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Preface

Passive structural control techniques are generally used as seismic rehabilitation
and retrofit methodologies of existing structures. Most of the advanced research
and applications of structural control in civil engineering has been focused on the
analysis of existing structures integrated with passive, either hybrid or active,
control devices in order to improve the structural performance under strong
earthquakes. In all cases, both the structure and control system are therefore
designed separately and only subsequently integrated by following the principles
of a performance-based design. An example is the case of ‘‘Millennium Bridge’’
whose structural functionality has only been restored through the use of viscous
dampers to reduce the resonance phenomena.

An exciting consequence of structural control research is that it also opens the
door to new possibilities in structural forms and configurations, such as slender
buildings or bridges with longer spans without compromising the structural per-
formance. This can only be achieved through the integrated design of structures
with control elements as an integral part. In recent years, integrated optimal
structural/control system design has been acknowledged as an advanced design
methodology for space structures, however, not many studies and applications can
be found in civil engineering.

In this work, with specific reference to the supplemental passive energy dis-
sipation through viscous or viscoelastic devices, the possibility of achieving
seismic protection through the integration of elastic resources of a framed struc-
tural system as well as viscoelastic ones of a dissipative bracing system has been
investigated. The innovative aspect, therefore, consists of considering the visco-
elastic damping resources as design variables to control the dynamic response.

A procedure for the integrated design of a framed structural system equipped
with viscoelastic/viscous damper-brace component is therefore proposed and
developed, in order to achieve an expected seismic design performance, by fol-
lowing the basic principles of the displacement-based seismic design and explicitly
considering the dynamic behavior both of the structural system as well as the
dissipative system. The choice of the optimal design is made by determining the
combination of the design variables, which minimizes a cost index that is evalu-
ated considering the relative cost between the elastic and viscoelastic dissipative
resources.
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The structural optimization, developed in this work, made it possible to obtain
new optimized solutions of the design problem for fixed shape and structural
topologies through the integrated use of dissipative resources produced by
dampers, resulting in slender structural systems with a high seismic performance.

This methodology is, finally, a response to the futuristic idea to ensure an
adequate seismic performance for structural solutions including innovative mate-
rials, charactrerized by a high slenderness.
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Chapter 1
Passive Structural Control

Abstract In this chapter, structural control techniques aimed at reducing the
vulnerability of existing or new structures, built in medium and high seismic risk
areas, are described. The description is focused on the passive control and, in
particular, on the passive supplemental energy dissipation techniques. The effec-
tiveness of the largest and most popular dissipation devices, such as hysteretic and
viscous, by highlighting the significant reduction of seismic demand on the main
structure to be protected through the evaluation of earthquake damage indices is
briefly described.

1.1 Structural Control Techniques

After several destructive earthquakes in recent years in Italy (Friuli 1976, Campania
and Basilicata 1980, Marche and Umbria 1997, L’Aquila 2009 and Emilia 2012),
the need to redefine the design strategies and codes for the structures sited in high
seismic risk areas has been highlighted. Deaths from earthquakes are almost always
associated, as in the case of landslides, to damage suffered by buildings, dams,
bridges and other human settlements. Unfortunately, the seismic events are charac-
terized by a frequency that is difficult to predict and quantify in space and time due to
the randomness of various seismological factors. An average of about 200 high
magnitude events occur every decade, of which 10–20 % in the oceanic crust without
causing problems to human settlements. Others occur in areas far from the cities and
settlements and likewise cause very few problems. The biggest problems arise when
an earthquake strikes densely populated areas. It is useful, at this point, to introduce
the concept of risk. The risk is the threat to any property or the area’s activities
following the occurrence of a phenomenon of assigned intensity or return period TR.
It can be expressed as the product of three terms:

R ¼ P � V � E ð1:1Þ

where P is the probability of occurrence of a phenomenon characterized by a
return period (the return period is the average number of years that elapses
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between two successive events of equal intensity), V is the vulnerability of the
exposed properties and depends mainly on the type of infrastructure and services
in the area; finally, E (exposure) represents the value of the goods exposed. The
risk can be reduced in general by acting on one of the three term. However, in the
case of seismic events, it is evident that it is not possible to act on the frequency of
occurrence, i.e. on the dangerousness. Vulnerability is the only factor that the
codes, design criteria and design strategies can reduce. Structural damage observed
during several seismic events clearly demonstrates that the structural design
determines the response of a building to the event. A structure characterized by a
global symmetry and regularity both in elevation and in plan presents a more
regular distribution of the seismic actions unlike the irregular systems in which the
dynamic response increases in correspondence with the perimetral elements. Other
problems may occur such as in tall structures since it is possible that the seismic
action generates considerable overturning moments, i.e. compression and tension
considerably increases in the vertical load-bearing elements of the edge, and in the
structures with remarkable development in plant whose seismic response can be
influenced by the topographic and stratigraphic variability with the consequence of
not having a synchronic input in the different parts of the structure. Furthermore,
due to the motion of the soil, a further problem, that could be significant, is the
torsion caused by the eccentricity of the spatial configuration of the structure due
to a non-coincidence between the center of mass and that of stiffness.

Due to the high level of structural damage observed in the post-earthquake
phases, the belief that it is not possible to neglect forecasting procedures and
capitalization of the costs of maintenance, restoration and consolidation work,
which are necessarily considered during disastrous events as a function of the
vulnerability of structures has been confirmed. An earthquake is not only a risk to
lives, but can also involve severe damage to the architectural heritage of the area
affected, with any form of retrofitting not always being easy in terms both of the
costs to be incurred as well as the time. The experiences of other countries, such as
Japan, have shown that the side effects mentioned above can be easily avoided as
long as appropriate design techniques are used, with an extra initial cost that is
extremely negligible in relation to the cost of any extraordinary maintenance and
consolidation due to damage caused by earthquakes with high return period.

Thus, according to traditional seismic protection, buildings located in high
seismic risk areas must have the following requirements:

a. the structural elements of the main system must have strength characteristics so
as to overcome without damage medium intensity seismic events, which can
potentially affect the construction for at least once during its useful life;

b. all the (primary and secondary) members of the structure must have ductility to
dissipate without collapse mechanisms, the input energy of the high intensity
earthquake events.

This ensures the safety of the occupants in the case of events characterised by a
lower probability of occurrence and, to be overcome without plastic deformation,
which would require an uneconomical size of the structure. In this case, damage to
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both the bearing and the complementary elements is acceptable, due to the dis-
sipative mechanisms.

These strength and ductility benefits can be reached in modern structures, even
without the aid of anti-seismic devices, provided that some basic design and
execution rules are observed.

On the other hand, buildings designed according to the old codes, such as
masonry buildings and monuments, do not have a high ductility and, in many
cases, even traditional strengthening methods do not allow to significantly improve
the ductility due to being aimed primarily at obtaining an increase of resistance in
the elastic range. Moreover, it should be considered that the level of consolidation
usually adopted in these cases does not allow to reach a rigorous seismic retrofit,
due to both the high costs necessary as well as the significant perturbation pro-
duced by some technological consolidation systems (for example, the injections of
cement mortar or resin), which should be avoided when rehabilitating historical
buildings and monuments.

In order to overcome these problems and achieve a satisfactory seismic
response, or to reduce the vulnerability of a structure, it is possible to dissipate
energy through the plastic hinges or adopt structural control techniques. The
methods and techniques used to control the structural behavior under dynamic
loads due to wind or earthquake have had a significant development in the last
decade (Soong and Dargush 1997; Symans et al. 2008). In general, structural
control can be divided into three classes: active, semi-active and passive control.
The structural control techniques, that are called active control, hybrid and semi-
active, can be considered a natural evolution of passive control technologies
(Soong and Spencer 2002).

The possible use of active control systems and some combinations of passive
and active systems as a means of structural protection against seismic loads has
received considerable attention in recent years. The active control systems, hybrid
and semi-active devices are force delivery devices integrated with real time pro-
cessing controllers and sensors within the structure. The control of the forces in an
active control system is typically generated by electromechanical or electrohy-
draulic actuators based on either feedback information of the measured response or
the feedforward information of external excitation (Symans and Constantinou
1997). The recorded measurements of the response and/or excitation are monitored
in a controller that, based on a predetermined control algorithm, determines the
appropriate control signal directed to the actuators. The generation of the control
forces through the electrohydraulic actuators requires considerable power
resources, which are of the order of tens of kilowatts for small structures and may
reach many megawatts for tall structures. The first effect of some experimentally
tested control systems was to change the level of damping with a minor modifi-
cation of the stiffness. An overview of the active structural control is contained in
several states of the art in current scientific literature (Soong and Constantinou
1994; Fujino et al. 1996).

Finally, a control system can be defined semi-active as a system that typically
requires a small external energy resource for operations. It uses the motion of the
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structure to develop control forces, the intensity of which can be controlled from
the external power source (i.e. magneto rheological or electro rheological)
(Symans and Constantinou 1999; De Iuliis and Castaldo 2012). The control forces
are based on feedbacks that come from sensors which measure the excitation and/
or the response of the structure. The feedback from the structural response can be
measured in a location that is remote from one of the control of the semi active
system.

Passive control, in turn, can be divided into four categories: tendon control,
base isolation, passive aerodynamic control, passive damper control. The latter
category includes viscous fluid, viscoelastic, frictional and hysteretic devices.

Among the different categories, it is worth mentioning base isolation (Kelly
1997), a technique that involves inserting an isolation level between the super-
structure and foundation to obtain a more convenient variation of the character-
istics of the dynamic response than a ‘‘fixed base’’ structure. The insulators are
classified into elastomeric rolling and sliding.

To significantly reduce the stress states in the structure, it is necessary to
minimize the inertia forces due to the earthquake. Since these depend on the
structural mass and the acceleration induced by the absolute ground, the scope can
be reached by reducing either the mass or acceleration on the structure. The base
isolation brings down the acceleration on the system through a modification of the
dynamic response of the system. The decoupling of motion, that follows from the
interposition elements with high horizontal deformability and high vertical stiff-
ness between foundations and the superstructure, usually involves the filtering of
frequencies with a higher energy content, allowing the ones, characterized by
lower values and usually with a lower energy content, to pass on. In this way, the
first vibration mode of the structure is configured (Fig. 1.1) with a deformed shape

Fig. 1.1 Deformed shapes under an earthquake action of both a conventional frame building and
a base isolated structure
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similar to that of a rigid body that moves slowly (translation) above deformable
devices, with very low absolute accelerations and very modest interstory defor-
mations (no damage). Thus, it is associated to an excited mass that is generally
higher than 90 %, with it identifying the response of the structure during an
earthquake. The structural behavior is similar to that of a simple degree of freedom
(SDOF) system, with the mass coincident being the total mass and the stiffness of
the system that coincides with that of the isolation system. The participation of
higher modes is greatly reduced in the evaluation of both the internal deformation
and the accelerations. If, due to the almost total absence of interstory deformations,
this technology practically avoids damage to non-structural elements (cladding,
partitions, fixtures), as a result of the filtering of higher frequencies, it also makes it
possible to avoid that the ‘‘content’’ suffers heavy acceleration and thereby con-
tributes to its effective protection. It follows that everything depends on the reli-
ability and proper functioning of the isolation level to be certified with the
appropriate quality and designed through detailed linear or non-linear analysis
depending on the type of isolators chosen.

Another remarkable technique that can be used to obtain an efficient seismic
response is the installation of energy dampers. The purpose of the passive control
through the use of passive (supplemental) energy dissipation devices (PED,
Passive Energy Dissipation) is to reduce as much as possible the damage in the
structural system by dissipating the greatest possible amount of energy input
(Soong and Dargush 1997; Symans et al. 2008; Soong and Constantinou 1994;
ATC 1994; Constantinou et al. 1996) through the use of specific devices, posi-
tioned in parallel to the main structure or in a seismic isolation system.

Depending on their conformations, these systems can also increase the stiffness
and strength to the structure upon which they are installed. A passive control
system does not require an external power source to be operational, rather, the
motion of the structure is used to produce a relative motion between the ends to
which the dissipation devices are connected. The passive supplemental energy
dissipation systems can have various shapes and dissipate energy through various
mechanisms including the yield strength of the steel, the viscoelasticity of mate-
rials such as rubber, the compression of a viscous fluid forced to pass through the
holes and sliding friction. It follows that every type of passive supplemental
energy dissipation devices is based on the specific physical–mechanical properties
that influence, in a different way, the dynamic response of the main structural
system. They absorb the earthquake energy, reducing the effects on the elements of
the main structure. After the event, these devices, which do not have a static
function, are replaced, leaving the structure undamaged. The main difference
between the base isolation and dissipation systems is easily understood by ana-
lyzing how they affect the seismic demand in the structure in which they are
installed (Fig. 1.2).

The base isolation owes its effectiveness to the fact that the design spectrum has
spectral peaks maximum for low periods, between 0.2 and 0.6 s, while the iso-
lation system increases the period of structure, bringing it out of this peak range.
The dissipation system moves the period of the structure towards lower values,
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thus increasing the seismic action on the structure, but which, through the dissi-
pative mechanisms that are developed, is able to strongly reduce the drifts and,
consequently, any structural damage. In Table 1.1 the three classes for seismic
protection are shown. The three major classes of control systems are sometimes
combined to form so-called hybrid control systems. Figure 1.3a–e show the pro-
cess schemes for the three types of structural control.

1.2 Passive Energy Dissipation Systems

Passive energy dissipation systems for seismic applications have been under
theoretical development since the mid-1980s with a rapid increase in implemen-
tations starting in the mid-1990s. A large number of passive control devices have
been installed in structures to improve their performances under seismic actions.
Specifically, in North America, these devices have been implemented in numerous
buildings and bridges, both for the adaptation of existing and new buildings
(Soong and Spencer 2002). Figure 1.4 shows the distribution of these buildings as
a function of the year in which PED systems were installed.

Fig. 1.2 Effects due to passive protection tecnhiques in Sa-T plan

Table 1.1 Structural protective systems

Seismic isolation Passive energy dissipation Active control

Elastomeric bearings Metallic dampers Active bracing systems
Lead rubber bearigns Friction dampers Active mass dampers
Sliding friction pendulum Viscoelastic dampers Variable stiffness or damping systems

Viscous dampers
Tuned mass dampers
Tuned liquid dampers
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Fig. 1.3 a conventional structure; b structure with passive energy dissipation (PED); c structure
with active control; d structure with hybrid control; e structure with semi-active control (modified
from Soong and Spencer 2002)
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The main function of a passive energy dissipation system is to reduce the
inelastic energy dissipation demand on the framing system of a structure (Con-
stantinou and Symans 1993; Whittaker et al. 1993) and subsequently damage on
the main system. A large number of passive dissipation devices are either com-
mercially available or under development. Devices commonly used for the seismic
protection of structures are viscous fluid dampers, viscoelastic (solid) dampers,
friction and metallic dampers. Other devices that could be classified as passive
energy dissipation devices include tuned mass and liquid dampers, both of which
are mainly used to control wind vibration.

