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1
Introduction

1.1 Introduction

Perhaps no other subject in the history of physics has captured the human 
imagination more than quantum mechanics has. This captivation has 
extended beyond physics, and science, and well into the realm of popular 
culture. This is because quantum mechanics, also known as quantum 
physics, correctly describes the microworld and the nanoworld in a math-
ematical way that appears to be mysterious to us, the inhabitants of the 
classical world.

Perhaps one of the best, and most succinct, descriptions of quantum 
mechanics has been given by the well-known quantum and particle physicist 
John Clive Ward: “The inner mysteries of quantum mechanics require a willingness 
to extend one’s mental processes into a strange world of phantom possibilities, 
endlessly branching into more and more abstruse chains of coupled logical networks, 
endlessly extending themselves forward and even backwards in time” (Ward, 2004).

1.2 Brief Historical Perspective

Quantum mechanics came to light via the work of Max Planck, published 
in 1901. In that contribution, Planck used concepts of thermodynamics to 
explain the energy distribution of light sources as a function of wavelength 
(Planck, 1901). In doing so he introduced, without derivation, an equation 
where the energy of the emission was a function of frequency ν, that is,

 E h= ν  (1.1)

where
the units of the energy E is the joule (J)
the units of the frequency ν is the Hz
h is known as Planck’s constant (h = 6.62606957 × 10−34 J s).
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That was the birth of quantum mechanics. It was born from the experiment; 
it was an empirical birth.

Another important experimental observation relevant to the develop-
ment of quantum mechanics was the photoelectric effect (Hertz, 1887). 
This effect, of fundamental significance to modern photomultipliers, 
and photo detectors in general, means that when a surface composed of 
charged particles is irradiated with light of frequency ν, there is a prob-
ability that electrons will be emitted from that surface. An explana-
tion to the photoelectric effect was provided by Einstein (1905) via the 
relationship

 E W= −�ω  (1.2)

where W is defined as the work function or energy required to emit an elec-
tron from the irradiated surface. In this contribution, Einstein also proposed 
that light behaves as a stream of localized units of energy that he called 
lightquanta.

A few years later, Bohr (1913) postulated that electrons in an atom can 
only populate well-defined orbits at discrete energies Wn. When the electron 
jumps from one orbit of energy Wn to another one at Wn+1, it does so emitting 
radiation at a frequency ν, so that (Bohr, 1913)

 W W hn n− =+1 ν  (1.3)

The developments introduced earlier were the preamble to the 1925–1927 
revolution that yielded the quantum mechanics we know today. Heisenberg 
(1925), Born and Jordan (1925), and Born et al. (1926) introduced the quan-
tum mechanics in matrix form. Schrödinger (1926) introduced his quantum 
wave equation. Dirac (1925) first established that there was a correspondence 
between Heisenberg’s non-commuting dynamical variables and the Poisson 
bracket (Dirac, 1925). Then he discovered that there was an equivalence 
between the Born–Jordan formulation and Schrödinger’s equation (Dirac, 
1926). Further, he demonstrated that there was a direct correspondence 
between the Heisenberg–Dirac quantum mechanics and Schrödinger’s wave 
mechanics (Dirac, 1927).

In addition to the three formulations just mentioned, Dirac (1939) further 
introduced his bra–ket notation, also known as the Dirac notation, which is 
the preferred formulation of quantum mechanics used in this book.

Further approaches to quantum mechanics include the Feynman formula-
tion via integral paths (Feynman and Hibbs, 1965) and the phase-space formu-
lation (Moyal, 1949). There are also other lesser-known formulations.

Post quantum mechanical developments include quantum electrodynamics 
(Tomonaga, 1946; Schwinger, 1948; Dyson, 1949; Feynman, 1949), renormaliza-
tion theory (Ward, 1950), Feynman diagrams (Feynman, 1949), and the standard 
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model of particle physics (see, e.g., Salam and Ward, 1959, 1964; Glashow, 
1961; Weinberg, 1967). The Higgs boson was theorized in 1964 (Higgs, 1964).

Figure 1.1 provides a time line of important developments in the quantum era.

1.3 Principles of Quantum Mechanics

The Principles of Quantum Mechanics is the landmark book written by one 
of the creators of quantum mechanics Paul Adrien Maurice Dirac. The first 
edition of this masterpiece was published in 1930, the second edition in 1935, 
and the third edition in 1947. The fourth edition was released in 1958, and it 
is this edition that gives origin to the 1978 version, its ninth revised printing, 
used as the standard reference in this book.

An interesting aspect of this book is that the Dirac bra–ket notation was 
introduced in its third edition (1947). This is explained by the Australian 
particle physicist R. H. Dalitz (known of the Dalitz plot and the Dalitz pair) 
whom in 1947 was taking lectures from Dirac in Cambridge (Dalitz, 1987).

The Principles of Quantum Mechanics, third and fourth editions, are the vehi-
cles by which the Dirac notation was introduced to physicists although Dirac 
first disclosed the notation in a paper entitled A new notation for quantum 
mechanics (Dirac, 1939). This paper, in a fairly mechanistic style, limits itself 
to introduce the new notation and to provide a correspondence between it 
and the “old notation.” The paper does not explain how Dirac discovered 
or created the new notation. Nor does he explain it in the book. At one time 

1901:    E = hν

1901–1924:  Early quantum concepts

1925–1927:  Formulation of quantum mechanics

1939:   Dirac’s notation

1946–1949:   Quantum electrodynamics

1949:   Feynman’s diagrams

1950:   Renormalization theory

1959–1967:   Formulation of the standard model

1964:   Prediction of the Higgs boson

FIGURE 1.1
Time line depicting important developments in the quantum era.
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I did ask Dick Dalitz if Dirac had explained in his lectures how he created, or 
discovered, his bra–ket notation, and his reply was “no.”

Here we should make a necessary point: albeit we use as reference in this 
book, a revised version of the fourth edition of The Principles of Quantum 
Mechanics, we should be very much aware that the first edition was pub-
lished in 1930 and that the Dirac notation was incorporated in 1947. Thus, 
given Dirac’s famous precision as a communicator, we should assume that 
our version of this masterpiece goes back to 1947.

Dirac’s book, The Principles of Quantum Mechanics, includes 12 chapters. The 
most relevant of those chapters to our immediate interest are

The principle of superposition
Dynamical variables and observables
Representations
The quantum conditions
The equations of motion
Perturbation theory
Systems containing several similar particles
Theory of radiation

Throughout the book he does use his bra–ket notation extensively albeit it is 
not the only type of notation he utilizes.

Besides issues of notation, the Dirac book is remarkable in that it provides 
probably the very first discussion of optics in a quantum context. It does so 
via a brilliant and prophetic discussion of interferometry. He begins by con-
sidering a beam of “roughly monochromatic light” and continues by refer-
ring to this beam of light as “consisting of a large number of photons,” and 
the beam is then “split up into two components of equal intensity” (Dirac, 
1978). In today’s terminology Dirac’s discussion applies perfectly well to 
a high-power narrow-linewidth laser beam undergoing interference in a 
Mach–Zehnder interferometer (Duarte, 1998). This discussion qualifies Dirac 
as the father of quantum optics and laser optics (Duarte, 2003).

It is also apparent that The Principles of Quantum Mechanics served as inspi-
ration to Feynman for his lectures on physics not only on the central topic 
of the Dirac notation but also on the fundamental ideas on interference and 
other various mathematical formalisms.

1.4 The Feynman Lectures on Physics

Volume III of The Feynman Lectures on Physics (Feynman et al., 1965) offers 
a brilliant discussion of quantum mechanics via the Dirac notation. From 
a fascinating discussion of the two-slit interference thought experiments, 
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using electrons, to practical applications of two-state systems, and beyond, 
this book is a physics treasure.

At a basic level, The Feynman Lectures on Physics, Volume III, is a valued 
introduction to the use and practice of the Dirac notation in quantum 
mechanics.

At this stage it is also instructive to mention that in his 1965 book on the 
path integral approach to quantum mechanics, Feynman applies quantum 
mechanics directly to the classical problem of diffraction (Feynman and 
Hibbs, 1965). It is necessary to make this observation for the benefit of some 
practitioners that insist in imposing the use of classical tools only to describe 
macroscopic diffraction and interference.

1.5 Photon

In this section first we explore the opinion on this subject given by a few 
luminaries of quantum physics: Dirac, Feynman, Haken, and Lamb. Then, 
our own opinion on the subject is examined.

Dirac (1978): “Quantum mechanics is able to effect a reconciliation of the 
wave and corpuscular properties of light. The essential point is the associa-
tion of each of the translational states of a photon with one of the wave func-
tions of ordinary wave optics… the wave function gives information about 
the probability of one photon being in a particular place and not the probable 
number of photons in that place.”

Feynman (1965): “Newton thought that light was made up of particles, 
but then it was discovered that it behaves like a wave.…” We say: “It is like 
neither.”

Haken (1981): “In quantum mechanics we attribute an infinite extended 
wave to a freely moving particle with momentum p so that λ = h/p. 
The wave must be of infinite extent, otherwise it would not have a definite 
wavelength.”

Lamb (1995): “Photons cannot be localized in any meaningful manner, and 
they do not behave at all like particles, whether described by a wave function 
or not.” Indeed, the nonlocality of the photon is intuitive to experimental-
ists experienced in optics: “All the indistinguishable photons illuminate the 
array of N slits, or grating, simultaneously. If only one photon propagates, at 
any given time, then that individual photon illuminates the whole array of N 
slits simultaneously” (Duarte, 2003).

So, those are some the written definitions of a photon. As can be observed, 
there is no complete conceptual convergence on the meaning of a photon. 
Here, rather than offering yet another language-based concept of the photon, 
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we shall examine in a pragmatic approach what we know about the basic 
features of the photon:

 1. A single photon moves, in vacuum, at the speed of light c.
 2. A single photon has a wavelength λ, which is related to its fre-

quency ν by

 
λ

ν
= c

 (1.4)

 3. A single photon exhibits a quantum energy of

 E h= ν

or

 E = ħω (1.5)

 4. A single photon exhibits a quantum momentum of

 p k= �  (1.6)

 5. A single photon is associated with the wave functions of ordinary 
wave optics, such as

 ψ ψ( , ) ( )x t e i t kx= − −
0

ω  (1.7)

 6. Single photons are nonlocal and can exhibit enormous coherence 
lengths as described by

 
∆

∆
x c≈

ν
 (1.8)

Under these premises we can attempt a conceptual description of 
a photon as a unique entity that can be mathematically described 
using the wave functions of ordinary wave optics (Dirac, 1978) 
while exhibiting a quantum energy E = hν and a quantum 
momentum of p = ħk. As of now, limitations in the existing lan-
guage prevent us from a more definite description other than this 
tenuous outline. Therefore, when we refer to a photon, or quanta, 
we refer to a unique energetic entity, which is the basic compo-
nent of light.

Notice that in the case of emission resulting in the generation of an 
ensemble of coherent photons, as in the case of a narrow-linewidth 
lasers, a refinement on the wave description of Haken (1981) should 
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refer to a near-infinite wave since the wavelength, in practice, would 
always exhibit a measurable linewidth; in other words the wave-
length would be λ ± ∆λ and not just λ.

One further point of extreme importance is the following: quan-
tum mechanically indistinguishable photons are the same photon. In 
other words, two photons coming from different narrow-linewidth 
lasers with energies E = hν1 and E = hν1 are the same photon and will 
interfere precisely as described by Dirac (1978) even though they 
originate from different sources. Thus, a seventh item to be added to 
the list earlier becomes

 7. Ensembles of indistinguishable photons exhibiting very narrow-
linewidth ∆ν originating from nearly monochromatic sources, such 
as narrow-linewidth lasers, approximates the behavior of a single 
photon.

Finally, in this terminology a monochromatic source is an ideal laser source 
with an emission linewidth, which is extremely narrow, so that ∆ν → 1 Hz 
or less.

1.6 Quantum Optics

As described previously, the first known discussion of quantum optics was 
provided by Dirac in his book. He did so via interference. Furthermore, and 
very importantly, he did so considering a macroscopic interferometric exper-
iment involving a beam of “roughly monochromatic light” and continues 
by referring to this beam of light as “consisting of a large number of pho-
tons,” and the beam is then “split up into two components of equal intensity” 
(Dirac, 1978). In other words, Dirac applies his quantum concepts directly to 
a macroscopic interferometric experiment.

The use of quantum physics in macroscopic optics is not unique 
to Dirac. In 1965, Feynman used his path integrals to describe diver-
gence and   diffraction resulting from the passage through a Gaussian 
slit (Feynman and Hibbs, 1965). Even further, Feynman in his Feynman 
Lectures on Physics ( problem book to Feynman et al., 1965) gives credit to 
Hanbury Brown and Twiss (1956) as performing an early experiment in 
quantum optics.

Hanbury Brown and Twiss collected light from the star Sirius in two 
separate detectors, and the signals from these detectors are then made to 
interfere. Building on Feynman’s description of double-slit electron inter-
ference, the Dirac quantum notation was applied to N-slit interference 
(Duarte, 1991).
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In addition to applications to macroscopic interference, a clear and intrinsic 
quantum physics development was the derivation of probability amplitude 
equations associated with counterpropagating photons with entangled 
polarizations (Pryce and Ward, 1947; Snyder et al., 1948; Ward, 1949)

 
| | | | |s x y y x〉 = 〉 〉 − 〉 〉( )1

2 1 2 1 2  (1.9)

and the subsequent experimental confirmation provided via the measure-
ments of polarization correlations by Wu and Shaknov (1950). A develop-
ment directly related to photon entanglement was the introduction of Bell’s 
inequality (1964). All-optical experiments on polarization entanglement 
were reported by Aspect et al. (1982).

A further development in quantum optics was the introduction of quan-
tum cryptography (Bennett, 1992). An advance directly related to the physics 
of entanglement is quantum teleportation (Bennett et al., 1993). Figure 1.2 
highlights the time line of important developments in quantum optics while 
emphasizing the application of the Dirac notation.

1930:   Dirac’s beam interference

1947–1950:   Quantum polarization entanglement

1956:     Hanbury Brown–Twiss effect

1964:    Bell’s inequalities

1965:    Path integral description of beam divergence

1965:    Double-slit thought experiments via Dirac’s notation

1982:    Optical polarization entanglement experiments

1989–1993:    N-slit interference via Dirac’s notation

1992:   Quantum cryptography

1993:   Quantum teleportation

FIGURE 1.2
Time line depicting important developments in quantum optics while emphasizing the appli-
cation of the Dirac notation.
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1.7 Quantum Optics for Engineers

Quantum Optics for Engineers is designed as a textbook, primarily utilizing 
the Dirac quantum notation, to describe optics in a unified and coherent 
approach. The emphasis is practical. This approach uses a minimum of 
mathematical sophistication. In other words, the reader should be able to 
use the tools provided primarily with the knowledge of first-year courses in 
calculus and algebra.

The subject matter is contained in Chapters 1 through 21, while a set of 
companion Appendices A–K provide additional necessary information rel-
evant to the chapter material. The concept here is to offer the student a self-
contained book, thus minimizing the need to refer to additional texts except 
for those who would like to expand their knowledge of a particular subject.

The reader will also notice that some of the equations, and figures, in this 
book are reproduced in several of the chapters. In other words, they are 
repeated. This has been done quite deliberately to avoid having to go back in 
the text to find a particular equation and then forward again to continue the 
work. Besides highlighting the importance of some concepts, this approach 
should facilitate remembering those equations and easing the lecture pro-
cess. Hopefully, this will enhance the learning process according to the old 
Roman saying repetitio est mater studiorum (approximately translated as “rep-
etition is the mother of learning”).
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2
Planck’s Quantum Energy Equation

2.1 Introduction

In his work on light sources and black body radiation, Max Planck, around 
1900, was confronted with experimental data that could not be explained 
with the prevailing theoretical concepts of the time. The problem was to 
express the energy distribution of light emission as a function of wavelength. 
Using Planck’s own notation (Planck, 1901), the number of electromagnetic 
modes per unit volume can be expressed as

 
u

c
U= 8 2

3
πν

 
(2.1)

where
ν is the frequency of the emission, in Hz or cycles per second
c is the speed of light (c = 2.99792458 × 108 ms−1)

Then the question becomes how to define the energy distribution U. Planck 
approaches this problem using thermodynamic arguments related to the 
entropy. However, immediately prior to doing that, he makes the crucial step 
of introducing, without any derivation whatsoever, the energy expression 
(Planck, 1901):

 E h= ν  (2.2)

All he writes prior to this equation is that the “energy is proportional to 
the frequency ν.” Once he unveils this enormous discovery, Planck proceeds 
with his thermodynamics argument providing an explicit expression for the 
entropy of the system:

 
S k U

h
U
h

U
h

U
h

= +



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+



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− 



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





1 1

ν ν ν ν
ln ln

 
(2.3)
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and then using (1/T) = dS/dU, he proceeds to differentiate Equation 2.3 and 
arrives at

 U h eh kT= − −ν ν( )/ 1 1
 (2.4)

which, using Equation 2.1, leads directly to Planck’s distribution (Planck, 1901):

 
u h

c
eh kT= − −8 1

3

3
1π ν ν( )/

 
(2.5)

In the previous equations, k = 1.3806488 × 10−23 J K−1 is Boltzmann’s constant, 
T is the absolute temperature, and h = 6.62606957 × 10−34 J s is of course Planck’s 
constant.

Planck’s quantum equation, also known as Planck’s relation, E = hν, is one 
of the most fundamental principles of quantum mechanics and one of the 
most important equations in physics. The fact that the energy of the emission 
depends on the frequency of the emission ν, according to the elegant relation 
E = hν, is a fundamental quantum law that was arrived to from macroscopic 
observations performed on a classical experiment. Planck’s contribution repre-
sents one of the greatest triumphs of a physicist’s intuition in the history of 
physics. Around 1900 when Planck discovered this empirical law, the physics 
world was classical and entirely macroscopic.

2.2 Planck’s Equation and Wave Optics

From Planck’s quantum energy equation

 E h= ν

one can use special relativity’s E = mc2 (de Broglie, 1923) to arrive at

 
p h

c
= ν

 
(2.6)

which, using λ = c/ν, leads directly to

 p k= �  (2.7)

where k = 2π/λ is known as the wave number. This momentum expression in 
waveform, p = ħk, is known as de Broglie’s equation and plays a significant 
role in developing further concepts in quantum optics.
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In Chapter 3, the Heisenberg uncertainty principle (Heisenberg, 1927; 
Feynman et al., 1965; Dirac, 1978) is developed from interferometric prin-
ciples. The approach is based on interferometric principles that lead to the 
identity (Duarte, 2003)

 ∆ ∆λ λx ≈ 2
 (2.8)

which can also be expressed as

 ∆ ∆ν x c≈  (2.9)

Using the expression for momentum p = ħk, which is based on E = hν, one 
arrives directly to the Heisenberg uncertainty principle:

 ∆ ∆p x h≈  (2.10)

This simple exercise is useful in exposing the order of fundamental concepts 
in quantum mechanics. This order places E = hν, and interferometric prin-
ciples, at the very foundations of quantum physics.
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3
Uncertainty Principle

3.1 Heisenberg Uncertainty Principle

Perhaps no other topic in physics is surrounded with more awe and mystique 
as Heisenberg’s succinct and beautiful uncertainty principle. Besides its 
beauty, the uncertainty principle is central to the most successful physical 
theory ever discovered by mankind: quantum mechanics. Richard Feynman, 
by far, physics’ most successful communicator, said: “The uncertainty prin-
ciple protects quantum mechanics. Heisenberg recognized that if it were 
possible to measure the momentum and the position simultaneously with a 
greater accuracy, quantum mechanics would collapse. So he proposed that 
it must be impossible… Quantum mechanics maintains its perilous but still 
correct existence” (Feynman et al., 1965).

Heisenberg (1927) introduced his famed uncertainty principle as

 p q h1 1 ~  (3.1)

where
p1 refers to the momentum uncertainty
q1 refers to the position uncertainty
h = 6.62606957 × 10−34 J s is Planck’s constant, one of the most fundamental 

constants in the whole of nature

Dirac in his book (Dirac, 1978) expresses the Heisenberg uncertainty prin-
ciple as

 ∆ ∆q p h≈  (3.2)

Similarly, Feynman et al. (1965) describes the uncertainty relation as

 ∆ ∆y p hy ≈  (3.3)

In general, for the three space coordinates, we have

 ∆ ∆ ∆ ∆ ∆ ∆x p h y p h z p hx y z≈ ≈ ≈, ,  (3.4)
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Considering the uncertainty principle relevant to the x coordinate

 ∆ ∆x p hx ≈  (3.5)

it should be mentioned that the uncertainties in x and px are intimately 
related. In other words, a series of measurements on these quantities yield 
(x ± ∆x) and (px ± ∆px) with ∆x and ∆px directly related via ∆x∆px ≈ h. The 
larger the value of ∆x, the smaller the value of ∆px. In other words, the more 
accurately we can measure the position of a particle, the less accurately we 
can determine its momentum and vice versa. In quantum physics, x and px 
are said to be non-commuting observables (Dirac, 1978). Uncertainty and 
errors are essential to physical measurements and have been part of physics 
since the dawn of physics. Already Newton in his Principia (Newton, 1687) 
dealt with measurement errors and uncertainties. In this regard, a measure-
ment of x with ∆x = 0 is not possible in physics. Similarly, a measurement of 
px with ∆px = 0 is physically impossible. There is always an uncertainty, no 
matter how small, no matter how infinitesimal. A similar observation was 
made, in the quantum context, by Dirac in 1930 (Dirac, 1978) and, as we shall 
see later, this observation is crucial to interpretational issues of quantum 
mechanics.

In his lectures, Feynman also relates the uncertainty principle to the 
double-slit experiment and hence to interferometry. He did so concep-
tually, in reference to the impossibility of determining the path of the 
electron without disturbing the interference pattern (Feynman et al., 
1965). In this chapter we offer further elucidation on the link between the 
uncertainty principle and N-slit interferometry. In fact, we show that it is 
possible to obtain the old uncertainty principle from interferometric prin-
ciples, thus indicating that interferometry is of fundamental importance 
to quantum mechanics, even more fundamental than the Heisenberg 
uncertainty principle.

The approach to the Heisenberg uncertainty principle, disclosed here, is 
from a physics perspective while avoiding the use of unnecessary math-
ematics, or preestablished analytical techniques, which might obscure the 
essence of the physics.

3.2 Wave–Particle Duality

The quantum energy of a wave, of frequency ν, is given by Planck’s quantum 
energy equation:

 E h= ν  (3.6)
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Equating this to the relativistic energy of a particle E = mc2 and using the 
identity λ = c/ν, an expression for the momentum is given as

 
p h=

λ  
(3.7)

which, using the identity

 
k = 2π

λ  
(3.8)

can also be expressed as

 p k= �  (3.9)

This momentum equation was applied to particles, such as electrons, by de 
Broglie (Haken, 1981). Thus, wave properties such as frequency and wave-
length were attributed to the motion of particles. Notice that the momentum 
expression can be rewritten as

 p hλ =  (3.10)

which already embodies the dimensionality described in the Heisenberg 
uncertainty principle. As it will be seen in the exposition given next, this 
expression is crucial in the approximate derivation of the uncertainty 
principle.

3.3 Feynman Approximation

In his book on Quantum Mechanics and Path Integrals, Feynman makes use of 
the two-slit experiment to provide an approximate description of the physics 
behind the uncertainty principle (Feynman and Hibbs, 1965). Here, Feynman’s 
description is outlined using a slightly different notation. Feynman observes 
that in the two-slit experiment (see Figure 3.1), the separation of the center of 
the slits, a, divided by the intra-interferometric distance (distance from the 
slits to the interferometric plane) D, that is, a/D, is approximately equal to the 
ratio of the wavelength λ to the distance from the central maxima to the first 
secondary maxima at the interferometric plane ∆x. In other words,

 

a
D x

≈ λ
∆  

(3.11)
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It should be noted that this geometrical identity can be either obtained 
directly from experimental results or using the interferometric equation 
(Duarte, 1993) described in the next section. Then, using the same two-slit 
experiment for electrons, Feynman postulates that passage through the slits 
induces a change in momentum and that the ratio (∆p/p) is approximately 
equal to a/D, so that

 

∆p
p

a
D

≈
 

(3.12)

then, using pλ = h, we get

 ∆ ∆x p h≈  (3.13)

3.3.1 Example

In Figure 3.1 the basic geometry of a two-slit interferometer is illustrated. 
The separation of the center of the slits is a, and the intra-interferometric 
distance from the slits to the interferometric plane is D. For two 570 μm slits, 
separated by 570 μm, a ≈ 1140 μm. Thus, for D ≈ 7.235 m, the ratio (a/D) ≈ 1.58 
× 10−4. The corresponding two-slit interferogram for He–Ne laser illumina-
tion at λ ≈ 632.8 nm is shown in Figure 3.2. From this interferogram, given 
that each pixel is ∼ 20 μm wide, we get (λ/∆x) ≈ 1.62 × 10−4, thus corroborating 
the Feynman approximation (a/D) ≈ (λ/∆x). The slight difference between the 
two ratios is well within the experimental uncertainties involved, which are 
not included here in order to keep the exposition simple.

a

D

FIGURE 3.1
Two-slit interferometer used in the Feynman approximation. The separation between the cen-
ter of the slits is a, while the intra-interferometric distance from the slits to the interferometric 
plane is D.
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3.4 Interferometric Approximation

As mentioned at the instruction, Feynman relates the uncertainty principle 
to the double-slit electron experiment and hence to interferometry. Here, the 
link between the uncertainty principle and generalized N-slit interferometry 
is described in detail. The following exposition is based on the approach 
given in Duarte (2003).

The generalized 1D interferometric equation derived using the Dirac nota-
tion is given by (Duarte, 1991, 1993)

 

| | | ( ) ( ) ( )cos( )〈 〉 = + −
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(3.14)

The interference term in this equation, cos(Ωm − Ωj), can be expressed as 
(Duarte, 1997)

 
cos ( ) ( ) cos | | | |θ θ φ φm j m j m m m ml l k L L k− ± −( ) = − ± −( )− −1 1 1 2  (3.15)

and from this equation the diffraction grating equation can be obtained (see 
Chapter 5):

 d mm m m(sin sin )Θ Φ± = λ  (3.16)
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FIGURE 3.2
Measured double-slit interferogram generated by two slits 570 μm wide separated by 570 μm. 
The intra-interferometric distance (from the slits to the interferometric plane) is D ≈ 7.235 m 
and the laser wavelength from the He–Ne laser is λ ≈ 632.8 nm.
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where m = 0, ±1, ±2, ±3…. For a grating utilized in the reflection domain, in 
Littrow configuration, Θm = Φm = Θ so that the grating equation reduces to

 2  d msinΘ = λ  (3.17)

Using Equation 3.17 and considering an expanded light beam incident on a 
reflection grating, as illustrated in Figure 3.3, and allowing for an infinitesi-
mal change in wavelength,

 
λ1

12= 





d
m

x
l

∆

 
(3.18)

 
λ2

22= 
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∆

 
(3.19)

where
l is the grating length
∆x is the path difference

Subtracting Equation 3.18 from 3.19, it follows that

 
∆

∆
∆ ∆λ λ= −



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l
x

x x
l

1 2

 
(3.20)

Δx

Expanded
laser beam

Grating
l

Θ

Θ

FIGURE 3.3
Path differences in a diffraction grating of the reflective class in Littrow configuration. From 
the geometry, sin Θ = (∆x/l).
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In order to distinguish between a maximum and a minimum, the difference 
in path differences should be equal to a single wavelength, so that

 ( )∆ ∆x x1 2− ≈ λ  (3.21)

Hence, Equation 3.20 reduces to the well-known and important diffraction 
identity

 
∆

∆
λ λ≈

2

x  
(3.22)

which leads to

 
∆

∆
ν ≈ c

x  
(3.23)

Considering p = ħk for two slightly different wavelengths, one can write

 
p p h1 2

1 2

1 2
− = −( )λ λ

λ λ  
(3.24)

and since the difference between λ1 and λ2 is infinitesimal, then we have

 
∆ ∆p h≈ λ

λ2
 

(3.25)

Substitution of Equation 3.22 into 3.25 leads directly to

 ∆ ∆p x h≈  (3.26)

which is known as the Heisenberg uncertainty principle (Dirac, 1978). This 
approach describes the interferometric foundation of the uncertainty prin-
ciple and hints toward interference as a more fundamental principle.

3.5 Minimum Uncertainty Principle

The paths described here have used approximate optical and interferometric 
methods to arrive to the uncertainty principle

 ∆ ∆p x h≈
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where ∆x and ∆p are outlined as the uncertainties in displacement x and 
momentum p, respectively. From a physics perspective, this is quite alright 
since an “exact” derivation of the uncertainty principle appears to be a 
contradiction.

An alternative, more restrictive, version of the uncertainty principle is 
given by Feynman as

 
∆ ∆p x ≈ �

2  
(3.27)

Feynman arrives at this expression using a probability density approach and 
states: “for any other form of a distribution in x or p, the product ∆p∆x cannot 
be smaller than the one we have found here” (Feynman et al., 1965). Thus, we 
call this the minimum uncertainty principle.

The literature offers several approaches to this definition. Here, we briefly 
describe the approach of Landau and Lifshitz (1976). These authors begin by 
defining the uncertainties via the standard of deviation:

 ( ) ( )δx x x2 2= −  (3.28)

 ( ) ( )δp p px x x
2 2= −  (3.29)

and then, they consider the inequality

 

α ψ ψx d dx dx+ ≥
−∞

∞

∫ ( / ) 2 0
 

(3.30)

where
α is an arbitrary real constant
ψ is an ordinary wave function

Evaluation of this integral leads to

 
δ δx px ≥ �

2  
(3.31)

which is known as the least possible value of the δxδpx product or as the 
minimum uncertainty product. Thus, the minimum product is 4π smaller 
than the approximate expression derived from the physics. Landau and 
Lifshitz (1976) write that “the least possible value” of the uncertainty prod-
uct is (ħ/2).
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3.6 Generalized Uncertainty Principle

Here, we mainly refer to a generalization of the Heisenberg uncertainty prin-
ciple provided by Robertson in 1929. In that short paper Roberson states: “This 
principle, as formulated by Heisenberg for two conjugate quantum mechani-
cal variables states that the accuracy with which two such variables can be 
measured simultaneously is subject to the restriction that the product of the 
uncertainties in the two measurements is at least of order h” (Robertson, 
1929). Robertson then explains the desirability to extend the principle to two 
variables, which are not conjugate.

To this effect, Robertson defines a mean value (A0) of a Hermitean operator A 
(see Chapter 14), in a system described by the wave function ψ, as

 
A A d0 = ∫ψ ψ τ*

 
(3.32)

The uncertainty in A, that is, ∆A, is defined “in accordance with statistical 
usage” as (Robertson, 1929)

 
( ) *( )∆A A A d2

0
2= −∫ψ ψ τ

 
(3.33)

likewise, we can write

 
( ) *( )∆B B B d2

0
2= −∫ψ ψ τ

 
(3.34)

Then, Robertson introduces the Schwarzian inequality

 
f f f f d g g g g d f g f g d1 1 2 2 1 1 2 2 1 1 2 2* * * * ( )+( )





+( )





≥ +∫ ∫τ τ τ∫∫
2

 
(3.35)

and defines

 f A A f1 0 2
* ( )= − =ψ  (3.36)

 g B B g1 0 2= − = −( ) *ψ  (3.37)

Using these definitions it follows that

 f A A f1 0 2= − =( ) * *ψ  (3.38)

 g B B g1 0 2* ( ) *= − = −ψ  (3.39)
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substituting into the left-hand side of Equation 3.35, we get

 
2 20

2
0

2
1 1 2 2

2

ψ ψ τ ψ ψ τ τ*( ) *( ) ( )A A d B B d f g f g d−





−





≥ +∫ ∫ ∫
Next, reducing the ( f1g1 + f2g2) term, within the integral on the right-hand 
side of Equation 3.35, and using Equations 3.33 and 3.34 (on the left-hand 
side), leads to Robertson’s result:

 

4

1
2

2 2
2

( ) ( ) *( )

*( )

∆ ∆

∆ ∆

A B AB BA d

A B AB BA d

≥ −

≥ −

∫
∫

ψ ψ τ

ψ ψ τ
 

(3.40)

This result is also reproduced in the recent literature as (Erhart et al., 2012)

 
σ σ ψ ψ( ) ( ) | |[ , ]| |A B A B≥ 〈 〉1

2  
(3.41)

where

 [ , ]A B AB BA = −  (3.42)

Revisiting Robertson’s result here teaches us that this generalization flows 
mainly from a mathematical technique, that is, the application of the 
Schwarzian inequality.

Recent work has led to further generalized formulations of the Heisenberg 
uncertainty principle. This work has been carried out motivated by concerns 
that the original Heisenberg version of the uncertainty principle only applies 
to a limited array of measurement apparatuses (Ozawa, 2004). Very briefly, 
and without further discussion, a generalized version of the uncertainty 
principle has been put forward for a measurable A and an observable B 
(Erhart et al., 2012):

 
e A B e A B A B A B( ) ( ) ( ) ( ) ( ) ( ) | |[ , ]| |η σ σ η ψ ψ+ +( ) ≥ 〈 〉1

2  
(3.43)

where e(A) is the root mean square deviation of an output operator OA, 
while the disturbance η(B) is defined as the root mean square of the change 
in the observable B during the measurement. The second and third terms, 
of the left-hand side, flow from the non-commutability of A and B (Ozawa, 
2004).
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Notice that the right-hand side of the inequality is the same as 
Robertson’s, and it is on the right-hand side that the physics resides. Here 
we should mention that in Chapter 17, on the subject of entanglement, 
an analogous expression to [A,B] = AB−BA is developed in the form of 
(|x〉|y〉 − |y〉|x〉).

Interest in generalized forms of the uncertainty principle has gained recent 
attention due to activity in the area of successive quantum measurements.

3.7  Additional Versions of the Heisenberg 
Uncertainty Principle

The Heisenberg uncertainty principle, ∆x∆p ≈ h, can be expressed in several 
useful versions. Assuming an independent derivation of ∆p∆x ≈ h, and using 
p = ħk, it can be expressed in its wavelength-spatial form:

 
∆

∆
λ λ≈

2

x  
(3.44)

This is a widely used identity in interferometry utilized to express linewidth 
in wavelength units (m). We also know that the interferometric identity given 
in Equation 3.44 can be expressed in its frequency-spatial version:

 
∆

∆
ν ≈ c

x  
(3.45)

which is also widely used in interferometry to express linewidth in fre-
quency units (Hz).

Using E = mc2, the uncertainty principle can also be expressed in its energy-
time form:

 ∆ ∆E t h≈  (3.46)

which, using the quantum energy E = hν, can be transformed to its frequency-
time version

 ∆ ∆ν t ≈ 1  (3.47)

This succinct and beautiful expression is a crucial result for the field of pulsed 
lasers and in particular for femtosecond (fs) and attosecond (at) lasers. In fact, 
∆ν∆t ≈ 1 means that, for a laser working optimally at the limit established by 
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the uncertainty principle, the time duration of the pulses ∆t can be deter-
mined from its spectral profile.

From Equation 3.47 we can write directly an expression for the time 
segment:

 
∆

∆
t ≈ 1

ν  
(3.48)

which is also known as the coherence time. From this time the coherence length 
can be defined as

 
∆

∆
x c≈

ν  
(3.49)

which is an alternative form of Equation 3.45.
One final observation: The highly practical identities ∆λ ≈ λ2/∆x and ∆ν ≈ 

c/∆x are routinely applied in the field of interferometry to express measured 
linewidths in either frequency or wavelength units (Duarte, 2003). Note that 
all these expressions are simply based on ∆x∆p ≈ h and not in its more restric-
tive minimum product version.

3.7.1 Example

An optimized multiple-prism grating solid-state organic dye laser (Duarte, 
1999) yields kW pulses tunable in the 565 ≤ λ ≤ 603 nm range. Its smooth 
temporal pulse is indicative of single-longitudinal-mode oscillation and is 
shown in Figure 3.4. The duration of this pulse at FWHM is ∆t ≈ 3 ns. The cor-
responding Fabry–Perot interferogram from this single- longitudinal-mode 
emission is shown in Figure 3.5. The half-width of the rings is measured 
to be ∆ν ≈ 350 MHz. Thus, it can be directly established that the product 

~2.9 ns

FIGURE 3.4
Temporal profile of a laser pulse from an optimized multiple-prism grating solid-state dye 
laser. The temporal scale is 1 ns/div. (Reproduced from Duarte, F.J., Appl. Opt. 38, 6347, 1999, 
with permission from the Optical Society of America.)
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∆ν∆t ≈ 1.06 for this narrow-linewidth pulsed laser emission, which is near 
the limit established frequency-time version of the Heisenberg uncertainty 
principle ∆ν∆t ≈ 1.

3.8 Applications of the Uncertainty Principle in Optics

The uncertainty principle is widely applied in optics. It applies to interferom-
etry, linewidth measurements, and beam divergence measurements. Here 
we focus on the uncertainty principle and beam divergence. Applications of 
these concepts to astronomy are also mentioned.

3.8.1 Beam Divergence

The Heisenberg uncertainty principle can be used to derive some useful 
identities in optics and interferometry. Starting from

 ∆ ∆p x h≈

and substituting for ∆p using p = ħk, yields

 ∆ ∆k x ≈ 2π  (3.50)

FIGURE 3.5
Corresponding Fabry–Perot interferogram of the single-longitudinal-mode oscillation from 
the optimized multiple-prism grating solid-state dye laser. (Reproduced from Duarte, F.J., 
Appl. Opt. 38, 6347, 1999, with permission from the Optical Society of America.)

 



30 Quantum Optics for Engineers

which leads directly to

 
∆

∆
λ λ≈

2

x

For a diffraction-limited beam traveling in the z direction, kx = k sin θ. Thus, 
for a very small angle θ,

 k kx ≈ θ  (3.51)

so that

 ∆ ∆k kx ≈ θ  (3.52)

Using ∆kx ∆x ≈ 2π and Equation 3.52, it is readily seen that the beam has an 
angular divergence given by

 
∆

∆
θ λ≈

x  
(3.53)

which is a succinct equation for angular beam divergence and in essence an 
additional manifestation of the uncertainty principle. Equation 3.53 indicates 
that the angular spread of a propagating beam of wavelength λ is inversely 
proportional to its original width. The narrower the beam, the larger its 
divergence. This equation also states that light of shorter wavelength experi-
ences less beam divergence, which is a well-known experimental fact in laser 
physics. This implies that the beam divergence can be controlled using geo-
metrical (∆x) as well as physical means (λ).

Equation 3.53 has the same form of the return-pass beam divergence equa-
tion derived from classical principles (Duarte, 1990), namely,

 
∆θ λ

π
= + 



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(3.54)

where
w is the beam waist
LR = (πw2/λ) is known as the Rayleigh length
A and B are geometrical-spatial matrix propagation parameters defined in 

Duarte (2003) and explained in Appendix C. For an optimized design,

 
1 1

2 2 1 2
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and Equation 3.54 reduces to

 
∆θ λ

π
≈

w  
(3.55)

This minimized beam divergence is known as the diffraction limit. The equiv-
alence of Equations 3.53 and 3.55 is self-evident.

In summary, the generalized interference equation, that is, Equation 3.14, 
leads to the interferometric identity ∆λ ≈ λ2/∆x, which, in conjunction with 
the uncertainty principle ∆p∆x ≈ h, leads to the expression of the diffraction-
limited beam divergence ∆θ ≈ λ/∆x.

3.8.2 Beam Divergence and Astronomy

An important application of the uncertainty principle manifests itself in 
calculations of the angular resolution limit of telescopes used in astro-
nomical observations. Reflection telescopes such as the Newtonian and 
Cassegrain telescopes are depicted in Figure 3.6 and discussed further 
in Duarte (2003). The angular resolution that can be achieved with these 
telescopes, under ideal conditions, is approximately quantified by the 
diffraction limit of the beam divergence given in Equation 3.53. That is, 

D

D

(a)

(b)

FIGURE 3.6
Reflection telescopes used in astronomical observations. (a) Newtonian telescope. (b) 
Cassegranian telescope. The diameter D of the main mirror determines the angular resolution 
of the telescope.
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the smallest angular discrimination, or resolution limit, of a telescope with 
a diameter D = 2w is given by

 
∆θ λ

π
≈ 2

D  
(3.56)

This equation teaches us that the two alternatives to improve the angular 
resolution of a telescope are either to observe at shorter wavelengths (λ) or to 
increase the diameter (D) of the telescope. This equation explains the quest 
toward the building of large, very large, and extremely large terrestrial tele-
scopes. Previously, we estimated the angular resolution for telescope diam-
eters of 10 and 100 m (Duarte 2003). For λ = 500 nm the angular resolution for 
large and very large telescopes, at various diameters, are listed in Table 3.1. 
In addition to better angular resolutions, large aperture telescopes provide 
increased signal since the area of collection increases substantially. The con-
struction of very large telescopes, with diameters greater than 50 m, should 
be feasible in the future via the use of very light segmented mirrors.

The subject of laser beam divergence for laser guide star in astronomy, using 
narrow-linewidth oscillators emitting at λ ≈ 589 nm, is discussed by Duarte (2003).

3.8.3 Uncertainty Principle and the Cavity Linewidth Equation

In this section, the nexus between the uncertainty principle and the single-
pass cavity linewidth equation is outlined: the generalized 1D interferomet-
ric equation (Duarte, 1991, 1992)
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is used in Chapter 9 to derive the cavity linewidth equation (Duarte, 1992):

 
∆ ∆λ θ θ

λ
≈ ∂

∂




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−1

 
(3.57)

TABLE 3.1

Angular Resolutions for Newtonian 
and Cassegrain Terrestrial Telescopes

Diameter (m) Area (m2) ∆θ (rad)

10 25π (1/π) × 10−7

50 625π (2/π) × 10−8

100 2500π (1/π) × 10−8

1000/π (25/π) × 104 10−9
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which is also expressed as

 ∆ ∆λ θ θλ≈ ∇ −( ) 1
 (3.58)

where ∇λθ = (∂θ/∂λ). This equation is used extensively to determine the 
emission linewidth in high-gain pulsed narrow-linewidth dispersive laser 
oscillators (Duarte, 1990). As indicated, this equation originates from the 
generalized N-slit interference equation and incorporates the beam diver-
gence expression ∆θ whose diffraction-limited value

 
∆

∆
θ λ≈

x

can be derived from the uncertainty principle ∆p∆x ≈ h, as previously illustrated.
In addition to the explicit equations for beam divergence given here, it is 

also important to indicate that the beam profile can be generated directly 
from the generalized N-slit interferometric equation (Equation 3.14) and the 
beam divergence calculated from the history of the beam profiles. In other 
words, the interferometric equation does contain the correct information on 
beam divergence, which is not surprising since it can also be used to derive 
the uncertainty principle as we have just seen.

Equation 3.54 also has a geometrical origin (Robertson, 1955), thus illus-
trating, once again, the synergy between classical and quantum physics.

3.8.4 Tuning Laser Microcavities

A fine-tuning technique applicable to microelectromechanical system 
(MEMS)-driven miniature laser cavities consists simply in changing the cav-
ity length as illustrated in Figure 3.7. This approach exploits the very fact 
that the free spectral range (FSR) of the cavity is a function of ∆x. Here, we 

Gain medium

M1 M2

ΔL

L

FIGURE 3.7
Wavelength tuning by changing the length of the cavity L. This is accomplished via the dis-
placement of one of the mirror of the resonator.
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 examine this approach to wavelength tuning following the approach of 
Duarte (2003, 2009). Going back to the interferometric identity

 
δλ λ≈

2

∆x  
(3.59)

one can write for an initial wavelength λ1

 
δλ λ

1
1
2

2
≈

L  
(3.60)

and for a subsequent wavelength λ2

 
δλ λ

2
2
2

2
≈

±( )L L∆  
(3.61)

Also, it is convenient to define the number of longitudinal modes in each 
case as

 
N1

1

1
= ∆λ

δλ  
(3.62)

and

 
N2

2

2
= ∆λ

δλ  
(3.63)

where ∆λ1 and ∆λ1 are the corresponding laser linewidths. If the laser line-
width, during this ∆L change, is maintained so that ∆λ1 ≈ ∆λ2, then taking 
the ratio of Equations 3.60 and 3.61 leads to (Duarte, 2003)

 
λ λ2 1
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1 2 1 2
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(3.64)

For N1 ≈ N2, or single-longitudinal-mode oscillation, this equation reduces to 
(Duarte 2003)

 
λ λ2 1

1 2

1≈ ±



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∆L
L

/

 
(3.65)

Uenishi et al. (1996) report on experiments using the ∆L/L method to per-
form wavelength tuning in a MEMS-driven semiconductor laser cavity. 
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In that experiment they observed wavelength tuning, in the absence of 
mode-hopping, as long as the change in wavelength did not exceed λ2 − λ1 ≈ 
1 nm. Using their graphical data for the scan initiated at λ1 ≈ 1547 nm, it is 
established that ∆L ≈ 0.4 μm, and using L ≈ 305 μm, Equation 3.65 yields 
λ1 ≈ 1548 nm, which approximately agrees with the authors’ observations 
(Uenishi et al., 1996) In this regard, it should be mentioned that Equation 
3.65 was implicitly derived with the assumption of a wavelength scan obey-
ing the condition δλ1 ≈ δλ2. Albeit here, we use the term microcavity this 
approach should also apply to cavities in the submicrometer regime or 
nanocavities.

3.8.5 Sub-Microcavities

The longitudinal-mode spacing in a cavity of length L = ∆x/2 is known as the 
FSR of the cavity and can be designated as

 
δλ λ≈

2

2L  
(3.66)

or

 
δν ≈ c

L2  
(3.67)

For very short cavities, with cavity lengths in the submicrometer range, 
or the nanometer range, the longitudinal-mode spacing becomes rather 
large. For example, for L ≈ 300 nm at λ ≈ 540 nm, the longitudinal-mode 
spacing becomes δλ ≈ 486 nm, which is an enormous separation. This 
means that a measured linewidth in the tens of nm easily meets the 
criteria for single-longitudinal-mode emission. Thus, the challenge with 
nanocavities lies in restricting the emission to a single transverse mode 
since, as established by Equation 3.14, a very short cavity length requires 
an infinitesimal aperture size.

Sub-microcavities are of interest not just because of their size but also 
because they exhibit some interesting characteristics such as lasing with 
extremely low thresholds (de Martini  and Jakobovitz, 1980). Spatial and 
spectral coherent emission from an electrically driven laser-dye-doped 
organic semiconductor nanocavity (L ≈ 300 nm), in the pulsed regime, has 
been reported by Duarte et al. (2005, 2008). A directional beam with a near-
Gaussian spatial distribution was obtained by using an extracavity double-
interferometric filter configuration. The single transverse mode thus selected 
was determined to have a linewidth of ∆λ ≈ 10 nm.
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Problems

3.1 Show that ∆x∆p ≈ h can be expressed as ∆λ ≈ λ2/∆x.
3.2 Show that ∆x∆p ≈ h can be expressed as ∆ν ≈ c/∆x.
3.3 Show that ∆x∆p ≈ h can be expressed as ∆ν∆t ≈ 1.
3.4 Show that ( f1 g1 + f2 g2) = ψ*(AB−BA)ψ.
3.5 Calculate the diffraction-limited beam divergence, at full-width-

half-maximum (FWHM), for (a) a laser beam with a 150 μm radius at 
λ = 590 nm and (b) a laser beam with a 500 μm radius at λ = 590 nm.

3.6 Repeat the calculations of the previous problem for the excimer laser 
(XeCl) wavelength λ = 308 nm. Comment.

3.7 Calculate the dispersive cavity linewidth for a high-power tunable 
laser yielding a diffraction-limited beam divergence, 150 μm in radius, 
at λ = 590 nm. Assume that an appropriate beam expander illuminates 
a 3300 lines mm−1 grating deployed in the first order. The grating has 
a 50 mm length perpendicular to the grooves. Assume a fully illumi-
nated grating deployed in Littrow configuration in its first order.

3.8 (a) For a pulsed laser delivering a 350 MHz laser linewidth, at the 
limit established by the Heisenberg uncertainty principle, estimate 
its shortest possible pulse width. (b) For a laser emitting 1 fs pulses, 
estimate its broadest possible spectral width in nanometers centered 
around λ = 500 nm.

3.9 For a cavity with a length L = 100 μm, calculate the change in wavelength 
for ∆L = 1.0 μm, given that the initial wavelength is λ = 1500 nm.
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4
Dirac Quantum Optics

4.1 Dirac Notation in Optics

The Dirac notation is one of the mathematical avenues that can be used to 
describe nature quantum mechanically. This mathematical notation was 
invented by Dirac in 1939 and is particularly well suited to describe quantum 
optics. In this chapter, we introduce the reader to the basics of the Dirac nota-
tion and apply the notation to the generalized description of the fundamen-
tal phenomenon of interference that, as it will be seen, is crucial to quantum 
physics itself. This description is based on topics and elements of a review 
given by Duarte (2003).

In Principles of Quantum Mechanics, first published in 1930, Dirac discusses 
the essence of interference as a one-photon phenomenon. Albeit his discussion 
is qualitative, it is also profound. In 1965, Feynman discussed electron interfer-
ence via a two-slit thought experiment using probability amplitudes and the 
Dirac notation as a tool (Feynman et al., 1965). In 1989, inspired on Feynman’s 
discussion, the Dirac notation was applied to the propagation of coherent light 
in an N-slit interferometer (Duarte and Paine, 1989; Duarte, 1991, 1993).

The ideas of the notation invented by Dirac (1939) can be explained 
by considering the propagation of a photon from plane s to plane x, as 
illustrated in Figure 4.1. According to the Dirac concept, there is a prob-
ability amplitude, denoted by 〈x|s〉, that quantifies such propagation. 
Historically, Dirac introduced the nomenclature of ket vectors, denoted by 
| 〉, and bra vectors, denoted by 〈 |, which are mirror images of each other. 
Thus, the probability amplitude is described by the bra–ket 〈x|s〉, which is 
a complex number.

In the Dirac notation, the propagation from s to x is expressed in reverse 
order by 〈x|s〉. In other words, the starting position is at the right and the final 
position is at the left. If the propagation of the photon is not directly from 
plane s to plane x but involves the passage through an intermediate plane j, 
as illustrated in Figure 4.2, then the probability amplitude describing such 
propagation becomes

 〈 〉 = 〈 〉〈 〉x s x j j s| | |  (4.1)
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If the photon from s must also propagate through planes j and k in its trajec-
tory to x, that is, s→j→k→x, as illustrated in Figure 4.3, then the probability 
amplitude is given by

 〈 〉 = 〈 〉〈 〉〈 〉x s x k k j j s| | | |  (4.2)

If an additional intermediate plane l is added, so that the propagation, from 
plane to plane, proceeds as s→j→k→l→x, then the probability amplitude is 
given by

 〈 〉 = 〈 〉〈 〉〈 〉〈 〉x s x l l k k j j s| | | | |  (4.3)

j xs

D j|s D x|j 

FIGURE 4.2
Propagation from s to the interferometric plane x via an intermediate plane j is expressed as the 
probability amplitude 〈x|s〉 = 〈x|j〉〈j|s〉. D〈j|s〉 and D〈x|j〉 are the distances between the designated 
planes.

D x|s 

s x

FIGURE 4.1
Propagation from s to the interferometric plane x is expressed as the probability amplitude 
〈x|s〉. D〈x|s〉 is the physical distance between the two planes.
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When at the intermediate plane, in Figure 4.2, a number of N alternatives 
are available to the passage of the photon, as depicted in Figure 4.4, then the 
overall probability amplitude must consider every possible alternative, which 
is expressed mathematically by a summation over j in the form of

 

〈 〉 = 〈 〉〈 〉
=

∑x s x j j s
j

N

| | |
1  

(4.4)

s j k x

D j|s D k|j D  x|k 

FIGURE 4.3
Propagation from s to the interferometric plane x via two intermediate planes j and k is 
expressed as the probability amplitude 〈x|s〉 = 〈x|k〉〈k|j〉〈j|s〉. D〈j|s〉, D〈k|j〉, and D〈x|k〉, are the dis-
tances between the designated planes.

j xs
N slits

D x|j D j|s 

FIGURE 4.4
Propagation from s to the interferometric plane x via an array of N slits positioned at the inter-
mediate plane j. D〈x|j〉 is the distance between the N-slit array and the x plane.
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Consideration of every possible alternative N in the computation of probability 
amplitude, as described in Equation 4.4, is an essential and crucial quantum 
feature.

For the case of an additional intermediate plane with N alternatives, as 
illustrated in Figure 4.5, the probability amplitude is written as

 

〈 〉 = 〈 〉〈 〉〈 〉
==

∑∑x s x k k j j s
j

N

k

N

| | | |
11  

(4.5)

And for the case including three intermediate N-slit arrays, the probability 
amplitude becomes

 

〈 〉 = 〈 〉〈 〉〈 〉〈 〉
===

∑∑∑x s x l l k k j j s
j

N

k

N

l

N

| | | | |
111  

(4.6)

The addition of further intermediate planes, with N alternatives, can then be 
systematically incorporated in the notation. The Dirac notation albeit origi-
nally applied to the propagation of single particles (Feynman et al., 1965; 
Dirac, 1978) also applies to describe the propagation of ensembles of coher-
ent, or indistinguishable, photons (Duarte, 1991, 1993, 2004). This observation 
is compatible with the postulate that indicates that the principles of quantum 
mechanics are applicable to the description of macroscopic phenomena that 
are not perturbed by observation (van Kampen, 1988).

s j k x
N slitsN slits

D j|s D k|j D x|k 

FIGURE 4.5
Propagation from s to the interferometric plane x via an array of N slits positioned at the inter-
mediate plane j and via an additional array of N slits positioned at k. D〈k|j〉 is the distance 
between the N-slit arrays.
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4.2 Dirac Quantum Principles

The principles established by Dirac in 1939, associated to his description of 
quantum mechanics, via the Dirac notation, can be described rather suc-
cinctly (Feynman et al., 1965). The first principle stipulates that any state, 
such as ψ, can be described in terms of a set of base states. The amplitude to 
transition from any state to another state can be written as a sum of products, 
such as

 
〈 〉 = 〈 〉〈 〉

=
∑x s x i i s
i

N

| | |
1  

(4.7)

The base states are orthogonal. This means that the amplitude to be in one if 
you are in the other is zero, or

 〈 〉 =i j ij| δ  (4.8)

Furthermore, the amplitude to get from one state to another directly is the 
complex conjugate of the reverse

 〈 〉 = 〈 〉x s s x| * |  (4.9)

As a matter of formality, it should be mentioned that the space of bra–ket 
vectors, when the vectors are restricted to a finite length and finite scalar 
products, is called a Hilbert space (Dirac, 1978). However, Dirac himself points 
out that bra–ket vectors form a more general space than a Hilbert space (Note: 
a Hilbert space is a generalized Euclidean space).

4.3 Interference and the Interferometric Equation

The Dirac notation offers a natural avenue to describe the propagation of 
particles from a source to a detection plane, via a pair of slits. This was 
done by Feynman in a thought experiment using electrons and two slits. 
The Feynman approach was extended to the description of indistinguish-
able photon propagation from a source s to an interferometric plane x, via a 
transmission grating j comprised by N slits, as illustrated in Figure 4.6, by 
Duarte (1989, 1991).

In the interferometric architecture of Figure 4.6, an expanded laser 
beam, from a single-transverse-mode narrow-linewidth laser, becomes the 
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radiation source (s) and illuminates an array of N slits or transmission grat-
ing (j). The interaction of the coherent radiation with the N-slit array (j) 
produces an interference signal at x. A crucial point here is that all the indis-
tinguishable photons illuminate the array of N slits, or grating, simultane-
ously. If only one photon propagates, at any given time, then that individual 
photon illuminates the whole array of N slits simultaneously (Duarte, 
2003). The probability amplitude that describes the propagation from the 
source (s) to the detection plane (x), via the array of N slits (j), is given by 
(Duarte, 1991, 1993)

 

〈 〉 = 〈 〉〈 〉
=

∑x s x j j s
j

N

| | |
1

According to Dirac (1978), the probability amplitudes can be represented by 
wave functions of ordinary wave optics. Thus, following Feynman et al. (1965),

 〈 〉 = −j s r ej s
i j| ( ),Ψ θ

 (4.10)

 〈 〉 = −x j r ex j
i j| ( ),Ψ φ

 (4.11)

N-slit array

Uniform TEM00
laser beam

s j x

Digital detector
(CCD or CMOS)

D x|j 

FIGURE 4.6
N-slit laser interferometer: A near-Gaussian beam from a single transverse mode (TEM00), 
narrow-linewidth laser is preexpanded in 2D telescope and then expanded in one 
 dimension (parallel to the plane of incidence) by an MPBE (Duarte, 1987). This expanded 
beam can be  further transformed into a nearly uniform illumination source  (s) 
(Duarte, 2003). Then, a uniform light source (s) illuminates an array of N slits at j. Interaction 
of the coherent emission with the slit array produces interference at the interferometric 
plane x (Duarte, 1993). 
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where θj and ϕj are the phase terms associated with the incidence and dif-
fraction waves, respectively. Using Equations 4.10 and 4.11, for the probabil-
ity amplitudes, the propagation probability amplitude

 

〈 〉 = 〈 〉〈 〉
=

∑x s x j j s
j

N

| | |
1

can be written as

 

〈 〉 = −

=
∑x s r ej i

j

N
j| ( )Ψ Ω

1  

(4.12)

where

 Ψ Ψ Ψ( ) ( ) ( ), ,r r rj x j j s=  (4.13)

and

 Ω j j j= +( )θ φ  (4.14)

Next, the propagation probability is obtained by expanding Equation 4.12 
and multiplying the expansion by its complex conjugate, or

 | | | | | *〈 〉 = 〈 〉〈 〉x s x s x s2
 (4.15)

Expansion of the probability amplitude and multiplication with its complex 
conjugate, following some algebra, lead to

 

| | | ( ) ( ) ( )〈 〉 =
=

−

=
∑ ∑x s r r ej
j

N

m
i

m

N
m j2

1 1

Ψ Ψ Ω Ω

 

(4.16)

Expanding Equation 4.16 and using the identity

 2cos( ) ( ) ( )Ω Ω Ω Ω Ω Ω
m j

i ie em j m j− = +− − −

 (4.17)

lead to the explicit form of the generalized propagation probability in one 
dimension (Duarte and Paine, 1989; Duarte, 1991):

 

| | | ( ) ( ) ( )cos( )〈 〉 = + −












= +=
∑∑x s r r rj j m m j
m j

N

j

N

j

2 2

11

2Ψ Ψ Ψ Ω Ω
==

∑
1

N

 

(4.18)
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This equation is the 1D generalized interferometric equation. The reader 
should keep in mind that it is completely equivalent to Equation 4.16.

4.3.1  Examples: Double-, Triple-, Quadruple-, 
and Quintuple-Slit Interference

Expanding Equation 4.16 for two slits (N = 2), as applicable to double-slit 
interference, we get
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Expanding Equation 4.18 for three slits (N = 3), applicable to triple-slit inter-
ference, we get

 

| | | ( ) ( ) ( ) ( ) ( )cos( )

( )

〈 〉 = + + + −(

+
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3
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Ψ ΨΨ Ω Ω Ψ Ψ Ω Ω( )cos( ) ( ) ( )cos( )r r r3 3 1 2 3 3 2− + − )  (4.20)

Expanding Equation 4.18 for four slits (N = 4), applicable to quadruple-slit 
interference, we get
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Expanding Equation 4.18 for five slits (N = 5), applicable to quintuple-slit 
interference, we get
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(4.22)

and so on. Besides the explicit interferometric expressions for N = 2, N = 3, 
N = 4, and N = 5, Equation 4.18 can be programmed to include sextuple (N = 6), 
septuple (N = 7), octuple (N = 8), nonuple (N = 9), or any number of slits, and 
in practice it has been used to do calculations, and comparisons with mea-
surements, in the 2 ≤ N ≤ 2000 range (Duarte, 1993, 2009).

4.3.2 Geometry of the N-Slit Interferometer

The relevant geometry, and geometrical parameters, at the transmission grat-
ing (j) and the plane of interference (x) are illustrated in Figures 4.6 through 
4.8. According to the geometry, the phase difference term in Equations 4.16 
and 4.18 can be expressed as (Duarte, 1997)

 
cos ( ) ( ) cos | | | |θ θ φ φm j m j m m m ml l k L L k− ± −( ) = − ± −( )− −1 1 1 2  

(4.23)

where

 
k n

1
12= π

λv  
(4.24)

and

 
k n

2
22= π

λv  
(4.25)

are the wave numbers of the two optical regions defined in Figure 4.8. Here, 
λ1 = λv/n1 and λ2 = λv/n2 where λv is the vacuum wavelength, while n1 and n2 
are the corresponding indexes of refraction (Wallenstein and Hänsch, 1974; 
Born and Wolf, 1999). The phase differences are expressed exactly via the fol-
lowing geometrical equations (Duarte, 1993):
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In this notation ξm is the lateral displacement, on the x plane, from the 
projected median of dm to the interference plane, and D〈x|j〉 is the intra- 
interferometric distance from the j plane to the x plane. Accurate representa-
tion of the exact geometry is important when writing software to generate 
numerical interferograms based on Equation 4.18.

4.3.3 Diffraction Grating Equation

In the phase term equation

 cos ( ) ( ) cos | | | |θ θ φ φm j m j m m m ml l k L L k− ± −( ) = − ± −( )− −1 1 1 2

the corresponding path differences are |lm − lm−1| and |Lm − Lm−1|. Since 
maxima occur at

 
| | | |l l n L L n Mm m m m− ± −( ) =− −1 1 1 2

2π
λ

π
v  

(4.29)

j

Lm–1

Lm

dm

dm/2

m

k2, n2

Φm

x

D x|j 

FIGURE 4.7
The N-slit array, or transmission grating, plane (j) and the interferometric plane (x) (not to 
scale) illustrating the path difference and the various parameters involved in the exact descrip-
tion of the geometry.
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where M = 0, ±2, ±4, ±6 ⋯, it can be shown that

 
d n n Mm m m1 2

2sin sinΘ Φ±( ) =π
λ

π
v  

(4.30)

which, for n1 = n2 = 1 and λ = λv, reduces to

 d k Mm m m(sin sin )Θ Φ± = π  (4.31)

that can be expressed as the well-known grating equation

 d mm m m(sin sin )Θ Φ± = λ  (4.32)

where m = 0, ±1, ±2, ±3 ⋯. For a grating utilized in the reflection domain, in 
Littrow configuration, Θm = Φm = Θ so that the grating equation reduces to

 2d msin Θ = λ  (4.33)

These diffraction equations are reconsidered, in a more general form, with 
an extra sign alternative in Chapter 5.

Φm

Θm Lm

lm–1

lm k1, n1 k2, n2

dm

Lm–1

J

FIGURE 4.8
Close up of the N-slit array, or transmission grating, plane (j) illustrating the path length dif-
ference and the angles of incidence (Θm) and diffraction (Φm) for the condition D〈x|j〉 ≫ dm as 
described. (Reproduced from Duarte, F.J., Am. J. Phys. 65, 637, 1997, with permission from the 
American Association of Physics Teachers.)
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4.3.4 N-Slit Interferometer Experiment

The N-slit interferometer is illustrated in Figure 4.9. In practice this interfer-
ometer can be configured with a variety of lasers including tunable lasers. 
However, one requirement is that the laser to be utilized must emit in the 
narrow-linewidth regime and in a single transverse mode (TEM00) with a 
near-Gaussian profile. Ideally the source should be a single-longitudinal-
mode laser (see Chapter 9). The reason for this requirement is that narrow-
linewidth lasers yield sharp well-defined interference patterns close to those 
predicted theoretically for a single wavelength.

One particular configuration of the N-slit laser interferometer (NSLI), 
described by Duarte (1993), utilizes a TEM00 He–Ne laser (λ ≈ 632.82 nm) 
with a beam 0.5 mm in diameter as the illumination source. This class of 
laser yields a smooth near-Gaussian beam profile and narrow-linewidth 
emission (∆ν ≈ 1 GHz). The laser beam is then magnified, in two dimen-
sions, by a Galilean telescope. Following the telescopic expansion, the 
beam is further expanded, in one dimension, by a multiple-prism beam 
expander (MPBE). This class of optical architecture can yield an expanded 
smooth near- Gaussian beam approximately 50 mm wide. An option is to 
insert a convex lens prior to the multiple-prism expander thus producing 
an extremely elongated near-Gaussian beam (Duarte, 1987, 1993). The beam 
propagation through this system can be accurately characterized using ray 
transfer matrices as discussed in Duarte (2003) (see Appendix C). Also, as an 
option, at the exit of the MPBE, an aperture, a few mm wide, can be deployed.

The beam profile thus produced can be neatly reproduced by the inter-
ferometric equation as illustrated later in this chapter. Thus, the source s can 
be either the exit prism of the MPBE or the wide aperture. For the results 
discussed in this chapter, on the detection side, the interference screen at x 
is a digital detector comprised of a photodiode array with individual pixels 
each 25 μm in width.

Laser TBE

MPBE

xJS

CCDD x|j 

FIGURE 4.9
Top view schematics of the N-slit interferometer. A neutral density filter follows the TEM00 
narrow linewidth. The laser beam is then magnified in two dimensions by a telescope beam 
expander (TBE). The magnified beam is then expanded in one dimension by an MPBE. A wide 
aperture then selects the central part of the expanded beam to illuminate the N-slit array (j). 
The interferogram then propagates via the intra-interferometric path D〈x|j〉 in its ways toward 
the interference plane x. Detection of the interferogram at x can either be performed by a silver 
halide film or a digital array such as a CCD or CMOS detector. (Reproduced from Duarte, F.J. 
et al., J. Opt. 12, 015705, 2010, with permission from the Institute of Physics.)
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Now, we consider a series of cases that demonstrate the measurement capa-
bility of the NSLI and the ability of the generalized interferometric equation to 
either predict or reproduce the measurement. The first case considered is the 
well-known double-slit experiment also known as Young’s interference experi-
ment. For (N = 2) with slits 50 μm in width, separated by 50 μm, the elongated 
Gaussian beam provides a nearly plane illumination. That is also approxi-
mately the case even if a larger number of slits, of these dimensions, are illu-
minated. For the particular case of a two-slit experiment involving 50 μm slits 
separated by 50 μm and a grating to screen distance D〈x|j〉 = 10 cm, the inter-
ference signal is displayed in Figure 4.10a. The calculated interference, using 
Equation 4.18, and assuming plane wave illumination are given in Figure 4.10b.
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FIGURE 4.10
(a) Measured interferogram resulting from the interaction of coherent laser emission at 
λ = 632.82 nm and two slits (N = 2) 50 μm wide, separated by 50 μm. The j to x distance is 
D〈x|j〉 = 10 cm. Each pixel is 25 μm wide. (b) Corresponding theoretical interferogram from 
Equation 4.18.
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For an array of N = 23 slits, each 100 μm in width and separated by 100 μm, 
the measured and calculated interferograms are shown in Figure 4.11. Here 
the grating to digital detector distance is D〈x|j〉 = 1.5 cm. This is a near field 
result and corresponds entirely to the interferometric regime.

