV. Formulating 
radio serModels over a large set of <Waveforms/> yields a macrolayer radio 
control structure relating perceived <Scene/> to <Waveform/> via AML. 
Orchestrating <Waveform/> behaviors via such high level serModels 



automates dynamic spectrum management through positive and negative 
reinforcement of iCR-synthesized behaviors, not requiring all cases to be 
preprogrammed.

2.4.2.1 Waveform serModels
Consider stimuli that indicate the need for a given waveform. The serModel 
forms pairs of attributes of waveforms with attributes of the user’s informa-
tion needs. Augmenting the RXML self-description of <GSM/> of Expres-
sion 2-9 yields the following:

Expression 2-10 Waveforms Have RF and User-Centric Stimuli

<Waveform><GSM><serModels>
<RF>5<Stimulus>GSM-control-channel-active </Stimulus>
 <Response>Send (Registration-request) Pay (Airtime) </Response>
  </RF>
<User><Stimulus><AND>Desires (User, Speak (Remote-entity)) 
<NOT>VoIP</NOT></AND></Stimulus>
 <Response>Initiate-GSM-voice-call</Response></User>
 </serModels>

Expression 2-10 associates the chip set GSM control channel to the regis-
tration request explicating air-time charges. The association of connection 
cost from the <User/> value domain enables this cost-aware iCR to defer the 
connection until <User/>-sensory-perception indicates a need strong enough 
to pay for GSM. The serModel refl ects the <User/> value that GSM is appro-
priate when the user wants to speak by voice to a remote entity and VoIP is 
not possible. The iCR may reason over this data structure to plan a response 
to initiate a voice call over GSM. The serModels refl ect the goal-oriented 
nature of iCR support to users as well as the causality in radio networks in a 
way that is readily extensible via AML to optimize the <User/> QoI metric.

The user’s expressions for “Speak” are grounded to <Speak/> for the 
RXML above. In some bands, like marine VHF, speech may be the only 
available mode. GSM’s richer set of capabilities, including Short Message 
Service (SMS), EDGE, and cell-phone email, may be related to QoI via 
RXML as above. As new services arise with increasing frequency, iCR ser-
Models learn <User/> preferences for snapshots, video clips, video-phone, 
chat rooms, and the like as a function of user <Scene/>. The serModels 
expressed in RXML readily extend to new services relating GoS, QoS, and 
QoI to <User/> preferences. The serModel thus encapsulates the waveform 
as a means to an end rather than an end in itself.

5 <RF/> invoked within <srModel/> appears self-referential but since <RF/> refers to the 
outside world, not to the <RF/> structure of the <Self/>, there is no logical inconsistency when 
referents are accurately grounded.
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2.4.2.2 serModels in CBR
As introduced previously, pattern matching with machine learning organized 
as case-based reasoning (CBR) could implement causal relationships. CBR 
remembers the stimuli, recognizes similarity between <Scenes/> past and 
present, binds contextually similar referents, and offers to apply the adapted 
prior serModel-encapsulated experience to the present <Scene/>. CBR-based 
serModels are the basis for AML implemented in Java in CR1 in the conpan-
ion CD.

In one vignette, someone says, “Let’s call Grandma on our new CWPDA” 
immediately before the fi rst GSM call is placed. The CWPDA observes this 
and “Hi, Grandma” as the salutation of the call. Its serModel associates the 
phone number that the new user dialed into a tentative phone number listing 
under the name <Grandma?>. The salutation reinforces the association of 
that <Telephone-number/> and <Grandma/>, leading to a question from the 
CWPDA to make the association permanent. The stimulus speech segment 
“Let’s call Grandma” and the response <Dialing/> the <Telephone-number/>
are encapsulated by CBR as a serModel by the successful reinforcement by 
the <User/>.

Subsequently, the CWPDA observes in the speech sensor-perception 
channel the phrase “Let’s call Uncle Charlie.” CBR binds the phrase “Let’s 
call” in the Uncle Charlie and Grandma scenes as a pending <Phone-call/>
event. CBR binds <Grandma> in the prior serModel to <Uncle Charlie?>. As 
a response, it looks up Uncle Charlie’s number in the phone book, placing it 
in the default <Telephone-number/> to <Dial/>, with the text “Uncle Charlie” 
in the fi eld indicating the name to call. The new CWPDA user would save 
time if the anticipated call were accurate. If not, the new user dials the correct 
number, and the CBR is negatively reinforced if the user dialed a different 
number, turning the attempt into a further learning experience. The interac-
tion of such positive and negative reinforcements is a chronic AML research 
area, so it will take time for serModels to be fully understood and effectively 
employed in practical devices. For the detection of speech precursors to 
phone calls to be practical, the <iCR-platform/> needs high quality acoustics 
and accurate speech recognition, still at the cutting edge of speech research.

2.4.3 Planning

The serModels suggested above explicate causal links among stimuli and 
responses. Beginning at least with means–ends analysis [59] and the classic 
problem of the monkey and the bananas [89], computer scientists have 
addressed such planning problems in a myriad of ways [290]. The serModel 
may be thought of as an interactive macro-operator discovery method in 
which the <User/> performs a sequence of steps that achieve a goal and the 
<Self/> encapsulates that sequence in a serModel as a means–end relation-
ship. This isn’t to say iCRs should not embed a full planning system like the 
open procedural reasoning system (OPRS), for example [60]. As the com-



plexity of a <Scene/> increases, the time required for planning also increases, 
often exponentially. The serModels that encapsulate relationships may accel-
erate the transfer of planning knowledge from the <User/> to the <Self/>,
acquiring domain-dependent heuristics augmenting OPRS for real-time plan-
ning. Although not the only candidate AML method, serModels illustrate the 
principles of integrating AML into SDR to enhance QoI.

2.5 ARCHITECTURE

Cognitive radio architecture (CRA) integrates <iCR-platform/>, hardware 
suite, software components, perception, planning, action, and learning capa-
bilities. AACR architecture augments RF capabilities with location aware-
ness, visual scene perception, speech recognition, and language synthesis 
needed for autonomous grounding for use cases like Sue’s ad hoc baby monitor 
that kept Bernie out of the street. Toward this vision, the CRA is based on a 
comprehensive set of RXML formalizations of the seven core iCR capabilities 
(sense, perceive, orient, plan, decide, act, and learn). An open architecture 
CRA models the <Self/> as a computationally intelligent software-defi ned 
radio (<SDR/>), for example, via the SDR Forum’s SCA [27] or the Object 
Management Group (OMG) [61] software radio architecture (SRA). As cog-
nitive entities, AACRs sense and perceive visually and via natural language. 
Open CRA thus includes APIs, data structures, and processing fl ows by 
which to perceive, plan, and execute responsible actions, “knowing what they 
are doing.” SDR architectures may be extended to the CRA incrementally 
by describing the <Self/> as <SDR/> with perception, planning, and learning 
by the addition of perception hierarchies.

2.5.1 Perception Hierarchies

The iCR knows that it is a SDR through the CRA data structure <Self/>. The 
<Self/> needs additional data structures for iCR to perceive a scene. These 
data structures must be suffi cient for iCR to ground itself in the scene in 
space–time to learn about radio services and user preferences as a function 
of place (home, work, leisure) and time (weekend, weekday, noon, midnight, 
etc.) Candidate architectures range from blackboards [62] to graphs [63] to 
embedded databases.

The functional organization of such data structures is hierarchical as illus-
trated in Figure 2-3. Other perception domains like temperature, accelera-
tion, GPS location, and balance may be included in the CRA hierarchy, 
parallel to the vision perception hierarchy.

This six-layered CRA inference hierarchy has two major groupings: sensory 
domain perception and situation perception. The three levels below the 
Phrases/ Expressions structure sensory domain perception. In this simplifi ed 
view, there are no links across perception domains, but in a comprehensive 
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CRA, the sensory domains like vision and acceleration are linked at the lower 
levels to optimize overall performance. Each perception domain also may be 
optimized independently. The CR1 research prototype embeds reinforced 
CBR at every stage of this inference hierarchy, remembering everything and 
continually determining whether stimuli are known (identically known), 
familiar (parts have been observed previously), or completely novel. Novelty 
detection and integrated recognition of knowns occur below the CRA phrase 
level.

Because of the multidomain multidisciplinary nature of AACR, such an 
inference hierarchy is essential to the CRA. Phrases are the fundamental 
units of interaction and hence offer a natural API level for open CRA. A 
phrase interpreted as a command initiates action or interaction (e.g., for 
clarifi cation). Some phrases reference space, time, and the user. serModels 
aggregate stimuli and responses for reinforcement learning. In the CRA 
inference hierarchy, a dialog is a sequence of phrases. When space, time, or 
situation changes substantially, a new <Scene/> is asserted. Recall that 
<Scene/> consists of <RF-environment/> and <User-situation/>. The <Scene/>
of Figure 2-3 may be expressed in RXML.

Expression 2-11 Scenes Are Defi ned by Dialogs in Sensory Domains

 <Scene> <User-situation>
  <Place> <Time>
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FIGURE 2-3 CRA inference hierarchy of the user view of a scene.



  <Dialog1>
  <Phrase1(Keyboard)> <Token1> <Character1/>  .  .  .  </TokenN>

</Phrase1>
  <Phrase1(Speech)> <Token1/>  .  .  .  </Phrase1>
  <Phrase1(Vision)> <Object1/> <Area1(TextureX)>  .  .  .  </Phrase1>
  <Dialog2>  .  .  .  <DialogN> </Time> </Place> </User-situation>
 </Scene>

In the CRA current <Scenes/> may be registered to prior <Scenes/> and 
current dialogs to previous dialogs, inferring the current roles of entities from 
the previously learned associations.

Corresponding to Figure 2-3 is a parallel inference hierarchy for the <RF/>
domain. Each band and mode known to the radio comprises an inference 
hierarchy of its own, ranging from physical layer primitives to applications 
and information resources available via wireless connections. Extension to 
wired interfaces is straightforward. In addition, the <Self/> must be per-
ceived, grounded in the User’s environment.

The perception hierarchy of Figure 2-4 illustrates these relationships in the 
CRA. The iCR’s Self perception includes the ability to asses its own resources. 
Resources may be physical or logical, including SDR resources defi ning wave-
forms that are known (e.g., by RXML reference), available on the platform, 
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FIGURE 2-4 CRA represents the iCR’s Self, User, and RF mutually grounded in 
a scene.
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or active in the RF environment as perceived through the <RF/> inference 
hierarchy. <Self/>, <RF/>, and <User/> are grounded in space–time at the 
Scene level of the CRA hierarchy.

2.5.2 Cognitive Processes

In this CRA, the iCR reasons over the <RF-environment/>, the <User/>, and 
the <Self/> with roles summarized as follows:

Core Perception–Action Process in the CRA

1. Sensing
(a) <RF/> physical and protocol stacks
(b) The local visual scene
(c) The local acoustic scene
(d) Other sensing modes such as temperature and acceleration

2. Perceiving
(a) The <Self/> in Space–Time–RF
(b) The <User/> in the acoustic–visual Space–Time–Scene
(c) Other Objects contributing to the Scene

3. Orienting
(a) Detecting known and new patterns of stimuli
(b) Reacting immediately (if necessary)

4. Planning
(a) Generating alternative response plans with associated actions
(b) Assigning QoI metrics to plans

5. Decision Making
(a) Choosing among alternative actions based on QoI value
(b) Forcing choices within time and other resources

6. Acting in both
(a) RF and
(b) Physical domains (e.g., speech synthesis, composing email)

7. Learning
(a) Learning by being told
(b) Assimilating positive and negative reinforcement

This is the sequence of perception–action in the CRA, ontologically 
referred to as the <Cognition-cycle/>, although a strict time ordering of these 
functions is not needed and may be counterproductive.

The CRA, then, rests on the following pillars:

1. The <Self/> in the <Universe/> described in formal semantics (e.g., 
RXML).



2. The <iCR-platform/>, with SDR, sensors, perception, memory, and 
computational resources needed to ground the <Scene/> to experience.

3. AML illustrated by serModel acquisition and use.
4. The seven core perception–action capabilities of iCR organized into a 

cognitive process.
5. A comprehensive inference hierarchy of abstractions that integrate per-

ceptions, enabling well informed responsive information actions that 
enhance QoI for the <User/>.

This text develops one candidate CRA that includes these pillars in which 
the iCR remembers everything and constantly acquires incremental knowl-
edge by resolving newly acquired experience against its experience base. CR1 
implements the representation hierarchy, the seven core perception–action 
capabilities, a sequential cognition cycle, and continuous learning via ubiqui-
tous CBR. CR1 has many limitations, but it illustrates the architecture pillars. 
Industry may defi ne more than one CRA. If such a CRA accommodates 
evolution to iCR learning from experience, that CRA has the full potential 
of the iCR vision. Such a CRA advances the goal of mass customization but 
presents challenges of self-referential loops, QoI semantics, and adherence to 
social norms including privacy.

2.5.2.1 Self-Awareness Without the Gödel Flaw
Since radio communications are isochronous, CRA RF and network-oriented 
behavior must be isochronous, with actions that occur on temporal boundar-
ies precisely defi ned by radio protocols, for example, 10 millisecond code 
division multiple access (CDMA) frames. Thus, the cognition cycle must be 
deterministic with respect to the realization and control of radio resources. 
Similarly, its perception of and interactions with the <User/> must be isochro-
nous on temporal boundaries defi ned by the user’s expectations, typically 
seconds to minutes, with detailed expectations learned per-user. Thus, the 
cognition cycle for the user also must have deterministic bounds. Such iso-
chronous behavior may be obtained from bounded-recursive functions—
computer programs with iteration, but not with recursion or with Until or 
While loops [142]. The prohibition on such loops precludes resolution theorem 
proving (one method for reasoning with logic statements). At fi rst, this seems 
excessively restrictive, but radio and user interaction timetables preclude 
unbounded inference, so the constraint formalizes practical engineering 
properties of market-worthy systems. Bounded recursion allows incremental 
learning of <User/> preferences, <RF/> procedures, and serModels by incre-
mental extension of prior knowledge.

2.5.2.2 Mass Customization
The introduction into markets of CRs that learn substantial new behaviors 
from their users will usher in an era of mass customization unlike anything 
previously experienced. Think of it. Your CR isn’t a fi xed-function informa-
tion system. It is a clean sheet of paper. Unlike a laptop-style clean sheet of 
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paper that you personalize by buying software packages and loading them 
into the system, this blank sheet of paper is an information sponge, constantly 
learning from you, about you, about who you are and what you do and like 
so that it can always know what you want and be fully prepared to get it done 
for you. Radar O’Riley from MASH? Not initially, but eventually no doubt.

2.5.2.3 Privacy is Important
If my CR knows that much about me, I want it to be pretty much unhackable, 
don’t I? Don’t you? Surely, we want it to destroy all personal data if it is ripped 
off by some thief so that the loss of the hardware doesn’t also result in identity 
theft. Privacy support systems are developing. For example, some laptops now 
offer fi ngerprint readers. The CRA envisions the continual monitoring of the 
user by the iCR, continually confi rming that the <User/> is still the <Owner/>
and reacting appropriately to changes in the state of the Owner–CR situation. 
Privacy support has many open research issues that are merely suggested in 
this text.

2.6 SYNOPTIC iCR FUNCTIONAL DEFINITION

A CR, then, is a SDR that:
Delivers personalized wireless information services,
Through natural, cognition-level user interfaces,
Flexibly accessing and managing the node’s RF communications bands and 

modes locally on behalf of the user, while
Learning user preferences and
Protecting the user’s private information, typically
Cooperating with other CRs and cognitive networks (CNs) via an industry-

standard Radio Knowledge Representation Language (RKRL, e.g., 
RXML) while

Resolving confl icting ontological views
In an open software-defi ned cognitive radio architecture.

2.7 EXERCISES

2.1. What are the seven core capabilities of a cognitive system?
2.2. What key capability clearly differentiates a cognitive system from other kinds 

of intelligent systems? Why is this important?
2.3. Defi ne a platform and illustrate platform confi gurations from different trade 

organizations. [Hint: Cover at least OMG and Windows-Intel.]
2.4. Find at least six different video sensor systems on the Internet. Characterize 

the image processing provided by the system and its cost. Which ones provide 
video perception APIs? Which API features are needed for the CRA?



2.5. Complete Exercise 2.4 for speech-to-text software tools.
2.6. Find on the Internet research, freeware, or shareware that may be useful in the 

CR development process. [Hint: Visit Ptolemy II and the SDR Forum web 
sites.]

2.7. What parts of a CR could you get from a major electronics retailer like Best-
BuyTM or Radio ShackTM? What about a local computer-electronics shop? You 
could start with a laptop, add a wireless LAN card, add an amateur radio 
receiver (e.g., for easy access to AM/FM broadcast and the Weather Channel), 
and add a GPS card and related software. If you bought all this stuff, how self-
describing is it? Each software tool loadable into the laptop describes itself in 
terms that the Windows Registry cares about, but not in terms that you neces-
sarily care about. Write the XML for your collection of stuff: <AACR-
platform><Laptop>???</Laptop> and so on. This is a lot of work. Wouldn’t it 
be nicer if the manufacturer supplied a CD-ROM with metalevel description 
of each capability? That way, instead of reading about the IRDA port or Blue-
Tooth on the motherboard, your AACR itself could ingest the metadata into 
its own self-description.

2.8. Suppose you started Exercise 2.7 with a wireless PDA. What are the advantages 
and disadvantages of such an approach? Let’s call whatever hardware you pick 
your CR-zero, your starting point for cognitive radio.

2.9. Consider QoI. Write a set of equations in Excel or C that capture the trade-offs 
for a VTC. Express at least three different ways of setting up a VTC as informa-
tion requests that characterize the VTC in the information dimensions of Quan-
tity, Timeliness, Validity, Accuracy, and Detail. Implement one on CR-zero.

2.10. Extend the CRA introduced in this chapter to wireline connections.
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CHAPTER 3

EVOLVING FROM AWARE AND 
ADAPTIVE TO COGNITIVE RADIO

This chapter develops a use case in detail to further characterize the role of 
machine perception and AML in AACR evolution. Technical vignettes intro-
duce important second-level data structures underlying the CRA.

3.1 REVOLUTION OR EVOLUTION?

Is iCR the next great leap in radio engineering? Probably not. There is a 
sequence of steps that markets support, and a leap to iCR may be a bridge 
too far. Some iCR use cases are compelling and technically daunting but not 
impossible. Initial steps toward iCR include embedded GPS for location 
awareness. Some automobiles help users navigate via GPS. The next steps 
clearly include market development of the FCC’s policy opening unused TV 
channels for ad hoc networking. This chapter examines just that specifi c next 
step in SDR evolution, but using machine perception and AML for AACR 
evolution. The chapter identifi es data structures that integrate SDR with 
machine perception, particularly speech and natural language. Simple tasks 
like naming a cognitive assistant, ontological support for dialog, and under-
standing a wireless task given the brittleness of natural language processing 
technology all require a mix of computer science and radio engineering 
insights; so do tasks like inventing a waveform, observing etiquette among 
AACRs, and learning in the FCC use case. Having examined these features 
of AML in AACR, the fi nal section reexamines the iCR value proposition 
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with lessons learned from the era of AI hype of the 1980s. Early in the intro-
duction of a technology, opportunities for unrealistic expectations abound. If 
CR is a carrier of hype disease, the fi nal section is a hype vaccine.

This chapter, then, is a microcosm of the text, examining the core technol-
ogy challenges and market imperatives of iCR in the context of a radio-centric 
use case, “Moving Day.”

3.2 MOVING DAY

My wife, Lynné, and I are taking two automobiles from Virginia to Florida 
on moving day, 2001. Since we are driving together, we want to talk from car 
to car. I have the Ford and she has the Honda. I’m in front, and she’s in back. 
Do we want to accrue a thousand minutes of prime time on our cell phones 
during this leisurely three day trip? I don’t think so. I have several CB radios, 
but they take too much time to install and require tedious voice protocols, so 
we purchase a pair of Motorola T5200 short-range VHF walkie-talkies pack-
aged like cell phones. NexTelTM subscribers might not do this, but we weren’t 
so we bought the radios. What are the AACR and iCR alternatives?

3.2.1 Aware–Adaptive Radio Solution

At some point soon, our cell phones will use bands other than the fi xed cel-
lular spectrum allocations. FCC advocacy of greater spectrum availability to 
secondary users via CR is gaining momentum [64]. The FCC CR learns of 
TV-band availability via an XG spectrum-use policy broadcast. XG policy 
broadcast expresses in a precise formal language “Here and now it is OK to 
create ad hoc ISM wireless networks on a given UHF TV channel.” This 
behavior can be hard-coded, or it can be learned.

Suppose my SDR cell phone accesses VHF mobile and UHF TV bands 
but lacks an air interface for T5200 voice service that Lynné and I need on 
our trip south. The situation evolves as follows:

My RF aware–adaptive SDR cell phone detects the “unused TV channel” 
policy on the FCC’s spectrum policy broadcast. The policy states the 
GPS-location zone for use of TV Channel 68.

My cell phone advises my cellular service provider and asks for a short-
range download. 

The TV-band walkie-talkie personality is downloaded. Preprogrammed 
behavior ensues. When my cell phone with the TV-band policy detects 
that it can’t use Channel 68 anymore as we travel south, it is prepro-
grammed to search for another TV channel. It fi nds Channel 24 instead 
and so it goes.

Later, the walkie-talkie personality is written over by a downloaded map 
that takes up substantial memory.
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If a pair of T5200’s cost $50 in 2001 dollars, I might be willing to pay about 
that much for the downloads to both of our cell phones, at least the fi rst time. 
That revenue would be shifted from the local cut-rate electronics merchant 
to my cell phone bill, which to me is a NO-OP. Fifty bucks is fi fty bucks. 
Thinking about it for a minute, I realize that I didn’t have to buy $7 worth of 
batteries for the trip south, either, since we keep our cell phone batteries 
charged up on the cigarette lighter. I hope my cell phone walkie-talkie works 
with my brother’s T5200 when we are hunting next week. If the TV-band 
walkie-talkie personality can’t talk to a T5200 in VHF I will have to get my 
money back.

3.2.2 AML Alternative

This section offers a cognitive version of the FCC unused TV-spectrum use 
case. The iCR is more autonomous than the TV-band AAR. The players in 
this use case are Joe, the <Owner/>, Lynné, the <Wife/>, Dan, his <Brother/>,
and Genie, the <Self/>, a CWPDA embodying iCR technology.

1. Joe says, “Computer.” (He sometimes calls his iCR “Computer” for the 
famous scene in that Star Trek movie.) The iCR says, “Good day, 
Master, your wish is my command.” (Recall “I Dream of Genie”?) Joe 
asks the iCR for walkie-talkie link to wife/kids in the other car.

2. The iCR, who also knows herself1 as Genie, asks, “How, Master?” If 
Genie were sold by a CWN service provider, she could “phone home” 
with Joe’s request for a walkie-talkie SDR download, just an AAR with 
a nifty user interface. Not this CR. Genie is from Super-Soft, the world 
leader in cognitive information systems in this scenario. If Joe hadn’t 
been a radio engineer, Genie would say, “Master, I have the Super-Soft 
Cognitive Radio Ontology so I will become a walkie-talkie for you.” In 
this case, though, Joe suggests Genie look in the TV bands for empty 
spectrum.

3. Genie says, “What radio frequency band?” Since Joe is a radio engineer, 
he suggests: “Try an unused TV channel.” Genie has the Super-Soft 
Cognitive Radio Ontology (CRO) and Cognitive SDR Subsystem. The 
ontology gives it the capability to talk to <Users/> informally about 
radio and to talk to radio peers in radio technical jargon.

4. Genie searches the TV bands: “TV Channel 68 is empty.” Genie asks, 
“Will Lynné’s car follow you within 500 meters?” To which Joe replies, 
“Yes.” Genie reasons that for short range, she can close the link within 
FCC ISM Part 15 rules, generating an air interface that meets walkie-
talkie constraints. Genie discovers by listening to <RF/> that there is a 
policy broadcast channel and confi rms that Channel 68 is authorized, 

1 Over-personifi cation emphasizes the artifi cial synthesis of an intelligent entity, Genie, who 
talks with a female voice.



advising the FCC network that she will transmit with 0.25 watts EIRP 
via FM voice. The FCC Cognitive Spectrum Network (FCC CSN) 
approves the plan. Genie can be trusted to verify its plans with the FCC 
before implementing them.

5. So Joe says, “OK, great. Did you check with the FCC?” Genie says, “Of 
course, Master. You know I would never do anything to get us in trouble 
with the FCC.”

6. Genie sends a setup message via CDPD to CR2 in Lynné’s auto: “Use 
UHF 68 in FM push-to-talk mode with 100 kHz modulation,” Genie 
says (paraphrasing her RXML).

7. Genie and CR2 use UHF 68 for Lynné and Joe until they detect channel 
occupancy. These iCRs obey radio etiquette, constantly monitoring 
Channel 68 for TV, the primary user; they are secondary users, obli-
gated to defer. They know what they are doing, and they are responsible 
to obey the rules.

8. When autonomously detecting the confl ict for TV68, Genie infers that 
the situation closely matches step 3 above, except that from experience, 
Genie expects Master to advise, “Search for an unused TV channel.” 
With CBR, Genie continuously compares all prior experience with the 
current situation, binding the most relevant experience to the current 
<Scene/>. (This is how CR1, the research prototype, works.) Genie’s 
CBR binds steps 3–6 above to resolve the confl ict, step 3 above to step 
(a) below, step 4 to step (b), and so forth.

(a) Genie searches for an unused TV channel. She fi nds UHF 24 
unoccupied.

(b) Genie plans to switch to UHF 24 via binding <Unused>TV24 
</Unused>.

(c) Before Genie transmits anything, she tries to reach the FCC, but 
the FCC is not available. The local spectrum-use broadcast tells 
Genie that Channel 24 is OK for ISM use. Genie’s core CRO tells 
her to wait for the FCC, but reasoning over uncertainty implies that 
the FCC would probably (90%) approve because of their recent 
approval of TV68.

(d) To resolve the internal confl ict, Genie says, “Master, I cannot reach 
the FCC, and we cannot use TV Channel 68 now because it is now 
occupied. Channel 24 is not occupied, and the FCC broadcast says 
it is OK in principle to use Channel 24. Since the FCC approved 
my prior request to use low power FM transmission that I synthe-
sized for this occasion, I believe they would approve, but they do 
not reply. My trust instinct tells me that if you take responsibility, 
then I may use Channel 24.”

(e) “Thank you, Genie. Permission granted. Next time you can reach 
the FCC, tell them I gave you permission.”
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(f) Genie sends a message to CR2 advising it to switch to UHF 24 for 
the next transmission.

Genie knows a lot about radio, but she had no predefi ned walkie-talkie 
<Waveform/> for the TV bands. Genie synthesized it by fi nding walkie-talkie 
in the ontology <CRO/>, adapting its parameters to TV Channel 68. CBR 
then enabled Genie to maintain communications autonomously in spite of a 
temporary lack of access to the FCC. Genie not only provides connectivity 
but also is trustworthy. Genie is smart enough to discover Dan’s new T6880 
and link them together.

AARs emerging in 2003–2006 to use the TV bands are the foundation for 
iCRs like Genie. CR1, the research prototype, is not as capable as Genie, but 
the differences soon may be a matter of product engineering, not a lack of 
sensors, perception, or computational intelligence technology.

3.3 DEVELOPING AML FOR GENIE

While it is fun to write use cases, this book is about a CRA that realizes them 
in hardware and software components that work together via design rules to
achieve the desired functions in an integrated product. That realization will 
take some time, but at present, one can sketch the structure of the software 
and experiment with CBR steps toward AML. This section therefore replays 
the Genie use case, explicating the CRA functions, components, and design 
rules.

3.3.1 Genie’s Name

In step 1 above, <Owner/> addresses <Self/> with the speech segment “Com-
puter.” To interpret this properly, Genie must know “Computer” as a name. 
Genie needs to recognize “name” as a stimulus and to respond to one’s name. 
The following data structures apply.

Expression 3-1 The <Self/> Grounded in the Universe

<Universe>
<Self>

<iCR-platform>  .  .  .  (capabilities from above) </iCR-platform>  .  .  .
<Name> “Computer” “Genie” </Name> </Self>

<Scene> <Self/> <RF-environment/> <User-situation/>
<Space-grounding> Location </Space-grounding>
<Temporal-grounding/> </Scene> </Universe>

The <Self/> exists in the <Universe/>. There is a <Scene/> in which the 
<Self/> is located that also includes an <RF-environment/> and a <User-



situation/>, all grounded in space and time. The <Self/> has two names, each 
expressed in speech (indicated by quotation marks). Auditory perception 
correlates these two names with external speech stimuli. How did Genie learn 
her names?

3.3.2 Speak When Spoken To

In step 1 above, Genie responds, “Good day, Master, your wish is my 
command.” The data structure relating <Name/> and <Response/> may be a 
serModel.

Expression 3-2 serModel of Salutation–Greeting Dialog

<serModel>
<Stimulus> “Computer” </Stimulus> <Experience></Experience>
<Response> “Good day, Master, your wish is my command.”

</Response> </serModel>

The anonymous serModel is shallow. In an expert system, this serModel could 
be a named if–then rule. Since iCR uses AML, this serModel is learned not 
programmed. How did Genie acquire this serModel?

3.3.2.1 Acquiring serModels
To acquire the serModel of Expression 3-2, the perception system grounds 
the <User/> and the <Self/> in a <Training/> <Scene/>, a setting for the 
autonomous acquisition of serModels. The iCR <Self/> is grounded in space–
time. Therefore, all the stimulus–response (SR) pairs are annotated with 
space–time. Each is learned in some place at some time and from an identifi -
able <Source/>. Each applies in a class of places and times expressed in a 
computational model of the equivalence of similar settings.

Expression 3-3 Training Setting Defi ned as Place of Purchase

<Training-setting>
<Place-of-purchase>

  BestBuyTM Wal-MartTM Circuit CityTM  .  .  .  </Place-of-purchase>
<Owner’s-home>

<Ask/> </Owner’s-home> </Training-setting>

When purchased, the iCR knows its location from a trusted source like a 
secure WLAN or a salesperson (a somewhat trusted source). Suppose Genie 
learns her name when fi rst purchased (“Right this way, Sir. You and Genie 
should spend a few minutes in the fi tting room so she can get used to your 
voice and learn enough about you to know you as her owner.”)
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Expression 3-4 Use Settings Overlap Training Settings

<Use-setting>
<Place-of-purchase> <Here> BestBuyTM Ocala, FL </Here>

</Place-of-purchase>
</Use-setting>

In addition, Genie knows from Expression 3-4 that unless otherwise speci-
fi ed, the space–time grounding for a behavior is <Now/>2 and <Here/>. Set-
tings for training and use are not identical but overlap. Genie may be trained 
at any of the places of purchase listed but she may perform place of purchase 
actions only at the Ocala, Florida store. Why should a radio engineer care 
about this?

Expression 3-5 Radio Training and Use Settings

<Training-setting>
<Place-of-purchase> BestBuyTM Wal-MartTM Circuit CityTM  .  .  .  

</Place-of-purchase>
<FCC-spectrum-policy> <RF> 1600 kHz </RF> <Trust> High </Trust>

  </FCC-spectrum-policy>
<Owner’s-home>

<Ask/> </Owner’s-home> </Training-setting>
<Use-setting>

<Place-of-purchase> <Here = BestBuyTM Ocala, FL>
</Place-of-purchase>

</Use-setting>

The same data structures that mediate learning about the iCR’s name 
readily mediate spectrum-use policy as in Expression 3-5. According to this 
RXML, the iCR learns spectrum use via a FCC broadcast on 1600 kHz, and 
the degree of trust afforded to this broadcast is “high.” The radio may use 
what it learns on the FCC policy broadcast anywhere it chooses. Thus, policy 
broadcasts bind policies in space–time for accurate interpretation, avoiding 
over- or undergeneralization of the policy. The <Training-setting/> and <Use-
setting/> share semantics in <User/> and <RF/> domains.

Referring to Expression 3-2, such a serModel that does not specify a time 
and a place of applicability is not fully groundable. serModels may be grounded 
either with specifi c place and time, or with a class of location (e.g., <Home/>)
and time (e.g., <Weekends/>). Although the quotes on the response “Good 
day  .  .  .” in Expression 3-2 imply speech synthesis, the communications 

2 <Now/> refers to the ontological primitive. <Now> paired with </Now> delimits time while 
<Now/> refers to the current instant in the real world: <Now/> is a metalevel reference to the 
real world, not to the computer’s clock which may be wrong.



medium may be explicated in the serModel. Adding <Here/><Now/> <Say/>
to the serModel grounds it in space–time and an action capability. While it is 
relatively easy to express and to code such behavior as expert system rules, it 
is more fl exible to learn such serModels through training. CR1, the research 
prototype, remembers everything (the CD-Rom illustrates this) and con-
stantly attempts CBR on everything. It learns of a training setting through 
the fl ag “train” during which it acquires serModels. When it succeeds in 
applying a model, as CR1 often does, it asks permission to act, such as 
<Here/> and <Now/> to <Say/> something.

3.3.2.2 Stereotypical Learning
The salutation and FCC broadcast are examples of stereotypical situations. 
People learn these situations by exposure, observation, and participation. The 
CRA enables training by being exposed to structured stimulus–response 
pairs in reliably detectable situations so that “good” knowledge is acquired 
autonomously. Good knowledge may include off-nominal cases and negative 
reinforcement to learn what not to do as well as what to do. Since stereotypi-
cal situations have readily detectable features, they are good candidates for 
training.

3.3.3 Understanding a Request

The last part of step 1 in the two-car use case asserts that the user could 
explain the need for a walkie-talkie link to the other car. Speech recognition 
technology is powerful, but far from perfect, particularly in noisy acoustic 
settings (e.g., not broadcast news) and for conversational speech (not struc-
tured speech like the news). Speech recognition accuracy may be expressed 
in equal error rates, the error rate at which the probabilities of errors of dif-
ferent kinds are equal. Speech equal error rates are about 20% for untrained 
speakers and as low as 5% for trained dialog in acoustically moderate scenes 
(e.g., headphones in an offi ce, but not a cocktail party or a busy airport con-
course). The top 10 alternate text interpretations of a suffi ciently long speech 
segment such as a phrase or a clearly articulated sentence contain the correct 
text about 95% of the time.

Suppose the request for walkie-talkie support for the trip to Florida is as 
follows:

1. “We are going to Florida by car.”
2. “I will be in the front car.”
3. “Lynné will be in her car behind me.”
4. “We need to talk from car to car.”
5. “Can you and her CR create a walkie-talkie between us?”

Suppose these fi ve phrases are the exact words (ground truth) used to 
request walkie-talkie. The term “car” occurs fi ve times, the most of any 
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isolated word in the request. Suppose the speech recognizer got that right 
80% of the time. In addition, walkie-talkie is a radio word, so further suppose 
Genie has a rich repertoire of speech models of such radio words and that it 
recognized that. Suppose, in addition, Genie has strong speech models for the 
fi fty states, recognizing “Florida.” The text from speech is not perfect, but 
Genie recognizes “Lynné,” “car,” “Florida,” and “walkie-talkie.” Even with 
brittle speech technology, this level of recognition is about 95% likely.

Genie checks her inventory of things that she can do with pairs of things 
she recognizes. “Car ⇔ walkie-talkie” evokes a mobile radio CBR case to 
create a point-to-point short-range voice link from one moving vehicle to 
another. The serModel for the vignette could be the following:

Expression 3-6 serModel Template of a Dialog to Form a Voice Link

<serModel>
<Dialog><Phrase1>
<Stimulus><Person/> <Vehicle/><Talk/> </Stimulus>
<Response> <Here/><Now/>

<Say> “Would you like me to create a <Voice-link>
  between <Person/> in <Vehicle/>?” </Say> </Response>

</Phrase1>
<Phrase2><Stimulus> <Positive-response/> </Stimulus>

<Response>
<Here/><Now/> <AND> <Say> “OK, your wish is my command.” 

</Say>
<Initialize><Voice-link/> </Initialize> </AND>
</Response></Phrase2> </Dialog>

</serModel>

The template consists of two phrase exchanges. The stimulus for <Phrase1/>
is the recognition of <Person/>, <Vehicle/>, and <Talk/> from speech 
addressed to Genie. The second phrase instantiates in response to any posi-
tive response to Genie’s question, yielding a verbal response <AND/> a task 
to initialize a <Voice-link/>, a SDR procedure. Therefore, Genie offers to 
create a walkie-talkie radio link between two cars. A question–answer system 
could embellish the dialog. The serModel not only asks permission but also 
implements the requested action. <Initialize/> instantiates a voice link by 
instantiating a SDR template.

3.3.4 Phone Home or Collaborate?

In step 2 of the walkie-talkie vignette, Genie wonders, “What RF?” (on 
which to build a walkie-talkie voice link). The SDR template lacked the 
details for <RF/>. Should Genie phone home, connecting to a home CWN, 
or introspect, trying to invent the missing pieces? With contemporary cell 



phone technology, the choices for new waveforms are limited and mostly up 
to the service provider. If the phone doesn’t have a “walkie-talkie” button or 
it’s not listed in the users’ manual (Where did we put that thing?), then the 
consumer has little choice but to call the service provider. The consumer 
doesn’t ask the phone. The phone has insuffi cient knowledge on-board. The 
iCR, on the other hand, may proactively search the semantic web, XG broad-
casts, and peer iCR networks via knowledge discovery and data mining 
(KDD) [65] with voice interaction [66] and a semantic web ontology to auto-
mate interaction with the consumer.

In the near term, the user may type “walkie-talkie” into the service pro-
vider’s Search window on the handset and get an offer to download that per-
sonality for a small fee. This scenario has many positive features, such as 
amortizing the cost of the “walkie-talkie” personality over many users and 
assuring that the personality is supported by a chain of responsibility in case 
it generates illegal interference. Although NexTel users sometimes refer to 
their VHF service as “walkie-talkie,” the handset communicates with a tower, 
not with another handset like an actual “walkie-talkie.” This service has a 
digital control channel, while walkie-talkies have no such adult supervision. 
How could an iCR synthesize such a capability instead of depending on a 
download?

3.3.5 Genetic Algorithm (GA) Introspection

Genie’s alternative to the download could be the autonomous synthesis of the 
needed <Waveform/> via genetic algorithm (GA) [67–69]. The synthesis of a 
new air interface historically requires highly trained radio engineers and 
years of work, including ITU-R standardization. Computer-based alternatives 
include the GA that solves optimization problems in rugged fi tness landscapes 
where the lack of smooth surfaces prevents conventional optimization. GAs 
generate a large population of individuals (waveforms) that are candidate 
point solutions, selecting the most fi t among that generation to procreate a 
next generation, creating offspring by parenting with inheritance, mutation, 
and crossover, and iterating until a suffi ciently good member of the population 
has been found or resources are depleted.

GA introspection to invent the walkie-talkie air interface could be based 
on a population of air interface components for machine-generated possibili-
ties. Since there are many known approaches to physical layer radio connec-
tivity, one could enumerate physical layer modes for the GA (such as AM, 
FM, BPSK, QPSK, MSK, or 16 QAM). Figure 3-1 illustrates how genes rep-
resent components and parameters of the SDR Forum’s original Information 
Transfer Thread [70]. The gene string specifi es the physical layer, such as 
(100000) indicating [analog] AM as the physical layer channel symbol, 
the product of that vector with the Channel Gene String (AM, FM, BPSK, 
QPSK, MSK, 16 QAM). A similar strategy applies to instantiation of the 
other parameters of waveform objects of the Forum’s SCA. An additional 

DEVELOPING AML FOR GENIE     67



68     EVOLVING FROM AWARE AND ADAPTIVE TO COGNITIVE RADIO

chromosome string specifi es source coding of voice (such as analog, A-law, 
Mu-law, CVSD, ADPCM, RPE-LTP) with (000001) selecting the GSM RPE-
LTP vocoder. Other strings code the bit rate of digital source codec or band-
width of analog source. Yet another string codes the control method 
(push-to-talk, control-channel/traffi c-channel, etc.). Multiple access (colli-
sion, FDMA, CDMA), duplexing (simplex, half-duplex, full duplex), and 
every other aspect of the candidate air interface are so coded. Strings for data 
rate (1200, 2400, 4800, 9600, 32000, 64000 bits per second) and for bandwidth 
(6.25, 8.33, 12.5, 25, 50, 100 kHz) create further possibilities. All these vectors 
are gene strings to the population generator that creates an initial population 
of candidate waveform “individuals.”

Given a candidate walkie-talkie <Waveform/> population, the GA needs 
a method of evaluating the merit of each individual. A Matlab® [71] script 
could interpret the strings to simulate each candidate. Fitness requires a 
metric space and a relatively quick way of evaluating each individual from 
hundreds to thousands of candidates. The GA simulates the behavior of 
several individuals on a standard task in a common RF test environment or 
in a radio propagation simulator [72, 73]. With a population of 100 individuals 
and 10 ms on a blade server for each evaluation, 1000 iterations require about 
16.7 minutes. CWPDA time could be 10–100 times as long or three to seven 
Moore’s Law cycles before GAs are practical on a stand-alone CWPDA. GAs 
introspect autonomously but do not avoid the Gödel paradox because one 
cannot specify a tight upper bound for a result to be generated. Thus, GAs 
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are deprecated for stand-alone iCRs but not for CWNs with relatively 
unbounded resources.

For an overview of schemes for radio design by a GA see [74]. Ideas include 
shaping crossover and mutation based on templates that refl ect good radio 
design, adjusting parameters of the search space, heuristically repairing failed 
members of the genome, representing the air interface with novel basis func-
tions, and adjusting metalevel parameters genetically. Some of these tech-
niques are combinatorially explosive.

GAs also manage the radio spectrum [75]. Parameters for multimode 
waveforms like IEEE 802.11 may be optimized by GAs selecting among QoS 
parameter sets like BER, bandwidth, spectrum effi ciency, power, data rate, 
and interference generated by the waveform. Rondeau [76] distributes GAs 
across multiple platforms, highlighting the problem of terminating before 
convergence.

3.3.6 Waveform Templates

Genie could also synthesize waveforms by learning parameter settings of a 
generic air interface or waveform template. Jondral and Wiesser [77, 78] syn-
thesize diverse air interfaces such as GSM, IS-136, and UTRA-FDD by 
parameterized Gaussian impulses for the channel symbols, polyphase fi lter-
ing for sample rate optimization, and template parameters for Burst Length, 
Precoding (On/Off), NRZ (On/Off), Modulation Number, Spreading Factors 
(I&Q), Filter Number, and Sequence Length (I&Q). Such templates com-
pactly encapsulate waveforms for autonomous instantiation through 
introspection.

Cognitive entities may be said to “wonder” about something if (1) they 
introspectively discover they have partial knowledge and (2) cannot fi nd a 
plan to fi ll in the blanks, so they (3) autonomously allocate resources to plan 
generation. A waveform template without all parameters specifi ed constitutes 
partial knowledge for template instantiation. Expression 3-7 enables Genie 
to recognize the association of a verbal expression “walkie-talkie” as a refer-
ence to a parameterized waveform template that can be <Initialized/>.

Expression 3-7 <Self/> Includes Walkie-Talkie Knowledge

<Self/>  .  .  .
<RF-capabilities> <Waveforms> <GSM>  .  .  . </Waveforms>
<Waveform-templates>
<Jondral-Wiesser> GSM, IS-136, UTRA-FDD </Jondral-Wiesser>
<Walkie-talkie> <Voice> <Range> 500 m </Range> <Band> VHF UHF 

</Band>
<Power> 100 mW </Power> <RF> <Ask/> </RF> <Template#URI/>

 </Voice> </Walkie-talkie> </Waveform-templates>
.  .  .</RF-capabilities>  .  .  . </Self>
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Expression 3-7 offers a (partial illustrative) semantic template for the 
walkie-talkie function. The semantics are <Voice/>, <Range/>, <Band/>,
<Power/>, and<RF/> ontological primitives known to the <Self/> and express-
ible to the <User/>, AACRs, and CWNs. Band, power, and range are con-
strained and the exact RF carrier frequency is unspecifi ed and thus imply 
goals. In step 3 of the use case, Genie says, “What RF?” following the advice 
<Ask/> of Expression 3-7.

3.3.7 Ontological Support for Dialog

RXML could describe representative waveforms (e.g., APCO 25, CDMA, 
DECT, GSM, JTIDS, NTDR, PCS-1800, PCS-1900, SINCGARS, UWC-136, 
and Walkie-talkie) expressing features of air interfaces such as RF channels, 
Rb (chip rate, bit rate, or channel symbol rate), error control, framing, secu-
rity, multiple access, multiplexing, source coding, and spectrum spreading. A 
fully developed RXML would enable Genie to share experience with other 
iCRs regarding existing air interfaces to learn band/mode-dependent QoI 
optimizations. Challenges to such AML for AACR evolution include radio 
domain semantics.

3.3.7.1 Radio Domain Semantic Inconsistencies
Ontology engineering for AACR to evolve toward Genie must overcome the 
domain-specifi c ascription of specialized meanings to common terms. Each 
major air interface (GSM, CDMA, etc.) is a unique ontology domain: across 
domains the same term has different meanings. For example, “Channel” 
means 100 kHz of analog bandwidth in FM broadcast; one of eight logically 
associated frame to frame time slots in GSM; and an offset of the long code 
in CDMA. XML namespaces resolve such ambiguities syntactically but for 
effective management of radio resources, iCR must disambiguate contexts to 
use the correct namespaces appropriately. For example, suppose Joe asks 
Genie to “conference Dan into the walkie-talkie chat” and Dan has a CDMA 
cell phone. Genie must place a call to Dan linking his CDMA voice channel 
to Joe’s TV-band transmit function. Conversion from CDMA to baseband 
vocoder to analog FM introduces coding noise, decrementing QoI. If Genie 
learns to format the Joe–Lynné ad hoc network to Dan’s CDMA channel 
coder, QoI is enhanced in a generalized digital walkie-talkie.

The CDMA walkie-talkie is similar to the walkie-talkie modes of the Joint 
Tactical Radio System (JTRS) [79], for example, SINCGARS in single-
channel analog voice. The Joint Tactical Information Distribution System, 
(JTIDS) [183] channel includes both time division slots and direct sequence 
coding. Each waveform thus has distinct semantics for “channel”.

RXML assists in ontology resolution by always citing a source for knowl-
edge. Sources (e.g., CYC, RDFS, OWL, or the FCC) [80] assist ontology 
resolution. Authoritative sources include the GSM MOU Committee and the 
ITU. If no authoritative source is specifi ed, then when a <Self/> knowledge 



chunk is learned iCRs autonomously insert the place, time, and source of the 
update. This feature of RXML originated in RKRL 0.4 [145]. Although far 
from a universal solution, RXML namespaces and source semantics facilitate 
semantics alignment across radio domains. Synthesizing CR behaviors that 
relate radio ontologies to the <User/> requires the general world knowledge 
of the CRO.

3.3.7.2 Cognitive Radio Ontology (CRO)
In step 3 of the Genie use case, Genie is advised to “Search for a band with 
an unused TV channel.” The use case asserts a cognitive radio ontology 
(CRO). Such ontology enables iCR to converse with users informally about 
radio services. In step 4 of the Genie use case, she searches the TV bands 
reporting “TV Channel 68 empty.” The dialog requires the general world 
concepts of Expression 3-8.

Expression 3-8 CRO Contains Persons, Places, Things, and Actions

<CRO 0.1> <Universe>
<Persons> Owner Lynné FCC < Self> Lynné’s-CR </Self> </Persons>

 <Places> car </Places>
 <Things> Band TV channel car meter range link ISM transmission radio 
  signal constraints walkie-talkie order-wire CDPD broadcast URI Watt 
  EIRP FM voice confi rmation CN-One </Things>
 <Attributes> empty 68 500 Yes close unused local 0.25 </Attributes>
 <Actions> Search follow generate listen transmit </Actions>

</Universe> </CRO 0.1>

With the intuition from the game “Twenty Questions,” the embryonic CRO 
0.1 includes persons, places, and things with attributes and actions. Linguists 
also categorize these by their linguistic role as nouns, adjectives, and verbs. 
Semantic role and linguistic role differ, particularly in less formal speech. 
Conversational speech is rich in anaphora and ellipsis, general references with 
words such as “that” and “this,” which people interpret with relative ease. 
Language processing technology readily parses well formed sentences into 
parts of speech and word roles. Informal dialog is not as readily analyzed. In 
the CRO, a car is both a place and a thing: a thing in which a person can ride 
and a place from which to transmit defi ning time-dependant range of a radio 
transmission.

iCRs use the CRO to detect in speech the things that they can do, limiting 
the scope of dialogs in which they attempt to participate. Coding such general 
world knowledge for this purpose requires substantial technology develop-
ment. Although language technology offers many domain-independent tools 
for parsing and interpreting well formed language, it offers only general tools 
for synthesizing speech plans and actions, leaving the analysis of semantic 
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intent of radio jargon to the radio engineer. This text draws from language 
tools but adapts them to radio-related domains of discourse.

3.3.8 Authority and Trust

The iCR is “trusted” in step 4 of the Genie use case to verify its plan with 
the FCC. In GSM, a random challenge accesses the home location register 
(HLR) for call authorization. Similar secure protocols may contribute to trust 
relationships among AACR network authorities.

The trust relationship between an iCR and an authority includes shared 
semantics for dissimilar (learned) data structures of wireless domains: eti-
quette, user preferences, and QoI enhancing activities. The XG policy lan-
guage [81] develops computational ontologies sharable among iCRs and 
trusted entities. XG may evolve toward autonomous coordination between a 
cognitive spectrum authority and a user’s iCR for an autonomously synthe-
sized air interface. Genie requires iCRs and their trusted authorities to evolve 
versions of a CRO like Expression 3-8. The AACR <Self/> defi ned in RXML 
in the companion CD-ROM offers an initial CRO.

3.3.9 Cooperation Among iCRs

In step 6 of the use case, Genie sends a setup message via cellular digital 
packet data (CDPD), one of its SDR modes, to CR2 in Lynné’s car. Modern 
plug and play protocols enable electronic systems to exchange capability data, 
such as the Microsoft Registry, CORBA, and the SDR Forum’s secure down-
load [27]. The Genie-to-CR2 message would be structured more like Expres-
sion 3-9. The syntax CRO:  .  .  . invokes the CRO namespace. CR2 learns by 
being told that it is to use a known template. Generally, iCRs learn by being 
told and by observing other radio communications: legacy radios, AARs, and 
iCRs in cooperative CWNs. Underlying these abilities is the grounding of 
message symbols to shared semantics, negotiating message symbols to com-
municate unambiguously.

Expression 3-9 CR-to-CR Communications Are Formal and Brief

CRO: <Request> <Air-interface>
<Walkie-talkie-template> <RF> 650 MHz </RF>

</Walkie-talkie-template>
<Acknowledge> CR1.Genie. 555.1212 </Acknowledge> </Air-interface>

</Request>

Techniques for formal cooperation illustrated in Expression 3-9 include the 
Knowledge Query and Manipulation Language (KQML) [82], CoABS [83], 
the DARPA Agent Markup Language (DAML) [127], OWL [84, 85], and 
the Java Agent Development Environment (JADE) message syntax. OWL 



and JADE have active user communities and tool sets focused on enabling 
infrastructure. Domain relevance to communications includes OWL for 
network management information bases [86, 87]. Ontology-based radio 
(OBR) research [88] points the way toward formalizing radio domains. Thus, 
the subsequent treatment doesn’t reinvent these technologies, but introduces 
methods, tools, and lessons learned from these communities into the CRA.

3.4 LEARNING ETIQUETTE

Continuing to analyze the Genie use case, step 7 calls for the iCR’s use of 
UHF TV Channel 68 until they detect channel occupancy. As two automo-
biles progress south on the Eastern seaboard, the RF environment changes. 
Microscale changes occur on millisecond time lines with the structure of 
multipath fading in dozens to hundreds of wavelengths. Power changes meso-
scopically as the vehicles transit Fresnel zones a few meters in extent in SHF 
in urban settings and tens of kilometers in extent in the 1500 kHz AM broad-
cast band in the rolling hills of South Carolina. Macroscale changes occur as 
the vehicles traverse dozens to hundreds of kilometers entering and leaving 
the radiation patterns of low, medium, and high band AM, FM, and TV 
broadcast stations. Politeness of the level suggested by Genie requires prior 
knowledge, propagation modeling, and cooperation.

3.4.1 Prior Knowledge and Skill

To obey radio etiquette, Genie constantly monitors Channel 68 for primary 
TV broadcast as a persistent goal. Genie may be assisted in predicting changes 
to channel occupancy by prior knowledge like the <Spatial-knowledge-DB/>
of Expression 3-10.

Expression 3-10 Prior Knowledge Assists in Adherence 
to Radio Etiquette

<Universe>
<Environment> <Spatial-knowledge-DB> < Schema/> <Content>

  [1 (Washington, DC), 1500 kHz, WTOP, Strong] <Primary-user/>
  [2 (Rocky Mount, NC), 794 MHz, TV68, Strong] <Primary-user/>
</Content> </Spatial-knowledge-DB> </Environment> </Universe>

Although there is no spatial knowledge that says [3 (Washington, DC), 
794 MHz, TV68, UNK] in the exogenous <Spatial-knowledge-DB/>, there 
would be such an entry in its internally generated (endogenous) data base as 
the iCR searched for but observed no such signal in the DC area. With such 
knowledge, the iCR could share with another iCR that it hadn’t observed 
TV68 in the DC area. Confi rmation from several mobile iCRs about TV68 
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reinforces the further inference that TV68 is not in use anywhere in the 
Washington, DC area. The exogenous confi rmation of endogenous predic-
tions increases Genie’s confi dence in the plan to use that spectrum for the 
car-to-car walkie-talkie link. If, on the other hand, some iCRs observe a weak 
TV68, say, on the northern fringes of the DC area, Genie should pick a 
channel about which there were no such observations. Thus, etiquette entails 
not only backing off when a legacy user is detected, but proactively sharing 
knowledge among iCRs. Polite iCRs need RF sensors that detect weak legacy 
users like distant TV stations. Optimization through message exchange among 
intelligent agents is studied at length by the complex adaptive systems com-
munity [56], with implications for CWNs.

3.4.2 Case-Based Learning

In step 8 of the use case, Genie is acting as a walkie-talkie but doesn’t have 
a channel because TV68 is active in the new location. As previously noted, 
step 8 closely matches step 3, but prior advice suggests “Search for an unused 
TV channel.” Genie stored the prior experience as in Expression 3-11. Previ-
ously, in Expression 3-6, Genie had employed an existing serModel to instan-
tiate a voice link, had applied the PTT-template, asking the user for advice, 
and recorded that advice as shown.

Expression 3-11 Walkie-Talkie Dialog Stored at 5 AM

<Dialog-walkie-talkie> <Phrase1>
 <RF-capability> <Washington-DC> < 5 AM> <Voice-link/>
 </5 AM> </Washington-DC> <Apply: PTT-template (RF = <Ask>)/>

</RF-capability >
 <User-situation> <Washington-DC> <5 AM> <Asked> “What RF?”
 <Response> <Told> <Search/> <TV> </Told> <Unused>

</5 AM> <Washington-DC> </Response>
</Phrase1>  .  .  . </Dialog-walkie-talkie>

With today’s brittle speech recognition algorithms, capturing even such a 
simple interaction this accurately is not easy. Advances in noise suppression, 
speaker isolation, and coarticulated word recognition render isolated phrases 
expressed to a known person in response to a known question as a credible 
mid-term research objective. Genie’s analysis of the next phrase of step 3 
results in Expression 3-12.

Expression 3-12 Phrase 2 of Walkie-Talkie Dialog with Spectrum Search

<Dialog-walkie-talkie> <Phrase2>
<Washington-DC> <5 AM>
 <Search> (From: 614 MHz, To: 806 MHz, 6 MHz) </Search>



 <Found> Unused-TV-Channel (RF: 794 MHz, 6 MHz) </Found>
 <Lookup: Spectrum-DB RF = 794 MHz/> = “TV68”
 <User-situation> <Asked> “TV68 OK?”</Asked>
 <Response> <Told> <OK/> </Told> </Response> </User-situation>  .  .  . 
</Phrase2> </Dialog-walkie-talkie>

These two phrases must be integrated for a complete learning experience. 
Genie matches Phrase 2 to the attempt to instantiate the walkie-talkie air 
interface because the walkie-talkie goal has been achieved. Genie’s proce-
dure for achieving step 8 uses CBR to bind the <Scene/> to experience as 
follows:

(a) Genie binds Phrase 1 to step 8 to recall the advice to <Search/> for an 
unused TV channel. UHF 24 is not occupied, and

(b) Genie binds <Unused-TV-Channel:TV68/> from Phrase2 to <Unused-
TV-Channel: TV24/> in the current setting.

The confi rmation, “Thank you, Genie. Permission granted,” provides rein-
forcement needed by CBR to complete the training experience.

The discussion of the data structures and computational procedures above 
reinforces a research agenda to overcome the acknowledged limitations of 
today’s perception technologies toward the realization of iCRs like Genie, 
Bert, and Ernie.

3.5 VALUE PROPOSITION FOR AML IN AACR

In the last part of the use case, Genie acquires new knowledge via supervised 
machine learning. Genie had to bind current sensory perceptions in RF and 
user domains to a prior experience. The CR systems engineer’s grasp of radio, 
wireless services, sensory perception, user ontology, planning technology, and 
machine learning is needed to synthesize Genie across these disciplines to 
autonomously enhance QoI for the mobile user. The cost of such technology 
versus the benefi t is the cornerstone of the AACR value proposition. This 
last section therefore reviews the value proposition of AML for AACR. AML 
is fundamental to iCR, so the incorporation of AML into the CRA facilitates 
the migration of SDR toward iCR.

3.5.1 Why the Radio and Not the User?

Why not just let the programmers program the modes and the users control 
the radio? We don’t need a cognitive agent in there, do we? This is a central 
question for AML in AACR. Encountering one case at a time, the well 
trained user can do it all without Genie. As the complexity of personal com-
munications resources increases, there is a combinatorial explosion of rules 
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about what to do and not to do in terms of network availability, power control, 
radio bands, and air interfaces that can be used or not used with each other 
or in specifi c places or at specifi c times. The service provider decreases this 
complexity for the cellular network user. But the complexity is more evident 
and growing in heterogeneous consumer markets like Home RF, WiFi, and 
BlueTooth where proliferation brings increasing complexity with interference, 
privacy, and consumer acceptance implications. Customers in those markets 
are increasingly reluctant to take on the complexity, so there may be a glass 
ceiling on wireless market penetration without AML to reduce complexity.

One could augment SDR with data structures like the <Self/> and <Envi-
ronment/> and good-old expert system rules for fl exibility. Such approaches 
no doubt will continue to propel wireless systems fl exibility forward. However, 
the artifi cial intelligence (AI) approach of writing expert systems rules has 
proved fl awed economically in complex domains in the past.

For some military applications in the 1980s, it made less sense to pay a 
team of PhDs to continually update rules than to just build a dumb system 
and train the relatively smart users to work out ways to overcome its limita-
tions. High expectations and broken promises yielding the AI winter of the 
late 1980s resulted largely from the failed economics of expert systems com-
pared to trainable people. To survive in the markets of the future, AACRs 
must overcome similar economics—consumers are pretty smart, so it will 
take breakthrough AML technology to win them over, and it must be 
affordable.

Good compromises for the average user can be shipped as embedded 
expert system rules. To synthesize Genie, algorithms must aggregate his torical 
patterns from unstructured data, infer learning from unstructured situations, 
and bind current experience to prototypical situations both preprogrammed 
and learned in the past so that the system continually and gracefully learns 
(and learns to forget) from its experience. The decades-long process of evolv-
ing SDR to Genie along feasible AACR markets can be informed by consid-
ering the economics of iCR-class expert systems.

3.5.2 Economics of iCR-Class Expert Systems

In the 1980s Professor Ed Feigenbaum led the Mycin project, which diag-
nosed bacterial infections in the bloodstream using a rule-based control 
system. Here’s a simplifi ed Mycin Rule:

If (AND (EQ Blood:Gram-stain Neg)  .  .  .) then (Assert
 (Causative-agent:ID “E-coli” EQ), 30)

which reads: “If the Gram-stain of the Blood is Negative, and if  .  .  . (other
conditions are met), then assert that the Identity of the Causative-Agent is
E-Coli, with a confi dence of 30.”

A database of hundreds of such rules, of course, came to be called a knowl-
edge base (KB) because it formalized knowledge in a given domain. Compan-



ion systems Dendral, meta-Dendral, and SU-X interpreted signal streams such 
as spectrograms to infer the identities of the sources of the signal streams with 
impressive results. Investment in expert systems technology and applications 
exploded. Core university texts like Artifi cial Intelligence [89], Pattern-
Directed Inference Systems [90], and Artifi cial Intelligence Programming [91] 
showed how to construct and search “game” spaces such as checkers and chess 
by applying rules that represented legal moves and board states [12]. By apply-
ing this control structure plus some additional estimation and control theory, 
Mycin, Dendral, meta-Dendral, and SU-X, a military system, stimulated DoD 
funding of AI. Even automatic knowledge acquisition seemed within reach. 
Adding gas to the fi re (meant in the most complimentary way), Professor 
Randy Davis wrote Tieresias, a program that autonomously acquired rules 
directly from expert medical doctors [318]. Rule bases incrementally acquired 
decision trees for diagnostic applications. Rules also applied arcane knowl-
edge to confi gure minicomputers. In the middle of the hype, it seemed like 
there was nothing that couldn’t be revolutionized using expert systems. Why 
that turned out not to be the case is a crucial insight for AACR. Eventually we 
(yes, I was a perpetrator) began to deploy these rule-based expert systems. By 
the end of the 1980s, they hadn’t fared as well as we had hoped.

People were more affordable. In many applications, “three PhDs” were 
needed to write expert systems rules to capture the knowledge that one mili-
tary enlisted person had regarding, for example, how to repair an engine. To 
the degree that knowledge of engines changes over time, the PhDs must con-
tinually update the rules. This was not cost-effective because the ability of 
the enlisted person to learn far outstripped the speed of rule synthesis. Thus, 
to continue to employ the team of PhDs to replace the one enlisted person 
was not cost-effective, and the lack of learning ability of the expert systems 
was not mission-effective.

3.5.2.1 Learning Through Perception
It wasn’t just a lack of AML algorithms: the problem lay in the inability of 
the machines to learn from the physical environment, to perceive, to isolate 
entities in a scene, to observe, to converse, and thus to learn incrementally 
and naturally. In other words, it was not the lack of expertise in the initial 
expert system so much as the inability of the initial expert system to maintain 
its expertise on its own that led to many a disappointment after an impressive 
initial demonstration. So a majority of knowledge-based expert systems of the 
1980s failed in deployment for lack of sustainability. The relevance is that if 
an iCR requires too much support from anybody, the user included, but espe-
cially from expert systems or worse AML or ontology maintenance program-
mers, then it may fail sustainability economics.

Some AI applications of the 1980s took three orders of magnitude more 
MIPS compared to less sophisticated customized code. The learning capabil-
ity of even the most junior applications programmers far outstripped the 
autonomous learning ability of knowledge-based expert systems, which was 
close to zero. Thus, many potentially helpful AI algorithms of many types 
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were not widely deployed. It was much more cost-effective for a manager to 
pay a conventional programmer to program a new application in an effi cient 
language like C than to work within the limitations of an expert system shell. 
Fortunately, the economics of computing platforms have changed by a factor 
of 500 – 1000 in the intervening two decades (1984 to 2004). Today for a given 
level of complexity, the hardware resources are much less important than 
functionality and time to market. This motivates a closer look at AML eco-
nomics versus both the expert system and the hard-coded wireless systems 
solutions.

3.5.2.2 Reinforcement Learning
Conventional AI technology like expert systems can make radios increasingly 
aware and adaptive, but not able to learn much from experience. There are 
three broad classes of machine learning: supervised, unsupervised, and rein-
forcement. A child instructed by a parent on how to light a fi re exemplifi es 
supervised learning. The oracle (the parent) provides ground truth. The 
learner’s job is to recognize and to apply the skill learned from the oracle 
later, in a different setting, through a distorted perception system, with noise, 
and in other ways less than identical to the training setting.

An algorithm that ingests 1000 digitized written samples of the numerals 
from 0 through 9 and attempts to derive the ten classes of symbol without the 
associated ground truth is performing unsupervised machine learning. The 
algorithm employs some very general principles, such as a similarity metric 
with statistical tools to bin the samples into N bins. If it gets N right, then the 
algorithm has attained a degree of successful unsupervised learning. If k of 
the samples are associated with the wrong bin, then the error rate is k/1000 
and one can populate a confusion matrix of the ten correct bins versus the 
incorrect bins.

A child playing with matches exemplifi es an important variation on unsu-
pervised learning called reinforcement learning. When the child burns a 
fi nger, the environment provides feedback to the learning process through 
the child’s perception channels. Ouch! Reinforcement learning is neither 
completely supervised nor completely unsupervised, but behavior is either 
rewarded or discouraged by forces in the environment [92]. Completely unsu-
pervised learning is not common in nature.

This text applies all three types of ML to AACR, showing how AML 
contributes to QoI enhancement goals of AACR. As a minimum AML in 
AACR could shape demand. With the deployment of 3G/4G and 802.11 hot-
spot WLANs in wireless PDAs, there are dozens of modes of communication 
among which users and networks can choose. Why pay for the network oper-
ator’s hot-spot LAN to upload a 10 MB attachment of an email when you 
could use your corporate LAN for free in 10 minutes? PDA location aware-
ness and AML (about the cost of connections versus the user’s typical move-
ment patterns) could shape demand, creating potentially disruptive forces in 
converged computer and communications markets. Opportunistic use of TV-



band spectrum seems certain with adaptation approaching the Genie vision. 
But there are many DARPA-hard challenges in making progress toward 
Genie. A decade ago, there were many DARPA-hard challenges facing SDR, 
and several generations of SPEAKeasy, JTRS, and commercial development 
later, there are SDR base stations and more. There may never be an ideal 
software radio in a handset, but the research agenda both identifi ed a very 
important point on the horizon to navigate by and characterized the journey 
as a hard one. From the trade press one may get the impression that cognitive 
radio is “the answer” or is “almost here,” but not from this text. The core 
technical chapters that follow present numerous technical challenges with 
suggestions and technical ideas, but with no argument that the way ahead is 
easy. Interesting and rewarding, yes; easy, no.

3.6 EXERCISES

3.1. Set up a computer speech system.
3.2. Dictate the fi ve sentences of the explanation of Section 3.3.3 into the word pro-

cessor. Dictate the explanation ten times, counting the errors of the errorful 
transcripts.

3.3. Set up CR1. Once you get used to the inference hierarchy and learning phases, 
link the speech recognizer into CR1.

3.4. In Exercises 3.2 and 3.3, what happened to the keywords Florida, Car, and 
Walkie-talkie?
(a) Train your CR on those words.
(b) What level of recognition is observed now?
(c) The fi rst two are very common words in talking about moving to Florida by 

automobile. Program your CR to recognize new topics (e.g., Florida and car) 
in informal speech. [Hint: Apply Zipf’s Law. Use Zipf’s Law to detect a new 
topic.] Google “bag of words.”

3.5. What machine learning software is available on the Web? Could you just use 
any of that as a black box? Give it some data and it will learn? Which computer 
languages do you need to know in order to modify it for integration into a 
CR?

3.6. Find Java source code on the Web for an expert system shell, for uncertainty 
(use the Uncertainty in Artifi cial Intelligence (UAI) bulletin board if you need 
help; search for Bayes’ inference if still not satisfi ed).
(a) Does any of this look particularly applicable for integration into your CR-

zero to help make it more intelligent? You can also try for source code in 
other languages such as C and C++ or C#.

(b) What would be the benefi ts and potential drawbacks of this kind of develop-
ment with freeware? With commercial tools?

3.7. What other lessons, issues, and technical ideas can you draw from Genie and the 
aspects of that use case developed in this chapter?
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CHAPTER 4

AUTONOMOUS MACHINE 
LEARNING FOR AACR

This chapter develops AML as the core technology for AACR mass custom-
ization, focusing on reinforcement learning in which the iCR independently 
detects the learning opportunity, shapes the dialog and proactively verifi es 
the acquisition of enhanced skill without burdening the user or violating radio 
etiquette.

4.1 MACHINE LEARNING FRAMEWORK

Machine learning texts typically develop ML strategies, data structures, algo-
rithms, and parameter tuning for relatively simple problems so that the student 
may understand the ML method. Such simple problems include blocks-world, 
Rubik’s Cube, and Towers of Hanoi [287]. More realistic examples include 
learning the structures of cells, inducing natural language grammars [93], 
balancing a rod, and exploring a maze [92]. Examples of ML applications to 
important problems include medicine, data mining, wireless channel coding 
[63], and cellular network admissions control [92] among others. Proceedings 
collect technical papers for emerging topics, such as agent technology in tele-
communications [94] and ML in SDR [95].

This chapter applies relevant ML techniques to AACR as a self-contained 
overview of AML for AACR evolution, with knowledge objects (KOs) and 
domain heuristics (DHs) developed in subsequent chapters.

Cognitive Radio Architecture: The Engineering Foundations of Radio XML
By Joseph Mitola III Copyright © 2006 John Wiley & Sons, Inc.



4.1.1 The AACR ML Framework

Algorithms that learn may be parametric, defi ned over continuous domains; 
or symbolic, defi ned over discrete domains; or both. Learning to recognize 
the difference between a speech utterance “Charlie” and the background 
noise of a crowded restaurant is parametric learning. Learning that the 
Owner’s <Name/> is “Charlie” is symbolic learning. Systems like CLARION 
acquire both types of knowledge at once. The AACR ML framework for 
these consists of the following.

AML Framework for AACR

1. Analysis of the problem space, which includes:
(a) identifi cation of the problem space as a subset of the user’s space–

time–RF world, and
(b) autonomous detection of problem space interest items, to ground

the iCR’s internal abstractions to sensory domains, external abstrac-
tions (e.g., protocols), and entities (e.g., people).

2. Tailoring the learning algorithm to the problem space.
3. Acting to acquire knowledge and procedures through experience:

(a) this may include off-line training followed by use and
(b) on-line learning to acquire additional knowledge
(c) with positive and/or negative reinforcement from the 

environment.
4. Internalization of the data, knowledge, and procedures into encapsu-

lated skills, for example, serModels (stimulus–experience–response 
models or the srModels of CR1), followed by

5. Real-time enhancement and refi nement of the encapsulated skills,
including validation, constraint discovery (negative reinforcement from 
novel situations), and the sharing of the newly acquired skill with other 
cognitive entities (AACRs and CWNs).

6. Off-line introspection to more fully internalize experience for future 
use.

This framework relates to AACR through steps performed by people (P) 
or algorithms (in a CWN, AAR, or iCR); through skill defi nition at design 
time (D), in real time (RT) “on-line,” or through autonomous introspection 
(“sleep” mode) with CWN assistance (“prayer” mode).

Table 4-1 shows user interface and RF capabilities of SDRs defi ned by 
people at design time. New SDR capabilities are downloaded from a labor-
intensive design-evolution infrastructure. AAR’s skills may be developed 
interactively via preprogrammed ML adaptation within constraints. GAs 
in a CWN, for example, may digest experiences of a population of AARs 
to autonomously evolve skills, while people validate evolving skills for 
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regulatory norms, QoS, QoI, and standards of AACR etiquette. With AML 
skill acquisition, CRs autonomously analyze problem sets, select ML algo-
rithms, acquire new skills, and internalize new skills through reinforcement 
and introspection, a tall order indeed. This chapter does not present a specifi c 
solution to these cutting edge challenges of computer science and radio engi-
neering, but instead characterizes research relevance within an architecture 
framework to facilitate the insertion of AML technologies as they mature.

4.1.2 Problem Space Analysis

The CRA AML problem space may be analyzed in terms of inference hier-
archies (Figures 2-3 and 2-4), where stimuli aggregate from primitives to 
inferred entities in <Self/>, <RF/>, and <User/> domains. Problem subspaces 
occur horizontally and vertically in these inference hierarchies as illustrated 
in Figure 4-1. Entities interact in dialogs and scenes. Expectations of entity 
consistency over space–time assist in grounding sensory perceptions to the 
evolving operational ontology, the integrated internal view of the relevant 
aspects of the outside world. Vertical inference identifi es known and novel 
abstractions. At the lower levels of sensory perception, algorithms identify 
objects in known classes where AML requires differentiating them from noisy 
backgrounds and tracking them in space–time, integrating RF, audio, and 
visual scenes. At the higher levels, the problem is to identify interactions 
among entities per stereotypical situations. RF-domain interactions include 
preprogrammed protocols from the physical layer through the applications 
layer of the ISO stack to be associated with user preferences autonomously. 
User-domain protocols are the social interactions among the <Self/>, the 
<User/>, and signifi cant <Others/> for information services.

Object identifi cation for AML succeeds only if the identity is grounded to
internal ontological primitives in the <Scene/> with suffi cient accuracy for 
the desired QoI. This degree of grounding falls short of general object iden-
tifi cation. For example, the AACR that identifi es the <User/> as the <Owner/>
accurately but misclassifi es the owner’s eldest daughter, <Sue/>, as the younger 
daughter, <Ellen/>, for a few minutes may not make errors in its wireless 

TABLE 4-1 Skill Defi nition Frameworks

Steps SDR AAR With ML iCR With AML

Analysis People/Design People/Design P/D + iCR sleep
Selection People/Design People/Design;  CWN/ iCR RT sleep
   CWN
Acquisition People/Design AAR/RT/CWN iCR RT sleep/CWN
Internalization P/D + Downloads CWN download to  iCR Sleep
   AAR
Refi nement SDR/RT AAR-CWN iCR-iCR-CWN



access tasks. Computational models may degrade from model contamination 
as in the dialog shown in Figure 4-2.

A dialog management system, for example, based on VoiceXML [222], 
could readily generate such a dialog, and a ViaVoice [66] class speech recog-
nizer could readily recognize the allowed responses “Sue,” “Ellen,” “Yes,” 
and “No,” although less reliably in noisy environments. The iCR structures 
its speech actions to limit the diffi culty of interpreting the response to 
simplify grounding. The AACR proactively shapes the learning environment, 
enabling learning only if criteria for reliable AML are met. If the person 
replies “Yes” in step 6, and if the voice and face match <Ellen/> to some 
degree, then the iCR could update both speaker model and face model of 
<Ellen/>. The recognition of strong, variable acoustic noise may disable audi-
tory learning while visual noise, such as a sea of faces in a busy airport, could 
also disable the learning of new faces. Both contribute to effective <Scene/> 
analysis by suppressing opportunities to learn erroneous associations.

Algorithmic analysis of CRA problem spaces may exploit generic proper-
ties of learning situations with little domain-specifi c knowledge. But even 
unsupervised ML requires a priori human tailoring, such as the identifi cation 
of features of the problem space to be represented to the ML algorithm. The 
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multiple hierarchy of Figure 4-1 aggregates stimuli in time and space so that 
dialogs like that of Figure 4-2 autonomously tailor the ML opportunity to the 
capabilities and limitations of the iCR (e.g., shaping the conversation to learn 
about <Sue/> and <Ellen/>). Having analyzed the problem space(s) of a set 
of use cases, one is ready to tailor ML algorithms to AACR applications.

4.1.3 Tailoring ML Algorithms

Tailoring ML algorithms to AACR requires a strategic grasp of learning 
protocols. Tailoring includes defi ning data structures for learning abstractions 
(the vertical fl ow in the hierarchy) and interactions (the horizontal fl ows). 
Interactive learning requires metalevel algorithms to autonomously adjust the 
augmentation of applicable data structures. For example, the dialog of Figure 
4-2 forces yes/no answers to tailor the information fl ow for entity identifi ca-
tion in face and speaker perception spaces.

Tailoring includes describing AML algorithms in canonical forms as in 
Figure 4-3: a part that computes statistics, a part that identifi es the features, 
and a part that labels signifi cant features to acquire new knowledge. Labeling 
may be autonomous (unsupervised), interactive with user or CWN (super-
vised), or interactive with the environment via feedback (reinforcement 
learning).

In this canonical form, a general statistical analysis algorithm computes a 
feature set of the data presented to the algorithm through the tailored infor-
mation fl ow. A domain-independent feature identifi cation algorithm discov-
ers potentially important features. A domain-dependent algorithm could then 

 1. AACR: “Are you Sue or Ellen?”
 2. If the answer is not clearly (high probability/low uncertainty) “Sue” or “Ellen” 

then,
 3. AACR: “Sorry but it is important for me to know who you are. Could you please 

answer ‘yes’ or ‘no’? Are you Sue?”
 4. (Response is clearly “No.”)
 5. “Are you Ellen?”
 6. (Response is clearly “No.”)
 7. “Are you somebody else?”
 8. (Response is clearly “No.”)
 9. The iCR jokes, “Are you kidding?” If laughter is clearly detected in the back-

ground, then the iCR may infer that it is in a no-win social situation where it 
cannot get a valid grounding, so it stops trying, disallowing use until <User/> 
can be grounded.

10. The iCR might warn those nearby, “OK, the joke is on me. But don’t expect me 
to be helpful if I can’t tell who you are.”

FIGURE 4-2 ML dialog in which the iCR shapes entity identifi cation.



label the important features. For example, a video algorithm might label 
intense pixels of a bimodal distribution as “Light” and the less intense pixels 
as “Dark.” Similarly, a RF-domain algorithm might label a large number of 
low intensity spectrum points as “Noise,” while the strongest bins are 
“Signals.”

The canonical process for tailoring AML to AAR then consists of the 
following:

1. Structuring the iCR’s data into parallel hierarchies to guide <Self/>,
<RF/>, and <User/> domain grounding in space–time as in Figure 
4-1.

2. Synthesizing behaviors that proactively shape the fl ow of information 
to AML components, guiding stimulus–response sequences.

3. Remembering stimulus–response experiences indexed to space, time, 
RF, and the user view of the <Scene/>.

4. Structuring ML components to perform:
(a) Domain-independent analyses (e.g., statistics, sequence, entropy, 

etc.).
(b) Identifi cation of potentially important domain-independent features.
(c) Learning by domain-specifi c labeling of the features either (i) 

autonomously (unsupervised), or (ii) interactively from an authority 
(supervised), or (iii) from positive and negative reinforcement.

5. Validating, amplifying, and refi ning the AML structure and parameters 
over time.

The balance of this chapter tailors a generic pattern recognition algorithm, 
the histogram for unsupervised, supervised, and reinforcement learning. 
Subsequent chapters develop steps 3–6 (page 81) of the AML Framework for 
AACR.

4.2 HISTOGRAM AS A DISCOVERY ALGORITHM

To learn autonomously, an iCR needs an unsupervised ML algorithm that 
applies domain-independent methods to identify potentially interesting 
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AACR data to learn to enhance QoI with that data. A histogram H( ) counts 
the number of occurrences of observations in a defi ned range, binning N
observations into K bins, Hk. When H( ) estimates how well N samples fi t a 
hypothetical probability distribution P(x), the K bins are termed class inter-
vals. For example, the chi-squared test compares Hk to Pk(x) for Gaussian 
noise [96]. Histograms are standard tools for speech and text analysis; and 
for low level vision contrast enhancement, region splitting, and spatial cluster-
ing [97]. Histograms map data onto frequency-of-occurrence, enabling the 
detection of nonrandomness, entropy, and thus potentially useful information 
in a feature space [97]. Histogram-based AML typically includes pattern 
analysis tests for degree of interestingness.

4.2.1 The Mathematical Histogram

A histogram algorithm from introductory probability and statistics is defi ned 
in Equation 4-1. In this discrete formulation, Y, the phenomenon of interest, 
occurs in a metric space as a function of Z, the integer subset of the real line 
for N points.
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In general, {λ(k)} is an anonymous function; λ(k) is the lower bound of his-
togram bin k; and the fl oor [*] has an open supremum; |x| = 1 if x is true, else 
zero. Since λ(k + 1) is the upper bound of bin k, |yi ∈ [λ(k), λ(k + 1)] | counts 
yi that are ≥ the lower and < the upper bounds of bin k. If all values are equally 
likely, then for all k, H(k) ≡ Hk � Hj, for any j ≠ k, but if one bin is larger 
than the others, then the values are not equally likely, so information may be 
implicit in {yi}.

4.2.2 The Histogram Algorithm

In an AACR, H( ) could be implemented per the PDL of Algorithm 4-1. The 
fi rst For loop fi nds the largest and smallest values in the one-dimensional 
array Y. The second For loop counts the number of values of Y that occur in 
K bins between Ymin and Ymax. The last For loop labels signifi cant deviations 
from an approximately equal distribution of values among bins as potentially 
<Interesting/>.

Algorithm 4-1 Interestingness Histogram of Array Y with K Bins

Program Design Language (PDL) pseudocode for H(K;Y)
Y( ) is an array-object of N real numbers from 1 to N;
Y.annotate(<Uninteresting/>);



K is a integer > 0; Bin( ) is an array-object of K integers 
 from 1 to K
Ymax = Ymin = Y(1)
For i between 2 and N{

If Y(i) < Ymin then Ymin = Y(i)
If Y(i) > Ymax then Ymax = Y(i)} End For

Span = Ymax–Ymin; // may be zero
BinSpan = Span/ K
For i from 1 to N {

Index = floor{(Y(i)-Ymin)/BinSpan} +1
Bin(Index).Increment} End For

Significant = Alpha*N/ K //* Alpha is real > 1 which is the 
 threshold of significance*//
For k between 1 and K{

If (Bin(k) > Significant) then Y. and Bin. Annotate 
 (<Interesting/>)} End For

This is a retrospective or batch histogram because all N values are known 
before H( ) is computable. H( ) is augmented with pattern detection to iden-
tify as potentially <Interesting/> any signifi cant divergence from the uniform 
distribution. H( ) estimates the probability distribution of Y to the degree 
that relative frequency of occurrence informs probability, specifi cally if and 
only if (1) N is suffi ciently large; (2) the random process of Y is stationary 
(having time-invariant statistics) and the random process is (3) ergodic, that 
is, the statistical parameters of a time series faithfully represent the statistical 
structure of the underlying random process(es).

In both RF and user domains, this is rarely the case, so design drivers for 
AACR learning include the detection of noiseless data, of conditions when 
stationary–ergodic assumptions approximate the <Scene/>, and of changes in 
the underlying processes such as statistical inconsistencies.

4.2.3 Histogram in the Ontology

For the augmented histogram to be available to an iCR, it is described to the 
<Self/> via ontological primitives, expressing the capabilities of the algorithm 
for autonomous use.

<Histogram/> may be described in terms of <Function> Finds largest and 
smallest elements of a vector, counting elements in a uniform range from 
smallest to largest and identifying <Interesting/> features. </Function>,
summarized in RXML as the satisfaction of the <Goal/> to <Discover/>
(Expression 4-1).

Expression 4-1 Histogram as a Goal-Satisfaction Function

<Histogram> <Domain> <Vector> Y <Index> [1  .  .  .  N] </Index> </Vector>
</Domain>
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 <Range> {<Interesting/> <Uninteresting/>) </Range>
 <Goal> <Discover> Y </Discover> </Goal>
 </Histogram>

The iCR recognizes, asserts, satisfi es, and introspects over <Goals/>,
including to <Discover/> <Interesting/> things to enhance QoI without 
knowing exactly what discovery may ensue. The CRA includes the principle 
that if something is novel, then <Self/> should try to <Discover/> it.

Expression 4-2 Novelty Implies Discovery

 <If> <Novel> Y </Novel>
 <Then> <Goal> <Discover> Y </Discover> </Goal> </Then>
 </If>

Relating <Histogram/> to <Discovery/> mechanizes bottom-up knowledge 
bootstrapping. <Discovery/> implies related goals to <Validate/> new knowl-
edge through <Reinforcement/> from <Use/>.

As an algorithm, <Histogram/> consumes resources as a function of both 
input space |Y | = N and analytic complexity K, the number of bins in H( ), so 
one CRA design rule specifi es that such algorithms be described at least in 
terms of fi nite, tightly bounded <Memory/> and <Processing/> resources 
measured in <MIPS/> (millions of instructions per second). The algorithm, 
goal alignment, and resource model establish <Histogram/> as an ontological 
primitive AML component via the CRA.

4.3 USER-DOMAIN LEARNING

Suppose a user who is “planning a trip” stores the “Map of the World” of 
Figure 4-4 on his iCR. The “Map” is novel, so the iCR has a <Goal/> to 
<Discover/> the “Map” to assist in “planning a trip.” Without supervision 
<Histogram/> detects that “Map” has exactly two intensity states <Light/>
and <Dark/> and is <Interesting/>. The light bits are “Land” and the dark 
bits are “Ocean.”

The iCR pursues the <Histogram/> discovery that the “Map” is <Interest-
ing/> via supervised learning as illustrated in Figure 4-4. Since “Map” has 
just two colors, the histogram of intensity for number of bins K = 10 yields a 
bipolar histogram where the light values are counted in the Ymin bin and the 
dark values in the Ymax bin, while eight bins between are empty. The fi gure 
shows this statistical structure by the two vertical bars and center y-axis. The 
large number of occurrences of a few discrete values concentrated in a few 
bins expresses high likelihood of learning compared to H( ) where two bins 
are only slightly above the mean. <Histogram/> could compute degree of 



interestingness of Hmax, the bin with largest count, and thus of Y as the peak 
to average ratio, Hmax/((ΣKHi)/K) = K*Hmax/N.

4.3.1 Autonomous Detection of Two Colors

Unsupervised ML employs general discovery methods [98, 321] with domain-
independent features [321]. The <Histogram/> test for <Interesting/> begins 
the domain-independent labeling process. Suppose the map of Figure 4-4 has 
a million pixels. <Histogram/> discovers that 400,000 pixels are light blue 
while 600,000 are dark blue and none are any other color. It bifurcates “Map” 
into two classes, <Min-bin/> and <Max-bin/> or <Light/> and <Dark/> noting 
this discovery ontologically in Expression 4-3.

Expression 4-3 <Histogram/> Discovers <Interesting/> Intensity

<Histogram> <Novel> “Map of the World” <Index> [1  .  .  .  1000000] 
</Index> </Novel>  .  .  .

 <Goal> <Discover> “Map of the World” </Discover> </Goal>
 <Discovery> <Interesting> “Map of the World” </Interesting>
  <Interesting> <Min-bin/> </Interesting>
  <Interesting> <Max-bin/> </Interesting>
  </Discovery> </Result> </Histogram>
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<Histogram/> bifurcation dichotomizes the data [99] into two positive 
classes. Implicitly, there are negative classes, the conspicuous absence of 
pixels between the peaks. Strong negative classes imply an absence of noise, 
potentially <Interesting/> by itself, but not developed further in this introduc-
tory treatment.

4.3.2 Sensitivity of the Alpha Learning Parameter

Y is <Interesting/> if at least one of the Hi exceeds some fraction Alpha of 
the number of items expected in a given bin if the data were distributed uni-
formly over [Ymax, Ymin]. Methods for defi ning Alpha depend on the structure 
of random processes in Y. If the problem space is ergodic, stationary, or 
cyclostationary then probability distributions yield consistent statistics (e.g., 
mean, variance, Nth order moments). Even if the problem space is not perfect, 
fi nite-scope statistics model many problems accurately for some duration (a 
quasistationary interval), or for limited purposes (e.g., channel noise covari-
ance). Hypothesis tests (e.g., chi-squared, Student’s-t, gamma confi dence 
intervals) inform Alpha for consistent random processes [100]. For introduc-
tory purposes, Alpha of 1.5 to 2 make Y <Interesting/>.

Alpha set too low categorizes uninteresting noise as <Interesting/>, but set 
too high misses something truly <Interesting/>. Lenat [320] reported similar 
problems with AM: with the interestingness thresholds too low, AM was lost 
in combinatorial explosion of apparently pointless hypotheses; with it too 
high, AM spent most of its resources on a few boring cases, rarely generating 
anything very interesting. Set just right, AM identifi ed as interesting data 
structures reminiscent of Peano’s axioms of arithmetic.

AACR therefore needs Alpha-parameter control loops such as <User/>
interaction. With low Alpha, <Users/> tire of too many pointless questions. 
With Alpha too high, there are no user complaints, but little user-specifi c 
service customization. In a (risky) metacontrol law, iCRs adjust Alpha inter-
actively for regular QoI customization but few complaints.

Alpha may adjust to an estimated noise covariance to ignore a fi xed frac-
tion of noise alarms for a constant false alarm rate (CFAR). The gamma 
distribution computes a threshold T such that for a specifi ed distribution the 
probability of exceeding threshold T equals a specifi ed rate, for example, 0.02 
for 98% probability of t < T [101]. Alpha equal to T yields a learning alert for 
statistically infrequent but meaningful AML opportunities.

4.3.3 Sensitivity of the K Learning Parameters

In the color histogram, K equal to 10 shapes the learning experience. Too 
many bins yields too few items per bin, so many samples are needed to popu-
late the bins suffi ciently for Alpha occurrences to be statistically represented 
if present. For example, if there are 200 items in the population (say, 200 
countries in the world), then a uniform distribution with K = 10 puts 20 items 



in each bin. For Alpha of 2, greater than 40 countries must be in a bin for 
nonuniformity of potential interest. Increasing K increases the sensitivity of 
H( ) for fi xed Alpha. This same change of K from 10 to 20 also reduces noise 
immunity, increasing the probability of <Interesting/> labels on less interest-
ing features of the population.

Metalevel variation of K may determine the sensitivity of <Interesting-
ness/> to K, for example, in sleep epochs or in CWNs. For the colored map 
of Figure 4-4, there is no difference in the number of bins declared <Interest-
ing/> with as few as 3 bins and an Alpha of < 4/3.333 or with 1000 bins and 
any Alpha up to (400,000/1000 =) 400. Such insensitivity of <Interesting-
ness/> parameters indicates both relatively noise-free data and strong learn-
able features. High sensitivity to learning parameters Alpha and K indicates 
subtle structure not easy to discover either autonomously or with mixed 
initiative.

4.3.4 Nonuniform a Priori Distributions

Alternatively, the values of Y may be distributed in random intervals, so P(Y)
is a Poisson distribution in the number of items per interval (e.g., like a 
queue). An interestingness test for Poisson distributions uses N*Poisson (kT)
as the expected count in the bins appropriately normalized. The chi-squared 
test estimates the accuracy of the Poisson hypothesis:

χ2 2

1

= − ( )( ) ( )
=

∑ p H Y H Yk k k
k

K

(4-2)

The chi-squared parameter χ2 estimates the degree to which H(Y) con-
forms to P( ) for K class intervals. An interestingness criteria Alpha*χ2

estimates <Interestingness/> with respect to the Poisson hypothesis. Fractals, 
for example, have heavy tails that do not conform to P( ). If bins exceed 
(N/K)*E(Hk)*Alpha, then H( ) is locally inconsistent with a Poisson distribu-
tion. The inhomogeneous Poisson (IHP) test maximizes the probability of a 
Jth order Poisson process [102]. A priori models of other sample processes 
yield a priori distributions, <Priors/>, that are otherwise distributed: normal, 
exponential, binomial, and so on. Historically, only scientists discovered 
priors and applicable contexts but GAs now sometimes yield discovery com-
parable to human experts with little human intervention [103, 104].

As mentioned earlier, Lenat’s AM [320] was among the fi rst to use <Inter-
estingness/> to guide AML. AM and its successors Eurisko and CYC showed 
that AML is less viable as the conceptual distance from initially known data 
structures increases. Thus, the CRA emphasizes <User/> and CWN valida-
tion of incremental AML so AACRs operate on or near data points verifi ed 
by an authority. Unsupervised AML alerts are opportunities for the inter-
active validation, clarifi cation, or amplifi cation of the <Interest/> item via 
mixed-initiative interaction.
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4.3.5 Labels From the Supervisor

Since the “Map of the World” is <Interesting/> consistently over K and Alpha, 
the iCR asks the <User/> to act as AML supervisor, validating the fi nding 
and adjusting the labels. The iCR asks and the user labels the light blue 
“Land” and dark blue “Ocean.” These labels establish links to <Land/> and 
<Ocean/> known to the <Self/> through the CRA’s abstractions <Universe>
<Earth> <Land/> <Ocean/> </Earth> </Universe>. Parametric labeling in 
the supervised ML research literature typically happens before the fact, with 
data offered to the ML algorithm in vectors (Index, Class, Value), such as (1, 
Land, 234434) or (4, Ocean, 343568).

In this case, the system initiated the label acquisition dialog that updates 
the internalized world model (per Expression 4-4).

Expression 4-4 Histogram Aggregates User Labels

<Histogram> <Domain> “Map of the World” [1  .  .  .  1000000] 
</Domain>  .  .  .

 <Goal> <Discover> “Map of the World” <Discover/>
  <Progress> “Map of the World”
  <Interesting> <Intensity>
  <Label> Y[1] <Light/> “Land” <Source> <User/> <Scene/>

</Source> </Label>
  <Label> Y[10] <Dark/> “Ocean” <Source> <User/> <Scene/>

</Source> </Label>
   </Intensity> </Interesting> </Progress> </Goal> </Histogram>

Internalization refi nes the autonomously ascribed properties <Light/> with 
the <User/> <Label/> “Land” that readily maps to the CRA ontological 
primitive <Land/>. Another <Source/> may offer another <Label/> and 
<Label/> may be time or location dependent. Verbose XML tags accurately 
internalize the dialog. Extracting such information by asking the right ques-
tions in the right way is an art form.

4.3.6 Operational Ontology

The operational ontology interates discovery with QoI enhancement. Con-
sider Figure 4-5. Instead of asking the user to label two colors out of context, 
this graphical dialog points to regions corresponding to an <Interesting/>
value labeling the centroid of the largest contiguous collection of <Dark/>
pixels with a question intended to invoke one label.

If the user says, “It’s the Pacifi c Ocean,” all the <Dark/> gets <Label>
Pacifi c Ocean </Label>. With minimal spatial reasoning, the iCR could ask 
of the next largest clump of dark blue, “This too?” The user now says, “No, 
that’s the Atlantic Ocean.” How can an iCR navigate through such semantics? 



Dialog systems for extremely limited domains like 800 directory assistance 
are well in hand, but informal dialog navigation is on the cutting edge of lan-
guage research [105].

Expression 4-5 A Priori Ontology Assists AACR in Focusing Questions 
and Interpreting Responses

<Universe> <Stars> <Constellations> <Milky Way/> </Constellations>
</Stars>

 <Solar-system> <Sun/> <Planets> <Mercury/> <Venus/>
 <Earth> <Land> <Continents> <Asia/>  .  .  .  </Continents> </Land>
 <Oceans> <Antarctic/> <Atlantic/> <Pacifi c/> <Indian/> <Arctic/>

</Ocean> </Earth>
 <Mars/> <Asteroids/> <Jupiter/> <Saturn/> <Uranus/> <Neptune/>

<Pluto/> </Planets>
 </Milky Way> </Universe>

The a priori ontology of Expression 4-5 establishes <Ocean/> at a higher 
level of abstraction than <Ocean> <Pacifi c/> </Ocean> to match the speech 
segment “Pacifi c Ocean.” Confronted with such an answer and aided by 
Expression 4-5, the AACR traverses the ontology to synthesize the clarifying 
question: “Is all the dark blue the Pacifi c Ocean? Please answer yes or no.” 
The user answers “no.” So iCR replies, “OK, then the dark blue covers all 
the world’s oceans, correct?” By now, the astute radio engineer observes that 
such dialogs are tantamount to a message sequence chart (MSC) in a protocol 
stack (Table 4-2).

The MSC of Table 4-2 shows the dialog where the user functions as an 
“eighth layer” of the seven-layer ISO protocol stack. As protocols accommo-
date errors, so must dialogs, mediated in AACR by a mix of natural language 
voice, text, and/or pushing buttons. Variability of natural language argues 
that AACRs shape such dialogs toward simple negative (<No/>) and positive 
(<Yes/>) responses to patterns of ontological <Primitives/>. After a success-
ful dialog, the iCR projects from its own GPS coordinate system to the user’s 
“Map of the World” to further plan the trip on the <User/>’s <Map/> enhanc-
ing QoI. If the dialog fails, the iCR recovers with “Sorry, I was trying to learn 
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about your Map of the World to help you, but I can’t understand so let’s just 
drop it for now.” In other dialog failures, the AACR may ask the user to “take 
control of the radio” while the AACR acquires a training experience and 
learns.

The well-known set-theoretic idea [106], “Occam’s Razor,” underlies the 
<Histogram/> labeling strategy. The iCR searches for the smallest set of 
<Primitives/> known to <Self/> in an a priori ontology that covers the dis-
covery. Since the ontology of Expression 4-5 bifurcates <Earth/> into <Land/>
and <Ocean/> and <Histogram/> bifurcates “World” into <Dark/> and 
<Light/>, the alignment of <Earth/> with “World” covers both subsets. The 
<User/> response “Ocean” aligns <Dark/> to <Ocean/> and “Land” verifi es 
the set cover. Such use of ontology operationalizes taxonomy and spatial 
containment, the fundamental set–subset relationships of spatial entities. The 
iCR reasoning about the subsets guides the <User/> to mutually grounded 
spatial abstractions.

Operational ontology structures both a priori and current world knowledge 
into a comprehensive computational taxonomy, a Dewey decimal system, 
agreed to among international standards bodies like the International Tele-
communication Union (ITU) and World Radio Conference (WRC). Lenat’s 
CYC [325] is comprehensive, but comparing CYC’s informal models of radio 
to professional models like the GSM MOU Z.100 SDL models of GSM under-
scores the futility of a single universal taxonomy, far short of ontology. Moving 
toward universality, however, the semantic web community adopted OWL 
[84, 85] as a core semantics standard, defi ning web resources, fundamental 
abstractions like “Thing,” and so on. The IEEE Standard Upper Ontology 
(SUO) held promise for abstractions like <Universe/> in SUO concepts like 

TABLE 4-2 Dialog as MSC: The User as the Eighth Layer of the Protocol Stack

<Message/> <Self/>-to-<User/> ⇒;
<Self> <Goals> Reply ⇐ <User> (thinks)

<Label><Dark/> ⇒ “What is all this stuff? (Pointer in  Listens/Says
<Dark/>)”

<Listen/> ⇐ “<Pacifi c/> <Ocean/>”
<Label> <Ocean/> ⇒ “Is all the <Dark/> blue the   (1 - oops)

<Pacifi c/>? Please <Respond/>   (2-dumb PDA)
<Yes/> or <No/>.”

<Listen/> ⇐ “<No/>” Continue 1
1 <Verify/> ⇒ “OK, then the <Dark/> blue covers  1 (dumb PDA)

<All/> the <Earth/>’s <Ocean/>s, 
  correct?”
1 <Pop-goal> ⇐ “<Yes/>” 1 END

Note: AACR supplies ontological <Primitives/> in <Message/> to a dialog generator and 
the speech system recognizes them to select among predefi ned AACR templates for 
<Labeling/>.



#Physical-Universe$, but OWL’s leverage of the Web-based Resource Defi ni-
tion Framework (RDF) RDF-Schema (RDFS), DAML, and OIL has greater 
expressive power and a growing community of users and research tools. OWL 
Communities of Interest (COI) defi ne their own domain-specifi c ontologies 
resolvable against other COIs by interontology mappings [107].

In spite of these challenges, this book develops the AACR-specifi c opera-
tional ontology <Self/> in RXML, in simplifi ed syntax but not inconsistent 
with OWL. To reduce tedium this book uses a form between OWL and con-
versational speech called Radio XML format (Table 4-3).

From <Histogram/> and dialog, the iCR knows about <Ocean/> and 
<Land/> on the <User’s/> “map of the world.” Mutual agreement that the 
<Dark/> regions are “oceans” must be fully refl ected in the <Self/>’s ontologi-
cal structures to complete the grounding of the user’s term “ocean” to the 
iCR ontological <Primitive/> <Ocean/>, to invoke existing knowledge about 
<Oceans/>. The internalization of the AML dialog above reinforces via rein-
forcement learning (RL) [92] the discovery by <Histogram/> of two <Inter-
esting/> classes. Fully grounded, the iCR can project cities of travel onto the 
<User/> “map”; identify wireless services during travel; and access travel and 
entertainment via existing travel-assistant skills for this <Trip/>. Knowledge 
thus internalized enhances QoI. Internalization of the <Histogram/> dialog 
associates prior knowledge of the <Earth/> to the “map” artifact of the dis-
covery (Expresssion 4-6).

Expression 4-6 <Earth/> Internalizes AML of “Map”

<Self>  .  .  .  <Universe> <Milky Way>  .  .  .
 <Earth> <Alignment>
 <Domain> <Earth> <Land/> <Ocean/> </Earth> </Domain>
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TABLE 4-3 Comparing OWL, Radio XML, and Conversational 
Expressions of Knowledge

Conversational OWL Radio XML

Informal, unknown  Formal Web-based RDF, Hierarchy of semantic
 alignment of semantics   RDFS, DAML, and  <Primitives/> with text
 among user, <User/>,   OIL semantics  and graphical defi nitions

<RF/> and use cases
Most concise; uses  Most precise formal  Hierarchical; language
 contextual   logic and set-theoretic  avoids anaphora; may be
 disambiguation;   treatment for iCR  somewhat circular
 problematic if contexts 
 are not accurately 
 resolved
Fluid and natural for  Readable by an expert Readable with practice
 user interfaces  with software tools  without software tools
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 <Range> <Earth> “Map of the World .jpg”
 <Land> <Intensity> 234434 </Intensity>
  <Source> <Histogram/> <Context/> </Source> </Land>
 <Ocean> <Intensity> 343568 </Intensity>
  <Source> <Histogram/> <Context/> </Source> </Ocean> </Range>
  </Alignment> </Earth>  .  .  .  </Milky Way> <Constellations/>

</Universe>  .  .  .  </Self>

This mapping requires <Domain/> and <Range/> specifi cations for a cor-
respondence that is 1 : 1, ONTO, and invertible. In this <Alignment/> the 
<Source/> is the <Histogram/> with <Context/> pointer to the dialog trace 
for introspection should future <Sources/> confl ict with this internalization.

<Histogram/> also internalizes success (see Expression 4-7).

Expression 4-7 <Histogram/> Internalizes the AML-Dialog Success

<Self>  .  .  .  <Histogram> <Domain> “Map of the World” [1  .  .  .  1000000] 
</Domain>  .  .  .

 <Goal> <Discover/> <Label> <Alignment>
  <Domain> “Map of the World. jpg” </Domain>
  <Range> <Earth/> </Range>
  <Domain> “Map of the World. jpg” <Intensity> 234434 </Intensity>

</Domain>
  <Light> <Label = “Land” <Source = <Owner/> <Context/>/>

</Light>
  <Range> <Land/> </Range>
  <Domain> “Map of the World. jpg” <Intensity> 343568 </Intensity>

</Domain>
  <Dark> <Label = “Ocean” <Source = <Owner/> <Context/>/>

</Dark>
  <Range> <Ocean/> </Range> </Alignment> </Label> </Goal>  .  .  .
</Histogram>  .  .  .  </Self>

There are many types of <Land/>, such as, for example, in the <RF/>
domain of space communications, where the semantic primitive <Land/>
refers to the ground station, antennas, and mobile handsets on <Earth/>. The 
above internalizes <Universe>  .  .  .  <Earth> <Land/>  .  .  .  while satellite com-
munications expresses <RF>  .  .  .  <SATCOM> <Land/>  .  .  .  </RF>. Ship-to-
shore radio links internalize land as <RF>  .  .  .  <Maritime><Land/>  .  .  .  </RF>.
Thus, the terminal ontological primitive <Land/> does not stand alone, but 
with context strings <RF/>, <SATCOM/>, <Maritime/>, and so on. The 
results of the histogram are no longer <Interesting/> as such because <Label/>
accomplishes the <Goal/> that <Interesting/> initiated. They may be re-
labeled <Informative/> if QoI enhancement is reinforced through subsequent 



events. Operational ontology thus achieves the systematic evolution of ontol-
ogy by context-sensitive assimilation of experience.

4.4 RADIO-DOMAIN LEARNING

The <Histogram/> readily discovers <Interesting/> features in the RF domain. 
It characterizes spectrum occupancy from signal strength estimated from 
power spectral density (PSD). With space–time grounding and autonomous 
modeling of the radio propagation, iCR signal discovery enables spectrum-
use etiquettes. It may ask a spectrum <Authority/> like the FCC or a home 
CWN about the <RF/> domain. The replies may be generated by human 
experts or algorithms.

Suppose an AACR has little <RF/> domain understanding, but can 
compute the PSD via the fast Fourier transform (FFT). Since PSD represents 
energy, PSD-<Histogram/> of midbands that are neither as crowded as HF 
nor as sparse as EHF cluster into two groups: (1) a large number of relatively 
low power noise samples with low power interference and (2) a smaller number 
of relatively high power adjacent channel signals or co-channel interference 
(Figure 4-6). The number of items in each of four PSD amplitude bins of 
<Histogram/> H(4; PSD) is shown to the right in the fi gure.

With K = 4 and Alpha*(N/K) = 7, the Fette data [155] from the FCC use 
case fi lls up the low bin and the high bin with statistically signifi cant numbers 
of hits compared to the middle bins. Both low power and high power bins are 
<Interesting/>.