As already stated, the main reason for using passive energy dissipation devices
in a structure is to limit damaging deformations in structural components. The
degree to which a certain device is able to achieve this depends on the inherent
properties of the basic structure, the properties of the device and its connecting
elements, the characteristics of the ground motion as well as the limit state being
investigated. Given the large variations in each of these parameters, it is usually
necessary to carry out an extensive series of non-linear response-history analyses
to determine which particular passive energy dissipation system is best suited for a
given case.

Consider the lateral motion of the basic single-degree-of-freedom (SDOF)
model (Soong and Dargush 1999) (Fig. 1.5), consisting of a mass m, supported by
springs with total linear elastic stiffness k, and a damper with linear viscosity c.

This SDOF system is then subjected to a forced vibration, f(t). The excited
model responds with a lateral displacement x(t) relative to the ground x(t),
according to the following relation:

Fig. 1.4 Implementatios of passive energy dissipation in North America for seismic applications
(modified from Soong and Spencer 2002)
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m x
:: þ c _xþ kx ¼ f tð Þ ð1:2Þ

where f(t) can be represent, for example, a wind or seismic load. In the case of
seismic load, it is representative of the inertial force, proportional to the mass m,
caused by the ground acceleration, i.e.:

f tð Þ ¼ �mx
::

g tð Þ ð1:3Þ

and x
::

g tð Þ is ground acceleration.
Consider, then, the addition of a generic passive damper element into the SDOF

model, as indicated in Fig. 1.6.

Fig. 1.5 SDOF system
(modified from Soong
and Dargush 1997)

Fig. 1.6 SDOF system with
passive energy dissipation
(modified from Soong and
Dargush 1997)
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The response of the system is now influenced by this additional element, which
must be characterized in terms of a suitable macroscopic force–displacement
model. The symbol C in Fig. 1.6 represents a generic integrodifferential operator,
so that the force corresponding to the passive device can be written simply as Cx
(Soong and Dargush 1997). This permits quite general response characteristics,
including displacement, velocity, or acceleration-dependent contributions, as well
as hereditary effects. The motion equation for the damped SDOF model then
becomes:

m x
:: þ c x

: þ kxþ Cx ¼ � mþ �mð Þx::g ð1:4Þ

with �m representing the mass of the passive element.
The specific form of the term Cx should be indicated so that the equation can be

solved and it is, obviously, dependent on the type of device. A typical force–
displacement relationship for rate-independent elastic-perfectly plastic elements is
depicted in Fig. 1.7, defined in terms of an initial stiffness �k and a yield force �fy.

Assume for illustrative purposes that the base structure has a viscous damping
ratio n ¼ 0:05 and that a simple massless yielding device is added to serve as the
passive element, characterised by the above-mentioned force–displacement rela-
tionship for the term C. Considering the passively damped SDOF model subjected
to harmonic loading and examined under steady-state conditions after all the
transients have dissipated, Fig. 1.8 presents the amplitude of the displacement
response versus forcing frequency. In order to clearly identify the effect of the
added passive damper, the normalization is accomplished in terms of the natural

frequency x0 ¼ k=mð Þ1=2 and static response xst ¼ p0=k of the base structure
(Soong and Dargush 1997). In this figure, the uppermost curve represents the
response of the SDOF system with n ¼ 0:05 and without devices. The other two
curves illustrate the effect of adding a yielding device to the system. It is evident
that the peak response, near resonance, is greatly reduced due to the energy dis-
sipation devices.

Fig. 1.7 Force-displacement
model for elastic-perfectly
plastic passive element
(modified from Soong and
Dargush 1997)
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Then, the passively damped SDOF structure has been analyzed for response due
to the 1940 El Centro S00E ground motion (Soong and Dargush 1997). The initial
stiffness of the elastoplastic passive device is specified �k ¼ k, while the yield force,
�fy, is equal to 20 % of the maximum applied ground force:

�fy ¼ 0;20 max m x
::

g

�
�
�
�

� �

ð1:5Þ

The resulting relative displacement and total acceleration time histories are
presented in Fig. 1.9a, b relating to the SDOF system and in Fig. 1.10a, b to the
passively damped SDOF system.

Fig. 1.8 Amplification
factors for harmonic
excitation with passive
element (modified from
Soong and Dargush 1997)

Fig. 1.9 Force-displacement response for El Centro 1940 excitation with passive element:
a displacemnets; b accelerations (modified from Soong and Dargush 1997)
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Again, there is a significant reduction in response compared to that of the base
structure without the passive element. A similar reduction can be achieved using
viscous devices (Soong and Dargush 1997), in Fig. 1.11a, b, the typical force–
displacement cycles for the viscous and hysteretic dampers are shown, respectively.

In this case, the size of these loops indicates that a significant portion of the
energy is dissipated in the passive device. This tends to reduce the forces and
displacements in the primary structural elements, which of course is the purpose of
adding the passive device.

Fig. 1.10 1940 El Centro time history response for SDOF system with passive elements:
a displacements; b accelerations (modified from Soong and Dargush 1997)

Fig. 1.11 1940 El Centro force–displacement response for SDOF system with passive element:
a viscous damper; b passive damper (modified from Soong and Dargush 1997)
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An energy balance can be obtained by integrating every term in the motion
Eq. (1.4) on the entire history of relative displacements:

EK þ ED þ ES þ EH þ EP ¼ EI ð1:6Þ

where:

EK ¼
Z

m x
::

dx ¼ m _x2

2
ð1:7Þ

ED ¼
Z

c _xdx ¼
Z

c _x2dt ð1:8Þ

ES ¼
Z

kxdx ¼ kx2

2
ð1:9Þ

EI ¼ �
Z

m x
::

gdx ð1:10Þ

EP ¼
Z

Cxdx ð1:11Þ

EK is the instantaneous kinetic ‘‘relative’’ energy of the moving mass; ED is the
cumulative viscous damping energy due to the damping of the basic structure; ES

is the instantaneous strain energy stored by the structure; EH is the cumulative
hysteretic energy; EP is the cumulative viscous damping energy due to the
damping of dissipation devices. The sum of these energies must balance the
cumulative input energy EI of the seismic event. It is noted that each term is
actually a function of time, and that the energy balance is obtained at each instant
during the entire duration of the motion. At the end of the earthquake (t = tf), the
kinetic energy is zero, the (elastic) strain energy is zero for an elastic system (it is
nothing or almost nothing for an inelastic system), and the cumulative hysteretic
energy is equal to the energy demand EH(tf) = EDemand.

A structure designed according to the current international codes has a non-
linear response during a seismic event of considerable intensity. It follows that the
engineering design must be based on the ductility of structural elements to prevent
collapse, accepting the fact that the damage can take place. If the seismic input
energy, in fact, exceeds the capacity of the structure to store and dissipate energy
through the mechanism of elastic deformation, some parts of the structure suffer
damage linked to plastic deformations. This can be prevented by using passive
dissipation devices.

As a significant example of the effects of a passive device on the energy
response of a structure, the results of some tests of a reinforced concrete framed
construction of three floors in scale 1:3 conducted by Lobo et al. (1993) are
illustrated.

Figure 1.12a, b show the measured response of the structure caused by the 1952
Taft N21E ground motion with PGA equal to 0.2 g.
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A considerable portion of the input energy is dissipated through hysteretic
mechanisms, which damage the primary structure through the cracking and for-
mation of plastic hinges. It is noted that such damage is minimized by the addition
of a set of viscoelastic devices. In fact, in spite of the input energy being slightly
increased, the devices dissipate a significant portion of the total energy, thereby
protecting the primary structure.

Another exhaustive example of a structure with a passive dissipation devices
has been proposed by Symans et al. (2008), considering the motion of the base of
the 1940 S00E El Centro earthquake (Fig. 1.13). This example is discussed below
to clearly illustrate the basic principles of energy dissipation systems for seismic
applications.

The idealized structure consists of a one-story, one-bay moment resisting frame
having weight W0, mass M0, lateral stiffness K0, and lateral strength Y0. The

Fig. 1.12 Energy response of test structure a without passive devices; b with passive devices
(modified from Soong and Dargush 1997)

Fig. 1.13 Frame without and with passive energy dissipation devices (modified from Symans
et al. 2008)
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lateral strength of the frame is 0.2 times the weight of the frame, and the postyield
stiffness is equal to 2.0 % of the initial stiffness. The vibration period of the
structure, T0, is 0.535 s and its inherent damping (in the absence of any passive
energy dissipation device) is assumed to be 5 % of critical. The results from the
non-linear response-history analyses of the bare frame, when it is subjected to the
horizontal component of the earthquake ground motion reveals that plastic hinges
form in the girder, the maximum drift is 1.03 % of the height of the structure and
the corresponding displacement ductility demand is 3.08. At the end of the
earthquake, the structure has a residual drift of 0.12 % of the story height. The
damage in the frame can be quantified via a damage measure (DM) (Park 1984;
Park et al. 1985, 1987; De Iuliis et al. 2010) such as that given by:

DM ¼ lDemand

lCapacity
þ q

EDemand

ECapacity
ð1:12Þ

where

• lDemand and EDemand are, respectively, maximum displacement ductility demand
and cumulative hysteretic energy dissipation demand on the system or
component;

• lCapacity and ECapacity are, respectively, ductility capacity and hysteretic energy
capacity for one full cycle of plastic deformation of the system or component;

• q is calibration factor.

The calibration factor (set equal to 0.15 for this example) is material dependent,
and is selected to produce a damage measure value of 0.0 when the structure is
undamaged, and 1.0 when the damage is severe (near or at incipient incipient
collapse). Damage measure values in excess of 0.4 are generally considered
unacceptable. For the bare frame shown in Fig. 1.13a, the value of DM is 0.955
and thus the bare frame is severely damaged. Note that a DM value of near 1.0
may be obtained by a single monotonic deformation demand that is equal to the
deformation capacity, or as is most common, by undergoing numerous cycles of
deformation demand that are significantly less than the deformation capacity.

The damage measure of Eq. (1.12) indicates that damage to the structure can be
reduced by decreasing the ductility or hysteretic energy demand or by increasing
the ductility or hysteretic energy capacity. Assuming that it is not economically
feasible to increase the ductility or hysteretic energy capacity of the structure under
consideration, the performance may only be improved by reducing the ductility or
hysteretic energy dissipation demand. If a passive energy dissipation device in the
form of a viscous fluid damper is used, the reduction in ductility demand is facil-
itated through displacement reductions that come with increased damping. When
metallic yielding devices are utilized, the reduction in ductility demand is provided
by reduced displacements that arise from increased stiffness of the system as well as
hysteretic energy dissipation within the devices. In structures that employ passive
energy dissipation devices, the hysteretic energy dissipation demand on critical
components of the structure can be reduced by transferring the energy dissipation
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demand to the passive energy dissipation devices. For systems incorporating pas-
sive energy dissipation devices, it is useful to recast the viscous damping energy
and hysteretic energy terms as follows:

ED ¼ ED; structure þ ED; devices ð1:13Þ

EH ¼ EH; structure þ EH; devices ð1:14Þ

the sum of the terms ED,devices and EH,devices gives the term Ep of the Eq. (1.6). In
Eq. (1.13), the viscous damping energy is separated into damping that is inherent
in the structure and added damping from passive energy dissipation devices. In Eq.
(1.14), the first term represents the part of the hysteretic energy dissipated by the
main structural and nonstructural elements, and the second part is that dissipated
by the added passive energy dissipation devices.

To demonstrate the above principles, the structure of Fig. 1.13a is to be
increased with a certain passive energy dissipation device, connected to the frame
through a stiff chevron brace, as shown in Fig. 1.13b. One end of the device is
attached to the top of the chevron brace and the other end is connected to the
structure. The lateral stiffness of the brace, designed to remain elastic for all
loadings, is approximately 4.0 times the initial lateral stiffness of the frame without
the brace. The structure has two degrees of freedom (DOF); the lateral displace-
ment of the top of the chevron brace and the lateral displacement of the top of the
frame (numbered as one and two, respectively, on Fig. 1.13b). The device resists
the relative motion (displacement and/or velocity) between these two points. Two
different types of devices have been considered: a metallic yielding device and a
viscous fluid device. The metallic device is referred to as a rate-independent device
and the viscous device is classified as a rate-dependent device. The metallic device
is rate independent since the resisting force in the device is a function only of the
relative displacement across the device (i.e. the difference in displacements
between DOF one and two). The viscous device is rate dependent since the
resisting force in the device is dependent, in part or in full, on the relative velocity
across the device (i.e. the difference in velocities between DOF one and two).

Seven different implementations of this device have been considered, where the
yielding element has a strength of 0.167, 0.333, 0.500, 0.667, 0.833, 1.0, and 100
times that of the bare frame. The value of 100 represents a rigid connection
between the chevron brace and the structure.

The elastic stiffness of the device increases with its strength since the device
yield displacement has been assumed to be constant. The viscous damper has been
a linear viscous fluid device that is implemented so that the total damping (inherent
plus added) is 10, 15, 20, 25, 30, and 50 % of critical. In all of the analyses, the
inherent damping of the structure is assumed to be 5 % of critical.

The performance of the structure with the added metallic yielding device is
shown in Table 1.2. The elastic period of vibration of the structure, T, decreases
with each increase in device strength, YA, and, correspondingly, elastic stiffness.
Depending on the characteristics of the ground motion used for the analysis, this
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decrease in period may be responsible for increasing base shear in the structure.
Although the drift ratio, Dmax, decreases significantly with increased device
capacity, the residual deformation of the structure, D Rmax, is increased in most
cases due to the residual plastic deformation in the metallic yielding device.

The residual deformation is not necessarily a concern since the devices can be
replaced after an earthquake. The base shear demand, VB, increases significantly
with increased device capacity, and is nearly doubled when the device strength is
equal to the original strength of the structure. The increased base shear would need
to be accommodated in the design of the structure and its foundation. The ductility
and energy dissipation demands and, correspondingly, the damage measure,
decrease significantly with each increase in device capacity.

When the device strength is equal to the original strength of the structure, DM
is reduced to 0.399, which is at the upper limit of acceptability. Although DM is
reduced further to 0.192 when the brace is rigidly connected to the structure (i.e.
without a device), the base shear is increased by a factor of more than 3.0, which
may not be acceptable.

The performance of the structure with the added linear viscous fluid damping
device is shown in Table 1.3.