For an array of N = 100 slits, each 30 μm in width and separated by 30 μm, 
the measured and calculated interferograms are shown in Figure 4.12. 
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FIGURE 4.11
(a) Measured interferogram, in the near field, resulting from the interaction of coherent laser 
emission at λ = 632.82 nm and N = 23 slits, 100 μm wide, separated by 100 μm. Here, D〈x|j〉 = 1.5 cm. 
(b) Corresponding near-field theoretical interferogram from Equation 4.18. (Reproduced from 
Duarte, F.J., Opt. Commun. 103, 8, 1993, with permission from Elsevier.)
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Here the grating to digital detector distance is D〈x|j〉 = 75 cm. In Figure 4.12 
the ±1 diffraction orders are present.

In practice, the transmission gratings are not perfect and offer an uncer-
tainty in the dimension of the slits. The uncertainty in the slit dimensions 
of the grating, incorporating the 30 μm slits, used in this experiments was 
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FIGURE 4.12
(a) Measured interferogram resulting from the interaction of coherent laser emission 
at λ = 632.82 nm and N = 100, slits 30 μm wide, separated by 30 μm. Here, D〈x|j〉 = 75 cm. 
(b) Corresponding theoretical interferogram from Equation 4.18. (Reproduced from Duarte, F.J., 
Opt. Commun. 103, 8, 1993, with permission from Elsevier.)
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measured to be ≤2%. The theoretical interferogram for the grating comprised 
by N = 100 slits, each 30.0 ± 0.6 μm wide and separated by 30.0 ± 0.6 μm, is 
given in Figure 4.13. Notice the symmetry deterioration.

When a wide slit is used to select the central portion of the elongated 
Gaussian beam, the interaction of the coherent laser beam with the slit 
results in diffraction prior to the illumination of the transmission grating. 
The interferometric Equation 4.18 can be used to characterize this diffrac-
tion. This is done by dividing the wide slit in hundreds of smaller slits. 
As an example a 4 mm wide aperture is divided into 800 slits each 4 μm 
wide and separated by a 1 μm interslit distance (Duarte, 1993). The cal-
culated near- field diffraction pattern, for a distance of D〈x|j〉 = 10 cm, is 
shown in Figure 4.14. Using this as the radiation source to illuminate the 
N = 100 slit grating, comprised of 30 μm slits with an interslit distance of 
30 μm (for D〈x|j〉 = 75 cm), yields the theoretical interferogram displayed 
in Figure 4.15. This is a cascade interferometric technique in which the inter-
ferometric distribution in one plane is used to illuminate an N-slit array 
in the immediately following plane and is applied further in the results 
discussed in Chapter 20.
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FIGURE 4.13
Theoretical interferometric/diffraction distribution using a ≤2% uncertainty in the dimen-
sions of the 30 μm slits. In this calculation, N = 100 and D〈x|j〉 = 75 cm. A deterioration in 
the spatial symmetry of the distribution is evident. (Reproduced from Duarte, F.J., Opt. 
Commun. 103, 8, 1993, with permission from Elsevier.)
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FIGURE 4.14
Theoretical near-field diffraction distribution produced by a 4 mm aperture illuminated at 
λ = 632.82 nm, and D〈x|j〉 = 10 cm. (Reproduced from Duarte, F.J., Opt. Commun. 103, 8, 1993, with 
permission from Elsevier.)
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FIGURE 4.15
Theoretical interferometric distribution incorporating diffraction-edge effects in the illumination. 
In this calculation, the width of the slits in the array is 30 μm, separated by 30 μm, N = 100, and 
D〈x|j〉 = 75 cm. The aperture-grating distance is 10 cm. (Reproduced from Duarte, F.J., Opt. Commun. 
103, 8, 1993, with permission from Elsevier.)
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4.4 Coherent and Semicoherent Interferograms

The interferometric equation
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was originally derived to account for single-photon propagation only 
(Duarte, 1993, 2004). This is illustrated by adding a single-wavelength sub-
script to Equation 4.18, as made explicit now in Equation 4.34. Thus, this 
equation is intrinsically related to monochromatic and/or highly coherent 
emission. In practice it has also been found that it accounts for the propaga-
tion of ensembles of indistinguishable photons or narrow-linewidth emis-
sion as available from narrow-linewidth laser sources (Duarte, 1993, 2003). 
The question then arises on the applicability of Equation 4.34 to the case of 
semicoherent, partially coherent, or broadband emission.

Equation 4.34 provides an interferogram for a single wavelength and in 
practice for an ensemble of indistinguishable photons. These interferograms 
are narrow and spatially sharp and well defined. For broadband emission, or 
semicoherent emission, the sharpness of the interferogram diminishes and 
the interferometric pattern becomes broad and less defined. This is how this 
occurs: each wavelength has a unique interferometric signature defined by 
Equation 4.34. A detector registers that signature. If the emission is broad-
band or semicoherent, a multitude of different interferograms are generated, 
and the detector (either digital or a photographic plaque) provides an inte-
grated picture of a composite interferogram produced by the array of wave-
lengths involved in the emission.

Thus, for broadband emission Equation 4.34 is modified to include a sum 
over the wavelength range involved, so that
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The concept just described has been previously outlined by Duarte (2007, 
2008) and is further illustrated next. In Figure 4.16 the double-slit interfero-
gram produced with narrow-linewidth emission from the 3s2 − 2p10 transi-
tion of a He–Ne laser, at λ ≈ 543.3 nm, is displayed. The visibility of this 
interferogram is calculated using (Michelson, 1927)

 
V = −

+
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to be V ≈ 0 95. . In Figure 4.17 the double-slit interferogram produced, under 
identical geometrical conditions, but with the emission from an electrically 
excited coherent organic semiconductor interferometric emitter, at λ ≈ 540 nm, 
is displayed. Here the visibility is lower V ≈ 0 90. . A comparison between the 
two interferograms reveals that the second interferogram has slightly broader 
spatial features relative to the interferogram produced with illumination 

9000

7000

5000

Re
la

tiv
e i

nt
en

sit
y

3000

1000

490 510 530
Number of pixels

FIGURE 4.16
Measured double-slit interferogram generated with He–Ne laser emission from the 3s2 − 2p10 
transition at λ ≈ 543.3 nm. Here, N = 2 for a slit width of 50 μm. The intra-interferometric dis-
tance is D〈x|j〉 = 10 cm. (Reproduced from Duarte, F.J., Opt. Lett. 32, 412, 2007, with permission 
from the Optical Society of America.)
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FIGURE 4.17
Measured double-slit interferogram generated with emission from an organic  semiconductor 
interferometric emitter at λ ≈ 540 nm. Here, N = 2 for a slit width of 50 μm. The intra- 
interferometric distance is D〈x|j〉 = 10 cm. (Reproduced from Duarte, F.J., Opt. Lett. 32, 412, 2007, 
with permission from the Optical Society of America.)
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from the 3s2 − 2p10 transition of the He–Ne laser. The differences in spatial 
distributions between these two interferograms have been used to estimate 
the linewidth of the emission from the interferometric emitter (Duarte, 2008).

A double-slit interferogram produced, under identical geometrical condi-
tions, but with the emission from a broadband semicoherent source, cen-
tered around λ ≈ 540 nm, yields a visibility of V ≈ 0 55. . A survey of measured 
double-slit interferogram visibilities from relevant semicoherent, or partially 
coherent, sources reveals a visibility range of 0 4 0 65. .≤ ≤V . On the other 
hand, the visibility range for double-slit interferograms originating from 
various laser sources is 0 85 0 99. .≤ ≤V  (Duarte, 2008).

4.5 Interferometric Equation in Two and Three Dimensions

The 2D interferometric case can be described considering a diffractive 
grid, or 2D N-slit array, as depicted in Figure 4.18. Photon propagation 
takes place from s to the interferometric plane x via a 2D transmission 
grating jzy, that is, j is replaced by a grid comprised of j components in the 
y direction and j components in the z direction. Note that in the 1D case 
only the y component of j is present, which is written simply as j. The plane 
configured by the jzy grid is orthogonal to the plane of propagation. Hence, 

s y x

x

j

z

D x|j 

FIGURE 4.18
Two-dimensional depiction of the interferometric system 〈x|j〉〈j|s〉. (Adapted from Duarte, 
F.J., Interferometric imaging, In: Tunable Laser Applications, Duarte, F. J. (ed.), Marcel Dekker, 
New York, 1995.)
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for photon propagation from s to x, via jzy, the probability amplitude is 
given by (Duarte, 1995)
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Now, if the j is abstracted from jzy, then Equation 4.37 can be expressed as
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and the corresponding probability is given by (Duarte, 1995)
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For a 3D transmission grating, it can be shown that
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It is important to emphasize that the equations described here apply either 
to the propagation of single photons or to the propagation of ensembles of 
coherent, indistinguishable, or monochromatic photons. For broadband emission, 
as described in the previous section, an interferometric summation over the 
emission spectrum is necessary.

The application of quantum principles to the description of propagation 
of a large number of monochromatic, or indistinguishable, photons was 
already advanced by Dirac in his discussion of interference (Dirac, 1978; 
Duarte, 1998).

4.6 Classical and Quantum Alternatives

Increasingly the field of optics has seen a transition from a classical descrip-
tion to a quantum description. Some phenomena is purely quantum and 
cannot be described classically. Other phenomena, such as polarization and 
interference, can be described either classically or quantum mechanically. 
In the case of interference, and diffraction, the beauty is that the quantum 
mechanical description also applies to the description of ensembles of indis-
tinguishable photons. Also, when we describe interference and diffraction 
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using quantum mechanical tools, all we are doing is following the steps of 
giants such as Dirac (1978) and Feynman (see, Feynman and Hibbs, 1965) 
(Note: Dirac’s description comes from the 1930s, but the book edition we are 
using is 1978).

As we shall see in Chapter 5, there is another powerful reason to describe 
interference quantum mechanically: This description provides a unified ave-
nue to the whole of optics in a succinct inverse hierarchy that goes

 INTERFERENCE DIFFRACTION REFRACTION REFLECTION→ → →

(Duarte, 1997). By contrast the situation from a traditional classical perspec-
tive is rather disjointed as can be observed by perusing any good book on 
classical optics. There, the description goes like reflection, refraction, dif-
fraction, and interference in a non-cohesive manner. Classically, there is no 
mathematical coherence in the description.

Furthermore, in our quantum description, a single equation is used to 
describe interference, and interference–diffraction phenomena, in the near 
and the far field in a unified manner (Duarte, 1993).

Problems

4.1 Show that substitution of Equations 4.10 and 4.11 into Equation 4.4 leads 
to Equation 4.12.

4.2 Show that Equation 4.16 can be expressed as Equation 4.18.
4.3 From the geometry of Figure 4.7, derive Equations 4.26 through 4.28.
4.4 Write an equation for |〈x|s〉|2 in the case relevant to N = 3 starting from 

Equation 4.16.
4.5 Write an equation for |〈x|s〉|2 using the probability amplitude given in 

Equation 4.5.
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5
Interference, Diffraction, Refraction, 
and Reflection via the Dirac Notation

5.1 Introduction

In this chapter we use the generalized 1D interferometric equation to 
 introduce the concepts of diffraction, refraction, and reflection, cohesively 
and unified in that order. Thus, we have an equation derived using the prob-
abilistic concept of single-photon propagation, via the Dirac quantum nota-
tion, explaining in a unified manner the major concepts of classical optics.

In the original exposition of this united and cohesive approach to optics 
(Duarte, 1997, 2003), only positive refraction was considered. Here, both, 
 positive and negative refraction, are incorporated (Duarte, 2006). Subsequently, 
the brief exposition of generalized prismatic dispersion also encompasses 
the positive and negative alternatives.

5.2 Interference and Diffraction

Feynman, in his usual style, stated that “no one has ever been able to define 
the difference between interference and diffraction satisfactorily” (Feynman et al., 
1965).

In the discussion related to Figure 5.1, and its variants, reference, up to now, 
was only made to interference. However, what we really have is interference 
in three diffraction orders, that is, the 0th, or central order, and the ±1, or 
secondary orders. In other words, there is an interference pattern associated 
with each diffraction order.

Physically, however, it is part of the same phenomenon. The interaction 
of coherent light with a set of slits, in the near field, gives rise to an inter-
ference pattern. As the intra- interferometric distance D〈x|j〉, from j to x, 
increases, the central interference pattern begins to give origin to secondary 
patterns that gradually separate from the central order at lower intensities. 
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These are the ±1 diffraction orders. This physical phenomenon, as one goes 
from the near to the far field, is clearly illustrated in Figures 5.2 through 5.5. 
One of the beauties of the Dirac description of optics is the ability to continu-
ously describe the evolution of the interferometric distribution, as it moves 
from the near to the far field, with a single mathematical equation.
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FIGURE 5.1
(a) Measured interferogram resulting from the interaction of coherent laser emission at 
λ = 632.82 nm and 100 slits 30 μm wide, separated by 30 μm. The j to x distance is 75 cm. 
(b) Corresponding theoretical interferogram from Equation 5.1. (Reproduced from Duarte, F.J., 
Opt. Commun. 103, 8, 1993, with permission from Elsevier.)
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FIGURE 5.2
Interferogram at a grating to screen distance of D〈x|j〉 = 5 cm. The interferometric distribu-
tion, in the near field, is mainly part of a single order. At the boundaries there is an incipient 
indication that of emerging orders. Slit width is 30 μm and slits are separated by 30 μm, 
N  = 100, and λ = 632.8 nm. (From Duarte, F.J., Tunable Laser Optics, Elsevier-Academic, 
New York, 2003.)
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FIGURE 5.3
Interferogram at a grating to screen distance of D〈x|j〉 = 10 cm. The presence of the emerging 
(±1) orders is more visible. Slit width is 30 μm and slits are separated by 30 μm, N = 100, and 
λ = 632.8 nm. (From Duarte, F.J., Tunable Laser Optics, Elsevier-Academic, New York, 2003.)
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FIGURE 5.4
Interferogram at a grating to screen distance of D〈x|j〉 = 25 cm. The emerging (±1) orders give 
rise to an overall distribution with clear “shoulders.” Slit width is 30 μm and slits are separated 
by 30 μm, N = 100, and λ = 632.8 nm. (From Duarte, F.J., Tunable Laser Optics, Elsevier-Academic, 
New York, 2003.)
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FIGURE 5.5
Interferogram at a grating to screen distance of D〈x|j〉 = 75 cm. The −1, 0, and +1 diffrac-
tion orders are clearly established. Notice the increase in the width of the distribution as 
the j to x distance increases from 5 to 75 cm. Slit width is 30 μm and slits are separated by 
30 μm, N = 100, and λ = 632.8 nm. (From Duarte, F.J., Tunable Laser Optics, Elsevier-Academic, 
New York, 2003.)
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The second interference–diffraction entanglement refers to the fact that 
our generalized interference equation can be naturally applied to describe 
a diffraction pattern produced by a single wide slit as previously shown in 
Figure 5.6. Under those circumstances the wide slit is mathematically repre-
sented by a multitude of subslits.

5.2.1 Generalized Diffraction

The intimate relation between interference and diffraction has its origin in 
the interferometric equation itself (Duarte, 2003):
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for it is the cos(Ωm − Ωj) term that gives rise to the different diffraction orders.
Here, we revisit the geometry at the N-slit plane j and illustrate what is 

obviously seen in Figures 5.1 through 5.5: up on arrival to a slit, diffraction 
occurs symmetrically toward both sides as illustrated in Figures 5.7 through 
5.10. Figure 5.7 depicts the usual description associated with incidence below 
the normal (−) and diffraction above the normal (+).

Figure 5.8 illustrates incidence above the normal (+) and diffraction above 
the normal (+) (Duarte, 2006). For completeness we also include the case of 
incidence below the normal (−) followed by diffraction below the normal (−) 
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FIGURE 5.6
Theoretical near field diffraction distribution produced by a 4 mm aperture illuminated at 
λ = 632.82 nm. The j to x distance is 10 cm. (Reproduced from Duarte, F.J., Opt. Commun. 103, 8, 
1993, with permission from Elsevier.)
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FIGURE 5.8
Outline of the j plane in a transmission grating showing incidence above the normal (+) and 
diffraction above the normal (+) consistent with the convention leading to negative refraction. 
(Reproduced from Duarte, F.J., Appl. Phys. B, 82, 35, 2006, with permission from Springer Verlag.)
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FIGURE 5.7
Outline of the j plane in a transmission grating showing incidence below the normal (−) and 
diffraction above the normal (+) consistent with the convention leading to positive refraction. 
(Reproduced from Duarte, F.J., Appl. Phys. B, 82, 35, 2006, with permission from Springer Verlag.)
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FIGURE 5.9
Outline of the j plane in a transmission grating showing incidence below the normal (−) and 
diffraction below the normal (−) consistent with the convention leading to negative refraction.
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FIGURE 5.10
Outline of the j plane in a transmission grating showing incidence above the normal (+) and 
diffraction below the normal (−) consistent with the convention leading to positive refraction.
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and incidence above the normal (+) followed by diffraction below the normal 
(−) (Figures 5.9 and 5.10).

Thus, the equations describing the geometry (Duarte, 1997) are slightly 
modified to account for all the ± alternatives
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are the wave numbers of the two optical regions defined in Figures 5.7 
through 5.10. Here, as we saw previously, λ1 = λv/n1 and λ2 = λv/n2, where λv 
is the vacuum wavelength and n1 and n2 are the corresponding indexes of 
refraction.

As previously explained in Chapter 4, the phase differences can be 
expressed exactly via the following geometrical expressions (Duarte, 1993):
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From the geometry of Figure 5.11 we can write
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(5.8)

and for the condition D〈x|j〉 ≫ dm, we have |Lm + Lm−1| ≈ 2Lm; then using Equations 
5.5 and 5.6 we have

 | | sinL L dm m m m− ≈−1 Φ  (5.9)
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 | | sinl l dm m m m− ≈−1 Θ  (5.10)

where Θm and Φm are the angles of incidence and diffraction, respectively. 
Given that maxima occur at
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then using Equations 5.9 and 5.10
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(5.12)

where M = 0, 2, 4, 6, … For n1 = n2, we have λ = λv, and this equation reduces 
to the generalized diffraction grating equation

 d mm m m± ±( ) =sin sinΘ Φ λ  (5.13)

where m = 0, 1, 2, 3, … are the various diffraction orders.

j

Lm–1

Lm

x

+Φm

k2, n2

–Θm

dm

dm/2

m

D x| j 

FIGURE 5.11
Close-up of the N-slit array, or transmission grating, plane (j) illustrating the path length dif-
ference and the angles of incidence (−Θm) and diffraction (+Φm) for the condition D〈x|j〉 ≫ dm.
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A most important observation is due here: in our discussion on the inter-
ferometric equations, we have made explicit reference to the exact geomet-
rical equations (Equations 5.5 through 5.7). However, in the derivation of 
Equations 5.12 and 5.13, we have used the approximation D〈x|j〉 ≫ dm. Are we 
being consistent? The answer is yes! The exact Equations 5.5 through 5.7 are 
used in the generalized interferometric equation (Equation 5.1), while the 
approximation D〈x|j〉 ≫ dm has been applied in the derivation of the general-
ized diffraction equation

 d mm m m( sin sin )± ± =Θ Φ λ

that manifests itself in the far field as beautifully illustrated in Figures 5.2 
through 5.5. From this equation it is clearly seen that beyond the zeroth 
order, m can take a series of ± values, that is, m = ±1, ±2, ±3 ⋯

5.2.2 Positive Diffraction

From the generalized diffraction equation (Equation 5.13) including both ± 
alternatives, the usual traditional equation can be stated as

 d mm m msin sinΘ Φ±( ) = λ  (5.14)

which was previously derived starting from (Duarte, 1997)

 
cos ( ) ( ) cos | | | |θ θ φ φm j m j m m m ml l k L L k− ± −( ) = − ± −( )− −1 1 1 2  

(5.15)

From Equation 5.14, setting Θm = Φm = Θ, the diffraction grating equation for 
Littrow configuration emerges the well-known equation

 m dmλ = 2 sin Θ  (5.16)

5.3 Positive and Negative Refraction

So far we have discussed interference and diffraction, and we have seen how 
diffraction manifests itself as the interferometric distribution propagates 
toward the far field. An additional fundamental phenomenon in optics is 
refraction.

Refraction is the change in the geometrical path, of a beam of light, due to 
transmission from the original medium of propagation to a second medium 
with a different refractive index. For example, refraction is the bending of a 
ray of light caused due to propagation in a glass, or crystalline, prism.
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If in the diffraction grating equation dm is made very small relative to a 
given λ, diffraction ceases to occur and the only solution can be found for 
m = 0 (Duarte, 1997).

That is, under these conditions, a grating made of grooves coated on a 
transparent substrate, such as optical glass, does not diffract and exhibits 
the refraction properties of the glass. For example, since the maximum 
value of (±sinΘm ± sinΦm) is 2, for a 5000-lines mm−1 transmission grat-
ing, let us say, no diffraction can be observed for the visible spectrum. 
Hence, for the condition dm ≪ λ the diffraction grating equation can only 
be solved for

 
d n nm m m± ±( ) =1 2

2 0sin sinΘ Φ π
λv  

(5.17)

which leads to

 ( sin sin )± ± =n nm m1 2 0Θ Φ  (5.18)

For the case of incidence below the normal (−) and refraction above the nor-
mal (+) (Figure 5.7)

 − + =n nm m1 2 0sin sinΘ Φ  (5.19)

so that

 n nm m1 2sin sinΘ Φ=  (5.20)

which is the well-known equation of refraction, also known as Snell’s law. 
Under the present physical conditions, Θm is the angle of incidence, and Φm 
becomes the angle of refraction. The same outcome is obtained for incidence 
above the normal (+) and refraction below the normal (−) (Figure 5.10).

For the case of incidence above the normal (+) and refraction above the 
normal (+) (Figure 5.8),

 + + =n nm m1 2 0sin sinΘ Φ  (5.21)

so that

 n nm m1 2sin sinΘ Φ= −  (5.22)

which is Snell’s law for negative refraction. The same outcome is obtained 
for incidence below the normal (−) and diffraction below the normal (−) 
(Figure 5.9).

 



74 Quantum Optics for Engineers

5.3.1 Focusing

Once the law of refraction is introduced, focusing is the next logical and 
natural step.

This is due to the fact that focusing naturally flows from the law of refrac-
tion, or Snell’s law, acting on a curved surface. The relationships between 
surface radius of curvature, refractive index, and focal length for various 
lens types is discussed in detail in classical optics books such as Fundamental 
of Optics (Jenkins and White, 1957). For completeness, in Appendix C we 
provide an extensive table with focusing parameters for various lenses of 
interest using the ABCD propagation matrix formalism (Siegman, 1986; 
Duarte, 2003).

5.4 Reflection

The discussion on interference, up to now, has involved an N-slit array or a 
transmission grating. It should be indicated that the arguments and physics 
apply equally well to a reflection interferometer (Duarte, 2003), that is, to an 
interferometer incorporating a reflection, rather than a transmission, grat-
ing. Explicitly, if a mirror is placed at an infinitesimal distance immediately 
behind the N-slit array, as illustrated in Figure 5.12, then the transmission 

Θ

Φ

N-slit array

FIGURE 5.12
Approaching a mirror, at an infinitesimal distance, to an N-slit array is used to configure a 
reflection diffraction grating. The incidence angle is Θ and the diffraction angle is Φ.
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interferometer becomes a reflection interferometer. Under those circum-
stances the equations

 
d n n Mm m m( sin sin )± ± =1 2

2Θ Φ π
λ

π
v

and

 d mm m m( sin sin )± ± =Θ Φ λ

apply in the reflection domain, with Θm being the incidence angle and Φm the 
diffraction angle in the reflection domain. For the case of dm ≪ λ and n1 = n2, 
we then have

 ( sin sin )± ± =Θ Φm m 0  (5.23)

For incidence above the normal (+) and reflection below the normal (−),

 + − =sin sinΘ Φm m 0  (5.24)

which means

 Θ Φm m=  (5.25)

where
Θm is the angle of incidence
Φm is the angle of reflection. This is known as the law of reflection

5.5 Succinct Description of Optics

A summary of fundamental optical principles can now be given. Starting 
from the Dirac quantum principle (Dirac, 1939, 1978)

 

〈 〉 = 〈 〉〈 〉
=

∑x s x j j s
j

N

| | |
1
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the generalized 1D interferometric equation is derived (Duarte and Paine, 
1989; Duarte, 1991)
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From the phase term of this equation, the generalized diffraction equation

 
d n n Mm m m( sin sin )± ± =1 2

2Θ Φ π
λ

π
v

can be obtained, from which the generalized diffraction grating equation

 d mm m m( sin sin )± ± =Θ Φ λ

can be arrived to. From the generalized diffraction equation and applying 
the condition dm ≪ λ, the generalized refraction equation

 ( sin sin )± ± =n nm m1 2 0Θ Φ

is obtained. And from this equation one can arrive at the law of reflection

 Θ Φm m=

Most other important optical phenomena, such as focusing and disper-
sion, can be explained from the principles outlined here. This hierarchical, 
orderly, and unified description of optics, interference, diffraction, refraction, 
and reflection (Duarte, 1997, 2003), illustrates that quantum principles are 
perfectly compatible with classical empirical phenomena. The phenomenon 
of multiple-prism dispersion originates from the derivatives of refraction 
and is treated in Chapter 6.

Going back to the Feynman statement, on interference and diffraction, we 
can confidently state that this whole phenomena is succinctly and beauti-
fully described by the interferometric equation
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Indeed, in reference to the interferometric progression illustrated in Figures 
5.2 through 5.5, we see that the basic phenomenon is interference. Pure inter-
ference dominates in the near field. However, as the propagation distance 
increases toward the far field, diffraction orders (m = ±1, ±2, ±3 ⋯) do appear. 
This appearance of diffraction orders is analogous to a quantization of the 
interferometric distribution.
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Problems

5.1 Show that the geometry depicted in Figure 5.11 leads to Equation 5.11.
5.2 Substitute Equations 5.9 and 5.10 into Equation 5.11 to obtain Equation 5.13.
5.3 Show that from the geometry outlined in Figure 5.7, Equation 5.20 follows.
5.4 Show that from the geometry outlined in Figure 5.8, Equation 5.22 follows.
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6
Generalized Multiple-Prism Dispersion

6.1 Introduction

Now that we have dealt with the fundamentals, we’ll focus on the derived 
phenomenon of angular dispersion. Angular dispersion is an important 
quantity in optics that describes the ability for an optical element, such as a 
diffraction grating or prism, to geometrically spread a beam of light as a func-
tion of wavelength. Mathematically it is expressed by the differential (∂θ/∂λ). 
For spectrophotometers and wavelength meters based on dispersive ele-
ments, such as diffraction gratings and prism arrays, the dispersion should be 
as large as possible since that enables a higher wavelength spatial resolution.

Further, in the case of dispersive laser oscillators, a high dispersion leads 
to the achievement of narrow-linewidth emission since the dispersive cavity 
linewidth is given by

 
∆ ∆λ θ θ

λ
≈ ∂

∂
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(6.1)

where (∂θ/∂λ) is the overall intracavity dispersion (Duarte, 1992). In Chapter 
9, the cavity linewidth equation is derived from the Dirac quantum prin-
ciples (Dirac, 1978) via the interferometric equation (Duarte, 1991, 1993)
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(6.2)

In this chapter, however, we concentrate on the dispersive term (∂θ/∂λ) of gen-
eralized multiple-prism arrays since these arrays are widely used in optics 
in a variety of optics and quantum optics applications such as the following:

 1. Laser intracavity beam expanders, in narrow-linewidth tunable 
laser oscillators

 2. Extracavity beam expanders
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 3. Laser pulse compressors, in femtosecond and ultrafast pulse lasers
 4. Dispersive elements in a variety of optical instruments such as 

spectrometers

Albeit multiple-prism arrays were first introduced by Newton (1704), a math-
ematical description of their dispersion had to wait, a long time, until their 
application as intracavity beam expanders in narrow-linewidth tunable 
lasers (Duarte and Piper, 1982).

6.2 Generalized Multiple-Prism Dispersion

Generalized multiple-prism arrays are illustrated on Figure 6.1. The aim here 
is to obtain generalized angular dispersion equations based on the basic 
prismatic geometry and the generalized refraction equations obtained in 
Chapter 5 (Duarte and Piper, 1982; Duarte, 2006). Considering the mth prism, 
of the arrangements, the angular relations are given by

 φ φ ε α1 2, ,m m m m+ = ±  (6.3)

 ψ ψ α1 2, ,m m m+ =  (6.4)

 sin sin, ,φ ψ1 1m m mn= ±  (6.5)

 sin sin, ,φ ψ2 2m m mn= ±  (6.6)

As illustrated in Figure 6.1, ϕ1,m and ϕ2,m are the angles of incidence and emer-
gence, and ψ1,m and ψ2,m are the corresponding angles of refraction, at the mth 
prism. The sign alternative ± allows for either positive refraction or negative 
refraction.

Differentiating Equations 6.5 and 6.6 and using

 

d
dn

d
dn

m mψ ψ1 2, ,= −
 

(6.7)

the single-pass dispersion following the mth prism is given by (Duarte and 
Piper, 1982; Duarte, 2006)

 ∇ = ± ∇ ± ∇ ± ∇( )−
−λ λ λ λφ φ2 2 1 2

1
1 2 1, , , , , ,( )( ) ( )m m m m m m m mn k k nH H  (6.8)

where ∇λ = ∂/∂λ and the following geometrical identities apply
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FIGURE 6.1
Generalized multiple-prism sequences: (a) positive configuration and (b) compensating con-
figuration. Depiction of these generalized prismatic configurations was introduced by Duarte 
and Piper (1983).
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The k1,m and k2,m factors represent the physical beam expansion experienced, 
at the mth prism, by the incidence and the emergence beams, respectively. 
In Equation 6.8 the sign ± alternative refers to either positive (+) or nega-
tive (−) refraction, while the same sign alternative in parenthesis (±) indicates 
whether the prismatic configuration is positive (+) or compensating (−). For 
positive refraction alone, Equation 6.8 becomes

 ∇ = ∇ + ∇ ± ∇( )−
−λ λ λ λφ φ2 2 1 2

1
1 2 1, , , , , ,( )( )m m m m m m m mn k k nH H  (6.13)

The generalized single-pass dispersion equation indicates that the cumulative 
dispersion at the mth prism, namely, ∇λϕ2,m, is a function of the geometry of 
the mth prism, the position of the light beam relative to this prism, the mate-
rial of this prism, and the cumulative dispersion up to the previous prism, 
∇λϕ2,(m−1) (Duarte and Piper, 1982, 1983).

For the special case of orthogonal beam exit, that is, ϕ2,m = 0 and ψ2,m = 0, we 
have H 2 20 1, ,, ,m mk= =  and Equation 6.13 reduces to

 ∇ = ∇ ± ∇( )−
−λ λ λφ φ2 1

1
1 2 1, , , ,( )( )m m m m mk nH  (6.14)

For an array of r identical isosceles, or equilateral, prisms deployed sym-
metrically, in an additive configuration, for positive refraction, so that ϕ1,m = 
ϕ2,m, the cumulative dispersion reduces to (Duarte, 1990a)

 ∇ = ∇λ λφ φ2 2 1, ,r r  (6.15)

This is a simple dispersion equation that applies to the design of multiple-
prism spectrometers incorporating identical, isosceles, or equilateral prisms 
arranged in symmetrical additive configurations.

The generalized single-pass dispersion equation for positive refraction 
(Equation 6.13) can be restated in a more practical and explicit notation 
(Duarte, 1989, 1990a)
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where
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are the respective beam expansion factors. For the important practical case 
of r right angle prism, designed for orthogonal beam exit (i.e., ϕ2,m = ψ2,m = 0), 
Equation 6.16 reduces to
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If in addition the prism has identical apex angle (α1 = α2 = α3 = ⋯ = αm) and 
is configured to have the same angle of incidence (ϕ1,1 = ϕ1,2 = ϕ1,3 = ⋯ = ϕ1,m), 
then Equation 6.19 can be written as (Duarte, 1985)
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Further, if the angle of incidence for all prisms is Brewster’s angle, then the 
single-pass dispersion reduces to the elegant expression
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Alternative forms of expressing the generalized multiple-prism dispersion 
equation in series are given in Appendix D.

6.2.1 Example: Generalized Single-Prism Dispersion

For a single generalized prism, it is easy to show that the elegant generalized 
multiple-prism dispersion, Equation 6.13, reduces to
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(6.22)

as given in well-known textbooks (Duarte, 1990a; Born and Wolf, 1999). 
Further, for the case of orthogonal beam exit (ϕ2,m ≈ ψ2,m ≈ 0), Equation 6.22 
reduces to (Wyatt, 1978)

 ∇ ≈ ∇λ λφ ψ2 1 1 1 1, ,tan n  (6.23)

The previously given examples are included to show that albeit general and 
elegant in its complete form, Equation 6.13 quickly leads to concrete results 
of practical interest to designers, laser practitioners, and optical engineers.
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6.3 Double-Pass Generalized Multiple-Prism Dispersion

The evaluation of intracavity dispersion in tunable laser oscillators incorpo-
rating multiple-prism beam expanders requires the assessment of the dou-
ble-pass, or return-pass, dispersion (Duarte and Piper, 1984; Duarte, 1990a). 
The double-pass dispersion of multiple-prism beam expanders was derived 
by thinking of the return pass as a mirror image of the first light passage as 
illustrated in Figure 6.2. The return-pass dispersion corresponds to the dis-
persion experienced by the return light beam at the first prism.

Thus, it is given by ∂ ′ ∂ = ∇ ′φ λ φλ1 1, ,m m/  where the prime character indicates 
return pass (Duarte and Piper, 1982, 1984)

 ∇ ′ = ′ ∇ + ′ ′ ′ ∇ ± ∇ ′( )−
+λ λ λ λφ φ1 1 1 2
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FIGURE 6.2
Multiple-prism grating assembly incorporating a three-prism beam expander designed for 
orthogonal beam exit.
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Here, ∇ ′ +λφ1 1,( )m  provides the cumulative single-pass multiple-prism disper-
sion plus the dispersion of the diffraction grating, that is,

 ∇ ′ = ∇ ± ∇( )+λ λ λφ φ1 1 2,( ) ,m G rΘ  (6.29)

where ∇λΘG is the grating dispersion. If the grating is replaced by a mirror, 
then we simply have the prismatic contribution and

 ∇ ′ = ∇+λ λφ φ1 1 2,( ) ,m r  (6.30)

Defining ∇ ′ = ∇λφ1,m PΦ , where the capital ϕ stands for return pass and P for 
multiple prism, the explicit version of the generalized double-pass disper-
sion for a multiple-prism mirror system is given by (Duarte, 1985, 1989)
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For the case of r right angle prism, designed for orthogonal beam exit (i.e., 
ϕ2,m = ψ2,m = 0), Equation 6.31 reduces to
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which can also be expressed as (Duarte, 1985)
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If the angle of incidence for all prisms in the array is made equal to the 
Brewster angle, this equation simplifies further to (Duarte, 1990a)
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The equations given in here are quite highly applicable to the design of multiple-
prism beam expanders for narrow-linewidth tunable lasers (see Figure 6.3).

6.3.1 Design of Zero-Dispersion Multiple-Prism Beam Expanders

In practice, the dispersion of the grating, multiplied by the beam expansion, 
that is, M(∇λΘG), amply dominates the overall intracavity dispersion. Thus, it 
is sometimes advantageous to remove the dispersion component originating 
from the multiple-prism beam expander so that

 ∆ ∆ Θλ θ λ≈ ∇( )−
R GMR 1

 (6.35)

In such designs the tuning characteristics of the laser are those of the grating 
alone, around a specific wavelength.

Θ

Grating

Pump
beam

M

1,4

1,3

1,2
1,1

Solid-state
gain medium

FIGURE 6.3
Dispersive long-pulse solid-state tunable laser oscillator incorporating a multiple-prism grat-
ing assembly. (Reproduced from Duarte, F.J. et al., Appl. Opt. 37, 3987, 1998, with permission 
from the Optical Society of America.)
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The design of zero-dispersion, or quasi achromatic, multiple-prism beam 
expanders exhibiting orthogonal beam exit (ϕ2,m ≈ ψ2,m ≈ 0), and made of identical 
material, involves the direct application of Equation 6.33 while setting ∇λΦP = 0. 
Thus, for a double-prism expander yielding zero dispersion, we obtain

 ( ) tan ( ) tan, , , , ,k k k1 1 1 1 1 1 1 2 1 2ψ ψ=  (6.36)

For a three-prism expander yielding zero dispersion, we obtain

 ( ) tan ( ) tan, , , , , , , ,k k k k k k1 1 1 1 1 2 1 1 1 1 1 2 1 3 1 3+ =ψ ψ  (6.37)

For a four-prism expander yielding zero dispersion, we obtain

 ( ) tan ( ) tan, , , , , , , , , , ,k k k k k k k k k k1 1 1 1 1 2 1 1 1 2 1 3 1 1 1 1 1 2 1 3 1 4+ + =ψ ψ11 4,  (6.38)

For a five-prism expander yielding zero dispersion, we obtain

 ( ) tan (, , , , , , , , , , , ,k k k k k k k k k k k1 1 1 1 1 2 1 1 1 2 1 3 1 1 1 2 1 3 1 4 1 1 1 1+ + + =ψ kk k k k1 2 1 3 1 4 1 5 1 5, , , , ,) tan ψ  
(6.39)

and so on. Here we should just reemphasize that all these configurations 
yield zero dispersion at the design wavelength, thus the use of the term 
quasi achromatic.

Optimized compact high-power solid-state multiple-prism laser oscilla-
tors have been demonstrated to yield single-longitudinal-mode oscillation at 
∆ν ≈ 350 MHz, at pulses ∆t ≈ 3 ns, near the limit allowed by the Heisenberg 
uncertainty principle (Duarte, 1999).

The oscillator, illustrated in Figure 6.4, requires the use of a small fused 
silica double-prism beam expander with M ≈ 42, and ϕ2,m ≈ ψ2,m ≈ 0, at λ = 
590 nm. Thus we use Equation 6.33 to obtain Equation 6.36, which reduces to

 tan tan, , ,ψ ψ1 1 1 2 1 2= k  (6.40)

Grating

Solid-state gain
medium

Θ

M

1,1

1,2

FIGURE 6.4
Optimized multiple-prism (m = 2) grating solid-state tunable laser oscillator delivering a linewidth 
(∆ν ≈ 350 MHz) near the limit allowed by the Heisenberg uncertainty principle. (Reproduced 
from Duarte, F.J., Appl. Opt. 38, 6347, 1999, with permission from the Optical Society of America.)
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For n = 1.4583 and ϕ1,1 = 88.60°, we get ψ1,1 ≈ 43.28°, and k1,1 ≈ 29.80. With these 
initial parameters, Equation 6.40 yields for the second prism ϕ1,2 ≈ 53.93°, ψ1,2 ≈ 
33.66°, and k1,2 ≈ 1.41. Therefore, the overall intracavity beam expansion becomes

 M k k= ≈1 1 1 2 42 13, , .

For a beam waist of w = 100 μm, this implies 2wM ≈ 8.43 mm. These dimen-
sions require the first prism to have a hypotenuse of ∼8 mm and the second 
prism a hypotenuse of ∼10 mm. In this particular oscillator, this intracavity 
beam expansion is used to illuminate a 3300 lines/mm grating deployed at 
an angle of incidence ∼77° in Littrow configuration (Duarte, 1999).

Duarte (2003) describes in detail the design of a zero-dispersion four-prism 
beam expander for M = 103.48, at λ = 590 nm. Shay and Duarte (2009) describe 
the design of a zero-dispersion five-prism beam expander for fused silica, 
at λ = 1550 nm (n = 1.44402), yielding an overall beam expansion of M ≈ 987.

6.4  Multiple-Return-Pass Generalized 
Multiple-Prism Dispersion

Here we consider a multiple-prism grating or multiple-prism mirror assem-
bly, for positive refraction, as illustrated in Figure 6.5. The light beam enters 
the first prism of the array, it is then expanded, and it is either diffracted back 
or reflected back into the multiple-prism array. In a dispersive laser oscilla-
tor, this process goes forth and back multiple times, thus giving rise to the 

Grating or mirror
plane

1,1

1,2

1,3 1,3΄

1,2΄

1,1΄

FIGURE 6.5
Multiple-prism grating assembly in its unfolded depiction. This type of description, for multi-
ple-prism arrays, was first introduced by Duarte and Piper (1982).

 



89Generalized Multiple-Prism Dispersion

concept of intracavity double pass or intracavity multiple-return pass. For the 
first return pass, toward the first prism in the array, the dispersion is given by

 ∇ = ∇ + ∇ ± ∇( )−
−λ λ λ λφ φ2 2 1 2

1
1 2 1, , , , , ,( )( )m m m m m m m mn k k nH H

If N denotes the number of passes toward the grating, or reflecting element, 
and 2N the number of return passes, toward the first prism in the sequence, 
we have (Duarte and Piper, 1984)

 ( ) ( ) ( ), , , , , ,( )∇ = ∇ + ∇ ± ∇( )−
−λ λ λ λφ φ2 2 1 2

1
1 2 1m N m m m m m m m Nn k k nH H  (6.41)

and

 ( ) ( ) (, , , , , ,( )∇ ′ = ′ ∇ + ′ ′ ′ ∇ ± ∇ ′−
+λ λ λ λφ φ1 2 1 1 2

1
2 1 1m N m m m m m m mn k k nH H ))2N( )  (6.42)

For the first prism of the array (next to the gain medium), (∇λϕ2,(m−1))N (with 
N = 3, 5, 7…) in Equation 6.41 is replaced by ( ),∇ ′λφ1 1 2N  (with N = 1, 2, 3 …).

Likewise, for the last prism of the assembly (next to the grating), ( ),( )∇ ′ +λφ1 1 2m N  
(with N = 1, 2, 3 …) in Equation 6.42 is replaced by (∇λΘG + (∇λϕ2,r)N) (with 
N = 1, 3, 5 …).

Thus, the multiple-return-pass dispersion for a multiple-prism grating 
assembly is given by (Duarte and Piper, 1984)

 ( )∇ = ∇ + ∇( )λ λ λθ R G PRM RΘ Φ  (6.43)

where R = 2N is the number of return passes. This equation illustrates the 
very important fact that in the return-pass dispersion of a multiple-prism 
grating assembly, the dispersion of a grating is multiplied by the fac-
tor RM, where M is the overall beam magnification of the multiple-prism 
beam expander. Subsequently, the multiple-return-pass linewidth equation 
becomes (Duarte, 2001)

 ∆ ∆ Θ Φλ θ λ λ= ∇ + ∇( )−
R G PRM R 1

 (6.44)

where ∆θR is the multiple-return-pass beam divergence (Duarte, 2001, 2003) 
described in Chapter 9. Once again, if the grating is replaced by a mirror, that 
is, ∇λΘG = 0, the dispersion reduces to

 ( )∇ = ∇λ λθ R PR Φ  (6.45)

which implies that the multiple-prism intracavity dispersion increases lin-
early as a function of R. The finite number R can be determined experimen-
tally from the time delay observed between the leading edge of the excitation 
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pulse and the leading edge of the narrow-linewidth emission pulse (Duarte 
and Piper, 1984). For narrow-linewidth high-power dispersive dye-laser 
oscillators, this number is typically R ≈ 3 (Duarte, 2001).

6.4.1 Multiple-Prism Beam Compressors

Observing Figure 6.5, it becomes immediately apparent that, in a multiple-
prism array, propagation from left to right leads to beam expansion, while 
propagation from right to left leads to beam compression as described by 
Duarte (2006). This is a geometrical beam compression effect different from 
temporal pulse compression as described in the next section.

Beam expansion and beam compression, in a given multiple-prism config-
uration, are symmetric phenomena. If beam expansion occurs in one direc-
tion, then beam compression occurs in the opposite direction as illustrated in 
Figure 6.5. Certainly, the equations of multiple-prism dispersion given here 
equally apply to both beam compressors and beam expanders. An explicit 
beam compressor is depicted in Figure 6.6 showing propagation from right 
to left. Numerous further examples of geometrical beam compressors are 
given by Duarte (2006). The beauty of multiple-prism beam compressors is 
that, ideally, they reduce the cross section of the propagating beam without 
inducing traditional focusing that leads to divergence of the beam beyond 
the focal point.

2,3

2,2

2,1

FIGURE 6.6
Multiple-prism geometrical beam compressor. In this configuration the incident beam enters 
orthogonally to the first larger prism. The arrows indicate the direction of the propagation. If 
the direction of the beam is reversed, then the compressor becomes an expander.
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6.5 Multiple-Prism Dispersion and Laser Pulse Compression

The generation of femtosecond, attosecond, or ultrashort laser pulses is of 
fundamental interest to optics, quantum optics, and laser science in general 
(Diels and Rudolph, 2006).

From the uncertainty relation

 ∆ ∆ν t ≈ 1  (6.46)

it is immediately apparent that the generation of ultrashort time pulses (∆t) 
requires the simultaneous generation of a very wide spectral distribution 
(∆ν). From the cavity linewidth equation

 
∆ ∆λ θ θ

λ
≈ ∂

∂






−1

it also clear that the generation of very wide spectral emission requires the 
least amount of intracavity dispersion. Thus, it is necessary to understand 
and control all aspects of intracavity dispersion.

Pulse compression in ultrashort pulse, or femtosecond, lasers requires con-
trol of the first, second, and third derivatives of the intracavity dispersion. 
Using the identity

 ∇ = ∇ ∇ −
n m m mnφ φλ λ2 2

1
, , ( )  (6.47)

Equation 6.13 can be restated as (Duarte, 2009)

 ∇ = + ± ∇( )−
−n m m m n mφ φ2 2

1
1 2 1, , , ,( )( )H M H  (6.48)

where the identity

 k km m1
1

2
1 1

, , (− − −= M)  (6.49)

applies. Hence, the complete second derivative of the refraction angle, or first 
derivative of the dispersion ∇λϕ2,m, is given by (Duarte, 1987)

 

∇ = ∇

+ ∇( ) ± ∇( )

+ ∇ ± ∇

−
−

−

n m n m

n m n m

n m n

2
2 2

1
1 2 1

1
1

2
2

φ

φ

φ

, ,

, ,( )

, ,( )

H

H

H

M

M (( )m−( )1  
(6.50)

 



92 Quantum Optics for Engineers

The second derivative of the dispersion ∇λϕ2,m is given by (Duarte, 2009)

 

∇ = ∇ + ∇( ) ± ∇( )

+ ∇( ) ∇ ± ∇

−
−

−

n m n m n m n m

n n m

3
2

2
2

2 1
1 2 1

1
12

φ φ, , , ,( )

,

H H

H

M

M nn m n m n m
2

2 1
1 2

1
3

2 1φ φ,( ) , ,( )( )−
−

−( ) + ∇ ± ∇( )M H
 
(6.51)

the third derivative of the dispersion ∇λϕ2,m is given by (Duarte, 2009)

 

∇ = ∇ + ∇( ) ± ∇( ) + ∇( ) ∇ ±−
−

−
n m n m n m n m n n m
4

2
3

2
3 1

1 2 1
2 1

13φ φ, , , ,( ) ,H H HM M ∇∇( )
+ ∇( ) ∇ ± ∇( ) + ∇ ±

−

−
−

−

n m

n n m n m n m

2
2 1

1 2
1

3
2 1

1 3
13

φ

φ

,( )

, ,( ) ,( )M MH H ∇∇( )−n m
4

2 1φ ,( )  (6.52)

and the fourth derivative of the dispersion ∇λϕ2,m is given by (Duarte, 2009)

 

∇ = ∇ + ∇( ) ± ∇( ) + ∇( ) ∇ ±−
−

−
n m n m n m n m n n m
5

2
4

2
4 1

1 2 1
3 1

14φ φ, , , ,( ) ,H H HM M ∇∇( )
+ ∇( ) ∇ ± ∇( ) + ∇( ) ∇

−

−
−

−

n m

n n m n m n n

2
2 1

2 1 2
1

3
2 1

1 36 4
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, ,( )M MH H 11
4

2 1

1 4
1

5
2 1

, ,( )

, ,( )( )

m n m

n m n m

± ∇( )
+ ∇ ± ∇( )

−

−
−

φ

φM H
 

(6.53)

and so on, for higher derivatives. By inspection, as stated by Duarte (2009), 
it can be seen that from the second term on the numerical factors can be pre-
determined from Pascal’s triangle relative to N where (N + 1) is the order of 
the derivative.

Albeit the preceding exposition might appear a little bit abstract, these 
equations lead to specific numerical results (Duarte, 1987, 1990b). Osvay 
et al. (2004, 2005) have used the lower-order derivatives, given here, in prac-
tical femtosecond lasers to determine dispersions and laser pulse durations, 
for double-prism compressors, with excellent agreement between theory and 
experiments. The equations described here represent the complete descrip-
tion of the generalized multiple-prism dispersion theory applicable to pulse 
compression prismatic arrays in femtosecond, or ultrashort, pulse lasers and 
nonlinear optics.

Exact numerical calculations to determine ∇n mφ2, ,  and ∇n m
2

2φ , , for m = 1, 2, 
3, 4, were performed by Duarte (1990). In these calculations the angle of inci-
dence was deviated by minute amounts from the Brewster angle of incidence. 
Duarte (2009) provides exact values, as a function of the refractive index n, 
for ∇n mφ2, , ∇n m

2
2φ , , and ∇n m

3
2φ , . Simplifying assumptions include incidence at 

the Brewster angle of incidence, prisms of identical isosceles geometry, and 
made of the same material with refractive index nm = n.
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6.5.1 Example: Single-Prism Pulse Compressor

For the single-prism laser pulse compressor (Dietel et al., 1983) (m = 1) of isos-
celes geometry, made of material with refractive index nm = n and deployed 
at the Brewster angle of incidence (see Figure 6.7), we find

 ∇ =nφ2 1 2,  (6.54)

 
∇ = −( )−

n n n2
2 1

34 2φ ,
 

(6.55)

 
∇ = + − + +( )− − −

n n n n n n3
2 1

2 0 2 4 624 8 12 6 6φ ,  (6.56)

6.5.2 Example: Double-Prism Pulse Compressor

A prism pulse compressor integrated by m = 2 prisms of identical isosce-
les geometry, made of the same material with refractive index nm = n and 
deployed at the Brewster angle of incidence in compensating configuration, is 
depicted in Figure 6.8 (Diels et al., 1985). The compensating configuration 
requires the subtraction of the previous dispersive derivatives and the use of 
∇nϕ1,2 = ∇nϕ2,1 as a geometrical nexus between stages. Careful evaluation of 
all relevant identities and their correct substitution yield

 ∇ =nφ2 2 0,  (6.57)

 ∇ =n
2

2 2 0φ ,  (6.58)

 ∇ =n
3

2 2 0φ ,  (6.59)

1,1 2,1

FIGURE 6.7
Single-prism pulse compressor.

1,1 2,1

1,2 2,2

FIGURE 6.8
Double-prism pulse compressor.
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as would be expected from geometrical and symmetrical arguments. 
However, the correct mathematical evaluation of ( ),∇n

3
2 2φ  requires consider-

able attention to detail given the numerous identities involved.

6.5.3 Example: Four-Prism Pulse Compressor

A four-prism compressor (Fork et al., 1984) is formed by unfolding the dou-
ble-prism configuration about a symmetry axis perpendicular to the exit 
beam depicted in Figure 6.7, as illustrated in Figure 6.9. For exactly balanced 
compensating prism arrays composed of two pairs of compensating prisms, 
it can be shown that

 ∇ = ∇ =n nφ φ2 1 2 3 2, ,  (6.60)

 
∇ = ∇ = −( )−

n n n n2
2 1

2
2 3

34 2φ φ, ,
 

(6.61)

 
∇ = ∇ = + − + +( )− − −

n n n n n n n3
2 1

3
2 3

2 0 2 4 624 8 12 6 6φ φ, ,
 

(6.62)

 ∇ = ∇ =n nφ φ2 2 2 4 0, ,  (6.63)

 ∇ = ∇ =n n
2

2 2
2

2 4 0φ φ, ,  (6.64)

 ∇ = ∇ =n n
3

2 2
3

2 4 0φ φ, ,  (6.65)

A six-prism pulse compressor has been used in semiconductor laser pulse 
compression by Pang et al. (1992).

1,1

2,1

1,2

2,2 1,3

2,3

1,4

2,4

FIGURE 6.9
Four-prism pulse compressor.
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Problems

6.1 Use Equation 6.4 to obtain the identity given in Equation 6.7.
6.2 Derive Equation 6.14 from 6.13 using for ϕ2,m ≈ ψ2,m ≈ 0.
6.3 Derive Equation 6.15.
6.4 Derive Equation 6.20 from 6.19.
6.5 Use Equation 6.13 to obtain the single-prism Equation 6.22.
6.6 Use Equation 6.33, set ∇λΦP = 0, to derive Equation 6.39, for a five-prism 

zero-dispersion beam expander.
6.7 For a single-prism laser pulse compressor, derive Equations 6.54 

through 6.56 (Hint: see Duarte, 2009).
6.8 Using the methodology described in the three-prism pulse compres-

sor examples given, develop a set of equations applicable to a sym-
metrical six-prism pulse compressor (Hint: the dispersions of the first 
three prisms, deployed in additive configuration, are compensated by 
the second set of three prisms).
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7
Dirac Notation Identities

7.1 Useful Identities

As described by Dirac (1978) and Feynman et al. (1965), the Dirac notation 
includes various mathematical properties and allows for various abstrac-
tions and permutations. Here, a few useful set of identities and properties of 
the notation are described.

First, the complex conjugate of 〈ϕ|ψ〉 is defined as

 〈 〉 = 〈 〉φ ψ ψ φ| | *  (7.1)

Also, the probability amplitude

 〈 〉 = 〈 〉〈 〉φ ψ φ ψ| | |j j  (7.2)

can be expressed in abstract form as

 | | |ψ ψ〉 = 〉〈 〉j j  (7.3)

An additional form of abstract notation is

 〈 〉 = 〈 〉〈 〉〈 〉χ φ χ φ| | | | | |A i i A j j  (7.4)

where A is

 A i i A j j= 〉〈 〉〈| | | | (7.5)

Another abstraction is illustrated by

 A i i A j j| | | | |φ φ〉 = 〉〈 〉〈 〉  (7.6)
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Further, A can be multiplied by B so that

 〈 〉 = 〈 〉〈 〉〈 〉〈 〉χ φ χ φ| | | | | | | |BA i i B j j A k k  (7.7)

To express

 〈 〉 = 〈 〉〈 〉〈 〉χ φ χ φ| | | | | |A i i A j j  (7.8)

in the abstract form

 〈 〉 = 〈 〉〈 〉χ ψ χ ψ| | |i i  (7.9)

it is necessary that

 〈 〉 = 〈 〉〈 〉 = 〈 〉i i A j j i A| | | | | |ψ φ φ  (7.10)

which means that

 〈 〉 = 〈 〉χ ψ χ φ| | |A  (7.11)

Further abstracting leads to

 | | |ψ φ〉 = 〉A  (7.12)

Other examples of abstractions include

 〈 〉 =i Ci|φ  (7.13)

 〈 〉 =i Di|χ  (7.14)

 
| |φ〉 = 〉∑ i Ci

i  
(7.15)

 
| |χ〉 = 〉∑ i Di

i  
(7.16)

 
〈 = 〈∑χ| * |D ii

i  
(7.17)
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which is the abstracted version of

 

〈 〉 = 〈 〉∑χ φ| * |D j i Cj
ij

i

 

(7.18)

and since 〈j|i〉 = δij

 
〈 〉 = ∑χ φ| *D Ci

i
i

 
(7.19)

Finally, using the ultimate abstraction suggested by Dirac (Feynman et al., 1965),
Equation 7.19 can be expressed as

 
| | |= 〉〈∑ i i

i  
(7.20)

7.1.1 Example

The probability amplitude describing interference in a Mach–Zehnder inter-
ferometer can be described as (Duarte, 2003)

 

〈 〉 = 〈 〉〈 〉〈 〉∑x s x k k j j s
kj

| | | |
 

(7.21)

Defining

 〈 〉 =j s Cj|  (7.22)

 〈 〉 =k x Dk|  (7.23)

 

〈 〉 = 〈 〉∑x s D k j Ck
kj

j| * |
 

(7.24)

and using 〈k|j〉 = δkj, we get

 

〈 〉 = ∑x s D Cj
j

j| *
 

(7.25)
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7.2 Linear Operations

Dirac (1978) describes various mathematical properties related to his ket vec-
tors. First, if c1 and c2 are complex numbers, ket vectors can be multiplied by 
these complex numbers and added to produce a new ket vector

 c c1 2| | |φ ψ θ〉 + 〉 = 〉  (7.26)

Superposition of a state, with itself, yields the original state

 c c c c1 2 1 2| | ( )|φ φ φ〉 + 〉 = + 〉  (7.27)

Additional sum and product conditions are illustrated by

 〈 〉+ 〉 = 〈 〉 + 〈 〉φ ψ χ φ ψ φ χ|(| | ) | |  (7.28)

 〈 〉 = 〈 〉φ ψ φ ψ|( | ) |c c  (7.29)

and

 ( | |)| | |〈 + 〈 〉 = 〈 〉 + 〈 〉φ χ ψ φ ψ χ ψ  (7.30)

 ( |)| |c c〈 〉 = 〈 〉φ ψ φ ψ  (7.31)

If α is a linear operator, then

 | |ϑ α ψ〉 = 〉  (7.32)

and

 α ψ χ α ψ α χ(| | ) | |〉 + 〉 = 〉 + 〉  (7.33)

 α ψ α ψ( | ) |c c〉 = 〉  (7.34)

 ( )| | |α β ψ α ψ β ψ+ 〉 = 〉 + 〉  (7.35)

 ( )| ( | )αβ ψ α β ψ〉 = 〉  (7.36)

 ( | )| |( | )〈 〉 = 〈 〉φ α ψ φ α ψ  (7.37)
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Further useful identities introduced by Dirac (1978) are

 | | | |φ ψ ψ φ〉 〉 = 〉 〉  (7.38)

 | | | | |φ ψ ψ φ φψ〉 〉 = 〉 〉 = 〉  (7.39)

 | | | ... | ...φ ψ χ φψχ〉 〉 〉 = 〉  (7.40)

Also, for more than one particle, Dirac (1978) gives the ket for the assembly as

 | | | | ...|X a b c gn〉 = 〉 〉 〉 〉1 2 3  (7.41)

7.2.1 Example

The Pryce–Ward probability amplitude, prior to normalization, for entan-
gled photons, with polarizations x and y, traveling in opposite directions 
1 and 2, is given by

 | | | | |ψ〉 = 〉 〉 − 〉 〉( )x y y x1 2 1 2  (7.42)

which can also be expressed as

 | | , | ,ψ〉 = 〉 − 〉( )x y y x  (7.43)

Problems

7.1 Write in abstract form the probability amplitude corresponding to a 
Sagnac interferometer given by (Duarte, 2003)

 

〈 〉 = 〈 〉〈 〉〈 〉∑x s x k k j j s
kj

| | | |

 assuming that 〈k|j〉 = 1 (see Chapter 10).
7.2 The probability amplitude for a multiple-beam interferometer (see 

Chapter 10) can be expressed as (Duarte, 2003)

 〈 〉 = 〈 〉〈 〉〈 〉〈 〉〈 〉x s x m m l l k k j j s| | | | | |

 Use the various abstract identities, given in this chapter, to efficiently 
abstract this probability amplitude.
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8
Laser Excitation

8.1 Introduction

Lasers are essentially quantum devices. The process of stimulated emission 
is a quantum phenomenon. Stimulated emission is essential to the genera-
tion of spatially and spectrally coherent radiation, which is also quantum 
phenomena. Thus, albeit initially a macroscopic device, the laser emits radia-
tion that is intrinsically quantum in character. In this chapter, we consider a 
first and essential step in the creation of a laser: laser excitation.

Here, we consider the process of laser excitation and emission, in a gain 
medium, from a semi classical and quantum perspective. In Chapter 9 we 
examine the optics phenomena applicable to generate spatially and spec-
trally coherent radiation.

8.2 Brief Laser Overview

The word laser has its origin in an acronym of the words light amplification by 
stimulated emission of radiation. However, the laser is readily associated with 
the spatial and spectral coherence characteristics of its emission.

A laser is a device that transforms electrical energy, chemical energy, or 
incoherent optical energy into coherent optical emission. This coherence is 
both spatial and spectral. Spatial coherence means a highly directional light 
beam, with little divergence, and spectral coherence means an extremely 
pure color of emission. These concepts of spatial and spectral coherence are 
intimately related to the Heisenberg uncertainty principle:

 ∆ ∆p x h≈

An alternative way to cast this idea is to think of the laser as a device that 
transforms ordinary incoherent energy into an extremely well-defined form 
of energy, in both the spatial and the spectral domain.
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Physically, the laser consists of an atomic or molecular gain medium opti-
cally aligned within an optical resonator, or optical cavity, as depicted in 
Figure 8.1. When excited by electrical energy, or optical energy, the atoms or 
molecules in the gain medium oscillate at optical frequencies. This oscilla-
tion is maintained and sustained by the optical resonator, or optical cavity. 
In this regard, the laser is analogous to a mechanical or radio oscillator but 
oscillating at extremely high frequencies. For the green color of λ ≈ 500 nm, 
the equivalent frequency is ν ≈ 5.99 × 1014 Hz. A direct comparison between 
a laser oscillator and an old radio oscillator makes the atomic, or molecular 
gain medium, equivalent to the vacuum tube and the elements of the optical 
cavity equivalent to the resistance capacitances and inductances.

The spectral purity of the emission of a laser is related to how narrow its 
linewidth (∆ν) is. High-power broadband tunable lasers can exhibit a line-
width in the 4.5 ≤ ∆λ ≤ 10 nm range (see, e.g., Schäfer et al., 1966). High-
power pulsed narrow-linewidth lasers can have single-longitudinal-mode 
linewidths of ∆ν ≈ 350 MHz (i.e., ∆λ ≈ 0.0004 nm, at 590 nm) near the limit 
allowed by the Heisenberg uncertainty principle (Duarte, 1999). Single lon-
gitudinal mode means that all the emission radiation is contained in a single 
electromagnetic mode.

Low-power continuous-wave (CW) narrow-linewidth lasers can offer 
much narrower linewidths approaching the kHz regime. Cooled-stabilized 
CW lasers can yield ∆ν ≈ 1 Hz or even less (Kessler et al., 2012).

In the language of the laser literature, a laser emitting narrow-linewidth 
radiation is referred to as a laser oscillator, or master oscillator (MO). High-
power narrow-linewidth emission is attained when an MO is used to inject 
a laser amplifier, or power amplifiers (PAs). Large high-power systems include 
several MOPA chains with each chain including several amplifiers. The dif-
ference between an oscillator and an amplifier is that the amplifier simply 
stores energy to be released up on the arrival of the narrow-linewidth oscil-
lator signal. In some cases the amplifiers are configured within unstable 
resonator cavities in what is referred to as a forced oscillator (FO). When that 
is the case, the amplifier is called an FO and the integrated configuration is 
referred to as a MOFO system.

L

2w
Gain mediumM1 M2

FIGURE 8.1
Basic laser resonator. It is comprised of an atomic, or molecular, gain medium and two mirrors 
aligned along the optical axis. The length of the cavity is L and the diameter of the beam is 2w. 
The gain medium can be excited either optically or electrically.
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Appendix A includes a number of tables summarizing the spectral emis-
sion from various gas-, liquid-, and solid-state lasers.

8.2.1 Laser Optics

Laser optics, as defined in Duarte (2003), refers to the individual optics ele-
ments that comprise laser cavities, to the optics ensembles that comprise 
laser cavities, and to the physics that results from the propagation of laser 
radiation. In addition, the subject of laser optics includes instrumentation 
employed to characterize laser radiation and instrumentation that incorpo-
rates lasers. The physics and architecture of tunable narrow-linewidth laser 
oscillators is presented in Chapter 9, while a broad survey of laser cavities is 
given in Appendix B.

8.3 Laser Excitation

As already mentioned, lasers can be excited via several forms of energy 
including electrical, optical, chemical, and even nuclear. Electrical excitation 
can be for lasers in either the gaseous or the solid state. Electrical excitation 
in the gaseous state gives origin to gas lasers, while in the solid state it gives 
origin mainly to semiconductor lasers.

Optical excitation can be used in gaseous-, liquid-, or solid-state, gain 
media. Here we provide a brief survey of examples of laser gain media in the 
gaseous, liquid, and solid state.

8.3.1 Electrically Excited Gas Lasers

Electrically excited gas lasers, form a very broad class of lasers that includes 
high-power excimer lasers, metal-vapor lasers, and CO2 lasers. It also includes 
an array of CW metal ion lasers. A list of these lasers, including their respec-
tive transitions, is included in Appendix A.

Here, to illustrate how some of these lasers are excited, we’ll refer to metal ion 
lasers such as the He–Zn laser and in particular to a subclass of lasers known 
as the He–Zn halogen lasers, that is, He–ZnBr2, He–ZnCl2, and He–ZnI2.

These lasers need a buffer gas that is a rare gas. In this case that rare gas is 
helium. Very briefly, the rare-gas metal hollow-cathode discharge is excited 
electrically as the impedance of an electrical circuit as depicted in Figure 8.2.

The metal, in this case zinc, is evaporated into the discharge, thus creating 
a He–Zn discharge. The metal species are excited via Duffendack reactions, 
that is,

 He M He M+ ++ → + +( )* ∆E  (8.1)
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This means that electrons ionize helium atoms, thus creating ions He+ that 
in turn collide with metal atoms, thus yielding excited metal ions (M+)*. The 
energy defect of the reaction is ∆E. These lasers need very energetic electrons to 
ionize helium and thus utilize hollow-cathode discharges (Piper and Gill, 1975).