4.4.1 Unwrapping the RF Histogram

Pointers from the PSD to the raw data may identify data points contributing 
to bin Hk. Defi ne <Histogram*> H*(K; PSD) </Histogram*>with an audit 
trail linking Hk to PSDi so that from Hk the iCR can retrieve just those PSD 
points contributing to that bin. H* could use a companion matrix H*[1  .  .  .  K]
to PSD [1  .  .  .  N] such that H*[i] − k for PSD[i] in Hk. The retrieval of the raw 
PSD data points “unwraps” the bin.
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FIGURE 4-6 PSD histogram in UHF (notional counts). (Courtesy of Bruce Fette, 
General Dynamics, Fall Church, VA. Used with permission.)
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The AML dialog unwraps <Interesting/> <Histogram*/> bins to identify 
the signal peaks and ask “What does this stuff mean?” (Figure 4-7). There 
is little a priori semantic grounding in the question posed. The <Authority/>
knows about PSD. Does the iCR know that these items are <Signals/> versus 
<Noise/>? The <Authority/> could answer “Peaks,” “Signals,” or something 
else. Answers like “Strong signal” help iCRs to honor radio etiquette. Alter-
natives include “interference,” “push-to-talk signals,” and “FM signals.” 
Better semantic alignment promotes knowledge transfer. <Histogram*/>
identifi es entropy-related opportunities to acquire knowledge, and semantic 
alignment creates the knowledge bridge <Label/>ing these <Signals/> as such 
for fl exible spectrum etiquette.

4.4.2 Noise Versus Signal

The low-intensity PSD values (in Figure 4-7) contribute a large number of 
counts in the lowest <Histogram*/> bin H* [1]. Suppose the <Authority/>
classifi es these as “Noise.” For AML, the <Label/> should <Align/> with the 
conceptual primitive <Noise/> in the iCR’s a priori ontology <Self/>. That 
ontology also must describe signals and interference to bootstrap spectrum 
occupancy knowledge for spectrum etiquette.

Expression 4-8 Naïve RF Ontology: RF Consists of Signals and Noise

 <RF>
  <Signal> <Defi nition> Information-bearing electromagnetic (EM) 
   wave
   </Defi nition> </Signal>
  <Noise> <Defi nition> Non information-bearing electromagnetic (EM) 
   wave
   </Defi nition> </Noise>
 </RF>

Expression 4-8 divides the RF-domain into signals and noise, both forms 
of electromagnetic (EM) wave propagation. Such defi nitions suffi ce for basic 

FIGURE 4-7 Iconic labels of the PSD mediate supervised ML.

What is the stuff circled below?



coursework and simpler ontologies like open CYCTM but fall short of AACR 
needs. Noise includes Brownian motion [108], a thermal property of materi-
als. The low noise amplifi er (LNA) establishes a noise temperature for the 
rest of the radio, but the LNA is an electronics component, not a radio wave. 
For reasoning about noise sources, iCRs need richer defi nitions. Dictionary 
defi nitions illuminate the uninformed but also fall short, such as the following 
from the Merriam–Webster Collegiate Dictionary:

noise 1: loud, confused, or senseless shouting or outcry 2 a: sound; esp: one 
that lacks agreeable musical quality or is noticeably unpleasant b: any sound 
that is undesired or interferes with one’s hearing of something c: an unwanted 
signal or a disturbance (as static or a variation of voltage) in an electronic device 
or instrument (as radio or television); broadly: a disturbance interfering with 
the operation of a usually mechanical device or system d: electromagnetic 
radiation (as light or radio waves) that is composed of several frequencies and 
that involves random changes in frequency or amplitude e: irrelevant or 
meaningless data or output occurring along with desired information 3:
common talk : rumor; esp: slander 4 : something that attracts attention “the 
play T will make little noise in the world—Brendan Gill” 5 : something spoken 
or uttered

Defi nition 2 conveys an intuition for noise, but it mixes the concepts of noise 
and interference without differentiating them suffi ciently for AACR.

The <RF/> ontology of Expression 4-9 redefi nes <Noise/> as a measurable 
quantity that fl uctuates because of Brownian motion.

Expression 4-9 RF Ontology: RF Includes Energy That Consists of 
Either Noise or Signal

<RF>.  .  .<Energy>
 <Noise> <Defi nition> Brownian random fl uctuations of a measurable 
  quantity
  </Defi nition> </Noise>
 <Signal> <Defi nition> Information-bearing fl uctuations of a measurable 
  quantity
  </Defi nition> </Signal>
</Energy></RF>

Here, <Noise/> is a measurable process changing with time (“fl uctua-
tions”) but providing no information. <Signal/>, on the other hand, provides 
<Information/>. Tailoring <Information/> to a specifi c <User/> via <RF/>
is a canonical <Goal/> supportable via these defi nitions. From Brownian 
motion, iCR may relate Boltzmann’s equation for temperature, bandwidth, 
and noise power (Equation 4-3) to the thermal noise power of an electrical 
circuit:

p kTB=  (4-3)
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T is absolute temperature in kelvin units (K); B is bandwidth in hertz (Hz); 
and Boltzmann’s constant k is 1.380658E-23 joules/K. Since 1 watt is 1 joule/
second and hertz are inverse seconds, the units of power are watts. In radio 
engineering, if T0 is 290 K, then kT0 is −172.977 dBm/Hz, or about −170 dBm 
per kHz of thermal noise power.

Expression 4-10, an operational ontology, augments the textual defi nitions 
with equations to compute expected <Noise/> power. With an ability to 
measure <Energy/> in the circuits of the <Self/>, a noise-aware AACR can 
inspect <Energy/> sources—including RF—for <Noise/> power.

Expression 4-10 Noise Semantics Internalized Via the 
Boltzmann Equation and Histogram

<RF>.  .  .<Energy>
<Noise> <Defi nition>Brownian random fl uctuations bearing no 

<Information/> </Defi nition>
 <Power> <Estimate><*>
  <Boltzmann> <k> 1.380658E-23 </k> </Boltzmann>
  <Temperature><Standard> 290 <Units> K </Units> </Standard>

</Temperature>
  <Bandwidth> <W> ? </W> </Bandwidth> </*> </Estimate>

</Power>
 <Detection> <Domain> <PSD> Y </PSD> </Domain>
  <Histogram*> Y <NOT> <Interesting/> </NOT> </Histogram>
  </Detection></Noise>
<Signal> Information-bearing fl uctuations of a measurable quantity 

</Signal>
</Energy></RF>

A PSD without an <Interesting/> <Histogram/> probably does not contain 
<Signal/> because it lacks suffi cient statistical differentiation to convey 
<Information/>. Some apparently-random signals may be transformed to 
signals that are clearly differentiated, for example, via an adaptive equalizer 
or via despreading. There are many ways of differentiating signal from noise, 
but <Histogram/> illustrates the internalization in the <Self/> of a general-
purpose tool autonomously employed to assess a sample sequence for 
<Information/>.

4.4.3 Signals Bear Information

Venerated models formulate radio communications as information-bearing 
signals passing through channels from source to sink. Human communica-
tions occur between one or more originators and one or more recipients. 
Cognitive radio enhances SDR by explicitly formulating the originator, the 



need to communicate, and the intended recipient as <Entities/> and aspects 
of an enhanced communications model. <Originators/> are sources with 
intent, so reception should satisfy that intent. Signals satisfy communications 
needs of <Originators/> and <Recipients/>, while noise and interference limit 
the QoS hence QoI and thus the degree of satisfaction of those <Needs/>.

Expression 4-11 <Communications/> Includes <Needs/>

<Communications> <Path> <Signal> <Source> <Entity>
 <Originator> <Need> <Recipient> <Information/> </Recipient>

</Need>
  </Originator> </Entity> </Source>
   <Channel/>
 <Sink> <Entity> <Recipient> <Information/> </Recipient> </Entity>

</Sink>
 </Signal> </Path> </Communications>

Expression 4-11 reads, “Communications is a path for a signal between a 
source (an entity that needs to send information to a recipient) through a 
channel to a sink, the entity that is the recipient of the information.” <Need/>
to convey information creates a clear <Goal/> for iCR: to <Discover/> and 
<Satisfy/> the <Needs/>. A <Recipient/> is an <Entity/> with a <Receiver/>,
which could be the recipient’s own eyes or ears. <Recipients/> consist of the 
<Self/>, the <User/>, and other <Entities/> including nonhumans (e.g., a FCC 
iCR monitoring for spectrum abuses). For epistemological balance, <Nature/>
is the postulated <Entity/> that originates and receives natural <Signals/>
like <Lightning/>. If a tree falls in the forest and nobody (human) hears it, it 
defi nitely makes a sound, for <Nature/> is the universal listener.

Expression 4-12 <Receiver/> Defi ned

<Receiver> <Defi nition> <Thing/> that <Transforms/> <Signal/> to 
<Information/>

 </Defi nition> </Receiver>

The functional defi nition of receiver is that which transforms signals into 
information. By this defi nition, a human language translator also is an audio 
<Receiver/>.

Expression 4-13 <Interference/>

<Interference> <Defi nition> {<Signal/> <Noise/>} that degrades 
<Receiver/> function

 </Defi nition> </Interference>
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The functional defi nition of interference implies explicit measurement of 
the performance of a <Receiver/> (e.g., data rate) that may be physical, func-
tional, or hypothetical.

Expression 4-14 Generic Model of Communications as Signal in Space

<RF>.  .  .<Energy>  .  .  .  <Noise/>  .  .  .
<Signal> <Defi nition/> <Power/> <Detection/> </Signal>
<! – Generic Model of Communication –>1

<Entity> <Need> <Information> <Source>
 <Transmission> <Time> <Space>
 <Propagates> <Signal/> <Channel/> <Recipient/>
 <Interferent/> </Propagates> </Space> </Time> </Transmission>

</Signal>
</Source></Information> </Need> </Entity>  .  .  .  </Energy>  .  .  .  </RF>

The RXML expression adds the act of <Transmission/> in space ×
time that <Propagates/> via a channel to recipients and <Interferents/>,
<Entities/> with whom the signal interferes. This refi ned model explicates the 
dual role of any communications <Transmission/> as a possible generator of 
<Interference/>, a relationship over which AACRs must reason for spectrum 
etiquette.

Expression 4-15 Interference From <Nature/>

<! -- Natural Interference -->
<Entity> <Nature> <Need> Cloud-motion <Information> Lightning 

<Source> Static-discharge 
<Transmission> RF-EMP <Time> <Space> <Propagates/>
 <Signal > High-power-fractal </Signal> <Channel> HF </Channel>
 <Recipient> <Nature/> </Recipient> <Interferent/> </Space> </Time>

</Transmission>
</Source> </Information> </Need> </Nature> </Entity>

In Expression 4-15, natural cloud motion creates a need for a static dis-
charge, which generates a broadband electromagnetic pulse (EMP), propagat-
ing in space × time through the HF channel to nature as the recipient and to 
no particular <Interferent/>. The <Information/> content is the fact conveyed 
by nature that a lightning strike has occurred at a specifi c time and place.

1 <! – begins a comment while –> ends that comment. Comments help people but may be read 
by a NL-capable algorithm. Comments are not normative while the RXML ontological <Primi-
tives/> are normative.



Expression 4-16 GSM in the Generic Communications Model

<! -- GSM Voice Communication -->
<Entity> <User/> <Need> <Talk/> <Information> <Voice-call/> <Source>
 RPE-LTP <Transmission> GSM <Time> <Space>
 <Signal> Mobile-IMSI# <RF/> <Time-slot/> </Signal > <Channel>
  N-VA </Channel>
 <Recipient> GSM-BTS </Recipient> Burst-N1-M </Space> </Time> 
  </Transmission>
 Call-N2 PSTN#N3 </Source> Call-complete </Information>
 Conversation-complete </Need> <Satisfy/> </Entity>

In Expression 4-16, the generic voice-communications model supplies 
RXML tags to a notional GSM voice call placed in Northern Virginia 
(N-VA). The tag placement scopes the ontological primitives for the signal-
in-space, while the larger transmission includes the Public Switched Tele-
phone Network (PSTN). The completion of the call satisfi es the information 
transfer need of the <Entity/>.

Expression 4-17 Ontological Perspective on Signal and Interference

<! -- Detecting Signal in Noisy Communication -->
 <Detect> <Signal/> <Known/> </Detect>
 <Detect> <Domain> Y </Domain>
  <Histogram*> Y <Interesting/>
  </Histogram*></Detect>
.  .  . </Energy></RF>

The <RF/> part of the <Self/> ontology refl ects this enhanced model of 
<Communications/> highlighted in Expressions 4-11 through 4-17. Commu-
nications are <Signals/> that satisfy a <Need/> of an <Entity/> to exchange 
<Information/> with an intended <Recipient/>. An <Interferent/> receives a 
<Transmission/> in <Time/> and <Space/> that decrements QoI. The AACR 
as <Originator/> adheres to etiquette if it trades off its <Needs/> against those 
of <Interferents/> in a way that refl ects social norms.

This ontological perspective is illustrated in Figure 4-8 [145]. Any air 
interface occupies <Space/>–<Time/> and <RF/>. Multiple input multiple 
output (MIMO) exploits distinct physical paths in the channel (n, kn) via the 
aggregate channel [109–113]. The <Originator/> chooses a communications 
path that need not be wireless. The path could pass through WLAN to the 
<Home/> Internet service provider (<ISP/>) and thence to the desk-side PC 
of the <Recipient/>. Cellular paths generally pass through the PSTN, while 
WLAN paths traverse <ISPs/>. Point-to-point UHF links among sports 
enthusiasts illustrate increasingly rare purely RF paths between <Origina-
tor/> and <Recipient/>. Expressions 4-11 to 4-17 and Figure 4-9 thus outline 
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the principle of signals as means for <Originators/> to share information with 
<Recipients/> to satisfy a <Need/>, the ontological stance of  the CRA.

4.4.4 Understanding Noise and Signals

The ontological treatment of <Noise/>, <Signal/>, and <Interference/> above 
expands the signifi cance of the fact that <Histogram/> detects <Signal/> as 
<Interesting/>. The items circled in Figure 4-9 are <Interesting/>, so the 
<Self/> may infer that H[1] contains <Signal/>, while this is actually <Noise/>
learned when the iCR asks an <Authority/> whether bin H[1] is <Signal/>.
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FIGURE 4-8 Communications defi ned in space–time–RF as satisfaction of 
originator need.

FIGURE 4-9 Query to <Authority> to confi rm noise <Label/>.



Low power signals may contaminate the <Noise/> bin, so an <Authority/>
labels H[1] “Noise and low power signals,” augmenting the <RF/> ontology 
with <Power/> as a numeric quantity, <Power> ?Number <Units> dB 
</Units> </Power>.

The high powered bins designated by <Histogram/> as <Interesting/> are 
labeled <Signal/>. High powered noise may contaminate them, such as light-
ning strikes at HF. PSD labeling works well in SHF and above, but not at HF 
because distant interference and natural noise, especially lightning strikes, 
dominate the noise fl oor. Similarly, <Labels/> are not accurate in densely 
occupied bands (e.g., cellular) in peak traffi c loading, heavily occupied with 
signals and co-channel interference. The iCR could overgeneralize, learning 
that points with high PSD values are <Signals/> and points with low PSD 
values are <Noise/>, but that does not work in HF, an overgeneralization. 
Band, mode, and other constraints appropriately limit the applicability of 
PSD occupancy knowledge. The companion CD-ROM address many of these 
in RXML, but an open source industrial strength radio ontology does not yet 
exist.

With the augmented PSD <Histogram/>, the iCR can learn about signals 
and noise through experience with a skilled <Authority/> supervising the ML 
as in Figure 4-10.

A response like <Adjacent-channel/> from the <Authority/> could be met 
with a request to download additional RXML knowledge about <Adjacent-
channel/> signals should the <Goal/> warrant. In UHF, the <Authority/>
might designate signals as <TV/>. If the <Self/> is looking for <Sports/> on 
<TV/>, then it could refi ne the query by asking an <Authority/> for the <TV/>
<Channel/> broadcasting <Program> “The Superbowl” </Program>. While 
turning CWN into the TV GuideTM may not seem cost-effective, if that is what 
makes the <User/> happy, then that may be “where the money is.”

The PSD <Histogram/> discovery process plus <Labeling/> taught the 
<Self/> to use <Histogram/> as a signal/noise dichotomizer where the back-
ground is primarily thermal noise. Once the <Self/> learns <Signals/> and 
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FIGURE 4-10 <Histogram/> discovery + RXML knowledge yield informed 
query.
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<Noise/>, it could request an algorithm from the <Authority/> to differentiate 
signals from noise. The <Authority/> could download a <Squelch/> object in 
response. A <Self/>-referential <Goal/> to <Minimize/> the computational 
resources could motivate the query, substituting <Squelch/> for <Histogram/>,
replacing AML with an encapsulated skill.

Expression 4-18 To <Optimize/> <Resources/> <Query/> an 
<Authority/> for a <Skill/>

<Self> <Procedure>
 <Defi nition> “A <List/> of <Goals/> in a <Plan/>” </Defi nition>

</ Procedure >
 <Optimize> <Domain> < Procedure /> </Domain>
   <Range> <Skill/> </Range> </Optimize>
  <Procedure> <Goal> <Optimize> <Sequence/> </Optimize>

</Goal>
  <Procedure> <Query> <Authority/> <Skill> <Resource/> </Skill>
   </Query>
  </Procedure> </Procedure> </Self>

The iCR downloads <Squelch/>, the optimized computing <Resource/>
offered. The CRA incorporates explicit and detailed representations of 
<Space/>, <Time/>, and <RF/> to associate knowledge with <Scene/> to 
acquire skills and to share knowledge. 

The <Histogram/> discovery process applies to signal phase–space, the 
complex plane as well as the frequency domain of the PSD. The two classes 
discoverable by the <Histogram/> would be the two states of a BPSK channel 
symbol, for example, with zero and π radians the most commonly observed 
values of the BPSK phase plane. Researchers have published approaches to 
classifying relatively large collections of such channel symbols [114]. A library 
of <Signal-type/> functions may be structured into an ontological collection 
<Signal-types>. <Signal-type/> might express degree of belief in the class. 
PSD-related recognizers might estimate signal bandwidth and the number of 
peaks in the spectrum. Although a specialized algorithm may perform better 
than AML using <Histogram/>, AML will deal with previously unknown 
cases. Subsequently, an interference recognizer synthesized by a GA from 
samples of previously unknown interference, could outperform a prepro-
grammed recognizer [115]. 

General AML techniques like <Histogram/> raise a strategic question 
about the level of learning. How much of what should be learned or attempted? 
How much should be preprogrammed? What should the iCR ask of a cogni-
tive network in a prayer cycle, versus introspection versus interaction? Each 
of these questions implies multidisciplinary research issues identifi ed and 
addressed but not yet solved.



4.4.5 The Ontological RF <Histogram/>

The <Self> assimilates <Histogram/> by description as an ontological primi-
tive in terms of other primitives (Expression 4-19).

Expression 4-19 Evolving Operational Ontology of the iCR <Self/>

<Self>
 <Name />
 <Owner> KTH </Owner>
<iCR-platform>
 <RF-environment>
  <RF-capabilities> <Waveforms/>
  RF-sensors </RF-capabilities>
 <RF-knowledge>
 <Spatial-knowledge-DB/> </RF-Knowledge> </RF-environment>
 <User> <Current-user/> <Authorized-user/> <User-situation/> </User>
 <Autonomous-control> … methods …</Autonomous-control>
 <Environment> <Space-time-grounding/> </Environment>
<Histogram> <Domain>Y[1 … N] </Domain> <Memory/>
 <MIPS><Domain>Y[1 … N] </Domain> 38*N </MIPS>
 <Goal> <Scene> <User>/> <RF>/>Learn(Y) </Goal>
 <Reinforcement> <Positive>
 <Learn> <Domain> <User>/> <Scene/> “Map-of-the-World .jpg” 

</Domain>
 <Align> “Ocean” <Earth> <Ocean/> </Earth> </Align>
 <Align> “Land” <Earth> <Land/> </Earth> </Align> </Learn>
 <Learn> <Domain/> <RF/> <Scene/> “PSD” </Domain>
 <Align> “Signal” <RF> <Signal/> </RF> </Align>
 <Align> “Noise” <RF> <Noise/> </RF> </Align>
 <Align> <Histogram> <PSD> <Signal/> <Noise/> </PSD>

</Histogram>
 <Detect> <Signal/> </Detect> </Align> </Learn>
 </Positive> <Negative/> </Reinforcement> </Histogram>
</iCR-platform>
</Self>

This internalization shows that <Histogram/> learned the semantic align-
ment of <User/> speech segments “Ocean” and “Earth” to prior <Self/>
ontological primitives. “Ocean” refers to <User> <Speech> <wav> “Ocean” 
</wav> </Speech> </User>. <Histogram/> positive learning experiences are 
internalized in terms of the <Domain/> of learning in case the knowledge 
applies only to that <Scene/> or place and time.

The <Histogram/> with the related <Interestingness/> detector is a general 
skill. From the ability to acquire <User/>, knowledge of oceans and land, it 
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supports <User>-domain skills. From the ability to learn about <Signals/>
and <Noise/>, it supports the <RF> domain. Learning also is a property of 
the <iCR-platform/>, a top-level capability of the <Self>, where <Histogram>
constitutes a general capability to <Learn/>. <Alignment/> defi nes equiva-
lence classes for reactive responses, deliberative planning, and CBR. The 
RXML above expresses dynamic knowledge as well as repository knowledge. 
Real-time performance requires effi cient application of these associations.

4.5 REINFORCEMENT, EXTENSION, AND 
CONSTRAINT DISCOVERY

This section further develops AML for AACR with methods for refi nement, 
extension, and validation of discoveries.

4.5.1 Reinforcement Learning

The many types of reinforcement learning modify existing behavior by sup-
pressing behavior that yields negative reinforcement and facilitating behavior 
that yields positive reinforcement. Figure 4-11 shows a fl ow of reinforcement 
learning among iCR cognition components.

The iCR acquires experience through its sensors. In the CRA, the iCR 
remembers everything, constantly comparing new sensory stimuli to prior 
experience, identifying new stimuli, sensory primitives, and stimulus sequences 
via novelty detection. Hierarchical novelty detection realizes a hierarchical 
multidimensional novelty vector (a tensor) of newness of current experience. 
To perceive positive and negative reinforcements, the iCR recognizes and 
isolates from the <Scene/> specifi c cues to actions, perceiving reinforcement 
via matching, binding, scoring, and annotation. Matching aligns current 
stimuli (sensory stimuli, perceived objects, and related abstractions) with 
stimulus memory. Binding associates specifi c stimuli in the <Scene/> with 
related internalized stimulus–experience-response sets that are abstractions 
of prior scenes. When identical items (stimuli or responses) are bound in a 
scene, they form conceptual anchors (“Islands of understanding” [116]). Dis-
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FIGURE 4-11 Reinforcement learning among iCR components.



similar items may participate in a variable–value relationship where one acts 
as a label for the other (for corresponding but dissimilar-match binding). If a 
specifi c action is accurately matched and bound to the associated feedback, 
scoring yields reinforcement learning (RL). Successful reinforcement autono-
mously annotated (symbolically or with additional types of scores) facilitates 
metalevel retrieval, adaptation, and bootstrapped learning. The retrieval, 
binding, using, and scoring of relevant experience generalizes CBR [117] for 
the CRA.

Established reinforcement learning (RL) algorithms produce an adapta-
tion policy from actual or simulated experiences. RL methods include 
time difference (TD) [92], dynamic programming (DP) [118], Monte Carlo 
methods [92], and Q-learning [119]. All RL methods associate rewards, 
values, or quality with a state or state–action pair, creating a policy that speci-
fi es a preferred action for each possible state. For example, Q-learning esti-
mates the quality of candidate action a in state s via Q(s, a):

Q s, a Q s, a s, a f s, a, s, bk k b kQ =+ − ( )( ) ( ) + ( ) ( )( )( )1 1 γ γ max  (4-4)

The weight (1 − γ(s, a)) determines the degree of exploitation of current 
knowledge, while f shapes the search for new knowledge at the rate γ(s, a). 
As the number of iterations approaches infi nity, Q approaches the optimal 
dynamic-programming policy with probability 1 [120]. Q-learning applies to 
call-admissions control in simulated networks [121] and robot control [122], 
among others. Call-admissions control has well-known mathematical struc-
ture and the possible states and actions are known in advance. Similar algo-
rithms for such well structured domains appear in state–space automatic 
control [123], fi xed-point maps [124], Kuhn–Tucker optimality, and GAs [74]. 
These methods may not apply readily to open domains like <User/>-specifi c 
jargon or a change in daily commuting pattern. Open domains are relatively 
unstructured, constantly admitting novelty, and thus somewhat out of reach 
of classical RL, automatic control, and optimization. In the AACR <User/>
domain, the primary measure of goodness is whether the inconsistent and 
fi ckle user thinks the CR is “good” or not. Computational ontologies and 
structured dialogs assist in adapting RL to AACR. The technology is brittle, 
so the architecture must accommodate apparent suboptimality and contradic-
tion, tracking in space–time the <User’s/> changing needs and QoI patterns. 
Such AML applications are embryonic, so the text characterizes candidate 
technologies, approaches, and research issues, not pretending to offer closed-
form solutions.

The plan–decide–act components of iCR in Figure 4-12 naturally align to 
RL, and the CRA does not preclude classical RL methods. However, although 
the properties of RL suffi ce for closed domains like games [125] and avoiding 
undersea mines [53], they are not well understood for open domains. For 
example, Q-learning often falls off cliffs in the cliff-walking problem using 
greedy methods to discover penalties associated with moves. One AACR 
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equivalent of falling off a cliff is the violation of regulatory policy, so the FCC 
may not appreciate classical Q-learning. Other methods like SARSA [92] that 
do not violate policy converge less rapidly, perhaps causing user frustration 
over the time spent learning simple preferences. Therefore, the sequel tailors 
classical RL methods to iCR towards AML without unacceptable penalties 
in <User/> acceptance or <RF/> regulatory viability.

If the iCR structures its behavior to obtain feedback, then it is engaging 
in active reinforcement learning. Game playing programs that look ahead 
to reachable states from a given board state actively learn the benefi t of the 
situation–action pair. Otherwise, a RL algorithm may learn the relationship 
between action and benefi t without modeling the environment, instead using 
the actual environment as the model, for passive RL. Formal, informal, and 
CBR feedback assists RL in <User/> and <RF/> domains to develop, refi ne, 
and apply acquired knowledge.

4.5.2 Formal Reinforcement

One may envision in Figure 4-12 a path of reinforcement that minimizes 
learning errors. Formal reinforcement employs formal language for reinforce-
ment from a validating authority. Formal languages avoid error sources of 
natural language (e.g., ambiguity) particularly with computational complexity 
of Chomsky’s Level 2, context-free language parsed by push-down automata 
(PDA), or Level 1 fi nite state language parsed by fi nite state machine 
(FSM).

Formal languages for RL feedback include KQML [126], DAML/OIL/
OWL [127], JADE [128], and RKRL [145]. A KQML-like query to validate 
a <Signal/> learned by <Histogram/> might be as follows:

Expression 4-20 KQML-like Request to Validate New Knowledge

(:ask-one (:content (:Validate (:Signal (121.5, −102 dBm) (:Here Chantilly, 
 VA) (:Now 1258)))
 (:receiver CWN-1) (:language RKRL) (:context :New-Knowledge)))
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FIGURE 4-12 Formal messages are interpreted in the CRA.



KQML has simple performatives (“:ask-one”) and structure (:receiver, 
:language, and :content among others) for iCR formal reinforcement.2 In 
Expression 4-20, the AACR validates carrier frequency and signal strength 
of one of an observed signal. Responses to such validation messages from a 
CWN or other <Authority/> constructively constrain dynamic behaviors. A 
CWN response that validates the observation includes the identity of the 
primary user of this frequency (Expression 4-21).

Expression 4-21 Illustrative KQML Response From a 
CWN Identifying Signal

(:tell-one (:content (:Validated (:Signal (:Identity “Dulles Tower Air Traffi c 
 Control Primary”)
 (:Place (:Latitude 242200 :Longitude 758833)
  (:Range (:Ground (20 :mi)) (:Air (:AGL (35 :kft) (220 :mi)) )
  (:Place-name “Chantilly, VA”))
  (:Time :Indefi nite)))
 (:receiver CR1) (:language RKRL) (:context Knowledge-Store)  .  .  .)))

The response identifi es the inference at 121.5 MHz in Chantilly, VA with 
etiquette-enabling information: <Location/> (:Place) and <Identity/> “Dulles 
Tower Air Traffi c Control.” This refi nement enables the iCR to defer to air 
traffi c control and to differentiate “Dulles Tower” in “Chantilly, VA” from 
other signals on 121.5 MHz via location, range, and radio propagation.

In the CRA, such reinforcement from an <Authority/> has indices for 
retrieval by place, time, <Authority/>, and other <Scene/> features. In CR1 
the indices are Java HashMaps.

The response of Expression 4-21 illustrates the role of <RF/> spatial 
reasoning in RL. An iCR interprets messages about space, time, and RF as 
follows. <Range/> represents distance from a reference point, a function of 
altitude above ground level, <AGL/>. Such specifi c <Range/> values can 
calibrate an iCR’s model(s) of terrestrial and ground-to-air radio propaga-
tion. Even in the simplest scenarios, elevated entities like tall buildings and 
aircraft receive radio communications at ranges longer than ground-based 
receivers. Radio propagation modeling is neither diffi cult nor excessively 
resource intensive for CWNs. Models of terrestrial and ground-to-air radio 
propagation abound in Matlab, MathCAD, Excel, Analytica, RF-CAD, and 
ARRL. Propagation models inform <Self/> management of radio emissions, 
predicting and reasoning about conformance to published (e.g., XG) and 
accepted (iCR–iCR peer group) norms. Ontological primitives for <RF>
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2 Although KQML has lost its role to OWL in the semantic web, the radio engineering com-
munity is driven more by simplicity, compactness, and computational effi ciency than the Inter-
net community, placing simpler languages like KQML in a strong position to contribute early 
to AACR evolution.
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<Propagation/> </RF> in the RXML <Self/> enable the autonomous use of 
relevant radio propagation models; without the RXML, the AACR does not 
know that it knows how to model radio propagation.

Semantic alignment of formal languages like KQML and OWL goes 
beyond isolated computational ontologies to social norms like RA agreement 
on XG protocols, industry agreement on SDR standards, and grounded agree-
ment among peers, for example, a group of iCR reasoning from <Propaga-
tion/> models. Validation involves an <Authority/> with an opportunity to 
mutually align semantics and to augment and constrain iCR behavior. Valida-
tion assists the iCR in <Self/> diagnosis and metalevel improvement of learn-
ing, not just knowledge.

Formal languages in wide use for <RF/> include SS7 and the ISO protocol 
stacks. These often employ fi nite state languages, state machines, message 
sequence charts, and formalized semantics, making them relatively easy to 
defi ne, implement, and use, but few are suited to the validation of new knowl-
edge as in the KQML example. Industry-standard tools like ITU Z.100 Speci-
fi cation and Description Language (SDL) [44] and the Unifi ed Modeling 
Language (UML) [51] support the defi nition, implementation, and deploy-
ment of formal languages. Although such formal languages enable AACR 
dialogs, they typically are not used for AML or real-time communications 
with an <Authority/>.

Agent development environments, on the other hand, promote the use of 
computational ontology in such communications to the degree that the <Self/>
and the <Authority/> both use consistent software agents. The Java Agent 
Development Environment (JADE), for example, includes the JADE-
Management-Ontology, with Query-Agents-On-Location and Where-Is-
Agent actions. OWL object communication languages include graphical 
ontology development software tools like Network Inference’s Construct, a 
Visio-based tool with export to OWL [129]. JADE and OWL both support 
inference. The Cerebra OWL inference engine is akin to JESS, the Java 
Expert System Shell. The sequel develops <Self/>–<Authority/> communica-
tions via KQML for its tutorial value, progressing to the more cumbersome 
but industrial strength OWL as need dictates. XML is the baseline metalan-
guage foundation for incorporating the best of KQML, RKRL, JADE, and 
OWL into RXML as a domain-specifi c language for AACR evolution.

Formal messages fl ow through CRA sensing, perception, interpretation, 
and use as illustrated in Figure 4-12. The <RF/> waveform and protocol stack 
are both effector and sensor for formal message exchanges. The <RF/>
sensory domain presents messages from the air interface to the iCR cognition 
functions as they are <Observed/>. In these exchanges, the iCR knows 
message format but the content is novel. The novelty detector identifi es novel 
content. The response is matched to the query in the <Orient/> process. 
Content interpretation consists of recognizing the relevance of the message 
to the query, generating a <Plan/> to Reinforce Memory (R-Memory) to 
refi ne and enhance knowledge (e.g., of 121.5 MHz).



Thus formal reinforcement to Q-learning may proceed from iCR to an 
<Authority/> by a mutually agreed formal language to be assimilated as 
illustrated in Figure 4-13.

4.5.3 Reinforcement Via Natural Language

Validation from a user requires skill with natural language (NL). Unlike 
formal languages, NL challenges radio engineering and AACR technology 
development. Most NL systems embed AML to some degree. As AACR 
evolves, the mix of preprogrammed versus autonomously acquired NL skills 
may shift toward AML for reduced cost of tailoring language to users.

During the last ten years, NL technology has matured signifi cantly. Com-
mercial products like IBM’s ViaVoice [66] recognize spoken language, creat-
ing errorful transcript hypotheses with as high as 75% to as low as 5% word 
error rates. Commercial language translation systems convert text among 
English, Japanese, Chinese, Russian, Arabic, and the Romance Languages 
with high reliability. VoiceXML [222] generates spoken language dialogs, 
driving any of a variety of speech-synthesis software tools. This section intro-
duces a strategy for adapting these tools to AACR evolution that focuses on 
(1) overcoming the error rates inherent in current NL technology and (2) 
facilitating the insertion of NL components as the technology matures.

To develop the role of NL in AACR, let us return to the <User/> domain 
and the map of the world. From a dictionary of English words <Self/> knows 
the two labels “Land” and “Ocean” as parts of Earth. An iCR can use the 
dictionary for reinforcement from the user as well, for example, substituting 
the dictionary defi nition for a new word in a verifi cation dialog such as:

“So the light blue means the solid part of the surface of the earth?”

The user reinforces this expression for <Land/>. If the <User/> asks, “How did 
you know that?” the CR responds, “From the dictionary [Britannica 2003, 
noun].” For such a dialog, the errorful transcript must be suffi ciently accurate to 
invoke <Land/>. If the CR infers the verb form of “land” instead, it could ask:
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“So the light blue means to set or put on shore from a ship?”

The <User/> negatively reinforces that defi nition of “land.” The dialog 
designer is on thin ice at this point. While a few users may enjoy training an 
AACR, many will want to shut it off. Failures like this might steer the AACR 
toward a metalevel strategy to infer less deeply, ask fewer questions, and focus 
on simpler tasks.

In the RF example, the <Self/> could ask a radio-aware user (e.g., a Ham 
radio operator) whether “signal” means “indication” or one of the more 
radio-specifi c defi nitions (all from the Britannica on-line dictionary):

Signal a: an object used to transmit or convey information beyond the range 
of human voice b: the sound or image conveyed in telegraphy, telephony, 
radio, radar, or television c: a detectable physical quantity or impulse (as a 
voltage, current, or magnetic fi eld strength) by which messages or information 
can be transmitted

Some users might not care, while others like Hams might prefer their own 
defi nitions at odds with the dictionary. Such is the nature of technical domains. 
Therefore, iCRs may assert prior knowledge of <RF> <Signal/> </RF> in 
their interactions with users, expert or otherwise, to avoid being taught inap-
propriately. VoiceXML could mediate the following dialog:

CR: “You said that high values of the power spectral density represent 
‘signal’ correct?”

User: (Says or types) “Yes.”
CR: “The term ‘signal’ is a technical term in radio. To me, it means ‘a 

detectable electromagnetic quantity by which messages or information 
can be transmitted.’ When using this term, I will refer to <Signal/> as 
s.i.g.n.a.l in written form and as ‘signal-in-space’ in verbal form, OK?”

If the user says anything but “Yes,” then the iCR may explain that there really 
are few alternatives for dictionary confl icts on concepts with substantial a 
priori knowledge. Early adopters like Ham radio operators may enjoy such 
dialogs, while many users are confused, annoyed, and otherwise disenchanted 
with such dialogs. Thus, AML must continually detect <User/> attitude 
toward interaction. Positive reinforcement of training opportunities rein-
forces a strategy of interactive knowledge refi nement, while negative rein-
forcement steers it away from aggressive user-domain learning with greater 
focus on simpler RF-domain tasks with more formal CWN interaction and 
less user NL interaction. The dynamic adaptation of strategies remains a 
research challenge in applied cognitive science.

As illustrated in Figure 4-13, reinforcement from a user via NL fl ows from 
the microphone sensor through speech interpretation to yield the errorful 
transcript.



In this NL fl ow, the interpretation of the response is much more diffi cult 
than the corresponding fl ow for formal languages. Background noise and 
conversations distract the human respondents, presenting irrelevant informa-
tion, missed words, added words, and coarticulation in the errorful transcript.
This makes it much more diffi cult to interpret the reinforcement accurately. 
The dialog may guide the user toward verbose yes/no answers. “Yes, I agree” 
typically is detected with greater reliability than “Yes” alone. Dialogs that 
offer choices more reliably acquire correct answers via speech than dialogs 
that ask open questions. “Do you like soup, nuts, or something else?” acquires 
<User/> <Preference/> more reliably than “What do you like?”

The NL knowledge accumulated by an iCR increases with time. For 
example, the number of names known grows with experience such as expo-
sure to news stories [130]. Therefore, as the iCR’s user encounters new experi-
ences, iCR exposure to new names grows. iCR’s ability to recognize new 
names and to learn their relevance in assisting the <User/> is therefore a key 
technology issue. With linear name growth, there may be a quadratic growth 
in interactions. The AACR designer therefore has to determine how to learn 
names that assist the user.

For example, if the user knows 100 people (“communicants”), to learn 
names via NL it must index speech accurately. The cell-phone user speaks 
directly into the microphone and delimits the name spoken into the voice 
phone book. Evolving AACRs may leverage such voice phone books to assist 
in extracting names from natural conversation, a much more diffi cult task that 
introduces errors in spoken name recognition. To connect wirelessly to an 
intended communicant, AACR must minimize errors in retrieving names 
from the spoken phone book. Errors may increase like the square or cube of 
the number of names. If the error rate for the N = 100 person phone book is 
Re = 0.001, then the error rate for N = 1000 (10×) could be 100× or Re = 10%. 
Methods for mitigating errors include shaping the entropy of the database, 
for example, via the following dialog:

AACR: “The name ‘Stan Smith’ sounds a lot like an existing entry ‘Sam 
Schmidt’. Are these the same people?”

User: “No, they are different people.” (AACR detects “No” but the suffi x 
is confusing.)

AACR: “You said that these are not the same person, correct?”
User: “Yes.”
AACR: “If you have another name for ‘Stan Smith’ that doesn’t sound so 

similar to ‘Sam Schmidt’, then it will be easier for me to help you connect 
to these two when needed. Would you like to try that?”

User : “Cut the crap.” (The AACR ceases the dialog based on the negative 
response.)

Dialogs of this type appear in VoiceXML voice response systems with 
numeric keypad or limited vocabularies (e.g., numbers-only). As the size of 
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the prior vocabulary increases, the likelihood that the AACR correlates 
speech to inappropriate prior knowledge also increases. WordNet [131] and 
WordSense [132] illustrate the linguistic challenges. WordNet is an unabridged 
on-line dictionary, originally developed by Princeton University, but now is 
a multilingual web resource with many contributors. WordSense software 
tools index WordNet to compute metrics of the semantic similarity of argu-
ment word senses interactively. Names, defi nitions, and word senses (e.g., verb 
versus noun sense for “rock”) are core language technology increasingly rel-
evant for iCR systems engineering as AACRs evolve toward truly transparent 
NL user interfaces.

4.5.4 Incremental Reinforcement With <Scene/> CBR

Speech could mediate reinforcement or the <User/> could press the buttons 
“Approve” or “Disapprove.” Either way the iCR must know exactly what the 
user approves or disapproves. How does an iCR know that it generated inter-
ference? In both <User/> and <RF/> domains, the architecture must focus 
the attention and structure the relationship to the world so that reinforcement 
is received and accurately interpreted. CRA enables continuous CBR, paral-
lel matching of the current <Scene/> to all prior experience to fi nd similar 
cases. CBR accesses prior experience, matches it with the current <Scene/>,
and adapts and applies the best prior experience to solve an immediate 
problem, for example, synthesizing a <Plan/>. There are many CBR applica-
tions like designing layouts for drying parts, developing dinner menus, adver-
sarial argumentation, and supporting a help desk (Help-desk3), many of 
which are relevant [14], some with enterprise knowledge-management soft-
ware tools [133–135]. In many CBR applications, the cases are vectors of 
attribute–value pairs from databases or GUIs. Each new <Scene/> offers a 
new vector consistent with the stored case base. In AACR, CBR addresses 
the current <Scene/> (attribute–value vector), current state of the <Self/> (a 
complex attribute–value vector), relevant priors (potentially dissimilar attri-
bute–value vectors), and candidate state–action relationships (which are maps 
in high-dimensionality vector spaces). A <Case/> that matches a <Plan/>
positively reinforces that <Plan/>.

Consider the <Histogram/> again. <Histogram> identifi es <Interesting/>
features of “Map of the World .gif,” later labeled “Land” that aligns to <Self>
<Earth> <Land/> </Earth> </Self>. The CR learns that its <Location/> can 
be shown on the “Map.” When <On/> “Land” it should access terrestrial 
wireless services, but when crossing “Water” via <Aircraft/> it should not use 
the <Cellphone/>.

4.5.5 CBR <Anchor/>

To orient itself, it needs a <Scene/> description as in Expression 4-22. A 
<Scene/> is the multidimensional parameter space in which experience 
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occurs. Each <Scene/> includes place, time, and inferred features of the 
environment, such as the user’s state of mind (e.g., lost, in need). Computa-
tionally, <Scene/> consists of those features of those sensory perceptions that 
index and constrain experience. Thus, space, time, sound, vision, and RF are 
the dimensions of the sensory <Scenes/> for CBR.

Expression 4-22 <Scene/> Consists of Space, Time, <RF/> ,
and User-Domain Features

<Scene>
<Space> <Anchor/> <Zone/> </Space>
<Time> <Anchor/> <Epoch/> </Time>
<RF> <Anchor/> <Band/> </RF>
<Sensors> <Audio/> <Video/> <Controls/> </Sensors>
<User/> <Need/> <Plan/> </Scene>

Each CBR dimension needs one or more conceptual <Anchors/>, features 
that identify stereotypical <Scenes/> like <Home/>, <Work/>, and <Leisure/>.
The anchor is the distinct, easily recognized, or unique reference point. A 
<Scene/> could be {<Home> <Dinner/>, <WiFi/>, <People> <Owner/>
<Woman/> <Child/> </People>, <Conversation> <Plan> “trip vacation Paris” 
</Plan> </Conversation> </Home>}. Sensory perceptions estimate the people 
and the topic of the conversation. Speech perception notes repeated words 
like “trip,” “vacation,” and cities like “Paris.” Although accurate topic spot-
ting stretches current technology, the CRA includes speech topic-spotting 
interfaces for technology insertion.

An <Anchored/> <Scene/> presents an opportunity to <Learn>. Suppose 
the <Histogram/> learns <Land/> from “Map” in the <Home/>. <Home/>
refers to the latitude–longitude and spatial extent of the <Owner/>’s <House/>.
The <House/> is a learned subset of space, a <Zone/> distinguished by the 
GPS coordinates of learnable components: <Door/>s, <Driveway/>, and the 
<Yard/>. CRA levels also structure inferences hierarchically with <Scene/>
indexing. This enables differentiation of sensory experience from vicarious 
experience: simulations that analyze experience and plan actions.

4.5.6 CBR Binding

CBR retains sets of problems and associated solutions, and to enable CBR, 
the CRA is data-intensive, storing the raw data characterizing the cases. 
Feature-space memory retains only a cluster center and covariance matrix 
instead of, say, the 4000 points underlying these parameters. CBR on the 
other hand retains the 4000 data points, retrieving the most relevant point 
and applying that solution to the current problem. CBR may adapt the solu-
tion to fi t the <Scene/> by matching, binding, and adjusting. Successful new 
solutions contain the details of the problem for use in the future, adding 
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another point to the database. CBR reinforcement differentiates the more 
successful solutions from the less successful, storing the successful solution 
to complete the CBR cycle: retrieve, reuse, revise, and retain. Commercial 
retrieval processes use nearest-neighbor algorithms, while others use decision 
trees (e.g., based on ID3) [117]. If the retrieval process is based on 
decision trees, then the retention process digests the new cases into updated 
decision trees.

4.5.7 CBR Reinforcement

CBR assists iCR with reinforcement. For example, in an earlier use case, an 
AACR reused knowledge about UHF TV to create a walkie-talkie between 
two automobiles.

Table 4-4 shows how an unused TV channel, UHF-13, used “earlier today” 
for a “walkie-talkie” service becomes a <Variable/> in the <Scene/> “<Earlier-
Today/>” for the <Value/> UHF-25 by matching the <Unused-TV/> frame of 
the <Now/> <Scene/>. The <Value> UHF-25 </Value> substituted into the 
<Binding/> yields a walkie-talkie service in UHF Channel 25 <Now/>. Two 
kinds of binding apply. “Earlier today,” the walkie-talkie service binds to 
UHF Channel 13, a TV channel at that time and in that place <Unused/>
and thus available for the AACR. The CBR problem is <Need> walkie-talkie 
</Need>. It retrieves the most recent similar <Scene/> for <Reuse/> <Now/>.
The reuse process may defi ne islands of confi dence at exact matches, using 
nonmatching values as variable–value pairs. While <Need> Walkie-talkie
</Need> matches exactly in the prior and present scenes, the <Process>  .  .  . 
<Bind> and <Unused-TV> aspects of the two scenes are only partial matches. 
The postulated CBR algorithm detects (via simple matching) that UHF-13
from <Earlier-today/> occupies the same slot as UHF-25 <Now/>, so UHF-13
becomes the <Scene/> <Variable/> while UHF-25 becomes the <Value/>
<Now>. Established CBR algorithms adapt and apply prior experience rein-
forcing decisions this way [117] as does Bind ( ) in CR1.

The AML techniques of this chapter motivate the hardware and sensory-
perception architecture. This chapter necessarily ignored many critical issues, 
such as reasoning with uncertainty given the errorful nature of computer 
vision and natural language technology. Subsequent chapters address these 
challenges.

4.6 LEARNING STRATEGIES

This chapter developed methods for discovery, unsupervised, supervised, and 
reinforcement learning for AACR. The <Histogram/> initiated the discovery 
process in unsupervised learning, marking statistically signifi cant items as 
<Interesting/>. It identifi ed potentially <Interesting/> features of a <Scene/>
or <Domain/> without the aid of a teacher. The <Interesting/> features 



LEARNING STRATEGIES     119

enabled the AACR to proactively seek <Labels/>, formally from a CWN or 
informally via NL from the <User/> to develop hypotheses, to verify knowl-
edge, and to obtain additional related knowledge, thus autonomously obtain-
ing interactive supervision. Shaping the dialog to overcome the brittleness of 
natural language technology helps AACR to learn about a user.

The chapter also developed reinforcement learning, RL. AACRs may use 
RL to adapt to the environment. Unsupervised discovery via <Histogram/>
initiates CBR matching of the current <Scene/> to prior experience, for 
example, to fi ll in the blanks of previously successful plans, obtaining rein-
forcement at key junctures. Contemporary RL methods like Q-learning 
measure positive reinforcement for appropriate behavior and negative rein-
forcement for inappropriate behavior. Since effective RL requires high cor-
relation of a given <Scene/> to prior experience, the chapter developed an 
AML strategy for relating the current <Scene/> to the most relevant prior 
experience whether formalized a priori or learned recently. The methods were 
derivatives of CBR, introduced informally in the fi rst chapter and developed 
in the use cases of Chapters 2 and 3.

The AML examples showed how to learn via interactions with CWNs and 
people using a priori knowledge. Radio XML structured both a priori and 
current knowledge. The <Self/> RXML represents a priori knowledge needed 
to bootstrap AML. RXML internalizes knowledge acquired through AML. 
RXML therefore works both as the external language for spectrum-use con-
straints and as an internal language for cognition. RXML expresses knowl-
edge about the <Self/>, the outside world or <Universe/>, and the classes of 
entities of most relevance in the <RF/> and <User/> domains. Supervised, 
unsupervised, and reinforcement learning set the stage for the more complete 
defi nition of the CRA. Although SDRs may be controlled using conventional 
networks buttons and displays, the wireless evolution toward more sophisti-
cated information services entails expanding user interfaces to include 
AACRs passively observing users in speech, language, and visual domains to 
identify preferences and needs without annoying GUIs. Speech, NL, vision, 
and cognition component integration requires formal semantics, necessitating 
industry agreement (e.g., on extending OWL to radio in the not too distant 
future). For AACR situation awareness, iCRs must detect and track relevant 

TABLE 4-4 CBR Matching Corresponding Features of RF Scenes

<Earlier-today> <Now>

<Unused-TV> UHF-13 < /Unused-TV> <Unused-TV> UHF-25 <Unused-TV>
<Need> Walkie-talkie < /Need> <Need> Walkie-talkie < /Need>
<Process>  .  .  .  <Bind> Walkie-talkie <Process>  .  .  .  <Bind> Walkie-talkie
UHF-13 < /Bind> < /Process> ?UHF-25? < /Bind> < /Process>



120     AUTONOMOUS MACHINE LEARNING FOR AACR

aspects of a <Scene/> identifying <User/> information states. Scene percep-
tion via rapidly maturing speech recognition and machine vision technologies 
assists with symbol grounding. Substantial hardware implications of such an 
approach are evident. In addition, the ubiquity of AML in AACR behavior 
argues for ubiquitous AML in the CRA, distinguishing CR1 from others 
where AML occupies a specialized subsystem if it is present at all.

Management of conceptual primitives motivated the use of namespaces. 
Although the majority of the ontological primitives developed so far origi-
nated in RKRL [145], best commercial practice favors XML as a standard 
metalanguage. Radio XML (RXML) merges an open framework for new 
conceptual primitives, a radio-domain core <RF/>, and a <User/>-domain 
core of stereotypical knowledge. A RXML namespace formalizes the status 
of the ontological primitives. Thus, <Signal/> becomes RXML:Signal, drop-
ping the angle brackets. AACR evolution may employ RXML:RF ontology 
to varying degrees over time. Initially, the ontology enables industry to com-
municate more clearly with each other in a multisupplier market, much as the 
SCA has facilitated teamwork for SDR. As the AACRs move toward the iCR, 
degrees of reasoning over the ontology will increase. For example, as XG 
emerges, AACRs may exchange radio technical information with regulatory 
authorities, spurring the use of RXML.

There are many technology challenges for AML in AACR. Some are 
addressed further in the sequel but many are not. Intrinsic to AML is the 
further development of reliable algorithms for the grounding of internal 
symbols to external entities and actions for reliable AML. The subsequent 
treatment of sensory perception begins to equip one to ground symbols for 
the level of wireless services for evolution toward the use cases.

Real-world applications exhibit uncertainty at every level of perception 
from the raw stimuli where sensors produce noisy data to the perception of 
occluded entities (obstructions, auditory noise, radio interference, etc.), 
leaving the perception system to identify and track entities. This chapter 
meticulously avoided mentioning uncertainty that lurked just out of reach 
everywhere. Subsequent chapters introduce methods for handling sensory 
and perception uncertainty in AACR.

Some of the many other relevant ML technologies appear in Figure 4-14 
[145]. Feature space methods like support vector machines (SVMs) and 
instance-based learning (IBL) with particular relevance to AACR are devel-
oped further, as are knowledge-based knowledge acquisition, neural net-
works, and genetic algorithms.

The breadth of ML techniques in this book suffi ces for initial development 
of AML in AACR. AML is a core technology of the subsequently defi ned 
CRA. Ubiquitous CBR in the CRA developed here could be implemented 
in an autonomous agent architecture or an increasingly autonomous robotics 
architecture like CLARION [53], SAIL [136], or RCS [264], the NASA/
NIST standard robot architecture [137].
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4.7 EXERCISES

4.1. Enhance your favorite use case of a prior chapter with AML.
(a) How useful are design tools like UML?
(b) How does AML change the value proposition of the use case or product?

4.2. Computer-aided software engineering (CASE) tools can help you analyze the 
application domain to defi ne an AML approach, but may not help you track the 
evolution through its training, performance, and reinforcement. How could 
CASE tools “fi x” this? Consider & Builder.

4.3. Develop a consolidated RXML ontology of all the ontological primitives of the 
chapter. Identify the holes and fi ll them suffi ciently to enable the use case of 
Exercise 4.1. Check yourself against RXML:Self from the companion CD-
ROM/web site. Complete the RXML for the walkie-talkie use case. Complete 
the RXML for the Bert–Ernie child-protector use case.

4.4. Find on the Web two or three XML reference repositories of knowledge rele-
vant to the use cases of Exercise 4.3. Identify specifi c trade-offs between the 
RXML repository and “OJT.” How can the size of a repository be reduced by 
relying more on OJT? Explain with CBR OJT.

4.5. What would you do to <Histogram/> to address uncertainty? How would you 
train it to set uncertainty parameters autonomously? How would you gather 
suffi cient examples to set learning and performance parameters a priori?
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4.6. Write a histogram-based discovery algorithm in your favorite computer lan-
guage. What is the best way to save the results of an entire learning episode or 
<Scene/>? How would you save the <Domain/> and <Interesting/> results for 
later use?

4.7. Write a CBR algorithm that accesses <Scenes/> that you saved in Exercise 
4.6.

4.8. Does your CBR algorithm from Exercise 4.7 deal well with uncertainty? If not, 
then what would you do to improve it? If so, then present it with a case for which 
there is no good answer because of the need for a judgment based on 
experience.

4.9. Revise your algorithm so the CBR can explain how two different outcomes are 
both candidates and why it chose one over the other?

4.10. Aggressive cheating by leaning on the <User/> may be built into an AACR. 
Outline acceptable forms of cheating (e.g., how to cheat by asking <User/>,
CWN, etc.). How can cheating help it become smart enough to succeed in the 
marketplace? What cheating is unacceptable?
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CHAPTER 5

COGNITIVE RADIO ARCHITECTURE

Architecture is a comprehensive, consistent set of design rules by which a 
specifi ed set of components achieves a specifi ed set of functions in products 
and services that evolve through multiple design points over time [144]. This 
chapter develops the CRA by which SDR, sensors, perception, and AML 
may be integrated to create AACRs with better QoI through capabilities to 
observe (sense, perceive), orient, plan, decide, act, and learn in RF and user 
domains, transitioning from merely aware or adaptive to demonstrably cogni-
tive radio.

This chapter develops fi ve complementary perspectives of architecture. 
CRA I defi nes six functional components, black boxes to which are ascribed 
fi rst level functions common to AACR design points from SDR to iCR and 
among which critical interfaces are defi ned. CRA II examines the fl ow of 
inference through a cognition cycle that arranges the core capabilities of iCR 
in temporal sequence for both logical fl ow and circadian rhythm for the CRA. 
CRA III examines the related levels of abstraction for AACR to sense ele-
mentary sensory stimuli and to perceive QoI-related aspects of a <Scene/>
consisting of the <User/> in an <Environment/> that includes <RF/>. CRA 
IV examines the mathematical structure of this architecture, identifying map-
pings among topological spaces represented and manipulated to preserve 
set-theoretic properties. Finally, CRA V briefl y reviews SDR architecture, 
sketching an evolutionary path from the SCA/SRA to the CRA. The CRA 
<Self/> provided in CRA Self .xml of the companion CD-ROM expresses 
the CRA in RXML.

Cognitive Radio Architecture: The Engineering Foundations of Radio XML
By Joseph Mitola III Copyright © 2006 John Wiley & Sons, Inc.
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5.1 CRA I: FUNCTIONS, COMPONENTS, AND DESIGN RULES

The functions of AACR exceed those of SDR. Reformulating the SDR 
network node to the AACR <Self/> asserts a peer capable of creating net-
works and needing functions by which the <Self/> accurately perceives the 
local scene including <RF/> and the <User/> and autonomously learns to 
tailor QoI to the specifi c <User/> in the current <RF/> <Scene/> and 
situation.

5.1.1 AACR Functional Component Architecture

The SDR components appear with the related cognitive components in Figure 
5-1. The cognition components describe the SDR in Radio XML so that the 
resulting <Self/> knows that it is a radio and that its goal is to achieve high 
QoI tailored to its own users. RXML asserts a priori radio background and 
user stereotypes as well as dynamic knowledge of <RF/> and space–time 
<Scenes/> perceived and experienced. This knowledge enables both struc-
tured reasoning with iCR peers and CWNs and ad hoc reasoning with users 
while learning from experience.

The detailed allocation of functions to components with interfaces among 
the components requires closer consideration of the SDR component as the 
foundation of CRA. SDRs include a hardware platform with RF access and 
computational resources, with more than one software-defi ned personality. 
The SDR Forum has defi ned its software communications architecture (SCA) 
[27] and the Object Management Group (OMG) has defi ned its software 
radio architecture (SRA) [61], similar fi ne-grain architecture constructs for 
next-generation plug and play. These SDR architectures are defi ned in Unifi ed 
Modeling Language (UML) object models [138], CORBA Interface Defi ni-
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FIGURE 5-1 The CRA augments SDR with computational intelligence.



tion Language (IDL) [139], and XML descriptions of the UML models. The 
SCA emphasizes plug-and-play wireless personalities on computationally 
capable mobile nodes where network connectivity is often intermittent at 
best, while the SRA focuses on making the Web wireless.

The commercial cell phone community [140], on the other hand, led by 
Ericsson and Nokia, envisions a much simpler architecture for mobile wireless 
devices, consisting of two APIs, one for the service provider and another for 
the network operator. They defi ne a knowledge plane in the future intelligent 
wireless networks that is not dissimilar from a distributed CWN. Their Wire-
less World Research Forum (WWRF) [328] promotes the business model of 
the user → service provider → network operator → large manufacturer →
device, where the user buys mobile devices consistent with services from a 
service provider, and the technical emphasis is on intelligence in the network.
This strategy no doubt will yield computationally intelligent networks in the 
near- to mid-term.

The CRA developed in this text, however, envisions the computational 
intelligence to create low cost ad hoc networks with the intelligence in the 
mobile device. This technical perspective enables the business model of user 
→ device → heterogeneous networks, typical of the Internet model where the 
user buys a device (e.g., a wireless laptop) that can connect to the World Wide 
Web wirelessly via any available Internet service provider (ISP). The CRA 
builds on both the SCA/SRA and the commercial API model but integrates 
semantic web intelligence in Radio XML for mobile devices to enable more 
of an Internet business model. SDR, AACR, and iCR form a continuum 
facilitated by RXML.

The AACR node CRA consists of the minimalist set of six functional 
components of Figure 5-2. A functional component is a black box to which 
functions have been allocated, but for which implementing components are 
not specifi ed. Thus, while the Applications component is likely to be primar-
ily software, the details of those software components are unspecifi ed.
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FIGURE 5-2 Minimal AACR node architecture.
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The six CRA functional components are:

1. The user sensory perception (User SP) interface includes haptic, acous-
tic, and video sensing and perception functions. User SP functions may 
include optimized hardware, for example, for computing video fl ow 
vectors in real time to assist scene perception.

2. The local environment sensors (location, temperature, accelerometer, 
compass, etc.).

3. The system applications (media-independent services like playing a 
network game).

4. The SDR functions (which include RF sensing and SDR radio 
applications).

5. The cognition functions (symbol grounding for system control, plan-
ning, learning).

6. The local effector functions (speech synthesis, text, graphics, and mul-
timedia displays).

These functional components are embodied on an iCR-platform, a 
hardware–software infrastructure supporting the six functions. For the capa-
bilities described in the prior chapters, these components go beyond SDR in 
critical ways. First, the traditional user interface is partitioned into a substan-
tial user sensory subsystem and a distinct set of local effectors. The user 
sensory interface includes buttons (the haptic interface) and microphones 
(the audio interface) to include acoustic sensing that is directional, capable 
of handling multiple speakers simultaneously and including full motion video 
with visual scene perception. In addition, the audio subsystem does not just 
encode audio for (possible) transmission; it also parses and interprets the 
audio from designated speakers such as the <User/> for a high performance 
spoken natural language interface. Similarly, the text subsystem parses and 
interprets the language to track the user’s information states, detecting plans 
and potential communications and information needs unobtrusively, trusted 
to protect private information as the user conducts normal activities. The 
local effectors synthesize speech along with traditional text, graphics, and 
multimedia display as tasked by the cognition component.

Systems applications are those information services that synthesize QoI 
value for the user. Typically, voice communications with a phone book, text 
messaging, and the exchange of images or video clips comprise the core systems 
applications for SDR. Usually these services are integral to the SDR applica-
tion, such as text messaging via GPRS. AACR systems applications break the 
service out of the SDR network for greater personal fl exibility and choice of 
wireless connectivity without additional user tedium. The typical user might 
care if the AACR wants to switch to 3G at $5 per minute, but a particularly 
affl uent user might not care and would leave all that up to the AACR.

The cognition component provides all the cognition functions from the 
semantic grounding of entities from the perception system to controlling the 



overall system through planning and actions, learning user preferences and 
RF situations in the process.

Each of these subsystems may contain its own processing, local memory, 
integral power conversion, built-in-test (BIT), and related technical features. 
This functional architecture is described to the <Self/> in RXML for external 
communications about the <Self/> and for introspection in Expression 5-1.

Expression 5-1 The AACR Has Six Functional Components

 <Self> <iCR-platform/> <Functional-components>
  <User SP/> <Environment/> <Effectors/> <SDR/> <Sys Apps/>

<Cognition/>
</Functional-components> </Self>

The hardware–software platform and the functional components of the 
AACR are independent. The architecture design principle is that the (soft-
ware) functional components adapt to whatever RF–hardware–OS platform 
might be available. Platform-independent computer languages like Java 
apply.

5.1.2 Design Rules Include Functional Component Interfaces

These functional components of Figure 5-2 imply critical functional inter-
faces. The AACR N-squared diagram of Table 5-1 characterizes these inter-
faces. They imply an initial set of AACR applications–programmer interfaces 
(CRA APIs). In some ways these APIs augment the established SDR APIs. 
For example, the Cognition API adds a planning capability to SDR. This is 
almost entirely new and will be helpful for AARs to fully support XG. In 
other ways, these APIs supersede the existing SDR APIs. In particular, the 
SDR user interface becomes the User SP and Effector APIs. User Sensory 
APIs encapsulate perception, while the Effector API encapsulates actions 
like speech synthesis to give the AACR <Self/> its own voice. User SP and 
SDR status fl ow perceptions toward the cognition component from which 
Effectors and SDR accept tasks. These interface changes enable the AACR 
to sense the situation represented in the environment and to access radio 
networks on behalf of the user in a situation-aware way.

Interfaces 13–18, 21, 27, and 33 may be aggregated into an information 
services API (ISAPI) by which an information service accesses the other fi ve 
components. Interfaces 25–30, 5, 11, 23, and 35 would defi ne a cognition API 
(CAPI) by which the cognition system obtains status and exerts control over 
the rest of the system.

5.1.3 The Cognition Components

Figure 5-1 shows relationships among the three computational-intelligence 
aspects of CR—radio knowledge, user knowledge, and the capacity to learn. 
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TABLE 5-1 AACR N-Squared Diagram Characterizes CRA Internal Interfaces

From–To User SP Environment Sys Appsa SDR Cognitionb Effectors

User SP 1 7 13 PA 19 25 PA 31
Environment 2 8 14 SA 20 26 PA 32
Sys Apps 3 9 15 SCM 21 SD 27 PDC 33 PEM
SDRa 4 10 16 PD 22 SD 28 PC 34 SD
Cognitionb 5 PEC 11 PEC 17 PC 23 PAE 29 SC 35 PE
Effectors 6 SC 12 18 24 30 PCD 36

Key: P, primary; A, afferent; E, efferent; C, control; M, multimedia; D, data; S, secondary; others not 
designated P or S are ancillary.
a Information Services API consists of interfaces 13–18, 21, 27, and 33.
b Cognition API consists of interfaces 25–30, 5, 11, 23, and 35.
Interface Notes: Follow the numbers of the table:

 1. User SP–User SP: Cross-media correlation interfaces (video–acoustic, haptic–speech, etc.) reduce 
uncertainty (e.g., if video indicates user is not talking, acoustics may be ignored for commands 
reducing errors and enhancing QoI.)

 2. Environment–User SP: Environment sensors parameterize user sensor perception. Temperature 
and humidity extremes that limit video would be detected via this interface.

 3. Sys Apps–User SP: Systems applications may focus scene perception by identifying entities, range, 
expected sounds via speech, and spatial perception interfaces.

 4. SDR–User SP: SDR applications may provide expectations of user input to user SP perception to 
improve probability of detection and correct classifi cation of perceived inputs.

 5. Cognition–User SP: This is the primary control efferent path from cognition to the control of the 
user-SP component, controlling speech recognition, acoustic signal processing, video processing, 
and related sensory perception. Plans from the cognition component may set expectations for user 
scene perception, improving perception.

 6. Effectors–User SP: Effectors may supply a replica of the effect to user perception so that self-
generated effects (e.g., synthesized speech) may be accurately attributed to the <Self/>, validated 
as having been expressed, and/or cancelled from scene perception.

 7. User SP–Environment: Perception of rain, buildings, indoor/outdoor can help set SDR 
parameters.

 8. Environment–Environment: Environment sensors would consist of location sensing such as GPS 
or Glonass; temperature of the ambient; light level to detect inside versus outside locations; pos-
sibly smell sensors to detect spoiled food; and others that may surprise one even more. There seems 
to be little benefi t to enabling direct interfaces among these elements.

 9. Sys Apps–Environment: Data from the systems applications directly to environment sensors would 
be minimal.

10. SDR–Environment: Data from the SDR personalities directly to the environment sensors would 
be minimal.

11. Cognition–Environment: (Primary control path) Data from the cognition system to the environ-
ment sensors controls those sensors, turning them on and off, setting control parameters, and 
establishing internal paths from the environment sensors.

12. Effectors–Environment: Data from effectors directly to environment sensors would be minimal.

13. User SP–Sys Apps: Data from the user sensory-perception system to systems applications is a 
primary afferent path for multimedia streams and entity states that affect information services 
implemented as systems applications. Speech, images, and video to be transmitted move along this 
path for delivery by the relevant systems application or information service to the relevant wired 
or SDR communications path. Sys Apps overcomes the limitations of individual paths by maintain-
ing continuity of conversations, data integrity, and application coherence (e.g., for multimedia 
games).

14. Environment–Sys Apps: Data on this path assists systems applications with physical environment 
and location awareness.

15. Sys Apps–Sys Apps: Different information services interoperate by passing control information 
and domain multimedia fl ows to each other through this interface.



Table footnote continued

16. SDR–Sys Apps: This is the primary afferent path from external communications. It includes 
control and multimedia information fl ows for all information services, with wired and wireless 
interfaces.

17. Cognition–Sys Apps: Through this path the AACR <Self/> exerts control over information 
services.

18. Effectors–Sys Apps: Effectors provide incidental feedback to information services through this 
afferent path.

19. User SP–SDR: The sensory-perception system may send limited raw data directly to the SDR 
subsystem via this path, for example, in order to satisfy security rules for biometrics.

20. Environment–SDR: Environment sensors like GPS historically have accessed SDR waveforms 
directly, such as providing timing data for air interface signal generation. The cognition system 
may establish such paths if cognition provides no value added. The use of this path is deprecated 
because all environment sensors including GPS are unreliable. Cognition has the capability to 
deglitch GPS, for example, recognizing from video that the <Self/> is in an urban canyon and 
therefore reporting location estimates based on landmark correlation.

21. Sys Apps–SDR: This is the primary efferent path from information services to SDR through the 
services API.

22. SDR–SDR: The linking of different wireless services directly to each other via this interface is 
deprecated. If voice services need to be connected to each other there should be a bridging service 
in Sys Apps.

23. Cognition–SDR: This is the primary radio control interface, replacing the control interface of the 
SDR SCA and the OMG SRA.

24. Effectors–SDR: Effectors such as speech synthesis and displays could provide state information 
directly to SDR waveforms via this interface.

25. User SP–Cognition: This is the primary afferent fl ow for perceptions especially the states of 
<Entities/> in the scene, landmarks, known vehicles, furniture, and the like.

26. Environment–Cognition: This is the primary afferent fl ow for environment sensors.

27. Sys Apps–Cognition: This is the interface through which information services request and receive 
support from the AACR <Self/>. This is also the control interface by which cognition sets up, 
monitors, and tears down information services.

28. SDR–Cognition: This is the primary afferent interface by which the state of waveforms is made 
known to cognition. Via this interface cognition can establish primary and backup waveforms for 
information services enabling the services to select paths in real time for low latency services. 
Those behaviors are monitored for quality and validity (e.g., obeying XG rules) by the cognition 
system.

29. Cognition–Cognition: The cognition system (1) orients the <Self/> to information from <RF/> via 
SDR and from scene perceptions, (2) makes plans, (3) makes decisions, and (4) initiates actions, 
including the control of resources. The <User/> may directly control anything via transparent 
paths through the cognition system that enable it to monitor the user to learn from the user’s direct 
actions.

30. Effectors–Cognition: This is the primary afferent fl ow for effector status information.

31. User SP–Effectors: The user SP should not interface directly to the effectors, but should be routed 
through cognition for self observation.

32. Environment–Effectors: The environment component typically should not interface directly to 
the effectors.

33. Sys Apps–Effectors: Systems applications may display streams, generate speech, and otherwise 
directly control effectors once cognition establishes the paths and constraints.

34. SDR–Effectors: This path may link a SDR’s voice track to a headphone, but typically SDR should 
provide streams to Sys Apps. This path may be necessary for legacy compatibility during migration 
but is deprecated.

35. Cognition–Effectors: This is the primary efferent path for the control of effectors. Information 
services provide the streams to the effectors, but cognition sets them up, establishes constraints, 
and monitors the information fl ows.

36. Effectors–Effectors: These paths are deprecated.
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The minimalist architecture of Figure 5-2 and the functional interfaces of 
Table 5-1 do not assist the radio engineer in structuring QoI-related knowl-
edge, nor do they assist much in integrating machine learning into the system. 
The fi ne-grained CRA of this chapter more fully addresses these three core 
cognition components.

First, radio knowledge has to be translated from the classroom and engi-
neering practice into a body of computationally accessible, structured techni-
cal knowledge about radio. Radio XML is the primary means developed in 
this text for the formalization of radio knowledge. This starts a process of 
RXML defi nition and development that can only be brought to fruition by 
industry and over time, a process similar to the evolution of the SCA in the 
SDR Forum. RXML enables the plug-and-play of RF and user world knowl-
edge for enhanced QoI as the SCA enables the plug-and-play of radio 
components. 

The World Wide Web is now sprouting computational ontologies, some of 
which are nontechnical but include radio, like the open CYC ontology. They 
bring the radio domain into the semantic web, which helps people and algo-
rithms know about radio. This informal knowledge lacks the technical scope, 
precision, and accuracy of authoritative radio references like the ETSI GSM 
Mou and ITU 3GPP. Not only must radio knowledge be precise, it must be 
stated at a useful level of abstraction, yet with the level of detail appropriate 
to the use case. Thus, ETSI GSM in most cases would overkill radio level of 
detail yet lack suffi cient knowledge of the user-perspective functionality of 
GSM. In addition, AACR is multiband, multimode radio (MBMMR), so the 
knowledge must be comprehensive, addressing the majority of radio bands 
and modes. Therefore this text captures radio knowledge needed for compe-
tent CR in the MBMMR bands from HF through millimeter wave at a level 
of abstraction appropriate to internal reasoning, formal dialog with a CWN, 
and informal dialog with users. To begin this process, Table 5-2 relates ITU 
standards to CRA capabilities in an agenda for extracting content from formal 
documents that bear substantial authority, encapsulating that knowledge in 
approximate form that can be reasoned with on AACR nodes.

The table is illustrative, not comprehensive, but it characterizes the techni-
cal issues that drive cognition component architecture. ITU, ETSI, other 
regional and local standards bodies, and CWN supply source knowledge to 
the AACR node as the local repository for authoritative knowledge. The 
initial corpus of formalized radio knowledge is provided in <Self> <RF/>
</Self> in the companion CD-ROM/web site.

Next, user knowledge should be formalized at the level of abstraction and 
degree of detail necessary for the CR to bootstrap user knowledge for QoI 
enhancement. Incremental knowledge acquisition was motivated in the intro-
duction to AML by describing how <Histogram/> can identify learning 
opportunities. Effective use cases clearly identify the classes of user and the 
specifi c knowledge needed to customize envisioned services to enhance QoI. 
Use cases may also supply suffi cient initial knowledge to render incremental 
AML not only effective but also enjoyable to the user.



To relate a use case to the seven iCR capabilities, one extracts specifi c and 
easily recognizable <Anchors/> for stereotypical situations observable in 
diverse times, places, and situations. One expresses the anchor knowledge 
using RXML. Table 5-3 illustrates this process for the SINCGARS–Sparky 
and FCC unused-TV channel use cases.

Speech, language, and visual cues are constantly generated and tracked to 
discern user intent. Wearability of Charlie and Genie CWPDAs assists with 
continuous tracking of the user’s state, and with the acquisition of visual cues. 
Cognitive meeting rooms [141] are being developed. The personalization of 
those technologies in AACR should propel this vision forward.

Staying better connected requires the normalization of knowledge between 
<User/> and <RF/> domains. If, for example, the <User/> says, “What’s on 
one oh seven-seven,” while in the car on the way to work in the Washington, 
DC area, then the dynamic <User/> ontology should enable the AACR to 
infer that the user is talking about the current FM radio broadcast, the units 

TABLE 5-2 Radio Knowledge in the CRA

Need Source Knowledge AACR Internalization

Sense RF RF platform Calibration of RF, noise fl oor, antennas, 
   direction
Perceive RF ITU, ETSI, ARIB,  Location-based table of radio spectrum 
  RAs  allocation
Observe RF Unknown RF RF sensor measurements and knowledge
 (sense and Known RF  of basic types (AM, FM, simple digital
 perceive) conforms to ITU,  channel symbols, typical TDMA, 
 ETSI, etc.  FDMA, CDMA signal structures)
Orient XG-like policy Receive, parse, and interpret policy 
   language
 Known waveform Measure parameters in RF, space, and 
   time; interact per protocol stack
Plan Known waveform Enable SDR for which licensing is current
 Restrictive policy Optimize transmitted waveform, 
   space–time plan
Decide Legacy waveform,  Defer spectrum use to legacy users per 
  policy  policy
Act Applications layer Query for available services (white/
   yellow pages)
 ITU, ETSI,  .  .  .  , CWN Obtain new skills encapsulated as 
   download
 Air Interface Operate waveform
Learn Unknown RF Remember space–time–RF signatures; 
   discover spectrum-use norms and 
   exceptions
 ITU, ETSI,  .  .  .  , CWN Extract relevant aspects such as new 
   feature
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are in megahertz (MHz), and the user wants to know what is on WTOP. If it 
can’t infer this question, then it should ask the user to do the task, observing 
user selection of 107.7 FM, learning from observing. Tailoring to the user 
requires continually adapting the <User/> ontology with repeated reground-
ing of terms in the <User/> domain to conceptual primitives and actions in 
the <RF/> domain.

The process of linking user expressions of interest or <Need/> to the 
appropriate radio technical operations sometimes may be extremely diffi cult. 
Military radios, for example, have many technical parameters. A “channel” 
in SINCGARS may consist of dehopped digital voice in one context (voice 
communications) or a 25 kHz band of spectrum in another context. If the user 
says, “I need the Commander’s channel,” the SINCGARS user is talking 
about a “dehopped CVSD voice stream.” If the same user a few seconds later 
says, “This sounds awful. Who else is in this channel?” the user is referring 
to interference with a collection of hop sets. If the CR observes, “There is 
strong interference in almost half of the available channels,” then the CR is 
referring to a related set of 25 kHz channels. If the user then says, “OK, notch 
the strongest 3 interference channels,” he is talking about a different subset 
of the channels. The question, “Is anything on our emergency channel?” 

TABLE 5-3 Use-Case Knowledge in the CRA Node Architecture

Need Source Knowledge AACR Internalization

Observe Sparky use case Sense voice and face; perceive “Sparky”
 User   <User> <Name> “Sparky” </Name>
   <Speaker-model> <Face-model></User>
Observe TV use case Sense and perceive Joe, Lynné, and Dan’s voice
 Scene   and face <User> <Name> “Joe”</Name>
   <Speaker-model/> <Face-model/> </User>
Orient Sparky use case Recognize request for existing SINCGARS SDR 
   waveform
 TV use case Recognize request to create a walkie-talkie
Plan Sparky use case Extract SINCGARS training setup from the 
   <SOI/> via database query and retrieval from 
   network server
 TV use case Create Part 15 ad hoc wireless network
Decide Sparky use case Get permission from Sparky via 
   <Speech-recognizer/>
 TV use case Get permission from Joe via <Speech-recognizer/>
Act Sparky use case Instantiate SINCGARS and enable training 
   password
 TV use case Instantiate walkie-talkie waveform template for
   UHF TV Channel 68
Learn Sparky use case Acquire training password “Second Guessing”
 TV use case Adapt walkie-talkie waveform template to UHF
   24 when legacy use is detected on UHF 68



switches context from SINCGARS to <Self/>, asking about a physical RF 
access channel. Such exchanges eliminate the radio operator but demand 
cross-domain grounding. Candidate methods of cross-domain grounding call 
for associated architecture features:

1. <RF/> to <User/> shaping the dialog to express precise <RF/> concepts 
to nonexpert users in an intuitive way, such as:
(a) Dialog: “If you rotate the remote speaker box it will make a big 

difference in reception from the wireless transmitter on the TV.”
(b) CRA implications: Include a rich set of synonyms for radio techni-

cal terms (<Antenna> � <Wireless-remote-speaker> � “Speaker 
box”).

2. <RF/> to <User/> learning jargon to express <RF> connectivity oppor-
tunities in <User> terms.
(a) Dialog: “tee oh pee” for WTOP, “Hot ninety two” for FM 92.7, 

“Guppy” for “E2C Echo Grand on 422.1 MHz.”
(b) CRA implications: Facility for single-instance update of user 

jargon.
3. <User/> to <RF/> relating values to actions: Relate <User/> expression 

of values (“low cost”) to features of situations (<Home/>) that are com-
putable (<CONTAINS> <Situation> <Home/> </Situation> </CON-
TAINS>) and that relate directly to <RF/> domain decisions.
(a) <Situation/>: Normally wait for free WLAN for big attachment; if 

<AND> <Home/> <NOT> WLAN </NOT> </AND>, ask if user 
wants to pay for 3G.

(b) CRA implications: Associative inference hierarchy that relates 
observable features of a <Scene/> to user sensitivities, such as 
<Cost/>.

These highlights of CRA cognition component design considerations are 
more fully developed in the CRA <Self/> companion CD-ROM.

5.1.4 Self-Referential Components

The cognition component must assess and manage all of its own resources, 
including validating downloads. Thus, in addition to <RF/> and <User/>
domains, RXML must describe the <Self/> to the <Self/> for self-referential 
reasoning. This class of reasoning is well known in the theory of computing 
to be a potential black hole for computational resources. Specifi cally, any 
Turing-capable (TC) computational entity that reasons about itself can enter 
a Gödel–Turing loop from which it cannot recover. Thus, TC systems are 
known to be “partial”—only partially defi ned because the attempt to execute 
certain classes of procedure will never terminate. To avoid this paradox, the 
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CRA mandates the use of only “total” functions, typically restricted to 
bounded minimalization [142]. Watchdog “step-counting” functions [143] or 
timers must be in place for all reasoning and radio functions. The timer and 
related computationally indivisible control construct is equivalent to the com-
puter-theoretic construct of a step-counting function over “fi nite minimaliza-
tion.” It has been proved that computations that are limited with reliable 
watchdog timers can avoid the Gödel–Turing paradox to the reliability of the 
timer. This proof is a fundamental theorem for practical self-modifying 
systems.

Briefl y, if a system can compute in advance the amount of time or the 
number of instructions that any given computation should take, then if that 
time or step count is exceeded, the procedure returns a fi xed result such as 
“Unreachable in Time T.” As long as the algorithm does not explicitly or 
implicitly restart itself on the same problem the paradox is avoided. Although 
not Turing capable, such an AACR is suffi ciently computationally capable to 
perform real-time communications tasks such as transmitting and receiving 
data and bounded user interface functions. Otherwise, the AACR eventually 
will crash, consuming unbounded resources in a self-referential loop. This is 
not a general result, but is highly radio-domain-specifi c, established only for 
isochronous communications. Specifi cally, for every situation, there is a 
default action that consumes O(1) resources enforced by a reliable watchdog 
timer or other step-counting function. Since radio air interfaces transmit and 
receive data, there are always defaults such as “repeat the last packet” or 
“clear the buffer” that may degrade the performance of the overall commu-
nications system but that have O(1) complexity. Since there are planning 
problems that can’t be solved with algorithms so constrained, either an 
unbounded community of CRs must cooperatively work on the more general 
problems or the CN must employ a Turing-capable algorithm to solve the 
harder problems (e.g., NP-hard with large N) off-line.

Thus the CRA structures systems that not only can modify themselves, but 
can do it in such a way that they will not induce nonrecoverable crashes from 
self-referential computing.

5.1.5 Flexible Component Architecture

Although this chapter develops the six-component CRA and a particular 
information architecture, there are many possible cognitive radio architec-
tures. The purpose is not to try to sell the six components, but to develop the 
architecture principles. The CRA and research prototype, CR1, therefore 
offer open-source licensing for noncommercial educational purposes.

5.2 CRA II: THE COGNITION CYCLE

The cognition component of the CRA includes a temporal organization and 
fl ow of inferences and control states, the cognition cycle.



5.2.1 The Cognition Cycle

The cognition cycle implemented in Java in CR1 [145] is illustrated in Figure 
5-3. This cycle synthesizes the CRA cognition component in an obvious way. 
Stimuli enter the cognitive radio as sensory interrupts, dispatched to the 
cognition cycle for a response. Such an iCR sequentially observes (senses and 
perceives) the environment, orients itself, creates plans, decides, and then 
acts. In a single-processor inference system like a moteTM [281], the CR’s fl ow 
of control also moves in the cycle from observation to action. In a multipro-
cessor system, temporal structures of sensing, preprocessing, reasoning, and 
acting may be more parallel. The process of Figure 5-3 is called the wake 
epoch because reasoning during this epoch of time is reactive to the environ-
ment. There also may be sleep epochs for introspective reasoning or prayer 
epochs for asking for help from a higher authority.

During the wake epoch, the receipt of a new stimulus on any of a CR’s 
sensors or the completion of a prior cognition cycle initiates a new cognition 
cycle.

5.2.2 Observe (Sense and Perceive)

The CR observes its environment by parsing incoming stimulus streams. 
These can include monitoring speech-to-text conversion of radio broadcasts 
(e.g., the weather channel). In the observation phase, the CR associates 
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FIGURE 5-3 Simplifi ed cognition cycle.

CRA II: THE COGNITION CYCLE     135



136     COGNITIVE RADIO ARCHITECTURE

location, temperature, light level sensors, and so on to infer the communica-
tions context. This phase binds these stimuli to prior experience to detect 
patterns over time. CR1 aggregates experience by remembering everything. 
All the audio, all the emails, and all the radio situations that one might expe-
rience in a year occupies a few hundred gigabytes of space, depending on the 
detail retained. So the computational architecture for remembering and 
rapidly correlating current experience against everything known previously 
is a core capability of the CRA. The Observe phase embraces the User SP, 
the Environment, and SDR RF sensor processing of the CRA.

5.2.3 Orient

The Orient phase determines the signifi cance of an observation by binding 
the observation to a previously known set of stimuli or <Scene/>. This phase 
operates on the internal data structures that are analogous to the short-term 
memory (STM) that people employ to engage in a dialog without necessarily 
remembering everything to the same degree in long-term memory. The 
natural environment supplies the redundancy needed to instigate transfer 
from STM to long-term memory (LTM). In the CRA, the transfer from STM 
to LTM is mediated by the sleep cycle in which the contents of STM since 
the last sleep cycle are analyzed respect to each other and to existing LTM. 
How to do this robustly remains an important CR research topic, but the 
process is identifi ed in the CRA. Matching of current stimuli to stored experi-
ence may be achieved by stimulus recognition or by binding.

Stimulus recognition occurs when there is an exact match between a current 
stimulus and a prior experience. Reaction may be appropriate or in error. 
Each stimulus is set in a larger context, which includes additional stimuli and 
relevant internal states, including time. Sometimes, the Orient phase causes 
an action to be initiated immediately as a reactive stimulus–response behav-
ior. A power failure, for example, might directly invoke an act that saves the 
data (the “Immediate” path to the Act phase in the fi gure). A nonrecoverable 
loss of signal on a network might invoke reallocation of resources, for example, 
from analyzing speech to searching for alternative RF channels. This may be 
accomplished via the path labeled “Urgent” in the fi gure.

The binding occurs when there is a nearly exact match between a current 
set of stimuli and a prior experience and very general criteria for applying the 
prior experience to the current situation are met. One such criterion is the 
number of unmatched features of the current scene. If only one feature is 
unmatched then binding may be the fi rst step in generating a plan for behav-
ing similarly in the current scene as in the last comparable scene. In addition 
to number of features that match exactly, instance-based learning (IBL) sup-
ports inexact matching and binding. Binding also determines the priority 
associated with the stimuli. Better binding yields higher expectation of auton-
omous learning, while less effective binding yields lower priority for the 
incipient plan.



5.2.4 Plan

Most stimuli are dealt with deliberatively rather than reactively. An incoming 
network message would normally be dealt with by generating a plan (in the 
Plan phase, the normal path). In research-quality and industrial-strength 
CRs, formal models of causality [296] would be embedded into planning 
tools. The Plan phase should also include reasoning over time. Typically, 
reactive responses are preprogrammed or learned by being told, while other 
deliberative responses are planned. Open source planning tools like OPRS 
[60] may be embedded into the Plan phase. Planning tools enable the synthe-
sis of RF and information access behaviors in a goal-oriented way based on 
perceptions, RA rules, and previously learned user preferences.

5.2.5 Decide

The Decide phase selects among the candidate plans. The radio might alert 
the user to an incoming message (e.g., behaving like a pager) or defer the 
interruption until later (e.g., behaving like a secretary who is screening calls 
during an important meeting) depending on per-<Scene/> QoI metrics adju-
dicated in this phase.

5.2.6 Act

“Acting” initiates the selected processes using effectors that access the exter-
nal world or the CR’s internal states.

Access to the external world consists primarily of composing messages to 
be spoken in the local environment or expressed in text locally or to another 
CR or CN in KQML, RKRL, OWL, RXML, or some other appropriate 
knowledge interchange standard.

Actions on internal states include controlling resources such as radio chan-
nels. CR action can also update existing internal models, for example, by 
adding a new serModel to an existing internal set of models such as adding a 
word to the word sense set. Such new models may be asserted by an action of 
the <Self/> to encapsulate experience. Experience may be actively integrated 
into RXML knowledge structures as well. Knowledge acquisition may be 
achieved by an action that creates the appropriate data structures.

5.2.7 Learning

Learning depends on perception, observations, decisions, and actions. Initial 
learning is mediated by the Observe phase in which all sensory perceptions 
are continuously matched against all prior experience to continually count 
occurrences and to remember time since last occurrence of the stimuli from 
primitives to aggregates.
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Learning may occur when a new type of serModel is created in response 
to an Action to instantiate an internally generated serModel. For example, 
prior and current internal states may be compared with expectations to learn 
about the effectiveness of a communications mode, instantiating a new RF 
mode-specifi c reactive serModel.

5.2.8 Retrospection

Since the assimilation of knowledge by machine learning can be computation-
ally intensive, cognitive radio has “sleep” and “prayer” epochs for additional 
machine learning. A sleep epoch is a relatively long period of time (e.g., 
minutes to hours) during which the radio will not be in use, but has suffi cient 
electrical power for processing. During the sleep epoch, the radio can run 
machine learning algorithms without detracting from its ability to support its 
user’s needs. Machine learning algorithms may integrate experience by ana-
lyzing statistical parameters running GAs and examining exceptions. The 
sleep epoch may rerun stimulus–response sequences with new learning 
parameters reminiscent of the way that people dream. The sleep cycle could 
be less anthropomorphic, employing a genetic algorithm to explore a rugged 
fi tness landscape, potentially improving the decision parameters from recent 
experience. Learning opportunities not resolved in the sleep epoch can be 
brought to the attention of the user, the host network, or a designer during a 
prayer epoch so named for bringing a problem that the <Self/> cannot solve 
to a higher authority.

5.3 CRA III: THE INFERENCE HIERARCHY

The phases of inference from observation to action show the fl ow of inference, 
while the inference hierarchy organizes the related data structures. Inference 
hierarchies have been in use since Hearsay II in the 1970s, but the CR hier-
archy is unique in its method of integrating machine learning with real-time 
performance during the wake epochs. An illustrative inference hierarchy 
includes layers from atomic stimuli at the bottom to information clusters that 
defi ne action contexts as in Figure 5-4.

The pattern of accumulating elements into sequences begins at the bottom 
of the hierarchy. Atomic stimuli originate in the external environment includ-
ing RF, acoustic, image, and location domains among others. The atomic 
symbols are the most primitive symbolic units in the domain. In speech, the 
most primitive elements are the phonemes. In the exchange of textual data 
(e.g., email), the symbols are the typed characters. In images, the atomic 
symbols may be small groups of pixels (“blobs”) with similar hue, intensity, 
texture, and so on.

A related set of atomic symbols forms a primitive sequence. Words in text, 
tokens from a speech tokenizer, and objects in images [146] are the primitive 



sequences. Primitive sequences have spatial and/or temporal coincidence, 
standing out against the background (or noise). Basic sequences communi-
cate discrete messages. These discrete messages (e.g., phrases) may be defi ned 
with respect to an ontology of the primitive sequences (e.g., defi nitions of 
words). Sequences cluster together because of shared properties. For example, 
phrases that include words like “hit,” “pitch,” “ball,” and “out” may be associ-
ated with baseball. Knowledge discovery and data mining (KDD) and the 
semantic web offer approaches for defi ning or inferring the presence of such 
clusters from primitive and basic sequences.

A scene is a context cluster, a multidimensional space–time–frequency 
association, such as a discussion of a baseball game in the living room on a 
Sunday afternoon. Such clusters may be inferred from unsupervised machine 
learning, for example, using statistical methods or nonlinear methods like 
support vector machines (SVMs) [98]. The progression from stimuli to clus-
ters generalizes data structure across sensory perception domains.

5.3.1 Vertical Cognition Components

Cognition components may be integrated vertically into this hierarchical data 
structure framework. For example, Natural Language Processing (NLP) tool 
sets may be embedded into the CRA inference hierarchy as illustrated in 
Figure 5-5. Speech channels may be processed via NLP facilities with sub-
stantial a priori models of language and discourse. AACRs need to access 
those models via mappings between the word, phrase, dialog, and scene 
levels of the observation phase hierarchy and the encapsulated speech 
component(s).

Illustrative NLP components include IBM’s ViaVoice NLP research tools 
like SNePS [147], AGFL [148], or XTAG [149] and morphological analyzers 
like PC-KIMMO [150]. These tools go both too far and not far enough in the 
direction needed for CRA. One might like to employ existing tools using the 
errorful transcript to interface between the domain of radio engineering and 
such tool sets. At present, one cannot just express a radio ontology in Inter-
lingua and plug it neatly into XTAG to get a working cognitive radio. The 
internal data structures needed to mediate the performance of radio tasks 

Sequence Level of Abstraction

Context cluster Scenes in a play, Session
Sequence clusters Dialogs, paragraphs, protocol
Basic sequences Phrases, video clip, message
Primitive sequences Words, token, image
Atomic symbols Raw data, phoneme, pixel
Atomic stimuli External phenomena

FIGURE 5-4 Standard inference hierarchy.
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(e.g., “transmit a waveform”) differ from the data structures that mediate the 
conversion of language from one form to another. Thus, XTAG wants to know 
that “transmit” is a verb and “waveform” is a noun. The CR needs to know 
that if the user says “transmit” and a message has been defi ned, then the CR 
should call the SDR function transmit( ). NLP systems also need scoping 
rules for transformations on the linguistic data structures. The way in which 
domain knowledge is integrated in linguistic structures of these tools may 
obscure the radio engineering aspects. Although experts skilled with lan-
guage tools can create domain-specifi c dialogs, at present no tool can auto-
matically synthesize the dialogs from a radio domain ontology. Integrating 
speech, vision, and data exchanges together to control a SDR is in its infancy 
and presents substantial technology challenges that motivated the inclusion 
of such vertical NLP tools in the CRA.

5.3.2 Horizontal Cognition Components

Radio skills may be embodied in horizontal cognition components. Some 
radio knowledge is static, requiring interpretation by an algorithm such as an 
inference engine to synthesize skills. Alternatively, radio skills may be embed-
ded in active data structures like serModels through the process of training 
or sleeping. Organized as horizontal maps primarily among wake-cycle phases 
observe and orient, the horizontal radio procedure skill sets (SSs) control 
radio personalities as illustrated in Figure 5-6. With horizontal serModels 
there are no logical dependencies among components that delay the applica-
tion of the knowledge. With First Order Predicate Calculus (FOPC), the 
theorem prover must reach a defi ned state in the combinatorially explosive 
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resolution of multiple axioms in order to initiate action. In contrast, serModels 
are continually compared to the level of the hierarchy to which they are 
attached, so their immediate responses are always cascading toward action.

Nothing precludes speech, text, vision, or other senory-perception domains 
from using horizontal cognition components to synthesize such reactive 
behaviors within one domain or across domains.

5.3.3 General World Knowledge

An AACR needs substantial knowledge embedded in the inference hierar-
chies. It needs both external RF knowledge and internal radio knowledge. 
Internal knowledge enables it to reason about itself as a radio. External radio 
knowledge enables it to reason about the role of the <Self/> in the world, such 
as respecting rights of other cognitive and legacy radios.

Figure 5-7 illustrates the classes of prior and dynamic knowledge an AACR 
needs to employ in the inference hierarchies and cognition cycle. It is one 
thing to write down that the Universe includes a Physical World (there could 
also be a spiritual world, and that might be very important in some cultures). 
Examples abound in the semantic web. It is quite another thing to express 
that knowledge in a way that the AACR can effectively employ. Symbols like 
“Universe” take on meaning by their relationships to other symbols and to 
external stimuli. In the CRA <Universe/> ontology, metalevel abstractions
are distinct from existential knowledge of the physical Universe. In RXML, 
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this ontological perspective includes all in a universe of discourse, 
<Universe/> (Expression 5-2).

Expression 5-2 The Universe of Discourse of AACR Consists of 
Abstractions Plus the Physical Universe

 <Universe>
  <Abstractions> <Time> <Now/> </Time> <Space> <Here/> </Space>
   .  .  .  <RF/>  .  .  .
   <Intelligent-entities/>  .  .  .  </Abstractions>
  <Physical-universe>  .  .  .  <Instances/> of Abstractions  .  .  .  

</Physical-universe>
 </Universe>

Abstractions include informal and formal metalevel knowledge from 
unstructured concepts to the mathematically structured models of space, time 
and RF. To differentiate “now” as a temporal concept from “Now” as the 
Chinese name of a plant, the CRA includes both the a priori knowledge of 
“now” as a space–time locus, <Now/>, as well as associated functions 
(“methods”) that access and manipulate instances of the concept <Now/>.
Defi nition-by-method permits the cognition component to reason about 
whether a given event is in the past, present, or future. 

Given the complexity of a system that includes both a multitiered inference 
hierarchy and the cognition cycle’s observe–orient–plan–decide–act sequence 
with AML throughout, it is helpful to consider the mathematical structure of 
these information elements, processes, and fl ows.
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5.4 CRA IV: ARCHITECTURE MAPS

Cognition components are implemented via data structures, processes, and 
fl ows that may be modeled as topological maps over the abstract domains 
identifi ed in Figure 5-8.

The <Self/> is an entity in the world, while the internal organization of the 
<Self/> (annotated PDA in the fi gure) is an abstraction that models the 
<Self/>. The model data structures are generalized words, phrases, dialogs, 
and scenes that may be acoustic, visual, or perceived in other sensory domains 
(e.g., infrared). These structures refer to set-theoretic spaces consisting of a 
set X and a family of subsets Ox that contain {X} and { } the null set and that 
are closed under union and countable intersection, a topological space induced 
over the domain. The dissertation [145] and companion CD-ROM and web 
site develop these more theoretical considerations that helped shape the 
CRA.

Although the CRA provides a framework for APIs, it doesn’t specify the 
details of the data structures or of the maps. Other theoretical issues for 
industrial strength CRA include properties of the architecture maps that 
refl ect the following:

1. Noise, in utterances, images, objects, location estimates, and the like. 
Noise sources include thermal noise, conversion error introduced by the 
process of converting analog signals (audio, video, accelerometers, tem-
perature, etc.) to digital form, error in converting from digital to analog 
form, preprocessing algorithm biases, and random errors, such as the 
accumulation of error in a digital fi lter, or the truncation of a low energy 
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signal by threshold logic. Dealing effectively with noise differentiates 
tutorial examples of cognition from the real thing.

2. Hypothesis management, keeping track of more than one possible 
binding of stimuli to response, dialog sense, scene, and so on. Hypoth-
eses may be managed by keeping the N-best hypotheses (with an associ-
ated degree of belief), by estimating the prior probability or other degree 
of belief in a hypothesis, and keeping a suffi cient number of hypotheses 
to exceed a threshold (e.g., 99% of all the possibilities), or keeping 
hypotheses until the probability for the next most likely hypothesis is 
less than some threshold. The estimation of probability requires a mea-
surable space, a sigma-algebra that defi nes how to accumulate probabil-
ity on that space, proof that the space obeys the axioms of probability, 
and a certainty calculus that defi nes how to combine degrees of belief 
in events as a function of the measures assigned to the probability of 
the event.

3. Trustable training interfaces, the reverse fl ow of knowledge from the 
inference hierarchy back down to the perception components. The rec-
ognition of the user by a combination of face and voice could be more 
reliable than single-domain recognition either by voice or by vision, so 
the user training the CR must be able to synthesize such cross-domain 
associations painlessly. Visual recognition of the Owner outdoors in a 
snowstorm, for example, is more diffi cult than indoors in an offi ce. 
While the CR might learn to recognize the user based on weaker cues 
outdoors, access to private data might be constrained until the quality 
of the recognition exceeds some learned threshold balancing ease of use 
against trust.

4. Nonlinear fl ows. Although the cognition cycle emphasizes the forward 
fl ow of perception enabling action the CRA must accommodate reverse 
fl ows (e.g., from perception to training) and different fl ow rates among 
horizontal and vertical cognition components.

5.5 CRA V: BUILDING THE CRA ON SDR ARCHITECTURES

Cognitive radio may be realized via software-defi ned radio (SDR) with 
sensory perception, RF autonomy, and integrated machine learning of the 
self, the user, the environment, and the “situation.” This section reviews SDR 
and the SDR Forum’s SCA as a model of the SDR <Self/> and as a starting 
point for AACR evolution.

5.5.1 SDR Principles

Hardware-defi ned radios such as the typical AM/FM broadcast receiver 
convert radio to audio using radio hardware, such as antennas, fi lters, analog 



demodulators, and the like. In the ideal software radio [144], analog-to-digital 
converter (ADC) and digital-to-analog converter (DAC) convert digital 
signals to and from radio frequencies (RFs) directly, and all RF channel 
modulation, demodulation, frequency translation, and fi ltering are accom-
plished in software.

Since the ideal software radio is not readily implemented, the SDR has 
comprised a sequence of practical steps from the baseband DSP of the 1990s 
toward the ideal. As the economics of Moore’s Law and of increasingly wide-
band RF and IF devices allow, implementations move upward and to the right 
in the SDR design space (Figure 5-9).

This space consists of the combination of digital access bandwidth and 
programmability. Access bandwidth consists of ADC/DAC sampling rates 
converted by the Nyquist criterion and practice into effective bandwidth. 
Programmability of the digital subsystems is defi ned by the ease with which 
logic and interconnect may be changed after deployment. Application-spe-
cifi c integrated circuits (ASICs) cannot be changed at all, so the functions are 
“dedicated” in silicon. Field programmable gate arrays (FPGAs) can be 
changed in the fi eld, but if the new function exceeds some parameter of chip 
capacity, which is not uncommon, then one must upgrade the hardware to 
change the function, just like ASICs. Digital signal processors (DSPs) are 
typically easier or less expensive to program but are less effi cient in power 
use than FPGAs. Memory limits and instruction set architecture (ISA) 
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complexity can drive up costs of reprogramming the DSP. Finally, general 
purpose processor software, particularly with reduced instruction set archi-
tectures (RISC), are most cost-effective to change in the fi eld.

5.5.2 Radio Architecture

For SDR, the critical hardware components are the linear wideband analog 
RF transmitter, IF receiver, ADC, DAC, and processor suite. The critical 
software components are the user interface, the networking software, the 
information security (INFOSEC) capability (hardware and/or software), 
the RF media access software, including the physical layer modulator and 
demodulator (modem) and media access control (MAC), and any antenna-
related software such as antenna selection, MIMO beamforming, pointing, 
and the like. INFOSEC consists of transmission security (TRANSEC), such 
as frequency hopping, plus communications security (COMSEC), typically 
encryption.

The SDR Forum defi ned a very simple, helpful model of radio in 1997, 
shown in Figure 5-10. This model highlights the relationships among radio 
functions. The CR has to “know” about these functions, so every CR must 
have at least an internal model of radio like this.

This model and the techniques for implementing various degrees of SDR 
are addressed in depth in the various texts on SDR [114, 151].

The self-referential model of a wireless device used by the CRA, RKRL 
0.4 and the RXML <Self/>, is illustrated in Figure 5-11. This radio knows 
about sources, source coding, networks, INFOSEC, and the collection of 
front-end services needed to access RF channels. This model includes multi-
ple channels and their characteristics (the channel set), so that the radio may 

VOCODING ROUTING

CONTROL

FRONT END

PROCESSING

INFORMATION

SECURITY

MESSAGE PRO-

CESSING & I/O

M
A

N
A

G
E

M
E

N
T

CONTROL

RF MODEM
TRAN-

SEC
COM-
SEC

BRIDGING

SIGNALING I/O

INFORMATION TRANSFER THREAD

FIGURE 5-10 SDR Forum (MMITS) information transfer thread architecture.



have many alternative personalities at a given point in time. Through evolu-
tion support those personalities may change over time.

Since CR reasons about all of its internal resources, the CRA requires a 
computational model of analog and digital performance parameters and how 
they are related to features the <Self/> can measure or control. MIPS, for 
example, may be controlled by setting the clock speed. A high clock speed 
generally uses more total power than a lower clock speed, and this tends to 
reduce battery life. The same is true for the brightness of a display. The CR 
only “knows” this to the degree that a data structure captures this information 
and algorithms, preprogrammed or learned, deal with these relationships to 
the benefi t of QoI. Constraint languages may express interdependencies, such 
as how many channels of a given personality are supported by a given hard-
ware suite, particularly in failure modes.

The ontological primitives of the above may be formalized as follows:

Expression 5-3 SDR Subsystem Components

<SDR>
<Sources/> <Channels/> <Personality>

<Source-coding-decoding/> <Networking/> <INFOSEC/>
<Channel-codec> <Modem/> <IF-processing/> <MIMO/>

<RF-access/> </Channel-codec>
</Personality>

<SDR-platform/> <Evolution-support/>
</SDR>

This text leaves the formal ontology of SDR to industry groups like the 
SDR Forum and OMG, focusing instead on ontological constructs that 
enhance QoI.
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5.5.3 The SCA

The U.S. DoD developed the SCA for its Joint Tactical Radio System (JTRS) 
family of radios [79]. The SCA identifi es the components and interfaces 
shown in Figure 5-12. The APIs defi ne access to the physical layer, to the 
media access control (MAC) layer, to the logical link control (LLC) layer, to 
security features, and to the input/output of the physical radio device. The 
physical components consist of antennas and RF conversion hardware that 
are mostly analog and that therefore typically lack the ability to declare or 
describe themselves to the system. Most other SCA-compliant components 
are capable of describing themselves to the system to facilitate plug-and-play 
among hardware and software components. In addition, the SCA embraces 
POSIX and CORBA, although the SCA has also been implemented in Java 
as well.

The SCA evolved through several stages of work in the SDR Forum and 
Object Management Group (OMG) into a UML-based object-oriented model 
of SDR (Figure 5-13). Waveforms are collections of load modules that provide 
wireless services, so from a radio designer’s perspective, the waveform is the 
key application in a radio. From a user’s perspective of a wireless PDA, the 
radio waveform is just a means to an end, and the user doesn’t want to know 
or have to care about waveforms. Today, the cellular service providers hide 
this detail to some degree, but consumers sometimes know the difference 
between CDMA and GSM, for example. With the deployment of the third 
generation of cellular technology (3G), the amount of techie jargon consum-
ers need to know is increasing. So the CR increases access to ad hoc networks 
and the wireless Web but insulates the user from those details, unless the user 
really wants to know.
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In the UML model, Amp refers to amplifi cation services, RF refers to RF 
conversion, and Interference Management refers to both avoiding the genera-
tion of interference and fi ltering it out of one’s band of operation. In addition, 
the jargon for U.S. military radios is that the “red” side contains the user’s 
private information, but when it is encrypted it becomes “black” or protected, 
so it can be transmitted. Black processing occurs between the antenna and 
the decryption process. In this fi gure there is no user interface. The UML 
model contains a sophisticated set of management facilities, illustrated further 
in Figure 5-14, to which human–machine interface (HMI) or user interface 
is closely related.