The elastic period of vibration of the structure, T, does not change with added
viscous damping. This is because viscous damping devices have zero or negligible
stiffness under low-frequency response. The drift ratio decreases by about 50 %

Table 1.2 Effect of added metallic yielding device on structure performance (modified from
Symans et al. 2008)

YA=YO TA=TO Dmax DRmax VB=WO lDemand=lCapacity EDemand

�

ECapacity DM

0 1.000 0.01027 0.00117 0.223 0.513 0.736 0.955
0.167 0.869 0.01033 0.00097 0.261 0.517 0.520 0.829
0.333 0.796 0.00867 0.00182 0.296 0.433 0.327 0.629
0.500 0.751 0.00747 0.00141 0.319 0.373 0.213 0.501
0.667 0.720 0.00645 0.00253 0.349 0.323 0.143 0.409
0.833 0.695 0.00707 0.00269 0.384 0.353 0.099 0.413
1.000 0.679 0.00707 0.00189 0.424 0.353 0.076 0.399
100 0.523 0.00364 0.00013 0.685 0.182 0.017 0.192

Table 1.3 Effect of added viscous fluid damping device on structure performance (modified
from Symans et al. 2008)

n T=TO Dmax DRmax VB=WO lDemand

�

lCapacity EDemand

�

ECapacity DM

0.05 1.00 0.01027 0.00117 0.223 0.513 0.736 0.955
0.10 1.00 0.00940 0.00175 0.264 0.470 0.494 0.767
0.15 1.00 0.00847 0.00187 0.293 0.423 0.350 0.633
0.20 1.00 0.00767 0.00177 0.312 0.383 0.250 0.34
0.25 1.00 0.00700 0.00052 0.324 0.350 0.185 0.461
0.30 1.00 0.00635 0.00001 0.333 0.317 0.139 0.401
0.50 1.00 0.00517 0.00118 0.351 0.259 0.049 0.288
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when the total viscous damping ratio is increased from the inherent level of 5 % to
a total of 50 % (i.e. 45 % added damping). The residual deformation of the
structure is affected by the implementation of the device, but there is no distinctive
trend. The base shear demand, VB, increases significantly with increased damping.
This is due to the fact that the structure is behaving inelastically and the damping
force increases linearly with both the damping coefficient and the velocity and, for
this particular example structure, the damping coefficient increases faster than the
velocity decreases. Sadek et al. (2000) showed that increases in base shear can also
occur for elastic structures, particularly for structures with long natural periods.

Finally, it is noted that the damage measure, DM, has decreased from 0.955 for
the structure without the device, to 0.4 for the structure with a total damping ratio
of 30 %. Although the DM is decreased even further for the system with 50 %
damping, it may be impractical to achieve that much added damping at a rea-
sonable cost. It is also important to note that, even with a total damping ratio of
50 %, the main structural system still yields. Experience has shown that, for strong
earthquakes, it is virtually impossible to add enough damping to completely avoid
yielding (and hence, damage) in the structural framing system (Uriz and Whittaker
2001; Oesterle 2003).

In summary, both the metallic yielding and viscous fluid damping devices were
highly effective in reducing damage in the structure. However, with particular
reference to the metallic yielding devices, this comes at the expense of increased
base shear and therefore foundation costs.
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Chapter 2
Passive Energy Dissipation Devices

Abstract In this chapter, the supplemental passive energy dissipation devices,

metallic or hysteretic dampers, frictional, viscoelastic and viscous (linear and non-

linear) dampers, developed and studied over the years, are briefly described. For

each type of device, the physical, mechanical and technological aspects are ana-

lysed by describing the construction, hysteretic behavior, physical models,

advantages, and disadvantages. Then, the more appropriate mathematical laws to

model their dynamic behavior, with particular reference to the viscous and vis-

coelastic, are described. Finally, a comparison between all the different types of

device is reviewed and the main recommendations, reported in the international

codes with specific reference to the viscous and viscoelastic, are explained.

2.1 Dissipation Devices

Several passive energy dissipation devices are available and have been imple-

mented worldwide for the seismic protection of structures.

The passive energy dissipation devices can be classified into three categories:

(1) rate-dependent devices;

(2) rate-independent devices;

(3) others.

The rate-dependent devices are the dampers whose mechanical response

depends on the relative velocity between the ends of the device. The behavior of

these dampers is commonly described using different models of linear viscoelas-

ticity. Examples of these include viscous fluid or viscoelastic dampers and

viscoelastic solid dampers.

The viscoelastic fluid dampers, in general, have a dynamic behavior charac-

terized by low stiffness values over a range of frequencies which often includes the

fundamental natural frequency of buildings or bridges. Therefore, these devices

P. Castaldo, Integrated Seismic Design of Structure and Control Systems,
Springer Tracts in Mechanical Engineering, DOI: 10.1007/978-3-319-02615-2_2,

� Springer International Publishing Switzerland 2014
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generally have a minimal influence on the fundamental natural frequency and,

therefore, are often regarded simply as viscous fluid devices.

The viscoelastic solid dampers have a stiffness that influences the natural fre-

quencies of vibration of the structure.

The rate-independent systems are the dampers whose mechanical response

depends on the displacement between the ends of the device and the sign of the

velocity (i.e., the direction of motion). The behavior of these devices is commonly

described by using various non-linear hysteretic models. Typical examples include

metallic and friction devices. The metallic devices have a good hysteretic behavior

associated with the yield point of mild steel, while the friction ones have a fun-

damentally bilinear hysteretic behavior with a very high initial stiffness.

In the following, the hysteretic (metallic), friction, viscous fluid and viscoelastic

devices will be discussed.

2.2 Metallic Dampers

One of the most effective mechanisms available for the dissipation of energy, input

to a structure during an earthquake, is through the inelastic deformation of metallic

substances (Soong and Dargush 1997).

The idea of using separate metallic hysteretic dampers within a structure to

absorb a large portion of the seismic energy began with the conceptual and

experimental work by Kelly et al. (1972) and Skinner et al. (1975). Several of the

devices considered by these researchers included torsional beam, flexural beam,

and U-strip dampers as shown schematically in Fig. 2.1.

Another type of device is the buckling restrained brace (BRB), developed by

Wada in 1980 (Wada et al. 1998), shown in Fig. 2.2.

A BRB damper consists of a steel brace (usually having a low-yield strength)

with a cruciform cross section that is surrounded by a stiff steel tube (Symans et al.

2008). The region between the tube and brace is filled with a concrete-like material

Fig. 2.1 Metallic damper geometries a torsional beam; b flexural beam; c U-strip (modified from

Soong and Dargush 1997)
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and a special coating is applied to the brace in order to prevent it from bonding to

the concrete. Thus, the brace can slide with respect to the concrete-filled tube. The

confinement provided by the concrete-filled tube allows the brace to be subjected

to compressive loads without buckling (i.e., the damper can yield in tension or

compression with the tensile and compressive loads being carried entirely by the

steel brace). Under compressive loads, the damper behavior is essentially identical

to its behavior in tension. Since buckling is prevented, significant energy dissi-

pation can occur over a cycle of motion. In many cases, BRB dampers are installed

within a chevron bracing arrangement. In this case, under lateral load, one damper

is in compression and the other is in tension, and hence zero vertical load is

applied at the intersection point between the dampers and the beam above. Thus,

the dampers may be regarded as superior to a conventional chevron bracing

arrangement where the compression member is expected to buckle elastically,

leaving a potentially large unbalanced vertical force component in the tension

member that is, in turn, applied to the beam above. During the initial elastic

response of the BRB damper, the device provides stiffness only. As the BRB

damper yields, the stiffness reduces and energy dissipation occurs due to the

inelastic hysteretic response. A mathematical model that describes the hysteretic

behavior of metals is the Bouc–Wen model (Wen 1976), which is described by

Black et al. (2004). The model is defined by:

PðtÞ ¼ bKuðtÞ þ ð1� bÞKuyZðtÞ ð2:1Þ
where b is the ratio of post- to preyielding stiffness, K is the preyielding stiffness,

uy is the yield displacement, and Z(t) is the evolutionary variable that is defined by:

uy _Z tð Þ þ c _u tð Þj j Z tð Þj j Z tð Þj jd�1þ g _u tð Þ Z tð Þj jd� _u tð Þ ¼ 0 ð2:2Þ

Fig. 2.2 Buckling restrained

brace
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where c, d and g are dimensionless parameters that define the shape of the hysteresis

loop. For example, for large values of d, the transition from elastic to inelastic

behavior is sharp and the hysteresis loop is associated with a bilinear model.

In order to effectively include these devices in the design of an actual structure,

their expected non-linear force–displacement behavior under arbitrary cyclic loads

must be characterized. Özdemir (1976) was the first to consider this modeling

problem. He used analogies with existing elastoplastic and viscoplastic constitutive

theories to develop appropriate forms for the force–displacement relationships.

Over the ensuing years, considerable progress has been made in the develop-

ment of metallic dampers. For example, many new designs have been proposed,

including the X-shaped and triangular plate dampers, known as added damping

and stiffness (ADAS), reported in Fig. 2.3.

These ADAS dampers (Whittaker et al. 1989, Whittaker et al. 1991; Xia and

Hanson 1992; Fierro and Perry 1993; Aiken et al. 1993) consist of a series of steel

plates wherein the bottom of the plates are attached to the top of a chevron bracing

arrangement and the top of the plates are attached to the floor level above the

bracing. As the floor level above deforms laterally with respect to the chevron

bracing, the steel plates are subjected to a shear force. The shear forces induce

bending moments over the height of the plates, with bending occurring at the weak

axis of the plate cross section. The geometrical configuration of the plates is such

that the bending moments produce a uniform flexural stress distribution over the

height of the plates. Thus, inelastic action occurs uniformly over the full height of

the plates. For example, in the case where the plates are fixed-pinned, the geometry

is triangular, in the case where the plates are fixed–fixed, the geometry is an

hourglass shape, as shown in Fig. 2.3. To ensure that the relative deformation of

the ADAS device is approximately equal to that of the story in which it is installed,

the chevron bracing must be very stiff.

Alternative materials, such as lead and shape-memory alloys, have been eval-

uated. Numerous experimental investigations have been conducted to determine

performance characteristics of the individual devices and laboratory test structures.

As a result of this ongoing research program, several commercial products have

been developed and implemented in both new and retrofit construction projects

(Soong and Dargush 1997). In particular, a number of existing structures in New

Zealand, Mexico, Japan, Italy, and the United States now include metallic dampers

as a means for obtaining improved seismic resistance.

2.2.1 Costitutive Models

To design hysteretic devices and implement global analyses of structures equipped

with these dampers, the first step is to define the constitutive model of the metal

used (Soong and Dargush 1997).

Consider first the behavior of a cylindrical metal rod, with initial length L0 and

cross-sectional area A0, subjected to uniaxial tension as shown in Fig. 2.4.
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Assuming that the load P is incremented slowly to insure the validity of a

quasistatic approximation, typical stress–strain curves are displayed in Fig. 2.5.

In these diagrams, the abscissa represents the conventional strain e, while the

nominal stress rn is plotted on the ordinate-axis. The following relationships apply:

Fig. 2.3 Metallic dampers
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e ¼ L� L0

L0
ð2:3Þ

rn ¼ P

A0

ð2:4Þ

The curve in Fig. 2.5a is characteristic of most metals. At loads corresponding

to nominal stress less than the yield stress ry, the response is fully elastic with rn
proportional to e. In this range, the initial state O is fully recoverable with removal

of the applied load, and there is no energy dissipation. On the other hand, when the

nominal stress exceeds the yield stress (i.e., beyond point Y on the curve), irre-

versible plastic deformation occurs dissipating energy. Considering the state

labeled B, it is useful to partition the total strain at B into elastic (eel) and inelastic

(ein) contributions, as indicated in Fig. 2.5a. Thus:

Fig. 2.4 Cylindrical rod subjected to uniaxial tension (modified from Soong and Dargush 1997)

Fig. 2.5 Stress–strain curves
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e ¼ eel þ ein ð2:5Þ
in which:

eel ¼ r
E

ð2:6Þ

with E representing the elastic modulus. The energy, or more precisely the energy

density, is measured by the area under the stress–strain curve from O to B. Part of

that energy is recoverable. However, the remainder, associated with the inelastic

strain ein and identified by the shaded area, is dissipative. A significant portion of

that dissipative energy is converted into heat. In this strain hardening regime,

successive increments of stress produce correspondingly greater increments of

strain, until the point M is reached associated with the maximum load that the

tensile specimen can withstand. Beyond M, the specimen becomes unstable.

Localization phenomena start with the appearance of a necking region in which

three-dimensional states of stress are present. Ultimately, failure occurs at point X.

As noted above, this description applies to most metals. However, annealed

mild steel and some other alloys behave as illustrated in Fig. 2.5b. In this case, the

response is similar to that previously discussed, except in the region just beyond

first yield at YU. In these materials, there is an abrupt drop in stress from point YU

to YL, corresponding to the upper and lower yield stress, respectively. This phe-

nomenon and the ensuing stress–strain plateau is caused by the formation and

propagation of Lüders bands (also called Hartmann lines). It should be noted,

however, that strain hardened mild steel does not exhibit this behavior, but instead

follows that depicted in Fig. 2.5a (Soong and Dargush 1997).

The stress–strain curve, shown in Fig. 2.5c, is typical of a brittle metal, such as

cast iron. Obviously, this type of material is not a good candidate for use in

metallic dampers, since very little energy dissipation occurs before fracture.

The definitions used in Eqs. (2.3) and (2.4) are appropriate when the length and

area of the specimen do not change significantly from the initial values. However,

for higher strain levels, the natural strain e and true stress r are more appropriate

measures, where:

e ¼ ln
L

L0

ffi �
ð2:7Þ

r ¼ P

A
ð2:8Þ

Replotting Fig. 2.5a in these coordinates leads to the curve displayed in Fig. 2.6.

Over the years, several mathematical models have been introduced to idealize

the stress–strain curves, including the elastic-perfectly plastic model, the elastic-

linear strain hardening model, and the Ramberg–Osgood model shown in Fig. 2.7

(Soong and Dargush 1997). The last of these models can be written as:
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e ¼ r
E
þ k

r
E

� �n

ð2:9Þ

with material constants E, k, and n. Thus, the Ramberg–Osgood model essentially

establishes a power law relationship between stress and inelastic strain, a condition

which is approximately satisfied during monotonic loading experiments with

different metals.

However, Eq. (2.9) is not adequate for describing the response to arbitrary

cyclic loading in which the stress state depends on not only the current strain but

rather the entire prior history. Consequently, in order to develop models for

metallic dampers, the discussion must be extended to behavior under load rever-

sals that involve excursions into the inelastic range. For these cases, the response is

path dependent. Consider the cylindrical specimen first loaded in tension past yield

at Y to a point B in the strain hardening range, and then gradually unloaded as

indicated in Fig. 2.8 (Soong and Dargush 1997).

The unloading branch of the curve is parallel to the initial loading curve,

indicating a purely elastic response. However, if unloading continues sufficiently

into the compression range, yielding will again take place at the point labeled Y0.

Fig. 2.6 Nominal stress–conventional strain diagrams

Fig. 2.7 Stress–strain mathematical models: a elastic-perfectly plastic; b elastic-linear strain hard-
ening; c Ramberg–Osgood
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The stress associated with Y0, i.e. ry, depends on the prior amount of strain

hardening. This is known as the Bauschinger effect.

In all the above-mentioned formulations of the constitutive models, time

dependency has been ignored. Plastic flow is assumed to occur instantaneously

compared to the time variation of the applied load. This is reasonable for steel at

approximately room temperature deforming under moderate strain rates. It is not

appropriate for lead under similar conditions, nor for steel at high temperature or

under very high strain rates. In the latter cases, creep and relaxation phenomena

must be considered. Creep is characterized by increasing strain with time for a

constant stress, while relaxation signifies a continual reduction in stress with time

for a material under constant strain. A volume edited by Miller (1987) provides an

excellent introduction to the unified creep-plasticity state-variable models. How-

ever, Ozdemir (1976) developed a particular formulation for the examination of

metallic dampers.