An additional excitation mechanism is known as Penning ionization in 
which electrons excite helium atoms to a metastable state He*(23S1), so that

 He* S M He M1( ) ( )*23 + → + ++ ∆E  (8.2)

An energy level diagram illustrating the zinc transitions due to both Duffen-
dack reactions and Penning ionization is illustrated in Figure 8.3. Notice that 
since the laser transitions occur between specific atomic levels, these transi-
tions are specific in wavelength and intrinsically narrow linewidth.

In lasers such as He–CdI2, in addition to the metal transitions, iodine transi-
tions are added to the emission, thus giving rise to white-light  lasing (Piper, 
1976). An advantage of the metal-halide vapor lasers over the pure metal-
vapor lasers is that they need lower operational temperatures. However, this 
complicates the excitation cycle since the metal-halide molecule needs to be 
 dissociated prior to excitation and needs to recombine following laser  emission. 
Chemical recombination is critical to the successful continuation of the excita-
tion cycle. A time-resolved study in the He–ZnX2 systems, where X2 refers to 
the halogen, led to the conclusion that second-order reactions of the form

 M X MX+ →m
k1

2  (8.3)

are the likely process of recombination. The solution is

 
M X M X

M
( ) [ ] [ ] [ ]

[ ]
t em

m t= −( ) −







−

0 0
0

0

1
1 1τ

 
(8.4)

Laser
discharge

+HV
LL

CCC

FIGURE 8.2
Transmission line excitation circuit of rare-gas metal-vapor laser discharge. An LC circuit of 
up to 10 sections serves as a pulsed forming network and the pulse is switched via a high-
voltage thyristor. (From Duarte, F.J., Excitation Processes in Continuous Wave Rare Gas-Metal 
Halide Vapour Lasers, Macquarie University, Sydney, 1977.)
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where the initial concentrations are [Xm]0 > [M]0. Here, the decay rate (in s−1) 
is given by

 τ1 0 0 1= −( )[ ] [ ]X Mm k  (8.5)

For hollow-cathode rare-gas metal-vapor lasers, the measured neutral metal 
decay rates are (1.6 ≤ τ1 ≤ 2.0) × 104 s−1 for ZnBr2 and (0.8 ≤ τ1 ≤ 1.0) × 104 s−1 
for ZnI2 (Duarte, 1977; Duarte and Piper, 1985).

In summary, for rare-gas metal-halide vapor lasers, the excitation cycle 
begins with the dissociation of the MX2 molecules, followed by either 
Duffendack or Penning excitation of the metal atom. Following excitation 
and emission, the metal atom decays to its neutral state and undergoes 
chemical recombination with the halogen, and the cycle continues.
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FIGURE 8.3
Partial energy level diagram of the He–Zn laser. Upper transitions are excited via Duffendack 
reactions in hollow-cathode discharge lasers, while the lower transitions originate from 
Penning ionization. The energies corresponding to helium ionization and the relevant helium 
metastable are indicated. Transition wavelengths are given in nm. See Appendix A for a listing 
of visible ionic laser transitions from various elements.
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The population dynamics of this type of laser can be analyzed using rate 
equations, while the transition cross sections can be either measured or esti-
mated using quantum methods (Willett, 1974).

8.3.2 Optically Pumped Gas and Liquid Lasers

Optical excitation of lasers can be accomplished either via the use of inco-
herent means, such as flashlamps, or by using direct laser excitation (see, 
e.g., Duarte, 2003). Here, we consider two examples of laser excitation of two 
types of distinct molecular lasers.

First, we briefly consider the laser-pumped molecular iodine dimer 
laser, I2. This molecule has sufficient vapor pressure at room temperature 
and can be excited longitudinally using a laser compatible with its absorp-
tion characteristics. Excitation lasers include pulsed copper vapor lasers 
(Kaslin et al., 1980), frequency-doubled Nd:YAG lasers (Byer et al., 1972), and 
narrow- linewidth tunable dye lasers (Duarte and Piper, 1986). Laser excita-
tion of molecular dimer lasers has also been accomplished in the CW regime 
(see, e.g., Wellegehausen, 1979).

The transitions for molecular iodine belong to the B Xou g
3 1Π Σ+ +−  electronic 

system. Specific narrow-linewidth excitation of lower-lying vibrational– 
rotational levels in the lower electronic state X g

1Σ+  results in the population 
of higher-lying vibrational–rotational levels in the B ou

3Π+  state. Subsequently, 
transitions from those higher-lying vibrational–rotational levels, in the B ou

3Π+  
state, are observed toward higher-lying vibrational–rotational levels, in the 
X g

1Σ+ state. This type of selective narrow-linewidth excitation leads to a series 
of specific, and discrete, narrow-linewidth vibrational–rotational transitions. 
For instance, narrow-linewidth excitation at λp ≈ 510.55 yields a series of dis-
crete lines in the red to near infrared (Duarte and Piper, 1986).

A different class of optically pumped molecular laser is the liquid organic 
dye laser. Organic laser dyes are enormous molecules with very large molec-
ular weights (in the 175–1000 mu range; see Duarte, 2003). A consequence of 
this extraordinary characteristic is that each electronic state of a laser-dye 
molecule includes multitudes of closely lying, and overlapping, vibrational–
rotational levels. This is the feature that provides the continuous tunability 
of the dye laser. Figure 8.4 shows the molecular structure of the coumarin 
545 tetramethyl laser dye that exhibits an approximate tuning range of 500 
≤ λ ≤ 570 nm (Duarte et al., 2006). The tuning curve of a simple grating reso-
nator using this green laser dye is shown in Figure 8.5. The emission avail-
able from laser dyes spans the spectrum continuously from ∼330 to ∼900 nm 
(Duarte, 2003).

The excitation dynamics of dye lasers is described later in this chap-
ter. Liquid organic dye lasers are enormously versatile and lase either in 
the CW regime (see, e.g., Hollberg, 1990) or in the pulsed regime (Duarte, 
2003). Their liquid gain media are particularly apt to the removal of excess 
heat. Hence, dye lasers are very suitable to the generation of high average 
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powers and very large pulsed energy. Output characteristics of dye lasers 
are summarized in Appendix A.

Transverse laser excitation of a narrow-linewidth tunable dye-laser oscil-
lator is illustrated in Figure 8.6. As it will be discussed later, the population 
dynamics of dye lasers can be analyzed using rate equations and the transi-
tion cross section is mainly obtained from measurements (Duarte, 2003).

N

S H
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H3C

O

CH3

FIGURE 8.4
Molecular structure of Coumarin 545 T laser dye. A laser-dye molecule, such as this, in an 
ethanol solution becomes the gain medium for a dye laser. (Reproduced from Duarte, F.J. et al., 
J. Opt. A: Pure Appl. Opt. 8, 172, 2006, with permission from the Institute of Physics.)
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FIGURE 8.5
Tuning curve of the emission from the Coumarin 545 T laser dye. (Reproduced from Duarte, 
F.J. et al., J. Opt. A: Pure Appl. Opt. 8, 172, 2006, with permission from the Institute of Physics.)
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8.3.3 Optically Pumped Solid-State Lasers

The first visible laser was a flashlamp-pumped crystalline laser: the ruby 
laser (Maiman, 1960). Cr3+–Al3O2 lases at λ = 694.3 nm via the 2E(Ē) − 4A2 tran-
sition in a three-level energy excitation scheme as illustrated in Figure 8.7. 
On the other hand, the widely tunable Ti–sapphire laser emits in the 660 ≤ 
λ ≤ 986 nm range in a two-level energy system that operates like a four-level 
laser, thus allowing its wide tuning range (Barnes, 1995a).

There is a large variety of optically pumped solid-state lasers that include 
transition metal solid-state lasers (Barnes, 1995a) and optical parametric oscil-
lators (Barnes, 1995b; Orr et al., 2009). More recently, fiber lasers have become 
highly developed and widely used in many applications (Popov, 2009).

Diode-laser excitation has become widely applied in the excitation of 
solid-state lasers. Figure 8.8 shows the simplified energy level diagram for 
diode-laser excitation of a Nd:YAG laser and a schematic of a longitudinal 
excitation scheme. Again, a brief survey of widely used optically pumped 
solid-state lasers is given in Appendix A.

Grating

Θ

1,4

1,3

1,2
1,1

Pump
beam

M

Solid-state
gain medium

FIGURE 8.6
Transverse excitation of narrow-linewidth dye-laser oscillator. The gain medium here is a 
laser-dye-doped polymer. (Reproduced from Duarte, F.J. et al., Appl. Opt. 37, 3987, 1998, with 
permission from the Optical Society of America.)
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4F1
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694.3

E

2A
2E

4A2

FIGURE 8.7
Three-level energy diagram for the ruby laser. Optical pumping to either 4F1 or 4F2 results in 
rapid nonradiative decay to 2E from where laser action takes place to the ground level 4A2. The 
wavelength corresponding to the transition 2E(E–) − 4A2 is λ = 694.3 nm.

Diode
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Focusing
system

Nd:YAG

1064

4I11/2

4F3/2

4I9/2

FIGURE 8.8
Diode-pumped Nd:YAG laser, using longitudinal pumping with a near IR diode-laser array 
and corresponding four-level energy diagram. Optical pumping leads to rapid nonradiative 
decay to 4F3/2 from where laser action takes place to the 4I11/2 level. The wavelength correspond-
ing to the transition 4F3/2 − 4I11/2 is λ = 1064 nm.
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The population dynamics of optically excited solid-state lasers can be ana-
lyzed using rate equations, while the transition cross sections can be derived 
from spectral measurements (Barnes, 1995a).

8.3.4 Electrically Excited Semiconductor Lasers

The excitation and emission process in semiconductor lasers can be described 
via Schrödinger’s equation as discussed in Chapter 12. The beauty of semi-
conductor lasers is that they can be directly excited using basic electric cir-
cuitry as illustrated in Figure 8.9.

In semiconductor laser materials, emission occurs between a conduction 
band and a lower valence band as illustrated in Figure 8.10. This is intrinsi-
cally a quantum effect.

The emission wavelength in these lasers depends on the energy difference 
between the conduction and the valence band, the band gap (EG = hν), and is 
inherently tunable. Emission spectral characteristics of representative semi-
conductor lasers, such as GaAlAs, are given in Appendix A.

Most semiconductor lasers emit in the visible and near infrared. An 
interesting semiconductor laser is the quantum cascade laser (QCL) that 
covers an impressive segment of the infrared spectrum 3 ≤ λ ≤ 24 μm 
(Silfvast, 2008). These lasers operate on transitions between quantized con-
duction band states of multiple-quantum well structures. The only carries 
are electrons. A single stage consists of an injector and an active region. 
An electron is injected at n = 3 of the quantum well, and as a photon is 
emitted, the electron transitions to n = 2. This is a multiple process so that 

V i
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–

V

+

–

FIGURE 8.9
Simple excitation circuit of generic semiconductor laser.
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one electron can emit a large number of photons. The emission wavelength 
is given by (see Chapter 12)

 
λ = − −( )3 2 82 2 1

2mcL
h

x

 
(8.6)

where Lx is the thickness of the quantum well. Further emission details on 
QCLs are given in Appendix A.

8.4 Excitation and Emission Dynamics

There are various methods and approaches to describe the dynamics of exci-
tation in the gain media of lasers. Approaches range from complete quantum 
mechanical treatments to rate equation descriptions (Haken, 1970). A com-
plete survey of energy level diagrams corresponding to gain media in the 
gaseous, the liquid, and solid states is given by Silfvast (2008). Here, a basic 
description of laser excitation mechanisms is given using energy levels and 
classical rate equations applicable to tunable organic molecular gain media. 
This description is based on the standard approach to the subject (see, e.g., 
Peterson, 1979) and follows a review given by Duarte (2003).

8.4.1 Rate Equations for a Two-Level System

A simplified two-level molecular system is depicted in Figure 8.11. The pump 
laser intensity Ip(t) populates the upper energy level N1 from the ground 

E

E=hν
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FIGURE 8.10
Conduction and valence bands in a semiconductor emitter.
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state N0. The emission from the upper state is designated as Il(x, t, λ). Thus, 
the time evolution of the upper- or excited-state population is written as

 

∂
∂

= σ − σ λN
t

N I t N I x t( ) ( , , )p e l
1

0 0,1 1
 

(8.7)

where
σ0, 1 is the absorption cross section
σe is the emission cross section

Cross sections have units of cm2, time has units of seconds (s), the popula-
tions have units of molecules cm−3, and the intensities have units of photons 
cm−2 s−1. The transition cross sections are quantum mechanical in origin and 
are described later in this chapter.

The dynamics of the pump intensity Ip(t) is described by

 
c I t

t
N I tp

p
− ∂

∂
= −1

0 0 1
( ) ( ),σ

 
(8.8)

where c is the speed of light. In reference to Figure 8.11, the dynamics of the 
emission intensity Il(x, t, λ) depends on the difference between the upper-
level population and lower-level population so that

 
c I x t

t
I x t
x

N N I x tl l
e

l
l

− ∂
∂

+ ∂
∂

= −( )1
1 0 0 1

( , , ) ( , , ) ( , , ),
λ λ σ σ λ

 
(8.9)

In the steady state this equation reduces to

 
( )∂ λ

∂
≈ σ − σ λI x

x
N N I x( , ) ( , )l

e
l

l1 0 0,1
 

(8.10)

N1

σ0,1 σe

N0

FIGURE 8.11
Simplified two-level energy diagram used to describe a basic rate equation system.
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and integration yields

 I x I el l
N N Le

l
( , ) ( , ) ( ),λ λ σ σ= −0 1 0 0 1

 (8.11)

The exponential terms in Equation 8.11 are referred to as the gain. It can 
be easily seen that laser threshold is reached for N Ne

l
1 0 0 1σ σ≥ ,  and that for 

strong laser action we need

 N Ne
l

1 0 0 1σ σ� ,

8.4.2 Dynamics of a Multiple-Level System

The literature on rate equations includes the works of Ganiel et al. (1975), 
Teschke et al. (1976), Penzkofer and Falkenstein (1978), Dujardin and Flamant 
(1978), Peterson (1979), Munz and Haag (1980), Haag et al. (1983), Nair and 
Dasgupta (1985), and Jensen (1991). The rate equation approach given here 
incorporates several of the elements common in the published literature and 
emphasizes the frequency-selective aspects of the dynamics as outlined by 
Duarte (2003). This approach applies to laser-dye gain media in either the 
liquid or the solid state.

An energy level diagram for a laser-dye molecule (see, Figure 8.4) is 
included in Figure 8.12. S0, S1, and S2 are the electronic states of the molecule, 
while T1 and T2 represent the triplet states, which are detrimental to laser 
emission. Laser emission occurs via S1 → S0 transitions.

An important feature of laser dyes is that each electronic state contains a 
large number of overlapping vibrational–rotational levels. This multitude of 
closely lying vibrational–rotational levels is the origin of the broadband gain 
and tunability in dye lasers.

In reference to the energy level diagram of Figure 8.12 and considering 
only vibrational manifolds at each electronic state, a set of rate equations for 
transverse excitations can be written as (Duarte, 2003)
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FIGURE 8.12
Energy level diagram corresponding to a laser-dye molecule. The electronic singlet states are 
S0, S1, and S2 plus the triplet levels T1 and T2. Notice that each electronic level includes a multi-
tude of closely lying vibrational–rotational levels. Laser emission takes place from the lowest 
vibro-rotational level in S1 to S0. The presence of a manifold of closely lying vibro-rotational 
levels at S0, allowing a range of energies, is what gives rise to wavelength tunability. Using 
cavity design techniques described in Chapter 9, and Appendix B, tunable narrow-linewidth 
oscillation can be achieved.
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m
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=
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(8.17)

 I x t I x t I x tl l l( , , ) ( , , ) ( , , )λ λ λ= ++ −
 (8.18)

In this set of equations, frequency dependence is incorporated via the sum-
mation terms, and variables, depending on the vibrational assignment v. The 
equation parameters are as follows (see Figure 8.12):

 1. Ip(t) is the intensity of the pump laser beam. Units are photons cm−2 s−1.
 2. Il(x, t, λ) is the laser emission from the gain medium. Units are pho-

tons cm−2 s−1.
 3. NS,v refers to the population of the S electronic state at the v vibra-

tional level. It is given as a number per unit volume (cm−3).
 4. NT,v refers to the population of the T triplet state at the v vibrational 

level. It is given as a number per unit volume (cm−3).
 5. The absorption cross sections, such as σ0 1, 0,v , are identified by a sub-

script S S″ ′ ″ ′, ,v v  that refers the electronic S″ → S′ transition and the 
vibrational transition v v″ ′.→  The same convention applies to the 
triplet levels. Units are cm2.

 6. The emission cross sections, σe0,v , are identified by the subscript ev v′ ″, . 
Units are cm2.

 7. Radiationless decay times, such as τ1,0, are identified by subscripts 
that denote the corresponding S′ → S″ transition. Units are s.

 8. kS,T is a radiationless decay rate from the singlet to the triplet. Units 
are s−1.

Ignoring the vibrational manifolds and other finer details, Equations 8.12 
through 8.16 can be expressed in reduced form as

 N N N NT= + +0 1  (8.19)
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This simplified set of equations is similar to the equations disclosed by 
Teschke et al. (1976). This type of rate equations can be effectively applied to 
simulate numerically the dynamics of dye-laser intensity as a function of the 
laser-pump intensity and dye molecular concentration. Relevant cross sec-
tions and excitation rates are given in Table 8.1.

It should be noted that since organic dye gain media exhibit homogeneous 
broadening, the introduction of intracavity frequency-selective optics (see 
Chapter 9) enables all the molecules to contribute efficiently to tunable nar-
row-linewidth emission.

8.4.3 Long-Pulse Approximation

For long-pulse or CW emission, a simplified set of equations is possible, thus 
opening the alternative to closed form solutions. Assuming that the time 
derivatives vanish, Equations 8.20 through 8.23 reduce to

 
N I N N N I x N kp

l
e

l
l S T0 0 1 0 0 1 1 1 1 2 1 1 0

1σ σ σ σ λ τ, , , , ,( , )+ − −( ) = +( )−

 (8.24)
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1 2, , , ( , )= +−τ σ λ  (8.25)

 N N0 0 1 1 1 2σ σ, ,= −  (8.26)
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TABLE 8.1

Laser Excitation Parameters for the Rhodamine 6G Molecule

Symbol Measured Value λ (nm) Reference

σ0,1 1.66 × 10−16 cm2 510 Hargrove and Kan (1980)
σ0,1 4.50 × 10−16 cm2 530 Everett (1991)
σ1,2 0.40 × 10−16 cm2 510 Hammond (1979)
σe 1.86 × 10−16 cm2 572 Hargrove and Kan (1980)
σe 1.30 × 10−16 cm2 600 Everett (1991)

σ0 1,
l 1.0 × 10−19 cm2 600 Everett (1991)

σ1 2,
l 1.0 × 10−17 cm2 600 Everett (1991)

σ1 2,
T 1.0 × 10−17 cm2 530 Everett (1991)

σ1 2,
Tl 4.0 × 10−17 cm2 600 Everett (1991)

τ1,0 4.8 × 10−9 s Tuccio and Strome (1972)
τ2,1 1.0 × 10−12 s Hargrove and Kan (1980)
τT,S 1.1 × 10−7 s Tuccio and Strome (1972)
kS,T 8.2 × 106 s−1 Tuccio and Strome (1972)
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Using triplet-level quenchers such as O2 and C8H8 (see, e.g., Duarte, 1990), it 
is possible to neutralize the effect of triplets so that the intensity given in 
Equation 8.27 simplifies to
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from which it follows that

 I x I el
N N Le

l l

( , ) ( , ) ( ), ,λ λ
σ σ σ

=
− −( )0 1 1 2 0 0 1

 (8.29)

Thus, the gain can be expressed as

 
g N N Le

l l= − −( )1 1 2 0 0 1( ), ,σ σ σ  (8.30)

From this relation it can be deduced that in the absence of triplet losses, gain 
can be achieved for

 N Ne
l l

1 1 2 0 0 1( ), ,σ σ σ− >  (8.31)

8.4.4 Example

Equation 8.24, and the excitation parameters given in Table 8.1, can be 
used to determine the laser pump intensity necessary to overcome thresh-
old. In this regard, just below threshold, that is, Il(x, λ) ≈ 0, Equation 8.24 
reduces to

 
I N

Np ≈ ( )−σ τ0 1 1 0
1 1

0
, ,

 
(8.32)

in the absence of triplets. This means that to approach population inver-
sion, using rhodamine 6G under visible laser excitation, pump intensities 
exceeding ∼5 × 1023 photons cm−2 s−1 are necessary (see also Dienes and 
Yankelevich, 1998).

8.5 Quantum Transition Probabilities and Cross Sections

Albeit the dynamics of laser excitation can be described using classical rate 
equations, an examination of transition probabilities, and transition cross sec-
tions, requires a quantum treatment. Here, this is done via the Dirac notation 
(Dirac, 1978) while adopting the Feynman approach (Feynman et al., 1965). 
An introduction to the Dirac notation is given in Chapter 4 and a summary 
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of useful identities is available in Chapter 7. The following description is 
based on a review given by Duarte (2003).

Here, we begin from the basic Dirac principles:

 

〈 〉 = 〈 〉〈 〉∑φ ψ φ ψ| | |j j
j  

(8.33)

 〈 〉 = 〈 〉φ ψ ψ φ| | *  (8.34)

 〈 〉 =i j ij| δ  (8.35)

For j = 1, 2, Equation 8.33 can be expanded into

 〈 〉 = 〈 〉〈 〉 + 〈 〉〈 〉φ ψ φ ψ φ ψ| | | | |2 2 1 1  (8.36)

or

 〈 〉 = 〈 〉 + 〈 〉φ ψ φ φ| | |2 12 1C C  (8.37)

where

 C1 1= 〈 〉|ψ  (8.38)

and

 C2 2= 〈 〉|ψ  (8.39)

Following Feynman, we express the derivative of the Cj amplitudes, with 
respect to time, as (Feynman et al., 1965; Dirac, 1978)

 
i dC
dt

H Cj
jk k

k

� = ∑
2

 
(8.40)

where Hjk is the Hamiltonian.
Next, using the Feynman notation, new amplitudes CI and CII are defined 

as linear combinations of C1 and C2. Furthermore, since

 〈 〉 = 〈 〉〈 〉 + 〈 〉〈 〉 =II II II II II II| | | | |1 1 2 2 1  (8.41)

the normalization factor 2−1/2 is introduced, so that

 
C C CII = +1

2 1 2( )
 

(8.42)

 
C C CI = −1

2 1 2( )
 

(8.43)
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Next, the Hamiltonian of the molecule under the effect of an electric field 
is allowed to be perturbed so that the matrix elements of the Hamiltonian 
become

 H E11 0= + µE  (8.44)

 H A12 = −  (8.45)

 H A21 = −  (8.46)

 H E22 0= − µE  (8.47)

where

 E E= + −
0( )e ei t i tω ω

 (8.48)

and μ corresponds to the electric dipole moment. The term µE  is known as 
the perturbation term. Expanding Equation 8.40, followed by subtraction and 
addition, leads to

 
i dC
dt

E A C CI
I II� = + +( )0 µE

 
(8.49)

 
i dC

dt
E A C CII

II I� = − +( )0 µE
 

(8.50)

Assuming a small electric field, solutions are of the form

 C D eI I
iE tI= − /�

 (8.51)

 C D eII II
iE tII= − /�

 (8.52)

where

 = +E E AI 0  (8.53)

and

 E E AII = −0  (8.54)

 



122 Quantum Optics for Engineers

Assuming that (ω + ω0) oscillates too rapidly to contribute to the rate of change 
of DI and DII, we can write

 
i dD
dt

D eI
II

i t� = − −µ ω ωE0 0( )

 
(8.55)

 
i dD

dt
D eII
I
i t� = −µ ω ωE0 0( )

 
(8.56)

If at t = 0, DI ≈ 1, then integration of Equation 8.56 leads to
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and following multiplication with its complex conjugate,
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which can be written as (Feynman et al., 1965)
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(8.59)

This is the probability for the transition I → II during the time segment T. 
This result is central to the theory of absorption and radiation of light by 
atoms and molecules. It can be further shown that

 | | | |D DI II
2 2=  (8.60)

which means that the physics for the stimulated emission probability is the 
same as the physics for the absorption probability.

Using I E= 2 0 0
2ε c  and replacing μ by 3−1/2μ (Sargent et al., 1974), the transi-

tion probability can be written as
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(8.61)

where
μ is the dipole moment in units of Cm
(1/4πε0) is in units of Nm2 C−2

I( )ω0  is the intensity in units of J s−1 m−2

 



123Laser Excitation

Integrating Equation 8.61 with respect to the frequency ω, the dimensionless 
transition probability becomes
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It then follows that the cross section for the transition can be written as
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in units of m2 (although the more widely used unit is cm2; see Table 8.1) For 
a simple atomic, or molecular, system, the dipole moment can be calculated 
from the definition (Feynman et al., 1965)

 µ ξ = 〈 〉 =m H n H| |mn mn  (8.64)

where Hmn is the matrix element of the Hamiltonian. For a simple diatomic 
molecule, the dependence of this matrix element on the Franck–Condon fac-
tor ( ),qv v′ ″  and the square of the transition moment (|Re|2) are described by 
Chutjian and James (1969).

Byer et al. (1972) wrote an expression for the gain, of vibrational–rotational 
transitions, of the form

 = σg NL  (8.65)

or more specifically
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where
SJ″ is known as the line strength
J″ identifies a specific rotational level

In practice, however, cross sections are mostly determined experimentally as 
in the case of those listed in Table 8.1.

Going back to Equation 8.62 and rearranging its terms, it follows that the 
intensity can be expressed as a function of the transition probability
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124 Quantum Optics for Engineers

or
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with

 
κ ε

µ
=











0
2

2
c�

 
(8.69)

where the units for the constant κ are J s m−2. Subsequently, the intensity 
I( )ω0  has units of J s−1 m−2 or W m−2.

8.5.1 Long-Pulse Approximation

For a very long pulse, Equation 8.61 can be approximated as
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(8.70)

which can be written as

 
I( ) | |ω κ ω≈ ( )3

2
2 2∆ DII

 
(8.71)

This approximation indicates that the intensity is proportional to the square 
of the frequency difference multiplied by the probability of the transition, or 
(∆ω)2|DII|2, and is given in units of J s−1 m−2 or W m−2.

Problems

8.1 Show that in the steady state Equation 8.20 becomes Equation 8.24.
8.2 Show that in the steady state Equation 8.23 becomes Equation 8.27.
8.3 Show that by neglecting the triplet state, Equation 8.27 can be expressed 

as Equation 8.29.
8.4 Starting from Equations 8.49 to 8.50, derive an expression for |DI|2 and 

show that it is equal to |DII|2.
8.5 Use Equation 8.62 to arrive at the expression for the transition cross sec-

tion given in Equation 8.63.
8.6 Show that the dimensions of the intensity given in Equation 8.71 are in 

W m−2.
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9
Laser Oscillators Described 
via the Dirac Notation

9.1 Introduction

Here we derive the classical linewidth cavity equation

 
∆ ∆λ θ θ

λ
≈ ∂

∂




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−1

 
(9.1)

using the Dirac notation approach. First, we notice that in this equation ∆θ 
is the beam divergence previously related to the uncertainty principle (see 
Chapter 3):

 ∆ ∆p x h≈  (9.2)

and (∂θ/∂λ)−1 is the overall cavity angular dispersion (Duarte, 2003).
We should also mention that Equation 9.1 is the single-pass version of the 

 multiple-pass linewidth cavity equation (Duarte and Piper, 1984; Duarte, 1990, 
2001):

 ∆ ∆ Θ Φλ θ λ λ= ∇ + ∇( )−
R G PMR R 1

 (9.3)

where the multiple-return-pass beam divergence is given by (Duarte, 1989, 
1990)
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(9.4)

R is the number of return-cavity passes necessary to reach laser threshold
L wR = ( )π λ2/  is the Rayleigh length (Duarte, 1990)
w is the beam waist
AR and BR are the corresponding multi-return-pass matrix elements 

(Duarte, 2003) as indicated in Appendix C
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For high-power, high-gain, tunable narrow-linewidth oscillators (as depicted 
in Figures 9.1 and 9.2), the factor R has been measured to be R  ≈  3 
(Duarte, 2001). Equation 9.3 has been found to be fairly successful to pre-
dict, and account for, measured laser linewidths in high-gain, pulsed tunable 
lasers (Duarte, 2001).

In this chapter we shall see that equations and concepts previously devel-
oped in a classical context can also be outlined and derived from a quantum 
perspective.

Solid-state gain
medium

Grating

Θ 1,2

1,1

M

FIGURE 9.1
Optimized multiple-prism grating solid-state dye-laser oscillator using a 3000 lines mm−1 
diffraction grating deployed in the Littrow configuration. The measured laser linewidth is 
∆ν ≈ 350 MHz (Duarte, 1999). This is a closed cavity configuration; see Appendix B.

Gain
medium

Grating

M

Tuning mirror θ΄

θ

1,2

1,1

FIGURE 9.2
Hybrid multiple-prism near-grazing incidence (HMPGI) grating oscillator (Duarte and 
Piper, 1981; Duarte, 1990). For the organic solid-state HMPGIG oscillator, the measured 
laser linewidth is ∆ν ≈ 375 MHz (Duarte, 1997a). This is a closed cavity configuration; see 
Appendix B.
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9.2 Transverse and Longitudinal Modes

The unrestricted initial emission from laser gain media is both spatially and 
spectrally broad; in other words, it lacks spectral purity. This is the essence 
of broadband emission.

Spatially, this broad emission contains many spatial modes and each of 
those spatial modes includes a multitude of longitudinal modes. Albeit 
exhibiting a directional beam, this type of broadband emission is essentially 
chaotic and exhibits a high degree of entropy.

In order to achieve highly selective, controllable, narrow-linewidth, spec-
trally pure emission, it is imperative to

 1. Restrict the spatial emission to a single transverse electromagnetic 
mode, that is, TEM00

 2. Restrict the longitudinal modes, within that single transverse mode 
(TEM00), to a single-longitudinal mode (SLM)

In other words, highly coherent, spectrally pure, low-entropy laser emission 
requires the selection of a single transverse electromagnetic mode, followed 
by the selection of an SLM within that single transverse mode. The discus-
sion that follows next includes concepts and elements from a review given 
by Duarte (2003).

9.2.1 Transverse-Mode Structure

A fundamental laser cavity is comprised of a gain medium and two mir-
rors, as illustrated in Figure 9.3. The physical dimension of the intracav-
ity aperture (2w) relative to the separation of mirrors, or cavity length (L), 
determines the number of transverse electromagnetic modes. A typical 
broadband laser cavity, under optical excitation, has an aperture in the few 
mm range and a cavity length of about 10 cm. For the same cavity length, 
the aperture size in a narrow-linewidth cavity is reduced to the 100 ≤ 2w 
≤ 200 μm range.

The narrower the width of the intracavity aperture and the longer the 
cavity length, the lower the number of transverse modes (Duarte, 2003). The 
single-pass transverse-mode structure in one dimension can be character-
ized using the generalized interferometric equation introduced in Chapter 4 
(Duarte, 1991, 1993):
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and in two dimensions by (Duarte, 1995a)
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The single-pass approximation to estimate the transverse-mode structure 
assumes that in a laser with a given cavity length, most of the emission gen-
erated next to the output-coupler mirror is in the form of spontaneous emis-
sion and thus highly divergent. Thus, only the emission generated at the 
opposite end of the cavity and that propagates via an intracavity length L 
contributes to the initial transverse-mode structure.

In order to illustrate the use of these equations, let us consider a hypo-
thetical laser with a 10 cm cavity emitting at λ = 590 nm incorporating a 
1D aperture (2w) = 2 mm wide. Using Equation 9.5 the intensity distribu-
tion of the emission is calculated as shown in Figure 9.4. Each ripple rep-
resents a transverse mode. An estimate of this number can be obtained by 
counting the ripples in Figure 9.4 that yield an approximate number of 17. 
The Fresnel number (Siegman, 1986) for the given dimensions is
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Gain mediumM1 M2

2w

2w

λ

L

Array of N
“imaginary” subslits

FIGURE 9.3
Mirror–mirror laser cavity. The physical dimensions of the intracavity aperture relative to the 
cavity length determine the number of transverse modes. Parameters that enter in the calcula-
tion are laser wavelength (λ), cavity length (L), and number of subslits (N).
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For the same wavelength at λ = 590 nm and cavity length (L = 10 cm), if 
the aperture is reduced to 2w = 250 μm, the calculated intensity distribu-
tion, using Equation 9.5, is given in Figure 9.5. In this case the Fresnel num-
ber becomes NF ≈ 0.26. The distribution in Figure 9.5 indicates that most of 
the emission intensity is contained in a central near-Gaussian distribution. 
A measured single-transverse-mode beam, with an ovaloid profile, from a 
narrow-linewidth tunable solid-state dye laser (Duarte, 1995b), is displayed 
in Figure 9.6

In summary, reducing the transverse-mode distribution to TEM00 emis-
sion is the first step in the design of narrow-linewidth tunable lasers. 
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FIGURE 9.4
Cross section of diffraction distribution corresponding to a large number of transverse modes. 
Here, λ = 590 nm, 2w = 2 mm, L = 10 cm, and NF ≈ 17. The wide aperture is assumed to be com-
posed of N = 1000 “imaginary” subslits.
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FIGURE 9.5
Cross section of diffraction distribution corresponding to a near single transverse mode cor-
responding to λ = 590 nm, 2w = 250 μm, L = 10 cm, and NF ≈ 0.26. In practice, the lower-intensity 
higher-order maxima are not observed due to cavity losses and often only the central mode 
remains.
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The task of the designer consists in achieving TEM00 emission within 
desirable geometrical parameters that include the shortest possible cav-
ity length.

9.2.2 Double- and Single-Longitudinal-Mode Emission

Successful discrimination toward a single transverse mode is the first step 
toward the attainment of tunable narrow-linewidth emission. The next task 
consists in controlling the number of longitudinal modes in the cavity. In 
a laser resonator with cavity length L, the longitudinal-mode spacing (δν), 
in the frequency domain, is given by an alternative form of the uncertainty 
principle (see Chapter 3):

 
δν = c

L2  
(9.8)

and the number of longitudinal modes NLM is given

 
NLM = ∆ν

δν  
(9.9)

where ∆ν is the measured laser linewidth (Duarte, 2003). From Equations 
9.8 and 9.9, it is clear that the number of allowed longitudinal modes (NLM) 
decreases as the cavity length decreases. Thus, the importance of cavity com-
pactness is highlighted.

An additional, and complementary, approach to achieve SLM emission is 
to optimize the beam divergence and to increase the intracavity dispersion 

FIGURE 9.6
Single-transverse-mode beam originating from an SLM (∆ν ≈ 420 MHz) multiple-prism grating 
solid-state dye laser. (Reproduced from Duarte, F.J., Opt. Commun. 117, 480, 1995b, with permis-
sion from Elsevier.)
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to yield a narrower cavity linewidth that would restrict oscillation to the 
SLM regime. In this context the linewidth
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is converted to ∆ν units (Hz) using the identity
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(9.11)

and applying the criterion

 ∆ν δν≤  (9.12)

to guide the design of the dispersive oscillator.
Multiple-longitudinal-mode emission is complex and chaotic, both in the 

frequency and temporal domains. Double-longitudinal-mode (DLM) and 
SLM emission can be characterized in the frequency domain using Fabry–
Perot interferometry or in the temporal domain by observing the shape of 
the temporal pulsed. In the case of DLM emission, the interferometric rings 
appear to be double. In the temporal domain, mode beating is still observed 
when the intensity ratio of the primary to the secondary mode is 100:1 or even 
higher. Mode beating of two longitudinal modes, as illustrated in Figure 9.7, 
is characterized using a wave representation where each mode of amplitude 

FIGURE 9.7
Measured mode beating resulting from DLM oscillation. Temporal scale is 20 ns div−1. 
(Reproduced from Duarte, F.J. et al., Appl. Opt. 27, 843, 1988, with permission from the Optical 
Society of America.)

 



134 Quantum Optics for Engineers

E1 and E2, with frequencies ω1 and ω2, combines to produce a resulting field 
(Pacala et al., 1984):

 E E t k z E t k z= − + −1 1 1 2 2 2cos( ) cos( )ω ω  (9.13)

For incidence at z = 0 on a square-law temporal detector, the intensity can be 
expressed as
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For detection in the nanosecond regime, we can neglect the second and third 
terms, so that
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(9.15)

Using this approximation and a non-Gaussian temporal representation, 
derived from experimental data, for the amplitudes of the form

 E t a t a t a b t b1 2
2

1 0 1 0
1( ) ( )( )= + + + −
 (9.16)

a calculated version of the experimental waveform exhibiting mode beating 
can be obtained as shown in Figure 9.8 (Duarte et al., 1988). For the oscilla-
tor under consideration, which was lasing in the DLM regime, the ratio of 
frequency jitter δω to cavity mode spacing ∆ω ≈ (ω1 − ω2) was represented 
by a sinusoidal function at 20 MHz. The initial mode intensity ratio is 200:1 
(Duarte et al., 1988; Duarte, 1990).

20 ns

FIGURE 9.8
Calculated temporal pulse assuming interference between the two longitudinal modes 
(Reproduced from Duarte, F.J. et al., Appl. Opt. 27, 843, 1988, with permission from the Optical 
Society of America.)
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In the case of SLM emission, the Fabry–Perot interferometric rings appear 
singular and well defined (see Figure 9.9). Mode beating in the temporal 
domain is absent and the pulses assume a near-Gaussian distribution (see 
Figure 9.10). These results were obtained in an optimized solid-state multi-
ple-prism grating dye-laser oscillator for which ∆ν ∆t ≈ 1, which is near the 
limit allowed by the Heisenberg uncertainty principle (Duarte, 1999).

9.2.2.1 Example

For a laser with a 15 cm cavity length (δν ≈ 1 GHz, using Equation 9.8), and 
a measured linewidth of ∆ν = 3 GHz, the number of longitudinal modes 
becomes NLM ≈ 3 (using Equation 9.9). If the cavity length is reduced to 10 cm 
(δν ≈ 1.5 GHz), then the number of longitudinal modes is reduced to NLM ≈ 2 

FIGURE 9.9
Fabry–Perot interferogram corresponding to SLM emission at ∆ν ≈ 350 MHz. (Reproduced from 
Duarte, F.J., Appl. Opt. 38, 6347, 1999, with permission from the Optical Society of America.)

1 ns

FIGURE 9.10
Near-Gaussian temporal pulse corresponding to SLM emission. The temporal scale is 1 ns div−1. 
(Reproduced from Duarte, F.J., Appl. Opt. 38, 6347, 1999, with permission from the Optical Society 
of America.)
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and the emission would be called DLM emission. Furthermore, if the cavity 
length is reduced to 5 cm, then NLM ≈ 1 and the laser is said to be under-
going SLM oscillation. This example highlights the advantages of compact 
cavity designs.

9.3 Laser Cavity Equation: An Intuitive Approach

We now describe an intuitive approach to the laser cavity equation using the 
Dirac notation as applied to a multiple-prism grating cavity as illustrated in 
Figures 9.1 and 9.2 (Duarte, 1992). A close-up view of the frequency-selective 
assembly, in an unfolded configuration, is shown in Figure 9.11.

In reference to this figure, the probability amplitude describing the propa-
gation from the active region emitter s to the entrance of the multiple-prism 
array at an incidence angle ϕ1,m can be expressed as

 〈 〉φ1, |m s

s

D Grating plane

1,1

1,2

1,2́

ś 1,1́

FIGURE 9.11
Unfolded optical path of a dispersive multiple-prism grating configuration showing the emis-
sion source s followed by the entrance of the multiple-prism grating assembly (ϕ1,m with m = 1), 
the dispersive assembly D, and the corresponding quantities to the return path back to the gain 
region. (Adapted from Duarte, F.J., Appl. Opt. 31, 6979, 1992, with permission from the Optical 
Society of America.)
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while the probability amplitude to propagate, through the dispersive 
 multiple-prism grating assembly D, from an incidence angle ϕ1,m to a return 
angle φ′1,m can be written as

 〈 〉φ′ φ1 1, ,| |m mD

Similarly, the probability amplitude to exit the multiple-prism array at an 
angle φ′1,m back to the gain medium is

 〈 〉s m′ φ′| ,1

Thus, the overall probability amplitude for a photon to propagate from the 
active medium s, through the dispersive multiple-prism grating assembly, 
and back to the gain medium, is
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φφ′

| | | | | |, , , ,

,,

1 1 1 1

11  

(9.17)

Since ϕ1,m is a unique angle of incidence on the gain axis, at the multiple-prism 
expander, that is necessary to induce diffraction at the grating followed by 
an exact return passage to the gain medium, the probability amplitude can 
be reduced to (Duarte, 1992)

 〈 〉 = 〈 〉 〈 〉 〈 〉s D s s D sm m m m′ ′ φ′ φ′ φ φ| | | | | |, , , ,1 1 1 1  (9.18)

so that the probability for the intracavity photon propagation just described 
becomes
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1

2
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The different components of this probability can be identified by describing 
the propagation at each segment. Immediately, at the exit of the gain region, 
in the first segment, the probability of narrow-linewidth emission propaga-
tion is inversely proportional to the beam divergence ∆θ of the emission, 
so that
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Once the photon flux arrives at the dispersive multiple-prism grating assem-
bly, the return of resonant narrow-linewidth emission is proportional to the 
dispersion of the configuration. The higher the dispersion, the narrower the 
linewidth:
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For highly selective resonant emission that returns precisely at φ′1, ,m  the 
probability to return to the gain region for further amplification is high 
so that

 | | |,〈 〉 ≈s m′ φ′1 2 1  (9.22)

Now, since the overall probability for resonant narrow-linewidth amplifica-
tion is inversely proportional to the wavelength spread of the emission,
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Combining Equations 9.20 through 9.23 into 9.19, we get
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which, for κ3 ≈ (κ1κ2), takes the form
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Albeit fairly intuitive, this approach lends itself to illustrate the refinement 
process that occurs with multiple intracavity passes.

9.4 Laser Cavity Equation via the Interferometric Equation

By now, the reader should be getting the message that interference is at 
the heart of many phenomena in laser optics. We just saw how the inter-
ferometric equation applied to a single aperture can be used to describe the 
transverse-mode structure of a laser cavity. In other words, we saw how the 
geometrical ratio of aperture width to cavity length affects the transverse-
mode distribution of the emission. Now, we apply the generalized, 1D, inter-
ferometric equation
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to describe the origin of the cavity linewidth equation. We do this by focus-
ing attention into the phase term of the N-slit interferometric equation 
(Duarte, 1997b)

 
cos ( ) ( ) cos | | | |θ θm j m j m m m ml l k L L k− ± −( ) = − ± −( )− −φ φ 1 1 1 2  

(9.26)

from which the well-known grating equation can be derived (see Chapter 5)

 d mm m m(sin sin )Θ Φ± = λ  (9.27)

where m = 0, ±1, ±2, ±3, …. For a grating deployed in the reflection domain, 
and at the Littrow configuration, Θm = Φm = Θ (i.e., the diffracted light goes 
back at the same angle of the incident beam) so that the grating equation 
reduces to

 m dmλ = 2 sin Θ  (9.28)

where m = 0, 1, 2, 3, … are the various diffraction orders.
Considering two slightly different wavelengths, an expression for the 

wavelength difference can be written as
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for Θ1 ≈ Θ2(= Θ), this equation can be restated as
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Differentiation of the grating equation leads to
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and substitution into Equation 9.30 yields
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which reduces to the well-known cavity linewidth equation (Duarte, 1992)
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or

 ∆ ∆λ θ θλ≈ ∇ −( ) 1
 (9.34)

where ∇λθ = (∂θ/∂λ). This equation has been used extensively to determine the 
emission linewidth in pulsed narrow-linewidth dispersive laser oscillators 
(Duarte, 1990). It originates in the generalized N-slit interference equation and 
incorporates ∆θ whose value can be determined either from the Heisenberg 
uncertainty principle or from the interferometric equation itself. This equa-
tion is also well known in the field of classical spectrometers where it has 
been introduced using geometrical arguments (Robertson, 1955). In addition 
to its technical and computational usefulness, Equation 9.33 and/or 9.34 illus-
trates the inherent interdependence between spectral and spatial coherence.

Problems

9.1 Show that for R = 1, and in the absence of a grating, Equation 9.3 reduces 
to an equation of the form of Equation 9.1 where the dispersion is 
 provided by the multiple-prism assembly.

9.2 For an optimized multiple-prism grating oscillator, as shown in 
Figure 9.1, the measured laser linewidth is ∆ν ≈ 350 MHz. Given 
that the free spectral range of the cavity is FSR ≈ 1.6 GHz, determine 
(a) the approximate length of the cavity and (b) the value of the over-
all  intracavity dispersion given that the measured beam divergence is 
∆θ ≈ 2.2 m rad.

9.3 For the case of laser radiation in the visible spectrum, show that Equation 
9.14 reduces to Equation 9.15 for detectors with a time response in the 
nanosecond regime.

9.4 Show in detail how Equation 9.30 reduces to the cavity linewidth equa-
tion: Equation 9.33.
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10
Interferometry via the Dirac Notation

10.1 Interference à la Dirac

The genesis of quantum optics can be found in the Dirac discussion (from 
the 1930s) on interference as disclosed in The Principles of Quantum Mechanics 
(Dirac, 1978). This is a masterful and prophetic discussion that begins by 
considering a roughly monochromatic light source. The discussion continues 
by considering a beam of light consisting of a large number of photons. In other 
words, Dirac is considering a beam of light with a definite spectral linewidth 
and high power, a beam of light as available from narrow-linewidth high-
power lasers (Duarte, 1998, 2003). For the discussion at hand, the term mono-
chromatic is reserved for single-photon emission, while quasi-monochromatic, 
semi-monochromatic, or nearly monochromatic relates to spectrally narrow 
emission as available from narrow-linewidth high-power lasers. These narrow-
linewidth lasers provide populations of indistinguishable photons. The nar-
rower the laser linewidth, the more indistinguishable the photons are. In the 
case of optimized pulsed laser oscillators, the emission linewidth can be as nar-
row as allowed by the Heisenberg uncertainty principle, that is, ∆ν ≈ 350 MHz 
(or ∆λ ≈ 0.0004 nm at λ ≈ 590 nm) for a ∆t ≈ 3 ns pulse (Duarte, 1999).

Thus, in the Dirac discussion on interference, we are dealing with a popu-
lation, or ensemble, of indistinguishable photons. He then goes on to associ-
ate the translational state of a photon with one of the wave functions of ordinary 
wave optics (Dirac, 1978).

He argues that the association is only statistical and that the wave func-
tion provides information about the probability of our finding the photon in any 
particular place. This idea is reinforced with a similar sentence stating that 
the wave function gives us information about one photon being in a particular 
place (Dirac, 1978). Going back to his thought experiment, he then consid-
ers a beam of light with a large number of nearly monochromatic, that is, 
indistinguishable photons, and divides it into two beams of equal intensity 
and the two sub-beams are made to interfere. In this regard, Dirac’s thought 
experiment applies directly to a high-power laser beam (of linewidth ∆ν) 
made to interfere in a Mach–Zehnder interferometer, for instance. Next, 
Dirac explains that each photon then goes partly into the two interfering 
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sub-beams: each photon then interferes with itself (Dirac, 1978). This statement 
is directly applicable to the experiment at hand in which a large number of 
indistinguishable photons are divided into two sub-beams.

Under this circumstance each individual photon in that ensemble of indis-
tinguishable photons goes partly into each beam (given that they have a large 
coherent length defined by ∆x ≈ c/∆ν) and interferes with itself. Now, mathemati-
cally, what interfere are the probability amplitudes associated with each photon.

At this stage three explanations are necessary. First, as Dirac himself 
explains, when the beam is divided into two subcomponents, it does not 
mean that a particular photon goes into one sub-beam and a different pho-
ton goes into the other sub-beam. Secondly, under the Dirac description, the 
interference between two beams from different lasers emitting at the same 
frequency is perfectly allowed since the photons are indistinguishable and 
therefore the same. In other words, the interference from two laser sources, 
of the same frequency and linewidth, appears the same as if the beam of 
one of the lasers were divided and then allowed to interfere.

Thirdly, as explained elsewhere in this book, the equation for N-slit inter-
ference is derived for a single photon. However, it applies equally well to a 
population of indistinguishable photons. If light from a narrow-linewidth 
laser is used (that would be a nearly perfect population of indistinguish-
able photons), the interferograms are perfectly sharp and exhibit a visibility 
(Michelson, 1927)

 
V = −

+
I I
I I

1 2

1 2  
(10.1)

of near unity ( ).V ≈ 1  If, on the other hand, broadband emission is used, the 
interference equation becomes part of an interferometric distribution includ-
ing the interferograms corresponding to all the different wavelengths used. 
Thus the interferograms become broad, with decreased spatial definition and 
decreased visibility (Duarte, 2008). This effect is explained in detail in Chapter 4.

Besides Dirac (1978), useful references on interferometry include Steel 
(1967), Meaburn (1976), and Born and Wolf (1999). Note that as mentioned 
previously, the reference cited here for Dirac’s book corresponds to the 9th 
printing of the 4th edition.

The first edition was published in 1930, the second in 1935, the third in 
1947, and the fourth in 1958.

10.2 Hanbury Brown–Twiss Interferometer

The Hanbury Brown–Twiss effect originates in interferometric measure-
ments performed by an “intensity interferometer” used for astronomical 
observations (Hanbury Brown and Twiss, 1956). A diagram of the stellar 
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intensity interferometer used to determine the diameter of stars is depicted 
in Figure 10.1. Feynman in one of his exercises to the Feynman Lectures in 
Physics (Feynman et al., 1965) explains that the electric currents from the 
two detectors are mixed in a coincidence circuit where the currents become 
indistinguishable. Feynman then asks to show that the coincidence count-
ing rate, in the Hanbury Brown–Twiss configuration, is proportional to an 
expression of the form

 2 2 2 1+ −cos ( )k R R  (10.2)

where R1 and R2 are the distances from detector 1 and detector 2 to the 
source. Using the N-slit interferometric equation (Duarte, 1991, 1993)
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with N = 2, one immediately arrives at

 | | | ( ) ( ) ( ) ( )cos( )〈 〉 = + + −x s r r r r2
1

2
2

2
1 2 2 12Ψ Ψ Ψ Ψ Ω Ω  (10.4)

M1

M2
D2

D1

i2

i1

FIGURE 10.1
The Hanbury Brown and Twiss interferometer: the light, from an astronomical source, is col-
lected at mirrors M1 and M2 and focused onto detectors D1 and D2. The current generated at 
these detectors interferes to produce an interference signal characterized by an equation in the 
form of Equation 10.2.
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and setting Ψ(r1) = Ψ(r2) = 1

 | | | cos〈 〉 = + −( )x s 2
2 12 2 Ω Ω  (10.5)

Now, using (as suggested by Feynman) Ω1 = kR1 and Ω2 = kR2

 | | | cos〈 〉 = + −( )x s k R R2
2 12 2  (10.6)

From the measured signal distribution and these equations, the angular spread 
of the emission can be determined, and knowing the distance from the source 
to the detector, it becomes possible to estimate the diameter of the aperture at 
the emission, in other words, the diameter of the star under observation.

The Hanbury Brown–Twiss interferometric argument was not easily accepted 
by the physics community at the time given that many physicists erroneously 
thought that since visible photons either arrived at detector 1 or detector 2, these 
were not correlated. In other words, many had not accepted the Dirac descrip-
tion of interference and did not understand the concept of coherence length. 
Further, the Hanbury Brown–Twiss observations could also be explained clas-
sically using conventional Fourier techniques, thus adding to the confusion.

10.3 Two-Beam Interferometers

Two-beam interferometers are optical devices that divide and then recom-
bine a light beam. It is on recombination of the beams that interference occurs. 
The most well-known two-beam interferometers are the Sagnac interferom-
eter, the Mach–Zehnder interferometer, and the Michelson interferometer.

For a highly coherent light beam, such as the beam from a narrow- linewidth 
laser, the coherence length

 
∆

∆
x c≈

ν  
(10.7)

can be rather large thus allowing a relatively large optical path length in the 
two-beam interferometer of choice. Alternatively, this relation provides an 
avenue to accurately determine the linewidth of a laser by increasing the 
optical path length until interference ceases to be observed.

Parts of the following discussion on interferometry are based on a review 
by Duarte (2003).

10.3.1 Sagnac Interferometer

The Sagnac, or cyclic, interferometer is illustrated in Figure 10.2. In this 
interferometer, the incident light beam is divided into two sub-beams by a 
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beam splitter. The reflected beam, on the incidence beam splitter, is then sent 
into a path defined by the reflections on M1, M2, and M3 mirrors. The trans-
mitted beam, on the incidence beam splitter, is sent into a path defined by 
the reflections on M3, M2, and M1 mirrors. Both counterpropagating beams 
are recombined at the beam splitter. The interference mechanics of the coun-
terpropagating round trips can be described using the Dirac notation via the 
probability amplitude

 

〈 〉 = 〈 〉〈 〉〈 〉〈 〉〈 〉〈 〉

+ 〈 〉〈 〉〈

x s x j j M M M M M M j j s

x j j M M

| | | | | | |

| |

3 3 2 2 1 1

1′ ′ 11 2 2 3 3| | | |M M M M j j s〉〈 〉〈 〉〈 〉′ ′  (10.8)

where
j refers to the reflection mode of the beam splitter (BS)
j′ to the transmission mode of the beam splitter

Assuming that

 〈 〉〈 〉〈 〉〈 〉 =j M M M M M M j| | | |3 3 2 2 1 1 1  (10.9)

and

 〈 〉〈 〉〈 〉〈 〉 =j M M M M M M j′ ′| | | |1 1 2 2 3 3 1  (10.10)

Then, Equation 10.8 reduces to

 〈 〉 = 〈 〉〈 〉 + 〈 ′〉〈 ′ 〉x s x j j s x j j s| | | | |  (10.11)

M1 M2

M3
j

s

x

FIGURE 10.2
Sagnac interferometer. All three mirrors M1, M2, and M3 are assumed to be identical. For the 
description given in the text, the beam splitter is assumed to be lossless and to divide the inci-
dent beam exactly into two components half the intensity of the original beam.

 



148 Quantum Optics for Engineers

If j′ = 1 represents the beam splitter in a transmission mode and j = 2 the 
reflection mode, then Equation 10.11 can be written as (Duarte, 2003)

 〈 〉 = 〈 〉 〈 〉 + 〈 〉 〈 〉x s x s x s| | | | |2 2 1 1  (10.12)

which, for N = 2, can be expressed as

 

〈 〉 = 〈 〉 〈 〉
=

=

∑x s x j j s
j

N

| | |
1

2
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An alternative triangular Sagnac interferometer, with only two mirrors 
(M1 and M2), is shown in Figure 10.3.

10.3.2 Mach–Zehnder Interferometer

The Mach–Zehnder interferometer is illustrated in Figure 10.4. In this inter-
ferometer the incident light beam is divided into two sub-beams by a beam 
splitter. The reflected beam, on the incidence beam splitter, is then sent into 
a path defined by the reflection on M1 toward the exit beam splitter. The 
transmitted beam, on the incidence beam splitter, is sent into a path defined 
by the reflection on M2 toward the exit beam splitter.

Both counterpropagating beams are recombined at the exit beam splitter. 
The interference mechanics of the counterpropagating beams can be 
described using the Dirac notation via the probability amplitude

 〈 〉 = 〈 〉〈 〉〈 〉〈 〉 + 〈 〉〈 〉〈 〉〈 〉x s x k k M M j j s x k k M M j j s| | | | | | | | |′ ′ ′ ′1 1 2 2  (10.14)
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M2
j

s

x

FIGURE 10.3
Sagnac interferometer in triangular configuration.
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which can be abstracted to

 〈 〉 = 〈 ′〉〈 ′ 〉〈 〉 + 〈 〉〈 ′〉〈 ′ 〉x s x k k j j s x k k j j s| | | | | | |  (10.15)

If j′ = k′ = 1 represent the beam splitters in a transmission mode and j = k = 2 
in a reflection mode, then Equation 10.15 can be written as (Duarte, 2003)

 〈 〉 = 〈 〉〈 〉〈 〉 + 〈 〉〈 〉〈 〉x s x s x s| | | | | | |1 1 2 2 2 2 1 1  (10.16)

The same result can be obtained from
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which leads to
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However, since 〈1|1〉 and 〈2|2〉 illuminate x′ rather than x, then the prob-
ability amplitude, for this geometry, reduces to that given in Equation 10.16.

A prismatic Mach–Zehnder interferometer is illustrated in Figure 10.5. 
In this prismatic version of the Mach–Zehnder, there is asymmetry in 
regard to the intra-interferometric beam dimensions. The P1−M2−P2 beam is 
expanded relatively to the P1−M1−P2 beam. Also, in this particular example 

M1

M2

x
k

s

x΄

j

FIGURE 10.4
Mach–Zehnder interferometer configured with entrance (j) and exit (k) beam splitters and 
internal mirrors M1 and M2. In the schematics x′ represents a weak secondary output.
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(based on a prism with a magnification of k1,1 ≈ 5, see Chapter 15), there is 
also a power asymmetry since the unexpanded beam propagating in the 
P1−M1−P2 arm has about 30% of the incident power while the expanded 
beam P1−M2−P2 carries the remaining 70% of the incident power for light 
polarized parallel to the plane of incidence. In this regard, it should be pos-
sible to design a prismatic Mach–Zehnder where the power density (Wm−2) 
in each arm is balanced. Applications for this type of interferometer include 
imaging and microscopy. Additional Mach–Zehnder interferometric config-
urations include transmission gratings as beam splitters (Steel, 1967).

10.3.3 Michelson Interferometer

The Michelson interferometer (Michelson, 1927) is illustrated in Figure 10.6. 
In this interferometer the incident light beam is divided into two sub-beams 
by a beam splitter that serves as both input and output element. The reflected 

M1

M2

P1

P2

FIGURE 10.5
Prismatic Mach–Zehnder interferometer configured with P1 → j, M1, M2, and exit prism P2 → k.

M1

M2

j

s

x

FIGURE 10.6
Michelson interferometer includes a single beam splitters and mirrors M1 and M2.
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beam, on the incidence beam splitter, is then sent into a path defined by 
the reflection on M1 and back toward the exit beam splitter. The transmit-
ted beam, on the incidence beam splitter, is sent into a path defined by the 
reflection on M2 and back toward the exit beam splitter. Both beams are 
recombined interferometrically at the beam splitter. For the Michelson inter-
ferometer, the interference can be characterized using a probability ampli-
tude of the form

 〈 〉 = 〈 〉〈 〉〈 〉〈 〉 + 〈 〉〈 〉〈 〉〈 〉x s x j j M M j j s x j j M M j j s| | | | | | | | |2 2 1 1′ ′ ′ ′  (10.19)

which can be abstracted to

 〈 〉 = 〈 〉〈 ′〉〈 ′ 〉 + 〈 ′〉〈 ′ 〉〈 〉x s x j j j j s x j j j j s| | | | | | |  (10.20)

If j′ = 1 represents the function of the beam splitter in the transmission mode 
and j = 2 represents the function of the beam splitter in the reflection mode,

 〈 〉 = 〈 〉〈 〉〈 〉 + 〈 〉〈 〉〈 〉x s x s x s| | | | | | |2 2 1 1 1 1 2 2  (10.21)

It is clear that the substitution of the appropriate wave functions for the 
various terms in Equations 10.11, 10.15, and 10.20 and the multiplication of 
these equations with their respective complex conjugates yield probability 
equations of an interferometric character. A variant of the Michelson inter-
ferometer uses retroreflectors (Steel, 1967).

10.4 Multiple-Beam Interferometers

An N-slit interferometer, which can be considered as a multiple-beam inter-
ferometer, was introduced in Chapter 4 and is depicted in Figure 10.7. In 
this configuration, an expanded beam of light illuminates simultaneously 
an array of N slits. Following propagation the N sub-beams interfere at a 
plane perpendicular to the plane of propagation. The probability amplitude 
is given by
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and the probability is
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which can also be expressed as Equation 10.3 (Duarte, 1991, 1993):
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Expressions for 2D and 3D cases are given in Chapter 4. As seen previ-
ously, this approach is also applicable to the two-beam interferometer intro-
duced by Hanbury Brown and Twiss (1956) (shown in Figure 10.1) and to 
other multiple-beam, or multiple-slit, interferometers used in astronomical 
applications.

The second multiple-beam interferometer is the Fabry–Perot interferometer 
depicted in Figure 10.8. This interferometer is also considered in Appendix 
B as an intracavity etalon. Generally, intracavity etalons are a solid slab of 
optical glass, or fused silica, with highly parallel surfaces coated to increase 
reflectivity (Figure 10.8b).

These are also known as Fabry–Perot etalons. Fabry–Perot interferometers, 
on the other hand, are constituted by two separate slabs of optical flats with 
their inner surfaces coated as shown in Figure 10.8a. The space between the 
two coated surfaces is filled with air or other inert gas. The optical flats in 
a Fabry–Perot interferometer are mounted on rigid metal bars, with a low 
thermal expansion coefficient, such as invar. The plates can be moved, with 
micrometer precision or better, to vary the free spectral range (FSR).

These interferometers are widely used to characterize and quantify the laser 
linewidth. The mechanics of multiple-beam interferometry can be described 
in some detail considering the multiple reflection, and refraction, of a beam 
incident on two parallel surfaces separated by a region of refractive index n 

s j x

Expanded TEM00
laser beam

N-slit array Digital detector
(CCD or CMOS)

D x|j 

FIGURE 10.7
N-Slit interferometer.
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as illustrated in Figure 10.9. In this configuration, at each point of reflection 
and refraction, a fraction of the beam, or a sub-beam, is transmitted toward 
the boundary region. Following propagation, these sub-beams interfere. In 
this regard, the physics is similar to that of the N-slit interferometer with 
the exception that each parallel beam has less intensity due to the increasing 

Optical
axis

(a)

Optical
axis

de

(b)

FIGURE 10.8
(a) Fabry–Perot interferometer and (b) Fabry–Perot etalon. Darker lines represent coated 
surfaces.

s

j

k

l
m

r΄ r΄ de

FIGURE 10.9
Multiple-beam interferometer diagram illustrating the multiple internal reflection geometry.
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number of reflections. Here, for transmission, interference can be described 
using a series of probability amplitudes representing the events depicted in 
Figure 10.9 (Duarte, 2003):
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where
j is at the reflection surface of incidence
k is immediately next to the surface of reflection
l is at the second surface of reflection
m is immediately next to the second surface of reflection as illustrated in 

Figure 10.9

If the incident beam is assumed to be a narrow beam incident at a single 
point j, then the propagation of this single beam proceeds to l and is repre-
sented by the incidence amplitude Ai, which is a complex number, attenuated 
by a transmission factor t, so that the first three probability amplitudes can 
be unified by an expression of the form (Duarte, 2003)

 〈 〉 〈 〉 〈 〉 =l k k j j s A ti| | |  (10.25)

and Equation 10.24 can be written as
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which, using the established notation, can be expressed as (Steel, 1967; Born 
and Wolf, 1999)

 A p A t t t r e t r e t r et i
i i p i p( ) ( )( ) ( )= + + + + − −′ ′ ′ ′ ′ ′ ′2 4 2 2 1 1δ δ δ�  (10.27)

Defining

 � = ′tt  (10.28)

and

 � = r′2
 (10.29)

and taking the limit as p → ∞, Equation 10.27 reduces to (Born and Wolf, 1999)

 A e At
i
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 (10.30)
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and multiplication with its complex conjugate yields an expression for the 
intensity

 I It i= + − −� � �2 2 11 2( cos )δ  (10.31)

which is known as the Airy formula or Airy function.
In Chapter 3 we saw that alternative forms of the uncertainty principle

 ∆ ∆x p h≈  (10.32)

are

 ∆ ∆x λ λ≈ 2
 (10.33)

and

 ∆ ∆x cν ≈  (10.34)

For solid Fabry–Perot etalons made of optical glass with refractive index n, 
∆x = 2nde, and ∆λ becomes the FSR so that

 
FSR

nde
≈ λ2

2  
(10.35)

and in the frequency domain

 
FSR c

nde
≈

2  
(10.36)

For an air-spaced Fabry–Perot interferometer, n = 1, and ∆x = 2de.
The FSR corresponds to the separation of the rings in Figure 10.10, and a 

measure of the width of the rings determines the linewidth of the emission 
being observed. The minimum resolvable linewidth ∆νFRS is given by

 
∆νFRS

FRS=
F  

(10.37)

where F is the effective finesse. Thus, a Fabry–Perot etalon with an FSR = 7.00 GHz 
and F =  50 provides discrimination down to ∼140 MHz. The finesse is a func-
tion of the flatness of the surfaces (often in the λ/100–λ/50 range), the dimen-
sions of the aperture, and the reflectivity of the surfaces. The FSR concept 
also applies to laser cavities as discussed in Chapter 9.

The effective finesse of a Fabry–Perot interferometer is given by (Meaburn, 
1976)

 F F F F− − − −=  + +  2 2 2 2
R F A  (10.38)
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Here F FR F, , and FA  are the reflective, flatness, and aperture finesses, respec-
tively. The reflective finesse is given by (Steel, 1967; Born and Wolf, 1999)

 
FR =

−
π �

�( )1  
(10.39)

where R  is the reflectivity.

10.5 N-Slit Interferometer as a Wavelength Meter

Interferometry signals and profiles are a function of the wavelength of the 
radiation that produces them. Thus, interferometers are well suited to be 
applied as wavelength meters specially when a digital detector array is used to 
record the resulting interferogram. As such, a variety of interferometric con-
figurations have been used in the measurement of tunable laser wavelengths. 
For a review in this subject, the reader should refer to Demtröder (2003).