Systems control is based on a framework that includes generic functions 
like event logging, organized into a computational architecture. The manage-
ment features are needed to control radios of the complexity of 3G and of the 
corresponding generation of military radios. Fault management features deal 
with loss of a radio’s processors, memory, or antenna channels. CR therefore 
interacts with fault management to determine what facilities may be available 
to the radio given recovery from hardware and/or software faults (e.g., error 
in a download). Security management protects the user’s data, balancing 
convenience and security, which can be very tedious and time consuming. 
The CR will direct virtual channel management (VCM) and will learn from 
the VCM function what radio resources are available, such as what bands the 
radio can listen to and transmit on and how many it can do at once. Finally, 
SDR performance depends on the parameters of analog and digital resources, 
such as linearity in the antenna, millions of instructions per second (MIPS) 
in a processor, and the like.

5.5.4 Architecture Migration: From SDR to AACR

Given the CRA and contemporary SDR architecture, one must address the 
transition of SDR, possibly through a phase of AACRs toward the iCR. As 
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the complexity of hand-held, wearable, and vehicular wireless systems 
increases, the likelihood that the user will have the skill necessary to do the 
optimal thing in any given circumstance decreases. Today’s cellular networks 
manage the complexity of individual wireless protocols for the user, but the 
emergence of multiband multimode AACR moves the burden for complexity 
management toward the PDA. The optimization of the choice of wireless 
service between the “free” home WLAN and the for-sale cellular equivalent 
moves the burden of radio resource management from the network to the 
WPDA.

In the migration process the CRA could increase the computational intel-
ligence of a wireless laptop. It could know about the user by observing key-
strokes and mouse action as well as by interpreting voice and the images on 
its camera, for example, to verify that the Owner is still the user since that is 
important to building user-specifi c models. It might build a space–time behav-
ior model of any user or it might be a trustable single-user laptop.

In 1999, Mitsubishi and AT&T announced the fi rst “four-mode handset.” 
The T250 operated in TDMA mode on 850 or 1900 MHz, in fi rst generation 
Analog Mobile Phone System (AMPS) mode on 850 MHz, and in Cellular 
Digital Packet Data (CDPD) mode, a multiband, multimode, multimedia 
wireless handset. These radios enhanced the service provider’s ability to offer 
national roaming, but the complexity was not apparent to the user since the 
network managed the radio resources in the handset.

As the number of bands and modes increases, the SDR becomes a better 
candidate for the insertion of cognition technology. But it is not until the radio 
or the wireless part of the PDA has the capacity to access multiple ad hoc RF 
bands such as nodes of a ubiquitous wireless Web that cognition technology 
begins to pay off. With the liberalization of RF spectrum-use rules, the early 
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evolution of AACR may be driven by RF spectrum-use etiquette for ad hoc 
bands like the FCC use case. In the not-too-distant future, SDR PDAs could 
access satellite mobile services, cordless telephone, WLAN, GSM, and 3G 
bands. An ideal SDR device with these capabilities might affordably access 
octave bands from 0.4 to 0.96 GHz (skip the air navigation and GPS band 
from 0.96 to 1.2 GHz), from 1.3 to 2.5 GHz, and from 2.5 to 5.9 GHz (Figure 
5-15). Not counting satellite mobile and radio navigation bands, such radios 
would access over 30 mobile subbands in 1463 MHz of potentially sharable 
outdoor mobile spectrum. The upper band provides another 1.07 GHz of 
sharable short-range, indoor and RF LAN spectrum. This wideband radio 
technology will be affordable for military applications, for base station home 
and business infrastructure, for mobile vehicular radios, and later for hand-
sets and PDAs. When a radio device accesses more RF bands than the host 
network controls, CR technology can mediate the dynamic sharing of spec-
trum. It is the well-heeled conformance to the radio etiquettes afforded by 
iCR that makes such sharing practical.

Various protocols have been proposed by which radio devices may share 
the radio spectrum. The U.S. FCC Part 15 rules permit low power devices to 
operate in some bands. In 2003, a Rule and Order (R&O) made unused 
television (TV) spectrum available for low power RF LAN applications, 
making the manufacturer responsible for ensuring that the radios obey con-
straints [64]. DARPA’s neXt Generation (XG) program developed a language 
for expressing spectrum-use policy [152]. Other more general protocols based 
on peek-through to legacy users have also been proposed [157].

Does this mean that a radio must transition instantaneously from the SCA 
to the CRA? Not at all. The six-component CRA may be implemented with 
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minimal sensory perception, minimal learning, and no autonomous ability 
to modify itself. Regulators hold manufacturers responsible for the behaviors 
of such radios. The simpler the architecture, the simpler the problem of 
explaining it to regulators and of getting concurrence among manufacturers 
for open architecture interfaces. Manufacturers who fully understand the 
level to which a highly autonomous CR might unintentionally reprogram itself 
to violate regulatory constraints may decide to fi eld aware–adaptive (AA) 
radios, but may not want the risks of a self-modifying CR just yet.

Thus, one can envision a gradual evolution toward the CRA beginning 
initially with FCC CR for XG′ and a minimal set of functions mutually agree-
able among the growing community of AACR stakeholders. Subsequently, 
access to new radio access points on the wireless Web will reduce costs for 
new services to drive the evolution toward iCR with additional APIs, perhaps 
informed by the CRA.

5.6 COGNITION ARCHITECTURE RESEARCH TOPICS

The cognition cycle and related inference hierarchy imply a large scope of 
hard research problems for cognitive radio. Parsing incoming messages 
requires next-generation natural language text processing to overcome jargon, 
anaphora, and elipsis in semi-structured message exchanges. Scanning the 
user’s acoustic environment for voice content that further defi nes the com-
munications context requires next-generation speech processing. Planning 
technology offers a wide range of alternatives in temporal calculus [153], 
constraint-based scheduling [163], task planning [162], and causality model-
ing [146], that have yet to be leveraged for iCR. Resource allocation includes 
algebraic methods for wait-free scheduling protocols [142], open distributed 
processing (ODP), and parallel virtual machines (PVMs). Finally, machine 
learning remains one of the core challenges in artifi cial intelligence research 
[45]. The focus of this cognitive radio research, then, is not on the develop-
ment of any one of these technologies per se. Rather, it is on the organization 
of cognition tasks and on the development of cognition data structures needed 
to integrate contributions from these diverse disciplines as applicability to 
AACR becomes clear.

5.7 EXERCISES

5.1. What is the FCC’s (or your local regulatory authority’s) current policy regarding 
spectrum sharing?
(a) Regarding the use of cognitive radios?
(b) Do regulatory authorities differentiate adequately among adaptive, aware, 

and cognitive radio?
(c) How could additional clarity enhance sharing?



(d) Assess the degree to which FCC policy on cognitive radios has stimulated 
and/or stifl ed SDR innovation.

5.2. At what point does it make sense to identify a cognition component for radio 
architecture?

5.3. Is sensory perception in visual or auditory domains or both a prerequisite for 
cognition?

5.4. Can machine learning be integrated into a radio that lacks auditory or visual 
perception or both? How?
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CHAPTER 6

RADIO-DOMAIN USE CASES

This chapter takes the next step in AACR by quantifying the value proposi-
tion. It also develops additional use cases along with the next level of detail 
in the technical issues of implementing the use cases.

6.1 RADIO USE-CASE METRICS

Today’s radios function primarily as bit pipes, wireless paths for voice and 
data. Although data now includes short messages, pictures, video clips, 
and the Web, the radio moves these bits but does not quantify their QoI. And 
mobile radios typically are not as good at bit-pipe data delivery as their hard-
wired infrastructure counterparts. Since connectivity drives QoI, the value 
of mobility is high. These use cases therefore quantify the value of mobility 
and multiband multimode radio fl exibility, where the radios themselves per-
ceive the scene and process the bits to quantify <RF/> contribution to <User/>
QoI.

6.1.1 QoS As a RF Use-Case Metric

Quality of service (QoS) is often emphasized as a limitation of wireless tech-
nologies. Of course, the bit error rate (BER), data rate (R

b
), delay (dT), and 

delay jitter (σT) typically fall short of wireline performance by orders of 
magnitude as illustrated in Table 6-1. Mobility has its price.

Cognitive Radio Architecture: The Engineering Foundations of Radio XML
By Joseph Mitola III Copyright © 2006 John Wiley & Sons, Inc.
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Different digital connectivity technologies have better or worse QoS, as 
quantifi ed in Table 6-1 with illustrative values. Expression 6-1 internalizes 
via RXML the QoS parameters of alternatives for the <Self/> to obtain 
<Connectivity/> per Table 6-1, associating each with a <Path/> that consists 
of one or more communications <Modes>.

Expression 6-1 Connectivity Abstractions Differentiate <Paths/>

<Abstractions> <Connectivity/>
<Connectivity> <Path> <Mode/> </Path> </Connectivity>
<Schema> <Connectivity> <Path> <Mode>
 <QoS> <Rb (bps)/> <BER (10∧−)/> <dT(−ms)/> <σT(ms)/>

<GoS%/> </QoS>
 </Mode> </Path> </Connectivity> </Schema>
<Connectivity>
 <Mode> <Dial Up/> <DSL/> <Core Network/> <Cellular/> <3G/>

<BT/> </Mode> </Connectivity>
<Connectivity> <Path> <Mode> <Dial Up>
 <QoS> <Rb> 56k </RB> <BER> 5 </BER> <dT> 100 </DT> <σT>
  10 </σT> <GoS> 99</GoS> </QoS> </Dial Up> </Mode> </Path>

</Connectivity>
<Connectivity> <Path> <Mode> <Cellular>  .  .  .  (see CD-ROM)  .  .  .
</Connectivity/> </Abstractions>

The XML expression <BER> 5 </BER> means BER = 10∧(−5) = 10
−5

. The 
other QoS metrics are similarly formatted per <Schema/>. In addition, the 
QoS of a <Path/> may be estimated as the worst QoS metrics of the constitu-
ent modes when connected.

6.1.2 Context Sensitivity of QoS

For many use cases there is high value of mobile connectivity. From the user 
perspective, the cell phone probability of connection is often much bigger 

TABLE 6-1 Wireless and Wireline QoS Parameters

   Core Networks  
QoSa Dial Up WLAN ISP and PSTN Cellular 3 G

Rb (bps) 56 k 0.1–1.5 M 1–100 G 8 k 100 k
BER (10∧) −5 −6 −9 −3 −4
dT (ms) 100 10 1 30 10
sT (ms) 10 1 0.1 300b 100b

GoS (%) 99 99.9 99–99.999 70–90 80–95b

a Values are illustrative and not intended to be pejorative.
b Periods of moderate fading in a heavily loaded cellular system.



than zero, which is the probability of wireline access from the car, the boat, 
and the beach. In other words, while the quantitative measures of QoS of 
Table 6-1 make wireline bit pipes appear much better than wireless bit pipes, 
these metrics don’t account for the user’s experience.

Proximity probabilities in Table 6-2 are illustrative, based on the assump-
tion that the ISP and PSTN are BlueTooth enabled so the CWPDA can access 
wireline and wireless modes for the user. In this model the CWPDA must be 
within 2 meters of an access point and personal offi ces are less than 4 meters 
across; homes have at least two rooms wired with PSTN out of a six-room 
house, but only one has an ISP port (e.g., DSL). Cellular and satellite tele-
phone probability of proximity is estimated as probability of network con-
nectivity. If the values of the QoS in Table 6-1 were weighted for the probability 
of proximity, the wireline values become nearly zero much of the time in a 
business day. This metric accurately refl ects the dramatic success of cellular 
services in the 1990s with the right combination of price and performance for 
the marketplace and cultural inclinations. A CWPDA takes into account 
the situation dependence of the probability of connection. This strategy is 
expressed computationally in the QoI metric augmented with Tables 6-1 and 
6-2 so CWPDA’s can use <RF/> accordingly, seeking out WLAN-ISP access 
points, for example.

Knowledge of the likelihood of RF connectivity of various types underlies 
nearly all the RF use cases. Although all the knowledge could be learned, 
AACR evolution may be accelerated via a priori models updated by experi-
ence. The a priori knowledge includes abstract models of the scenes with QoS 
and QoI estimates in stereotypical scenes. These models may be updated by 
the CWPDA’s ability to connect experience in a given scene, such as in an 
offi ce or home.

Expression 6-2 <Scenes/> Represent Stereotypical QoS

<Abstractions> <Scene/>
<Scene> <Generic-setting/> <Offi ce/> <Home/> <Car/> <Restaurant/>

<Pedestrian/> <Traffi c-accident/> <Earthquake/>
<Severe-weather/> </Scene>

TABLE 6-2 Probability of Proximity (Pp)

Scene Offi ce Home Car Restaurant

ISP 0.99 0.1 0.0 0.01
PSTN 0.99999 0.3 0.0 0.01
Cellular (urban) 0.9 0.99 0.99 0.99
Cellular (rural) 0.9 0.5 0.7 0.5
Cellular (remote) 0.1 0.01 0.05 0.01
Iridium (remote) 0.1 0.1 0.9 0.1
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<Scene> <Generic-setting> <Mode/> </Generic-setting> </Scene>
<Abstractions/>

The CRA <Self/> scene abstractions defi ne <Scene/> as one or more 
places like the offi ce, home, or car to be parameterized by QoS and probabil-
ity & proximity through experience. A <Pedestrian/> scene may characterize 
the mobility of the AACR but does not correspond to a specifi c place. Other 
generic scenes may be characterized by physical and social imperatives such 
as <Traffi c-accident/>, <Earthquake/>, and <Severe-weather/>. In each of 
these scenes, human actors with AACRs are characterized by roles, such as 
<Injured/> or <Care-giver/>. The scene <Generic-setting/> is a place-holder 
to which <Scene/> attributes may be assigned through a discovery process. 
Each <Scene/> has one or more communications <Modes> and a probability 
of mode presence in a scene. The CRA doesn’t require probability per se 
representing instead relative frequency of occurrence K/N, integer data that 
is easier to learn and on which probability-like inferences can be based. These 
may be integrated in reinforced hierarchical sequences.

6.1.3 Reinforced Hierarchical Sequence Describes RF Context

In the CRA whenever a stimulus is encountered, both the number of times 
that stimulus has been observed and the number of cognition cycles since last 
observation are updated in the CRA inference hierarchy to form reinforced 
hierarchical sequences (RHSs). These observations are referenced in RHSs 
to time and space.

Expression 6-3 Scene Model Showing RHSs

<Scene> <Offi ce> <Observations> 1000 </Observations>
 <ISP-WLAN> <OBS> 990 </OBS> </ISP-WLAN> <PSTN-BT>
<OBS>
  999 </OBS> </PSTN-BT>  .  .  .
 </Offi ce> </Scene>

The probabilities of Table 6-2 are readily expressed as RHS ratios of the 
presence of a communications mode in a scene (<OBS/>), reinforced inde-
pendently of the experience of the scene itself (<Observations/>). Specifi -
cally, in Expression 6-3, the probability that a BlueTooth PSTN connection 
is available in the offi ce is approximated by the relative frequency of occur-
rence of the observation of PSTN-BT in <Offi ce/> versus the experience of 
the <Offi ce/> scene. As the number of encounters with <Offi ce/> increases, 
the precision of the reinforcements interpreted as probabilities increases. 
With, say, two visits to an offi ce and two observations of <PSTN-BT>, one 
could write P(Offi ce ∩ PSTN-Terminal) � 1.0, interpreting relative frequency 
as an estimate of the probability of the joint events Offi ce ∩ PSTN-BT. 
Keeping the raw counts of observations enables alternate hypothesis analysis 



(e.g., during a sleep cycle), for better QoI. Thus, the CRA stipulates RHSs 
from which applications may infer probability.

6.1.4 Autonomous Reasoning About RF in Use Cases

The iCR perception of the RF domain should estimate GoS and QoS in a 
way that most accurately refl ects QoI so that the AACR may reason from the 
user viewpoint. This implies multidimensional matrices of probability densi-
ties of <Scene/>, <Location/>, <Mode/>, < GoS/>, and <QoS/> for QoI. 
Those probabilities are refl ected in the RHS ratios of reinforcement of 
<Scene/> versus <Mode/> and in combinations of <Location/> and <Mode/>
versus <QoS/>. Thus, a priori RHS models readily integrate experiential 
updates.

AACR <RF/> use cases enhance the probability of staying connected. 
Wireline telephony has optimized grade of service (GoS) to 99% or better 
probability of connecting on the fi rst attempt, now expected of wireline 
systems in developed nations. Wireless service providers tend to not quote 
GoS in part because, unlike the wireline system, GoS is only partially under 
the control of the service provider. The rest is up to “Mother Nature.” Even 
the best built-out cell phone network drops calls because of network loading 
and multipath fading. In urban settings, the many moving metal objects exac-
erbate multipath fading. Along with per-cell traffi c imbalances, dead zones, 
co-channel interference, and other less common channel impairments con-
spire to cause dropped calls, which by now are expected by the cell phone 
user. AACR’s multiband multimode radio (MBMMR) technology can miti-
gate network shortfalls by autonomously seeking other <Paths/>. GSM hops 
among its 200 kHz channels because when a given channel is faded, others 
are not as deeply faded at a given location and time. Thus, frequency hopping 
mitigates fade depth. AACR’s MBMMR mode hopping can choose a WLAN-
ISP access point in a cellular dead zone, for reduced cost or QoI optimization. 
When <Connectivity/> is based on choice, GoS and thus QoI increases. Spe-
cifi cally for independent ergodic paths, the probability that either Path1 or 
Path2 is available is the contrapositive of the probability that both are not 
available at the same time, or

 P(Path1 or Path2) = P(Not {P(Not(Path1) and Not(Path2))}) 
= 1 − (1 − P(Path1)) (1 − P(Path2)) (6-1)

These engineering principles are expressed to the <Self/> in RXML to 
quantify criteria for autonomous path selection in Expression 6-4.

Expression 6-4 Path Choice Yields Improved GoS

<Connectivity-choice>
 <Path> Path1 <GoS> X </GoS> </Path>
 <Path> Path2 <GoS> Y </GoS> </Path>
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<OR> Path1 Path2 <GoS> 1-(1-X)(1-Y) </GoS> </OR>
</Connectivity-choice>

From the equation, it is clear that, like HF automatic link establishment 
(ALE), band agile SDR can transform a larger number of reasonably reliable 
(90%) RF channels in different bands into an aggregate more reliable meta-
channel, theoretically approaching the “fi ve-nines” level of the wireline as 
WLAN-ISP access points build out. Connectivity with fl exibility enables new 
kinds of information services as developed further in the use cases.

6.1.5 Focusing RF Use Cases

The use cases of this chapter therefore generate ideas for AACR that go 
beyond the bit pipe to the MBMMR-platform with computational intelligence 
for situation-dependent improved connectivity, QoS, and QoI. An AAR 
detects the absence of a TV channel to form an ad hoc wireless LAN. An 
AACR knows that TV is just one of several MBMMR capabilities to form 
parallel paths for increased GoS. AACRs that perceive location infer the 
presence of hidden nodes, not transmitting and in need of interference-clear 
spectrum. AARs learn the space–time distribution of radio energy for control 
of high spatial-density wireless technologies like multiple-input multiple-
output (MIMO), using independent multipath refl ections as independent 
paths for multiplexed bitstreams [109–113, 154]. These technologies also 
enable new use cases with not just better data rates and connectivity, but with 
autonomous use of spatial knowledge, to improve spectrum use in ways not 
feasible with MIMO alone. Enthusiasm for such use cases can engender 
unreasonable expectations.

One of the key lessons learned from the artifi cial intelligence hype-bust 
cycle of the 1980s is that razor sharp focus on the value proposition of the use 
case with realistic expectations of results was the key to successful AI proj-
ects. Healthy skepticism would treat AACR as another AI technology with 
the risks of another boom–bust cycle. By sequencing use cases starting with 
the smallest subset of capabilities that are of the greatest value, and plotting 
a path of affordable and opportunistic evolution, one may deploy selected 
AACR technologies with reasonable expectations in a customer-driven way. 
The enabling user perception technologies are so limited that substantial 
effort (analysis, experimentation, and fi eld trials) is required to insert aware-
ness, adaptation, and learning into real-world settings. The use cases there-
fore identify (1) the signifi cant entities (AACR, legacy, and human), (2) the 
signifi cant information exchanges among those entities, (3) the behaviors 
required of the entities, and (4) the specifi c QoI enhancement in each of the 
use cases.

The industrial-strength method for analyzing use cases includes computer-
aided software engineering (CASE) tools like the Unifi ed Modeling Lan-
guage (UML). High end UML tools such as ROSE from IBM Rational™ 



map UML to executable code. UML facilitates the formalization of use cases, 
but one need not employ UML for every use case. SDL, the Specifi cation and 
Description Language of ITU-T (Standard Z.100), might be used instead. 
Analytica™, Matlab™, and Mathcad™ also offer powerful capabilities for 
quantifying the benefi ts and challenges of use cases.

The CASE tools can accelerate the implementation of a use case in soft-
ware, but CRs must learn from experience. At present no UML tools address 
AML needs like training scripts that differentiate skill acquired through 
experience from preprogrammed behaviors. The source code of CRI in the 
companion CD-ROM/web site isn’t based on UML, but on a CR learning-
machine design environment for self-modifying CRs. This CR environment 
includes a simulation in which they can be trained and diagnosed. Since the 
diagnosis of skill gained from AML is complex, this text introduces ML train-
ing and diagnostics with suggestions for research addressing the deeper 
issues.

6.2 FCC UNUSED TV SPECTRUM USE CASE

Much of the interest in cognitive radio today entails the secondary use of 
radio spectrum that happens to be unoccupied at a given place and time. 
Therefore, this is a good use case to develop further. The FCC conducted a 
series of meetings and issued fi ndings regarding secondary spectrum markets 
between 1999 and 2003. At present, the FCC supports cognitive radio for 
secondary use of radio spectrum. Plots like those presented to the FCC (see 
Figure 6-1) helped make the case [155].

The author fi rst presented the idea of CR for spectrum management to the 
FCC on 6 April 1999 (see the companion CD-ROM/web site for the text of 
this statement). Later, the ideas were refi ned in a public forum on secondary 
spectrum markets [156] in a layperson’s version of the core research ideas. 
The FCC’s technical advisory committee recommended that the Commission 
pursue CR as a method for enhancing secondary spectrum markets. The FCC 
conducted an inquiry and posted a ruling and order encouraging CR as an 
enabler for secondary markets [155].

6.2.1 Single-Channel Spectrum Rental Vignette

This idea of CR for spectrum rental was fi rst presented publicly at the IEEE 
Workshop on Mobile Multimedia Communications (MoMUC) [157]. In this 
paper, a “polite” spectrum rental protocol was defi ned and termed an eti-
quette. In addition to the basic idea for posting the availability of spectrum 
in a given place and time, the protocol defi ned a way of listening for the 
occurrence of legacy primary users of the spectrum that lack the ability to 
know that their spectrum is being used by others. The legacy users push to 
talk and the etiquette detects the legacy user and makes the channel available 
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within 30–60 milliseconds. This self-contained etiquette use case appears in 
[158] and the companion CD-ROM.

To formalize this etiquette use case, one must describe the entities to the 
<Self/> as in Expression 6-5. The signifi cant entities are the regulatory author-
ity (<RA/>), multiple RA agents (<RAAgents/>), legacy radios that are 
mobile (<LRM/>), legacy radios that are fi xed (<LRF/>), cognitive radios 
that are mobile (<CRM/>), and cognitive radios that are fi xed (<CRF/>), 
along with the <Users/> and network <Operators/>, the people who take 
responsibility for the actions of the radio networks.

Expression 6-5 Spectrum Rental Ontology (Simplifi ed)

<Abstractions> <RF> <Spectrum-rental> <Scene/>
 <Scene> <Entity/> <Services/> </Scene>

<!– Entities provide services –>
 <Scene> <Entity> <Behavior/> <Message/> <!– via behaviors and 
  messages –>
  </Entity> <Services/> </Scene>
 <Scene> <Entity> <RA/> <RAAgents/> <LRM/> <LRF/> <CRM/>

<CRF/>
  <Behavior/> <Message/> </Entity> <Services/> </Scene>
</Spectrum-rental> </RF> </Abstractions>

Each of the entities of Expression 6-5 collaborates with the others by gen-
erating and receiving messages, behaving in accordance with the local knowl-

FIGURE 6-1 Illustrative spectrum occupancy. (Courtesy of Dr. Bruce Fette, “SDR 
Technology Implementation for the Cognitive Radio,” FCC 19 May 2003, General 
Dynamics, Falls Church, VA.)



edge obtained from the knowledge exchange (Expression 6-6). The RAs 
electronically <Publish/> a <Policy/> that enables the secondary spectrum 
user to <Rent/> spectrum in a given place and time. The place is an area, not 
a point, so the policy implies power and spatial controls on RF propagation. 
Those wishing to rent their spectrum <Publish/> a more detailed offering 
typically from fi xed infrastructure. CRMs <Rent/> the spectrum for a speci-
fi ed <Time-interval/> using <Spectrum-cash/>, confi rming <Satisfaction/> if 
the spectrum is available as advertised. Otherwise, the renter may register a 
<Complaint/> to the RA.

Expression 6-6 Spectrum Rental Instance

<Abstractions> <RF> <Spectrum-rental/> </Abstractions>
<Physical-universe>  .  .  .  <RF> <Spectrum-rental/> <Scene> <Location>
 “Fairfax, VA” </Location> </Scene>
 <Entity> <RA> FCC <Publish> <RF> 400MHz </RF>
  <Policy> “Enable spectrum rental”</Policy> </Publish> </RA>

</Entity>
 <Entity> <RAA> Agent1 <Behavior>
  “Observes and enforces policy compliance” </Behavior> </RAA>

</Entity>
 <Entity> <LRF> <Behavior>
  <Publish> <Rent> <RF> 405MHz </RF> <Time-interval>
   5minutes </Time-interval>
  <Spectrum-cash> $0.07 </Spectrum-cash> </Rent> </Publish>

</Behavior> </LRF>
 <Entity> <CRM> AACR <Message> <Rent/> <Satisfi ed/>

<Complain/> </Message>
  <Behavior> <Rent> <RF> 405MHz <Time> 1105 </Time> </RF>

</Behavior>
  <Behavior> <Satisfi ed> <RF> 405MHz <Time> 1110 </Time> </RF>

</Behavior>
  <Behavior> <Rent> <RF> 405MHz <Time> 1115 </Time> </RF>

</Behavior>
  <Behavior> <Rent> <RF> 405MHz <Time> 1118 </Time> <Defer/>

</RF> </Behavior>
  <Behavior>
   <Complain> <RF> = 405 MHz <Time> 1118 <Time/> <Reason>

<Legacy/> </Behavior>
  </CRM> <CRF/> <Entity/> </Scene>
</Spectrum-rental> </RF>  .  .  .  </Physical-universe>

In the experience remembered in Expression 6-6, the AACR rented spec-
trum at 1105 AM for 5 minutes, paying $0.07 at 1110. The AACR was inter-
rupted by a legacy user at 1118, so it had to <Defer/> the spectrum to the 
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legacy user and therefore decided to <Complain/> to the offeror as shown. 
The signal structure for such spectrum sharing is outlined in the companion 
CD-ROM.

In this vignette the spectrum is rented for a small fee collected in 
spectrum-cash, funds that can be traded among parties without necessarily 
being converted to actual cash. Police, fi re, rescue, and others that now radiate 
10 W to reach their own sparse towers could employ spectrum with greater 
effi ciency radiating 100 mW to nearby PCS towers on their legacy frequencies 
with legacy radios connected via ISP or cellular backhaul in exchange for 
secondary commercial use of public use spectrum. Such public–commercial 
spectrum pooling has great value at peak intensity hours of the day when 
cellular providers are turning away paying customers (e.g., 10 am). Such 
cognitively rented secondary spectrum could be a low-cost source of long-
term revenue. Many social and regulatory issues must be resolved for this 
promising technical case to become deployed.

6.2.2 OFDM Spectrum Management Vignette

This vignette shows how a renter could occupy multiple empty channels at 
once using orthogonal frequency division multiplexing (OFDM). OFDM 
senses vacant space–time epochs of spectrum and formulates broadband 
energy to fi ll in the gaps. Friedrich Jondral and Timo Weiss, for example, have 
investigated opportunities for more agile use of spectrum via their spectrum 
measurement campaigns conducted specifi cally for OFDM spectrum pooling 
[159]. (See Figure 6-2.)

FIGURE 6-2 Spectrum use in Lichteneau, Germany in 2003. (Courtesy of Dr. 
Friedrich K. Jondral, Universität Karlsruhe, Germany; used with permission.)



Although subbands are allocated to licensed users, secondary OFDM 
users may employ unused spectrum either by regulatory permission or by 
renting from the primary user. The waveforms that optimize sharing fi t in the 
vacancies between instantaneously used spectrum. OFDM features [160] 
enable the tailoring of multiple orthogonal frequency-domain carriers to fi t 
in the instantaneous cracks between legacy users.

To complete this use case one must abstract the signifi cant entities and 
formalize their behaviors for the <Self/>. In an interesting companion to the 
Jondral–Weiss ideas, the Communications Research Centre (CRC) of Canada 
examines the 5250 to 5320 MHz license-exempt band [161, 162].

The CRC shows empirically the relationship between wind and signal 
strength for small RF cells on an optical backbone.

6.2.3 Regulatory Authority Vignettes

The perspective of the RAs loom large in the various spectrum management 
use cases. The many regulatory issues to be addressed in fl exible spectrum 
management include the certifi cation of hardware–software confi gurations to 
transmit; licensing entities and collecting tariffs; monitoring for abuses; and 
enforcing penalties [163].

6.2.3.1 European Regulatory Perspective
In September 2003, the U.K. Regulatory Authority’s Regulatory Round Table 
on SDR addressed European concerns about the management of SDR and 
cognitive radio. The workshop was organized by Walter Tuttlebee, Director, 
Mobile Virtual Communications Enterprise (VCE) for the U.K. RA. At that 
time, regulators stated a need for clearer defi nitions to facilitate regulation.

European regulators planned to keep the burden of type certifi cation on 
the original equipment manufacturers (OEMs) as defi ned in the EU telecom-
munications regulatory framework. This framework wiped out “type certifi -
cation” by the RAs in favor of rules (“R&TTE”) that consolidated the 
markets of the member states into a single integrated market, third largest in 
the world after the United States and Japan, with China growing fast. This 
means that OEMs certify that they comply with published constraints like 
spectrum masks and co-use limits. This regulatory framework is one of the 
most permissive regulatory styles, intended to promote market consolidation 
and economies of scale.

Expression 6-7 Liability Is Assigned by the RA to the OEM Who 
Certifi es a Confi guration

<Abstractions> <Liability/>
<Liability> “Legal responsibility for failure to comply with policy” 

</Liability>
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<Liability> <Entity> <RA/> <OEM/> <Operator/> <User/> </Entity>
</Liability>

<Liability> <Behavior> <Assign> <Type> <Spectrum/> </Type> <RA/>
<OEM/> </Assign>

 </Behavior> </Liability> <! – RA assigns liability to OEM –>
<Liability> <Behavior> <OEM> <Certify> <Type> <Spectrum/> </Type>
 <Confi guration> <Software/> <Hardware/> </Confi guration> </Certify>

</OEM>
 </Behavior> </Liability> <! – OEM certifi es a HW-SW confi guration –>
</Liability> </Abstractions>

This framework hinges on the assignment of liability for spectrum confor-
mance to the OEM, who implements this responsibility by type certifi cation. 
The framework is expressed in the CRA in RXML (Expression 6-7). As 
hardware–software <Confi gurations/> become more complex, one must 
defi ne a standard way of keeping track of certifi ed confi gurations. The RA 
of Japan offers an approach to this chronic problem with SDR.

6.2.3.2 Japanese Perspective
Harada-San-se, IAI (Independent Administrative Institution of Japan), Com-
munications Research Laboratories (CRL), Yokosuka Radio Communica-
tions Research Center, Leader in Wireless Research, presented the Japanese 
thinking in 2003 and 2004 at various RA convocations throughout the world. 
The Telcom Engineering Center (TELEC) organized a study group on tech-
nical regulation conformity on SDR October 2000 to March 2003. The Min-
istry of Public Management, Home affairs, Posts, and Telecommunications 
(MPHPT) was considering regulation on SDR. At that time, Japanese radio 
law did not permit any change to equipment once licensed; to make a change, 
OEMs or users must get a new license. Japanese IEICE, sister organization 
to the IEEE, had a companion study group. Physical layer “security” has 
regulatory issues, monitored by the government. Security layer 2 includes a 
right to protection for service quality, which is provided by the OEM or 
service provider, while layer 3 brings data and privacy protection.

In the Japanese future technical certifi cation framework, they would allow 
independent sales and purchases of hardware that have been jointly certifi ed 
by the certifi cation agency. Harada-San-se listed information to be provided 
by the OEM at the time of application for type certifi cation. This included 
whether the device is a hardware-defi ned radio (HDR) or SDR; various 
administrative data; and a statement of the confi rmation method (typically 
testing, the same as current methods). The data also requires a defi nition of 
the larger communications system, modulation method, data rate (R

b
), center 

frequency (f
c
), and such technical parameters of the radio part supporting the 

hardware.
The Japanese framework then includes a “tally,” a registry of successes and 

failures in hardware and software type certifi cation. This includes a bitmap 



of success (1) or failure (0), for software certifi cation but no hardware certi-
fi cation, or the converse, both being certifi ed, or both failing. The tally is 
made for various hardware and software confi gurations in a matrix with 
hardware confi gurations on one axis and software on the other, defi ning 
N × M conformance test cases. (See the componion CD-ROM for details.) 
There are other proposals, but the Japanese tally matrix method could be a 
very important idea for download management, checking unlicensed, tam-
pered, and unsuitable software. MPHPT has also studied SDR via question-
naires; trends in other countries and standards bodies and forums; as well as 
TELEC, IEICE, and other technical bodes. This major undertaking is covered 
in the IEICE Special Issue on Software Radio and Its Applications [164].

6.2.4 XG Spectrum Policy Vignette

DARPA’s neXt Generation (XG) radio program envisions broadcast of spec-
trum policy so that radios can know what spectrum-use methods are permit-
ted at a given time in a given place. The XG model of current spectrum use 
observes that there are policy, physical access, and air interface technology 
limits on agile use of radio spectrum.

DARPA’s approach to relaxing these constraints may be summarized as 
follows:

1. Enhance policy fl exibility.
2. Accept and manage more risk.
3. Increase capability to dynamically sense and adapt.
4. Develop faster spectrum analyzers with more instantaneous 

bandwidth.
5. Develop radio and waveform standards that can adapt to meet sharing 

requirements.
6. Develop wider coverage, better antennas.
7. Develop adaptive waveforms.

To develop this use case further, one may access DARPA’s public XG web 
page. Future XG notices regarding spectrum-use policy language and broad-
casts could be on public Web sites. One could extract from these descriptions 
the identities and features of those entities (e.g., the FCC) and classes of 
objects (TV stations and TV receivers) that would interact in XG spectrum-
use policy language. Some features could be built into the next AACR product 
cost-effectively. One also needs to identify the modifi cations that these fea-
tures undergo as spectrum policies change and as the XG language evolves. 
Machine learning and adaptation in the fi eld could facilitate the evolution of 
such radios after they are deployed.

To fully develop the XG use case, one might analyze links among personal/
wearable AACRs, vehicular AACRs, and an AACR fi xed infrastructure. 
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The vehicular AACRs may relay content between mobile and fi xed infra-
structure using steerable millimeter wave gigabit links. Entities and roles 
change over time, changing GoS, QoS, and QoI parameters among the policy 
community, OEMs, service providers, and commercial users. Quantitative 
models characterize the trade-off between relaying lower power messages 
shorter distances on the one hand or increasing the operational radius of a 
relay point on the other.

6.2.5 Scaling Up Spectrum Sharing

The cost of operations and maintenance support of a large number of cog-
nitive radios must be considered. This is sometimes called “scaling up” of 
AACR from a few isolated radios to a large population. The algorithm by 
which ants forage for food scales up from small colonies consisting of a queen 
plus a few ants to megacolonies consisting of literally billions of ants. Will 
XG scale up like that as increasingly more AACRs forage for available radio 
spectrum? One might consider the relevance of the artifi cial life research 
community in addressing this question [165]. A radio that follows spectrum-
use policy broadcast in a specifi c format will be simple, like a worker ant, and 
not very expensive to develop and deploy. But as the framework for spectrum 
use continues to expand, these radios may need new adaptation software. The 
ants will need to learn new tricks. The ideal cognitive radio is supposed to 
learn new spectrum-use policies from experience, so if this ideal can be 
achieved, there would be no need for reprogramming. The radios would need 
to learn from individual experience, validate learned behaviors by autono-
mous peer review, and collaborate by the autonomous downloading of group 
experience. Although the AML foundations showed how to enable one radio 
to discover <Interesting/> features of a scene and to use that to focus AML, 
many technology challenges remain about how to realize autonomous exten-
sibility of spectrum-use policy. Positive and negative reinforcement by RAAs 
could guide the evolution of a collection of iCRs if that ant colony were 
enabled to evolve within strict bounds. One approach to the CR ant colony 
suggested by genetic algorithm technology expresses spectrum-use policy in 
an algorithmic genome, evolving policy in a simulation incrementally vali-
dated by the experience of AACRs in the fi eld.

This book addresses the potential technology leap and architecture chal-
lenges of such ideas powered by AML. Others also will pursue the comple-
mentary incremental approaches, deploying the required software staffs as 
the regulatory framework, user needs, technology, and products for evolution 
emerge.

6.3 DEMAND SHAPING USE CASE

The use case of this section examines the economic impact of shaping demand 
between “free” wireless LAN spectrum and “monthly billed” 3G or 4G wire-



less networks. It postulates the wide availability of low cost dual-mode PDAs 
and examines the potentially disruptive nature of cognition technology in 
those nodes. The key difference between today’s networks and those posed 
in this use case is that the AACR nodes work on behalf of the consumer, not 
on behalf of the network. In the past, this was impractical for many reasons. 
CR technology along with MBMMR cell phones and ad hoc network techno l-
ogy overcome many of the technical challenges to such a progression.

6.3.1 Use-Case Setting

This use case examines the behavior of AACRs in a realistic scenario. Figure 
6-3 shows the spatial structure of a notional small to moderate sized urban 
area. Its daily pattern of use of the mobile terrestrial radio spectrum includes 
demand offered by government entities; police, fi re, and other public entities; 
and consumers. Although commercial services like taxis and delivery vehicles 
constitute a potentially important distinct niche, for simplicity they are not 
modeled in this use case.

The daily pattern of activity includes commuting from the suburb and resi-
dential areas to the city center and industrial areas. The airport has a high 
concentration of business travelers on weekdays and of vacationers on days 
before and after holidays. The stadium area offers relatively low demand 
except during sporting events. Each of the eight places shown in the fi gure 
corresponds to the coverage of one RF macrocell.

6.3.2 Analytical Model

The top-level structure of the analytical model is shown in Figure 6-4. The 
space–time–context distribution allocates classes of user to parts of the city 
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FIGURE 6-3 Spatial structure of demand shaping use case.
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as a function of time of day. The Space–Time–Context model characterizes 
space and time in terms of densities of users during diurnal epochs. It also 
translates the distributions into fractional allocations of demand to space–
time epochs. The RF Model defi nes the radio bands, cell sites, channels 
available to class of user, and tariff structure. The tariff structure is notional 
but estimates the relative economic value of the potential AACR behaviors. 
The User Traffi c Model includes email and fi les submodels that model multi-
media demand in parameters like the number of emails a user receives and 
sends per day and the size of attachments. The Baseline Case model allocates 
demand to channels and computes total revenue generated and revenue lost 
due to lack of capacity.

Users are classifi ed as <Infrequent/>, <Commuter/> <Power-commuter/>,
<Police/>,<Fire & Rescue/>,<Government-users/>,<Emailers/>,<Browser/>,
and <Telecommuters/>. The spatial distribution of users covers all eight 
spatial regions with statistical apportionment according to the proportion 
matrix of Figure 6-5. The normal day is partitioned into nine epochs of 2 or 
3 hours each (Morning Rush, etc).

Figure 6-6—from the Analytica model that accompanies the text—shows 
how fractions of population redistribute as commuters move from the suburbs 
to the city center and back to the residential areas late at night, modulating 
the offered demand. Offered demand is defi ned by class of user and type of 
content with separate Beta distributions for each period of time. Police, for 
example, can offer substantial voice traffi c during some periods of the night 
as illustrated in the Beta distribution of Figure 6-7.

The corresponding cumulative probability densities show that demand is 
likely to peak at about 0.15 erlang in the “Late Night” epoch (from 1 until 3 
am). These temporal variations of demand are multiplied by the spatial frac-
tions to yield probability distributions of demand as a function of space and 
time. The notional wireless infrastructure to which this demand is directed 
consists of cell sites in each of the eight urban regions. The commercial sector 
has 100 traffi c channels per site in this notional model. The police, fi re, and 
rescue have four sites serving the city center and industrial region, the shop-
ping and stadium, the autobahn and suburbs, and the residential and airport 
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FIGURE 6-4 Analytic model of RF, space, time, context, traffi c, and economics.



regions, respectively. They allocate N erlang capacity (N full-time traffi c 
channels) among the regions. The model sets N = 100 for both cellular and 
civil infrastructure. The government has one site for the entire urban area, 
allocating its channels uniformly to demand from any region (presumably a 

FIGURE 6-5 Space–time–context distribution for normal commuters.
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site on a tall hill or building overlooking the entire area). The analytical 
model has a notional tariff structure, with tariff tables for each of three RF 
bands (cellular, public, and government). Since there are 167 modules in this 
Analytica model, a detailed description is beyond the scope of this treatment. 
The model includes cross-checking to assure internal consistency. Illustrative 
results are presented in the following sections.

6.3.3 Value of Pooling

The cases shown in Table 6-3 characterize the contributions of spatial and 
temporal demand on pooling. This illustrates the benefi ts of etiquette and is 
the baseline for demand shaping below.

In the “Baseline” case, the population of 37,200 subscribers offers 24-hour 
traffi c of 11,600 erlang hours per day. About half the potential revenue is lost 
because of the statistical overload conditions at peak hours. When this demand 
is pooled, all offered traffi c is spread across cellular, government, and public 
use bands (and all infrastructure towers), a total of 84.6% more channels. 
The lost revenue shrinks to only 16% of the total while the total revenue-
generating capability of the system increases with the revenue-bearing role 
of the pooled government and public bands.

The second and third cases of Table 6-3 show revenue as email and multi-
media traffi c increase over time. Although spectrum pooling helps, almost 
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FIGURE 6-7 Probability density of demand offered by police.

TABLE 6-3 Analysis Cases for Pooling

 Allocated Case Pooled Case

 Revenue Lost Revenue Revenue Lost Revenue

Baseline (mostly 1 G) $136 k $132 k $242 k $47 k
Growth with 2 G $145 k $213 k $305 k $87.9 k
Explosion with 3 G $147 k $243 k $335 k $109 k



25% of the potential revenue is lost even with 3G technology (third case). 
All of this revenue growth is from wireless email, electronic maps, stock 
broker services on the move, and other services that appear attractive to 
consumers.

6.3.4 Cognitive Shaping of Demand

The postulated AACRs learn accurate user models in communications con-
texts to autonomously shape demand. They balance value to the user (e.g., 
rapid delivery of email, rapid retrieval of items from the Web) against cost 
(e.g., offering the demand during off-peak periods). The third vignette in 
Table 6-3 exhibits a pattern of digital traffi c where 68% of the afternoon 
demand is email or fi le transfers. If only 30% of this demand is delayed by 
from 1 to 4 hours, total traffi c increases by about 5%. This is attractive to 
network operators but not necessarily to consumers.

Instead of being merely shifted in time AACRs divert the digital traffi c 
that is not time sensitive to the corporate RF LAN where airtime is (regarded 
as) free. If only 25% of subscribers fi nd the high-band RF LAN convenient, 
the cellular service providers lose 4.8% of their revenue-bearing traffi c, not 
an insignifi cant loss.

These value systems can be expressed in RXML, learned by AACRs and 
used for specifi c users for situation-dependent load shaping.

Expression 6-8 Knowing that the User’s Value System Is Situation 
Dependent

<Abstractions> <Radios>
<iCR> <Software>  .  .  .

<Learns> <User> <Value-system/> </User> </Learns>
</Software> </iCR> </Radios>

<User> <Value-system> <Cost/> <Delay/> <Speed/> </Value-system>
</User>

.  .  .  </Abstractions>
<Physical-universe>  .  .  .  <Instances>

<User> Charlie <Value-system>
<NOT> <CONTAINS> <Situation/> <Unusual/> </CONTAINS>

</NOT>
<Cost> <Lowest/> </Cost> </Value-system> </User>

<User> Charlie <Value-system>
<CONTAINS> <Situation> <Urgent/> </Situation> </CONTAINS>
<Delay> <Lowest/> </Delay> </Value-system> </User>

</Instances> </Physical-universe>

As illustrated in Expression 6-8, specifi c iCRs learn the specifi c value 
systems of their users through a combination of a priori models and an ability 
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to recognize and tailor user value systems to specifi c features of a situation. 
Ontological primitives like <Urgent/> must be defi ned in terms of observables 
in a scene. In addition, temporal reasoning must translate <Lowest/> cost or 
delay into the acts of buffering the traffi c to the RF LAN.

Introducing AACRs in large numbers diverts traffi c to RF LANs, increas-
ing total traffi c by 8.9% with cognitive delay shaping of 25% resulting in a 
loss of 4.8% of the revenue-bearing cellular/3G traffi c to WLANs. As more 
traffi c is shaped to corporate RF LANs, more revenue is shifted from the 
service provider to the corporate clients in the form of savings of the costs of 
mobile traffi c. The simple economic model does not include price breaks for 
corporate clients or the costs of acquiring and operating the corporate RF 
LANs, but such simplifi cations may not be unrealistic if the RF LANs are 
installed and operated to reduce costs of wiring (and rewiring) offi ce spaces 
or manufacturing fl oors; this represents a small but benefi cial use of an exist-
ing corporate infrastructure. This use case does not refl ect any particular 
business case and its simplifi cations may render the results inapplicable in 
many cases. Still, millions of autonomous decisions can shift revenue measur-
ably if autonomy moves millions of bits off the cellular networks and onto the 
corporate RF LAN, or the wireless Web.

6.4 MILITARY MARKET SEGMENT USE CASES

Globally, there have been many military radio programs that envision the 
fi elding of military SDRs. These include the U.S. Joint Tactical Radio System 
(JTRS) [79], the U.K. Bowman Program, and the European Future Multi-
band Multimode Modular Tactical Radio (FM3TR). Without necessarily 
addressing any one of these in detail, one may defi ne a generic Coalition 
Tactical Radio System (CTRS).

In this use case, CTRS would be the basis for a global open architecture 
standard for intelligent radios to facilitate the formation of military teams, 
for example, to assist in humanitarian relief operations like the tsunami disas-
ter of 2004. CTRS addresses military radio modes between 2 MHz and 6 GHz, 
LF/HF through SHF. These include HF Morse, HF ALE, frequency hop 
(FH), direct sequence spread spectrum (DSSS), analog AM/ FM push to talk, 
GPSGlonass navigation, digital data links, FM FDM, and digital PCM. 
Suppose there are four antenna sets per military vehicle: (1) LF/HF dual whip 
antennas (2–30 MHz), (2) dual midband whip antennas (30–500 MHz), 
(3) dual high-band whip antennas (0.5–2 GHz), and (4) quadrant directional 
antennas (0.9–6 GHz). CTRS enables communications among coalition 
vehicular radios such as ships, aircraft, and land vehicles. The functions of 
CTRS include agile radio spectrum management, mode management (the 
association of modes to specifi c vehicles), priority (by vehicle, by user, 
and by content), preemption of a lower priority by a higher priority, power 
management, communications security (COMSEC), transmission security 



(TRANSEC), and ad hoc networking. CTRS meets coalition needs for gate-
ways to interconnect legacy users. This use case and the next complement 
each other in humanitarian relief operations.

6.5 RF KNOWLEDGE THAT SAVES LIVES

In October 2003, UCSD announced WISARD, the Wireless Internet Infor-
mation System for Medical Response in Disasters [166]. WISARD replaces  
the felt pen and whiteboard of triage (e.g., in a humanitarian relief operation) 
with digital triage using RF identifi cation (RFID) tags. Some RFID tags 
measure vital signs when attached to a fi nger. Among the motivations cited 
by project director Leslie Lenert was the recent scenario in which the Russian 
government used a gaseous agent to disable the terrorists in a Moscow theater. 
More than 100 of their hostages died. According to Lenert, medical personnel 
later reported that most deaths were due to lack of vital signs monitoring at 
the scene and an inability to organize care to determine who was breathing 
and who wasn’t. Immediate application of the RFID tags would enable digital 
triage, hopefully saving lives.

Lenert characterizes problems with current fi eld care where there are mass 
casualties as in Figure 6-8. Victims fl ee, some get dramatically better while 
others become dramatically worse; responders have trouble coordinating; 
tags are lost; clinical data is not available for the aid giver, triage, or surgical 
team; and specialized equipment is hard to locate, power, or operate when 

• Victims flee before decon
  causing secondary exposure
  (public, hospitals)
• Detection of change in status
  difficult (30% initial mistriage)

• Most severely ill not always
  transported first

• Tags lost, clinical info
  incomplete/missing
• Hospital resource
  information incomplete

• 1st responder status uncertain
     *Many may become victims

*Destinations difficult to track

Problems with Current Field Care

Field
Treatment
Station

Transport
station

SCHOOL OF MEDICINE
UCSD

FIGURE 6-8 CR can enable digital triage, overcoming RF problems with fi eld care. 
© UCSD. Used with permission.
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needed. How could CR enable such a vision of digital triage? The entities of 
the use case may be expressed in RXML as in Expression 6-9.

Expression 6-9 Disaster Relief Entities

<Abstractions>
<Scene> <Disaster>

<Earthquake/> <Tsunami/> <Severe-weather/> </Disaster> </Scene>
<Scene> <Disaster> <People> <Casualties> <Dead/>

<Injured> <Minor-injury/> <Serious-injuries/> <Critically-injured/>
</Injured> <Seriously-ill/> </Casualties>

<Relief-personnel> <NGO/> <Medical/> <Sustenance/>
<Infrastructure/> <Military/> </Relief-personnel>

<Indigents/> </People> </Disaster> </Scene> </Abstractions>

Sustenance relief personnel provide food, water, and other supplies. Infra-
structure relief personnel reconstruct roads, bridges, housing, and the like. 
Military relief personnel sent from other countries assist with disaster recov-
ery. <NGO/> are nongovernmental organizations like the International Red 
Cross and Red Crescent. In this taxonomy, there are just three kinds of 
people: <Casualties/>, <Relief-personnel/>, and <Indigents/>. These are the 
actors or <Entities/>. The behaviors of medical personnel, casualties, and 
indigents with respect to medical attention are the focus of the use case. 
RFID tags provide the raw data; iCRs locate the tags and exchange informa-
tion about tag location and patient status via their ad hoc CWN.

Expression 6-10 RF Entities in the Spectrum Scene

<Scene> <Abstractions>
<RF> <RA> <Spectrum-plan> </RA>
<RF-devices> <Transmitters/> <Receivers/> <Transceivers/>

<CWPDAs/>
<Transponders> <RFID/> <Transponders/> </RF-devices>

<RF-environment> <Signals/> <Noise/> </RF-environment>
</RF> </Abstractions> </Scene>

RFID tags come in many fl avors. The ontological primitives of Expression 
6-10 describe them as <Transponder/> entities in a RF scene that includes 
regulatory authority (<RA/>), RF devices, and a radio propagation environ-
ment of signals and noise. RFID tags for digital triage from different suppliers 
may have different air interfaces, sensors, and data storage and transfer capa-
bilities. RFID tags of different national origin may be brought to a given 
humanitarian relief operation. Since radio spectrum management differs by 
region of the world, country, or political subdivision, RFID tags will be 
incompatible with each other’s home RF networks, creating RFID bedlam. 



Envisioned iCR behaviors that mitigate these challenges, for more effi cient 
medical assistance, are as follows:

1. The iCR RFID base stations probe newly arriving RFID tags to dis-
cover their air interfaces, registering them and their capabilities into the 
<Scene/>.

2. The iCRs form an ad hoc network to track locations of the unpowered 
transponder RFID tags.

3. AACRs monitor emissions and advise RAs to reallocate interfering 
radio emissions away from RFID tag frequencies.

4. AACRs learn the priority of different content (e.g., nominal vital signs 
versus values that are out of safe medical norms), prioritizing the data 
fl ow from unsafe RFID tags to the medical teams.

5. AACRs allocate the more reliable physical layer RF <Paths/> to higher 
priority data to reduce the GoS and QoS of less essential data, enhanc-
ing net QoI by buffering the less critical data for queued delivery or for 
retrieval by a medical team when and where needed (versus delivering 
the data to a display that is not being monitored by medical staff).

6. When new types of RFID tags appear on the scene, the AACRs deter-
mine their capabilities and limitations sharing this with medical teams 
using a medical XML.

Technologies like XML enable future RFID tags to express their abilities 
using open-standard medical ontologies. Privacy concerns may dictate the 
adoption of a privacy system similarly based on an open architecture standard 
such as PKI. The CWN could segregate RFID tags of a given type to a geo-
graphical subdivision of the disaster area to limit co-channel interference. 
The CWN members could mutually agree on a specifi c AACR to serve as 
the hub for the automatic coordination of wireless spectrum among AACRs 
and legacy radios. Criteria for the hub iCR would include the number, types, 
and fl exibility of its RF access, the processing capability to handle multiple 
RFID channels in real time, enhanced antennas, longer endurance power 
supplies, and better physical access of the lead medical teams.

The image-capable cell phone is already fi nding quasimedical uses. For 
example, researchers at Tokyo University [167] have developed a sales-support 
system for door-to-door cosmetics sales based on skin-image grading. Skin-
CRM (Skin Customer Relationship Management) analyzes the customer’s 
skin from a picture taken by the salesperson’s cell phone. Skin grade is 
assigned by rules generated by data mining a baseline of grades given by 
human skin-care experts. Skin-CRM uses a cellular phone with a camera, 
email software, and a web browser. The skin picture is sent to the analysis 
system by email. The picture is analyzed by the Skin-CRM server, result-
ing in a web page plus an email advising of the results “within minutes.” 
Salespeople browse the results on their cell phone, including skin grade and 
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recommendations for care and cosmetics suitable for the customer’s skin. 
Skin-CRM suggests AACR humanitarian applications in indigent personal 
hygiene, diagnosing skin conditions, remotely analyzing wounds, and other-
wise enabling people who cannot physically arrive on a scene to apply special-
ized expertise via wireless information services. Derivative commercial and 
military AACR use cases could combine patient tags, equipment tags, digital 
cameras, and wireless connectivity for point-of-action information services 
tailored to communications and network server capabilities.

6.6 PROGNOSTICATION

Chapters of this text develop the technologies needed to learn from experi-
ence so that future CPDAs based on AACR technology do not fall victim to 
the expense of a huge logistics tail of hundreds or thousands of knowledge 
engineers needed to keep up with a customer base. This was called the knowl-
edge engineering bottleneck in the 1980s. Hopefully the use cases above and 
the related exercises demonstrate the relative futility of anticipating all the 
permutations and combinations of knowledge needed to customize each 
AACR for the specifi cs of the radio environment. On the other hand, even 
this introductory set of radio-domain oriented use cases suggests a trade-off 
between a priori knowledge and ML, autonomous or not. Well engineered 
products will tend toward fewer, simpler, and easier to understand functions. 
The kids (the computer scientists) may “get it” before the parents (the RF 
engineers). But even the parents will see through a product that really isn’t 
very smart, even if it says Cognitive on the label. Thus, the next chapter 
introduces the store of a priori knowledge that is foundational to bootstrap-
ping radio knowledge by AML, while the subsequent chapters relate contem-
porary AML technologies to this prior knowledge, for lower cost and more 
fl exibility of AACR applications as the technologies mature.

The radio knowledge chapter that follows consists of dozens of knowledge 
vignettes that focus mostly on the radio, especially on the potential connectiv-
ity, data rates, and networking opportunities offered by successful employ-
ment of the physical layer of the protocol stack. Subsequently, both radio 
knowledge and user-driven knowledge are formalized for AACR applica-
tions, which conclude the text. This chapter therefore builds a progression 
that, taken as a whole, introduces CR technology towards an evolution of 
AACR applications.

6.7 EXERCISES

6.1. Complete Expression 6-1 using the data from Table 6-1.
6.2. Describe in RXML the experience of reinforcement of path connectivity for 

1000 attempts to connect if each attempt yields exactly one reinforcement of 
attempt and if connected yields only reinforcement success given that 80 con-



nections occur out of 100 attempts on Path1 and only 70 connections occur out 
of 100 on Path2.

6.3. Further develop a particular use case of this chapter by building your own 
analytical model of the use case. Extract those entities that will interact in order 
to achieve the demand-shaping aspect of the use case and describe them in 
RXML, inventing ontological primitives in your own taxonomy.

6.4. Develop the XG UML use case under the assumption that spectrum manage-
ment policy undergoes a period of rapid change. At fi rst, the FCC advocates 
the use of unused TV channels for ISM networks. There are heart monitors 
already that use those bands. Suppose the FCC’s policy enables any reasonable 
use, but industry decides to defer to legacy medical users in order to avoid civil 
liability. Model the impact of these changes on policy language and computa-
tional intelligence of deployed nodes (personal, vehicular, and infrastructure), 
with particular emphasis on the support costs. How much could it cost to main-
tain a staff of computer scientists, ontologists, and radio engineers to create the 
new personality downloads for the deployed FCC CR radios? What is the 
impact on this logistics tail of machine learning?
(a) Include techniques from Chapter 4 on AML to create UML for this use 

case. What aspects of AML are not readily captured in UML? What other 
software tools can capture such situations? How can you work around the 
limitations of UML to represent learning?

(b) After reviewing the CD on CR1, teach CR1 a relevant subset of the XG 
policy language. How much can it learn by itself using its CBR? What is 
the minimum set of additional CBR nodes needed to learn the heart-
monitor example? If you accomplished this by simply training CR1 about 
heart monitors without programming any new PDANode classes, then give 
yourself an A. If not, can your new PDANode class extend to other classes 
of radio?

6.5. What CASE tools are available for developing the use cases of this chapter? 
What is their value? How does that compare to the costs? How do you measure 
the cost of the time it will take you to learn to use the tool?

6.6. Develop a UML model of your favorite use case from this chapter.
(a) What are the entities of the UML model? The user and the “self” of the 

CWPDA are clearly entities. What other entities are critical? Should there 
be an entity for each member of a family? If so, how will the CWPDA come 
to know those family members? Same for a friend from work?

(b) What other entities should be in the UML model? Is there a model for 
entities at work such as the boss or co-workers? With conventional knowl-
edge engineering technology, there is no right answer because almost no 
matter what you preprogram, you are wrong. Can your marketing depart-
ment give you a good enough profi le to sell to early adopters?

(c) Write an algorithm by which your CWPDA could learn from experience 
who is present and which entities need to be represented with separate 
identities. This ability to learn from experience separates the cognitive from 
the merely aware–adaptive radios.

6.7. Answer the following question for the narrowband spectrum rental etiquette of 
the FCC spectrum rental use case. What is the relationship between the RF 
physical layer and the amount of computational intelligence in the nodes? 
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Include spatial modeling of radio propagation, sharing of observations of spec-
trum occupancy and multipath signatures (delay tap settings for time-domain 
tapped delay line equalizers), and detection of user states such as commuting, 
shopping, going to a football game, and getting mugged. What is the order of 
implementation of computational intelligence features? How would you distrib-
ute computational intelligence to the users’ individual nodes or home network? 
Would there necessarily be a centrally controlled network, or could all of the 
required networks be ad hoc? How about a local or regional repository for 
cognitive knowledge that itself is rented or paid for on a per-use basis? Could 
some kind of nonmanaged network architecture emerge to meet the need at 
lower cost than today’s centrally controlled and relatively expensive cellular 
networks?

6.8. Consider the XG policy use case. Review the companion Excel spreadsheet or 
XML fi les of Radio Knowledge Representation Languages (RKRL), Version 
0.4. What ideas does RKRL suggest as alternatives to XG? Think about policy 
modeling in space–time–RF as an alternative or supplement to a static policy 
such as enabling the Part 15 use of unused TV channels. In this use case trade 
off the XG approach with other approaches suggested by RKRL.

6.9. For CTRS, extract from the text description of the use case those entities that 
should be abstracted to a RXML ontology, modeled in the ontological treat-
ment, and modeled in detail (e.g., physical models over space–time such as air-
craft fl ight paths) in order to establish and maintain the gateway information 
exchanges among coalition partners.
(a) Suppose each CTRS in a humanitarian relief <Situation/> registers with 

the situation management authority.
(b) Defi ne in UML a CTRS network coordinated by a management agent.
(c) What is the difference between a <Situation/> and a <Scene/>?

6.10. Suppose you have made your radio both location aware with GPS and speech 
aware with a speech-to-text package. Go to Dr. Lenert’s UCSD web page to 
explore his ideas further. What additional technical capabilities must be avail-
able in the CR beyond location and language awareness in order to enable 
digital triage? Is the speech-to-text capability needed? Explore the Web to 
learn more about RFID tags. How many RFID standards and products can you 
fi nd?

6.11. SDR technology to enable RFID tags in medical emergencies includes the 
mobile multiband base station technology [144, Chapter 15]. Describe the mod-
ifi cations to the mobile base station of that reference needed for the medical 
RFID tags use case of this chapter.
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CHAPTER 7

RADIO KNOWLEDGE

Radio knowledge is the body of knowledge of the world’s radio engineers. 
This body of knowledge continues to expand and to be revised, fueled by $1 
trillion per year in related global economic activity. This chapter organizes 
that knowledge into pairs of <Knowledge/> chunks with a corresponding 
<Use/> for that chunk. For the full collection of <Knowledge/>–<Use/> pairs 
see the companion CD-ROM.

7.1 RADIO-DOMAIN OVERVIEW

Radio science embraces the many broad classes of radio propagation and 
signal modalities suggested in Figure 7-1. A few radio bands such as ELF are 
not listed because there are few classes of transmitter and receiver and the 
antennas are miles long. In addition, the near-terahertz (THz) bands used in 
medical research are not listed. Those specialized bands do not benefi t much 
from the technologies of AACR. Commercial, civil, aeronautical, scientifi c, 
medical, and military radios employ the bands and modes of the fi gure.

The types of radio implied in Figure 7-1 suggest the breadth of radio knowl-
edge that must be formalized to enable algorithms of AACRs to be autono-
mously competent in radio domains. In SDR jargon, a waveform corresponds 
to an air interface and protocol stack. A radio mode is a set of parameters of 
the waveform, including the waveform class, allocated RF band, multiple 
access scheme, channel symbols, timing, framing, and control signals, traffi c 
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channels, protocol stack, and the services provided by the mode such as voice, 
data, fax, video, and location.

7.1.1 Structuring the Radio Domain

The fi rst step in formalizing the radio domain is to defi ne the scope of the 
domain. Minimum-competence radio-domain knowledge has both breadth 
and depth. The breadth of that knowledge embraces:

1. Bands: RF bands determine radio propagation characteristics and thus 
the available connectivity, operating range, bandwidth, the need for 
relay points, and the types of channel impairments.

2. Modes: The air interfaces (“waveforms”) defi ne node and network 
power, organization, and services; standard operating parameters 
(“modes”) constrain quality of service (QoS).

3. Networks: The network architectures from satellite communications 
(SATCOM) to terrestrial cellular to ad hoc peer networks.

4. Protocols: The protocol stack and its interactions with the radio physi-
cal layer.

5. Services: The information services supported by a given band and 
mode, such as location fi nding, navigation, time reference, instrumenta-
tion, or broadcast media (voice, TV, closed caption, etc.), with associ-
ated specialized users (taxi, police, fi re, rescue, military, civil, sports, 
etc.)

The open taxonomy of Expression 7-1 defi nes the initial scope of the 
AACR radio domain. Open taxonomies are extensible at every level.
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FIGURE 7-1 Radio spectrum overview. (See ontology of Expression 7-1.)



Expression 7-1 Radio Bands, Modes, Services, and 
Broad Category of User

<Abstractions> <RF>
 <Band> <ELF/> <LF/>
 <HF/> <LVHF/> <VHF/> <UHF/> <SHF/> <EHF/> <TH/> </Bands>
<Mode> <Parameters> <Waveform-class/> <Allocated-band/>
 <Multiple-access/> <Channel-symbol/> <Timing/><Framing/>
  <Control/><Traffi c-channel/>
 <Protocol-stack/> <Services/> </Parameters>
<Analog-voice/> <Morse-code/>
<MCR> <Defi nition> Mobile Cellular Radio </Defi nition> </MCR>
<FDM> <Defi nition> Frequency Division Multiplexing </Defi nition> 
 </FDM>
<PCM> <Defi nition> Pulse Code Modulation </Defi nition> </PCM>
<PCS> <Defi nition> Personal Communications Systems </Defi nition>
 </PCS>
<IFF> <Defi nition> Identifi cation Friend or Foe </Defi nition></IFF>
<UWB> <Defi nition> Ultra Wideband </Mode></Defi nition> </UWB>
<Troposcatter> <Defi nition> Refractive tropospheric propagation 
 </Defi nition> </Troposcatter>
<Radar> <Defi nition> RAdio Detection And Ranging </Defi nition> 
 </Radar>
<Product> <AACR/> <CWPDA/> <RF-device/> <Node/> 
 <Infrastructure/> </Product>
<Network> <! – A coordinated set of communications nodes –> 
 </Network>
<Service> <Duplex> <Defi nition> Two way communications
 </Defi nition> <Voice/> <Data/> <Short-message/> <FTP/> </Duplex>
 <Conference/> <Location-fi nding/> <Navigation/> <Time-reference/>
 <Broadcast> <News/> <Music/> <TV/> </Broadcast> </Service>
<User-category> <Commercial/> <Civil/> <Aeronautical/> <Scientifi c/>
 <Medical/> <Military/> </User-category>
</RF> </Abstractions>

Since radar is a complete domain in itself entailing specialized propagation 
models, detection criteria, tracking algorithms, special-purpose antennas, 
and the like that dominate the radio system architecture, radar is developed 
only to the degree necessary for AACR to recognize it and avoid 
interference.

7.1.2 Components of Radio Knowledge

Each radio band exhibits characteristic channels driven by the physics of the 
radio carrier frequencies of the band. Therefore, each of the radio knowledge 

RADIO-DOMAIN OVERVIEW     185



186     RADIO KNOWLEDGE

sections that follow is organized by RF band. The four knowledge compo-
nents per band are:

1. Physical Parameters
(a) The ITU frequency limits of the band.
(b) Wavelengths—the converse of frequency with respect to the speed 

of light.
(c) Propagation modes—engineering parameters of the way energy is 

propagated such as multipath delay spread, the range of variation 
of multipath delays, and Doppler spread. <Propagation-modes/> 
are statistical aggregates distinct from <RF> <Modes/> </RF>.

2. Spatial Distribution of Energy: The details of energy refl ections from 
objects in the scene, including terrain features, buildings, vehicles, and 
people.

3. Available Communications Modes: Channel symbols and network 
organization and protocols representative of communications in the 
band. These are the <RF> <Modes/> </RF>.

4. Services and Systems: Services available in the band and how they are 
obtained. Historically, services were intimately associated with com-
munications systems. With particular hardware, one could get specifi c 
services. For location information, one needed a LORAN or, subse-
quently, a GPS receiver. To fi nd the airport required a TACAN or 
microwave landing receiver. SDR enables a broader scope of available 
services on general purpose communications hardware–software plat-
forms. AACR that bridges across legacy systems, modern SDR, and 
iCR must know about the legacy hardware. Antennas, legacy commu-
nications products, and evolving SDR products therefore are part of this 
knowledge base of this chapter.

General uses of these four radio knowledge components are outlined in 
the next few sections.

7.1.3 Physics-Related Knowledge

The ITU frequency limits defi ne a radio band. AACRs must communicate 
with spectrum management authorities with precision and accuracy. A data-
base of radio spectrum allocations as a function of relevant regulatory author-
ity (RA) would be a comprehensive way of embedding the basic knowledge 
of band allocations. This knowledge can be used by a CR in employing radio 
bands for which it had not been previously programmed, such as in creating 
a new ad hoc network in a band previously off limits. AACRs with limited 
memory may acquire new physics-related knowledge from trusted sources 
like RAs using physics-related ontological primitives.



7.1.3.1 Antenna Knowledge
Wavelengths are the converse of carrier frequency, f, with respect to the speed 
of light:

 λ = f c  (7-1)

Given f, an iCR can estimate the wavelength from this equation. Since anten-
nas resonate at full, half, and quarter wavelengths, the wavelength implies the 
size of an effi cient antenna. An iCR can use this knowledge of wavelengths 
and antennas to reason about the transmission and reception effi ciency of its 
own antennas, for example, in determining whether to attempt to use a down-
load that is slightly out of band of its antenna. This is refl ected in RXML via 
a <Physics/> <Abstraction/> as follows.

Expression 7-2 AACRs Know About Frequency–Wavelength 
Relationships

<Physics> <Propagation> <Speed-of-light c>
 <Frequency f> <Wavelength λ> λ = f/c </Wavelength> </Frequency>
  </Speed-of-light> </Propagation>
 <Radiation> <Antenna> <Half-wave> λ/2 </Half-Wave>  .  .  .  </Antenna> 
  </Radiation>
</Physics>

The level of detail of Expression 7-2 is suffi cient for the recognition and 
shallow reasoning about antenna type, but not for deeper reasoning about 
<Effi ciency/>. With a more complete ontology and related naïve physics skills, 
an iCR could offer antenna advice to a nonexpert. Police, fi re, and rescue 
spectrum managers might use such knowledge in emergency situations to 
rapidly confi gure available antennas onto available radios in a way that 
enhances communications, improves battery life, or otherwise tailors the 
available radios to the emergency. Confi guration advice should be of the 
breadth and depth typical of a competent radio operator for the iCR to be 
perceived by nonexpert users as helpful. The cost of sustaining such iCR 
expertise may be unworkable unless the antenna knowledge is relatively stable 
over time. A self-modifying iCR could use its knowledge of wavelength and 
antenna resonances to propose, synthesize, and test new waveforms on its 
conventional antennas to improve radiation metrics.

7.1.3.2 Propagation Mode Knowledge
RF propagation is fundamental to the design of air interfaces. Delay spread 
defi nes time delay of tapped delay-line equalizers. AACRs with propagation 
knowledge may tailor the operating parameters of a basic waveform to the 
propagation parameters of a RF <Scene/>. AACR that autonomously creates 
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and deploys an improved time-domain equalizer capable of equalizing unan-
ticipated multipath delay spreads obtains higher data rates than equalizers in 
legacy SDR personalities. Deploying an equalizer with more taps requires 
reasoning about computational resources and the complexity of the compiled 
equalizer.

Expression 7-3 Delay Spread and Distance

<Physics> <Propagation> <Speed-of-light c> <Scene> <Distance x>
 <Time-delay dT(x, c)> dT = x/c </Time-delay>
 <Refl ection> <MAXIMUM Min-x> <Distances xi/> </MAXIMUM>
 <Delay-spread> Min-x/c </Delay-spread>
 <Delay-spread> <Time-delay (Min-x) </Delay-spread> </Refl ection>
 </Distance> </Scene>
 </Speed-of-light> </Propagation>
</Physics>

Operation on higher speed vehicles—like aircraft—may warrant compen-
sation for unexpectedly large Doppler spread entailing autonomous modifi ca-
tion of loop gain and bandwidth. Historically, the radio mode parameters 
related to delay and Doppler spread have been set at waveform design time. 
If the time-domain equalizer isn’t up to the multipath encountered, today’s 
radios can’t do anything to help the user. An iCR could reallocate unused 
processing capacity from an unused channel to improve equalization, render-
ing unusable propagation conditions usable. In addition, an AACR could 
precompensate the transmitted waveform to overcome other channel impair-
ments about which it can reason. Knowledge of delay and Doppler spread 
relationships in a given band therefore enables autonomous adaptation to 
those parameters of propagation experienced in the fi eld.

7.1.3.3 Spatial Distribution of Energy
Delay and Doppler spread are statistical aggregates suffi cient for planning 
equalizing, but not suffi cient for MIMO, where individual paths carry inde-
pendent parallel bitstreams. With multiple transmit and receive antenna ele-
ments between two subscribers, MIMO algorithms project multipath onto 
statistically independent subspaces, each of which carries an independent 
bitstream. Planning the siting of MIMO endpoints can benefi t from 3D scene 
models with high fi delity ray-tracing propagation models such as that of 
Figure 7-2.

As AACRs transition from passive objects sited by people to active par-
ticipants in the planning of siting decisions, AACR location planning subsys-
tems will increasingly benefi t from the integration of 3D <Scene/> models. 
Thus, throughout the chapter, AACRs reason about spatial distribution of 
RF energy, fi xed refl ectors, and moving objects in scenes. Geospatial comput-
ing includes mapping, geodesy, cartography, 3D modeling, and image registra-



tion among others. Geospatial tools enable AACR to reason about maps and 
spatial distribution of radio energy, but that has just the minimum needed for 
a given use case.

Expression 7-4 Spatial Reasoning Requires Knowledge of Maps

<Abstraction>
 <Space> <Map/>
 <Map> <Defi nition> Computational analog to earth </Defi nition>
 <Example> <Map> <Dimensions> 2 </Dimensions> washingtonDC.gif
  <Legend> <Color> <Red> <RSSI> <Strong/> </RSSI> </Red> 
   </Color> </Legend> </Map>
 </Example> </Space> </Abstraction>

Expression 7-4 is very shallow, suffi cient for a radio to reason about RSSI 
in the Washington, DC area using the map of Figure 7-2. To do this the 
AACR extracts pixels from the <Map> based on x–y pairs and uses the 
gif2LL program to <Project/> the map to a standard coordinate system like 
(Latitude, Longitude). The AACR knows the color value of “Red” and the 
RSSI values associated with the tag <Strong/>. The sample map washing-
tonDC.gif is calibrated spatially and in the power dimension by WrAP™.

Commercial geospatial tools like Arc Explorer [168] enable one to view 
and query ESRI® shapefi les, ArcInfo® coverage, map layers, CAD drawings, 
and street addresses, measure distances, and fi nd features (e.g., points of 
interest like parks). These tools may be embedded into AACR knowledge 
space by binding the API to semantic primitives of the <Space/> 
abstraction.

FIGURE 7-2 Urban spatial distribution of energy (Courtesy of WrAP; reprinted 
with permission.)
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7.1.4 Mode Knowledge Chunks

Autonomous reasoning about air interfaces and protocol stacks requires 
knowledge of channel symbols and network organization.

7.1.4.1 Basic Channel Symbols
Except for UWB and radar, the channel symbols of wireless communications 
are based on the modulation of sine waves. Digital modulation techniques 
impart a state to the carrier for the duration of the channel symbol. The 
carrier is continuously modulated for analog modes. A digital channel symbol 
also is called a baud. The fundamental methods of modulating a sine wave 
modify frequency, amplitude, and/or phase. Combinations of these features 
yield the basic channel symbols of Figure 7-3.

As shown in Figure 7-3, these channel symbols exhibit characteristic time- 
and frequency-domain structure. In addition, each of the basic channel 
symbols has many variations. So there are not just 2-PSK and 4-PSK but also 
8-PSK, 16-PSK, and so on. Each variation has associated Bit Error Rate 
(BER) signal-to-noise ratio (SNR) or signal-to-noise and interference ratio 
(SINR). In the ultra-wideband (UWB) channel symbol, the subnanosecond 
pulse with very high instantaneous power spreads energy over multiple giga-
hertz [169].

Modulation Time Domain Frequency Domain Mathematics Quality
BER-SNR+

Amplitude
(AM)

Frequency
(FM)

Frequency
Shift (F&K)

Pulsed
(PPM, OOK)

Phase Shift
(P&K)

Minimum Shift
(M&K)

Quadrature
Amplitude
(QAM)

A(t)+cos(2pfgt) Audible < 0 dB

FMCapture ~ 9 dB

BER 10–1 ~ 11 dB &NR

BER 10–1 ~ 10 dB &NR

BER 10–1 ~ 7 dB &NR

BER 10–6 ~ 1+ dB &NR

BER 10–6 ~ 1+ dB &NR

BER 10–6 ~ 11 dB &NR

BER 10–1 ~ 11 dB &NR
BER 10–6 ~ 1+ dB &NR

BER 10–1 ~ 13 dB &NR
BER 10–6 ~ 17 dB &NR

(3dB worse than BP&K)

BP&K QP&K

1 ‘QAM

~ 6dB for each power of 
Sensitive to Phase Noise*Bit Error Rate, Signal to Noise Ratio

Acos(M(t)+ 2pfgt)

Acos(2p(fg ± dF)t)

Acos(2p(fg ± dF)t)
where dF=1/(2Tb)

Ai*cos(2p(fgt ± sin/j)

Acos(2pfgt ± p)

Acos(2pfct)
(t<T, also 0)

FIGURE 7-3 Basic channel symbols. (From Software Radio Architecture by J. 
Mitola III, Wiley-Interscience, 2000.)



Expression 7-5

<Channel-symbol> <FM> <Defi nition> Frequency-modulation 
 </Defi nition>
  <Analog-FM> <FM-voice> </Analog-FM>
  <FSK> <Defi nition>Frequency-shift-keying </Defi nition> </FSK> 
   </FM>
 <AM> <Defi nition>Amplitude-modulation </Defi nition>
 <Analog-AM> <AM-voice> </Analog-AM>
 <ASK> <Defi nition> Amplitude-shift-keying </Defi nition>
  <OOK> <Defi nition> On–off keying </Defi nition>
   <Morse-code/> </OOK> </ASK> <QAM/> </AM>
<PM> <Defi nition> Phase-modulation </Defi nition>
 <PSK> <Defi nition> Phase-shift-keying </Defi nition>  .  .  .
  <QPSK> <Defi nition>Quaternary PSK </Defi nition></QPSK>
  <QPSK> <PSK States = 4> </QPSK>  .  .  .
  <QAM> <Defi nition> Quadrature amplitude modulation 
   </Defi nition>
   <16-QAM> <QAM States = 16> <16-QAM>  .  .  .
   <1024-QAM> <QAM States = 1024> <1024-QAM>
</PSK> </PM> </Channel-symbol> <–! See CD-ROM –>

To communicate with a CWN regarding the presence of unexpected 
channel symbols in its band, an iCR may use the equations of Figure 7-3. To 
autonomously synthesize waveforms, iCR must know also how fi ltering shapes 
the time and frequency responses of the synthesized channel symbol. In order 
to manage its SDR resources, iCR must be able to relate the basic channel 
symbols to computational resources of its own SDR algorithms for generating 
and fi ltering each of these symbols in real time.

7.1.4.2 Sharing the Radio Spectrum
AACR needs basic knowledge of multiple access as in Expression 7-6.

Expression 7-6 TTD in RXML (Simplifi ed and Readable Format)

<Multiple-access> <Analog>
 <TDD> <Defi nition> Time-domain duplexing </Defi nition>
  <PTT> <Defi nition> Push-to-talk <Defi nition>
  <Principle> Analog channel symbols are modulated for the duration 
   of the information signal <Diplexing> Users listen to the channel 
   and transmit when no other users are present </Diplexing>
  </Principle></PTT> </TDD> </Analog> </Multiple-access>

For FDMA, AACRs also need to know that FDMA assigns each sub-
scriber voice channel to a dedicated carrier offset from the others by an 
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increment slightly greater than the (analog) bandwidth of the channel. Since 
the intelligibility bandwidth of a 20 kHz auditory acoustics channel is only 
3.6 kHz for voice, FM FDM air interfaces separate FM subcarriers by 4 kHz 
to allow guard-bands between subscribers, while FM broadcast separates 
channel centers by 200 kHz.

Expression 7-7 Analog FDD Includes FM FDM

<Multiple-access> <Analog>
 <FDD> <Defi nition> Frequency-domain Duplexing </Defi nition>
  <FDM> <Defi nition> Frequency division multiplexing </Defi nition>
  <Principle> Analog FM FDM channel symbols are continuously 
   modulated with each subscriber channel offset from the group 
   carrier, a FM FDM carrier hierarchy <Duplexing> Two groups of 
   FM FDM carriers are required for full duplex communications, one 
   uplink group and one downlink group. </Duplexing>
  </Principle> </FDM> </FDD>
</Analog> </Multiple-access>

The CRA <Self/> includes basic knowledge of TDD/PTT and FDM of 
Expression 7-7.

Digital multiple access formats may employ a digital control channel in the 
radio access protocol that manages the traffi c channels bearing subscriber 
streams. The CRA <Self/> includes the following methods of sharing the 
radio channel.

Expression 7-8 Multiple Access Schemes

<Multiple-access> <Digital>
 <TDMA> <Defi nition> Time division multiple access </Defi nition>
  <Framed> Time slots defi ned by a frame </Framed>
  <Synchronous> Bit periods synchronous to the frame </Synchronous>
  <Asynchronous> Bit periods not isochronous to the frame 
   </Asynchronous>
  <Example> <GSM/> </Example>
  </TDMA>
 <FDMA> Frequency division multiple access <FDMA>
  <AMPS> <Control-channel/> <Traffi c-channel/> </AMPS>
 <CDMA/> <Noise-temperature/> </Digital> </Multiple-access>

The mix of RXML and text may range from almost no RXML to nearly 
all RXML. The balance of this section tags the content with RXML where 
paragraphs are related specifi cally to ontological primitives and are struc-



tured for use in AACR explanation databases, such as the next paragraph. 
Try to read Expression 7-9 without being distracted by the RXML tags.

Expression 7-9 Readable RXML Defi nition of DSSS and CDMA

<CDMA> <Defi nition> Code division multiple access (CDMA) applies 
direct sequence spread spectrum (<DSSS>) <Coding/> and <Processing-
Gain/> to enable multiple <Narrowband/> subscribers to share a single 
<Wideband/> <DSSS> <Channel/> </DSSS> by <Coding/> the 
narrowband channels orthogonally. </Defi nition> <Example> <3G/> 
<Air-interface> based on <CDMA/> <Example> <WCDMA/> <TD-
SCDMA/> <CDMA2000/> 
</Example> </Example> </Coding> </CDMA>.

One may use <DSSS <Channel/>> to abbreviate <DSSS> <Channel/> 
</DSSS>. While the content of these statements is the same, the alternate 
syntax is instructive (Expression 7-10).

Expression 7-10 CRA Knowledge of Frequency Hopping (Illustrative)

<Frequency hopping> (<FH>) <Defi nition> <TDMA> <FDMA> with 
signal dwells for some number of <Bits> <Typically> one packet 
</Typically> on <Carrier-frequency/> then changes <Carrier-frequency/> 
enabling others to use that <Carrier-frequency/> at other points in time 
</Defi nition>.

7.1.4.3 Co-channel Interference (CCI)
AACRs need a vocabulary of interference.

Expression 7-11 Defi ning and Illustrating Co-channel Interference

<Interference> <CCI> <Defi nition> Cochannel interference (<CCI>) is 
interference on <Self <Carrier-frequency/>/> from a distant 
<Transmitter/> of the same <Network/> </Defi nition><Example> 
<Counter> TDD works well in lightly used spectrum bands such as 
marine mobile radio </Counter>. As the number of simultaneous TDD 
users increases, the likelihood of collision increases rendering 
<Reception/> <Unreliable/> </Example> </CCI> </Interference>

7.1.4.4 Specialized Channel Symbols
Some channel symbols are tailored to specifi c services. WWV broadcasts 
timing with one second pulses. In order for a CR to advise a user which bands 
and modes could provide needed services, the CR must be able to recognize 
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the modes and specialized channel symbols of a given band. Location and 
Ranging for Air Navigation (LORAN) was the predecessor to the GPS DSSS 
signal. Military settings are replete with such specialized waveforms. In short, 
the military AACR should accomplish the radio connectivity tasks histori-
cally assigned to a skilled radio operator.

Expression 7-12 Specialized Channel Symbols

<Channel-symbol>
 <WWV> <Function> <Timing/> </Function> </WWV>
 <LORAN> <Function> <Location-fi nding/> </Function> </LORAN>
 <GPS> <Function> <Navigation/> </Function> </GPS> 
  </Channel-symbol>

7.1.5 Services and Systems

Services available in given bands historically have been the function of spe-
cialized hardware. The industry’s transition to SDR mitigates that hardware 
dependence but will exacerbate the learning curves associated with a deep 
enough understanding of the capabilities and limitations of a given SDR to 
fully employ its bands and modes. Characteristics of radio systems (as systems) 
about which a CR should be aware include antennas, integrated communica-
tions products, and evolving SDR products.

7.1.6 Knowledge Chunks

Fundamental radio knowledge for AACR may be expressed as a sequence of 
alternating “Knowledge Chunks” followed by advice on “Using That Knowl-
edge.” Each chunk of knowledge is signifi cant enough that its use enables an 
AACR to either be aware of radio in a way that would inform a non-radio-
expert user; or be adaptive to a feature of radio by detecting the feature and 
changing behavior with respect to it (with respect to the user’s context, which 
may entail timing the adaptation appropriately); or bootstrap knowledge by 
learning more and autonomously extending its own knowledge and capabili-
ties accordingly.

7.1.7 Exercises

7.1.1. Defi ne Doppler spread in RXML, introducing ontological primitives without 
referring to the version in CRA <Self/>. How does your treatment differ from 
CRA <Self/>? Why did you do it that way? If your way is better, then submit 
a recommendation to www.sdrforum.org, www.w3c.org, and www.omg.org. 
Which of these bodies responded to your suggestion quickest, and what did 
each have to say about your suggestion?



7.1.2. If AACRs reason about space, they could ask people to move communications 
devices or multipath refl ectors to improve communications. Some use cases 
envision an AACR coaxing the user into moving things around until the com-
munications path is workable. Defi ne such a use case, emphasizing the RF 
aspects of the scene including the physical setting, the propagation differences 
of different RF bands and modes, multipath, commercial products (legacy and 
visionary) in the scene, and the role of AML. Enhance Expression 7-4 to 
include the related three-dimensional reasoning.

7.1.3. Reasoning about multipath could also enable AACR to time its transmissions 
and to set parameters to capitalize on predictable path conditions. List scenes 
in which AACR reasoning about fi ne-grain radio propagation features of a 
scene enables improved communications, such as near an airport. How is an 
airport like meteor-burst communications?

7.1.4. AACRs that monitor the weather may reason about absorption, picking those 
bands and modes that support the user’s current situation. Suppose a vaca-
tioner is using an outdoors EHF hot-spot access point from a distance of 20 
meters and has moved under a tent because it might rain. Build a spreadsheet 
model of the signifi cant RF engineering parameters of the use case. What 
engineering parameters should be predicted and measured for an AACR to 
reason about the EHF link versus other wireless modes? One might like bad 
weather to result in advice from the AACR to the user that the link to the 
EHF hot-spot WLAN is likely to be impaired with the oncoming thunder-
storm, recommending that the user turn on the (older, slower but more reliable) 
802.11 WLAN that at that particular time happened to be turned off or that 
the user send the large email attachment right away because the user is likely 
to lose high data rate EHF connectivity for the duration of the storm. Defi ne 
in RXML the knowledge needed for such reasoning.

7.1.5. Modify the spatial knowledge ontology to enable an AACR to embed a com-
mercial tool like Arc Explorer by establishing links between the spatial ontol-
ogy and the tool’s API. Specify the semantic bindings between the RXML 
ontology and the API extending RXML.

7.1.6. Write RXML enabling the iCR to reason about the limits over which BER–
SNR values are representative of realizable signals in space for HF and SHF. 
What additional ontological primitives are needed to constrain BER–SNR in 
the cellular radio bands?

7.1.7. Consider an emergency relief setting. How can staff get from a network of iCRs 
the kind of spectrum management support typically needed from radio experts? 
Since the radio experts’ knowledge may be relatively limited, how will AACR 
broaden and strengthen the contributions of those experts to basic radio con-
nectivity, or potentially replace them at establishing connectivity among dis-
parate legacy nodes?

7.2 KNOWLEDGE OF THE HF RADIO BAND

Highlights : HF is still the least costly way to connect two people, who are 
3000 miles apart, by voice or low speed data. Its near vertically incident 
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(NVI) skywave propagation mode is one of the few ways of communicating 
wirelessly between users in two mountain valleys in a tropical rain forest. 
Although narrowband modes are the most common, wideband operation is 
possible under special conditions. HF ALE enables Internet connectivity at 
modest data rates (e.g., 9.6 kbps). The knowledge of HF needed by AACR 
includes the following knowledge chunks.

7.2.1 HF Physics-Related Knowledge

ITU frequency band: 3–30 MHz [170]
Wavelengths: 100 m to 10 m
Propagation modes:

Skywave: single “mode” (single layer refl ection), multiple “mode” single 
hop, multiple hop, within lowest usable frequency (LUF) and 
maximum usable frequency (MUF), potentially near vertically inci-
dent (NVI).

Ground wave (short ranges, <50 km).

Multipath delay spread: 1–10 ms
Doppler spread: 5 Hz

7.2.1.1 RF Knowledge Chunk
HF extends from 3 to 30 MHz according to international agreement. The 
length of a full cycle radio wave in these bands is 100 meters at 3 MHz and 
10 meters at 30 MHz. HF antennas resonate well across bandwidths that are 
less than 10% of the carrier frequency. To cover a full HF band using effi cient 
resonant elements requires multiple elements. These may be packaged into a 
single log-periodic antenna to access the entire HF band effi ciently and with 
6 to 10 dBi of gain. Loaded whip antennas between 10 and 30 ft long also 
access the entire HF band with less effi ciency and near 0 dBi of gain.

Using That Knowledge : An AACR needs to know the effi ciency and direc-
tional gain that can be expected of an antenna of a given nomenclature to 
predict the <Self/> radio’s distribution of energy in space. These predictions 
are essential in following spectrum-use policy for mobile HF radios. Military 
and amateur radio operators manually employ radio propagation prediction 
software tools that project likely HF propagation. The propagation is suffi -
ciently complex that continuing calibration is required for reliable high 
performance connectivity.

7.2.1.2 AM Broadcast Knowledge Chunk
In the United States, there is a commercial AM broadcast band between 800 
and 1600 kHz, just below the lower edge of the ITU HF band. Typical HF 



antennas receive this broadcast. The locations of AM broadcast stations are 
generally very well known since they employ antenna arrays hundreds of feet 
tall. In addition, the typical multi kilowatt radiated power may be well known 
as well.

Using That Knowledge for Location Estimation : Knowledge of location and 
radiated power of fi xed site transmitters could be used by an AACR to esti-
mate its own position. This can help overcome GPS or other location-fi nding 
impairments. For example, in the humanitarian assistance use case, if a victim 
of a disaster is huddling under rubble, GPS may be unavailable or unreliable, 
but the RF distribution of AM reception may indicate the location of the 
victim.

Using That Knowledge for Self-Calibration : In addition, an AACR could 
calibrate the low band edge of its antenna by measuring the received signal 
strength from a known AM broadcast at a known location with a known radi-
ated power. Calibration informs choice of modes. For example, antennas that 
have deteriorated with age suffer signal loss selectively across the bands. 
Calibration guides the adjustment of mode parameters to avoid using parts 
of the band in which reception will be less effective. By collaborating in a 
CWN, iCRs can calibrate radiated power to identify ineffi cient transmission. 
To do this, the iCRs need detailed knowledge of transmission chains and of 
the RF environment so that they calibrate with few multipath refl ections and 
interferers, while not violating RF-quiet bands like radio astronomy.

7.2.1.3 Antenna Knowledge Chunk
A multiband radio may employ a distinct antenna for HF along with other 
antennas for the higher frequency bands, or it may employ multiband 
antennas.

Using That Knowledge : The AACR may explain to the user that it needs a 
better antenna if it is to be effective in an anticipated HF use case. It may ask 
other CRs what antennas they are using and how they perform. If an associate 
CR has a spare antenna, the CR could ask the user to borrow that antenna.

7.2.2 HF Spatial Distribution of Energy

7.2.2.1 Ionosphere Knowledge Chunk
As Figure 7-4 suggests, HF radio waves are usually refl ected from the iono-
sphere, resulting in communications beyond line-of-sight (BLoS). An AACR 
should know that the HF band may radiate in ground wave mode across short 
distances and that it uses ionospheric refl ection for skywave transmission. The 
AACR should know that skywave mode provides a user with BLoS commu-
nications at relatively low data rates. In addition, the AACR should learn 
from experience exactly what data rates it can achieve and should remember 
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where/who it can connect the user to when located at a given point in space 
at a given time. Since refl ection is a function of solar energy and this varies 
with the sunspot cycle, the radio should know time with respect to the sunspot 
cycle.

Using That Knowledge : The AACR’s temporal-reasoning capability should 
relate the current propagation conditions to the sunspot cycle and time of day. 
It should update a priori ionosphere calibration data from CWNs that are HF 
aware. The AACR should advise the user on alternate time or place to over-
come HF propagation impairments if connection is not achieved changing 
waveform parameters, HF waveforms, or switching to an alternative band/
mode for relay via a trusted network.

7.2.2.2 Multimode Knowledge Chunk
The ionosphere has several layers from which HF waves may refl ect. These 
are identifi ed as the D, E, and F layers in order of increasing altitude. Two or 
more such skywaves may be received in “multimode” propagation illustrated 
in Figure 7-4.

Using That Knowledge : The AACR should know that HF multimode recep-
tion concerns the refl ection of radio waves from multiple layers of the 
ionosphere. The AACR should at least detect multimode propagation and 
explain to its user why the link is impaired.

7.2.2.3 MBAA Knowledge Chunk
The AACR should further know that a HF multibeam antenna array 
(MBAA) and associated algorithms can overcome some mode-interaction 
impairments.

F-Layer(s)

E-Layer

NVI

Mobile UsersBase station

FIGURE 7-4 HF skywave propagation from layers of the ionosphere.



Using That Knowledge : Therefore, if the user intends to employ HF for an 
extended time or for an important task, the AACR should request permission 
from the user to obtain a HF MBAA.

7.2.3 Signal in Space Reasoning

7.2.3.1 Delay Spread Knowledge Chunk
The better informed CR will know that refl ected skywaves add as complex 
vectors at the receiver, resulting in phase and amplitude variability. The time 
differences between two refl ected waves (“HF propagation modes”) will be 
about 1 ns per foot of altitude separation. Since the refl ecting layers may be 
from less than 1 to over 10,000 miles apart, this corresponds to 1–10 ms 
of delay spread. The CR should know that typical delay spread refl ects 
norms, but that the parameters of any given transmission may be signifi cantly 
different.

Using That Knowledge : This better informed HF AACR will estimate delay 
spread from calibration signals. It should know that a HF ALE probe is such 
a signal, and it should know how to interpret the resulting HF propagation 
mode parameters with respect to diurnal and sunspot cycles and with respect 
to available mode compensation algorithms.

7.2.3.2 Doppler Knowledge Chunk
In addition, the ionosphere is typically approaching or receding from fi xed 
transmitters, imparting Doppler shift onto the RF carrier. Since the layers of 
the ionosphere may be moving in different directions, the Doppler spread at 
HF can be plus or minus 5 Hz.

Using That Knowledge : The HF AACR should be able to use Doppler shift 
to estimate D-, E-, and F-layer trends. It should be able to adapt the carrier 
tracking loop algorithms of its HF SDR to typical and abnormal Doppler 
conditions.

7.2.3.3 LUF MUF Knowledge Chunk
If the RF carrier is too low or too high, it will not refl ect, but will pass through 
the ionosphere. Beyond LoS, refl ections from the ionosphere are only possi-
ble on radio frequencies between the lowest usable frequency (LUF) and the 
maximum usable frequency (MUF).

Using That Knowledge : AACR should be able to explain the LUF and MUF. 
It should know how to use LUF–MUF tables, and it should be able to obtain 
updates from a CWN. It should be able to advise the user that the HF signal 
will be ground wave or skywave or will simply radiate into space if the fre-
quency of transmission is not between the LUF and MUF. As conditions 
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change through the diurnal cycle, it should be able to employ alternate fre-
quencies, narrowband modes, or other subbands for HF ALE to probe.

7.2.3.4 NVIS Knowledge Chunk
Specifi c combinations of RF and antenna confi guration can result in near 
vertically incident skywave (NVIS or NVI) propagation in which the waves 
refl ecting from the ionosphere propagate only a few tens of miles. NVI is 
useful in mountains for communications between subscribers in adjacent 
valleys, for example.

Using That Knowledge : The AACR should be able to explain NVIS for 
BLoS communications over relatively short distances. A pair of iCRs should 
be able to experiment with BLoS HF in atypical terrain such as urban canyons 
and sporting arenas, should the opportunity present itself. These CRs should 
learn from these experiments following a hypothesize-and-test protocol so 
that they can share that knowledge with others, including CWNs.

7.2.3.5 Multihop Knowledge Chunk
In addition, HF will refl ect from water and from some landmasses, enabling 
multihop communications (ionosphere–water–ionosphere–land).

Using That Knowledge : AACR should be able to explain models that simu-
late the gross characteristics of multihop HF propagation, including sources 
of error. The iCR should be able to recommend experiments by which to 
discover such multihop HF propagation modes for connectivity needs.

7.2.4 Available HF Communications Modes

Typical HF Band Communications Modes include:

Manual Morse code (amateur radio logistics, shipping)
Automatically generated Morse code (e.g., historically data broadcasts to 

ships at sea)
Amplitude modulated (AM) including voice—double sideband (DSB), 

upper sideband (USB), lower sideband (LSB), vestigial sideband (VSB), 
4 kHz IBW

Narrowband data (frequency shift keying (FSK), ∼100–40,000 Hz IBW 
and on–off keying (OOK), 5 Hz IBW)

Spread spectrum (wideband BPSK direct sequence (DS), and 1–10 MHz 
IBW, 1–100 kbps 2000 km)

Automatic link establishment (ALE) link-quality agility.



7.2.5 HF Narrowband Morse Code

7.2.5.1 Modes Knowledge Chunk
Historically, HF communications consisted primarily of narrowband voice 
and Morse code, generated automatically or manually. Within the past few 
years, ALE introduced a higher grade of availability and reliability of HF for 
digital networking. Thus, HF today is replete with the chirped probing signals 
of HF ALE.

Using That Knowledge : An AACR should be able to list the typical modes 
of HF communication, which it could do with a small database. The AACR 
should be able to determine which class of HF modes would be most appro-
priate for a particular GoS need. It should know which of the modes it can 
generate with its own waveform and RF capabilities. A CR could observe the 
user, manually controlling the radio to connect to a given counterpart. The 
CR could observe the communications between its user and the counterpart(s) 
available from this connection. An introspective CR could analyze the speech 
or data during a sleep cycle. It could verify with its user its association of QoI 
with the HF mode. Finally, when the user again needs to get connected to 
that same counterpart, the AACR should be able to connect the two by 
reconstructing and adapting the RF and mode parameters of the prior con-
nection. If the parameters of the prior and current connection were informed 
by the sunspot cycle or time of day, then it should analyze that context and 
project the times and places at which those parameters are likely to be suc-
cessful again.

7.2.5.2 Morse Code Knowledge Chunk
Morse code has been used since the 1800s for ship to shore and transoceanic 
communications. Automatically generated Morse code became popular with 
the emergence of microprocessors. PC-based software readily translates text 
into Morse code automatically.

Using That Knowledge : The HF expert AACR should know the history of 
HF along a time line so that it can explain it to the interested user. It should 
be able to generate Morse code and to fi nd a trustable download if needed. 
It should advise the user regarding the data rate by explaining how long it 
would take to send a message using Morse code from one CR to another.

7.2.5.3 OOK Knowledge Chunk
Morse code might be formulated as an instance of the more general on–off 
keying (OOK) signal class with the channel code information carried both in 
the duration (“pulse width”) of the channel symbol, a simple sinusoid, and in 
the order of the channel symbols to form a source symbol. Because of the 
relatively low rate at which people can compose and send Morse code, it 
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occupies a bandwidth of approximately 5 Hz. This yields a plethora of such 
narrowband signals packed into the cluttered HF bands.

Using That Knowledge : The Morse-aware AACR should be able to explain 
that the code translates letters to “dits” that are three to four times shorter 
than “dahs.” It should be able to generate and receive low speed Morse code 
from a counterpart AACR to conserve radio bandwidth.

7.2.5.4 HF Narrowband FSK Knowledge Chunk
Other common HF data modes include frequency shift keying (FSK). The 
FSK channel code consists of Mark and Space, corresponding to a negative 
or positive frequency shift. The frequency shift may be as small as a few hertz, 
on the order of the inverse of the data rate. Data rates ranging up to 1200 bits 
per second require FSK shifts of several hundred hertz. A FSK channel 
symbol also called a “baud” encodes one bit of information.

Using That Knowledge : The AACR should be able to explain FSK to a user, 
including the terminology and data rates. It should be able to select FSK as 
an appropriate mode, for example, for a text message.

7.2.5.5 HDR Knowledge Chunk
During very short time intervals (from a few milliseconds to a few tenths of 
a second), the ionospheric transfer function is approximately constant. Higher 
data rates (HDRs, e.g., 10–40 kbps) may be used for such short intervals to 
“burst” small amounts of data over long distances using FSK modems.

Using That Knowledge : The AACR should be able to advise the user of the 
possibility of higher data rate communications and get permission to oppor-
tunistically employ a higher data rate if the spectrum allocation and propaga-
tion conditions permit. It should be able to interpret the spectrum management 
authority and user constraints on use of the higher speed FSK modes. 
The sophisticated AACR may experiment with other channel symbols and 
compare results with other AACRs regarding channel symbols like PSK or 
QAM, potentially evolving new HF-ALE-class waveforms.

7.2.5.6 HDR Hardware Resources Knowledge Chunk
Morse, low speed, and HDR FSK waveforms can be implemented using less 
than 25 MIPS and low speed/high dynamic-range ADCs.

Using That Knowledge : The AACR should be able to analyze the MIPS 
and ADC of the <Self/> to acquire, test, and employ FSK waveforms for HF 
when the distances, propagation conditions, timeliness, and data quantities 
warrant.



7.2.5.7 Voice Modes Knowledge Chunk
Voice transmission at HF uses amplitude modulation (AM) to accommodate 
the limited bandwidth of the HF channel. Double sideband (DSB) AM creates 
two mirror image replicas of the voice waveform—one above and one below 
the carrier—using twice the bandwidth required for the information content. 
Upper sideband (USB) fi lters the lower of these two voice bands, suppressing 
any residual carrier. Lower sideband (LSB) is the converse of USB. Vestigial 
sideband (VSB) allows a small component of carrier to be transmitted, 
simplifying carrier recovery in the receiver. Voice intelligibility requires only 
3–4 kHz for the principal formants (sinusoidal information-bearing compo-
nents of the speech waveform). Speech processing at HF was one of the fi rst 
commercial applications of ADCs and DSPs.

Using That Knowledge : Consequently, the AACR should know that each of 
these voice modes may be implemented digitally with an ADC rate of typi-
cally 10–25 kHz using modest processing power (10–25 million instructions 
per second (MIPS)). An AACR should be able to select the mode appropri-
ate to the counterpart AACR’s capabilities and to the ionospheric conditions. 
A fl exible AACR need not have a set of predefi ned HF voice waveforms but 
could synthesize a voice waveform tailored to the operating environment 
and user’s needs, such as VSB to match the counterpart radio. An iCR could 
experiment with other variations of voice and Morse coding, for example, 
forwarding digital voice mail via Morse code.

7.2.5.8 HF ALE Knowledge Chunk
HF automatic link establishment (ALE) equipment probes the propagation 
path in a prearranged sequence to identify good frequencies on which to 
communicate. The ALE signals include “chirp” waveforms that linearly 
sweep the RF channel so that the receiver can estimate the channel transfer 
function. The two ends of the link choose RF based on reception quality.

Using That Knowledge : The AACR should be able to explain and employ 
HF ALE for the user. The user-aware/adaptive AACR should be able to 
recommend HF ALE as the preferred method of communications based on 
distances, type of message, quality of service, and other QoI parameters.

7.2.5.9 Wideband Research Knowledge Chunk
The literature also presents successful research in the use of wideband spread 
spectrum at HF, including thousands of chips per bit and millions of chips 
per second (MHz) bandwidths [171]. In addition, HF radar may use direct 
sequence spread spectrum in a frequency-hopped pulsed signal structure. 
Neither of these relatively exotic waveforms is typically available in SDR.

Using That Knowledge : The AACR should know that high data rates can 
be achieved at HF over skywave paths with low grazing angles and wide 
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instantaneous bandwidths. It should also know that to spatially limit the 
transmitted signal to the grazing layer requires a large antenna such as a HF 
log-periodic antenna. It should know that there are waveforms that can 
achieve 100 kbps at the right time of day. A more imaginative CR could 
experiment with the synthesis of such waveforms between appropriate CR 
endpoints at appropriate times of the day. A less imaginative CR could 
request the download of such waveforms if it infers that its antenna could 
control the transmitted waveform and that it has suffi cient computational 
resources for such a waveform, based on self-inspection.