The theories of plasticity and viscoplasticity are able to characterize the behavior

of metals in the inelastic range during cyclic loading. However, these models do not

typically include the notion of failure. However, it is known that metals subjected to

cycling loads will often fail due to fatigue. The phenomenon of low-cycle fatigue of

metallic dampers is of particular interest, with it resulting in a limited number of

excursions (e.g.\1,000)well into the inelastic range. The actualmechanism involves

the growth and interconnection of microcracks that eventually lead to failure at the

macroscopic level. Since this process is very difficult to trace, a more phenomeno-

logical approach is generally adopted based upon the concept of material damage.

The traditional approach for low-cycle fatigue analysis is based on the results of

Fig. 2.8 Cyclic stress–

strain response (modified

from Soong and Dargush

1997)
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uni-axial tests at various levels of cyclic deformation (Hertzberg 1983) and refers to

the rule of Palmgren-Minor cumulative damage.

2.2.2 Damper Modeling

Having discussed the mechanical behavior of metals at the constitutive level, in

this section the emphasis now shifts to the characterization of the overall metallic

damper response. In particular, the construction of the force–displacement model

is described from an appropriate constitutive relationship for the metal by applying

the principles of mechanics.

Consider the triangular plate metallic damper (TADAS), which consists of N

identical triangular structural steel plates positioned in parallel and is typically

installed within a frame bay between a chevron brace and the overlying beam. The

base of each triangular plate is welded into a rigid base plate to approximate a

fixed end condition, while a slotted pin connection is employed at the apex to

ensure relatively free movement in the vertical direction. As a result of this

configuration, the damper primarily resists horizontal forces P, associated with an

interstory drift D, via uniform flexural deformation of the individual plates. Thus,

it is appropriate to examine a single cantilevered plate of thickness h, length L, and

base width w0, subjected to a load P/N applied at its free end as detailed in Fig. 2.9.

Fig. 2.9 Mathematical model

for triangular plate device:

a geometric definition;

b beam idealization (modified

from Soong and Dargush

1997)
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The force–displacement relationship for the damper can be readily established

for an infinitesimal elastic response. In this case, the classical Euler–Bernoulli

beam theory is valid. A quasistatic formulation is adopted by ignoring the inertia

of the plate. Then, at any cross-section, the moment equilibrium equation can be

written:

P

N
L� xð Þ ¼ w0 L� xð Þ

L

Zþh
2

�h
2

rydy ð2:10Þ

It is evident that the stress is independent of the position along the beam axis.

After applying the unidirectional elastic constitutive relationship:

r ¼ Ee ð2:11Þ
and the kinematic condition:

e ¼ ky ð2:12Þ
the curvature k is constant along the entire length of the plate, with:

k ¼ 2D
L2

ð2:13Þ

After some arithmetic operations and substitutions, the following force–dis-

placement model can be obtained:

P ¼ NEw0h
3

6L3

ffi �
D ð2:14Þ

The above model pertains only to the elastic response of the damper. Very little

can be inferred concerning the energy dissipation characteristics of the device.

This type of information, which is vital for proper aseismic design, requires

examination of the inelastic response. As a first approximation, the Eqs. (2.12) and

(2.13) can be retained, while replacing Eq. (2.11) by a rate-independent inelastic

constitutive model. Under certain conditions (e.g. major earthquakes), the inter-

story drift D may become comparable in magnitude to the damper plate length L.

In these situations, the effects of finite deformation on damper response cannot be

ignored. Thus, it is necessary to write the moment equilibrium equation in the

deformed configuration. With finite deformation, the curvature k is no longer

constant along the length of the plate. Consequently, at each instant of time, a non-

linear boundary value problem (BVP) must be solved to determine the unknown

curvature function.
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2.3 Friction Dampers

Friction dampers utilize the mechanism of solid fiction that develops between two

solid bodies sliding relative to one another to provide the desired energy dissi-

pation (Soong and Dargush 1997). Processes of this type are prevalent in nature

and have also been employed in many engineering systems. For example, solid

friction plays an important role in the overall control of tectonic movement and

earthquake generation. On a much smaller scale, friction is also used in automotive

brakes as a means to dissipate the kinetic energy of motion. Based primarily upon

an analogy to the automotive brake, Pall et al. (1980) began the development of

passive frictional dampers to improve the seismic response of structures. The

objective is to slow down the motion of buildings “by braking rather than

breaking” (Pall and Marsh 1982).

The friction devices exhibit a hysteretic behavior similar to that shown by the

metallic devices. They are based on the resistance developed between two inter-

faces in motion in order to dissipate an amount of input energy in the form of heat.

During the seismic excitations, the device flows under a predetermined load,

providing the desired energy dissipation. The friction device, which are not sus-

ceptible to thermal effects, have a reliable performance as well as a stable hys-

teretic behavior.

Over recent years considerable progress has been made in the development of

friction devices. Some typologies are shown in Fig. 2.10.

The Limited Slip Bolted (LSB) joint proposed by Pall et al. (1980) is shown in

Fig. 2.10a. It is intended for seismic control of large panel structures. The LSB

design incorporated brake lining pads between steel plates in order to provide a

consistent force–displacement response. Figure 2.10b displays an alternative

design proposed by Pall and Marsh (1982) for application in conjunction with

cross-bracing in framed structures. Once again, brake lining pads are utilized for

the sliding surfaces. Modern versions of these devices have already been imple-

mented in a number of structures in Canada. Two more recent uniaxial friction

devices are shown in Fig. 2.10c and d. The first of these is a Sumitomo friction

damper that has been applied in Japan (Aiken and Kelly 1990). The copper alloy

friction pads slide along the inner surface of the cylindrical steel casing. The

required normal force is provided through the action of the spring against the inner

and outer wedges. The device can be installed in-line with diagonal bracing or in

parallel to the beams of the connection between the floor and the V brace con-

figuration. In general the displacements are reduced compared to the original

configuration of the frame, the shear forces at the base and the accelerations are

modified very little, and in some cases increased due to the increased stiffness of

the new configuration.

Figure 2.10d presents the somewhat more sophisticated Energy Dissipating

Restraint (EDR) described in Nims et al. (1993). In this design, dissipation occurs

on the interface between the bronze friction wedges and steel cylinder wall. The
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combination of wedges, stops, and internal spring produces a frictional force

proportional to the relative displacement between the device ends.

Meanwhile, Fig. 2.10e shows a typical Slotted Bolted Connection (SBC), which

provides a satisfactory performance as an energy dissipation element and even

under repeated cycles of displacement does not present strenght loss, problems of

stability and reduction of the dissipation capacity (Butterworth and Clifton 2000).

Important factors that affect the performance of the SBC include:

• maintaining the contact pressure between the sliding surfaces;

• maintaining a more or less constant coefficient friction between the surfaces;

• avoiding brittle fracture of each component of the joint when it reaches the limit

of the range of sliding;

• simple and inexpensive construction and maintenance.

Several versions have been discussed in literature. FitzGerald et al. (1989)

employed all structural steel components, while Grigorian et al. (1993) advocated

Fig. 2.10 Friction dampers: a limited slip bolt joint; b X-braced friction damper; c Sumito-

mo friction damper; d energy dissipating restraint; e slotted bolted connection (modified from

Soong and Dargush 1997)
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the inclusion of brass insert plates. In both cases, Belleville washers have been

used to maintain initial bolt tensions.

The concentric bracing are among the most efficient systems to absorb the

lateral actions, combining strength, stiffness, low weight and simplicity of reali-

zation. Unfortunately, the use of diagonal in tension leads to poor performance

with potential soft-story collapses due to permanent strain. A better alternative

consists of the use of sliding joints to protect the diagonals from damage. The

SBCs (SBJs) are commonly used in a braced frame positioning them at one end of

each diagonal and designed so as to slide before the yield strength or the instability

of the diagonal. They were also used in a single brace but the need of capacity in

compression of the SBC leads to major sections. A K configuration still requires

braces able to withstand compression, but they will be shorter and lighter than the

ones of a standard bracing as shown in Fig. 2.11.

2.3.1 Damper Behavior and Modeling

The scientific study about dry friction (contacting surfaces must remain dry during

the process to maximize dissipation, there is no need for lubricants) has a long

history that dates backs to the illustrious work of Leonardo da Vinci, Amontons,

and Coulomb. The basic theory is founded upon the following hypotheses, which

were initially inferred from physical experiments involving planar sliding of

rectilinear blocks:

1. The total frictional force that can be developed is independent of the apparent

surface area of contact.

2. The total frictional force that can be developed is proportional to the total

normal force acting across the interface.

Fig. 2.11 K and X configurations: a K-braced; b X-braced
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3. For the case of sliding with low relative velocities, the total frictional force is

independent of that velocity.

As a result of these assumptions, at the instant of impending slippage or during

sliding itself, it is possible to write:

F ¼ lN ð2:15Þ
where F and N represent the frictional and normal forces, respectively, and l is the

coefficient of friction. Since it is frequently observed that the coefficient of friction

is somewhat higher when slippage is imminent than it is during sliding, separate

static lsð Þ and kinetic ldð Þ coefficients are often introduced. In either case, the

frictional force F acts tangentially within the interfacial plane in the direction

opposing the motion or impending motion.

In order to extend the theory to more general conditions, involving non-uniform

distributions or non-planar surfaces, these basic assumptions are often abstracted

to the infinitesimal limit. Thus, total forces are replaced by surface tractions, and

the generalization of Eq. (2.15) becomes:

st ¼ lsn ð2:16Þ
in terms of the tangential and normal tractions. In practice, the Coulomb theory is

only approximately true.

Furthermore, although the coefficient of friction l is often assumed to be a

constant for a given pair of contacting materials, this is not always the case. For

example, the value of l at any instant depends not only upon the selection of

sliding materials, but also on the present condition of the sliding interface. Since

surfaces are often the site of numerous ongoing physical and chemical processes,

the friction coefficient associated with an interface may actually vary considerably

over time.

It should consequently be clear that the development of force–displacement

models for friction dampers must depend on the results of physical testing (Soong

and Dargush 1997) in order to determinate both the most appropriate mathematical

model and value of the friction coefficient.

Figure 2.12 details the hysteretic behavior of a simple brake lining frictional

system under a constant amplitude displacement-controlled cyclic loading.

Based upon the behavior obtained by Pall et al. (1980), characterization of their

simple brake lining frictional system in terms of an elastic-perfectly plastic model

is quite appropriate. The model can be employed to simulate the behavior of their

Limited Slip Bolted (LSB) joint is shown in Fig. 2.13a and b.

Notice that the model sketched in the diagrams includes a stiff bearing stage for

displacements beyond the slip length. In order to quantify the response, a math-

ematical model must also be provided. A suitable hysteretic model can be defined,

where the parameters Ps and Db represent the slip load and total displacement at

first contact with the bearing surface, respectively. Additionally, K0 is the elastic
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stiffness, while the stiffness in bearing is K2. The model, which assumes zero

stiffness during slippage is shown in Fig. 2.14 in the form of an algorithm.

With reference to the system proposed by Pall and Marsh (1982), in which the

braces in a moment resisting frame incorporated frictional devices, for example a

typical X-braced system, the braces are designed to buckle at relatively low

compressive loads. As a result, the braces contribute only when subjected to

tension. By installing uniaxial friction elements within each brace, slippage would

only occur in the tensile direction and very little energy dissipation would result

during the cyclic loading. However, the special damper mechanism, depicted in

Fig. 2.12 Hysteresis loops of limited slip bolted joints (modified from Soong and Dargush 1997)

Fig. 2.13 Macroscopic model for limited slip bolted joints: a Load-deformation; b Hysteretic

behavior
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Fig. 2.15, permits much more effective operation. During cyclic loading, the

mechanism tends to straighten buckled braces and also enforces slippage in both

tensile and compressive directions. Initially, Pall and Marsh (1982) used a simple

elastoplastic model to represent the behavior of this X-braced friction damper.

However, Filiatrault and Cherry (1987) determined that this is only valid if the

device slips during every cycle, and if that the slippage is always sufficient to

completely straighten any buckled braces. Otherwise, the Pall-Marsh model

overestimates the energy dissipation. To remedy this situation, Filiatrault and

Cherry (1989, 1990) proposed a more detailed model for the device. Each member

of the bracing-damper system is represented by elements reflecting its individual

axial and bending characteristics. Thus, the structural braces are assumed to yield

Fig. 2.14 Hysteretic model

Fig. 2.15 Refined model for X-braced friction damper (modified from Soong and Dargush 1997)
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in tension, but buckle elastically in compression. The device links (links 2) are

permitted to yield in both tension and compression, while the sliding brake pads

are represented by a hysteretic model corresponding to the experimental results

obtained by Pall et al. (1980). The Filiatrault and Cherry (1989, 1990) and Pall and

Marsh (1982) models are shown in Fig. 2.15.

Regarding the Slotted Bolted Connection (SBC), shown in Fig. 2.10e, this

device was investigated by FitzGerald et al. (1989). Several experimental results

obtained under sizeable displacement controlled loading have developed by

FitzGerald et al. (1989) and Grigorian et al. (1993). The experimental results have

shown that there can also be slippage between the channel and cover plates, which

suolh be considered in the mathematical models.

As regards the uniaxial friction damper illustrated in Fig. 2.10c, manufactured

by Sumitomo Metal Industries Ltd., it utilizes a slightly more sophisticated design.

The pre-compressed internal spring exerts a force that is converted through the

action of inner and outer wedges into a normal force on the friction pads. These

copper alloy friction pads contain graphite plug inserts, which provides dry

lubrication. This helps to maintain a consistent coefficient of friction between the

pads and the inner surface of the steel casing. Aiken and Kelly (1990) indicate that

the response of these dampers is extremely regular and repeatable with rectangular

hysteresis loops. Furthermore, the effect of loading frequency and amplitude,

number of cycles, or ambient temperature on damper response was reported to be

insignificant. For structural analysis involving this device, a simple elastic-per-

fectly plastic hysteretic model, defined in Fig. 2.14, is appropriate.

Finally, with reference to the Energy Dissipating Restraint (EDR) manufactured

by Fluor Daniel, Inc. and detailed in Fig. 2.10d, superficially, the design is similar

to the Sumitomo concept, since this device also includes an internal spring and

wedges encased in a steel cylinder. However, there are several novel aspects of the

EDR that combine to produce very different response characteristics. As indicated

in Fig. 2.10d, the EDR utilizes steel compression wedges and bronze friction

wedges to transform the axial spring force into a normal pressure acting outward

on the cylinder wall. Thus, the frictional surface is formed by the interface

between the bronze wedges and steel cylinder. Internal stops are provided within

the cylinder in order to create the tension and compression gaps. Consequently,

unlike the Sumitomo device, the length of the internal spring can be altered during

operation, providing a variable frictional slip force. Typical experimental hyster-

etic behavior have been developed for three different configurations to study: the

response obtained with zero gaps and zero spring preload; triangular shaped

hysteresis loops response with slip force proportional to the device displacement;

with non-zero spring preload and very large gaps, the device acts as a standard

Coulomb damper.

The model presented previously in Fig. 2.14 is obviously applicable for this

second case. Finally, with a non-zero preload, but no initial gaps, the flag-shaped

hysteresis loops are obtained.