The wavelength sensitivity of multiple-beam interferometry has its ori-
gin in the phase information of the equations describing the behavior of the 
interferometric signal. In the case of the N-slit interferometer, the interfero-
metric profile is characterized by the interferometric equation
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FIGURE 10.10
Fabry–Perot interferogram depicting single-longitudinal-mode oscillation, at ∆ν ≈ 500 MHz, 
from a tunable multiple-prism grating solid-state oscillator. (Reproduced from Duarte, F.J., 
Opt. Commun. 117, 480, 1995, with permission from Elsevier.)
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which includes a phase difference term that, as explained in Chapter 4, can 
be expressed as
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(10.40)

where
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Here, λ1 = λv/n1 and λ1 = λv/n2 where λv is the vacuum wavelength and n1 
and n2 are the corresponding indexes of refraction (Wallenstein and Hänsch, 
1974; Born and Wolf, 1999). Hence, it is easy to see that different wavelengths 
will produce different interferograms. To illustrate this point in Figures 10.11 
and 10.12, two calculated interferograms, using Equation 10.3, for the N-slit 
interferometer, with N = 50 and D〈x|j〉 = 25 cm, are shown for λ1 = 589 nm 
and λ2 = 590 nm, respectively. For a given set of geometrical parameters, 
measured interferograms can be matched, in an iterative process, with theo-
retical interference patterns to determine the wavelength of the radiation. 
Again, the resolution depends on the optical path length between the slit 
array and the digital detector and on the size of the pixels and the linear-
ity of the detector. In this regard, increased resolution in CCD, and CMOS 
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FIGURE 10.11
Interferogram at λ1 = 589 nm. These calculations are for slits 30 μm wide, separated by 30 μm, 
and N = 50. The j–x distance is D〈x|j〉 = 25 cm.
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detectors, should improve significantly the wavelength resolution achievable 
with the N-slit interferometer. This, coupled with the simplicity of the optics, 
should enhance considerably the application perspectives of this interferom-
eter as a wavelength meter.

Further applications of the NSLI are described by Duarte (2009) and include 
interferometric imaging, microdensitometry, microscopy, and secure optical 
communications (see Chapter 11).

10.6 Ramsey Interferometer

Finally, we very briefly touch on a different type of interferometer: the Ramsey 
interferometer, which was discovered by Norm Ramsey around 1950 (Ramsey, 
1950, 1990). This is a very different type of interferometer to those described 
previously since it uses atoms rather than photons as the interfering entities. 
In the Ramsey interferometer the laser, or photon source, is replaced by an 
atom source as described in Figure 10.13. In its path toward the detector, the 
atom beam is allowed to interact with microwave radiation at two places. The 
first place is near the source and the second place near the detector. At each of 
those spatial sections, the microwave field is allowed to modulate the state of 
the atoms. Defining Pg as the probability to be in the ground state and Pe the 
probability to be in the excited state (Haroche et al., 2013),

 
P Pg e= − = −( ) ( cos )1 1
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(10.43)
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FIGURE 10.12
Interferogram at λ2 = 590 nm. These calculations are for slits 30 μm wide, separated by 30 μm, 
and N = 50. The j–x distance is D〈x|j〉 = 25 cm.
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where the angle ϕ represents the phase difference between the ground state 
and the excited state. If ϕ = 2πm (where m is an integer), the states are in phase 
and thus there is constructive interference. In other words, when ϕ = 2πm 
there is atomic coherence.

Using the relevant Dirac notation, introduced in Chapters 16 and 17, one 
can define the probability amplitude of the initial unmodulated state as

 
| | |ψ1

1
2

〉 = 〉+ 〉( )a b
 

(10.44)

and the probability amplitude of the modulated state as

 
| | |ψ φ

2
1
2

〉 = 〉 + 〉( )a e bi

 
(10.45)

Multiplying Equation 10.45 with its complex conjugate can lead to

 
Pe = +( cos )1

2
φ

 
(10.46)

and using Pg = (1 − Pe) enables us to write

 
Pg = −( cos )1

2
φ

as given in Equation 10.43.
The phase angle itself is a function of the frequency difference between the 

frequency of the transition (between the ground state and the excited state, 
i.e., νeg) and the microwave frequency ν (Haroche, 2013): ϕ = 2π(νeg − ν)∆t. Thus, 
the interference pattern produced is a function of (νeg − ν). Locking the micro-
wave frequency to the transition frequency, that is, ν = νeg, yields a time stan-
dard anchored to the atomic transition (Haroche, 2013). This principle, coupled 
to laser-cooled atomic beams, is central to the technology of atomic clocks.

Atomic beam|ψ1 |ψ2

Atomic beam
source

Detector

Microwave zone 1 Microwave zone 2

FIGURE 10.13
Simplified depiction of the Ramsey interferometer showing the source of atomic beam and 
microwave field regions 1 and 2. Sources of atomic beams include laser-cooled cesium and 
rubidium.
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Problems

10.1 Interferometric measurements with a Hanbury Brown–Twiss type 
interferometer yield a measured angular spread of ∆θ ≈ 5.94 marcsec 
from the emission of the Sirius star. Determine the radius of this star 
(hint: 1 marcsec is 4.8481368 × 10−9 rad and the distance to Sirius is 
approximately 8.6 light-years).

10.2 A laser beam fails to provide interference fringes when the distance 
from the beam splitter to the mirrors, in a Michelson interferometer, is 
1 m. Estimate the linewidth of the laser in Hz units.

10.3 Using the usual complex-wave representation for probability ampli-
tudes, use Equation 10.15 to arrive at an equation for the probability of 
transmission in a Mach–Zehnder interferometer.

10.4 List the simplifying assumptions that lead from Equations 10.24 
to 10.27.

10.5 Starting from Equation 10.45, arrive at Equation 10.46 [Hint: Consult 
Chapter 17].
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11
Secure Interferometric 
Communications in Free Space

11.1 Introduction

The N-slit laser interferometer (NSLI) was first introduced as an alternative 
applicable to secure free-space optical communications in 2002 (Duarte, 
2002). Albeit its initial propagation distance in the laboratory was only 15 cm, 
it was envisioned as an interferometric tool ideally suited for propagation in 
the vacuum, or outer space (Duarte, 2002). Subsequently, NSLI experiments 
have also been conducted over hundreds of meters, in the field, via open 
atmosphere (Duarte et al., 2010, 2011).

The idea is that an N-slit interferometric signal, designated as an interfero-
metric character or a series of interferometric characters, can be used to trans-
mit information securely from one point in space to another point in space. 
The interferometric character propagates from its origin (s) to its destiny, the 
interference plane (x) (see Figure 11.1), while the integrity of the character 
itself is secured by interferometric principles. In other words, attempts to 
optically intersect the interferometric character severely distort its spatial 
and intensity profile thus informing the receiver that the message has been 
compromised. Hence, the security of this free-space communication method 
rests simply on the principle that any optical attempt to intercept causes the 
collapse of the signal. This means that, in its most basic form, no security key, 
or code, is necessary. However, a code could be easily added as an extra layer 
of security (see Figure 11.1).

Here, we should add that there has been a marked recent increase in atten-
tion toward optical communications in free space, both in a terrestrial envi-
ronment and for deep-space optical communications. This interest appears 
to be driven by saturation in the spectrum of traditional radio frequency 
communications (Hogan, 2013). A brief historical review of free-space optical 
communications is given by Duarte (2002).
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11.2 Theory

The probability amplitude for propagation from the source (s) to the inter-
ferometric plane (x), via the slit array (j), as illustrated in Figure 11.2, can be 
expressed using the Dirac notation (Duarte, 1993)

 

〈 〉 = 〈 〉〈 〉
=

∑x s x j j s
j

N

| | |
1  

(11.1)

Assigning each probability amplitude a “wave function of ordinary wave 
optics” as taught by Dirac (1978), and following some algebra (see Chapter 4), 
leads to the generalized 1D N-slit interferometric equation (Duarte, 1991, 1993)

Free space
transmission

Optional
secured key

Interferometric
character
detection

Interferometric
character
emission

FIGURE 11.1
Cryptographic diagram applicable to N-slit interferometric communications in free space.

s j x

Uniform TEM00
laser beam

N-slit array Digital detector
(CCD or CMOS)

D x|j 

FIGURE 11.2
Top view of the N-slit laser interferometer highlighting the intra-interferometric path D〈x|j〉.
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where
Ψ(rj) are wave functions (Dirac 1978; Duarte, 2004)
the term in parenthesis represents the phase that describes the exact geom-

etry of the N-slit interferometer (Duarte, 1991, 1993)

As explained by Duarte (2004) the measured intensity is proportional to the 
probability |〈x|s〉|2, and it is this probability that provides the spatial distribu-
tion of the observed intensity (see Chapter 8).

At this stage, it is important to emphasize that this equation was originally 
derived for single-photon propagation (Duarte, 1993, 2004) albeit in practice it 
also applies to the propagation of an ensemble of indistinguishable photons, 
as in the case of narrow-linewidth laser emission (Duarte, 2003). The general-
ized N-slit interferometric equation accurately describes measurements per-
formed in a macroscopic apparatus using quantum principles, and as such it 
neatly follows the van Kampen (1988) criteria.

11.3  N-Slit Interferometer for Secure Free-Space 
Optical Communications

The NSLI used for free-space optical communications is depicted in 
Figure 11.3. The essence of this method consists in the expanded beam illu-
mination (s) of an N-slit array, or grating ( j), where the interferometric char-
acters are produced.

Laser TBE

MPBE
CCD

S j
x

BS

D x|j 

FIGURE 11.3
Top perspective of the optical architecture of the N-slit laser interferometer; see text for details. 
Also included in this diagram is a thin BS, inserted at the Brewster angle (relative to the optical 
axis), to intercept the propagating interferogram or the interferometric characters.
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The interferometric character then propagates via the intra-interferometric 
distance (D〈x|j〉) until it reaches the interferometric plane at x. In other words, 
the generation, propagation, and detection of the interferometric characters 
take place within the NSLI, thus highlighting the conceptual and configura-
tional simplicity of the interferometric approach.

The illumination section of the NSLI requires a single-transverse-mode 
narrow-linewidth laser. For the experiments described here, the coher-
ent source is a He–Ne laser yielding 2 mW in a TEM00 laser beam at 
λ = 632.8 nm. The laser is followed by neutral density filters. Following the 
attenuation stage, a 2D telescopic beam expander (M ≈ 10) includes a 25 μm 
spatial filter. The expanded beam then undergoes 1D multiple-prism beam 
expansion thus yielding an elongated near-Gaussian beam of ∼10 mm max-
imum height by ∼50 mm maximum width. Following the prismatic beam 
expander, a high-precision chromium master grating ( j in Figure 11.3) is 
positioned.

The high-precision master gratings have rather large dimensions. For 
instance, one of the gratings utilized has 570 μm slits separated by 570 μm 
isles, and the other grating has 1000 μm slits separated by 1000 μm isles. 
The tolerances in the slit dimensions are quoted by the manufacturer as 
0.5 μm. The 570 μm grating has a total of 44 slits and the 1000 μm grating 
has a total of 25 slits. The overall ruled area is 50 mm × 50 mm (Duarte 
et al., 2010).

The digital detector, deployed at the interferometric plane (x), is a digital 
detector (either CCD or CMOS) with pixels ∼20 μm in width. In the experi-
ments described here, the detector was not cooled and there was no subtrac-
tion of background noise from the measurements.

11.4 Interferometric Characters

The concept of interferometric characters was introduced when the NSLI was 
disclosed as an alternative for secure free-space optical communications 
(Duarte, 2002). In this approach there are an infinite number of possible slit 
combinations that can lead to a set of interferometric characters. The sim-
plest one consists of two-slit interferogram resulting in the interferometric 
character a, that is, N = 2 → a, N = 3 → b, N = 4 → c…N = 26 → z (Duarte, 2002). 
Calculated interferograms for the interferometric characters a, b, c, and z are 
given in Figure 11.4.

In the N-slit interferometric approach, once the emitter, controlling the 
illumination of the N-slit array at j and the receiver at x, decides on an inter-
ferometric alphabet, the communications can begin immediately with the 
receiver reading directly the interferometric characters send by the emitter. 
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Since all these characters have also a theoretical counterpart, the received 
characters can be compared with the calculated character to verify its 
fidelity. As demonstrated by Duarte (2002, 2005) any attempt to optically 
intercept an interferometric character results in a catastrophic collapse of 
the interferometric signal and is immediately noticed by the receiver. The 
collapse sequence, and displacement, of the interferometric character a, due 
to the insertion of a very thin high-optical surface quality beam splitter (BS) 
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FIGURE 11.4
Interferometric characters a (N = 2) (a), b (N = 3) (b) for λ = 632.8 nm and D〈x|j〉 = 10 cm. The slit 
width here is 50 μm and uniformly separated by 50 μm. Note that the detailed and exact con-
tour, as compared to measurements, of these interferograms (specially at the minima) depends 
on the choice of function to represent the radiation at the individual slits.

(continued)

 



168 Quantum Optics for Engineers

in the intra-interferometric optical path (D〈x|j〉), is illustrated in Figure 11.5. 
An additional sequence of measurements, using the interferometric charac-
ter c (N = 4), is given in Figures 11.6 through 11.9.

The violent distortion of the interferometric characters, following insertion 
of a thin BS, as illustrated in Figures 11.5 and 11.7, can be explained in ref-
erence to Equation 11.2, which interferometrically entangles the probability 
amplitudes 〈x|j〉 originating at each slit (j). This entanglement is a function of 
photon wavelength, the number of slits illuminated at N, slit geometry, and 
propagation geometry (see Chapter 4).
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FIGURE 11.4 (continued)
Interferometric characters c (N = 4) (c), and z (N = 26) (d) for λ = 632.8 nm and D〈x|j〉 = 10 cm. 
The slit width here is 50 μm and uniformly separated by 50 μm. Note that the detailed and 
exact contour, as compared to measurements, of these interferograms (specially at the minima) 
depends on the choice of function to represent the radiation at the individual slits. (Reproduced 
from Duarte, F.J., Opt. Commun. 205, 313, 2002, with permission from Elsevier.)
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This entanglement is violently disrupted by the insertion of an optical edge as 
provided by a classical, or macroscopic, BS regardless of the finesse of that BS.

A complementary way to think about this effect is that the mechanics of 
the overall probability amplitude
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FIGURE 11.5
Collapse sequence of the interferometric characters a, following insertion of a thin BS into the 
intra-interferometric path D〈x|j〉. (a) Interferometric character a prior to insertion of the BS, (b–d) 
collapse of the interferometric character a during insertion, and (e) displaced interferometric 
character a once insertion is completed. Here, N = 2, the slit width is 50 μm, slit separation is 
50 μm, and D〈x|j〉 = 10 cm. (Reproduced from Duarte, F.J., Opt. Commun. 205, 313, 2002, with 
permission from Elsevier.)
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allow us to observe the input and the output but it does not allow us to 
obtain information while the interferometric character propagated via the 
intra-interferometric beam path (D〈x|j〉). In other words, the integrity of the 
interferometric character is protected by the very essence of interference, 
be it single-photon interference or interference generated by an ensemble of 
indistinguishable photons.

6000

5000

4000

3000

2000

1000

0
0 200 400 600 800 1000

Re
la

tiv
e i

nt
en

sit
y

Number of pixels

FIGURE 11.7
The interferometric character c, as in Figure 11.6, severely collapsed due to the insertion of a 
thin BS, at Brewster angle, 2 m from the grating (j). (Reproduced from Duarte, F.J., J. Opt. A: 
Pure Appl. Opt. 7, 73, 2005, with permission from the Institute of Physics.)

4000

3000

2000

Re
la

tiv
e i

nt
en

sit
y

1000

0 0 200 400 600 800 1000
Number of pixels

FIGURE 11.6
The interferometric character c, generated with N = 4 (570 μm slits separated by 570 μm), 
λ = 632.8 nm, at an intra-interferometric distance of D〈x|j〉 = 7.235 m. (Reproduced from Duarte, 
F.J., J. Opt. A: Pure Appl. Opt. 7, 73, 2005, with permission from the Institute of Physics.)
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Indeed, as soon as the BS is introduced, Equation 11.2, that is,
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ceases to describe the experimental situation illustrated in Figures 11.2 
and 11.3, which originates in the probability amplitude expressed by 
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FIGURE 11.8
The interferometric character c, as in Figure 11.6, clearly distorted due to the static presence of 
a thin BS, at Brewster angle, 2 m from the grating (j). (Reproduced from Duarte, F.J., J. Opt. A: 
Pure Appl. Opt. 7, 73, 2005, with permission from the Institute of Physics.)
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FIGURE 11.9
The interferometric character c, as in Figure 11.6, restored due to the removal of the thin BS that 
caused the distortions depicted in the previous figures. (Reproduced from Duarte, F.J., J. Opt. A: 
Pure Appl. Opt. 7, 73, 2005, with permission from the Institute of Physics.)
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Equation 11.1. The new experimental situation, illustrated in Figure 11.10, is 
accounted for by a probability amplitudes of the form

 

〈 〉 = 〈 〉〈 〉〈 〉
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∑∑x s x j j j j s
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k

N

| | | |′ ′
11  

(11.3)

where the 〈j′|j〉 term represents the probability amplitude of transmission 
via the BS. In reality this is an undetermined spatially unsymmetric trans-
mission that results in the destruction of the original interferometric pattern.

11.5 Propagation in Terrestrial Free Space

As mentioned at the introduction, the first experiment on the use of the NSLI 
as a tool for secured free-space optical communications took place in the lab-
oratory over a distance of D〈x|j〉 = 0.10 m (Duarte, 2002). Further series of mea-
surements took place over intra-interferometric distances of D〈x|j〉 = 7.235 m 
(Duarte, 2005), D〈x|j〉 = 35 m (Duarte et al., 2010), and D〈x|j〉 = 527 m (Duarte 
et al., 2011).

For D〈x|j〉 = 0.10 m, and propagation in homogeneous laboratory air, the 
interferometric character a is depicted in Figure 11.5. For D〈x|j〉 = 7.235 m, and 
propagation in homogeneous laboratory air, the interferometric character c 
is depicted in Figure 17.6. For D〈x|j〉 = 35 m, and propagation in near-homoge-
neous air (at T ≈ 30°C), the measured interferometric character c is depicted 
in Figure 11.11, while its calculated version is displayed in Figure 11.12. For 
D〈x|j〉 = 527 m, and propagation in near-homogeneous air (at T ≈ 24°C and 66% 
humidity), the measured interferometric characters c (N = 4) and d (N = 5) are 
shown in Figures 11.13 and 11.14, respectively.
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x
j

j΄

CCDD x|j 

FIGURE 11.10
The N-slit laser interferometer with a thin BS inserted in the intra-interferometric path D〈x|j〉. 
For the propagation at the top of the figure, the probability amplitude is modified from 〈x|j〉
〈j|s〉 to 〈x|j′〉〈j′|j〉〈j|s〉. And the latter probability amplitude varies continuously, as a function 
of distance, along the BS.
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FIGURE 11.11
The interferometric character c (N = 4, 1000 μm slits separated by 1000 μm) for D〈x|j〉 = 35 m 
recorded outside the laboratory. (Reproduced from Duarte, F.J. et al., J. Opt. 12, 015705, 2010, 
with permission from the Institute of Physics.)
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FIGURE 11.12
The calculated version of the interferometric character c (N = 4, 1000 μm slits separated by 
1000 μm) for D〈x|j〉 = 35 m. (Reproduced from Duarte, F.J. et al., J. Opt. 12, 015705, 2010, with 
permission from the Institute of Physics.)

FIGURE 11.13
The interferometric character c (N = 4, 1000 μm slits separated by 1000 μm) for D〈x|j〉 = 527 m. 
(Reproduced from Duarte, F.J. et al., J. Opt. 13, 035710, 2011, with permission from the Institute 
of Physics.)
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11.5.1 Clear-Air Turbulence

As mentioned previously the original propagation space envisioned for 
communications via interferometric characters was vacuum, or outer space, 
where the interferometric characters can propagate free of refractive index 
distortions (Duarte, 2002). That is not the case for propagation in a terres-
trial environment where the propagation space is subject to refractive index 
variations due to thermal gradients and straightforward air turbulence.

The question then becomes: can we differentiate between interferometric 
character distortions due to turbulence and distortions due to third-party 
intrusion into the intra-interferometric optical path D〈x|j〉? This question can be 
answered empirically. To do this, we call attention to Figures 11.5b through d, 
11.7, and 11.15, all of which illustrate the catastrophic collapse of the given inter-
ferometric character due to the insertion of a BS in the D〈x|j〉 path. Now, by 
contrast we consider Figure 11.16 where the distortions due to mild clear-air 
turbulence detected at D〈x|j〉 = 7.235 m, for the c (N = 4) character, are illustrated 
(Duarte, 2009). Further, the effect of severe clear-air turbulence detected at 
D〈x|j〉 = 7.235 m, for the c (N = 4) character, is shown in Figure 11.17 (Duarte et al., 
2010). As can be seen, the clear-air turbulence distortions can be relatively mild 
(Figure 11.16) and, in their severe format, tend to smooth over (Figure 11.17) the 
original profile of the interferometric character. In both cases it appears that 
the effect of clear-air turbulence should be statistically predictable. This is very 
different to the massive distortions and catastrophic collapse (see Figures 11.5b 
through d, 11.7, and 11.15) induced by BS incursions into the D〈x|j〉 optical path.

Finally, it should be mentioned that clear-air turbulence is a phenomenon 
of significant importance to aviation safety. And this class of turbulence is 
difficult to detect with traditional radar methods. In this regard, the ability 
of the NSLI to detect clear-air turbulence offers a practical and demonstrated 

6

4

2

200 400 600 800 1000 1200

Re
la

tiv
e i

nt
en

sit
y

Number of pixels

FIGURE 11.15
The interferometric character c (N = 4, 1000 μm slits separated by 1000 μm) for D〈x|j〉 = 30 m, 
while a thin BS is inserted at a distance 10 m from the N-slit array. (Reproduced from Duarte, 
F.J. et al., J. Opt. 12, 015705, 2010, with permission from the Institute of Physics.)
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avenue of detection, specially by installing infrared-laser-based N-slit inter-
ferometers at airports near the runway thresholds.

11.6 Discussion

The N-slit interferometer, in conjunction with the N-slit interferometric equation, 
has been used to generate interferometric characters that have proven extrem-
ely sensitive to interception with classical, or macroscopic, optical methods. 
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FIGURE 11.16
The effect of mild clear-air turbulence introduced in the laboratory for the interferometric 
character c, generated with N = 4 (570 μm slits separated by 570 μm), λ = 632.8 nm, at an intra-
interferometric distance of D〈x|j〉 = 7.235 m. (From Duarte, F.J., Interferometric imaging, in 
Tunable Laser Applications, 2nd edn., (Duarte, F.J., ed.), CRC Press, New York, Chapter 12, 2009.)

12

10

8

6

4

2

200 400 600 800 1000 1200

Re
la

tiv
e i

nt
en

sit
y

Number of pixels

FIGURE 11.17
The effect of severe clear-air turbulence introduced in the laboratory for the interferomet-
ric character c, generated with N = 4 (570 μm slits separated by 570 μm), λ = 632.8 nm, at an 
intra-interferometric distance of D〈x|j〉 = 7.235 m. (Reproduced from Duarte, F.J. et al., J. Opt. 12, 
015705, 2010, with permission from the Institute of Physics.)
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Thus, an interferogram or interferometric character can be generated according 
to an established interferometric alphabet and used for free-space communica-
tions knowing that attempts to intercept the optical character will lead to its 
catastrophic collapse. This implies that open communications, without the use 
of a classified key, can proceed through the open space.

However, a cryptographic key could be easily added and implemented, 
if desired. In Chapter 20 we describe how microscopic optical methods can 
be used to intercept the interferometric character causing minimal distor-
tions. However, from a practical perspective, it is not clear how this approach 
could be used to extract information. In Chapter 20 a more detailed interplay 
between measured and calculated interferograms is also descried.

As already mentioned the N-slit interferometric method was originally con-
ceived for outer space communications in vacuum (Duarte, 2002). However, 
here we have seen that the deployment in a terrestrial environment, devoid 
of clear-air turbulence, should be practically feasible. Also, given the differ-
ent nature of the distortions due to clear-air turbulence, as compared with 
macroscopic optical interception, the deployment in atmospheric environ-
ments including some degree of clear-air turbulence should also be possible.

The main advantages of the N-slit interferometric method for optical com-
munications in free space are

 1. The extraordinary simplicity of the optical architecture.
 2. The use of single-transverse-mode, narrow-linewidth lasers as illumi-

nation sources that neutralize significantly signal-to-noise problems.
 3. The ease with which additional security features could be imple-

mented into its optical configuration: tunable infrared lasers and 
variable interferometric characters, among others.

Problems

11.1 Use the data provided in Appendix A to select an optimum laser for use 
in a secure interferometric character generating configuration. Explain 
the reasons for your selection.

11.2 Use the data provided in Appendix A to select an optimum laser for use 
in an NSLI for the detection of clear-air turbulence. Explain the differ-
ences with the selection of Problem 11.1.
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12
Schrödinger’s Equation

12.1 Introduction

As mentioned in Chapter 1, Schrödinger’s equation provides one of the 
three main avenues to quantum mechanics. It also has important applica-
tions in atomic and molecular physics (Herzberg, 1950; Feynman et al., 1965). 
Given the importance of this equation, here we examine several derivational 
approaches. The principal aim is to gain an understanding on the physics 
behind this quantum wave equation. Since the application of this equation is 
widely and extensively treated in many textbooks (see, e.g., Saleh and Teich, 
1991; Silfvast, 2008; Hooker and Webb, 2010), here we only briefly describe a 
few applications relevant to semiconductor lasers.

12.2 Schrödinger’s Mind

As its name suggests, Schrödinger’s equation is the brain child of Schrödinger 
and was first disclosed in 1926 in a paper entitled An Undulatory Theory of the 
Mechanics of Atoms and Molecules (Schrödinger, 1926). The word undulatory 
is based on the word onde that means wave. In that extraordinary paper, 
Schrödinger begins with a discussion of classical kinetic energy and work. 
Schrödinger’s paper is not all that transparent, and it includes some imagina-
tive arguments that are crucial to the successful development of his theory.

Next, we present Schrödinger’s argument in a very abbreviated format 
and with some changes in notation to improve transparency.

Schrödinger begins by considering the dynamics of a particle moving 
through a force field. Thus he first introduces the kinetic energy as

 
T m x y z= + +( )1

2
2 2 2v v v

 
(12.1)
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and he also introduces the Hamiltonian of action W

 

W T V dt
t

= −∫ ( )
0  

(12.2)

which satisfies the Hamiltonian partial differential equation

 

∂
∂

+ ∇ + =W
t m

W V x y z1
2

02( ) ( , , )
 

(12.3)

To solve this differential equation, he then tries a solution of the form

 W Et S x y z= − + ( , , )  (12.4)

Differentiating Equation 12.4, he arrives at ∂W/∂t = −E, and substitution into 
Equation 12.3 yields

 | | ( ) /∇ = −( )W m E V2 1 2

 (12.5)

As it will be seen later, the appearance of the 2m(E − V) term is crucial to the 
final Schrödinger result.

Next, Schrödinger uses Equations 12.4 and 12.5 in conjunction with a geo-
metrical argument to obtain a “phase” velocity u:

 u E m E V= −( )−2 1 2( ) /

 (12.6)

Equation 12.6 is an essential component of the classical part of the 
Schrödinger’s argument. He then introduces the quantum component via 
Planck’s quantum energy equation (Planck, 1901)

 E h= ν  (12.7)

and de Broglie’s quantum momentum expression (de Broglie, 1923)

 
p h=

λ  
(12.8)

which is also based on E = hν. This would enable him to later define his wave 
function ψ in terms of the quantum energy.

At this stage, Schrödinger introduces an ordinary wave equation of the 
form

 
∆ψ ψ− ∂

∂
=−u

t
2

2

2 0
 

(12.9)
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where ∆ is the Laplacian operator more readily recognized as ∇2

 
∇ = ∂

∂








 + ∂

∂








 + ∂

∂








2

2

2

2

2

2

2x y z
 

(12.10)

thus Equation 12.9 can be expressed in its familiar form

 
∇ − ∂

∂
=−2 2

2

2 0ψ ψu
t  

(12.11)

In this equation Schrödinger uses a wave function ψ that is only time 
dependent:

 ψ ψ π= −
0

2e i Et h/
 (12.12)

Here, to facilitate the description we provide the first and second derivatives 
of ψ:

 

∂
∂

= − −ψ π ψ π

t
i E
h

e i Et h2
0

2 /

 
(12.13)

 

∂
∂

= − −
2

2

2 2

2 0
24ψ π ψ π

t
E

h
e i Et h/

 
(12.14)

Insertion of Equations 12.6 and 12.14 into Equation 12.11 yields

 
∇ + − =2

2

2
8 0ψ π ψm
h

E V( )
 

(12.15)

This wave equation is crucial to Schrödinger’s development, but so far it does 
not exhibit much of a resemble to his final creation. In fact, in his paper, he 
explicitly asks: “Now what are we to do with Equation (16)?” (i.e., Equation 
12.15) (Schrödinger, 1926).

He then proceeds with an eight-page argument where he relates Equation 
12.15 with the Hamiltonian principle and eventually produces a generalized 
version of

 
∇ + − =2

2

2
8 0ψ π ψm
h

E V( )

which replaces the ∇2ψ by a more extensive term, but the physics remains 
the same; thus we continue to use Equation 12.15 in our description. Also, 
in the original Schrödinger paper, the particle mass term m was omitted, 
from the generalized version of Equation 12.15, due to a misprint.
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Next, about three pages later, Schrödinger goes back to Equation 12.13 to 
obtain an expression for E and substitutes that back into Equation 12.15 so that

 
∇ − + ∂

∂
=2

2

2
8 4 0ψ π ψ π ψm
h

V i m
h t  

(12.16)

This is the original Schrödinger’s equation (which in his paper appears 
with a missing m in the second and third terms). This original version of 
Schrödinger’s equation can be expressed in a more familiar form using 
ħ = (h/2π), so that

 
∇ − + ∂

∂
=2

2 2
2 2 0ψ ψ ψmV i m

t�
�

�  
(12.17)

Multiplying by ħ2/2m and rearranging it, we get the Schrödinger’s equation 
in its well-known format

 
i

t m
V�

�∂
∂

= − ∇ +ψ ψ ψ
2

2

2  
(12.18)

From a physics perspective, the significant point here is that Schrödinger is 
using a classical argument to arrive at a phase velocity that is a function of 
2m(E − V) and utilizes this phase velocity in the classical wave equation. The 
quantum aspect of this approach is introduced via the wave function

 ψ ψ π= −
0

2e i Et h/

Again, the principal quantum concept in Schrödinger’s argument leading to 
his celebrated quantum wave equation is Planck’s energy equation E = hν. In 
the next section an explicit heuristic derivation of Schrödinger’s equation is 
provided.

12.3 Heuristic Explicit Approach to Schrödinger’s Equation

Here, the Schrödinger’s equation is arrived at in an alternative heuristic path 
modeled after Haken (1981). This approach relays on the use of the complex 
wave function ψ(x, t). The advantage of this approach is that the argument is 
much simpler and clearer.

A free particle moves with classical kinetic energy according to

 
E m= 1

2
2v

 
(12.19)
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which, using p = mv, can be restated as

 
E p

m
=

2

2  
(12.20)

Now, using Planck’s quantum energy (Planck, 1901)

 E h= ν

in conjunction with λ = c/ν and E = mc2, the well-known de Broglie’s expres-
sion for momentum can be arrived to (de Broglie, 1923)

 p k= �  (12.21)

The classical “wave functions of ordinary wave optics” (Dirac, 1978) can be 
written as

 ψ ψ ω( , ) ( )x t e i t kx= − −
0  (12.22)

whose derivative with respect to time becomes

 

∂
∂

= − − −ψ ω ψ ω( , ) ( ) ( )x t
t

i e i t kx
0

 
(12.23)

Similarly the first and second derivatives with respect to displacement are

 

∂
∂

= + − −ψ ψ ω( , ) ( ) ( )x t
x

ik e i t kx
0

 
(12.24)

 

∂
∂

= − − −
2

2
2

0
ψ ψ ω( , ) ( ) ( )x t
x

k e i t kx

 
(12.25)

Multiplying the first time derivative by (−iħ) yields

 
− ∂

∂
= − − −i x t

t
e i t kx� �

ψ ω ψ ω( , ) ( ) ( )
0

 
(12.26)

and multiplying the second displacement derivative by (−ħ2/2m) yields

 
− ∂

∂
= − −� �2 2

2

2 2

02 2m
x t
x

k
m

e i t kxψ ψ ω( , ) ( )

 
(12.27)

Recognizing that E = ħ2k2/2m, allow us to write

 
− ∂

∂
= + ∂

∂
�2 2

22m
x t
x

ih x t
t

ψ ψ( , ) ( , )
 

(12.28)
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which is the basic form of Schrödinger’s equation. The Schrödinger’s equation 
is a wave equation that incorporates classical particle concepts, and classical 
wave function concepts, in its derivation. In other words, a heuristic approach 
to Schrödinger’s equation utilizes Planck’s quantum energy, classical kinetic 
energy of a free particle, and the classical “wave functions of ordinary wave 
optics.” In this approach it is clear that Schrödinger’s equation refers to a free 
particle propagating in a wave motion according to ordinary wave optics. 
Once again, the central role of classical wave equation of the form

 ψ ψ ω( , ) ( )x t e i t kx= − −
0

is highlighted.

12.4 Schrödinger’s Equation via the Dirac Notation

Here, once again the Feynman approach (Feynman et al., 1965) is adopted. 
In Chapter 8 we introduced the Hamiltonian Hij and showed that the time 
dependence of the amplitude Ci is given by (Dirac, 1978)

 

i dC
dt

H Ci
ij i

j

� = ∑
 

(12.29)

For Ci = 〈i|ψ〉 this equation can be rewritten as

 

i d i
dt

i H j j
j

�
〈 〉 = 〈 〉〈 〉∑| | | |ψ ψ

 

(12.30)

which, for i = x, can be written as

 

i d x
dt

x H x x
j

�
〈 〉 = 〈 〉〈 〉∑| | | |ψ ψ′ ′

 

(12.31)

Since 〈x|ψ〉 = ψ(x) this equation can be reexpressed as

 
i d x

dt
H x x x dx�

ψ ψ( ) ( , ) ( )= ∫ ′ ′ ′
 

(12.32)

The integral on the right-hand side is given by

 
H x x x dx

m
d x
dx

V x x( , ) ( ) ( ) ( ) ( )′ ′ ′ψ ψ ψ∫ = − +�2 2

22  
(12.33)

About this stage, Feynman poses and asks the question: “Where did we get 
that from? Nowhere… it came from the mind of Schrödinger, invented in his 
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struggle to find an understanding of the experimental observations of the 
real world” (Feynman et al., 1965).

Here, our discussion in Section 12.2 becomes quite relevant.
Next, combining Equations 12.32 and 12.33, we get Schrödinger’s equation

 
+ = − +i d x

dt m
d x
dx

V x x�
�ψ ψ ψ( ) ( ) ( ) ( )

2 2

22  
(12.34)

In three dimensions we use ψ(x, y, z) and V(x, y, z) and
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(12.35)

so that Schrödinger’s equation in three dimensions can be expressed in the 
succinct form

 
+ ∂

∂
= − ∇ +i

t m
V�

�ψ ψ ψ
2

2

2  
(12.36)

It is clear that even in this approach, using the quantum tools provided by 
Dirac and Feynman, the derivation of Schrödinger’s equation still depends 
on Schrödinger’s classical concepts. Defining the Hamiltonian operator Ĥ as

 
Ĥ

m
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(12.37)

the Schrödinger’s equation can be expressed as
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(12.38)

Finally, for a large number of particles, Feynman restates the Schrödinger’s 
equation as
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where
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(12.40)

This is the type of Schrödinger’s equation applied in the description of 
molecular physics (Herzberg, 1950).
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12.5 Time-Independent Schrödinger’s Equation

As suggested by Feynman, using a solution of the form

 ψ( , ) ( ) /x t x e iEt= −Ψ �

 (12.41)

Equation 12.36, in one dimension, takes the form of

 

∂
∂

− −( ) =
2

2 2
2 0Ψ Ψ( ) ( ) ( )x

x
m V x E x

�  
(12.42)

or

 

∂
∂

= −( )
2

2 2
2Ψ Ψ( ) ( ) ( )x

x
m V x E x

�  
(12.43)

which is known as a 1D time-independent Schrödinger’s equation. This 
simple form of the Schrödinger’s equation is of enormous significance to 
semiconductor physics and semiconductor lasers. Before going any further, 
the reader should notice that this equation has exactly the same form as 
Schrödinger’s inspirational Equation 12.15:

 
∇ + − =2

2

2
8 0ψ π ψm
h

E V( )

12.5.1 Quantized Energy Levels

Let us consider a static potential well as described by the function V(x) 
in Figure 12.1. From Equation 12.43, Ψ(x) can be evaluated along x as E 
is varied, along the vertical, by small amounts. This evaluation indicates 
that Ψ(x) shows an oscillatory behavior within the well. For certain definite 

V(x)

E

x

FIGURE 12.1
Static potential energy well V(x).
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values of E, the shape of the curve is symmetrical as x increases pass the well 
boundary. However, for other slightly different values of E, Ψ(x) diverges 
toward large positive or large negative values. In other words, as indicated 
in Figure 12.2, within a potential well, the particle is only bound for defi-
nite discrete values of E = 0, 1, 3, 4… (Feynman et al., 1965). The behavior 
of Ψ(x), as a function of E, illustrates the phenomenon of quantized energy 
levels within a potential well.

12.5.2 Semiconductor Emission

Going back to the time-independent Schrödinger’s equation

 

∂
∂

− −( ) =
2

2 2
2 0ψ ψ( ) ( ) ( )x

x
m V x E x

�  
(12.44)

and using the spatial component of the wave function as solution

 ψ ψ( )x e ikx= −
0  (12.45)

leads directly to

 
E k

m
V x= +

2 2

2
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(12.46)

This energy expression is the sum of kinetic and potential energy so that

 
E E k

m
V xK P+ = +

2 2

2
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(12.47)
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FIGURE 12.2
Potential energy well depicting a series of discrete energy levels E = 0, 1, 3, 4.
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and obviously

 
E k

mK =
2 2

2
�

 
(12.48)

The kinetic energy EK as a function of k = 2π/λ is shown graphically in 
Figure 12.3.

The graph is a positive parabola for positive values of m and a negative 
parabola for negative values of m. In a semiconductor the positive parabola 
is known as the conduction band and the negative parabola is known as the 
valence band. The separation between the two bands is known as the band 
gap, EG. If an electron is excited and transitions from the valence band to the 
conduction band, it is said to leave behind a vacancy or hole.

Electrons can transition from the bottom of the conduction band to the 
top of valence band by recombining with holes. In a material like gallium 
arsenide, the band gap is EG ≈ 1.43 eV and the recombination emission occurs 
around 870 nm (Silfvast, 2008).

Under certain conditions radiation might also occur higher from the con-
duction band as suggested in Figure 12.4; however, that process is under-
mined by fast phonon relaxation.

12.5.3 Quantum Wells

Starting with a potential well as described by Silfvast (2008), V(x) = 0 for 
0 < x < L, and V(x) = ∞ for x = 0 or x = L, as illustrated in Figure 12.5, then 
Equation 12.44

 

∂
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x
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�

Conduction band

EG = 0

EV = 0

Valence band

Negative mass

k
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E

FIGURE 12.3
Conduction and valence bands according to EK = ±(k2ħ2/2m).
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becomes
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for 0 < x < L. This is a wave equation of the form
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with
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E = hν

k

EV

FIGURE 12.4
Emission due to recombination transitions from the bottom of the conduction band to the top 
of the valence band.

V(x)

0 L x

FIGURE 12.5
Potential well: V(x) = 0 for 0 < x < L, and V(x) = ∞ for x = 0 or x = L.
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The solution to Equation 12.50 is

 ψ( ) sinx k xx=  (12.52)

Since ψ(x) = 0 at x = 0 or x = L, we have

 
k n

Lx = π
 

(12.53)

for n = 1, 2, 3…. Substituting Equation 12.53 into 12.51 leads to

 
E n

m Lc
=

2 2 2

22
π �

 
(12.54)

which should be labeled as En to account for the quantized nature of the 
energy, that is,

 
E n

m Ln
c

=
2 2 2

22
π �

 
(12.55)

This quantized energy En indicates a series of possible discrete energy levels 
above the lowest point of the conduction band so that the total energy above 
the valence band becomes (Silfvast, 2008)

 E E Ec n= +  (12.56)

12.5.4 Quantum Cascade Lasers

These lasers operate via transitions between quantized levels, within the con-
duction band, of multiple-quantum well structures. The carriers involved 
are electrons generated in an n-doped material. A single stage includes an 
injector and an active region. The electron is injected into the active region 
at n = 3, and the transition occurs down to n = 2 (see Figure 12.6). Following 
emission, the electron continues into the next injector region.

Practical devices include a series of such stages. From Equation 12.54, the 
energy difference between the two levels can be expressed as (Silfvast, 2008)

 
∆E

m Lc
= −( )3 2

2
2 2

2 2

2
π �

 
(12.57)

where L is the thickness of the well. Using ∆E = hν, it follows that the wave-
length of emission is given by

 
λ = − −( )3 2 82 2 1

2m cL
h
c

 
(12.58)

Quantum cascade lasers (Faist et al., 1994) are tunable sources emitting in the 
infrared from a few micrometers to beyond 20 μm (see Appendix A).
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12.5.5 Quantum Dots

Besides the multiple-quantum well configurations, other interesting semicon-
ductor geometries include the quantum wire and the quantum dot. The quan-
tum wire narrowly confines the electrons and holes in two directions (x, y). The 
quantum dot geometry severely confines the electrons in three dimensions 
(x, y, z). Under these circumstances the quantized energy can be expressed as

 
E E k

m
k
m

k
mc

x

c

y

c

x

c
= + + +

2 2 2 2 2 2

2 2 2
� � �

 
(12.59)

where kx, ky, kz are defined according to Equation 12.53.
The concept of quantum dot is not limited to semiconductor materials; it 

also applies to nanoparticle gain media and nanoparticle core–shell gain 
media. For instance, for nanoparticle core–shells the physics can be described 
with a Schrödinger’s equation of the form

 
∇ − −( ) =2

2
2 0ψ ψ( ) ( ) ( )r m V r E r
�  

(12.60)

with the potential V(r) defined by the core–shell geometry (Dong et al., 2013).

Injector

En
er

gy

1
2

3

L

Active
region Injector

FIGURE 12.6
Simplified illustration of a multiple-quantum well structure relevant to quantum cascade 
lasers. An electron is injected from the “injector region” into the active region at n = 3. Thus a 
photon is emitted via the 3 → 2 transition. The electron continues to the next region where the 
process is repeated. By configuring a series of such stages, one electron can generate the emis-
sion of numerous photons.
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12.6 Introduction to the Hydrogen Equation

We have already seen that Schrödinger’s equation can be expressed as

 
+ ∂

∂
=i

t
H�

ψ ψˆ

where the Hamiltonian is given by
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For an electron of mass m, under a potential V(r) described by
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(12.61)

Schrödinger’s equation becomes
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Using a wave function of the form

 ψ ψ( , ) ( )/r t e riEt= − �

 (12.63)

Equation 12.62 can be written as
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Using spherical polar coordinates
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the Laplacian
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operating on a function ϑ(r, θ, ϕ) can be written as (see, e.g., Flanders et al., 
1970)
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Thus, for a wave function ψ(r, θ, ϕ), Equation 12.64 can be expressed as
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This is the Schrödinger’s equation applicable to the description of the 
hydrogen atom. The proper solution to this equation is mathematically 
rather lengthy and involves a number of tricks that are cleverly described 
by Feynman. Thus, the mathematically inclined is invited to read Feynman 
et al. (1965) on this subject. Also, the hydrogen atom is treated in various 
forms and depths by numerous textbooks on quantum mechanics (see, e.g., 
Schiff et al., 1968). Our main purpose here has been accomplished by intro-
ducing the type of notation necessary to describe the hydrogen atom and 
other small atoms.

In this regard, the Schrödinger’s equation has been use to describe small 
atoms such as hydrogen and helium in detail. However, as Feynman said: 
“in principle, Schrödinger’s equation is capable of explaining all atomic phe-
nomena except those involving magnetism and relativity. It explains the 
energy levels of an atom and all the facts of chemical bonding” (Feynman 
et al., 1965). When Feynman first made this statement, this was only true in 
principle; however, the enormous advances in modern computational tech-
niques have converted that statement into a reality.

Problems

12.1 Obtain Equation 12.5 by differentiating Equation 12.4 and substituting 
into Equation 12.3.

12.2 Show that Equation 12.15 follows from substitution of Equations 12.6 
and 12.14 into Equation 12.11.

12.3 Use Equations 12.13 and 12.15 to obtain the Schrödinger’s equation in 
its well-known form, that is, Equation 12.18.
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12.4 For a particle in a potential well V(x), assume that the wave function 
describing the state of the particle is given by ψ(x, t) = ϕ(x)ϑ(t). Given that

 ϑ ω( )t Ce i t= −

show that ϕ(x) and ϑ(t) satisfy the equation

 

∂
∂

− −( ) =
2

2 2
2 0ψ( ) ( ) ( )x

x
m V x E x

�
φ

12.5 Find the stationary solutions to the Schrödinger’s equation for the three 
regions (I, II, and III) defined in Figure 12.7. Hint: Starting from
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  use a solution of the form

 ψ ϑ( , ) ( ) ( )x t x t = φ

  to obtain
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φ
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I

II

0
III

x
a

V(x) = –2V

FIGURE 12.7
Potential well V(x) with regions I, II, and III, applicable to Problem 12.5. V(x) = 0 for x < 0, 
V(x) = − 2V for 0 ≤ x ≤ a, V(x) = 0 for x > a.
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In region I, V(x) = 0, thus
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As already seen, this equation has a solution of the form

 φ( ) sinx C k x= 1 1

12.6 Find the stationary solutions to the Schrödinger’s equation for the three 
regions (I, II, and III) defined in Figure 12.8.

V(x) = 2V V(x) = 2V

V(x) = 0

I

–a 0 +a x

III

II

FIGURE 12.8
Potential well V(x) with regions I, II, and III, applicable to Problem 12.6. V(x) = 2V for x < −a, 
V(x) = 0 for a ≤ x ≤ −a, V(x) = 2V for x > a.
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13
Introduction to Feynman Path Integrals

13.1 Introduction

The Feynman path integrals provide an alternative version of quantum 
mechanics (Feynman and Hibbs, 1965). This approach is outlined here since 
Feynman applied it to describe macroscopic beam divergence. The presenta-
tion is brief and limited since this subject was mainly selected as an example 
of an alternative version of quantum mechanics and is not utilized elsewhere 
in the book.

From a historical perspective, it should further be mentioned that the quan-
tum analogue of the classical action was first introduced, as a concept, by Dirac 
in the early editions of his book The Principles of Quantum Mechanics where he 
introduced a section entitled “The Action Principle” (Dirac, 1978).

13.2 Classical Action

Feynman was fascinated by the principle of least action and he gave a lecture 
on this topic in the Feynman Lectures of Physics (Feynman et al., 1965). This 
principle can be used to describe the possible paths of a particle from an ini-
tial to a final point. There is a quantity S that can be computed for each path, 
and that S is a minimum. Feynman explains further that S is an extremum, 
that is, the value of S is unchanged to a first order if the path is changed 
slightly (Feynman and Hibbs, 1965). In his lecture Feynman states: “the aver-
age kinetic energy less the average potential energy is as little as possible for 
the path of an object.” Then he introduces the integral
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which he also writes as

 

S KE PE dt
t

t

= −∫ ( )
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 (13.2)

or
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where
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−
2
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is known as the Lagrangian.
In summary, for the true path, between an initial point xa and a final point 

xb, S is a minimum. This concept is illustrated in Figure 13.1 where S1 and S2 
are two possible paths, S1 is the true path, and S1 < S2.

X

xa

S1

S2

xb

t

FIGURE 13.1
Least action: S1 and S2 are two possible paths between an initial xa and a final point xb. S1 rep-
resents the direct true path. S2 represents a longer convoluted path: S1 < S2.
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13.3 Quantum Link

Feynman and Hibbs (1965) introduce a notation in which a square bracket 
represents a path between two points in a 2D space. Thus, the action S 
between a and b is expressed as S[b, a]. For the amplitudes due to successive 
events, Feynman writes

 S b a S b c S c a[ , ] [ , ] [ , ]= +  (13.5)

and then he defines the kernel as a path integral

 

K b a e D x ti S b a

a

b

( , ) ( )( / ) [ , ]= ∫ �  (13.6)

This is the crucial step where he introduces the concept of quantum energy 
into his otherwise classical approach. This is done via de Broglie’s relation
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∂
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which dimensionally leads to an exponent of the form

 e e ei S b a i px mx i t( / ) [ , ] ( / ) ( / )� � �→ → −2 22
 (13.8)

Here, it should be mentioned that equations of the form

 〈 〉 =q q et
iS′ ″| /�

were first introduced by Dirac (1978) in his discussion of the action principle.
Evaluation of the kernel, via integration, leads to (Feynman and Hibbs, 

1965)
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In terms that are familiar with concepts already introduced, where else in 
this book, the probability P(b, a) to go from xa, at time ta, to xb, at time tb, is 
given by

 P b a K b a( , ) | ( , )|= 2  (13.10)
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and an alternative way to express the probability amplitude is

 
K b a x t ce

a b

i S x t

a b

( , ) [ ( )] ( / ) [ ( )]= =
→ →
∑ ∑φ �  (13.11)

where
c is a constant
a → b means all possible paths from a to b

Thus, Equations 13.9 and 13.11 refer to probability amplitudes and thus relate 
to the usual wave function.

13.4 Propagation Through a Slit and the Uncertainty Principle

Now we consider Feynman’s description of propagation through a slit and 
we do this in reference to Figure 13.2. The event to be described here can be 
summarized in the following set of steps:

 1. The particle is at x = 0 at t = 0.
 2. The particle passes between (x0 − w) and (x0 + w) at t = T.

t

τ

T
Δx

2w

x0 x

FIGURE 13.2
Propagation through a slit of width 2w. The particle starts at x = 0 at t = 0 and passes through 2w 
at t = T. This passage position can also be designated as lying between x0 − w and x0 + w. First, one 
can calculate the probability amplitude ψ(x) of finding the particle at a position x at some time 
later denoted by t = T + τ. Once ψ(x) is established, then the probability |ψ(x)|2 can be calculated.
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 3. The problem is to calculate the probability of finding the particle at 
a position x at a later time t = T + τ.

 4. The width of the slit, from −w to +w, is 2w

The correct quantum mechanical answer must consider all possible paths 
so the wave function depends on the sum of all possible paths in the 
range −w to +w or the integral in that range. Thus, Feynman and Hibbs 
(1965) write
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which, using Equation 13.9, can be expressed as
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Feynman then argues that a Gaussian function G(y) can be introduced in 
the integrand while extending the range of integration to ±∞. The func-
tion G(y) has a value of unity in the −w ≤ y ≤ +w range and zero elsewhere. 
The introduction of G(y) with

 G y e y w( ) /= − 2 22

modifies Equation 13.13 to
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Expanding the exponentials, this equation can be written as
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where
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This integral, via the exponent described by Equation 13.18, links the quan-
tum quantity ih̄ to the width of the slit 2w, the interesting physics is in the 
term (ih̄/mw2). Feynman goes on to perform the integral and ends up with 
the quantity

 

im
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i
mw2
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2�

�
τ

+ +
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


as a component of the amplitude of ψ(x). However, rather than perform-
ing the integral and following the steps of Feynman and Hibbs (1965), we 
return to our previous observation that the physics of interest is contained 
in the term (ih̄ /mw2) and that this term is the inverse of a temporal quan-
tity, so that

 

1
2t

i
mw

≈ �  (13.19)

The absolute value of this quantity is obtained by multiplying it with its com-
plex conjugate and taking its square root, so that

 

1
2t mw

≈ �  (13.20)

If we abstract the absolute notation and notice that the quantity w is a seg-
ment of x, that is, w → ∆x (see Figure 13.1), then
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and we arrive to an expression of the form

 ∆ ∆p x ≈ �  (13.23)

which is a reduced expression of the uncertainty principle as compared to

 ∆ ∆p x h≈

In Chapter 3, we describe how to use the uncertainty principle to arrive to 
the diffraction-limited beam divergence

 
∆θ λ

π
≈

w

where 2w is the width of the slit.

13.4.1 Discussion

Beyond discussing the propagation through a slit and its link to the 
Heisenberg uncertainty principle, Feynman goes on to derive Schrödinger’s 
equation and to discuss many other applications to quantum mechanics 
using his path integral approach. In regard to our optics perspective, in this 
brief introduction, we have learned that

 1. The path integral approach can be used to describe propagation of 
particles through macroscopic slits.

 2. This approach leads to the uncertainty principle that can be used to 
describe diffraction-limited beam divergence (see Chapter 3).

 3. The path integral approach is mathematically more involved and 
not as succinct and elegant as the straightforward Dirac notation to 
describe basic optics phenomena such as beam divergence.

13.5 Feynman Diagrams in Optics

Since we are on the subject of Feynman, perhaps this is the best place to 
mention the Feynman diagrams. An introduction to this subject is provided 
by Feynman himself in his book QED: The Strange Theory of Light and Matter 
(Feynman, 1985). Feynman is said to have invented these diagrams “as a 
bookkeeping device for wading through complicated calculations” (Kaiser, 
2005) in his particle physics renormalization work.
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Here, we provide a brief pictorial visit to the subject simply to illustrate one 
of the applications of these diagrams in optics. In doing so, we refer to the 
works of Yariv (1977) and Butcher and Cotter (1991).

A Feynman diagram in its simplest form depicts a sequence of events, 
from left to right, as a function of time. Other diagrams are 2D with space 
on the horizontal axis and time on the vertical axis. The diagram that we are 
going to consider depicts the absorption and emission of light as a function 
of time. Of the many rules that apply to the Feynman diagrams, the princi-
pal rule observed here is that the absorption of light is depicted by a wavy 
line moving from left to right, on one side of the diagram, while the emis-
sion of light is also depicted by a wavy line, moving from left to right, at the 
other side of the diagram. The quantum states involved are also included in 
the diagram.

The first example we consider is the case of Raman scattering (Yariv, 1977) 
including the ground state (1), an upper state (2), and the lower state (3), as 
well as a virtual state (see Figure 13.3). It should be pointed out that the 
equations describing this process are rather crowded and the Feynman dia-
gram is a practical avenue to illustrate the mechanism.

An additional example involves the pictorial description, using the 
Feynman diagrams, of the third harmonic generation given by Butcher and 
Cotter (1991). These authors derive an extensive equation describing the 
third harmonic generation. Here we describe one of the terms of the equa-
tion using a Feynman diagram as illustrated in Figure 13.4. The third har-
monic generation involves four states, a, b, c, and d. In the diagram shown, the 
molecule in state a emits a 3ω photon while making a virtual transition to the 
state b. Via the absorption of a photon, with frequency ω, the molecule transi-
tions from b to c. Via the absorption of two more photons, with frequency ω, 

2

1

3

3

2

1

ω1

ω1

ω2

ω2

t=0
(b)(a)

FIGURE 13.3
(a) Energy diagram of Raman scattering. (b) Corresponding Feynman diagram.
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the molecule transitions to state d and finally to its initial state a. The other 
three complementary processes involve the emission of 3ω photons from 
b, c, and d while absorbing ω photons at their respective non-emitting states.

Problems

13.1 Show that the exponential forms in Equation 13.8 are equivalent.
13.2 Show that Equation 13.14 can be expressed as Equation 13.15 in 

 conjunction with Equations 13.16 through 13.18.
13.3 Draw a Feynman diagram for a two-photon absorption process  involving 

a ground state, an intermediate virtual state, and an upper state.
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14
Matrix Aspects of Quantum Mechanics

14.1 Introduction

As mentioned in Chapter 1, the Heisenberg matrix mechanics provides one 
of the three main avenues to quantum mechanics. This approach to quan-
tum mechanics was disclosed in three papers authored by Heisenberg 
(1925), Born and Jordan (1925), and Born et al. (1926). An iconic result from 
the Heisenberg–Born–Jordan contribution was the commutation rule

 
pq qp h

i
− =

2π  
(14.1)

or

 pq qp i− = − �  (14.2)

Here, we examine the origin of the commutation rule, using the Feynman 
approach, and provide a brief pragmatic introduction to some salient aspects 
of matrix quantum mechanics with a focus on Pauli matrices. We begin with 
a review preamble on vector and matrix algebra.

14.2 Introduction to Vector and Matrix Algebra

Here, a few of the salient, and useful, features of vector and matrix algebra 
are introduced in a very pragmatic approach without derivation or proof.

14.2.1 Vector Algebra

A vector in three dimensions (x, y, z) is depicted in Figure 14.1. The sum of 
two vectors r + s, illustrated in Figure 14.2, is defined as
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Subtraction of two vectors r − s, illustrated in Figure 14.3, is defined as
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−
















=
−
−
−

















 

(14.4)

Multiplication of a vector r with a scalar number a, thus creating a new vector 
ar, is defined as

 

a
r
r
r

ar
ar
ar

1

2

3

1

2

3

















=
















 

(14.5)

z

r (x, y, z)

y

x

FIGURE 14.1
Vector in three dimensions.

(r+ s)r

s

FIGURE 14.2
Vector addition r + s.
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The length of a vector s is defined as |s|

 

( )= = + +
s
s
s

s s s| |2
1

2

3

2

1
2

2
2

3
2s

 

(14.6)

and the dot product of two vectors r · s, see Figure 14.4, is a scalar defined as

 

r
r
r

s
s
s

r s r s r s
1

2

3

1

2

3

1 1 2 2 3 3

















⋅
















= + +( )

 

(14.7)

In reference to Figure 14.4, the angle between the two vectors is defined as θ 
and applying the law of cosines

 r s r s⋅ =| || |cosθ

(r– s) r

–s

FIGURE 14.3
Vector subtraction r − s.

z

y

r r– s

sθ

x

FIGURE 14.4
Dot product r · s. The angle between the two vectors is θ.
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The cross product of two vectors r × s is a new vector defined as

 

r
r
r

s
s
s

r s r s
r s r s
r s r

1

2

3

1

2

3

2 3 3 2

3 1 1 3

1 2
















×

















=
−
−
− 22 1s

















 

(14.8)

The magnitude of r × s is the area of the parallelogram formed by r and s and 
its direction is determined by the right-hand rule as illustrated in Figure 14.5.

Some useful vector identities involve the derivative operators ∇ and ∇2

 ∇ = ∇ + ∇ = ∇ + ∇( ) ( ) ( )AB A B A B B A A B  (14.9)

 ∇ = ∇ − ∇× × ×( ) ( )AB B A A B  (14.10)

 ∇ ∇ = ∇ ∇ ⋅ − ∇ ⋅∇× ×( ) ( ) ( )C C C  (14.11)

where

 

∇ =
∂ ∂
∂ ∂
∂ ∂

















/
/
/

x
y
z  

(14.12)

and

 
∇ = ∂

∂
+ ∂

∂
+ ∂

∂








2

2

2

2

2 2x y z
 

(14.13)

r× s

s

r

FIGURE 14.5
Cross product r × s (vector diagram not to scale).
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These identities are useful in dealing with wave equations (see Chapter 12) 
and a range of other applications including electromagnetism (see Chapter 15).

14.2.2 Matrix Algebra

For simplicity we consider mainly 2 × 2 matrices albeit the algebra is also 
applicable to 3 × 3 and higher order matrices. We begin by defining the 
2 × 2 matrix A

 
A

a a
a a

=










11 12

21 22  
(14.14)

and the 2 × 2 matrix B

 
B

b b
b b

=










11 12

21 22  
(14.15)

thus the matrix addition A + B yields

 
A B

a b a b
a b a b

+ =
+ +
+ +











11 11 12 12

21 21 22 22  
(14.16)

and the subtraction A − B yields

 
A B

a b a b
a b a b

− =
− −
− −











11 11 12 12

21 21 22 22  
(14.17)

Multiplication of the matrix A by (−1) is equivalent to multiplying each indi-
vidual component of the matrix by (−1)

 
( )− =

− −
− −









1 11 12

21 22
A

a a
a a

 
(14.18)

Similarly, multiplication of the matrix A by the quantity i is equivalent to 
multiplying each individual component of the matrix by i

 
iA

ia ia
ia ia

=










11 12

21 22  
(14.19)

The simple product of the two matrices AB is

 
AB

a a
a a

b b
b b

a b a b a b
=


















 =

+11 12

21 22

11 12

21 22

11 11 12 21 11 122 12 22

21 11 22 21 21 12 22 22

+
+ +











a b
a b a b a b a b

 
(14.20)
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and the simple product of the two matrices BA is

 
BA

b b
b b

a a
a a

b a b a b a
=


















 =

+11 12

21 22

11 12

21 22

11 11 12 21 11 122 12 22

21 11 22 21 21 12 22 22

+
+ +











b a
b a b a b a b a

 
(14.21)

Notice that

 − ≠AB BA  0  (14.22)

or

 AB BA≠

which is a very important, and even iconic, result in matrix algebra. However, 
with certain special matrices, the condition described by Equation 14.22 
might not hold as we shall see next.

Unitary matrices are defined as follows for a 2 × 2 matrix

 
1

1 0
0 1

=










 
(14.23)

a 3 × 3 matrix

 

1
1 0 0
0 1 0
0 0 1

=
















 

(14.24)

and a 4 × 4 matrix

 

1

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

=



















 

(14.25)

 1 1A A A= =  (14.26)

where 1 refers either to the number 1 or the unitary matrix U, as defined in 
Equations 14.23 through 14.25

 UA AU A= =  (14.27)

 U = 1  (14.28)

Obviously, UA − AU = 0 which is an exception to the condition described in 
Equation 14.22.
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The inverse matrix I−1 is a unique matrix that when multiplied with the 
original matrix I yields unity, so that

 I I I I− −= =1 1 1  (14.29)

 ( )I I− − =1 1
 (14.30)

If matrices I and H have inverses, I−1 and H−1, then

 ( )I H I H− − −=1 1 1
 (14.31)

and

 I H I H I H I H− − − −= =1 1 1 1 1  (14.32)

The determinant of a 2 × 2 matrix is defined as

 
| |A

a a
a a

a a a a= = −11 12

21 22
11 22 21 12

 
(14.33)

For a 3 × 3 matrix, the determinant is defined as

 

| |A
a a a
a a a
a a a

a
a a
a a

a
a a
a

= = −
11 12 13

21 22 23

31 32 33

11
22 23

32 33
12

21 23

331 33
13

21 22

31 32a
a
a a
a a

+

 

(14.34)

and so on for N × N matrices.
Finally, in this section we define the trace of a matrix: this quantity Tr is 

defined as the sum of the diagonal elements of a matrix

 

Tr A ajj
j

( ) = ∑
 

(14.35)

so that for our 3 × 3 matrix

 

Tr A a a a ajj
j

N

( ) = = + +
=

=

∑ 11 22 33
1

3

 

(14.36)

For example, if

 
I

i
i

=
−

+ −










1 1
1 1

 
(14.37)
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I

i
i

− −=
−

+ −








1 13

1 1
1 1

 
(14.38)

 
I I

i
i

i
i

− − −=
−

+ −










−
+ −









 =









1 1 11 1

1 1
3

1 1
1 1

3
3 0
0 3

 
(14.39)

moreover, the determinant of this matrix |I| (see Equation 14.33) is

 
| | ( )( )I

i
i

i i=
−

+ −








 = − + + − = − + =

1 1
1 1

1 1 1 1 2 1
 

(14.40)

and its trace is

 Tr I( ) ( )= + − =1 1 0  (14.41)

14.3 Quantum Operators

There are three types operators in quantum mechanics: the position operator, 
the momentum operator, and the energy operator. We are already familiar 
with the Hamiltonian that is the energy operator (see Chapters 8 and 12). 
Here, the position, momentum, and energy operators are introduced using 
Feynman’s style and notation (Feynman et al., 1965). Note: given the similar-
ity of the equations involved, the Feynman approach appears to be inspired 
in Dirac’s discussion on momentum (Dirac, 1978).

14.3.1 Position Operator

The position operator is related to the average position of a particle. More 
specifically, it is related to the average value of x in a state |ψ〉. Following a 
probabilistic argument, Feynman defines the average of x using an integral 
first disclosed by Dirac (1978) (see note at the end of this section):

 
x x x x dx= 〈 〉 〈 〉∫ ψ ψ| |

 
(14.42)

Then, Feynman identifies the average of x with the probability amplitude

 x = 〈 〉ψ α|  (14.43)

where

 | |α ψ〉 = 〉x̂  (14.44)
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Hence, combining Equations 14.42 and 14.43, we get

 
x x x x dx= 〈 〉 = 〈 〉 〈 〉∫ψ α ψ ψ| | |

 
(14.45)

and since, by definition,

 
〈 〉 = 〈 〉〈 〉∫ψ α ψ α| | |x x dx

 
(14.46)

then comparison of Equations 14.45 and 14.46 yields

 〈 〉 = 〈 〉x x x| |α ψ  (14.47)

 | |α ψ〉 = 〉x  (14.48)

and from the definition in Equation 14.44

 | | |α ψ ψ〉 = 〉 = 〉x xˆ
 (14.49)

Hence, the position operators x̂, ŷ, ẑ are related to the coordinates x, y, z 
according to

 

ˆ| |

ˆ| |

ˆ| |

x x

y y

z z

ψ ψ

ψ ψ

ψ ψ

〉 = 〉

〉 = 〉

〉 = 〉

 (14.50)

Note: equations of the form

 
〈 〉 〈 〉∫ ψ ψ| |x x x dx

were first introduced by Dirac in his discussion of the momentum represen-
tation (Dirac, 1978).