7.2.6 HF Services and Systems

HF services and systems include:

Service band allocations [120]—broadcast, maritime mobile (12  MHz), 
aeronautical mobile, fi xed, amateur satellite (7–7.1), frequency/time 
(20);

Antennas (log periodic ∼20 m × 25 m; “elephant cage” ∼3 km diameter; 
whip 8–15 m; loops 2–10 m [172])

Illustrative systems include the TRC331 HF SSB, 280,000 channels (micro-
processor cont), 2, 10, 20 W, 5.9 kg, 200 ms antenna tune time, Thomson 
CSF, France; J3E USB LSB telephony; J2A, A1A, F1B telegraphy; 
SEFT 001A; MIL-STD-810C; DEF-133 L3, United Kingdom

Emerging SDR products include the Rhode & Schwarz M3TR with 1.5–
512 MHz coverage, ALE, STANAG

7.2.6.1 HF Radio Services Knowledge Chunk
Amateur radio (“Ham”), commercial broadcast, aeronautical mobile, and 
timing/frequency standards are provided at HF. Amateur satellites are non-
HF satellites that interoperate with Ham HF links.

Using That Knowledge : An AACR must know the defi nitions of each HF 
service. In addition, its knowledge must include technical parameters to 
access these services for enhanced QoI.

7.2.6.2 Timing and Frequency Standards Knowledge Chunk
Timing and frequency standards include WWV broadcast.

Using That Knowledge : If an AACR does not have an ability to decode 
timing and frequency standards, it must know the function of these broadcast 
signals and must know that it does not have these personalities. A network-
supported AACR should also know how to obtain the timing signal decoding 
download.



7.2.6.3 HF Antennas Knowledge Chunk
HF antennas and power amplifi ers often dominate the size, weight, and power 
of HF radio systems. Antennas matched to HF wavelengths are large—some 
research antennas extend for over a kilometer.

Using That Knowledge : An AACR must know that, unlike many radios such 
as cell phones, the HF antennas can be large, if not huge. It must be able to 
contrast the HF antenna with other antennas in terms of size, weight, and 
power since these are major technical determinants limiting HF employment 
in a given <Scene/>. The CR must be able to associate these parameters with 
a user’s situation, and to reason about these features of HF for user planning 
of logistics support.

7.2.6.4 Military Antennas Knowledge Chunk
Military applications employ circularly disposed array antennas (CDAAs) 
for long-haul communications and location fi nding using triangulation. Reli-
able long-haul communications are also possible using small log-periodic 
antennas (e.g., 20 × 25  ft horizontally mounted on a 50 to 100 ft mast).

Using That Knowledge : A military AACR should be able to list, describe, 
and supply a digital image of military CDAAs of current and historical inter-
est. It should be able to estimate the ability to connect via conventional anten-
nas to CDAAs in known locations. It should also be able to describe and 
provide a digital image of a high performance log-periodic HF antenna.

7.2.6.5 HF Propagation Modeling Knowledge Chunk
The U.S. Navy has software tools for the modeling and simulation of HF radio 
propagation.

Using That Knowledge : A military AACR should be able to estimate con-
nectivity among CDAA, log-periodic, whips, and other types of antennas 
using authorized radio propagation modeling and simulation tools. If the 
AACR lacks suffi cient accuracy, it should be able to email the appropriate 
center for modeling and simulation support. It should know conditions under 
which propagation modeling is typically useful to enhance QoI.

7.2.6.6 HF Whip Antennas Knowledge Chunk
Whip antennas 8–15 ft long may also be inductively loaded to match HF 
wavelengths.

Using That Knowledge : An AACR should know HF whip antenna charac-
teristics. A Ham radio operator may be interested in antennas available from 
eBay® or Radio Shack® while a military user may be interested in antennas 
normally used by the unit or coalition partners. When a CR meets a CR of 
an associate (e.g., QSL partner or coalition partner), the CRs should offer to 
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exchange technical data on their antennas to facilitate accurate modeling of 
connectivity.

7.2.6.7 HF Direction of Arrival (DoA) Measurement 
Knowledge Chunk
Loop antennas in the 2–10 meter bands can measure direction of arrival.

Using That Knowledge : An AACR should know whether it can measure 
DoA. If not, but if it is given a location aware or location adaptive task, then 
it should seek knowledge of such an antenna for location knowledge. It should 
know the accuracy of DoA as a function of multiple estimates from spatially 
diverse antennas for location estimates of a required accuracy. It should know 
whether or not it can use DoA by itself or in conjunction with other location 
estimation methods, such as GPS. It should be able to aggregate DoA data 
to estimate location if it has a DoA capability.

7.2.6.8 HF Signal Enhancement Knowledge Chunk
Although software radios cannot change the laws of physics that cause HF 
antennas to be large, they can enhance signals received using smaller, less 
optimally tuned antennas to achieve quality approaching that of the larger 
antennas.

Using That Knowledge : An AACR should know what digital fi lters and 
enhanced signal processing improve HF transmission and reception with 
additional processing resources. It should know what kinds of communica-
tions are enhanced by what classes of algorithm and should be able to employ 
those methods to enhance QoI.

7.2.6.9 Mercury Talk System Knowledge Chunk
Mercury Talk [172] exemplifi es the short range, low power HF radios. With 
2 watts of output power, this radio can close a voice link on a 10 km path. 
With its 3.5 watt output, it can close a Morse code link over a 160 km path.

Using That Knowledge : An HF AACR should know how to interoperate 
with a legacy Mercury Talk radio. It should acquire radio parameters and 
recognize its legacy protocol.

7.2.6.10 TRC331 Knowledge Chunk
The TRC331, by Thomson CSF of France, weighs less than 10 kg and accesses 
280,000 HF channels.

Using That Knowledge : An HF AACR should know that Thomson CSF is 
now part of Thales Corporation. It should know whether its user is likely to 
need to communicate with a user of one of these radios. If so, then it should 



know the details of frequency plan and operation of the legacy TRC331 and 
new Thales radios.

7.2.6.11 Narrowband Standards Knowledge Chunk
Published standards for HF communications include J3E, USB, LSB, 
telephony, J2A, A1A, F1B telegraphy, SEFT 001A, MIL-STD-810C, and 
DEF-133 L3 from the United Kingdom. They meet additional narrowband 
communications standards for military interoperability [172].

Using That Knowledge : An HF AACR should know the standards for HF 
as well as the relationships between these standards and its own waveform 
templates on board and within reach via CWNs. It should know that J3E is 
a voice telephony standard, relating that to a specifi c user’s need for voice 
QoI. The HF AACR should know the standards authority and those autho-
rized to employ the standards (e.g., NATO for STANAGs) and should monitor 
its own use of these standards to assure that it complies with the standards’ 
owner intent as published. Limiting use of NATO standards to NATO radios 
exemplifi es this principle.

7.2.7 HF SDR Products

With the rapid emergence of HF SDR products and systems, this section 
merely hints at the knowledge possibilities for AACR and emerging HF 
SDR.

7.2.7.1 Rhode & Schwarz M3TR
Rhode & Schwarz M3TR MBMMR operates from 0.5 to 512 MHz with ALE, 
STANAG, and other HF modes.

Using That Knowledge : An HF AACR should know that a SDR can be 
extended in the fi eld by a downloaded waveform personality and that a down-
load may be received via storage media or over the air (OTA). It should 
recognize the M3TR as a SDR with the parameters of the typical M3TR. If 
the <Self/> is an M3TR, then it should know this and the ways in which 
it differs from other M3TRs.

7.2.7.2 Harris PRC-117
The Harris PRC-117 is a family of HF radios. The A and B models were 
hardware-defi ned radios, while the F model has SDR personalities conform-
ing to the SDR Forum’s SCA. Certain personalities of the F model are not 
available for export.

Using That Knowledge : The HF AACR should be able to exchange HF 
waveforms with a trusted PRC-117F with limited user tedium but trust appro-
priate to the military situation.
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7.2.8 Exercises

7.2.1. List the unique features of HF in terms of (a) unique service offered by the 
physical properties of HF propagation; (b) unique challenges in establishing 
reliable links and networks in this band; and (c) unique size, weight, and power 
of HF RF devices.

7.2.2. Create and embed RXML tags for the following knowledge chunk using the 
ontological primitives of CRA<Self/>:
(a) “The length of a full cycle radio wave in these bands is 100 meters at 3 MHz 

and 10 meters at 30 MHz. HF antennas resonate well across bandwidths 
that are less than 10% of the carrier frequency. To cover a full HF band 
using such resonant elements requires ten or more such antennas. These 
may be packaged into a single log-periodic antenna to access the entire HF 
band effi ciently and with about 6 dBi of gain. Loaded whip antennas 
between 10 and 30 ft long also access the entire HF band with less effi ciency 
and near 0 dBi of gain.”

(b) Using the tags from (a), convert the following to Radio XML: “An AACR 
needs to know the effi ciency and directional gain that can be expected of 
an antenna of a given nomenclature in order to predict the radio’s distribu-
tion of energy in space.”

(c) Write a computer program to associate power effi ciency and directional 
gain with names of antennas. Evaluate MS Excel, Analytica, MS Access, 
Java, and C (C++ or C#) for this task, identifying the advantages and dis-
advantages of each.

7.2.3. Consider Section 7.2.2.1, Ionosphere Knowledge Chunk. Write RXML so that 
an AACR that accesses HF, VHF, and UHF has the formal radio knowledge 
needed to achieve the performance of this knowledge chunk. Suppose the user 
interface is written in Java. What software tool would you use to fully integrate 
this knowledge into such a user interface? Do you need a logic programming 
subsystem like PROLOG? Why or why not?

7.2.4. Consider Section 7.2.6.1, HF Radio Services Knowledge Chunk. “Amateur 
radio (‘Ham’), commercial broadcast, aeronautical mobile, and timing/fre-
quency standards are provided at HF. Amateur satellites are non-HF satellites 
that interoperate with amateur radio operators HF links.” Search the Internet 
to fi nd the frequencies and other operating parameters of at least one com-
mercial broadcast, aeronautical mobile, amateur satellite, and timing/frequency 
standard. Write RXML to make this knowledge available to AACR. How 
much of this knowledge is an <Abstraction/> and how much of it is part of the 
<Physical-universe>? See the CD-ROM for related questions.

7.3 KNOWLEDGE OF THE LVHF RADIO BAND

Highlights : The lower VHF (LVHF) band from 28 to 88 MHz has tradition-
ally been the band of ground armies because of the robust propagation offered 
among ground-based subscribers in rugged terrain. Amateur radio and the 
U.S. Citizens Band also use LVHF. LVHF knowledge is cumulative with HF 
knowledge. Ideas for CR use of radio knowledge introduced in HF will 



usually not be repeated in LVHF even if applicable. Instead, LVHF and sub-
sequent bands develop new ideas enabled by the physics, systems, and services 
of the other bands.

7.3.1 LVHF Physics-Related Knowledge

Frequency band: 28–88 MHz
Wavelengths: 10.71 m to 3.4 m
Propagation modes:

Skywave (Wc < 50 kHz): direct and multipath (e.g., air–ground), ducting 
beyond line of sight (LoS), refracting beyond LoS (0.5 < K < 5; R = 
(3 Kh/2)1/2), and diffracting near obstacles (Fresnel zones)

Ionospheric scatter [170, p. 33–12] is possible between 30 and 60 MHz; with 
−85 dB D path loss; and Wc < 10 kHz

Meteor burst [170, p. 33–12] modes typically occur in 50–80 MHz; over 
600–1300 km; with ∼kW power; and Wc < 100 kHz.

Ground wave (short ranges, <10 km)

7.3.1.1 Band Edge Knowledge Chunk
The lower band edge at 28–30 MHz may propagate in skywave mode. The 
upper edge of this band is defi ned by the commercial broadcast band from 
88 to 108 MHz. The upper band edge can have a much shorter radio horizon 
than the lower band edge.

Using That Knowledge : An AACR should know that the upper band edge 
of LVHF is defi ned in practice by the lowest frequency commercial FM 
broadcast station in most parts of the world. A typical multiband multimode 
SDR will cover FM broadcast and LVHF. The AACR should be able to fi nd 
the lowest FM channel broadcasting in a given place and time. It should fi nd 
other broadcast stations in its database, such as time or frequency standards. 
Two CRs could experiment with propagation near the lower and upper band 
edges to determine whether the CRs are within geometric line of sight (LoS) 
or refracted. They should know to operate closer to the lower band edges for 
non-LoS unless interference precludes this.

7.3.1.2 LVHF Antenna Knowledge Chunk
Wavelengths from 10.7 to 3.4 meters are effi ciently transmitted in smaller 
antennas than HF, with a quarter-wave dipole having a length of 3–10 feet.

Using That Knowledge : The AACR should know whether it is a wearable, 
portable, vehicular, or fi xed site radio. It should know which antennas the 
<Self/> can use for transmission or reception. The helpful AACR should 
assist the user in selecting a suitable LVHF antenna or with improvising if 
necessary. It should know that effi cient LVHF transmission is practical with 
whip antennas from a vehicle, but that a fi xed site can use a larger and hence 
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more effi cient and higher gain antenna, while an individual soldier’s antenna 
is probably a loaded whip or fractal mesh that is the least effi cient. When the 
user is in or near a large vehicle, it should try to fi nd out whether the vehicle’s 
CR has a larger, more effi cient LVHF antenna, and if so, should ask the 
vehicular CR to share one of the vehicle’s LVHF transmission paths via 
WLAN or wired (e.g., Ethernet) connectivity.

7.3.1.3 LVHF Military User Knowledge Chunk
Historically, LVHF military users have employed single-channel half-duplex 
PTT AM and FM modes. The commercial success of Racal’s® Jaguar 
frequency-hopped radio with its digital vocoding and digital air interface 
resulted in a proliferation of FH modes for military users during the late 
1980s.

Using That Knowledge to Interoperate With Coalition Partners : A LVHF 
AACR should know if coalition forces own Racal Jaguars by being told by a 
military user or by looking it up, for example, in Jane’s Military Communica-
tions [172]. The AACR should be able to compare observed air interfaces 
with published specifi cations for the signal structure and vocoder packets. It 
should propose interoperating in Jaguar mode via SDR download with Jaguar 
coalition partners. The CR should share this interoperability knowledge with 
ad hoc CWNs and RAs. The CR could advise its CWN to download a trusted 
Jaguar personality. The Jaguar is offered as a common radio among global 
military organizations that might cooperate in a humanitarian operation. 
Other radios and signal structures could be recognized and treated in the 
same way as the Jaguar. Since military radios are constantly evolving, a CR 
could collaborate to resolve unknown interference.

7.3.2 LVHF Spatial Distribution of Energy

Spatial distributions of energy at LVHF are illustrated in Figure 7-5.

7.3.2.1 LVHF BLoS Knowledge Chunk
Although LVHF frequencies do not refl ect from the ionosphere with the reli-
ability of HF, these waves scatter from the lower D layer. D-layer scatter at 
30–60 MHz with a bandwidth of less than 10 kHz often has only about 8.5 dB 
greater loss than LoS propagation. In addition, LVHF propagation beyond 
geometric LoS is common via tropospheric refraction.

Using That Knowledge : An AACR could reason about D-layer scattering to 
connect a CR to a legacy LVHF radio. This may entail downloading a terrain 
map from a trusted web site, estimating the radio propagation over the terrain 
for LoS frequencies, comparing these to D-layer scattering, and beamforming 
to enhance BLoS QoI.



7.3.2.2 LVHF Radio Horizon Knowledge Chunk
Since the atmosphere is denser at lower altitudes, the speed of light is less 
near the ground than at higher altitudes. Since typical LVHF whip antennas 
provide an omnidirectional radiation pattern with relatively large vertical 
extent, the waves propagate across signifi cant differences in index of refrac-
tion. Therefore, the waves emitted just above the geometric grazing angle 
propagate beyond the geometric LoS, having been bent down as they traverse 
the path. This effect can be modeled as an increase in the effective radius of 
the earth. The approximation of radio horizon is given by

 R Kh= 4 2  (7-2)

Range, R, is in miles, K is the effective radius of the earth, and h is the 
altitude of the transmitter in feet. K, the effective earth radius, is defi ned 
experimentally. K = 1 defi nes geometric LoS propagation, while K = 4–3 in 
temperate climates, but K may range from 1–3 to 3 with climate and weather.

Using That Knowledge : An AACR should be able to apply the radio horizon 
formula for a range of K. It should know that if its GPS indicates temperate 
latitudes, K ∼ 4–3. It should also know that if its weather <Scene/> includes high 
humidity or precipitation that the radio horizon will shift accordingly. It 
should know how the radio horizon affects received signal strength, relating 
the radio horizon to the link budget aquation. It should suggest mobile user 
or vehicle movement to enhance the probability of communications. In other 
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FIGURE 7-5 LVHF scattering, ducting, refraction, and diffraction.
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words, the AACR should have basic skill in deployment management. In 
exercising this skill, the CR must be able to explain its reasoning in simple 
clear terms that address user questions about the trade-offs of radio deploy-
ment versus other objectives (such as fi nding birds if one is on a bird watching 
trip but would also like to see babycam video of the kids and babysitter at the 
lodge).

7.3.2.3 LVHF Ducting Knowledge Chunk
At night, particularly in subtropical climates, LVHF waves may propagate by 
ducting, where the refractive index of the atmosphere inverts (air density 
increases with increasing altitude instead of decreasing as usual). Ducting can 
extend the range of LVHF 200 miles or more beyond LoS.

Using That Knowledge : An AACR should know the positive and negative 
aspects of ducting and when it is likely to occur. It should be able to verify 
BLoS ducting by listening to distant broadcast stations or to transmissions 
from known locations. It should know that ducting increases interference, and 
it should know how to mitigate that interference by adjusting the parameters 
of the air interface. Specifi cally, it should be able to establish analog notch or 
digital fi lters to notch out the strongest ducting interference, and it should 
track the fi lter parameters against parameters of the interference.

7.3.2.4 LVHF Ground-to-Air Communications Knowledge Chunk
Ground-to-air radios also experience skywave multipath scattered from the 
D layer or refracted through tropospheric ducts.

Using That Knowledge : An AACR should know whether it is on the ground 
or in the air, and whether it is associated with a person, vehicle, or ground 
facility. It should know whether its user needs to be in contact with airborne 
entities, and negotiate with the AACR on the aircraft to employ anomalous 
propagation to enhance QoI temporarily given diurnal variations and chang-
ing position of transmitter, receiver, and ducting. It should learn how ducting 
behaves in an operations area, and it should share that experience on CWNs 
so that all the CRs can employ air-to-ground ducting better than conventional 
radios.

7.3.2.5 Diffraction Knowledge Chunk
In knife edge diffraction, waves bend around sharp obstructions as if the 
entire wavefront above the obstacle were a point source forming Fresnel 
zones.

Using That Knowledge : An AACR should know that large obstacles such as 
hills, tress, and buildings can interfere with radio propagation. It should 
model the location and size of such obstructions in its visual scene. It should 
register its LoS propagation model to the buildings and warn the user when 



the mobile is likely to be shadowed by a building. This requires knowledge 
of both the user’s location and the communicant’s location, so the AACR 
should strive to keep track of both locations in spite of lack of connectivity, 
GPS impairments, and the like. An iCR should have a kinetic model of each 
communicant by which to estimate planned movement to predict and correct 
communications impairments. For example, it may be possible to correct 
shadowing of a 2.4 GHz LoS link by moving the transmission temporarily to 
LVHF, albeit at a lower data rate or with higher power consumption. If the 
data rate will be lower, the CR should so advise the users and systems appli-
cations to compensate or at least understand the connectivity and data rate 
situation.

7.3.2.6 Fresnel Zones Knowledge Chunk
Point sources induce an interference pattern of reinforcement (waves on the 
average in phase) and cancellation (waves on the average 180° out of phase) 
called the Fresnel zones. A receiver in the Fresnel zones experiences alternat-
ing strong and weak signals as the receiver moves through multiples of a 
wavelength. LVHF radios may maintain reception continuity across Fresnel 
zones using diversity in space (e.g., multiple antennas) and frequency (e.g., 
slow frequency hopping) with error control coding.

Using That Knowledge : An AACR with suffi cient processing capacity could 
use computer-aided design (CAD) models of an urban scene to predict Fresnel 
zones. It could use this knowledge to advise a pedestrian user where to walk 
to obtain best connectivity to a communicant whose location is known by the 
CR. The CR might have a top-level goal of knowing the locations of all enti-
ties within its radio access, tempered by the far reach of HF, and thus focusing 
on those entities enjoying LoS or nearly LoS propagation.

7.3.2.7 LVHF Meteor Burst Communications Knowledge Chunk
Each minute a dozen meteors penetrate the earth’s atmosphere, where they 
burn up. This creates trails of ionized gas from which radio waves may be 
refl ected. Meteor burst communications (MBC) use trails that endure for 
periods of 10 milliseconds to over a second.

Using That Knowledge : An AACR should know about MBC and about SDR 
personalities for MBC. It should be able to explain the operation of MBC to 
an inexperienced user, including the low data rate and unusual protocol by 
which the receiver transmits fi rst. For additional MBC knowledge chunks, see 
the companion CD-ROM.

7.3.2.8 LVHF Ground Wave Knowledge Chunk
LVHF, like HF, may also be propagated via ground wave over short ranges 
(e.g., 10 km). Ground wave mode generally suffers large attenuation, with a 
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path exponent of 2.5–4. That is, instead of path loss proportional to 1/R2, the 
path loss will be proportional to 1/R2.5 to 1/R4.

Using That Knowledge : An AACR should be able to estimate the path loss 
and link budget given the approximate distances between two potential com-
municants. Using calibrated delays in electronics, two AACRs should be able 
to estimate distance between each other to within hundreds of meters or less 
based on 100 ns calibration errors. An AACR should be able to use that 
knowledge to manage transmitted power proactively to minimize interference 
generated by the ground wave network. Peer protocols that lack explicit power 
management could be managed at the macrolevel as the CR estimates and 
then measures BER or Eb/No in a given situation, tracking statistics and 
reducing power when practicable. The more effective AACR could insert 
redundant bits or forward error control (FEC) “outside the protocol” by 
repeating bits or packets or by precoding data offered to an ad hoc ground 
wave network.

7.3.3 Available LVHF Communications Modes

Typical LVHF communications modes include AM (LSB, USB, VSB), 
FM (voice, fax), narrowband data (FSK, PSK, 1.2–10 kbps typical), spread 
spectrum, frequency hop (FH) (slow hop (<100 Hps); medium (100–1000 Hps), 
fast (>1000 Hps); narrow hop (6 MHz), wide hop (60 MHz)), and wideband 
DS/frequency hop hybrids.

7.3.3.1 Single Channel Per Carrier LVHF Knowledge Chunk
AM (DSB, USB, LSB, and VSB) and analog modulated FM voice are common 
at LVHF. The analog modes arose in the 1960s, when signal processing was 
limited to analog frequency translation, fi ltering, automatic gain control, and 
simple RF selection. In single-channel-per-carrier (SCPC) modes each sub-
scriber has a unique RF carrier. Ground-based military forces prefer SCPC 
for squad-level manpack and vehicular radios. LVHF fi lls in low-lying terrain 
where higher frequency waves do not penetrate.

Using That Knowledge : An AACR should be able to list and explain each 
AM and FM SCPC mode to an inexperienced user. It should analyze channel 
content to know which modes are available to the user’s likely communicants 
so that it knows which mode to use to fi nd a given communicant by name or 
function, particularly if that communicant has a legacy radio. It should be 
able to cooperate with users and with other CRs to manage legacy modes. It 
should be able to participate in an ad hoc CWN. Each CR should be able to 
measure and to forward interference information and recommendations for 
changes of mode (particularly frequency or power setting) of legacy radios to 
manage the communications environment. Each CR should be able to employ 
or download personalities that enable terrain fi lling when needed to support 



the user’s QoI, but should avoid LVHF unless needed for disadvantaged 
terrain. Multichannel CRs should volunteer to relay signals from a disadvan-
taged user to the intended recipient, taking advice and direction from the 
authorized users, AACRs and CWNs.

7.3.3.2 PSK Data Mode Knowledge Chunk
FSK and phase shift keying (PSK) are common data modes. Simple PSK 
formats such as binary (BPSK) and quaternary PSK (QPSK) offer reliable 
data service at LVHF from 1.2 kbps to about 10 kbps within the coherence 
bandwidth of LVHF.

Using That Knowledge : An AACR should know about FSK, BPSK, and 
QPSK as LVHF modes. It should be able to match available data rates to 
applications and quality of service (QoS). The CR should map data rate and 
connectivity to requirements of applications like location, mapping, naviga-
tion, trip planning, and web browsing. Applications parameters need to be 
tuned to these low data rates.

7.3.3.3 TETRA Knowledge Chunk
Digital vocoding and private networks (e.g., TETRA [173]) are increasing in 
LVHF.

Using That Knowledge : A LVHF AACR should know about TETRA and 
should be able to explain it to the nonexpert. It should be able to learn how 
TETRA supports taxi and public safety users. It should be able to commu-
nicate with the TETRA regulatory authority for download and passwords. 
The CR should know that the TETRA users in some locations are police and 
should be able to identify police networks for emergency assistance. It should 
note the language of the local law enforcement and obtain an emergency sig-
naling download in the native language from the local CWN so that emergen-
cies may be declared, such as how to say “chest pains” in Swahili.

7.3.3.4 LVHF Frequency Hop (FH) Knowledge Chunk
Contemporary LVHF military radios may employ FH. LVHF propagates well 
in rugged terrain since the waves penetrate vegetation and refl ect, refract, and 
diffract over and around obstacles. FH provides additional fading compensa-
tion and also is more diffi cult for an adversary to jam than pure SCPC wave-
forms. Jane’s and other on-line and spectrum management resources have 
databases of radios, which employ FH.

Using That Knowledge : An AACR should be able to explain FH to a non-
expert user as the systematic variation of physical layer RF to resist multipath 
fading (e.g., in GSM) and to be more diffi cult to jam (e.g., in military radios). 
The AACR should be able to detect and characterize known coalition FH 
modes for interoperability and counterfratricide services. A CWN should be 
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able to confi gure a low-resource FH SDR download for a coalition partner 
for CR-to-CR cooperation.

7.3.3.5 LVHF Spread Spectrum Knowledge Chunk
Spread spectrum modes include FH, DSSS, and hopped-spread hybrids such 
as JTIDS [174]. Some FH radios hop over subbands of LVHF, employing 
1–6 MHz hopping bands. Others provide the full 60 MHz hopping agility 
from 28 to 88 MHz.

Using That Knowledge : A FH AACR should know that spread spectrum 
uses more bandwidth over a transmission epoch than the instantaneous band-
width needed by the source. It should know that FH and DSSS are examples 
of spread spectrum. It should be able to explain the difference between the 
two to a nonexpert. It should be able to explain JTIDS, and why JTIDS oper-
ates in the UHF band versus the LVHF band (insuffi cient hop bandwidth for 
its 250 MHz hop range). It should be able to synthesize a JTIDS-like LVHF 
waveform and to request that transmission be authorized by the local RA.

7.3.3.6 LVHF FH SDR Knowledge Chunk
The narrower hop bandwidths may be implemented digitally via SDR (e.g., 
using fi xed tuned medium bandwidth RF conversion and a 6 MHz 
ADC/DAC).

Using That Knowledge to Use the Appropriate Waveform : A FH AACR 
should know how to synthesize LVHF FH waveforms.

Using That Knowledge to Synthesize a More Appropriate Waveform : A 
more sophisticated CR might synthesize a FH physical layer tailored to the 
user’s needs. It would have to cooperatively test the waveform with another 
CR before using it for communications. Design drivers include specifi c inter-
ference, multipath fading parameters, and the capabilities and limitations of 
the partner CR. For details see the companion CD-ROM.

7.3.3.7 FH Vocoding Knowledge Chunk
The FH radios are typically vocoded. The speech waveform is represented 
digitally using a vocal tract model such as Linear Predictive Coding (LPC). 
Waveforms based on subband coding [175] and adaptive LPC were imple-
mented in DSP chips in the mid- to late-1980s. Other voice codecs like Vector 
Excited Linear Prediction (VELP) and Codebook Excited Linear Prediction 
(CELP) have better perceptual properties.

Using That Knowledge : A vocoder-aware FH AACR should be able to 
explain the idea behind a voice coder to a nonexpert user, as a mapping from 
the analog microphone to a packetized digital bitstream. The more expert 
CRs may be able to explain the principles of vocoding to a maintenance 



technician or radio engineer. The AACR should be able to mix and match 
vocoders to optimize QoI. For example, if the user’s native language is 
causing vocoder errors, the AACR should be able to identify a more com-
patible vocoder for better intelligibility and enjoyment. See the companion 
CD-ROM for additional FH vocoder knowledge.

7.3.3.8 LVHF Multichannel Air Interface Knowledge Chunk
FM frequency division multiplexing (FM FDM) for military LVHF applica-
tions includes modes with four channels per RF carrier. Some of these modes 
are analog while others are digital. Digital PCM at 64 kbps enables 4 × 16 kbps 
continuously variable slope delta modulation (CVSDM) digital voice chan-
nels in a FM FDM spectrum allocation. These modes meet the needs of 
relatively low-echelon military forces [172].

Using That Knowledge for Extended Ad Hoc Networking : An AACR should 
know whether its waveform library includes multichannel modes. It should 
know if it has more than one channel and multichannel waveforms, and how 
to act as a radio relay. Its CR should be able to estimate the impact on battery 
life or power drain on the vehicle if it enables a multichannel mode.

7.3.3.9 LVHF FM FDM and TDM Knowledge Chunk
Due to the relatively narrow coherence bandwidths of LVHF, conventional 
FM FDM is limited to about 60 channels. LVHF digital backbone radio 
formats often observe T- or E-carrier, or NATO STANAG digital formats. 
Thus, a T1 provides 24 channels in a 1.544 Mbps data stream that might 
occupy between 1 and 3 MHz of bandwidth, while an E1 provides 30 channels 
in a 2 MHz bandwidth.

Using That Knowledge : An AACR should know how many subscribers can 
be accommodated with a given analog FM FDM waveform and for a given 
T- or E-carrier digital format. It should be able to explain its capabilities and 
limitations to a nonexpert user attempting to confi gure a network. It should 
know if there is any dependence on or preference for directional antennas 
for such multichannel waveforms. Military radios should be able to explain 
the security issues, approaches, and components to the user and to a desig-
nated security authority. The CR should be able to reason about its own 
signal processing bandwidth and internal connectivity needed for multichan-
nel modes. See the companion CD-ROM for additional TDM-PCM 
knowledge.

7.3.4 LVHF Services and Systems

LVHF service band allocations [170] include broadcast, fi xed/mobile, radio 
astronomy, aeronautical radio navigation (74.8 MHz), and commercial 
FM broadcast (87.5–108 MHz). LVHF antennas typically are log-periodic 
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[172, p. 597], whip (ground), blade (aircraft), passive network arrays, or bicon-
ical horns [172, p. 613]. Illustrative systems include the Rockwell Collins 
AN/ARC-210 (10–22 W, ECCM, 4.5 kg), and the Racal Radio Ltd. (UK) 
Jaguar-V (10 mW, 5 W, 50 W; ECCM, 6.6–7.5 kg) [172, p. 69]. Emerging SDR 
products include Harris AN/PRC-117F (30–512 MHz), and the Motorola 
WITS 6000 Series.

7.3.4.1 LVHF Services Knowledge Chunk
LVHF supports broadcast, fi xed and mobile applications, radio astronomy, 
aeronautical radio navigation (74.8 MHz), and commercial FM broadcast 
(87.5–108 MHz), among others.

Using That Knowledge : An AACR should have a database of authorized 
LVHF transmissions along with the locations of known fi xed broadcast sta-
tions. It should know the radio astronomy bands where transmission is pro-
hibited and should avoid those bands. On the other hand, if a prohibited band 
must be used in an emergency, it should describe the user situation that justi-
fi es the exception and advise the RA that it employed the band in an unau-
thorized way, posting this event to a web site to coordinate the transmission 
with radio astronomers.

All AACRs should model aeronautical radio to avoiding generating inter-
ference in those bands for fl ight safety.

7.3.4.2 LVHF Antennas Knowledge Chunk
Antenna products include log-periodic arrays with broad bandwidth and high 
gain (e.g., the Allgon Antenn 601 [172, p. 597]).

Using That Knowledge : An antenna-aware AACR should have a knowledge 
base of LVHF antennas with computational models of antenna technology 
that enable it to explain the capabilities and limitations of antennas to users. 
It should know about connector types and VSWR and should be able to 
measure the effi ciency of wave propagation to and through the antennas it is 
using. It should cooperate with other CRs to diagnose antenna behaviors. It 
should be able to recommend antenna choices to the user, and to requisition 
needed antenna(s) from appropriate sources. For knowledge chunks and use 
for LVHF aircraft and high gain antennas, see the companion CD-ROM.

7.3.4.3 Aeronautical Radio Knowledge Chunk
The AN/ARC-210 from Rockwell Collins illustrates airborne LVHF prod-
ucts. It radiates 10–22 W of power, weighs 4.5 kg, and supports a variety of 
electronic counter-countermeasures (ECCM) including FH.

Using That Knowledge for Federated System Management : An AACR 
should know which nomenclatured radios like the ARC-210 are in its feder-
ated suite. In the transition from discrete radios like the ARC-210 to SDRs 



like the JTRS or the M3TR, larger aircraft may employ a mix of discrete 
radios, SDRs, and CRs in a federated radio communications suite for a rela-
tively long period of time. The CRA cognition component managing such 
complicated suites must know the operating parameters of the discrete radios, 
ECCM mode settings, manufacturer, and the authorized maintenance down-
load suppliers. It should know how modes of this discrete radio complement 
SDR so that the CR can confi gure the suite for connectivity and protection 
of information. The aeronautical CR should also be expert in the rules of 
countries in which it could transit, such as European narrowband require-
ments and fl ight safety channels to autonomously generate alerts when a 
channel becomes active.

7.3.4.4 Jaguar Knowledge Chunk
The Jaguar-V from Racal Radio Ltd., UK [172, p. 69] popularized LVHF FH. 
This affordable manpack confi guration produces power of 10 mW, 5 W, and 
50 W with the Jaguar’s own advanced FH ECCM in a compact 6.6–7.5 kg 
package.

Using That Knowledge for Power Management: A CRA cognition compo-
nent managing a federated suite of legacy radios on a military vehicle may 
control a Jaguar legacy radio. In addition to the tasks the CR performs to 
manage an airborne suite, the ground vehicular CR should be adept at power 
management. Today’s tactical radios typically are not aggressively power 
managed. Power settings often are set to maximum power output in part 
because military crews know maximum power is needed “most of the time,” 
particularly if everybody else has set their power to the maximum screaming 
in their own ears, when in close proximity. The cognition component should 
control the fi nal power stage of all the radios in the suite. Such power-aware 
and power-adaptive CRs would then enhance the available radio spectrum. 
Through location awareness, the CRs would reduce power when the com-
municants are adjacent to each other or would route traffi c through a high 
band HDR channel, such as an SHF WLAN offl oading LVHF.

Using That Knowledge for Commercial Applications : The commercial equiv-
alent would be the use of the 5.4 GHz ISM band in lieu of Citizens Band 
LVHF at maximum power when two sportsmen are within a hundred meters 
of each other.

7.3.4.5 LVHF Software Radio Knowledge Chunk
A LVHF SDR draws more power from a battery than a customized micro-
processor-controlled analog/digital hybrid product.

Using That Knowledge for Battery Planning Via Topic-Spotting Traffi c 
Shaping : An AACR should manage power cooperatively with the user. 
Algorithms estimate battery life from initial charge, history of use, and typical 
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performance. AACRs learn the user’s typical patterns and plan, to predict 
battery endurance. If the battery is predicted to not meet that time line, then 
the CR could advise the user and develop a mitigation plan. If the organiza-
tion has authorized the AACR to override talkative users, the AACR could 
indicate “Channel unavailable—use text messaging” to force the user to limit 
nonessential conversation. Some organizations may authorize the CR to 
monitor conversations for content. If, for example, the AACRs have reliable 
location data on all personnel yet the user expends exorbitant talk time 
regarding location, “Are you sure that is where we are? I don’t think so. I 
can’t see that water tower.  .  .  .  Oh, there it is,” and so forth, then the CR could 
detect this communications state using speech topic-spotting algorithms. 
There is a trade-off between expending processing resources monitoring the 
content of the user’s conversation and reserving that processing resource for 
communications. Suppose it is only one-fi fth as expensive to topic-spot as to 
transmit the content. The CR could advise the user that it is switching to 
“rapid voice mail mode,” a power management mode in which the radio 
listens to a 2 second chunk of speech before sending it. If the chat is about 
location, the CR could advise the user that the location shown on the map is 
correct and it could highlight the water tower in the user’s heads up display 
when he tries to transmit “I can’t see the water tower.” In other words, the 
CR could assist the military user locally in understanding where everybody 
(self included) is located, shaping the traffi c by answering questions locally 
that can be answered or assisted by the CR. Of course, no military user would 
want his own radio to behave like this, preferring to talk to whoever, when-
ever. But in training, the difference could be clear if it were to turn out that 
those with the assistance from the CR are more effi cient and capable and 
more likely to accomplish the mission because of the conservation of resources 
(one battery for a mission with the CR, but you have to lug two along for the 
legacy radio).

Using That Knowledge for Personal Safety: If a sportsman is in the woods 
from dawn till dusk, then the battery of the integrated GPS–LVHF–cell 
phone should last until dusk as well. Some sportsmen will use the radio more 
than others, so the commercial AACR could proactively advise the user when 
it is likely that there will be no battery left at dusk. Speech recognition can 
generate text for low power transmission. For example, the common phrase, 
“Where are you?” can be reliably converted from speech to text and Huffman 
coded for very low power transmission. The companion CR could convert 
that text to speech, yielding a voice request to the other sportsman. The 
companion CR could similarly speech-code common responses, dramatically 
reducing the need to talk. Such location updates may use far less battery 
power than speech. The commercial AACR could keep the radio transmitter 
powered off until speech or text traffi c is offered, powering up in the appro-
priate mode, and powering down again immediately. An iCR learns such 
scenarios by observing the user’s speech patterns, such as an increasing 



average voice pitch when its user is under stress. The net effect of speech-code 
power management would be to enhance safety.

7.3.4.6 LVHF Radio Mode Parameters Knowledge Chunk
Propagation and air interface modes constrain the critical SDR parameters 
of Table 7-1. SDR ADCs and DACs sample radio bands at RF, IF, or base-
band (BB). As the bandwidth sampled increases, the dynamic range require-
ments also increase.

Using That Knowledge : An AACR should model its own ADCs and DACs 
to manage performance and to characterize performance for nonexpert users 
in easy, medium, and dense RF environments. Such models and a priori 
knowledge assist the user in selecting the waveform appropriate for a given 
radio environment. The CR learns by monitoring radio resources (FH colli-
sions and Eb/No or BER) over time. Thus, it could recommend parameter 
settings that avoiding interference or enhancing the QoS by optimizing the 
ADC, DAC, analog and digital fi lters, and roofi ng fi lters [144]. AACRs may 
adapt based on a priori knowledge, while iCRs learn from experience, tailor-
ing ADC, DAC, and mode to the current situation.

7.3.4.7 Baseband SDR for LVHF Knowledge Chunk
Baseband digital processing accommodates single-channel voice and nar-
rowband data communications.

Using That Knowledge for Backup : An AACR should know that if its wide-
band ADC or DAC fails but its narrowband ADC or DAC still works, then 
it can confi gure a narrowband waveform to minimize QoI loss. The autono-
mous generation of backup modes characterizes iCR. The iCR should learn 
such backup modes from expert user actions sharing techniques via CWN. 
The AAR cannot learn from this experience, but must have such backup 
modes preprogrammed.

7.3.4.8 LVHF IF SDR Knowledge Chunk
IF processing enables multiple channel radio relays, television, and other 
radio services. The IF dynamic range refl ects the near–far ratio, noise 

TABLE 7-1 SDR Parameters—VHF

Software Radio Application Sampling Rate (fs) Dynamic Range (dB)

VHF-UHF BBa 50–150 kHz 20–60
LVHF-IF (FH)b 12–200 MHz 66–108
VHF/UHF-IF 25–500 MHz 60–96
VHF RF 650 MHz 96–120

a BB = baseband. b IF = intermediate frequency.
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variability, and interference background variations in VHF. RF dynamic 
range encompasses the entire band.

Using That Knowledge to Infer Causes of Near–Far Clipping : An iCR should 
go beyond notched fi ltering in the RF channel. The iCR should learn the 
space–time features of its local radio environment. It should identify those 
emissions that cause interference by reconciling space, time, identity, received 
signal strength, and estimated radiated power patterns against each other in 
the CR’s dynamic ontological model of sources and propagation. It should 
then draw inferences about the sources of interference, making recommenda-
tions about how to deal with these sources operationally. These recommenda-
tions could be made to other CRs, to a CWN, or to operators of other 
equipment to enhance the radio environment that is under one’s scope of 
control. For example, as radio users converge for a rendezvous, their radios 
interfere with each other. Today’s solution may be to turn off some radios. 
The AACRs could autonomously manipulate network parameters to reduce 
transmit time while maintaining synchronization. Physically proximate 
AACRs could use a SHF ISM physical layer to maintain net membership and 
timing with low duty cycle LVHF transmissions to minimize interference.

Using That Knowledge for Radar Mitigation : In addition, LVHF interference 
could be mitigated operationally. For example, if a high powered radar’s 
out-of-band emissions cause interference, the CR could recommend the 
movement of the radar or the pointing of antennas to optimize radar and 
communications QoI. Since metal structures exacerbate refl ections, a CR 
with vision and propagation modeling could identify a barbed wire fence as 
a problem, resulting in the movement of the fence to mitigate interference.

7.3.4.9 LVHF Versus HF Knowledge Chunk
One benefi t of operating in LVHF versus HF is the reduction in delay spread 
by three orders of magnitude from milliseconds to microseconds. In addition 
to improving the coherent bandwidth of the medium, it reduces the memory 
requirements and complexity of time-domain equalizer algorithms.

Using That Knowledge : An AACR should know the computational resources 
needed for each of its SDR bands and modes. It should be able to explain the 
benefi ts of one SDR mode over another to a nonexpert user. The CR should 
have suffi cient knowledge, RF sensing, and explanation of RF alternatives to 
interact effectively with spectrum managers following the myriad rules of the 
local, regional, and national RAs, treaties, and agreements.

7.3.4.10 LVHF Noise Complexity Knowledge Chunk
The reduced noise complexity of LVHF enables constant false alarm rate 
(CFAR) squelch algorithms to reliably track the LVHF noise fl oor, while at 
HF, more complex algorithms are required.



Using That Knowledge : An AACR should adapt to noise and interference. 
Waveforms embed squelch algorithms suffi cient for the typical radio environ-
ment. The iCR adapts to intense and statistically extreme interference by 
synthesizing mitigation such as prewhitening to remove non-Gaussian 
interference.

7.3.5 Exercises

7.3.1. LVHF knowledge is cumulative with HF knowledge. Extend the exercises of 
Section 7.2, Knowledge of the HF Radio Band, to LVHF.

7.3.2. The AACR should know whether it is wearable, portable, vehicular, or fi xed. 
It should know which antennas are mounted and available for transmission 
and/or reception. Write RXML that expresses this to the <Self/>.

7.3.3. Write RXML that supplies the ontological knowledge for <Self/> to apply the 
radio horizon formula for a nominal 4/3 earth. Write a stand-alone Java module 
to do this. Refer to the CD-ROM: can you teach CR1 to do this without 
modifying CR1? If so, then teach CR1 to do this, and if not, then add a PDA 
DL module that enables you to teach CR1 to do this.

7.3.4. An AACR should be able to list and explain each AM and FM SCPC mode 
to an inexperienced user. Search the Internet for AM and FM SCPC modes. 
If you can’t fi nd suffi cient information elsewhere, look in the Canadian spec-
trum management web site. What are the benefi ts and the shortfalls of using 
this database? Look at the source fi les of the Canadian web site. Do you see 
any RXML-like semantic tags there? How would your research task be easier 
if RXML tags were compatible with the Semantic Web and the CRA <Self/>? 
Write RXML that patches this new knowledge chunk into <Abstractions/>. 
Is it better for AACR to incorporate the spectrum management knowledge 
in its own internal knowledge base, to keep this database in a CWN, or to 
query the Canadian database? Write a stand-alone program that incorporates 
the AM and FM SCPC modes at LVHF.

7.3.5. Teach CR1 about SCPC using the t.e.a.c.h primitive and the Hearsay AML 
component. What are the benefi ts of embedding knowledge into CR1 this 
way? The shortfalls? Does t.e.a.c.h scale up to hundreds of thousands of 
entries? Suppose the iCR only needs to know a few thousand such entries. 
Does this change the trade-off of learning versus database integration?

7.3.6. Write RXML that enables an AACR to query the Canadian database for an 
update each time it needs to know about LVHF SCPC modes. Suppose the 
database were queried a few hours ago. Should it be queried again, or should 
the AACR infer that the current data is defi nitive? What additional knowl-
edge would the AACR need to know to decide whether to query or not?

7.3.7. Refer to the CD-ROM for a TETRA exercise.
7.3.8. Write RXML to enable your AACR to become vocoder aware. Program it 

to explain the voice coder to a nonexpert user, explaining a vocoder as a way 
of converting the signal from the analog microphone signal to a digital bit-
stream. Write RXML for the vocoder knowledge for a maintenance techni-
cian. Include semantic primitives that the maintenance technician employs to 
diagnose vocoder faults.
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7.3.9. Write RXML to link an aircraft AACR to a radio engineer in an extended 
in-fl ight emergency (Mayday situation). Suppose the aircraft has plenty of 
power but is in the Bermuda triangle and is experiencing navigation faults to 
be conveyed by the AACR to the radio engineer. Write a program for the 
AACR to use this knowledge to compare dead reckoning, GPS, Glonass (not 
normally on the aircraft but available for download), and weak signals from 
AM and FM broadcast and radar to localize the aircraft, determine its 
heading, and guide it to the nearest major land mass.

7.3.10. The vocoder-aware AACR should be able to mix and match vocoders to the 
needs of the user in cooperation with a CWN. Suppose the user’s native lan-
guage is causing vocoder errors. Write RXML-Java to identify a more 
language-friendly vocoder for better QoI. The RXML should include A-law 
PCM, Mu-law PCM, RPE-LTP the GSM vocoder, and 16 kbps CVSD.

7.3.11. Consider the Digital TDM PCM transcoding knowledge chunk of the CD-
ROM and complete the related exercise.

7.4 RADIO NOISE AND INTERFERENCE

The transition from HF to LVHF brings substantial changes in the statistical 
structure of radio noise and interference. Progression through the bands 
toward EHF reveals noise and interference environments less limited by 
interference and more limited by thermal noise. Over time and in popular 
bands, relatively clear RF environments abruptly transition from noise-limited 
to interference-limited. The iCR recognizes such changes and offers mitigat-
ing strategies.

7.4.1 Overview of Noise and Interference

Figure 7-6 illustrates HF, VHF, and UHF sources of radio noise and 
interference.

7.4.1.1 Low Band Noise Sources Knowledge Chunk
In the lower bands, atmospheric noise arises from the reception of lightning-
induced electrical spikes from thunderstorms halfway around the world. 
Consequently, this noise component is stronger in summer than in winter. In 
addition, this noise has a large variance. The short-term (1 ms) narrowband 
(1 kHz) noise background varies at a rate of a few decibels per second over a 
range of from 10 to 30 dB, depending on the latitude, time of the year, and 
sunspot cycle. Interference below 100 MHz includes automobile ignitions, 
microwave ovens, power distribution systems, gaps in electric motors (e.g., 
elevators), and the like. In military settings, unavoidable interference results 
when tens of thousands of ground military personnel use their LVHF radios 
at the same time. Thus, high levels of interference characterize these con-
gested low bands.



Using That Knowledge : The AACR should be able to list the sources of radio 
noise and interference in each band as shown in Figure 7-7. It should be able 
to identify sources of radio noise and interference in its visual perception 
domain. For example, a truck present in the visual domain should be identi-
fi ed as a potential source of ignition noise currently experienced in LVHF. It 
should be able to advise the user on how to move to mitigate the effects. The 
iCR should provide feedback to the user regarding whether the mitigation 
worked or not. It should also be able to differentiate a few proximate sources 
of interference from many distant sources.

7.4.1.2 Midband Noise Sources Knowledge Chunk
Midband noise is stronger in urban than suburban <Scenes/> (Figure 7-7). 
Cellular bands from 450 MHz to above 1 GHz are dominated by the co-
channel interference of other cellular users occupying the RF channel in 
distant cells.

Using That Knowledge : The AACR should be able to list those bands for 
which cellular service is authorized in a given area. It should be able to char-
acterize which parts of the band have been built-out. A cellular-aware CR 
should be able to determine which cell systems are operating, which are 
busiest, and which are underused to pick the optimal cell system from among 
user accounts. The user may have authorized the CR to charge cellular service 
to a phone bill or credit card, for example, in anticipation of an upcoming trip 
to Europe, Asia, or North America. The AACR should be able to recognize 
underused ISM bands with low noise temperature as an opportunity for ad 
hoc networking.
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7.4.1.3 Thermal Noise Knowledge Chunk
Thermal noise is

 P kTBn =  (7-3)

where k is Boltzmann’s constant, T is the system temperature (T0 is the refer-
ence temperature of 273 K), and B is the bandwidth (e.g., per Hz). In the 
microwave bands above 1 GHz thermal noise approximates the noise back-
ground. In urban areas, however, incidental urban noise and interference 
dominate thermal noise until about 6 GHz.

Using That Knowledge : The AACR should know the equation for thermal 
noise. It should know that as bandwidth B increases, total noise in the band 
also increases. It should know how noise temperature is different from ambient 
temperature. It should be able to autonomously estimate the total noise in a 
given band. The CR should determine from that estimate whether the band 
is dominated by thermal or other noise and diagnose the noise sources. Inter-
nal noise may indicate an incipient electronics failure. External noise may 
indicate suboptimal antenna placement. The CR should be able to compare 
noise levels across bands to assist the user in diagnosing communications 
problems caused by excessive noise.

7.4.2 Exercises

7.4.1. Write RXML that enables a mobile AACR (e.g., in a commercial aircraft) to 
recognize a transition from a noise-limited to an interference-limited situation, 
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say, in crossing the Atlantic Ocean. Suppose the band has recently been liberal-
ized to enable on-line web access from an aircraft that has 100 antenna ele-
ments embedded in its surface capable of achieving MIMO in the VHF–UHF 
bands. Write RXML that enables the AACR to reason about radio noise and 
interference as a factor in planning MIMO linkage to a ground–air MIMO site 
in the next big city.

7.4.2. Suppose the short-term (1 ms) narrowband (1 kHz) noise background in a HF 
band varies at a rate of a few decibels per second over a range of from 10 to 
30 dB, depending on the latitude, time of the year, and sunspot cycle. Write 
RXML that enables an AACR to reason about these dependencies.

7.4.3. Write RXML that enables an AACR to know that the incidental and unavoid-
able interference below 100 MHz includes automobile ignitions, microwave 
ovens, power distribution systems, and gaps in electric motors (e.g., 
elevators).

7.4.4. How can an AACR learn about other sources of radio noise and interference 
below 100 MHz? What hardware, software, and ontological primitives are 
needed for AML to learn about noise versus interference?

7.4.5. Write RXML for a vision-capable AACR to identify sources of radio noise 
and interference in a visual scene given that a CAD-CAM model of a generic 
physical device can be recognized as belonging to a class such as automobile, 
power lines, and any noise sources in the ontology.

7.4.6. How could AACRs use knowledge of the physical presence and general loca-
tions of sources of radio noise and interference in a scene to assist a user who 
is having trouble joining a VHF network? An 802.11 network?

7.4.7. What hardware, software, and semantic knowledge and skill does an AACR 
need to determine that a large, old, unmaintained truck present in the visual 
domain is generating substantial ignition noise in the LVHF band? How would 
AACR use this knowledge to enable user connectivity if the user cannot move? 
Write RXML that enables your AACR to advise the user on how to mitigate 
the effects, such as moving away from the truck or moving the body between 
the truck and the radio antenna. See the CD-ROM for related exercises.

7.4.8. Assume that a CWN maintains a database of all RF emitters within a 70 mile 
radius. LVHF interference may originate from ignition noise or from 10,000 
military radios of a multinational humanitarian relief group 50 miles to the 
west. Write RXML for your AACR to determine whether interference being 
experienced in the LVHF band is being generated by a few proximate sources 
or by many distant sources. Include the Query-Response behavior between 
your AACR and the CWN. Write Java code to use this RXML plus a spatial 
reasoning tool like Arc Explorer™ to simulate the function of a skilled radio 
operator in identifying sources of radio noise and interference. Train CR1 to 
respond to a particular scenario using Hearsay. Train it for the truck and 
present CR1 with a similar situation. Diagnose its learning faults. How often 
does it generalize appropriately? In what ways must you precondition the learn-
ing experience so that it produces the right result?

7.4.9. Write RXML for your AACR to know that in the microwave bands above 
1 GHz thermal noise approximates the noise background. Augment this RXML 
so that it also knows that, in urban areas, incidental urban interference domi-
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nates thermal noise until about 6 GHz. Augment this RXML so that it esti-
mates the total thermal noise. Teach CR1 to determine from simulated 
measurements whether a band is dominated by thermal noise or by 
interference.

7.5 KNOWLEDGE OF THE VHF RADIO BAND

By ITU and IEEE convention, the very high frequency (VHF) band extends 
from 30 to 300 MHz.

7.5.1 Alternative Defi nitions of VHF Bands

The convention ignores differences in propagation between the LVHF band 
and VHF above the commercial broadcast band (88–108 MHz).

7.5.1.1 VHF Bands Knowledge Chunk
The VHF band may be defi ned in any of several alternative ways. The ITU 
defi nition of HF, VHF, UHF, SHF, and EHF assigns each band exactly one 
decade of frequencies. The upper VHF band (100 to 300 MHz) approximates 
optical LoS with a 4–3 earth radio horizon. Propagation between 100 and 
800 MHz is well suited for air-to-ground communications. Thus, most regions 
of the world allocate a band above the 100 MHz commercial broadcast band 
for communications between pilots and ground controllers. In addition, the 
ICAO recognizes bands between 225 and 400 MHz for aeronautical opera-
tion. Thus, many commercial aircraft radios operate between 100 and 
500 MHz, the VHF–UHF aeronautical band, which is another way of defi ning 
the band edges.

Using That Knowledge : The AACR should be able to list the alternative 
VHF radio bands, formal and pragmatic, including the aeronautical VHF–
UHF band. It should be able to explain why band edges are defi ned differ-
ently between the ITU and other usage. The AACR should learn the local 
use patterns of VHF, such as pilot-to-tower communications. In an emer-
gency, a CR might ask the assistance of a general aviation iCR or pilot on 
such a frequency by advising the pilot of the emergency (lost and had a heart 
attack while hiking). That pilot could render assistance by RF relay and by 
observing the scene from the air, guiding rescue to the victim. An iCR should 
use the 4–3 earth radio horizon to estimate the range at which two aircraft may 
communicate on a VHF–UHF frequency.

7.5.2 VHF Physics-Related Knowledge

Frequency band: (30 MHz) 100–300 MHz
Wavelengths: (10 m) 3 m to 1 m



Propagation modes include skywave (radio line of sight (LoS), direct and 
multipath (e.g., air–ground), some ducting beyond LoS in the lower 
end of the band below 100 MHz, refracting or diffracting beyond LoS) 
and ground wave (short ranges, <10 km) with multipath delay spread of 
1–10 µs.

7.5.2.1 Delay Spread Knowledge Chunk
The delay spread of 1–10 microseconds supports instantaneous modulation 
bandwidths of hundreds of kilohertz in simple receiver architectures (e.g., 
single-channel push-to-talk with AM conversion or FM discriminator receiv-
ers; or FSK mark/space fi lters for data signals).

Using That Knowledge : The AACR should know how to measure delay and 
Doppler spread from known broadcast stations with controlled time and 
pulsed emissions and by collaborating with peers. It should know by intro-
spection (not by being told) whether a given waveform has an adaptive equal-
izer and how to compute the number of half-channel symbol period taps 
needed to compensate observed delay spread.

7.5.3 Spatial Distribution of VHF Energy

Typical spatial distributions of energy are illustrated in Figure 7-8.

7.5.3.1 VHF Fresnel Zones Knowledge Chunk
Upper VHF includes Fresnel zones, knife edge diffraction, ducting, and 
tropospheric refraction like LVHF. VHF has less fi lling of low lying and 
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FIGURE 7-8 Spatial distribution of energy in VHF.
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shadowed regions because the shorter wavelengths set up spatially smaller 
interference patterns. These patterns have smaller angles between successive 
constructive and destructive interference zones. This fi ne structure supplies 
less total power to the shadowed regions.

Using That Knowledge : The AACR should know how far away from a 
knife-edge obstruction the user should be to avoid shadowing. It should 
map constructive interference zones, to guide user mobility, and should 
share that knowledge with CWNs for HDR when in a Fresnel zone of high 
Eb/No.

7.5.3.2 Tropical Ducting Knowledge Chunk
Wavelengths from 1 to 3 meters typical of this band are readily trapped in 
thermal inversions in the atmosphere in subtropical climates, leading to 
beyond LoS ducting at the day–night boundary.

Using That Knowledge : The AACR should know how location in the tropics 
implies occasional BLoS propagation. It should search for reception of BLoS 
known broadcast stations to calibrate the ducting. It should enhance QoI by 
adapting HF ALE to VHF ducting.

7.5.4 Available VHF Communications Modes

VHF communications modes include AM (LSB, USB, VSB), FM (voice, 
fax), narrowband data (FSK, PSK, 75 bps to 9.6 kbps typical), multichan-
nel radio relay (4–60 channels), and spread spectrum formats that 
include frequency hop (slow hop (<100 Hps); medium (100–1000 Hps), 
fast (>1000 Hps); wide hop (>10 MHz) and wideband BPSK with hop 
hybrids possible.

7.5.4.1 VHF Modes Knowledge Chunk
AM, FM, data modes, and FH spread spectrum such as the US/NATO 
HAVE QUICK I & II slow FH air interface are common in VHF. Wide hop 
separations are more practical in these bands than in HF because about 
300 MHz less prior allocations could be available for VHF FH.

Using That Knowledge : The AACR should know about AM, FM, and FH 
and it should be able to observe the spectrum available for FH and explain 
this to a nonexpert user. It should be able to propose and validate FH style 
waveforms appropriate to current link conditions, QoI needs, and resource 
availability.

7.5.4.2 AM Voice Robustness Knowledge Chunk
The AM air interface waveform is particularly appropriate for emergency 
communications with aircraft. AM waveforms are intelligible at negative 



SNR, just as speech is intelligible in low SNR. This feature extends the range 
and robustness of analog AM voice. FM voice, also a popular military mode, 
provides greater clarity of voice communications at channel SNR greater than 
9 dB. Below this SNR, the FM discriminator will not lock to the carrier, yield-
ing only noise. Thus, AM voice is intelligible at total power levels well below 
those that render FM unintelligible. Consequently, AM voice is ideal for 
emergency reporting radio channels. Analog voice does not fully leverage 
modern signal processing technology. Recent research suggests extending 
analog modes via wavelet-based DSP [176].

Using That Knowledge : The AACR should know about AM and FM and 
should be able to explain to a nonexpert user why general aviation persists in 
using AM analog voice when so many other more modern channel coding 
methods are available. An iCR should know about wavelet signal processing 
and should be able to synthesize a wavelet-based air interface.

7.5.4.3 Channel Packing Knowledge Chunk
Improvements in components have reduced channel bandwidths from 100 kHz 
or more in the early days of radio to typically 25–30 kHz today, with 81/3 and 
61/4 kHz modes recommended by APCO. Congestion of air traffi c control 
radio bands in Europe constrains AM/FM to 81/3 kHz. This packs three SCPC 
subscribers into the 25 kHz formerly occupied by one.

Using That Knowledge : The AACR should know why analog voice was 
designed with 25 or 30 kHz channel spacing. An aircraft-aware AACR should 
know the new rules for denser spectrum packing. AACR should be able to 
set parameterized waveforms to achieve the denser spacing. It should cooper-
ate with its peers to check air interfaces for spectrum mask conformance.

7.5.5 VHF Services and Systems

VHF service band allocations [170] include 87.5–108 MHz broadcasting; 
117.975–137 MHz aeronautical mobile; 138–144 MHz and 148–151 MHz 
government (G); 151–162 MHz nongovernment (NG); 162–174 MHz and 
220–222 MHz G, NG mobile radio; 144–146 MHz amateur satellite;  and 
156.7625–156.8735 MHz maritime.

VHF antennas include log-periodic [172, p. 597] 20–220 MHz; whip, blade, 
discone, corner refl ectors, biconical horns ([172, p. 613], VHF through 
960 MHz).

Illustrative systems include AN/GRC-171(V) 20 W, ECCM(HAVE 
QUICK), 36 kg, 225–400 MHz, AM voice, AM secure voice; Rhode & 
Schwarz Series 400: 15–300 W, 12/40 channels. Emerging SDR products 
include MSRC prototypes (ITT 30–450 MHz; Marconi VRC99; Rockwell 
ARC-220 0.002–2 GHz).

KNOWLEDGE OF THE VHF RADIO BAND     231



232     RADIO KNOWLEDGE

7.5.5.1 VHF Services Knowledge Chunk
VHF includes commercial air traffi c control (117.975–144 MHz), amateur 
satellite, and maritime mobile bands. Consequently, SDR access to VHF can 
provide services spanning air, ground, maritime, government, and amateur 
market segments.

Using That Knowledge : The AACR should know the services available in 
the bands, should list frequency allocations, and should summarize the general 
nature of the band. It should be able to read the standard text of any broadcast 
channel scanning services for topics of interest to the user to enhance QoI.

7.5.5.2 FM Broadcast Knowledge Chunk
VHF services include the 87.5–108 MHz commercial FM broadcast bands.

Using That Knowledge : The AACR should know the location of the FM 
broadcast band and tune to the user’s favorite types of radio on voice request. 
It should be capable of proposing to play FM music matching the user’s prior 
behavior patterns.

7.5.5.3 Air Traffi c Control Knowledge Chunk
Air traffi c control uses the 117.975–137 MHz aeronautical mobile band. This 
band is allocated to civilian air traffi c control, while the companion UHF 
band is allocated to military air traffi c control. Consequently, dual-band 
VHF/UHF avionics radios are common. There are also governmental appli-
cations in 138–144 MHz, 162–174 MHz, 220–222 MHz, and 148–151 MHz and 
nongovernmental bands from 151 to 162 MHz.

Using That Knowledge : The AACR should know the radio etiquette for air 
traffi c control and government radio use. Specifi cally, it should know that it 
is not supposed to transmit in these bands signals that might interfere with 
aeronautical mobile user, air traffi c control, or government applications. It 
should fi nd policy broadcast and authoritative databases that specify the 
bands and modes used by the government. It should avoid interference when 
proposing modes of its own invention to operate in these bands.

7.5.5.4 Amateur Satellite Knowledge Chunk
The amateur satellite band extends from 144 to 146 MHz.

Using That Knowledge : The AACR should be able to explain Ham radio to 
the nonexpert. A Ham-aware CR should know about ARRL and the local 
Ham organization. It should download, test, and employ an AmSAT air 
interface with applications packages of interest to the owner.



7.5.5.5 VHF Antennas Knowledge Chunk
VHF antennas include whip, blade, discone, corner refl ectors, passive network 
arrays, and biconical horns. The high gain horns, cavity-backed spirals, dis-
cones, and so on are relatively large because of the 3 meter wavelength at the 
low end of VHF. High gain military antennas are available for avionics and 
extensible antenna masts [172]. Some log-periodic antennas such as the Allgon 
Antenn 601 [172, p. 597] access the subset of VHF from 20 to 220 MHz. 
Others span VHF through 960 MHz [172, p. 613]. VHF/UHF operation is 
common for both antennas and discrete analog and programmable digital 
radios.

Using That Knowledge : The AACR should know about VHF antennas 
including those listed. For each of antenna type, it should explain their use 
for the nonexpert. The iCR should associate waveforms and antennas with 
the circumstances under which particular antenna types are especially useful. 
It should be able to nominate needed antennas from the supply system (e.g., 
if the current antenna is faulty).

7.5.5.6 HAVE QUICK Knowledge Chunk
The AN/GRC-171(V) general-purpose ground-based radio delivers 20 W 
from vehicular power. It includes the HAVE QUICK ECCM/EP (Electronic 
Protect) mode for interoperability with airborne radios. This radio weighs 
36 kg, operates between 225 and 400 MHz, and supports AM voice, AM 
secure voice, and FM air interfaces.

Using That Knowledge : The VHF AACR should know about legacy VHF 
radios, SDRs, and other AACRs operating in this band. It should be able to 
summarize performance and choose waveforms to interoperate with the 
legacy radio. Since iCRs read natural language text and speech, they should 
recognize the mention by a user of a legacy VHF radio and request to inter-
operate, seting up the mode to match the waveforms perceived in the 
<RF-environment/>.

7.5.5.7 Multichannel Relay Knowledge Chunk
The Rhode & Schwarz Series 400 multichannel VHF radio relay produces 
15–300 watts of power to relay from 12 to 40 channels. Each channel may 
have 25, 12.5, or 6.25 kHz bandwidth. This rack-mount radio is typical of 
military radio relays.

Using That Knowledge : The military AACR should know about rack-
mounting to advise nonexpert users regarding confi gurations in coalition 
peacekeeping or humanitarian assistance. A confi guration-aware AACR 
assists a nonexpert to confi gure such trunking radios into a fi eld-expedient 
multichannel network. Since iCRs recognize speech, they route voice signals 
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to appropriate users by name similar to the voice-activated phone book of a 
cell phone. A CR could create voice mail services on spare disk space. Mul-
tiple CRs should assist nonexpert users in confi guring legacy radios for mul-
tichannel uses as well as confi guring themselves with multichannel waveforms 
for ad hoc trunking networks.

7.5.5.8 Aviation Knowledge
Aviators have domain-specifi c information sources available by radio and 
Internet, including notices to aircraft (NOTAMS), weather facsimile broad-
cast, and air traffi c control tower frequencies. A general aviation (GA) air-
craft is typically small and low fl ying.

Using That Knowledge : The GA CR should know about GA-unique infor-
mation and about how to get it on behalf of the user. It should also know 
about small, medium, and large aircraft. It should also be able to warn the 
GA pilot when rapidly approaching an obstacle detectable by radio or visual 
sensors for collision avoidance.

7.5.5.9 Commercial Trucking Knowledge Chunk
Commercial fl eets (e.g., trucking) offer potential SDR insertion opportuni-
ties. Many truck fl eets, for example, use a GPS-based location system coupled 
to a satellite-based fl eet tracking system (e.g., Omintrax). In addition, the 
fl eets use VHF or LVHF radio and commercial AM/FM broadcast for local 
traffi c information.

Using That Knowledge : The trucker’s AACR should acquire a model of a 
trucking user and should instantiate this model with expectations regarding 
services like location fi nding, CB, and AM/FM radio preferences as a func-
tion of space and time. It should use these patterns plus speech interaction to 
enhance QoI for the driver.

7.5.5.10 IVHs Knowledge Chunk
Local navigation, wireless on-line maps, and other intelligent vehicle highway 
systems (IVHs) are also emerging. Thus, commercial trucking fl eets are 
evolving multiband multimode capabilities, potentially amenable to SDR 
insertion.

Using That Knowledge : The trucking-aware AACR should know what is 
important to a truck driver or motor freight operator. Some truckers may not 
be interested in location reporting if they routinely drive the same routes 
while others may benefi t from location information. Markets have embraced 
GPS dedicated location-assisting devices. As other niche products emerge, 
such as IVHSs and automated toll payment systems, opportunities to simplify 
the electronics suite of a commercial vehicle may appear. The iCR MBMMR 
with cognition enables the integration of such helpful services focused on the 
needs of the trucking users.



7.5.5.11 Algorithm Complexity Knowledge Chunk
The algorithm complexity of VHF SDR is similar to LVHF. Many air inter-
faces use SCPC with narrow bandwidths. One potential benefi t of SDR tech-
nology is the graceful introduction of the new narrowband modulation formats. 
Digital fi ltering, both on transmit and receive, can manage adjacent channel 
interference, even in 61/4 kHz bands. SDR with IF and baseband DSP also 
facilitate the introduction of vocoders and packet data in SCPC fl eet 
networks.

Using That Knowledge : The AACR should know the computational com-
plexity of its standard air interface personalities. It should know the incre-
mental complexity of enhancing its standard air interfaces with more capable 
algorithms such as digital fi ltering. It should use this knowledge to enhance 
QoI within resources and to craft backup modes autonomously.

7.5.6 Exercises

7.5.1. Write RXML that enables your AACR to know that most regions of the world 
allocate a band above the 100 MHz commercial broadcast band for communi-
cations between pilots and ground controllers. Augment this knowledge to 
include the fact that the ICAO recognizes bands between 225 and 400 MHz 
for aeronautical operation. Augment this knowledge to include a method to 
fi nd commercial aeronautical aircraft radios that operate between 100 and 
500 MHz using VHF–UHF aeronautical modes. Write an algorithm to fi nd 
details of such commercial products on the Web using a web crawler. Augment 
this knowledge to defi ne the band edges in the aeronautical domain. Teach 
CR1 these facts. Offer a situation in which it retrieves one of the facts you 
taught it via the Hearsay model.

7.5.2. Write RXML that enables your AACR to list the alternative VHF radio bands 
including the aeronautical VHF–UHF band. Write a stand-alone Java simula-
tion that enables an AACR to explain why band edges are defi ned differently 
between the ITU and other authorities. Simulate AACR behavior to learn the 
usage patterns of VHF in an area, such as whether pilot-to-tower communica-
tions are used. Postulate or use a speech recognition tool like ViaVoice.

7.5.3. Write RXML that enables your AACR to know how to measure delay and 
Doppler spread either from known broadcast stations with controlled time and 
pulsed emissions or by collaborating with local AACR peers. Write a stand-
alone computer program that simulates the measurement of delay spread. 
Write a program that simulates introspection over a SDR-SCA or OMG-SRA 
regarding whether a given SDR waveform has an adaptive equalizer. Write 
RXML and a stand-alone computer program that enables it to compute the 
number of T/2 (half-channel symbol period) taps needed to compensate for 
typical and extreme delay spread measured.

7.5.4. Write RXML that enables your AACR to know about AM and FM aeronauti-
cal communications. Write a stand-alone computer program that uses this 
RXML to explain to a nonexpert user why general aviation persists in using 
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AM analog voice when so many other more modern channel coding methods 
are available. Teach CR1 about AM and FM analog voice.

7.5.5. Write RXML that enables your AACR to know the services available in the 
VHF and UHF bands without using a supporting database. The RXML should 
summarize the general nature of these bands.

7.5.6. Write RXML that enables your AACR to know the frequencies of the FM 
broadcast band. Write a stand-alone simulation of tuning to the user’s fi ve 
favorite radio channels that are already known upon request. Write RXML 
that enables your AACR to propose to play FM music at a time that matches 
the user’s prior behavior patterns, assuming they are already known (e.g., news 
fi rst in the morning then music for a half-hour until news just before arriving 
at work; music on the way home). Write RXML that enables your AACR to 
scan the channels and read the data tags on these (real or simulated) channels 
to fi nd a class of FM broadcast similar to that known to be of interest to the 
owner.

7.5.7. Write RXML that enables your AACR to know about VHF antennas such as 
those listed above. For each of the general antenna types include the usees of 
such antennas. Write a stand-alone program to use that RXML to explain these 
antenna types to a nonexpert user. Enhance the RXML to include the associa-
tion of a set of ten notional SCA/SRA waveforms defi ned in XML to antennas. 
Enhance the RXML to include the circumstances under which particular 
antenna types are particularly useful. Write a simulator to nominate specifi c 
antennas from the supply system it determined that the user needs, for example, 
assuming the current antenna is faulty. Train CR1 with this knowledge. Present 
it with a situation that evokes that knowledge in a way that would assist a user. 
Discuss the merits of training CR1 versus programming the stand-alone 
applications.

7.5.8. Write RXML that enables your AACR to know that commercial fl eets (e.g., 
trucking) are interested in AACR insertion and that includes basic knowledge 
of the truck fl eets; for example, use a GPS-based location system coupled to a 
satellite-based fl eet tracking system (e.g., Omintrax). Include in your RXML 
that some fl eets use VHF or LVHF radio and commercial AM/FM broadcast 
for local traffi c information. Train CR1 to acquire a model of a trucking user 
that refl ects the RXML of this exercise. Train CR1 to instantiate a Hearsay 
model with expectations, as a minimum regarding services in various bands 
and services such as location fi nding, CB, or AM/FM radio preferences as a 
function of space and time. Use the Hearsay model to offer advice to a trucking 
user regarding CB.

7.5.9. Write RXML that enables your AACR to estimate the algorithm complexity 
of VHF SDR. Include knowledge that resources for modulation formats using 
SCPC with narrow bandwidths are similar. Write RXML that enables the 
graceful introduction of the new narrowband modulation formats. Use this 
RXML to describe a specifi c arrangement of digital fi ltering, on both transmit 
and receive, to manage adjacent channel interference for a 61/4 kHz VHF SDR. 
Enhance this RXML so the AACR knows how to estimate the computational 
complexity of its standard air interface personalities. Augment it to know the 
incremental complexity of enhancing its standard air interfaces with more 
capable algorithms such as enhanced digital fi ltering.



7.6 KNOWLEDGE OF THE UHF RADIO BAND

UHF is clearly the most popular terrestrial commercial band. With the pro-
liferation of cellular and personal communications systems (PCSs) between 
400 and 2500 MHz, the most heavily used radio bands now are almost exactly 
the UHF band (300–3000 MHz). The following UHF radio knowledge chunks 
and micro use cases on the innovative use of that knowledge build on the 
ideas from bands discussed earlier. Most of the use-case ideas from bands 
discussed earlier are applicable to UHF, so although a few are repeated for 
emphasis and clarity, many are not.

7.6.1 UHF Physics-Related Knowledge

Frequency band: 300–3000 MHz
Wavelengths: 1 m to 0.1 m
UHF propagation modes include pure skywave (aircraft, square-law path 

loss), scattered (mobile radio, 2–4 path exponent), and pure ground 
wave (short ranges, <1 km). Impairments include multipath delay spread 
(2–5 ms [9]) and Doppler shift (75 Hz for 60 mph at 840 MHz), with 
Doppler spread of 2 × Doppler shift. Fast fading is distinct below 5 mph, 
noise-like above 5 mph.

7.6.1.1 General UHF Physics Knowledge
Pure skywave propagates between aircraft and the ground according to 
square-law path loss. Ground-based PCS channels scatter and attenuate the 
hybrid skywave/ground wave with path exponents between 2 (square law) and 
4. Losses are nonuniform with range; loss exponents vary from square law 
near the antenna, to 2.8 in Rician zones, and 4th law in Rayleigh zones, with 
distance from the base station. Urban multipath delay spread typically is from 
2 to 10 microseconds [177]. Doppler shift would be 75 Hz for a 60 mph vehicle 
and RF of 840 MHz, typical of cellular radio. The Doppler spread defi nes a 
range of frequency offsets that the receiver’s carrier loop must track.

Using That Knowledge : CWNs use this knowledge for path prediction, assist-
ing users with radio placement, and managing resources of the <Self/> as with 
HF, LVHF, and VHF. The cellular-aware AACR negotiates short-term rental 
with cellular service providers for the best deal for the <User/>. In situations 
requiring relatively minor changes to a SDR personality, the <Self/> may be 
told what to do rather than being offered a download. For example, the 
AACR could be advised to “Increase the Costas loop bandwidth limit by a 
factor of 1.2,” which it could do for itself rather than accepting a download 
from the network. Such an approach reduces the download bandwidth and 
enhances the performance of nonnative radio equipment for which the CWN 
has no downloads.
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7.6.2 UHF Spatial Distribution of Energy

UHF propagation includes refraction and refl ection as illustrated in Figure 
7-9.

7.6.2.1 In-Depth LoS Propagation Knowledge
In UHF radio waves are approximated as traveling in straight lines to the 
radio horizon with suffi cient beam spreading for multiple refl ections at the 
typical receiver. This contrasts with HF, where skywave yields distant BLoS 
propagation, and with EHF, where antenna beams are often narrow enough 
to eliminate multipath.

Using That Knowledge : The AACR should be able to explain the differences 
in radio propagation from HF through EHF. The iCR applies that knowledge 
to autonomously choose the combination of bands, modes, and services that 
optimizes QoI within cost and resource constraints.

7.6.2.2 Multipath Refl ector Knowledge Chunk
Since LoS waves refl ect from large structures, more than one refl ected UHF 
wave typically impinge on the receiver (Figure 7-10).

Using That Knowledge : The multipath-aware AACR can analyze the visual 
scene to determine the nature of proximate radio propagation in its <Scene/> 
that includes location, surroundings from a map, predicted propagation 
(RSSI), and probability of fading versus fade depth. The iCR identifi es objects 
in the <Scene/> that affect multipath propagation.

Tropospheric
Refraction

Fresnel Zones

FIGURE 7-9 UHF propagation.



7.6.2.3 Analytic Model of Multipath Propagation
If the radiated wave is a cosine function of time, multipaths with direct and 
refl ected paths have amplitudes α1 and α2 as illustrated in Equation 7-4:

 y t A t t B A( ) = ( ) + −(( )( ) = ( )α ω α ω τ τ ω1 0 2 0 0cos cos cos tt +( )θ  (7-4)
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The amplitudes of the cosine waves differ with propagation. If the ampli-
tudes are nearly identical, then the minimum amplitude (α1 − α2) is realized 
when the difference in path length is one-half wavelength (cosine waves that 
are approximately 180° out of phase), a condition known as cancellation or 
destructive interference. Extreme (30 dB) cancellation is known as deep 
fading.

Using That Knowledge : The multipath-expert CR applies the multipath 
equations to explain multipath to a nonexpert. It calculates the depth of a 
fade to reconcile RSSI to the visual <Scene/> to guide mitigation steps like 
choice of diversity-combining algorithm.

7.6.2.4 Flat Fading Knowledge Chunk
B varies as a function of differential path delay yielding constructive and 
destructive interference (Figure 7-11). The literature distinguishes fl at fading 
from selective fading. If the signal bandwidth is an order of magnitude smaller 
than ∆f, then as τ changes, the amplitude of the net received signal follows 
the curve in the fi gures, so the entire signal appears to have the amplitude of 
the point corresponding to ∆f. Essentially the entire signal fades in and out 

Atmospheric Multipath
yields Rayleigh Fading

x(t )

y(t )

x(t – t)

FIGURE 7-10 Physics of multipath propagation.
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at the same time. If τ is a microsecond, ∆f is 1 MHz so, signals with a few 
kilohertz of bandwidth fade uniformly.

Using That Knowledge : The multipath-expert CR determines how an 
observed range of multipath delay spread results in fl at fading to adjust signal 
bandwidth to mitigate fl at fading.

7.6.2.5 Selective Fading Knowledge Chunk
For τ of 1  µs and signal bandwidth of 20 MHz, the faded signal has a deep 
null moving over time. Sinusoidal components that are nearly 180° out of 
phase fade deeply while most components remain unfaded for wideband 
selective fading. A tapped delay line equalizer overcomes selective fading 
with time delay exceeding the delay spread and with suffi cient update rate.

Using That Knowledge : The multipath-expert CR can explain selective 
fading and can use multipath delay spread to adjust a tapped delay line equal-
izer to observed and projected delay spread. It learns the statistics of selective 
fading over time and space to share this knowledge with nonexpert users, with 
maintenance engineers, and CWNs.

7.6.2.6 Diversity Reception Knowledge Chunk
As the carrier frequency increases, changes in τ on the order of a fi fth of a 
wavelength transition the received signal from deeply faded to moderately 
faded. Consequently, more than one antenna spaced appropriately receive 
independently faded signals. Diversity receivers select the antenna with 
highest RSSI. Digital diversity reception combines signals from diversity 
antennas more coherently than is practicable with analog techniques.

Using That Knowledge : The multipath-expert CR can explain diversity 
reception to nonexperts. It recognizes situations in which diversity reception 

1

Df = 1/t

a1 = a2 = 1 a1 = 1; a2 = 0.3

FIGURE 7-11 Zones of constructive and destructive interference.



enhances QoI to recommend diversity antenna parameters to the user. It 
adaptively combines diversity inputs. The diversity-aware CR learns new 
signal processing techniques to enhance diversity reception, synthesizing 
combining algorithms and collaborating with CWNs.

7.6.2.7 Diversity, Smart Antennas, and FH Mitigate Fading
The statistical structure of fading depends on refl ection, refraction, and the 
speed of subscriber movement. At UHF, fades are distinct at speeds below 
5 mph with regular deep fades observed as distinct events. Diversity antennas 
placed greater than a few wavelengths apart mitigate distinct fading because 
the nulls typically extend spatially less than a wavelength. Slow FH also miti-
gates slow fading by changing f and therefore t and x in the multipath fading 
model.

Using That Knowledge : The multipath-expert CR can explain how diversity, 
smart antennas, and FH mitigate slow fading. It can initiate slow FH with an 
AACR counterpart to overcome slow fading. It can also synthesize a FH 
scheme tailored to the fading, enhancing performance or conserving compu-
tational resources and thus battery life as the user situation dictates.

7.6.2.8 Coding Mitigates Fast Fading
As the speed of the subscriber increases above 5 mph the subscriber moves 
rapidly through multipath peaks and nulls, randomizing deep fade temporal 
structure. Such fades present a k-symbols erasure channel, so a code that can 
detect d > k bit erasures and correct k bit errors removes the effects of the 
fading. As the speed increases so that the duration of erasures is on the order 
of a bit period, the deep fades have the structure of independent bit errors. 
Well known models specify BER, Eb/No channel symbol, and channel symbol 
demodulation method (e.g., hard decoding, soft decoding, trellis coding).

Using That Knowledge : The multipath-expert CR can explain the way fast 
fading changes from an erasure channel to a random bit error channel as the 
speed of movement increases. It can model Eb/No and use coding tables to 
design a forward error control (FEC) code tailored to mitigate the fast 
fading.

7.6.2.9 Using Propagation Models to Mitigate Fading
Suffi cient received signal strength for communications in urban areas may 
require the equalization of a large number of refl ections via space–time adap-
tive processing (STAP). Cellular propagation-modeling tools include WrAP 
[178] and RF-CAD [179]. By using 3D building plans accurate to less than 1 
meter, calibrated tools predict RSSI to within 10 dB. Moving refl ectors (e.g., 
trucks, aircraft, and other vehicles) complicate calibration and model valida-
tion. Calibrated models predict RSSI, equalizer, and STAP performance.
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Using That Knowledge : The multipath-expert CR can explain cellular and 
PCS models. It can list current software tools and identify those available 
locally or via CWN. It can propose to use the tool appropriate to setting up 
a CWN (e.g., an 802.11 wireless LAN hot spot) or diagnosing CWN impair-
ments. The iCR calibrates models via fi eld measurements either individually 
or in collaboration with other CRs.

7.6.3 UHF Available Communications Modes

UHF includes AM (LSB, USB, VSB), FM (voice, fax), narrowband data 
(FSK, PSK, 75 bps to 9.6 kbps typical), multichannel radio relay (4–60 chan-
nels, PPM, FSK, PSK; fractional T1–E1), and spread spectrum (CDMA) 
mobile cellular and SATCOM.

7.6.3.1 UHF Modes Knowledge Chunk
Traditional narrowband air interfaces like AM (LSB, USB, VSB), FM (voice, 
fax), and narrowband data (FSK, PSK, 75 bps to 9.6 kbps typical) are common 
in UHF.

Using That Knowledge : A UHF AACR should be able to explain to a non-
expert user the modes typically employed in UHF, including the bandwidth 
and channel spacing of legacy spectrum allocations. It recognizes narrowband 
UHF modes and can confi gure a waveform template to interoperate with 
legacy users. The iCRs confi gure <Self/> narrowband waveforms by recogniz-
ing and adapting to the counterpart air interface.

7.6.3.2 Multichannel UHF Knowledge Chunk
Multichannel UHF radio relays support 60–240 channels or more using FDM, 
PPM, FSK, PSK, and QAM channel symbols. Multichannel digital air inter-
faces include full and fractional T1 and E1, with protocols recognized by the 
channel symbol rate.

Using That Knowledge : The multichannel-expert CR should be able to 
explain multichannel radio relays, identifying channel symbols and protocols. 
It uses that knowledge to assist in setting up wireless backbone networks, 
establishing an air interface compatible with legacy radios.

7.6.3.3 JTIDS Knowledge Chunk
One of the most widely known DSSS hybrids, JTIDS, hops over 240 MHz in 
the 1.2 GHz RF band [174]. The U.S. Air Force and NATO publish the 
HAVE QUICK I and II slow FH air interface used by military aircraft.

Using That Knowledge : The JTIDS-aware CR should be able to explain the 
JTIDS air interface and protocol. It should differentiate between features that 



are in the public domain and features that are not. It should use that knowl-
edge to detect JTIDS to avoid or interoperate.

7.6.3.4 CDMA Knowledge Chunk
The most widely deployed DSSS air interfaces today are the CDMA mobile 
cellular standard, IS-95, CDMA-2000 (2.5G), and WCDMA (3G). IS-95 has 
a 1.2288 MHz chip rate, supporting 64 subscribers plus signaling and control 
in a 1.25 MHz bandwidth. Smart antennas compensate for multipath [180]. 
The 3G CDMA standards offer spreading rates up to 20 MHz, alternate syn-
chronization schemes, more effi cient vocoding, time domain duplexing, and 
MIMO.

Using That Knowledge : The CDMA-expert CR should assist a CDMA tech-
nician in setting up and tuning a CDMA network.

7.6.3.5 GSM Knowledge Chunk
GSM’s TDMA air interface predominates global cellular bands (450, 900, 
and 1800 MHz), with the transition from 2G-GPRS to EDGE and 3G 
on-going.

Using That Knowledge : The GSM-expert CR can diagnose the GSM air 
interface for services of interest, but for which the CR’s SDR personalities 
are not suited, such as web browsing, displaying video clips, or tracking a 
location on a map. It autonomously seeks network services via GSM control 
channels, pattern matching to detect EDGE and 3G such as 16 QAM channel 
symbols, adapting its air interface for maximum QoI.

7.6.3.6 Law Enforcement Knowledge Chunk
Relatively simple FH and FH/DSSS hybrids are used in UHF for voice 
privacy, for example, by government and law enforcement organizations. 
APCO recommends air interfaces for law enforcement, such as APCO Study 
Group 25 standards for 12 1–2, 8

1–3, and 6 1–4 kHz in 25 kHz legacy channels.

Using That Knowledge : The law-enforcement CR should be capable of 
explaining the difference between an unrestricted law enforcement air inter-
face such as UHF push to talk and a private air interface. It should apply 
APCO 25 to instantiate the waveform template for interoperability. It should 
determine from a trusted authority whether its user is a law enforcement 
offi cial and should limit the use of security modes to authorized personnel.

7.6.4 UHF Services and Systems

UHF service band allocations [3] include mobile cellular (450, 850, 900, 1900, 
2400 MHz), SATCOM, maritime satellite (1535 MHz), and aeronautical 
users. Antenna types include log-periodic, parabolic refl ector, and discone 
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array. Illustrative systems include the Marconi, Canada AN/GRC-103(V) 
Relay (220 MHz to 1.85 GHz, 15–30 W, 4–60 channels, PCM, DeltaMod 
FDM, 31 kg), and the FHM9104 Digital Radio Link Terminal (600–960 MHz 
and 1.35–2.1 GHz, 0.5 W, 10 channels, 45 kg) from SAT Paris [172]. SDR 
products have been developed by AirNet, MorphICs, enVia, and Toshiba.

7.6.4.1 UHF Services Knowledge Chunk
UHF service bands [5] include mobile cellular (450, 850, 900, 1900, 2400 MHz), 
fi xed satellite communications, maritime satellites (1535 MHz), and aeronau-
tical mobile satellite communications.

Using That Knowledge : A UHF AACR should be able to list UHF services 
and explain them in technically accurate radio terms. Specialized terminol-
ogy like “channel” means different things in different air interfaces. The CR 
must employ technically accurate language when communicating with expert 
users and CWNs even if its user trains it with different jargon for informal 
communications.

7.6.4.2 UHF Antenna Knowledge Chunk
UHF antenna products include log-periodic, directional parabolic refl ectors, 
and discone array antennas. The reduced wavelengths at UHF make the 
physical size of the antennas more compatible with avionics than VHF.

Using That Knowledge : The UHF antenna-aware CR should know the types 
and dimensions of common antennas for UHF. It should be able to perform 
as a technical advisor, diagnostics assistant, and/or supply clerk for  UHF 
antennas.

7.6.4.3 Sectorized Antennas Knowledge Chunk
Cellular base stations use arrays of relatively high gain elements for diversity 
and gain. A sectorized cell site might employ an array of 3–4 ft tall antenna 
elements arranged in a triangle 30 ft on a side to provide 5–8 dB gain over 
isotropic (dBi) and diversity reception. The handset, on the other hand, might 
use a helical whip with less than 0 dBi gain.

Using That Knowledge : The base-station-expert CR assists in the deploy-
ment, maintenance, and evolution of fi xed cellular infrastructure antenna 
systems.

7.6.4.4 Military UHF Radios Knowledge Chunk
Illustrative military systems in this band include digital multichannel radios 
such as the GRC-103 [181] and the FHM9104 [182].

Using That Knowledge : The military operations UHF CR knows the techni-
cal and operational parameters of legacy military radios. The visually capable 
CR recognizes the equipment to assist in confi guring federated suites.



7.6.4.5 UHF SDR Knowledge Chunk
Table 7-2 shows SDR applications parameters determined by the RF environ-
ment and air interface modes.

The Nyquist sampling rate is twice the bandwidth, but for practical SDRs, 
a ratio of 2.5 times the bandwidth is more appropriate. Dynamic range may 
be estimated in ADC bits by dividing decibels by 6 and adding 1 bit for the 
roofi ng fi lter [144]. DAC performance typically is better than the ADC for a 
given bandwidth and dynamic range.

Using That Knowledge : The SDR-aware iCR assists in defi ning and diagnos-
ing failure modes in UHF SDRs. It recommends sampling rate and dynamic 
range for SDR signal acquisition and transmission.

7.6.5 Exercises

7.6.1. Write RXML that expresses the physical properties of the UHF band (fre-
quency: 300–3000 MHz; fast fading is distinct below 5 mph and noise-like 
above 5 mph). Some RXML data looks like a database, while some looks more 
like a rule base. Defi ne an embedded database that AACR could use to store 
all RF, bandwidth, and other tabular data. Discuss the merits of RXML versus 
MySQL schema versus web ontology languages RDF, RDF-Schema, DAML, 
OIL, and OWL for this task. Write a RXML model for fast fading.

7.6.2. Write the content of Exercise 7.6.1 as rules for a rule-based inference system. 
Describe how the AACR uses this knowledge to confi gure a waveform tem-
plate for low or high processing demand (see [144]).

7.6.3. Write RXML for an AACR to advise users regarding the physical placement 
of UHF antennas.

7.6.4. Write RXML for an AACR to implement the advice “Increase the Costas loop 
bandwidth limit by a factor of 1.2.” Show how it reasons from fundamentals 
rather than needing a network download. Quantify how this <Self/> modifi ca-
tion reduces the download burden on a home CWN. Suppose an error in the 
Costas loop bandwidth precipitated a recall and the core image of each cell 
phone is 256 MB while the Costas loop bandwidth limit request takes 2 kB. 
Given a 10 million cell phone recall on a U.S. nationwide network, what is the 
cost/benefi t ratio of the self-modifi cation capability?

7.6.5. Write RXML for an AACR to be multipath aware. How does your RXML 
enable it to analyze the visual scene to hypothesize multipath causality? What 
classes of object does your RXML cast in the scene? How does it reason about 

TABLE 7-2 SDR Applications Parameters—UHF

Application Bandwidth (MHz) Dynamic Range (dB)

UHF FDM-PCM 0.1–25 40–50
GSM cellular base station 0.200 (to 5.0) 85 (65)
CDMA cellular base station 1.5–20 30–45 (Power Managed)
UHF RF 300–3,000 48–90
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distance to associate an equalizer delay tap response with an object in the 
scene?

7.6.6. See the companion CD-ROM for additional multipath and diversity 
exercises.

7.6.7. Write RXML for an AACR to explain to a nonexpert user the air interface 
modes typically of UHF, including the bandwidth and channel spacing for 
legacy SCPC spectrum allocations. Augment standard CRA <Self/> to do this. 
Discuss the merits of defi ning a new air interface such as an IEEE 802.11x that 
operates in UHF on unused TV channels in terms of existing <Self/> knowl-
edge versus defi ning it as an <ISM/> capability parameterized for UHF TV 
channels (e.g., limited to 6 MHz).

7.6.8. Write RXML for an AACR to relate UHF waveform parameters of bandwidth 
and dynamic range to SDR platform and waveform parameters including auto-
matic gain control (AGC); IF conversion; dynamic range; ADC and DAC 
bandwidth, resolution, and accuracy; digital engine precision and speed; and 
interconnect parallelism, clock speed, and bandwidth. Use the parameters of 
Table 7-2.

7.7 KNOWLEDGE OF THE SHF RADIO BAND

Although super high frequency (SHF), the microwave band, begins at 3 GHz 
according to international agreement, there is a transitional between 1 and 
3 GHz in which LoS microwave characteristics are present.

7.7.1 SHF Physics-Related Knowledge

Frequency band: 3000–30,000 MHz
Wavelengths: 0.1 m to 0.01 m

“Microwave” propagation begins at ∼1 GHz, based on beamforming with 
a high-gain antenna. Multipath delay spread of 0.5–1.5 ms is common with 
Doppler shift from low fl ying aircraft that may exceed 1 kHz at 15 GHz.

7.7.1.1 SHF Thermal Noise Knowledge Chunk
Microwave characteristics begin at about 1 GHz, including the transition of 
noise from externally generated to thermal noise. Since thermal noise is 
accurately modeled by an additive white gaussian noise (AWGN) process, 
thermal noise is sometimes called AWGN. Thermal noise is the physical 
process, while AWGN is a mathematical abstraction not identical to the physi-
cal process. The expected value of noise power (in joules) in a SHF band of 
bandwidth B is

 P kTBN =  (7-5)



where k is Boltzmann’s constant (1.380658 × 10−23 J/K), T is temperature (K), 
and B is bandwidth (Hz).

At SHF, the noise temperature is established in the antenna feed and fi rst 
stage amplifi er—the low noise amplifi er (LNA)—that establishes system sen-
sitivity, the level of signal strength that the receiver can detect.

Using That Knowledge : The SHF-aware AACR should be able to explain 
that typical SHF channels are accurately modeled by AWGN. It can use the 
relationship among noise temperature, bandwidth, and noise power of the 
Boltzmann equation (7-5), converting joules to dBm or dBW as needed. 
The SHF-aware CR measures its own noise temperature, comparing internal 
SNR and Eb/No to predictions for <Self/>-diagnosis. It interacts with main-
tenance technicians, users, and the supply system for replacement parts.

7.7.1.2 SHF Ray Tracing Knowledge Chunk
SHF propagation is accurately characterized by LoS ray tracing, so the micro-
wave bands are also called LoS bands. Propagation can include Doppler-
shifted multipath similar to UHF multipath, but with fewer signifi cant 
refl ections. At UHF, 100 refl ections can account for 99% of the received 
signal strength, with fewer than 10 (usually only one or two) at the high end 
of SHF.

Using That Knowledge : The SHF-aware AACR uses knowledge of mul-
tipath refl ections to assist users positioning microwave antennas in a visual 
scene. See the CD-ROM for additional SHF multipath knowledge.

7.7.1.3 High Gain Antennas Knowledge Chunk
High gain antennas, easy to implement at SHF, reduce the number of multi-
path refl ections with increasing carrier frequency. SHF pencil beams with 
spatial sidelobes 15 to 30 dB below the main beam are formed by parabolic 
dishes, horns, and lenses [170].

Using That Knowledge : The SHF-aware AACR relates the theory and prac-
tice of SHF antennas to its own antenna(s) to quantity antenna performance 
and to recommend antennas that meet user- or technician-specifi ed needs, 
such as lower sidelobe refl ections.

7.7.1.4 Atmospheric Absorption Knowledge Chunk
SHF energy is absorbed by the atmosphere better than UHF, reducing refl ec-
tions from distant objects. Depending on climate, SHF absorption is about 
0.007 dB per kilometer at frequencies below 10 GHz. Absorption peaks in the 
SHF band at the 21 GHz water absorption line at about 0.2 dB/km, dropping 
to 0.07 dB/km between 28 and 34 GHz.
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Using That Knowledge : The SHF-aware AACR estimates absorption as a 
function of weather forecast for its SHF communications links using line of 
sight absorption in main beam and sidelobes. It advises the nonexpert user 
on the choice of frequencies in the SHF band based in part on atmospheric 
absorption.

7.7.1.5 Tapped Delay Line Knowledge Chunk
SHF multipath delay spread often ranges from 0.5 to 1.5 microseconds for 
LoS propagation, with fewer refl ectors than VHF UHF. Time domain adap-
tive equalizers mitigate multipath. The number of taps in the T/2 time-domain 
adaptive equalizer delay line depends on BPSK data rate and delay spread:

Ntaps delay spread channel symbol period= − −( ) ∗ 2 == ∗ ∗D Rb 2  (7-6a)
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The computational cost of T/2 equalizer trading is proportional to the 
number of taps while the cost of rapidly initializing the equalizer is propor-
tional to the square or cube of the number of taps because of a matrix inver-
sion. Equalizers achieve BER as a function of Eb/No and multipath dynamics. 
Forward error control (FEC) improves BER at the expense of data rate over-
head and MIPS.

Using That Knowledge : The AACR estimates and measures multipath 
refl ections of a <Scene/> to confi gure its adaptive equalizer accordingly. It 
adjusts the computational burden QoI needs like enhanced data rate or 
constraints like the conservation of battery life. The AACR confi gures the 
<Self/> to combinations of data rate, equalizer settings, and FEC for observed 
link conditions.

7.7.1.6 Directionality Knowledge Chunk
SHF radio waves do not fi ll in shadowed areas well.

Using That Knowledge : The SHF-aware AACR can predict SHF shadowing 
and Fresnel zones and can employ this knowledge for CWN siting and for the 
mitigation of multipath and interference.

7.7.1.7 Radar Bands SHF Knowledge Chunks
Geometric LoS and high gain antennas at SHF are ideal for military and 
civilian radars that track aircraft and estimate weather severity. SHF radars 
use signals of large time–bandwidth (TW) product with nearly ideal ambigu-
ity surfaces and high spatial resolution.



Using That Knowledge : Radar-aware AACRs analyze and mitigate interfer-
ence with <Self/> and CWN communications signals. The radar-expert CR 
synthesizes SHF waveforms with good information density and ambiguity 
surfaces for simultaneous communications and radar functions.

7.7.1.8 WLAN Hot-Spot Knowledge Chunk
Cellular, PCS, and wireless local area networks use SHF spectrum near radar 
bands (e.g., the 5.4 GHz ISM bands) for small antennas, high directionality, 
and wide bandwidths for hot-spot applications. In hot spots, there are often 
many more radios than channels available (e.g., shopping malls and sporting 
events).

Using That Knowledge : The AACR learns the locations and incremental 
costs of hot-spots to shape traffi c for user objectives of lowest cost or timely 
delivery. It also might learn the best location for a palmtop video teleconfer-
ence at, say, 128 kbps.

7.7.1.9 Doppler Shift Knowledge Chunk
Doppler shift (e.g., from 400 mph aircraft) may exceed 1 kHz at 15 GHz. At 
frequency f,
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If a refl ecting object moves away with velocity v, the distance is increasing, 
so the wavelength appears to be stretched and frequency is reduced. Table 7-3 
shows Doppler shift for representative scenarios.

At HF, the plasmas in the ionosphere often have an apparent velocity of 
2000 mph or more, inducing Doppler shifts of up to 5 Hz. Doppler shift is 
proportional to the cosine of the angle between an aircraft or satellite fl ight 
path and the RF LoS. Short-range EHF links experience Doppler shifts of 
over 1 kHz. In addition, the total Doppler shift between two moving platforms 
can be double that shown in Table 7-3. The Doppler shift between a ground-
based receiver and a low Earth orbit (LEO) satellite at EHF decreases from 
+30 kHz to zero when the satellite is overhead and continues to decrease to 

TABLE 7-3 Doppler Shift

Application Frequency Refl ector Velocity Doppler Shift

HF 10 MHz Ionosphere  2,000 mph 3.259 Hz
SHF ground  1 GHz Aircraft   500 mph 81.48 Hz
EHF ground 15 GHz Aircraft   500 mph  1.22 kHz
EHF LEO 21 GHz Satellite 10,000 mph  34.2 kHz

KNOWLEDGE OF THE SHF RADIO BAND     249



250     RADIO KNOWLEDGE

−30 kHz as the satellite recedes. Doppler shifts, positive and negative, must 
be compensated by analog or digital carrier tracking loops.

Using That Knowledge : The Doppler-expert iCR knows the equations for 
Doppler shift and can identify those objects in a scene that affect Doppler 
shift. It also learns about frequency shift phenomena by observing the envi-
ronment. The Doppler-expert iCR applies this knowledge to enhance QoI, 
for example, by pointing the antenna away from the nearby airfi eld to mini-
mize Doppler spreading of a HDR SHF channel.

7.7.2 Spatial Distribution of SHF Energy

Spatial distribution of SHF energy includes troposcatter where a BLoS trans-
mitter illuminates a point of refraction in the troposphere (Figure 7-12). LoS 
SHF communications over water encounter spectral refl ections with Rayleigh 
or Rician probability distributions of multipath [183, 184].

7.7.2.1 Rayleigh Fading Knowledge Chunk
Rayleigh scattering induces hundreds to thousands of refl ections of compa-
rable signal strength with different time delay for apparently random phase 
of the received sinusoids. The Rayleigh fading model is a very good approxi-
mation for SHF scattering above 4 GHz.

Below 4 GHz, however, the probability that the signal level is less than the 
abscissa is not as high as the Rayleigh model predicts. FEC mitigates Rayleigh 
fading if the fade duration at erasure depth is less than the b-burst error cor-
rection capability of the code. If erasures exceed the FEC-correctable time 
delay, then packets may be corrected with automatic repeat request (ARQ) 
protocols.

Troposcatter

Refraction vs
Temperature

Spectral Multipath

FIGURE 7-12 Spectral multipath causes Rayleigh–Rice fading.



Using That Knowledge : The SHF-aware iCR knows the Rayleigh distribu-
tion of signal strength and uses that to predict fade depth and duration in a 
<Scene/>. It confi gures FEC or ARQ protocols to accommodate the pre-
dicted fading, measuring actual fade depth (Eb/No during the fade) and dura-
tion to diagnose Rayleigh fading. The iCR recommends, synthesizes, and 
tests remedial actions in the fi eld collaborating via CWNs.

7.7.2.2 Rician Fading Knowledge Chunk
Rice noted that the statistical structure of amplitude varies as a function of 
the number of strong multipath components, offering a model of amplitude 
distributions parameterized by the number of such strong paths. As the 
number of paths with approximately the same phase increases, the amplitude 
distribution becomes tighter and the variance of the amplitude distribution 
decreases.

Using That Knowledge : The Rician-aware AACR can describe the differ-
ence between Rayleigh and Rician fading to a nonexpert and can employ that 
knowledge to diagnose link conditions and to mitigate fading.

7.7.2.3 SDR Mitigation of Fades
SDR algorithms that mitigate Rayleigh–Rice fading include FEC, ARQ pro-
tocols, and bridging the data clock across deep fades. Coherently combining 
energy from diversity antennas reduces fade depth. Cyclostationary process-
ing at the frame rate enhances Eb/No for synchronously framed data links. 
Because of the statistical structure of fades, the rate of convergence of such 
algorithms varies and processing demands also vary with fade depth. The 
Gamma function estimates the rate at which fade mitigation processing 
resources may be exceeded.

Using That Knowledge : The SHF-fade-aware AACR adapts the appropriate 
SDR waveform parameters to accommodate encountered fade statistics. It 
allocates SDR resources to remain within processing capacity and statistical 
limits. Collections of alternate mitigation algorithms gracefully adapt mitiga-
tion to the hardware platform.

7.7.3 SHF Available Communications Modes

SHF communications modes include:

High capacity microwave (FM/FDM, PPM, PWM, PCM/QAM (1.544, 
2.048,  .  .  .  , 45, 90, 155, 622 Mbps))

Troposcatter (2 and 4.5 GHz bands, analog and digital)
Spread spectrum, satellite CDMA, FH-DS hybrids, and OFDM
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Terrestrial SHF air interface modes include high capacity microwave, tro-
poscatter, and spread spectrum communications.

7.7.3.1 High Capacity Microwave Knowledge Chunk
Point-to-point microwave radio was initially developed for high capacity 
backbone links of the Public Switched Telephone Network (PSTN). In the 
mid-1980s, digital microwave dominated this market but has largely been 
superseded by fi beroptics in developed economies. High capacity microwave 
retains niche applications in developing economies, in rugged terrain, for 
backup of primary fi ber links, for cable television (CATV) distribution, 
and for microwave backhaul of cellular telephone traffi c. Backhaul operates 
between cellular base transmission station (BTS) and the base station con-
troller (BSC) or mobile telephone switching offi ce (MTSO). To keep costs 
low, CATV and backhaul may use analog FM/FDM or commodity digital 
radios (e.g., T- or E-carrier).