Consider the case having zero gaps and zero preload. In its initial state, due to a

zero internal spring force, there exists no normal contact pressure acting between
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the wedges and casing. However, once a force P is applied in either tension or

compression, the spring, with stiffness Ks, is compressed and frictional resistance

results. Let the spring displacement be represented by Ds, while the overall dis-

placement of the device is D, which includes deformation of the rod and con-

nections Dr. Thus (Soong and Dargush 1997),

D ¼ Ds þ Dr ð2:17Þ
If the stiffness of the rod and connections equals K3, then

P ¼ K3Dr ¼ K1D ð2:18Þ
where K1 is the effective overall stiffness of the device during initial loading.

Furthermore, the spring force becomes:

Ps ¼ KsDs ð2:19Þ
and the corresponding frictional resistance during slippage can be written:

Pf ¼ aKsDs ð2:20Þ
The positive factor a, which is less than one for practical designs, incorporates

the geometric and Coulomb friction effects involved in transforming the action of

the spring force through the wedges into a frictional resistance. For slippage during

loading, equilibrium requires that:

P ¼ PS þ Pf ð2:21Þ
Consequently, from Eqs. (2.17)–(2.21), it is possible to obtain the following

expression for the effective stiffness (Soong and Dargush 1997):

K1 ¼ 1þ að ÞKsK3

1þ að ÞKs þ K3

ð2:22Þ

This is simply the stiffness of a system featuring a parallel combination of

internal spring and frictional elements, 1þ að ÞKs, in series with the rod/connec-

tion spring K3. Upon subsequent unloading of the device, the frictional force

reduces immediately and further slippage is prevented. Thus, for the initial stage of

unloading, the spring displacement remains constant. The stiffness of the device is

then simply equal to the stiffness of the rod and connections K3. As the applied

force P is reduced, a level is reached at which slippage occurs in the unloading

direction. In this regime, the frictional force now opposes the action of the internal

spring. The effective stiffness of the device becomes (Soong and Dargush 1997):

K2 ¼ 1� að ÞKsK3

1� að ÞKs þ K3

ð2:23Þ

Note that in this configuration, the EDR device is self-centering. In the absence

of external force, the internal spring will return to its initial zero preload state.
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A detailed description of an appropriate hysteretic model is presented in Fig. 2.16.

The results obtained from the model for displacement controlled cyclic loading are

shown in Fig. 2.17.

2.4 Viscoelastic Dampers

The application of viscoelastic materials to vibration control can be dated back to

the 1950s when it was first used on aircraft as a means of controlling vibration-

induced fatigue in airframes (Ross et al. 1959). Since that time, it has been widely

used in aircrafts and aerospace structures for vibration reduction. Its application

to civil engineering structures appears to have begun in 1969 when 10,000

Fig. 2.16 Hysteretic model for EDR with no gaps and no prelaod

Fig. 2.17 Hysteretic model for EDR: a No gaps, no prelaod; b No gaps, finite preload (modified

from Soong and Dargush 1997)
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viscoelastic dampers were installed in each of the twin towers of the World Trade

Center in New York to help resist wind loads. Seismic applications of viscoelastic

dampers have a more recent origin. For seismic applications, larger damping

increases are usually required in comparison with those required for mitigation of

wind-induced vibrations. Furthermore, energy input into the structure is usually

spread over a wider frequency range, requiring more effective use of the visco-

elastic materials.

Viscoelastic materials used in structural application are typically copolymers or

glassy substances which dissipate energy when subjected to shear deformation.

A typical viscoelastic (VE) damper is shown in Fig. 2.18 which consists of vis-

coelastic layers bonded with steel plates.

If mounted in a structure, shear deformation and hence energy dissipation takes

place when the structural vibration induces relative motion between the outer steel

flanges and the center plate.

For these dampers, the shear stress can also be written as:

s tð Þ ¼ c0 G
0 xð Þ sinxt þ G00 xð Þ cosxt½ � ð2:24Þ

where

G0 xð Þ ¼ s0
c0

cos d ð2:25Þ

G00 xð Þ ¼ s0
c0

sin d ð2:26Þ

where, as shown in Fig. 2.19, c0 and s0 are, respectively, the peak shear strain and

peak shear stress, and d is the phase angle.

Figure 2.19 shows the response of a viscoelastic damper, which defines an

ellipse, whose area gives the energy dissipated by the viscoelastic material per unit

volume and per cycle of oscillation. It is given by:

Fig. 2.18 Typical damper configuration
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ED ¼
Z 2p

x

0

s tð Þ _c tð Þdt ¼ pc20G
00 xð Þ ð2:27Þ

It is seen that the two moduli, G0 and G¢¢¢ defined respectively shear storage

modulus and shear loss modulus, determine the dynamic behavior of the linear

viscoelastic material in shear under time harmonic excitation. These moduli are

not only functions of the excitation frequency xð Þ, but also functions of the

ambient temperature (T) and, sometimes, the shear strain cð Þ as well as the internal
temperature hð Þ. One of the expedient ways of estimating their dependence on

these parameters is to perform experiments on viscoelastic specimens over rep-

resentative ranges of these variables. In one series of these tests (Chang et al.

1993), three types of viscoelastic dampers with configurations (A, B and C) dis-

tinguished by dimensions and types of the viscoelastic material were used. Type A

and B dampers are made of similar VE materials but different in damper dimen-

sions. The type C damper is made from a different VE material. In Table 2.1, the

area, thickness and volume of each type of the dampers are reported.

The devices were tested at different temperatures, frequencies and deformation

range. The force–deformation responses of the three types of dampers subjected to

sinusoidal excitations with frequency of 3.5 Hz and 5 % damper strain at different

ambient temperatures have demonstrated that the hysteresis loops are fairly

rounded in shape, indicating that the dampers can effectively dissipate energy. In

fact, the damper stiffness and amount of energy dissipation in one cycle decrease

for all types of dampers with increasing ambient temperature. Thus, both shear

Fig. 2.19 Plot of stress

versus strain

Table 2.1 Viscoelastic damper dimensions (modified from Soong and Dargush 1997)

Type Area (m2) Thickness (m) Volume (m3)

A 0.00097 0.005 4.9 9 10−6

B 0.0019 0.007 1.5 9 10−5

C 0.0116 0.003 4.4 9 10−5
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Fig. 2.20 Dependence of shear storage modulus a and shear loss modulus b on frequency and

temperature (modified from Soong and Dargush 1997)
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storage modulus and shear loss modulus decrease as the temperature increases,

while they increase with increasing frequency as shown in Fig. 2.20a and b.

Field observations and laboratory experiments have shown that, during each

wind and earthquake loading cycle, the transient temperature increase is typically

less than 10 °C and has a minor effect on the performance of VE dampers.

From Fig. 2.20, it is noted that for a given temperature and moderate defor-

mations, the stress in a viscoelastic material is linearly related to the deformation

and strain rate when subjected to a harmonic motion. Experimental tests (Bergman

and Hanson 1993; Lobo et al. 1993; Chang et al. 1995) have shown that the

viscoelastic behavior of the damper can be modeled using the Kelvin model of

viscoelasticity.

2.5 Viscous Fluid Dampers

The VF damper, widely used in the military and aerospace industry for many

years, has recently been adapted for structural applications in civil engineering. In

fact, a major reason for the relatively rapid pace of implementation of viscous fluid

dampers is their long history of successful application in the military. Shortly after

the Cold War ended in 1990, the technology behind the type of fluid damper that is

most commonly used today (i.e., dampers with fluidic control orifices) was

declassified and made available for civilian use (Lee and Taylor 2001). Applying

the well-developed fluid damping technology to civil structures was relatively

straightforward to the extent that, within a short time after the first research pro-

jects were completed on the application of fluid dampers to a steelframed building

(Constantinou and Symans 1993) and an isolated bridge structure (Tsopelas et al.

1994).

A VF damper generally consists of a piston within a damper housing filled with

a compound of silicone or similar type of oil, with the piston containing a number

of small orifices through which the fluid may pass from one side of the piston to

the other (Constantinou and Symans 1993). As the damper piston rod and piston

head are stroked, fluid is forced to flow through orifices either around or through

the piston head.

The resulting differential in pressure across the piston head (very high pressure

on the upstream side and very low pressure on the downstream side) can produce

very large forces that resist the relative motion of the damper (Lee and Taylor

2001). The fluid flows at high velocities, resulting in the development of friction

between fluid particles and the piston head. The friction forces give rise to energy

dissipation in the form of heat. Thus, VF dampers dissipate energy through the

movement of a piston in a highly VF based on the concept of fluid orificing.

Figure 2.21 contains a typical longitudinal cross sections of viscous fluid dampers.

Regarding a pure viscous behavior, the damper force and velocity should

remain in phase. However, for a damper setup shown in Fig. 2.21, the volume for

storing the fluid will change while the piston begins to move. Thus a restoring
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force, which is in phase with displacement rather than velocity, will be developed.

Configuration of an accumulator or a run-through rod is used to solve the problem.

However, for high frequency motions, the accumulator valve may operate inac-

curately, and the restoring force will occur.

Additionally, for these devices, the associated temperature increase can be

significant, particularly when the damper is subjected to long-duration or large-

amplitude motions (Makris 1998). Mechanisms are available to compensate for the

temperature rise such that the influence on the damper behavior is relatively minor

(Soong and Dargush 1997). However, the increase in temperature may be of

concern due to the potential for heat-induced damage to the damper seals. In this

case, the temperature rise can be reduced by reducing the pressure differential

across the piston head (e.g., by employing a damper with a larger piston head)

(Makris et al. 1998). Interestingly, although the damper is called a viscous fluid

damper, the fluid typically has a relatively low viscosity (e.g., silicone oil with a

kinematic viscosity on the order of 0.001 m2/s at 20 °C). The term viscous fluid

damper is associated with the macroscopic behavior of the damper which is

Fig. 2.21 Longitudinal cross section of a fluid damper

Fig. 2.22 Hysteresis loops of dampers with pure viscous and viscoelastic behavior
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essentially the same as that of an ideal linear or non-linear viscous dashpot (i.e.,

the resisting force is directly related to the velocity).

Figure 2.22a shows the hysteresis loop of a pure linear viscous behavior. The

loop is a perfect ellipse. The absence of storage stiffness makes the natural fre-

quency of a structure incorporated with the damper remain the same. This

advantage will simplify the design procedure for a structure with supplemental

viscous devices.

However, if the damper develops restoring force, the loop will be changed from

Fig. 2.22a, b. In other words, it turns from a viscous behavior to a viscoelastic

behavior.

Experimental testing (Seleemah and Constantinou 1997) has shown that a

suitable mathematical model for describing the behavior of viscous fluid dampers

is given by the following non-linear force–velocity relation:

Fd tð Þ ¼ c � _ud tð Þð Þa¼ c � _ud tð Þj jasgn _ud tð Þ½ � ð2:28Þ
where Fd(t) is force developed by the damper; ud(t) is displacement across the

damper; c is damping coefficient; a is exponent whose value is determined by the

piston head orifice design; sgn [·] is signum function, and the overdot indicates

ordinary differentiation with respect to time, t. The physical model corresponding

to Eq. (2.28) is a non-linear viscous dashpot. For earthquake protection applica-

tions, the exponent typically has a value ranging from about 0.3 to 1.0. For a equal

to unity, the damper may be described as an ideal linear viscous dashpot. The

damper with a = 1 is called a linear viscous damper in which the damper force is

proportional to the relative velocity. The dampers with a larger than 1 have not

often been seen in practical applications. The damper with a smaller than 1 is

called a non-linear viscous damper which is effective in minimizing high velocity

shocks.

Figure 2.23 shows the force–velocity relationships of the three different types of

viscous dampers. This Figure demonstrates the efficiency of non-linear dampers in

minimizing high velocity shocks.

Fig. 2.23 Force–velocity

relationships of viscous

dampers
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For a small relative velocity, the damper with a a value less than 1 can give a

larger damping force than the other two types of dampers.

The energy dissipated per cycle of steady-state harmonic motion, characterized

by a frequency x, is obtained by integrating Eq. (2.28) over the displacement

leading to the following expression (Symans and Constantinou 1998):

ED ¼ 4Fd;0ud;02
a C2 1þ a=2ð Þ

C 2þ að Þ
ffi �

¼ kFd;0ud;0 ð2:29Þ

where Fd,0 = peak force developed by the damper ; ud,0 = peak displacement

across the damper; C = gamma function; k = parameter whose value depends

exclusively on the velocity exponent. For a given force and displacement ampli-

tude, the energy dissipated per cycle for a non-linear fluid damper is larger, by a

factor k=p, than that for the linear case and increases monotonically with reducing

velocity exponent (up to a theoretical limit of 4=p ¼ 1:27 which corresponds to a

velocity exponent of zero) (Fig. 2.24). For a given frequency of motion and dis-

placement amplitude, ud,0, to dissipate the same amount of energy per cycle, the

damping coefficient of the non-linear damper, cNL, must be larger than that of the

linear damper, cL, as given by (Symans et al. 2008):

cNL ¼ cL
p
k

xud;0
� �1�a ð2:30Þ

As an example, for a frequency of 1.0 Hz and displacement amplitude of 5 cm

(approximately 2 % story drift if the dampers are installed horizontally within a

chevron brace configuration), the damping coefficient of a non-linear damper with

velocity exponent of 0.5 must be approximately three times larger than that of a

linear damper to dissipate the same amount of energy per cycle (Symans et al. 2008).

Fig. 2.24 Force–

displacement relationships of

viscous linear and non linear

dampers
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Conversely, if non-linear dampers are used to limit the damper force and thus

the base shear, a reduction in the energy dissipation capacity as compared to the

case of linear dampers would be accepted to ensure that the base shear is limited.

Note that an expression equivalent to Eq. (2.30) has been derived by Filiatrault

et al. (2001), wherein it is explained that, having identified suitable linear damping

coefficients to meet some design criterion, the equation can be used to estimate

initial values of non-linear damping coefficients.

The viscous fluid (VF) devices developed recently include viscous walls and

VF dampers (Soong and Spencer 2002). The viscous wall, developed by the

Sumitomo Construction Company, consists of a plate moving in a thin steel case

filled with a high VF.

In several applications, they have been used in combination with seismic iso-

lation systems to prevent the system from a large deformation (Symans et al. 2008;

Hwang and Huang 2003). For example, in 1995, VF dampers were incorporated

into base isolation systems for five buildings of the San Bernardino County

Medical Center, located close to two major fault lines. The five buildings required

Fig. 2.25 San Bernardino County Medical Center–damper–base isolation system assembly

(modified from Symans et al. 2008)

Fig. 2.26 Dimensions of VF damper for San Bernardino County Medical Center (modified from

Symans et al. 2008)
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a total of 233 dampers, each having an output force capacity of 320,000 lb and

generating an energy dissipation level of 2,206 kw at a speed of 60 in/s. A layout

of the damperisolation system assembly is shown in Figs. 2.25 and 2.26 gives the

dimensions of the viscous dampers employed.

When the viscous fluid dampers are included in a strucutal systems, their

response to lateral loads improves by increasing the damping factor from 2–5 %,

typical of constructions, to 20–30 % of the critical value, this greatly reduces the

accelerations and displacements of the structure.

Finally, as an alternative to viscous fluid dampers, viscoelastic fluid dampers,

which are intentionally designed to provide stiffness in addition to damping, have

recently become available for structural applications (Miyamoto et al. 2003).