14.3.2 Momentum Operator

Again, following Feynman’s style, as with the position operator, the process 
begins by relating the average momentum p– to a state |β〉

 p = 〈 〉ψ β|  (14.51)

 | |β ψ〉 = 〉p  (14.52)

 | |β ψ〉 = 〉p̂  (14.53)
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Next, in analogy with the position operator approach, Feynman defines

 
p x x dx= 〈 〉 = 〈 〉〈 〉∫ψ β ψ β| | |

 
(14.54)

and

 
〈 〉 = 〈 〉〈 〉∫p p x x dx| | |β β

 
(14.55)

where, following Dirac (1978), we define

 〈 〉 = −p x e ipx| /�

 (14.56)

Then, using the definitions given in Equations 14.52 and 14.56, with 〈x|ψ〉 = ψ(x)

 
〈 〉 = 〈 〉 = 〈 〉〈 〉 = −∫∫p p p p p x x dx e p x dxipx| | | | ( )/β ψ ψ ψ�

 
(14.57)

which can be integrated by parts (Feynman et al., 1965) to yield

 
〈 〉 = − −∫p i e d x

dx
dxipx| ( )/β ψ

� �

 
(14.58)

Comparison of Equations 14.55 and 14.58 renders

 
〈 〉 = −x i d x

dx
| ( )β ψ

�
 

(14.59)

which is equivalent to

 
〈 〉 = − 〈 〉x i d

dx
x| |β ψ�

 
(14.60)

 
| |β ψ〉 = − 〉i d

dx
�

 
(14.61)

Now, using the definition given in Equation 14.53

 
| | |β ψ ψ〉 = 〉 = − 〉p i d

dx
ˆ �

 
(14.62)
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In this manner, the three momentum operators become (Feynman et al., 
1965; Dirac, 1978)

 

ˆ ˆ

ˆ ˆ

ˆ ˆ

p i
x

p i
y

p i
z

x

y y

z z

→℘ = − ∂
∂

→℘ = − ∂
∂

→℘ = − ∂
∂

x �

�

�

 
(14.63)

In three dimensions and using vector notation, these results are nicely sum-
marized as (Feynman et al., 1965)

 
ˆ ˆp→℘ = − ∇i�  (14.64)

14.3.3 Example

Letting the operator p̂x operate on some function ψ(x), analogously to xpx − pxx, 
yields

 
x p x p x x x i x

x
i x x

xx xˆ ( ) ˆ ( ) ( ) ( ) ( ) ( ( ))ψ ψ ψ ψ− = − ∂
∂

− − ∂
∂

� �

 
x i x

x
i x xi x

x
i x( ) ( ) ( ) ( ) ( )− ∂

∂
+ + ∂

∂
= +� � � �

ψ ψ ψ ψ

 xp p x ix xˆ ˆ− = �  (14.65)

as given by Dirac (1978). If both sides of this equation are multiplied by −1, 
we get

 
ˆ ˆp x x p ix x− = − �  (14.66)

which is the all important result discovered by Heisenberg and colleagues 
in 1926 (see Equation 14.1). Notice that in the classical analogy xpx − pxx = 0.

In general, any two operators, Â and B̂, exhibiting the condition

 
ˆ ˆ ˆ ˆAB BA− ≠ 0  (14.67)

are said not to commute. In other words, “the operators do not commute” 
(Feynman et al., 1965). Also, Equation 14.65 is referred to as the commutation 
rule. Note that this result is analogous to that encountered in classical matrix 
algebra (see Equation 14.22).
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14.3.4 Energy Operator

The energy operator is the Hamiltonian and has already been introduced in 
Chapters 8 and 12 as (Dirac, 1978)

 
ˆ ˆ ( )H

m
V r→ = − ∇ +H

�2
2

2  
(14.68)

which in vector notation becomes

 
ˆ ˆ ˆ ˆ ( )H

m
V r→ = ℘⋅℘+H

1
2  

(14.69)

14.3.5 Heisenberg Equation of Motion

Feynman defines an operator Â that he eventually links to the operator Ĥ via 
an equation of the form (Dirac, 1987)

 
�

�
ˆ [ ˆ , ˆ ]A i H A=

 
(14.70)

where [Ĥ, Â] = (ĤÂ − ÂĤ) is the Poisson bracket introduced by Dirac (1978).
Here we’ll do things a little bit differently since we are interested in the 

Heisenberg equation of motion. To do this, we consider Dirac’s definition of 
A(t) (Dirac, 1978):

 A t e AeiHt iHt( ) / /= −� �

 (14.71)

Differentiation of this function leads to

 

dA t
dt

iH A A
t

A iH( ) = + ∂
∂

−
� �

 

dA t
dt

i HA AH A
t

( ) ( )= − + ∂
∂�

 

dA t
dt

i H A A
t

( ) [ , ]= + ∂
∂�  

(14.72)

which is known as the Heisenberg equation of motion.
Finally, we should mention that operators provide the entrance stage to 

the subfield of “second quantization” where a creation operator atξ creates 
a quantum state ξ and an annihilation operator aη annihilates a quantum 
state η. Bosons satisfy several commutation rules including [ , ] .a at t

ξ η = 0  For an 
introduction to this subject, see Judd (2006).
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14.4 Pauli Matrices

Pauli matrices are widely used in quantum polarization (see Chapter 16); 
thus, here we provide an introduction to the subject via the Hamiltonian fol-
lowing Feynman’s style.

The time-dependent equation for two-state system is (Dirac, 1978)

 

i dC
dt

H Ci
ij j

j

� = ∑
 

(14.73)

or

 
i dC
dt

H C H C� 1
11 1 12 2= +

 
(14.74)

 
i dC
dt

H C H C� 2
21 1 22 2= +

 
(14.75)

and for a spin one-half particle, such as an electron, under the influence of a 
magnetic field, the Hamiltonian becomes (Feynman et al., 1965)

 

H H
H H

B B iB
B iB B

z x y

x y z

11 12

21 22









 =

− − −
− + +











µ µ
µ µ

( )
( )

 
(14.76)

In general, the Hamiltonian for a spin one-half particle can be defined as 
(Feynman et al., 1965)

 H B B Bij ij
x

x ij
y

y ij
z

z= − + +µ σ σ σ( )  (14.77)

While observing the definitions given in Equations 14.76 and 14.77, we see 
that for the z component, that is Bz, we have

 H B Bz
z z11 11= − = −µσ µ

 H Bz z12 12 0= − =µσ

 H Bz z21 21 0= − =µσ

 H B Bz
z z22 22= − = +µσ µ
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which implies that

 σ11 1z =

 σ12 0z =

 σ21 0z =

 σ22 1z = −

so that in matrix form (Dirac, 1978)

 
σ σij
z

z= =
−











1 0
0 1

 
(14.78)

Similarly, we find for the x and y components (Dirac, 1978)

 
σ σij
x

x= =










0 1
1 0

 
(14.79)

 
σ σij
y

y
i

i
= =

−









0
0

 
(14.80)

The 2 × 2 matrices σx, σy, and σz, are known as Pauli matrices (Dirac, 1978) 
and are very important to spin and magnetic moment computations. Some 
properties of these matrices are (Dirac, 1978; Jordan, 1986)

 σ σ σx y z
2 2 2 1= = =

 σ σ σ σ σ σx y z y x zi i= = −

 σ σ σ σ σ σy z x z y xi i= = −  (14.81)

 σ σ σ σ σ σz x y x z yi i= = −

 σ σ σx y z i=

The σy matrix is also known to be Hermitian, that is, this matrix is identical to 
its own conjugate transpose. In other words, the conjugate of σy is

 
σy

i
i

i
i

∗
∗

=
−

+








 =

+
−











0
0

0
0

 
(14.82)
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and the transpose (rows → column) of σy
∗  is ( )σy

T∗

 
( )σy

T
Ti

i
i

i
∗ =

+
−









 =

−
+











0
0

0
0

 
(14.83)

Comparison of Equation 14.82 and 14.83 indicates that

 σ = σ( )y y
†
 (14.84)

where the symbol† represents the combined conjugate transpose operation, 
that is, the Hermitian property.

14.4.1 Pauli Matrices for Spin One-Half Particles

Electrons and protons are defined as fermions and have an intrinsic angu-
lar momentum of ħ/2 (Feynman et al., 1965). Thus, the electron is said to be 
a spin one-half, or spin −1/2, particle. Also, the electron can have its spin-
up |+〉 or it can have its spin down |−〉. Pauli introduced spin operators to 
describe the condition of the electron as

 
ˆ ˆS = 1

2 �σ  (14.85)

where

 
Ŝx =









1

2
0 1
1 0

�
 

(14.86)

 
Ŝ

i
iy =

−







1

2
0

0
�

 
(14.87)

 
Ŝz =

−








1

2
1 0
0 1

�
 

(14.88)

These matrices satisfy (Robson, 1974)

 

ˆ ˆ ˆS S Sx y z
2 2 2 3

4
2 1 0

0 1
+ + =









�

 
(14.89)

and the angular momentum commutation rules become

 

ˆ ˆ ˆ ˆS S S S
i

i
i

ix y y x− =










−







 −

−













�2

4
0 1
1 0

0
0

0
0

0 1
1 0













=

−










i�2

2
1 0
0 1

 
(14.90)
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so that

 
ˆ ˆ ˆ ˆ ˆS S S S i Sx y y x z− = �  (14.91)

and similarly

 
ˆ ˆ ˆ ˆ ˆS S S S i Sz x x z y− = �  (14.92)

 
ˆ ˆ ˆ ˆ ˆS S S S i Sy z z y x− = �  (14.93)

as can be verified by expansion. Equations 14.86 through 14.89 are useful in 
the description of polarized beam of electrons (Robson, 1974).

The eigenvalues of Equation 14.89 are

 
3
4

2 21� �= +s s( )  (14.94)

where s = 1/2. By inspection, eigenvalues of Ŝz are

 ± = ±1
2 � �s  (14.95)

Now, without derivation, we introduce the quantum angular momentum

 | | [ ( )] /J j j= + 1 1 2�  (14.96)

where

 j l s l= ± = ± 1
2  (14.97)

Here, we already know that s is related to the spin angular momentum and 
can take the values ± 1

2 . On the other hand, l is related to the orbital angular 
momentum and can take the values l = 0, 1, 2, 3… . Equation 14.97 in conjunction 
with the Pauli exclusion principle can be used to gain a glimpse of the energy 
level structure of hydrogen. This is an alternative way to describe the hydrogen 
atom to the formal Schrödinger equation path outlined in Chapter 12.

Pauli exclusion principle: “two electrons are never in the same state” (Dirac, 1978).
This means that no two electrons can have the same quantum numbers.

14.5 Introduction to the Density Matrix

Here we provide a brief introduction to the concept of density matrices. The 
description given here is aimed at illustrating the density matrix formal-
ism applicable to the description of multiple-level transitions (see Chapter 8). 
First, we express the Schrödinger equation as (Dirac, 1978)
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i d m

dt
H m�

| |〉 = 〉
 

(14.98)

 
i d m

dt
m H�

〈 = −〈| |
 

(14.99)

and define the “quantum density” as (Dirac, 1978)

 
ρ = 〉 〈∑| |m P mm

m  
(14.100)

where Pm is an mth state. Differentiating the quantum density with respect 
to time yields

 
i d
dt

i d m
dt

P m m P d m
dtm m

m

� �
ρ = 〉 〈 + 〉 〈



∑ | | | |

 
(14.101)

and using Equations 14.98 and 14.99

 
i d
dt

H m P m m P m Hm m
m

�
ρ = 〉 〈 − 〉 〈( )∑ | | | |

which can be written as (Dirac, 1978)

 
i d
dt

H H�
ρ ρ ρ= −( )

 
(14.102)

 

d
dt

i Hρ ρ= −
�

[ , ]
 

(14.103)

Dirac argues that the sum of the Pm states can be equal to unity thus allowing 
Equation 14.100 to be expressed simply as

 ρ = 〉〈| |m m  (14.104)

which can be expanded in explicit form as

 
ρ

ρ
= 〉〈 =









( ) =









 =∗ ∗

∗ ∗

∗ ∗| |m m
m
m

m m m m m m
m m m m

1

2
1 2

1 1 1 2

2 1 2 2

111 12

21 22

ρ
ρ ρ











 
(14.105)

Characteristics of the density matrix include ρ = ρ†, the Hermitian property, 
Tr(ρ) = 1, and ρ2 = ρ.
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14.5.1 Examples

If a state is described by the vector

 
|m e i

〉 =










−1
2 1

ϕ

 
(14.106)

let us find out the corresponding density matrix. Using Equation 14.104,

 
| | / /

/

/

/
/ /m m e e e

e

i
i

i

i〉〈 =








( ) =

− −

−
− −

−2
2

2 2 1 2 21 2

1 2
1 2 1 2

ϕ
ϕ

ϕ

ϕ 22 1 2/










 
(14.107)

Next, we can easily verify that all the conditions for a normalized density 
matrix, that is, ρ = ρ†, Tr(ρ) = 1, and ρ2 = ρ, are met (see Problem 8).

If ϕ = π/2, then this equation becomes the matrix for right-handed circu-
larly polarized light

 
| |

/ /
/ /

m m
i

i
〉〈 =

−









1 2 2
2 1 2

 
(14.108)

and if ϕ = −π/2, then this equation becomes the matrix for left-handed circu-
larly polarized light (see Chapter 16)

 
| |

/ /
/ /

m m
i

i
〉〈 =

−










1 2 2
2 1 2

 
(14.109)

Dirac’s definition given in Equation 14.100 suggests that density matrices 
can be added thus creating mixed states. If we take linearly polarized light 
in the x direction

 
| |1 1

1
0

1 0
1 0
0 0

〉〈 =








( ) =











 
(14.110)

and mix it with light linearly polarized in the y direction

 
| |0 0

0
1

0 1
0 0
0 1

〉〈 =








( ) =











 
(14.111)

we get a mixed state described by the density matrix

 
ρ = 〉〈 + 〉〈( ) =











1
2

1 1 0 0 1
2

1 0
0 1

| | | |
 

(14.112)

which is the density matrix for unpolarized light (Robson, 1974). The density 
matrix description of polarization in photons is considered in more detail in 
Chapter 16, including Stokes parameters and Pauli matrices.
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14.5.2 Transitions via the Density Matrix

Equation 14.104 is the starting point of the description of excitation of multi-
level systems. For a two-level system, this equation can be written in vector 
form with wave function components

 

ρ
ψ
ψ

ψ ψ
ψ ψ ψ ψ

ψ ψ ψ ψ
=









( ) =















a

b
a b

a a a b

b a b b

* *
* *

* *  
(14.113)

Using the waveform definitions given by Demtröder (2008), we write

 ψ αa a
iE tr t t u e a( , ) ( ) /= − �

 (14.114)

 ψ β ϕ
b b

iE t ir t t u e b( , ) ( ) /= − +�

 (14.115)

and the density matrix becomes

 

ρ ρ
ρ ρ

α α β
α β

aa ab

ba bb

i E E tt t t e
t t

a b







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− − +| ( )| ( ) ( )
( ) (

[( ) / ]2 � φ

)) | ( )|[( ) / ]e ti E E ta b+ − +









� φ β 2

 
(14.116)

since the u factors normalize to unity (Demtröder, 2008). The non-diagonal 
terms in this matrix (ρab and ρba) describe the coherence of the system. If ρab 
and ρba average to zero, then the matrix

 
ρ

α
β

in
t

t
=











| ( )|
| ( )|

2

2
0

0  
(14.117)

describes the incoherently excited system. Equation 14.103 can also be used 
to describe the relaxation of coherently excited systems (Demtröder, 2008). 
For this, the total Hamiltonian is separated into three components:

 H H H t HI R= + +0 ( )  (14.118)

where

 
H

E
E

a

b
0

0
0

=










 
(14.119)

 
H

E t
E t

tI
ab

ba
=

− ⋅
− ⋅









 +

0
0

0

0

µ
µ

ω
( )

( )
cos( )φ  (14.120)

 
HR

a a

b b
=









�

γ γ
γ γ

ϕ

ϕ
 (14.121)

are the internal (H0), interaction (HI), and relaxation (HR) Hamiltonians, 
respectively (Demtröder, 2008). For example, the population relaxation of 
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state |b〉 to state |a〉, with a decay rate γb = (1/Tb) (see Figure 14.6), can be 
described, using Equation 14.103, as

 
i
T

Hbb

b
R bb�

ρ ρ= − [ , ]
 

(14.122)

 
i
T

Hbb

b
R aa�

ρ ρ= + [ , ]
 

(14.123)

Furthermore, using Equations 14.103 and 14.113, a complete set of motion 
equations known as “master equations” can be derived. The density matrix 
formalism is particularly apt to describe quantum mechanically the transi-
tion mechanics of n-level systems. For example, this has been done in detail 
for lithium, a five-level system, by Olivares et al. (1998, 2002). Note that n-level 
transitions are considered, using rate equations, in Chapter 8.

Problems

14.1 Perform the integration by parts of the integral in Equation 14.57 and 
show that the result corresponds to Equation 14.58. Hint: ψ(x) → 0 at ± ∞.

14.2 Use Equations 14.76 and 14.77 to find the Pauli matrices σ σij
x

ij
yand .

14.3 Using Equations 14.78 through 14.80, prove the following Pauli matrix 
identities:

 σ σ σx y z
2 2 2 1= = = .

Tb

|a

|b

FIGURE 14.6
Spontaneous emission from level |b〉 to level |a〉.
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14.4 Using Equations 14.78 through 14.80, prove the following Pauli matrix 
identities:

 σ σ σ σ σ σz x y x z yi i= = −� .and

14.5 Evaluate the determinant and the trace of σx, σy, and σy.
14.6 Use the definitions for the spin one-half particles given in Equations 

14.86 through 14.88 to verify Equation 14.89.
14.7 Use the definitions for the spin one-half particles given in Equations 

14.86 through 14.88 to verify the commutation rules given in Equations 
14.92 and 14.93.

14.8 Verify the conditions ρ = ρ†, Tr(ρ) = 1, and ρ2 = ρ, for the normalized 
density matrix given in Equation 14.107.
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15
Classical Polarization

15.1 Introduction

Here, we provide a revision of concepts and techniques in classical polariza-
tion as a background to Chapter 16 that deals with quantum polarization. 
Also, various elements and techniques considered here are used as tools in 
optical systems in quantum optics experiments. This exposition is based on 
a revised version of a review given by Duarte (2003) and includes new and 
updated material.

15.2 Maxwell Equations

The Maxwell equations are of fundamental importance since they describe 
the whole of classical electromagnetic phenomena. From a classical per-
spective, light can be described as waves of electromagnetic radiation. As such, 
the Maxwell equations are very useful to illustrate a number of the character-
istics of light including polarization. It is customary to just state these equa-
tions without derivation. Since our goal is simply to apply them, the usual 
approach will be followed. However, for those interested, it is mentioned that 
a derivation by Dyson (1990) attributed to Feynman is available in the litera-
ture. The Maxwell equations in the rationalized metric system are given by

 ∇ ⋅ =B 0  (15.1)

 
∇ ⋅ =E ρ

ε0  
(15.2)

 
c

t
2

0
∇× = ∂

∂
+B E j

ε  
(15.3)

 
∇× = − ∂

∂
E B

t  
(15.4)
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Feynman et al. (1965). These equations illustrate, with succinct beauty, the 
unique coexistence of the electric field and the magnetic field in nature. The 
first two equations give the value of the given flux through a closed surface, 
while the second two equations give the value of a line integral around a 
loop. In this notation,

 
∇ = ∂

∂
∂
∂

∂
∂









x y z

, ,

where
E is the electric vector
B is the magnetic induction
ρ is the electric charge density
j is the electric current density
ε0 is the permittivity of free space
c is the speed of light (see Appendix K)

In addition to the Maxwell equations, the following identities are useful:

 j E= σ  (15.5)

 
= εD E

 (15.6)

 B H= µ  (15.7)

where
D is the electric displacement
H is the magnetic vector
σ is the specific conductivity
ε is the dielectric constant (or permittivity)
μ is the magnetic permeability

In the Gaussian systems of units, the Maxwell equations are given in the 
form of

 ∇ ⋅ =B 0  (15.8)

 ∇ ⋅ =E 4πρ  (15.9)

 
∇× = ∂

∂
+





H D j1 4
c t

π
 

(15.10)

 
∇× = − ∂

∂
E B1

c t  
(15.11)
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(see, e.g., Born and Wolf, 1999). It should be noted that many authors in the 
field of optics prefer to use the Maxwell equations in the Gaussian system of 
units. As explained by Born and Wolf (1999) in this system, E, D, j, and ρ are 
measured in electrostatic units while H and B are measured in electromag-
netic units.

For the case of no charges or currents, that is, j = 0 and ρ = 0, and a homo-
geneous medium, the Maxwell equations and the given identities can be 
applied in conjunction with the vector identity

 ∇×∇× = ∇∇ − ∇⋅E E E2
 (15.12)

to obtain wave equations of the form (Born and Wolf, 1999)

 
∇ − ∂

∂
=2

2

2

2 0E Eεµ
c t  

(15.13)

This leads to an expression for the velocity of propagation

 v = −c( ) /εµ 1 2
 (15.14)

Comparison of this expression with the law of positive refraction, derived 
in Chapter 5, leads to what is known as the Maxwell formula (Born and 
Wolf, 1999)

 n = ( ) /εµ 1 2
 (15.15)

where n is the refractive index. It is useful to note that in vacuum

 c2
0 0

1= −( )ε µ  (15.16)

in the rationalized metric system, where μ0 is the permeability of free space 
(Lorrain and Corson, 1970). The values of fundamental constants are listed 
in Appendix K.

15.3 Polarization and Reflection

Following the convention described by Born and Wolf (1999), we consider a 
reflection boundary, depicted in Figure 15.1, and a plane of incidence estab-
lished by the incidence ray the and the normal to the reflection surface. Here, 
the reflected component ℛ|| is parallel to the plane of incidence, and the 
reflected component ℛ⊥ is perpendicular to the plane of incidence.

 



232 Quantum Optics for Engineers

For the case of μ1 = μ2 = 1, Born and Wolf (1999) consider the electric, and 
magnetic, vectors as complex plane waves. In this approach, the incident 
electric vector is represented by equations of the form

 
E A ex
i i i( ) cos= − ( )−

� φ τ

 
(15.17)

 
E A ey
i i i( ) = − ( )⊥

− τ

 
(15.18)

 
E A ez
i i i( ) sin= − ( )−

� φ τ

 
(15.19)

where
A|| and A⊥ are complex amplitudes
τi is the usual plane wave phase factor

Using corresponding equations for E and H for transmission and reflection 
in conjunction with the Maxwell relation, with μ = 1, and the law or positive 
refraction, the Fresnel formulae can be derived (Born and Wolf, 1999). Using 
the Fresnel formulae, the transmissivity and reflectivity, for both polariza-
tions, can be expressed as

 
�� =

+ −










(sin sin )
sin ( )cos ( )

2 2
2 2

φ
φ φ

ψ
ψ ψ  

(15.20)

 
� ⊥ =

+










(sin sin )
sin ( )

2 2
2
φ
φ

ψ
ψ  

(15.21)

FIGURE 15.1
Reflection boundary defining the plane of incidence.

 



233Classical Polarization

 
�� = −

+










tan ( )
tan ( )

2

2
φ
φ

ψ
ψ

 
(15.22)

 
� ⊥ = −

+










sin ( )
sin ( )

2

2
φ
φ
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ψ

 
(15.23)

and

 � �� �+ = 1  (15.24)

 � �⊥ ⊥+ = 1  (15.25)

Using these expressions for transmissivity and reflectivity, the degree of 
polarization, 𝒫, is defined as (Born and Wolf, 1999)

 
�

� �

� �
= −

+
⊥

⊥

( )
( )

�

�  
(15.26)

The usefulness of these equations is self-evident once ℛ|| is calculated, as 
a function of angle of incidence (Figure 15.2), for fused silica at λ ≈ 590 nm 
(n = 1.4583). Here we see that ℛ|| = 0 at 55.5604°. At this angle (ϕ + ψ) becomes 
90° so that tan(ϕ + ψ) approaches infinity thus causing ℛ|| = 0. This particu-
lar ϕ is known as the Brewster angle (ϕB) and has a very important role in laser 
optics. At ϕ = ϕB the angle of refraction becomes ψ = (90 − ϕ) degrees and the 
law of refraction takes the form of

 tan φB n=  (15.27)

For orthogonal, or normal, incidence, the difference between the two 
polarizations vanishes. Using the law of positive refraction and the appropri-
ate trigonometric identities, in Equations 15.20 through 15.23, it can be shown 
that (Born and Wolf, 1999)

 
� = −

+






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1
1

2

 
(15.28)

and
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+
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







4
1

2
n

n( )  
(15.29)
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15.3.1 Plane of Incidence

The discussion in the preceding section uses parameters such as ℛ|| and ℛ⊥. 
In this convention, || means parallel to the plane of incidence and ⊥ means 
perpendicular, orthogonal, or normal to the plane of incidence. The plane of 
incidence is defined, following Born and Wolf (1999), in Figure 15.1. However, 
on more explicit terms, let us consider a laser beam propagating on a plane 
parallel to the surface of an optical table. If that beam is made to illuminate 
the hypotenuse of a right-angle prism, whose triangular base is parallel to 
the surface of the table, then the plane of incidence is established by the inci-
dent laser beam and the perpendicular to the hypotenuse of the prism. In 
other words, in this case, the plane of incidence is parallel to the surface of 
the optical table.

Moreover, if that prism is allowed to expand the transmitted beam, as dis-
cussed later in this chapter, then the beam expansion is parallel to the plane 
of incidence.

The linear polarization of a laser can often be orthogonal to an external 
plane of incidence. When that is the case, and maximum transmission of the 
laser through external optics is desired, the laser is rotated by π/2 about its 
axis of propagation as will be discussed later in this chapter.

0.8

1.0

0.6

0.4

0.2

0.1

10 20 30 40 50

= 55.5604

60 70 80 90
in degrees

FIGURE 15.2
Reflection intensity as a function of angle of incidence. The angle at which the reflection van-
ishes is known as the Brewster angle.
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15.4 Jones Calculus

The Jones calculus is a matrix approach to describe, in a unified form, both 
linear and circular polarization. It was introduced by Jones (1947) and a good 
review of the subject is given by Robson (1974). Here, salient features of the 
Jones calculus are described without derivation.

A more general approach to express the electric field in complex terms in 
x and y coordinates is in vector form
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E e
E e

x

y

i

i

x

y

0

0

0

0









 =











φ

φ

 

(15.30)

In this notation, linear polarization in the x direction is represented by
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(15.31)

while linear polarization in the y direction is described by
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(15.32)

Subsequently,

 

E
E

x

y

0

0

1
2

1
1









 =

±










 
(15.33)

describes diagonal (or oblique) polarization at a π/4 angle, relative to the 
x axis (+), or relative to the y axis (−).

Circular polarization is described by the vector
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(15.34)

where
+i applies to right circularly polarized light
−i to left circularly polarized light (see Appendix E for a description of i)

Figure 15.3 illustrates the various polarization alternatives.
The Jones calculus introduces 2 × 2 matrices to describe optical elements 

transforming the polarization of the incidence radiation in the following format:
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(15.35)
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where the 2 × 2 matrix represents the optical element, the polarization vector 
multiplying this matrix corresponds to the incident radiation, and the result-
ing vector describes the polarization of the resulting radiation.

Useful Jones matrices include the matrix for transmission of linearly polar-
ized light in the x direction
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(15.36)

and the y direction
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For light linearly polarized at a π/4 angle, the matrix becomes
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(15.38)
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FIGURE 15.3
The various forms of polarization.
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The generalized polarization Jones matrix for linearly polarized light, at an 
angle θ to the x axis, is given by

 

a a
a a

11 12

21 22

2

2








 =











cos sin cos
sin cos sin

θ θ θ
θ θ θ  

(15.39)

The right circular polarizer is described as

 

a a
a a

i
i

11 12

21 22

1
2

1
1









 =

−









 
(15.40)

while the left circular polarizer is described as

 

a a
a a

i
i

11 12

21 22

1
2

1
1









 =

−










 
(15.41)

In Chapter 16 we see how these matrices can be obtained from the density 
matrix formalism.

The generalized rotation matrix for birefringent rotators is given by 
(Robson, 1974)

 

a a
a a e ei i

11 12

21 22









 =

−










cos sin
sin cos

θ θ
θ θδ δ

 
(15.42)

where
δ is the phase angle
α is the rotation angle about the z axis

For a quarter-wave plate, δ = π/2, the rotation matrix becomes

 

a a
a a i i

11 12

21 22









 =

−










cos sin
sin cos

θ θ
θ θ

 
(15.43)

15.4.1 Example

A laser beam polarized in the x direction is sent through an optical element 
that allows the transmission of y polarization only; thus, using Equations 
15.31 and 15.37

 

0 0
0 1

1
0

0
0


















 =











 
(15.44)

we find that no light is transmitted as can be demonstrated by a simple 
experiment.

 



238 Quantum Optics for Engineers

15.5 Polarizing Prisms

There are two avenues to induce polarization using prisms. The first involves 
simple reflection as characterized by the equations of reflectivity and 
straightforward refraction.

This approach is valid for windows, prisms, or multiple-prism arrays, 
made from homogeneous optical materials such as optical glass or fused 
silica. The second approach involves double refraction in crystalline trans-
mission media exhibiting birefringence.

15.5.1 Transmission Efficiency in Multiple-Prism Arrays

For a generalized multiple-prism array, as shown in Figure 15.4, the cumula-
tive reflection losses at the incidence surface of the mth prism are given by 
(Duarte et al., 1990)

 L L Lm m m m1 2 1 2 1 11, ,( ) ,( ) ,( )= + −− − �  (15.45)

while the losses at the mth exit surface are given by

 L2 1 11, , , ,( )m m m mL L= + − � 2  (15.46)

where ℛ1,m and ℛ2,m are given by either ℛ|| or ℛ⊥. In practice, the optics is 
deployed so that the polarization of the propagation beam is parallel to the 
plane of incidence meaning that the reflection coefficient is given by ℛ||. 
It should be noted that these equations apply not just to prisms but also to 
optical wedges and any homogeneous optical element, with an input and 
exit surface, used in the transmission domain.

15.5.2 Induced Polarization in a Double-Prism Beam Expander

Polarization induction in multiple-prism beam expanders should be appar-
ent once the reflectivity equations are combined with the transmission 
Equations 15.45 and 15.46.

In this section, this effect is made clear by considering the transmission 
efficiency, for both components of polarization, of a simple double-prism 
beam expander as illustrated in Figure 15.5. This beam expander is a modi-
fied version of one described by Duarte (2003) and consists of two identical 
prisms made of fused silica, with n = 1.4583 at λ ≈ 590 nm, and an apex angles 
of 42.7098°. Both prism are deployed to yield identical magnifications and for 
orthogonal beam exit. This implies that

 φ φ ° ° φ φ °1 1 1 2 1 1 1 2 2 1 2 2 2 1 2 281 55 42 7098 0, , , , , , , ,. , . , ,= = = = = = =ψ ψ ψ ψ == 0°.  
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FIGURE 15.4
Generalized multiple-prism arrays. Depiction of these generalized prismatic arrays in (a) addi-
tive and (b) compensating configurations was introduced by Duarte and Piper (1983).
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FIGURE 15.5
Double-prism expander as described in the text.
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Thus for radiation polarized parallel to the plane of incidence

 L1 1 1 1 0 3008, , .= =�

 L L2 1 1 1, ,=

 L L L1 2 2 1 2 1 1 21 0 5111, , , ,( ) .= + − =�

 L L2 2 1 2, ,=

while for radiation polarized perpendicular to the plane of incidence

 L1 1 1 1 0 5758, , .= =�

 L L2 1 1 1, ,=

 L L L1 2 2 1 2 1 1 21 0 8200, , , ,( ) .= + − =�

 L L2 2 1 2, ,=

also

 k k1 1 1 2 5 0005, , .= =

 M k k= =1 1 1 2 25 0045, , .

Thus, for this particular beam expander, the cumulative reflection losses 
are 51.11% for light polarized parallel to the plane of incidence while they 
increase to 82.00% for radiation polarized perpendicular to the plane of inci-
dence. This example helps to illustrate the fact that multiple-prism beam 
expanders exhibit a clear polarization preference. It is easy to see that the 
addition of further stages of beam magnification lead to increased discrimi-
nation. When incorporated in frequency-selective dispersive laser cavities, 
these beam expanders contribute significantly toward the emission of laser 
emission polarized parallel to the plane of propagation.

The reader should refer to Chapter 6 for a generalized description of mul-
tiple-prism dispersion. Chapter 9 describes the use of multiple-prism arrays 
in laser oscillators.

15.5.3 Double-Refraction Polarizers

These are crystalline prism pairs that exploit the birefringence effect in 
 crystals. In birefringent materials, the dielectric constant, ε, is different 
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in each of the x, y, and z directions so that the propagation velocity is differ-
ent in each direction:

 va xc= −( ) /ε 1 2
 (15.47)

 vb yc= −( ) /ε 1 2
 (15.48)

 vc zc= −( ) /ε 1 2
 (15.49)

Since polarization of a transmission medium is determined by the D vec-
tor, it is possible to describe the polarization characteristics in each direc-
tion. Further, it can be shown that there are two different velocities, for the 
refracted radiation, in any given direction (Born and Wolf, 1999). As a con-
sequence of the law of refraction, these two velocities lead to two different 
propagation paths in the crystal and give origin to the ordinary and extraor-
dinary ray. In other words, the two velocities lead to double refraction.

Of particular interest in this class of polarizers are those known as the Nicol 
prism, the Rochon prism, the Glan–Foucault prism, the Glan–Thompson 
prism, and the Wollaston prism. According to Bennett and Bennett (1978), 
a Glan–Foucault prism pair is an air-spaced Glan–Thompson prism pair. 
In Glan-type polarizers, the extraordinary ray is transmitted from the first 
to the second prism in the propagation direction of the incident beam. On 
the other hand, the diagonal surface of the two prisms is predetermined to 
induce total internal reflection for the ordinary ray (see Figure 15.6).

Glan-type polarizers are very useful since they can be oriented to dis-
criminate in favor of either polarization component with negligible beam 
deviation. Normally these polarizers are made of either quartz or calcite. 
Commercially available calcite Glan–Thompson polarizer with a useful aper-
ture of 10 mm provides extinction ratios of ∼5 × 10−5. It should be noted that 
Glan-type polarizers are used in straightforward propagation applications 

FIGURE 15.6
Generic Glan–Thompson polarizer. The beam polarized parallel to the plane of incidence is 
transmitted, while the complementary component is deviated (drawing not to scale). (For 
further details, refer to Jenkins F.A. and White H.E., Fundamentals of Optics, McGraw-Hill, 
New York, 1957.)
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as well as intracavity elements. For instance, the tunable single-longitudinal-
mode laser oscillator depicted in Figure 15.7 incorporates a Glan–Thompson 
polarizer as output coupler. In this particular polarizer, the inner window is 
antireflection coated while the outer window is coated for partial reflectivity 
to act as an output coupler mirror. The laser emission from multiple-prism 
grating oscillators is highly polarized parallel to the plane of incidence by the 
interaction of the intracavity flux with the multiple-prism expander and the 
 grating. The function of the polarizer output coupler here is to provide further 
 discrimination against unpolarized single-pass amplified spontaneous emis-
sion. These dispersive tunable laser oscillators yield extremely low levels of 
broadband amplified spontaneous emission measured to be in the 10−7−10−6 
range (Duarte, 1995, 1999).

The Wollaston prism, illustrated in Figure 15.8, is usually fabricated of 
either crystalline quartz or calcite. These prisms are assembled from two 
matched and complimentary right-angle prisms whose crystalline opti-
cal axes are oriented orthogonal to each other. The Wollaston prisms are 
widely used as beam splitters of beams with orthogonal polarizations. The 
beam separation provided by calcite is significantly greater than the beam 

Organic solid-state
gain medium

Polarizer-mirror

Grating

Θ 1,2

1,1

FIGURE 15.7
Solid-state multiple-prism Littrow (MPL) grating dye laser oscillator, yielding single-
longitudinal-mode emission, incorporating a Glan–Thompson polarizer output coupler. 
The reflective coating is applied to the outer surface of the polarizer.

o

FIGURE 15.8
Generic Wollaston prism. The lines and circle represent the direction of the crystalline optical 
axis of the prism components (drawing not to scale).
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separation achievable with crystalline quartz. Also, for both materials, the 
beam separation is wavelength dependent.

The use of these prisms in quantum cryptography optical configurations 
is outlined in Chapter 19. In those optical configurations, a Wollaston prism 
is used after an electro-optical polarization rotator (such as a Pockels cell) to 
spatially separate photons corresponding to orthogonal polarizations. For a 
description of electro-optical polarization rotators, see Saleh and Teich (1991).

15.5.4 Attenuation of the Intensity of Laser Beams Using Polarization

A very simple and yet powerful technique to attenuate the intensity of linearly 
polarized laser beams involves the transmission of the laser beam through 
a prism pair such as a Glan–Thompson polarizer followed by rotation of the 
polarizer. This technique is illustrated in Figure 15.9. In this technique for a 
∼100% laser beam polarized parallel to the plane of incidence, there is almost 
total transmission when the Glan–Thompson prism pair is oriented as in 
Figure 15.9a. As the prism pair is rotated about the axis of propagation, the 
intensity of the transmission decreases until it becomes zero once the angu-
lar displacement has reached π/2. With precision rotation of the prism pair, 
a scale of well-determined intensities can be easily obtained (Duarte, 2001). 
This has a number of applications including the generation of precise laser 
intensity scales for exposing instrumentation, and laser printers, used in 
imaging (Duarte, 2001). Also, this technique has been successfully applied 
to laser cooling experiments to independently vary the intensity of the cool-
ing and repumping lasers as illustrated in Figure 15.10 (Olivares et al., 2009).

(a)

(b)

FIGURE 15.9
Attenuation of polarized laser beams using a Glan–Thompson polarizer. (a) Polarizer set for 
∼100% transmission. (b) Rotation of the polarizer, about the axis of propagation by π/2, yields 
∼0% transmission. The amount of transmitted light can be varied continuously by rotating the 
polarizer in the 0 ≤ θ ≤ π/2 range. (From Duarte, F.J., US Patent 6, 236, 461 B1, 2001.)
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15.6 Polarization Rotators

Maximum transmission efficiency is always a goal in optical systems. If 
the polarization of a laser is mismatched to the polarization preference 
of the optics, then transmission efficiency will be poor. Furthermore, effi-
ciency can be significantly improved if the polarization of a pump laser is 
matched to the polarization preference of the laser being excited (Duarte, 
1990). Although sometimes the efficiency can be improved, or even opti-
mized, by the simple rotation of a laser, it is highly desirable and practi-
cal to have optical elements to perform this function. In this section we 
shall consider three alternatives to perform such rotation: birefringent 
polarization rotators and prismatic rotators. An additional alternative 
to rotate polarization are rhomboids (Figure 15.11) and are described in 
Duarte (2003).

S2

L2

L1

BS

BS RGTP1

λ/2

RGTP1

RGTP2 PBS
BE

RGTP2

S1

FIGURE 15.10
Top view of schematics of a laser cooling experiment including Glan–Thompson polarizers 
to independently control the laser intensity of the cooling lasers (L1) and the repumping 
laser (L2). S1 and S2 are stabilizer systems, RGTP1 and RGTP2 are the rotating Glan–Thompson 
polarizers, λ/2 is a half-wave plate, PBS is a polarizer beam splitter, and BE a beam expander. 
Polarizations perpendicular to the plane of propagation are indicated by the solid dot. Rotation 
by π/2 of an RGTP extinguishes the transmission of the laser beam that is polarized perpen-
dicular to the plane of propagation. (Adapted from Olivares, I.E. et al., J. Mod. Opt. 56, 1780, 
2009. With permission.)
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15.6.1 Birefringent Polarization Rotators

In birefringent uniaxial crystalline materials, the ordinary and extraordi-
nary rays propagate at different velocities. The generalized matrix for bire-
fringent rotators is given by Equation 15.42

 

a a
a a e ei i

11 12

21 22









 =

−










cos sin
sin cos

θ θ
θ θδ δ

For a quarter-wave plate δ = π/2, the phase term is eiπ/2 = +i, and the rotation 
matrix becomes

 

a a
a a i i

11 12

21 22









 =

−










cos sin
sin cos

θ θ
θ θ

 
(15.50)

For a half-wave plate δ = π and the phase term is eiπ = −1. Thus, the rotation 
matrix becomes

 

a a
a a

11 12

21 22









 =

−










cos sin
sin cos

θ θ
θ θ

 
(15.51)

From experiment we know that a half-wave plate causes a rotation of a lin-
early polarized beam by θ = π/2 so that Equation 15.51 reduces to

 

a a
a a

11 12

21 22

0 1
1 0









 =











 
(15.52)

15.6.1.1 Example

Thus, if we send a beam polarized in the x direction through a half-wave 
plate, the emerging beam polarization will be
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(15.53)

FIGURE 15.11
Side view of double Fresnel rhomb. Linearly polarized light is rotated by π/2 and exits polar-
ized orthogonally to the original polarization.
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which corresponds to a beam polarized in the y direction as observed experi-
mentally and as illustrated in Figure 15.10 (Duarte, 2003; Olivares et al., 2009).

15.6.2 Broadband Prismatic Polarization Rotators

An alternative to frequency-selective polarization rotators are prismatic rotators 
(Duarte, 1989). These devices work at normal incidence and apply the principle 
of total internal reflection. The basic operation of polarization rotation, by π/2, 
due to total internal reflection is shown in Figure 15.12. This operation, however, 
reflects the beam into a direction that is orthogonal to the original propagation. 
Furthermore, the beam is not in the same plane. In order to achieve collinear 
polarization rotation, by π/2, the beam must be displaced upward and then be 
brought into alignment with the incident beam while conserving the polar-
ization rotation achieved by the initial double-reflection operation. A collinear 
prismatic polarization rotator that performs this task using seven total internal 
reflections is depicted in Figure 15.13. For high-power laser applications, this 
rotator is best assembled using a high-precision mechanical mount that allows 
air interfaces between the individual prisms. The useful aperture in this rotator 
is about 10 mm and its physical length is 30 mm.

It should be noted that despite the apparent complexity of this collinear 
polarization rotator, the transmission efficiency is relatively high using anti-
reflection coatings. In fact, using broadband (425–675 nm) antireflection 
coatings with a nominal loss of 0.5% per surface, the measured transmission 
efficiency becomes 94.7% at λ = 632.8 nm.

The predicted transmission losses using

 L Lr
r= − −1 1( )  (15.54)

are 4.9%, with L = 0.5%, as compared to a measured value of 5.3%. Equation 
15.54 is derived combining Equations 15.45 and 15.46 for the special case of 
identical reflection losses. Here, r is the total number of reflection surfaces. 
For this particular collinear rotator, r = 10. A further parameter of interest 
is the transmission fidelity of the rotator since it is also important to keep 
spatial distortions of the rotated beam to a minimum.

The integrity of the beam due to transmission and rotation is quantified 
in Figure 15.14 where a very slight beam expansion, of ∼3.2% at FWHM, is 
evident (Duarte, 1992).

15.6.2.1 Example

The π/2 prismatic polarization rotator just described rotates linearly x polar-
ized radiation into linearly y polarized radiation and vice versa. Here we will 
find the Jones matrix that describes its rotational capability. Considering first 
the case of x → y and using the Jones matrix formalism, we can write
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(15.55)
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which means that a11 = 0 and a21 = 1. To find the other two components, we 
use the complementary rotation y → x that can be described as
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(15.56)

Axis of rotation

(a)

(b)

FIGURE 15.12
Basic prism operator for polarization rotation using two reflections. This can be composed 
of two 45° prisms adjoined π/2 to each other (note that it is also manufactured as one piece). 
(a) Side view of the rotator illustrating the basic rotation operation due to one reflection. The 
beam with the rotated polarization exits the prism into the plane of the figure. (b) The prism 
rotator is itself rotated anticlockwise by π/2 about the rotation axis (as indicated) thus provid-
ing an alternative perspective of the operation: the beam is now incident into the plane of the 
figure and it is reflected downward with is polarization rotated by π/2 relative to the original 
orientation. (From Duarte, F.J., Optical device for rotating the polarization of a light beam, 
US Patent 4822150, 1989.)
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FIGURE 15.14
Transmission fidelity of the broadband collinear polarization rotator: (a) intensity profile of 
incident beam, prior to rotation, and (b) intensity profile of transmitted beam with rotated 
polarization. (Reproduced from Duarte, F.J., Appl. Opt. 31, 3377, 1992, with permission from the 
Optical Society of America.)

FIGURE 15.13
Broadband collinear prism polarization rotator. (From Duarte, F.J., Optical device for rotating 
the polarization of a light beam, US Patent 4822150, 1989.)
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which implies that a12 = 1 and a22 = 0. Thus, the Jones matrix for π/2 rota-
tion, that applies directly to the prismatic rotator described in Figure 15.13, 
becomes

 
R

a a
a a

=








 =











11 12

21 22

0 1
1 0

 
(15.57)

Thus, we have again arrived to the π/2 rotation matrix Equation 15.52, by 
observation, using simple linear algebra.

Problems

15.1 Design a single right-angle prism, made of fused silica, to expand a 
laser beam by a factor of two with orthogonal beam exit. Calculate 
R|| and R⊥ (use n = 1.4583 at λ ≈ 590 nm).

15.2 For a four-prism beam expander, with orthogonal beam exit, using 
fused silica prisms with an apex angle of 41°, calculate the overall beam 
magnification factor M.

Also, calculate and the overall transmission efficiency for a laser 
beam polarized parallel to the plane of incidence (use n = 1.4583 at 
λ ≈ 590 nm).

15.3 Use the Maxwell equations in the Gaussian system, for the j = 0 and 
ρ = 0 case, to derive the wave equations

 
∇ − ∂

∂
=−2 2

2

2 0E E( )εµ c
t

 
∇ − ∂

∂
=−2 2

2

2 0H H( )εµ c
t

15.4 If a linearly polarized beam in the x direction is sent through a rotator 
plate represented by the matrix

  

a a
a a i

11 12

21 22

0 1
0









 =

−










 What will be the polarization of the transmitted beam? What kind of 
plate would that be?
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16
Quantum Polarization

16.1 Introduction

In this chapter we examine the quantum aspects of polarization  primarily 
via the Dirac notation (Dirac, 1978) and also using density matrices. The 
approach follows the style of Feynman (Feynman et al., 1965). Classical 
polarization is examined in Chapter 15.

16.2 Linear Polarization

Linear polarization in the x direction represented in the Jones calculus by 
(Jones, 1947)

 

E
E

x

y

0

0

1
0









 =











 
(16.1)

is expressed simply as |x〉 in the bra–ket representation. Linear polarization 
in the y direction described in the Jones calculus by

 

E
E

x

y

0

0

0
1









 =











 
(16.2)

is expressed simply as |y〉 in the bra–ket representation.
Rotation of axes, x → x′ and y → y′, as illustrated in Figure 16.1, leads 

directly to the following rotation relations:

 

x
x′

= cosθ
 

(16.3)

 

x
y′

= sin θ
 

(16.4)
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y
x′

= −sin θ
 

(16.5)

 

y
y′

= cosθ
 

(16.6)

which can be expressed in matrix form as

 
R =

−










cos sin
sin cos

θ θ
θ θ

 
(16.7)

Equation 16.7 is consistent with the generalized rotation matrix introduced 
by Robson (1974):

 

a a
a a e ei i

11 12

21 22









 =

−










cos sin
sin cos

θ θ
θ θδ δ

 
(16.8)

which includes additional phase terms.
From the axes transformations described in Equations 16.3 through 16.6, 

we can write

 〈 ′〉 =x x| cosθ  (16.9)

 〈 ′〉 =y x| sin θ  (16.10)

 〈 ′〉 = −x y| sin θ  (16.11)

 〈 ′〉 =y y| cosθ  (16.12)

y΄

x΄

y

θ

θ x

FIGURE 16.1
x and y axes and rotating x′ and y′ axes.
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Thus, the probability amplitude 〈x|x′〉 can be expanded into

 〈 ′〉 = 〈 〉〈 ′〉 + 〈 〉〈 ′〉x x x x x x x y y x| | | | |  (16.13)

 〈 ′〉 = 〈 〉 + 〈 〉x x x x x y| | |cos sinθ θ  (16.14)

and in abstract form it becomes as given by Feynman (Feynman et al., 1965)

 | | |x x y′〉 = 〉 + 〉cos sinθ θ  (16.15)

Since 〈x|x〉 = 1 and 〈x|y〉 = 0, then the probability is

 | | | cos〈 〉 =x x′ 2 2 θ  (16.16)

In abstract form, the complete set of transformation identities can be written as

 | | |x x y′〉 = 〉 + 〉cos sinθ θ  (16.17)

 | | |y y x′〉 = 〉 − 〉cos sinθ θ  (16.18)

 | | |x x y〉 = ′〉 + ′〉cos sinθ θ  (16.19)

 | | |y y x〉 = ′〉 − ′〉cos sinθ θ  (16.20)

16.2.1 Example

Consider the polarization configuration described in Figure 16.2: a source s 
is followed by a polarizer deployed to allow y polarization only and is fol-
lowed by a polarizer deployed to allow x polarization only. The light is then 
detected at detector d. The probability amplitude of this transmission con-
figuration can be described as

 〈 〉 = 〈 〉〈 〉〈 〉d s d x x y y s| | | |  (16.21)

and assuming 〈y|s〉 = 〈d|x〉 = 1, the probability amplitude reduces to 〈x|y〉

 〈 〉 = 〈 〉d s x y| |  (16.22)

which, by definition, is 〈x|y〉 = 0, so that

 〈 〉 =d s|  0  (16.23)
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If instead we now add a π/4 polarizer in between x and y polarizers, as illus-
trated in Figure 16.3, the probability amplitude becomes

 〈 〉 = 〈 〉〈 ′〉〈 ′ 〉〈 〉d s d x x x x y y s| | | | |  (16.24)

Assuming, as before, that 〈y|s〉 = 〈d|x〉 = 1

 〈 〉 = 〈 ′〉〈 ′ 〉d s x x x y| | |  (16.25)

and using Equation 16.9,

 〈 〉 = 〈 ′ 〉d s x y| |cosθ  (16.26)

Now, substituting Equation 16.20 for 〈x′|y〉 yields

 〈 〉 = −d s| sin cosθ θ  (16.27)

so that the probability of transmission at θ = π/4 becomes

 
| | | ( sin cos )〈 〉 = − =d s 2 2 1

4
θ θ

 
(16.28)

y

s

x

d

FIGURE 16.2
Top view of polarization configuration including a polarizer set for y transmission followed by 
a polarized set for transmission in the x direction. No light reaches the detector d. The y direc-
tion is perpendicular to the plane of incidence and is indicated by a dot.

s

π/4

y x΄ x

d

FIGURE 16.3
Top view of polarization configuration including a polarizer set for y transmission followed by 
a polarizer set for transmission in the x direction. A polarizer set for π/4 is inserted between 
the two polarizers. As explained in the text, some light is now allowed to reach the detector d.
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16.3 Polarization as a Two-State System

From the solution to the two-state system described by (Feynman et al., 1965)

 
i dC
dt

H Ci
ij j� = ∑

 
(16.29)

where Hij is the Hamiltonian, we obtain (see Chapter 8)

 
C C CII = +1

2 1 2( )
 

(16.30)

and

 
C C CI = −1

2 1 2( )
 

(16.31)

which eventually lead to probability amplitudes of the form

 
| | |s B A〉 = 〉 + 〉( )1

2  
(16.32)

and

 
| | |s B A〉 = 〉 − 〉( )1

2  
(16.33)

16.3.1 Diagonal Polarization

In Chapter 15 the classical vector representation for diagonally polarized 
light was introduces as

 

E
E

x

y

0

0

1
2

1
1









 =

±










 
(16.34)

Linearly polarized light sustaining a π/4 angle relative to the x axis is 
referred to as diagonally polarized light and is described by the probability 
amplitude

 
| | |D x y〉 = 〉 + 〉( )1

2  
(16.35)
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If the angle is −(π/4), this obliquely polarized light is represented by the 
probability amplitude

 
| | |A x y〉 = 〉− 〉( )1

2  
(16.36)

Diagonally polarized light is described in Figure 16.4.

16.3.2 Circular Polarization

In Chapter 15 the classical vector representation for circularly polarized light 
was introduces as

 











=
±







E
E i

1
2

1x

y

0

0

 
(16.37)

where the +i factor applies to right-handed polarization and the −i factor 
applies to left-handed polarization. Circularly polarized light is described 
in Figure 16.5.

y

x

y

x

|D += 1 (|x |y
√2

)

|A –= 1 (|x |y
√2

)

FIGURE 16.4
Diagonally polarized light depicting quantum notation.
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Using Equations 16.32 and 16.33, the probability amplitude representa-
tion for right-handed polarization (|R〉) and left-handed polarization (|L〉) 
becomes

 
| | |R x i y〉 = 〉 + 〉( )1

2  
(16.38)

 
| | |L x i y〉 = 〉 − 〉( )1

2  
(16.39)

Adding and subtracting Equations 16.38 and 16.39 yields

 
| | |x R L〉 = 〉 + 〉( )1

2  
(16.40)

 
| | |y i R L〉 = − 〉 − 〉( )

2  
(16.41)

|L –i= 1 (|x |y
√2

)

|R +i= 1 (|x |y
√2

)

y

x

y

x

FIGURE 16.5
Circularly polarized light depicting quantum notation.
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Further, we can write

 
| | |R x i y′ ′ ′〉 = 〉 + 〉( )1

2  
(16.42)

from Equations 16.17 and 16.18, we get (Feynman et al., 1965)

 
| cos | sin | cos | sin |R x y i y i x′〉 = 〉 + 〉 + 〉 − 〉( )1

2
θ θ θ θ

 
(16.43)

 
| (cos sin )(| | )R i x i y′〉 = − 〉 + 〉( )1

2
θ θ

 
(16.44)

 
| |R e Ri′〉 = 〉( )− θ

 
(16.45)

so that

 
| |L e Ri′〉 = 〉( )+ θ

 
(16.46)

16.4 Density Matrix Notation

Here we return to the Jones calculus initially to consider the classical density 
matrix for polarization followed by the quantum description. The notation 
used is consistent with that of Robson (1974) in the matrix case and that of 
Feynman in the bra–ket approach.

The Jones calculus does not offer a direct representation for unpolarized 
or partially polarized light. However, Robson (1974) points out that a Jones 
vector of the form

 

a
beiδ











 
(16.47)

generally describes polarized beams. If we define the earlier vector as a state |J〉

 
|J

a
a ei

〉 =










1

2
δ

 
(16.48)

then, using the definition for the density matrix given in Chapter 14, we 
can write

 
| |J J

a
a e

a a e a a a a e
a a e a ai

i
i

i〉〈 =








( ) =






−
−

1

2
1 2

1 1 1 2

2 1 2 2
δ

δ
δ

δ






 
(16.49)
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and the resulting matrix is a 2 × 2 density matrix

 
ρ =

ρ ρ
ρ ρ











=












− δ

δ

a a a a e
a a e a a

i

i

11 12

21 22

1 1 1 2

2 1 2 2
 

(16.50)

The trace of this matrix

 Tr a a a a( )ρ = +1 1 2 2  (16.51)

corresponds to the intensity of the beam and the off-diagonal terms provide 
information about the phase of the two components (Robson, 1974).

The Stokes parameters (see Appendix H) are defined in terms of combina-
tions of the density matrix elements (Robson, 1974):

 I = +ρ ρ11 22

 P1 11 22= −ρ ρ  (16.52)

 P2 12 21= +ρ ρ

 P i3 12 21= −( )ρ ρ

Thus, for polarized light, the density matrix can be re-expressed as

 
ρ

ρ ρ
ρ ρ

=








 =

+ −
+ −











11 12

21 22

1 2 3

2 3 1

1
2

I P P iP
P iP I P

 
(16.53)

For unpolarized light P1 = P2 = P3 = 0 so that the matrix reduces to

 
ρu

I
I

=










1
2

0
0

 
(16.54)

As seen in Chapter 14, we can write the |J〉 state in a general form, so that

 
| | * * * *

* *J J
j
j

j j j j j j
j j j j

〉〈 =








 ( ) =









 =

1

2
2 2

1 1 1 2

2 1 2 2

11ρ ρρ
ρ ρ

ρ12

21 22









 = q

 
(16.55)

The trace of this matrix

 Tr j jq( ) | | | |ρ = +1
2

2
2

 (16.56)
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gives information on the relative intensities of the two linearly polarized and 
orthogonal components. If we define j1 = |x〉 and j2 = |y〉, then the trace of the 
matrix provides information on the relative probabilities of finding a photon 
in the in the |x〉 and |y〉 polarization states (Robson, 1974).

16.4.1 Stokes Parameters and Pauli Matrices

Previously in Chapter 14, we found that the identity matrix and the x, y, and z 
Pauli matrices are given by

 
I =











1 0
0 1

 
(16.57)

 
σx =











0 1
1 0

 
(16.58)

 
σy

i
i

=
−









0
0

 
(16.59)

 
σz =

−










1 0
0 1

 
(16.60)

Multiplication of the density matrix with these matrices yields

 
ρ

ρ ρ
ρ ρ

ρ ρ
ρ ρ

I =

















 =











11 12

21 22

11 12

21 22

1 0
0 1

 
(16.61)

 
ρσ

ρ ρ
ρ ρ

ρ ρ
ρ ρx =


















 =











11 12

21 22

12 11

22 21

0 1
1 0

 
(16.62)

 
ρσ

ρ ρ
ρ ρ

ρ ρ
ρ ρy

i
i

i i
i i

=










−







 =

−
−











11 12

21 22

12 11

22 21

0
0

 
(16.63)

 
ρσ

ρ ρ
ρ ρ

ρ ρ
ρ ρz =









 −








 =

−
−











11 12

21 22

11 12

21 22

1 0
0 1

 
(16.64)

Computing the trace of these matrices leads directly to

 Tr I I( )ρ ρ ρ= + =11 22  (16.65)

 Tr Pz( )ρσ ρ ρ= − =11 22 1  (16.66)
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 Tr Px( )ρσ ρ ρ= + =12 21 2  (16.67)

 Tr i Py( ) ( )ρσ ρ ρ= − =12 21 3  (16.68)

Due to the Stoke nomenclature, Robson (1974) uses a different notation (see 
Appendix H):

 
σ σx → =









ˆ 2

0 1
1 0

 
(16.69)

 
σ σy

i
i

→ =
−







ˆ 3

0
0

 
(16.70)

 
σ σz → =

−








ˆ 1

1 0
0 1

 
(16.71)

Here, Robson (1974) points out that while the σx, σy, and σz matrices refer to 
ordinary space, the matrices σ̂1, σ̂2, and σ̂3 correspond to the Poincaré space 
that defines P1, P2, and P3 (see Appendix H). Also, notice the use of the opera-
tor hat to designate these matrices. Introducing the operator γ̂ to designate 
the identity matrix, the set of relations just described becomes (Robson, 1974)

 Tr I( )ργ ρ ρˆ = + =11 22  (16.72)

 Tr P( )ρσ ρ ρˆ 1 11 22 1= − =  (16.73)

 Tr P( )ρσ ρ ρˆ 2 12 21 2= + =  (16.74)

 Tr i P( ) ( )ρσ ρ ρˆ3 12 21 3= − =  (16.75)

Albeit most of the applications of Pauli matrices are found in the context of 
spin one-half particles (Fermions), such as electrons, some applications are 
found for spin one particles (Bosons) such as the photon. For instance, in 
Chapter 14 we discovered that the matrix describing a π/2 rotator of linear 
polarization, for either a half-wave plate or a prismatic rotator, is given by

 
R =











0 1
1 0

This matrix is identical to either σx or σ̂2. This means that σ̂2 is a rotation oper-
ator of linear polarization by θ = π/2. In general, σ̂1 and σ̂2 and are used in the 
description of linearly polarized photons, while σ̂3 is used in the description 
of circularly polarized photons.
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16.4.2 Density Matrix and Circular Polarization

Using the probability amplitude representation for right-handed polariza-
tion (|R〉) and left-handed polarization (|L〉) given previously, we can write

 
| | |R x i y〉 = 〉 + 〉( )1

2

 
| | |L x i y〉 = 〉 − 〉( )1

2

which can be expressed in vector form as

 
|R

i
〉 =

+










1
2

1

 
(16.76)

 
|L

i
〉 =

−










1
2

1

 
(16.77)

Using these vectors the density matrix for right-handed polarization becomes 
(see Chapter 14)

 
| |R R

i
i

i
i

〉〈 =
+









 −( ) =

−
+











1
2

1
1 1

2
1

1
 

(16.78)

and the density matrix for left-handed polarization becomes

 
| |L L

i
i

i
i

〉〈 =
−









 +( ) =

+
−











1
2

1
1 1

2
1

1
 

(16.79)

16.4.3 Example

Setting a1 = a2 = 2−1/2 and δ = π/2, in Equation 16.50, gives us again

 

ρ ρ
ρ ρ

11 12

21 22

1
2

1
1









 =

−
+











i
i

 
(16.80)

which is the density matrix for right-handed polarized light.
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Problems

16.1 Complete the set of axes transformations, that is, 〈x′|x〉, 〈y′|x〉, 〈x′|y〉, 
and 〈y′|y〉, and proceed to derive Equations 16.17 through 16.20.

16.2 Circular polarization: using the same approach outlined in Equations 
16.42 through 16.45, derive the expression for |L′〉 given in Equation 
16.46.

16.3 Use the definition of the Stokes parameters given in Equations 16.52 to 
express the polarization density matrix given in Equation 16.53.

16.4 For the density matrix applicable to unpolarized light, Equation 16.54, 
find the values of ρ11 and ρ22 so that Tr(ρ) = 1.

16.5 Set a1 = a2 = 2−1/2 and δ = −π/2, in Equation 16.50, to obtain the density 
matrix for left-handed polarized light.
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17
Entangled Polarizations: 
Probability Amplitudes and 
Experimental Configurations

17.1 Introduction

In this chapter we derive the ubiquitous equation for the probability ampli-
tude of polarization entanglement of two photons moving away in different 
directions, from a common source. The first derivation is performed from 
a Hamiltonian approach using the two-state infrastructure taught to us by 
Feynman. The second derivation utilizes an interferometric approach, while 
the third approach is based on the original analysis used by Ward (1949). All 
these approaches rely on the Dirac notation, exclusively.

17.2 Hamiltonian Approach

First, we review some of the relevant notation: following Feynman (Feynman 
et al., 1965) in the treatment of a two-state system (see Chapter 8), we can 
define

 C C CII = +1 2  (17.1)

where

 C1 1= 〈 〉|φ  (17.2)

 C2 2= 〈 〉|φ  (17.3)
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and the amplitude of finding |ϕ〉 in a new state |II〉 is given by

 C IIII = 〈 〉 = 〈 〉 + 〈 〉| | |φ φ φ2 1  (17.4)

 〈 〈 + 〈II| | |= 2 1  (17.5)

which is equivalent to (Feynman et al., 1965)

 | | |II〉 = 〉 + 〉2 1  (17.6)

The amplitude for state |II〉 to be in |1〉 is

 〈 〉 = 〈 〉 + 〈 〉 =1 1 1 1 2 1| | |II  (17.7)

since |1〉 and |2〉 are base states. Also, from the basic principle

 〈 〉 =i j ij| δ  (17.8)

 〈 〉 = 〈 〉 =I I II II| | 1  (17.9)

 〈 〉 = 〈 〉 =II I I II| | 0  (17.10)

The dynamics of a two-state system can be described using (Feynman et al., 
1965)

 
i dC
dt

H Ci
ij j� = ∑

 
(17.11)

where Hij is the Hamiltonian. Since the resulting probability has a maximum 
value of one, we have

 | | | |C C1
2

2
2 1+ =  (17.12)

Now, going back to the principle

 
〈 〉 = 〈 〉〈 〉∑χ χ| | |φ φi i

i  
(17.13)

and setting χ = ϕ = II, for a two-state system, we get

 〈 〉 = 〈 〉〈 〉 + 〈 〉〈 〉II II II II II II| | | | |1 1 2 2  (17.14)

 〈 〉 = 〈 〉〈 〉 + 〈 〉〈 〉II II II II II II| | | * | | *1 1 2 2  (17.15)

 〈 〉 = +II II C C C CI I II II| * *
 (17.16)

 〈 〉 = +II II C CI II| | | | |2 2
 (17.17)
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Redefining

 
C C CII = +1

2 1 2( )
 

(17.18)

 
C C CI = −1

2 1 2( )
 

(17.19)

and substituting Equations 17.18 and 17.19 into (17.17), it can be verified that

 1 1
2

2
2= +C C  (17.20)

Thus, for a two-state system, using Equations 17.2 and 17.3, we can have

 
〈 〉 = 〈 〉 + 〈 〉( )II| | |φ φ φ1

2
1 2

 
(17.21)

 
〈 〉 = 〈 〉 − 〈 〉( )I| | |φ φ φ1

2
1 2

 
(17.22)

Following abstraction, Equation 17.22 can be restated as

 
〈 = 〈 − 〈( )I| | |1

2
1 2

 
(17.23)

which can also be written as

 
| | |I〉 = 〉 − 〉( )1

2
1 2

 
(17.24)

The probability amplitude given in Equation 17.24 can be reexpressed as

 
| | |s B A〉 = 〉 − 〉( )1

2  
(17.25)

Now, for an assembly of particles, Dirac (1978) expresses the ket for the 
assembly as

 | | | | ...|X a b c gn〉 = 〉 〉 〉 〉1 2 3  (17.26)

In this nomenclature, the numerical subscripts (1, 2, 3 …) refer to different 
individual particles. Thus, for two photons with different polarizations, we 
can have

 | | |B x y〉 = 〉 〉1 2  (17.27)
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where x refers to one polarization and y to the alternative polarization, so that

 
| | | | |s x y x y〉 = 〉 〉 − 〉 〉( )1

2 1 2 2 1
 

(17.28)

and using the identity |ϕ〉|ψ〉 = |ψ〉|ϕ〉

 
| | | | |s x y y x−〉 = 〉 〉 − 〉 〉( )1

2 1 2 1 2
 

(17.29)

where |s〉 is replaced by |s−〉 to highlight the sign inside the parentheses. This 
is the probability amplitude equation widely used, in the literature, to 
describe the polarization entanglement of two photons moving in opposite 
directions.

The same approach, starting on Equation 17.21, leads to

 
| | | | |s x y y x+〉 = 〉 〉 + 〉 〉( )1

2 1 2 1 2
 

(17.30)

In Equations 17.29 and 17.30, pairs of photons representing different polar-
izations are represented. These probability amplitudes, describing entangled 
pairs of photons with different polarizations, are the result of applying the 
Dirac identity for the representation of a series of different particles |X〉 = 
|a1〉 |b2〉 |c3〉 …|gn〉 that for two photons with different polarizations reduces 
to |B〉 = |x1〉 |y2〉. If the pair of entangled photons have the same polarization, 
we can have |B〉 = |x1〉 |x2〉 or |B〉 = |y1〉 |y2〉. Thus, an additional set of linear 
combinations for the probability amplitude are

 
| | | | |s x x y y−〉 = 〉 〉 − 〉 〉( )1

2 1 2 1 2
 

(17.31)

 
| | | | |s x x y y+〉 = 〉 〉 + 〉 〉( )1

2 1 2 1 2
 

(17.32)

17.2.1 Example

One further note: if instead of |X〉 = |a1〉 |b2〉 |c3〉 …|gn〉 we just have

 | | | | |X a b c g〉 = 〉 〉 〉… 〉  (17.33)

then Equation 17.29 becomes

 
| | | | |s x y y x−〉 = 〉 〉 − 〉 〉( )1

2  
(17.34)
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which, prior to normalization, can just be written as

 | | | | |s x y y x−〉 = 〉 〉 − 〉 〉( )  (17.35)

that is the original result obtained by Ward (1949).