Using That Knowledge : The SHF-aware AACR can explain historical and 
current applications of high capacity microwave radio to nonexperts and uses 
this knowledge to diagnose and mitigate interference in SHF <Scenes/>.

7.7.3.2 Mobile Microwave Radio Trunking Knowledge Chunk
Military markets and humanitarian relief employ mobile SHF microwave 
radio trunks for high capacity interconnect among deployable wireless base 
stations.

Using That Knowledge : The mobile SHF-adaptive AACR can confi gure 
itself for microwave radio trunking. It can advise the nonexpert user regard-
ing antennas, siting, baseband switching, and RF interconnect for T- and E-
carrier trunking.

7.7.3.3 T- and E-Carrier Air Interface Standards
The high capacity microwave air interface includes the legacy analog formats 
FM/FDM, pulse position modulation (PPM), and pulse width modulation 
(PWM). Modern systems use PCM with BPSK, QPSK, QAM, and partial 
response channel symbols. QAM amplitude–phase combinations range from 
16 to 1024 in powers of 2, each requiring higher SNR. Data rates range from 
128 kbps for military radios to T1 (1.544 Mbps), E1 (2.048 Mbps), and OC-1 
(51.84 Mbps) multiples through the OC–N level of the synchronous digital 
hierarchy (SDH) [144]. Packing OC-12 into a 30 MHz spectrum allocation 
requires multicarrier–QAM hybrids like 4 × 256 QAM, needing 40 dB SNR, 
equalization, FEC, bit interleaving, and randomization for high computa-
tional complexity historically requiring ASIC hardware. Contemporary 
FPGAs and DSPs deliver equivalent GFLOPS, so low and medium data rate 
T- and E-carrier may be SDRs. The T- and E-carrier systems use Signaling 
System Seven (SS7) for dialing, call setup, switching, and PSTN interfaces.



Using That Knowledge : The SHF-SDH-aware AACR can explain the SDH 
to nonexperts. It can confi gure its processing, buffering, and interconnect for 
low to medium capacity microwave trunking with SS7 to cross-connect its 
wireless <User/> to the PSTN.

7.7.3.4 Troposcatter Knowledge Chunk
As illustrated in Figure 7-12, troposcatter is useful when transmitter and 
receiver are not within LoS of each other [170]. Each radio points at a scat-
tering region in the troposphere where weak coupling mandates very large 
apertures (e.g., 10 meter dish), kilowatts of power, and diversity reception. 
Effective isotropic radiated power (EIRP) of 90 dBm provides suffi cient SNR 
for multichannel relay but can interfere with nearby wireless systems. The 
military troposcatter networks connect headquarters to clusters of geographi-
cally dispersed units with lower acquisition cost than satellite communica-
tions and with the ability to operate at extreme northern and southern 
latitudes. Air interface modes include FM/FDM, PPM, PWM, and PCM 
[172].

Using That Knowledge : The troposcatter-aware AACR can explain tro-
poscatter systems to nonexperts. It reconfi gures RF, fi ltering, baseband, DSP, 
buffer memory, switching, and supervisory resources for troposcatter. With 
large antennas and powerful RF amplifi ers, the troposcatter-adaptive CR 
replaces dedicated troposcatter IF, baseband, and supervisory radio functions 
with SDR. It also learns the best siting and confi guration for QoI objectives 
while minimizing wireless interference.

7.7.3.5 Microwave Spread Spectrum Knowledge Chunk
The Joint Tactical Information Distribution System (JTIDS) occupies 
250 MHz between 1 and 2 GHz [183]. JTIDS employs a 32 chip DSSS pseudo-
noise (PN) spreading sequence on each bit with instantaneous bandwidth of 
3 MHz. Chip bursts hop across a 250 MHz agility band at over 1000 hops per 
second.

Using That Knowledge: The JTIDS-aware AACR characterizes JTIDS net-
works to avoid interference. The JTIDS-adaptive AACR instantiates a wave-
form template for interoperability, permission to join the network, identifi cation 
of network services, role, and security.

7.7.3.6 SHF CDMA Knowledge Chunk
The U.S. Defense Science Board’s panel on wideband communications [184] 
recommended the expansion of high capacity spectrum sharing technologies 
like CDMA. Instantaneous CDMA bandwidths of tens of megahertz are 
practical at SHF. Wireless LANs, for example, use 50 MHz CDMA to over-
come multipath and provide asynchronous multiple access. Satellite commu-
nications also use CDMA with FH-DS hybrids for error mitigation and 
privacy.
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Using That Knowledge : The CDMA-aware AACR uses its knowledge of 
SHF antennas, propagation, and the local <RF-environment/> to establish 
CDMA CWNs within local spectrum management constraints.

7.7.4 SHF Services and Systems

SHF service band allocations [172] include radio navigation, fi xed satellite, 
maritime, MetSat, fi xed/mobile satellite (X-band), fi xed point-to-point links, 
and intersatellite communications. SHF antennas typically are horns or para-
bolic refl ectors (“dishes”). Illustrative systems include the Alcatel TFH950S 
Digital Troposcatter (1.7–2.1 and 4.4–5 GHz, 10–1500 W, 2048 kbps, 2 DPSK, 
37 kg [172, p. 181]), the Siemens FM15000 (15 GHz, 100 mW, 256–1024 kbps, 
10 kg), and products from Nortel, AT&T, BT, and NTT. Emerging SDR prod-
ucts include SigTek [172, p. 70].

7.7.4.1 SHF Services Knowledge Chunk
SHF services leverage LoS, high gain antennas, and wide instantaneous 
bandwidths [170].

Using That Knowledge : The SHF-aware AACR can describe SHF services 
for nonexpert users. It continuously compares explicit and implicit user 
expressions of interest to its templates for SHF information services based on 
observed content.

7.7.4.2 SHF Antenna Knowledge Chunk
SHF antennas include pyramidal horns and parabolic refl ectors, popular at 6 
and 11 GHz. Antenna type, gain, transmit power capacity, noise fi gure, size, 
weight, power, and RF connector types characterize SHF antennas.

Using That Knowledge : The SHF-aware AACR can explain SHF antennas 
and technical characteristics, confi guring the <Self/> for terrestrial trunking, 
ad hoc CDMA networks, and WLANs.

7.7.4.3 SHF Legacy Troposcatter Knowledge Chunk
The Alcatel TFH950S Digital Troposcatter system [185] operates from 1.7 
to 2.1 GHz and from 4.4 to 5 GHz, radiating from 10 to 1500 watts of power 
with data rates to 2048 kbps. It weighs 37 kg, not including the antenna 
[172, p. 181].

Using That Knowledge : The SHF-troposcatter AACR can adjust a SDR 
waveform template to interoperate with legacy systems like the TFH950S.

7.7.4.4 Legacy SHF Digital Microwave
The Siemens FM15000 military digital microwave radio operates from 15.1 
to 15.3 GHz, radiating 100 mW of power into a high gain antenna with data 
rates from 256 to 1024 kbps.



Using That Knowledge : The SHF-aware military or humanitarian relief 
iCRs can adjust SDR waveforms to interoperate with the FM15000 and other 
legacy digital microwave radios, verifying the air interface collaboratively 
with an expert user.

7.7.4.5 Advanced Topics
See the companion CD-ROM for additional knowledge chunks on legacy 
commercial microwave radios, SDR beam-pointing, and SATCOM.

7.7.5 Exercises

 7.7.1. Write RXML that enables your SHF-aware AACR to explain that SHF 
channels are typically AWGN channels, and to identify those that may not be 
(e.g., ISM bands).

 7.7.2. Write RXML that enables your AACR to know that it should measure its 
own noise temperature and compare internal signal strength (SNR or Eb /No) 
to expected signal in order to self-diagnose performance problems. Describe 
the functions of a self-diagnosis subsystem based on this knowledge. What 
other capabilities would the RF platform need to achieve built-in self-test? 
Discuss the merits of internally generated self-test signals versus the use of 
known external signals (e.g., broadcast signals). How does this trade-off 
change from HF through SHF?

 7.7.3. Write RXML that enables your AACR to know the theory and practice of 
SHF antenna types. Describe the fl ow of logic as your AACR uses this 
RXML to explain its own antenna(s) in terms of that theory. Implement that 
logic for an AACR that knows about all of the SHF antennas in a standard 
reference such as Reference Data for Engineers [170]. Write Java for the 
automatic instantiation of the RXML from softcopy text and fi gures.

 7.7.4. Find a SHF antenna manufacturer on the Web. Write RXML that integrates 
this manufacturer’s product line into the answer to Exercise 7.7.3. Write 
a PERL script that fi nds the next antenna manufacturer on the Web and 
instantiates the RXML. Find a manufacturer that uses OWL for SHF antenna 
products. If there are none, write your own OWL for two products. If you fi nd 
one, make your PERL work with OWL. If there are more than one, discuss 
the problems using OWL for RXML.

 7.7.5. Write RXML for your AACR to explain the difference between SHF mul-
tipath and that of other bands such as UHF and EHF.

 7.7.6. Write a program that estimates absorption for a given SHF communications 
link distance. Write RXML to describe this program to your AACR. Write 
a parser for NL text questions about absorption. Use this RXML plus the 
program to answer questions about SHF absorption.

 7.7.7. Write RXML that enables your AACR to be radar aware. How can it use this 
knowledge of radar to analyze interference with communications signals? 
Defi ne RXML and SDR functions so that the radar-expert AACR can syn-
thesize CDMA codes with good ambiguity surfaces [186] to serve both com-
munications and radar functions. Explain how the integration of ranging and 
communications enables cellular infrastructure to perform E911 emergency 
location.
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 7.7.8. Write RXML that enables your AACR to learn the locations and incremental 
costs of SHF hot-spot nodes in the user’s environment. Write a PERL script 
or Java program that uses this RXML to shape traffi c for lowest cost or most 
timely delivery of large fi les. Explain how to enable the AACR to learn the 
best location for a palmtop video teleconference at, say, 128 kbps via CBR. 
Describe the training of the CBR. Implement this in Java, C, or PERL 
instead. Measure the costs of CBR fraining versus coding.

 7.7.9. Write RXML for a Doppler-expert AACR. Implement the equations for 
estimating Doppler shift in C or Java. Write RXML for a Doppler(s, f, W) 
function. Explain how <Self/> with vision could identify objects in a <Scene/> 
that will affect Doppler shift. Implement RXML and inference to identify a 
large track producing Doppler-shifted multipath.

7.7.10. Write RXML for an AACR to know the Rayleigh distribution of signal 
strength. Explain how it uses that RXML to predict fade depth and duration 
statistics. Write Java or PERL that uses the RXML to adjust an adaptive 
equalizer to deal with 90% of the fades predicted for a 5.5 GHz ISM band.

7.7.11. Find a rule-based expert system shell or an authoring facility to interpret 
RXML to explain historical and current applications of HDR microwave 
radio to nonexperts. Write RXML for AACR to explain the low and middle 
levels of the SDH to nonexperts using the expert system shell.

7.7.12. Write RXML that enables the <Self/> to reason about SHF trunking. Write 
Java, JESS, or C to use this knowledge to confi gure its processing, buffering, 
and interconnect for low capacity microwave trunking. Test the confi guration 
in a simulated environment.

7.7.13. See the companion CD-ROM for exercises with microwave backbones and 
SHF antenna pointing.

7.8 KNOWLEDGE OF EHF, TERAHERTZ, AND FREE SPACE OPTICS

EHF, the millimeter wave band, spans from 30 to 300 GHz. Terahertz fre-
quencies then extend from 300 GHz to 3 THz. The terahertz bands are of use 
in medical diagnosis but not telecommunications. Free space optics (FSO) 
frequencies of 300 THz correspond to wavelengths of 1000 nanometers. Com-
munications applications of FSO include the ubiquitous infrared data access 
(IRDA) port and the TV remote control.

7.8.1 EHF Physics-Related Knowledge

Frequency band: 30,000–300,000 MHz
Wavelengths: 0.01 m to 1 mm (millimeter wave)
EHF propagation modes consist of direct and refl ected LoS skywave with 

nearly complete attenuation from birds, clouds, rain, snow, and ice 
(except for nonlinear punch-through). Propagation can be very direc-
tional with little ionospheric scintillation.



7.8.1.1 EHF Propagation Knowledge Chunk
Free space optics (FSO) and millimeter wave RF obey similar physical optics 
propagation characteristics with pronounced absorption by water and atmo-
spheric gases. EHF is an ideal band for short-haul wideband communications 
systems via pencil-beams (Figure 7-13). Low data rate FSO refl ects in small 
spaces for short range non-LoS links like TV remote control. Increased data 
rates require exact pointing with main beam tracking. EHF HDR have pencil 
beamwidths of fractions of a degree for 1 foot antenna apertures with point-
ing accuracy of milliradians over distances of kilometers. EHF carrier fre-
quencies enable 100 Mbps to Gbps data rates with relatively low cost 
components.

Using That Knowledge : The EHF-aware AACR knows the link budget 
equations of EHF/FSO communications. It models low data rate refl ection 
modes and HDR pointing and tracking modes. It applies these models to 
predict and diagnose EHF/FSO QoI enhancement opportunities.

7.8.2 EHF Spatial Distribution of Energy

The spatial distribution of EHF energy is illustrated in Figure 7-13.

7.8.2.1 EHF Attenuation
The atmosphere attenuates electromagnetic radiation through two distinct 
mechanisms: gaseous attenuation and absorption due to precipitation.

7.8.2.2 EHF Attenuation Knowledge Chunk
EHF signals are easily attenuated by clouds, rain, snow, and ice [170]. Any-
thing solid from buildings to birds blocks the radiation. Gaseous attenuation 
loss is less than 0.01 dB per km to 12 GHz. Water absorption peaks at 0.2 dB 
per km at 22 GHz, a candidate for low probability of intercept (LPI) data 
links. For longer ranges, the “water hole” of minimum absorption of 0.06 dB 
per km at 34 GHz attracts military multichannel and commercial T1/E1 

FIGURE 7-13 Propagation of EHF energy.

KNOWLEDGE OF EHF, TERAHERTZ, AND FREE SPACE OPTICS     257



258     RADIO KNOWLEDGE

campus data links. Gaseous absorption increases from 0.2 dB/km (H2O) at 
60 GHz to 15 dB/km for O2 at 120 GHz, and over 40 dB/km in the 190 GHz 
water absorption line. Low O2 absorption (0.3 dB per km) at 90 GHz supports 
multichannel communications, radar, and so on.

Using That Knowledge : The EHF-aware AACR employs models of link 
attenuation to assist nonexpert users with siting, spectrum management, and 
diagnosis of link impairments.

7.8.2.3 EHF Precipitation Knowledge Chunk
In addition to gaseous water in the air due to humidity, precipitation increases 
specifi c attenuation. Precipitation intensities of 0.4–4 mm/h (nominal rainy 
day), attenuate frequencies below 5 GHz less than 0.01 dB per km. In the 
tropics, however, precipitation ranges from 10 to 50 mm/h to increase absorp-
tion to 0.2 at 6 GHz, 1 dB per km at 9 GHz and 10 dB/km at 20 GHz.

Using That Knowledge : The EHF-aware AACR employs its knowledge of 
precipitation to assist nonexpert users in planning EHF, terahertz, and free 
space optics communications.

7.8.3 EHF Communications Modes

EHF communications modes include high capacity microwave—FM/FDM, 
PPM, PWM, PCM/QAM (1.544, 2.048, 45, 90, 155, 622 Mbps)—and radar-
related data links. Applications include “campus” data links, “up the hill” 
military links, and wireless PCS node interconnect (“backhaul”).

7.8.3.1 EHF Modes Knowledge Chunk
EHF readily supports HDR microwave air interfaces, particularly PCM and 
QAM with data rates from T1/E1 (1.544 and 2.048 Mbps) to T3 (45 and 
90 Mbps), and OC-3 (155 Mbps) to OC-12 (622 Mbps) and beyond. Applica-
tions like campus data links readily range from 100 m to 1.5 km at OC rates. 
The military “up the hill” radios link command centers to elevated radio-
relay points over a range of a few kilometers. EHF for cellular and PCS 
markets connect BTS and BSC.

Using That Knowledge : The EHF-aware AACR can explain EHF modes to 
the nonexpert user and can assist the user in deploying EHF nodes to support 
use cases.

7.8.4 EHF Services and Systems

EHF service band allocations [3] include fi xed/mobile satellite (39.5–40, 71–
74, 134–142, 252–265 GHz), fi xed point-to-point links, amateur satellite, 
radio-based location, and earth observation satellites. EHF antennas typi-



cally are lenses, horns, or parabolic refl ectors. Illustrative systems include the 
Tadiran GRC-461 MM Wave Terminal (37.06–37.45 GHz and 38.5–38.89 GHz) 
that supports NATO, EUROCOM, and HDB-3 at 256–8446 kbps [172].

7.8.4.1 EHF Subbands Knowledge Chunk
EHF includes popular millimeter wave bands (39.5–40, 71–74, 134–142, and 
252–265 GHz). Services include those listed above plus future 134 GHz EHF/
FSO hot-spot application where the user’s CPDA may point a narrow EHF 
beam at an information kiosk to obtain a Gbps download of a 10 Mbyte guide 
to the shopping mall, taking 100 ms for ephemeral HDR.

Using That Knowledge : The EHF-aware AACR employs this knowledge to 
predict, plan, and implement physical access to the bands and modes that 
enhance QoI. EHF/FSO links may require probing and cooperative pointing. 
The EHF CR recognizes access opportunities like EHF hot-spot kiosks, 
downloading necessary waveforms.

7.8.4.2 EHF Antennas Knowledge Chunk
Antennas employed in these bands include plates, horns, and parabolic 
refl ectors.

Using That Knowledge : The EHF-antenna-aware AACR knows EHF anten-
nas theory and practice, modeling its own EHF access to assist nonexpert 
users with EHF operations.

7.8.4.3 EHF Systems Knowledge Chunk
Illustrative EHF systems include the Tadiran GRC-461 [172] millimeter wave 
terminal with RF and direct-connect fi ber-interoperability modes.

Using That Knowledge : The EHF-aware AACR assists the nonexpert user 
in locating EHF networks. For humanitarian relief, AACRs bridge low data 
rate voice and data nodes to the Tadiran legacy radio for E1 trunking among 
clusters of RF activity. It learns from experience to identify situations where 
EHF enhances QoI.

7.8.4.4 EHF SDR Knowledge Chunk
See the companion CD-ROM for EHF SDR knowledge.

7.8.5 Exercises

7.8.1. Write RXML for an AACR to know the link budget equations of EHF/FSO 
short-range LoS radios. Augment this RXML so that the <Self/> knows which 
radio is integrated into its own hardware platform and which others are inte-
grated into peers. Augment this RXML to know that FSO is limited to low 
data rate refl ection. Add high data rate pointing and tracking modes by 
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adapting the SHF pointing and tracking exercise. Augment the RXML to 
predict available data rates. Write Java or C or use an inference engine to 
produce those inferences in Q/A interactions.

7.8.2. Write RXML to establish that the atmosphere attenuates EHF electromag-
netic radiation via gaseous attenuation and absorption due to precipitation. 
Augment this RXML with a database model of link attenuation (e.g., digitize 
attenuation curves from the Web and place the RF–attenuation pairs in a 
database). Explain how this RXML could be used to assist a nonexpert user 
with siting of the AACRs for a humanitarian relief operation. With Java or 
Voice XML to do this via a structured dialog. Augment this RXML with EHF 
spectrum management knowledge. Explain how to use RXML to diagnose 
EHF link impairments similar to the SHF use cases.

7.8.3. Write RXML for an AACR to know about microwave HDR air interfaces 
including FM/FDM, PPM, and PWM. Augment this RXML to include PCM 
and QAM (T1/E1, T3, OC-3, and OC-12). Describe applications of these air 
interfaces for “campus” data links in RXML. Use this RXML to set up such 
an infrastructure in a simulated <Scene/>. Describe a military use of such links 
for “up the hill” communications via RXML to show that EHF links may be 
used between elevated radio relay points over ranges of a few kilometers. Write 
Java or C so that a simulated iCR discovers the radio relay application of EHF 
autonomously.

7.8.4. See the companion CD-ROM for additional EHF/FSO exercises.

7.9 SATELLITE COMMUNICATIONS KNOWLEDGE

Communications satellites [187] operate in the three orbital regimes illus-
trated in Figure 7-14.

HEO
Highly Elliptical Orbit

GEO

Geosynchronous
Orbit

LEO

Low Earth Orbit

FIGURE 7-14 Satellite communications.



7.9.1 Satellite Knowledge Chunks

The following knowledge chunks and thoughts on the innovative use of that 
knowledge lay the foundation for the formal codifi cation of knowledge of 
radio in the next chapter.

7.9.1.1 Geosynchronous Satellite Knowledge Chunk
Geosynchronous (GEO) satellites have an orbital period that is nearly identi-
cal to the Earth’s rotational period, resulting in an apparent stationary posi-
tion above the equator at an altitude of approximately 22,500 miles. A VHF 
SHF GEO satellite’s tangential LoS visibility ranges between the arctic circles 
in an oblate elliptical footprint about 8000 miles across. Practical terminals 
require the GEO to rise a few degrees above the horizon, further limiting the 
useful footprint. Many GEO satellites support domestic satellite (DOMSAT) 
services, often through a directional domestic coverage footprint. The ITU 
and WRC GEO databases specify parking orbits and related frequency allo-
cations. Adjacent-orbit interference results from excessive uplink antenna 
sidelobe radiation. One limitation of DOMSAT service is the 0.264 second 
round-trip delay between the GEO satellite and the Earth. Such long time 
delays annoy speakers, rendering GEO satellites better for video relay or data 
than voice.

Using That Knowledge : The SATCOM-aware AACR can explain GEO 
operation to the nonexpert user. The GEO-capable AACR assists the user 
in selecting pointing angles and frequency channels to establish and maintain 
links. The iCR learns these patterns from experience.

7.9.1.2 LEO/MEO Satellite Knowledge Chunk
Low Earth orbit (LEO) satellites orbit at between 150 and 1500 miles, reduc-
ing round-trip time delay to less than 20 ms. LEO satellites typically have 90 
minute orbits with about 10 minutes of visibility above the horizon on each 
satellite pass. Medium Earth orbit (MEO) satellites operate at higher alti-
tudes between 1500 and typically 8000 miles, yielding longer orbital periods. 
Motorola’s Iridium [188, 189] satellite system provides LEO voice telephony 
and data services with global coverage via 66 satellites and on-orbit spares. 
LEO–MEO design parameters include the number of satellites, the time 
waiting for satellite visibility, or the number and duration of link outages per 
day. LEO satellites provide good coverage near the equator but longer and 
more frequent outages at more northern or more southern latitudes. Continu-
ous coverage at higher latitudes requires a full (and thus relatively expensive) 
constellation. Ephemeris tables and orbital modeling tools enable one to 
accurately predict satellite orbits.

Using That Knowledge : The SATCOM-aware AACR can explain the differ-
ences among GEO, LEO, and MEO to nonexperts. Such AACRs can answer 

SATELLITE COMMUNICATIONS KNOWLEDGE     261



262     RADIO KNOWLEDGE

questions about specifi c orbits and types of satellites (e.g., using COTS model-
ing tools) [190].

7.9.1.3 HEO Satellite Knowledge Chunk
Highly elliptical orbit (HEO) satellites enable sustained SATCOM coverage 
at higher latitudes with only a few (typically three) satellites: one rising 
toward apogee, one setting from apogee, and the other in perigee. The apogee 
of such a modest constellation may be placed near the arctic circle for high 
continuity service to high latitudes such as Siberia (e.g., for the Russian 
Molnyia satellites).

Using That Knowledge : The SATCOM-aware AACR can explain the differ-
ence between HEO and other orbital regimes. The HEO-capable AACR 
employs modeling tools to predict pointing angles and to adaptively control 
antenna pointing to achieve link continuity. CRs learn over time to optimize 
pointing and tracking parameters. CRs also learn to adapt frequency usage 
and waveform parameters to enhance quality of service (QoS).

7.9.2 SATCOM Physics-Related Knowledge

Frequency bands: VHF, UHF, SHF, EHF.
Propagation modes include geosynchronous (low Doppler), highly ellipti-

cal (moderate Doppler), and low Earth orbit (high Doppler).
Propagation phenomena include Faraday rotation, ionospheric scintilla-

tion, ground station sidelobe control, and mobile satellite rain fades 
[8].

7.9.3 SATCOM Spatial Distribution of Energy

Satellite communications entail Doppler shift, Faraday rotation, sunspot-
induced anomalies, the magnetosphere, and other channel impairments.

7.9.3.1 Satellite Doppler Shift Knowledge Chunk
Satellite frequency bands are traditionally the lettered band designations 
[170]. GEO satellites experience near zero Doppler shift while highly ellipti-
cal satellites near apogee exhibit moderate Doppler of from a few hundred 
hertz to upward of 20 kHz for ascending and descending operation. A C-band 
HEO satellite imparts 325 Hz of Doppler shift on a 2 GHz carrier for a 
nominal 1000 mph satellite velocity normal to radio LoS from the ground 
station (“radial velocity”). The same HEO spacecraft operating at 21 GHz 
imparts a 17.1 kHz Doppler shift on the carrier for an extreme radial velocity 
of 5000 mph. LEO satellites, on the other hand, impart high positive Doppler 
shifts as the satellite rises above the radio horizon, transitioning through zero 
and to high negative Doppler shift prior to setting on the opposite horizon. 
Iridium’s 785 mi orbit imparts approximately 600 Hz of Doppler on its 3 GHz 



carrier, with a carrier tracking requirement of over 1200 Hz, or about 
2 Hz/s.

Using That Knowledge : The SATCOM-aware AACR predicts, measures, 
and compensates for Doppler shift to achieve consistently high QoS.

7.9.3.2 Satellite Propagation Knowledge Chunk
Propagation between satellites and ground terminals must contend with 
Faraday rotation, ionospheric scintillation, ground station sidelobe control, 
mobility, and rain fades. Faraday rotation is the distortion of electromagnetic 
wave polarization as the wave transits the plasmas in the ionosphere, resulting 
in elliptical polarization at the receiver, with the attendant loss of received 
signal strength. Ionospheric scintillation is the equivalent of terrestrial multi-
path, induced by path length differences of multiples of a wavelength with 
nearly equal amplitudes for alternate constructive and destructive interfer-
ence that present an erasure channel.

Using That Knowledge : The SATCOM-capable AACRs compensate for 
known path impairments. The iCRs discover path impairment phenomena 
independently, proposing to CWNs and testing mitigation strategies 
autonomously.

7.9.3.3 Sidelobe Knowledge Chunk
GEO ground stations control spatial sidelobes to limit sidelobe radiation to 
typically less than 40 dB below the radiated power. High GEO orbit packing 
density necessitates a large ground station for sidelobe control per interna-
tional treaty. Active sidelobe cancellation imparts additional RF channels and 
processing requirements on the transmission segments of SATCOM SDR for 
spectrally and spatially pure transmitted waveforms.

Using That Knowledge : The SATCOM-aware AACR can explain sidelobe 
control to the nonexpert and can assist the user in establishing and maintain-
ing sidelobe control.

7.9.4 Available Satellite Communications Modes

SATCOM modes include heavy Earth terminal (symmetrical), DOMSAT 
(multichannel, cable protection), mobile satellite terminals (INMARSAT—
voice, LBR data), very small aperture terminal (VSAT), low data rate asym-
metrical terminals, direct broadcast satellite (DBS), wideband asymmetrical 
terminals, spread spectrum, and military (SHF, EHF, LEO).

7.9.4.1 Fixed Heavy Earth Terminal Knowledge Chunk
Domestic satellites (DOMSATs) can connect distant cities via the PSTN in 
developing economies. In such symmetric applications all ground station 
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antennas are nearly the same size (often tens of meters). With similar technol-
ogy, the International Communications Satellite Corporation (INTELSAT) 
has operated transoceanic PSTN links for international gateways. This service 
includes legacy FM/FDM, T/E-carrier, and OC air interfaces. The deploy-
ment of extensive OC-3, -48, and -192 undersea fi ber in the 1980s and 1990s 
curtailed the international satellite PSTN market. News and entertainment 
industries use international and DOMSATs for the delivery of program 
content.

Using That Knowledge : DOMSAT-aware AACRs can explain DOMSATs 
and assist nonexpert users with antenna selection and alignment. They can 
fi nd, identify, and characterize SATCOM transponders and channels apply-
ing waveforms to enhance QoI.

7.9.4.2 Mobile Satellite Knowledge Chunk
Mobile satellite communications (MSC) services in wide use include the nar-
rowband International Maritime Satellite (INMARSAT), with voice and low 
bit rate (LBR) data. Some terminals require a 3 foot directional antenna for 
acceptable signal quality. INMARSAT continues to invest in its satellites and 
terminal equipment to reduce the size, weight, and power of the terminals.

MSC services (Table 7-4) did not do well in 1999–2005. Iridium and Glo-
balstar recovered from bankruptcy. Teledesic was delayed and ultimately 
cancelled.

The Orbcom MSC locates vehicles for commercial trucking companies. 
Odyssey has a medium Earth orbit (MEO) altitude at 10,354 km so that 12 
satellites achieve global equatorial coverage.

TABLE 7-4 Mobile Satellite Services

 Globalstar Iridium Orbcom
 Mobile Mobile Store &  Teledesic Odyssey
 Telephony Telephony Forward High Rate Mobile
Services & Data & Data Messaging Fixed Service Telephony

Data rate 9.6 kbps 2.4 kbps 300 bps 16 k-E1 + 1.2 G N/A
Modulation CDMA TDMA N/A N/A [ATM] CDMA
RF 1/3 GHz 1/3 GHz 148/137 MHz 30/20 GHz 1.6/2.5 GHz
Satellites 48 66 36 840 12
Altitude (km) 1400 785 775 700 10,354
Inclination 52 86.4 45 98 (Sun) 50
On-board  No Yes No Yes No
 processing?
Crosslinks No 4 @ 25 Mbps No 8 @ 155.52 Mbps No
Mass (lb) 704 1100 85 747 4865
Partners  Motorola  McCaw & Gates TRW
On orbit? Operational May 1997 Yes Cancelled Yes



Using That Knowledge : The mobile satellite-aware AACR knows the techni-
cal parameters of planned and deployed mobile satellite systems to explain 
the trade-offs among services, tariffs, antennas, SDR waveforms, and RF 
front-end hardware.

7.9.4.3 VSAT Knowledge Chunk
Very small aperture terminal (VSAT) satellite systems use large Earth ter-
minals at a central hub and a high gain satellite with high power offsets to 
reduce user terminal antenna diameter to 0.5–1 meter. This asymmetrical 
arrangement signifi cantly expanded the market for satellite data services 
because the subscriber Earth station is easy to deploy and maintain. VSAT 
applications include point of sales terminals with centralized control for large 
multinational corporations like McDonald’s restaurants.

Using That Knowledge : The VSAT-aware AACR assists the user to obtain 
and employ VSAT modes.

7.9.4.4 DBS Knowledge Chunk
Direct broadcast satellites (DBSs) also use asymmetrical apertures with the 
heavy aperture in a central hub and VSAT or smaller terminals on customer 
premises. The Hughes 601 satellites, for example, deliver over 50 channels of 
digital television to a 24 inch aperture terminal via a 22.5 MHz satellite tran-
sponder. Leased DBS capacity can deliver large amounts of data to thousands 
of subscribers within the satellite footprint. DBS digital audio broadcast 
(DAB), XM service, and direct video broadcast (DVB) entered service 
between 2000 and 2004.

Using That Knowledge : The DBS-aware AACR recognizes DBS, satellite 
audio, and DVB in DBS bands to obtain air interface hardware, waveform 
downloads, and licenses if DBS services enhance user QoI.

7.9.4.5 Wideband SATCOM Knowledge Chunk
Between 1995 and 2000, DARPA and the U.S. National Aeronautics and 
Space Administration (NASA) cosponsored the Advanced Communications 
Technology Satellite (ACTS), which demonstrated 622 Mbps from a low cost 
geosynchronous satellite to a 10 meter parabolic aperture [191]. Japanese and 
European researchers have employed other satellites to study propagation 
phenomena (e.g., in the June 1997 Proceedings of the IEEE).

Using That Knowledge : The wideband SATCOM-expert AACR can explain 
wideband SATCOM technology, gathering current technical data from 
SATCOM web sites and autonomously evolving <Self/> SATCOM toward 
HDR as QoI dictates.
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7.9.5 Satellite Services and Systems

SATCOM service band allocations [170] include C band (5.925–6.425 and 
3.7–4.2 GHz), X Band, Ku (14–14.5 and 11.7–12.2 GHz), and Ka (27.5–31 and 
17.2–21.2 GHz). Illustrative SATCOM systems include geosynchronous 
DOMSATs and INTELSATs; Molnyia, the Trans-Siberian HEO; and the 
Iridium LEO SATCOM systems. Emerging SDR products have been explored 
by COMSAT and SigTek [370].

7.9.5.1 SATCOM Services Knowledge Chunk
Spectrum use in the C, Ku, and Ka bands [170] has transitioned from large 
Earth terminal technologies for PSTN and governmental users to new VSAT, 
DBS, and DVB technologies with broad commercial services enabling new 
products, each a candidate for SDR.

Using That Knowledge : The SATCOM-aware AACR knows the capabili-
ties, orbital parameters (ephemeris), spectrum occupancy, and information 
content of SATCOM services to enhance user QoI.

7.9.6 Exercises

7.9.1. The SATCOM-aware AACR can explain geosynchronous satellite operation 
to the nonexpert user. Using the knowledge chunks of this section, write an 
RXML description of GEO satellites. Extend this RXML to assist a user with 
SATCOM pointing angles and frequency selection. Include GEO ephemeris 
from the Web. Write a stand-alone GEO SATCOM-aware application (e.g., in 
Java) that uses RXML to explain to a nonexpert user about GEO satellites. 
Enable your AACR to learn about GEO satellite use patterns from experience 
scanning, pointing, and tracking via ephemeris. Enhance your AACR to learn 
about satellite services.

7.9.2. SATCOM-aware AACRs should be able to explain the differences among 
GEO, LEO, and HEO to nonexperts. Write RXML to explain these differ-
ences to include specifi c orbits and types of satellites by class and function. 
Evaluate the Satellite Took Kit™ (STK) modeling tool against a RXML 
embedded database for general knowledge of satellite behavior.

7.9.3. A SATCOM-aware AACR can explain the difference between HEO and other 
orbital regimes. Use RXML and a STK to predict pointing angles for a (simu-
lated) electronically steered array on the roof of your car to track a HEO satel-
lite. Add a LEO satellite. Enhance your software to learn the trade-off between 
pointing and tracking a LEO satellite, with an array of fi xed pointing antennas 
using the strongest RSSI, versus a broad antenna beam. Describe how your 
AACR could learn to optimize RF, pointing, and tracking parameters for an 
amateur radio LEO satellite.

7.9.4. LEO satellites impart high positive Doppler shifts as the satellite rises above 
the radio horizon. Write RXML for LEO satellite Doppler signatures and 
write a stand-alone Q/A program to explain these signatures using the 
RXML.



7.9.5. SATCOM-capable AACRs compensate for known path impairments. Write 
RXML for path impairment phenomena and mitigation strategies.

7.9.6. DOMSAT-aware AACRs can explain DOMSATs to a nonexpert user. Write 
RXML describing three DOMSATs from the Web. Write a program to control 
a Ham scanner to fi nd, identify, and characterize SATCOM tran sponders and 
channels for these DOMSATs. Write RXML and Java for this AACR to inter-
act with a simulated CWN to download a waveform to access a DOMSAT 
soccer feed.

7.9.7. Write RXML for the technical parameters of planned and deployed MSC ser-
vices. Write Java to use the RXML to explain the trade-offs among services; 
acquire tariff information from authoritative sources; recommend antenna and 
RF front-end hardware for SATCOM interoperability; and assist inexperi-
enced users in acquiring hardware and waveforms for MSC information 
services.

7.9.8. DBSs also employ asymmetrical apertures with the heavy aperture in a central 
hub and VSAT or smaller terminals on customer premises. Write RXML for 
the Hughes 601 satellites, DBS capacity to deliver large amounts of data to 
thousands of subscribers within the satellite footprint, and the DAB and DVB 
satellites currently in service. Write a Java program to autonomously extend 
this RXML with information about an additional satellite from the (conven-
tional) Web. Extend this Java to acquire RXML for additional satellites from 
the Semantic Web. Compare the two.

7.10 CROSS-BAND/MODE KNOWLEDGE

Table 7-5 summarizes band and mode advantages and disadvantages.

TABLE 7-5 Reliable Flexible Communications Via MBMMRs

  Key Technical Characteristics That 
Banda Modesa Shape Software Radios

HF Skywave, NVI, Long range, reliable in mountains/jungles, cheap,
  FH, burst  narrow BW, severe propagation, big antennas
LVHF Beyond LoS, Low cost, general-purpose voice, data, and relay
  FH, burst  Rayleigh fading, Fresnel zones, interference
VHF Quasi-LoS Larger coherence bandwidths, cheap
UHF Cellular Spectrum auctions opening applications
 TDMA, CDMA Spectrum crowding, beam forming, data rate
SHF LOS TDMA Ideal for space communications, large BWs,
   atmospheric and rain losses signifi cant
EHF Narrow beams, In-building, campus data links, spatial sharing, very
  fi ber protect  short range but practical gigabit BWs

a No single band or mode delivers reliable, long-haul, high data rate, cheap, and convenient 
(unlicensed) service for mobile users.
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Choice of band and mode balances GoS, QoS, QoI, and cost. Previously, 
there was no choice but to perform the trade-offs in advance, confi guring a 
suite of discrete radios with computer-controlled mode selection for specifi c 
criteria. The confl uence of SDR and computational intelligence offers the 
cognitive MBMMR alternative.

7.10.1 Cognitive MBMMR Knowledge Chunk

The maximum fl exibility in the use of cross-band knowledge contemplates 
the ideal multiband multimode radio (iMBMMR) with bands from HF 
through EHF, including SATCOM. An iMBMMR may not be the size of a 
cell phone soon because of antenna constraints, but might be confi gured into 
a military or commercial SUV for humanitarian relief. Such an iMBMMR 
may be made computationally intelligent via RXML and AML for an ideal 
cognitive MBMMR (iCM). Each iCM uses a computational model of the 
<Self/> to reason over its own capabilities and limitations, dynamically choos-
ing radio bands and modes to enhance QoI.

Using That Knowledge : The iCM can summarize the main features of each 
band and mode of Table 7-5. It knows its own ability for each of these modes. 
It relates the strengths, weaknesses, and content of these radio bands to QoI. 
Depending on the <Scene/>, one iCM might advise a remote <User/> that 
HF propagates readily over thousands of miles at low data rates. Another 
might confi gure itself for LVHF propagation for rough terrain. An iCM in a 
city could confi gure EHF pencil beams for low cost spatial sharing of the 
radio spectrum at gigabit per second data rates if it isn’t raining.

7.10.2 Mode Selection Knowledge Chunk

Consistent mode selection behaviors may be preprogramed per Table 7-6. The 
evolution of SDR toward iCR includes such steps, but since an iCM can learn, 
its behavior may be enhanced by training it to weight QoI parameters accord-
ing to the features of a <Scene/>.

Using That Knowledge : The iCM applies the critical mode selection decision 
parameters to enhance QoI. With reinforcement learning, multiple training 
instances from many information access experiences are aggregated into deci-
sion parameters. Algorithmic methods for analyzing such noisy and uncertain 
training include Q-learning and neural networks.

7.10.3 Mode Transition Planning

Seamlessness entails advanced planning of band/mode transitions as current 
modes deteriorate and as the scene changes. Information access gaps give the 
user a sense of seams in the network, while continuity of information access 



across discontinuities of physical access create a perception of seamlessness. 
Seamlessness may also require effi ciency, balancing battery power, RF spec-
trum, data rate, and radiated power to the degree necessary for QoI.

Using That Knowledge : The MBMMR-expert AACR reasons about the dif-
ferences among physical access, propagation path impairments, spectrum 
allocations, air interfaces, and information services from HF through EHF 
including SATCOM. It employs this knowledge to proactively enhance QoI 
via the appropriate band and mode, reacting appropriately to changes in the 
user’s behavior. It should be able to differentiate exceptions such as working 
into lunch from the norm of entertainment during lunch. Cultural stereotypes 
refl ect the prototypical behavior of many of the people some of the time, but 
rarely will cultural stereotypes be satisfactory to any given user. The iCM 
therefore learns user preferences in the timing and use of the bands and 
modes, removing from the user the burden of learning the radio nuances.

TABLE 7-6 Critical Mode Selection Decision Parameters

Information Source Parameter Remarks

Source bitstream Bit rate Quality and coder 
   complexity
 Burstiness Constant (CBR) or variable  Minimum, maximum, 
  (VBR)  sustained
 Isochronism None, real-time or near-real- Data transfers are not
  time  isochronous
 Burst parameters Maximum burst size Large fi les create long 
   bursts
 Tolerance Tolerance of parameter  See service quality
  mismatch  parameters

Service quality Error rates Losses and delays
 Bit error-related Bit (BER), symbol (SER)  Requires error control
  errors
 Delay-related Transfer delay, variance, jitter Excessive delays result in
   loss
 Buffer-related Packet or cell loss rate (CLR) Overfl ows reduce rate

Availability Probability (link), grade of  Link and network
  service  provisioning
Quantity Quantity of relevant valid QoI metric implies
  information  accuracy
Timeliness Wall clock time delay for  QoI metric refl ects server 
  content  in the network
Assuredness Authentication, privacy Signifi cant for e-commerce
Cost Peak, off-peak, service-related Can be the critical factor
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7.10.4 Protocol Stack Knowledge

Although planning systems enable the smooth transition from one band and 
mode to another, they do not guarantee the delivery of the services that the 
user expects. Each of these bands and modes employs analog and/or digital 
network technologies for control and/or for traffi c. Some of these networks 
are open to ad hoc participation and some of them are not. Once connected 
to a network, there may be a translation between the network’s representation 
of the desired information and that of the <Self/>. For example, the <Self/> 
may express telephonic voice (not music) using DS0, 64 kbps Mu-Law encoded 
PCM. The GSM network represents the same voice as RPE-LTP coded 
13 kbps bursts. Still other networks use any of the dozens of other voice coding 
methods. Digital networks, similarly, represent the same data in a variety of 
formats. SDR designers analyze the protocols at design time to create wave-
forms with a single internal representation. The iCM therefore also employs 
protocol stack knowledge as suggested in Table 7-7.

The fi rst line of the table indicates that it takes a fi nite amount of time to 
set up and to tear down a HF ALE connection, but once established such a 
link interoperates at the network level via TCP/IP. This may be the preferred 
internal networking format of the iCM. Clearly, legacy 1 G and 2 G cellular 
systems don’t use TCP/IP even though some offer CDPD or GPRS, so the 
iCM must know the mappings from the specialized radio access protocol to 
the more generic TCP/IP. In addition, there are many variations of TCP such 
as TCP-Reno and TCP-Jersey, each with different features for wireless con-
nections [192]. Since most commercial services require licensing, the iCM 
must know both the licenses currently enabled on the <Self/> and the message 
protocols required to obtain short-, medium-, and long-term licenses as 
needed for QoI.

Using That Knowledge : The iCM employs its knowledge of the protocol 
stacks to obtain timely, relevant information for QoI. This behavior conforms 
to the user’s value system for cost, timeliness, and other learned preferences. 
In addition, the iCM maps external networks to internal representations of 
voice, data, and multimedia streams. Some maps are available to the <Self/>, 

TABLE 7-7 Network Knowledge

Band Network Typical and Unique Knowledge

HF ALE Set up, tear down, TCP/IP interoperability
LVHF CB, Ham Voice interoperability
VHF Air traffi c control User credentials, verbal protocol
UHF Cellular bands Legacy 1 G, 2 G, 3 G services, licensing, tariffs
SHF PSTN core Link protocols, SS7, IP (MPLS)
EHF Cellular backhaul Ad hoc interoperability for humanitarian relief
SATCOM DVB, DAB Channels, licensing, security waveforms



some exist in the protocol stacks or SDR personalities, and others are avail-
able from CWNs, peer iCM, or third parties. The iCM may parameterize a 
mapping template to create the map autonomously.

7.10.5 Applications Layer Knowledge

Although the translation of representations is a necessary step in seamless-
ness, it may not be suffi cient. Even simpler services like voice require applica-
tions layer support, for example, to bridge VHF push to talk to GSM, and 
VoIP on an IEEE 802.11 hot-spot bridge. The iCM conference call control 
module makes multiple voice connections via diverse protocols. Other such 
applications layer parameters over which the iCM operates are summarized 
in Table 7-8.

This table refl ects applications interoperability parameters. Each of these 
applications domains includes dozens of kinds of services offered by large 
markets per region, with many more opportunities across national, regional, 
language, and other rapidly disappearing borders. The lists are illustrative 
rather than comprehensive, suggesting the scope of the challenges and oppor-
tunities. Many of these classes of application include interoperability features. 
Fax, for example, includes many interoperability features in Group IV. If one 
would like to send a fax to a multimedia database or into a video teleconfer-
ence (VTC), interesting challenges and opportunities for new kinds of appli-
cations layer interoperability emerge.

TABLE 7-8 Typical Applications Layer Parameters

Applications Class Characteristics and Parameters

All Number of channels; underlying mode and bit rate; protocol 
  profi le (e.g., WAP over GSM and GPRS)
Location aware Location accuracy, update rate, number of mobiles
Voice Source code, bit rate, frame rate
Facsimile Page-buffer space, number of channels proprietary protocols, 
  beyond Group IV
Packet data Protocol (e.g., V.xx, X.25, TCP/IP, MPLS [193], ATM), 
  queue space
Email Directory server, domain name server, gateways, proxies, 
  security features, host application (e.g., Eurdora, Outlook, 
  Netscape)
File transfer Protocol (e.g., FTP), delay tolerance, maximum fi le size
Database Size, query language (e.g., SQL), update rate and latency
Voice mail Number of users, speech storage capacity, simultaneity
Multimedia Mix of media (e.g., voice and shared whiteboard), delay 
  tolerance, BER/FEC by class of service (e.g., line drawings 
  versus voice)
VTC Source coding, profi le (e.g., capability within H.320)
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Using That Knowledge : The iCM incorporates detailed knowledge of appli-
cations classes from location awareness to multimedia VTC. Its knowledge 
of <Self/> refl ects its applications capabilities, while its knowledge of the 
<User/> refl ects what it has learned about use of the application. The iCM 
also determines the user’s need for cross-application interoperability, such as 
displaying a fax on a virtual whiteboard during a VTC. Such needs may be 
relatively ephemeral, so the iCM distinguishes itself by its ability to construct 
or obtain the necessary updates in real time from a trusted source.

7.10.6 Cross-Band/Mode <Self/>

The iCM with the ability to reason about the information structures, protocol 
stacks, and applications offered in various bands and modes of the MBMMR 
layer goes far toward removing the annoying seams that impede today’s radio 
users. To organize the knowledge and skills implicit in the prior discussion of 
this section requires fl exible interfaces among communications and informa-
tion services (Table 7-9).

Reasoning about these layers of the <Self/> requires the organization of 
these abstractions (Expression 7-13).

Expression 7-13 RXML Scope of Layering

<Self>
<Information-services>
 <Communications-services> Voice facsimile
  <Data-services> Data-transfer Database-query email FTP 
   </Data-services>

TABLE 7-9 Layered Software Radio Architecture

  Protocol
Layer Applications/Services Mappings

Communications Applications: voice, facsimile, data WAP, CORBA,
 services  (email, fi le transfer), databases,   SQL, X.400,
  voice mail, multimedia, VTC  TCP/IP, MPLS,
 Related services: Location fi nding,  MIME
  Over-the-air downloads
Radio applications Air interfaces (“waveforms”), state Waveform/Air
  machines, modems, synchronization  AVD, DS0, 
  algebra  Group IV
Radio infrastructure Data movement, memory management, CORBA,
  domain manager  ODP/X.900
Hardware platform Antenna(s), analog RF hardware, 
  ASICs, FPGAs, DSPs, 
  microprocessors, instruction set 
  architecture, operating systems



   Voice-mail Multimedia VTC </Communications-services>
 Location-fi nding OTA-download </Information-services>
<Radio-applications>
 <SDR-application> <Air-interface/> <Protocol-stack/> 
  </SDR-application>
 </Radio-applications>
<Radio-infrastructure>
 <Data-movement/> <Streaming/> <Timing/> <Synchronization/>
 <Memory-management/> <Middleware/> </Radio-infrastructure>
<Platform/> </Self>

With this framework, the RF band/mode knowledge chunks and cross-
band/mode knowledge chunks and the exercises, one may address the syn-
thesis of radio skills, the real-time fl exible employment of radio knowledge 
to enhance QoI of the use cases.

7.10.7 Exercises

7.10.1. Defi ne a process by which an iCM can summarize the main features of each 
band and mode suggested in Table 7-5.

7.10.2. Train CR1 to know that HF propagates readily over thousands of miles at low 
data rates given a suitable antenna; LVHF propagates well in rough terrain 
and wooded areas as well as suburban settings; VHF offers more coherent 
bandwidth but offers somewhat less propagation beyond LoS than LVHF; 
UHF is the TV, aircraft, and cellular radio band among other things; SHF 
marks the transition to the higher capacity more directional LoS bands; EHF 
pencil beams enable low cost spatial sharing of the radio spectrum while its 
high carrier frequencies support gigabit per second data rates if it isn’t raining 
and if the beam is pointed in the right direction; and SATCOM can enable 
distant parties to communicate with each other and with the PSTN provided 
antenna pointing and the weather cooperate.

7.10.3. Explain the additional reasoning that CR1 must have to use each of these 
knowledge chunks in order to match a user’s need to the right band/mode for 
Exercise 7.10.2.

7.10.4. Explain the reasoning steps required for an iCM to apply the critical mode 
selection decision parameters discussed above to supply information services 
via its iCM capabilities. Write each mode selection criterion of Table 7-6 in 
RXML. Write a stand-alone Java program to use this knowledge and the 
knowledge of Exercise 7.10.2 in transitioning from one band to another as 
each of the known bands becomes unavailable. Extend CR1 to use the knowl-
edge of Exercise 7.10.2 and this exercise to implement a stand-alone Java 
program. Compare the RXML and CR1 implementations in terms of speed 
of implementation, likelihood of latent errors, and extensibility to new 
situations.

7.10.5. The MBMMR-expert AACR reasons about the differences among physical 
access, propagation path impairments, spectrum allocations, air interfaces, 
and information services from HF through EHF including SATCOM. Write 
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RXML to express the knowledge to proactively obtain information services 
via the bands and modes of Exercise 7.10.2 to meet user needs for voice, email, 
voice mail, and a VTC when located in an urban or a rural vacation setting. 
Write a stand-alone CBR application to differentiate exceptions such as 
working into lunch from the norm of using an entertainment service during 
lunch.

7.10.6. Write RXML to express the cultural stereotype of lunch at noon and depar-
ture for work at 5 pm. Do you personally conform to this prototypical behav-
ior? Explain why and why not, and capture any exceptions in RXML. Ask 
three others whether they conform to the prototypical behavior and ask them 
to identify exceptions. Express all the exceptions in RXML. Implement the 
cultural stereotype in a CBR framework (stand-alone Java or CBR tool). 
Teach the CBR system the exceptions. Defi ne a new exception that is close 
to one that has been taught already. Did it do the right thing? If so, then pick 
a new exception for which it will initially fail and train it to do the right thing. 
Discuss the trade-offs among stereotypical RXML and CBR exception 
handling.

7.10.7. The iCM employs its knowledge of protocol stacks for timely, relevant infor-
mation for the <User/>. Write RXML to express the protocol stack knowledge 
of an IP/UDP protocol stack. Expand this RXML to refl ect your personal 
value system regarding cost, timeliness, and relevance as defi ned in the QoI 
metric.

7.10.8. Write RXML for an iCM to map external networks to its own internal rep-
resentations of voice, data, and multimedia streams. Let mappings among 
these classes of service be known and write RXML that makes them known 
to the <Self/>.
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CHAPTER 8

IMPLEMENTING RADIO-DOMAIN 
SKILLS

This chapter develops software techniques for using the radio-domain know-
ledge of the last chapter by a suite of algorithms organized into a CRA for 
interactive and autonomous realization of the use cases.

The design principle for AACR, for practical engineering applications 
(i.e., without self-modifi cation learning), is as follows: 

Cognitive Radio Architecture: The Engineering Foundations of Radio XML
By Joseph Mitola III Copyright © 2006 John Wiley & Sons, Inc.

AACR Radio Knowledge Exploitation Strategy

An AACR shall optimize choice of its own radio band-mode and network 
for the user(s) fi ne-tuning the air interface, network, and computational 
resources better than the best human radio operator.

Thus, the emphasis when referring to AACR is the optimization of existing 
SDR personalities with respect to the situation at hand refl ected in the RF 
environment and the user’s specifi c communications needs. The design prin-
ciples for iCR research are more aggressive, focused on realizing more of the 
self-modifi cation potential of AML in iCR:
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AACR may learn radio knowledge by being told by a trusted authority, 
just as a SDR can be enhanced by download. Subsequently, they will contrib-
ute to the CWN knowledge bases and thereafter may enhance their own skills 
autonomously.

8.1 COGNITIVE RADIO ARCHITECTURE STRUCTURES 
RADIO SKILLS

The CRA structures AACR into functional components with an inference 
hierarchy and cognition cycle. The CRA <Self/> ontological model of AACR 
includes <RF/> abstractions, related metalevel primitives, and examples, 
together referred to as the radio-domain ontology (RDO) summarized in 
Expression 8-1. This RXML expression captures the things that an AACR 
should know how to do with appropriately elaborated radio knowledge. 
In the ontological treatment, a RXML conceptual <Primitive/> has context- 
dependent semantics defi ned in the CRA <Self/> so that intelligent-agent 
class algorithms can realize the radio-domain use cases via radio-domain 
skill.

Expression 8-1 Radio-Domain Ontology (RDO)

<RF> <Radio-skills>
<Physical-access>
 <Bands> <HF/> <LVHF/> <VHF/> <UHF/> <SHF/> <EHF/> <THz/>
 </Bands> <Modes> <SDR-subsystem/>
  <RF-sensing> <Signals/> <Noise/> </RF-sensing>
  <SDR-waveforms/> </Modes> </Physical-access>
<Knowledge>
 <Physical>
  <Frequency/> <Wavelength/> <Bandwidth/>
  <Canonical> <Transmitter/> <Channel/> <Receiver/> </Canonical>
  <Transmitter> <Receiver>
   <Antenna> <Effi ciency/> <Gain/> <Noise/> <Direction/> 
    <Position/> <Array/> <MIMO/> </Antenna>
  <RF-conversion> <Transmitter/> <Receiver/> </RF-conversion>

iCR Knowledge Exploitation Strategy

An iCR exhibits better performance than a radio engineer, learning from 
experience by exploring alternatives both physically and via simulation, 
suggesting actions for users, cooperating with other iCRs and creating new 
SDR personalities on the fl y that meet the needs of the use case better than 
any one band, mode, network, or parameter setting alone.



  <Baseband/> <Bitstream/> <Security/> <Sources/> <Sinks/> 
   <MAC/>
  </Receiver> </Transmitter>
  <Channel/> <Path/> <Refl ection/> <Refraction/> <Doppler/>
    <Propagation> <Link-budget/> <2D/> <3D/> </Propagation>
    <Signal-in-space> <Channel-symbol/>
     <Multiple-access/> <Stream/> </Signal-in-space>
</Physical>
<Logical>
 <Connectivity> <Grade-of-service/> <Quality-of-service/> 
  </Connectivity>
 <Protocol-stack> <ISO OSI/> <Radio-access-protocols/> 
  </Protocol-stack>
</Logical> </Knowledge>
<Skill> <Radio-skills> <Connect> <Transmit/> <Receive/> </Connect> 
 <Bridge/>
<Transfer-data/> <Disconnect/> <Plan/> <Collaborate/>
</Skill> </Radio-skills> </RF>

The ontology shows that the AACR’s radio-domain skills are based on 
physical access to the RF bands and modes, on knowledge about radio, and 
on the ability to use that knowledge to <Connect/>, <Transfer-data/>, <Dis-
connect/>, <Plan/>, and <Collaborate/>. Collaboration includes interaction 
with users, peer AACRs, legacy radios, CWNs, and RAs regarding the plans 
and actions of the <Self/>. The primary radio skills of connecting, transfer-
ring data, and disconnecting entail transmitting and receiving radio signals. 
The AACR knows what it is doing by using the RDO self-referentially. The 
dynamic RDO expresses what the AACR is doing, so it can plan and execute 
higher level goals, keeping the user connected in spite of impairments.

8.1.1 Functional Components Contribute to Radio Skills

The functional components synthesize radio skills as shown in Table 8-1. The 
functional component APIs support the information services API (ISAPI) 
interfaces 13–18, 21, 27, and 33, which implement the RDO exchanges.

The Cognition API (CogAPI) implements interfaces 25–30, 5, 11, 23, and 
35 to accept RDO expressions from the other functional components and to 
assert control in RDO-consistent requests to those components.

8.1.2 Expressive Effi cient RF Component Interfaces

Often, the SDR community becomes focused on computational effi ciency 
when confronted with verbose XML in the SCA and SRA, CORBA middle-
ware, and other structured information exchanges. The source code of modern 
computer languages such as Java and C++ can be written in a verbose style 
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as well, but modern compilers transform verbose source code into effi cient 
DLLs.

8.1.2.1 A Function for Verbosity
Similarly, RXML is excruciatingly verbose, so using RDO in the APIs at fi rst 
seems ineffi cient. Posted on the Semantic Web, the verbosity assures that the 
computing agents refer to unique W3C, RDF, RDFS, DAML, OIL, XMLNS, 
and other authoritative web pages in “real time.” During sleep modes, com-
puting resources are available to employ the verbose versions of knowledge 
that express radio-domain knowledge most fully. Interaction with a new 
network might also entail initial RXML exchanges to mutually ground the 
ontologies for subsequent bit-effi cient exchanges.

8.1.2.2 Effi cient Frequent Internal Messages and Tasks
However, during real-time interactions among AACR functional compo-
nents, there is little value in verbose formats. In particular, the ISAPIs and 
CogAPIs are compiled to effi cient, Huffman-coded bitmaps so that the most 
frequent interchanges consume minimum interconnect and processing capac-
ity per exchange. One of the major functions of the sleep cycle, then, is for 
the cognition component to examine the internal fl ows among the other com-
ponents of the <Self/>, adjusting bit-level coding so that the AACR continu-
ally performs the radio tasks specifi c to this <User/> and as effi ciently as 
practicable. Modern compiler technology can optimize register usage and 
message coding among functional components.

TABLE 8-1 Roles of Functional Components in Radio Skills

Component Role

User sensory perception Identity of people in the audio-video scene who need
 (USP)  radio services; convey radio-oriented beliefs, 
  desires, and intent of users per RDO
Local environment sensory Senses RF, audio, video location, temperature, 
 perception (LESP)  acceleration, and compass direction and extracts 
  RF-related perceptions (e.g., of location) from USP
Information services (IS) Expresses RF support needs to cognition functions 
  necessary for current, historical, and future 
  IS-provided services via the RDO
SDR subsystem (SDRS) RF sensing and SCA/SRA compliant SDR 
  applications
Cognition functions (CFs) Control RF skills, SDR perception, planning, 
  learning
Local effector (LE) Speech synthesis; text, graphics, and multimedia 
  displays



8.1.2.3 Verbose, Effi cient, or Optimized Load Modules
The AACR functional components could have <Verbose/>, <Effi cient/>, and 
<Optimized/> forms. The verbose form would be expressed in RXML as 
defi ned in (an evolved version of) CRA <Self/>. The functions might be 
interpreted rather than compiled for maximum fl exibility in new situations 
with a mix of canonical knowledge and autonomous goal-directed experimen-
tation. The effi cient form typically would access bands and modes for the 
general user in general RF environments from rural vacationing to rush hour 
in an emergency. The effi cient SDR personality would be balanced with 
functionality in DSP versus FPGA. The optimized form would be realized in 
ASICs and FPGAs to optimize power and capability per physical resource 
(interconnect bandwidth and MIPs). Optimized radio-domain capabilities 
may be described by a <Verbose/> version for fl exible reasoning about the 
SDR waveform. This same strategy of verbose, effi cient, and optimized imple-
mentations applies to the user sensory-perception component because of the 
computational burden of 3D visual perception.

8.1.3 Radio Skills and the Cognition Cycle

The top level relationships among the functional components, ISAPIs and 
CogAPIs, the Cognition cycle, and radio skills is summarized in Expression 
8-2.

Expression 8-2 Radio Skills and the Cognition Cycle

<Cognition-cycle>
 <Observe> <Sense> <User/> <RF> <SDR>
  <Band/> <Mode/> <Environment/> </SDR> <Known/> <Novel/> 
   </RF> </Sense>
  <Perceive> <User/> <RF>
  <Connectivity> <GoS/> <QoS/> </Connectivity> <Backup/> </RF>
  <Scene/> </Perceive> </Observe>
 <Orient> <Self/> <User/> <Scene/>
  <SDR-waveform> <State/> </SDR-waveform > </Orient>
 <Plan> <Information-services/> <Game-theory/>
  <RF> <Radio-skills> <Physical-access>
  <Bands> <HF/> <LVHF/> <VHF/> <UHF/> <SHF/> <EHF/> 
   <THz> </Bands> <Modes> <SDR-subsystem>
  <RF-sensing> <Signals/> <Noise/> </RF-sensing>
  <SDR-waveforms/> </Modes> </SDR-subsystem> </Physical-access>
  <Knowledge> <Physical>
   <Frequency/> <Wavelength/> <Bandwidth/> <Canonical/>
   <Self> <Transmitter> <Receiver>
    <Antenna/> <RF-conversion/> <Baseband/>
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    <Bitstream/> <Security/> <Sources/> <Sinks/>
    </Transmitter> </Receiver>
   <Channel/> <Path/> <Refl ection/> <Refraction/> <Doppler/>
   <Propagation> <Link-budget/> <2D/> <3D/> <Propagation>
   <Signal-in-space> <Channel-symbol/>
   <Multiple-access/> <Stream/> </Signal-in-space> </Physical>
   <Logical>
   <Connectivity> <Grade-of-service/> <Quality-of-service/>
   </Connectivity> <Protocol-stack/>
   </Logical> </Self> </Knowledge>
  </Radio-skills> <Collaborate/> </RF> </Plan>
 <Decide> <User-criteria/> <Regulatory-criteria/> <Resources/> 
  </Decide>
 <Act>
  <Radio-skills>
   <Skill> <Connect> <Transmit/> <Receive/> </Connect>
   <Transfer-data/> <Disconnect/> <Bridge/>
  <Skill/> </Radio-skills> </Act>
  <Effectors/>
 <Learn> <RF/> <User/>
</Learn> 
</Cognition-cycle>

RF support functions of the Observe phase include sensing the radio’s 
band(s), mode(s), and environment (e.g., for available backup channels) 
through the SDR functional component, supported by the CogAPI. The RF 
perception function of the Observe phase interprets GoS and QoS data from 
the SDR component, also identifying the available backup bands and modes 
to enhance QoI. XG stresses RF environment sensing via the Rockwell-
Collins MBMMR XG sensors [194]. As ad hoc networks proliferate, the 
importance of RF sensing increases.

In the Orient phase immediate RF action mitigates catastrophic <State/> 
change in a current wireless connection. The Observe and Orient phases 
structure the behavior of current SDR systems, expanding RF sensing, but 
not fundamentally changing the nature of the radio. The Plan phase, however, 
implements a quantum leap in behavior since the <Self/> knowledge about 
<User/> QoI and the <RF/> <Scene/> drive <Goals/> in this phase. Today’s 
radios don’t plan. They do what they are told by the user and the host network. 
AACRs plan. They sense available spectrum, identify QoI enhancement 
opportunity, allocate resources, and enhance QoI <Goals/> within <User/> 
and <RF/> constraints. Instead of merely initiating a SDR personality with 
a fi xed set of parameters, the AACR’s radio skills are more refi ned, connect-
ing to evaluate an available mode, but not necessarily using the mode. When 
transferring data, the AACR may adapt content to the changing RF environ-
ment, increasing error protection as fading parameters change. In addition 



to losing network connectivity, the AACR politely defers access to primary 
users when sharing spectrum. Bridging bands and modes yields uninterrupted 
conversation as the iCR switches from cellular to VoIP on the corporate wire-
less LAN. Collaboration among peer AACRs includes goal-oriented plan-
ning. Thus, the implementation of radio skills focuses mostly on the use 
of embedded knowledge via the Plan phase. The comprehensive scope of 
planning is refl ected in the RXML of Expression 8-2.

8.1.4 Radio Skills Implementation Strategy

The strategy of radio skill implementation applies Occam’s Razor to technol-
ogy insertion. The simplest technology that accomplishes the use case is pre-
ferred. Thus, the chapter begins with the simplest methods of storing and 
applying radio knowledge and progresses to the more complex but more 
capable methods. The place to start embedding knowledge into AACR is the 
traditional database. Next are the rule bases and knowledge bases from eBusi-
ness products, many of which have been assimilated into conventional data-
base packages, like Oracle (e.g., 9i eBusiness rules are well beyond mySQL). 
In addition, conventional (nonintelligent) radio propagation modeling tools 
supply radio knowledge, particularly if calibrated to the <RF/> environment 
by the AACR or CWN. The format of radio knowledge differs with band, 
mode, and time through AACR evolution. The major conventional knowl-
edge representations are databases, rule bases (including logic programming), 
object-oriented knowledge bases, agent systems, and domain-specifi c compu-
tational models. Each of these is a candidate for radio skill to observe, orient, 
plan, decide, act, and learn.

The inadequacies of the simpler approaches lead one to formal computa-
tional ontologies and the Semantic Web. In one approach, spectrum manage-
ment is a multiplayer game [195] with heterogeneous knowledge representation. 
Microworlds organize scene-level knowledge and partition skills within 
specifi c task domains that are formally modeled, supported by axioms, a 
knowledge base, a rule base, and a domain-specifi c language [219]. <RF/> 
microworlds constrain AACR inferences to context for effi cient, focused 
problem solving.

Finally, even these approaches do not fully support AML for iCR, which 
led to the specialized Radio Knowledge Representation Language (RKRL) 
[145], an extensible domain-specifi c language that is intentionally not Turing-
computable and thus achieves fi nite introspection. This book realizes RKRL 
principles in RXML.

8.2 EMBEDDED DATABASES ENABLE SKILLS

SDRs and CRs are replete with databases. Effi cient data structures like hash 
maps enable rapid access to internal databases. The CR challenge is the 
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autonomous creation of properly organized perceptions and plans from the 
partially organized, incomplete, and errorful data of the external world. Data-
base <Schema/> begin that process.

8.2.1 A Spectrum Management Database

Spectrum management databases are increasingly important with the FCC’s 
support of DARPA’s XG policy language for secondary users’ spectrum. The 
following is an extract of a spectrum management database:

illustrative rf spectrum allocation

Frequency (MHz) Allocated to

27.790 Forest products
27.900 U.S. Army
28.000–29.700 Amateur 10 meters
29.700–29.800 Forestry Service
29.800–29.890 Fixed service
29.890–29.910 Government
29.910–30.000 Fixed service
30.010 U.S. Government

The same spectrum point may be allocated to multiple users, and some 
entries express lower RF with an assumed per channel bandwidth while other 
entries specify both upper and lower edges, sometimes with different per 
channel bandwidths. The AACR database engineer brings consistent struc-
ture to these untidy differences for meaningful planning via the values in the 
above list. Storing this database for <Self/> spectrum management could use 
a simple schema like the following:

Expression 8-3 Spectrum-Allocation Schema in RXML

<Spectrum-use-database> <Spectrum-allocation> <Schema>
[<RF-low/> <RF-high/> <Allocated-to/>]* </Schema>
 </Spectrum-allocation> </Spectrum-use-database>

In approach, a database engine in a CWN responds to queries. If the 
<User/> were an <Amateur-radio/> operator, then the AACR might embed 
such a database. The Ham might ask the AACR about frequencies allocated 
to forest products mapped to the CRA as illustrated in the following:

Sequence of CRA Activity for Frequency Allocations Database Access

Voice Stimulus: “Computer, what frequency is allocated to forest 
products?”



Perception Hierarchy
Observe Phase: NL processing

 <User-addressing-Self>
 <Question/>
 <Frequency value = ??/> <Allocation to = “Forest products”/>
 </Question> </User-addressing-self>

Observe phase presents <Question/> from NL to Orient phase.
Orient Phase: Detects no tasks confl icting with planning a response.
Plan Phase: Generates Plan to look up “forest products” in <Spectrum-

allocation/> table of its <Spectrum-use-database/>.
Decision Phase: Initiates database action to look in frequency allocation 

table with forest products as the query and frequency as the result; and 
to say result.

Action Phase: Retrieves <Frequency>; (next cognition cycle) Says result.

The Action phase fi nds information in the internal database and yields the 
answer, which is spoken on the next cognition cycle. Actually, there are 
dozens of frequencies allocated to forest products, so dozens of frequencies 
would be reported. The planner might generate the response “The seventy-
four frequencies are listed on the display,” presumably held in short-term 
memory as “the [forest-products] frequencies” for further dialog.

Any PC-class database system from mySQL to Excel to Microsoft Access 
could perform this task. In addition to text and numbers, even the simpler 
embeddable databases accommodate large text fi elds, embedded objects, 
and hyperlinks. Predefi ned formats include dates and currency with fi eld-
defi nition APIs for application-specifi c <Schema/>. The database approach 
scales to millions of records, so a world-wide CWN could use Oracle for all 
of the policies and exceptions of all the spectrum management authorities in 
the world.

To facilitate machine reasoning, RXML asserts database features 
for knowledge representation, introducing needed conceptual primitives as 
follows.

Expression 8-4 Asserting Properties of Databases in RXML

<Abstractions> <Self> <Memory>
 <Database>
  <Defi nition> A database is a collection of tables, each consisting of 
   records, each with a format defi ned by a <Schema/> that is identical 
   for all records in the same table, and that is managed by a database 
   system </Defi nition>
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  <Database-system> mySQL MS-Access Excel Oracle Sybase 
   </Database-system>
  <Structure>
  <Schema> <Defi nition> A schema describes the structure of data 
   with element names, data types, attributes and combinations 
   available for each element, including the rules of the data 
   document. Schemas model the database </Defi nition>
  <Element-names/> <Data-types/> <Rules/> </Schema>
  <Data-types> <Numeric/> <Text/> </Data-types/> <Delimiter> “,” 
   </Delimiter> </Structure>
  <Example> <Database>
   <Schema> <Name> Spectrum-use-database </Name>
   <Element> <Name> RF-high </Name> <Numeric/> </Element>
   <Element> <Name> RF-low </Name> <Numeric/> </Element>
   <Element> <Name> Allocation </Name> <Text/> </Element> 
    </Schema>
    <Record> <RF-low/> <RF-high/> <Allocation/> </Record>
   <Spectrum-use-database>
    <Record> 27.790, 27.790, “Forest products” </Record>
    <Record> <End/> </Record> </Spectrum-use-database>
  </Database> </Example>
  <Scale> <Small> 100 </Small> <Big> 1,000,000 </Big> </Scale> 
   </Database> </Memory>
</Self> </Abstractions>

Expression 8-4 defi nes illustrative RXML conceptual primitives for AACR 
reasoning about database tools. The AACR resource planner needs to know 
about scaling, which is a conceptual primitive for iCR resource management, 
trading off learning, remembering, summarizing, and disposing of old 
information.

The AACR designer should realize that most of the hard work is the labor-
intensive validation of database entries, including the removal of reasonable 
but inconsistent and illegal entries, like “TBD” in a numeric frequency fi eld 
that is being revised. Although nearly all database tools can perform compu-
tations, the server programming style isolates the code from the associated 
data, sometimes requiring deep insight for desired behavior. Other candidate 
software tools include the spreadsheet.

8.2.2 Embedded Spreadsheets

Spreadsheets like Excel with Visual Basic for Applications (VBA) offer a step 
from databases toward the unstructured without sacrifi cing many of the bene-
fi ts of the database such as the ability to scale up.



8.2.2.1 Spectrum Allocations Spreadsheet
For example, the source code of RKRL 0.3 is an Excel spreadsheet with VBA 
macros containing 47 microworlds [219], one of which contains a spectrum 
allocations database:

Band Low High Wc

ISM 13.56 13.567  0.007
CB 26.9 27.4  0.5
ISM 27.195 27.205  0.01
Government, industry 29.7 50 20.3
VHF TV 54 88 34

Wc is the aggregate channel bandwidth of the allocation, readily computed in 
the spreadsheet from the low and high RF values as the numerical difference 
of the adjacent columns. This database occupies rows and columns dedicated 
to the database task, while other rows and columns describe spectrum man-
agement concepts, give examples, and supply context, citations, and other less 
structured knowledge of the spectrum microworld. Most of the ancillary data 
occurs just once and has little structure, so the spreadsheet asserts the sup-
porting information conveniently. For example, the ad hoc fact that NFPT is 
the “Next-generation frequency planning tool” is included in the RKRL 
0.3 spreadsheet to illustrate object-oriented association, relatively effi cient 
storage, and the VBA retrieval tool.

Expression 8-5 Description of Spreadsheet in RXML

<Abstractions> <Self> <Memory>
 <Spreadsheet>
  <Defi nition> A spreadsheet is a collection of worksheets, each 
   consisting of cells organized into rows and columns, each of which 
   has its own format defi ned by usage, that employs macros for 
   applications-specifi c programming, and that is managed by the 
   spreadsheet system </Defi nition> <Database-system/>
  <Structure> <Cell> <Defi nition> A cell consists of explicit data or a 
   single computational expression defi ning the value of the cell 
   </Defi nition> <Cell-format/> </Cell> <Macro-language/> 
   </Structure>
  <Example> <Spreadsheet> <Worksheet> <Name> Spectrum-use 
   </Name>
   <Cell> A 1 RF-high </Cell> <Cell> B 1 RF-low </Cell>  
    <Cell> C 1 Allocation </Cell>
   <Cell> A 2 27.790 </Cell>
   <Cell> B 2 27.790 </Cell>
   <Cell> C 2 “Forest products” </Cell>
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   <Cell> <End/> </Cell> </Example>
   <Cell> A 5 NFPT </Cell>
   <Cell> B 5 “Next-generation frequency planning tool” </Cell>
  <Scale> <Small> 1 </Small> <Big> 100,000 </Big> </Scale> 
   </Spreadsheet> </Memory>
</Self> </Abstractions>

The <Database/> and <Spreadsheet/> abstractions contain <Defi nitions/> 
for tutorial interaction with a user as well as related conceptual primitives 
(e.g., <Record/> and <Cell/>) that enable AACRs to share among CWNs.

8.2.2.2 The Radio Capability Matrix
Spreadsheets also help associate radio band and mode with access to entities 
the user enjoys (Table 8-2). Such a spreadsheet instantiated in advance acts 
like yellow pages, a generalized X.400 service. Over time, the AACR learns 
that the user’s <Wife/> has a WLAN-capable cell phone to which the <Self/> 
may connect via ad hoc networking even though the OEM didn’t program it 
to do so. Provided the AACRs don’t violate regulatory rules, the <Wife/> 
LoS WLAN connectivity augments the prior knowledge. Similarly, learning 
that <News/>, <Sports/>, and <Weather/> originate with a <Broadcast/> 
enables the <Self/> to augment <User/>-specifi c interests with content.

The spreadsheet also readily refl ects parameters of radio access, such as 
the available data rates (Rb = 2 to 9600 bps for HF and 0.2 to 2 Mbps for the 
WLAN). Since GPS is derived from satellites, an AACR that models radio 
propagation readily infers how GPS is limited in urban canyons. An AACR 
that reasons about movement of the user from both visual cues and GPS 
ignores GPS glitches with inconsistent optical fl ow of the visual scene. The 
more sophisticated uses of the radio access capabilities matrix are realized 
by the embedded spreadsheet and embeddable reasoning developed 
subsequently.

Comparing the RXML of the database and spreadsheet abstractions, one 
observes greater freedom of expression with the spreadsheet.

TABLE 8-2 Radio Access Capabilities Matrix

Band Mode Capabilities Entities

HF ALE :BLoS :Rb(2-9600) :Inet :Ham :Web[OIL]
LVHF FH :BLoS :Rb(9.6-56) :NationalGuard
VHF NB-FM :NLoS :Voice :Rental[] :Taxi :Police
VHF TV :News :Sports :WX :Share1 :Broadcaster
UHF GSM :Tower :Voice :GPRS :PSTN[SS7]
UHF GPS :SATCOM :Location :Time-Std
UHF WLAN :LoS :ISM-Pwr :Rb (.2-2) :WifeCR[RKRL]



8.2.3 Spectrum Management Hash Maps

Hash tables are used in databases and spreadsheets to effi ciently pack indexed 
data into fi nite memory. One Java library for embedded hash tables, Object-
Space, defi nes a hash table as a HashMap:

1. HashMap serModel = new HashMap(); (8-1)
2. serModel.add(“27.790”,“Forest Products”); (8-2)
3. serModel.add(“27.790”,“Army”); /* Similar statements defi ne a 

small database */ (8-3)
4. int responses = serModel.count(“27.790”); /* This returns the 

integer 2 */ (8-4)
5. Object response = serModel.get(“30.010”); (8-5)

The HashMap class (8-1) creates a stimulus–experience–response model 
(serModel) to which string constants may be added in pairs ((8-2) and (8-3)), 
the fi rst of which serves as a key to the serModels microdatabase. HashMap.
count reveals how many objects match the key object (8-4), while the get() 
function (8-5) returns a HashMapIterator over the objects that match a 
query.

Algorithm 8-1 HashMapIterator Processes Matching Objects

HashMapIterator Models = (HashMapIterator) serModel.start(); //iterates 
 from beginning
 HashMapIterator end = (HashMapIterator)serModel.fi nish();// to end
 while(!Models.equals(end)){ // processes all the Models
  Pair current = ((Pair) Models.get()); //extracting the serModel pairs
  Pair next = new Pair(current.fi rst, new String (“<Unallocated/>”); // 
   and changing them
   if((String)current.fi rst ! = new String(“27.790”)){ Models.
    put(next);} // if needed
  Models.advance();
 } //end while

The Java HashMaps of CR1 use memory effi ciently for associative retrieval, 
an embeddable subset of database-spreadsheet technology.

Although consistent with the CRA, the above methods for remembering 
spectrum allocations do not take advantage of the built-in AML of even the 
CR1 prototype, which can be trained to remember spectrum allocations, in 
fact using HashMap as the internal representation. A vignette for training 
and using spectrum allocations with CR1 HashMaps is provided in the com-
panion CD-ROM.
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8.3 PRODUCTION SYSTEMS ENABLE SKILLS

This section briefl y reviews production systems, the foundations for embed-
ded rule-based expert system shells. Finite state machines are represented in 
XML.

8.3.1 State-Space Production Systems and Games in RXML

As is well known, a rule is a condition–action pair formulated so that when 
a condition is met, a rule is applied, and an associated action is taken. If the 
rules apply to a global memory, then the memory and associated rules are 
called a production system [196].

Expression 8-6 Defi ning a Production System to the <Self/> 
Via XML Tags

<Abstraction> <Reasoning> <Production-system>
 <Memory/>
 <Rule> <Condition/> <Action/> </Rule> </Production-system>
</Reasoning> </Abstraction>

The memory of a production system can refl ect intermediate states in the 
application of rules and external stimuli. The memory may be discrete, fi nite, 
and small to represent the control states of a system or game board.

If each rule of the production system encodes one legal move, if all legal 
moves are represented, and if no illegal moves occur by applying the rules, 
then the production system spans the state space of the game. Moves not taken 
are hypotheses. Games like tic-tac-toe with small hypothesis spaces are played 
using such production systems. Games like chess are easy to encode but have 
state spaces on the order of 10120, so one cannot exhaustively search the 
hypothesis space in a reasonable amount of time, even with heuristics, learn-
ing, and specialized hardware like Deep Junior [197].

Game theory’s rich legacy has been applied to fairness in wireless proto-
cols like the IEEE 802.11 Distributed Coordination Function Nash equilib-
rium backoff strategy [195]. Game theory applies to other planning and 
decision aspects of the CRA.

8.3.2 State Machines in RXML

If <Memory/> has a distinguished state (e.g., <Current-state/>), then rules 
may assert a next state and perform side effects, implementing a fi nite state 
machine as in Expression 8-7. This particular state machine would instruct 
an intelligent agent to say “Hello” once and then never to say anything else 
because the single <Rule/> sets <Current-state/> to 1, for which no actions 
are defi ned.



Expression 8-7 A State Machine Is a Production System

<Abstraction> <Reasoning> <Production-system> <State-machine>
 <Memory> <States> 1 2 </States> <Current-state> 2 </Current-state> 
  </Memory>
 <Rule> <Condition> <Current-state> 2 </Current-state> </Condition>
  <Action> <Current-state> 1 </Current-state> <Say> “Hello” </Say> 
   </Action>
 </Rule> </State-machine> </Production-system>
 </Reasoning> </Abstraction>

In describing a state machine to the <Self/>, mentioning <Current-state/> 
in the <Action/> causes the <Current-state/> of <Memory/> to be set to the 
value in the rule, transitioning to the “Next-state” via the rule. The action 
<Say/> achieves the desired side effect when transitioning from one state to 
another. Such fi nite state machines can parse fi nite languages by starting in 
a distinguished state, <Start/>, comparing input symbols to values in rules 
that encode the structure of the language, and either ending in a distinguished 
state, <True/>, if the string is in the language, or transitioning to <Fail/> if 
an input symbol does not match any rule.

A state machine for using radio spectrum in accordance with the policy of 
a regulatory authority could have just a single state, the radio frequency, with 
a set of rules that encode the spectrum allocation database as suggested in 
Expression 8-8.

Expression 8-8 Sample Spectrum Management State Machine

<Abstraction> <Reasoning> <Production-system> <State-machine>
 <Name> Spectrum Management Database </Name>
 <Memory> <States> <RF/> </States> <Current-state> 24.0 </Current-
  state> </Memory>
 <Rule> <Condition> <Current-state> 27.79 </Current-state> 
  </Condition>
  <Action> <Say> Forest Products </Say> </Action> </Rule>
 <Rule> <Condition> <Current-state> 27.900 </Current-state> 
  </Condition>
  <Action> <Say> Army </Say> </Action> </Rule>
 </State-machine> </Production-system>
 </Reasoning> </Abstraction>

The rule base shows one strength of fi nite state machines—effi ciency. 
Without the RXML markup that shows what it all means, the state machine 
has very compact content that could be represented in two variables as 
follows:
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 Current-state = 24.0 (8-6)

 Array rules = new Array {(27.790, “Forest Products”), 
                                       (27.790, “Army”)) (8-7)

Equation (8-7) shows a critical limitation of fi nite state machines and simple 
rule bases—limited expressive power. Since multiple rules apply, a control 
system that is not explicit in the RXML somehow picks which rule to apply. 
Is 27.79 MHz used by the Army or Forest Products or both? Database 
<Control/> aggregates all results into a vector of alternate hypotheses. Typi-
cally, state machines avoid such complexity, applicable in Orient, Plan, and 
Decide phases for fi xed message exchange sequences. Such radio state 
machines are common in protocol stacks, typically well known to radio engi-
neers expressed in SDL [44], which is easy for radio engineers to understand, 
but which is not as easy for AML algorithms to autonomously extend as 
RXML.

8.3.3 Push-Down Automata in RXML

If the state machine has a stack onto which it may place intermediate results, 
then the state machine is a push-down automaton (PDA).

Expression 8-9 Push-Down Automaton Has a Stack

<Abstraction> <Reasoning> <Production-system> <State-machine> 
 <Push-down-automaton>
 <Memory> <States> 1 2 </States> <Current-state> 2 </Current-state>
  <Stack> </Stack> </Memory>
 <Rule> <Condition> <Current-state> 2 </Current-state> </Condition>
  <Action> <Current-state> 1 </Current-state> <Stack> FM 1200 
   </Stack>
 </Action> </Rule> </Push-down-automaton> </State-machine> 
  </Production-system> </Reasoning> </Abstraction>

The machine of Expression 8-9 pushes whatever occurs in the <Stack/> 
part of the <Rule/> onto the null <Stack/>. This rule pushes the string “FM 
1200” that could represent a goal to turn on the FM receiver at noon. Such 
goal stacks popularized in the Blocks World planner [13, 89] are productized 
in the open procedural reasoning system (OPRS). 

PDAs recognize context free grammars (CFGs) [286]. With side effects, 
such CFG recognizers parse and compile computer languages like C and Java, 
and analyze (structured) natural language [198]. Augmented transition net-
works (ATNs) [199] extend fi nite state and push-down automata to general 
computations during transitions, enabling side effects that make them Turing-
computable and thus they may crash trying to reach unreachable states.



8.4 EMBEDDED INFERENCE ENABLES SKILLS

A production system that analyzes and asserts statements within a model of 
truth is called an inference engine. Axiomatic knowledge represented in Horn 
clauses uses fi rst-order predicate calculus (FOPC) reasoning, typically via 
PROLOG. The less axiomatic forms, called expert system shells, have fewer 
constraints and are less predictable theoretically than the axiomatic forms.

8.4.1 JESS Embeddable Expert System Shell

The Java Expert System Shell (JESS)1 classes implement the Jess language 
[200]. Jess is a LISP-like language [201, 202]. Atoms are the symbolic identi-
fi ers, with only nil, TRUE, and FALSE having special meaning. Jess parses 
fl oating point and integer numbers but does not accept scientifi c or engineer-
ing notation. Lists consist of an enclosing set of parentheses and zero or more 
atoms, numbers, strings, or other lists, such as:

  (+ 3 2) (a b c) (“Hello, World”) () 
   (deftemplate foo (slot bar))

As in LISP, Jess code has the form of a function call, a list with prefi x 
notation for the function to be called, as in (+ 2 3). Jess variables begin 
with a question mark (?), while multivariables begin with $ (e.g., $?X) to refer 
to multifi eld lists. The Jess bind assigns values to variables: (bind ?x “The 
value”). Control fl ow in deffunction is achieved via the control-fl ow 
functions foreach, if, and while. Defadvice executes advice code before 
or after the associated Jess function is called to wrap code around an existing 
function, for example, to extend Jess without changing Jess itself. One may 
create and manipulate Java objects directly from Jess, except for defi ning new 
classes.

Jess KBs allow ordered facts, unordered facts, and Java Bean-derived facts. 
Ordered facts are lists, where the head of the list is a category for the fact, 
such as (<Radios/> PRC-117 SINCGARS cell-phone). Ordered facts are 
added to the single global Jess KB via the assert function, such as Jess>  
(assert (father-of Barb Joe)) that returns <Fact-1>. Unordered 
facts associate slots and values with an atomic identifi er to create a Jess KB 
object such as Expression 8-10.

Expression 8-10 Defi ning a Spectrum Allocation Object in Jess

(<Allocation/>
 (<Frequency/> 27.790) (<Primary-use/> “Forest Products”)
        (<Secondary-use/> “Army”))

1 Jess 5.0 a6 is described here since it is representative of embedded rule-based shells.
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<(deftemplate <Allocation/> “A frequency allocation.” 
 (slot <Frequency/> (type RU.FLOAT)) (slot <Primary-
 use/>) (slot <Secondary-use/>))>

Jess can represent Java Beans in the KB statically (changing infrequently, 
like a snapshot of the properties at one point in time) or dynamically (chang-
ing automatically whenever the Bean’s properties change) via defclass and 
defi nstance functions.

Jess rules are defi ned via defrule: (defrule <Rule-name/> <Equiv-
alent-text/> <LHS/> => <RHS/>). In RXML, the LHS is a <Condition/> 
while the RHS is an <Action/>. For example, (defrule now-switch-to-
ALE “If all LoS links are unavailable, then switch to 
HF ALE.” (LoS-down) => (queue-source-to-HF-ALE)). Since Jess 
rules fi re only when they are activated by matching facts, the RHS typically 
asserts something into the KB that causes other rules to fi re, a process called 
forward chaining. Rule patterns include wildcards and predicates (compari-
sons and Boolean), where LHS variables match values in that position in the 
KB. Qualifi cation tests, reference bindings, and other forward-chaining 
mechanisms are summarized in the companion CD-ROM.

Jess resolves rule confl icts via salience that is declared and manipulated 
by rules, all of which fi re in order of salience, highest fi rst. In addition, the 
depth confl ict resolution strategy fi res the most recently activated rules before 
others of the same salience, while breadth fi res rules in the order in which 
they are matched to facts in the KB.

Failure is equivalent to negation in Jess, so if a fact is not in the KB, it is 
considered to be not true. The pattern (not (<Allocation/> (<Fre-
quency/> ? (27.790) (<Primary-use ?))) searches for patterns 
related to a frequency of 27.790, so if none allocate that frequency, then the 
RHS negation fi res.

In backward chaining the Jess inference engine identifi es a sequence of 
rules whose preconditions are not met to identify steps toward a goal. The 
recursive factorial function can be implemented as a backward chaining rule 
instantiation process.

(do-backward-chaining factorial)
(defrule print-factorial-10
(factorial 10 ?r1) => (printout t “The factorial of 10 is “ 
 ?r1))

Jess asserts (need-factorial 10 nil) into the KB. The factorial rule 
that matches this need is:

(defrule do-factorial (need-factorial ?x ?)  =>
(bind ?r 1) (bind ?n ?x) (while (> ?n 1) (bind ?r (* ?r ?n)) 
 (bind ?n (- ?n 1)))
(assert (factorial ?x ?r)))



The rule compiler adds a negated match for the factorial pattern itself to the 
rule’s LHS. Rules that match on (factorial), and need a (factorial) 
fact activate (need-factorial) so the needed facts appear, and the (fac-
torial)-matching rules fi re, achieving the Jess form of backward chaining.

Consider the VHF BLoS problem of the prior chapter. An AACR is to 
employ spatial reasoning about D-layer scattering via frequencies between 
30 and 60 MHz. Jess can backward chain over distance and frequency by 
the backward chainable (do-backward-chaining <RF/>) and (do-
backward-chaining distance). The following rules assert the fre-
quency tuning constraints:

(defrule rule-1 (<RF/> ?A ?B) => (<Advise/> Set <RF/> between 
 ?A and ?B))
(defrule create-<RF/> (need-<RF/> $?) 
 (BLoS-distance ?X ?Y ?Z &:(> ?Z 40) & :(< ?Z 100))
 => (assert (<RF/> 30 60)))
(defrule create-BLoS-distance (need-BLoS-distance $?) 
 => (assert (BLoS-distance <Self/> <Other-radio/> 63)))

Jess detects that rule-1 could be activated to get advice on RF if there were 
an appropriate <RF/> fact, so it asserts (need-<RF/> nil nil nil). This 
matches part of the LHS of rule create-<RF/> that cannot fi re for want of 
a BLoS-distance fact. The constraint will check to see if the distance between 
?X and ?Y is greater than a BLoS-distance threshold of 40 km and less than 
the upper limit of 100 km. Jess therefore asserts (need-BLoS-distance 
nil nil nil). This matches the LHS of the rule create-BLoS-
distance, which fi res to assert (BLoS-distance <Self/> <Other-
radio/> 63), and 63 exceeds the range for LoS, but is within the range of 
D-layer scattering. This fact activates create-<RF/>, which fi res, asserting 
(<RF/> 30 60), thereby activating rule-1, which then fi res to advise the 
AACR to set RF between 30 and 60 MHz. Such rules could be embedded in 
the Plan component of the CRA.

JessAgent [203] shows how to implement reasoning in a JADE application 
via the JESS engine (JESS 5.1). When a message from another agent arrives, 
a new fact is asserted, so a rule defi ned in the JadeAgent.clp responds to the 
sender. The example also uses Jade classes Cyclic Behavior and ACL Message, 
illustrating techniques for linking the reasoning of one AACR to a CWN.

JESS and other embeddable expert system shells can implement radio-
domain skills. The following rule includes advanced features, such as express-
ing uncertainty:

If the style (attribute) of the radio-station (entity) is rap (value of 
 attribute) => then it might (20%) be an-enjoyable-station
 (classifi cation decision)  (8-8)
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The user’s value judgments on radio stations expressed in Equation (8-8) 
may be organized into the following hierarchy:

“Radios” [Organic Wireless Connectivity Ports]
 “Cell Phone” [Mobile Cellular Network Services]  .  .  .
 “Radio Stations” [AM/FM Broadcast]
  “Good radio stations” (3%)
   “Enjoyable radio stations” (20%)
   “Informative radio stations” (20%)
   “Cool radio stations” (60%)
  “Bad radio stations” (97%)
   If it is not “good radio station”, then it is “bad radio station”

The hard part is the autonomous learning of these value judgments. The 
iCR should accurately infer when the user is expressing a preference. Users 
don’t want to be a slave to the radio. Do you? No, of course not. Users do not 
willingly fi ll out user profi les, so the CRA envisions prototypical situations 
that can be reliably detected by an algorithm that reliably infers preferences, 
reasoning by analogy with what is already known, bootstrapping new knowl-
edge in terms of old.

CR1 codifi es knowledge in serModels that have features of embedded 
expert systems. Individual serModels have only shallow reasoning without 
supporting data structures or rule sets. Nevertheless, serModels organized 
into an associative perception hierarchy can learn responses to relatively 
complex stimulus sets, as shown in Table 8-3.

Since CR1 detects RSSI, BER, light level, and temperature from different 
sensors, and since it always aggregates contemporaneous stimuli as features 
of a scene, it can be taught to recognize the relatively complex situation in 
which the SDR waveform is reporting low RSSI and high BER while the light 
level is decreasing and the temperature is rising (when outside in ambient less 
than 70 °F). Those conditions trigger the radio to turn on the WLAN system, 
searching for an alternative to the cellular system that may soon be lost.

Rules are a mainstream commerce technology now widely accepted as a 
component of the Semantic Web. The Rule Markup Initiative took initial 

TABLE 8-3 Stimulus–Response Models as Rules

Situation Stimulus Response

Accessing (cells) Low RSSIs, high BER/FERs, Search for WLAN (implicit
  light level decreasing,  “entering building”
  temperature rising  hypothesis)
{(lost cell, light, Found WLAN Ask (permissive) user “Did
 got hot)}   we enter a building?”



steps toward a Rule Markup Language (RuleML), for forward and backward 
chaining in XML, but in 2004, there were an XML-only RuleML, an XML-
RDF RuleML, and an RDF-only RuleML. Complementary efforts include 
Java-based rule engines such as Mandarax, RuleML, and XSB-RDF RuleML, 
with DTDs for basic RuleML sublanguages.

As shown from the examples, embeddable expert system shells like JESS 
enable forward and backward chaining within a KB for reasoning and goal-
directed inference in AACR use cases. Backward chaining can be more effi -
cient if rules are expressed as logical axioms, as in PROLOG.

8.4.2 PROLOG

PROLOG is the logic-programming language for reasoning with closed-world 
knowledge. In a closed world, the inability to fi nd an assertion is treated as 
de facto proof that the assertion is not true. Horn clauses are an effi cient form 
of FOPC. In Horn clause logic, facts are atomic and conditional inference is 
expressed as a conjunctive clause with a single negative conjunct [204]. In the 
PROLOG implementation of the Horn clause representation, facts are 
expressed as predicates, such as Allocated (27.790, Army).

For the logic enthusiast, the following six expressions are equivalent. The 
last logic form is a Horn clause.

A implies B B if A (¬ A ∨ B) ∧  .  .  .
If A then B Not (A) or B ¬ (∨ ¬ (A ∧¬ B))

Most practical logic can be expressed in FOPC as Horn clauses and inter-
preted by the PROLOG language [205]. As with Jess, PROLOG facts are 
atomic:

Allocated (27.790, “Forest Products”) Allocated (27.790, Army)

As a logic programming language, PROLOG statements imply existential 
(∃) or universal (∀) quantifi cation. The statement Allocated  (x,  Army) 
means there exists a frequency x that is allocated to the Army. Implications 
are universal, however. So the following statement means for any and all fre-
quencies, if the frequency is busy, then we can’t use it.

Cant-use (frequency) :- Busy (frequency)

(PROLOG variables traditionally are single capital letters like A or X. 
For clarity, verbose variables are in bold.) The statement is read “Can’t 
use frequency if the frequency is busy.” Placing the conclusion fi rst is one of 
the features of Horn-clause logic that if–then rule programmers have to get 
used to. Conjunctive conditions are expressed on the right-hand side of the 
rule.
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Use (<Self>, frequency) :- Allocated (frequency, user), 
 equals(user, <Self/>))

PROLOG can backward-chain to establish a plan more effi ciently than Jess. 
Some versions of PROLOG include built-in numerical functions that return 
the value in the last argument. For example, the statement “?-*(10, 3, A)” 
asserts A = 30, the product of 10 and 3. Since PROLOG is compact, one must 
read expressions carefully.

PROLOG engines from universities are designed to teach logic program-
ming. PROLOG sometimes requires one to rethink a use case in ways not 
necessarily intuitive to a C, C++, or Java programmer. For example, it may 
take a Java programmer some practice to get used to the PROLOG cut opera-
tor (!), similar to the Jess “unique” fl ag for lists.

There are also industrial strength PROLOG engines like BinProlog™ 
[206], a high performance Internet-oriented PROLOG compiler with the 
ability to generate C/C++ code and stand-alone executables. BinProlog 
includes high level networking with remote predicate calls, blackboards, 
mobile code, multithreaded execution on Windows NT and Solaris and secure 
Internet programming with CGI scripting, multiuser server side databases, 
and rule-based reasoning. PROLOG utilities that make BinProlog more like 
conventional languages include dynamic clauses, a metainterpreter with 
tracing facility, sort, set-of, dynamic operators, fl oating point operations, and 
function defi nition. Its mobile code, user interfaces, 3D graphics, client/server, 
dynamic databases, and make-facility are summarized in the companion CD-
ROM. Other commercial PROLOG systems include Quintus and SICstus 
PROLOG.

8.5 RADIO KNOWLEDGE OBJECTS (RKOs)

The previous sections surveyed current technology embeddable for the control 
of any SDR. To the degree that these techniques are expressed in a standard 
RXML, they facilitate AACR collaboration. This section sketches research 
ideas that may not be realized for some time.

During the 1980s powerful machine learning technologies were invented. 
One of the most interesting was AM [320]. Although many of the concepts 
of the early research were refi ned and improved, several pioneering contribu-
tions have yet to be fully realized, even in intelligent agent technology of 2005, 
yet are relevant to iCR. Specifi cally, AM pioneered the multifaceted concept 
autonomously evolved by rich heuristics, the inspiration for the radio knowl-
edge object (RKO) of this section.

8.5.1 The AM Concept Data Structure

AM automated the discovery of data structures that express <Interesting/> 
mathematical expressions. Simple radio skills may be based on embedded 



HashMaps and expert system shells, but the autonomous extension of these 
skills by iCR is a technology challenge not unlike that of autonomously deriv-
ing principles of mathematics from set theory. Radio-use rules defi ned by 
regulatory authorities are not unlike axioms of logic. Laws of physics are not 
unlike laws of mathematics.

Rules of the previous sections were expressed in RXML for autonomous 
extension by AM-class AML. AM employed 115 initial “concepts” like Set 
and Set-Union, Object, List, Compose, and Truth-value. From these plus 
heuristics for instantiating new concepts, it generated and evaluated as <Inter-
esting/> (“discovered”) data structures corresponding to Perfect-squares and 
Peano’s axioms. AM used a very large state space of concepts and 242 heu-
ristic rules for fi lling-in concept slots, checking intermediate results, suggest-
ing search directions, and calculating interest. Mathematics is a big, open 
domain not unlike the radio and user domains of AACR. What Lenat called 
a “concept” might be called a knowledge template, or knowledge object (KO), 
a named data structure where knowledge is brought together (adapting Lenat’s 
original language):

 1. Name(s): A string to which a person or agent may refer to the KO.
 2. Computational Defi nitions: Metalevel methods for evaluating a 

concept.
 (a) Domain: List of sets over which the KO is defi ned.
 (b) Range: List of sets to which the KO can map or be mapped.
 (c)  Lambda (λ) expressions: Anonymous functions attached to the 

KO, akin to methods of object-oriented systems. These functions 
are typically Boolean, testing instances for degrees of confor-
mance to the KO.

 (d) Slots: Lambda expressions that contain data used by the KO.
 3. Algorithms: Named expressions attached to the KO. These are KO-

domain functions that implement some aspect of the KO, such as 
mapping domain to range.

 4. Generalizations: More abstract KOs from which this KO may inherit 
properties. KOs form inheritance networks (heterarchy not hierarchy), 
rarely inheriting all properties, so rarely are generalizations strictly 
less constrained than a given KO.

 5. IsA: KOs, the defi nitions of which this KO satisfi es.
 6. Views: A view of some other class of KO as if it were this KO.
 (a) Intuitions: An abstract analogy for this KO.
 (b) Analogies: Similarities drawn between this KO and other KOs.
 (c) Conjectures: Unproven theorems (hypotheses) about this KO.
 7. Specializations
 (a)  Derivative KOs: AM’s heuristics could create virtually new KOs 

from one or more existing KOs, so that the new KO inherited very 
little from the base KOs.
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 (b) Instances: More specifi c KOs that inherit directly from this KO.
 8. Examples: Instances that are directly related to the KO.
 (a)  Typical: Instances that conform to all the defi nitional lambda 

expressions.
 (b)  Barely: Instances that conform to one or more but not to all of the 

defi nitional lambda expressions.
 (c)  Not-quite: Does not conform to suffi cient lambda expressions to 

be considered an example, but does conform to all but one or two 
requirements.

 9. Conjectures: Untested hypotheses about the KO.
10. Worth: Some numerical, symbolic, or vector-space metric for value of 

the KO. A vector-space representation may defi ne value with respect 
to different goals.

11. Interestingness: Numerical, symbolic, or vector metric for novelty, 
unexpected performance, important source, and so on.

The “typical” examples have no conceptual distance from the KO while 
“barely” examples have increasing Hamming distance from the ideal KO 
counting the number of facets observed in the example. Not-quite satisfi es 
some, but not enough criteria to be that KO. Views guide the autonomous 
interpretation of data structures. Since the more aggressive use cases like 
Genie, Bert, and Ernie contemplate substantial autonomous extension of 
situation-specifi c RF knowledge, derivatives of the AM concept are worth 
considering.

The lambda expressions for AM concepts do most of the work, determin-
ing the type of object and invoking the appropriate function. Metalevel con-
cepts like canonize and repeat are concepts with appropriate domain and 
range over other concepts. Heuristics guide concept evolution.

8.5.2 AM Heuristics

AM’s 242 heuristics address four needs for autonomous discovery in a complex 
open-ended domain. Again, adapting Lenat’s language, these are:

1. Completion: Rules for fi lling in facets of a KO.
2. Refi nement: Rules for patching up facets for consistency.
3. Suggesting: Rules for generating new KOs, for example, to overcome 

obstacles.
4. Value: Rules for estimating worth and interestingness.

Completion heuristics develop a known concept further, while refi nement 
heuristics adjust features of the concept. Since AM’s control loop picks the 
next most interesting thing to work on, many of the heuristics adjust worth 



and interestingness similar to <Histogram/>. For example, the completion 
heuristic increases priority of pending tasks if they involve the KO most 
recently worked on. “Anything” is the most general concept and the root of 
the KO heterarchy. In addition, the heuristics that make suggestions defi ne 
the direction of evolution of discovery, knowledge, and skill.

Adapting AM to AACR may seem to be a giant step backward, but a 
review of the current artifi cial intelligence, genetic algorithms, agent systems, 
Semantic Web, and artifi cial life literature shows that AM was perhaps 
decades ahead in defi ning data structures and procedures by which a reason-
ing system could autonomously evolve. Of course, Eurisko and CYC contin-
ued the evolution of AM toward the codifi cation of commonsense knowledge, 
so elsewhere in the text CYC’s relevance to AACR is considered but found 
wanting. As Lenat accurately points out, there is an inherent brittleness to 
autonomous evolution as the conceptual distance increases between the 
evolving system and its founding concepts. Therefore, adapting AM’s con-
cepts and heuristics to iCR requires RF or user validation of evolving radio 
KOs and heuristics. There are many opportunities and pitfalls of autonomous 
evolution in iCR.

8.5.3 Radio Knowledge Objects (RKOs)

Ultimate iCR applications will require the integration of substantial radio 
knowledge. This section suggests RKOs patterned after AM’s concept KOs. 
RKOs represent static knowledge and enable autonomous extension of local-
ized and network-generated knowledge.

8.5.3.1 RKO Template
The RKO is defi ned as follows.

Expression 8-11 Radio Knowledge Object

<Abstractions> <RKO>
 <Name/> <Defi nitions/> <Slots/> <Membership/> <Domain/> <Range/> 
  <Functions/>
 <Examples/> <Generalizations/> <Specializations/> <Views/>
 <Hypotheses/> <Value/> </RKO>
 <!  .  .  .  See the companion CD-ROM for the complete template  .  .  .  >

The defi nitions, slots, and methods should enable the RKO both to perform 
functions and to trace and/or explain the functions performed. The following 
sections suggest RKOs for the radio skills needed for the radio-domain use 
cases.

8.5.3.2 Abstract RF RKOs
<RF-RKO/>: Determines from its properties that an entity is a radio 

frequency entity (e.g., as distinct from IF, baseband, or bitstream). 
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Membership: Entity has a frequency in hertz within a known RF band. 
Derivative KOs include IF, baseband, and speech, with characteristic 
frequencies in other bands (e.g., speech has a frequency of ≤20 kHz) 
with other properties (e.g., IF is a property of a device inside the radio).