These dampers provide damping forces via fluid orificing and restoring forces via

compression of an elastomer. Thus, more accurately, the dampers may be referred

to as viscoelastic fluid/solid dampers.

2.5.1 Design Considerations for Viscous Passive Energy
Dissipation Systems

Retrofit applications of passive damping systems have been used to limit the

inelastic demands of connections in both steel and concrete moment frames

(Symans et al. 2008). Providing retrofit improvements in this manner can be very

cost competitive when compared to a conventional approach of retrofitting each

welded connection to improve deformation capacity. By assuming a perfectly rigid

bracing-damper system and associated connections and considering the elastic

structural response, the linear viscous dampers produce forces within a given story

that are 90° out of phase with respect to the restoring forces in the same story.

Therefore, the viscous force is maximum when other forces are zero. This is a

feature that can be exploited in the case of existing structures which might not

have enough capacity to carry out the exerted forces. In this case, for retrofit

applications in which the damping is proportionally distributed, and considering

only the response in the fundamental mode, the impact of the damping forces on

the existing foundation may be minor and therefore the foundation, which is

usually very difficult and expensive to retrofit, may require minimal, if any,

strengthening. A staggered distribution of devices in elevation may increase the

axial force in the columns and thereby reduce their resistance capacity to absorb

the bending stresses making them more vulnerable. A more rational distribution

based on a continuity in the transmission of the effort up to the foundations can

eliminate this effect.

In reality, elastic structure forces and viscous damping forces are usually par-

tially in phase, leading to the possibility of increased forces at the foundation level

(Constantinou et al. 1998; Fu and Kasai 1998). The partially in-phase relation for

the elastic and viscous damping forces can be induced by damper bracing and
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connection flexibility (Constantinou et al. 1998; Fu and Kasai 1998), higher mode

effects, and nonproportional damping effects.

It is also important to recognize that, for strong earthquakes, most structures

employing viscous dampers will experience some level of inelastic response in the

structure framing system. In this case, damping forces and inelastic restoring

forces may be additive, causing significant increases in the base shear. Adding

dampers to a structure introduces a new and very important design requirement in

that the deformations along the load path between all the dampers and main

structural elements must be included in the analysis (e.g., a rigid diaphragm action

cannot be assumed). Failure to account for such deformations can reduce the

effectiveness of the damping system to the point where the damping system simply

rides along with the seismic movements and provides virtually no response

reduction (Fu and Kasai 1998; Lin and Chopra 2003; Charney and McNamara

2002, 2008).

2.5.1.1 The Loading Combination Factors CF1 and CF2 according
to FEMA 273

For a linear elastic simple-degree-of-freedom structure with a (linear or non linear)

damper under a harmonic vibration at its natural frequency, ω, the displacement

and velocity may be expressed as (Hwang and Huang 2003; Hwang et al. 2008;

Hwang 2005):

u ¼ u0 cosxt

_u ¼� xu0 sinxt
ð2:31Þ

The force response should be:

F ¼ kuþ c _uj ja sgn _uð Þ ð2:32Þ
where k is the stiffness of the system and is equal to mω2. Figure 2.27 shows this

force–displacement relationship.

In the case of linear devices, to describe the viscoelastic overall response, it is

possible to write:

F ¼ F0 cos xt þ dð Þ ð2:33Þ
where F is the resistance force of the system; F0 is amplitude of the force; and the d
is the phase angle.

Since the force of viscous dampers and the displacement response of the frame

are out of phase, it is difficult to determine the internal force of each member of the

frame through the static procedure. Therefore, when the rehabilitation of buildings

is executed with velocity dependent devices, FEMA 273 (ATC 1997a) suggests

that engineers check the actions for components of the buildings in the following

three stages of deformation, and the maximum action should be used for design.
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Fig. 2.27 Force–displacement relationship of a structure with viscous dampers

Fig. 2.28 Harmonic motion

of a structure with viscous

dampers
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• Stage of maximum drift: which is represented by point A of Fig. 2.27.

• Stage of maximum velocity and zero drift: which is represented by point B of

Fig. 2.27.

• Stage of maximum floor acceleration: which is represented by point C of Fig. 2.27.

Figure 2.28 shows an example of response in terms of the two magnitudes,

displacement and velocity, and the instants in which there is the maximum of the

displacement, velocity and acceleration respectively.

Furthermore, FEMA 273 (ATC 1997a) recommends a procedure to calculate

the member force at the instant of the maximum acceleration. The procedure

indicates that design actions in components should be determined as the sum of

“actions determined at the stage of maximum drift” times CF1 and “actions

determined at the stage of maximum velocity” times CF2, where:

CF1 ¼ cos tan�1 2nð Þ� �
CF2 ¼ sin tan�1 2nð Þ� � ð2:34Þ

where ξ is the damping of the overall system, equal to the sum of the internal

damping ns of the structure and the damping produced by dampers nd:

n ¼ ns þ nd ð2:35Þ
For the case of linear dampers (a = 1), the following relation can be written:

d ¼ tan�1 2ndð Þ ð2:36Þ
which is adopted by FEMA 273 (ATC 1997a) for linear dampers.

However, the two load combination factors are inappropriate for structures with

non-linear viscous dampers. The revised formulas have been proposed by Ramirez

et al. (2001) and are implemented in NEHRP 2000 (BSSC 2004). The following

are the derivation of the revised load factors:

CF1 ¼ cos d

CF2 ¼ sina d
ð2:37Þ

2.6 Comparison Between Passive Energy
Dissipation Devices

A summary of passive energy dissipation devices that have been commonly used is

presented in Fig. 2.29, with the construction, hysteretic behavior, physical models,

advantages, and disadvantages being presented.

The fiction devices are characterized by large energy dissipation per cycle and

insensitivity to ambient temperature, but have a strongly non-linear behavior

and require non-linear analysis. Sliding interface conditions may change with time
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and present permanent dispacements if no restoring force mechanism are provided.

The metallic devices have also a non-linear behavior and are characterized by

stable hysteresis behavior. They are not sensitive to ambient temperature and may

require replacement due to damage in the post-earthquake phase. In relation to the

viscoelastic devices, they provide restoring force and have a linear behavior, but

their properties are frequency and temperature dependent. They have also a limited

deformation capacity. Among the advantages of the viscous devices, it is worth

Fig. 2.29 Summary of construction, hysteretic behavior, physical models, advantages, and

disadvantages of passive energy dissipation devices for seismic protection applications (modified

from Symans et al. 2008)
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noting activation at low displacements, they possess a restoring force and their

mechanical properties are not frequency and temperature dependent. For these

linear devices, a simplified modeling can be considered, in a first phase, with the

assumption of not considering the flexibility of the bracing system and

connections.

To demonstrate the different effectiveness of above-mentioned devices, a sci-

entific research is reported (Tehrani and Maalek 2006), in which different

strengthening methods are employed and compared through non-linear dynamic

analysis. The investigated existing structure in this research is a nine story steel

building with a rectangular plan and located in Tehran (Iran). The longest side is

defined as Y-direction and the other one X-direction. More details on geometry

and structural properties of the existing structure can be found in Tehrani and

Maalek (2006).

The existing structure has been modeled in three dimensions in Perform-3D

software and several non-linear static analyses have been performed on the model.

Regarding the results obtained on the existing structure, it has been possible to

observe that the shear wall in the Y direction is failed by concrete crushing. The

remarkable strength loss has been seen in the capacity curve that causes increase in

the target displacement of the structure.

Additionally, in most of the connections, plastic deformations have exceed

from the acceptable limits and the link beams in the eccentric bracings do not have

enough capacity while their plastic rotation violates the limitation given in the

FEMA356 (ATC 2000) instruction manual; therefore, in accordance with the

FEMA356 guidelines (ATC 2000), the structure is vulnerable and needs to be

rehabilitated.

Two groups of strengthening methods have been considered: the first group is

related to the relatively modern methods based on the use of passive control

devices that include metallic dampers, friction dampers, viscous dampers and

Fig. 2.30 Comparison of the maximum base shears for the use of various devices (X direction)

(modified from Tehrani and Maalek 2006)
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viscoelastic dampers. While, on the other hand, conventional strengthening

methods such as the use of bracings and shear walls have also been investigated.

For each of the rehabilitation schemes of the structure, a realistic model has

been prepared and several non-linear dynamic analyses carried out on the models.

The non-linear dynamic analyses have been performed using seven scaled earth-

quake records matched to the spectrum under consideration. These records include

Naghan (Iran 1977), Tabas (Iran 1978), Abhar (Iran 1991), Elcentro (1940), Park

field (1966), Taft (Kern County 1952), and San Fernando (1971) earthquakes.

In Figs. 2.30 and 2.31, the base shears of the structure for the use of various

devices are presented.

Fig. 2.31 Comparison of the maximum base shears for the use of various devices (Y direction)

(modified from Tehrani and Maalek 2006)

Fig. 2.32 Average dissipated energy in each element for the use of various devices (X direction)

(modified from Tehrani and Maalek 2006)
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In the analysis, different values of the characteristics of TADAS dampers,

which are SR and U values, defined as the relative strength and stiffness of the

metallic TADAS dampers to the original frame of the structure respectively, have

been considered. As for viscous and viscoelastic devices, the structure has been

subjected to three different percentages of critical damping n for each direction

separately. Therefore, to determine the optimum slipping load of the friction

dampers, the structure has been analysed for the different values of slip loads.

Then, as for conventional rehabilitation method, in the two perpendicular direc-

tions of the structure, the analyses have been undertaken with the consideration of

two alternatives: the use of one and also two shear walls in the structure and by

considering three values of the eccentricity bracing only in the Y direction.

By the comparison of these diagrams, it is possible to discover that the variation

of the base shear forces is much higher in the X direction than in the Y direction.

This is due to the existence of the stiff shear walls in this direction that decrease the

effect of dampers to reduce the base shear of the structure. However these dia-

grams show that with the application of passive dampers, the base shears will be

reduced, particularly in the X direction.

Figures 2.32 and 2.33 show the average percentage of dissipated energy in the

structural elements in response to the seven earthquake records. The results show

that the amount of dissipated energy in the VE dampers with n ¼ 0:30 is maximum

in direction X, while the other structural elements remain almost elastic. Also in

this case, the structural damages in the columns are minimal. In addition, this

diagram shows that the use of friction damper with the slip load of 300 KN can

lead to the same results.

In direction Y, the results show that the amount of dissipated energy in the

viscous damper with n ¼ 0:20 is maximum. In this case, the damage in the col-

umns and saddle (bypass) connections are minimal. This is because of the fact that

Fig. 2.33 Average dissipated energy in each element for the use of various devices (Y direction)

(modified from Tehrani and Maalek 2006)
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viscous dampers exert their maximum forces in out of phase with displacement.

Thus, when the structure undergoes its maximum deformations, no force is exerted

by the viscous dampers to the structure. This desirable characteristic of viscous

dampers is especially suitable for the existing structures that may not have enough

capacity to carry out the exerted forces.

2.7 Design Recommendations: Guidelines

Guidelines for the implementation of energy dissipation or damping devices in new

buildings were first proposed by the Structural Engineers Association of Northern

California (SEAOC 1999) to provide guidance to structural engineers, building

officials, and regulators who had the task of implementing such devices in building

frames (Whittaker et al. 1993; Symans et al. 2008). In the mid-1990s, the Federal

EmergencyManagement Agency (FEMA) funded the development of guidelines for

the seismic rehabilitation of buildings (Kircher 1999). Four new methods of seismic

analysis and evaluation were presented in the NEHRP Guidelines for the Seismic

Rehabilitation of Buildings (FEMA Reports 273 and 274 ATC 1997a, b):

(1) linear static procedure,

(2) linear dynamic procedure;

(3) non-linear static procedure;

(4) non-linear dynamic procedure.

With regard to structures incorporating passive energy dissipation devices, the

basic principles to be followed included in Guidelines (ATC 1996, 1997a, b) are:

(1) spatial distribution of dampers (at each story and on each side of the building);

(2) redundancy of dampers (at least two dampers along the same line of action);

(3) for maximum considered earthquake, dampers, and their connections designed

to avoid failure (i.e., not the weak link in the system);

(4) members that transmit damper forces to foundation designed to remain elastic.

In addition, the following hypotheses (NEHRP (Recommended Provisions),

ASCE/SIE 7-05 Standard entitled “Minimum design loads for buildings and other

structures” (ASCE 2005), the 2006 International Building Code (ICC 2006) and

the Building Construction and Safety Code (NFPA 2006)) were assumed:

(1) the collapse mechanism for the building is a single-degree-of-freedom

mechanism so that the drift distribution over the height of the building can be

reasonably estimated using either the first mode shape or another profile such

as an inverted triangle;

(2) the building is analyzed in each principal direction with one degree-of-free-

dom per floor level;

(3) the non-linear response of the building can be represented by an elastoplastic

relationship;
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(4) the yield strength of the building can be estimated by either simple plastic

analysis or using the specified minimum seismic base shear and values of the

response modification (R), the reserve strength of the framing system (W0),

and the deflection amplification (Cd) factors presented in the NEHRP Rec-

ommended Provisions.

Note that the above-mentioned procedures for the analysis and design of

structures with damping systems were largely based on studies that do not consider

the effects of near-field (close to the fault) seismic excitations. However, as

demonstrated by Pavlou and Constantinou (2004), the simplified methods of

analysis for single-degree-of-freedom systems yield predictions of peak response

of structures with damping systems that are generally accurate or conservative for

the case of near-field seismic excitation (with a correction factor required for

predicting peak velocity).

An engineering use of passive devices implies that their size and placement

must be determined so that the predetermined performance are achieved. A tra-

ditional procedure for determining the size and position of the energy dissipation

devices begins with the selection of values on the basis of the experience of the

engineer. Thus, either a dynamic or static analysis must be performed to verify the

achievement of the performance objective. To this scope, ATC-40 (ATC 1996)

and FEMA-273 (ATC 1997b), then developed in FEMA-356 (ATC 2000), provide

non-linear static analysis procedures that incorporate energy dissipation devices. If

the analysis result is not satisfactory, the structure is analyzed again after changing

the quantity or location of the devices. This process of trial and error is repeated

until the optimal number of devices to achieve the performance is finally reached.

However, the general practice of carrying out a series of tests and processes of

error can be a laborious task unless the engineer has extensive experience in

seismic design using supplemental energy dissipation devices. Several contribu-

tions in the literature relate to the development of more or less simplified design

procedures of structural systems equipped with passive dissipation devices have

been proposed according to the performance based design with the use of the

method of the capacity spectrum or by using the response spectrum in terms

acceleration-displacement (ADRS) or through the use of the response spectrum in

terms of the displacement and capacity curve of the structure (Sullivan et al. 2003;

Kim et al. 2003; Kim and Seo 2004; Lin et al. 2003; Kim and Choi 2006; ATC-40

1996 ATC 1997a; Freeman 1998; SEAOC 1999).
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Chapter 3
Dynamic Response of Systems Equipped
with Viscous and Viscoelastic Dampers

Abstract In this chapter, the principal elements of the dynamic response of linear

undamped and damped single and multi degrees-of-freedom systems are described

in time domain both in terms of the relative motions of the mass and in state space

form. In a first stage, the analysis of the dynamic response of linear simple-degree-

of-freedom systems in the time domain is described by defining the main dynamic

characteristics of the undamped system and, then, evaluating the damped natural

frequency of the system and response factor. The modal strain energy method is

described to evaluate the damping ratio of the SDOF system equipped with viscous

and viscoelastic devices. As for linear multi-degrees-of-freedom systems the

decoupling procedure for modal analysis and the proportional damping model are

described. Even for these systems the effect of damping, assumed to be propor-

tional, on the natural frequencies is evaluated and the modal strain energy method

with regard to viscous and viscoelastic devices is illustrated. Then, the concept of

the state of a system, the definition of the state space and its properties are dis-

cussed. Finally, with reference to both single-degree-of-freedom that multi-

degrees-of-freedom systems the representation of their dynamic response in state

space is illustrated.