17.3 Interferometric Approach

Consider the two-slit interference experiment as illustrated in Figure 17.1. 
The probability amplitude for a photon to propagate from the source s to the 
detector d, via apertures 1 and 2, is given by 〈d|s〉:

 〈 〉 = 〈 〉〈 〉 + 〈 〉〈 〉d s d s d s| | | | |2 2 1 1  (17.36)

With that background in mind, let us consider the geometry of an experiment 
with a central photon source emitting toward identical detectors (d1 = d2 = d), 
in opposite directions, via polarization analyzers p1 and p2, as illustrated in 
Figure 17.2. The corresponding probability amplitude can be described as

 〈 〉 = 〈 〉〈 〉 + 〈 〉〈 〉d s d p p s d p p s| | | | |2 2 1 1  (17.37)

which can be expressed in abstract form as

 | | | | |s p p s p p s〉 = 〉〈 〉 + 〉〈 〉2 2 1 1  (17.38)

1

2

dj

s

D d|j 

FIGURE 17.1
Schematics of double-slit interference experiment also known as two-slit interference experi-
ment and Young’s interference experiment.
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Now, using the identity |ϕ〉 = |j〉〈j|ϕ〉, we can write |s〉 = |p1〉〈p1|s〉. However, 
to differentiate between the two probability amplitudes, on the right-hand 
side, we write |A〉 = |p1〉〈p1|s〉 and |B〉 = |p2〉〈p2|s〉 so that

 | | |s B A〉 = 〉 + 〉  (17.39)

which, using |X〉 = |a1〉 |b2〉 |c3〉 …|gn〉, allows us to write

 | | | | |s x y y x〉 = 〉 〉 + 〉 〉1 2 1 2  (17.40)

Once normalized, this probability amplitude becomes

 
| (| | | | )s x y y x+〉 = 〉 〉 + 〉 〉1

2 1 2 1 2
 

(17.41)

and its linear combination is

 
| (| | | | )s x y y x−〉 = 〉 〉 − 〉 〉1

2 1 2 1 2
 

(17.42)

which are the ubiquitous probability amplitude equations associated with 
counterpropagating photons with entangled polarizations (Duncan and 
Kleinpoppen, 1988; Mandel and Wolf, 1995).

17.4  Pryce–Ward–Snyder Probability 
Amplitude of Entanglement

The initial link between quantum mechanical concepts and the polarization 
correlation of photons propagating in opposite directions was given by Wheeler 
(1946): “According to the pair theory, if one of these photons is polarized in 
one plane, then the photon that goes off in the opposite direction with equal 

Photon 1

d1 d2
p1 p2

θ1 θ2

Photon 2

Photon
pair

source

FIGURE 17.2
Basic two-photon polarization entanglement geometry assuming identical detectors (d1 = 
d2 = d). The θ1 and θ2 angles indicate the angular mobility of the respective polarizers desig-
nated as p1 and p2.
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momentum is linearly polarized in the perpendicular plane.” This fundamen-
tal idea, expressed by Wheeler, is crucial to the concept of quantum entangle-
ment. The pair theory is the theory of electron–positron pairs due to Dirac (1930).

Next, a description of the Ward derivation of the entangled polarizations 
probability amplitude is given based on a critical review of this subject by 
Duarte (2012): indeed, Ward (1949) uses Wheeler’s initial work on the posi-
tron–electron annihilation

 e e+ − → γγ  (17.43)

to produce counterpropagating correlated quanta as the inspiration of his 
work. In his thesis, the young Ward explains that Wheeler did attempt to 
calculate this effect but “through the neglect of interference terms he derived 
an incorrect, and in fact, far too small value for the angular correlations of 
the scattered quanta” (Ward, 1949).

Next we briefly describe Ward’s quantum argument included in his doc-
toral thesis (Ward, 1949), which was used to derive the correlation equation 
published by Pryce and Ward (1947). First, Ward considers the polarization 
alternatives for the x and y polarization axes related to two counterpropagat-
ing photons. These are

 | , ,| , ,| , ,| ,x x x y y x y y〉 〉 〉 〉  (17.44)

Since the first coordinate refers to photon 1 and the second coordinate refers 
to photon 2, we can write

 | , ,| , ,| , ,| ,x x x y y x y y1 2 1 2 1 2 1 2〉 〉 〉 〉

Next, Ward focuses on the momenta alternatives depicted in Figure 17.3 and 
writes (Ward, 1949)

 | , ,| ,+ − 〉 − + 〉k k k k  (17.45)

y

–k +k

x

FIGURE 17.3
Momenta coordinates applicable to the PW entanglement experimental configuration.

 



272 Quantum Optics for Engineers

Following a remarkable discussion that includes antisymmetrical single 
states, in both polarizations, and the importance of the condition of zero 
angular momentum, he arrives at (Ward, 1949)

 | , | , | , | ,x y y x k k k k1 2 1 2〉 − 〉( ) + − 〉 − − + 〉( )  (17.46)

Ward then provides an extensive argument that selects the equation above as 
the likely alternative for the correct physics (Duarte, 2012). Focusing on the 
polarization component exclusively, we have

 | , | ,x y y x1 2 1 2〉 − 〉( )  (17.47)

Using the identities given by Dirac (1978) (|x〉|y〉 = |x, y〉), this can be written as

 | | | |x y y x〉 〉 − 〉 〉( )1 2 1 2  (17.48)

and following normalization, we get

 

1
2 1 2 1 2| | | |x y y x〉 〉 − 〉 〉( )

 
(17.49)

and its linear combination is

 

1
2 1 2 1 2| | | |x y y x〉 〉 + 〉 〉( )

 
(17.50)

for quanta propagating in the opposite directions as depicted in Figure 17.4. 
These are the widely used equations to describe the probability amplitude of 

y

Photon 1

Positron source

Photon 2

Photon 2S1 S2

θ1 θ2

e1 e2

Φ1 Φ2

x

Photon 1

FIGURE 17.4
PW experiment for two-photon entangled polarizations. Photon 1 and photon 2 are emitted 
in opposite directions along the z axis, from a single source. The photons undergo Compton 
scattering at S1 and S2 thus being scattered at angles θ1 and θ2. The essence of this experiment 
consists in the following: (1) the emission of entangled photons in opposite directions, (2) the 
propagation of these photons in opposite directions, (3) angular selectivity at each of the prop-
agation paths, and (4) irreversible detection at the end of each propagation path. In this regard, 
this experimental configuration is equivalent to that described in Figure 17.2.
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entangled polarizations of quanta propagating in opposite directions (Bohm 
and Aharonov, 1957; Duncan and Kleinpoppen, 1988). Since probability 
amplitude equations of this form were also derived independently by Snyder 
et al. (1948), it has been proposed that they should be named Pryce–Ward–
Snyder (PWS) probability amplitudes (Duarte, 2012).

In his thesis, Ward (1949) uses these probability amplitudes as an initial 
step in the calculation that eventually yielded the quantum ratio for per-
pendicular polarization over parallel polarization counting rate (Pryce and 
Ward, 1947).

17.5 Pryce–Ward–Snyder Probability

In order to evaluate numerically the corresponding measurable, which is the 
corresponding probability, we use the PWS probability amplitude

 
| (| | | | )s x y y x〉 = 〉 〉 − 〉 〉1

2 1 2 1 2
 

(17.51)

in conjunction with the geometrical identities involved in rotating some 
generic polarization axis from x to x′ and so on (see Chapter 16):

 〈 ′ 〉 =x x| cosθ  (17.52)

 〈 ′ 〉 =y x| sin θ  (17.53)

 〈 ′ 〉 = −x y| sin θ  (17.54)

 〈 ′ 〉 =y y| cosθ  (17.55)

Thus, using Equation 17.51, the probability amplitude 〈x′|s〉 becomes

 
〈 〉 = 〈 〉 〈 〉 − 〈 〉 〈 〉( )x s x x x y x y x x′ ′ ′ ′ ′| | | | |1

2 1 2 1 2
 

(17.56)

and the corresponding probability is

 
| | | | | | |〈 〉 = 〈 〉 〈 〉 − 〈 〉 〈 〉( )x s x x x y x y x x′ ′ ′ ′ ′2

1 2 1 2
21

2  
(17.57)
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Substituting the corresponding trigonometric terms into Equation 17.57, 
we get

 
| | | (sin cos cos sin )〈 〉 = −x s′ 2

1 2 1 2
21

2
θ θ θ θ

 
( )〈 ′ 〉 = θ − θx s| | | 1

2
sin2 2

1 2
 

(17.58)

which allow us to evaluate numerically the probability depending on the 
settings θ1 and θ2. The PWS probability is applied to evaluate Bell’s inequal-
ity in Chapter 21.

17.6 Pryce–Ward Experimental Arrangement

The first experimental configuration including a central source emitting 
two correlated quanta in opposite directions is due to Pryce and Ward 
(1947) and is depicted in Figure 17.4. The two counterpropagating quanta 
undergo Compton scattering at S1 and S2 that causes the respective photons 
to be scattered at angles θ1 and θ2. The essence of this experiment consists in 
(1) the emission of entangled photons in opposite directions, (2) the propaga-
tion of these photons in opposite directions, (3) angular selectivity at each 
propagation path, and (4) irreversible detection at the end of each propaga-
tion path.

Duarte (2012) goes into a detailed discussion on the origin of the ideas that 
culminated in the PW configuration. In this regard, the first written, nondia-
grammatic, description of this type of experiment was provided by Wheeler 
(1946), while Pryce and Ward (1947) also mention a proposal by R. C. Hanna. 
However, all participants appear to refer to Dirac himself as the source of the 
seminal idea (Duarte, 2012). Certainly, Snyder et al. (1948) also disclosed an 
experimental diagram that they based on Wheeler’s suggestion.

17.7 Wu–Shaknov Experiment

Following the publications of Pryce and Ward (1947) and Snyder et al. 
(1948), Wu and Shaknov (1950) reported experimental results on the maxi-
mum polarization ratio of the two counterpropagating quanta (2.04 ± 0.08) 
that was only ∼2% higher than the theoretical value, as per the PW theory. 
Other experimental efforts were those of Hanna (1948) and Bleuler and 
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Bradt (1948). The literature as presented here led Dalitz and Duarte (2000) 
to state explicitly that the correct quantum theory for entangled quantum 
traveling in opposite directions was already known in 1947 and already con-
firmed by experiment by 1950.

17.7.1  Relevance of the Pryce–Ward Theory 
and the Wu–Shaknov Experiment to EPR

Here, we quote directly from relevant publications on the importance of 
the PWS theory and the Wu and Shaknov (WS) experiment to the Einstein, 
Podolsky, and Rosen (1935) (EPR) paradox (see Chapter 21).

First, in their original paper, Wu and Shaknov (1950) refer to the theory 
behind their experiment: “As early as 1946 J. A. Wheeler proposed an experi-
ment to verify a prediction of pair theory, that the two quanta emitted in the 
annihilation of a positron–electron pair, with zero angular momentum, are 
polarized at right angles to each other… The detailed theoretical investiga-
tions were reported by Pryce and Ward and Snyder et al.” This is a clear and 
explicit statement providing a firm nexus between the PWS theory and the 
WS experiment.

Next is the link between the WS experiment and the EPR paradox. In this 
regard, Bohn and Aharanov (1957) write in reference to the WS experiment: 
“Thus, the paradox of EPR can equally well be tested by polarization prop-
erties of pair of photons.” Via simple deduction, if the experiment of Wu 
and Shaknov is considered as an EPR-type experiment, equally relevant 
should be the theory and experimental scheme disclosed by Pryce and Ward 
(Duarte, 2012).

The Bohm and Aharanov (1957) opinion on the WS experiment was ques-
tioned by some authors (Peres and Singer, 1960). However, this criticism 
was explicitly rejected by these authors: “In a previous paper (Bohm and 
Aharanov, 1957) we have discussed the paradox of Einstein, Podolsky, 
and Rosen (1935), and we have shown that the Wu- Shaknov experiment 
(Wu and Shaknov, 1950)… provides an experimental confirmation of the fea-
tures of quantum mechanisms which are the basis of the above paradox” 
(Bohm and Aharanov, 1960).

Following the publication of the famous Bell (1964) paper, other authors 
argued that the WS experiment did not produce “evidence against local 
hidden-variable theories” given the “use of Compton polarimeters” (Clauser 
et al., 1969). Wu and colleagues responded that “even though a Compton 
experiment cannot rule out hidden-variable theories, it can provide strong 
evidence against them” (Kasday et al., 1975). Dalitz and Duarte (2000) also 
argue that the PWS theory and the WS experiment provide evidence against 
local realism.

From a historical perspective, it should be mentioned that the 1957 Bohm 
and Aharanov paper became the inspiration of researchers interested in 
optical experiments on entangled polarizations (see, e.g., Aspect et al. 1982).
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17.8 Conclusion

The theory of entangled quantum polarizations, central to EPR-type optical 
experiments, was established in the 1947–1949 period by Pryce and Ward 
(Pryce and Ward 1947; Ward 1949) and independently by Snyder et al. (1948). 
Thus, it would be proper to name the expression

 
| | | | |s x y y x〉 = 〉 〉 − 〉 〉( )1

2 1 2 1 2

as the PW probability amplitude or the PWS probability amplitude. Here, 
we have established that in addition to Ward’s original derivation, it is pos-
sible to arrive at this equation using the Hamiltonian approach and a direct 
interferometric approach.

On a broader perspective, the evidence presented here tends to indicate 
that the physics of quantum entanglement, as initiated by Dirac, discussed 
by Wheeler, and resolved by Pryce and Ward, would still be here even in 
the apparent absence of interpretational questions (see Chapter 21). In other 
words, the physics of polarization entanglement was established as a purely 
quantum physics result independent of interpretational efforts.

This is an observation of fundamental importance that is not widely 
appreciated.

Problems

17.1 Verify that substituting Equations 17.18 and 17.19 into 17.17 yields 
Equation 17.20.

17.2 Show that Equation 17.35 in its normalized version becomes

 
| | | | |s x y y x〉 = 〉 〉 − 〉 〉( )1

2 1 2 1 2

17.3 Show that substitution of Equations 17.52 and 17.54 into Equation 17.56 
leads to the PWS probability given in Equation 17.58

17.4 Using Equation 17.51, in conjunction with Equations 17.53 and 17.55, 
find the probability amplitude 〈y′|s〉.

17.5 For θ1 = π/3 and θ2 = π/6, evaluate the PWS probability using Equation 
17.58.
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18
Quantum Computing

18.1 Introduction

Quantum computing is a very active field producing many publications and 
varied perspectives. Here, we have chosen, once again, to follow Feynman’s 
path given that his contributions are among the earliest in the field and the 
transparency of his approach is unmatched. Thus, the material presented 
here is primarily based on Feynman’s paper entitled Quantum Mechanical 
Computers (Feynman, 1985, 1986). However, further material including addi-
tional concepts, not included in the Feynman paper, is also presented.

In the discussion that follows, the term universal computer is applied to 
traditional transistor-based computers using Boolean algebra executed by 
logical gates such as AND, OR, NOT, NAND, and NOR. The beauty of uni-
versal computers is that by via the use of mathematical equations, expressed 
in the logical language of the computer, it can accurately simulate scientific 
processes of interest. Their scope of applications is extremely wide. A disad-
vantage of the universal computer is that, for certain classes of calculations, 
they can consume more energy than desired, and they can be slower than 
desired. From a practical perspective, the issue of computational speed is 
very important.

There is a cost and efficiency motivation to replace universal computers 
that take too much time to perform computationally intensive calculations. 
This stimulates interest in new computer technologies.

Physical computers, such as optical computers, can be extremely fast to 
perform certain computational tasks that demand relatively long computa-
tional times in universal computers; however, the range of applications they 
offer is limited. An example of this class of computer, an interferometric 
computer, is described in the next section.

A quantum computer, as the name suggests, is a computer that can oper-
ate at the quantum level thus offering enormous improvements in energy 
consumption and size reductions (Bennett, 1982; Feynman, 1985, 1986). 
Significant size reductions and the use of photons should also lead to vast 
improvements in computational speed. The concept of a quantum computer 
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goes beyond physical computers and seeks to offer an alternative universal 
computer. It does so by utilizing analogs to bits known as qubits.

These qubits can take a physical representation at the quantum level and 
allow the performance of Boolean logic operations. Here an introduction to 
this fascinating subject is provided while using the mathematical tools and 
quantum concepts already introduced in this book.

18.2 Interferometric Computer

The N-slit laser interferometer (NSLI), as an example of a physical or optical 
computer, is discussed by Duarte (2003). A simplified diagram of the NSLI is 
shown in Figure 18.1.

Interferograms recorded with the NSLI have been compared for numerous 
geometrical and wavelength parameters with interferograms calculated via 
the interferometric equation
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Expanded TEM00
laser beam at
wavelength λ

N-slit array Digital detector
(CCD or CMOS)

s j

w

x

D x|j 

FIGURE 18.1
NSLI configuration. Critical parameters are the laser wavelength λ, the number of slits N, the 
dimension of the slits w, and the intra-interferometric distance D〈x|j〉.
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One such case is considered in Figure 18.2. The measured interferogram is 
displayed at the top of Figure 18.2 and the corresponding theoretical inter-
ferogram is included in the lower trace of Figure 18.2. In this regard, it should 
be mentioned that good agreement, between theory and experiment, exists 
from the near to the far field. Observed differences, especially at the baseline, 
are due to thermal noise in the digital detector that is used at room tempera-
ture. Further comparative aspects are discussed in Chapter 4.
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FIGURE 18.2
(a) Measured near-field interferogram using the NSLI for N = 23, λ = 632.8 nm, and 
D〈x|j〉 = 1.5 cm. Slits are 100 μm wide separated by 100 μm. (b) Calculated near-field interfero-
gram for N = 23, λ = 632.8 nm, and D〈x|j〉 = 1.5 cm. Slits are 100 μm wide separated by 100 μm 
(Reproduced from Duarte, F.J., Opt. Commun. 103, 8, 1993, with permission from Elsevier.).
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The interferometric calculations, using the interferometric equation to pro-
gram a universal computer, require the following input information:

 1. Slit dimensions: w
 2. Standard of deviation of the slit dimensions: ∆w

 3. Interslit dimensions
 4. Standard of deviation of interslit dimensions
 5. Wavelength: λ
 6. N-slit array, or grating, screen distance: D〈x|j〉

 7. Number of slits: N

The Boolean algebra program, based on the interferometric equation, also 
gives options for the illumination profile and allows for multiple-stage cal-
culations. That is, it allows for the propagation through several sequential 
N-slit arrays prior to arrival at x as considered in Chapter 4.

An interesting aspect of comparisons, between theory and experiment, is 
that for a given wavelength, set of slit dimensions, and distance from j to x, 
calculations in a conventional universal computer take longer as the number 
of slits N increases. In fact, the computational time t(N) behaves in a non-
linear fashion as N increases. This is clearly illustrated in Figure 18.3 where 
t = 0.96 s for N = 2 and t = 3111.2 for N = 1500 s (Duarte, 1996). By contrast 
all of these calculations can be performed in the NSLI at a constant time of 
∼30 ms, which is a time mainly imposed by the integration time of the digital 
detector. Certainly, the generation and propagation of the interferogram is 
performed at speeds near the speed of light c.

In this regard, following the criteria outlined by Deutsch (1992), the NSLI 
can be classified as a physical, or interferometric, computer that can perform 
certain specific computations at times orders of magnitude below the com-
putational time required by a universal computer. Among the computations 
that the interferometric computer can perform are

 1. N-slit array interference calculations
 2. Near- or far-field diffraction calculations
 3. Beam divergence calculations
 4. Wavelength calculations

For this limited set of tasks, the interferometric computer based on the 
NSLI outperforms, by orders of magnitude, universal computers. Hence, 
it can be classified as a very fast, albeit limited in scope, optical com-
puter. The advantage of the universal computer remains its versatility 
and  better signal to noise ratio. Also, in the universal computer, there is 
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access to intermediate results at all stages of the computation. This is not 
allowed in the NSLI where access is strictly limited to the input stage and 
the final stage of the computation. Attempts to acquire information about 
 intermediate stages of the computation can destroy the final answer (see 
Chapter 11).

The interferometric computer is a macroscopic apparatus that allows 
the control of photon propagation via the probabilistic laws of quantum 
mechanics. The term quantum computer, however, applies to devices at the 
atomic scale that can be used to control the emission and/or propagation of 
quantum radiation obeying quantum logic rules.

18.3 Classical Logic Gates

Classical universal computers function based on logical operations per-
formed by a series of gates such as the OR and AND gates and the negation 
gates NOT, NOR, and NAND.
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FIGURE 18.3
Computational time in a mainframe universal computer as a function of number of slits. The 
first four points are 0.96 s for N = 2, 1.14 s for N = 10, 7.03 s for N = 50, and 14.33 s for N = 100. 
For these calculations λ = 632.8 nm, D〈x|j〉 = 75 cm. Slits are 30 μm wide separated by 30 μm 
(Duarte, 1996).
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Feynman, in his article, focuses in particular on the primitive ele-
ments NOT, AND, FAN OUT, and EXCHANGE. To this list he also adds 
the reversible primitives NOT, CONTROLLED NOT, and CONTROLED 
CONTROLLED NOT.

Figure 18.4 illustrates the NOT gate, Figure 18.5 the NAND, and 
Figure 18.6 the NOR gates with their corresponding transistor circuitry.

a a΄

a΄

a

Vcc

FIGURE 18.4
Symbol for NOT gate and transistor circuit of NOT gate using NMOS technology. NMOS technol-
ogy refers to field effect transistors fabricated with n-type metal–oxide–semiconductors (MOS).
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b

b

a

c΄

c΄

Vcc

FIGURE 18.5
Symbol for NAND gate and transistor circuit of NAND gate using NMOS technology.
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For an input a and an output a′, the truth table for the NOT gate is

 

a a′
0 1
1 0

For inputs a and b and output c′, the truth table for the AND gate is

 

a b c′
0 0 0
0 1 0
1 0 0
1 1 1

For inputs a and b and output c′, the truth table for the NAND gate is

 

a b c′
0 0 1
0 1 1
1 0 1
1 1 0

a

b

c΄

Vcc

b

a c΄

FIGURE 18.6
Symbol for NOR gate and transistor circuit of NOR gate using NMOS technology.
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For inputs a and b and output c′, the truth table for the OR gate is

 

a b c′
0 0 0
0 1 1
1 0 1
1 1 1

For inputs a and b and output c′, the truth table for the NOR gate is

 

a b c′
0 0 1
0 1 0
1 0 0
1 1 0

Feynman pays particular attention to the CNOT gate. In this gate the value 
of the output b′ is changed if and only if the value of a = 1, so that the truth 
table is

 

a b a b′ ′
0 0 0 0
0 1 0 1
1 0 1 1
1 1 1 0

18.4 Qubits

In his paper, Feynman (1985, 1986) relates the concept of bit to the states |1〉 
and |0〉 and goes on to explain that one bit can be represented by a sin-
gle atom being in one of these two states. As we have learned before, any 
two states can be expressed as a linear combination forming a probability 
amplitude

 | | |ψ〉 = 〉 + 〉c c1 20 1  (18.3)

where c1 and c2 are complex numbers. States such as |1〉 and |0〉 are known 
as qubit, short for quantum bit, thus named in terminology introduced 
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in 1995 (Schumacher, 1995). The normalized version of this probability 
amplitude becomes (see Chapter 17)

 
| | |ψ〉 = 〉 + 〉( )1

2
0 11 2c c

 
(18.4)

The |1〉 and |0〉 states can also be entangled. In that case, as we saw in 
Chapter 17, the probability amplitude can be expressed via equations like

 
| | | | |φ〉 = 〉 〉 − 〉 〉( )1

2
0 1 1 0

 
(18.5)

For spin one-half particles, the |1〉 and |0〉 states can also be abbreviated 
as |↑〉 and |↓〉 so that the Pryce–Ward–Snyder (PWS) probability amplitude 
would read as

 
| | | | |φ ↑ ↑〉 = ↓〉 〉 − 〉 ↓〉( )1

2  
(18.6)

which can also be written as

 
| | | | |φ〉 = 〉 〉 − 〉 〉( )1

2
0 1 1 0

 
(18.7)

or

 
| | |φ〉 = 〉 − 〉( )1

2
01 10

 
(18.8)

For more than two entangled states, we can have |1010〉 that is equivalent to 
|↑↓↑↓〉 and we can use the PWS probability amplitude to express linear com-
binations of these entangled states.

18.5 Quantum Logic

Feynman (1985) defines a 2 × 2 matrix that he calls Aa as

 
Aa =











0 1
1 0

 
(18.9)

and makes the observation that this matrix corresponds to the format of the 
NOT truth table. Previously, in Chapter 14, we had identified this matrix, 
which is also the σx Pauli matrix, with the matrix performing polarization 
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rotation by π/2. Feynman then defines an operator matrix â that in atom a per-
forms the operation |1〉→|0〉 so that

 
â =











0 1
0 0

 
(18.10)

However, if the initial state is |0〉, then |0〉→|0〉. The transpose conjugate of 
this matrix is

 

ˆ *a =










0 0
1 0

 
(18.11)

so that

 

ˆ ˆ *aa =










1 0
0 0

 
(18.12)

 

ˆ*ˆa a =








 =









 −











0 0
0 1

1 0
0 1

1 0
0 0

 
(18.13)

 ˆ*ˆ ˆ ˆ*a a aa+ = 1  (18.14)

Thus, the Aa matrix can be expressed as

 A a aa = +ˆ ˆ*  (18.15)

and the CNOT matrix can be expanded into

 A a a b b aaa b, * ( * ) *= + +ˆ ˆ ˆ ˆ ˆ ˆ
 (18.16)

18.5.1 Pauli Matrices and Quantum Logic

In addition to the σx Pauli matrix

 
σx =











0 1
1 0

 
(18.17)

which materialized in the form of the Aa (Equation 18.9), the other two Pauli 
matrices

 
σy

i
i

=
−









0
0

 
(18.18)
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and

 
σz =

−










1 0
0 1

 
(18.19)

are also applicable to quantum computing. As we have already seen, the σx 
matrix rotates linear polarization by π/2 and can be applied to describe a 
quantum NOT gate.

The σy and σz can be applied for additional rotational operations in the 
Poincaré space.

18.5.2 Quantum Gates

Here, we briefly mention the experimental realization of the first quan-
tum CNOT gate by Wineland and colleagues (Monroe et al., 1995) that 
applied a scheme proposed by Cirac and Zoller (1995). The experiment 
uses laser cooling of a single 9Be+ ion. The transitions involve two 2S1/2 
hyperfine ground states, that is, four basis states. The control states are 
denoted by |1〉 and |0〉 type notation and are identified with |n〉. The spin 
one-half states are denoted by |↑〉 and |↓〉 type notation and are identified 
with |S〉.

The four basis states are |0〉|↓〉, |0〉|↑〉, |1〉|↓〉, and |1〉|↑〉. This register is 
achieved by applying two off-resonance tunable laser beams to the ion thus 
stimulating Raman transitions between the basis states.

Monroe et al. (1995) define the carrier frequency ω0 as the frequency dif-
ference between the two 2S1/2 hyperfine doublets and ωx as the frequency 
difference from one hyperfine to the other (ωx < ω0). When the difference 
in frequency of the laser beams is approximately equal to ω0, transitions 
are driven between |S〉 states while preserving |n〉. When the difference in 
frequency of the laser beams is approximately equal to (ω0 − ωx), transi-
tions are driven between |1〉|↓〉 and |0〉|↑〉. When the laser frequency differ-
ence is (ω0 + ωx), transitions are driven between |0〉|↓〉 and |1〉|↑〉. Without 
further description of the experimental details, let us say that Moore et al. 
(1995) were able to observe the following relations between input and out-
put states:

 

| | | |
| | | |
| | | |
| | | |
| |

n S n Si i o o〉 〉 〉 〉
〉 ↓〉 〉 ↓〉
〉 ↑〉 〉 ↑〉
〉 ↓〉 〉 ↑〉
〉 ↑〉

0 0
0 0
1 1
1 || |1〉 ↓〉
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Comparison with the classical CNOT truth table

 

a b a b′ ′
0 0 0 0
0 1 0 1
1 0 1 1
1 1 1 0

indicates a direct correlation, as intended.
A quantum NOT gate generated using single-photon emission in a mac-

roscopic parametric amplification experiment is described by Pelliccia et al. 
(2003). These authors realized the quantum NOT operation via polarization 
measurements.

Beyond macroscopic realizations of the quantum NOT gate, it is not dif-
ficult to imagine half-wave plates at the atomic level or broadband prismatic 
polarization rotators at the atomic level.

Problems

18.1 Using Equations 18.10 and 18.11, show that â*â + ââ* = 1.
18.2 Using Equations 18.10 and 18.11, show that Aa = â + â*.
18.3 For the CNOT gate, define b̂ and b̂* and show that Aa,b = â*â(b̂ + b̂*) + ââ*.
18.4 Discuss how a half-wave plate could be implemented at the atomic 

level to realize a quantum NOT gate.
18.5 Discuss how a broadband prismatic polarization rotator could be 

implemented at the atomic level to realize a quantum NOT gate.
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19
Quantum Cryptography and Teleportation

19.1 Introduction

Cryptography is a word derived from the Greek that is approximately translated 
as hidden writing. There are various forms and styles of cryptography; however, 
since ancient times the aim of cryptography has been the same: secure the 
transmission of information from an emitter to a receiver. A classical form 
of cryptography involves the sharing of a code between the emitter and the 
receiver. The emitter writes a message, using the shared code, and sends it to 
the intended receiver who uses the code to decipher the message. The integrity 
of the message is secured if and only if the code remains in the knowledge 
of the emitter and the intended receiver only. If the code is acquired, or bro-
ken, by a third party, then the message is no longer secured. An example of a 
simple classical numerical code is illustrated in Figure 19.1 and used to write 
the number π to 10 decimal places.

Albeit still in use, classical paper-based code systems have been largely 
replaced by various computerized mathematical methods that enable the elec-
tronic transmission of encrypted messages. The message is encrypted prior 
to transmission, transmitted via an unsecured channel in encrypted form, 
and decoded, once received. A widely used system of encryption, of this 
class, is known as symmetric key algorithm. This approach utilizes the same 
cryptographic key, or classical algorithm, for encryption and decryption (see 
Figure 19.2).

A different algorithmic approach allows the use of a public key and is 
known as public key cryptography. This approach uses a public key and 
a  secured key, both of which are mathematically connected. One key 
encrypts the plaintext and the other unlocks the ciphertext (see Figure 19.3). 
The algorithmic methods just described enjoy compatibility with the vast 
array of existing computer networks and are thus widely used. There are 
many extensions and variations of these classical algorithmic methods.

Against this background, optical methods of communications offer alter-
natives that include some inherent advantages. In Chapter 11 we described 
a method of secure optical communications known as interferometric 
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communications that involve the transmission of interferometric characters at 
luminal speeds. This method does not require a key, although one might be 
added for added security, and is based on the fact that the interferometric 
character is catastrophically distorted or destroyed by attempts of intercep-
tion. Thus, any attempt of intersection is immediately detected by the receiver.

3

0 1 2 3 4 5 6 7 8 9

1 4 1 5
Message

Encrypted message

9 2 6 5 3 5.

FIGURE 19.1
Classical code representation for the truncated value of π to 10 decimal places. The key is 
included as a third item.

Message Encryption

Unsecured
transmission

Secured key
transmission

Deciphering Message

FIGURE 19.2
Classical symmetric key distribution. The same cryptographic key, or classical algorithm, is 
used for encryption and decryption.

Unsecured
transmission

Encryption Deciphering Message

Private keyPublic key

Message

FIGURE 19.3
Classical public key cryptography. This approach uses a public key and a secured key, both of 
which are mathematically related.
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An alternative method, which has received widespread attention in the 
open literature, is quantum cryptography. That method is described here in 
addition to a closely related discipline called quantum teleportation.

19.2 Quantum Cryptography

Quantum cryptography was first introduced by Weisner in 1983 and then by 
Bennett and Brassard (1984). A refined protocol was introduced by Bennett 
et al. (1992a). The Bennett and Brassard approach (BBA) relies on the straight-
forward polarization property of single photons. An alternative method, 
based on the quantum entanglement of pairs of photons, was introduced 
by Ekert (1991). Here, these two approaches to quantum cryptography are 
introduced with emphasis on the optics.

19.2.1 Bennett and Brassard Approach

In the BBA we have a single-photon emitter, often referred to in the literature 
as Alice, and a receiver, often referred to in the literature as Bob. There is 
also an adversary intruder, or eavesdropper, whose function is to optically 
intercept the transmission. This interceptor is often referred to in the litera-
ture as Eve.

Since our emphasis is the optics, we shall use mostly the terms emitter, 
receiver, and interceptor.

The BBA relies on the quantum polarization properties of single photons. 
In this regard, the polarization states of the photon are referred to as base 
states, and two bases are said to be conjugated in the sense that an attempt 
of measuring one base randomizes the other. Bennett et al. (1992a) refer to 
these conjugate bases as canonical bases. The canonical bases for polarized 
photons are

 | |H x〉 = 〉  (19.1)

 | |V y〉 = 〉  (19.2)

 
| | |L x i y〉 = 〉 − 〉( )1

2  
(19.3)

 
| | |R x i y〉 = 〉 + 〉( )1

2  
(19.4)
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which correspond to horizontally (|H〉 or ↔), vertically (|V〉 or ↕), left- 
circularly (|L〉), and right-circularly (|R〉) polarized photons. The reader 
should recognize Equations 19.3 and 19.4 (see Chapter 17).

Bennett et al. (1992a) describe a quantum key distribution protocol that 
involves the emitter sending a random series of photons polarized in the 
canonical bases, the receiver choosing independently how to measure the 
polarizations (either rectilinearly [+] or circularly [Ο]), the receiver publicly 
announcing his measuring sequence (but not the results), the emitter pub-
lishing which of the receiver’s bases were correct, then both parties agree 
to discard the data from incorrect measurements and null measurements, 
and finally the measurements are in bit form according to their polarization 
form. Following the style of Bennett et al. (1992a), an example of such proto-
col is given next with a summarized listing of each action:

 

1
2
3
4
5

↔ ↔ ↔ ↔
+ + + + + + + +
↔ ↔ ↔
+ + + + +
• • • • •

L R L L R L

R L R L

� � � � �

� �

Ο Ο Ο Ο Ο Ο Ο

Ο Ο Ο Ο
•• •

↔ ↔ ↔6
7 0 1 1 0 0 0 1

R L� �

 1. Emitter sends a random sequence of polarized photons: linear verti-
cal (↕), linear horizontal (↔), right circular (R), and left circular (L).

 2. Receiver measures the emitted photon’s polarization using a series 
of random bases, which are either rectilinear (+) or circular (Ο).

 3. Measurements result at the receiver, and some measurements are null.
 4. Receiver reveals to emitter the bases he used for photon detection.
 5. Emitter reveals to receiver which bases are correct.
 6. The correct data are stored.
 7. The data are interpreted in binary form using (↔ = L = 0) and 

(↕ = R = 1).

The series of qubits thus obtained is referred to as the raw quantum trans-
mission. A diagram depicting this quantum transmission methodology is 
shown in Figure 19.4.

A schematic of an experimental apparatus based on the description of 
Bennett et al. (1992a) is given in Figure 19.5. In essence what we have here is a 
single-photon source followed by a polarizer that polarizes the light horizon-
tally (↔). Next, the polarized photon goes through two electro-optics phase 
shifters (Pockels cells, see Chapter 15), which enable the generation of light 
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polarized in the ↔, ↕, L, and R states. These are the emitter’s, or sender’s, 
Pockels cells (EPC). Next the polarized photon propagates in free space and 
is received at the receiver’s Pockels cell (RPC). The arriving photon then goes 
through a calcite Wollaston prism (WP) that provides two different paths for 
the ↔ and ↕ polarized photons onto their respective photomultiplier tubes.

Following the raw quantum transmission, the emitter and the receiver 
continue comparing polarizations of transmitted photons. The main pur-
pose of this exercise is to characterize the system for noise and to compare 
its performance with statistical expectations for the effects of eavesdropping 
or interception of polarized photons. The subject of signal interception is 
rather extensive and will not be treated here; interested readers might refer 
to the discussion offered by Bennett et al. (1992a). However, what is relevant, 
from the optics perspective, is that the presence of errors in the transmission 
is complicated by issues of detector noise, atmospheric turbulence, and the 

0011010 LR L R L

Unsecured
transmission

++5

0 11   0

4

O+

+OO++O+

FIGURE 19.4
The Bennett–Brassard quantum cryptography method. The emitter is one of the two partici-
pants. The numbers 4 and 5 refer to the stages 4 and 5 in the Bennett–Brassard methodology 
described in the text.

SPS EPC RPC WP

PMT

L R

P

PMT

FIGURE 19.5
Top view of a generic experimental configuration applicable to the Bennett–Brassard protocol. 
The emission from a single-photon source (SPS) is linearly polarized by a polarizer (P). Then 
follows a polarization control system usually comprised of the EPC (see text). These are phase 
shifters used to select ↔, ↕, L, or R polarization states. Following propagation the photon reaches 
the RPC prior to being discriminated by a WP. For a description of the WP, refer to Chapter 15.
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inherent uncertainties related to single-photon emission and transmission. 
At this stage we should mention that Bennett et al. (1992b) are of the opinion 
that the Bennett and Brassard protocol is equivalent to methods based on 
quantum entanglement and Bell’s theorem.

Finally, it should also be mentioned that albeit this discussion has centered 
on free-space propagation of polarized single photons, more recent alterna-
tive formats of the Bennett–Brassard protocol use fiber propagation, over 
distances beyond 100 km, and interferometric systems to prepare and detect 
the photons (see, e.g., Gobby et al., 2004).

An interferometric alternative applicable to the Bennett–Brassard protocol 
has been described by Bennett (1992). In this approach a Mach–Zehnder inter-
ferometer (see Chapter 10) is used to connect interferometrically the emitter 
(Alice) and the receiver (Bob) as illustrated in Figure 19.6. A phase shifter 
(PSA) allows the emitter to randomly induce 0, π/2, π, 3π/2 phase shifts (PSs) 
in the j − M2 −k path while the receiver can apply random 0, π/2 PSs in the 
j − M1 − k arm. Following transmission Alice and Bob agree publicly to keep 
the polarizations that only differ by 0 or π (Bennett, 1992).

19.2.2 Polarization Entanglement Approach

As mentioned in the previous section, an alternative approach, in quantum 
cryptography, to the straight Bennett and Brassard protocol involves the use 
of pairs of photons with entangled polarizations. Interest in this methodol-
ogy was triggered by a paper by Ekert (1991) that described a cryptographic 
approach using spin one-half particles and Bell’s theorem via the Bohm–EPR 

PSB

M1

M2
s

j

x΄

x
k

PSA

FIGURE 19.6
Mach–Zehnder interferometer configuration applied to the Bennett–Brassard protocol. PSA 
represents the PS alternative for the emitter (Alice), while PSB represents the PS alternative for 
the receiver (Bob). Detectors are positioned at x and x′.
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perspective (see Chapter 17). To make things simpler, our approach will con-
sider directly the physics of entanglement as embodied by the Pryce–Ward–
Snyder (PWS) probability amplitude equations of the form (see Chapter 17, 
Equations 17.29 through 17.32)

 
| | | | |s x y y x〉 = 〉 〉 − 〉 〉( )−

1
2 1 2 1 2

 
(19.5)

 
| | | | |s x y y x〉 = 〉 〉 + 〉 〉( )+

1
2 1 2 1 2

 
(19.6)

 
| | | | |r x x y y〉 = 〉 〉 − 〉 〉( )−

1
2 1 2 1 2

 
(19.7)

 
| | | | |r x x y y〉 = 〉 〉 + 〉 〉( )+

1
2 1 2 1 2

 
(19.8)

The equations apply to pairs of photons created at the same source and 
then propagate away in different optical paths. Although originally these 
optical paths were considered to be in directly opposite directions (Pryce 
and Ward, 1947; Snyder et al., 1948; Ward, 1949), obviously the same phys-
ics applies for divergent paths at any given angular separation. In the Ekert 
protocol the users, both receivers, use polarization analyzers randomly and 
independently.

Also, remember that in the PWS notation, x means horizontal polariza-
tion (↔) and y means vertical polarization (↕). Thus, the qubits |x〉 and |0〉 
are equivalent and so are the qubits |y〉 and |1〉. Using commonly accepted 
photon cryptographic notation, Equations 19.5 and 19.6, for example, can be 
expressed as

 
| | | | |s〉 = 〉 〉 − 〉 〉( )−

1
2

0 1 1 01 2 1 2
 

(19.9)

 
| | | | |s〉 = 〉 〉 + 〉 〉( )+

1
2

0 1 1 01 2 1 2
 

(19.10)

In this approach both participants share the entangled pair. Also, as sug-
gested in Figure 19.7, the source of entangled photon pairs might be remotely 
located relative to both participants, which is a departure from the Bennett 
and Brassard method and the interferometric communications described in 
Chapter 11. In those methods, one of the participants, the emitter (or Alice), 
controls the emission process.
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A realization of the Ekert approach has been published by Naik et al. 
(2000). In their experiment these authors use spontaneous parametric down 
conversion to produce pairs of entangled photons propagating in diver-
gent paths. The receiving optics includes a PS set composed of a randomly 
driven liquid crystal (LC) followed by a half-wave plate (HWP). The photon 
then proceeds to a polarizing beam splitter prior to arrival to a detector. An 
approximate depiction of this type of optical configuration is provided in 
Figure 19.7.

In their description, Naik et al. (2000) consider a probability amplitude of 
the form of Equation 19.8:

 
| | | | |s〉 = 〉 〉 + 〉 〉( )+

1
2

0 0 1 11 2 1 2
 

(19.11)

and each receiver proceeds to measure the polarizations using the bases

 
| |0 11 1〉 + 〉( )eiα

Intruder

EPPS

PS
WP

Alice D1

D1΄

Bob

PS
WP

D2

D2΄

FIGURE 19.7
Top view of a generic experimental configuration applicable to cryptography using the entan-
gled photon pair approach. In this configuration both participants might be separated from 
the source that could be remotely located in a satellite, for instance. Alternatively, one of the 
participants (Alice) could be next to the photon pair source, as depicted here. The emission is 
produced in an entangled photon pair source (EPPS) as available from parametric down con-
version (see Appendix A). One photon goes to Alice where it is incident on an optical system 
consistent of PS optics followed by polarization selective optics such as a WP. Polarizations 
are either vertical (or perpendicular to the plane of incidence [•]) or horizontal (parallel to the 
plane of incidence [↔]).
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and

 
| |0 12 2〉 + 〉( )eiβ

In this process one receiver performs these measurements using four values 
of α and the other using four values of β (in increments of π/4 rads). As cus-
tomary the receivers then publish the bases used but not the results of the 
measurements. These authors then use the detection probabilities, as a func-
tion of α and β, to perform Bell’s inequality-type calculations (see Chapter 21) 
to test for the presence of an intruder (Naik et al., 2000).

A free-space experiment over a distance of 144 km was reported by Ursin 
et al. (2007).

In this configuration one of the participants (Alice) is at the source of emis-
sion and the receiver (Bob) at a remote location 144 km away. These authors 
used a photon source comprised by a laser-pumped spontaneous parametric 
down converter and receiver optical configurations including a phase shifter 
(HWP) and a polarizer beam splitter (PBS). The basic elements of this con-
figuration are as depicted in Figure 19.7; however, this time Alice is next to 
the emitter and receives the photon pairs via fiber optics.

Ursin et al. (2007) consider a probability amplitude of the form of 
Equation 19.6

 
| | | | |s〉 = 〉 〉 + 〉 〉( )+

1
2

0 1 1 01 2 1 2
 

(19.12)

and proceeded to use four angular settings, for each receiver, to perform 
Bell’s inequality-type calculations to test for the presence of an intruder. 
Their results yield Bell’s parameter of S = 2.508 ± 0.0037 (see Chapter 21) 
(Ursin et al., 2007).

19.3 Quantum Teleportation

Quantum entanglement of two linearly polarized photons is based on the 
PWS probability amplitudes (see Chapter 17; Duarte, 2012), which are often 
expressed as a simplified version of Equations 19.5 through 19.8:

 
| | |s〉 = 〉 − 〉( )−

1
2

0 1 1 01 2 1 2
 

(19.13)

 
| | |s〉 = 〉 + 〉( )+

1
2

0 1 1 01 2 1 2
 

(19.14)
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| | |r〉 = 〉 − 〉( )−

1
2

0 0 1 11 2 1 2
 

(19.15)

 
| | |r+〉 = 〉 + 〉( )1

2
0 0 1 11 2 1 2

 
(19.16)

Also, as shown in Chapter 17, we can add and subtract these equations to 
obtain

 
| | |0 1 1

21 2〉 = 〉 + 〉( )+ −s s
 

(19.17)

 
| | |1 0 1

21 2〉 = 〉 − 〉( )+ −s s
 

(19.18)

 
| | |0 0 1

21 2〉 = 〉 + 〉( )+ −r r
 

(19.19)

 
| | |1 1 1

21 2〉 = 〉 − 〉( )+ −r r
 

(19.20)

The physics derived from the quantum entanglement probability ampli-
tude (Pryce and Ward, 1947; Snyder et al., 1948; Ward, 1949) was applied by 
Bennett et al. (1993) to the concept of teleportation. Quantum teleportation, 
as described by Bennett et al. (1993), consists in the disintegration of one 
quantum state, at the emitter’s site, and in the subsequent reintegration of 
that quantum state at the receiver’s site.

This concept is illustrated in more detail considering an example based on 
a description provided by Kim et al. (2001): assume that the emitter whishes 
to send the state

 | | |φ α β1 1 10 1〉 = 〉 + 〉( )
 

(19.21)

to the receiver. This, Equation 19.21, is the state that will be disassembled by 
the emitter and will be replicated remotely at the receiver’s site. To do so, the 
emitter generates an entangled state of the form of any of the Equations 19.13 
through 19.20; let’s say

 
| | |s23 2 3 2 3

1
2

0 1 1 0〉 = 〉 + 〉( )+  (19.22)
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Then, the emitter creates a three-particle state:

 
| | | | | | |φ φ α α β β123 1 23 1 2 3 1 2 3 1 2 3 1 2

1
2

0 0 1 0 1 0 1 0 1 1 1 0〉 = 〉⊗ 〉 = 〉 + 〉 + 〉 ++s 33〉( )
 (19.23)

Using Equations 19.17 through 19.20 (with a slight modification in  notation: 
|s〉+ = |s12〉+, |s〉− = |s12〉−, |r〉+ = |r12〉+ |r〉− = |r12〉−), Equation 19.23 can be 
expanded into

 | | | | | | | | |φ φ φ ϑ ϑ123
1
2 12 3 12 3 12 3 12 3〉 = 〉 〉 + 〉 〉 + 〉 〉 + 〉 〉( )+ + − − + + − −s s r r  (19.24)

where

 | | |φ α β3 3 30 1〉 = 〉 + 〉( )+  (19.25)

 | | |φ α β3 3 30 1〉 = 〉 − 〉( )−  (19.26)

 | | |ϑ α β3 3 31 0〉 = 〉 + 〉( )+  (19.27)

 | | |ϑ α β3 3 31 0〉 = 〉 − 〉( )−  (19.28)

In this process, for example, if the emitter (Alice) measures |s12〉−, the qubit 
communicated to the receiver (Bob) is |ϕ3〉−. According to Bennett et al. (1993), the 
recovery process at the receiver’s end involves a multiplication of the form σ|ϕ3〉 
where σ is either the identity matrix or one of the Pauli matrices (see Chapter 16):
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
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
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1 0
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(19.29)
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


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(19.31)

 
σz =











1 0
0 1

  
(19.32)

Bob, the receiver, must apply one of these operators in order to convert 
|ϕ3〉− into the original |ϕ1〉. According to Bennett et al. (1993), an accurate 
teleportation can be performed by having Alice tell Bob the outcome of her 
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measurement thus allowing Bob to apply the required rotation to transform 
the state of his particle into a replica of |ϕ1〉.

Alice is left without any trace of the original state |ϕ1〉.
Coming back to our example, if |s12〉+ is measured, the recovery transfor-

mation is just the identity and the receiver does not need to make a transfor-
mation since

 I| | |φ α β3 3 30 1〉 = 〉 + 〉( )+  (19.33)

if |s12〉− is measured, the recovery transformation involves

 σ φ σ α β α βz z| | | | |3 3 3 3 30 1 0 1〉 = 〉 − 〉( ) = 〉 + 〉( )−  (19.34)

if |r12〉+ is measured, the recovery transformation involves

 σ ϑ σ α β α βx x| | | | |3 3 3 3 31 0 0 1〉 = 〉 + 〉( ) = 〉 + 〉( )+  (19.35)

and, if |r12〉− is measured, the recovery transformation involves

 i iy yσ ϑ σ α β α β| | | | |3 3 3 3 31 0 0 1〉 = 〉 − 〉( ) = 〉 + 〉( )−  (19.36)

In summary, this methodology for quantum teleportation can be summa-
rized in the following sequence of steps:

 1. The emitter creates |s23〉+.
 2. The emitter creates the state to be sent in quantum teleportation, |ϕ1〉.
 3. The emitter performs the operation |ϕ123〉 = |ϕ1〉 ⊗ |s23〉+ thus disas-

sembling the state to undergo teleportation, |ϕ1〉.
 4. The emitter performs a measurement such as |s12〉− thus creating |ϕ3〉−.
 5. The emitter sends |s12〉− via a classical channel and |ϕ3〉− via a quan-

tum channel.
 6. The receiver transforms, in real time, |ϕ3〉− back into |ϕ1〉.

A simplified overview of this process is illustrated in Figure 19.8. Of the vari-
ous experimental realizations of teleportation of quantum states, one exper-
iment that should be mentioned is that performed, in free space between 
La Palma and Tenerife islands, over a distance of 143 km (Ma et al., 2012). 
Readers interested in the technical details involved photon pair generation, 
active polarization rotation, and the statistical processes involved in this type 
of experiments are encouraged to read (Ma et al., 2012).
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Problems

19.1 Complete the Bennett table if the first three rows are

 

1
2
3

� � � �

� � �

↔ ↔ ↔ ↔
+ + + + + + +

↔ ↔

R L L R R L L

R L R R L
Ο Ο Ο Ο Ο Ο Ο Ο

19.2 Show that σx|0〉 = |1〉 and σx|1〉 = |0〉.
19.3 Evaluate iσy|0〉 and iσy|1〉.
19.4 Perform the necessary recovery operations, in quantum teleportation, 

for |ϕ1〉, from |r12〉+ and |r12〉− measurements, if the shared state is

 
| | |r23〉 = 〉− 〉( )−

1
2

0 0 1 12 3 2 3

19.5 Perform the necessary recovery operations, in quantum teleportation, 
for |ϕ1〉, from |s12〉+ and |s12〉− measurements, if the shared state is

 
| | |r23 2 3 2 3

1
2

0 0 1 1〉 = 〉− 〉( )−

Emitter Receiver

|S12 –

|  3 –

|  1

|  1

FIGURE 19.8
Simplified generic overview of quantum teleportation. At the emitter’s site, an SPS creates 
|ϕ1〉, the state to be teleported. In addition, entangled photon pairs are produced by parametric 
down conversion (see Appendix A). This emission is used in the production, for example, of 
the |s12〉− and |ϕ3〉− states by mixing the |ϕ1〉 state with the entangled photon pair; thus, |ϕ1〉 is 
disassembled and lost. Synchronized emission via free space enables the |ϕ3〉− state to reach 
the receiver where |ϕ3〉− undergoes the necessary unitary transformation to recreate |ϕ1〉.
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20
Quantum Measurements

20.1 Introduction

Classically, the process of a measurement is relatively straightforward. The 
objects measured are macroscopic and they can be measured repeatedly 
without being disturbed in a nondestructive process. For example, using a 
meter rule, or a metric caliper, one can measure repeatedly the length of an 
object thus obtaining a series of measurements that can lead to an average 
dimension and a corresponding standard of deviation. In other words, the 
experimental physicist obtains the measurement and the error associated 
with that measurement (x ± ∆x). Thus, classically speaking, the measure-
ment issue is settled.

All experimental measurements include an error. Measurements without 
an error, or without an uncertainty, are not physically possible.

Quantum mechanically speaking, the measurement problem is not as 
transparent as in the classical domain, since we are using relatively massive 
macroscopic classical instruments to obtain measurements on minute quan-
tum objects such as photons and electrons. Therefore, the issue of uncertain-
ties becomes even more important.

Going back to basics, we find that Dirac (1978) refers to the measurement 
process in a fairly abstract manner indicating that a succession of measure-
ments should give identical results, thus implying that the measurement 
should be nondestructive. von Neumann (1932) introduced the reduction of 
the wave function hypothesis. Lamb (1989) is of the opinion that the Dirac 
and the von Neumann approaches are “essentially equivalent.” And Lamb 
(1989) goes further to state that “neither Dirac nor von Neumann discusses 
his measurements in physical terms.”

Furthermore, according to Lamb (1989), Pauli introduced a concept to use 
Stern–Gerlach type measurements to determine probability distributions, 
which was fine in principle but in practice “always destroyed the system of 
interest” (Lamb, 1989). Here, we should also add that one of van Kampen’s 
theorems states explicitly that the measuring apparatus in quantum mechan-
ics is macroscopic (van Kampen, 1988).
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Thus, it is not surprising to read articles by noted physicists entitled 
“Against measurement” (Bell, 1990) where the concepts of Dirac, von 
Neumann, and van Kampen are criticized. In this chapter we attempt to 
describe practical approaches to the measurement of physical parameters 
associated with quantum entities such as the photons and ensembles of 
indistinguishable photons.

20.2 Interferometric Irreversible Measurements

The interferometric measurements described in Chapter 11 are macroscopic 
physical permanent records of interferometric photon distributions. As such, 
these recordings represent an inherently irreversible transformation of the 
event to be recorded. In other words, these measurements are destructive, 
and they illustrate what happens when a massive macroscopic classical sys-
tem interacts with a quantum entity such as a photon or a photon interfero-
metric distribution.

In Chapter 8 we saw that quantum mechanical probabilities are propor-
tional to the photon intensity. Thus, when we measure an intensity distribu-
tion or an interferometric intensity distribution, we are recording the spatial 
information originally contained in the interferometric distribution, which 
is a probability distribution such as the generalized 1D N-slit interferometric 
distribution (Duarte, 1991, 1993):

 

| | | ( ) ( ) ( )cos( )〈 〉 = + −

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



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==

∑
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 (20.1)

where Ψ(rj) are wave functions (Dirac, 1978; Duarte, 2004), and the term in 
parentheses represents the phase that describes the exact geometry of the 
N-slit interferometer (Duarte, 1991, 1993). Again, the measured intensity is 
proportional to the probability |〈x|s〉|2, and it is this probability that gives 
origin to the spatial distribution of the observed intensity. This equation was 
originally derived for single-photon propagation (Duarte, 1993, 2004) albeit in 
practice it also applies to the propagation of an ensemble of indistinguish-
able photons, as in the case of narrow-linewidth laser emission.

In the interferometric measuring process, a photon within the inter-
ferometric distribution described by Equation 20.1 arrives at the interfer-
ence plane or detection surface. The arrival of each individual photon, 
with an energy E = hν, is registered at the detector by the creation of a 
charge within the boundaries of the 〈x|s〉〈x|s〉* distribution. For light asso-
ciated with the emission of large numbers of indistinguishable photons, 
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as in the case of narrow-linewidth laser emission, the energy becomes 
E = Nhν, and a cumulative charge distribution closely resembling 〈x|s〉
〈x|s〉* is registered at the detector (Duarte, 2004). Once the single photon, 
or the ensemble of indistinguishable photons, interacts with the detec-
tion surface, the process becomes irreversible, thus representing a destruc-
tive measurement. Nevertheless, this process is highly reproducible and 
repeatable with new photons prepared in the same state giving rise to the 
〈x|s〉〈x|s〉* distribution.

Further, it should be emphasized that, albeit irreversible and destructive, 
the interferometric measurement initially involves a quantum interaction 
between the photon and the detection surface. Once that first quantum inter-
action occurs, then the detection charge is registered at the interferometric 
plane. If the interferometric plane is comprised of a photographic plate, then 
the incident photon induces an image within the 〈x|s〉〈x|s〉* distribution. If 
the interferometric plane is comprised of a photoelectric surface, the incident 
photon generates a charge, within the 〈x|s〉〈x|s〉* distribution, that is ampli-
fied in a cascade process until it produces a classical manifestation.

In summary, macroscopic interferometric measurements involve the detec-
tion and recording of an intensity distribution, which is proportional to the 
calculated quantum probability, that is,

 I N K x s x s( , , ) | | *λ Ω = 〈 〉〈 〉  (20.2)

where K is a constant with units of J s−1 m−2. We also know, from compari-
sons from measurements and theory (Duarte, 1993), that this intensity dis-
tribution I(λ, N, Ω) closely reproduces the calculated probability distribution 
〈x|s〉〈x|s〉*, which in turn originates from the multiplication of the probability 
amplitude series

 

〈 〉 = 〈 〉 〈 〉
=

∑x s x j j s
j

N

| | |
1

 (20.3)

with its complex conjugate. Here, the probability amplitudes are wave func-
tions of the form (Dirac, 1978)

 〈 〉 = −j s r ej s
i j| ( ),Ψ θ

 (20.4)

 〈 〉 = −x j r ex j
i j| ( ),Ψ φ  (20.5)

that, albeit not measured directly, are essential to either predict or reproduce 
the correct measurable intensity distribution described in Equation 20.2. See 
Chapter 21 for further discussion on this topic.
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20.2.1 Additional Irreversible Quantum Measurements

In addition to the interferometric measurements just described, other irre-
versible quantum measurements in optics include

 1. The original quantum polarization entanglement measurements 
made by Wu and Shaknov (1950)

 2. Quantum polarization measurements to test Bell’s inequalities (see, 
e.g., Aspect et al., 1982)

 3. Quantum cryptography measurements (see, e.g., Gobby et al., 2004)
 4. Measurements of quantum teleported states (see, e.g., Ma et al., 2012)

In all these cases, quantum entities, namely, the photon, interact with mas-
sive macroscopic detectors in an irreversible, and destructive, manner.

20.3 Quantum Nondemolition Measurements

Lamb wrote several papers on the measurement problem in quantum 
mechanics. Here we refer to two of these papers. The first paper (Lamb, 1986) 
considers a sequence of quantum mechanical measurements on an isolated 
large macroscopic system, such as a gravity wave detector. The model used 
by Lamb (1986) consists of a 1D harmonic oscillator with momentum

 
p m dx

dt
=

 
(20.6)

which is acted by an unknown force F(t) so that the Hamiltonian is

 H H F t x= −0 ( )  (20.7)

where the unperturbed Hamiltonian is
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The wave function is assumed to evolve according to

 
− ∂

∂
=�

i t
Hψ ψ

 
(20.9)

Lamb (1986) goes on to explain that ψ(x) is a linear combination of the eigen-
functions of H0 of the form

 
ψ( ) ( )x c u xn n= ∑  

(20.10)
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and that according to what Lamb calls the Dirac–von Neumann hypothesis, 
a measurement would result in an eigenvalue of H0:

 
E nn1 1

1
2

= +



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�ω

 
(20.11)

The value of ψ(x) is changed to the n1 th normalized eigenfunction u xn1 ( ). 
This wave function is then supposed to evolve according to time-dependent 
Schrödinger’s equation until t2, on the second measurement, and so on. This 
measuring strategy would yield a series of n values. Next, Lamb asks him-
self: “What can we learn about F(t)?”

This description provided by Lamb (1986) can be used to illustrate the con-
cept of quantum nondemolition measurements as related to the von Neumann 
(1932) approach: For a Hamiltonian defined as

 H H Hm= −0  (20.12)

and a wave function modified by a weak measurement according to

 
| | | |ψ ψ〉 〉 = 〉 〉∑A c An n n

 
(20.13)

the measurement is said to be nondemolition if

 [ , ]H Hm0 0=  (20.14)

In the second paper, Lamb (1989) is still interested in a large macroscopic 
system where “only the detector is treated quantum mechanically.” He then 
discloses his idea of “making purely classical measurements on a quantum 
system” (Lamb, 1989). This approach appears to be consistent with van 
Kampen’s fifth theorem that states that a measuring instrument in quantum 
mechanics “consists of a macroscopic system” (van Kampen, 1989).

20.4 Soft Polarization Measurements

More recently, researchers have reported to softly probe, nondestructively, 
propagating photons in two-beam interference experiments (Kocsis et al., 2011). 
In these experiments the emission of a single-photon source is divided into 
two components so that the adjacent, and initially parallel, Gaussian beams 
are eventually allowed to overlap and, hence, interfere.

Initially, the two Gaussian beams are in a polarization state described by 
the usual

 
| | |ψ〉 = 〉 + 〉( )1

2
x y

 
(20.15)
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then a weak measurement is performed by using a macroscopic slab of calcite 
with its optic axis at 42° in the x – z plane that rotates the polarization state to
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The beams then propagate through a set of macroscopic optics including a 
quarter-wave plate, lenses, and a polarization beam splitter. After the polar-
ization beam splitter, the two-beam interference pattern is observed. Kocsis 
et al. (2011) claim that this arrangement allows them to obtain information 
about the photon trajectory and still observe an interference spatial distribu-
tion associated with two-beam interference, although the interference pat-
tern becomes slightly distorted. In other words, the photons are softly probed 
(using macroscopic classical elements) while producing a slightly altered 
interference pattern. The fact that the interference pattern is altered indicates 
that the soft probing conducted does alter the interference pattern, as would be 
expected from Feynman’s teachings (Feynman et al., 1965).

20.5 Soft Intersection of Interferometric Characters

In Chapter 11 we saw that beam path proving via conventional high-surface 
quality beam splitters can be immediately detected due to the catastrophic 
collapse induced by the spatial disruption caused by the beam splitter. This 
is the case even if the classical beam splitter is highly transparent and only 
∼0.4 mm in thickness, since the observe phenomenon is a diffractive edge 
effect brought about by an abrupt change in the spatial distribution of the 
refractive index.

The question then becomes the following: Can we probe the intra- 
interferometric path D〈x|j〉 ever so gently as to avoid a violent disruption of 
the homogeneous refractive index serving as propagation medium between 
the N-slit array and the interference plane? The answer to this question is 
in the affirmative: Soft intersection of propagating N-slit interferometric 
characters, using spider web silk fibers, was demonstrated by Duarte et al. 
(2011) using an experimental configuration described in Figure 20.1. The 
fibers used in these experiments are ultrathin semitransparent and ultra-
thin transparent natural fibers. Two such fibers are fine human blond hair 
and spider web fibers. The fibers have a diameter of d ≈ 50 μm in the case 
of blond human hair and 25 ≤ d ≤ 30 μm in the case of transparent spider 
web fibers, which were collected in Western New York, near Lake Ontario 
(Duarte et al., 2011).

The interferometric character a (N  =  2), for an intra-interferometric 
distance of D〈x|j〉 = 7.235 m, is illustrated in Figure 20.2. For the same 
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FIGURE 20.1
Top view schematics of the intra-interferometric path of the N-slit interferometer indicating 
(approximately) the three positions D1, D2, and D3, in the D〈x|j〉 propagation path, where the 
spider web fiber is inserted perpendicular to the plane of incidence (i.e., orthogonal to the 
plane of the figure).
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FIGURE 20.2
Interferometric distribution registered at x, for D〈x|j〉 = 7.235 m, λ = 632.8 nm, and N = 2 (570 μm 
slits separated by 570 μm). This interferogram corresponds to the interferometric character a. 
This measurement was performed at a temperature of T ≈ 22°C. Each pixel on the CCD screen 
is 20 μm wide. (Reproduced from Duarte, F.J. et al., J. Opt. 13, 035710, 2011, with permission 
from the Institute of Physics.)
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interferometric character (N  =  2) with the spider web fiber, positioned 
15 cm from the interferometric plane at x (D3), and displaced laterally, a 
diffraction pattern is superimposed over one of the outer wings of the 
interferogram (see Figure 20.3). The important and interesting effect here 
is that the propagating interferogram is physically intercepted but it is 
not destroyed. It is modified, or altered, in a suave orderly and control-
lable manner.

20.5.1  Comparison between Theoretical and Measured 
N-Slit Interferograms

Next, we describe in detail a series of additional soft probing experi-
ments, conducted by Duarte et al. (2013), that involve the gentle and con-
trolled insertion of the spider silk web fiber into the optical path D〈x|j〉 of 
the propagating interferometric character. The silk fiber is inserted into the 
intra- interferometric propagation path, under tension, perpendicular to the 
plane incidence at D1, D2, and D3 (see Figure 20.1). That is, the spider web 
fiber is inserted orthogonal to the beam expansion defined by the multiple-
prism expander. As illustrated in Figure 20.1, the N-slit array, or grating, 
is also deployed with the direction of the slits perpendicular to the plane 
of incidence.
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FIGURE 20.3
Photograph of the interferometric distribution registered at x, for D〈x|j〉 = 7.235 m, λ = 632.8 nm, 
and N = 2 (570 μm slits separated by 570 μm) showing a superimposed diffractive pattern over 
the outer right wing of the interferogram. The superimposed diffractive distribution is caused 
by a spider web fiber deployed orthogonally to the propagation plane (i.e., perpendicular to 
the plane of Figure 20.1) at the distance of D1 = D〈x|j〉 − 0.150 m, or 15 cm from x. (Reproduced 
from Duarte, F.J. et al., J. Opt. 13, 035710, 2011, with permission from the Institute of Physics.)
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The intra-interferometric distances of silk fiber insertion are (Duarte 
et al., 2013)

 1. D1 = D〈x|j〉 − 0.150 m (15 cm from the detector).
 2. D2 = D〈x|j〉/2 (midway).
 3. D3 = D〈x|j〉 −7.085 m (15 cm from the grating).

while the overall intra-interferometric distance is maintained at D〈x|j〉 = 7.235 m. 
First, a control interferogram is generated from the illumination of 

N = 3 slits of the grating comprised with 570 μm slits separated by 570 μm, 
at λ = 632.8 nm, for an intra-interferometric distance of D〈x|j〉 = 7.235 m, as 
illustrated in Figure 20.4. This interferometric character b is recorded at 
room temperature (T ≈ 22°C), which becomes the standard measurement 
temperature.