<Radio-skills-RKO/>: Identifi es <Self/> radio skills, differentiating its 
own from those of others.

<Physical-access-RKO/>: Associates devices with RXML categories of 
physical access including RF, wireline, haptic, and tactile domains.

<Knowledge-RKO/>: Lists the categories of knowledge known to the 
<Self/>.

<Frequency-RKO/>: Explicates the concept of frequency; lists all frequen-
cies the <Self/> has experienced; ancestor of Doppler-shift RKO.

<Wavelength-RKO/>: Explicates wavelength; derives frequency from 
wavelength; ancestor of antenna RKO.

<Bandwidth-RKO/>: Explicates bandwidth; measures bandwidth of signal; 
knows all bandwidths the <Self/> has experienced.

<Canonical-RKO/>: Explicates canonical concept of radio communica-
tions consisting of transmitter, channel, and receiver.

<Transmitter-RKO/>: Explicates canonical transmitter; ancestor of 
antenna, RF-conversion, and SDR RKOs.

<Channel-RKO/>: Explicates the radio channel as signal over space, time, 
and frequency; ancestor of propagation modeling RKOs.

<Receiver-RKO/>: Explicates canonical receiver; ancestor of antenna, 
RF-conversion, and SDR RKOs.

<Sources-RKO/>: Explicates the general notion of an information source 
in terms of entropy; ancestor of analog and voice sources RKOs and 
digital/bitstream sources like keyboards.

<Sinks-RKO/>: Explicates data streams consumed by entities to transfer 
information; ancestor of user RKOs, not just hardware (e.g., speakers 
and displays).

8.5.3.3 Band and Mode RKOs
<SDR-subsystem-RKO/>: Lists all SDR resources of the <Self/> including 

SDR hardware, software, applications factories, and confi gured 
waveforms.

<Bands-RKO/>: Lists all the RF bands, fl agging bands to which <Self/> 
has access.

<HF-RKO/>: Explicates the properties of the HF band, each of which is 
elaborated by a related RKO, such as a <HF <Propagation-RKO/> /> 
or a <Morse-code-RKO/>. Each of the bands <LVHF/>, <VHF/>, 
<UHF/>, <SHF/>, <EHF/>, and <THz/> would have its own RKO.



<Modes-RKO/>: Explicates waveforms in the public domain, highlighting 
the modes of which the <Self/> is capable. Each <Mode/> has its own 
top-level RKO with relationships to GoS, QoS, and QoI RKOs.

8.5.3.4 RF Environment RKOs
<RF-sensing-RKO/>: Lists bands, modes, and accuracy of <Self/> RF 

sensing.
<Signals-RKO/>: Determines whether a space–time–frequency epoch is 

signal or noise.
<Noise-RKO/>: Verifi es the noise hypothesis or characterizes 

interference.

Other abstractions in the RF environment readily represented in RKOs 
include the <Channel/>, <Path/>, <Refl ection/>, <Refraction/>, and 
<Doppler/> shift. A <Propagation-RKO/> would be the ancestor of RKOs 
for <Link-budget/> and for <2D/> and <3D/> propagation modeling. The 
<Signal-in-space-RKO/> could explain the channel waveform in terms of 
<Channel-symbol/>, <Multiple-access/>, and <Stream/>, each of which would 
be derivative RKOs.

8.5.3.5 Hardware RKOs
Following the pattern of relatively narrow scope for RKOs, one may defi ne 
hardware RKOs for <Antenna/> and its properties <Effi ciency/>, <Gain/>, 
<Noise/>, <Direction/>, <Position/>, <Array/>, and <MIMO/>. Similarly, the 
<RF-conversion-RKOs/> for the transmitter and receiver could diagnose RF 
conversion faults. The <Baseband-RKO/> could characterize digitized analog 
signals like speech. ADCs, DACs, DSPs, shared memory, and interconnect 
each warrant RKOs. The <Bitstream-RKO/> would explicate the concept 
of a temporal sequence of bits, ancestry for the protocol stack RKOs. 
<Security/> RKO could be the ancestor for devices with IA properties.

8.5.3.6 Information Service RKOs
The <Services-RKO/> lists the abstract information services of wireless con-
nectivity and information transfer. It is the ancestor of more specialized 
RKOs for <Connectivity/>, <Transfer-data/> and its parameterizations in 
<GoS/> and <QoS/> RKOs. Since information transfer is mediated by <Pro-
tocol-stack/> with <ISO-OSI/> and <Radio-access-protocols/>, these each 
would be RKOs. To provide services, the iCR needs RKOs for <Skill/> areas 
including the ability to <Connect/> and <Disconnect/>; to <Transmit/> and 
<Receive/> <Voice/> and <Data/> as well as to <Bridge/> among voice and 
data representations. RKOs to <Plan/> and <Collaborate/> explicate rela-
tionships to information services from simple voice, data, news reports, and 
web browsing to conference calls and real-time collaboration.
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8.5.4 Radio-Domain Heuristics (RDHs)

The AM classes of heuristic may be adapted to defi ne radio-domain heuristics 
(RDHs) that assist in the autonomous evolution of RKOs via AML. Heuris-
tics are just RKOs, the domain and range of which are RKOs and which 
express a rule or functional, suggest a new RKO, fi ll in an existing RKO, 
maintain the consistency of an existing RKO, or estimate the value of a RKO. 
Stated in RXML in a slightly more general form so that a KO-based inference 
engine could fi nd the right KO using pattern matching yields Expression 
8-12.

Expression 8-12 RDH Defi ned as a Particular Type of RKO

<RDH> <RKO> <Name> Heuristic &? </Name>  .  .  .
<Domain> KO </Domain> <Range> KO </Range>
<Functions>.  .  .  <Rule> <Condition/> <Action/> </Rule> </Functions>
</RKO> </RDH>

Radio-domain heuristics include rules for generating new RKOs. Since 
radio is a structured domain, the content of many RKOs already exist in radio 
engineering. For example, if an AACR encounters a novel form of voice 
coding, say, RPE-LTP-8 for GSM, it can get the RKO from a GSM-aware 
CWN. This kind of RKO is a standardized machine-readable documentation 
package for the 8 kbps voice codec, enabling the AACR to perform the 
autonomous bridging use case. As with AM, the heuristics for new RKOs 
determine the direction of reasoning—goal driven to overcome connectivity 
impairments to enhance QoI.

Completion heuristics fi ll in empty RKO facets with advice that is precise 
and domain dependent. For example, a Doppler RKO with a slot for vehicle 
speed can be fi lled in by RDH advice to ask the host vehicle how fast it is 
going. A MIMO RDH can fi ll in a RKO with a slot for number of transmit 
elements with a query to the SDR component. AM discovery ideas apply to 
plug-and-play properties where increasingly specifi c questions are asked via 
RDH between collaborating software components on the same iCRs among 
peers, and with CWNs.

Refi nement heuristics independently examine the evolving RKOs for 
validity, correcting facets for consistency as needed. For example, a RKO for 
home RF accesses is updated by an address-change RDH when a family 
moves. While the suggestive and completion RDHs may create and initialize 
the RKO, keeping it current falls to refi nement RDHs.

Value heuristics estimate worth and interestingness of RKOs, typically a 
vector of usefulness metrics for QoI. The related RDHs embed rules for 
computing and interpreting worth with respect to the associated goals. 
Increases and decreases in worth can mediate AML reinforcement, enabling 
the autonomous refi nement of radio domain skills. Causal reasoning research 



has established the complexity and pitfalls of inferring cause from observa-
tions [37]. Interesting RKOs may be examined for causality by RDHs at 
length during sleep cycles.

8.6 EVOLVING SKILLS VIA RKO AND RDH

This section considers the potential contributions of RKO and RDH to seam-
lessness by applying per band experience to tailor cross-band connectivity to 
the user’s situation.

8.6.1 Per Band RKOs

The iCR’s experience in a given band can be aggregated into a collection of 
RKOs.

Expression 8-13 HF RKO of a Priori Knowledge

<RKO> <Name> <HF-Radio-Knowledge-Object/> </Name>  .  .  .  
 <Example>
<Typical> <Power> 100 <Units> W </Units> </Power>
 <Antenna> Long-wire </Antenna>
 <Mode> <Voice> <Single-sideband> Upper-sideband (USB)
  </Single-sideband>
 typical-HF-usb-voice.wav </Voice></Mode>
 <Range> 3300 <Units> miles </Units> </Range>
</Typical> </Example>  .  .  .  </RKO>

The CRA <Self/> ontology includes the a priori HF RKO of Expression 
8-13. This RKO says that a typical HF radio can use voice over 3300 miles 
radiating 100 watts into a long wire antenna, typical for an experienced 
ARRL Ham radio expert [207].

8.6.2 Per Band Experience

A RDH to extend this RKO embeds experience with band X into a new 
band-X-RKO using <Typical/> <Example/> as a template.

Expression 8-14 Radio-Domain Heuristic Creates RKO

<RDH> <Name> Band-Radio-Domain-Heuristic </Name>  .  .  .
 <Rule> <Condition> <RKO><Name> ?<Band/>  .  .  .  </RKO> 
  </Condition>
  <Action> <Create/> <RKO><Name<Self/>/>-?<Band/> </Name>
  <Example Time = <Now/> Place = <Here/> >
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  <Power/> <Antenna/><Mode/> <Range/> <QoS/>
  </RKO> <From <Condition/>/> </Create> </Action>
 </Rule> </RDH>

The simplifi ed RDH (Expression 8-14) creates a HF RKO using <HF/> 
<Example/> the current power, mode, range, QoS, and QoI for its current 
use of the HF band. This new RKO captures experience, and a related Refi ne-
ment-RDH updates the HF RKO each time HF is used. Representing RDOs 
and RDHs in RXML enables the CRA cognition cycle to use XML tools to 
update self knowledge. As the iCR uses other bands, other RKOs aggregate 
knowledge of attempts, successes, and QoI.

8.6.3 Network-Enabled Experience

The iCRs also learn associations between uses and the associated networks 
(Table 8-4).

Radio network use is readily expressed in RKOs, a core of which is shown 
in the RXML of Expression 8-15.

Expression 8-15 RKO for PSTN Access by Telephone Number

<RKO> <Name> Cellular </Name>  .  .  .  <Domain> <Dialed-number/> 
 </Domain>
 <Range> <PSTN/> </Range>  .  .  .
 <Function> <Accesses> <Dialed-number/><PSTN/> </Accesses> 
  </Function> </RKO>

This simple RKO expresses the a priori fact that when the cellular network 
is dialed, it accesses the PSTN. A good RDH saves dialing experiences as in 
Expression 8-16.

TABLE 8-4 Network Knowledge for RKO

Network Available Knowledge CR Uses

Cellular PSTN access Dial a phone number
WLAN Internet query User entertainment
Broadcast Spectrum rental policy Obtain PTX limits
KNNa CNN in OWL format Obtain news briefs
NOAA WX broadcast Scan for WX threats
.  .  . ? ?

a KNN is a Knowledge News Network.



Expression 8-16 RKO Evolved by RDH for Remembering Experience

<Example> <Accesses> <Dialed-number/>703-555-1215<Dialed-number/>
<PSTN> “Hi, Wendell, this is Betsy.  .  .  .”</PSTN> </Accesses> 
 </Example>

The RDH integrated Betsy’s phone number and her conversation in the 
RKO. Several interesting things are readily associated via RKOs and RDHs. 
Since iCRs remember everything, memory is organized for ease of subsequent 
use. When a number is dialed, the iCR remembers the entire conversation, 
so the next time <Wendell/> wants to call <Betsy/> he just asks.

Since the iCR is driven to help Wendell, it has processed the audio seg-
ments resulting from PSTN access, extracting Wendell’s and Betsy’s names. 
Name-fi nding is reliably realized by commercial speech recognition algo-
rithms so that <Wendell/> and <Betsy/> are grounded to known persons.

Wireless use cases also are functions of place and time, so AACRs need 
a priori spatial knowledge of the Universe (to do it right).

8.7 IMPLEMENTING SPATIAL SKILLS

As iCRs move, newly minted RKOs keep track of which bands work best in 
which locations and at which dates and times. For this knowledge to be most 
helpful, the iCR must have a high performance capability for navigation, 
location fi nding, and reasoning about physical space. Then it could reason 
about space and time as a coherent whole, relating location on the way to 
work to time to access the corporate wireless LAN, for example. Location 
knowledge for spatial reasoning about radio is more than GPS navigation, a 
radio-oriented model of space and time based on an ontological model of 
space for spatial KOs (SKOs).

8.7.1 Spatial Ontology

For radio communications, physical space may be organized into a hierarchy 
of logical planes: <Global/> (including outer space to know about sunspots 
and SATCOM), <Regional/>, <Metropolitan/>, <Local/>, <Outdoor-scene/>, 
and <Indoor-scene/> planes. Associated with each are spatial knowledge 
objects (SKOs), with spatial domain heuristics (SDHs) for instantiating, pop-
ulating, and managing KOs to refl ect experience with its own bands and mode 
in those specifi c places. Generic SKOs represent broad knowledge of radio in 
space, while heuristically evolved SKOs aggregate the experience of a specifi c 
user. Computational ontologies of space expressed in CRA <Self/> RXML 
and implemented in SKOs enable iCRs to autonomously employ maps, charts, 
GPS, radio propagation, and network-derived location knowledge. In 
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addition, each plane includes visual and acoustic features for <Scene/> detec-
tion and information space parameters across that plane to enhance the use 
of that space for QoI.

8.7.1.1 Global Plane
Figure 8-1 shows the top level of the physical-world spatial hierarchy, the 
global plane. Here are the telecommunications patterns that are global in 
scope. SKOs on this plane include global demographics like population, 
global connections like SATCOM, global traffi c statistics, and global wireless 
patterns. The global plane SKO lists the regions into which this space is par-
titioned with the characteristic distances, speed typical when traversing this 
plane, and characteristic time over which patterns on this plane change sig-
nifi cantly. These characteristics enable quick high level reasoning about the 
<Self/> situated in this plane, for example, making a trip that transits one or 
more regions.

Signifi cant motion in this plane occurs at a rate of speed that can transit a 
substantial fraction (>10%) of the characteristic distance in an hour like a 
traveler moving at 1000 km/h (e.g., in an aircraft). In addition to the SKO’s 
slots for aggregate characteristics, each plane describes interconnection 
mechanisms like global fi ber and SATCOM; characteristic travel, like air, rail, 
or ship; annual temporal patterns, including population migration; and day–
night zones. Planning SKOs include travel itinerary and critical information 
such as location, telephone number, Internet address, mobility, wireless access 
opportunities, path length, delay, data rate, QoS, and traffi c density. Access 
to Iridium and other satellite telephones is driven by location in the global 
plane. The global SKO of Expression 8-17 highlights key features of this class 
of KO.

Low-Earth-Orbit HEO Orbit

Russia
Japan

Pacfic

China
India

Europe

Canada

Alaska

USAPacific

Caribbean Atlantic
Mideast

South Asia

AustraliaAfrica
South America

GEO A GEO B GEO C GEO D

Speed: 1000 km/hrTime: 1 yearSpace: 10,000 km

FIGURE 8-1 Spatial plane.



Expression 8-17 Global Plane SKO (Simplifi ed)

<SKO> <Name> Global-Plane </Name>
 <Defi nitions> <Spatial-extent/> > 1000 km </Defi nitions>
 <Slots> <Members> <Sun/> <SATCOM/> <Alaska/>  .  .  .  </Members> 
  </Slots>
 <Membership> <Indicators> Globe, Earth, Outer-space, Intercontinental 
  </Indicators>
 </Membership> <Domain> Space Earth <Members/> </Domain>
 <Range> <Members/> <Connectivity/> <Traffi c-patterns/> <Statistics/>
  <Characteristics> <Space Typical = 1000 km/> <Time Typical = 1 yr/>
  <Speed Typical = 1000 km/h/> <Travel Typical = Air/>
  <Interconnect Typical = SATCOM/> <Travel Typical = Business/>
  <Travel Typical = Vacation/> <Space-time Typical = Itinerary/>
 </Characteristics></Range>
 <Examples> <Unique/> </Examples>  .  .  .  </SKO>

8.7.1.2 Regional Plane
Each partition of the global plane (e.g., Europe) has a corresponding regional 
plane that captures those features of a geospatial region necessary for AACR 
use cases (Figure 8-2).

Important properties of this region are as follows:

regional plane parameters

Interconnect Fiber trunks, cellular roaming (terrestrial micro-
  wave or backhaul)
Travel Commute by air (rail, ship, automobile)
Rhythm Weekly (annual, daily), seasonal cycle of
  temporal patterns
Space–time Itinerary, commuting habits, day–night boundary

Oslo

Stockholm

Paris

Copenhagen
London

Berlin

Helsinki

Characteristic

Distance: 1000 km
Time: 1 week
Speed: 200 km/h

FIGURE 8-2 Regional plane SKO identifi es links among metropolitan areas.
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Information space Constraints imposed by geopolitical boundaries 
  like national borders; physical barriers such as 
  mountain ranges

8.7.1.3 Metropolitan Plane
Each region of the spatial hierarchy is partitioned into metropolitan planes 
that often have the greatest intensity of telecommunications infrastructure. 
Regions need not be metropolitan demographically: a large wilderness park-
land, for example, could be a metropolitan plane. The criterion for the inclu-
sion of a locale in one metropolitan plane is the relevance to QoI tasks of 
AACR, such as the inclusion of bedroom communities with the urban center. 
Commuters’ daily patterns transverse these locations, typically by rail or 
automobile. Stockholm suburbs within about 200 km of the hub are included 
in the Stockholm SKO in Figure 8-3.

Other signifi cant properties of this plane of the spatial hierarchy include:

metropolitan plane parameters

Interconnect Wireless, fi ber trunks, cellular service, 
  propagation, cell coverage
Travel Commute by rail, automobile (air, ship)
Rhythm Daily (weekly, annual, seasonal)
Space–time Commuting habits, to-do list
Information space Wide area access, best service provider

In this SKO, the quality of wireless coverage is important. Video data rates 
are not available everywhere and temporal patterns shift in a daily cycle 
driven by commuting and leisure pursuits, depending on the day of the week 
and the season. A commuter’s normal pattern is shaped by the daily schedule, 
causing signifi cant variations in the space–time pattern of demand for wire-
less. Visits to clients, luncheon engagements, and so on can shape the needs 
of wireless power users such as corporate executives. Since power users may 
be early adopters, their patterns inform use cases for early technology 
insertion.

Uppsala
Norrtälje

Stockholm

Südertålje

Kista

EnkÖping

Characteristic

Distance: 100 km
Time: 1 day
Speed: 50 km/h

FIGURE 8-3 Metropolitan SKO describes geography and infrastructure.



8.7.1.4 Local Plane (<Locale/>)
The local SKO embraces the region that generates 90% of the radio multipath 
from PCS and cell towers serving typical users, spanned by a 5–10 minute 
walk (urban), subway, or automobile ride (rural). A subscriber’s location 
varies over this area during the day. In Figure 8-4, a visitor to the SAS Royal 
Viking Hotel in downtown Stockholm takes a walk around town captured in 
a SKO.

The Åhlens and NK department stores within a few hundred meters of the 
hotel are adjacent to the large green Kungstradgarden park and walkway to 
the river. The Opera is adjacent to the old city of Gamla Stan with its historic 
restaurants and shops. The bridge connecting Gamla Stan via the Central-
bron to the Central Station rail terminus offers convenient access to the SAS 
Royal Viking. These places are known via the local plane SKOs to contain 
important elements of information. To mutually ground the iCR and user in 
such small areas requires the correlation of visual scenes to user-intelligible 
maps, for example, by landmarks that are easy for the iCR video sensor to 
perceive reliably. Such perception assists the user in navigating an unfamiliar 
cityscape with unreliable GPS in Gamla Stan (Figure 8-5).

An initial SKO has a priori location of buildings, bridges, cell towers, and 
radio access points like Internet cafés and 802.11 hot spots. The SKO is the 
template from which the AACR builds a RKO and into which the AACR 
can integrate its own spatially registered radio experience, such as physical 
access to trustable hot spots. This plane contributes to radio access quality, 
small enough to be manageable yet large enough for normal daily and weekly 
patterns for a majority of users. Derivative SKOs record personal experience 
for introspection and QoI planning via local plane parameters:

local plane parameters

Interconnect  Wireless, cordless, satellite mobile; propagation—
 refl ection, scattering, multipath; preferred 
 bands—VHF, UHF, WLANs, hot spots

Travel Foot, taxi, train (entry and exit points/stations) on 
  board is a scene

NK
Park

Opera

Bridge Gamla Stan
Central
Station

SAS Hotel

Åhlens

Grev Turgatan
Characteristic

Distance: 1–10 km
Time: 1 hr
Speed: 50 km/h

FIGURE 8-4 Local area SKO for a Stockholm experience.
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Rhythms Daily (weekly, seasonal)
Space–time To-do list, meals
Information space Local access, local coverage/gaps, kiosks

The ontological treatment of the local plane is the <Locale/>, a collection 
of <Scenes/>.

8.7.1.5 Outdoor Scenes
The immediate area plane has optical line of sight to objects resolved by a 
cell phone camera, not more than about 100 meters, as illustrated in Figure 
8-6. Although radio propagation in the local plane can be modeled in two or 
21–2 dimensions (x, y, and height in selected places), modeling propagation in 
urban areas requires 3D. A frame SDH spawns new SKOs whenever the iCR 
detects substantial change of visual scene. Dramatic changes of light, such as 
darkness and stormy weather, each spawn new SKOs that associate the visual 
scene with blobs, landmarks, and dead reckoning. The characteristic distance 
of the outdoor SKO ranges from a few meters (e.g., in an alley) to a hundred 
meters or more. The characteristic time scale is on the order of seconds to 
minutes, depending on motion on foot.

In addition, the information focus has changed as suggested by the follow-
ing characteristics:

outdoor scenes entail movement on foot with b3g video experience

Interconnect Voice, wireless, cordless
 Propagation Vehicular refl ection, multipath
 Preferred bands VHF, UHF (EHF, HF)

FIGURE 8-5 Spatially skilled CR understands a map of Gamla Stan.



Travel Foot (taxi, train refer to inside of vehicle)
Rhythms Hourly/momentary action needs
Space–time  Use of artifacts, dead reckoning and visual 

 navigation
Information Nearest infrastructure access point

Travel in this plane is limited to walking by defi nition. The outdoors imme-
diate area plane is the user-centric plane. It is best described by a coordinate 
system that moves with the user, refl ecting the immediate environment. Its 
SKO employs a mix of spatial models to identify opportunities to access RF 
LANs, future cordless telephones, and home networks when about in the 
yard, the “home” outdoor scene. The outdoor scene forms ontological primi-
tive <Scene/> SKOs for the CRA <Self/>.

8.7.1.6 Indoor Scene
The indoor scene consists of the objects within 3 to 20 meters of the user as 
suggested in Figure 8-7. The iCR interacts with other objects in the environ-
ment such as the owner’s personal computer (PC), or future smart TV, kitchen, 
or toaster via BlueTooth, WiFi, or an infrared port (IRDA).

Propagation effects in the indoor scene are those that change over 
fractions of a wavelength. This plane has the following additional 
characteristics:

indoor scene parameters

Interconnect Physical contact
 Propagation Refl ections from body parts, walls, furniture, 
  appliances
 Preferred bands Infrared, optical, EHF (SHF), very low power 
  ISM bands
Travel Movement of body, artifacts

Characteristic
Distance: 100 m
Time: 1 minute
Speed: 1 m/s

FIGURE 8-6 Outdoor <Scene/> of immediate area plane characterizes propaga-
tion in three dimensions.
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Temporal patterns Segment of momentary motion
Space–time Fine-scale effects
Information Very low power local exchange possible

Space–time patterns in the indoor scene are induced from the unit’s own 
knowledge of its <Self/> approximate location (e.g., SAS Royal Viking Hotel) 
plus measurements continuously made by the device. If visual perception 
were completely reliable, then a new scene S1 is entered from S0 when all of 
the items of S0 are no longer observable. This is not a very good defi nition 
since the <Sky/> and the <Ground/> appear in most outdoor scenes and 
people move in groups to new scenes. Technical advances in perception tech-
nology are needed to recognize those things that distinguish one scene from 
another. In the CRA, <Scenes/> are to aggregate experience consistently. 
Thus, a <Locale/> consists of a set of spatially associated <Scenes/>.

Reliable defi nition of scene boundaries is a research area of computer 
vision and machine learning, so for the moment, less than ideal algorithms 
will identify scene boundaries with less than ideal partitioning.

This concludes the defi nition of the spatial inference hierarchy, enabling 
the exploration of the relationships among space, time, information access, 
and information content. The near-term use of SKOs for radio-domain com-
petence may benefi t from the idea of an information landscape.

8.7.2 The Information Landscape

Goodman [208] has been developing the concept of “The Geography of 
Information,” referred to as an information plane. The spatial distribution of 
information has been a feature of human experience since the dawn of history. 
To see pictures of animals, cave dwellers visited a cave in France. To learn 
from books, ancients trekked to the library in Alexandria, Egypt. The loss of 
such information geography is a product of electronics that represents, trans-
mits, receives, and stores information without the sophistication to create 

Characteristic
Distance: 10 m
Time: 1 ms
Speed: 0.1m/s

FIGURE 8-7 The indoor scene SKO characterizes signifi cant indoor objects.



easily perceived landmarks for the new information geography. For AACRs 
to employ the information landscape autonomously requires the translation 
of artifacts from human accessible to computationally accessible forms. Let’s 
relate Goodman’s ideas to AACR through the integration of spatial and radio 
skills.

Goodman’s strategy for expressing and exploiting the geography of infor-
mation is based on the spatial location of signals, users, and information. He 
examines information, environment, terminals, and networks as summarized 
in Table 8-5.

Goodman’s information plane characterizes the urgency of delivery, which 
is a social judgment, the localization of the information, which depends on 
caching, and the users, which are entities in the information plane. Social 
relationships imply needs and uses of information in an environment where 
faults or voids limit the geography of the information plane the way a river 
limits the geography of a city. Without a bridge, communities across the river 
from each other are isolated. Goodman seeks information, environment, 
terminals, and networks that enable users to perceive and manipulate the 
geography of information.

For an AACR to perceive a geography of information, that geography must 
be parameterized numerically and expressed in workable computational 
structures accessed by the ontological primitive <Information-landscape/>, 
a projection of features onto a spatial map, in RXML a projection from 
<Physical-space/> to <Abstractions/>.

Expression 8-18 The Information Landscape

<Information-landscape/>
 <Function> <Projection/>
  <Domain> <Physical-universe <Physical-space/> /> </Domain>
  <Range> <Abstractions> <User <Information/> />
   <RF-environment> <RF <Metrics/>/>
   <RF <Hardware <Devices <Terminals/>/>/>/>
   <RF <Systems <Networks/> /> /> </RF-environment>
  </Abstractions> </Range> </Projection> </Function>
  </Information-landscape>

TABLE 8-5 Goodman’s Strategy for System 
Alignment to a Geography of Information

Plane Criteria

Information Urgency, localization, users
Environment Signal propagation, network activity
Terminals Location, motion, power supply
Network Cell LAN, ad hoc, infrastructure
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<User <Information/> /> mapped against <Physical-space/> forms associa-
tive pairs like (<Here/>, <Owner <Information>> Income-tax-data </Owner 
</Information>). If <Here/> is a latitude–longitude pair, then the associative 
relationship (Where is the income tax data?) is not as helpful as if <Here/> 
refers to the <Desk/> drawer or fi le on the laptop. So there is a hierarchy of 
qualitative locations that makes the geography of information helpful. A 
particular latitude–longitude pair associated with a <Locale/> called <Home/> 
has both outdoor scenes where GPS can measure latitude and longitude and 
interior scenes like the basement where the <Desk/> is located. The presence 
and features of devices like <Desk/> that store information may be clustered 
into the <Home/>-SKO as a node in the user’s information landscape, with 
devices and networks merely a means to an end. The income tax data could 
be accessed via WLAN from the laptop, so, the information landscape 
expresses the role of the devices, networks, and radio environment in access-
ing the income tax data (Expression 8-19).

Expression 8-19 Points in the Information Landscape 
Learned Via Experience

<Information-landscape> <Experience> <Now> 
 1/28/2005 1:37:14 PM </Now>
 <Physical-space> <Here/> <Home><Basement><Desk/>
  </Basement><Home/> </Physical-space>
 <User <Information>>
 <Owner <Information>> Income-tax-data </Information </Owner>>
 </User </Information>>
<RF-environment>
 <Networks> IEEE-802.11-WLAN </Networks>
  <Metrics> <RSSI> <Strong/></RSSI> </Metrics>
  <Hardware> <Devices> <Terminals>
   <Laptop> Big-blue-Model-802 </Laptop>
   </Hardware> </Devices> </Terminals>
 </RF-environment> </Experience></Information-landscape>

The specifi c experience of Expression 8-19 formalized as a <KO/> could 
be an information landscape knowledge object, <ILKO/>. A proliferation of 
many kinds of knowledge object is confusing, so the sequel limits KOs to just 
three classes: RKO, SKO, and user KOs (UKOs). Other classes are hybrids 
of these orthogonal classes.

8.7.3 Constrained Information Landscapes

AACR navigation skills typically will include satellite location tools with 
electronic street maps of buildings, waterways, and points of interest suffi cient 



for a user but insuffi cient for the <Information-landscape/>. The physical 
location must be augmented from the AACR’s and user’s viewpoints.

Expression 8-20 Gamla Stan SKO (Simplifi ed)

<SKO> <Name> “Gamla Stan” </Name>
 <Defi nitions> <Physical-space><Physical-universe><Locale> Gamla-
  Stan </Locale>
  <Metropolitan> <Stockholm> <Metropolitan/> <Region><Europe/> 
   </Region>
  <Global> <Earth/> <Global/>
  </Physical-universe> </Physical-space> </Defi nitions> </SKO>

The Gamla Stan section of Stockholm is part of Europe, which is a part 
of the globe in the physical model of the world. The tag <Physical-space> 
constrains Gamla Stan to be located in 3-space (i.e., it is not an abstraction 
like Santa Clause, which is real to the <Self/> as an abstraction of giving). 
The AACR encountering Gamla Stan for the fi rst time may access as a priori 
SKO with landmarks, street names, the authority of the information, con-
straints on spatial relationships, and other characteristics that help relate its 
experience to features of the location. This section identifi es the important 
constraints to the information landscape that must be known in order to 
enable well-grounded aggregation of experience for use of that landscape.

8.7.3.1 Constraining the Source
The source of the knowledge about Gamla Stan is not explicit in Expression 
8-20, but in order for an AACR to reason about confl icting information, it 
must associate a source with each KO. For example, the AACR might learn 
that there are no public WLAN access points from the following source:

<Source>
 <Place> “Fairfax, VA” </Place>
 <Time> 199905121605 </Time>
 <Author> “J. Mitola III” <Author/> </Source>

Some might trust this source, while others might want a more current, more 
authoritative source. If another source says that there are indeed public 
WLAN access points on Gamla Stan, dated 200501041610, then which would 
you trust? Suppose another source later says that there are none because the 
network is down. Yet another source said fi ve minutes ago that the WLANs 
are all up. Now which one do you trust? Reasoning over such confl icts requires 
the codifi cation of the idea that the most recent relevant experience is the one 
to be most trusted. This idea isn’t hard to implement computationally, so there 
is a SDH, advising that the most recent status report be believed:
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<SDH> <Name> <RF <Network <Status/>/>/> </Name>
 <Rule> <Condition>
  <Status> S1 <Time> X </Time> <Place> L </Place> </Status> & 
   <Status> S2 <Time> Y </Time> <Place> L </Place> </Status> & 
   Y>X
   </Condition>
  <Action> <Believe> <Status> S2 </Status> </Believe> </Action>

If location L is Gamla Stan, then the heuristic guides the radio to believe 
S2 (e.g. WLAN is up) in Gamla Stan. If later AACRs report the WLAN to 
be down, then the <Self/> believes the new status.

8.7.3.2 Collaboratively Exploiting Spatial Knowledge
Of course, GPS receivers enable the rote services of displaying the location 
to the user and plotting the position on a map. An AACR autonomously uses 
location, for example, to check its equalizer with a rule such as the following 
PROLOG rule from Kokar’s ontology-based radio (OBR) [88]:

checkPerformance(X) :-equalizerError(E), 
 pv(obr8upperPerformanceThreshold, 
 object8MonitorServiceDispatch, UPt), 
 pv(obr8lowerPerformanceThreshold, 
 object8MonitorServiceDispatch, LPt), compare(‘>’, E, LPt), 
 compare(‘<’, E, UPt), assign(‘Continue ‘, X).

This PROLOG rule advises the OBR that if its equalizer error E is out of 
bounds, it should do something about it. Since this rule may fi re at any time, 
the reaction of negotiating equalizer training sequences with the host wireless 
network may be initiated at any place or time. In Kokar’s scheme, the OBR 
may try to fi x the performance problem by switching to its most computation-
ally expensive and best performing equalizer, but if that fails, it tries to negoti-
ate a longer training sequence with the host network. Suppose the host 
wireless network knows how to embed a longer training sequence in a GSM 
burst but has not recently been asked to do this. It could take minutes before 
the enhanced sequence mode is available, rendering the strategy ineffective. 
Even if the network has such a mode ready to initiate when asked, a few 
frames of delay may render the call disconnected, defeating the strategy.

Now suppose that the OBR also has spatial knowledge. When it queries 
the CWN for directions from the Royal Viking to dinner in Gamla Stan, it 
detects a bridge crossing plus water as Rayleigh fade problems across the 
water [170]. It may fi nd that other AACRs experience dropped calls unless 
they use the extended training sequence—via SKOs that refl ect this experi-
ence. If the AACR installs the extended training sequence at the Royal 
Viking, then it wastes bandwidth and power for no benefi t. Space–time plan-
ning over the SKOs can infer this implication of changing to the extended 



training sequence too soon. Although Kokar’s OBR did not express the 
space–time constraints needed to generate such a plan, an embedded power 
budget instantiated with the cost per bit of the normal equalizer and the 
extended equalizer could estimate the power drain and loss of bandwidth 
associated with early employment of the extended mode. In addition, the 
CWN would not want to pay the penalty of lost network bandwidth unless 
the specifi c circumstances demand it.

The location-adaptive AACR can generate a collaborative plan with the 
CWN to enable the long training sequence when the AACR approaches the 
bridge to Gamla Stan, the Old City. When it fi nds itself actually in transit to 
Gamla Stan and on the bridge, then the CWN is ready to initiate the remedy 
proactively, avoiding dropped calls. If the network isn’t particularly busy, then 
the resources could well be available, and the incremental revenue certainly 
would be welcome. The ability to reason about space, time, and radio perfor-
mance with collaborative planning enabled by SKOs differentiates AACR 
from reactive OBR, which is a great step in the right direction.

8.7.3.3 Refi ning Location Skills in Outdoor Scenes
Suppose the AACR is in the Washington, DC area. The CWN has generated 
the maps of RSSI as a function of distance from a particular cell tower, as in 
Figure 8-8a. The <SKO> for the Washington, DC area includes the underly-
ing data set, an array, and the visual representation, the <Graphic/>. The slice 
of RSSI represents a path that the AACR could take through the city. If the 
RSSI map were generated initially by a radio propagation tool, then the valid-
ity of the values might not be known. Values updated based on the experience 
of AACRs in the environment retain their validity subject to major changes 
in the scene, such as the construction of buildings, changing air traffi c pat-
terns, and diurnal variations in vehicular traffi c. These dynamics are typical 
of the <Outdoor/> <Scene/>. As the user rides in a vehicle, the location and 
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FIGURE 8-8 Spatial map of RSSI. (a) Two-dimensional representation of RSSI 
array. (b) Slice representing a path. Courtesy WrAP@used with permission.
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average RSSI change quickly, while when not moving, RSSI changes slowly 
because of RF dynamics. A path through a <Locale/> like a commute consists 
of an associated sequence of <Outdoor/> <Scene/>s. The <Locale/> SKO 
associates RF experience with these <Scenes/>.

8.7.3.4 Refi ning Radio Skills in Indoor Scenes
In addition to Rayleigh fading over water, other types of locations suffer from 
chronic radio channel impairments. Physically constrained spaces like Figure 
8-9 set up interference patterns that distort radio reception.

The AACR that uses its cell phone camera to perceive such situations can 
associate its radio experience with the visual scene, such as the broad, wide, 
and low hotel entrance. A radio entering such a scene may know from sharing 
SKOs with other AACRs that there will be no reception during the transit 
under that entrance. It could ask a nearby AACR to act as relay during that 
transit, possibly using an unused TV channel as an ad hoc band. The <SKO/> 
needed for this function includes three scenes. One <Scene/> is the one shown 
with the AACR worn by its user looking at the entrance, but not yet severely 
affected by the propagation anomalies under the overhang. Another <Scene/> 
<SKO/> would be on the exterior. Both of these would show strong RSSI. 
The third would be the <Typical/> <SKO/> recorded actually in position 
under the overhang, where the RSSI is not zero, but only an extended mode 
of the extended equalizer can sustain information transfer.

8.8 GENERALIZED <INFORMATION-LANDSCAPE/>

SKOs and SDHs could aggregate experience to characterize the <RF/> 
aspects of an information landscape, but they should also associate <User/> 
<Information/> for which a <Need/> is expressed on the <Information/> 

FIGURE 8-9 Royal Viking Hotel entrance.



plane. Distance between user and information may be measured in time to 
access the information, one of the QoI parameters defi ned above. Reducing 
information (content) access time often enhances QoI. QoI may be low 
because of a region near a building where the cell towers are shadowed. One 
approach to improving the information landscape (an adaptation of Good-
man’s ideas) might be the bridging of faults in the access geography. The iCR 
empowered to assist nearby cell phones in need could relay information to 
shadowed users, making the landscape fl atten. If the price to be paid by the 
user doing the assistance is workable, then all benefi t by helping each other. 
In such an interaction, the signal propagation of the environment plane, the 
power available in the terminal, and the limitations of the networking plane 
all play a part.

8.8.1 Shannon Information

One challenge in discovering the connected information landscape may be to 
transition from a focus on data transfer to a focus on information transfer. 
Shannon considered strings of symbols from alphabets. If there were S dif-
ferent strings, then each of those S possibilities could be represented in log(S) 
bits, with base 2 logarithms. If a source produces these strings, distributed 
with probability P(si), then observing symbol si supplies information I(si) that 
is the number of bits required to express the inverse of that probability:

 I(si) = log(1/P(si)) (8-9)

Shannon then went on to publish his noisy-channel coding theorem and 
many other distinguished works [209]. The noisy channel can transfer infor-
mation without error if the speed is consistent with the channel capacity. 
Communications systems engineers know all the rest, but rarely employ 
Equation (8-9) to enhance information as content, not just as data. The noisy 
channel conveys information, not just data. An image to be transferred from 
one cell phone to another contains information. A JPEG-coded image can’t 
be meaningfully decoded until the entire image is present. The image as a 
block of coded data has no explicit information content since it has been 
encapsulated into opaque bits. When decoded into a display, it becomes 
meaningful information to the user. The same wavelet-coded information 
conveys the underlying shape of the image in the early block transfers, and 
this may be decoded incrementally, shape fi rst; and details may be fi lled in 
subsequently. Some forms of communication thus exhibit the strong statistical 
structure (information) of the content of a message payload while others do 
not. One generalization of <Information-landscape/> is to make the statistical 
structure of information content explicit in sharable SKOs.

The strong statistical structure of information expresses itself not just as 
the probability density of bit patterns, but also as the discoverable nonuni-
formities that shape the human and iCR experience of information. The 
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<Histogram/> was selected as the algorithm for the introduction to radio-
oriented machine learning because the <Histogram/> estimates the informa-
tion content as a probability density function in the simplest possible way—just 
count occurrences. The <Typical-example/> in Lenat’s AM concepts and thus 
in the RKO tableau is defi ned simply in terms of counting. Specifi cally, the 
example that has the most counts has occurred the most in the entity’s experi-
ence and therefore is the <Typical/> example. In the absence of traumatic 
shock to sensitize the memory, we remember things as typical that occur many 
times.

8.8.2 Information, Memory, Experience, and Skill

There are two kinds of information to which the information landscape must 
facilitate access: the typical and the atypical. Human memory seems intrigu-
ingly nonlinear. We often remember a single experience vividly, but some-
times cannot remember regular experiences very well (What did you have for 
breakfast today, anyway?). Neurophysiologists now know much about how 
the neural pathways of memory are wired. The molecular basis for memory 
and learning includes the chemistry of neuronal development and adult plas-
ticity [210]. In traumatic situations, plasticity is a function of the concentra-
tion of biochemicals like adrenaline and their cocatalytic associates [211]. The 
fi ne structure of biological memory is refl ected in the macroproperties of the 
mind. Jerry Fodor’s classic monograph Modularity of Mind [212] formulates 
memory as belief. He also posits mental skill development as the work of 
repetition that sublimates steps of conscious awareness into fl uid, modular, 
unconscious skills. The biochemistry seems to justify this philosophical view 
with neuronal plasticity and response to repetition. Athletes subsume the 
tedious details of training (“Keep your eye on the ball”) with experience 
(Stance, pitch, swing, hit—or miss) into modular skills that their own intro-
spection does not penetrate well. The information landscape, then, should 
extract spatial structure from experiences to SKOs and sublimate procedural 
details away from the user and the <Self/> with repetition.

We seem to naturally gravitate toward doing the most rewarding things 
most often, doing repeated things better than things we have never attempted 
before. Some of us also like novelty, like the 10% of ants in the ant hill that 
don’t follow the pheromone trail and thereby save the colony from extinction 
walking down the snout of the anteater. Life seems to thrive on such entropy 
peaks and valleys. Thus, the domain heuristics of CRA <Self/> focus on 
remembering all experiences in a way that makes it easy to retrieve both the 
most typical and the extreme atypical examples. So the most common experi-
ences are fl agged by domain heuristics as <Typical/> for indexed access. In 
addition, the CRA postulates embedded associative memory exemplifi ed by 
the HashMaps of CR1 that include not just serModels, but also the counting 
of repetitions of stimuli and their hierarchical associations into SKO scenes, 
computational frameworks for information landscapes.



8.8.3 The Statistical Structure of Content

Zipf counted words in The New York Times in the 1940s [11, 213, 214]. He 
found that a single word—the word “the”—accounted for nearly a tenth of 
the words in the corpus, with the next most common word occurring 1/10th 
as often and 1/10th of the words occurring only once, supporting the hypoth-
esis that the product of the number of occurrences n times the square of the 
relative frequency of occurrence f 2 is nearly constant. In addition, the product 
of the rank order r and the relative frequency of occurrence f of the word is 
nearly constant [215]. The product form is a fractal distribution, a distribution 
in which the product of size and an exponential of size is approximately con-
stant [216]. Although there are exceptions, the pattern is so consistent that it 
can be used like <Histogram/> to detect <Interesting/> information. The 
fractal structure of language is expressed on three levels. The structure of 
language dominates, comprising one fractal with “the” as the most frequently 
used English word. The second fractal distribution may be associated with a 
domain. The term “radio” occurs with dramatically more regularity in com-
munications about radio than in general communications, for example, in The 
New York Times. Finally, each component of communications such as a book, 
technical paper, or paragraph each exhibit a topic, the keywords of which 
occur with Zipf-fractal relative frequency compared to those of the domain. 
Text retrieval systems use such statistical properties of text to improve preci-
sion and recall, and to estimate the relevance of a document to a query. Thus, 
the AACR may use <Histogram/> to extract content <Domain/> or <Topic/> 
to characterize the information content of a <Scene/>.

The CRA <Self/> offers <Histogram/> and domain heuristics to estimate 
those statistical trends. Suppose then that the SKO for the scene accumulates 
a <Histogram/> of the words of the dialog, less the <Structure-of-language/> 
words. Let <Dialog/> be the histogram of the content words. The following 
domain heuristic then applies.

Expression 8-21 DH Flags the Most Frequent Word as the 
Topic of Conversation

<DH> <Name> Topic-clustering </Name>
 <Function> <Rule>
  <Condition> <Histogram> <Domain> <Dialog/> </Domain> 
   <Range> D </Range> </Histogram> </Condition>
  <Action> <Topic> <Extract> <Most-frequent> D </Most-frequent>
   </Extract> </Topic> </Action> </Rule> </Function> </DH>

The DH simply fl ags the most frequent non-language-structure word of the 
dialog as the <Topic/>. Computational linguists and information retrieval 
experts improve this result via metrics and rules for identifying topics [217], 
but the topic-clustering heuristic in Expression 8-21 is surprisingly effective. 
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Huffman coding assigns the shortest codes to the most common strings of a 
communication [218]. So although the statistical structure of text communica-
tions often is not made available to the control system of the radio, it often is 
computed in the process of coding communications for effi cient transmission. 
<Histogram/> operations on the speech phrases in a scene reveal the statisti-
cal structure of <Topic/>, enabling the iCR to associate dialog topic with 
location, building the information landscape in SKOs.

8.8.4 Associative Information Landscape

On the global plane of the spatial hierarchy, the user is one of millions of 
others moving from place to place. The global patterns are represented in 
statistical aggregates. A given AACR and user interact with the global level 
of the information landscape in unique ways. For example, a travel itinerary 
may defi ne sequence of <Scenes/> across regions of the global plane such as 
airports, hotels, car-rental lots, and the like. Some AACRs may experience 
the global plane regularly because of the travel patterns of the owners, while 
others may not experience them at all. The SKOs refl ect these differences as 
the AACRs extract information content, associate it with radio tasks, and 
employ it in a timely way.

Table 8-6 shows a fl ow of associations made through the heuristic evolution 
of SKOs, populated with associations of the <Information-landscape/> dis-
covered while interacting with <Global/> plane <Scenes/> at Dulles Airport. 
Initially, the AACR knows only the most generic facts about airports. When 
approaching Dulles for the fi rst time, SDH retrieves a new SKO for <Dulles/>, 
which makes the transition from a conceptual <Abstraction/> to the <Self/> 
to an experiential SKO. Entering the airport, the AACR detects “Check-in” 
as a topic of conversation, so it seeks wireless and check-in, fi nding new wire-
less check-in kiosks similar to today’s mechanical kiosks where passengers 
must physically enter credit cards and physically push buttons. The AACR 
advises the user that WLAN check-in is available with directions to the 
WLAN kiosk. One check-in topic is seating, so the AACR generates a message 
on the WLAN to change the seats so the owner and spouse can sit together 

TABLE 8-6 Illustrative Information Landscape Associations

SKO Scene Topic Association Employment

<Airport/> Dulles Check-in Kiosk via WLAN Direction to 
     counter
<Tickets/> Ticket  Seating Seat-change message Change seat
  counter
<Tram/> Tram Directions Route plan from  Direction to gate
    WLAN
<Gate/> Gate Lunch Wireless credit card Pay for lunch



in an exit row. The AACR notes physical location and information function 
of the WLAN, of a new wireless credit card that enables it to pay for the 
owner’s lunch, engaging in a visual dialog on the screen about a 15% tip. Since 
lunch conversation had included “Great Food,” the CR proposed a 15% tip. 
Had it heard “Awful” or “Yuk,” it might have proposed less.

So the SKOs and SDHs suggested above could enable the AACR to address 
the when, where, how, what, and who of Goodman’s geography of information 
in a personal way. SKOs store experience with time tags to isolate current, 
recent, and historical aspects of the information landscape. In addition, the 
CRA’s <Plan/> phase enables the AACR to project experience into hypo-
thetical SKOs for plans.

With the associative skills suggested above, AACRs will readily populate 
SKOs with metrics such as availability, GoS, QoS, and QoI. Relevant research 
includes Goodman’s work, the CAHAN project of NJIT for effi cient peer 
routing to overcome dead spots, and the 7DS project of Columbia University 
(peer-to-peer local data sharing optimizing power conservation).

8.9 MICROWORLDS

The SKOs and associated SDHs and experience must be organized so that 
algorithms can access relevant information quickly and can respond appro-
priately to stimuli from either the user or the radio environment. Where those 
responses are preprogrammed into protocol stack or graphical user inter-
faces, they may be used as they are, but where the situation is in some ways 
novel, the generation of responses may be combinatorially explosive. The 
microworld offers one way of managing the combinatorial explosion. A micro-
world is an association of objects that integrate SKO, RKO, and UKO by 
<Scene/> and other relationships.

8.9.1 Defi ning the Microworld

This section provides an overview of microworlds [219].
A microworld consists of those computational components necessary for a 

computational entity to perform tasks in a narrow task domain such as updat-
ing a schedule, planning a trip, or buying groceries. Microworld components 
(Figure 8-10) include collections of formal and informal inferences drawn 
from models contained in the microworld.

8.9.2 Skill Components

The knowledge codifi ed in a microworld includes preprogrammed and learned 
aspects aggregated into KOs by DHs. Table 8-7 contrasts types of domain 
knowledge to be formalized alternatively via an air interface or in the related 
microworld.
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FIGURE 8-10 Skill may be organized in microworlds.

TABLE 8-7 Microworld Knowledge and Skill

Knowledge Air Interface Component Microworld Contribution

HF has unreliable  ALE probe signals When to use HF
 channel
SHF has narrow beams Pointing/tracking algorithm Use SHF for wideband 
   LoS
GPS provides location Mapping signal to  GPS is unreliable in urban
  coordinates  canyons
FM broadcast digital  How to decode the label What “news” <USER/> 
 labels   likes

The fact that HF has an unreliable, fading, and dispersive channel is well 
known to radio engineers. The ALE protocol contains probe signals to fi nd 
HF channels connectable between two points through the ionospheric 
skywave. A military SHF data link may track an unmanned aerial vehicle 
(UAV) for battlefi eld surveillance. The soldier using the system lacking prior 
SHF line of sight (LoS) pointing and tracking experience may not be aware 
that the link will be lost when the UAV fl ies behind the hill. This knowledge 
may be embedded in the UAV mission planning system, but if the soldier is 
not a regular user with no authority to plan the UAV mission, that software 
may not be available. An iCR could explain why the link was lost so that he 
could drive his Humvee (HMWWV) up the hill to reacquire the link. Table 
8-7 also suggests similar examples from GPS and FM broadcast.



8.9.3 Radio Microworld

The microworld of radio consists of the following:

1. Task Domain: Radio services.
2. Informal Inferences: Plausible event streams that describe the services 

domain.
3. Formal Models: RKOs with computable radio-domain semantics of the 

CRA <Self/>.
4. Formal Inferences: Mathematically viable statements that formalize 

informal inferences such as RDHs fi red during the cognition cycle.
5. Axiomatization: Mathematical statements not necessarily in FOPC 

that substantiate formal inferences and are <True/> in formal models.
6. Knowledge Base: Including RXML with embedded rule bases (If–then 

or PROLOG) that are computable in support of behavior.
7. Inference Engine: With novelty bindings when it encounters new things 

and with phase operations for the cognition cycle.
8. Language: Ontology, syntax, and semantics that defi ne formal models 

and knowledge base.

Fully developed use cases capture the informal inferences that underlie the 
plausible event sequences of the tasks defi ned in the use case. The formal 
model uses the RKO structure and the cognition cycle. The formal inferences 
of the radio microworlds are implemented in the CRA and the <Self/> via 
RXML and exemplifi ed in the PDANodes of CR1 of the companion 
CD-ROM.

8.10 RADIO SKILLS CONCLUSIONS

A cognitive MBMMR incorporates RF-band microworld knowledge, employs 
that knowledge to sustain connectivity, and resolves knowledge and skill 
confl icts to enhance QoI without annoying the user. The classical radio engi-
neer’s view formulates the radio as a bit pipe. The AACR view offers continu-
ing evolution toward self-aware communications assistant with the AACR 
that knows that it is a radio, knows its user(s), and learns to continually 
enhance the user’s QoI experience via the CRA, the <Self/>, RXML, KOs, 
and DHs introduced in the current and previous chapters.

One near-term implication is that the FCC vision of cognitive radio for 
secondary spectrum use can be built with conventional SDR augmented with 
appropriate RKO, SKO, and DH rules. RKO–SKO pairs could express both 
the broad permissions and constraints of the XG policy and the implementa-
tion constraints in a given region or locale. A regulatory policy microworld 
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confi gured from such KOs could address the entire breadth of regulatory 
policy confi gured in a CWN policy server.

To continue evolution of AACR toward the user-aware RF assistant 
requires further attention to sensory-perception for autonomously inferring 
the user’s needs. User knowledge objects (UKOs) with UDHs facilitate the 
evolution to a user domain with greater degrees of uncertainty that require 
additional techniques for managing complexity.

8.11 EXERCISES

8.1. The use of a spectrum management database for CR applications requires 
<Self/> knowledge. Write RXML that enables an AACR to know that it is a 
Forestry radio. Suppose the AACR were not initialized with knowledge of 
Forestry. Defi ne a method by which it could fi nd out. Train CR1 with the fi rst 
10 elements of the Canadian spectrum management database from the Web. 
Teach it that it is a Forestry radio. What kind of internal association facility 
does CR1 need to reply that the <Self/> is authorized to use one of the Forestry 
radio frequencies if you ask it “Can we use 27.790  MHz?” Expand CR1 using 
the PDL DL to respond accurately to the question about Forestry RF.

8.2. Can you fi nd anything on the Web regarding bootstrapped heuristic learning 
of the kind explored by AM? Start by trying to fi nd citations to AM and thread-
ing the trail through its successors. What about Eurisko? What were you able 
to fi nd? Explain its implications to AACR. To what degree have the foundations 
of AM’s concepts been refl ected in open CYC?

8.3. Find references on the Web to Rule XML or RuleML, SWRL, and WebRL 
(WRL). What standards have the best support? Use a RuleML to generate your 
own RDH.

8.4. Write a stand-alone program to summarize the strengths and weaknesses of 
radio bands from RKOs. Write the following RKOs from which to generate the 
summary in response to either a general query or a specifi c query beginning 
with the phrase “Which radio band  .  .  .” explaining that HF propagates readily 
over thousands of miles at low data rates given a suitable antenna, that LVHF 
propagates well in rough terrain and wooded areas as well as suburban settings, 
or that VHF offers more coherent bandwidth but offers somewhat less propaga-
tion beyond LoS than LVHF. Develop RKOs from AML RDH that refl ect 
UHF is the TV, aircraft, and cellular radio band among other things; that SHF 
marks the transition to the higher capacity, more directional LoS bands; and 
that EHF pencil beams enable low cost spatial sharing of the radio spectrum 
while its high carrier frequencies support gigabit per second data rates if it isn’t 
raining and if the beam is pointed in the right direction. Alternatively, postulate 
a SATCOM RKO that enables distant parties to communicate with each other 
and with the PSTN provided antenna pointing and the weather cooperate.

8.5. Complete the per band RDH that instantiates a personalized RKO per band if 
one does not exist. It must check that the <Self/> has no personalized RKO for 
that band. What else must it do? Write a stand-alone program to interpret this 
RDH to generate a new RKO when a simulated iCR fi rst tunes to that band. 



Use it to generate HF, UHF, and SATCOM RKOs from the generic ones of 
CRA <Self/>. Augment this program to update the appropriate RKO when the 
radio tunes to the band subsequently. Augment this program to fl ag the most 
common example as <Typical/>. Test it by using several different modes more 
than the others to confi rm that the <Typical/> fl ag is removed from the previ-
ously typical usage. Under what circumstances would you not want to remove 
the fl ag?

8.6. Complete the defi nition of a global plane SKO that enables a complete inter-
national air travel thread from the planning stage to showing the pictures to the 
family and distributing a few gifts upon return. Defi ne SKOs for travel planning, 
travel to the airport, airport, on-board the outbound leg of the trip, arrival at 
a foreign airport in a country that does not speak the native tongue, travel by 
taxi to a resort hotel, staying at the resort, taking a side trip to a local museum, 
attending a local sporting event, buying souvenirs, returning by taxi to the same 
airport, traveling on the return leg to the departure airport, picking up the car, 
driving home, sleeping, and meeting the family at home at noon on the next 
day for show and tell. Postulate the radio network aspects of the information 
landscape of these SKOs. Defi ne a SDH to autonomously acquire and evolve 
SKOs and RKOs to aggregate the activities of the trip into a coherent memory. 
Write a stand-alone application to apply the SDH to the SKOs to autonomously 
evolve them from simulated stimuli observed during the hypothetical trip. What 
additional kinds of machine learning would reduce the amount of RXML 
needed in the initial SKOs? What additional kinds of machine learning would 
reduce the SDH? Is it possible to eliminate the SDH with AML? Implement 
this AML in Java.

8.7. Consider the U.S. FCC’s plan for cognitive radio to facilitate markets for the 
secondary use of allocated radio spectrum. Find the FCC’s NOI, NPRM, and 
other documentation on the Web. Find at least three associated briefi ngs or 
technical papers supportive of the FCC plan. Defi ne a RKO that expresses the 
top-level strategy of permitting ad hoc networks to be formed in unused TV 
channels. Write skeleton SKOs for a <Locale/> and for some simulated 
<Scenes/> that describe a priori knowledge about the physical space in a metro 
area. Defi ne a sequence of RKOs by which an AACR can aggregate experience 
regarding the use of TV bands in a <Metropolitan/> plane. Write a SDH by 
which the AACR adapts these <Metro/>, <Locale/>, and <Scene/> SKOs to 
use the RKO to implement the FCC policy. Identify the challenges of network-
ing in such an arrangement. Find technology on the Web that addresses these 
challenges. Describe how to defi ne, develop, and confi gure radio and spatial 
domain software to address the challenges suffi ciently to initiate secondary use 
services.

8.8. Defi ne the microworlds of Exercise 8.6. Suppose the user travels a lot. How 
would the defi nition of microworlds change? Suppose the user takes a trip 
overseas every month. Describe how repeated exposure to the same experiences 
creates Zipf-like indications of <Topics/>. What classes of unique events should 
be readily accessible for future use? Implement a stand-alone CBR program to 
bind new experiences to frequent, infrequent, and rare experiences of the global 
plane’s hypothetical information landscape. Enhance this program to refl ect 
wireless information kiosks at hotels, restaurants, banks, and museums.

EXERCISES     327



328     IMPLEMENTING RADIO-DOMAIN SKILLS

8.9. Using the KO template of CRA <Self/>, defi ne a user KO, your own idea of 
UKO. Write UKOs for the Genie use case. Write UKOs for the Bert-and-Ernie 
use case. Write a UDH for acquiring user preferences for travel on foot and by 
vehicle. Explain how the UKOs would be evolved by this UDH. Write a stand-
alone application to evolve initial UKOs into ontological skills via the UDH.

8.10. What complexities of real-world KOs and DHs have been ignored or brushed 
over in this chapter? Address them. ☺
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CHAPTER 9

USER-DOMAIN USE CASES

The use cases of this chapter motivate the inclusion of visual and audio-visual 
sensor perception into the cognitive radio architecture (CRA). The diversity 
of user templates motivates further AML and uncertainty management tech-
nologies in the CRA. The iCR should save its user substantial work by per-
forming increasingly complex home, offi ce, and leisure tasks via trustable 
wireless services as directed by the user, but mostly autonomously. It should 
make life more interesting by autonomously looking up that fl ower in the 
garden of Hampton Court with interesting horticulture lineage. The chapter 
begins with a study of a near-term AACR assisting in maintaining personal 
safety in an emergency situation and concludes with a conceptual treatment 
of far-term iCR functions.

9.1 EMERGENCY COMPANION USE CASE

Consider an AACR that monitors the owner’s vital signs. Niche products 
already monitor and report blood pressure, heart rate, and respiration. Pos-
tulate a wardrobe in which the user wears the sensors and the wearable 
AACR itself autonomously monitors the readings for conformance to the 
user’s historic norms and excursions. This AACR might use PROLOG rules 
to monitor these vital signs analogous to Kokar’s rules for monitoring the 
adaptive equalizer. When bounds are out of range, the AACR takes 
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appropriate action. Suppose now that an earthquake has left the owner injured 
in the rubble. The AACR detects the owner’s elevated heart rate and labored 
breathing out of normal ranges, so it attempts to report the emergency but 
fi nds that the cellular network is down. The conventional emergency radio 
just keeps trying, draining the battery before help arrives.

The iCR explores alternative behaviors. First, the iCR’s audio and video 
sensory perception will register the sights and sounds of an earthquake. 
Suppose the user was at work in a midrise offi ce building when the earth-
quake struck. Previously, the iCR had developed and reinforced many SKOs 
in the daily work routine. Suddenly, the parameters of the visual scene become 
chaotic as the iCR encounters its fi rst acoustic experience of a <Scream/>. In 
the CRA cognition cycles following the <Scream/> the iCR instantiates a 
<Personal-emergency/> UKO hypothesis for the chaotic audio-visual scene. 
The a priori UKO advises the iCR to use ASR to monitor police, fi re, and 
rescue radio channels for indications of a larger emergency. This UKO enables 
the iCR to reliably determine whether the user’s vital signs are abnormal 
because of personal trauma like falling down stairs, or an event that includes 
other people, like an earthquake, fi re, or fl ood.

This proactive iCR monitors the <RF-environment/> to discover changes 
in the <Information-landscape/> in its amateur radio, police, weather, sports, 
cellular, and WLAN bands. Although the cellular network is down police 
calls penetrate the rubble pile. The iCR’s speech-to-text recognizer and <His-
togram/> detects “501” as the <Topic/> which in the dictionary of local police 
terms downloaded weeks earlier means “earthquake.” Its <Speaker-ID/>
algorithm detects two speakers on the police channels, triggering an RDH to 
instantiate UKOs for a <Police-cruiser/> and <Police-dispatcher/>. The 
cruiser is close by. Instantiating the <Earthquake/> UKO, the AACR powers 
down its own cell phone to conserve power. It then autonomously sends a 
formatted distress signal to the nearby police car on its VHF band, and the 
police acknowledge the message. It then advises the police AACR that it will 
sleep for 10 minutes to save power unless the vital signs turn for the worse. 
The message included the GPS coordinates of the building, the name of the 
user, company, fl oor, and suite number. It reports to the police AACR that 
the elevator’s BlueTooth channel is reporting mechanical problems and heat. 
Police rescue the victim before the building is engulfed in fl ames. If I’m in 
LA and worried about earthquakes, I want to be wearing this iCR.

Implementing the Use Case : This iCR learned critical information about 
the user’s situation by combining its native ability as a SDR with ASR and 
Zipf’s Law <Topic/> spotting. Thus, autonomous reallocation of MIPS and 
radio resources enhances the user’s likelihood of getting help quickly and thus 
of surviving the disaster. Technology challenges include reliably interpreting 
the chaotic scene. Social challenges include police acceptance of maritime 
safety protocols and standardization of message formats.
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9.2 OFFICE ASSISTANT USE CASE

Why spend a whole chapter on use cases? Developing and using use cases is 
hard work. Do you like your MS Offi ce AssistantTM? I’m sure some people 
do, but I don’t. Why not? I have been programming computers since high 
school, which is common now but was not all that common in the 1960s. Does 
the MS Offi ce Assistant know this? No. Does it seem to care? No. It doesn’t 
ask, and I don’t tell. If it did, it would get out of my face without requiring 
me to train its silly voice system. I don’t need any help with most of what it 
offers to help with. Some people like it. Some who don’t like it do not know 
how to turn it off. I do, so that’s the fi rst thing I do in setting up an environ-
ment. I give it a chance to see if it has improved since the last one. Then 
I bury that little dog like many of you. Cell phones don’t have little 
dogs—yet.

So the fi rst CR needs ways of fi nding out about the user that are unobtru-
sive and natural. Otherwise, like the MS Offi ce Assistant, expert users will 
turn it off, and some not-so-expert users will wish they knew how to get rid 
of the little dog. But the future is not so bleak. No doubt Microsoft is working 
on the Assistant-After-Next that will unobtrusively fi nd out about your prefer-
ences before launching something that you gotta admit is cute to a user who 
just wants control-meta-H (a Symbolics LISP Machine help function) to come 
back. The fi rst Toyota with a voice didn’t usher in an era of cars that speak. 
Yet today, if your luxury car’s GPS navigation system says, “Turn left at next 
signal,” you are glad to hear it rather than take your eyes off the road to get 
that advice from a blinking display.

How can one structure user interactions with iCR so that the user actually 
wants to interact when needed? This is hard work, but computationally intel-
ligent toys are being accepted by kids. Smart toy dogs, dolls, and now Asimo, 
a household robot, are creating new markets. The fi rst successful iCR may 
have not one user interface, but a set of user interface skills from which invit-
ing interactions can be tailored to the user, doing less for expert users and 
doing more for the less expert.

Recently, a friend bought a smart toy dog. After teaching the dog its name, 
the grandson got tired of its obviously rigidly timed interactions. Every so 
many minutes it wanted attention. Go away dog. Go to sleep. Don’t bother 
me. I’m eating. I have to do my homework. The fi rst toy dogs didn’t under-
stand that feedback. The fi rst commercially successful iCR may understand 
all that and more.

Implementing the Use Case : ASR technology is rapidly maturing. Most 800 
directory assistance is accomplished without people. The task domain of 800 
number directory assistance concerns the names of only a few tens of thou-
sands of companies with 800 numbers. Although some names sound alike, 
and users interject nonmeaningful expressions like “Ummm,” and the speech 
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recognizers aren’t very tolerant of background noise, it still works more than 
99% of the time. The trick isn’t software with deep understanding of 800 
numbers, but rather the structuring of the domain so that the task is within 
reach of the technology.

The microworlds construct of the last chapter assists with this necessary 
systems engineering trickery. A wireless offi ce assistant microworld consists 
of prototypical UKOs for address book, calendar, to-do list, formatting, and 
printing documents with UDHs to instantiate, constrain, and expand the 
UKOs per experience with the <User/>. Even unreliable speech recognition 
and extraction technology (e.g., name fi nders) with statistical <Topic/> spot-
ting may enable an iCR to recognize user states needing the wireless offi ce 
assistant, such as discovering BlueTooth from the user’s laptop to synchronize 
address books autonomously (“Is the laptop turned on?”). Problems like 
thrashing from one microworld to another (laptop to address book) need to 
be characterized and solved. Discovery of user intent remains a chronic 
problem. It will take not just natural language processing and computer 
vision, but also substantially evolved AML to gracefully and passively acquire 
relevant knowledge from users and to learn, again passively, what to do to 
actually help the user in the way the user wants to be helped.

9.3 COGNITIVE ASSISTANTS FOR WIRELESS

A cognitive assistant should focus on the following wireless (not offi ce) 
tasks:

1. Perform wireless access tasks described at the <Information/> level of 
abstraction, such as “Keep track of the weather” or “What’s the weather 
going to be like in Boston?”

2. Notify the user of problems, such as inability to access or interpret 
<RF/> in a new scene.

3. Suggest alternate plans for addressing in a <Situation/> (<Scene/> plus 
user <Needs/>).
(a) Explain steps required to execute a plan.
(b) Justify plans in terms of QoI value added.

4. Competent mixed-initiative interaction:
(a) Initiate dialog for autonomously sensed situation changes.
(b) Explain reasoning for <Self/>-initiated actions (not stilted).
(c) Answer informal questions about the wireless devices and 

networks.
(d) Pose planning questions (“Can we move 500 meters that way?”).

5. Reliably detect and predict user intent:
(a) Continuously track stereotype scenario templates.



(b) Rectify decisions and actions against templates (“cases”).
(c) Obey meta level commands (“Knock it off”).

6. Adapt to users:
(a) Who regularly take apparently inappropriate actions.
(b) Agent’s scene perception must adapt to user actions.

These very challenging prototypical tasks are common to the following 
cognitive wireless assistant use cases.

9.3.1 Zeus in a Box

A start-up company called Zeus Wireless offers Zeus in a Box (ZB), an 
autonomous wireless agent in a set top box. ZB focuses on wireless network 
management in the home. Zeus marketing wants ZB to detect all home wire-
less networks—WiFi, 802.11, cordless telephone, Home RF, power line com-
munications, TV-band ad hoc networks, and other ISM wireless. The consumer 
turns on the new wireless microwave oven; it talks to the wireless refrigerator, 
to the UPC scanning kitchen cabinets, and so on. It thus cooks your micro-
wavable snack without requiring you to read the directions. (Like it so far?) 
A sensor on the front door detects the <Owner’s> BT trust codes and con-
nects it to the home network. Visual sensor reports “Sensor 2 front door—
Suzie is home now.” ZB is security aware, with aggressive personal fi rewalls 
changing long pseudorandom passwords to protect the home network from 
identity theft.

Implementing the Use Case : ZB uses a subset of the CRA <Self/> consisting 
of RKOs for the networks, SKOs for apartment buildings, suburban neighbor-
hoods, and rural settings, and UKOs for prototypical users from <Computer-
illiterate/> to <Accomplished-hacker/>. The Zeus CWN retains the master 
KOs, uploading the appropriate ones at point of sale. The Zeus CWN uploads 
RKO-SKO-UKO instances from customers via the Internet, solves home 
networking problems with Google-class MIPS and storage, and downloads 
solution KOs and DHs respecting consumer privacy and greatly enhancing 
per-customer QoI. Although there are many engineering and market chal-
lenges, few technology challenges preclude this use case.

9.3.2 ZB Space–Time Dialog About Home Networks

In its fi rst employment, ZB has created an ad hoc LAN in unused TV chan-
nels for the home wireless network. The air interface delivers as much capa c-
ity as possible within the spectrum allocation and cost envelope of the 
hardware. It deals with fading and interference dynamically, implementing 
Kokar’s OBR among other features. Even with such great technology, network 
setup and radio resource management can be challenging.
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Suppose the family likes to watch the evening news via wireless relay of a 
cable channel to the new HDTV display outside on the lanai. Others are using 
the same TV channels as wireless LANs in this suburban neighborhood 
at the same time, creating interference. In addition, the placement of items 
in the RF scene causes fi ne-scale multipath fading. The iCR models the RF-
related entities over space and time in order to generate methods to mitigate 
interference.

ZB offers alternative interfaces from a cute dog with step-by-step instruc-
tions to a bare bones but much faster command-line interface for experts. The 
dog can rescue the “experts” without appearing too cute. The average pur-
chaser doesn’t read directions or follow the steps. The components are poured 
out of the box and plugged in. Nothing is showing on the HDTV. Now what? 
The voice of ZB speaks from the ZB set top box:

“Is everything plugged in or supplied with batteries and turned on?” User 
says yes.

“Thank you for welcoming me into your home. I see a NTSC TV set, a 
DECT cordless telephone, two CDMA cell phones, a BlueTooth enabled 
laptop, but I don’t see the remote control or the HDTV display that you 
purchased with this system. Did you turn on the remote control?” User says 
yes.

“Could you set the remote control into the cradle on top of this unit?” User 
says no.

“Without the test widget, I can’t help you fi gure out what is wrong with the 
HDTV display.” User says something unintelligible about a two year old. 
Unable to recognize the reply, ZB says: “If you leave this unit powered on, 
then I will start helping again when you set the remote control in the cradle 
on top of this unit.” After a few minutes, the user inserts the remote control 
into the set top box. ZB clears and reprograms the remote control via the 
physical connection of the cradle. The controller memory had been corrupted 
by a magnet in the motor of a zip-zap toy car purchased at the same time.

“Thank you. Do you have the time to continue?” User says yes, OK, hurry 
up. “Could you pick up the remote control from the cradle and walk toward 
the HDTV?” ZB records digital snapshots of the scene every 2 seconds as 
the user walks out of the house onto the lanai. From its video blob detector, 
it recognizes the visual signature of an overhang (probability 80%).

The ZB client in the handheld remote-controller says, “Sorry. I just lost 
the wireless connection to the set top box. Could you please back up?” The 
user goes back into the house.

“OK, thank you. Your home seems to have walls and an overhang outside 
that are causing problems with the radio link. You may have metal studs in 
the walls. If you know this to be the case, please say ‘yes’.” The user says, 
“What do you think I am, an architect?” ZB says, “If you don’t know, that is 
OK. With your help I will work around it. Is that OK?” User says OK.

“If the HDTV is still powered on, then please walk around near the HDTV 
as much as you can without getting hurt. I will record the radio network con-



ditions as you walk so that we can fi gure out how to make your HDTV display 
work.” The user walks around the lanai.

The ZB remote control says, “Please stop. This is a good place to put your 
HDTV for wireless network reception. Could you place the HDTV here or 
close by?” The user says something audible but unintelligible. ZB replies, 
“Sorry. If you continue to walk around, we can probably fi nd some other 
places where the HDTV will work. Would you like to do that?” User says 
OK.

ZB says, “How about here?” User says, “OK” and moves the HDTV, which 
works in this particular location. ZB says, “Where is the HDTV?” and the 
user says, “The lanai.” Meanwhile it has reallocated processing resources to 
enable a pseudo-MIMO mode. ZB tells the homeowner, “Your system will 
work now, but you can’t use the high performance mode of your video games 
at the same time as watching HDTV. If you would like to do both at once, 
then purchase the MIMO antenna to play interactive games through the 
HDTV. Alternatively, you could move the set top box and HDTV much closer 
together so I don’t have to work so hard to reach the HDTV from the set top 
box.” User says something unintelligible again, but the <Topic/> is “Finally,” 
which it interprets to be positive.

Implementing the Use Case : The use case needs a very strong ASR dialog 
manager as well as calibrated RSSI in a handheld client. Its SKOs for subur-
ban neighborhood must include features of local construction, and this would 
be expensive to knowledge engineer, so the CWN uploads data from building 
permits databases from the county seat. It then <Topic/> spots with <Histo-
gram/> to identify features of the buildings that cause problems with RF and 
downloads the resulting KOs to the point of sale terminals in that <Locale/>.
Its dialog planner should classify utterances as male, female, infant, child, and 
adolescent, with 20% or less confusion matrix per utterance to adopt its 
dialog to the <Scene/>. The iCR could detect television speech by correlating 
the speech background of the room with the audio of the TV channel in use. 
The cross-correlation characterizes the impulse response of the room, 
enabling ZB to suppress the TV broadcast from the room acoustics to enhance 
ASR quality. Finally, the dialog manager switches among standard, careful, 
and quick modes of interaction depending on the features of the <Scene/>.

9.3.3 CHERISH: Beyond ZB

“The VCR should set its own bloody date and time, I’m too busy.”
ZB was a success in the marketplace, so Zeus launches the Cognitive 

Home Entertainment Radio In the Smart Home (CHERISH). CHERISH 
goes beyond ZB to manage all home, travel, and offi ce wireless connectivity 
and information access, driven by QoI.

COGNITIVE ASSISTANTS FOR WIRELESS     337



338     USER-DOMAIN USE CASES

1. Entertainment: CHERISH plays CDs, DVDs, and so on. When asked 
to “keep us up to date on the weather,” it collects weather broadcasts 
into a personal weather-radar web site viewable on the home TV. The 
user no longer must tune to Bay News 99 for the latest weather radar 
since CHERISH updates the home TV weather web site from all avail-
able feeds automatically.

2. Wearable Awareness: The CHERISH Wearable Wireless (W2) PDA 
fi ts every member of the household, including the infant and the dog. 
Parents know the location and health of all family members at all times. 
If a W2 detects a threatening condition, like a child approaching a street, 
it warns the wearer and advises the parent autonomously. W2 also 
respects privacy, turning off video during private moments.

3. Location Alerting: The dog’s CPDA records audio, video, and location, 
alerting the owner to threatening situations. Theft of the beloved family 
pooch is met with digital snapshots of the perpetrator and GPS location 
of the dog so that the police can rescue the dog and pick up the 
perpetrators.

4. Range Extension: CHERISH-in-the-Car extends the range of W2s via 
car radios.

5. Wireless-for-Free: CHERISH uses WLANs in the car, at home, and at 
the offi ce, avoiding expenses of cellular networks when possible.

CHERISH reduces tedium and amplifi es the fun. When the family decides 
to take vacation next month, CHERISH at home tells CHERISH at work 
avoiding the tedium of synchronizing calendars. Each wearable CHERISH 
may be manufactured by a different supplier since they all use OWL and 
RXML to normalize semantics. The home client submits a Vacation Request 
to the employer with the necessary details reducing the paperwork burden. 
CHERISH also knows about entertainment and travel. It fi nds interesting 
things to do, interesting places to go, and interesting information about almost 
any place in and out of the network. When users talk about a place, CHERISH 
detects it as a <Topic/>, looks it up on the Web, and proactively displays 
information instantly when asked for high QoI. It suppresses Web pop-ups 
and TV commercials, obtaining needed information without the advertising, 
refreshing personal yellow pages from the pop-ups. When and if the user 
wants to know about special events or prices, it already has the latest 
information.

Consider Lenny, the W2 PDA, and Charlie, Lenny’s owner. Charlie should 
get information services without reading the user’s manual even once. This is 
hard. It costs less to put the burden of using a complicated system on the user. 
The product gets to market quicker and with more features. Only the most 
honest users admit defeat at the hands of the VCR.



Implementing the Use Case : Writing a user’s manual is hard work. Even 
with good authoring tools, the organization of the material and the decisions 
of what to include can be challenging. Error code listings and diagnostics were 
standard for computer systems of the 1970s and 1980s, dwindling in the 1990s 
as complexity increased and the benefi t of explaining all that to the user 
decreased. Just reboot. Take two aspirin and call me in the morning. Could 
an AACR read its own RXML to the user? That would be the strategy with 
CHERISH. Instead of writing manuals, why not just write a rule interpreter 
for RXML? After all, the KOs both contain and express the strategies, 
tactics, and data structures on which CHERISH is based. Although such an 
approach may be out of reach at present, technology for systems that know 
what they are doing is emerging.

9.3.4 Wearable Awareness

A person might not mind wearing a cell phone, but the family dog might. So 
would the newborn. Yet wearable awareness calls for the integration of the 
W2 into the wardrobe. RF identifi cation tag for the dog; a nice belt for the 
young boy; and a true fashion statement for super-Mom (Yes, that’s a Gucci 
design). Soon, every cell phone will have long battery life, great graphics, 
and discrete voice effects. But discriminating customers will cherish their 
CHERISH fashion statements. Wearable systems must learn to be discrete, 
a technologically daunting task. In addition to the mores of segments of 
society implied by gender, age, religion, and other types of orientation, quirky 
individual preferences must be learned. There may be an Italian UKO (I’m 
an Italian so I’m allowed to make politically incorrect remarks about my pas-
sions). The default religion might be Roman Catholic. The AACR could 
observe its Italian wearer going to the cathedral for Mass. St. Mark’s might 
take Wireless Credit Corp.’s PKI login, while St. Luke’s might not accept 
wireless donations (yet). One parishioner might think it in poor taste for the 
W2 to process prayers, while another might want to be reminded of who to 
pray for, welcoming the W2 into the inner circle.

Implementing the Use Case : The iCR sales force may need a recommender 
system [220] that analyzes the purchaser profi le to download stereotypical 
UKOs with tailored UDH to learn details, nuances, exceptions, and rules 
from Charlie. Lenny’s UKOs should relate to Charlie’s preferences 
(Expression 9-1).

Expression 9-1 User Privacy Stereotype

<UKO/><Name> US-stereotype Married Male Middle-aged </Name>
<Slots> <Private-scenes> Bathroom Church </Private-scenes>

</Slots>  .  .  .  </UKO>
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Expression 9-2 Verifying Stereotypes

<UDH> <Name> Verify-stereotype </Name>
<Rule> <Condition>

<Detect> <Scene> <Private> S </Private></Scene> </Detect>
</Condition>

<Action> <Dialog> <Verify> <Private> S </Private> </Dialog>
</Action> </Rule> </UDH>

W2 units disable video systems when they detect private scenes. A <Pro-
fanity/> feature could suppress the owner’s voice if profanity is detected, 
remembering <Expletive/> deleted. When Lenny with Expressions 9-1 and 
9-2 detects the entrance of St. Rocco’s Catholic church, a UDH fi res to ask, 
“Charlie, should I turn off the audio and video for greater privacy while you 
are attending church?” Charlie might say, “No. Leave it on in case of an 
emergency.” To which Lenny replies, “My sensory-perception always detects 
emergency situations, but nothing is remembered unless you give me permis-
sion.” Charlie says, “Can you still make a wireless donation to light a candle?” 
W2 says, “If you like.” Since it is labor intensive to defi ne fi xed dialogs, 
VoiceXML popular for electronic call centers provides fl exible synthesis from 
RXML for <Self/> defi ned dialog. Charlie may tell Lenny to turn off all that 
stuff and just take a digital snapshot when told to do so, turning Lenny back 
into a cell phone, which is one way of using the inherent fl exibility of the 
UKOs.

9.3.5 Location Awareness

Location alerting tasks enhance personal safety. Lenny can help turn any 
neighborhood into a safer neighborhood. Visit Capitol Hill. This is an inter-
esting neighborhood between the U.S. Capitol and some challenging neigh-
borhoods. Which places are open all night? Which ones tend to be safer than 
others? If you walk, which way is the most scenic at a given time of day at a 
given time of year, given the police reports for the last six months? How much 
of this should Lenny process for alerting and display? Should Lenny offer a 
suggestion when Charlie heads out to get a loaf of bread? “Why don’t we go 
the other way, Charlie? Last week there was a mugging the way we usually 
go and the street lights are still out.” How did Lenny know that? There might 
be 802.11 enabled streetlights. A wireless logistics network could broadcast 
street light status data to the Washington, DC government. With CHERISH, 
Lenny reads it too and advises Charlie to take the lighted route home.

Implementing the Use Case : Lenny needs neighborhood SKOs that describe 
every street within walking distance. As Charlie wears Lenny, the GPS coor-
dinates are correlated to Lenny’s audio and visual <Scene/> perception. Each 
closed loop from home and back spawns a new SKO. Each such path is ana-



lyzed by introspection during a sleep cycle. Lenny recognizes that Charlie 
didn’t walk at 800 mph across the street and back, but that GPS tends to glitch 
near the high rise building. Comparisons of loops reveal semantic path equiv-
alence, such as two different paths that originate at <Home/> and reach 
<Giant-food-store/> without stopping anywhere else. Although no path 
matching is without error, semantic path matching relates the grounded 
semantic features, rendering correlations at a level of abstraction where errors 
can be diagnosed interactively. “Why did we use West 19th Street to go to 
Giant?” “Just for fun.” Lenny’s UKOs and UDHs accept vacuous reasons as 
a social skill.

If Lenny has to be programmed for access to the streetlight status in DC, 
then there must be an expensive group of programmers to keep such services 
current. On the other hand, if the FCC or some other public body were to 
adopt, endorse, and promote an open plug-and-play RXML for public wire-
less networks, then wireless assistants like Lenny can autonomously discover 
the presence, function, and QoI value of such wireless networks. The Internet 
grew on open TCP/IP and http markup, enabling syntactic interoperability. 
Semantic interoperability needs RXML. Although the IEEE Standard Upper 
Ontology (SUO) seems to have taken a back seat to DAML/ OIL/ OWL, 
open architecture semantics too is growing. Public WLAN standards, TCP/
IP, and http need OWL and RXML for Lenny’s semantic interoperability.

9.3.6 Spectrum-Cash Range Extension

Lenny connects via WLAN to Charlie’s cognitive automobile, Sam. Sam’s 
higher power transmitters and maybe 80 radio antennas (don’t laugh, the 2000 
Mercedes had over 60 antenna elements) can extend radio range for revenue 
generation as each relay operation on behalf of another AACR accrues 
spectrum-cash, barter for relay services. Consuming a few watts of power for 
a day or two is no big deal. In Europe, however, a car may be parked for a 
month while the family is on vacation. In the United States, that is less likely. 
How do Lenny and Sam discover the use pattern of this particular family? 
Question and answer during a setup phase is not user-friendly; neither is a 
dead battery after a month in Switzerland. Lenny could read the family’s 
travel itinerary and thus put Sam to sleep for a month.

Radio engineering questions abound for Lenny and Sam range extension. 
Store-and-forward relay introduces time delays. Packet structure and content 
differ from one band/mode to another, such as between GSM and 802.11. The 
PSTN standard DS0 (64 kbps PCM) can bridge such streams. Questions of 
privacy and authentication (PKI?), data rate, media access, and protocol stack 
remain. Other questions include the following.

1. Will relay use MIMO mode?
2. Can Sam switch to WLAN to MIMO with the home network?
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3. How will Sam know to store and forward big email attachments, but to 
relay short text messages immediately, estimating time of arrival of the 
big attachment so that Charlie can use premium services if needed?

4. How can Sam estimate arrival time from a learned commuting pattern 
if today is a work day?

Implementing the Use Case : The radio engineering community regularly 
practices the skills needed for this use case. Autonomous cross-band range 
extension requires collaborative relay planning. RXML assists in integrating 
radio knowledge with user preferences for relay expressed in user- and radio-
domain KOs.

Expression 9-3 Charlie Is a Person Who Owns Lenny and Sam

<UKO> <Name> Charlie </Name>
<Defi nitions> <Constraints>

<Intelligent-entities> <People/> </Constraints> </Defi nitions>
<Slots> <Role> Owner </Role>
<Owns> <RF-devices> <Self/> <Sam/> <RF-devices> </Owns> </Slots>

</UKO>

Expression 9-3 describes Charlie to Lenny. This simplifi ed UKO helps 
Lenny aggregate knowledge about cognitive entities that are carbon-based 
and silicon-based. Lenny also needs to know about Sam.

Expression 9-4 Sam Is a Cognitive Automobile With RF Capabilities

<UKO> <Name> Sam </Name>
<Defi nitions> <Constraints>

<Intelligent-entities> <Computationally-intelligent-entities>
<Cognitive-automobile> <Sam/> </Cognitive-automobile> 

</Constraints></Defi nitions>
<Sam> <Slots> <RF> <WLAN/> <AM/> <FM/> <DVB/> <DAB/>

<CB/> <Bridge/> </RF>
</Slots> </Sam>  .  .  .  </UKO>

Sam can <Bridge/> as follows.

Expression 9-5 Bridging One-Way From GSM to a WLAN

<RKO> <Name> <Bridge/> </Name> <Domain> GSM </Domain>
<Range> WLAN </Range>
<Defi nitions> <Constraints>



<Self/> <RF/> <Protocol/> </Constraints></Defi nitions>
<Functions> <Methods> <Request-message>

  Request-bridge ( )</Request-message>
<Transfer> RPE-LTP-80211g ( )</Transfer>
</Methods> </Functions>

<Slots> <RF> WLAN GSM </RF> <Payload> Voice </Payload>
</Slots> </RKO>

This bridge transports voice from a GSM source network to a WLAN sink 
network. With the KO in Expression 9-5, Sam knows he can bridge between 
GSM and 802.11. Lenny can request bridging by sending the string “Request-
bridge ( ).” A complete KO has the necessary details while additional KOs 
and DHs are suggested in the exercises.

The RKO is intelligible to Lenny and Sam, not just to the radio engineers 
who designed them. Unlike SDR architectures that are meant for radio engi-
neers, these KOs and DHs are autonomously used by Lenny and Sam, as 
cognitive agents, to reason about bridging not just to implement it.

9.3.7 Wireless-for-Free

Today’s consumer has two broad choices for wireless access to core networks: 
rent cellular service to access the PSTN or buy WLAN hardware from an 
electronics retailer to access an ISP core network. IEEE 802.11, Home RF, 
and WiFi offer the dedicated enthusiast many opportunities to learn myriad 
details of wireless networks. The consumer doesn’t have to learn the horren-
dous details of 3G to use the cell phone. There are hybrids of both extremes. 
Wireless-for-Free envisions an alternative, the computationally intelligent 
consumer-purchasable AACRs that interoperate and cooperate with CWNs 
of evolved cellular service providers and with ISPs for “free” radio spectrum 
use.

As 4G cellular deploys, wireless service providers use WLAN technologies 
to fi ll hot spots [221]. A mix of consumer products use cordless phone, Blue-
Tooth, WiFi, 802.11, Home RF, and who knows what next for ISP access. If 
legal hurdles and market conditions were supportive, Wireless-for-Free would 
use computational intelligence to drive free access up and total consumer cost 
down, disrupting conventional markets.

Implementing the Use Case : The implementation of this use case is consid-
ered an exercise.

9.4 USER SKILL ENHANCEMENTS

ZB and CHERISH enhance the user’s natural abilities. Wireless radar from 
a weather channel enables a user to see the tornado beyond the horizon. The 
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AACR user domain packages data from Internet and broadcast media into 
wearable, personalized, immediate information. Data requires work to turn 
into information. The work is driven by the psychological and social needs of 
the specifi c user where semantics plays the pivotal role. Lenny learns to scan 
the weather channel in a style set by Charlie to augment Charlie’s personal 
skills.

9.4.1 Emergency Balancing Act

To get a CWPDA to talk requires speech synthesis. VoiceXML [222] has 
emerged into an industry-standard tool for programming guided voice inter-
actions. Developed for call-center processing, VoiceXML may be adapted for 
embedded dialog generation. In the previous earthquake example, the AACR 
sensed vital signs, with visual and acoustic stimuli to detect a major emer-
gency. Lesser emergencies may be more diffi cult to detect. The defi nition of 
emergency is fl uid, different from one user to another. A typical solution to 
the dilemma of recognizing an emergency is to put that burden on the user. 
Give Lenny an Emergency button. If the button is pushed, then Lenny knows 
it can call for help from under the rubble pile if Charlie is unable to do so. 
Calling wirelessly for help reaches out further, but VoiceXML (set to LOUD) 
attracts the rescue personnel to exactly the right spot under the rubble pile.

On the other hand, if Charlie dials 911, Lenny knows there is an emer-
gency. That was easy. Lenny could monitor and record the 911 emergency 
conversations, taking video clips of Charlie’s emergency. Not so fast. It might 
be more appropriate for Lenny to conserve battery life in an emergency. Some 
kinds of emergencies such as traffi c accidents may need the video record. 
Others, like being lost in a snowstorm warrant the preservation of battery life. 
Suppose the automobile accident and snowstorm are preprogrammed, one to 
maximize the video record and one to conserve battery life. When Sam 
detects the automobile accident via its accelerometer, it can tell Lenny via 
BT. Let’s say Lenny also detects a snowstorm on NOAA radio, correlating 
GPS to the predicted snowstorm. This situation has an automobile accident 
and an approaching snowstorm. Lenny should take videos for Charlie’s insur-
ance claim, but should conserve battery power because of the snowstorm. The 
competing goals could be resolved by taking fewer pictures to save battery 
life. In the emergency, Lenny can speak, “Charlie. My battery is low. Should 
we take pictures of the accident or conserve battery life so I can help rescuers 
fi nd us in the snowstorm?” Charlie laughs and says, “Central Park is over 
there and we can walk home, so don’t worry about your battery.” If Charlie 
were somewhere in Yosemite in the dead of winter, the answer might be 
different.

Implementing the Use Case : There are several technical challenges in this 
use case. What kinds of UKOs are needed so Lenny only talks when appro-
priate? How do you integrate AML with VoiceXML? What UDHs deal with 
situations that are close to a preprogrammed use case, but not identical? 



Suppose snowstorm emergency is replaced by a typhoon? What combination 
of UDH, SDH, and RDH assure that battery conservation is effective?

9.4.2 Restaurant Vignette

This one may be a little overworked, but it is a good one to come back to 
regularly to see how the technology, markets, and infrastructure for this use 
case are evolving. You want to eat at a local restaurant. You would like to ask 
your CWPDA for advice. Steve [223] pointed out that a better way to get such 
advice might be to ask one of the locals which restaurant a local would choose. 
Such an establishment might not have to advertise in the yellow pages, virtual 
or real. If your CWPDA is listening to everything you say and do, why not 
empower it to share your feelings about local restaurants? “Boy this place has 
great lamb chops!” could be shared among CWPDAs making your impres-
sions available to others, enhancing the value of the CWPDA to others and 
indirectly to you. After all, you may not know who to call to fi nd out about 
this particular place, but wireless sharing of such impressions could be a killer 
app.

9.4.3 Playing Poker

A team consisting of the three Steves plus Larry [224] suggested a poker-
player’s assistant and Geek Poker. Each player wears a CWPDA with audio 
and video capabilities. The CWPDA counts cards, reads body language, and 
in short cheats any way it can. The user can play as advised by the CWPDA 
or go it alone. Rainman poker? A corollary idea also offered in the same 
discussion was the possibility of using CWPDAs in contract negotiations, 
making detailed information available more quickly to one side than to the 
other.

9.4.4 Helping the Blind

Cou-Way Wang of NTIA suggested helping the blind at the 10 June 2004 
Cognitive Radios course in Alexandria, Virginia. A CWPDA with vision 
could generate a tactile fi eld on the chest of a blind user. GPS and RF multi-
path signatures could assist vision in pinpointing location with suffi cient accu-
racy for the blind user to navigate with precision, accuracy, and safety.

9.4.5 User Profi les

Professor Tony Kalus of Portsmouth University in the United Kingdom sug-
gested the highly autonomous updating of user profi les. European research 
in location-aware services and user-adaptive communications has shown the 
value of user profi les, lists of parameters that characterize a user’s preferences 
for services and cost. These preferences change as a function of the social 
role of the user, such as whether the user is at home, at work, or at school. 
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Furthermore, asking the user to even indicate which mode or profi le might 
be applicable at a given time puts undue burden on the user. Why couldn’t a 
CWPDA monitor the user’s location (visual environment) and conversations 
with ASR and <Histogram/> to detect which of the profi les is most likely to 
be applicable, and after suitable reinforcement by the user, to autonomously 
change user profi les for better QoI? It could switch profi les based on location, 
time, and inferred <Topic/> of conversation.

9.4.6 The Nose Knows

My son-in-law, Max, wants his CWPDA with a chemical sensor so he doesn’t 
get sick from bad food. The sensor chips are on the way. Will AACR create 
the killer application for these chips?

9.4.7 Museum in Your Pocket

My wife, Lynné, wants her CWPDA to analyze pictures of interesting things 
like a plant growing in a park, to access the Audubon Guide, and to identify 
the fl ower. Or what is the name of that monument, what is its history? To 
transition from brainstorming to a real application requires a business case 
analysis that articulates the value proposition in terms of revenue against 
costs of technology, infrastructure, and support to realize a profi t.

9.5 EXERCISES

9.1. Consider an amateur radio “sleeve” for your PDA that can receive GPS and 
AM/FM broadcast at least. Write glue code so the PDA can tell you where you 
are. Integrate an ASR tool box and train it to recognize “Traffi c and weather  .  .  .  ?” 
How would you train it to recognize typical traffi c situations? What are the key 
implementation questions? Train a (high order) neural network to recognize 
“traffi c and weather.” Preprocess the speech into text and teach a neural network 
to recognize traffi c and weather broadcasts.

9.2. Consider other functions of CHERISH and Zeus in a Box. Of the functions that 
drive CHERISH, only fi ve have been discussed in this chapter. Your exercise is 
to address the others in the same way. Write a user vignette for each. Describe 
how the vignette enables greater independence from network service providers 
or military radio spectrum managers. How will the CHERISH node get the 
information it needs to detect the user state? How will it know which of its 
myriad SDR modes to employ? How can cognition technology enable Zeus in a 
Box to be more effective in the fi eld? What specifi c capabilities should it have 
in order to confi gure wireless networks for a user? How would it scan for existing 
networks and recognize noise in unknown bands? What would a designer do 
about products designed after ZB has been on sale for a year? Suppose 802.x 
operates on ultra-wideband. Can ZB learn this to do its job? How could ZB 
expand to CHERISH? How might the developers of ZB enhance it toward 
CHERISH?
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CHAPTER 10

USER-DOMAIN KNOWLEDGE

Although there are many ways to acquire knowledge about users, the CRA 
emphasizes the passive observation of user actions in the environment, 
drawing inferences rather than asking the user what may be perceived as 
stupid questions. Since radio is a technical domain, the domain knowledge is 
structured into radio physics, regulations, and practices across the relevant 
bands and modes. The user domain is less structured and vastly more complex, 
even in a single microworld focused on the immediate audio-visual scenes in 
which users are situated. Although sensory perception is a major technology 
challenge so is the complexity of user-domain knowledge. This chapter 
addresses sensing, perception, and mutual grounding as primary methods of 
relating user-domain knowledge to QoI enhancement by AACRs. This may 
be simplifi ed by the modeling of users both as individuals and by class, and 
by a priori knowledge of user domains with sociological and psychological 
models.

The primary iCR sensory-perception capabilities for the user domain are 
the keyboard, audio, and video. AACRs use conventional tactile input to 
perceive user actions (e.g., tuning the radio, entering a phone number, clicking 
on a web site) along with visual displays of text and graphics. Auxiliary 
sensory-perception capabilities may include navigation, acceleration, tem-
perature, barometric pressure, and smell or wind velocity. This chapter focuses 
on the perception of those aspects of a <Scene/> for which SKOs and RKOs 
are known to the <Self/> and that are important to QoI.

Cognitive Radio Architecture: The Engineering Foundations of Radio XML
By Joseph Mitola III Copyright © 2006 John Wiley & Sons, Inc.



348     USER-DOMAIN KNOWLEDGE

10.1 USERS’ NATURAL LANGUAGE EXPRESSION

Natural language (NL) expression includes spoken and written language as 
well as the body language associated with lip, face, hand, and other body 
movements that convey meaning. NL processing for AACR focuses primarily 
on speech and text processing. Historically, researchers address text retrieval 
or speech but AACR must fl uidly interpret both as offered by the user.

10.1.1 Human Language Technology

The insertion of HLT in AACR envisions user dialog and machine translation 
among human languages. Commercially available language software trans-
lates written grammatical sentences successfully between those natural lan-
guages that are in wide use, such as English, German, French, Japanese, and 
Chinese. Language translation software products address over 700 languages 
[225]. These software tools are less than ideal, often mistranslating complex 
or idiomatic expressions. However, they reduce the burden of human transla-
tion, for example, in conducting multinational business [226]. Early progress 
with the automatic acquisition of rules of syntax [227] helped lay the founda-
tion for substantial understanding of NL by computer [228].

The commonalities of NL in text and speech are illustrated in Figure 10-1. 
Translation includes speech recognition [229], machine translation (MT), and 
speech synthesis [230]. Speech recognition generates an errorful transcript 
or a hypothesis tree from the acoustic signal, for example, via hidden Markov 
models (HMMs), dynamic time warping, and/or fuzzy sets [231]. The core 
MT parses errorful text against (statistical) rules of grammar, with a lexicon. 
Semantic (“content”) extraction rules use syntax data structures, dictionaries, 
and side knowledge; and higher level semantic rules resolve ellipsis (incom-
plete references) and anaphora (pronomial use of phrases) and adjust the 
semantic model as a function of discourse context [232].

10.1.2 WordNet

Although informal conversation need not employ complete sentences, word 
and phrase units typically enjoy a 1 : 1 and complete (“onto”) mapping between 
spoken and written language. For any given written or spoken word, there is 
a corresponding word in the alternate form of expression. Although some 
niche languages have no written form, AACR near-term evolution addresses 
written languages. Similarly, for any spoken phrase, there typically exists a 
written form. People may write in complete sentences, but tend not to speak 
in such complete sentences, relying instead on shared context of both physical 
scene and discourse for unspoken subjects, objects, and other referents. Thus, 
the integration of NL technology into AACR emphasizes the reliable inter-
pretation and use of informal words and phrases, with visual context aids.



Comprehensive standard defi nitions are found in WordNet [233, 234], a 
collection of hundreds of thousands of words of English and other languages 
that emphasizes the psycholinguistics—semantics and semantically related 
structures rather than just the forms (e.g., spelling and pronunciation). 
WordNet is incorporated by reference into RXML for lexical and ontological 
structure. Fundamental differences in the semantic organization of syntactic 
categories like noun, verb, adjective, and adverb can be seen in WordNet.

According to Miller et al. [235], nouns are organized in human lexical 
memory as topical hierarchies. The WordNet nouns begin with the entry 
“Entity,” from the WordNet perspective, the common root of all nouns:

n [noun] 01 entity | that which is perceived or known or inferred to have its 
own distinct existence (living or nonliving)

Associated with Entity and immediately following entity are the related 
nouns: “thing” defi ned as “a separate and self-contained entity”; “anything |
a thing of any kind” (e.g., “Do you have anything to declare?”); “something 
| a thing of some kind” (e.g., “Is there something you want?”); “nothing | a 
nonexistent thing”; “whole | an assemblage of parts that is regarded as a single 
entity” (e.g., “How big is that part compared to the whole?”); and “living_
thing | a living (or once living) entity.” The numerical references establish 
associative links between Entity and other nouns. The companion CD-ROM 
follows the threads more deeply.

Speech

Text

Ontology
(Domain Concepts)

Phoneme Extraction
Modeling (e.g. HMM)
Structure Analysis
Transcript Generation

Speech Recognition

Machine
Processing

Isolated
large

Independent

Continuous
Small
Dependent

Words
Vocabulary

Soeaker

Speech Synthesizer

Synthesis

SpeechText

Grammar, Lexicon
Structure Models
Feature Models

Lexical Mapper
Syntax Generator

In
te

rli
ng

ua

Kn
ow

n 
C

lu
st

er
s

Er
ro

rfu
l T

ra
ns

cr
ip

t
Extract
Information

Estimate
Statistics

Parse (Synta) 
Extract Structure

Analyze Structure

FIGURE 10-1 Natural language processing.

USERS’ NATURAL LANGUAGE EXPRESSION     349



350     USER-DOMAIN KNOWLEDGE

WordNet doesn’t differentiate well between subsets (e.g., action as a type 
of act), synonyms (e.g., property and attribute in object-oriented program-
ming), and related abstractions that do not necessarily share set/subset rela-
tionships but that are not synonyms in many instances (e.g., feeling and 
emotion). The RXML adaptation of the candidate primes leverages the 
insights of WordNet, adapting them to the <User/> domain.

Verbs, on the other hand, may be organized in human memory by a variety 
of entailment relations. One might like to fi nd a single root verb from which 
all verbs might be derived in the same sense that all WordNet nouns share 
Entity as a root. Because of the complexity of <Action/> as a multirooted 
heterarchy, no single abstraction appears at the root of WordNet verbs. 
Instead, the WordNet types of verb <Action/> are: bodily care and functions, 
change, cognition, communication, competition, consumption, contact, cre-
ation, emotion, motion, perception, possession, social interaction, and weather, 
as well as verbs referring to states, such as suffi ce, belong, and resemble, that 
could not be integrated into the other categories. Radio XML adopts these 
as the top-level categories of action in the user domain, leveraging for the 
<User/> the best insights of linguists into how people communicate with each 
other.

In the psycholinguistic view, adjectives and adverbs may be organized as 
N-dimensional hyperspaces. Again, according to Miller, these lexical struc-
tures refl ect a different way of categorizing experience. Attempts to impose 
a single organizing principle on all syntactic categories would badly misrep-
resent the psychological complexity of lexical knowledge. WordNet organizes 
lexical information by word meanings, rather than word forms, resembling a 
thesaurus more than a dictionary.

WordNet adjective, adverb, noun, and verb databases for AAAI 2004 [234] 
included the four base fi les for adjectives, adverbs, verbs, and nouns consisting 
of 21 MB of text. Since word-level semantics are context dependent, WordNet 
2.0 includes indices for clusters, similarity metrics, and related tools. The 
associative-semantics tools of WordNet 2.0 are incorporated into RXML by 
reference for <User>-domain skills for AACR. Space required for the storage 
of these word-level semantics along with a rich set of semantic relationships 
even in a handset is not excessive by today’s standards.

CRs also learn user-specifi c word associations from the <User/> acting 
normally in <Scenes/> such as work, home, and leisure. WordNet provides a 
starting point for understanding user expressions for information support, 
which the AACR may tailor to the user specifi cs through reinforcing user 
associations over WordNet associations, leveraging WordNet but not too 
strongly bound to its detailed structure, which after all was acquired through 
exposure to large collections of text, not through colloquial usage.

Going beyond WordNet, statistical rules of syntax enable the same words 
to take on different roles, contributing differentially to content. Consider the 
differences in the way that “back” contributes to meaning in phrases like (a) 
“Back up, please,” and (b) “Don’t get your back up, please.” Phrase (a) is a 



proper subset of (b) syntactically, but the roles of the words are very different, 
as inferred by rules of syntax that describe the formation of phrases and sen-
tences. To adapt and integrate such rules, the AACR systems engineer needs 
some familiarity with phrase structure grammars.

10.1.3 NL Grammars

NL research systems like SNePS [236], AGFL [237], and XTAG [238] work 
with a morphological analyzer like PC-KIMMO [239] to analyze phrases to 
characterize the roles of words in those phrases, and thus to infer limited 
semantics through mutual constraint satisfaction. Such research systems are 
foundational to current standards such as the W3C standards for speech rec-
ognition [240] and synthesis [241]. One readily accessible and fairly compre-
hensive NL parser application relevant to AACR is the TRAINS system that 
demonstrates speech recognition and synthesis for a notional railroad train 
reservation system [41, 242]. Since grammars can be used for the analysis of 
speech and text and for the generation of spoken language, their features and 
limitations motivate both audio perception and speech synthesis.

Grammars require lexical categories and associated rules. Since nearly 
every word has multiple lexical categories, parsers generate multiple hypoth-
eses, typically in the form of a stack or hypothesis tree, eliminating or rank 
ordering hypotheses according to the rules of grammar and the methods of 
parsing the language. Although elusive for decades, RetrievalWare’s Thing-
Finder exemplifi es commercial parsers capable of reliably fi nding named 
entities (people, organizations, places, etc.) embedded in general text in 
English and other languages [243]. WordNet lexical categories are the CRA 
<Self/> <Roles/> for <Words/> in the <User/> domain: Noun, Verb, Adjec-
tive, Article, Preposition, Auxiliary verb, Pronoun, Question determiner, 
Words that function like prepositional phrases, Proper names, and the word 
“to”.