3.1 Elements of Dynamic Response of Single-Degree-
of-Freedom Systems

The development of new technologies has changed the criteria of seismic design.

Nowadays, designing a structure as a static element is absolutely inadequate

because the analysis of its dynamic behavior, in fact, has a role of primary

importance to obtain specific seismic performance, and, particularly, in the case in
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� Springer International Publishing Switzerland 2014

63



which innovative protection strategies are adopted, such as, for example, the

introduction of energy dissipation devices within the structural system. For this

reason, the principal elements of the dynamic behavior of a single-degree-of-

freedom (SDOF) system with specific reference to the effects of damping on the

dynamic response are illustrated.

This simple model, even if on the one hand is useful to demonstrate the energy

dissipation principles, on the other is not able to adequately model the real

structures, for which more complex models need to be introduced, whose dynamic

response will be illustrated (Housner 1959; Newmark and Rosenblueth 1971;

Soong and Dargush 1999).

Consider the lateral motion of the basic single-degree-of-freedom (SDOF)

model, consisting of a mass m, supported by springs with total linear elastic

stiffness k, and a damper with linear viscosity c. This SDOF system is then sub-

jected to an excitation seismic input that determines the ground displacements

described analytically by law xg(t). The excited model responds with a lateral

displacement x(t) relative to the ground x(t), in such a way that the overall absolute

displacement is equal to:

xass tð Þ ¼ x tð Þ þ xg tð Þ ð3:1Þ
Since, moreover, both the stiffness and damping properties are linear, the

dynamic equation of the system is written as follows:

mx
::
tð Þ þ c _x tð Þ þ kx tð Þ ¼ �mxg

::
tð Þ ð3:2Þ

where the mass is the mass of the system including the linear viscous device.

Dividing the Eq. (3.2) by the mass, it applies:

x
::
tð Þ þ 2nx _x tð Þ þ x2x tð Þ ¼ � xg

::
tð Þ ð3:3Þ

in which the natural (undamped) frequency of the system is defined as:

x ¼
ffiffiffiffi
k

m

r
ð3:4Þ

and n is the damping ratio:

n ¼ c

2mx
ð3:5Þ

In the case of non-zero damping ratio, the free vibration response occurs

through the following equation:

x tð Þ ¼ x0e
�nxt cos xDtð Þ þ nx

xD

sin xDtð Þ
� �

ð3:6Þ

where xD represents the natural frequency of the damped system defined as

follows:
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xD ¼ x
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� n2

q
ð3:7Þ

Note that Eq. (3.7) coincides with the (3.4) in the case n ¼ 0, the damping ratio

is zero, and is valid only in the case of under-damping (i.e., when it is n\1).

Besides, all the real structures related to the field of seismic engineering are

(under)damped.

The dynamic response indicated in Eq. (3.6), is shown in Fig. 3.1, by high-

lighting the substantial effect due to the increase of damping ratio on the response

of the SDOF system. Note, as in the case of n ¼ 0:01, the system should perform

about 37 vibrations before reducing the amplitude to one tenth of its initial value,

while for n ¼ 0:20, the number of vibrations is reduced to 2.

In any case, however, regardless of the value of the damping ratio, the system

asymptotically returns to its undeformed configuration, since all the elastic

potential energy present at time t = 0 has been dissipated through a purely viscous

mechanism.

It should be noted that, in structures equipped with passive supplemental energy

dissipation devices, such as viscous dampers, it is good to subdivide the damping

ratio in two aliquots:

n ¼ ns þ nd ð3:8Þ
where is ns the inherent damping of the main structural system and nd is attributed
to the dampers.

The response of the same system to forced vibrations (harmonic excitation) is

explained below. Suppose, in fact, that the system is subject to an harmonic

excitation, expressed in a complex exponential form, characterized by amplitude

F0 and frequency xn:

p tð Þ ¼ F0e
ixnt ð3:9Þ

Fig. 3.1 Free vibration

response of a (under) damped

SDOF system
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where i represents the imaginary unit. The dynamic equation of the system appears

to be represented, therefore, by the following equation:

mx
::ðtÞ þ c _xðtÞ þ kxðtÞ ¼ F0e

ixnt ð3:10Þ
The solution of this differential equation turns out to be the sum between the

solution of the homogeneous equation associated, representative of free vibrations

of the system, and the particular solution.

The solution of the homogeneous equation can be written in a complex expo-

nential form, generalizing Eq. (3.6) as:

xomðtÞ ¼ xADe
�nxtei xDtþ/Dð Þ ð3:11Þ

where xAD and /D are constants dependent on the initial conditions of motion.

With regard to the particular solution, given the mathematical form of the force

applied, it can be expressed such as:

xðtÞ ¼ x0e
ixnt ð3:12Þ

where x0 is the amplitude of the motion. Substituting the Eq. (3.12) into the

equation of motion (3.2) the following expression is obtained:

x0 ¼ F0

�mx2
n þ icxn þ k

� � ð3:13Þ

The complex number, which is the denominator of the Eq. (3.13) can be rep-

resented in exponential form through the relationship:

k � mx2
n þ icxn ¼ rei/H ð3:14Þ

where, dividing Eq. (3.14) by the mass, and employing the definitions given in

Eq. (3.5), the terms r and /H can be expressed as:

r ¼ k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b2
� �2 þ 2nbð Þ2

q

/H ¼ arctg
2nb

1� b2

� � ð3:15Þ

In the Eq. (3.15), the parameter b, which is the ratio of the frequency xn of the

harmonic excitation (external force) to the natural frequency x of the system, has

been introduced:

b ¼ xn

x
ð3:16Þ

Thus, the Eq. (3.12) can be expressed by the following expression:

xp ¼ xst
e�i/H eixntffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� b2
� �2 þ 2nbð Þ2

q ð3:17Þ

66 3 Dynamic Response of Systems



in which it is possible to introduce the response factor, expressed as:

H xnð Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b2
� �2þ 2nbð Þ2

q ð3:18Þ

The response factor is the ratio of the dynamic to the static displacement

response amplitudes, already introduced in Sect. 1.2. Therefore, Eq. (3.17) can be

written in compact form as:

xp ¼ xste
�i/H eixntH xnð Þ ð3:19Þ

Thus, the overall solution of the problem of motion can be expressed by the

formula:

x tð Þ ¼ xADe
�nxtei xDtþ/Dð Þ þ xste

�i/H eixntH xnð Þ ð3:20Þ
as usual the arbitrary constants xAD and /D are determined by the initial conditions

of motion.

Observing the Eq. (3.20), it is possible to understand how the first addend is

characterized by an ‘‘exhaustion’’ trend (Fig. 3.1), for which it is significant only

in the early stages of motion (transitional phase), while after a certain time

interval, the motion is virtually identified only by the second addend, which

physically represents the stationary phase of the motion.

It is understood, therefore, as in most applications, only the stationary phase of

the dynamic response (Eq. 3.20) results to be of practical interest. To characterize

the dynamic term, two quantities are essential:

• the response factor HðxnÞ: the dependence of this function on the parameter b
for several values of the damping ratio n is represented in Fig. 3.2. For small

values of the frequency xn compared to the frequency of the system

(xn=x � 0), the response factor is close to 1, in fact, the response appears to be

virtually static since the motion is not quick to point to determine significant

inertial effects. In this case, the maximum displacement is controlled by the

stiffness of the system with little effect of mass or damping. For low values of

damping ratio, with increasing the parameter b the response factor grows rap-

idly, until it reaches the peak value for b close to unity. For b close to 1, the

response factor is controlled by the damping ratio n with a negligible influence

of mass or stiffness. When b ¼ 1, the response factor is inversely proportional to

the damping ratio if the forcing frequency is the same as the natural frequency of

the structure. In this case, the term of resonance is introduced. A resonant

frequency is defined as the frequency for which the response is maximum. The

response factor H(xn) is essentially independent of damping and approaches

zero as the forcing frequency becomes much higher than the natural frequency

of the structure (xn ! 1) (i.e., for values of b greater than 1). It can be shown

that at high forcing frequencies, the maximum displacement depends primarily

on the mass.
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• the phase angle /H: the phase angle is a measure of the delay between the

steady-state response of the system and the external force, and is due to the

damping ratio. The dependence of the phase angle on the parameter b is rep-

resented in Fig. 3.3, for several values of the damping ratio of the system. For

undamped systems, the phase angle is equal to 0 in the case b\1, and to p for

b[ 1, which is equivalent to say that the system response is in phase with the

external forcing in the first case, while it is in the opposition phase in the second

Fig. 3.2 The dependence of the response factor on the fundamental dynamic parameters

Fig. 3.3 The dependence of the phase angle on the fundamental dynamic parameters
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case. For lowly damped structures, the phase angle increases in the range 0; p
2

	 

for b\1, up to reach a value equal to p=2 at resonance. After this point, the

phase angle continues to increase until it reaches the value p asymptotically.

Note that for a fixed value of the excitation frequency, higher than resonance

frequency, the value of the phase angle is inversely proportional to the damping

ratio of the system.

3.1.1 Damping Ratio of Single-Degree-of-Freedom Systems
Equipped with Linear Viscous Fluid and Viscoelastic
Dampers

The evaluation of the dimensionless damping ratio produced by the viscous and/or

viscoelastic devices means to calculate the energy dissipated in the hysteresis

cycles by the devices.

Considering a single-degree-of-freedom system equipped with a linear viscous

damper under an imposed sinusoidal displacement time history (Hwang and

Huang 2003; Hwang et al. 2008; Hwang 2005):

u ¼ u0 sinxnt ð3:21Þ
where u is the displacement of the system and the damper; u0 is the amplitude of

the displacement; and the xn is the excitation frequency. The measured resistance

force is:

F ¼ F0 sin xnt þ dð Þ ð3:22Þ
where F is the force response of the system; F0 is amplitude of the force; and the d
is the phase angle.

The energy dissipated by the damper, WD, is

WD ¼
I

Fddu ð3:23Þ

where Fd is the damper force which equals to c _u; c is the damping coefficient of the

damper; _u is the velocity of the system and the damper. Therefore, the following is

obtained:

WD ¼
I

c _udu ¼
Z2p=xn

0

c _u2dt ¼ cu20x
2
n

Z2p

0

cos2 xntd xntð Þ ¼ pcu20xn ð3:24Þ

Recognizing that the damping ratio contributed by the damper can be expressed

as nd ¼ c=ccr, the following is obtained:
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WD ¼ pcu20xn ¼ pccrndu
2
0xn ¼ 2pnd

ffiffiffiffiffiffi
km

p
xnu

2
0

¼ 2pndu
2
0k

xn

x
¼ 2pndWs

xn

x

ð3:25Þ

where ccr, k, m, x and Ws are respectively the critical damping coefficient, stiff-

ness, mass, natural frequency and elastic strain energy of the system. The damping

ratio attributed to the damper can then be expressed as

nd ¼
WD

2pWs

xn

x
ð3:26Þ

The dissipated energy WD and the elastic strain energy Ws are illustrated in

Fig. 3.4.

Under earthquake excitations, xn is essentially equal to x, in other terms, the

response of the system is characterized by a dynamic response having energy

concentrated on its natural frequency (this concept will be also resumed later in

Chaps. 4–6), thus giving:

nd ¼
WD

2pWs

ð3:27Þ

In the case of a viscoelastic device, the viscosity coefficient of the viscoelastic

damper, as defined by Eq. (4.12), must be considered to evaluate the dissipated

energy and in the calculation of the elastic strain energy must be referred both to

the stiffness of the structural system as well as of the device.

It is important to point out that, because of the flexibility of the serially con-

nected braces to the devices, the viscosity coefficient of the viscous device and the

stiffness of the brace, as explained in Chap. 4, are dependent on the frequency and,

therefore, the corresponding dynamic coefficients must be used in the evaluation of

the two above-described energies. Similarly, the viscosity coefficient and stiffness

of the viscoelastic device are also dependent on the frequency and, therefore, as

described in Chap. 4, the corresponding dynamic terms must be employed. This

dependence is even more pronounced when considering the viscoelastic damper-

brace component (Chap. 4).

Fig. 3.4 Definition of energy

dissipated WD in a cycle of

harmonic motion and

maximum strain energy WS

of a SDOF system with

viscous damping devices
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3.1.2 Damping Ratio of Single-Degree-of-Freedom Systems
Equipped with Non Linear Viscous Fluid Dampers

Considering a SDOF system with a non-linear viscous damper (Hwang and Huang

2003; Hwang et al. 2008; Hwang 2005) under sinusoidal motions, the velocity of

the system is given by:

_u ¼ xnu0 sinxnt ð3:28Þ
Recognizing Fd ¼ cua, the energy dissipated by the non-linear damper in a

cycle of sinusoidal motion can be expressed as:

WD ¼
I

Fddu ¼
Z2p=xn

0

Fd _udt ¼
Z2p=xn

0

c _u1þa
�� ��dt ¼ c u0xnð Þ1þa

Z2p=xn

0

sin1þa xnt
�� ��dt

ð3:29Þ
Let xt ¼ 2h and dt ¼ 2=xdh, using the remarkable Euler-Mascheroni integral,

the dissipated energy is written as:

WD ¼ cðu0xnÞ1þa 2

xn

Zp

0

sin1þa 2h
�� ��dh

¼ 22þacxn
a u1þa

0

Zp=2

0

2 sin1þa h cos1þa hdh

¼ 22þacxn
a u1þa

0

C2ð1þ a=2Þ
Cð2þ aÞ

ð3:30Þ

where C is the Gamma function.

Following a procedure similar to that of the SDOF structure with linear viscous

dampers, equivalent damping ratio of the SDOF system contributed by non-linear

dampers can be obtained:

nd ¼
kcxa�2

n ua�1
0

2pm
ð3:31Þ

in which

k ¼ 22þa C
2ð1þ a=2Þ
Cð2þ aÞ ð3:32Þ

For the convenience of practical applications, the values of k are tabulated in

FEMA 273 (ATC 1997). It is worth noting that the damping ratio, determined as

described above, is dependent on the displacement amplitude u0.
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It is important to point out that, even in this case, the viscosity coefficients of

the devices, which define the dimensionless viscous damping ratio, are dependent

on the frequency as explained in Chap. 4.