An interferogram under identical propagation conditions, for N = 3, with 
the spider web silk fiber deployed orthogonally to the propagation plane, at 
D1, is shown in Figure 20.5. The interferometric distribution thus obtained 
demonstrates a diffraction pattern superimposed over the outer right wing 
of the interferogram in Figure 20.5.
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FIGURE 20.4
Control intensity profile of interferogram registered at x, for D〈x|j〉 = 7.235 m, λ = 632.8 nm, and 
N = 3 (570 μm slits separated by 570 μm). The interferogram generated with N = 3 corresponds to 
the interferometric character b. This measurement was performed at a temperature of T ≈ 22°C. 
Each pixel on the CCD screen is 20 μm wide. These parameters apply to all the measurements 
considered in the next set of figures. (Reproduced from Duarte, F.J. et al., J. Mod. Opt. 60, 136, 
2013, with permission from Taylor and Francis.)
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An interferogram under identical propagation conditions, for N = 3, but 
now with the spider web silk fiber deployed orthogonally to the propagation 
plane, at D2 = D〈x|j〉/2, is shown in Figure 20.6.

An interferogram under identical propagation conditions, for N = 3, but 
now with the spider web silk fiber deployed orthogonally to the propagation 
plane, at D3, is shown in Figure 20.7. For this experiment, the fiber is positioned 
15 cm from the slits near the first (right) slit relative to the configuration 
of Figure 20.1. Duarte et al. (2013) note that a cooled  detector and stabi-
lized laser should improve detection conditions in this  pre-interferometric 
regime.

A theoretical control interferogram, equivalent to the measured interfero-
gram of Figure 20.4, is generated using the interferometric equation
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and displayed in Figure 20.8. Reproduction, or prediction, of the interfero-
grams with superimposed diffraction patterns is performed adopting an 
interferometric cascade approach (Duarte, 1993; Duarte et al., 2011). This cas-
cade approach consists in using the interferometric equation (Equation 20.1) 
to create an interferometric distribution that becomes the illumination field 
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FIGURE 20.5
Measured intensity profile of interferogram registered at x, for D〈x|j〉 = 7.235 m, λ = 632.8 nm, 
and N = 3 showing a superimposed diffractive intensity distribution over the outer right wing 
of the interferogram. The superimposed diffractive pattern is caused by a spider web fiber 
deployed orthogonally to the propagation plane (i.e., perpendicular to the plane of Figure 20.1) 
at the distance of D1 = D〈x|j〉 − 0.150 m or 15 cm from x. (Reproduced from Duarte, F.J. et al., 
J. Mod. Opt. 60, 136, 2013, with permission from Taylor and Francis.)
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FIGURE 20.6
Measured intensity profile of interferogram registered at x, for D〈x|j〉 = 7.235 m, λ = 632.8 nm, 
and N = 3 with a spider web fiber deployed orthogonally to the propagation plane at an intra-
interferometric distance of D2 = D〈x|j〉/2 m. (Reproduced from Duarte, F.J. et al., J. Mod. Opt. 60, 
136, 2013, with permission from Taylor and Francis.)
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FIGURE 20.7
Measured intensity profile of interferogram registered at x, for D〈x|j〉 = 7.235 m, λ = 632.8 nm, 
and N = 3 with a spider web fiber deployed orthogonally to the propagation plane at an intra-
interferometric distance of D3 = D〈x|j〉 − 7.085 m (15 cm from the slits). (Reproduced from Duarte, 
F.J. et al., J. Mod. Opt. 60, 136, 2013, with permission from Taylor and Francis.)
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of the next N-slit array (Duarte, 1993). Using this approach, the spider web 
silk fiber is represented by two wide slits separated by the diameter of the 
fiber. Thus, we can predict or replicate the diffraction effect induced by 
the spider web fiber at various intra-interferometric distances.

The calculations representing insertion of a 25 μm fiber in the intra-
interferometric path D〈x|j〉 at D1, D2, and D3 are displayed in Figures 20.9 
through 20.11, respectively. At D1 the superposition of the diffraction signal 
over the interferometric distribution is beautifully predicted as illustrated 
in Figure 20.9. At D2 the silk fiber induces only a minor effect as shown in 
Figure 20.10. Furthermore, at D3, the silk fiber produces almost no distur-
bance when placed between slits and tends to only very slightly modify the 
whole interferometric distribution when positioned at the center of one of the 
slits (Figure 20.11). Either in the case of the beautiful superimposed diffrac-
tion distribution (Figure 20.9) or in the other two more subtle interactions, 
the theoretical interferograms nicely reproduce the corresponding measured 
interferograms. Previously, it was demonstrated that insertion of a conven-
tional thin and highly transparent beam splitter into the intra-interfero-
metric path led, as expected (see Chapter 11), immediately to a catastrophic 
collapse of the interferometric character or signal (Duarte, 2002, 2005; Duarte 
et al., 2010). However, the experiments described by Duarte et al. (2013) dem-
onstrate a remarkable suave and controlled way to alter the propagating 
interferograms in a soft and nondestructive manner. Thus, we have transi-
tioned from a regime of total signal collapse, using classical beam splitters, to 
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FIGURE 20.8
Calculated control interferogram at x, using Equation 20.1, for D〈x|j〉 = 7.235 m, λ = 632.8 nm, and 
N = 3. This calculated interferogram corresponds to the measured interferogram displayed in 
Figure 20.4. (Reproduced from Duarte, F.J. et al., J. Mod. Opt. 60, 136, 2013, with permission from 
Taylor and Francis.)
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FIGURE 20.9
Calculated interferogram at x, for D〈x|j〉 = 7.235 m, λ = 632.8 nm, and N = 3 with a 30 μm diam-
eter fiber deployed orthogonally to the propagation plane at a distance of 15 cm from x, or 
D1 = D〈x|j〉 − 0.150 m. The fiber is positioned 4 mm from the center. This calculated interfero-
gram corresponds to the measured interferogram displayed in Figure 20.5. (Reproduced from 
Duarte, F.J. et al., J. Mod. Opt. 60, 136, 2013, with permission from Taylor and Francis.)
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FIGURE 20.10
Calculated interferogram at x, for D〈x|j〉 = 7.235 m, λ = 632.8 nm, and N = 3 with a 30 μm web 
fiber deployed orthogonally to the propagation plane at an intra-interferometric distance of 
D2 = D〈x|j〉/2 m (i.e., 3.6175 m). The fiber is positioned 2.227 mm from the center. This calcu-
lated interferogram corresponds to the measured interferogram displayed in Figure 20.6. 
(Reproduced from Duarte, F.J. et al., J. Mod. Opt. 60, 136, 2013, with permission from Taylor 
and Francis.)
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a suave regime of nondestructive gentle detection with the use of spider silk 
threads. This appears to be allowed by the unusual geometry of the N-slit 
interferometer where the dimensions and separation of the slits (570 μm) are 
relatively enormous to the dimensions of the fiber diameter (25–30 μm).

20.5.2 Soft Interferometric Probing

As indicated earlier, Equation 20.1 is a quantum expression that was origi-
nally derived for single-photon propagation that also describes accurately 
the interferometric propagation generated by ensembles of indistinguish-
able photons as available from narrow-linewidth lasers. Thus, as previously 
observed (Duarte, 2002, 2005), and according to Feynman’s teachings, we 
have expected and observed the catastrophic collapse of interferometric char-
acters at any macroscopic attempt to extract information.

These attempts involved the insertion of thin highly transparent beam split-
ters. In this regard, the orderly nondestructive diffractive effects reported by 
Duarte et al. (2011, 2013), following soft interrogation via the insertion of a 
microscopic spider web fiber, are extremely interesting given that the infor-
mation contained in the interferometric character is largely preserved albeit 
the presence of the fiber is nicely detected. Even more interesting are the 
results obtained at D2 = D〈x|j〉/2 and D3. Probing with the fiber at the later 
position causes a nearly indistinguishable effect. These results demonstrate 
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FIGURE 20.11
Calculated interferogram at x, for D〈x|j〉 = 7.235 m, λ = 632.8 nm, and N = 3 with a 30 μm web fiber 
deployed orthogonally to the propagation plane at an intra-interferometric distance of D3 = 
D〈x|j〉 − 7.085 m. The fiber is positioned at the center right slit. This calculated interferogram cor-
responds to the measured interferogram displayed in Figure 20.7. (Reproduced from Duarte, 
F.J. et al., J. Mod. Opt. 60, 136, 2013, with permission from Taylor and Francis.)
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the capability of interacting with the propagating interferograms nonde-
structively causing only slight alterations to the information relative to the 
pristine interferograms.

20.5.3 Mechanics of Soft Interferometric Probing

According to W. E. Lamb, quantum mechanics can be extended to measure-
ments on a “rather large and otherwise macroscopic system” (Lamb, 1989). 
He goes on to explain that the detector is treated quantum mechanically, in 
other words the process of the measurement that in our case refers directly 
to the interferometric probability distribution (Equation 20.1) arising from 
either the propagation of single photons or an ensemble of indistinguishable 
photons (Duarte, 2004).

Albeit the measured interferograms are neatly reproduced using the cas-
cade interferometric approach, where the interferometric distribution at one 
plane becomes the input for the next plane, as described by Duarte (1993), 
next we use an alternative approach to describe the physics of the fiber inter-
section with the propagating interferogram (Duarte et al., 2013).

In a straightforward interferometric propagation, as outlined in Figure 
20.1, and in the absence of the probing fibers, the interferograms generated 
are the corresponding control interferogram as shown in Figure 20.4 (mea-
sured) and Figure 20.8 (calculated), and the probability amplitudes from the 
grating to the interferometric plane are simply given by 〈x|j〉; however, with 
the insertion of the spider web fiber, the probability amplitudes are altered, 
so that

 〈 〉 → 〈 〉〈 〉x j x j j j| | |′ ′  (20.17)

Indeed, as soon as the spider web fiber is introduced, the original probability 
amplitude
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is replaced by a probability amplitude relevant to the experimental configu-
ration of Figure 20.1, that is,
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where the 〈j′|j〉 term represents the probability amplitude of transmission via 
the fiber’s plane. In reality, this is an undetermined spatially unsymmetric 
transmission that results in the alteration of the original interferometric pattern. 
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Under those circumstances, and using the wave function notation of Chapter 
4, the probability amplitude has the form of
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(20.19)

An alternative and complementary description is to think of 〈j′|j〉 as rep-
resenting the propagation from the grating to the new plane established 
by two narrowly separated large slits. The width of the separation corre-
sponds to the diameter of the spider web fiber. Toward the sides, away from 
the fiber,

 〈 〉 ≈j j′| 1  (20.20)

and Equation 20.17 reduces to
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so that the interferometric probability distribution is very close to Equation 
20.1 or
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as shown in Figures 20.10 and 20.11.
However, in the strong interferometric regime, and immediately around 

the spider web fiber, 〈j′|j〉 alters the overall probability amplitude in a sub-
tle but measurable way thus leading to the beautiful effect illustrated in 
Figure 20.5 (measured) and Figure 20.9 (calculated). In that case, the prob-
ability amplitude given in Equation 20.18 applies.

From a dimensional perspective, the experiments described here docu-
ment the unusual opportunity to softly prove, nondestructively, the intra-
interferometric propagation using natural fibers with diameters 11–22 times 
smaller than the width of the grating slits.

20.5.4 Discussion

The soft probing technique described here illustrates that an interferogram 
can be delicately contacted in a nondestructive manner by a microscopic 
semitransparent fiber.

However, a straightforward extension of this concept to a measurement 
technique is not obvious.
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Illumination of the N-slit array by a single photon means that a single 
photon illuminates the N-slit array and that new probability amplitudes are 
generated at each slit.

In this case, insertion of a detecting microfiber, or a detecting nanofiber, 
should result in the absorption of the photon and the immediate collapse of 
the interferogram.

Illumination of the N-slit array by an ensemble of indistinguishable pho-
tons means that each of these photons generates a new set of probability 
amplitudes. Insertion of a detecting microfiber, or a detecting nanofiber, 
should result in the absorption of a fraction of the photons. The photons that 
are not absorbed should yield a modified interferogram, as previously seen. 
In neither case this technique can be used to determine the trajectory of a 
particular photon or “which hole” a particular photon went through.

Once the idea that a single photon illuminates the whole N-slit array, and 
that each photon in an ensemble of indistinguishable photons illuminates 
the whole N-slit array, is accepted, the questions of “which hole” or “which 
slit” the photon went through do not apply, and it does not arise.

Problems

20.1 In addition to the list provided in Section 20.2.1, provide three further 
examples, from the open literature of photon-based, irreversible quan-
tum measurements.

20.2 Rewrite the probability amplitude given in Equation 20.15 in density 
matrix notation.

 That is, as |ψ〉〈ψ|.
20.3 Rewrite the density matrix given in Equation 20.16 in the usual prob-

ability amplitude notation. That is, simply as |ψ′〉.
20.4 For N = 2, expand Equation 20.18 and multiply it by its complex conju-

gate to obtain the corresponding probability.
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21
Interpretational Issues in Quantum 
Mechanics

21.1 Introduction

In 1935 Einstein, Podolsky, and Rosen (EPR) (1935) wrote a famous paper 
entitled Can quantum mechanical description of physical reality considered com-
plete? This is a cleverly crafted document that argues that in quantum 
mechanics “when the momentum of a particle is known, its coordinate has no physi-
cal reality” (Einstein et al., 1935).

Subsequently, the authors go on to conclude that “the quantum mechanical 
description of reality given by the wave function is not complete” (Einstein et al., 
1935).

In a reply also entitled Can quantum mechanical description of physical reality 
considered complete? Bohr (1935) uses the Heisenberg uncertainty principle 
and the principle of complementarity to refute the argument of Einstein et al. 
(1935). Although the matter was considered by many quantum physicists to 
have been resolved, Bohr’s reply, in six plus pages, was somewhat nontrans-
parent and convoluted. Thus, it was not surprising that clever critics, such as 
Bell (1990), persisted in their criticism.

In this chapter, we examine the EPR argument and the opinion toward 
interpretational matters from various noted quantum physicists.

21.2 EPR

The central argument in Einstein et al. (1935), from now on also referred as 
EPR, begins with a definition of reality: “if… we can predict with certainty the 
value of a physical quantity, then there exist an element of physical reality corre-
sponding to this physical quantity” (Einstein et al., 1935).

Here the EPR argument is examined as presented in the paper by Einstein 
et al. (1935) with a slight change in notation (using P rather than A to describe 
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the momentum operator). EPR begin their discussion introducing an eigen-
function ψ modified by an operator P so that

 ψ ψ ψ′ ≡ =P a  (21.1)

where a is said to be a number. Then, EPR indicate that P has the value a 
when the particle is in a state ψ. Also, EPR define ψ as

 ψ = πe i h px(2 / )
 (21.2)

and introduce the operator
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2  
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Thus, EPR say that in the state defined by Equation 21.2, the momentum has 
a certain value P and this momentum is real according to their definition of 
reality.

Next, EPR argue that if Equation 21.1 does not hold, then P does not have a 
particular value. EPR further argue that this is the case for the coordinate of 
the particle; in other words,

 q x aψ ψ ψ= ≠  (21.5)

At this stage EPR say that according to quantum mechanics there is only a 
relative probability that a measurement of the coordinate will yield a result 
between a and b

 

P a b dx dx b a
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b
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= = = −∫ ∫ψψ
 

(21.6)

Finally, EPR argue that this probability is independent of a and depends only 
on the difference (b − a) so that “all values of the coordinate are equally prob-
able” (Einstein et al., 1935). Hence their conclusion “when the momentum of a 
particle is known, its coordinate has no physical reality” (Einstein et al., 1935). This 
is the essence of the EPR argument.
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21.3 Bohm Polarization Projection of the EPR Argument

In 1957, Bohm and Aharanov wrote a paper entitled “Discussion of experimen-
tal proof for the paradox of Einstein, Rosen, and Podolsky” (Bohm and Aharanov, 
1957). In this paper Bohm and Aharanov introduce the probability ampli-
tudes for the polarizations of entangled photons traveling in opposite direc-
tions (see Chapter 17) originally introduced by Pryce and Ward (1947), Ward 
(1949), and Snyder et al. (1948). However, Bohm and Aharanov cited only 
Snyder et al. (1948). As previously described, in Chapter 17, these probability 
amplitudes are of the form

 
〉 = 〉 〉 + 〉 〉s x y y x| 1

2
(| | | | )1 2 1 2

 
(21.7)

and

 
〉 = 〉 〉 − 〉 〉s x y y x| 1

2
(| | | | )1 2 1 2

 
(21.8)

Clearly in this paper Bohm and Aharanov propose to test the EPR paradox 
using the polarization properties of correlated photons. As such they refer 
to the experiment conducted by Wu and Shaknov (1950) that, we know, was 
based on the polarization correlation theory of Pryce and Ward (1947) (Duarte, 
2012a). In this regard, these authors write: “we have essentially the same puz-
zling kind of correlations in the properties of distant particles, in which the 
property of anyone photon that is definite is determined by a measurement 
of a far away photon. Thus, the paradox of EPR can equally well be tested by 
polarization properties of pairs of photons” (Bohm and Aharanov, 1957).

21.4 Bell’s Inequalities

Following the paper of Bohm and Aharanov (1957), J. S. Bell published a 
famous paper in 1964 entitled On the Einstein Podolsky Rosen Paradox (Bell, 
1964). In this paper Bell showed that local theories are incompatible with the 
predictions of quantum mechanics.

An important and profound result indeed.
Bell did so by deriving a set of inequalities and then showing that the 

quantum predictions were outside the boundaries of these inequalities. 
Here, we follow Bell (1964) in the introduction of his famous inequalities.
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Bell defines a hidden variable λ having a probability density ρ(λ) such that

 
ρ λ λ∫ =( )d 1

 
(21.9)

then the correlation between observables A(a, λ) and B(a, λ) is given by Bell as

 
P a b A a B b d( , ) ( , ) ( , ) ( )= ∫ λ λ ρ λ λ

 
(21.10)

and since |A(a, λ)| = 1
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given that |B(b, λ)| = ±1, |B(b′, λ)| = ±1, and using Equation 21.9, we have Bell’s 
inequality (Bell, 1964)

 | ( , ) ( , )| | ( , ) ( , )|P a b P a b P a b P a b− + + ≤′ ′ ′ ′ 2  (21.14)

Now, using the PWS probability amplitude, given in Equation 
21.8, to calculate the corresponding quantum probabilities for the 
| ( , ) ( , )| | ( , ) ( , )|P a b P a b P a b P a b− + +′ ′ ′ ′  expression, yields numerical values 
greater than 2. Hence, Bell’s inequality is violated.

Now consider the PWS probability amplitude, that is, Equation 21.8, for 
photon 2 emerging through polarizer 2 and photon 1 emerging through 
polarizer 1, as illustrated in Figure 21.1:

 
| (| | | | )s x y y x〉 = 〉 〉 − 〉 〉1

2 1 2 1 2
 

(21.15)

 
| (sin cos cos sin )s〉 = −1

2 1 2 1 2θ θ θ θ
 

(21.16)

 
| sin( )s〉 = −1

2 1 2θ θ
 

(21.17)
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(see Chapter 17, Equations 17.48 through 17.54). The alternative situation cor-
responds to photon 1 not being allowed passage through polarizer 1 (due to 
a rotation of π/2 in θ1) so that

 
| cos( )s〉 = −1

2 1 2θ θ
 

(21.18)

Using the notation of Mandel and Wolf (1995) (+) to denote transmission 
through a polarizer and (−) to denote absorption, then the probability alter-
natives can be described by

 
p p( , ) ( , ) sin ( )+ + = − − = −θ θ θ θ θ θ1 2 1 2

2
1 2

1
2  

(21.19)

 
p p( , ) ( , ) cos ( )+ − = − + = −θ θ θ θ θ θ1 2 1 2

2
1 2

1
2  

(21.20)

so that, using the appropriate geometrical identity, the overall probability 
P(θ1, θ2), is (Mandel and Wolf, 1995)

 

P p p p p( , ) ( , ) ( , ) ( , ) ( , ) cosθ θ θ θ θ θ θ θ θ θ1 2 1 2 1 2 1 2 1 2 2= + + + − − − + − − − + = − (( )

( , ) cos ( )

θ θ

θ θ θ θ

1 2

1 2 1 22

−

= − −P  
 

(21.21)

21.4.1 Example

Using a set of angles defined by θ θ π θ π θ1 2 1 20 3 6 0= = = =, , , ,/ /′ ′  Equation 
21.21 applied to the left-hand side of Bell’s inequality yields

 | . ( . )| |( . ) ( . )| .0 5 1 0 0 5 0 5 2 5− − + − + − =

Polarizer Polarizer

z

x

y

D1 D2

θ1 θ2

Photo
pair

source

FIGURE 21.1
Generic two-photon entanglement experimental configuration. θ1 and θ2 refer to the orienta-
tion of the polarizers. D1 and D2 designate the respective detectors.
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which means

 | ( , ) ( , )| | ( , ) ( , )| .P P P Pθ θ θ θ θ θ θ θ1 2 1 2 1 2 1 2 2 5− + + =′ ′ ′ ′

thus violating Bell’s inequality.

21.4.2 Discussion

Implicit in this section has been the assumption that the detectors are ideal 
detectors functioning at ∼100% efficiency. That was done to keep the pre-
sentation simple and with the benefit of knowing that overwhelmingly pub-
lished experimental results of optical configurations measuring polarization 
correlations of counter propagating entangled photons do confirm violation 
of Bell’s inequalities. Thus, the pragmatic conclusion is to confirm the valid-
ity of quantum mechanics and to dismiss local hidden variable theories.

Remarkably, years after his insightful contribution Bell became a sharp 
critic of orthodox quantum mechanics. His criticisms were aimed at the 
foundations of quantum mechanics and toward what he called the “why 
bother” attitude among distinguished practitioners of quantum mechanics 
such as Dirac: “It seems to me that it is among the most sure-footed of quan-
tum physicist, those who have it in their bones, that one finds the greatest 
impatience with the idea that the ‘foundations of quantum mechanics’ might 
need some attention” (Bell, 1990). In particular, Bell was critical of the con-
cept of measurement as used in quantum mechanics (Bell, 1990). In the next 
section attention is brought up on issues of interpretation.

21.5  Some Prominent Quantum Physicists 
on Issues of Interpretation

Quantum mechanics is a wondrous branch of physics. As such, this section 
should begin by stating the thoughts John Clive Ward on quantum mechan-
ics (Ward, 2004): “The inner mysteries of quantum mechanics require a willingness 
to extend one’s mental processes into a strange world of phantom possibilities, end-
lessly branching into more and more abstruse chains of coupled logical networks, 
endlessly extending themselves forward and even backwards in time.” John Ward 
was one of those prominent quantum physicists who never expressed any 
doubts on the correctness or effectiveness of quantum mechanics. Nor did 
he bother on issues of interpretation (Ward, 2004; Duarte, 2012b).

The interpretation of quantum mechanics has been the subject of many 
publications and books (Bell, 1988; Selleri, 1988; Wallace, 1996). In this section, 
a pragmatic perspective on this topic is presented that is mainly derived from 
the Feynman school of thought: “unless a thing can be defined by measurement, 
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it has no place in the theory” and “already in classical mechanics there was indeter-
minability from a practical point of view” (Feynman et al., 1965). In this regard, 
Feynman was keenly aware of the crucial role of the Heisenberg uncertainty 
principle in the formulation of quantum mechanics: “the uncertainty principle 
protects quantum mechanics… quantum mechanics maintains its perilous but still 
correct existence” (Feynman et al., 1965).

Dirac was famously not impressed by discussions on the interpretation 
of quantum mechanics and in one of his last papers he wrote: “The inter-
pretation of quantum mechanics has been dealt with by many authors, and I do 
not want to discuss it here. I want to deal with more fundamental things” (Dirac, 
1987). Nevertheless, in a visit to Sydney, in August 1975, Dirac did refer to 
the  interpretation of quantum mechanics and did refer to the Bohr–Einstein 
controversy. In this regard he went on to say that according to standard 
atomic physics, “Bohr was right.” However, he left open the possibility for 
some kind of improved quantum mechanics of the future. But he warned 
that an improved version would be “at the expense of some other basic idea” 
(Duarte, 2012b).

More recently Willis Lamb, yet another noted quantum physicist, assigned 
the interpretational problems of quantum mechanics to “historical misun-
derstandings” (Lamb, 2001). In his broad critique, Lamb included the EPR 
argument in a list associated to these misunderstandings and went as far as 
describing Bell’s inequalities as “unnecessary” (Lamb, 2001).

As a footnote to this discussion, I will bring into focus a letter I wrote in 
regard to the Dirac description of interference (Duarte, 1998). For a while 
many people criticized the Dirac description of interference due to the 
sentence: “Each photon then interferes only with itself” (Dirac, 1978). This sen-
tence is the conclusion of an argument that begins considering a beam 
of monochromatic light, which means a population of indistinguishable 
photons, “with a large number of photons” (Dirac, 1978). The beam is 
made to split into two components of equal intensity and then made to 
interfere (as in a Mach–Zehnder interferometer). Dirac then explains that 
each photon goes partially into each component, and hence “each photon 
then interferes with itself” (Dirac, 1978). That is, each photon has a probability 
amplitude to follow either path, and it is the addition of these probabil-
ity amplitudes, multiplied with its corresponding complex conjugate, 
that accurately and correctly describe the observed interference patterns 
(Duarte, 1998, 2003).

In other words, Dirac writes about a single beam of monochromatic light 
with a large number of photons that is equivalent to a single narrow- linewidth 
high-power laser beam. In other words, it is equivalent to a laser beam com-
prised of a population of indistinguishable photons. The key principle here 
is that photon interference is a phenomenon that involves either single pho-
tons or populations of indistinguishable photons. In this regard, Dirac outlined 
the principles of laser interference back in 1947 (Duarte, 2003), and thus he 
should be considered the father of laser optics and quantum optics.
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Finally, Dirac’s statement does not exclude interference between two differ-
ent laser sources as long as the emission from these two sources is indistin-
guishable. In other words, interference from two separate narrow-linewidth 
lasers at the same central wavelength will register with sharp high-contrast 
interferograms with high visibility approaching unity (V ≈ 1).

Going back to Dirac’s observation about a possible future improved quan-
tum mechanics, that might well be possible. However, from our perspective a 
possible future improvement will have to wait for a yet undiscovered principle.

21.6 Eisenberg’s Uncertainty Principle and EPR

“When the momentum of a particle is known, its coordinate has no physical reality”
(Einstein et al., 1935) is an essential component of the EPR argument. As 
mentioned previously, Bohr (1935) used both the principle of complementar-
ity and the Heisenberg uncertainty principle in response to the EPR argu-
ment. However, Bohr’s did not develop a transparent response based on the 
uncertainty principle.

Here, a direct approach to this issue is taken making explicit use of the 
uncertainty principle itself (Duarte, 2012b). The Heisenberg uncertainty 
principle is given by (Dirac, 1978)

 ∆ ∆x p h≈  (21.22)

and one of its alternative forms is (Feynman et al., 1965)

 
∆

∆
x h

p
≈

 
(21.23)

Now, if we measure the momentum p of a particle, we can only measure

 p p± ∆  (21.24)

An absolutely exact measurement of momentum p with ∆p = 0 is physically 
impossible.

The presence of uncertainties and errors in measurements has been known 
to physicists since the dawn physics and optics (Newton, 1687, 1704). The EPR 
sentence “when the momentum of a particle is known, its coordinate has no physi-
cal reality” (Einstein et al., 1935) implies an idealized exact measurement of 
momentum p with ∆p = 0. Once a real physical measurement of momentum is 
made with a nonzero estimate of the error in the measurement, that is, p ± ∆p, 
then the coordinate can be determined according to the uncertainty principle

 
∆

∆
x h
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and the “all values” spread in the coordinate, as feared by Einstein et al. 
(1935), is not allowed. Once the “all values” spread in the coordinate is found 
physically untenable, the claim of “no physical reality” is neutralized. Hence, 
the EPR conclusion that “the quantum mechanical description of physical reality 
… is not complete” can be negated.

In summary, the EPR claim of an “all values” spread in the coordinate 
depends on an idealized absolute and exact measurement of p with ∆p = 0. Since 
this is physically impossible, the claim of “no physical reality” can be negated.

While writing this book we came across a paragraph in Dirac’s book that 
very succinctly reinforces the argument made here. The paragraph in ques-
tion follows a discussion on the uncertainty principle: “it is evident physically 
that a state for which all values of q are equally probable, or one for which all 
values of p are equally probable, cannot be attained in practice” (Dirac, 1978). 
Notice that the book we are using is a revised printing of the 1947 edition. 
This means that observant physicists like Feynman, Ward, and Lamb might 
have been very much aware of the existence of this little-known Dirac dictum.

21.7 van Kampen’s Quantum Theorems

A useful pragmatic perspective on quantum mechanics is provided by van 
Kampen (1988). He argues that the difficulties in quantum mechanics only 
surface when one starts philosophizing: “this philosophizing has given rise 
to a number of ‘interpretations’, in which ψ is endowed with more physi-
cal significance than is needed” (van Kampen, 1988). Next, some of the van 
Kampen theorems are outlined and explained in some detail:

Theorem I states that “quantum mechanics works.” This perspective was 
already eloquently exposed by Feynman in his lectures when he refers 
to quantum mechanics as “a great triumph of twentieth century physics” 
(Feynman et al., 1965). The transistor and the laser are both testimonies that 
quantum mechanics works. This concept is self-explanatory and one of the 
central motivations for this book.

Theorem II states that quantum mechanics “is concerned with macroscopic 
phenomena… not perturbed by observation.” Here, van Kampen (1989) argues 
that what is observed is |ψ|2, multiplied by N, which is the number of either 
electron or photons in a beam. He then states that |ψ|2, for a single pho-
ton or electron, occurs in the calculation but is not observed experimentally. 
This perspective is restrictive given recent single photon experiments. Thus, 
this theorem should be extended to include the word microscopic, along the 
lines quantum mechanics is concerned with macroscopic, or microscopic, phenom-
ena unperturbed by observation. Theorem III states that both ψ and |ψ|2 are 
mathematical tools and more specifically that |ψ|2 is not observed directly. 
This perspective agrees with our experience of measuring interferometric 
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intensity distribution that is proportional to the probability distributions; in 
other words, I = K|ψ|2, where K is a constant.

Theorem IV reemphasizes the role of ψ simply as a computational tool.
Theorem V states that the measuring apparatus, in quantum experiments, 

“consists of a macroscopic system prepared in a metastable state.” Here, van Kampen 
(1988) argues that the transition from the metastable into the stable mac-
rostate provides the energy needed to make the microscopic phenomena 
macroscopically visible. He further argues that this is the reason why the 
measuring process is irreversible. This posture is compatible with our pre-
vious observation of the measurement process (see Chapter 20) in which a 
quantum microscopic event irreversibly interacts with the detector and trig-
gers a cascade process of amplification in the detector that makes the initial 
quantum event macroscopically visible.

21.8 On Probabilities and Probability Amplitudes

When a light beam propagates in free space, its spatial intensity distribution 
is proportional to its probability distribution, that is,

 I P K P N( ) ( , , )= λ Ω  (21.25)

where K is a constant of proportionality with units of J s−1 m−2. This intensity 
distribution I(P)is what is usually measured or recorded by the macroscopic 
detector and the corresponding classical apparatus connected to the detec-
tor. For the 1D case, the probability distribution can have the form of
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(21.26)

This equation applies either to the propagation of a single photon or to the 
propagation of an ensemble of indistinguishable photons. If the undetected 
propagating interferogram, described by Equation 21.25, is allowed to illu-
minate a new interferometric plane (j), composed of N slits, a whole new 
array of probability amplitudes is generated (see Figure 21.2). Once this inter-
action occurs, the original I(P) distribution gives origin to a whole new array 
of probability amplitudes represented by 〈x|j〉〈 j|s〉, where s is the source and 
x the new interferometric plane.

The new series of probability amplitudes is strongly influenced by the 
geometry of the interferometric array and is described by the Dirac principle
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where the probability amplitudes are (see Chapter 4)

 〈 〉 = 〈 〉
−j s r ej s
i j| ( )|Ψ θ

 (21.27)

 〈 〉 = 〈 〉
−x j r ex j
i j| ( )|Ψ φ

 (21.28)

so that

 

〈 〉 = −

=
∑x s r ej i

j

N
j| ( )Ψ Ω

1  

(21.29)

Here, the amplitudes can have a Gaussian form and

 Ψ Ψ Ψ( ) ( ) ( )| |r r rj x j j s= 〈 〉 〈 〉  (21.30)

while the new phase term becomes

 Ω j j j= +( )θ φ  (21.31)

Ψ(r1)

Ψ(r2)

Ψ(r3)

Ψ(rN)

1

2

3
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N

j x

(   )

D x|j 

I(P)

FIGURE 21.2
Propagating interferometric intensity distribution I(P) interacts with N-slit array, thus produc-
ing a new interferometric intensity distribution described by ℐ(𝒫). Wave function Ψ(r1) is asso-
ciated with slit j = 1, Ψ(r2) is associated with slit j = 2, Ψ(r3) is associated with slit j = 3, and so on.
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Multiplication of Equation 21.29 with its complex conjugate gives rise to a 
new measurable probability distribution
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(21.32)

at any interferometric plane x at a distance D〈x|j〉 from the interferometric 
array j. Thus, the new probability distribution becomes

 �( , , ) | | |λ N x sΩ = 〈 〉 2
 (21.33)

and the new intensity distribution is given by

 � � �( ) ( , , )= K Nλ Ω  (21.34)

In summary, a measurable interferometric distribution ℐ(𝒫) interacts with 
a new interferometric array (j), in an irreversible process, thus creating a 
whole new series of probability amplitudes. This new series of probability 
amplitudes are represented by a corresponding series of wave functions

 Ψ Ψ Ψ Ψ( ), ( ), ( ), ... ( )r r r rN1 2 3

Immediately following passage of the N-slit array, and due to diffraction, 
these wave functions become entangled and give rise to a new measur-
able interferometric intensity distribution as described by Equations 21.32 
through 21.34.

21.9 Comment on the Interpretational Issue

There is a plethora of interpretations of quantum mechanics. Among the 
most prominent interpretations one finds are the Copenhagen interpretation 
and the many-worlds interpretation. Albeit this is an interesting area of dis-
cussion, from the pragmatic perspective of physics, interpretations are not 
necessary to solve problems or predict the result of an experiment.

Our approach to quantum mechanics is to use the Dirac principles, as pre-
sented by Dirac (1978) and elucidated by Feynman (Feynman et al., 1965), 
while being perfectly aware that it is the experiment that has the final say.

In this regard, we very humbly assume that nature is far more subtle than 
our philosophical abilities and accept, as Ward and others have done, the 
physics of entanglement and the intricacy of the machinery of interference, 
as nature’s way. In other words, we postulate that the most efficient and prac-
tical interpretation of quantum mechanics is… no interpretation at all.
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Problems

21.1 Show that Equation 21.14 follows from Equation 21.13.

21.2 For the following set of polarizer angles, θ θ π θ π θ1 2 1 20 6 3 0= = = =, , , ,/ /′ ′  
calculate Bell’s inequality.

21.3 How would the argument in Section 21.6 change if the general form of 
the uncertainty principle, as given in Chapter 3, were used rather than 
∆x∆p ≈ h? Would the conclusion remain unchanged?

21.4 Refer to Equation 21.25 or 21.34: comment on the possible components 
that might comprise the overall constant K.
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Appendix A: Survey of Laser 
Emission Characteristics

A.1 Introduction

Lasers and laser emission characteristics are central to quantum optics. 
Here, we provide, in tabular form, a brief survey of laser emission character-
istics. This exposition gives emphasis to wavelength coverage and includes 
published data compiled in a review by Duarte (2003), in addition to newly 
selected results from the open literature. The vast majority of the lasers 
included in this survey can be classified as macroscopic emission sources 
of coherent radiation. An alternative description, for these lasers, would be 
macroscopic sources of quantum emission.

The aim of this appendix is to provide an expeditious first reference to the 
various types of lasers available and their respective wavelength coverage. 
References therein should direct the reader to further details and more spe-
cialized information.

A.2 Gas Lasers

The emission of high-pulsed energies, or high-average powers, requires the 
rapid removal of heat. Gas lasers are well suited for the efficient removal of 
excess heat. In this section, representative gas lasers from the subclasses of 
molecular and atomic transition laser are included. Some of the molecular 
lasers can be tuned.

A.2.1 Pulsed Molecular Gas Lasers

Table A.1 lists the molecular transition and wavelength of some represen-
tative ultraviolet molecular lasers including excimer lasers and the nitro-
gen laser.
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Table A.2 lists a few tunable narrow-linewidth excimer lasers. MPLG 
refers to multiple-prism Littrow grating configuration, while GIG refers to 
the grazing-incidence grating configuration (see Appendix B). A review on 
tunable excimer lasers is given by Sze and Harris (1995).

Table A.3 lists pulsed narrow-linewidth tunable CO2 lasers. HMPGIG 
refers to a hybrid multiple-prism GIG configuration.

TABLE A.1

Ultraviolet and Visible Molecular Pulsed Gas Lasers

Laser Transition λ (nm) prfa (Hz)
Bandwidth 

(GHz) Ref.b

KrF B X2
1 2

2
1 2Σ Σ/ /

+ +− 248 200 10500c Loree et al. (1978)
XeCl 308 1000 204 McKee (1985)
XeF 351 200 187 Yang et al. (1988)
N2 C Bu g

3 3Π Π− 337.1 100 203 Woodward et al. (1973)

HgBr B X2
1 2

2
1 2Σ Σ/ /

+ +− 502 100 918 Shay et al. (1981)

Source: Duarte, F.J., Tunable Laser Optics, Elsevier-Academic, New York, 2003.
a prf: pulse repetition frequency (typical).
b References provide bandwidth only.
c Tuning range.

TABLE A.2

Narrow-Linewidth Tunable Pulsed Excimer Laser Oscillators

Laser Oscillator λ (nm) ∆ν Pulse Energy Ref.

KrF GI 248 9 GHz 15 μJ Caro et al. (1982)
XeCl GI 308 1.5 GHz ∼1 mJ Sze et al. (1986)
XeCl GI 308 1 GHz 4 mJ Sugii et al. (1987)
XeCl 3 etalons 308 150 MHz 2–5 μJ Pacala et al. (1984)

Source: Duarte, F.J., Tunable Laser Optics, Elsevier-Academic, New York, 2003.

TABLE A.3

Narrow-Linewidth Tunable Pulsed CO2 Lasers

Laser Oscillator λ (nm) ∆ν (MHz)
Pulse 

Energy (mJ) Ref.

CO2 GIGa 10,591 700 230 Bobrovskii et al. (1987)
CO2 MPLG 10,591 140 200 Duarte (1985)
CO2 HMPGIG 10,591 107b 85 Duarte (1985)

Source: Duarte, F.J., Tunable Laser Optics, Elsevier-Academic, New York, 2003.
a Open-cavity configuration (see Appendix B).
b This laser linewidth corresponds to near single-longitudinal-mode oscillation.

 



341Appendix A: Survey of Laser Emission Characteristics

A.2.2 Pulsed Atomic Metal Vapor Lasers

Pulsed atomic metal vapor lasers include the copper vapor laser (CVL) that is 
a high-prf device particularly well suited for industrial applications and the 
excitation of high-power tunable dye lasers (Webb, 1991). Table A.4 includes 
transition assignments and emission wavelengths for the copper and gold 
metal vapor lasers.

A.2.3 Continuous Wave Gas Lasers

This category includes a number of important lasers such as the He–Ne 
laser and the Ar ion laser. Due to their cavity geometry, long active lengths, 
and relatively narrow apertures, these lasers emit single-transverse-mode 
(TEM00) beams with Gaussian or near-Gaussian profiles. These features 
are quite advantageous for a number of applications including interferom-
etry and metrology. Also, since emission originates from distinct atomic or 
ionic transitions, their intrinsic emission linewidth can be relatively narrow 
(∼1 GHz, for some He–Ne lasers, for instance). Table A.5 lists visible transi-
tions available from the He–Ne laser, while Table A.6 includes principal vis-
ible transition for ionic lasers.

TABLE A.5

Visible Transitions of CW He–Ne Lasers

Transitiona λ (nm)b

3s2 − 2p10 543.30
3s2 − 2p8 593.93
3s2 − 2p7 604.61
3s2 − 2p6 611.80
3s2 − 2p4 632.82

Source: Duarte, F.J., Tunable Laser Optics, Elsevier-
Academic, New York, 2003.

a Transition assignment from Willett (1974).
b Wavelength values from Beck et al. (1976).

TABLE A.4

Atomic Pulsed Gas Lasers

Laser Transition λ (nm) prfa (kHz) Bandwidth (GHz) Ref.b

Cu 2P3/2 − 2D5/2 510.5 2–30 ∼7 Tenenbaum et al. (1980)
2P1/2 − 2D3/2 578.2 2–30 ∼11 Tenenbaum et al. (1980)

Au 2P1/2 − 2D3/2 627.8 5–20

Source: Duarte, F.J., Tunable Laser Optics, Elsevier-Academic, New York, 2003.
a prf: pulse repetition frequency.
b References relate to bandwidth only.
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A.3 Dye Lasers

Dye lasers are inherently tunable and well suited for the generation of 
high-average powers (Duarte, 1991). These lasers can be divided in two 
main categories: pulsed dye lasers and CW dye lasers. These lasers, using 
numerous dyes, span the electromagnetic spectrum from the near ultra-
violet to the near infrared. More specifically, the wavelength coverage 
available from dye lasers is approximately 320–1000 nm (Duarte, 2003). 
Some individual dyes, such as rhodamine 6G, can provide tuning ranges 
in excess of 50 nm.

TABLE A.6

Principal Visible Transitions of Ionized CW Gas Lasers

Active Medium Transitiona λ (nm)b

Ar+ 4 42
1 2
0 2

1 2p S s P/ /− 457.93

4 42
3 2
0 2

1 2p P s P/ /− 476.49

4 42
5 2
0 2

3 2p D s P/ /− 487.99

4 42
3 2
0 2

1 2p D s P/ /− 496.51

4 32
5 2
0 2

3 2p F d D'
/ /− 501.72

4 44
5 2
0 2

3 2p D s P/ /− 514.53

Kr+
4 54

3 2
0 4

3 2p P s P/ /− 520.83

5 54
5 2
0 4

3 2p P s P/ /− 530.87

5 54
5 2
0 2

3 2p D s P/ /− 568.19

5 54
5 2
0 2

3 2p P s P/ /− 647.09

Zn+ 4 42
7 2
0 2

5 2f F d D/ /− 492.40

4 42 2
3 2

2
1 2
0s D p P/ /− 589.44

4 42 2
3 2

2
1 2
0s D p P/ /− 610.25

Cd+
5 52 2

5 2
2

3 2
0s D p P/ /− 441.56

4 52
5 2
0 2

3 2f F d D/ /− 533.75

6 42
7 2

2
5 2
0g G f F/ /− 635.48

6 42
9 2

2
7 2
0g G f F/ /− 636.00

I+
6 63

2
3

2
0p D s D' '− 540.73

6 63
2

3
2p F s D' '− 567.81

6 63
2

3
1
0p D s D' '− 576.07

6 63
1

3
2
0p D s D' '− 612.75

Source: Duarte, F.J., Tunable Laser Optics, Elsevier-Academic, 
New York, 2003.

a Transition assignment from Willett (1974).
b Wavelength values from Beck et al. (1976).
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A.3.1 Pulsed Dye Lasers

Laser-pumped dye lasers provide either very large pulsed energies or high-
average powers as indicated in Table A.7. Narrow-linewidth pulsed dye-laser 
oscillators are highlighted in Table A.8. Oscillator–amplifier systems can 
produce tunable narrow-linewidth emission at average powers in the kilo-
watt regime (Bass et al., 1992).

Flashlamp-pumped dye lasers can emit hundreds of Joules per pulse and 
high-average powers as indicated in Table A.9. The performance of a rugge-
dized narrow-linewidth flashlamp-pumped dye-laser oscillators is included 
in Table A.8.

TABLE A.7

High-Power Laser-Pumped Dye Lasers

Excitation 
Laser

Pulse 
Energy prf

Average 
Power η (%)a

Tuning 
Range (nm) Ref.

XeCl 800 Jb Low 27 475c Tang et al. (1987)
XeCl 200 mJ 250 Hz 50 W 20 401.5c Tallman and 

Tennant (1991)
CVL 190 mJ 13.2 kHz 2.5 kW 50 550–650 Bass et al. (1992)

Source: Duarte, F.J., Tunable Laser Optics, Elsevier-Academic, New York, 2003.
a Efficiency.
b Pulse length quoted at 500 ns.
c Central wavelength.

TABLE A.8

Narrow-Linewidth Liquid Dye Lasers

Excitation 
Source Cavity ∆ν (MHz) ∆t (ns)

Tuning 
Range (nm) η (%)

CVLa,b MPLGc,d 60e 30 560–600 5
CVLf HMPGIGg 400e 12 565–603 4–5
Nd:YAGh,i HMPGIGg 650 5 425–457 ∼9j

Flashlampk MPLGc 300 70 565–605

a Copper vapor laser.
b From Bernhardt and Rasmussen (1981).
c Multiple-prism Littrow grating configuration.
d Includes an intracavity etalon.
e Single-longitudinal-mode emission.
f From Duarte and Piper (1984).
g Hybrid multiple-prism GIG configuration.
h Uses the third harmonics of the fundamental (3ν).
i From Dupre (1987).
j This efficiency includes amplification via two stages.
k From Duarte et al. (1991); output laser energy is ∼3 mJ per pulse.
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Narrow-linewidth solid-state dye-laser oscillators, in the short- and long-
pulse regimes, are listed in Table A.10. These organic lasers use highly 
homogeneous rhodamine 6G dye-doped polymer matrices as gain medium 
(Duarte, 1994).

A.3.2 Continuous Wave Dye Lasers

High-power CW dye lasers are listed in Table A.11. Femtosecond pulse 
dye lasers utilizing prismatic pulse compression are listed in Table A.12. 
A thorough review on femtosecond dye lasers is given by Diels (1990). 
Frequency-stabilized CW dye lasers can be found elsewhere (Hollberg, 1990; 
Duarte, 2003).

TABLE A.10

Narrow-Linewidth Solid-State Organic Dye-Laser Oscillators

Cavity Matrix ∆ν (MHz) ∆t (ns)
Tuning 

Range (nm) Pulse Energy (mJ)

MPLGa,b MPMMAc 350d 3 550–603 ∼0.1e

MPLGf,g HEMA:MMAh 650 105 564–602 ∼0.4

a Laser-pumped dye laser; optimized cavity. LPDL,a,b FLPDL.e,f

b From Duarte (1999).
c MPMMA doped with rhodamine 6 G.
d Linewidth corresponds to single-longitudinal-mode oscillation.
e Power per pulse ∼33 kW.
f Flashlamp-pumped dye laser.
g From Duarte et al. (1998).
h HEMA: MMA doped with rhodamine 6 G.

TABLE A.9

High-Energy Flashlamp-Pumped Dye Lasers

Excitation
Pulse Duration 

(μs) Pulse Energy (J) η (%) Ref.

Lineara,b 7 40 0.4 Fort and Moulin (1987)
Transverseb,c 5 140d 1.8 Klimek et al. (1992)
Coaxialb 10 400 0.8 Baltakov et al. (1974)

Source: Duarte, F.J., Tunable Laser Optics, Elsevier-Academic, New York, 2003.
a Employs 12 flashlamps.
b Uses rhodamine 6G dye.
c Employs 16 flashlamps in a transverse configuration.
d Yields an average power of 1.4 kW at a prf of 10 Hz.
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A.4 Solid-State Lasers

The solid-state laser field is a vast field that includes traditional crystalline 
materials and fiber gain media. These lasers can emit both in the pulse and 
the CW regime. In this section, some of the most well-known gain media are 
surveyed with emphases on spectral characteristics. An authoritative review 
on this class of lasers is given by Barnes (1995a).

A.4.1 Ionic Solid-State Lasers

These lasers emit at fixed wavelengths in the infrared. They are often used 
with frequency multiplication techniques to reach the visible spectrum. 
Table A.13 includes transitions and corresponding wavelengths of various 
lasers in this class.

TABLE A.12

Femtosecond Pulse Dye Lasers

Pulse Compressor ∆t (fs) Ref.

Single prism 60 Dietel et al. (1983)
Double prism 50 Kafka and Baer (1987)
Double prism 18 Osvay et al. (2005)
Four prisms 29 Kubota et al. (1988)
Four prisms plus 
grating pair

6 Fork et al. (1987)

TABLE A.11

High-Power CW Dye Lasers

Cavity
Spectral Range 

(nm) Linewidth Power η (%) Ref.

Lineara 560–650 SLMb 33 Wc 17 Baving et al. (1982)
Ringa 407–887d SLM 5.6 We 23.3 Johnston and 

Duarte (2002)

Source: Duarte, F.J., Tunable Laser Optics, Elsevier-Academic, New York, 2003.
a Under Ar+ laser excitation.
b Linewidth values can be in the few MHz range.
c Using rhodamine 6G at 0.94 mM.
d Using 11 dyes.
e Using rhodamine 6G.
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A.4.2 Transition Metal Solid-State Lasers

This class of lasers include widely tunable lasers such as the Ti:sapphire and 
the alexandrite lasers. Table A.14 lists transitions and tuning ranges corre-
sponding to these lasers.

Broadly tunable solid-state lasers have produced some of the shortest 
pulses recorded directly from a laser system (see Table A.15). These lasers 

TABLE A.15

Ultrashort-Pulse Solid-State Lasers

Laser Post Laser ∆t (fs) λ (nm) Energy Ref.

Ti3+:Al2O3 Non-collinear OPAa 6.9 20 μJ Travella et al. 
(2010)

Ti3+:Al2O3 Chirped mirror 
compressor

3.64b 810c Demmler et al. 
(2011)

a Optics includes a 2-prism stretcher, a fiber stretcher, and two fiber preamplifiers.
b 1.3 cycle at 810 nm.
c Central wavelength.

TABLE A.14

Transition Metal Solid-State Lasers

Ion: Host Crystal Transition λ (nm) Ref.a

Cr3+:Al2O3
2E(Ē)−4A2 694.3 Maiman (1960)

Cr3+:Be3Al2(SiO3)6 4T2−4A2 695–835 Shand and Walling (1982)
Cr3+:BeAl2O4

4T2−4A2 701–818 Walling et al. (1980)
Ti3+:Al2O3

2T2−2E 660–986 Moulton (1986)

Source: Duarte, F.J., Tunable Laser Optics, Elsevier-Academic, New York, 
2003.

a References relate to the wavelength range only.

TABLE A.13

Emission Wavelengths from Ionic 
Solid-State Lasers

Ion Transition λ (nm)

Yb3+ 2F5/2 − 2F7/2 1015
Nd3+ 4F3/2 − 4I11/2 1064
Er3+ 4I13/2 − 4I15/2 1540
Tm3+ 3H4 − 3H6 2013
Ho3+ 5I7 − 5I8 2097

Source: Duarte, F.J., Tunable Laser Optics, 
Elsevier-Academic, New York, 2003.
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have improved on the previous performance established by dye lasers. A 
reference work on ultrashort-pulse lasers in general is given by Diels and 
Rudolph (2006).

A.4.3 Diode-Laser-Pumped Fiber Lasers

Emission wavelengths and output powers for diode-laser-pumped Yb-doped 
fiber lasers are listed in Table A.16. Wavelength ranges of tunable narrow-
linewidth fiber lasers are listed in Table A.17.

A.4.4 Optical Parametric Oscillators

Although the optical parametric oscillator (OPO) does not involve the pro-
cess of population inversion in its excitation mechanism, it is included, nev-
ertheless, since it is a source of spatially, and spectrally, coherent emission, 
which is inherently tunable. For detailed review articles on this subject, the 
reader is referred to Barnes (1995b) and Orr et al. (2009). Spectral characteris-
tics of several well-known OPOs are given in Table A.18. Among their many 
applications, these sources are used in the generation of correlated photon 
pairs for quantum entanglement (see Chapter 19).

TABLE A.17

Tunable Fiber Lasers

Tuning Technique
Tuning 

Range (nm)
Linewidth 

(MHz)
CW Power 

(mW) Ref.

Bragg grating (Er3+) 1510–1580 100 0.5 Chen et al. (2003)
Diffraction grating (Tm3+) 2275–2415 210 6.0 Yeh et al. (2007)

TABLE A.16

Diode-Laser-Pumped Yb-Doped Fiber Lasers

Cavity λ (nm) ∆ν CW Power η (%) Ref.

Linear ∼1120 BBa 110 Wb 58 Dominic et al. (1999)
HTGIc 1032–1124 2.5 GHz 10 Wd 68 Auerbach et al. (2002)

∼1100 BBa 1.36 kWe 86 Jeong et al. (2004)

Source: Duarte, F.J., Tunable Laser Optics, Elsevier-Academic, New York, 2003.
a BB: broadband.
b Excitation wavelength at ∼915 nm.
c Hybrid-telescope GIG configuration in a ring cavity.
d Excitation wavelength at 980 nm.
e Excitation wavelength at 975 nm.
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A.5 Semiconductor Lasers

The area of semiconductor lasers is a rapidly evolving field, which can be 
classified into high-power lasers, tunable external cavity lasers, tunable min-
iature lasers, tunable infrared lasers, and femtosecond lasers. Semiconductor 
lasers work via direct electrical excitation, are compact, are inherently tun-
able, and can be very stable. Six tables are included in this section, each high-
lighting output emission characteristics in a different area of semiconductor 
laser technology. The tables themselves are self-explanatory. Reviews on tun-
able external cavity tunable semiconductor lasers are given by Zorabedian 
(1995) and Duarte (2009), among others (Tables A.19 through A.24).

A.6 Free Electron Lasers

An important source of widely tunable coherent radiation, not included 
in this survey, is the free electron laser (FEL). FELs are fairly large high-
power devices that require accelerator technology. In his review of FELs, 

TABLE A.19

Wavelength Coverage of Semiconductor Laser Materials

Semiconductor Type Wavelength Range (nm)

II–VI (GaN) 395–410
III–V (AlGaInP/GaAs) 610–690
III–V (AlGaAs) 815–825
III–V (InGaAsP/InP) 1255–1335
III–V (InGaAs/InP) 1530–1570

Source: Duarte, F.J., Broadly tunable dispersive external-cavity 
semiconductor lasers, in Tunable Laser Applications, 
Duarte, F. J. ed., CRC, New York, Chapter 5, 2009.

TABLE A.18

Pulsed OPOs

Crystal λp (nm) Tuning Range (μm) Ref.

KTP 532 0.61–4.0 Orr et al. (1995)
BBO 355 0.41–3.0 Orr et al. (1995)
LBO 355 0.41–2.47 Schröder et al. (1994)
LiNbO3 532 0.61–4.4 Orr et al. (1995)
AgGaS2 1064 1.4–4.0 Fan et al. (1984)

Source: Duarte, F.J., Tunable Laser Optics, Elsevier-Academic, 
New York, 2003.
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Benson (1995) reports on various devices covering the electromagnetic 
spectrum from 2 to 2500 μm. More recent developments have seen the 
extension of the FEL emission well into the extreme ultraviolet (see, e.g., 
Allaria et al., 2012).

Duarte (2003) refers to additional miscellaneous type lasers such as chemi-
cal lasers, far-infrared lasers, and nuclear pumped lasers.

TABLE A.21

External Cavity Tunable Semiconductor Lasers

Semiconductor Cavity ∆ν
Tuning 

Range (nm)
Power 
(mW) Ref.

InGaAsP/InPa LGb 10 kHz 55 @ 1500 Wyatt and Devlin 
(1983)

InGaAsP/InP LGb,c 31 kHz 1285–1320 1 Shan et al. (1991)
LGb 20 kHz 15 @ 1260 Favre et al. (1986)

InGaAsP/InPa MPLGc 100 kHz 1255–1335 Zorabedian (1992)
GaAlAsa LGb,c 1.5 MHz 815–825 5 Fleming and 

Mooradian (1981)
GaAlAsa LGb,c 200 kHz 32 @ 850 1 De Labachelerie (1985)
GaAlAsa 2 Etalonsc 32 MHz 10 @ 875 Voumard (1977)
GaAlAsa Etalonc 4 kHz Harrison and 

Mooradian (1989)
GaAlAsa GIGd 10 kHz 20 @ 780 Harvey and Myatt 

(1991)
GIGd 15 MHz 30 @ 820 30 Gavrilovic et al. (1992)

Source: Duarte, F.J., Broadly tunable dispersive external-cavity semiconductor lasers, in 
Tunable Laser Applications, Duarte, F.J., ed., CRC, New York, Chapter 5, 2009.

a AR coating of the internal facet adjacent to the frequency-selective optics.
b Littrow grating.
c Closed cavity configuration (see Appendix B).
d Open cavity configuration (see Appendix B).

TABLE A.20

Power Performance of CW Diode-Laser Arrays

λ (nm) Output Power (W) Ref.

791 10 Srinivasan et al. (1999)
∼915 45 Dominic et al. (1999)

940 200 Morita et al. (2012)

Source: Duarte, F.J., Tunable Laser Optics, Elsevier-
Academic, New York, 2003.
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TABLE A.23

Tunable External Cavity Quantum Cascade Lasers

Stages in 
Cascade Cavity

Tuning 
Range (μm) ∆ν

Output 
Power Ref.

20 Littrow 8.2–10.4 SMa Maulini et al. (2006)
74 Littrow 7.6–11.4 ∼3.59 GHz 15 mW Hugi et al. (2009)

DFBb 5 GHza 65 μW Lu et al. (2013)

a Single mode.
b Distributed feedback: primary emissions around 9 and 10.22 μm.

TABLE A.24

Ultrashort-Pulse External Cavity Semiconductor Lasers

Laser Cavity
Mode Locking 

Technique ∆t (fs) λ (nm) Ref.

InGaAsPa Étalonb Active 580 1300 Corzine et al. (1988)
AlGaAs 4 prismsc Hybrid MQW 

SAd

200 ∼838 Delfyett et al. (1992)

AlGaAsa 6 prismsb Active, SAd 650 805 Pang et al. (1992)
MQWa Grating pairc,e Passive 260 ∼846 Salvatore et al. (1993)

Source: Duarte, F.J., Broadly tunable dispersive external-cavity semiconductor lasers, in 
Tunable Laser Applications, Duarte, F.J. (ed.), CRC, New York, Chapter 5, 2009.

a AR coating of the internal facet next to the frequency-selective optics.
b Closed cavity configuration.
c Open cavity configuration.
d Saturable absorber.
e Uses a Littrow grating for tuning.

TABLE A.22

MEMSa Tunable Semiconductor Lasers

Semiconductor Cavity
Tuning 

Range (nm) ∆ν
Output 

Power (mW) Ref.

InGaAsP/InP GIGb 1531.5–1557.9 2 MHz 20 Berger et al. (2001)
InGaAsP/InP GIGb,c 42 @ 1550 2 MHz 70 Berger and 

Anthon (2003)
GaAs/AlGaAsd Mirrore 1533–1555 SMf 0.9 Kner et al. (2002)

GIGg 1530–1570 50 kHz Zhang et al. (2012)

Source: Duarte, F.J., Tunable Laser Optics, Elsevier-Academic, New York, 2003.
a MEMS: microelectromechanical systems.
b Uses a silicon MEMS driven GIG cavity.
c Open cavity configuration (see Appendix B).
d VCEL.
e Tuning is achieved by displacing a voltage driven micromirror, which is supported by a 

cantilever.
f Single mode.
g Open cavity GIG plus etalon.

 



351Appendix A: Survey of Laser Emission Characteristics

References

Allaria, E., Appio, R., Badano, L., Barletta, W. A., Bassanese, S., Biedron, S. G., Borga, 
A. et al. (2012). Highly coherent and stable pulses from the FERMI seeded free-
electron laser in the extreme ultraviolet. Nat. Photon. 6, 699–704.

Baltakov, F. N., Barikhin, B. A., and Sukhanov, L. V. (1974). 400-J pulsed laser using a 
solution of rhodamine-6G in ethanol. JETP Lett. 19, 174–175.

Barnes (1995a). Transition metal solid-state lasers. In Tunable Lasers Handbook (Duarte, 
F. J., ed.). Academic Press, New York, Chapter 6.

Barnes (1995b). Optical parametric oscillators. In Tunable Lasers Handbook (Duarte, 
F. J., ed.). Academic Press, New York, Chapter 7.

Bass, I. L., Bonanno, R. E., Hackel, R. H., and Hammond, P. R. (1992). High-average 
power dye laser at Lawrence Livermore National Laboratory. Appl. Opt. 31, 
6993–7006.

Baving, H. J., Muuss, H., and Skolaut, W., (1982). CW dye laser operation at 200W 
pump power. Appl. Phys. B. 29, 19–21.

Beck, R., Englisch, W., and Gürs, K. (1976). Table of Laser Lines in Gases and Vapors, 
Springer-Verlag, Berlin, Germany.

Benson, S. V. (1995). Tunable free-electron lasers. In Tunable Lasers Handbook (Duarte, 
F. J., ed.). Academic Press, New York, Chapter 9.

Berger, J. D. and Anthon, D. (2003). Tunable MEMS devices for optical networks. Opt. 
Photon. News 14(3), 43–49.

Berger, J. D., Zhang, Y., Grade, J. D., Howard, L., Hrynia, S., Jerman, H., Fennema, 
A., Tselikov, A., and Anthon, D. (2001). External cavity diode lasers tuned with 
silicon MEMS. IEEE LEOS Newslett., 15 (5), 9–10.

Bernhardt, A. F. and Rasmussen, P. (1981). Design criteria and operating characteris-
tics of a single-mode pulsed dye laser. Appl. Phys. B 26, 141–146.

Bobrovskii, A. N., Branitskii, A. V., Zurin, M. V., Koshevnikov, A. V., Mishchenko, V. A., 
and Myl’nikov, G. D. (1987). Continuously tunable TEA CO2 laser. Sov. J. Quant. 
Electron. 17, 1157–1159.

Caro, R. G., Gower, M. C., and Webb, C. E. (1982). A simple tunable KrF laser system 
with narrow bandwidth and diffraction-limited divergence. J. Phys. D: Appl. 
Phys. 15, 767–773.

Chen, H., Babin, F., Leblanc, M., and Schinn, G. W. (2003). Widely tunable single- 
 frequency Erbium-doped fiber lasers. IEEE Photon. Tech. Lett. 15, 185–187.

Corzine, S. W., Bowers, J. E., Przybylek, G., Koren, U., Miller, B. I., and Soccolich, C. E. 
(1988). Actively mode-locked GaInAsP laser with subpicosecond output. Appl. 
Phys. Lett. 52, 348–350.

DeLabachelerie, M. and Cerez, P. (1985). An 850 nm semiconductor laser tunable over 
a 30 nm range. Opt. Commun. 55, 174–178.

Delfyett, P. J., Florez, L., Stoffel, N., Gmitter, T., Andreadakis, N., Alphonse, G., and 
Ceislik, W. (1992). 200 fs optical pulse generation and intracavity pulse evolu-
tion in a hybrid mode-locked semiconductor diode-laser/amplifier system, Opt. 
Lett. 17, 670–672.

Demmler, S., Rothhardt, J., Heidt, A. M., Hartung, A., Rohwer, E. G., Bartelt, H., 
Limpert, J., and Tünnermann A. (2011). Generation of high quality, 1.3 cycle 
pulses by active phase control of an octave spanning supercontinuum. Opt. Exp. 
19, 20151–20158.

 



352 Appendix A: Survey of Laser Emission Characteristics

Diels, J. -C. (1990). Femtosecond dye lasers. In Dye Laser Principles (Duarte, F. J. and 
Hillman, L. W., eds.). Academic Press, New York, Chapter 3.

Diels, J. -C. and Rudolph, W. (2006). Ultrashort Laser Pulse Phenomena, 2nd edn. 
Academic Press, New York.

Dietel, W., Fontaine, J. J., and Diels, J. -C. (1983). Intracavity pulse compression with 
glass: a new method of generating pulses shorter than 60 fs. Opt. Lett. 8, 4–6.

Dominic, V., MacCormack, S., Waarts, R., Sanders, S., Bicknese, S., Dohle, R., Wolak, 
E., Yeh, P. S., and Zucker, E. (1999). 110W fibre laser. Electron. Lett. 35, 1158–1160.

Duarte, F. J. (1985). Multiple-prism Littrow and grazing-incidence pulsed CO2 lasers. 
Appl. Opt. 24, 1244–1245.

Duarte, F. J. (1991). Dispersive dye lasers. In High Power Dye Lasers (Duarte, F. J., ed.). 
Springer-Verlag, Berlin, Germany, Chapter 2.

Duarte, F. J. (1994). Solid-state multiple-prism grating dye laser oscillators. Appl. Opt. 
33, 3857–3860.

Duarte, F. J. (1999). Multiple-prism grating solid-state dye laser oscillator: Optimized 
architecture. Appl. Opt. 38, 6347–6349.

Duarte, F. J. (2003). Tunable Laser Optics. Elsevier-Academic, New York.
Duarte, F. J. (2009). Broadly tunable dispersive external-cavity semiconductor lasers. 

In Tunable Laser Applications (Duarte, F. J. ed.). CRC Press, New York, Chapter 5.
Duarte, F. J., Davenport, W. E., Ehrlich, J. J., and Taylor, T. S. (1991). Ruggedized nar-

row-linewidth dispersive dye laser oscillator. Opt. Commun. 84, 310–316.
Duarte, F. J. and Piper, J. A. (1984). Narrow-linewidth, high prf copper laser-pumped 

dye laser oscillators. Appl. Opt. 23, 1391–1394.
Duarte, F. J., Taylor, T. S., Costela, A., Garcia-Moreno, I., and Sastre, R. (1998). Long-

pulse narrow-linewidth dispersive solid-state dye-laser oscillator. Appl. Opt. 37, 
3987–3989.

Dupre, P. (1987). Quasiunimodal tunable pulsed dye laser at 440 nm: Theoretical 
development for using quad prism beam expander and one or two gratings in a 
pulsed dye laser oscillator cavity. Appl. Opt. 26, 860–871.

Fan, Y. X., Eckardt, R. C., Byer, R. L., Route, R. K., and Feigelson, R. S. (1984). AgGaS2 
infrared parametric oscillator. Appl. Phys. Lett. 45, 313–315.