Words are characterized by their description in a lexicon that a parser uses 
to determine the potential lexical categories of the word, along with proper-
ties such as agreement, root, subcategories, and verb form:

illustrative lexicon entries

Word Category Agreement Properties

dog Noun (agr 3s) (root dog)
saw Verb (agr ?a1) (vform past) (subcat_np) (root see)

(agr = agreement; 3s = third person singular; ?a1 = tense variable)

The CRA <Self/> does not specify lexical entries, deferring that to the NL 
subsystem.
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The TRAINS Parsing System illustrates the structure of grammatical rules 
as well as the benefi ts of bottom-up parsers [244]. TRAINS parses word lat-
tices with best-fi rst parsing using context-free probabilistic rules with incre-
mental (word by word) parsing with backup for corrections. Its hierarchical 
feature values and extended unifi cation options enable relatively sophisti-
cated logic to resolve ellipsis and anaphora. Its hierarchical lexicon simplifi es 
defi ning large lexicons, such as those needed to continue to support an AACR 
user over time. Procedural attachment to chart actions simplifi es program-
ming the parser for the extraction of relevant information from well-formed 
phrases. As a research objective, an AACR could use CBR with RL to update 
its own chart parser to <User/> style.

The CRA <Self/> does not specify syntax or grammatical rules, enabling 
NL subsystems to function as black boxes that instantiate phrases in AACR 
dialogs. While the constituents of sentences are words, the constituents of 
spoken words are lower level acoustic elements, phonemes, or “phones.”

10.1.4 Speech Phones

The basic unit of speech that conveys linguistic information is the phone. A 
phone is an indivisible space–time–frequency epoch of a speech utterance. 
For American English, there are approximately 42 phones. Each is generated 
by specifi c positions and movements of the vocal tract. The Microsoft Speech 
API (SAPI) defi nes language-unique and universal phones, organizing the 
universal phones into categories. These MS Universal Phonetic Symbols 
(UPS) are based on the International Phonetic Alphabet (IPA) [245]. There 
are 294 speech phones in the UPS in the following categories: consonants, 
affricate consonants, monophthong vowels, diphthong vowel (UPI), diacrit-
ics, suprasegmentals, clicks and ejectives, tones, and other symbols. Speech 
recognition systems hide the signal processing required to deal with such 
complexity by transforming a temporal epoch of sampled speech into an 
errorful transcript or set of alternate transcripts with an associated degree of 
belief for each alternative interpretation. Speech synthesizers interpret rules 
for sentence formation following generative annotations such as the supraseg-
mentals, tonals, and tone sequences, particularly in Asian languages like 
Chinese.

This introduction establishes the basic characteristics of natural language 
as a primary source of user-domain knowledge. Acoustic sensory perception 
is the AACR ASR component that translates sensory stimuli into hypothesis 
data structures through which AACR interprets the speech environment.

10.2 ACOUSTIC SENSORY PERCEPTION

The acoustic domain of human perception spans the audio spectrum from a 
few hertz to about 20 kHz—more for gifted people. Acoustic sensing in the 



human begins with the ear’s tympanic basilar membrane and cochlea that 
implement about 16,000 nonlinear bandpass fi lters that send preconditioned 
signals to the lower auditory cortex. There, signals from the two ears are 
cross-correlated to perceive depth and direction, as well as for the separation 
of sound sources. The higher order processing of these signals in the medial 
and upper ganglia is not as well understood, but a combination of acoustic, 
visual, balance, and tactile sensory tracks interact to percieve point sources 
like speakers and distributed sources like a brook or symphony orchestra. 
The functions of acoustic sensory perception for AACR include the 
following:

1. Characterizing the acoustic background as noise, music, machinery, or 
conversation.

2. Estimating the number of speakers in the scene, their gender, and the 
degree to which their voices are known or novel.

3. Localizing in signal space the speech of the designated <User/>, the 
specifi c person to whom the AACR is to be responsive.

4. Localizing sources of coherent interference for which high fi delity com-
putational models may be available, such as TV or radio broadcast that 
the AACR can receive via RF as well as hear in the background.

5. Enhancing <User/> speech potentially by multiuser detection (MUD) 
and space–time adaptive processing (STAP).

6. Extracting the enhanced <User/> speech for ASR.
7. Converting speech to text hypotheses with associated degree of belief.
8. Time tagging, rank ordering, and annotating hypotheses for <Scene/>

perception.
9. Retrospective refi nement of <Speech/> skills during sleep.

10.2.1 Acoustics

Acoustic sensors access the bulk pressure vibrations of air waves with fre-
quencies between 10 Hz and 20 kHz with speech power measured in decibels 
(dB) over a range of 100 dB. Microphones limit the frequency response and 
direction of sound, and multimicrophone arrays can enhance sound quality 
in meeting rooms.

Sound boards typically create standard sound formats: 8-bit signed 
(.SAM), 64-bit Doubles (RAW) (.DBL), Adobe Audition Loop (.CEL), 
A/Mu-Law Wave (.WAV), mp3PRO (.MP3), PCM Raw Data (.PCM), Audio 
(.WMA), Windows PCM (.WAV), and others. Sound boards also generate 
stereophonic sound from these fi les. MIDI fi les are scripts consisting of notes 
from a music score that may be converted to digitized acoustic waveforms of 
musical instruments with special effects.
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10.2.2 Sensing Speech

Typically, low-cost microphones do not respond well to far-fi eld acoustic 
stimuli (even a few feet from the microphone). They may respond in excess 
to local noise, for example, the sound of typing fi ngers on a laptop or the road 
noise of the car.

Speech sensing consists of detecting speech, locating the speech epoch 
endpoints, and analyzing the speech waveform in the time domain, frequency 
domain, and various other cumulant domains such as wavelet projections and 
hidden Markov models (HMMs).

Speech is differentiated from a quiet background by a voice activity detec-
tor (VAD), which is also called voice operation transition (VOX) for histori-
cal reasons. There are many VAD algorithms, some of which are available as 
products for particular DSPs [246]. ITU (formerly CCITT) specifi es tests for 
VAD in telephony, such as the ITU-T G.729 Annex B tests.

Software tools like Adobe AuditionTM enable one to visualize and manipu-
late speech, music, and sound (Figure 10-2).

Other tools like Matlab and Mathcad estimate spectra and analyze speech 
signals algorithmically. Automatic speech recognition (ASR) systems may be 
programmed for a range of dialogs. A cognitive wireless PDA initially may 
listen to only the owner when the owner talks into the PDA as with a cell 
phone. Later in commercial settings and perhaps sooner in military applica-
tions, high noise levels and spatially sensitive sound acquisition will be 
needed.

10.2.3 Perceiving Speech

Given an isolated speech epoch, speech recognition software tools translate 
speech to text. Since the acoustic signal alone is ambiguous, products employ 

FIGURE 10-2 Two word speech epoch (Adobe Audition) in time and frequency. 
(a) Trace of the audio signal amplitude versus time. (b) Trace as color-modulated 
spectra versus time.

(a) Trace of the audio signal amplitude versus time (b) Trace as color-modulated spectra versus time



statistical models of language to disambiguate alternative interpretations of 
the audio track. The process of speech perception selects from among the top 
N hypothetical phrase transcripts, in AACR using <Scene/> level expecta-
tions to assist in the resolution of uncertainties. Speech recognition APIs 
enable one to embed ASR in AACR. The CRA integrates ASR as a black 
box capability. Phrases may be learned and associated with functions to 
enable AACR–user dialogs, but that capability may not mature until the iCR. 
Meanwhile, commercial speech recognition tools like IBM Embedded Via-
Voice, Enterprise Edition can improve accuracy, such as the N-Best technol-
ogy, which returns multiple phrase matches so the AACR can select the best 
phrase for the <Scene/> and <UDH/>. IBM’s JAVA® supports Java Speech 
API (JSAPI) with multiple Java voice applications to share the same Java 
Virtual Machine (JVM). IBM’s Mastor is a multilingual speech-to-speech 
translator variant of ViaVoice [247]. The Microsoft Speech Application SDK 
(SASDK) is based on the Speech Application Language Tags (SALTs) speci-
fi cation for Web applications. Microsoft SDK related products include 
Maxxam speech-enabled applications for banks and credit unions based on 
Microsoft Speech Server and Speech Application SDK [248].

While the spoken utterance itself holds clues to the identity of the speaker, 
AACRs need to know speaker identity as accurately as possible. Speaker 
identifi cation (ID) has long been of research interest [250]. Speaker models 
characterize the dominant tones and prosody features of a segment of audio. 
If the audio segment consists primarily of speech of one speaker, the resulting 
model refl ects the speech patterns of the speaker. Sometimes, the acoustic 
patterns of the background corrupt or even dominate the acoustic patterns, 
so speaker ID in a moving automobile will in part identify the automobile 
through its acoustics.

Speech perception shares concepts and methods with text processing, 
information extraction, and document retrieval. Performance varies substan-
tially along the critical dimensions of vocabulary size, quality of articula-
tion (e.g., isolated words versus continuous coarticulated speech), and 
user-specifi c training (none versus speaker-dependent session). In addition, 
noise backgrounds and acoustic scene complexity (e.g., newsroom versus 
cocktail party) also affect performance. In challenging scenes word error 
rates on the order of 40% are common. Commercial speech processing soft-
ware may achieve a 50% word error rate for general untrained speech or 20–
30% for fully trained speaker-dependent recognizers in low background noise 
[249]. Statistical language models can correct word errors to a lower phrase 
error rate.

10.2.4 Perceiving Noise and Interference

Many <Scenes/> have intense vehicle noise, for example, from automobiles, 
trains, earth-moving equipment, aircraft, and the like. Sports enthusiasts 
(NASCAR comes to mind), construction workers, longshoremen, and the like 
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are regularly exposed to high intensity sound other than voice. Rarely do 
speech-to-text tools characterize the background noise, so if the CR is going 
to extract QoI cues from background noise (e.g., the sound of a train or the 
chirp of a bird), it will need further far-fi eld acoustic signal processing beyond 
speech recognition. The AACR may be able to tell that the user is in or 
near a vehicle that is running based on its ambient sound signature, such as 
from a commuter aircraft. An acoustic processing subsystem with VOX set 
for voice may remove such background “noise”—which is really acoustic 
interference—in order to obtain a clearer voice command from the user. 
Although that may be a valuable contribution, the iCR algorithm also would 
characterize the strong background for the AACR association of scene and 
acoustic cues. To the degree that specialized machinery exhibits characteristic 
patterns, the acoustic signal may characterize common equipment like eleva-
tors for acoustic cues.

10.2.5 NLP Tools and Standards

Commercial speech recognition and synthesis tools increasingly support 
World Wide Web Consortium (W3C) standards. Some standards are oriented 
toward specialized applications like 800 directory assistance, call centers, and 
telemarketing, for a level of NLP technology not typical of radio engineering 
enterprises. NLP starter kits help one develop the depth needed to adapt 
W3C standards and tools to AACR.

Zhang Le has published the bootable Morphix-NLP CD [252]. Morphix 
is based on Knoppix, a version of Debian GNU LINUX. The tool has a GUI 
with iconifi ed tools for immediate experimentation including the Link 
Grammar Parser. It labels verbs and nouns and parses sentences interactively. 
Its WordNet Browser facilitates interaction with WordNet via the World Wide 
Web and its CMU Festival Speech Synthesis System is also interactive. Tools 
include tokenizers, taggers, and a collection of parsers. Le’s statistics package 
includes tools for word frequencies, vocabularies, and word bigram and 
trigram counts of the co-occurrence of two or three words in sequence. Le’s 
Maximum Entropy Modeling toolkit classifi es documents, disambiguates 
word sense, and address other advanced topics in NLP.

Such tools can go too far and not far enough in the direction needed for 
AACR. NL parsers can force a speaker into unnatural grammatical expres-
sions in order to be understood. Sentences in colloquial dialogs may have no 
explicit subject, no verb or objective noun phrase to the degree that they are 
implicit in the scene (e.g., by pointing) or in the dialog (e.g., by anaphora, 
ellipsis, or intentional vagueness). Thus, the CRA accommodates NL as an 
aid to perception, but includes case-based reasoning and AML to enhance 
NL via multisensory perceptions in stereotypical <Scenes/>.

The Speech Recognition Grammar Specifi cation Version 1.0 was adopted 
by W3C on 16 March 2004 [253]. It recommends syntax for ASR grammars 



so that developers can specify the words and patterns of words to be listened 
for by a speech recognizer. The forms include BNF and XML DTD and 
Schema defi nition for Form Grammars as well as the required DTMF 
Grammar. An XSLT style sheet converts XML Form Grammars to ABNF, 
as well as details of a logical parse structure for speech recognition. Examples 
are drawn from English, Korean, Chinese, and Swedish.

Speech Synthesis Markup Language (SSML) W3C Recommendation was 
adopted on 7 September 2004 [254]. The Voice Browser Working Group 
defi ned this standard to enable access to the Web using spoken interaction. 
SSML provides XML-based markup for the generation of synthetic speech, 
with emphasis on pronunciation, volume, pitch, and rate across different syn-
thesis-capable platforms. The standard summarizes the synthesis process in 
text normalization, markup support, nonmarkup behavior, text-to-phoneme 
conversion, prosody analysis, and waveform production. Appendices of the 
SSML standard include audio fi le formats, internationalization, MIME types 
and fi le suffi xes, schema, a DTD, and examples.

10.2.6 Speech Perception Challenges

Even with W3C class speech recognition and synthesis technology, challenges 
remain. Near-term AACR may adapt existing language processing tools for 
radio. Such cross-discipline applications include both radio and user domains 
and methods for translating among them. For example, a speech recognizer 
alone will not detect a <Topic/> to which the AACR should react from text 
of a user <Scene/> by itself. Text retrieval and data mining software such as 
GoogleTM and the Digital Libraries Project extract documents that share 
concepts from large text corpora [30]. AACR may adapt word-vector tech-
niques to detect the presence of QoI topics in the user <Scene/>. Unfortu-
nately, the amount of text or speech offered in requests to a PDA may be 
small. For example, a user might say:

 “PDA, fi nd out about pre-war porcelain from Japan.”

Even with an error-free transcript, different perceptions of the intent of cues 
in this question lead to different responses. Word-vectors from brief utter-
ances often lack a suffi cient number of words to be statistically signifi cant 
regarding the specifi c topic.

As shown in Table 10-1, the <Scene/> in which the user is situated may 
imply other interpretations of the question.

Chronic speech perception challenges [41] include reference, anaphora, 
ellipsis, ambiguity, vagueness, and implicit inferences. For example, the sen-
tences “When the soldiers fi red at the terrorists, they fell” and “When the 
soldiers fi red at the terrorists, they missed” are structured in parallel, but the 
referent of “they” is different. Clearly, people resolve the referent based on 
the semantics of being shot versus doing the shooting, not purely on syntax. 
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Parallels in the AACR user domain might include the following pair: “When 
the kid cries for an on-line game, buy some” and “When the kid cries for an 
on line game, buy time.”

Anaphora is a pronomial reference to previous phrases, typically more 
challenging than the use of “they” in the prior example. Consider the follow-
ing two sentences:

1. What is the depth of the Ethan Allen?
2. What is its speed?

In sentence 2, “its” refers to the nuclear submarine alluded to by the last 
phrase of 1, which requires one to know that the Ethan Allen is the name of 
a nuclear submarine, semantic side information. These easily could be AACR 
<User/> domain sentences.

To clarify the elliptical sentence “John thinks vanilla,” one might add “But 
Mary likes chocolate ice cream.” In an AACR setting, the CWPDA might 
have entered an ice cream parlor within the past three minutes, disambiguat-
ing by visual cues. The ice cream parlor’s WLAN kiosk might have indicated 
“Newport Creamery” and listed all 81 fl avors. Not all of the commercial tools 
could interpret John’s thought accurately from the speech or text, but the 
CRA could use vision and <RF/> cues to overcome anaphora and ellipsis.

Ambiguity occurs in human language when there are multiple alternative 
meanings of an expression or utterance. Ambiguity may be centered on a 
specifi c word or in a structure. For example, overloaded words like “take” 
engender word sense ambiguity: Take fi ve; What is your take on that? Vague-
ness enters from abstract meanings with multiple specializations, such as “I 
got a new TV at Macy’s.” Side knowledge that Macy’s is a department store 
may be assumed, but suppose Macy is a friend on the East Side who just 
bought a new TV and doesn’t know what to do with the old one. Vagueness 
also occurs when there are lots of implicit inferences, such as in “John went 
to a restaurant. He ordered a hamburger. He left.” Did he eat it? Did he pay? 
Did the AACR pay? Maybe not. If Genie usually pays by BT, will John be 
arrested for not paying?

TABLE 10-1 Speech Perception Context Challenges

Sensory Cue <Scene/> Cue-Perception <RF/> Response

“Find out” <Walking/> Request is global <WLAN/> 10 Google pages
“Find out” <Walking/> Request is local <Wireless kiosk/> “No stores
   within walking distance”
“Find out” <Taxi/> User needs directions <BT-Taxi DB/> “Left on Grev
   Turgatan; 200 m on right”
“From Japan” <Hotel/> Data from Japan <WLAN/> “Can’t reach Japan—
   no Internet”



People regularly use causal chains, sequences of events that carry cause-
and-effect meaning that may not be perfect, sometimes yielding humor, such 
as: “John needed money. He got a gun.” Like Mike in The Moon Is a Harsh 
Mistress, the world-class CR can take a joke. After picking up the gun, John 
may have been on the way to the pawn shop, or he may have been on the way 
to the bank. To follow the more complicated requests from users, CRs will 
need to know causal chains and ground them in <Scenes/> accurately. Speech 
acts can also be causal chains, such as “Is there a water fountain around 
here?” The CR can answer “No, but there’s a soda machine down the hall.” 
The act of asking for a water accomplished the speech act of asserting 
(<Thirsty/> <User/>) to which the CR offered a remedy besides water. These 
challenges of NL expressions must be met often if the AACR is to do the 
right thing for QoI. The integration of data across sensory-perception chan-
nels seems to offer opportunities beyond that of isolated speech or 
text processing, suggesting integrated multisensory speech <Scene/>
perception.

10.3 VISUAL SENSORY PERCEPTION

Between 1997 and 2000 when the foundational research for this book was 
underway, some expected a decade for digital cameras to be integrated into 
cell phones. In March 2004, my wife bought one, years before I expected it 
to be on the market. The sensor acquires color VGA images in 3 lumens, 
typical room lighting, compressing them to JPEG sequences for 15 second 
video clips that she can send to her sister halfway across the country.

Within the decade (give or take fi ve years, of course), people could wear 
glasses that acquire images from a camera embedded in each side of the 
frame, projecting prescription-corrected images onto the retina. Such glasses 
could wirelessly connect to the wearable PDA via BlueTooth, for example, 
enabling the PDA to see exactly what the user sees (Figure 10-3).

10.3.1 Digital Video

Cell phone class video sensors acquire VGA or megapixel color images with 
30° to 40° fi elds of view and image depth from a few inches to about 30 feet. 

FIGURE 10-3 PDA sees the <Scene/> that the <User/> sees.
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Consumer electronics foundations for the CWPDA that sees what the user 
sees include products like the Divio NW901 Single-Chip MPEG-4 CODEC 
[255], originally introduced in 2003 for solid-state camcorders. Typical con-
sumer products capture natural-motion 30 fps MPEG-4 video, IJU-R BT656, 
stereo audio, and 2.1–5 megapixel still images. Images, short clips, and long 
video sequences suitable for user entertainment may also be subject to AACR 
<Scene/> detection with in-depth analysis during <Sleep/>. During 2005, 
128 MB fl ash cards were commodity products and 4 GB data sticks cost 
$150.00.

Image and video stream capture is just the beginning of the visual sensory-
perception processing hierarchy. In order to contribute to AACR perception 
of the user <Scene/>, the perception system must isolate and identify 3D 
objects in potentially cluttered 2D images. Image sequences reveal projec-
tions of partially occluded objects, some of which are moving, and the <User/>
typically also is moving in the scene.

10.3.2 Optical Flow

Optical fl ow is an image of vectors that estimate the orientation and rate of 
change of local features like texture from one image frame to the next. If one 
is approaching an object, the fl ow vectors point away from the center of that 
object. The larger the vectors, the closer the object. Flow of distant objects is 
small from frame to frame, so fl ow-based algorithms detect approaching 
obstacles to avoid by steering the <Self/> (e.g., a bee or a model airplane) 
toward benign optical fl ow.

Figure 10-4 shows the LadybugTM sensor integrated into a hand-held model 
airplane that avoids obstacles using the vision sensors, optical fl ow ASICs, 
and the general purpose PIC microcontroller [256, 257]. The vision system 
computes and interprets visual fl ow in real time. Computing optical fl ow is 
computationally intense, typically best if the frame rate exceeds 1000 frames 
per second. The API enables an autopilot to detect patterns indicating obsta-
cles. For early AACR evolution, one might integrate Centeye chips in a pair 
of eyeglasses linked via BlueTooth to a CWPDA, enabling recently sight-dis-
abled people to avoid obstacles by feeling a pattern of mild vibrations; alter-
natively, the AACR could coach the person by VoiceXML when needed, for 
example, “Door opening to the left.” The fl ow sensors could help the AACR 
orient to the number of people in the scene, and to the transition from one 
scene to another, such as movement through a hall from one <Offi ce/> to 
another. Wireless support needed from the AACR might be very different in 
one’s own offi ce versus a conference room.

The computer vision research literature has long included mathematical 
models for translating 2D images to estimates of 3D scene coordinates [258], 
for identifying easily recognized features in scenes (e.g., linear features, 
blobs), and for calibrating these with a priori knowledge. The Kaiserslautern 
SPIN system exemplifi es such research systems.



10.3.3 Kaiserslautern SPIN System

The SPIN system provides a good example of a machine learning framework 
for 3D spatial perception. SPIN originally was developed for robotics, as 
illustrated in Figure 10-5 [259]. Paraphrasing Zimmer, the SPIN system con-
sisted of edge detectors, models, and maps; and abstraction pipelines that 
identifi ed points of interest.

The Edge-Surface Detector is the source of all information gathered from 
the environment for SPIN. Its sensor is a laser-range-fi nder, where several 
edge-following strategies scan 3D edges. One of the signifi cant differences 
between the macrorobot domain and the <User/> domain of AACR is the 
estimation of depth—range between the sensor and the objects in a scene. 
Robot domains tolerate the laser range fi nders’ size, weight, and power 
because robots need precise estimates of distance in order to control robot 
motion. AACR users would not tolerate large mechanical laser scanners that 
occupy a cubic foot, consume tens of watts of power, and weigh several kilo-
grams. Thus, AACR insertion entails the computation of distances from a 
pair of cell phone camera quality images, with algorithms following edges 
instead of laser scanners. Otherwise, the robot and <User/> domains are very 
similar. For example, both rely on models of a <Scene/> with both a priori 
and real-time maps.

The models & maps (M&M) subsystem achieves unsupervised building of 
adequate models and maps from the environment; thus, this is the central 
structure. Abstraction progresses from the left to right side, where the left-
most model (“Point of Interest Map”) plays a special role. The fi rst model, 
“3-D Reality,” consists of scanned edges. Dynamic data structures make the 

Ladybug sensor

2mm ¥ 2mm vision chips

Sensors mounted on RC Aircraft

FIGURE 10-4 Centeye Computer Vision Subsystem avoids obstacles via visual 
fl ow. (© 2004 Centeye Corp. Used with permission).
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model effi cient. Edges forming a closed polygon are represented as surfaces 
together with the connectivity information between neighboring surfaces. 
The “Surface Model” consists of completed, generalized, and classifi ed sur-
faces extracted from the 3-D Reality model. The difference between the 
models at different abstraction levels steers the focus of attention. The con-
sistency checkers between the several stages detect the differences and try to 
get an explanation for them. The third model, the “Convex Cluster Model,” 
expands to the next higher abstraction based on the surface model. It repre-
sents completed, generalized, and classifi ed clusters of surfaces, which are 
common in the current environment. The interface to the symbolic object-
recognition subsystems labels these elements and constructs meaningful 
objects or features from this model.

Between each two adjacent models on different abstraction levels exists a 
pipeline of processing steps of the abstraction process. Two abstraction pipe-
lines generate the Surface Model and the Convex Cluster Model. In the fi rst 
stage the feature that should be used as the basic element on the next abstrac-
tion level has to be extracted. This facilitates the subsequent “learning-by-
examples” pipeline stages, which are very sensitive to the “bootstrap phase,” 
such as the order of training examples.

Each component in the SPIN structure formulates tasks (“wishes”) for the 
exploration process. This includes requests like “Gather more information at 
a specifi c area in the environment” or “Check a specifi c feature regarding 
hallucination found during the abstraction process.” These requests are col-
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FIGURE 10-5 Illustrative computer vision system. (From [259]. © 1996 Uwe 
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lected in a “point-of-interest fl ow” and stored in a “point-of-interest map.” 
The strategies employed for selecting the actual scan area are called “focus 
of attention” or “visual search” strategies.

SPIN illustrates key issues with computer vision in support of AACR. The 
vision subsystem must contain both high level abstractions needed to extract 
and classify previously unseen objects, along with substantial a priori models 
of known classes of objects such as people, buildings, furniture, and vehicles. 
In addition, the identifi cation of such objects from one minute to the next will 
be errorful. Vision-capable AACR therefore integrates knowledge across 
sensory domains, including the domain of RF-based location knowledge and 
user interaction, to reliably identify just those aspects of the scene that must 
be recognized in order to support the AACR information services use case(s). 
Although still computationally intensive, the technology includes open source 
algorithms and well-understood methods for detecting, recognizing, and 
tracking known types of objects in visual scenes [258, 260–263, 265].

10.3.4 Cognitive Vision

SPIN exemplifi es computer vision systems, a rich domain with decades of 
research, relevant to AACR. The binocular vision system of the Mars Lander 
from the Caltech Jet Propulsion Laboratory (JPL), for example, provides 
APIs by which a robot controller interacts with a scene-depth map to avoid 
“negative obstacles,” shallow depressions that are diffi cult to perceive. Dr. 
Jim Albus of the National Institutes of Standards and Technology (NIST) has 
published a standard computer-vision architecture, 4D RCS, that navigates 
Army vehicles through a forested area without hitting trees [264], suggesting 
vision-capable AACR in future automobiles.

The summer 2004 issue of AAAI Magazine on cognitive vision [265] 
addresses chronic AACR vision problems. Computer vision based on invari-
ant triples enhances the reliability of object identifi cation from a single digital 
frame. For example, wheels, windows, and the front grille of an automobile 
exhibit clusters of triples that reveal the orientation and scale of automobiles 
in a traffi c <Scene/>. In the Bert-and-Ernie use case, a CWPDA worn as 
eyeglasses might avoid a car, particularly if the oncoming vehicle’s AACR 
detects an emergency <RF/> beep from the child’s CWPDA. An AACR that 
detects rapidly increasing automobile engine and tire noise might yell, “Look 
out” via speech synthesizer, causing the child to look around quickly and thus 
enabling the vision or optical fl ow system to confi rm the danger of the oncom-
ing vehicle so the car can be asked via RF to break in milliseconds, not in 
the seconds it takes for the distracted driver to notice the child.

10.4 AUDIO-VISUAL INTEGRATION

Audio and video sensory-perception channels interact in animals and 
humans. Integrated audio-visual processing may abstract independent audio 
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and visual scene features to form consistent abstractions for <Scene/> level 
perception.

Joint audio-visual ASR fuses features for audio-visual automatic speech 
recognition (AV-ASR [266]). Fusion may be based on either feature fusion 
or decision fusion. With feature fusion, one classifi er concatenates features to 
enhance audio features, for example, at the subphonetic level. With decision 
fusion, features are concatenated, but phone, word, or utterance level deci-
sions may be affected. Any video assistance improves word error rates as a 
function of SNR, a key metric in informal AACR dialog in complicated 
acoustic settings. Noisy environments benefi t most from the video cues, 
amounting to about a 7 dB equivalent improvement and reducing error rates 
from over 50% to more like 30% in a 5 dB SNR, which is perceived as pretty 
noisy.

Lipreading [266] applies to both noisy speech recognition and to reliably 
recognizing and tracking the user, protecting the user’s private information. 
The lipreading process begins with the detection of the face. The algorithm 
then fi nds the lips and estimates whether the person is talking or not to assist 
in segmenting the speech signal, differentiating foreground from background 
speech. Potamianos et al. [266] classify visual features for automatic speech 
reading as based on either (1) video pixels (e.g., appearance), (2) lip contour 
(or shape), or (3) a combination of (1) and (2). In addition, systems with 
binary optics also could incorporate (4) distance-based features or (5) visual 
fl ow-based features, both of which estimate motion parameters in 
three-space.

Not all of the speech articulators are visible to an observer. Therefore, the 
number of visually distinguishable units is much smaller than the number of 
phonemes. Visible units are called visemes. Speech-readers and statistical 
clustering are alternative methods for defi ning phoneme ↔ viseme mappings. 
Some visemes are well-defi ned, such as the “bilabial viseme” that maps 42 
phonemes into 13 visemes.

AV-ASR therefore goes beyond the typical hidden Markov model (HMM) 
of speech-only ASR to the composite HMM states. AV-ASR illustrates the 
benefi ts of integration across these two sensory-perception domains. Although 
the computational burden of vision and thus of AV-ASR remains high, the 
continued optimization of computer vision algorithms and work in ASICs 
continues to propel us closer to AV-AACR.

AV and <Scene/> integration, particularly with language as a domain of 
action, occurs in robots that simulate human behavior, such as GRACE, the 
fi rst winner of the IJCAI Mobile Robot Challenge and Aibo, Sony’s toy dog. 
Commercial robots range from Roomba [267], the autonomous vacuum 
cleaner, to Asimo, the Humanoid. Each has varying degrees of cognitive 
capability as illustrated in Figure 10-6.

Kazuo Murano has said that the most important technology change for the 
coming decade will be the robot: “The robot will probably be the technology 
of the 21st century as the automobile was the technology of the 20th century. 



It is expected to address many social issues in Japan and the other developed 
nations—coping with rapid demographic change, providing security, and 
improving the convenience and comfort of daily life” [268].

The robot competitions at AAAI and IJCAI include the mobile challenge 
for a robot to check itself into the conference and present a talk about itself, 
including answering questions. Such robots have many of the attributes of 
AACR, including multisensor perception of the scene, reasoning, planning, 
making decisions, and taking actions. GRACE (Graduate Robot Attending 
ConferencE), the fi rst winner of the IJCAI robot challenge, isn’t a very attrac-
tive robot compared to Sony’s Asimo, but she has considerable autonomy. 
AML is the crucial feature that differentiates GRACE, Abio, and Asimo as 
cognitive systems from merely artifi cially intelligent but preprogrammed 
alternatives.

GRACE is a six-foot-tall, socially oriented autonomous talking robot. It 
was developed by a team of researchers from Carnegie Mellon, the Naval 
Research Laboratory, Metrica, Inc., Northwestern University, and Swarth-
more College. It successfully completed the mobile robot challenge at the 
American Association of Artifi cial Intelligence (AAAI) national meeting in 
Edmonton, Alberta, Canada on 31 July 2002 [269]. The U.S. Naval Research 
Laboratory [270] supplied speech recognition, parsing, multimodal speech 
and gesture interpretation, and human–robot interaction. Metrica provided 
vision-based gesture recognition. Northwestern contributed speech synthesis, 
and Swarthmore contributed specialized vision for reading of signs and 
nametags and recognizing people.

Physically, GRACE consists of a wheeled mobility platform and a cage of 
electronics on top of which is a display that shows GRACE or the PowerPoint 
slide presentation of itself. Because of the limitations of the speech recogni-
tion subsystem, GRACE responds to questions posed by the keyboard. 

FIGURE 10-6 Asimo Humanoid, Abio Dog Robot (from Sony Corp, AP Photos), 
and GRACE from CMU.
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Architecturally, GRACE consists of perception, planning, and action subsys-
tems [271]. GRACE’s perception capability features speech and vision sub-
systems, but includes a laser rangefi nder to assist in navigation and obstacle 
avoidance. Instead of a cognition cycle like CR1, control in GRACE is medi-
ated by state changes in the perception and mobility subsystems. GRACE 
has very limited capability in dialog, typically getting stuck in shallow loops 
that reveal its lack of knowledge in commonsense domains [272].

CR1’s Hearsay serModel is a preprogrammed blank planning capability of 
CR1 for which stimuli and responses are learned during operation. GRACE 
generates plans from predefi ned primitives, not from learned primitives. This 
showed when interacting with GRACE at AAAI 2004 [273]. At the time, 
GRACE could engage in small talk, but it was easily led into loops, asking 
the same question again without any apparent realization that it had just 
asked the same question. This isn’t a criticism of GRACE per se. In other 
modes, GRACE is known to learn more but to be less predictable, which is 
a characteristic of the state of AML in 2004.

10.5 LEXICAL CONCEPTUAL SEMANTICS (LCS)

In the search for abstractions by which sound and vision may be integrated, 
researchers have explored many knowledge and skill representation schemes. 
Frames, speech acts [12], and conceptual dependency [279] were seminal 
ideas that have been used for reasoning at a level of abstraction consistent 
with the <Dialog/> level of speech interaction and with the <Scene/> level of 
visual perception. Logic operating on frames can reason about possible 
worlds. Rules operating on frames can synthesize preprogrammed behavior. 
CBR over frames enables incremental knowledge acquisition. Conceptual 
dependency introduced PTRANS (physical transfer), ATRANS (change of 
attribute), and MTRANS (change of memory). LCS takes this formalization 
a step further. It characterizes words in terms of their contributions to abstract 
perception of things in space and time, states, and events [274].

LCS has a very small set of primitives by which lexical stimuli (words) bear 
spatial semantics at a high level of abstraction. The word “room” implies a 
place with an interior, a spatial mental model. Logic can describe possible 
worlds with terminals, predicates, quantifi ers, and statements, but the predi-
cates make most of the spatial knowledge unavailable except through addi-
tional statements like onTopof (Ball, table) ∧ inFrontof (Ball, clock). These 
abstract semantics are not lexical semantics because the meaning is not asso-
ciated with the words, but with the larger frame structures.

A <Scene/> of 10 objects requires a thousand (210) logic statements to fully 
express how the objects are oriented with respect to each other, a combinato-
rial explosion. With LCS, the <Scene/> is expressed in 10 statements to which 
words are referenced, deriving any of the thousand statements as needed. 
Specifi cally, LCS annotates nouns as things (people or places that take up 



space); verbs as states, events, and causes; while prepositions characterize 
paths (Expression 10-2).

Expression 10-2 Lexical Conceptual Semantics (LCS) Primitives

[THING]
[PLACE] <- PLACE-FUNC( [THING] )
PLACE-FUNC ε {AT, ON, IN, ABOVE, BELOW, BEHIND,  .  .  .}
[PATH] <- PATH-FUNC( [PLACE] | [THING] )
PATH-FUNC ε {TO, FROM, TOWARD, AWAY-FROM, VIA, 
ALONG,  .  .  .}
[EVENT] <- GO ([THING], [PATH]) | STAY ([THING], [PLACE])
[STATE] <- BE ([THING], [PLACE]) | ORIENT ([THING], [PATH]) |
 EXTEND ([THING], [PATH])
[CAUSE] <- CAUSE ([THING], [EVENT])

John Bender’s software uses the LCS spatial characteristics of words to 
draw abstract pictures; related software parses the abstract pictures to gener-
ate sentential descriptions of the abstract pictures and to answer questions 
about the objects in the pictures [275]. The LCS expression for “John walked 
into the room” is a sequence of pictures with John on a path from a place 
outside the room to a place inside the room, denoted as follows:

[Event GO ([Thing JOHN], [Path TO [Place IN [Thing ROOM]]])] (10-1)

John is a <Thing/> as are all nouns in LCS and in RXML. The verb “walked” 
indicates a GO event, expressed in RXML as the user-domain knowledge 
that <Event> <Walked> GO </Walked> </Event>. The concepts of <Path-
function/> and <Place-function/> give LCS its unique fl avor. <Path/> is the 
conceptual spatial analog of a locus of motion. Some prepositions like “to” 
and “from” express verbally the functional relationship between a <Place/>
and a <Thing/> established computationally by <Path-function/> of LCS. 
<Place/> is a subset of space–time that anchors <Place-function/>, the rela-
tionship between a <Place/> and a <Thing/>. These are expressed lexically 
by the position and orientation prepositions at, on, in, and so on. This forward-
looking research enables one to simply and accurately abstract the salient 
features of a <Scene/> and to relate <Dialog/> and <Scene/> to each other. 
Bender’s programs, VISUALIZE and DESCRIBE, translate lexical LCS 
expressions to abstract drawings and conversely. RXML generalizes the 
<Place-function/> to a set of place-relations among places and things, such 
as <On> <Thing/> <Place/> </On>. The <Place/> something is on may be 
intimately associated with another <Thing/>, such as <Top/> of a <Table/>.

Vision researchers have implemented similar performance with different 
methods, based on logical forms to describe scenes and changes in scenes, for 
example, so that a surveillance system can report anomalies such as the 
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presence of a suspicious vehicle [276]. These researchers use a situation graph 
tree, such as the following:

<Situation> <Cross> <Agent/> Intersection </Cross> <!– top level –>
 <Drive-to-intersection/> <Drive-on-intersection/> <!– 2nd level –>
   <Leave-intersection/>
  <Proceed-on-intersection/>speed <Wait-on-intersection/>

<!– 3rd level –>
  <Proceed-to-intersection-alone/>  .  .  .  </Situation><!– 4th level –>

Using discourse representation theory [277], the authors convert natural lan-
guage text into a discourse representation structure, which yields text such as 
“Obje_2 entered the lane,” in a street scene. Research in semantic grounding 
of language extends LCS principles to more complex research frameworks 
such as situated language in which the features of a visual scene play the 
primary role in the resolution of multiple anaphora and ellipsis [278]. In the 
situated language interpreter (SLI), an algorithm models the spatial templates 
of projective prepositions and integrates a topological model with visual per-
ceptual cues. This approach allows the system to correctly defi ne the regions 
described by projective preposition in the viewer-centered frame of reference. 
SLI spatial templates are somewhat implementation-dependent templates for 
trajectories and entities in prepositional semantics, so rather than adopting 
any one of the systems like SLI that offer language–vision performance, this 
treatment employs the fundamentals of LCS to enhance RXML for not just 
speech–vision integration, but for the integration of other sensors including 
radio into <User/>-domain semantics.

LCS evolved from conceptual dependency theory [279]; comparing it with 
discourse representation theory and other logic forms for reasoning [280] and 
planning leads to the use of LCS in the CRA <Self/> as the primary repre-
sentation, with a few amendments. Each <Thing/> is also a <Place/>, with 
positions on the <Thing/> taking the role of <Places/>. The <Top/> of a 
<Table/> has a geometric relationship, even in the primal sketch, to the center 
of mass of the table and to the legs. Primal sketches are geocentric. In addi-
tion, each <Thing/> is composite, consisting of any number of smaller, typi-
cally fully contained <Things/>. Each <Place/> is associated with one or more 
<Things/>, the default of which is the <Scene/> situated in the <Universe/>,
<Global/>  .  .  .  <Local/> spatial ontology.

“The leg of the table is on the rug.”

Expression 10-3 Sentence and RXML LCS Tags

<State> <Thing> <Thing> leg </Thing> of the table </Thing>
 <Being> is <Place> on the <Thing> rug </Thing> </Place> </Being>
  < </State>



A part of a larger object is expressed in RXML as a nested <Thing/> as shown 
in Expression 10-3. In this particular form, the original text is preserved, 
leaving the articles and other non-LCS items in place. The primal sketch 
consists of a one-legged table or a default four-legged table, one leg of which 
is located <On/> the <Thing> rug </Thing>, for example, using the methods 
of the VISUALIZE algorithm [275].

Since there are many ways to express and reason in the user domain, the 
CRA does not preclude extensions to LCS (e.g., SLI), nor the use of logic 
forms encapsulated in APIs as suggested previously. The CRA requires the 
use of such alternatives with less than tightly bounded computational resources 
to be deferred to periods where non-real-time performance is permissible, 
such as during <Sleep/> cycles.

10.6 OTHER SENSORS

Even the integration of speech perception and action with visual perception 
and explanation is not the fi nal word on sensing and perception in the user 
domain. Other sensors add orthogonal observations that simplify valid 
conclusions, reduce search space, and in other ways make the AACR more 
capable of dealing with the complexities of the user domain.

Specialized sensors for location, motion, temperature, barometric pres-
sure, and even smell enable AACR to express functionality in nonverbal 
aspects of the <User/> domain. GPS and accelerometers are discussed in the 
companion CD-ROM.

10.7 ARCHITECTURE IMPLICATIONS

This chapter concludes with the architecture implications of the sensory-per-
ception technologies (see Table 10-2).

Interface 25 conveys speech and vision from user sensory perception to the 
cognition cycle. User speech is augmented in the perception subsystem and 
formatted into LCS expressions readily integrated by the cognition subsys-
tem. Similarly, the visual scene is abstracted through the recognition of 
<Places/>, <Things/>, and <Paths/> in the visual scene, characterizing their 
presence and actions by LCS expressions for ease of integration in the Observe 
phase of the cognition cycle.

10.8 EXERCISES

10.1. Consider developing AACR vision in a realistic microcosm, such as that of 
model vehicles. ExtremeTech (www.extremetech.com) along with many other 
Internet (www.plantaco.com) and local hobby market suppliers offer mobile 
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scale model cars, tanks, aircraft, tractors, and other specialty vehicles. These 
vehicles generally have little computational intelligence, but offer affordable 
mobility platforms for low cost autonomous vehicles. Since model vehicles 
entail a self-contained microcosm, they offer a manageable self-contained envi-
ronment for experimentation with cognition technology. Acquire a digital 
camera for a model automobile and program it to guide the car around obstacles 
in the living room to the kitchen and back to you.

10.2. Web sites for the DARPA Grand Challenge (e.g., CMU’s) illustrate the high 
end of ground vehicle technology. Between these extremes are vision-based 
control systems based on small optical fi elds such as the 5 gram “Ladybug” 
sensor from Centeye [256]. If you or your company would have liked to partici-
pate in a DARPA Grand Challenge, acquire a GPS receiver, cameras, and a 
commercial off-road vehicle like the John Deere Gator® and develop your own 
off-road software.

10.3. What robotic subsystems, subsystems, or software could readily be adapted to 
AACR from GRACE? Acquire a low cost computer vision subsystem. There 
are many min-Cams available for laptop computers. Use the API to capture 
isolated images. Download one of the contemporary machine vision systems 
from Universität Kaiserslautern or Hamburg, Carnegie Mellon, or elsewhere 
on the Web. Extract blobs from your vision system using this software. Defi ne 
the technical challenges in recognizing your laboratory, home, and place of 
work autonomously. Write the code to differentiate outdoors from indoors 
based on blob and edge detection. Try the same problem using colors and light 
levels instead of shapes. Some PDAs include built-in cameras. How well suited 
are such devices as subsystems to be added to AACR? Defi ne a migration path 
from PDA to vision-capable AACR.

10.4. Continuing in the spirit of GRACE, acquire an automatic speech recognition 
software system. Without teaching it, characterize its ability to recognize con-
versational speech by conducting a 5 minute conversation about the stock 
market with someone in its presence. A day later conduct the same 5 minute 

TABLE 10-2 AACR N-Squared Diagram for Speech–Vision 
Sensory-Perception Action

From–To User SP Environment Sys Apps SDR Cognition Effectors

User speech Phrases N/A Commands N/A 25 PA 31
User vision Scenes N/A Attention N/A 25 PA 32
Environment Scene N/A Controls N/A 26 PDC 33 PEM
 user location  reference   (pause/
  points   resume)
Environment State N/A Interactive N/A 26 PC 34 SD
 user  change   games
 acceleration
Other sensors Features N/A Specialized N/A 26 PC
Speech N/A N/A Commands N/A 30 PC
 synthesis



conversation with a different person. Characterize the error covariance between 
the two conversations. Are the errors and successes speaker dependent? Move 
the platform to a different setting, such as to a crowded living room with the 
TV on and people talking. Conduct the same 5 minute conversation with the 
ASR system operating. Defi ne enhancements to the microphones, acoustic 
signal processing, and ASR system that the ASR’s API or training capability 
enables. Make the hardware and confi guration changes that you defi ne. Train 
the ASR system to your voice and conduct the previously mentioned tests. 
Characterize the word- and phrase-level error rates. Give the AACR system a 
name and during the 5 minute conversation, ask the AACR for help at least 
three times, using its name.

10.5. Download a speech synthesis system and integrate it with your emerging AACR 
now consisting of laptop, vision, and speech recognizer. Write high order lan-
guage script that enables it to fi nd a RXML open tag < .  .  .>, not < .  .  ./> as a 
keyword in CRA <Self/>, and to read the contents delimited by the tag out 
loud.

10.6. Write glue code that will patch the ASR output to the speech synthesis system 
so that if the ASR system recognizes a question of the form “Computer, what 
does X mean?” it will look up <X> in CRA <Self/> and read the contents out 
loud. Test it with questions about radio. Characterize the kinds of errors this 
crude question–answer system makes. Ask it increasingly complex questions 
and note the ways in which it breaks. Defi ne methods to resolve these problems. 
Write code that enables the AACR to remember the sentences that precede the 
request for query. Give the AACR data needed for the query. What is needed 
to link the information to the query? Use the techniques of embedded inference 
or PROLOG to mitigate the problems by planning dialogs in which the AACR 
recognizes that it must ask you for more information in order to successfully 
complete the query.
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CHAPTER 11

IMPLEMENTING USER-DOMAIN 
SKILLS

This chapter continues the process of bringing together speech, vision, 
machine learning, planning, and location-awareness technologies to achieve 
user-oriented goals for increasingly intelligent SDR. This is part of an evolu-
tionary process in markets fueled by research in academic institutions and 
corporate laboratories, guided by government, regulatory authorities, and 
standards bodies like the ITU, IEEE, Object Management Group, W3C, 
ARIB, and ETSI; and catalyzed by industry forums like the SDR Forum and 
WWRF. It is virtually impossible technically, economically, and institution-
ally to transition from SDR to iCR in one leap. The AACR evolution includes 
sequences of independently useful steps distributing emphasis among <RF/> 
and <User/> domains; enhancing radio awareness, adaptation, and <RF/>-
enabled QoI for the <User/>:

1. XG “spectrum-aware” adaptive radios will share pooled radio spectrum 
<RF/>.

2. “User-aware” soft biometrics will improve the security of <User/> 
information.

3. “Location-aware” radios will adapt RF modes to <RF/> policy per 
location.

4. “Schedule-aware” radios will adapt <RF/> to workdays, holidays, vaca-
tion, and other temporal patterns, optimizing information selection, 
aggregation, and sharing per <User/>s.

Cognitive Radio Architecture: The Engineering Foundations of Radio XML
By Joseph Mitola III Copyright © 2006 John Wiley & Sons, Inc.



5. Niche-focused AACRs become niche-domain-aware: patient-aware for 
<User/> healthcare; crisis-aware for emergency <RF/> services; and 
golfer-aware for real-time advice on aligning the shot at any hole at any 
golf course in the world.

To realize such steps, cognitive radios must go well beyond SDRs:

1. To accurately perceive the local environment, including the NL expres-
sions and visual scene in which the <User/> is immersed with the beliefs, 
desires, and intent of the <User/> learned through the instantiation and 
evolution of UKOs guided by shared families of UDH refl ecting focused 
classes of user.

2. To effi ciently apply radio knowledge by the continually improving use 
of <RF/> bands and modes available on the physical radio platform, 
including the effective application of UDH with SDH and RDH to 
evolve situation-specifi c KOs for physical RF propagation, communica-
tions modes, legacy radios, networking, and wireless information 
services.

These evolutionary processes may be facilitated by implementation tech-
nologies that enable the computationally effective interaction of the <RF/> 
and <User/> domains, specifi cally (1) to employ ontological standards that 
address both the informal <User/> domain and the many technical <RF/> 
domains, and (2) to interactively learn from <User/>s, AACR peers, and host 
CWNs.

These last two design objectives or mandates suggest how diffi cult it is to 
separate <User/>-domain skills completely from <RF/>-domain skills.

11.1 INTEGRATING COGNITION

The software components that implement the sensory-perception domains 
include those in Table 11-1.

The structure of <Scenes/> conveys to the orient or plan phases of the 
cognition cycle by the perception-level User SP interfaces. The CRA envi-
sions the labeling of objects on these interfaces via LCS or equivalent so that 
the entities and relationships in a <Scene/> are faithfully represented. 
Although there are many research and applications engineering challenges, 
VISUALIZE [275] suggests engineering principles for annotating speech 
transcripts with <Place/>, <Thing/>, <Path/>, and <Action/>, the RXML 
generalizations of EVENT, STATE, and CAUSE of LCS. Similarly, 
DESCRIBE suggests approaches for translating the blobs, edges, and recog-
nized objects from vision to a level of abstraction consistent with multisensory 
DHs for QoI enhancement. In a RXML/LCS framework, satellite navigation 
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RF, visual cues, and speech map to <User/>-defi ned <Place/>s, like <Home/>, 
<Work/>, <Golf/> and the <Supermarket/>.

11.1.1 Integrating Perception Into Awareness

The canonical information structures, such as grammatical English and 
simple objects in a visual scene, are rarely present in <User/> task domains 
like <Home/> or <Work/>. Most scenes are complex. Objects are partially 
hidden or physically occluded; words are occluded by noises. The degree of 
occlusion is not necessarily constant over time, so people naturally view 
scenes from different perspectives and over time, aggregating and integrating 
the scene.

Similarly, <User/>-domain <Scene/> aggregation algorithms must recon-
cile objects and actions perceived in a scene over space and time. The follow-
ing scene occurs outdoors.

Expression 11-1 Simplifi ed Outdoor Scene Object in RXML

<Scene ID = 1>
 <GPS Time = 38394.5064583333> <Location> 
  <Latitude> 28.5635 </Latitude>
  <Longitude>-81.7534</Longitude> </Location> </GPS>
 <RF Time = 38394.5064583333> <AM/> <FM/>
  <Cellular> GSM </Cellular> <WLAN> Null </WLAN> </RF>
 <Speech Time = 38394.5064583333> <Humming/> </Speech>
 <Vision Time = 38394.5066235451> <Tree/> <Grass/> </Vision>
 <Vision Time = 38394.5067583321> <House/> </Vision>
 <Vision Time = 38394.5068583344> <Door/> </Vision>
 <Duration> 5.78 </Duration> <Exterior/> </Scene>

The <Scene/> latitude and longitude were generated when GPS became 
available to the CWPDA as the owner stepped out of the car, transitioning 
from BlueTooth WLAN to no WLAN. <Exterior/> is asserted by the high 
RSSI of the <GPS/> <Signal/>. Speech and vision assert LCS objects into the 

TABLE 11-1 Sensor Domains With Perception Interfaces

Sensor Domain Perception Interface Illustrative Components

Audio acoustics LCS errorful transcript IBM’s ViaVoice
Vision Conceptual sketch of 4D RCS, Centeye [256]
  recognized 3D <Objects/> 
  in recognized 3D <Scene/>
Satellite navigation <Place/> on a terrain map Garman Navigator
 (GPS)
Acceleration <Path/> mobility signature Crossbow IMU tool set



<Scene/> with time of observation. There are myriad uncertainties and frame 
alignment challenges for a <Scene/> integration algorithm to restart a 
<Scene/> after it has been lost for a threshold period of time (e.g., a minute, 
to prevent thrashing hypothesized new scenes when GPS is fl aky).

11.1.1.1 Scenes and Microworlds
The CRA does not specify linkages across scenes, but postulates microworlds 
and linkages among microworlds, with some CRA <Self/> exemplars. To 
preserve LCS, a new scene may be formed when a new <Sketch/> needs to 
be generated; for example, because the <Place/> has changed, the <Self/> has 
no anchor points, the <Self/> senses movement along a <Path/>, or the con-
fi guration of an <interior/> has changed through actions like rearranging the 
furniture. Thus, <Home/> would be a microworld with each <Room/> and 
separate space as a <Scene/> with an associated LCS <Sketch/>.

11.1.1.2 Time Structures Perception Into Observations and <Paths/>
Perception at a specifi ed time is an <Observation/>, asserted into the cur-
rent <Scene/> as it is perceived. If suffi cient time passes, a watchdog timer 
terminates reasoning over unrecognizable features linked to the <Scene/> 
to manage combinatorial explosion. In a sequence <Vision Time = 
38394.5066235451> <Tree/> <Grass/> </Vision> and <Vision Time = 
38394.5067583321> <House/> </Vision> the time tag enables the cognition 
system to construct a space–time path with trees, grass, and a house. If the 
AACR knew from the in-car BlueTooth that it had just been in a car, it can 
construct an embryonic <Path/>:

Expression 11-2 Embryonic Path From Car to House

<Path> <Place> Car </Place> <Time t = 0> <Scene ID = <Owner’s-car/>/> 
 </Time>
 <Time t = 1> <Tree/> <Grass/> </Time>
 <Time t = 2> <House/> </Time> <Where?/> </Path>

The path has not yet ended, so it terminates with the concept <Where?/>, 
asserting that the end of the path is not known. Such RXML paths can be 
traversed in either forward or reverse directions and when something is rec-
ognized to complete a loop, the AACR knows the <Path/> along the loop. 
By counting the reoccurrence of such paths, the AACR learns user paths 
through simple reinforcement. In the primal loop <Home/> <Car/> <Work/> 
<Car/> <Home/>, there are many small loops, for example, from car to 
<Grass/>, <House/> and back.

11.1.1.3 Novelty Suggests Scene Boundary Hypotheses
If the perception system detects strong <Novel/> features of a known <Class/> 
of <Scene/>, a new <Scene/> may be asserted as a KO for subsequent AML 
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to balance the combinatorial explosion of recognition processing against iso-
chronous interaction with the <User/>.

Expression 11-3 Owner Enters Home for the First Time

<Scene ID = 2> <Vision Time = 2/11/2005 12:20:59/>
 <Novel>
 <Thing> <Chair> <Position> <Distance> 4.5 <Meters/> </Distance> 
  </Position>
  <Color> Brown </Color> </Chair>
 <Floor> <Position> <Distance> 2 <Meters/> </Distance> </Position> 
  </Floor>
 <Couch> <Position> <Distance> 3 <Meters/> </Distance> </Position>
  <Color> Brown </Color> </Novel> </Thing>
 <Unrecognized> <Blob> 3242 <Color> RGB  .  .  .  </Blob> 
  </Unrecognized> </Vision>
<Speech Time = 2/11/2005 12:20:59>
 <Transcript> hi honey  .  .  .  I’m home </Transcript>
 <LCS> <Thing> honey </Thing> <State> I’m </State> <Place> home 
  </Place> </LCS>
 <Speaker ID = <User> Joe </User> </Speech>
<Place> <Hypothesis> <home/> 0.25 </Hypothesis> </Place>
</Scene>

A fl ood of <Novel/> <Thing/>s of known types reinforces the hypothesis 
that the <Scene/> has changed, for a new <Scene ID/>. Although still com-
putationally intensive, vision algorithms can detect, recognize, and track 
known types of objects in such visual scenes to yield a <Sketch/> of <Novel/> 
but recognizable new <Thing/>s. As the <User/> moves through the scene, 
some previously unrecognized <Blob/>s may be recognized, causing the rec-
ognized <Thing/> to be asserted and the <Novel/> <Blob/> to be retracted. 
As a new owner proceeds to different rooms of the house, new <Wall/>, 
<Picture/>, <Door/>, <Window/>, and related interior <Things/> and 
<People/> will be sensed. Over time, with reinforcement and with <Sleep/> 
cycles, the AACR with evolved UKOs and UDHs for aggregating <Scenes/> 
repeatedly experienced over time may converge on <Home/> <Scenes/> pop-
ulated with <Things/> and transited by <People/> and other animate entities 
like pets, some of which the AACR will assist with information access via 
typical conversations that reoccur in the scene.

Awareness can be thought of as a process of mutually resolving noisy and 
confl icting sensory perceptions across auditory, visual, and navigation sensors 
into a data structure that describes a very complex scene in terms computa-
tionally workable for use cases such as a LCS <Sketch/>. Scenes and the 
microworlds that they describe vary over time, yet, the iCR must generate 
plans, make decisions, and take appropriate information access actions on 



behalf of the user. Adaptation DHs align scene features with stereotypical 
behavior <Paths/> so that a QoI-enhancing behavior morphs to the scene, 
still enhancing QoI.

11.1.2 Perception-Driven Adaptation

Not all awareness translates into action. A CWPDA with a GPS system 
doesn’t necessarily do anything as a function of its location. The user might 
like to know the location. The PDA might even present location on a map. 
That is not location-adaptive AACR behavior because the PDA itself isn’t 
using the information. If the PDA turns on its IEEE 802.11 LAN card 
because it detects that it is within 1 km of the owner’s place of business and 
thus starts looking for the corporate LAN, then the PDA is taking a specifi c 
action based on location. Such a preprogrammed behavior would be termed 
adaptive. Powering the LAN card down when there is no hope of connecting 
to the corporate network both saves power and prevents the PDA’s LAN card 
from being hacked. Electronics packages have been trained to do this by 
neural networks [282]. With LCS extracted from a <Scene/> one may evolve 
levels of cognition suggested in Table 11-2.

In the fi rst entry of Table 11-2, the PDA senses location but doesn’t use 
that data itself. In the second entry, the behavior is preprogrammed. These 
are good examples of AACR location-adaptive behavior, but there is no 
<Self/> and no machine learning so there is no cognition. In the third case, 
the AACR applies general rules for the conservation of power (RDH) to its 
own battery state (RKO) to determine that it should turn off the WLAN 
since it is not likely to be connected to the corporate WLAN soon on its 
current <Path/>. Interacting with the <User/> reinforces major decisions 
retained in a UKO, guided by UDH, a high level form of AML by discovery 
with reinforcement.

Toward such ends, the CRA structures AACR into AML-enabling func-
tional components mediated in part through LCS sketches (Table 11-3).

AACRs encounter confl icting contextual cues from vision and other 
sensors that interfere with their ability to behave appropriately. If the vision 

TABLE 11-2 Levels of Adaptation Depend on Abstractions in Data Use

Sensory Data Abstractions in Data Usage Level of Cognition

GPS location Presented to user GPS location-aware
GPS location Location-based LAN power up/down as Rule-based location-
  preprogrammed  adaptive
GPS location Learned that WLAN is corporate LAN Location-aware, user-
  RKO/RDH applied to power-down  aware autonomous
  LAN while commuting; UKO/UDH  machine learning
  indicates to fi rst ask user for  (AML) enabled 
  permission  cognition
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system tells the AACR that there are no other people in the living room, but 
there are many loud voices, then it could postulate a TV in the room. However, 
writing rules that capture this and a myriad of other possibilities is a brittle 
approach that does not scale-up well. The CRA therefore offers LCS-enabled 
reasoning with UDHs over UKOs. The simplifi ed UKO of Expression 11-4 
expresses the fact that TV produces conversations. The UKO employs LCS 
primitives in describing the behavior of a TV program as dialog, which are 
expressed in speech and which occupy a path from the TV to one or more 
persons.

Expression 11-4 UKOs Avoid Specialized Reasoning at the 
<Scene/> Level

<UKO> <Name> <TV/> </Name> <TV> <Thing/> </TV>
 <Path> <From> <TV/> </From>
  <Speech> <Dialog> </Program> </Dialog></Speech>
  <To> <Person/> </To>
 </Path> </UKO>

A corresponding UKO that <People/> hear <Speech/> and a UDH in the 
sense of VISUALIZE enable the algorithmic sketching of an abstract picture 
with the TV in the living room producing conversations, such as that of Figure 
11-1. Given the UKO and UDH about how people can listen to speech from 
a TV set, along with others about the equivalence of speech dialogs and con-
versation, the AACR can reconcile the fact that its speech subsystem observes 
conversations even though its vision subsystem observes no people in the 
room to generate them. The possibility that the conversations are generated 
by people in the next room, for example, is dealt with through the association 
of <Room/> level scenes into <Home/> level microworlds with sketches of 
paths among <Rooms/>. Although complex, the combinatorial explosion of 
logic expressions for such scenes remains daunting, while the algorithmic 

TABLE 11-3 Contributions of Functional Components to LCS

Component Contribution to LCS

User sensory perception Identity of people in the scene, beliefs, desires, and 
  intent of user
Local environment Asserts location, temperature, acceleration, compass 
  direction, and so on
System applications Goals of media-independent services like playing a 
  network game
SDR subsystem RF access opportunities and SDR state parameters
Cognition functions Symbol grounding; system state, plans, reinforcement
Local effectors Speech synthesis; text, graphics, and multimedia 
  displays



traversal of such primal sketches to address such confl icts appears orders of 
magnitude more manageable, although not trivial either.

Specifi cally, to manage concrete computational complexity, the CRA 
<Self/> envisions LCS or equivalent primal sketches as the primary means 
for representing scene-level perceptions from multiple sensory-perception 
tracks over space and time. Conversations in a room may be realized as 
broadcast channels in which everybody can hear everything, or in a larger 
room such as a banquet hall where the intensity of the background conversa-
tions render only the nearest people as conversational partners. Each sensory-
perception channel participates in the population of observations into the 
<Scene/>. All <Scenes/> encountered are remembered and during <Sleep/> 
cycles they may be merged or taken apart to overcome such problems, to 
enhance future behavior.

Such sketches enable AACR software to deal more effectively with the 
complexities of scenes. In particular, a wearable algorithm need only examine 
the <Path/>s attached to <Person/> to determine what sounds it should hear. 
If there are ten objects in the room (a couple of chairs, some toy trucks, two 
doors and a window, a vase full of fl owers, and some wall hangings), then in 
a logic system, there are (10 factorial) 72.5 million inferences to be made 
about the way sound impinges on an object. Since the number of inferences 
grows exponentially with the number of objects, complicated scenes with 
many predicates require substantial space–time computing resources. 
Although suitable for CWN and potentially for AACR <Sleep/> cycles, such 
logic formulations appear to be less suited to real-time behavior support than 
LCS primal sketches.

Consider the problem of navigating an AACR through a cityscape that is 
full of WLAN enclaves, viewers of weak TV stations, and the like, which the 
AACR’s private WLAN must avoid (e.g., in the Genie use case). Once at 
home, the AACR docks wirelessly into its own Home RF environment, which 
is the goal of the transit from work to home. This is not unlike guiding a 
submarine through a minefi eld to the home port. The penalties for making 
mistakes in the radio domain may not be as immediate, but they could be 
severe. The minefi eld domain consists of a perception space, an action space, 
and a set of interactions including successful navigation and the consequences 
of striking a mine. The perception and action spaces are as follows:

P
E
R
S
O
N

TV

Sound – Program
- Conversations

Living
Room

FIGURE 11-1 LCS sketch of “person hears TV program.”
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simplifi ed minefi eld perception–action spaces

Perception Space Action Space

Condition primitives (16) Movement primitives (2)
Sensors: sonar [7] and infrared [6] Controls: throttle and wheel
Range and bearing to goal Speed (−4 to 12 in./s)
Current speed and steering rates Steering rate (−30° to 30°/s)

The process of evolutionary computation [283] derives both reactive and 
symbolic control laws from a control genome that includes neural networks 
and symbolic primitives that may be composed into control laws. In a simu-
lated environment [53], a robot is placed at an origin with random pose, with 
random placement of obstacles and goal, and with random obstacle density. 
Noise, including Gaussian noise, false positives, and false negatives are added 
as populations proceed toward the goal. The simulations are massively paral-
lel, enabling a population to reach the goal in time t(i, x). The population is 
thus pruned, and the survivors are randomly mutated and combined to yield 
a next population of more fi t individuals. When a suffi cient performance has 
been reached or simulation time has been exceeded, the most effective control 
law is downloaded. The primal sketch of the minefi eld is illustrated in Figure 
11-2, with the size of detected mines refl ecting the uncertainty of the position 
of the mine.

In the minefi eld application, the entity has only an incomplete map of the 
scene, relying on local sensors for discovery of both the mines and the goal. 
The AACR application of Sun’s minefi eld avoidance control schema to inter-
ference minimization requires representation of the <Self/> in an appropriate 
primal sketch. A GPS-based estimate of the position of the <Self/> in an 
urban scene has the drawback that GPS often glitches in such locations. A 
visually capable automobile that reads road signs or an AACR that reads the 
metropolitan BlueTooth <Location/> service at each street intersection could 
navigate by GPS aided by a computational model of user movement plus a 
sketch based on streets and street intersections. The associated primal sketch 
could refer to places with the city of Metropolis in terms of street 
intersections:

FIGURE 11-2 Sketch of minefi eld and goal.



<Place> <Thing> Metropolis
 <Place> <Intersection> <Thing> <Street> Street-1 </Street> </Thing>
  <Thing> <Street> Street-2 </Street> </Thing>
 </Intersection> </Place> </Thing> </Place>

The essential elements of a corresponding XG-like radio spectrum man-
agement space are as follows: 

aacr spectrum adaptation perception–action space

Perception Space Action Space

Condition primitives (16?) Transmission primitives (3)
Scan [t]; noise/modulation [j, t] Power (dBm); burst timing (P(t))
Range/bearing to goal {Recipient,  Beamforming (P(θ))
 Legacy}
Band, mode, bandwidth, and power Band, mode, bandwidth, and 
 occupancy  data rate

Mines correspond to legacy users such as regions where TV reception 
favors normal TV usage versus ad hoc networking. The Genie TV spectrum-
use case might employ this strategy to express <RF/> constraints spatially. 
Each RF region is a <Thing/> that exists in space–time, where space is defi ned 
using streets as boundaries. The AACR itself is a <Thing/> that consists of 
many other <Things/> including <TV-WLAN/>, the physical extent of which 
may be defi ned in terms of city blocks as a function of mean adjacent building 
height as well as the transmitted power and the threshold power above which 
the <TV-WLAN/> interferes with normal <TV/> reception.

The condition primitives are those sensory parameters that the AACR can 
sense via its SDR subsystem. CRs and CWNs estimate range and bearing 
between the <Self/> and the competing user or receiver. The CR with a street 
map of Metropolis can <Sketch/> locations of competing <TV-WLAN/> 
reported by a host CWN on its own map, along with regions of good reception 
of broadcast TV. As with all RXML–LCS primal sketches, the coordinates 
are 3D or 4D to include time, so reception above the 5th fl oor of high rise 
buildings is easy to establish.

The action parameters for conventional radio networks are just power and 
bandwidth, but with AACR, there is a choice of band and mode to leverage 
XG policy for secondary users. With MIMO, particularly on vehicles and 
fi xed facilities, beamforming shapes the transmission in space–time. Thus, 
the evolutionary spectrum navigation process consists of the following:

1. AACR placed at origin (e.g., place of work) with random user move-
ment plan.

2. Representative placement of interference, competing nodes with 
expected variations.
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3. Noise (Gaussian; false positives and negatives) added to refl ect error 
syndromes.

4. Populations reach goal (or not) in time t(i, x) representative of AACR 
travel time.

5. Download most effective control law to AACR from CWN.

The control law could include reaction to mitigate interference and over-
come link impairments, for example, using a neural network to control power 
and MIMO parameters. The symbolic level of control adjusts the choice of 
unoccupied TV channel to smoothly avoid interfering with known primary 
and secondary users while maintaining connectivity. Deliberate control at the 
symbolic level may occur in the <Plan/> phase where the transition from UHF 
33 to UHF 44 occurs at the <Intersection/> of <Street> 4th </Street> and 
<Street> Main </Street>, an abstract yet precisely specifi ed time and place 
for control via RXML–LCS primal sketches.

To introduce <User/>-domain challenges into this apparently nicely solved 
problem, one only need consider the unpredictability of users. “Seems like 
Ed and Diane live in Metropolis,” comes the remark from the chase vehicle. 
“You know, we haven’t seen them in years,” the <Owner/> replies. “They sent 
us such a nice card over the holidays,” and we all know what is coming next. 
“Genie, can you see if you can reach Ed and Diane so we can say hello on 
our way through Metropolis.” If Ed and Diane were known to <Genie/> then 
all would be well. <Genie/> looks them up in the <Directory/> and sets up a 
connection between <Diane/> (now known to <Genie/> and thus a concep-
tual primitive) and <Spouse/> that leads to an impromptu visit, which changes 
the path through <Metropolis/>. If <Genie/> advises the CWN of the change 
of plan, then it will be able to advise of a more effi cient spectrum-use plan 
for staying connected by <TV-WLAN/> as the vehicles transit different neigh-
borhoods on entirely different time lines to visit Ed and Diane, stay the night, 
and be on their way in the morning.

However, the technology challenges of autonomously maintaining primal 
sketches becomes clearer if <Genie/> is new to the family and has never heard 
of Ed or Diane. Introducing new types of knowledge to AACR is much more 
diffi cult than merely instantiating known types of knowledge into a primal 
sketch. The successful solution of this class of problem without the mediation 
of expensive knowledge engineers calls for the autonomous incremental 
knowledge acquisition for broad classes of task-related knowledge.

11.2 AUTONOMOUS EXTENSIBILITY

Autonomous incremental knowledge acquisition is another technology that 
has existed since the 1980s but that for a variety of technical and economic 
reasons has yet to be fully deployed, at least not in the <User/> domain of 
AACR-class radio engineering. This section explores the foundations of 



autonomous extensibility for use in the fl exible aggregation of <User/>-
domain competence through interaction with <User/>s.

Tieresias [318] was the fi rst autonomously extensible rule-based system. It 
was implemented as the autonomously extensible form of Mycin, the expert 
system that diagnosed bacterial infections of the blood. Some features of 
Tieresias appeared in applied expert systems in the AI boom of the 1980s, 
including tools like ART and KEE [284]. Principles were refi ned and applied 
in agent technology, for example, in telecommunications in the 1990s [94, 
285]. These applied expert systems generally did not exploit Tieresias’ methods 
that interactively interpreted schema–schema to transfer knowledge. Tiere-
sias itself was known to be brittle, extensible by those who deeply understood 
its internal data structures and KA quirks, but not readily extensible by the 
typical user.

This section takes a closer look at the schema–schema method of Tieresias 
for <User/>-domain knowledge customization for AACR. This provides a 
foundation for the embedding of autonomously extensible rule bases into the 
<Orient/>, <Plan/>, and <Decide/> phases of the CRA, realized in UKO, 
UDH, and LCS primal sketches to improve the robustness of autonomous 
extension for casual users.

11.2.1 Extensible Knowledge Bases

Rule-based inference systems employ a global representation of the problem 
space such as a blackboard or game board [12] and use condition–action rules 
(IF → THEN) that work well in closed-world applications like board games, 
where the state of the board changes, but the size of the board and the legal 
moves do not change during a game. Extensible rule bases add legal moves 
during a game.

In open settings like medical diagnoses or autonomous adaptation to the 
infi nite variety of quirks of wireless PDA users, the size of the game board 
of relevant knowledge is continually growing in some ways and shrinking in 
others (e.g., as constraints are discovered). As radio spectrum-use policy 
evolves and new downloads become available, new legal moves are constantly 
being added to the SDR repertoire. As consumers introduce new electronic 
systems equipped with these new <RF/> capabilities, the ways in which the 
<User/> can employ them explode exponentially. The CRA addresses such 
open domains as a discovery game board. The rules may consist of embedded 
rule bases, PROLOG logic bases, and autonomously acquired serModels with 
substantial <Self/> modifi cation. This section introduces such autonomous 
extensibility in the extensible rule base of Tieresias.

An illustrative rule from Tieresias is 

If the gram-stain (attribute) of the culture (entity) is negative (value of 
 gram-stain attribute) & context

then disease might (20%) be E. coli (classifi cation decision)
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Here the game board consists of clinical information about patients and 
the related diagnostic conclusions of medical professionals. The rule uses the 
entity-attribute-value model of object-oriented behavior. The conjunction “&
context” assures that the rule fi res using the data from the current patient. 
Tieresias’ top-level control system continually accesses the patient database 
to infer the identity of a bacterial infection of the blood. Such rules can be 
implemented as objects themselves with condition–action slots and corre-
sponding methods or attached procedures that perform the inferences, test 
conditions, and assert an inference. In Mycin, the rules were implemented by 
computer scientists interacting with medical doctors in the process now widely 
known as knowledge engineering.

Tieresias enhanced Mycin to interactively acquire incremental knowledge 
beyond core Mycin [318]. Tieresias interpreted medical data from expert 
users, lab technicians, and medical doctors just like Mycin, but synthesizing 
“automatic knowledge acquisition.” Mycin applied facts and rules to deduce 
likely causes for symptoms, but Tieresias used abstractions of rules to guide 
the acquisition of new rules. The rule models were “schemata,” declaratory 
data structures that could be interpreted algorithmically to acquire new rules 
without further programming, theoretically from nonexpert users.

The Identity-Schema defi nes an organism in the open world of Tieresias. 
As shown in Figure 11-3, the acquisition of the identity, for example, of an 

FIGURE 11-3 Identity-Schema defi nes the data structure for an organism.

Identity-Schema

PrintName (Atom AskIt)
Value (PrintName InSlot)
PropertyList
 ((InstanceOf (Identity-Schema GivenIt)
 Synonym ((Kleene (10) <Atom>) AskIt)
 Description (String AskIt)
 Author (Atom FindIt)
 Aerobicity ((Kleene  .  .  . AskIt)
 GramStain (GramInstance AskIt)
 Morphology (MorphInstance AskIt)
 Date (Integer Create)
 Create}
Updates (AddTo (AND Organisms))
Instances (Acinetobacter,  .  .  .  Yersina)
StringTranslation “The identity of an organism”
Father Value-Schema
Offspring Nil
Description “the Identity-Schema describes the format for an organism”
Author Davis
Date 1115
InstanceOf Schema-Schema



organism, entails creating a name for the entity and fi lling in its property list. 
Some properties enhance interaction with the user, such as the Synonym and 
Description properties. The string text of Description describes the entity to 
the user. Domain-specifi c properties enable reasoning about the entity, such 
as Aerobicity, GramStain, and Morphology. Each property consists of a prop-
erty name followed by a tuple (class advice). The class is the inverse of 
InstanceOf, a backward pointer to the class to simplify bottom-up tracing of 
the Mycin class hierarchies.

Some clever data structures that give the program traces more of a natural 
feeling, substituting for NL generation ability, which is not a criticism. For 
example, the StringTranslation of Identity is “the identity of an organism,” 
which makes automatic rule traces read naturally:

“If the identity of an organism is unknown, then ask the user”

The algorithmic acquisition of properties is guided by “Advice” that points 
to facilities by which to acquire the knowledge, particularly using the follow-
ing methods:

advice schemes for the identity-schema

AskIt Ask the user
CreateIt Manufacture the value from existing data
FindIt Retrieve it from an internal database of facts or rules
GivenIt Use the contents of the blank slot as the value, like LISP Quote
InSlot Use the contents of the slot pointed to as the value

Sometimes, the knowledge source (KS) is an existing data structure, in 
which case the KA system is performing inductive inference (FindIt, GivenIt, 
InSlot). In other situations, the advice is to “ask the user,” with data that 
structures the interaction.

The rule schemata were themselves based on a root schema called the 
Schema-Schema. While Mycin interpreted rules to form diagnoses, when 
necessary Tieresias interpreted the Schema-Schema recursively to acquire 
new rules. This schema-schema-guided KA typically was invoked when the 
Mycin core ran into a reasoning log jam and thus had to ask the user to clarify 
the reasoning, and in that clarifi cation ran across new entities, properties, or 
rules. The Identity-Schema is based on the Schema-Schema, the meta-
metalevel and most general data structure that described how all Tieresias’ 
data structures themselves are structured (Figure 11-4).

The schema-schema describes the structures of the knowledge schemas of 
Mycin. There is a simple elegance to being able to express in one page the 
core recipe or seed from which a kind of fractal recursion grows data struc-
tures to yield an entire system, but that is the nature of a seed. It acquires 
material from its environment, selecting those things that contribute to the 
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underlying purpose encoded into the seed. Davis didn’t describe it like that, 
but it is very important for AACR engineers to realize that schema-schema 
implicitly defi ne all the properties of all the systems that can be based on that 
particular seed. In an AACR open world model, such a schema-schema 
strongly shapes the <User/> interaction with the <Self/>. The CRA <Self/> 
is a starting point for an evolved <Self/>, the schema-schema for constantly 
evolving families of AACR. To see how this can work, consider the Schema-
Schema, from which Tieresias derives the medical domain schemata of Figure 
11-5.

FIGURE 11-4 Tieresias’ Schema-Schema. (Schema shown here have been expanded 
from the original for easy reading, such as Identity instead of IDENT.)

Schema-Schema

PrintName (Atom CreateIt)
Structure (PrintName InSlot)
PropertyList {(PrintName ((Blank-Instance Advice-Instance) AskIt)
 Structure ((PrintName InSlot) GivenIt)
 PropertyList
  ((InstanceOf (((PrintName InSlot) GivenIt) CreateIt)
  Description (String  AskIt) GivenIt)
  Author (Atom  AskIt) GivenIt)
  Date ((Integer   CreateIt)
  Kleene ((SlotName-Instance (Blank-Instance 
   Advice-Instance) AskIt)
 CreateIt}
 Father (Schema-Instance FindIt)
 Instances (List AskIt)
 StringTranslation (String FindIt)
 InstanceOf (Schema-Schema GivenIt)
 Description (String Create It)
 Author (Atom AskIt)
 Date (Integer CreateIt)
 Offspring ((Kleene (0) <Schema-Instance>) AskIt)
 Updates ((Kleene (0) <(UpdateCom-Instance Kleene(1)
 <(SwitchCom-Instance Kleene(1)
   <Knowledge-Structure-Instance>)>)>)
  AskIt)
 CreateIt}
Father Schema-Schema
Instances (All-Schemata-List)
StringTranslation “knowledge structure”
InstanceOf Schema-Schema
Description “The schema-schema describes the formal for all other schemata”
Author Davis
Date 876
Offspring Nil
Updates (AddTo (AND* All-Schema-List)



By traversing the schemata hierarchy interactively, Tieresias elicited knowl-
edge structures (mostly from Davis), rules, kinds of parameters, and the 
values of parameters associated with medical diagnoses from medical doctors. 
The resulting rules were added to the knowledge base to forward chain under 
uncertainty to diagnose bacterial infections of the blood, just like Mycin. The 
core algorithm maintains pointers into both the KB and the schema-hierarchy 
while traversing the schema-schema and other domain schemata. Tieresias 
bootstrapped diagnostic decision trees from the medical doctors to construct 
rules that made classifi cation decisions based on the values of attributes of 
the entities, such as the gram-stain of blood.

11.2.2 Bootstrapping the CRA

There are many steps between Schema-Schema and a working system. Figure 
11-4 can guide the instantiation of knowledge structure schemas, which can 
then be instantiated into values and parameters, which in turn instantiate 
into Site-Schema, Identity-Schema, PiParm, and all the rest in Figure 11-5. 
Similarly, the CRA <Self/> isn’t a system, it is a template for bootstrapping 
knowledge–action templates, KOs, and domain heuristics, yielding diverse 
classes of system built up through experience. To enable such AACR evolu-
tion, CRA <Self/> includes only core ontological knowledge in the <RF/> 
and <User/> domains, indicating paths to skill via bootstrapping like Tiere-
sias. There are many pitfalls, so the balance of the chapter suggests ideas to 
mitigate brittleness and to overcome other challenges of AACR evolution.

The CR1 research prototype learned via serModels and CBR (with the 
patience of the researcher) a few things in <User/> and <Radio/> domains 
autonomously and thus in an interesting way. The CRA <Self/> takes a step 
very similar to Schema-Schema, functioning as a blank sheet of paper onto 
which engineers can write by supplying improved interpretation algorithms 
and then using and training the resulting AACRs. Algorithms for evolving 
competent AACRs from the CRA <Self/> are not complete, but algorithm 
strategies suggest research and engineering directions.

11.2.2.1 XML Tag as Metaschema Strategy
Tieresias may apply to AACR evolution by informing the interpretation of 
RXML statements as Schema-Schema, which is not the typical method of 
interpreting XML. XML may be processed as strongly typed (e.g., using 

FIGURE 11-5 Schema derived from Schema-Schema.

Knowledge Structure (Knowledge-Structure-Schema)
 Value-Schema
  Site-Schema   Identity-Schema
 Parameter-Schema
  PiParm- InfParm- CulParm- OrgParm-Schemata
  SVCP- MVCP- TFCP-Schemata
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DTDs), less rigidly typed (e.g., using XML-Schema), or weakly typed, as with 
many domain-specifi c languages in which the XML tags serve the pragmatic 
purpose of simplifying information retrieval (e.g., by tagging words with 
domain-specifi c lexical semantics). XML tag as metaschema takes some hints 
from the semantic web research, but with each XML <Tag/> in RXML in the 
role of object schema. Tags are asserted via the ontological and set-theoretic 
expression <Tag/>, which means that there is a set of abstractions named 
“Tag” that have the role of ontological primitive, a map to a subset of the real 
world. The specifi cs of that map depend on where the <Tag/> is asserted and 
how it is grounded through experience. One may follow the Schema-Schema 
from the top to see how <Tag/> can act as a metaschema. Every Tieresias 
schema has a name—the PrintName (Figure 11-6).

Radio XML uses XML <Tags/> where the print-name for <Tag/> is “Tag.” 
The structure of <Tag/> may be expressed in XML syntax via BNF:

<Syntax> <BNF> <Tag/> := “<” <Tag/> “/>” | “
 <”<Tag> “/>” * “</” <Tag/> “> ”</BNF> </Syntax>

In the LISP notation of Tieresias, each schema has a name and property 
list, which includes a structure specifi cation. The property list of Schema-
Schema has Structure, Father, Instances, StringTranslation, InstanceOf, and 
Description (Figure 11-6). Each property has not just a value but also “advice” 
on how to deal with the property such as InSlot if the value is in the slot or 
CreateIt, a function that makes a LISP structure. With RXML, that which is 
delimited by a <Tag/> is an element of the <Set/> defi ned by <Tag/>. That 
which is sensed has a referent in the <Physical-universe/> that is inferred by 
the <Self/>, for example, as a primal sketch. Comparing sensory data to 
primal sketches enables grounding, the state in which the primal sketch or 
equivalent conceptual model of the world corresponds suffi ciently to the 
external reality inferred from the sensory data for AACR QoI enhancement. 
Any failure to enhance QoI constitutes <Error/> that the <Self/> seeks to 
drive to zero. Such QoI-reinforcement grounding of <Tag/> falls far short of 
the general symbol grounding problem.

FIGURE 11-6 Schema-Schema without property list.

Schema-Schema
PrintName (Atom CreateIt)
Structure (PrintName InSlot)
Father Schema-Schema
Instances (All-Schemata-List)
StringTranslation “knowledge structure”
InstanceOf Schema-Schema
Description “The schema-schema describes the formal for all other
  schemata”



11.2.2.2 CRA <Self/> as Schema-Schema Strategy
The CRA isn’t just an architecture specifi cation, but is a processable XML 
document with which neither DTD nor XML-Schema have been rigidly asso-
ciated. Traversing the CRA <Self/> synthesizes a computationally intelligent 
<Self>-modifying entity. This is appropriately recursive with <Self/> in its 
own defi nition, so to avoid the Gödel–Turing trap, the <Self/> may be recur-
sively interpreted only in <Sleep/> cycles with a (hardware) watchdog timer 
that the <Self/> cannot control.

The <Self/> expresses a <Universe/> that consists of the broad classes 
<Abstractions/> and <Physical-universe/>. The outer wrappers of the knowl-
edge represented in CRA <Self/> is as follows:

<CRA> <Self> <Universe>
 <Abstractions/> <Physical-universe/>
</Universe> </Self> </CRA>

The ontological stance is that the only universe that exists to a computa-
tionally intelligent entity is the one that is within the <Self/>, and that this 
inner universe defi nes both an inner universe of abstractions like Truth and 
an external universe of less ambitious abstractions like True (observable) and 
False (Boolean constant for not internally consistent) that is accessible via 
sensors. The universe within is the perceived universe, founded on the idea 
that there is an external universe accessible through sensors and perception. 
Furthermore, the LCS <Self/> is that which the <Self/> can <Control/> while 
the <Outside/> is that which the <Self/> can sense, but not directly control 
ontologically. The LCS primal concept <Place/> is introduced (Expression 
11-5).

Expression 11-5 Distinguishing Self From Outside by 
Sense Versus Control

<Self>  .  .  .  <Place/>
 <Place> <Self/> <Outside/> </Place> <!– Two broad classes of place –>
<Action/>
 <Action> <Sense/> <Control/> </Action> <!– Two types of action –>
<Control> <Self/> </Control> <Self>
 <!– The <Self/> is that which is within the scope of <Control/> –>
<Sense> <Outside/> </Sense>
 <!– The <Outside/> is that which is within the scope of <Sense/> –>
 .  .  . </Self>

From this ontological schema-schema, the <Self/> inherits the properties 
of that which is controllable, a functional defi nition (“If I can control it, it’s 
ME”). The outside is that which is available to the sensory system of the 
AACR (“If I can sense it but not control it, then it’s NOT ME”) and <Action/> 
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infl uences. Bootstrapping from this ontological declaration as schema-schema 
provides a strategy for the autonomous algorithmic differentiation of <Self/> 
from <Outside/> so that it does not have to be preprogrammed into the 
system. That which is going on <Outside/> is algorithmically uncontrollable 
and thus observably different from that which is going on inside. To the degree 
that the two match, autonomous symbol grounding occurs. This symbol 
grounding occurs when internal patterns are reinforced as referring to the 
same thing, such as voice reinforcement that generalized triples refer to auto-
mobiles. The fi rst derivative of symbol grounding is mutual grounding where 
both the AACR and user agree that certain classes of triples are <Automo-
biles/>, extending the ontological primitives through an ASR grounding 
event. The evolutionary acquisition of autonomously acquired symbols derive 
from the way the <Self/> is expressed in the CRA. Since overcoming evolu-
tionary brittleness remains a core computer science challenge, early evolution 
must stay close to the <Self/>, focused on AACR QoI and mediated by 
CWNs.

11.2.2.3 Primal <Self/> Portrait Strategy
Formulating <Sense/> and <Control/> as <Act/>s lays the groundwork for an 
internal structure of AACR as a set of <Paths/> with an initial primal sketch 
of the <Self/> (Expression 11-6).

Expression 11-6 Primal Maps Sense, Perceive, Abstract, 
Remember, and Act Are Paths

<Path/> <Path> <Place/> * </Path>
 <From/> <To/> <From> <Place/> </From> <To> <Place/> </To>
 <Path/> <Path> <From/> <To/> </Path>
 <Self> <Action>
 <Path> <Sense/> <Perceive/> <Abstract/> <Remember/> <Act/>
 <Think/> <Effect/> </Path> </Action>
 <Place> <Observation/> <Perception> <Idea/> <Memory/> <Controls/> 
  </Place> </Self>
 <Sense> <Path> <From> <Outside/> </From>
  <To> <Observation/> </To> </Path> </Sense>
 <Perceive> <Path> <From> <Observation/> </From> <To> 
  <Perception/> </To> </Path> </Perceive>
 <Abstract> <Path> <From> <Perception/> </From>
  <To> <Idea/> </To> </Path> </Abstract>
 <Think> <Path> <From> <Memory/> <Idea/> </From>
  <To> <Idea/> </To> </Path> </Think>
 <Effect> <Path> <From> <Controls/> </From>
  <To> <Outside/> </To> </Path> </Effect>
 <Remember> <Path> <From> <Observation/> * <Perception/> * 
  <Idea/> * </From>



  <To> <Memory/> </To> </Path> </Remember>
 <Act> <Path> <From> <Idea/> </From> <To> <Controls/> </To> 
  </Path> </Act>

A <Path/> consists of one or more <Place/>s, with optional endpoints 
<From/> and <To/>. Within the <Self/> <Action/>s (generalizations of the 
LCS verb forms GO, BE, etc.) are also <Path/>s among abstract internal 
<Place/>s, collections of data generated and interpreted by traversing this 
schema-schema. The <Idea/> is the <Place/> for the results of the <Act/> of 
<Abstract/>ing <Perception/>s. Memory is the <Place/> within the <Self/> 
for the storage of <Interesting/> (in the sense of the AML <Histogram/>) 
<Observation/>s, Perception/>s, or <Idea/>s. Since an <Act/> is a <Path/> 
from an <Idea/> to <Controls/>, an <Idea/> may be a <Plan/> in the cognition 
cycle. At this level of abstraction, temporal reasoning and set theory do not 
exist, so <Plan/> cannot be fully expressed. A primal <Self/> portrait (Figure 
11-7) may be generated by traversing this schema-schema.

The use of <Self/> as schema-schema remains a challenging research issue. 
With present technology, however, it is feasible to autonomously evolve the 
CRA <Self/> into the <User/> domain via AML techniques like 
Q-learning.

11.2.3 Incremental Reinforcement Learning (RL)

Declarative knowledge alone is insuffi cient to guide AACR autonomous 
extensibility in the <User/> domain. Reinforcement can be a means of incre-
mentally acquiring knowledge. Q-learning makes the degree of exploration 
explicit in the parameter γ(s, a) for a transition from system state s via 
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FIGURE 11-7 Primal Self portrait.
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candidate action a, and all forms of RL entail both the exploitation of current 
knowledge and the exploration of the unknown.

11.2.3.1 Exploitation: Finding WTOP
The <Self/> may be used as a schema-schema for knowledge–action evolution 
by the exploitation of current knowledge via RL.

Suppose a <User/> tunes to WTOP every morning. The AACR has a goal 
of enhancing <Information/> <Preferences/> of the <User/>, so it needs to 
know if the <User/> is expressing a <Preference/> by tuning to WTOP. One 
way for a CR to fi nd out is to ask. This can be a pain in the neck to the user 
and not very informative to the AACR.

AACR: “What are you doing with the radio?”
<User/>: “I’m listening to it you dummy.”
AACR: “No, I mean the channel.”
<User/>: “You are the radio, why don’t you know what channel?”
AACR: “Sorry, I know what channel but what information are you getting 

from that channel?”
<User/>: “I’m driving so be quiet, will you?”

This continues until the AACR is returned for a refund or there is a traffi c 
accident and lawsuit.

In a more focused exchange the CR monitors the <User/> <Tuning/> to 
FM channel 107.7 in <Location> Fairfax County, VA </Location> reading 
the channel’s <Annotation> News </Annotation>. The ability to read the text 
annotations is declared in RXML to the <Self/> (Expression 11-7) as a 
<Sensor/> along the <Sense/> <Path/> from the <FM-Radio/> of the 
<Outside/> to the <Observations/> inside the <Self/>.

Expression 11-7 Reading FM Captions

<Skill> <FM-Listen>
 <Outside> <FM> <From> <RF> 88 <Units> MHz </Units> </RF> 
  </From>
  <To> <RF> 108 <Units> MHz </Units> </RF> </To> </FM> 
   </Outside>
 <Action> <Call> read-fm-text.dll <CMD-line> <RF/> = ?X 
  </CMD-line>
  <Returns> <Observation> <FM/> = ?X <Audio-Stream Stream = S
  <Annotation> WTOP NEWS </Annotation>
  </Observation> </Returns> </Call> </Action> </ FM-Listen> 
   </Skill>

The channel to which the user is tuned has the text <Annotation/> “WTOP 
NEWS.” The CRA <Self/> lists “News” as an <Information/> <Service/> for 



which a <User/> may express a <Preference/>. Thus, the AACR could ask 
the <User/> if it is OK to infer

<User> <Information> <Preference> NEWS 
</Preference> </Information>  .  .  .  </User>

If the user says “OK,” then the association is reinforced but it may be sup-
pressed if the user says, “No, I’m listening to traffi c and weather together on 
the eights, not to news right now.” The <Self/> annotates positive and negative 
reinforcement separately and aggregates them when planning an action in a 
given state, forming Q(s, a) for “NEWS” versus for “traffi c and weather.” RL 
to exploit existing knowledge might proceed via a focused dialog like the 
following:

AACR: “I would like to generalize from an observation.”
<User/>: “OK, CR, go ahead.” [Reinforces the inclination to 

generalize.]
AACR: “WTOP’s broadcast is labeled news. Does that sound correct?”
<User/>: “Yes, CR, WTOP is a news station.” [Reinforces confi dence in 

FM annotation. CR might not parse that response but may just look for 
the positive reinforcement of “yes” without negatives.]

AACR: “Then can I generalize that you like news radio stations?”
<User/>: “Of course. But I like other things too.” [Reinforces 

<Preference/>.]
AACR: “OK, I will conclude you like news, but I will not take this to be 

an exclusive inference regarding media content. Is that OK?”
<User/>: “OK.” [Reduces news <Preference/> reinforcement.]

The above interaction is a type of mixed-initiative that the <Self/> enables 
through the <User/> <Information/> <Preferences/> tags and associated data 
structures of the <Self/>. That kind of dialog quickly becomes as tedious as 
the PAL dialog at DARPATech 2005, where each brief phrase had to be 
confi rmed by the PAL with “OK” or “Alright.” Researchers can stand this 
but most consumers will not.

11.2.3.2 RL Supports Incremental Planning
The WTOP dialog implies that CR generated a plan based on an observation. 
RL inherently supports planning since RL aggregates reinforcement for alter-
native actions in given states. The choice of action given a state is the core 
operation in <Decide/> to <Act/>, and with such decisions, there is a plan. 
To conduct complicated sequences of actions may require further plan gen-
eration techniques. Learning to parse unknown languages and learning to 
solve challenging puzzles like Rubik’s Cube require state–space plan genera-
tion capabilities relevant to AACR. In particular, state–space planning over 
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a vocabulary that characterizes a fi nite domain can infer rules for fi nite state 
languages (FSLs), like the simpler subsets of those embedded in air interfaces 
and computer protocols. FSLs are generated by fi nite state machines (FSMs) 
with only N states and at most N2 transition rules. Each rule specifi es a condi-
tion for transitioning and a lexical action to be taken. The induction problem 
for FSLs is decidable. An N-state FSL can be decided with test sequences of 
length at most 2N [286]. The worst-case number of possible sequences of 
length 2N is 22N.

Advanced methods for inducing the languages and sequences of state 
transitions for FSMs include the use of macro-operators that do not preserve 
intermediate goal states. Constrained FSMs like Rubik’s Cube can be solved 
effi ciently using macro-operators [287]. If an AACR-CL is an N state FSL, 
then it can be learned completely by another iCR in 22N steps, which is under 
a million for a ten state metalanguage. Induction of a FSM that is isomorphic 
to the FSM generating an N-state FSL is feasible, for example, using inference 
methods like those of INDUCE [288, 321]. Methods for learning transition 
rules for FSLs enable AML of FSMs for iCR [321, 289]. Automatic planning 
[e.g., 290] extends state–space planning to planning over graphs, with con-
straint satisfaction, propositional satisfi ability techniques, and heuristic 
control over time and resources with and without uncertainty.

The plan generation activity of the dialog, therefore, may be mediated by 
one of the known plan generation techniques as a lower level component of 
the <Plan/> phase of the <Cognition/> component of AACR. The plan for 
WTOP was initiated by the UDH observation that the annotation on a broad-
cast (“NEWS”) matched a feature of <Information/>, which can be a <User/> 
<Preference/>. The plan consists of a series of actions to obtain reinforcement 
of such QoS-related incremental inferences.

In this case, the AACR observed the <News/> annotation and wants to be 
sure that the annotation represents the Owner’s internal world model. This 
is a strategy of model verifi cation in exploiting existing knowledge. After 
verifying that the user regards news to be a characteristic of WTOP, the CR 
verifi es the generalization that the user likes news radio stations.

The AACR <Self/> has a <Motive/> to provide information services to 
users via radio (Expression 11-8).

Expression 11-8 Motive UDH to Use <RF/> to Provide Preferred 
Information to User

<User>  .  .  .  <Motive> <Event> <Action> <Begin> <RF/> </Begin>
 <Achieve> <Goal> <Information-service> <Preference/>
  </Information-service> </Goal> </Achieve> </Action> </Event> 
   </Motive>
.  .  . </User>

The <Preference/> may be instantiated based on the dialog and UDH as 
in Expression 11-9:



Expression 11-9 UKO Realization of <Preference/>

<Preference> <News> <Evidence>
 <Self> “Then I would like to generalize that you like radio stations with 
  news type of media content?” </Self>
 <Boss> “Of course. But I like other things too.” </Boss>
 <Source> <Owner/> <Scene> <Communting/> </Scene>
 <Place> Fairfax, VA </Place> <Time> 2/19/2005 3:03:20 pm </Time> 
  </Source> </Evidence> </News> </Preference>

The UDH <Motive/> from CRA <Self/> by AACR instantiates the <Pref-
erence/> UKO analogous to the way knowledge-schemata extend knowledge 
in Tieresias. This process does not introduce new kinds of knowledge, but 
creates new instances of known types of knowledge. The reinforcement 
includes the recorded dialog that affi rms the inference along with the source, 
place, and time of the reinforcement. The annotation regarding <Source/> is 
critical because other sources could assert that the <Owner/> likes <Hard-
rock/>, and these might be <Scene/>-dependent, not <Evidence/> to the 
contrary. The space–time annotation enables context resolution during sleep 
cycles, so the <Owner/> can like <Hard-rock/> when with friends who like it, 
but can like <News/> in other <Scenes/>. The context sensitivity of user 
preferences implies problem solving as complex as the Rubik’s Cube.

11.2.3.3 Exploring World States
The alternative to exploitation is exploration, using UDHs to enable decisions 
in unknown directions. In the dialog regarding news, the CR was exploiting 
prior knowledge, but a CR could proceed as follows to explore new 
knowledge:

AACR: “What other radio broadcast media types do you like?”
Boss: “I like radio stations that play old songs from the fi fties too.”

[CR matches all words in this response with the twenty feature-values of its 
broadcast-media objects. The only one that correlated 2 sigma above random 
was the string “OLDIES” correlated with the word “old.”]

AACR: “Do you mean OLDIES stations?”
Boss: “Exactly.” [Pause]

This second dialog reveals other aspects of reinforcement learning. The 
lead question about “other radio broadcast media types” entails risk. Instead 
of merely exploiting prior knowledge obtained from the broadcast, a UDH 
fi res to postulate from the “but” in the reply to “news” that the <Preference/> 
may be nonexclusive. The exploratory dialog-UDH has a schema-schema 
<Action/> of AskIt. Reinforcement learning calls this type of resource use 
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“exploration” and addresses the question of how best to mix exploration and 
exploitation [92]. The AACR mix depends on <User/> and <Scene/>.

11.2.3.4 Defi ning a Mix of Exploitation and Exploration
Suppose an AACR can generate a plan to perform one and only one of the 
following actions at a time:

Task# Action

0 Be quiet and do nothing unless Owner clearly asks for a known 
<Action/>

1 Perform an <Action/> using its associated parameters:
 (a) Ask about default parameter values of an <Action/>
 (b) Ask about user-specifi c <Action/> parameters
2 Ask about potentially relevant <Actions/>, or
3 Ask about <Observations/> of the <Scene/>
 (a) Ask about <Novel/> <Observations/>
 (b) Ask about reinforced <Observations/>

The question of which <Action/> to try infl uences the acceptability of the 
CR to the user. We want the <User/> to like the CR. Each task has a value, 
for example, defi ned in Q-learning by Quality(state, action). An incremental 
update rule ascribes a new value to the action in the given state, Quality(state, 
action) as a function of the reinforcement of the anticipated action, plus the 
expected value of the other possible actions from that state.

 Q s a Q s a s a f s a Q s bk k b k+ = − ( )( ) ( ) + ( )1 1 γ γ, , , , , max ,(( )( )( )( )  (11-1)

If the maximum value of Q(s, b) dominates, then the decision favors action 
b, an exploration of insuffi ciently reinforced alternative actions. Thus, if the 
CR makes an observation, for example, that WXYZ is an Oldies station, the 
CR can just be quiet, Action-0, or it could perform some other action. If 
the CR is quiet and does nothing, then the inference that Owner likes Oldies 
does not occur. If the CR always makes this choice, then reinforcement from 
the environment accrues as the Owner repeatedly tunes to WXYX, but the 
link to Oldies is implicit rather than explicit.

Suppose the CR has an initial learning fraction of γ(s, a) = 0.5. Reinforce-
ment accrues for positive responses. If the value of Action-0, saying and doing 
nothing, is reinforced because of the lack of negative reinforcement, then the 
CR will just sit there and not try anything else. To overcome this class of side 
effect, exploration is randomized.

11.2.3.5 Randomness for Exploration
Randomization is an artifi cial mechanism to assure that behaviors are 
attempted so that the estimated value of the behavior from a given state rep-



resents reinforcement. One way of exploring alternatives is to cycle randomly 
through the candidate behaviors for some period of time or number of occur-
rences, computing the new value after an evaluation time T. An alternative 
would be to try each in turn some number of times N. By forcing behaviors 
to occur, the relationship between candidate actions and the environment has 
a degree of correlation. Unfortunately, the <User/> may not be thrilled with 
the promise of exponentially effective behavior over infi nite time if the AACR 
is perceived to be untrainable at the outset.

Thus, an approach to getting more <User/>-centric behavior early in a 
training process would be to initialize the UDHs by asking the new Owner 
questions that extract broad strategies as early in the training process as pos-
sible. The CR could ask metalevel questions such as “Would you prefer it if 
I talk a lot or keep quiet?” If the <Owner/> replies, “That depends,  .  .  .” then 
the AACR could randomize behavior to discover the limits. In particular, in 
the algorithm of Equation 11-1, initializing all of the values high and provid-
ing small incremental reinforcement causes the system to search, exploring 
rather than exploiting success because alternatives seem better than initial 
values. Conversely, initial values of zero reduce exploration, driving decisions 
toward generating plans that use whatever tasks are fi rst given positive rein-
forcement. In the ML literature, there are different methods for dealing with 
tasks that are performed continually versus episodic tasks (see [92] for the 
algorithms and mathematical analyses).

11.2.4 Extensibility Through Temporal Reasoning

RL includes the temporal difference algorithm, which is helpful in its own 
right in the implementation of <User/>-domain skills. Following [92], one 
may learn by noticing differences of the state of the environment over time. 
This requires algorithms that employ time as a universal index, that compute 
equality versus differences, and that associate time, equality over time, and 
differences over time in a way that autonomously extends the AACR’s knowl-
edge and skill. The CRA formalizes time as a schema-schema from which a 
temporal reasoning strategy may be bootstrapped.

11.2.4.1 <Time/> as a Schema-Schema
RXML expresses space–time as fundamental, with both space and time as 
abstractions that cannot be independently experienced, but to which one can 
refer as a dimension of experience.

Expression 11-10 Space and Time Are Subsets of Space–Time

<Place> <Space-time/> <Space/> <Time/> </Place>
 <Place> <Space-time/> <!– Space-time is the fundamental domain  .  .  .  –>
 <Space/> <!– Space is an abstract subset of space-time  .  .  .  –>
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 <Time/> <!– Time is an abstract subset of space-time  .  .  .  –>
  </Place>

As a LCS <Place/>, time is also a <Thing/> and thus may be attributed 
extent through the <Extend/> <Action/> for <State/>. Since the <Self/> has 
<Memory/>, the experiences of which are tagged with <Place/> and <Time/>, 
the AACR that uses the CRA can compute differences, such as between 
<Observations/> of the same <Thing/> with different <Time/> tags—that is, 
made at different times.

<Time/> is a schema-schema in several ways. As a <Place/> it has a dimen-
sional extent. Thus, the lexical semantics of <Place/> apply to <Time/>, such 
as an ability to locate a <Thing/> <At/> a <Time/> or within an extent of 
time. <Time/> has associated <Metric/>s, the domain of values of an associ-
ated <Action/> to <Measure/> <Time/>.

Expression 11-11 Metrics for Time

<Place> <Time> <Metric> <Point>
 <Era/> <Year/> <Month/> <Day/> <Hour/> <Minute/> <Second/>
 </Point> </Metric> </Time> </Place>

Time <Intervals/> are defi ned as point-sets, unidimensional <Places/> in 
which <Things/>, including other <Places/> and <Intervals/>, may be 
located.

11.2.4.2 Temporal Difference Learning
Temporal difference learning (TDL) algorithms derive a behavior that (1) 
observes temporal differences based on <Time/> tags (which generalizes 
Sutton and Barto [92] slightly) and (2) seeks to reduce the difference in 
sequential predictions to zero through either updates to the estimates (e.g., 
in policy verifi cation) or through actions (e.g., to reduce the differences by 
selecting better plans). In simple board games like queens, tic-tac-toe, or 
checkers, one may ascribe a predicted future value to a state. Value(s) could 
be the number of one’s own pieces on the board in checkers (counting Kings 
as 2 pieces). A move from a given state is performed by an <Action/> <Move/>, 
which applies a rule to the board to yield a new state:

 Move state, rule new-state( ) =  (11-2)

If the system is in state s, and the state after s, induced by the player’s move 
and the opponent’s move, is s′, then if the player contemplates a move in which 
a piece could be lost, the state could have a lower value. One would like to 
reduce the potential loss of value of a good strategy from state s, since other-
wise Value(s′) is less than Value(s).



 Value Value Value Values s k s s( ) = ( ) + ′( ) − ( )[ ]  (11-3)

If Value(s′) > Value(s), then Value(s) increases by some fraction of the dif-
ference at each iteration. In other words, if we can get to a better state from 
s, then let’s refl ect that in the value ascribed to s itself so when we make our 
fi rst move, we head in the right direction from the outset. Temporal difference 
learning can work well for small scope problems like board games and it may 
work for appropriately simple prediction learning tasks in the <User/> 
domain.