Favre, F., LeGuen, D., Simon, J. C., and Landousies, B. (1986). External-cavity semi-
conductor laser with 15 nm continued tuning range. Electron. Lett. 22, 795–796.

Fleming, M. W. and Mooradian, A. (1981). Spectral characteristics of external-cavity 
controlled semiconductor lasers. IEEE J. Quant. Electron. QE-17, 44–59.

Fork, R. L., Brito Cruz, C. H., Becker, P. C., and Shank, C. V. (1987). Compression of 
optical pulses to six femtoseconds by using cubic phase compression. Opt. Lett. 
12, 483–485.

Fort, J. and Moulin, C. (1987). High-power high-energy linear flashlamp-pumped dye 
Laser. Appl. Opt. 26, 1246–1249.

Gavrilovic, P., Chelnokov, A. V., O’Neill, M. S., and Beyea, D. M. (1992). Narrow- line-
width operation of broad-stripe single quantum well laser diodes in a grazing 
incidence external cavity. Appl. Phys. Lett. 60, 2977–2979.

Harrison, J. and Mooradian, A. (1989). Linewidth and offset frequency locking of 
external cavity GaAlAs lasers. IEEE J. Quant. Electron. QE-25, 1152–1155.

Harvey, K. C. and Myatt, C. J. (1991). External-cavity diode laser using a grazing- inci-
dence diffraction grating. Opt. Lett. 16, 910–912.

Hollberg, L. (1990). CW dye lasers. In Dye Laser Principles (Duarte, F. J. and Hillman, 
L. W., eds.). Academic Press, New York, Chapter 5.

 



353Appendix A: Survey of Laser Emission Characteristics

Hugi, A., Terazzi, R., Bonetti, Y., Wittmann, A., Fischer, M., Beck, M., Faist, J., and 
Gini, E. (2009). External cavity quantum cascade laser tunable from 7.6 to 11.4 
μm. Appl. Phys. Letts. 95, 061103.

Jeong, Y., Sahu, J. K., Payne, D. N., and Nilsson, J. (2004). Ytterbium-doped large-
core fiber laser with 1.36 kW continuous-wave output power. Opt. Exp. 12, 
6086–6092.

Johnston, T. F. and Duarte, F. J. (2002). Lasers, dye. In Encyclopedia of Physical Science 
and Technology, 3rd edn. (Meyers, R. A., ed.). Academic Press, New York, pp. 
315–359.

Kafka, J. D. and Baer, T. (1992). Prism-pair delay lines in optical pulse compression. 
Opt. Lett. 12, 401–403.

Klimek, D. E., Aldag, H. R., and Russell, J. (1992). In Conference on Lasers and Electro-
Optics, Optical Society of America, Washington, DC, p. 332.

Kner, P., Sun, D., Boucart, J., Floyd, P., Nabiev, R., Davis, D., Yuen, W., Jansen, M., and 
Chang-Hasnain, C. J. (2002). VCSELS. Opt. Photon. News 13(3), 44–47.

Kubota, H., Kurokawa K., and Nakazawa, M. (1988). 29-fs pulse generation from a 
linear-cavity synchronously pumped dye laser. Opt. Lett. 13, 749–751.

Loree, T. R. Butterfield, K. B., and Barker, D. L. (1978). Spectral tuning of ArF and KrF 
discharge lasers. Appl. Phys. Lett. 32, 171–173.

Lu, Q. Y., Bandyopadhyay, N., Slivken, S., Bai, Y., and Razeghi, M. (2013). High per-
formance terahertz quantum cascade laser sources based on intracavity differ-
ence frequency generation. Opt. Exp. 21, 968–973.

Maiman, T. H. (1960). Stimulated optical radiation in ruby. Nature 187, 493–494.
Maulini, R., Mohan, A., Giovannini, M., Faist, J., Gini, E. (2006). External cavity quan-

tum-cascade laser tunable from 8.2 to 10.4 μm using a gain element with a het-
erogeneous cascade. Appl. Phys. Lett. 88, 201113.

McKee, T. J. (1985). Spectral-narrowing techniques for excimer lasers oscillators. Can. 
J. Phys. 63, 214–219.

Morita, T., Kageyama, N., Torii, K., Nagakura, T., Takauji, M., Maeda, J., Miyamoto, 
M., Miyajima, H., and Yoshida, H. (2012). Developments of high-power 9xx-nm 
single emitter laser diodes and laser diode bars. In Photonics Society Summer 
Topical Meeting Series, IEEE. pp. 33–34.

Moulton, P. F. (1986). Spectroscopic and laser characteristics of Ti:Al2O3. J. Opt. Soc. 
Am. B 3, 125–132.

Orr, B. J., He, Y., and White, R. T. (2009). Spectroscopic applications of pulsed tunable 
optical parametric oscillators. In Tunable Laser Applications, 2nd edn. (Duarte, 
F. J., ed.). CRC Press, New York, Chapter 2.

Orr, B. J., Johnson, M. J., and Haub, J. G. (1995). Spectroscopic applications of pulsed 
tunable optical parametric oscillators. In Tunable Laser Applications (Duarte, F. J., 
ed.). Marcel Dekker, New York, Chapter 2.

Osvay, K., Kovács, A. P., Kurdi, G., Heiner, Z., Divall, M., Klebniczki, J., and Ferincz, 
I. E. (2005). Measurements of non-compensated angular dispersion and the 
subsequent temporal lengthening of femtosecond pulses in a CPA laser. Opt. 
Commun. 248, 201–209.

Pacala, T. J., McDermid, I. S., and Laudenslager, J. B. (1984). Single-longitudinal-mode 
operation of an XeCl laser. Appl. Phys. Lett. 45, 507–509.

Pang, L. Y., Fujimoto, J. G., and Kintzer, E. S. (1992). Ultrashort-pulse generation from 
high-power diode arrays by using intracavity optical nonlinearities. Opt. Lett. 
17, 1599–1601.

 



354 Appendix A: Survey of Laser Emission Characteristics

Salvatore, R. A., Schrans, T., and Yariv, A. (1993). Wavelength tunable source of 
 subpicosecond pulses from CW passively mode-locked two-section multiple-
quantum-well laser. IEEE Photo. Tech. Lett. 5, 756–758.

Schröder, T., Boller, K. -J., Fix, A., and Wallenstein R. (1994). Spectral properties and 
numerical modelling of a critically phase-matched nanosecond LiB3O5 optical 
parametric oscillator. Appl. Phys. B. 58, 425–438.

Shan, X., Siddiqui, A. S., Simeonidou, D., and Ferreira, M. (1991). Rebroadening of 
spectral linewidth with shorter wavelength detuning away from the gain curve 
peak in external avity semiconductor lasers sources. In Conference on Lasers and 
Electro- Optics. Optical Society of America, Washington, DC, pp. 258–259.

Shand, M. L. and Walling, J. C. (1982). A tunable emerald laser. IEEE J. Quant. Electron. 
QE-18, 1829–1830.

Shay, T., Hanson, F., Gookin, D., and Schimitschek, E. J. (1981). Line narrowing and 
enhanced efficiency of an HgBr laser by injection locking. Appl. Phys. Lett. 39, 
783–785.

Srinivasan, B., Tafoya, J., and Jain, R. K. (1999). High power Watt-level CW operation 
of diode-pumped 2.7 mm fiber lasers using efficient cross-relaxation and energy 
transfer mechanisms. Opt. Exp. 4, 490–495.

Sugii, M., Ando, M., and Sasaki, K. (1987). Simple long-pulse XeCl laser with narrow- 
line output. IEEE J. Quant. Electron. QE-23, 1458–1460.

Sze R. C. and Harris, D. G. (1995). Tunable excimer lasers. In Tunable Lasers Handbook 
(Duarte, F. J., ed.). Academic Press, New York, Chapter 3.

Sze, R. C., Kurnit, N. A., Watkins, D. E., and Bigio, I. J. (1986). Narrow band tuning 
with small long-pulse excimer lasers. In Proceedings of the International Conference 
on Lasers ‘85 (Wang, C. P., ed.). STS Press, McLean, VA, pp. 133–144.

Tallman, C. and Tennant, R. (1991). Large-scale excimer-laser-pumped dye lasers. 
In High Power Dye Lasers (Duarte, F. J., ed.). Springer-Verlag, Berlin, Germany, 
Chapter 4.

Tang, K. Y., O’Keefe, T., Treacy, B., Rottler, L., and White, C. (1987). Kilojoule out-
put XeCl dye laser: Optimization and analysis. In Proceedings: Dye Laser/Laser 
Dye Technical Exchange Meeting, 1987 (Bentley, J. H., ed.). U. S. Army Missile 
Command, Redstone Arsenal, AL, pp. 490–502.

Tavella, F., Willner, A., Rothhardt, J., Hädrich, S., Seise, E., Düsterer, S., Tschentscher, 
T. et al. (2010). Fiber-amplifier pumped high average power few-cycle pulse 
non-collinear OPCPA. Opt. Exp. 18, 4689–4694.

Tenenbaum, J., Smilanski, I., Gabay, S., Levin, L. A., Erez, G., and Lavi. S. (1980). 
Structure of 510.6 and 578.2 nm copper laser lines. Opt. Commum. 32, 473–477.

Voumard, C. (1977). External-cavity-controlled 32-MHz narrow-band CW GaAlAs- 
diode lasers. Opt. Lett. 1, 61–63.

Walling, J. C., Peterson, O. G., Jensen, H. P., Morris, R. C., and O’Dell, E. W. (1980). 
Tunable alexandrite lasers. IEEE J. Quant. Electron. QE-16, 1302–1315.

Webb, C. E. (1991). High-power dye lasers pumped by copper vapor lasers. In High 
Power Dye Lasers, (Duarte, F. J., ed.). Springer-Verlag, Berlin, Germany, Chapter 5.

Willett, C. S. (1974). An introduction to Gas Lasers: Population Inversion Mechanisms. 
Pergamon, New York.

Woodward, B. W., Ehlers, V. J., and Lineberger, W. C. (1973). A reliable, repetitively 
pulsed, high-power nitrogen laser. Rev. Sci. Instrum. 44, 882–887.

Wyatt, R. and Devlin, W. J. (1983). 10 kHz linewidth 1.5 μm InGaAsP external cavity 
laser with 55 nm tuning range. Electron. Lett. 19, 110–112.

 



355Appendix A: Survey of Laser Emission Characteristics

Yang, T. T., Burde, D. H., Merry, G. A., Harris, D. G., Pugh, L. A. Tillotson, J. H., 
Turner, C. E., and Copeland, D. A. (1988). Spectra of electron-beam pumped XeF 
lasers. Appl. Opt. 27, 49–57.

Yeh, C-H., Huang, T-T., Chien, H-C., Ko, C-H., and Chi, S. (2007). Tunable S-band 
erbium-doped triple-ring laser with single-longitudinal-mode operation, Opt. 
Exp. 15, 382–386.

Zhang, D., Zhao, J., Yang, O., Liu, W., Fu, Y., Li, C., Luo, M., Hu, S. Q., and Wang, L. 
(2012). Compact MEMS external cavity tunable laser with ultra-narrow line-
width for coherent detection. Opt. Exp. 20, 19670–19682.

Zorabedian, P. (1992). Characteristics of a grating-external-cavity semiconductor laser 
containing intracavity prism beam expanders. J. Lightwave Technol. 10, 330–335.

Zorabedian, P. (1995). Tunable external-cavity semiconductor lasers. In Tunable Lasers 
Handbook (Duarte, F. J., ed.). Academic Press, New York, Chapter 8.

 



 



357

Appendix B: Brief Survey of Laser 
Resonators and Laser Cavities

B.1 Introduction

A laser is composed of a gain medium, a mechanism to excite that medium, 
and an optical resonator and/or optical cavity (Duarte, 2003). The terms 
optical cavity, optical oscillator, and optical resonator are approximately 
equivalent, but usage of these terms indicates that an optical cavity applies 
equally to an optical oscillator or an optical resonator. The term optical res-
onator tends to be associated with unstable resonators, while optical oscilla-
tor tends to be identified with narrow-linewidth oscillators. In this regard, 
narrow-linewidth multiple-prism grating oscillators can behave as unstable 
resonators depending on the lensing properties of the gain medium (Duarte 
et al., 1997).

The initial laser radiation from a gain medium can be multiple transverse 
modes, and each of these modes can include a multitude of longitudinal 
modes (Duarte, 2003). Such class of radiation constitutes broadband laser 
radiation. In this regard, it is the function of the laser cavity, laser resonator, 
or laser oscillator to restrict the laser emission to a single transverse mode, 
that is, TEM00, and to a single longitudinal mode. In other words, for radia-
tion of a given temporal characteristic, it is the geometry and the optical 
configuration of the cavity, resonator, or oscillator that determine the degree 
of spatial coherence and spectral coherence of the laser emission.

In this appendix we provide a brief survey of some widely used laser 
cavity configurations.

B.2 Resonators and Oscillators

Here, we briefly introduce broadband resonators, tunable resonators, and 
narrow-linewidth oscillators. For comprehensive reviews on this subject, the 
reader should refer to Duarte (1990a, 1991, 1995a, 2003).
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B.2.1 Broadband Resonators

The most elemental of resonators is that composed of two flat reflective sur-
faces aligned perpendicular to the optical axis of the cavity as illustrated in 
Figure B.1. In this flat-mirror resonator, one of the mirrors is usually ∼100% 
reflective, at the wavelength or wavelengths of interest, and the other mirror, 
known as the output coupler, is partially reflective. However, in high-gain 
lasers, such as dye lasers, simply the windows of the gain region can act as 
partial reflectors and sustain broadband laser action. This very rudimentary 
cavity class is outlined in Figure B.2. Here it is important to observe that 
this is not “mirror-less” laser action since each window is acting as a mirror. 
Also, by broadband laser emission, we mean powerful laser emission, which 
can be a few nm wide and even up to 10 nm wide as reported by Schäfer 
et al. (1966).

In this class of broadband resonator, the optimum reflectivity for the output 
coupler is often determined empirically. For a low-gain laser medium, this 
reflectivity can approach 99%, while, for a high-gain laser medium, the reflec-
tivity can be as low as 10%. In Figure B.1 the gain region is depicted with its 
output windows at an angle relative to the optical axis. If the angle of incidence 
of the laser emission, on the windows, is the Brewster angle, then the emis-
sion will be highly linearly polarized. For the case illustrated in Figure B.1, 
the laser emission will be polarized parallel to the plane of incidence. On the 

Gain medium
M1 M2

FIGURE B.1
Generic broadband flat-mirror resonator. M1 is a total reflector and M2 is a partial reflector also 
known as output coupler. The diameter of the laser beam is determined by the dimensions of 
the aperture next to M2.

Gain medium

M1 M2

Pump laser beam

FIGURE B.2
Optically pumped high-gain broadband resonator with flat partially reflecting surfaces, which 
perform the function of mirrors as M1 and M2. The emission is bidirectional, and the dimen-
sions of the output beam depend on the focusing characteristics of the pump laser beam.
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other hand, the configuration illustrated in Figure B.2 could allow the emis-
sion of unpolarized laser radiation (Duarte, 1990b).

The transverse-mode structure in these resonators is determined by the 
emission wavelength and the ratio of the cavity aperture to the cavity length. 
In this regard, the beam profile can be calculated using the interferometric 
equation:
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where the width of the intracavity aperture is represented by the dimensions 
of subslits and the number N of these subslits. The calculation also includes 
the wavelength λ and the intra-interferometric distance D〈x|j〉 (see Chapter 9 
[Duarte, 1991, 1993, 2003]).

Equation B.1 tells us that short cavities with wide apertures lead to the 
emission of beams with a large number of transverse modes, while long cav-
ities with narrow apertures yield TEM00 emission. This equation explains 
why lasers such as He–Ne, Ar+, and Kr+ have exquisite beam quality.

An alternative to the flat-mirror approach is to use a pair of optically 
matched curved mirrors.

B.2.2 Frequency-Selective Resonators

These resonators are available in a variety of configurations. The simplest 
frequency-selective resonator, or frequency-selective cavity, incorporates a 
diffraction grating as a tuning element as illustrated in Figure B.3. This class 
of cavity can also incorporate other intracavity frequency-selective elements, 
such as etalons (Figure B.3b). Prisms can also be used as intracavity tuning ele-
ments as shown in Figure B.4. Prisms can be used in conjunction with a diffrac-
tion grating, in Littrow configuration, or a simple flat mirror (Duarte, 1990a).

B.2.3 Unstable Resonators

An additional class of broadband laser resonators is the unstable resonators. 
These resonators depart from the flat-mirror design and incorporate curved 
mirrors as depicted in Figure B.5. These mirror configurations are adopted 
from the field of reflective telescopes. A widely used design is a variation of 
the Newtonian telescope known as the Cassegrain telescope. In this configu-
ration the two mirrors have a high reflectivity.

Unstable resonators allow the use of large-gain medium volumes, which 
are suitable for high-power laser generation. Albeit some designs emit a hol-
low beam in the near field, the far field exhibits beam profiles with a single-
transverse-mode structure. Unstable resonators are particularly well suited 
for high-power lasers and for the amplification stage of MOFO configurations 
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as illustrated in Figure B.6 (Duarte and Conrad, 1987; Duarte 1990a). Unstable 
resonators can be evaluated using parameters from ABCD matrices as indi-
cated in Appendix C. For a detailed treatment on the subject of unstable 
resonators, the reader should refer to Siegman (1986).

B.2.4 Narrow-Linewidth Oscillators

Narrow-linewidth tunable laser oscillators can be configured using either 
grazing-incidence grating (GIG) designs (Figure B.7) or multiple-prism 
grating configurations as illustrated in Figures B.8 and B.9. The GIG cavity 
depicted in Figure B.7 is open cavity as the laser output is coupled via the 
reflection losses of the grating.

Multiple-prism grating architectures can be of the hybrid multiple-prism 
preexpanded near-grazing-incidence (HMPGI) grating class (Figure B.8) or 
the multiple-prism Littrow (MPL) grating class (Figure B.9). Both these types 
of oscillators are inherently compatible with closed cavity configurations, 
which produce lower spectral noise, and offer better protection against opti-
cal coupling with extracavity elements (Duarte 1990a, 2003). In addition to 
narrow-linewidth emission, these cavities are inherently tunable.

Gain
medium

Gain
medium

Etalon

Grating

Grating

Θ

(a)

Θ

M

M
(b)

FIGURE B.3
(a) Frequency-selective cavity tuned by a diffraction grating in Littrow configuration. This is a 
closed cavity configuration in which the laser output is coupled via the partially reflective sur-
face of M. (b) Further linewidth narrowing can be provided via an intracavity etalon.
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Gain
medium

1,1

Grating

Θ

M

2,1

1,2

2,2

FIGURE B.4
Frequency-selective cavity tuned by a double-prism grating assembly. Wavelength selectiv-
ity is achieved by rotation of the grating. In some broadband configurations, the grating is 
replaced by a tuning mirror. This is a closed cavity configuration in which the laser output is 
coupled via the output coupler mirror.

Gain medium

M1

M2

FIGURE B.5
Generic unstable resonator configuration (see Appendix C).
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Master
oscillator

Forced
oscillator

Grating
3000 lines mm–1

FIGURE B.6
MOFO laser system. The amplifier stage (FO) is configured with an unstable resonator cavity. 
(Reproduced from Duarte, F.J. and Conrad, R.W., Appl. Opt. 26, 2567, 1987, with permission from 
the Optical Society of America.)

Gain
medium

Grating

θ

θ́
M

Tuning mirror

FIGURE B.7
Tunable narrow-linewidth cavity incorporating a GIG configuration. This is an open cavity con-
figuration in which the laser output is coupled via the reflection losses of the grating.

Gain
medium

M

Grating

θ

θ́

1,1

1,2

Tuning mirror

FIGURE B.8
Tunable narrow-linewidth cavity incorporating a double-prism beam expander and a grat-
ing in a near-grazing-incidence configuration. In the literature these cavities are referred to as 
hybrid multiple-prism preexpanded near-grazing-incidence (HMPGI) grating cavities (Duarte 
and Piper, 1981, 1984). This is a closed cavity configuration in which the laser output is coupled 
via the output coupler mirror.
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These dispersive cavities, or narrow-linewidth tunable laser oscillators, 
allow the designer to obtain laser beams that are

 1. Spatially coherent: that is, single-transverse (TEM00)-mode emission 
with a Gaussian beam profile (Duarte, 1995b, 1999).

 2. Spectrally coherent: that is, narrow-linewidth laser emission that is 
single longitudinal mode. For optimized oscillators this emission 
can be near the limit allowed by Heisenberg’s uncertainty principle:

 ∆ ∆ν t ≈ 1  (B.2)

For example, for ∆ν ≈ 350 MHz, and ∆t ≈ 3 ns (Duarte, 1999), the product 
above becomes ∆ν ∆t ≈ 1.05.

Further details can be found in Chapter 9 and review articles are given by 
Duarte (1990a, 1995a, 2003). Also, these oscillator architectures are applicable 
to lasers in the gas, the liquid, and the solid state (Duarte, 2003). The perfor-
mance of tunable narrow-linewidth oscillators as described, for various gain 
media, is described in Appendix A.

Gain
medium

M

1,1

1,2

1,3

Θ

Grating

FIGURE B.9
Tunable narrow-linewidth cavity incorporating an MPL grating configuration (Duarte and 
Piper, 1981, 1984). This is a closed cavity configuration in which the laser output is coupled via the 
output coupler mirror.
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B.3 CW Tunable Cavities

CW tunable laser cavities include linear (Figure B.10) and ring laser reso-
nators (Figure B.11) developed for dye lasers and later applied, in modified 
form, to the generation of ultrashort pulses (Diels, 1990; Diels and Rudolph, 
2006). A generic unidirectional ring resonator deployed in an 8-shape 
 configuration is illustrated in Figure B.11 (Hollberg, 1990).

FSO

Gain medium

Pump laser

M1

M3

M2

FIGURE B.10
Generic linear CW laser cavity. FSO represents frequency-selective optics.

FSO

Gain medium

Pump laser

M3

M4

M1M2

FIGURE B.11
Unidirectional CW ring laser cavity. FSO represents frequency selective optics.
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B.3.1 Femtosecond Laser Cavities

A linear cavity incorporating an antiresonat ring is depicted in Figure B.12. 
At the ring, a collision between two counterpropagating pulses occurs at 
the saturable absorber; thus, collision causes the two pulses to  interfere. 
This interference induces a transient grating that shortens the emis-
sion pulse. This effect is known as colliding-pulse-mode locking (CPM) 
(Fork et al., 1981).

The prisms in this cavity are deployed to provide negative dispersion and 
thus reduce the intracavity dispersion (see Chapter 6). For gain media with 
an intrinsically large tuning range (such as laser dyes or Ti:sapphire), mini-
mization of the intracavity dispersion allows the emission of radiation with a 
wide spectral width, or continuum. For a well-designed cavity, wide spectral 
emission is associated with very short pulses (see Equation B.2). Thus, spe-
cially designed prismatic arrays introduce negative dispersion thus reducing 
the overall intracavity dispersion, which leads to pulse compression. Details of 
pulse compression are given in Chapter 6. Although originally developed for 
dye lasers, these cavities are widely used with a variety of gain media.
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FIGURE B.12
Generic linear laser cavity including a double-prism compressor.
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Appendix C: Ray Transfer Matrices

C.1 Introduction

A practical method to characterize and design laser optics systems is the 
use of beam propagation matrices also known as ray transfer matrices. This 
method applies to the propagation of laser beams with a Gaussian profile. In 
other words, it applies to the propagation of single-transverse-mode beams 
or spatially coherent beams, which is a crucial characteristic to the concept of 
laser emission. In this appendix the basic principles of propagation matrices 
are outlined and a survey of matrices for various widely applicable optical 
elements is given. This appendix follows the style of a review on the subject 
by Duarte (2003). For early references on the subject, the reader is referred to 
Brouwer (1964), Kogelnik (1979), Siegman (1986), and Wollnik (1987).

C.2 ABCD Propagation Matrices

The basic idea with propagation matrices is that one vector, at a given plane, 
is related to a second vector, at a different plane, via a linear transformation. 
This transformation is represented by a propagation matrix. This concept is 
applicable to the characterization of the deviation of a ray, or beam, of light 
through either free space or any linear optical media. The rays of light are 
assumed to be a paraxial ray that propagates in proximity and almost paral-
lel to the optical axis (Kogelnik, 1979).

Consider the propagation of a paraxial ray of light from an original plane 
to a secondary plane, in free space, as depicted in Figure C.1. Here it is noted 
that, in moving from the original plane to the secondary plane, the ray of 
light experiences a linear deviation in the x direction and a small angular 
spread, that is,

 x x l2 1 1= + θ  (C.1)

 θ θ2 1=  (C.2)
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which in matrix form becomes
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the resulting 2 × 2 matrix is known as a ray transfer matrix. Here, it should 
be noted that some authors use derivatives instead of the angular quantities, 
that is, dx1/dz = θ1 and dx2/dz = θ2.

For a thin lens the geometry of propagation is illustrated in Figure C.2. In 
this case, there is no displacement in the x direction and the ray is concen-
trated, or focused, toward the optical axis so that

 x x2 1=  (C.4)
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which can be expressed as
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l

FIGURE C.1
Geometry for propagation through distance l in vacuum free space. The x direction is perpen-
dicular to the direction of l (i.e., z-axis).

f

FIGURE C.2
Geometry depicting a thin convex lens with a focal length f.
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In more general terms, the X2 vector is related to the X1 vector by a transfer 
matrix T known as the ABCD matrix so that

 X T X2 1=  (C.7)

where

 
T =











A B
C D

 
(C.8)

A is a ratio of spatial dimensions
B is an optical length
C is the reciprocal of an optical length.
D is the reciprocal of A

Consideration of various imaging systems leads to the conclusion that the 
spatial ratio represented by A is a beam magnification factor (M), while D is 
the reciprocal of such magnification (M−1). These observations are very use-
ful to verify the physical validity of newly derived matrices.

C.2.1 Properties of ABCD Matrices

ABCD matrices can be cascaded, via matrix multiplication, to produce a 
single overall matrix describing the propagation properties of an optical 
system. For example, if a linear optical system is composed of N optical ele-
ments deployed from left to right, as depicted in Figure C.3, then the overall 

T1 T2 T3 TN

FIGURE C.3
N optical elements in series. (From Duarte, F.J., Tunable Laser Optics, Elsevier-Academic, 
New York, 2003.)
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transfer matrix is given by the multiplication of the individual matrices in the 
reverse order, that is (Duarte, 2003),

 
T T T T Tm

m

N

N
=

∏ =
1

3 2 1…

 
(C.9)

It is easy to see that the complexity in the form of these product matrices can 
increase rather rapidly. Thus, it is always useful to remember any resulting 
matrix must have the dimensions of Equation C.8 and a determinant equal 
to unity, that is,

 AD BC− =  1  (C.10)

C.2.2 Survey of ABCD Matrices

In Table C.1 a number of representative and widely used optical components 
are included in ray transfer matrix form. This is done without derivation and 
using the published literature as reference.

C.2.3 Example: The Astronomical Refractive Telescope

The astronomical refractive telescope (Figure C.4) is composed of an input 
lens with focal length f1, an intra-lens distance L, and an output lens with 
focal lens f2. Following Equation C.9 the matrix multiplication proceeds as

 

1 0
1 1

1
0 1

1 0
1 12 1−


















 −








/ /f

L
f

 
(C.11)

For a well-adjusted telescope, where

 L f f= +2 1  (C.12)

the transfer matrix becomes

 

A B
C D

f f f f
f f









 =

− +
−











2 1 2 1

1 20
/

/
 

(C.13)

which is the matrix given in Table C.1. Defining

 
− = −









M f

f
2

1  
(C.14)
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TABLE C.1

ABCD Ray Transfer Matrices

Optical Element or System ABCD Matrix Ref.

Distance l in free space 1
0 1

l









Kogelnik 
(1979)

Distance l in a medium 
with refractive index n

1
0 1

l n/









Kogelnik 
(1979)

Slab of material with 
refractive index n

1
0 1

2( / )(cos /cos )l n φ ψ









Duarte 
(1991)

ϕ is the angle of incidence.
ψ is the angle of refraction.

Thin convex (positive) lens 
of focal length f

1 0
1 1−









/f

Kogelnik 
(1979)

Thin concave (negative) 
lens

1 0
1 1/| |f











Siegman 
(1986)

Galilean telescope f f f f
f f

2 1 2 1

1 20
/| | | |

| |/
−









Siegman 
(1986)

Astronomical telescope − +
−











f f f f
f f

2 1 2 1

1 20
/

/

Siegman 
(1986)

Curved mirror 1 0
2 1−









/R

Siegman 
(1986)

Flat mirror 1 0
0 1











Duarte 
(2003)

Double pass in Cassegrain 
telescope

M M L M
M

( ) /
/

+









1
0 1

Siegman 
(1986)

Flat grating cos /cos
cos /cos

Θ Φ
Φ Θ

0
0











Siegman 
(1986)

Θ is the angle of incidence.
Φ is the angle of diffraction.

Flat grating in Littrow 
configuration (Θ = Φ)

1 0
0 1











Duarte 
(1991)

(continued)
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this matrix can be restated as

 

A B
C D

M L
M









 =

−
−









0 1/

 
(C.15)

For this matrix it can be easily verified that the condition

 AD BC− =  1

holds.

TABLE C.1 (continued)

ABCD Ray Transfer Matrices

Optical Element or System ABCD Matrix Ref.

Single right-angle prism cos /cos ( / )cos /cos
cos /cos

ψ ψ
ψ

φ φ
φ

l n
0











Duarte 
(1989)

ϕ is the angle of incidence.
ψ is the angle of refraction.

Multiple-prism beam 
expander

M M B
M M

1 2

1 2
10 ( )−











Duarte 
(1991)

Multiple-prism beam 
expander (return pass)

( )M M B
M M

1 2
1

1 20

−









Duarte 
(1991)

Source: Duarte, F.J., Tunable Laser Optics, Elsevier-Academic, New York, 2003.

f1 + f2

FIGURE C.4
Schematics of an astronomical refractive telescope comprised by two convex lenses.
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C.2.4 Multiple-Prism Beam Expanders

For a generalized multiple-prism array, as illustrated in Figure C.5, the ray 
transfer matrix is given by (Duarte, 1989, 1991)

 

A B
C D

M M B
M M









 =









−

1 2

1 2
10 ( )

 
(C.16)

where

 
M k m

m

r

1 1
1

=
=

∏ ,

 
(C.17)

 
M k m

m

r

2 2
1

=
=

∏ ,

 
(C.18)

1,2

1,3

1,1

FIGURE C.5
Multiple-prism beam expander.
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and

 

B M M L k k M
M

l
nm

m

r

j j
j

m

j

m
m

m
=













+ 



=

−

==

−

∑ ∏∏1 2
1

1

1 2
11

2

1

2
, ,
































=

−

==
∏ ∏∑ k kj
j

m

j
j m

r

m

r

1
1

2

2

2

1
, ,

 
(C.19)

For a straightforward multiple-prism beam expander with orthogonal beam 
exit, cos ψ2,j = 0 and k2,j = 1, so that the equations reduce to

 

A B
C D

M B
M









 =









−

1

1
10 ( )

 
(C.20)

where

 

B M L k M l
n

km
m

r

j
j

m
m

m
j

j

m

=












+ 












=

−

=

−

=
∑ ∏ ∏1

1

1

1
1

2

1 1
1

, ,







−

=
∑

2

1m

r

 

(C.21)

For a single prism these equations reduce further to

 M k1 1 1= ,  (C.22)

 B l nk= −( ),1 1
1

 (C.23)

Thus, the matrix for a single prism can be expressed as

 

A B
C D

k l nk
k









 =











−

−
1 1 1 1

1

1 1
10

, ,

,

( )

 
(C.24)

which is an alternative version of the single-prism matrix given in Table C.1 
where

 
k1 1

1 1

1 1
,

,

,

cos
cos

= ψ
φ  

(C.25)

C.2.5 Telescopes in Series

For some applications it is necessary to propagate TEM00 laser beams through 
optical systems including telescopes in series. For a series comprised of a 
telescope followed by a free-space distance, followed by a second telescope, 
and so on, the single-pass cumulative matrix is given by (Duarte, 2003)

 A Mr=  (C.26)
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B M L M Br m

m
r m

T
m

r

m= +− + − +

=
∑ 2 2 2 1

1  
(C.27)

 C = 0  (C.28)

 D M r= −
 (C.29)

where
r is the total number of telescopes
BTm is the B term of the mth telescope

This result applies to a series of well-adjusted Galilean or astronomical tele-
scopes or a series of prismatic telescopes.

C.3 Applications

ABCD can be used to characterize laser resonators and narrow-linewidth 
oscillators (Duarte, 2003). For instance, the single return-pass beam diver-
gence of a dispersive laser cavity can be expressed as (Duarte et al., 1997)

 
∆θ λ

π
= + 





+ 













w

L
B

AL
B

R R1
2 2 1 2/

 
(C.30)

 
L w
R =











π
λ

2

 
(C.31)

where A and B are the corresponding return-pass elements of the ray trans-
fer matrix as calculated by Duarte (2003). The characterization can also be 
extended to a multiple return-pass analysis (Duarte, 2003). Besides provid-
ing the parameters of interest to perform beam divergence calculations, the 
ABCD matrix also provides information about the stability of a cavity or 
resonator. In this regard, the condition for lasing in the unstable regime is 
determined by the inequality

 

( )A D+ >
2

1
 

(C.32)

Siegman (1986).
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The description of optical systems using 3 × 3, 4 × 4, and 6 × 6 matrices has 
been considered by several authors (Brouwer, 1964; Siegman, 1986; Wollnik, 
1987). Multiple-prism expanders have been described in 4 × 4 matrices by 
Duarte (1992, 2003).
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Appendix D: Multiple-Prism 
Dispersion Series

D.1 Multiple-Prism Dispersion Series

In Chapter 5, the generalized multiple-prism dispersion equation, applica-
ble to multiple-prism arrays of any geometry, configuration, or materials, is 
given as (Duarte, 2009)

 ∇ = ± ∇ ± ∇ ± ∇( )−
−λ λ λ λφ φ2 2 1 2

1
1 2 1, , , , , ,( )( ) ( )m m m m m m m mn k k nH H  (D.1)

For positive refraction only, this equation becomes (Duarte and Piper, 1982, 
1983)

 ∇ = ∇ + ∇ ± ∇( )−
−λ λ λ λφ φ2 2 1 2

1
1 2 1, , , , , ,( )( )m m m m m m m mn k k nH H  (D.2)

where the ± sign refers to either a positive (+) or compensating configuration (−).
In Chapter 5, Equation D.2 is expressed in a series format directly appli-

cable to the geometry at hand. Duarte and Piper (1982) also provide further 
examples of simple special cases leading to explicit engineering-type equa-
tions. For instance, for increasing values of m, for the very special case of r iden-
tical prisms deployed at the same angle of incidence (i.e., ϕ1,1 = ϕ1,2 = … = ϕ1,m 
and ψ1,1 = ψ1,2 = … = ψ1,m) and orthogonal beam exit (i.e., ϕ2,1 = ϕ2,2 = … = 
ϕ2,m = 0 and ψ2,1 = ψ2,2 = … = ψ2,m = 0), Equation D.2 reduces to a simple power 
series (Duarte and Piper, 1982; Duarte, 1990):

 
∇ = ∇ ± ± ± ± ±( )− − − − −

λ ψφ2 1 1 1 1 1
1

1 1
2

1 1
3

1 1
11, , , , , ,

( )tanr
rn k k k k�

 
(D.3)

Also, as shown in Chapter 5, for orthogonal beam exit, Equation D.2 reduces 
to the explicit series:

 

∇ = ±












∇
==

−

∏∑λ λφ2 1 1
1

1

1, , ,( )r m j
j m

r

m

r

mk nH

 

(D.4)
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which was disclosed in print, in its double-pass version by Duarte (1985). 
This simple explicit equation obviously can be expressed in its long-hand 
version (Duarte, 2012):

 ∇ = ± ∇ ± ∇− −
λ λ λφ2 1 1 1 1 1 2 1

1
1 1 2 1 2 1

1
, , , , , , , ,( ... ) ( ... )r r rk k k n k k nH H 22 1 1

1± ± ∇−� H , ,( )r r rk nλ  
(D.5)

These examples are included here to illustrate that the generalized disper-
sion Equation D.1 leads directly to easy-to-use explicit results that might 
appear as “new” to some.
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E.1 Complex Numbers

Here, we offer a brief and pragmatic introduction to complex numbers and 
some well-known trigonometric identities based on complex numbers.

The imaginary part of a complex number is represented by i. The number i 
has the basic property

 i2 1= −  (E.1)

so that

 i i⋅ = −1  (E.2)

and

 i i⋅ − = +( ) 1  (E.3)

A complex number has a real and an imaginary part denoted by i. A complex 
number c is defined as

 c a ib= +  (E.4)

where a and b are real. This complex number is depicted in Figure E.1. The 
complex conjugate of this number c is denoted by c*:

 c a ib* = −  (E.5)

These two numbers can be multiplied as

 cc a ib a ib a b* ( )( )= + − = +2 2
 (E.6)

and the magnitude of c = a + ib is denoted by |c|:

 | | | *| ( ) /c cc a b= = +2 2 1 2
 (E.7)

and it represents the length of the vector (a + ib) (see Figure E.1). Also,

 | | *c cc2 =  (E.8)
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Useful complex trigonometric identities include the Euler formulae

 e iiθ θ θ= +cos sin  (E.9)

 e ii− = −θ θ θcos sin  (E.10)

which mean that

 eiπ = −1  (E.11)

 e i− = +π 1  (E.12)

 e iiπ/2 = +  (E.13)

 e ii− = −π/2
 (E.14)

+b

+a x

y

c* = a–ib

c = a + ib

–b

|c|

|c|

FIGURE E.1
Geometrical representation of a complex number. 
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Also,

 
cos ( )θ θ θ= + −1

2
e ei i

 
(E.15)

 
sin ( )θ θ θ= − −1

2i
e ei i

 
(E.16)

 
cosh ( )θ θ θ= + −1

2
e e

 
(E.17)

 
sinh ( )θ θ θ= − −1

2
e e

 
(E.18)
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F.1 Trigonometric Identities

Here, we list a number of useful trigonometric identities applied in various 
places throughout this book:

 sin cos2 2 1φ φ+ =  (F.1)

 sin sin( )− = −φ φ  (F.2)

 cos cos( )− =φ φ  (F.3)

 sin sin cos  cos sin( )φ φ φ+ = +ψ ψ ψ  (F.4)

 sin sin cos cos sin( )φ φ φ− = −ψ ψ ψ  (F.5)

 cos cos cos sin sin( )φ φ φ+ = −ψ ψ ψ  (F.6)

 cos cos cos sin sin( )φ φ φ− = +ψ ψ ψ  (F.7)

 sin 2 2sin cosφ φ φ=  (F.8)

 cos cos sin2 2 2φ φ φ= −  (F.9)

 cos sin2 1 2 2φ φ= −  (F.10)

 cos cos2 2 12φ φ= −  (F.11)

 2 1 22sin cosφ φ= −  (F.12)



384 Appendix F: Trigonometric Identities

 2 1 22cos cosφ φ= +  (F.13)

 cos  cos  2cos  cosφ φ φ+ = − +ψ ψ ψ( ) ( )  (F.14)

 cos cos 2sin  sinφ φ φ− = − − +ψ ψ ψ( ) ( )  (F.15)

 − + = − +cos  cos  2sin  sinφ φ φψ ψ ψ( ) ( )  (F.16)

 − − = − − +cos cos 2cos cosφ φ φψ ψ ψ( ) ( )  (F.17)

 sin  sin  2cos  sinφ φ φ+ = − +ψ ψ ψ( ) ( )  (F.18)

 sin sin  2sin  cosφ φ φ− = − +ψ ψ ψ( ) ( )  (F.19)

 − + = − − +sin  sin 2sin  cosφ φ φψ ψ ψ( ) ( )  (F.20)

 − − = − − +sin sin 2cos  sinφ φ φψ ψ ψ( ) ( )  (F.21)

 
sin sin cos( ) cos( )φ φ φψ ψ ψ= − − +( )1

2  
(F.22)

 
cos cos cos( ) cos( )φ φ φψ ψ ψ= − + +( )1

2  
(F.23)

 
sin cos sin( ) sin( )φ φ φψ ψ ψ= + + −( )1

2  
(F.24)

 
cos sin sin( ) sin( )φ φ φψ ψ ψ= + − −( )1

2  
(F.25)
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G.1 Calculus Basics

Here, we provide a brief and pragmatic survey of some useful well-known 
calculus mechanics and rules. A good reference on calculus is Flanders et al. 
(1970).

G.1.1 Differentiation Product Rule

 

d fg
dx

f dg
dx

g df
dx

( ) = +
 

(G.1)

Example: Differentiate the product xeikx:

 

d xe
dx

x ik e e e ikx
ikx

ikx ikx ikx( ) ( ) ( )= + = +1
 

G.1.2 Differentiation Quotient Rule

 

d f g
dx

g g df
dx

f dg
dx

( / ) = −





−2

 
(G.2)

G.1.3 Differentiation Power Rule

If n is an integer,

 

d f
dx

nf df
dx

n
n( ) = −1

 
(G.3)



386 Appendix G: Calculus Basics

Example: Differentiate (x2 + 1)2:

 

d x
dx

x x( ) ( )
2 2

21 4 1+ = +

G.1.4 Differentiation Chain Rule

If y and x are functions of t,

 

dy
dt

dy
dx
dx
dt

=
 

(G.4)

Example: Differentiate the function y et t= + +2 2 1 Set y = ex and x = t2 + 2t + 1. 
Then apply the chain rule:

 

dy
dt

e t e tx t t= + = ++ +( ) ( )2 2 2 2
2 2 1

G.1.5 Integration by Parts

 
f dg fg g df= − ∫∫  

(G.5)

Example: Integrate by parts xe dxikx∫ . Set f = x, df = dx, dg = eikxdx, and g = eikx/ik.

Then apply Equation G.5:

 
xe dx x

ik
e e

ik
dx e

ik
x

ik
Cikx ikx

ikx ikx
= − = −





+∫∫ 1

where C is a constant. Differentiation of F(x) = (eikx/ik)(x − (1/ik)) + C, using the 
product rule leads back to xeikx.

Reference
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New York.
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H.1 Poincaré’s Space

A useful tool in polarization notation is derived from Poincaré’s sphere 
(Poincaré, 1892).

This sphere, depicted in Figure H.1, has three axes 1, 2, and 3. Axis 2 is 
analogous to the usual Cartesian axis x, axis 3 is analogous to the usual 
Cartesian axis y, and axis 1 is analogous to the usual Cartesian axis z, that is,

 1 → z

 2 → x

 3 → y

Adopting the notation of Robson (1974), the radius of the sphere is denoted 
by I. The angular displacement in planes 1–2 is 2ψ and the angular displace-
ment between planes 1–2 and axis 3 is denoted by 2χ. In this system, the 
points P1, P2, P3 are given by

 P I1 2 2= cos cosχ ψ  (H.1)

 P I2 2 2= cos sinχ ψ  (H.2)

 P I3 2= sin χ  (H.3)

These are known as the Stokes parameters. In addition to Poincaré’s sphere, the 
polarization space described here is also known as Bloch’s sphere (Pelliccia 
et al., 2003).
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Appendix I: N-Slit Interferometric 
Calculations

I.1 Introduction

In this appendix, we attempt to further explain, in plain language, how to 
proceed with numerical calculations based on the generalized 1D interfero-
metric equation (Duarte, 1991, 1993). This explanation, provided in addition 
to the description given in Chapter 4, is intended to help in the construction of 
logical pathways and flowcharts for computer-based numerical calculations.

I.2 Interferometric Equation

The physics is described by the probability amplitude equation

 

〈 〉 = 〈 〉 〈 〉
=

∑x s x j j s
j

N

| | |
1  

(I.1)

where

 〈 〉 = −j s r ej s
i j| ( ),Ψ θ

 (I.2)

 〈 〉 = −x j r ex j
i j| ( ),Ψ φ

 (I.3)

Multiplying by the complex conjugate and rearranging yields the general-
ized interferometric equation
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Key in these calculations is the phase angle

 Ω j j j= +( )θ φ  (I.5)

which is related to the wavelength and the exact geometry of the 
interferometer.

A good simplifying assumption is to set

 〈 〉 = =−j s r ej s
i j| ( ),Ψ θ 1  (I.6)

which represents uniform illumination of the grating. In a more advanced 
version of the program, this assumption is not used and the illumination can 
be varied at will. Hence, the only wave function needed is

 〈 〉 = −x j r ex j
i j| ( ),Ψ φ

 (I.7)

where the amplitude can take the form of a Gaussian or a similar mathemati-
cal representation.

I.3 Geometry

In these calculations, it is very important to get the geometry represented 
exactly and correctly. The usual geometrical and angular approximations 
are not allowed. The geometrical configuration, illustrated in Figure I.1, 
includes the following:

 1. w is the slit width.
 2. ϕj is the jth phase angle.
 3. h is the center to center slit distance.
 4. D〈x|j〉 is the distance from the N-slit array (j) to the interference plane (x).
 5. ∆xi is the distance from the center of the ith slit to the reference posi-

tion at the interference.

Thus, the phase angles are given by exact geometrical expressions, such as

 

( ) /φ φ1 2
1

2
1
2 1 2

1+ = 



 +( )















π
λ

∆

∆

x
d x

 

(I.8)



391Appendix I: N-Slit Interferometric Calculations

 

( ) /φ φ1 3
2

2
2
2 1 2

2+ = 



 +( )















π
λ
h x

d x
∆

∆
 

(I.9)

 

( ) /φ φ1 4
3

2
3
2 1 2

3+ = 



 +( )















π
λ
h x

d x
∆

∆
 

(I.10)

 

( ) /φ φ2 3
2

2
2
2 1 2+ = 



 +( )















π
λ
h x

d x
∆

∆
 

(I.11)

 

( ) /φ φ2 4
3

2
3
2 1 2

2+ = 



 +( )















π
λ
h x

d x
∆

∆
 

(I.12)

 

( ) /φ φ3 4
3

2
3
2 1 2+ = 



 +( )















π
λ
h x

d x
∆

∆
 

(I.13)

where λ is the wavelength of the laser.
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FIGURE I.1
Detailed view of the N-slit array (j) and the interferometric plane (x). See the text for a descrip-
tion of the quantities involved.
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Note that in this example, both the slit width (w) and the separation of 
the slits (h) are assumed to be constant. As shown in Duarte (1993), that is 
a special case as these parameters can be numerically varied (allowing for 
dimensional errors), thus introducing an element of variability in the cal-
culations. Also note that in Chapter 2 of Tunable Laser Optics (Duarte, 2003), 
an alternative and equivalent description (also included in Chapter 4) of the 
exact geometrical equations is given.
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Appendix J: N-Slit Interferometric 
Calculations—Numerical Approach

J.1 Introduction

The first numerical calculations representing the interferometric equation
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(J.1)

and its associated geometry was performed using Fortran IV (Duarte and 
Paine 1989; Duarte 1991, 1993). Then the program was transitioned to Visual 
Fortran (Duarte, 2002). MATLAB® versions of the calculations have been 
developed more recently Duarte et al. (2013). Here, we provide a MATLAB 
version of a simple program that deals with the experimental situation 
related to the basic probability amplitude

 

〈 〉 = 〈 〉 〈 〉
=

∑x s x j j s
j

N

| | |
1  

(J.2)

In Duarte et al. (2013), the numerical calculations were performed using a 
MATLAB version of the program that allows cascade calculations from one 
interferometric plane to another interferometric plane as previously demon-
strated in Duarte (1993), while using Fortran IV.

J.2 Program

This is a sample program, written in MATLAB language. It is a simplified 
version of the type of program used by Duarte et al. (2013). This program, 
applicable to a uniform array of N slits, assumes a slit separation equal to the 
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slit width w and exact dimensions for the slit width and slit separation. The 
program uses the following input data:

 1. Number of slits N
 2. Slit width w in micrometers (μm)
 3. Intra-interferometric distance D〈x|j〉 in meters (m)
 4. Wavelength λ in nanometers (nm)

01%NSLITSGENA.m
02 clear all
03 datestr(now)
04 N = input(‘Number of slits N = ’);
05 w = input(‘Slit width in micrometers w = ’);
06 d = input(‘Slit to screen distance in meters d = ’);
07 lambda = input(‘Wavelength in nanometers lambda = ’);
08 d = d*1e6;
09 lambda = lambda/1e3;
10 NP = 40030;% Screen size in micrometers.
11 s = 2*pi/lambda;%wavenumber
12 j0 = 20015-w*(N-0.5);% left side left aperture position
13 j01 = j0+1;
14 j0n = j0+w;
15 for ii = 1:NP, % Screen
16     for j = j01:j0n,%Field due to left slit on screen.
17     r = sqrt((ii-j)∧2+d∧2);
18     E(j) = 1e3*(i*d/lambda)*(exp(i*s*r))/r∧2;
19     end
20            ii10 = ii/1000-round(ii/1000);
21 if ii10 = =0
22    iactual = [ii NP]
23 else
24 end
25         EF(ii) = sum(E);
26         E12(ii) = sum(E)*conj(sum(E));
27         E1(ii) = abs(sum(E));%(module)
28         E2(ii) = angle(sum(E));%(angle)
29 end
30 for k = 1:N
31       for ii = 1:NP
32           EF1(k,ii+2*w*(k-1)) = EF(ii);
33           FI2(k,ii+2*w*(k-1)) = E12(ii);
34           FIR(k,ii+2*w*(k-1)) = E1(ii);
35           fir(k,ii+2*w*(k-1)) = E2(ii);
36              end
37 end
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38  HQ = sum(FI2);
39  IIMAX = NP+(N-1)*2*w;
40 H = (1:IIMAX)*0;
41 for j = 1:N
42    for m = (j+1):N,
43 H = H+2*FIR(j,:).*FIR(m,:).*cos(fir(m,:)-fir(j,:));
44 end
45 end
46          for j = 1:N
47 FIRx(j,:) = FIR(j,:).*cos(fir(j,:));%REAL PART
48 FIRy(j,:) = FIR(j,:).*sin(fir(j,:));%IMAGINARY PART
49      end
50      FIREX = sum(FIRx);
51      FIREY = sum(FIRy);
52      Efield1(1,:) = FIREX;
53      Efield1(2,:) = FIREY;
54      save Efield1 Efield1 -ascii
55          ESQ = H+HQ;
56              plot(ESQ,‘r’)
57                   hold on
58 datestr(now)

The specifics of this program differ from the descriptive approach disclosed in 
Appendix I. Here, ii is the position on the interferometric plane (screen) and j the 
position at the slit array. Also, on line 18, and associated definitions, a particular 
wave function amplitude is assumed. It should be noted that the  formalism, 
defined in Equation J.1, tolerates various forms of wave function amplitudes. In 
this regard, the search for the simplest and most  suitable wave function ampli-
tude, as determined by comparisons with measured  interferograms, is ongoing.
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Appendix K: Physical Constants 
and Optical Quantities

K.1 Fundamental Physical Constants

Physical constants useful in optics are listed in Table K.1. The values of these 
constants are those listed by the National Institute of Science and Technology 
(NIST) available at the time of publication.

The format and context of the tables included here is adapted from Duarte 
(2003).

K.2 Conversion Quantities

Conversion quantities often used in optics are listed in Table K.2. The con-
version values for the electron volt and the atomic mass unit are the values 
listed by NIST available at the time of publication.

TABLE K.1

Fundamental Physical Constants

Name Symbol Value Units

Boltzmann’s constant kB 1.3806488 × 10−23 J K−1

Elementary charge e 1.6021 76 565 × 10−19 C
Newtonian constant 
of gravitation

G 6.67384 × 10−11 m3 kg−1 s−2

Magnetic constanta,b μ0 4π × 10−7 N A−2

Electric constantc ε0 8.854187817 × 10−12 F m−1

Planck’s constant h 6.62606957 × 10−34 J s
Speed of light in 
vacuum

c 2.99792458 × 108 m s−1

a Also known as permeability of vacuum.
b π = 3.141592654…
c Also known as permittivity of vacuum.
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K.3 Units of Optical Quantities

Units of optical quantities used throughout this book are listed in Table K.3.

TABLE K.3

Units of Optical Quantities

Name Symbol Unitsa

Angular dispersion ∇λϕ m−1

Angular frequency ω = 2πν Hz
Beam divergence ∆θ rad
Beam magnification M Dimensionless
Beam waist w m
Cross section σ m2

Diffraction limited ∆θ ∆θ = λ/πw rad
Energy E J
Frequency ν Hz
Intensity I J s−1 m−2

Laser linewidth ∆ν Hz
Laser linewidth ∆λ m
Power P W = J s−1

Rayleigh length LR = π w2/λ m
Refractive index n Dimensionless
Time t s
Wavelength λ m
Wave number k = 2π/λ m−1

Wave number k = ω/c m−1

a Quantities like I and σ are also used in cgs units.

TABLE K.2

Conversion Quantities

Name Symbol Value Units

Electron volt eV 1.602176565 × 10−19 J
Atomic mass unit u 1.660538921 × 10−27 kg
Frequency ν Hz = s−1

Linewidth ∆ν = c/∆x Hz
Linewidth ∆λ = λ2/∆x m
Wavelength λ = c/ν m
Wave number k = 2π/λ m−1

1 reciprocal cm 1 cm−1 2.99792458 × 101 GHz
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lasers, see Optically pumped 
gas and liquid lasers

optically pumped solid-state lasers, 
see Optically pumped solid-
state lasers

optical resonator, 104
Penning ionization, 106
radio oscillator, 104
rare-gas metal-vapor laser discharge, 

105, 106
spatial and spectral coherence, 103
transition cross sections, 108
transition probabilities and cross 

sections, see Quantum 
transition probabilities and 
cross sections

transmission line excitation circuit, 
105, 106

Laser oscillators
broadband emission, 129
Dirac notation approach, 127
HMPGI, 128
interferometric equation, 138–140
intuitive approach, see Intuitive 

approach
longitudinal-mode emission, see 

Longitudinal-mode emission
longitudinal modes, 129
multiple-return-pass beam 

divergence, 127
optimized multiple-prism grating 

solid-state, 127, 128, 140
single transverse electromagnetic 

mode, 129
spatial emission, 129
transverse-mode structure, see 

Transverse-mode structure

Laser pulse compression
Brewster angle, 92
cavity linewidth equation, 91
double-prism pulse compressor, 93–94
four-prism pulse compressor, 94
intracavity dispersion, 91–92
single-prism pulse compressor, 93

Laser-pumped dye lasers
flashlamp-pumped, 343, 344
high-power, 343
narrow-linewidth liquid dye 

lasers, 343
narrow-linewidth solid-state organic 

dye-laser oscillators, 344
Linear polarization

generalized rotation matrix, 252
Jones calculus, 251
polarization configuration, 254
probability amplitude, 253, 254
rotation relations, 251
transformation identities, 253
transmission probability, 254

Longitudinal-mode emission
approximation and non-Gaussian 

temporal representation, 134
complex and chaotic, 133
and DLM, see Double-longitudinal 

mode (DLM) emission
Fabry–Perot interferogram, 135
longitudinal-mode spacing (δn), 132
mode beating, 133
nanosecond regime, 134
narrower cavity linewidth, 133
near-Gaussian temporal pulse, 135
and SLM, see Single-longitudinal 

mode (SLM) emission
square-law temporal detector, 134
temporal pulse, interference, 134

M

Mach–Zehnder interferometer, 
99, 148–150, 298

Macroscopic interferometric experiment, 7
“Master equations”, 226
Master oscillator (MO), 104
Matrix algebra

determinants, 213, 214
inverse matrix, 213
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multiplication, 211–212
unitary matrices, 212
2 x 2 matrix, 211, 213
3 x 3 matrix, 213

Matrix mechanics
commutation rule, 207
density matrix, 222–226
matrix algebra, 211–214
operators, see Quantum operators
Pauli matrices, see Pauli matrices
vector algebra, 207–211

Maxwell equations
coexistence, electric and magnetic 

field, 230
expression, velocity of 

propagation, 231
Gaussian systems of units, 

230, 231, 249
rationalized metric system, 229, 231

Michelson interferometer, 150–151
Microelectromechanical system 

(MEMS)-driven miniature 
laser cavities, 33

MO, see Master oscillator (MO)
Multiple-beam interferometers

Airy formula and function, 155
effective finesse, 155
Fabry–Perot etalons, 152, 153, 155
internal reflection geometry, 153
intracavity etalon, 152
N-slits interferometer, 151–152
probability amplitudes, 154
reflective finesse, 156
single-longitudinal-mode oscillation, 

155, 156
Multiple-prism beam expander 

(MPBE), 50
Multiple-prism dispersion series, 

377–378
Multiple-prism grating/mirror 

assembly
beam compression, 90
beam divergence, 89
diffracted back/reflected back, 88
dispersive laser oscillator, 88–89
narrow-linewidth high-power 

dispersive dye-laser 
oscillators, 90

unfolded depiction, 88

N

Narrow-linewidth oscillators, 360–363
Near-field diffraction distribution, 54, 55
Nondemolition measurements, 310–311
Normalized density matrix, 224
NSLI, see N-slit laser interferometer 

(NSLI)
N-slit interferometric calculations, 

389–392, 393–395
N-slit laser interferometer (NSLI)
beam profile, 50
cascade interferometric technique, 

54, 55
characterization, 54
cryptographic diagram, 163, 164
description, 50
Gaussian beam, 51
interferogram measurement, 

48, 51–53
interferometric computer, 280–283
intra-interferometric optical path, 164
MPBE, 50
near-field diffraction distribution, 

54, 55
optical communications, 163, 165–166
phase difference, 47–48
probability amplitudes, 172
single-longitudinalmode laser, 50
symmetry deterioration, 54
transmission grating, 47, 48
wavelength meter, see Wavelength 

meter, NSLI
Young’s interference experiment, 51

O

OPO, see Optical parametric 
oscillator (OPO)

Optically pumped gas and liquid lasers
B3Π+

ou–X1Σ+
g electronic system, 108

continuous tunability, 108
coumarin 545 T laser dye, 108, 109
dye lasers, 108
laser-pumped molecular iodine 

dimer laser, 108
narrow-linewidth tunable dye-laser 

oscillator, 109, 110
optical excitation, 108
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Optically pumped solid-state lasers
diode-pumped Nd:YAG laser, 

110, 111
fiber lasers, 110
ruby laser, 110, 111
transition cross sections, 112
tunable Ti-sapphire laser, 110

Optical parametric oscillator (OPO), 
347–348

Optical quantities, 398
Optics, uncertainty principle

beam divergence, 29–32
cavity linewidth equation, 32–33
sub-microcavities, 35
tuning laser microcavities, 33–35

P

Pair theory, 270–271, 275
Pauli matrices

conjugate transpose, 220
and density matrix, 260–261
Hermitian property, 221
properties, 220
and quantum logic, 288–289
spin one-half particle, 219, 221–222
time-dependent equation, two-state 

system, 219
PBS, see Polarizer beam splitter (PBS)
Physical constants, 397
Planck’s quantum energy equation

energy distribution, light 
emission, 13

and wave optics, 14–15
Poincaré’s space, 387–388
Polarization rotators

birefringent, 245–246
broadband prismatic, 246–249
double Fresnel rhomb, 244, 245

Polarizer beam splitter (PBS), 301
Polarizing prisms

attenuation, laser beam intensity, 
243–244

double-refraction polarizers, 240–243
induced polarization, double-prism 

beam expander, 238–240
transmission efficiency, multiple-

prism arrays, 238
The Principles of Quantum Mechanics, 3–4

Pryce–Ward–Snyder (PWS) probability
amplitude, 273–274
entanglement amplitude, 270–273
horizontal and vertical 

polarization, 299
Public key cryptography, 293, 294
Pulsed atomic metal vapor lasers, 341
Pulsed molecular gas lasers

narrow-linewidth tunable CO2 
lasers, 340

tunable narrow-linewidth excimer 
lasers, 340

ultraviolet and visible, 339, 340

Q

Quantum cascade laser (QCL), 112, 113
Quantum computing

classical logic gates, 283–286
description, 279
interferometric computer, 280–283
quantum computer, 279–280
quantum logic, 287–290
qubits, 280, 286–287
transistor-based computers, 279

Quantum cryptography
BBA, 295–298
polarization entanglement 

approach, 298–301
Quantum gates, 289–290
Quantum logic

2 × 2 matrix, 287
and Pauli matrices, 288–289
quantum gates, 289–290

Quantum measurements
Dirac and von Neumann 

approaches, 307
error, 307
interferometric irreversible, 308–310
nondemolition, 310–311
soft intersection, see Soft intersection, 

interferometric characters
soft polarization, 311–312
Stern–Gerlach measurements, 307

Quantum Mechanical Computers, 279
Quantum mechanics

bra–ket notation, 2
developments, quantum era, 3
energy distribution, light sources, 1
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interpretational issues, see 
Interpretational issues, 
quantum mechanics

lightquanta, 2
photoelectric effect, 2
photon, 5–7
quantum optics, 7–8

Quantum Mechanics and Path 
Integrals, 19

Quantum operators
commutation rule, 217
energy operator, 218
Heisenberg equation of motion, 218
momentum operator, 215–217
position operator, 214–215

Quantum optics, 7–8
Quantum physics, see Quantum 

mechanics
Quantum polarization

density matrix notation, 258–262
linear, see Linear polarization
as two-state system, 255–258

Quantum teleportation, see 
Teleportation

Quantum transition probabilities and 
cross sections

complex conjugate, 122
description, 119
Dirac notation, 119–120
electric field, 121
Feynman notation, 120
Franck–Condon factor, 123
Hamiltonian matrix elements, 121
intensity, 123–124
long-pulse approximation, 124
perturbation term, 121
stimulated emission probability, 

122–123
vibrational-rotational, 123

Qubits, 280, 286–287

R

Ramsey interferometer, 158–159
Raw quantum transmission, 296
Ray transfer matrices

ABCD matrices, see ABCD matrices
description, 367
spatially coherent beams, 367

Reflection
domain, 75
infinitesimal distance, N-slit array, 

74–75
interferometer, 74
law, 75

Refraction
focusing, 74
positive and negative, 72–73

S

Sagnac interferometer
beam splitter, 146–147
Dirac notation, probability 

amplitude, 147
triangular configuration, 148

Schrödinger’s equation
atomic and molecular physics, 179
description, 179
Dirac notation, 184–185
Hamiltonian principle, 180, 181
heuristic explicit approach, see 

Heuristic explicit approach
hydrogen equation, 192–193
kinetic energy, 179
Laplacian operator, 181
ordinary wave equation, 180
“phase” velocity, 180
physics perspective, 182
Planck’s quantum energy 

equation, 180
stationary solutions, 194–195
time-independent, see Time-

independent Schrödinger’s 
equation

wave function, 181
Secure interferometric communications

advantages, 177
clear-air turbulence, 175–176
cryptographic diagram, 163, 164
homogeneous laboratory air, 172
interception, 176–177
interferometric character, see 

Interferometric characters
macroscopic optical interception, 177
and NSLI, see N-slit laser 

interferometer (NSLI)
optical communications, 163
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practical perspective, 177
theory, 164–165

Semiconductor lasers
external cavity tunable, 349
MEMSa tunable, 350
power performance, 349
tunable external cavity quantum 

cascade lasers, 350
ultrashort-pulse external cavity, 350
wavelength coverage, 348

Single-longitudinal mode (SLM) emission
and DLM, 133
Fabry–Perot interferometric rings, 135
narrower cavity linewidth, 132–133
near-Gaussian temporal pulse, 135
single-transverse-mode beam, 132

Single-prism pulse compressor, 93
Snell’s law, 73, 74
Soft intersection, interferometric 

characters
calculated control interferogram, 

316, 318
cascade approach, 316
intensity profile, 315–317
interferometric distribution, 312–314
intra-interferometric distances, silk 

fiber insertion, 315
N-slit interferometer, 312, 313, 323
probing, 320–322
spider silk web fiber, optical path, 314
superposition, diffraction signal, 

318, 319
Soft polarization measurements

Gaussian beams, 311
two-beam interference pattern, 312

Solid-state lasers
diode-laser-pumped fiber lasers, 347
ionic, 345–346
and OPO, 347–348
transition metal, 346–347

Stokes parameters, 259–261
Symmetric key algorithm, 293

T

Teleportation
entanglement, two linearly polarized 

photons, 301–302
methodology, 304

recovery transformation, 304
three-particle state, 303

Time-independent Schrödinger’s 
equation

Feynman approach, 186
quantized energy levels, 186–187
quantum cascade lasers, 190–191
quantum dots, 191
quantum wells, 188–190
semiconductor emission, 187–188
semiconductor physics and lasers, 186

Transverse-mode structure
cross section, diffraction 

distribution, 130, 131
Fresnel number, 130, 131
interferometric equation, 129–130
intracavity, 129
laser cavity, 129
mirror-mirror laser cavity, 129, 130
narrow-linewidth tunable solid-state 

dye laser, 131, 132
single-pass transverse-mode 

structure, 129
TEM00 emission, 131, 132

Trigonometric identities, 383–384
Tuning laser microcavities, 33–35
Two-beam interferometers

Mach–Zehnder interferometer, 
148–150

Michelson interferometer, 150–151
Sagnac interferometer, 146–148

Two-state system polarization
circular polarization, 256–258
diagonal polarization, 255–256

U

Uncertainty principle
Feynman approximation, 19–21
generalized, 25–27
Heisenberg uncertainty principle, 

17–18, 27–29
interferometric approximation, 21–23
minimum, 23–24
optics, see Optics, uncertainty 

principle
wave-particle duality, 18–19

Universal computer, 279, 280, 282, 283
Unstable resonators, 359–360
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V

van Kampen’s quantum theorems, 
333–334

Vector algebra
cross product, 210
derivative operators, 210
dot product, 209
length, 209
multiplication, 208
subtraction, 208, 209
sum, 207, 208
three dimensions, 207, 208

W

Wavelength meter, NSLI
interferograms calculation, 157–158
phase difference, 156–157
signals and profiles, 156

Wave optics, 14–15

Wave–particle duality, 18–19
Wollaston prism (WP), 297, 300
Wu–Shaknov experiment

description, 274–275
relevance, 275

Y

Young’s interference experiment, 51

Z

Zero-dispersion multiple-prism beam 
expander designs

advantages, 86
description, 87
double-prism expander, 87–88
intracavity beam expansion, 88
laser tuning characteristics, 86
quasi achromatic, 87
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