Consider the predictions of connectivity during a daily commute (Table 
11-4).

In this vignette, the <User/> calls home at 5 pm with a plan to be home 
“in 40 minutes,” which the CWPDA notes as the predicted temporal 
Value(Depart offi ce, Arrive home), which nominally is 40 minutes, allocated 
to 10 minutes from work to the Thruway, 20 minutes on the Thruway, and 10 
minutes more in the suburbs to arrive home. Suppose the new Thruway offers 
MIMO wireless LAN connectivity for low cost VoIP during the transit, with 
traffi c and weather reporting to enable drivers to optimize the trip. The 
CWPDA predicts its usage for the home CWN based on the <User/> ’s estab-
lished patterns. This particular <User/> prefers VoIP on corporate or home 
WLANs and is trying out the new MIMO WLAN on the Thruway for the 
next month, offl oading the Cellular network. The CR depends on the CWN 
to predict its user’s behavior from both previous patterns and from the details 
of local context. Table 11-4 shows the standard pattern of the trip home, with 
a time delay from the usual departure time of 5 pm to a current departure of 
6 pm. The TDL algorithm rewards itself for accurately predicting time remain-
ing in the trip home, T-to-Go in the table. At 5 pm, it offers the following 
plan to the CWN:

TABLE 11-4 Sequence of Temporal Events

Step Activity/Event Connectivity T dT T-to-Go

 1 At the offi ce on Friday Corporate WLAN −90 30
 2 Plan trip home 5 pm Various −60 60 40
 3 Depart offi ce 6 pm Corporate WLAN  0  5 45
 4 Approach car Car BlueTooth  5  1 46
 5 Depart parking lot BT-Cellular  6  2 40
 6 Navigate to Thruway BT-Cellular, WTOP  8 10 30
 7 Transit Thruway BT-MIMO  18 20 10
 8 Navigate home BT-Cellular, WTOP  38 10  0
 9 Enter house Home WLAN  48  3  0
10 Arrive home   51

Source: Reference [92], Chapter 6.
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Expression 11-12 Nominal Plan for Transit Home

<User> <Plan> <Place> Work <Time> 5 pm </Time> </Place>
 <Place> <Service> <Cellular>
  <Time> 5 pm <Interval> 10 minutes </Interval> </Time> </Cellular> 
   </Place>
 <Place> <MIMO> <Time> 5:10 pm <Interval> 20 minutes </Interval>
   </Time> </MIMO> </Place>
 <Place> <Cellular> <Time> 5:30 pm <Interval> 10 minutes
  </Interval> </Time> </Cellular> </Place> </Plan> </User>

When the <User/> is delayed, the Value(Depart work, Arrive Home) 
increases with respect to the original start time of 5 pm, initially extending 
an hour until the <User/> actually departs the offi ce, moving the <Plan/> to 
6 pm. The <User/> talks to a colleague in the parking lot, further extending 
the plan. With TDL in this policy verifi cation mode, the initial estimate of an 
immediate departure is updated to Value(Depart offi ce) = 68 minutes, up 
from zero for this particular instance. The next time the <User/> says he will 
depart at 5 pm, the Value(Depart offi ce) could refl ect either the nominal 
plan Value(Depart offi ce) = 0, for an immediate departure (k = 0, or no 
aggregation of experience), or it could refl ect the most recent departure of 68 
minutes delay (k = 1, no credit for planning), or it could refl ect some fraction 
0 < k < 1 of the old plus the new, updating the policy to refl ect experience 
modulated by a degree of relevance. This is a direct application of the theory 
of TDL. A CR can use <Scene/> features to deal with such discrepancies 
between a policy and experience.

11.2.4.3 Context for Temporal Differences
Since the AACR continuously examines sensory-perception channels, it need 
not be limited to the manipulation of k as the only controllable feature in 
TDL. Instead, since the temporal plan of Expression 11-12 sets the framework 
for the TDL algorithm, the TDL and <Plan/> may be integrated. Activity 2 
of Table 11-4 itself defi nes a <Place/> with <Extent/> in the <Time/> dimen-
sion. That activity entailed an increase of Value(Depart work) from 0 to 68 
minutes.

Although increasing context sensitivity has the potential to increase QoI 
to the user, it also has the possibility of contributing to a combinatorial explo-
sion of hypotheses and therefore must be undertaken with steps that avoid 
combinatorial explosion, for example, by relegating analysis of such patterns 
to <Sleep/> cycles or to a CWN.

11.2.4.4 Avoiding Combinatorial Explosion in TDL
TDL can’t be implemented as-is for large problems, however. For example, 
in games with few states like tic-tac-toe, all moves from all states can be 
computed and remembered. For even relatively simple games like checkers 



(played on an 8 × 8 board, each square of which may be occupied by black or 
red or unoccupied), the number of board states is 265 or 3.69 × 1019. Today’s 
memory limit for a laptop is about 1 billion (109) states (2 GB of memory), 
which is ten orders of magnitude too small. The generation of such states 
occurs in the <User/> domain when CRA <Self/> templates are interpreted 
as schema-schema. An important way to mitigate combinatorial explosion is 
the aggregation of information over time, setting relatively high thresholds 
for UDH pattern detection algorithms to spawn UKOs.

An alternative to unacceptably large numbers of states is to use partial 
data or side information to assess the likely quality or value of a state. A 
mathematical heuristic is a state evaluation algorithm that runs quickly to 
completion and that bounds the cost of reaching the goal from a state. The 
classic AO* algorithm uses such mathematical heuristics to perform branch-
and-bound partitioning of large state spaces to eliminate from further con-
sideration those that are unlikely to get to a goal more quickly than the best 
current plan [196]. In UDH and RDH such mathematical heuristics can 
manage combinatorial explosion of TDL.

Reinforcement may be normalized or not. For example, CR1 counts rein-
forcement by integer values, remembering that the <User/> listened to WTOP 
for “news” once this hour, while listening to “traffi c and weather” four times. 
TDL with nonzero k and Q-learning normalize the reinforcement to 1.0. 
Learning about WTOP as either a news channel or a weather and traffi c 
channel may be accomplished via either of the following:

CR1 (Preferences (news, 2), (weather, 4), (traffi c, 4))
Q (Reinforcement (news, 0.2), (weather, 0.8), (traffi c, 0.8))

Whether normalized or not, these metrics refl ect uncertainty about the 
<User/> in the environment. The technologies for estimating certainty, uncer-
tainty, and degree of belief are informed to some degree by the theory of 
probability, but there are many open issues. Nevertheless, the robust AACR 
must deal effectively with degrees of certainty and uncertainty as well as 
degrees of belief and other fuzzy aspects of the <User/> domain. Explicit 
supervision by <User/> or CWN also manages uncertainty.

11.3 SUPERVISED EXTENSIBILITY

Algorithms that employ an independent source of ground truth during a 
learning phase are supervised, while those that try to infer patterns from the 
raw data are unsupervised, and those that are supervised by the environment 
are reinforced. Although AACR needs reinforcement learning, both AACR 
and CWNs may use other directly supervised learning methods, both embed-
ded and in the network.
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11.3.1 Supervised Linear Spaces

Linear dichotomizers place a linear boundary, an (N − 1)-dimensional hyper-
plane, in an N-dimensional feature space to divide the feature space into two 
regions. If the features of an object fall into one side of the hyperspace, the 
objects are classifi ed into one class, otherwise they are classifi ed into the other 
class. Table 11-5 presents data in two classes, radio stations that are OK 
(“Cool”) and radio stations that are not OK (“Yuk”). This is not to deprecate 
the radio stations, but to show how inconsistent and unpredictable personal 
tastes may be.

If the user expresses these preferences in advance, say, in a structured 
dialog, then the AACR fi nds itself in a supervised-learning situation. The 
user’s value judgment on the content constitutes a “class.” Two classes are 
present {Cool, Yuk}. WordNet, UKO, and UDK may map slang like “Cool” 
to ontological primitives like <Approve/>, or a <User/> could complete a 
dialog, or press an Approve or Disapprove button.

Many algorithms can learn this pattern. The fi rst wave of machine learning 
began in the 1950s and 1960s with the development of adaptrons, perceptrons, 
and similar “learning machines” [291]. When embedding capabilities, such 
simple algorithms may be best subject to known limitations. The adaptron 
draws a hyperplane in a feature space, a domain in which Type A appears on 
one side of the plane and Type B appears on the other. The values in Table 
11-5 can be learned by any dichotomizer. Equation 11-4 shows a very simple 
candidate algorithm for the one-dimensional hyperspace RF, the radio 
station’s RF:

 Class if RF then “OK”, else “Yuk”= > 105 1. ,  (11-4)

This algorithm computes the arithmetic mean (x + y)/2 of the one “Cool” 
value and the closest “Yuk” value, defi ning a point on the RF line. The algo-
rithm is a simple unweighted, nonadaptive dichotomizer. Since FM broadcast 
RF ranges from 88 to 108 MHz, those values constitute a line segment ranging 
from 88 to 108. The algorithm defi nes a point at 105.1 MHz. The CR subse-
quently infers that the user likes any radio station with RF greater than 
105.1 MHz. Wrong!

TABLE 11-5 Some Illustrative Radio Stationa Preference Data

Value Class Value Class Value Class Value Class

107.7 Cool 102.5 Yuk 101.9 Yuk 99.5 Yuk

a These FM values and the related preferences are hypothetical and do not refl ect on any actual 
radio stations.



11.3.2 N-Dimensional Context

In the radio station example, suppose the user likes WTOP on FM 107.7 
because in the Washington, DC area at about 8 past the hour traffi c reports 
are broadcast. RF is one dimension of the <User/> <Scene/> and decision 
space, but that <Scene/> also includes location and time: Washington, DC 
and 8 past the hour. The same user doesn’t like 107.7 in Tampa because it’s 
just static; he doesn’t like 107.7 at 15 past the hour in DC, because that is the 
time for sports and this <User/> is not a sports fan. Therefore, the AACR 
training space needs to be expanded to a vector that captures more of the 
context:

 RF-<Scene/>: (RF, Place, time)

Now the decision table is a matrix (RF-<Scene/>, Decision) with entries like 
this:

 Decision-in-Context: ((107.7, DC, 9:08), Cool)

Often, training provided by a user to a system such as a CR includes 
implicit space–time dependencies like these that the typical user simply is not 
going to waste time explaining. Thus, a CR must infer the context as a func-
tion of place and time.

11.3.2.1 Learning Space–Time Context
The following supervised ML data set would be confusing:

 (107.7, Cool) (107.7, Yuk)

whereas

 (107.7, Northern VA, Cool) (107.7, Dallas, Yuk)

are not confusing at all. Similarly, the data (107.7, Cool) (107.7, Yuk) in a given 
location is confusing unless the AACR constructs the temporal context, such 
as

 (107.7, 9 : 09, Cool) (107.7, 9 : 15, Yuk)

In this unspecifi ed location, traffi c and weather together on the eights was 
still in progress on the nines, so the user still liked the content. Given the 
variability of the start time and end time of traffi c reports, variability of even 
a truly consistent news broadcast must be accommodated. Therefore, tempo-
ral reasoning over content must include associated content markers, such as 
the predictable occurrence of the phrase “Traffi c and weather together on the 

SUPERVISED EXTENSIBILITY     403



404     IMPLEMENTING USER-DOMAIN SKILLS

eights” in the audio stream. With such multidimensional cues, even a simple 
N-space dichotomizer may learn relatively complicated information access 
<Preferences/> from typically complicated users.

11.3.2.2 Teaching the Recommender Substrate
One can teach an AACR to perform Recommender functions [220]. A Rec-
ommender can make purely mechanical recommendations such as those from 
a database. Other Recommender functions include content fi ltering, collab-
orative fi ltering, demographically based recommendations, utility-based rec-
ommendations, and knowledge-based recommendations (from user-unique 
knowledge) along with various hybrids. Stand-alone algorithms of Recom-
mender systems may be simulated, emulated, or incorporated into CR by one 
of the following methods:

synthesizing recommenders in cr

To Recommend Embed Algorithm Or Equivalent CR Training

Current movie Keyword vector  Teach threshold for number of 
  latent semantic   user-interest-profi le terms in 
  indexing   movie synopsis 
VCR rental Nearest-neighbor  Hear movie rental question Say

fi lter   movie with maximum user-
   interest terms that user has not 
   yet seen
News channel ML on content or  Observe user band mode volume 
  rating   up place, time, duration listen-
   ing to news
News channel Demographics Observe place Not = home Hear 
   news? Say {Observe argmax 
   {count {NetQuery news} = 
   Owner-profi le-demographic}}
FM radio User-defi ned value  Hear “Get me a good FM station”
  function
 Ephemeral Ask {“Mood?”} Say {argmax
   {Mood-ontology} = FM-songs-
   playing-keywords}
 Persistent Argmax{{User space-time-profi le} 
   = FM-songs-playing-keywords}
Boating Domain knowledge Remember boating knowledge by 
   matching user’s dialogs to a 
   priori boating ontology
FM radio  Combining  Create b.o.a.t.i.n.g serModel that
 boating  algorithms  tailors FM radio actions to 
   detected boating scene



Latent semantic indexing (LSI) has been used by the information retrieval 
community to improve the precision and recall of document searches. It uses 
a vector space model of language in which the co-occurrence of words in a 
document determines a vector of word occurrences. Singular value decom-
position (SVD) yields, from a matrix of word vectors R[M, N] that has rank 
K, a matrix R[M, N] that is the closest rank K matrix to the original that can 
be constructed from a K × K matrix S as follows:

 R[M, N] = U[M, K] S[K, K] V[K, N] (11-5)

The Lifestyle Finder was freely available on the Web in the late 1990s. It 
elicited demographic information in a nonobtrusive way that was regarded by 
most who interacted with it as not an invasion of privacy. From this data, it 
assigned a user to one of 62 predefi ned lifestyle categories, recommending 
web pages potentially of interest, gathering data from 20,000 users [292]. To 
transition this knowledge from web to <Self/>, the CR would perform a reten-
tion action instantiating a lifestyle UKO.

11.3.2.3 Perceptrons Aren’t Good Enough
In the 1960s, Marvin Minsky wrote an infl uential paper about a more general 
form of dichotomizer, the perceptrons, in which he proved that no such algo-
rithm could learn the Exclusive-OR pattern:

In-1 In-2 Out In-1 In-2 Out

Cool Cool Yuk Yuk Yuk Yuk
Cool Yuk Cool Yuk Cool Cool

The Cool and Yuk evaluations correspond to 1 and 0, respectively. This 
pattern cannot be learned with a linear algorithm because the pattern is non- 
linear. There is no hyperplane that can separate the space into Cool/Yuk 
regions, so no algorithm similar to Equation 11-4 subtends the output space 
[01 × 01] into “0” and “1” regions. Minsky’s classic paper pointed out this 
critical weakness of the perceptron as a supervised ML tool.

11.3.3 Neural Network Reactive Learning

Hopfi eld described an improved perceptron-like algorithm that weighted the 
learning inputs into a nonlinear decision function (a sigmoid, fi gure-S func-
tion) that solved the Exclusive-Or problem. He called this bio-inspired algo-
rithm a neural network. The equation for the core nonlinear function of a 
Hopfi eld neural network is given in Equation 11-6:

 Sigmoid(z) = 1/ (1 + exp(−Gain * z)) (11-6)
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Input stimuli are weighted, summed, and operated through the Sigmoid func-
tion (Equation 11-6 and Figure 11-8) to yield a response, which may then 
again be subject to threshold logic or output weights to defi ne the response.

The weights are learned through a feedback circuit that adjusts the weights 
of the network to drive the response to the desired response. Not only are 
neural networks trained, but the training typically requires a large number of 
trials to converge on weights that respond appropriately across the input 
range. From a statistically signifi cant number of input–output pairs (e.g., 30 
or more), a neural network generalizes to any input in the parameter space. 
This form of generalization can detect signals in noise, such as the heartbeat 
of a fetus in the presence of the mother’s much stronger heartbeat. McClel-
land and Rumelhardt popularized this class of algorithm in their texts on 
parallel distributed processing [293], with companion software. Artifi cial 
neural networks (ANNs) can learn complicated patterns including the XOR, 
Exclusive-OR function of Minsky, via a wide range of initial training and 
update algorithms.

When learning in feature spaces, there is a tacit assumption that categories 
are connected. In the FM radio stations of Table 11-5, there is no continuous 
RF domain or straight-line segment from 88 to 108 MHz. Instead, because of 
spectrum regulation, there are about 100 discrete data points starting with 
88.1 MHz and ending with 107.9 MHz, each 200 kHz apart. These are the legal 
center frequencies. Users either like or dislike the station broadcasting on the 
discrete frequency. So an ANN could learn the discrete values from the user’s 
preferences, generalizing them to the continuous domain of RF measured by 
the receiver. A case-based reasoner would remember that WTOP had trans-
mitted on 107.7 MHz at a given time and place. ANNs always generalize and 
do not remember the raw data on which they were trained. So although there 
are potential applications for linear dichotomizers, ANNs, and other such 
pattern recognition algorithms in industrial strength CR, this text focuses on 
case-based reasoning (CBR), learning by remembering cases and adapting 
the “nearest” past situation to the current situation. A CBR algorithm can 
aggregate prior experience to yield performance similar to that of an ANN, 
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but ANNs can’t explain their generalization process in terms of prior experi-
ence the way a CBR can. This brief introduction does not do justice to the 
insertion of the rich and diverse ANN technology for AACR. The sensory-
perception subsystems may embed ANNs for face tracking, speech recogni-
tion, speaker ID, and many other such functions.

11.4 UNCERTAINTY

Not all situations are as clear-cut as many of the vignettes of the prior chapters 
might suggest. In fact, most situations in the <RF/> domain are perceived 
through interference and noise, while most <Scenes/> in the <User/> domain 
are replete with uncertainty. Discovery using the <Histogram/> addressed 
the discovery of certain information through the analysis of the entropy of 
data structures conveying the information. Usually, however, one cannot say 
exactly what is going on in a data set because of noise, confl icting information, 
or an inherent ambiguity in the situation. This occurs because of noisy mea-
surements, psychological factors, the statistical structure of language, and 
other causes. The <Histogram/> and other pattern discovery and character-
ization algorithms like support vector machines (SVMs) [17] assist in perceiv-
ing certain information through noise. In addition, <User/> domains are 
characterized by features that are inherently uncertain, such as weather pre-
dictions. These uncertainties introduce the need to plan under uncertainty.

11.4.1 Quantifying Uncertainty for the <User/> Domain

This section differentiates probability spaces that satisfy the probability 
axioms from other pseudoprobability frameworks, each of which are useful 
when their underlying assumptions are satisfi ed. Probability is defi ned in a 
metric space where the distance metric obeys the triangle inequality, total 
probability is conserved at 1.0, and total probability is distributed to all pos-
sible hypotheses, not just to the enumerated hypotheses.

AACR deals with real <User/>s who have a relatively unstructured intu-
ition for and ways of generating and dealing with uncertainty. Although prob-
ability offers strong mathematical foundations for uncertainty, <User/>-domain 
situations are unlikely to conform to probability axioms per se.

11.4.2 Probability

The reader should be familiar with probability, statistics, and random pro-
cesses in order to fully appreciate this section. A probability system [294] 
consists of the following:

1. A probability space, the set X of possible events, and Ω, a family of 
subsets of X containing the empty set and the universal set over which 
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a sigma-algebra [295] is defi ned, so that set-theoretic integrals are 
defi ned:
(a) Associated with Ω is an index set ϑ defi ned so that each ω in Ω has 

a unique index i in ϑ. In other words, each element of Ω can be 
measured and potentially infi nitesimal contributions can be aggre-
gated via an index set (in the case of stochastic processes that may 
be infi nite dimensional).

(b) An operator ∪ (union) exists such that for each ω in ω, {ωi} ∪ {ωj} 
= {ωk}; if Ω is uncountable, then Ω is closed under uncountable 
unions.

(c) An operator ∩ (intersection) exists such that Ω is closed under fi nite 
intersections.

2. A map p: Ω → � such that
(a) p obeys the triangle inequality for sums, p(ωi ∪ ωj) ≤ p(ωi) + 

p(ωj);
(b) p(Universal Set) = 1;
(c) p(Empty set) = 0.

There are important AACR-engineering implications of this construct. Ω 
is closed. That is, one can’t add new events x to X and related sets of events 
ω in Ω, once Ω is defi ned to extend a model that is already grounded by the 
AACR to the <Outside/> world. In addition, all possible events must be 
refl ected in Ω. Often in <User/> domains all events are not knowable. Many 
reasoning systems do not enforce the axioms of probability fully and thus may 
implement degrees of belief, but not random processes or laws of probability. 
Probability theory enables one to address questions of expectation. For 
example, if two events are related, then the observation of one event may 
circumscribe the likelihood of a related event. Bayes’ famous law explicates 
such relationships in probability spaces.

11.4.3 Bayes’ Law

The situation before the observation of an event is called the a priori probabil-
ity (“priors”). The situation after an event is called the a posteriori situation. 
Bayes (the 18th century English clergyman Thomas Bayes) noted that if there 
are two possible events and exactly one will occur, then P(A ∪ B), the prob-
ability of the union of A and B (the probability of A or B), is related to the 
probability of A given that one observes B. Suppose events Ai [i = 1 ,  .  .  .  , n] 
are mutually exclusive and their union is the entire sample space Ω. The 
conditional probability P(An /B)—the probability of An given B—is computed 
from Bayes’ Law or the law of inverse probability as follows:

 P(An /B) = P(An) P(B/An)/ {Σi P(Ai)P(B/Ai)}



For example, two balls may be drawn without replacement from an urn con-
taining r red and b black balls. Let A be the event “red on the fi rst draw” and 
B the event “red on the second draw.” The probability of drawing red fi rst 
depends on the number of red balls, and if all balls are equally likely, then 
P(A) = r/(r + b). Three red and seven black balls yields only 30% probability 
of red. P(A) = 1 − P(not-A), so black is 70% likely on the fi rst try. Suppose 
the fi rst event is A. What is the probability of B now? P(B|A) = (r − 1)/(r + b 
− 1). There are only r − 1 red balls left, in this case 2. But there are still 7 
black balls. So the probability of red on the second draw is 2–9. The P(B/ not-
A) leaves r red balls but not-A means that one black ball was drawn on the 
fi rst try, so P(B/not-A) = r/(r + b − 1) or 3–9 = 1–3 . Bayes’ Law enters the CRA by 
the <Probability/> and <Modeling/> primitives.

Expression 11-13 Bayes’ Law in the CRA

<Probability> <Bayes> <A-priori> P(B/An), P(Ai), P(B) </A-priori>
 <A-posteriori> <Function> P(An/B) = P(An) P(B/An)/ {Σi P(Ai)P(B/Ai) 
  </Function>
 </A-posteriori> </Bayes> </Probability>

How might an AACR exploit Bayes’ Law in the <User/> domain? There 
are not a few situations in which a fi xed set of entities corresponding to the 
red and black balls occur in a <Scene/> in which they may be randomized by 
an event like being thrown in a jar. In an emergency use case, for example, 
the red and black balls might correspond to AACR (red) versus legacy (black) 
radios in use by rescue workers entering and leaving a scene. If r AACRs and 
b legacy radios enter an emergency situation, and if a transmission from each 
is equiprobable, then the probability that the next transmission is from an 
AACR is just r/(r + b). Such probabilities can help establish dynamic spec-
trum-use policies, for example. This represents an interplay between <User/> 
and <RF/> domains. If r = 90 and b = 10, then most radios will be listening 
before transmitting, so the likelihood of collision would be smaller so the time 
delay before listening in a spectrum etiquette can be longer than if the numbers 
are reversed, where most radios are legacy radios and therefore most <Users/> 
do not have the benefi t of ad hoc use of unused TV channels, and of polite 
automatic backoff to other channels when legacy users need the channel.

11.4.4 AACR Event Spaces

Bayes’ Law requires events to actually be distributed according to a probabil-
ity system that is both defi ned and mathematically consistent. The space must 
be stationary: its statistics may not vary over time. It must be ergodic: param-
eters that are measurable must faithfully represent the probability abstrac-
tion—for example, the computable temporal average must equal the ensemble 
average, the instantaneous average across the probability space at a point in 
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time, which can be inferred from the axioms of probability, but not directly 
computed. This conformance can be a lot less trivial than one might like.

Suppose, for example, that an AACR needs 12 hours to retrospectively 
analyze a particular day’s experiences. It is 10 pm. It has observed for the 
week that its owner rises at 6 am each day, so it predicts that it has 8 hours 
to digest the day’s experiences, not the 12 it predicts that it needs. Today is 
Friday. The CR estimates that the owner will rise at 6 am on Saturday with 
a simple model of waking up, for example, from TDL, which is a descriptive 
model that the owner rises each day between 5:50 and 6:10 am because that 
has happened fi ve times, all the mornings since it was purchased. The obser-
vations might even be a good match to a Gaussian distribution with mean 
6:01 am and standard deviation of a few minutes. The AACR starts its 
<Sleep/> cycle. At 10 am, it detects the loud noises of the owner awaking and 
moving about the house. If Waking-Up is the event WU, it is the time, tWU, 
of the event WU that the AACR needs to estimate:

 P(tWU = t) ≡ Pt(WU) (11-7)

In the CRA, there is no requirement to ascribe a probability distribution 
to tWU, but it is helpful to do that since such events are among the daily 
patterns of the <User/>. Is there a probability distribution here of the type 
needed for Bayesian inference? If so, then waking up is a certain event, 
P(WU) = 1.0 (not 99.9 but 1.0). The owner could die in his sleep, so P(WU) 
≠ 1.0. There are, then, events not yet included among the observations of the 
CR that can result in a change to WU (not just tWU) so there is no true 
Pt(WU), only Et(WU), an expectation or degree of belief about both the fact 
of and the time of the Wake-Up event. In fact, in the <User/> domain, the 
prejudice is that events do not obey probability axioms. When an AML algo-
rithm discovers a set of events like WU that behaves very much like a proba-
bility, then that model may be exploited for planning. The space Ω, the space 
of all possible events, is invariably unknown, yet the probability of a <Novel/> 
event is often treated algorithmically as if it were infi nitesimal.

11.4.5 Causality and Probability

Suppose the owner is young and in good health, so P(death-in-sleep) ∼ 0. 
Then Et(WU) � Pt(WU). That is, the degree of belief is behaving like a 
probability, so the CR may safely use the probability function as a degree of 
belief. Suppose owner says, “I’m not feeling so good, so I’m going to sleep-in 
tomorrow until maybe 10 am.” Does the CR have a causal model [296]? It is 
easy to see that, given the remark,

 P(WU; 5:50 < tWU < 6:10) ∼ 0 (11-8)

In other words, the probability that the CR had modeled as an event distrib-
uted in the vicinity of 6 am is not going to be so distributed tomorrow 



morning. The alarm clock may even go off, but the owner plans to hit snooze 
and put the alarm in the off position. The owner might ask the AACR not to 
wake him up at the usual time. Conditioning on weekdays, Saturday, and 
Sunday yields three unimodal distributions. Until the user goes on vacation. 
Or has to cut the grass on Saturday morning before the predicted rain that 
afternoon. Or, or, or, or. 

Counting or RL with context detection reveals the multidimensional nature 
of the owner’s life as follows:

counting with context

Day Time WU Context Work Context Home

Friday 606 Yes No
Saturday 1005 No Yes
Sunday 823 No +Church
Monday 600 Yes No

By detecting contextual features, a causal space–time map appears for 
which the somewhat random yet patterned distributions establish probability 
as a reasonable way to model the likely time of events. The space–time–
context <Observation/>s give the AACR a suffi ciently high dimensionality 
feature space in which to infer causality. The owner could still fail to wake 
up, but there is no probabilistic requirement that he/she live forever, only that 
the P(Not (WU)) ∼ 0. Some aspects of the <User/> domain lend themselves 
to probabilistic modeling, which typically is enhanced by an appropriate 
choice of distribution.

11.4.6 Using Probability Distributions

Bayesian analysis also requires one to accurately estimate the a priori proba-
bilities of an event in order to determine the a posteriori probability, which 
typically is the objective. Probability in the <User/> domain typically is sub-
jective rather than exact. How does an AACR estimate the prior probability 
that the <User/> is in the living room? That might be useful information if 
the AACR is in the bedroom and wants to be taken to work today. It could 
send a message care of the WiFi network to be broadcast through the current 
TV program: “Sir, did you mean to take me to work with you today? If so, 
I’m still in the bedroom.”

To ascribe probability, typically one measures the relative frequency of 
occurrence of events and matches this distribution to well-known distribu-
tions to establish a probability model. Analytical tools like Matlab, Mathcad, 
and Analytica [297] among others offer many standard distributions that 
could be embedded into AACR. Questions to be addressed in selecting a 
model include whether the system is discrete or continuous (and if so, is 
it bounded), the number of modes, and its symmetry. The embedding 
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into the CRA <Self/> builds on the ontological treatment of probability 
distribution.

Expression 11-14 CRA Probability Distributions

<Probability> <Distribution> <Defi nition> Map from sample space to 
 [0, 1.0] </Defi nition>
 <Discrete> <Bernoulli/> <Certain/> <Chance-dist1/> <Probtable/> 
  <Binomial/> 
 <Geometric/> <Hypergeometric/> <Poisson/> </Discrete>
 <Continuous> <Beta/> <Cumdist/> <Fractiles/> <Gamma/> 
  <Lognormal/> <Normal/> 
 <Probdist/> <Triangular/> <Uniform/> <Exponential/> <Logistic/> 
  <LogTriangular/> 
 <LogUniform/> <Weibull/> </Continuous>
 </Distribution> </Probability>

There are many ramifi cations to these choices that publishing space pre-
cludes addressing but that are addressed well in the analytical tools cited 
above. The autonomous attribution of probabilistic behavior to distributed 
observations entails the algorithmic simulation of the reasoning processes 
discussed above. Pioneering approaches to the algorithmic simulation of such 
subjective processes may be found in the literature on qualitative physics [298, 
299] and in the more recent literature on the simulation of the learning pro-
cesses of newborns [300].

Probability relies on a crisp defi nition of sets, such as whether a ball is 
black or red and whether a radio is a legacy radio or an AACR. There some-
times are degrees of membership that require one to set arbitrary thresholds 
in order for a probability model to work. Suppose a radio has a few SDR 
personalities, including the use of UHF TV bands, but lacks other AACR 
features such as peek-through. Is this an AACR or a legacy radio? An alter-
native approach to probability theory, which relies on crisp sets, is the fuzzy 
set theory of Lofti Zadeh.

11.4.7 Fuzzy Sets

The time is now 11:12 pm. Is it bed time? Usually. Generally, this <User/> 
goes to bed at something like 9:30 to 10:30 and awakes at 4:45 am. But the 
boundary between wake state and sleep state cannot be drawn precisely at 
10 pm or at any other time. Generally, at 3 am, this <User/> is asleep, and 
generally by noon, awake. But there is a very fuzzy line between these two 
states. The state space U = {Wake, Sleep} is the simple universe of states to 

1 For convenience, these distributions are as defi ned in Analytica 2.0 [297]; several tools offer 
equivalents. 



which the AACR would like to map time of day t for the <User/>, deriving 
U = f(t) to unambiguously map any time of day t ∈ {0,  .  .  .  , 23.59} onto the 
two states of U. Why is this so diffi cult? Is it because the <User/> is so hard 
to get along with? Unpredictable? Maybe to some degree.

Professor Emeritus Lofti Zadeh fi rst formulated this kind of set-
membership problem as the fuzzy set, the class of sets in which the member-
ship function is not limited to the discrete values Uo = {0, 1} but that include 
any of the real numbers in the interval, Uz = {0,  .  .  .  , 1}. Since CR often has 
to deal with sets for which the membership is uncertain, they are particularly 
relevant to AACR.

There is always some diffi culty in determining when fuzzy sets are appro-
priate versus conventional probability. Zadeh offered the following on the 
Uncertainty in Artifi cial Intelligence (UAI) bulletin board [301]. He noted 
that there is an extensive literature on the relationship between fuzzy logic 
and probability theory, going back to a paper by Loginov in 1966. The most 
thoroughly studied aspect of this relationship, according to Zadeh’s email, 
relates to the connection between fuzzy sets and random sets (see [302]). A 
discussion of the relationship between fuzzy logic and probability theory may 
be found in Zadeh’s paper entitled “Probability Theory and Fuzzy Logic Are 
Complementary Rather Than Competitive,” published in Technometrics, Vol. 
37, No. 3, pp. 271–276, 1995. His view (November 2003), which is more radical 
than that expressed in the cited paper, is that probability theory should be 
based on fuzzy logic rather than on bivalent logic.

Zadeh cites several examples that are diffi cult to deal with as probability 
systems, such as the “tall Swedes” problem: Most Swedes are tall; what is the 
average height of a Swede? If one thinks of Swedes as instances of a genome 
from which they are drawn, then probability seems to apply. If one thinks of 
actually expressing the notion that Swedes are tall in an algorithm for an 
AACR, one might write a Beta distribution with a peak at maybe 2 meters 
or higher. The fuzzy notion of “tall” that we may reify as <Tall/> provides 
another alternative: a sliding scale of membership in the class <Tall/> begin-
ning at maybe 1 meter with <Value> <Tall/> ∼0 </Value> (could be a tall 
midget) and ending at, say, 3 meters with <Value> <Tall/> ∼1.0 </Value>. 
Similarly, <Normal-height/> might peak at 1.8 meters at 1.0 with scales sliding 
down to zero at 2.5 meters and down to 0 at 0.5 meters, or something like 
that. These aren’t probabilities but value judgments about the meaning of the 
sets we have chosen to <Name/> <Tall/> and <Normal-height/>. So in AACR 
<User/> domains, proscriptive defi nitions like <Tall/> really lend themselves 
to a priori defi nition as fuzzy sets, which is included in the CRA <Self/>.

There is a rich literature on fuzzy sets, so this brief hint does not do it 
justice. This literature can be a source of many fuzzy methods for computa-
tional autonomy for AACR. Particularly relevant papers include fuzzy unifi -
cation of logic terms using edit distance, with resolution theorem proving, 
with applications to correct spelling errors [304]; and software tools for 
object-oriented fuzzy knowledge systems [305].
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11.4.8 Rough Sets

Rough sets generalize set membership in some sense beyond the uncertainty 
implicit in fuzzy sets, but with similar objectives and consequences. They 
generalize sets using a third truth value—“uncertain” or “undecideable.” 
Rough sets differ from fuzzy sets in that no degree of membership, probabil-
ity, or degree of belief in membership is ascribed to an uncertain member. 
Therefore, a rough set consists of known members and possible members. A 
union may either include or not include the possible members, yielding upper 
and lower sets, respectively, with corresponding constructs on union and 
intersection operators. Machine learning algorithms have been implemented 
using rough sets [306]. The approach expresses uncertainty about set mem-
bership with a degree of generality from the predicate calculus and requires 
no a priori assignment of degree of membership as is necessary to effectively 
use fuzzy sets. This comes at the expense of introducing virtual states and 
returning uncertain results that can be combinatorially explosive.

The CRA <Self/> includes naïve, fuzzy, and rough sets in RXML as 
canonical templates for representation and reasoning. The methods of reason-
ing with uncertainty may be organized into systematic mathematical systems 
called certainty calculi.

11.4.9 Certainty Calculi

Not every CR need have a computer model of probability or fuzzy sets, but 
each CR needs some way of reasoning with uncertainty. A systematic method 
that includes the representation of positive and negative reinforcement along 
with at least one method for the aggregation of reinforcement across multiple 
stimuli (e.g., via a logic or rule-based process) may be called a certainty cal-
culus. The Bayes community of interest in UAI [307], Java Bayes [308], and 
recent texts [13] offer strong support for Bayes reasoning with uncertainty. 
<User/>-domain driven approaches to evidential reasoning include methods 
for the nonlinear combination of evidence in such classic reasoning systems 
like Mycin, Dendral and meta-Dendral, and Tieresias.

11.4.9.1 Uncertainty in the <User/> Domain
Suppose the set X = {X, O} represents a closed world of states such as the 
channel symbols of a BPSK modem or the decision to turn the CWPDA on 
or off. One can’t add another element to X without redefi ning the probability 
system. The world is rarely closed. Just when you think you have accounted 
for all the possibilities, a new one is discovered experimentally. Instead of 
implementing a binary power system {On, Off}, the manufacturer implements 
{On, Off, Pause}, where {Pause} conserves power while preserving state. The 
<User/> says, “Pause, will you?” The AACR trained for {On, Off} now needs 
a new symbol for pause, for example, Y. To mark which user paused the 



system it might remember <User> X </User> or <User> O </User>. The 
AACR could introduce Y as a metalevel construct where the states of play 
are {Run, Pause [Y | x ∈ {X, O}]}. Notionally, there could be a probability of 
Y, so in the refi ned X = {X, O, Y} there is a metalevel probability of Pause.

The original designers of the notional AACR didn’t envision pause, but 
the user thinks it is a good idea. The <User/>-domain AACR must accom-
modate an open-world setting: Users are continually moving out of “the box” 
that the manufacturer would like them to stay in. Therefore, in order to 
employ probability to enhance QoI, the AACR designer must restrict the use 
of probability to those closed domains that are accurately modeled by proba-
bility, such as noise and other stochastic processes. Theories of evidence other 
than Bayes’ Law offer insights for other approaches to uncertainty in the 
AACR <User/> domain.

11.4.9.2 Theories of Evidence
The Dempster–Schaffer (DS) theory of evidence does not need the total 
probability space of Bayes. In addition, the Dempster–Schaffer theory of 
evidence generalized Bayes’ notions of a priori and a posteriori probability 
to the more general problem of evidential reasoning. Although theoretically 
powerful, Bayes theory requires one to estimate the prior probabilities under-
lying all possible events. The diffi culty of this requirement, among other 
things, has led to a proliferation of ad hoc techniques for representing uncer-
tainty. To perform consistent logic in uncertain domains requires a calculus 
that manipulates numerical representations of uncertainty with associated 
Boolean logic or assertions in rule-based systems. Some powerful uncertainty 
calculi are nonlinear [318]. There is also much relevant technology from prob-
ability and statistics literature. Mixture modeling, for example, is the process 
of representing a statistical distribution in terms of a mixture or weighted sum 
of other distributions [309]. AACR exhibits statistical mixtures of uncer-
tainty in RF, in sensory perception, and in interpreting user interactions. The 
CRA embeds general facilities for reasoning under uncertainty by prescribing 
reinforcement and expressing <Uncertainty/> tags as schema-schema for 
application-specifi c certainty calculi, such as that of Tieresias.

11.4.9.3 Tieresias Certainty Calculus
Tieresias employed the Mycin calculus for reasoning under uncertainty. 
Medical doctors dealing with bacterial infections of the blood were known to 
consider a weight of evidence for and against a causative agent. The Mycin 
certainty calculus therefore independently aggregated weight of evidence for 
and against a given diagnosis. Subsequently, these aggregates were evaluated 
to determine whether positive indications outweighed negative indications 
and conversely, preferring the explanation that most positively endorsed a 
given diagnosis. Thresholds for weight of evidence were also employed to 
defer decisions until suffi cient knowledge was applied.
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 (Parameter-predicates Certainty-factor-sum)
 ((Gram Same) (Morph Same) 3.83) (11-9)

As shown in Equation 11-9, Mycin lists of predicates were associated with 
certainty factors. The example says that when the gram stain appeared in a 
rule premise, the morphology also appeared, and the fractional part indicates 
that 83% of the time gram stain implied morphology.

This is one example of the implementation of reasoning about uncertain 
relationships through quantifi ed predicates. The predicates aggregate evi-
dence for and against hypotheses using the real line between [−1.0 and +1.0], 
associating regions with degrees of belief. This certainty calculus is one 
example of a theory of evidence.

11.4.10 Uncertainty in Language

A review of user-domain issues in uncertainty would not be complete without 
considering uncertainty in language at greater length. Even with noise-free, 
error-free speech transcript, there is substantial uncertainty in language. This 
uncertainty derives from the many ways of expressing a given thought as well 
as the many ways of reducing the detail supplied in communications, such as 
referring to “this” or “that” without spelling it out, as with anaphora and 
ellipsis. However, the statistical structure of language yields detectable fea-
tures. Topics of discourse can be detected reliably even in the presence of 
high word error rates [310], provided the number of samples is high, the 
number of words per sample is suffi cient, and the training sets have the same 
statistical structure of the larger text corpora. Search engines like Google 
learn what <Users/> are looking for by processing terabytes of data on thou-
sands of servers. AACR requires an approximation of such high quality but 
with the smallest feasible computational resources, such as using N-grams.

The N-gram [311] is a well-known measure of the statistical structure of 
text (which may be from an errorful speech transcript). N-grams do not 
require the parsing of the text to delimit word boundaries and punctuation. 
Instead, N consecutive letters are considered in a sliding window from the 
beginning to the end of the text sample. For example, the paragraph of the 
prior section on Randomness for Exploration has the N-gram structure shown 
in Table 11-6.

TABLE 11-6 N-Gram Structure of Text Sample From Randomness for 
Exploration

N N-Grams Most Next Most Common Remark

1  46 e/138 t/103 N, o, a, i, t, e 1100 character fi le
2 311 ti/27 in/24 Top 25 = 381 146 occur only once
3 716 the/17 ion/10 23 grams > 5 times 515 3-grams occur once
4 901 tion/10 beha/7 102 > once 800 occur only once



Although 46 characters can generate 97,336 3-grams, only 716 of these 
occur in this text, what might be called a rough 3-gram signature of the text. 
The most common have to do with the structure of the language (e.g., “the” 
is the most common word in English and in this sample), but some of the 
more common 3-grams refl ect the content. The 4-grams are led by “tion” at 
10 occurrences, but four of the fi ve next most common occur because “behav-
ior” is the most common long word that generates the leading “beha” and the 
trailing “vior” as well as the cyclic shifts “ehav” and “havi.” These redundant 
4-grams may be suppressed. This content-related structure can be compared 
to the statistical structure of other content by comparing N-grams.

The 72 types of characters that appear in a second text sample (Table 11-7) 
include more capital letters, punctuation, and numbers (telephone and street 
addresses) than the purely text of the fi rst sample. In addition, the most 
common 4-grams of this second sample are orks, ting, mall, this, leas, and 
ease; each of which occur six times. Other common 4-grams include “work” 
and “shop,” which is very content-dependent since this sample email had to 
do with a workshop. Although the workshop was about robots, the differences 
in initial capitalization reduced the occurrence of “robo” to less than fi ve, 
while the interior “obot” occurred 5 times. Of the 5-grams occurring four or 
more times, none overlapped between the two samples, indicating relatively 
good statistical separation between the text samples as measured by 
N-grams.

Each <Scene/> falls within a microworld, defi ned a priori or defi ned 
through the aggregation of <Scene/>-level experience. During sleep cycles, 
microworld and scene boundaries would be adjusted to manage combinatorial 
explosion. One method for adjusting <Scene/> boundaries is through the 
clustering of textual content of the constituent <Scenes/> using N-grams, 
fuzzy logic, rough sets, or an application-specifi c certainty calculus.

11.5 LEARNING REQUIRES GROUNDING

Grounding is the process of accurately associating internal symbols with 
external symbols. Internal symbols include intermediate symbols in the 
sense–perceive–act subsystems representing the intended entities in the 
outside world. This includes the <Self/> as a member of the <Outside/> world 

TABLE 11-7 N-Gram Structure of Second Text Sample

N N-Grams Most Next Most Common Remark

1 72 e/173 t/132 r, o, s, a, i, t, e 1944 character fi le
2 659 th/27 in/28 Top 41 count > 10 200 occur 3 times or more
3 1312 the/17 ing/15 23 grams > 5 times 141 occur 3 times or more
4 1583 orks/6 mall/6 205 > once 1378 occur only once
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when viewed from the third-person perspective. This section highlights the 
critical role mutual grounding plays in AACR–<User/> communications and 
thus in the realization of <User/>-domain skills.

A mutual grounding map M expresses the relationships among <Memory/> 
symbols, perceptions, and external entities. External entities include <Abstrac-
tions/> like “Superman” when referred to in a speech or visual <Scene/>.

M: <Memory/>-symbols ⇔ Sense-perceive-act-entity-symbols ⇔ 
 External-entities

Mutual grounding enables coherent communications between two entities. 
Learning algorithms access the internal data structures that represent exist-
ing knowledge, interactively modifying these internal structures to refl ect the 
mutually grounded learning experience.

11.5.1 Ontology Reconciliation

Even relatively straightforward applications of AACR like XG require mutual 
grounding. Formal languages between AACR and host networks typically 
employ data formats defi ned by the manufacturer and reconciled to the degree 
determined by the marketplace via international standards setting processes. 
Historically, radio engineers set radio communications technical standards 
without the help of computational ontologists. Large, complex documents like 
the ETSI Reference Materials, ITU-R Recommendations, TIA Interim Stan-
dards, ARIB Reports, and IEEE Standards attest to the capability of radio 
engineers to formalize defi nitions without the mediation of computational 
ontology specialists.

11.5.1.1 Resolving Historical Inconsistencies
A closer look at the <RF/> domain reveals that none of the engineering 
ontologies implicit in the published radio standards are mutually consistent. 
Channel is a time-domain construct in GSM, a code-space construct in 
WCDMA, and so on with most terms having radically different meanings in 
different subdomains of radio. That has been fi ne historically because people 
have substantial tolerance for this kind of ambiguity. Not so with computers. 
People employ context to disambiguate semantics in ways that we have as yet 
been unable to replicate fully with computers, contemporary research not-
withstanding [37]. The approach of this text is neither to propose an approach 
to this problem nor to sidestep it, but to defi ne in the CRA <Self/> a level of 
abstraction at which mutual consistency between ontologies exists, yet further 
inconsistent ontologies may be integrated via ontology mapping via a priori 
primitives. So the notion of <Channel/> in the CRA <Self/> is abstract, 
admitting realizations in different domains: GSM:channel in the time domain, 
WCDMA:channel in code space, and so forth.



Expression 11-15 Channel Abstraction Reconciles 
<RF/> -Domain Ontologies

<Channel> <Defi nition> <Path> <From> <Transmitter/> </From>
 <To> <Receiver/> </To> </Path> </Defi nition> </Channel>
<Air-interface/> <Air-interface> <Defi nition> <Path> <From> 
 <Transmitter/> </From>
 <To> <Channel-symbol/> </To> </Path> </Defi nition> </Air-interface>
<Air-interface< <FDM/> <FDMA/> <TDM/> <TDMA/> <CDMA/> 
 <UWB/> </Air-interface>
<Channel> <FDM/> <FDMA/> <TDM/> <TDMA/> <CDMA/> <UWB/> 
 </Channel>

The abstraction that a <Channel/> fi rst of all is a <Path/> from a transmit-
ter to a receiver expresses the propagation and air interface channels at a high 
level of abstraction, from which all other notions of channel inherit their basic 
structure. The <Air-interface/> abstraction postulates a LCS <Path/> from 
the <Transmitter/> to one or more <Channel-symbol/>s, which really is the 
function of an air interface channel. Various classes of air interface and 
channel are then asserted, enabling <Channel> <FDM/> </Channel> to 
inherit its properties as a <Path/> from transmitter to receiver from the origi-
nal <Channel/> used as schema-schema. This is the easy part. The hard part 
occurs in the <User/> domain, where everybody is an ontologist and agree-
ment is needed only occasionally.

11.5.1.2 Confronting Persistent Inconsistencies
The hard part of ontology reconciliation occurs in the less formal settings of 
the <User/> domain. Unfortunately, everybody answers “Twenty Questions” 
via a different path after the mandatory “Person, Place, or Thing?” The 
AACR that embeds the CRA <Self/> asks “<Person/>, <Place/>, <Thing/>; 
or <Abstraction/>?” and thus need not be stumped by “Mickey Mouse,” 
which to some is a person and to others is a thing. To AACR, Mickey is a 
<Disney/> <Abstraction/>.

The AACR must create communications content using its internal formal 
ontology bootstrapped from the CRA <Self/> or some other suitable core, 
which remains grounded to the <User/>’s own personal and typically ever-
changing informal ontologies. <User/> computational ontology is a set of 
terms and syntactic structures with LCS and other semantics that describe 
the everyday world. These may be publicly stated as with LCS and the CRA 
<Self/> and they are informally mutually agreed to as with the bootstrapping 
of <User/>-specifi c UKOs. The iCR continually cycles through the capabili-
ties Observe (sense, perceive), Orient, Plan, Decide, Act, and Learn. To learn 
from the <User/> in a way that does not drive the user nuts, the AACR 
autonomously perceives the user as an external entity with its own unique 
ontology.
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11.5.1.3 Mutual Ontology
Mutual grounding is particularly critical for human–computer collaboration 
[313]. Suppose the user asks the PDA: “Will it rain today?” The PDA starts 
to play back the latest NOAA weather broadcast. It has inferred <Rain/> as 
a weather state, and it knows (e.g., from the CRA <Self/>) that NOAA 
weather broadcasts are a source of <Weather/> <Information/>.

<Place> <Time> <Earth> <Land/> <Sea/> <Weather/> </Weather> 
 </Time> </Place>
<Information> <Weather> <Rain/> <Shine/> <Snow/> <Severe/>
 <Radio> <Broadcast> NOAA <News/> </Broadcast> </Radio>
 </Weather> </Information>

The user says, “No, I do not want to hear the NOAA broadcast, I want you 
to tell me the bottom line.” Has the PDA successfully communicated with 
the user? It seems not. Success in such human–computer communications 
depends on precise mutual grounding, the alignment of the conceptual seman-
tics of the two cognitive entities. Initial AACR products may get away with 
playing the latest NOAA weather when asked such a question, but advanced 
iCRs would analyze the NOAA weather broadcast themselves. In this NOAA 
dialog, the <User/> wanted a yes or no answer to the question, not a lot of 
data from which to draw a conclusion. The CRA <Self/> includes primitives 
from which the AACR could have created the following LCS-annotated 
sentence and drawn the primal sketch of Figure 11-9:

“<Question> <Place> <Time> Will <Future/>
 <Action> <Weather> it rain <Rain/> </Weather> </Action>
 today <Today/>? </Question>”

In Figure 11-9, the type of question is inferred from its structure. Other 
types of question are rhetorical, requiring no answer; some ask for an expla-
nation. Words like “how” generate an <Explanation/> goal, while “will” 
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FIGURE 11-9 Primal sketch of question about rain.



generates a <Yes/No/> reply goal. Such a semantic sketch could be converted 
to a database query against the most recent transcript of NOAA weather, 
yielding either a crisp yes or no, or a NOAA-like answer: “50 percent chance 
of rain in the counties of  .  .  .”.

Mutual grounding is often mediated by the grounding of internal symbols 
to concrete counterparts in the external environment via sensory perception 
and volitional action systems in which the cognitive entity explores the envi-
ronment in order to ground a symbol. The user extends his palm through the 
open screen door, feels the wetness, and says “It is raining.” The CR on his 
belt looks at the concentric circles in what it infers to be a puddle in the lawn 
and infers “It is raining.” Although the user and AACR rely on different 
perception systems, both cognitive entities established a well-defi ned internal 
state <Weather> <Rain/> </Weather> through interacting with the same 
external experience. They also use mutually mapped internal representations 
of that perception, <Rain/> for the AACR which translates to “rain” in the 
speech synthesizer.

11.5.1.4 Grounding Errors
Grounding errors can include the following:

1. Abstraction Failure: Failure of one entity to accurately express an inter-
nal state.

2. Communications Failure: Lack of access of an intended recipient to the 
expression.

3. Misinterpretation of a perceived expression.
4. Disagreement: The unwillingness of each to align to the other.

Metrics have been described which express an agent’s inclination toward 
a communications act to correct a detected grounding error [313]. State-
confusion matrices compare the internal states of two agents that are sup-
posed to be sharing identical internal states. Such matrices characterize the 
success of communications, but do not diagnose the underlying agent–agent 
or human–machine communications failure. Additional metrics might (1) 
express the relative importance of internal states with respect to the task at 
hand, and (2) express the agent’s ability to know its own internal state.

Most internal states of conventional software-defi ned radios (SDRs) are 
not computationally accessible to another SDR. Although internal states of 
cognitive radios would be accessible, metalevel states might not be. Predicates 
and reasoning over metastates seem to be needed to quantify whether agents 
have the capabilities required for grounding. An AACR that learns from its 
user constitutes a collaborative problem solving domain with the CRA <Self/> 
as a metalevel problem solving framework. Within this framework there may 
be different forms of confl ict in the alignment of primal sketches. Sometimes 
the alignment of the sketches is the root of the problem.
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11.5.1.5 Disagreement
In disagreement, each entity stringently asserts its own ontology, unwilling to 
map its primal sketch to that of the other. Disagreement may be treated as a 
grounding error, but that may be misleading. If the CWPDA’s internal state 
refl ects “It will rain today,” but the user thinks “It will not rain today,” then 
the two disagree about the weather. If a CWPDA’s internal state was derived 
from the speech processing of the NOAA radio weather broadcast, its inter-
nal state was derived from an authoritative source. The user’s view may be 
based on personal experience that the weather forecasters are wrong 30% of 
the time, perhaps coupled with optimism. If the CWPDA expresses its inter-
nal state to the user, then miscommunication has not occurred. If the user 
tells the CWPDA, “It will not rain today,” then the CWPDA should detect 
a specifi c class of confl ict, disagreement. Suppose it looks up its serModel for 
weather and fi nds “Today → Rain.” This was deposited there by its processing 
of the NOAA weather forecast. Backtracking to the source, it can say to the 
user, “NOAA Weather Radio says it will rain today.” The reply might be “I 
don’t think so.” At which point, the PDA could replace “Today → Rain” with 
“Today → No Rain.” To avoid thrashing of this state the next time the 
CWPDA processes NOAA weather, the cognition component should expli-
cate the source.

<Weather> <Weather> <Time t/> <Place here/>
 <Source> NOAA </Source> “It will rain today,” </Weather>
<Weather> <Time t+5 /> <Place here/>
 <Source> <User/> </Source> “It will not rain today,” </Weather> 
  </Weather>

Confl ict presents an opportunity for a cognitive agent to learn. In order to 
do this in a computationally effective way, the agent must:

1. Detect the confl ict (e.g., replacing “Rain” with “No Rain” is a 
problem).

2. Encode the situation that led to the confl ict as a problem state (User 
versus NOAA as source for the serModel of weather).

3. Recognize the aspect of context that can convert a confl ict over internal 
state into multiple internal states (extend the Weather model stimulus 
from Today, a temporal constant to (User, Today), a vector).

4. Obtain the data needed to create multiple states (in the example, 
srWeather: User → “Today → No Rain” and srWeather: NOAA → 
“Today → Rain” existed internally, but would not be recognized as such 
without specialized internal data structures and related processing).

5. Deal with the multiple internal states from that point forward. The CR 
would update all of its internal models that ask about weather to express 
(agent, time) as the stimulus to the srWeather model. It could also install 



the dialog “Today → ERROR | Askfor (<agent/>, Today)” in the 
srWeather model. Any internal or external process that asks for the 
weather will know that that is a function of the context variable 
<agent/>.

Setting up and accessing such context variables imparts implied internal 
structure to the cognitive agent that may not be present until such a confl ict 
is detected. Mechanisms to do this are open ended in that the PDA can 
reshape its internal structure, potentially leading to unstable behavior. A 
disagreement regarding the value of an internal state is a specifi c example of 
confl ict. Other types of confl ict are present in CR1. For example, a user can 
always take over control of the PDA’s radio resources in a way that differs 
from the plan offered to the user by the PDA. In any of these situations, the 
PDA is presented with a learning opportunity. The reinforcement mechanism 
built into CR1 could trigger communications with the user, to employ internal 
machine learning algorithms, and to allocate more internal resources (e.g., 
permanent case memory) to those situations that occur often enough. Those 
confl icts that occur only once might safely be ignored. Confl icts occurring 
more than once might be dealt with through machine learning in the next 
sleep cycle. Those that cannot be resolved autonomously could be presented 
to the network or to the user for assistance. A limited version of this machine 
learning strategy has been implemented in CR1.

11.6 SLEEP CYCLES

Decoupling communication among entities by means of remembering associ-
ated context allows for the communication among entities that may not even 
exist at the same time [315]. Creating data structures that refl ect this kind of 
asynchronism can require in-depth reasoning that is combinatorially explo-
sive and that therefore cannot be accomplished within computational 
resources that can be precisely defi ned in advance. Therefore, this less well 
bounded type of computation must be accomplished when the iCR is not 
doing anything that requires real-time response. Night seems like a good time 
for such activity. Given a learned pattern of behavior of the iCR’s owner and 
an emergency wake-up timer, an iCR could spend hours in combinatorially 
explosive reasoning over variable frames, analyzing context bindings, and 
performing other off-line reasoning needed to prepare for the next wake 
cycle.

Mohyeldin et al. [315] point out that realizing reconfi gurability of a system 
requires the extension of the service concept such that the logical architecture 
(i.e., function, task, or requirements) is changed. This is related to the frame 
problem [316, 317], the diffi culty of relating a dynamically changing world 
using small, static models (frames). Over time, assumptions and abstractions 
become wrong even if they were valid at the time a model was constructed. 
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This can lead to errorful learning, such as misinterpreting a one-time excep-
tion as a new normal behavior. The user may let a child use an expensive 
wireless Internet game on the child’s birthday, but the iCR could misinterpret 
that as permission for the child to download expensive games all the time. 
The process of adjusting models to reality is called calibration [315] and can 
be seen as an adaptation of the adaptation itself; even if the problem is not 
solvable, it may be avoided by changing the model, its context, or its ground-
ing from time to time. With partial reconfi guration, there is always part of a 
model that cannot be changed such as runtime service proxies. Information 
in context can be used for ontology-based searches. Algorithms that analyze 
a day’s behavior in order to adjust to such misinterpretations are best incor-
porated into a sleep cycle.

11.7 PITFALLS AND OPPORTUNITIES

While AM showed that automating discovery in mathematics was possible, 
its successors Eurisko and CYC demonstrated that it would take decades to 
apply automatic discovery to create commonsense knowledge. Having accrued 
two plus decades of technology, AACR takes on the commonsense domain 
of the <Radio/> <User/> again. While these technologies have promise, it is 
wise to remain skeptical and to pursue solid evolutionary paths. The relevance 
of the years of AI to AACR includes the following pitfalls and promises.

11.7.1 Pitfalls of Extensible Systems

Tieresias was developed by Professor Randall Davis as an extension to Mycin 
[318]. Although Tieresias worked, like many other AI systems, its technology 
was not fully deployed. Yet rule-based expert systems have been studied and 
popularized at length [13] and are readily applicable to the evolution of 
AACR, with concerns as follows:

Pitfalls of Rule-Based Systems

1. Rule chains suffer from the Gödel–Turing paradox that any Turing-
capable self-referential system can express and attempt to compute 
expressions for which there is no computable answer, either crashing or 
consuming infi nite computing resources in the search process.

2. Rule bases are typically constructed and maintained by people, and the 
cost of that highly skilled labor pool doomed many of the technical 
successes of the 1980s to economic failure.

3. Limited scope rule-based systems are embedded in mainstream soft-
ware products like web browsers, email systems (e.g., rules for replying 
during an absence and for fl ushing spam), and eBusiness enterprise 



systems (e.g., rules for access to data, for prioritizing orders, and for 
responding to problems in a supply chain).

4. Rules have been identifi ed by the World Wide Web Consortium (W3C) 
as an enabling technology for the semantic web [319].

11.7.2 The Fragility of Machine Learning by Heuristics

Lenat’s AM [320] learned mathematics by extending basic set theory, but it 
was confused as it moved too far from the foundation knowledge, so Eurisko 
tried to overcome those limitations. Eurisko led to CYC with over a million 
statements, but 100 million may be needed for “common sense.” The general 
problem of the fragility of heuristics for extensibility remains.

CRs need to sustain relatively intelligent behavior from an initial body of 
knowledge by the interactive gathering of new “ground truth” data from the 
user or CWN. Michalski [321] describes other core ML algorithms relevant 
to AACR. CBR binds the current <Scene/> to prior known situations, and 
incremental schemes, not unlike Tieresias, to automatically formulate and 
manage internal knowledge. The CRA <Self/> can be used as schema-schema 
or as a specifi cation for capabilities that can be programmed in conventional 
languages for adaptation by conventional means. While the <RF/> domain is 
relatively static, even with XG-class liberalization of spectrum-use rules, the 
<User/> domain is anything but, with combinatorially explosive possibilities 
and myriad uncertainties in what users say, do, and mean. So the implementa-
tion of <User/>-domain skills needs a degree of fl exibility and robustness that 
isn’t necessarily required for use-case realization in the <RF/> domain. The 
degree to which the CRA <Self/> (and similar alternatives) could be autono-
mously bootstrapped via machine learning to a robust AACR remains an 
open research question. Therefore, AACR evolution might best be served by 
initially regarding the CRA <Self/> as a description of facilities from which 
AACR systems engineers can pick and choose to achieve the use cases that 
the markets demand, leaving the more aggressive schema-schema interpreta-
tion and extension via AML to the research communities initially.

Yet, in order to increase the robustness of <User/>-domain perception and 
responsiveness even for relatively benign <RF/> applications like helping the 
user set up home wireless LAN networks, the AACR systems engineer can 
leverage advanced aspects of technologies introduced previously. ASR and 
video perception with reinforcement learning, dealing with uncertainty, and 
employing formal ontologies are the signifi cant advanced topics of potential 
market signifi cance. They are relevant whether one’s objective is to autono-
mously bootstrap from <Self/> as schema-schema or just to hack in a few rel-
evant UKOs and UDHs to meet the near-term AACR use case.

Even considering the pitfalls, the potential for integrating sensory percep-
tion and cognition capabilities into SDR to pursue AACR evolution is excit-
ing. As the evolution unfolds, it will be increasingly important to connect to 
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the semantic web community in a larger network-oriented undertaking that 
might be called semantic radio.

11.8 EXERCISES

11.1. It is easy to get an 80% solution to both NLP and ML with relatively small 
effort, but is this good enough? Go to the Web and fi nd IBM’s ViaVoice (or 
its various successors if that particular tool is not available now).

11.2. What do you think of the potential of such acoustic-channel language process-
ing tools as your front-end processor to extract words for your CPDA? How 
will it do at home? How about in an acoustically noisy environment?

11.3. Suppose your CWPDA needs a UKO model of your communications patterns 
and you would like to be awakened by listening to your favorite news radio 
channel. Write the UKO that expresses this knowledge. Write a generic UKO 
for user behavior patterns, and factor the wake-up UKO into operations over 
the generic UKO. Program the updates to this blank UKO in a high order 
language (HOL), where the primitives operate over arbitrary data structures 
that you populate by hand. Refactor this UKO to operate on elements of CRA 
<Self/>. Refactor this UKO to abstract and embed the wake-up logic into a 
UDH. Test your UKO/UDH formulation by exposing it to your habits for 
waking, sleeping, use of commercial broadcast, TV, entering and leaving the 
house, starting the car, taking the kids to school, going to work, and returning 
at the end of the day to your favorite entertainment.

11.4. Regarding a trip to see your mother-in-law, your spouse says, “OK, I need 
you to take us there by 10 am to help her with her doctor’s appointment.” 
Generate the LCS-enhanced transcript and LCS primal sketch of this state-
ment manually or using VISUALIZE. Does your UDH trigger on <Event> 
Appointment </Event> to update the UKO that captures your habits? 
Although the appointment has to do with your spouse, there may be implica-
tions for your own daily patterns. Enhance the appropriate UDH to accom-
modate the spouse’s pattern. Test the UDH and update if necessary so that 
it determines that it needs to assist, and offers to create a wake-up call event 
that will turn your favorite radio station on at 8 am, your typical 2 hour lead 
time for getting to your mother-in-law’s house. Compare a problem-specifi c 
set of rules to the generic UKO/UDH and experience through which it learns 
the rules. If your UDH learns parameters like time of day but not rules, then 
describe a further factoring in which your UDH contains no rules, but a more 
abstract UKO contains primitives from which a UDH can derive rules. (See 
[53] for inspiration.)

11.5. Compare NLP front end with UKO/UDH to other methods of acquiring data 
from users. Again, suppose you have a spouse. To know your spouse’s name, 
the AACR must have some ability to acquire new data. Write a user interface 
that forces the user to enter the spouse’s name in a fi eld called “Spouse’s 
name.” Write an alternate user interface that passively parses speech dialogs 
from a speech recognizer to recognize dialog such as (woman’s voice) “Is that 
your new PDA?” and the reply (male voice, probably <Owner/> 90%) “Yes, 



Sweetie, it is.” The appellation “Sweetie” certainly is a name. Write a UDH 
that will establish the correspondence among “Sweetie” and other kinds of 
name for the family member.

11.6. Too cute may not sell in important markets. So the CR should interact in a 
way that the user fi nds most satisfying. Establish interaction principles for 
Adam, such as: “Introductions should be brief and to the point.” Write a UDH 
that implements this principle. Use that UDH to show that when introducing 
a new user to a CPDA, the experience may range from being introduced to a 
new colleague at work to being introduced to a new puppy. The new puppy 
isn’t very talkative, but it is cute and somehow invites interaction.

11.7. Extend <Syntax/> of <Tag/> to (a) tags as delimiters and (b) tags with prop-
erty lists.

11.8. What kinds of decisions undertaken by an AACR would be amenable to 
solution by linear dichotomizers? Each of the following represents a point in 
a one-dimensional space that divides that space into disjoint regions, each of 
which is associated with a different answer to a typical question. Consider the 
applicability of the dichotomizer, the source of the supervised training data, 
and the degree of variation needed in realistic applications with space–time 
variability. Consider the Mason–Dixon Line. “Are you a Southerner or a 
Northerner?” “Well, I live in Tampa, but grew up in New England. Why do 
you want to know?”

11.9. Search the Web for Java source code on supervised machine learning. Down-
load Bayesian belief networks (BBNs) and implement a <User/>-domain 
capability. Find ANN source code in Java. What do the BBN and ANN tools 
you found have in common? How would you integrate them into your own 
AACR? What are the key implementation challenges in attempting to achieve 
the performance of AANs and BBNs via AML without those tools?

11.10. Defi ne an iCR. How will you implement its internal perception data struc-
tures? What tools would be good for building, accessing, and updating such 
a data structure? Are building and updating the same thing? If not, why not? 
Is it a database? An object-oriented database? Is it enough to just add data, 
or is there other stuff that you are going to have to let the CR change by itself? 
In other words, will you have to write any code that writes new code? If so, 
how will you debug it? Rather, how will your CR test and debug the self-gen-
erated code?
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CHAPTER 12

SEMANTIC RADIO

This chapter considers semantic radio, a near term step in AACR evolution 
supported by eBusiness networks and emerging semantic web technology.

12.1 CYC, eBUSINESS SOLUTIONS, AND THE SEMANTIC WEB

The problem of codifying human knowledge computationally was addressed 
by Douglas Lenat, the inventor of AM, an inspiration for the CRA <Self/>
to include knowledge objects and domain heuristics. AM led to CYC, a 
public, commonsense on-line ontology. Open-source ontologies like CYC 
contribute to AACR in several ways. In one page of code at AAAI in 2005, 
Jim Hendler defi ned feline leukemia from NIH cancer and CYC “cat.” 
Although CYC represents general world knowledge, the treatment of domain-
specifi c topics like <RF/>, which is central to AACR, falls short of what is 
needed. The ways in which it falls short are instructive and shed light on the 
prognosis and pitfalls for AACR, RXML, and the semantic web.

One is regularly faced with the question of whether to work within one of 
the several existing frameworks toward domain-specifi c knowledge or to 
create one’s own domain-specifi c ontology, which typically is much less expen-
sive, can be accomplished quicker, and has the potential of placing one in a 
unique position in a marketplace. The question of ontologies for AACR has 
been an active research topic since 1997. Today’s Web knowledge collections 
may contribute much to the evolution of industrial strength AACR. Business 
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process systems from eBusiness companies like Autonomy® Acxiom®, BEA 
Systems®, Engenium®, Informatica®, Mapamundi®, NetMiner®, Retrieval-
Ware®, Insightful Corp®, Oracle®, VivoMind®, Webtas® [322], and numerous 
others have adopted and exploited computational ontologies, search engines, 
rule-based systems, PROLOG, fourth generation databases, and XML to 
create waves of eBusiness solutions as these software tools are often called. 
The good news is that the tools for identifying, extracting, and exploiting 
knowledge from unstructured data sets now have strong commercial markets. 
There are several kinds of bad news. Nearly all of these solutions are both 
expensive to license and require large, expensive computing platforms. Almost 
none are completely portable to PDAs, although most have thin clients to 
access the corporate eBusiness support systems. Most eBusiness solutions, 
offer the following relevant to AACR:

1. XML semantic tagging of unstructured and semistructured text.
2. Automated creation of the XML tag itself by processing related 

information.
3. Aggregate data from enterprise sources and convert to unifi ed XML 

format.
4. Enterprise applications use standard XML rather than source formats.

Many solutions embed proprietary versions of CYC and no company makes 
its understandably proprietary version public. Although the semantic web has 
been a potential eBusiness enabler since before 2002, it has been slow to 
develop by Web timetables. Professor Jim Hendler has been a consistent 
advocate of knowledge interchange languages including earlier thrusts like 
KQML and now the semantic web [323], typically using RDF, RDF-Schema, 
the DARPA Agent Markup Language (DAML), the Ontology Interchange 
Language (OIL), and the Ontology Web Language (OWL). These languages 
can express nearly anything, and 5000 domain-specifi c ontologies existed in 
August 2005, but semantic radio had not yet been proposed to W3C. The 
CRA <Self/> version of RXML is a candidate for evolution to semantic radio, 
but much needs to be done. Therefore, this chapter develops lessons learned 
from the disconnects between general purpose ontologies and <RF/> specifi c 
ontologies to lay groundwork for future convergence.

12.2 CYC CASE STUDY

The open-source version of CYC [324] offers radio knowledge in an 
Alphabetized List of CYC Constants, an Upper Ontology Flat File, an 
Artifact and Device Vocabulary, a Fundamental Vocabulary, and a Top-
Level Vocabulary.

In its Alphabetized List of CYC Constants [325], CYC lists #$RadioWave. 
Searching these concepts, the substring “radio” occurs exactly once as such. 
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The Constants data structure consists of an alphabetic list of 2560 constants 
with widely disparate concepts as general as #$Thing and as nuanced as 
#$thermalConductivityOfObject.

12.2.1 Upper Ontology

In its Upper Ontology Flat File, CYC refers to radio 11 times, mostly in 
comment fi elds, some of which appear to have the weight of defi nitions but 
little relationship to radio as a radio engineer would know it. The treatment 
reveals the perspective of the interested nonexpert.

 1. CYC fi rst refers to radio as an electrical device, which is a type of 
physical device, but only in a footnote, as follows:
(a) (#$genls #$ElectricalDevice #$PhysicalDevice).
(b) (#$comment #$ElectricalDevice “A collection of physical devices; 

the most general collection of electrical devices. Such devices 
require an input of electrical current (as #$energySource) in order 
to perform their intended functions. Instances of #$Electrical
Device include both complex devices (e.g., elements of the 
collections #$StereoSystem or #$Computer) and simpler ones 
(e.g., elements of #$ElectricalComponents and #$Electronic 
Components).

(c) Note: in some contexts, crystal radios might be classifi ed as inert 
(unpowered) electrical devices; the same for some sorts of passive 
radar detectors. These are exceptional cases, but still elements of 
this collection. In other contexts, the power for these devices 
can be viewed as being supplied from the outside, hence they 
are clearly ‘powered’ in such contexts.”) #$Electromagnetic 
Radiation.

 2. Further along the Upper Ontology Flat File notes that a radio wave is 
a type of electromagnetic radiation
(a) (#$isa #$ElectromagneticRadiation #$WavePropagationType).

   (i) (#$isa #$ElectromagneticRadiation #$DefaultDisjointScript 
Type).

  (ii) (#$genls #$ElectromagneticRadiation #$WavePropagation).
 (iii) (#$comment #$ElectromagneticRadiation “A collection of 

events; a subset of #$WavePropagation. Each element of 
#$ElectromagneticRadiation is an event that arises from the 
interaction of an electrical fi eld and a magnetic fi eld. Exam-
ples include the elements of the collections #$VisibleLight, 
#$RadioWaves, and #$XRays.”)

 3. It notes that a radio wave is an #$InformationBearingThing #$IBT, 
which is an interesting construct borrowed from CYC for RXML as 
<Information> <Thing/> </Information>.



(a) #$IBTGeneration.
(b) (#$isa #$IBTGeneration #$TemporalObjectType).
(c) (#$genls #$IBTGeneration #$Action).
(d) (#$genls #$IBTGeneration #$TransferOut).
(e) (#$genls #$IBTGeneration #$InformationTransferEvent).
(f) (#$comment #$IBTGeneration “A collection of information trans-

fer events. Each element of #$IBTGeneration is an event which 
creates some information-bearing thing—thus, an event in which 
some idea or information is expressed. In elements of #$IBT-
Generation, the particular IBT (i.e., element of #$Information-
BearingThing) which is created may be either a transient wave 
phenomenon (e.g., made of sound, light, or radio waves), or it may 
be a relatively long-lasting instance of #$InformationBearing-
Object (cf. #$IBOCreation). Humans frequently generate such 
IBTs as spoken language, gestures, and handwritten notes. It is 
irrelevant for elements of #$IBTGeneration whether there is 
another agent who immediately (or, indeed, ever) accesses the 
resulting IBTs. Note the difference: reading is NOT an IBT gen-
eration event, but writing (usually) is. IBTs may be generated 
intentionally or unintentionally. Also, every communication act 
starts with an instance of #$IBTGeneration. See also #$Commu-
nicating and its subsets, esp. #$CommunicationAct-Single.”)

 4. CYC repeats this assertion with a twist in a related collection of ideas, 
again in a comment. CYC “radio signals” are different from “radio 
waves” but this ontology doesn’t convey technical differences (e.g., 
signals versus noise, such as lightning; and that signals can occur inside 
a radio device and the signal-bearing waves can propagate in 
waveguide):
(a) ;;; #$InformationBearingWavePropagation.
(b) (#$isa #$InformationBearingWavePropagation #$TemporalStuff 

Type).
(c) (#$genls #$InformationBearingWavePropagation #$Wave 

Propagation).
(d) (#$genls #$InformationBearingWavePropagation #$Information 

BearingThing).
(e) (#$comment #$InformationBearingWavePropagation “A collec-

tion of information bearing things (IBTs). Each element of 
#$InformationBearingWavePropagation is a #$WavePropagation 
(q.v.) event that carries information, for an interpreter which 
understands its conventions. Examples of #$InformationBearing-
WavePropagation include sounds, radio signals, and images of 
visible light. These event-like IBTs should be contrasted with the 
relatively static, persistent, object-like IBTs in the collection 
#$InformationBearingObject.”)
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 5. Later, the upper ontology links radio to news but in a comment, as 
follows:
(a) ;;; #$News.
(b) (#$isa #$News #$StuffType).
(c) (#$genls #$News #$PropositionalInformationThing).
(d) (#$comment #$News “A collection of abstract (intangible) 

informational items. Each element of #$News consists of 
some factual information about recent events in the world (or 
#$geographicalSubRegions thereof). News is commonly embodied 
in newspapers and communicated through radio and television 
news broadcasts.”)

 6. Radio Waves fi nally get their own class in the RadioWaves collection. 
If one takes the comment about radio waves as a defi nition, then we 
have a defi nition of radio that starts at 100 Hz, which isn’t too bad, but 
that stops at 3  GHz or 100  MHz, hardly the extent that an engineer 
would attribute to the radio spectrum. This is as good as it gets in open 
source.
(a) ;;; #$RadioWave
(b) (#$isa #$RadioWave #$TemporalStuffType)
(c) (#$isa #$RadioWave #$ScriptType)
(d) (#$genls #$RadioWave #$ElectromagneticRadiation)
(e) (#$comment #$RadioWave “A collection of events; a subset of 

#$ElectromagneticRadiation. Each element of #$RadioWave is an 
instance of electromagnetic radiation having a wavelength in the 
range from approximately 1 centimeter (1 × 10∧8 #$Angstrom) to 
3,000,000 meters (3 × 10∧18 #$Angstrom), and a frequency of 
approximately 10∧8 #$Hertz to 10∧2 #$Hertz. This includes the 
spectrum for RadioWave-UHF, RadioWave-VHF, RadioWave-
FM, RadioWave-AM, and several other types of common use 
#$ElectromagneticRadiation.”)

 7. The upper ontology goes on to include the notion of receiving a 
wave, such as viewing a scene using light as the mediating wave. In this 
case, the radio telescope example of the comments seems hardly 
defi nitional.
(a) ;;; #$ReceivingAWave.
(b) (#$isa #$ReceivingAWave #$TemporalStuffType).
(c) (#$genls #$ReceivingAWave #$Receiving).
(d) (#$comment #$ReceivingAWave “A collection of events; a subset 

of #$Receiving. Each element of #$ReceivingAWave is an event 
in which an instance of #$WavePropagation is received at a 
#$to Location. For example, my CD player receiving an infrared 
signal from the remote control; hearing a sound of distant thunder; 



a radio telescope receiving signals from a celestial body. See also 
#$WavePropagation.”).

 8. Next, the upper ontology describes how to rotate a radio dial, which is 
a nonperiodic motion, as follows:
(a) ;;; #$Rotation-NonPeriodic.
(b) (#$isa #$Rotation-NonPeriodic #$TemporalObjectType).
(c) (#$genls #$Rotation-NonPeriodic #$Movement-NonPeriodic).
(d) (#$genls #$Rotation-NonPeriodic #$Movement-Rotation).
(e) (#$comment #$Rotation-NonPeriodic “The set of all rotational 

movements in which rotation occurs in a nonperiodic fashion; e.g., 
the turning of a knob on a kitchen appliance or a radio dial, or 
movements of a trackball. See also #$Rotation-Periodic for the 
context-sensitive nature of this dichotomy.”)

 9. The next occurrence of radio in the CYC upper ontology is that of a 
clock radio as an example of a class that they call a sibling disjoint 
collection. To express this idea to their satisfaction, CYC offers some 
predicate calculus.
(a) ;;; #$SiblingDisjointCollection.
(b) (#$isa #$SiblingDisjointCollection #$Collection).
(c) (#$genls #$SiblingDisjointCollection #$Collection).
(d) (#$comment #$SiblingDisjointCollection “#$SiblingDisjoint-

Collection captures a very important concept, but one that is rarely 
given a name. There are many sets of sets for which any two 
member sets either will be disjoint (i.e., have no intersection) or 
else one will be a subset of the other. For instance, consider the 
various types (i.e., sets) of animals in the usual Linnaean taxon-
omy: Vertebrate, Bird, Dog, Mammal, Invertebrate, Person, etc.; 
Vertebrates and Invertebrates are mutually disjoint, while Bird, 
Mammal, Dog, and Person are all subsets of Vertebrate. Dog and 
Person are disjoint with each other, but each of them is a subset of 
Vertebrate. All of the Linnaean sets, or collections, of animals can 
be grouped together into one set, or collection, of sets, which in 
turn is an instance of #$SiblingDisjointCollection. It turns out that 
the real situation—and the real defi nition of #$SiblingDisjoint-
Collection—is slightly more complicated than that. Consider types 
of appliances: toasters, cars, shavers, clocks, etc. Is the set of such 
appliance-types a #$SiblingDisjointCollection, the way we defi ned 
it above, for types of animals? Almost, but not quite. One could 
have an appliance-type ‘ClockRadio’, which would be the set of 
all clock radios, and clearly each clock radio is both a clock and a 
radio, yet neither #$Clock nor #$RadioReceiver is a subset of the 
other. So if we have some item that purports to be both a clock and 
radio, that is okay if one of the following three conditions is met:
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   (i) (1) the collection #$Clock is known to be a subset of 
#$RadioReceiver;

  (ii) (2) the collection #$RadioReceiver is known to be a subset 
of #$Clock;

 (iii) (3) there is already defi ned a collection X which is a subset 
of both #$Clock and #$RadioReceiver.

(e) More formally, the axiom that defi nes #$SiblingDisjointCollection 
is as follows: SIB is an element of #$SiblingDisjointCollection if 
and only if:

    (i) (#$implies
   (ii) (#$and
  (iii) (#$isa C1 SIB)
   (iv) (#$isa C2 SIB) (#$isa C1-EL C1)
    (v) (#$different C1 C2))
   (vi) (#$or
  (vii) (#$not (#$isa C1-EL C2))
 (viii)  (#$thereExists C3 (#$and (#$genls C3 C2) (#$genls C3 C1) 

(#$isa C1-EL C3))))).
(f) That axiom, together with the minimization of #$genls, gives us 

the following characterization of our concept: If we have a collec-
tion SIB that is an element of #$SiblingDisjointCollection, and if 
we take two elements C1 and C2 of that collection SIB, then each 
element of C1 which is not an element of a common specialization 
(C3) of C1 and C2, MUST NOT BE an element of C2.

(g) In cases where there are a few exceptions—that is, a couple of 
elements of SIB might have some overlap—but it is undesirable 
to explicitly create a new reifi ed constant (like ‘ClockRadio’, 
above) for that intersection, CYC allows you to use an explicit 
mechanism to override the #$SiblingDisjointCollection constraints 
for a particular C1 and C2; namely, you would assert to CYC 
(#$siblingDisjointExceptions C1 C2). See also #$siblingDisjoint 
Exceptions.”)

These are good examples of the complexity that arises when competing 
factions like military radio experts and commercial radio experts meet in 
settings like the SDR Forum or OMG for AACR and semantic radio. Logic 
is put to the test, twisted up, and sometimes compromised nearly out of exis-
tence until consensus is reached as necessary in a broadly based standards 
body. Software tools that automate such processes are generally lacking. 
While UML generates models, few tools automate compilation of semantics 
of such models (e.g., from WordNet), or visual references (e.g., for primal 
sketches), or fi rst principles from a core ontology like the CRA <Self/>.



10. The next example shows another limitation of the CYC approach. 
Radios share many properties with physical objects, such as orienta-
tion. Radio towers have a vertical orientation that distinguishes the 
object. If an algorithm should use this ontology to represent everyday 
knowledge, then the algorithm can fi nd instances “radio.” Reasoning 
from the comment, an algorithm may infer that a radio tower has 
VerticalOrientation. Associated with the string “VerticalOrientation” 
should be chunks of algorithm that manipulate data associated with 
things that have a vertical orientation. The assertion is shallow and 
chunks of algorithm needed for skills are not present.
(a) ;;; #$VerticalOrientation (SIC)
(b) (#$isa #$VerticalOrientation #$OrientationAttribute)
(c) (#$comment #$VerticalOrientation “(#$orientation OBJECT 

#$VerticalOrientation) means that OBJECT is vertical with 
respect to the current instance of #$FrameOfReference. A linear 
(#$LongAndThin) object is vertical if and only if its longest dimen-
sion is perpendicular to horizontal (#$HorizontalDirection). A 
planar (#$SheetShaped) object has #$VerticalOrientation if and 
only if its planar surface is perpendicular to the current horizontal 
plane. Typically, vertical objects include window panes, skyscrap-
ers, trees, radio towers, and walls.”)

11. Then radio is viewed as the source of waves, as follows:
(a) ;;; #$waveSource
(b) (#$isa #$waveSource #$TernaryPredicate)
(c) (#$arg1Isa #$waveSource #$SomethingExisting)
(d) (#$arg2Isa #$waveSource #$SomethingExisting)
(e) (#$arg3Isa #$waveSource #$WavePropagationType)
(f) (#$arg3Genl #$waveSource #$WavePropagation)
(g) (#$comment #$waveSource “The predicate #$waveSource is 

used to indicate that a type of wave is travelling between a 
source and a reception point. (#$waveSource SOURCE END-
POINT WAVETYPE) means that there is a #$WavePropagation 
of type WAVETYPE propagating between the #$fromLocation 
SOURCE and the #$toLocation ENDPOINT. For example, 
(#$waveSource VoiceOfAmerica-Seoul #$CityOfBeijingChina 
#$RadioWave).”)

That is the upper ontology directly related to radio.

12.2.2 Artifact and Device Vocabulary

In the Artifact and Device Vocabulary “radio” occurs only once, as 
follows:
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1. #$ElectricalDevice A collection of physical devices; the most general 
collection of electrical devices. Such devices require an input of electri-
cal current (as #$energySource) in order to perform their intended 
functions. Instances of #$ElectricalDevice include both complex 
devices (e.g., elements of the collections #$StereoSystem or #$Com-
puter) and simpler ones (e.g., elements of #$ElectricalComponents and 
#$ElectronicComponents).

2. Note: in some contexts, crystal radios might be classifi ed as inert 
(unpowered) electrical devices; the same for some sorts of passive radar 
detectors. These are exceptional cases, but still elements of this collec-
tion. In other contexts, the power for these devices can be viewed as 
being supplied from the outside, hence they are clearly “powered” in 
such contexts.

3. isa: #$ExistingObjectType
4. genls: #$PhysicalDevice #$PoweredDevice #$PartiallyTangibleProduct 

#$SolidTangibleThing
5. some subsets: #$ElectronicDevice #$ElectricalComponent (plus 460 

unpublished subsets)

Presumably, radio occurs in one of the unpublished subsets.

12.2.3 Fundamental Vocabulary

In CYC’s Fundamental Vocabulary, radio is mentioned as an example of a 
sibling disjoint collection, a derivative of Thing:

1. #$Thing #$Thing is the universal set: the collection of everything! Every 
CYC constant in the Knowledge Base is a member of this collection; in 
the prefi x notation of the language CycL, we express that fact as (#$isa 
CONST #$Thing). Thus, too, every collection in the Knowledge Base 
is a subset of the collection #$Thing; in CycL, we express that fact as 
(#$genls COL #$Thing). See #$isa and #$genls for further explanation 
of those relationships.

2. Note: There are even a few collections, such as #$CharacterString and 
#$Integer, which have a #$defnSuffi cient that recognizes non-constants 
(such as strings and numbers) as instances of #$Thing.

3. isa: #$Collection
4. some subsets: #$Path-Generic #$Intangible #$Individual #$Simple-

SegmentOfPath #$Path-Simple #$MathematicalOrComputational-
Thing #$IntangibleIndividual #$Product #$TemporalThing #$Spatial 
Thing #$Situation #$EdgeOnObject #$FlowPath #$ComputationalOb-
ject #$Microtheory (plus 1488 more public subsets, 13568 unpublished 
subsets).



#$Thing and #$Path are fundamentals in the CRA and LCS. The object-
oriented semantics of Individual, Collections, Predicate, isa, and genls (gen-
eralizes) encroach on similar computer science constructs.

12.2.4 Top-Level Vocabulary

The CYC Top-Level Vocabulary expands the Fundamental Vocabulary 
into a metalevel dictionary of human experience, defi ning situations, events, 
roles, intangibles, Objects, Stuff, Time (a kind of Stuff), Temporal Things, 
Tangible and Intangible Things, Creation, Destruction, Transformation, 
Transfers, Movement, Information Transfer, and Exchanges. In these data 
structures, radio is a type of receiver. These constructs are similar to RXML 
<Abstraction/>s.

1. #$Receiving A collection of events; a subset of #$GeneralizedTransfer. 
Each element of #$Receiving is an event in which something 
“comes in” to an object. Typically, a receiving has associated with it an 
element of #$Translocation; a particular receiving and its associated 
translocation(s) are related by the predicate #$transferInSubEvent. If 
the thing which “comes in” is an instance of #$PartiallyTangible (such 
as a baseball, or a SCUD missile), then its reception belongs to the 
specialized subset, #$ReceivingAnObject (q.v.). If the translocation 
associated with the receiving is an instance of #$WavePropagation (such 
as a radio broadcast, or heat radiation from the Sun), then the receiving 
belongs to the subset #$ReceivingAWave (q.v.).

2. isa: #$TemporalObjectType
3. genls: #$TransferIn
4. some subsets: #$ReceivingAWave #$ReceivingAnObject

12.3 CYC IMPLICATIONS

The fact that CYC doesn’t provide a radio engineer’s view of radio suggests 
the degree to which people are domain oriented. If I am a Carpenter and you 
are a Lady, then I know a lot more about wood, tools to shape wood, and 
nails that make a pile of sticks into a house, than you. If you are a Lady, you 
probably care a lot more about end items like rooms and furniture than about 
how I made them.

The same is true for computational ontology. Although there have been 
numerous attempts to organize all knowledge computationally, as knowledge 
becomes even a little specifi c, knowledge differences grow exponentially 
between generalists and specialists or even hobbyists. Radio has many 
specializations from GSM and 4G to the nuances of SATCOM and HF 
Ham radio.
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12.3.1 Ontology Normalization

Radio ontology may be suited either to generalists (commercial users) or to 
a group of specialists. Normalization is the social process of agreeing on a 
single ontology even though many arise naturally. This unnatural act often 
has limited success. In the 1960s and 1970s, for example, the U.S. military 
decided that there were too many different abbreviations in use in military 
communications. To fi x this “once and for all,” the precursor to the Defense 
Information Systems Agency (DISA), the Army, and the Navy created a Joint 
Army Navy standard, JANAP 128 and a Defense Operating Instruction, DOI 
103, with standardized abbreviations and symbols that almost nobody uses. 
The Army has adhered to some graphics standards. A box with an X across 
and two XX’s on top represents an infantry division now as it did then. Man-
portable surface-to-air missiles didn’t even exist at the time the symbols were 
standardized, and thousands of other standard abbreviations languish unused. 
Thus, within very constrained domains like military map symbols, it is 
possible to normalize ontologies, and if one organizational entity has the 
authority to enforce conformance, the knowledge standards endure. Most 
human undertakings are not so well structured.

12.3.2 Ontology Mapping

When domain ontologies can’t be normalized, they must be mapped. If you 
call it “less fi lling” and I say it “tastes great” we both know we are talking 
about “Miller beer.” That TV commercial was about ontology mapping. What 
is important to me will be strongest in my vocabulary, and it may not match 
your perception of the identical object. Therefore, AACR evolution needs 
technology for the graceful extensibility of concepts, knowledge, and skills 
readily mapping among ontologies as the AACR developers, network opera-
tors, web infrastructure suppliers, and many users communities interact.

Expression 12-1 Ontology Mapping

<Path> <From> <My-Ontology> <Beer> Miller-Lite
<Quality> <First> Less-fi lling </First> </Quality> </Beer>

</My-Ontology> </From>
<To> <Your-Ontology> <Beer> Miller-Lite
<Quality> <First> Tastes-great </First> </Quality> </Beer>

</Your-Ontology> </To>
</Path>

The path of Expression 12-1 says we agree to disagree. If there were some 
way in which my concept and yours were identical or mutually compatible, it 
would be a resolvent of the path, such as <Drink-beer/>. While it is relatively 
easy to resolve #$Thing to <Thing/>, the semantics do not match as well. 



<Superman/> is an <Abstraction/> but not a <Thing/>, while in CYC Super-
man is a #$Thing. This ontological stance differs substantially from most web 
languages.

12.4 WEB LANGUAGES

The defi nition and use of ontologies is facilitated by markup languages. 
Yolanda Gil and Varun Ratnakar characterized the trade-offs among 
markup languages for knowledge representation, comparing XML (eXtensi-
ble Markup Language), RDF (Resource Description Framework), and 
DAML (DARPA Agent Markup Language) as summarized in Table 12-1 
[326].

In Gil and Ratnakar’s terminology, range specifi es the kinds of values 
(elements/classes/datatypes) that a property or element can have. Domain 
specifi es which elements or classes can have that property. XML enables one 
to defi ne <Transitive/>, <Not/>, and so on with one’s own semantics, but most 
such tagging for ontology-related functions that are explicit in DAML are not 
explicit in XML, by design. Negation implies the absence of some element 
(e.g., no Car is a person). Necessary and suffi cient conditions for class mem-
bership specify a class defi nition that can be used (1) to determine (or recog-
nize) whether an instance belongs to that class or (2) to determine (or specify) 
whether the class is a subclass of another class. Their treatment is of the level 
of detail needed for industrial strength radio ontology development for the 
Web.

12.5 RADIO XML

In Radio XML, <Radio/> defi nes “the domain of natural and artifi cial knowl-
edge and skill having to do with the creation, propagation, and reception of 
radio signals from sources natural and artifi cial.” That’s pretty much how 
RXML, defi ned in terms of the use of XML <Tag/>s as schema-schema, was 
envisioned, within an open framework for general world knowledge needed 
for AACR. RXML recognizes critical features of microworlds not openly 
addressed in any of the eBusiness or semantic web languages yet:

1. Knowledge often is procedural.
2. Knowledge has a source that often establishes whether it is authoritative 

or not, or its degree of attributed voracity.
3. Knowledge takes computational resources to store, retrieve, and 

process.
4. A chunk of knowledge fi ts somewhere in the set of all knowledge and 

knowing more or less where that knowledge fi ts can help an algorithm 
reason about how to use it.
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Thus, RKRL offers the following constructs:

RXML Web Languages

1. <Tag/> Identifi er
2. Body Statements
3. Models Relationships such as “isa”
4. Context Similar to namespace, but space–time annotated
5. Source Web languages use namespace to attribute knowledge to 
  sources
6. Resources No equivalent; not concerned with concrete complexity

12.5.1 Elements of RXML

RXML includes the following:

1. A <Tag/>ed XML syntax using <Tag/>s as scoping operators for 
frames.

2. Lexical semantic models of time, space, entities, and communications 
among entities.

3. Entities (people, places, and things) occupy subsets of physical (Space 
× Time).

4. An initial set of knowledge, the CRA <Self/> with representation sets, 
defi nitions, conceptual models, and radio-domain models including the 
AACR functional architecture, and the cognition cycle

5. Mechanisms for extending the lexical semantics, modifying and extend-
ing RXML.

12.5.2 RXML Syntax

In RXML each <Tag/> is a schema-schema, and its uses specify the classes 
of data structure that may be derived from the tag. In other words, each tag 
is both a syntactic device for tagging content and an ontological primitive that 
makes statements about the role of that which is tagged in radio ontology of 
the CRA <Self/> to which each such AACR subscribes.

Each <Tag> that delimits a <Body/> of content </Tag> specifi es a <Frame/>,
a computational structure within which names, objects, procedures, asser-
tions, logic, states, references, and other computational necessities may be 
constrained without distorting the semantics of the <Self/>, <RF/>, or <User/>
domains of the CRA.

Models expressed in RXML specify the relationships among tagged 
elements in the body of a frame. The body may function as predicates, 
neural networks, if–then rules, CBR cases, and so on depending on how the 
frame is interpreted. These dynamic semantics also may be defi ned with 
<Tag/>s.
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A <Context/> is a path to the root of RXML’s universal ontology. All 
context roots originate with the string “RXML.” This specifi es that this frame 
belongs to RXML. The context root is a path from RXML to the frame 
through set membership (via contains) in the microworlds hierarchy. Context 
also includes the source of the material in the frame (e.g., the author) and the 
time and place at which the content of the frame was generated. This addi-
tional metalevel frame context supports machine reasoning about the validity 
of the frame. If the frame is out of date or was provided by a deprecated 
source, the cognitive agent can take appropriate action to update the frame.

A <Resource/> specifi es software-radio-domain computational resources 
(e.g., processing time, computational capacity, memory, and/or interconnect 
bandwidth). This metalevel knowledge supports machine reasoning about 
the computational resources needed to accomplish a task. For example, the 
resources associated with an equalizer could specify the time within which 
the equalizer should converge [327]. The CR can apply computational con-
straints by setting a watchdog timer before invoking a procedure. Resources 
need not be computational. Frames concerned with antennas, for example, 
might specify the maximum RF power as a <Resource/> that can be supplied 
to the antenna. Without such <Resource/> constraints, CR could not reliably 
reason introspectively about changes to the <Self/> like downloads. 

12.5.3 Heterogeneous Skills in RXML

In most software systems, knowledge and reasoning are represented homo-
geneously. All rule bases use rules, predicate calculus systems use Horn 
clauses, typically interpreted by a PROLOG engine, and CBR systems tend 
to use databases. Object-oriented technology makes it easy to employ multi-
ple representations for the same information by attaching alternate represen-
tations to the object’s slots. But C+, Java objects, and C++ objects are all 
declared differently. RXML’s <Model/> primitive tags such expressions for 
interpretation by the appropriate compiler. The language-independent repre-
sentation of the set-theoretic and model structure of such objects is mappable 
to any of them. RXML thus supports heterogeneous knowledge representa-
tion as illustrated in Figure 12-1. Frames may incorporate one of the following 
model classes:

Model Class Interpretation Mechanism

Ontological (e.g., Scope, Contains, Set) Set-theoretic tools
Natural language (e.g., Defi nition) Human ASR, or VoiceXML
   interpretation
Axiomatic (e.g., Time, Now, Place,  PROLOG, Rule-interpreters
 Location Predicates, Horn Clauses)
Stimulus–response (the default  serModel, neural networks, sums
 interpretation)
Reserved (e.g., Excel, Outlook, OPRs) Associated proprietary tool
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DSP Pool Processors
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Processors
Processors

Processors
Number 4

MIPS 2600

FIGURE 12-1 Heterogeneous skill representation in RXML.

RXML does not prefer one form over another. However, it does specify 
that if there is a model, then that model is identifi ed in the Models metaworld. 
Space, time, RF (e.g., radio signals and propagation), and entities are axioma-
tized in LCS, but that is just one of many alternative axiomatizations.

In addition, the semantics of that model has to be specifi ed somewhere in 
the inference hierarchy, for example, by specifying the API. Each model slot 
in a RXML frame implies the related interpretation mechanism. For example, 
the contains model entails set-theoretic expansion of the parent frame to 
contain child frames that inherit the parent’s context. Natural language 
models rely on human interpretation of language. These may be as formal as 
the KQML microworld or as informal as any User microworld, as the use 
context indicates. RXML is developed further in the companion CD-ROM/
web site.

12.6 CONCLUSIONS

The convergence of speech recognition, vision, and robotics with SDR and 
radio spectrum liberalization portends a wireless Web where VoIP from the 
PDA displaces conventional cellular service providers in urban centers. On 
the other hand, conventional cellular service providers may leverage AACR 
technologies to regain profi tability. Either way, the use cases, enabling tech-
nologies, radio knowledge, KOs, DHs, and web technologies introduced in 
this book will make exciting contributions to academic, government, and 
commercial interests for decades to come.
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AAAI American Association for Artifi cial Intelligence
AACR aware, adaptive, and cognitive radio
AAR aware–adaptive radio
ABC always best connected
ABI always better informed
ADC analog-to-digital converter
AGC automatic gain control
AIKA autonomous incremental knowledge acquisition
ALE automatic link establishment
AML autonomous machine learning
ANN artifi cial neural network
Antecedent the precondition of an If–Then logic structure
APIs applications–programmer interfaces
ARQ automatic repeat request
ARs aware radios
ASR Automatic speech recognition
ASIC application-specifi c integrated circuit
AV-ASR audio-visual automatic speech recognition
AWGN additive white Gaussian noise
BER bit error rate

Cognitive Radio Architecture: The Engineering Foundations of Radio XML
By Joseph Mitola III Copyright © 2006 John Wiley & Sons, Inc.
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BIT built-in test
BLoS beyond line-of-sight
BPSK binary phase shift keying
BSC base station controller
BTS base transmission station
CAD computer-aided design
CASE computer-aided software engineering
CBR case-based reasoning
CCI co-channel interference
CDAAs circularly disposed array antennas
CDMA code division multiple access
CFAR constant false alarm rate
CFGs context-free grammars
CIR carrier-to-interference ratio, a measure of radio signal strength
CNs cognitive networks
COMSEC communications security
CORBA common object request broker architecture
CR cognitive radio
CRA cognitive radio architecture
CRO cognitive radio ontology
CVSDM continuously variable slope delta modulation
CWN cognitive wireless network
CWPDA cognitive wireless personal digital assistant
DAB digital audio broadcast
DAC digital-to-analog converter
DBSs direct broadcast satellites
DECT Digital European Cordless Telephone
DH domain heuristics
DLL dynamic link library
DoA direction of arrival
DP dynamic programming
DSP digital signal processor
DSSS direct sequence spread spectrum
DVB direct video broadcast
ECCMs electronic counter-countermeasures
EIRP effective isotropic radiated power
EM electromagnetic
EMP electromagnetic pulse
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ETSI European Telecommunications Standards Institute
FCC Federal Communications Commission (U.S.A.)
FDM frequency division multiplexing
FEC forward error control
FFT fast Fourier transform, a means of estimating the power spectrum
FH frequency hop
FOPC fi rst-order predicate calculus
FPGA fi eld programmable gate array
FSK frequency shift keyed
FSLs fi nite state languages
FSM fi nite state machine
FSO free-space optics
3G third generation mobile cellular systems (e.g., based on CDMA)
GA genetic algorithm
GoS grade of service
GPP general purpose processor
GUI graphical user interface
HDR hardware-defi ned radio
Hidden nodes receivers not detected by potential interferers
HLR home location register
HLT human language technology
HMMs hidden Markov models
HTML Hypertext Markup Language
IBR instance-based reasoning
iCR ideal cognitive radio
IDL CORBA Interface Defi nition Language
IFF if and only if; identifi cation friend or foe
IMU inertial measurement unit
INFOSEC information security
IRDA infrared data access
ISA instruction set architecture
ISAPI information services applications–programmer interface
ISM Instrumentation, Scientifi c and Medical—a set of low power RF 

bands
ISO International Standards Organization
ISP Internet service provider
ITU International Telecommunications Union
IVHSs intelligent vehicle highway systems
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JADE Java Agent Development Environment
JESS Java Expert System Shell
JTIDS Joint Tactical Information Distribution System
JTRS Joint Tactical Radio System
KB knowledge base
KDD knowledge discovery and data mining
KOs knowledge objects
KQML Knowledge Query and Manipulation Language
KS knowledge source
KTH Kungle Tekniska Hogskolan
LCS lexical conceptual semantics
LEO low Earth orbit
LLC logical link control
LNA low noise amplifi er
LPC Linear Predictive Coding
LPI low probability of intercept
LSB lower sideband
LSI latent semantic indexing
LUF lowest usable frequency
LVHF lower very high frequency
MAC media access control
MBA multibeam antenna array
MBC meteor burst communications
MBMMR multiband multimode radio
Method a procedure attached to a software object
MIMO multiple input multiple output
ML machine learning
MSC message sequence chart
MTSO mobile telephone switching offi ce
MUF maximum usable frequency
NL natural language
NLP natural language processing
NoI Notice of Inquiry
NPRM Notice of Proposed Rule Making
NVI near vertically incident
OBR ontology-based radio
ODP open distributed processing
OEM original equipment manufacturer
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OFDM orthogonal frequency division multiplexing
OMG Object Management Group
Ontology branch of metaphysics that studies the nature of existence or 

being
OOK on–off keying
OOT object-oriented (OO) technology
OSI open systems interconnect
ORB object request broker, software that dispatches remote procedure 

calls, and so on
OTA over the air
OWL Ontology Web Language
PAN personal area network
PDA personal digital assistant
PDA DL PDA design language
PDANode object that contains a srModel and related slots and methods
PDL Program Design Language
PDR programmable digital radio
PHY physical layer of the ISO protocol stack
PIM platform-independent model
PPM pulse position modulation
PSD power spectral density—a spectrogram, power of signals and noise 

versus RF
PSK phase shift keying
PSTN Public Switched Telephone Network
PVMs parallel virtual machines
PWM pulse width modulation
QoI quality of information
QoS quality of service
QPSK quaternary phase shift keying
R&O Rule and Order
RA regulatory authority
RAP radio access protocol
RBL relevance-based learning
RDHs radio-domain heuristics
RDO radio-domain ontology
Reinforcement assigning an increased degree of belief or relevance to a 

stimulus, plan, and so on
RF radio frequency
RHSs reinforced hierarchical sequences
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RISC reduced instruction set computer architectures
RKRL Radio Knowledge Representation Language
RL reinforcement learning
RSSI received signal strength indication
RXML Radio XML
SCA software communications architecture
SCPC single channel per carrier
SDL Specifi cation and Description Language (ITU Recommendation 

Z.100)
SDR software-defi ned radio
<Self/> ontological self in RXML
serModel stimulus–experience–response model
SKOs spatial knowledge objects
SLI situated language interpreter
Slot data structure that is part of a software object
SNR signal-to-noise ratio
SOI signal operating instruction
SOP standard operating procedure
SRA software radio architecture
srModel stimulus–response model (deprecated)
SSs skill sets
SVMs support vector machines (an IBR technology)
SWR software radio
Taxonomy science dealing with description, identifi cation, naming, and 

classifi cation
TD time difference
TDL temporal difference learning
TDM time division multiplexed
TIA Telecommunications Industries Association (U.S.A.)
TRANSEC transmission security
TV television
UDHs user-domain heuristics
UML Unifi ed Modeling Language (an object-oriented design language)
USB upper sideband
UWB ultra-wideband
VAD voice activity detector
VCM virtual channel management
VoiceXML Voice version of the eXtensible Markup Language (XML)
VoIP Voice over IP
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VOX voice operation transition (same as VAD)
VSAT very small aperture terminal
VSB vestigial sideband
VTC video teleconference
W3C World Wide Web Consortium
W-CDMA wideband CDMA, the emerging international 3G standard
WiFi IEEE 802.11 wireless network
WPDA wireless PDA
WRC World Radio Conference
XG DARPA neXt Generation spectrum-use policy and language
XML eXtensible Markup Language
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