3.2 Elements of Dynamic Response of Multi-Degrees-of-
Freedom Systems

The structural systems, unlike the SDOF system analysed in the previous section,

may have a large number N of kinematic parameters (degrees of freedom) in terms

of generalized relative displacements, which can be considered as the components

of a vector x(t) of dimension N. In so doing, in perfect analogy with the Eq. (3.2),

the N equations of motion of the linear multi-degrees-of-freedom system (MDOF),

equipped with viscous linear devices and subject to earthquake ground excitation,

can be written in matrix form as (Smith et al. 1992):

Mþ �Mð Þ€x tð Þ þ Cþ �Cð Þ _x tð Þ þ ðK þ �KÞx tð Þ ¼ �ðMþ �MÞ€xg tð Þ ð3:33Þ
where M, C and K represent respectively the mass, damping and stiffness matrices

of the main system and, �M, �C and �K represent respectively the mass, damping and

stiffness matrices of the bracing-linear viscous/viscoelastic damper system.

In addition, the vector €xg tð Þ represents the contribution of the seismic excitation

related to every degree of freedom.

By defining the following matrices:

M
_ ¼ Mþ �M

C
_ ¼ Cþ �C

K
_ ¼ K þ �K

ð3:34Þ

the dynamic matrix equation of the system can be rewritten in the form:

M
_

x
::
tð Þ þ C

_

x
:
tð Þ þK

_

x tð Þ ¼ �M
_

€xg tð Þ ð3:35Þ
The dynamic matrix Eq. (3.35) is written in the classical form of structural

dynamic analysis, which, in the simplest case, presents constant-coefficients and

time-invariant matrices. Therefore, it represents, in general, a constant-coefficients

system of N coupled second-order differential equations. This mathematical

property considerably complicates the resolution of the equation unless the

equations are not uncoupled by transformation, or in other words if M̂, Ĉ and K̂
can be diagonalized by the same basis of vectors. This condition does not occur for

arbitrary values of the matrices involved, but can be obtained by making particular

assumptions relatively to the damping matrix, as it will be discussed later.
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Consider the free vibrations response of undamped multi-degrees-of-freedom

(MDOF) systems, the computation of the vibration properties requires solution of

the matrix Eq. (3.36), which in mathematical terminology defines an eigen-

problem:

ðK̂ � x2M̂Þu ¼ 0 ð3:36Þ
where x represents a natural vibration frequency of the structure including the

braces and without any damping, and u the vector of modal shape associated with

it. The resolution of the problem leads to the N natural frequencies and modes of

vibration, denoted respectively by xi and ui for i = 1, …, N, starting from the one

with a lower frequency (x1), defined fundamental frequency. The modes are

orthogonal with respect to the mass and stiffness matrices:

/T
i M̂/j ¼

1 peri ¼ j

0 peri 6¼ j

(

/T
i K̂/j ¼

x2
i peri ¼ j

0 peri 6¼ j

( ð3:37Þ

in addition to representing a basis of the vector space <n.

For notational convenience, the natural frequencies will be the diagonal ele-

ments of a matrix denoted by X2, while the vectors of the corresponding modes

will be the columns of a square matrix denoted by U, which will allow to make a

modal transformation of the coordinates from normal coordinates (i.e., displace-

ments at the nodes) to modal coordinates (i.e., amplitudes of the natural mode

shapes). Each vector of the relative displacements x can be represented, therefore,

as:

x ¼ Uy ð3:38Þ
where y is the vector of modal coordinates, also called main coordinates of motion.

Substituting the expression (3.38) in the Eq. (3.35), through simple mathematical

operations, the following equation of motion expressed in terms of principal

coordinates is obtained:

€yþ UTĈU _yþ X2y ¼ �€yg ð3:39Þ
where €yg results being:

€yg ¼ UTM̂€xg ð3:40Þ
In general, the Eq. (3.40) still represents a system of coupled differential

equations, the system, in fact, is uncoupled only if the matrix UTCU is diagonal.

This happens, for example, in the case of proportional modal damping, or Rayleigh

damping, in which it is possible to identify two constants a0 and a1 so that the

damping matrix can be written as:
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Ĉ ¼ a0M̂þ a1K̂ ð3:41Þ
by exploiting the orthogonality property, the following is given:

UTĈU ¼ a0Iþ a1X
2 ð3:42Þ

which turns out to be a diagonal matrix.

In case the damping matrix was not proportional, the approach shown can be

generalized through the use of the following series of Caughey (Caughey and Ma

1993):

Ĉ ¼ M̂
XN�1

j¼0

aj M̂
�1
K̂

h i
j

ð3:43Þ

that allows to carry out also the diagonalization in the general case.

It can also define the damping ratio corresponding to the i-th mode ni, defining a
diagonal matrix n whose elements are precisely ni, and such as to satisfy the

relation:

UTĈU ¼ 2nX ð3:44Þ
Substituting the Eq. (3.44) in the Eq. (3.39), the following is obtained:

€yþ 2nX _yþX2y ¼ �€yg ð3:45Þ
that represents a set of N differential uncoupled equations. In particular, the i-th

equation of the system takes the following form:

€yi þ 2nixi _yi þ x2
i yi ¼ �€yg;i ð3:46Þ

that is exactly the dynamic equation of a SDOF system.

Therefore, all the considerations related to the single-degree-of-freedom system

can be applied to a single mode of a MDOF system. In fact, the response of a

MDOF system can be seen as the combination of the single responses of the ‘‘N’’

SDOF systems corresponding to the ‘‘N’’ mode shapes. To return to the vector of

displacement of the system from the modal coordinates, known functions yi(t), the
relation (3.38) can be simply applied.

In the presented process, the more computational effort is the calculation of

mode shapes and frequencies of vibration of the system. In this context, however,

the consideration relating to the fact that generally only few modes significantly

contribute to the motion of the system, simplifies the analysis since only some of

the possible modes must be identified.

The modal approach allows to solve the problem in a particularly simple way.

This is possible due to the simplifying assumptions made, with particular reference

to the following hypotheses:

74 3 Dynamic Response of Systems



• The matrices involved in the analysis have constant coefficients; this does not

allow to capture the variations in terms of stiffness, mass and damping related to

the effect of dynamic load;

• The damping matrix must be diagonalizable, which imposes a strong constraint

on the distribution and values of the damping coefficients of viscous devices.

These assumptions appear to be sometimes too restrictive, that is the reason

why the principles of representation in the ‘‘state space’’ of dynamic response of a

system will be shown later. This representation, in fact, allows to describe the free

response of the system for its entire state through a modal approach, which also

allows for a representation of the elements of the velocity vector corresponding to

every degree of freedom.

3.2.1 Damping Ratio of Multi-Degrees-of-Freedom Systems
Equipped with Linear Viscous Fluid and Viscoelastic
Dampers

As regards MDOF systems equipped with linear viscous or viscoelastic passive

dissipation devices, the motion equations expressed in the modal coordinates

remain, as previously stated, always uncoupled in the case of proportional or

Rayleigh damping. The effects on the mode damping and stiffness due to the

addition of the viscous or viscoelastic devices and the braces can be obtained by

following the modal strain energy method that is presented below with reference to

the possibility of the use of viscous and/or viscoelastic devices (Ungar and Kerwin

1962; Johnson and Kienholz 1982; Soong and Lai 1991).

The damping ratio for the i-th mode due to the addition of viscoelastic devices

can be evaluated as (Soong and Dargush 1997):

nd;i ¼ �ni ¼
g x0

i

� �
Ev

2Ei

ð3:47Þ

where x0
i is the frequency of the i-th mode of the structure without devices and

braces, g x0
i

� �
is the loss factor of the viscoelastic material as a function of mode

frequency of the original structure (as explained in Chap. 4) relating to the terms

of the damping matrix �C, Ei is the strain energy relative to the i-th mode shape of

the system with the devices and Ev is the energy stored in viscoelastic devices.

These energies are evaluated as:

Ev ¼ /T
i
�K/i ð3:48Þ

Ei ¼ /T
i K þ �Kð Þ/i ð3:49Þ
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where /i is the vector of the form corresponding to the i-th mode shape associated

with x0
i, K is the stiffness matrix of the original structure, and �K, according to what

is said in the previous section, is the stiffness matrix attributed to the devices.

The Eq. (3.47) can be written as:

nd;i ¼ �ni ¼
g x0

i

� �
2

/T
i
�K/i

/T
i K þ �Kð Þ/i

" #
¼ g x0

i

� �
2

1� /T
i K/i

/T
i K þ �Kð Þ/i

" #
ð3:50Þ

The frequency of the i-th mode of the structure with viscoelastic devices and

braces, being reasonably good approximation M � M̂ ¼ Mþ �M, is:

xi ¼ /T
i K þ �Kð Þ/i

/T
i M/i

" #
ð3:51Þ

where M is the mass matrix of the structure. The Eq. (3.50) can then be simplified

as:

nd;i ¼ �ni ¼
g x

0
i

� �
2

1� /T
i K/i

/T
i K þ �Kð Þ/i

/T
i M/i

/T
i M/i

" #
¼ g x0

i

� �
2

1� x02
i

x2
i

� �
ð3:52Þ

With regard to structures equipped with viscoelastic devices, the most impor-

tant design parameter is the damping ratio.

Therefore, evaluating the mode frequencies and damping ratios is an iterative

procedure. In the situation in which the modulus of the material corresponding to

the frequency xi is substantially different from that relating to �xi, it is necessary

that the above steps are repeated for a better estimate of the mode quantities.

However, it has been highlighted that the iteration process is normally short

(Soong and Constantinou 1994; Soong and Dargush 1997).

A similar approach can be carried out with reference to a MDOF system

equipped with viscous devices, as shown in Fig. 3.5.

Considering a MDOF system (Hwang and Huang 2003; Hwang et al. 2008;

Hwang 2005) equipped with viscous devices, the total effective damping ratio of

the system, n, is defined as:

n ¼ ns þ nd ð3:53Þ
where ns is the inherent damping ratio of the MDOF system without dampers, and

nd is the viscous damping ratio attributed to added dampers. By extending the

theory related to a SDOF system, the equation shown below is used by FEMA273

(ATC 1997) to evaluate nd:

nd ¼
P

Wj

2pWk

ð3:54Þ

where RWj is the sum of the energy dissipated by the j-th damper of the system in

one cycle; and WK is the elastic strain energy of the frame. WK is equal to R FiDi
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where Fi is the story shear and Di is the story drift of the i-th floor. Now, the energy

dissipated by the viscous dampers can be expressed as:

X
j

Wj ¼
X
j

pcju
2
jx ¼ 2p2

T

X
j

cju
2
j ð3:55Þ

where uj is the relative axial displacement of j-th damper between the two ends.

Experimental evidence (Hwang and Huang 2003; Hwang et al. 2008; Hwang

2005) has shown that if the damping ratio of a structure is increased the higher

mode responses of the structure will be suppressed. As a consequence, only the

first mode of a MDOF system is usually considered in the simplified procedure of

practical applications. Using the modal strain energy method, the energy dissipated

by the dampers and the elastic strain energy provided by the primary frame can be

rewritten as:

X
j

Wj ¼ 2p2

T1

X
j

cj/
2
dj cos

2 #j ð3:56Þ

Wk ¼ U1
TKU1 ¼ U1

Tx1
2MU1 ¼

X
i

x1
2mi/i

2 ¼ 4p2

T1
2

X
i

mi/i
2 ð3:57Þ

where K, M, U1 are respectively the stiffness matrix, the mass matrix and the first

mode of the system; /dj is the relative horizontal displacement of j-th damper

corresponding to the first mode shape; /i is the first mode displacement at i-th

floor; mi is the mass of i-th floor; and hj is the inclined angle of j-th damper.

Substituting the Eqs. (3.54)–(3.57) into the expression (3.53), the effective

damping ratio of a structure with linear viscous dampers is given by:

Fig. 3.5 MDOF structural

system equipped with viscous

dampers
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n ¼ ns þ
2p2
T1

P
j

cj/
2
rj cos

2 #j

2p 4p2
T2
1

P
i

mi/
2
i

¼ ns þ
T1

P
j

cj/
2
rj cos

2 #j

4p
P
i

mi/
2
i

ð3:58Þ

Corresponding to a desired added damping ratio, there is no substantial pro-

cedure suggested by design codes for distributing c values over the whole building.
When designing the dampers, it may be convenient to distribute the c values

equally in each floor. However, many experimental results have shown that the

efficiency of dampers on the upper stories is smaller than that in the lower stories

(Pekcan et al. 1999).

It must be pointed out that, in a more complete analysis, the contribution due to

the viscoelastic dissipation system both in terms of damping as well as stiffness

corresponding to each mode depends on the frequency of the relative mode. The

next chapter deals with the dynamic response of both the viscoelastic damper-

brace component and the viscous damper-brace component by taking into account

the stiffness of the brace. It follows that to evaluate the terms of the matrices �k xð Þ
and �C xð Þ, the dynamic values related to the stiffness and viscosity of the ‘‘vis-

coelastic or viscous device-brace component’’ must be considered.

Further, it should also be noted that in the case of high damping, the damped

frequency corresponding to every mode must be taken into account:

xD;i ¼ xi

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� n2i

q
ð3:59Þ

With reference to this problem, in the case of a dimensionless damping ratio

higher than 20 %, by following the modal strain energy method, a modified

approach in the complex frequencies space has been proposed (Tsai and Chang

2000, 2001).

3.2.2 Damping Ratio of Multi-Degrees-of-Freedom Systems
Equipped with Non Linear Viscous Fluid Dampers

For a MDOF system with non-linear dampers (Hwang and Huang 2003; Hwang

et al. 2008; Hwang 2005), the damping ratio can be obtained as follows. Con-

sidering the first mode only, the elastic strain energy is:

Wk ¼ x2
1

X
i

miu
2
i ð3:60Þ

Assuming that all the dampers of the whole building have the same a and

substituting the Eqs. (3.24), (3.25) and (3.21) into (3.27), the damping ratio con-

tributed by the dampers is obtained as:
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nd ¼

P
j

kcju1þa
dj cos1þa #j

2px2�a
P
i

miu
2
i

ð3:61Þ

where udj is the relative displacement between the ends of j-th damper in the

horizontal direction. Since only the first mode is considered, the displacement

response may be expressed as:

ui ¼ A/i ð3:62Þ
where /i is the first modal displacement of the i-th degree-of-freedom and A is the

amplitude.

Finally, substituting Eqs. (3.22) and (3.23) to (3.27), the effective damping ratio

of the structure with non-linear dampers is obtained:

n ¼ ns þ

P
j

kcj/
1þa
dj cos1þa #j

2pA1�ax2�a
P
i

mi/
2
i

ð3:63Þ

Even in this case, the presence of the braces should not be neglected and,

consequently, the dynamic values of viscosity of each non-linear viscous device

and the stiffness of each brace should be employed.

3.3 Elements of Dynamic Response of Linear Systems
in the State Space

Linear dynamic systems can be studied in the time or frequency domain. The first

representation allows to obtain the time response of a system having fixed dynamic

characteristics, instead, the second representation allows to evaluate the response

of a multitude of systems with different dynamic characteristics.

A very important function and often used in the representations described above

is the transfer function, defined as follows:

G sð Þ ¼ Y sð Þ
X sð Þ ¼

bms
m þ bm�1s

m�1 þ . . .þ b1sþ b0

sn þ an�1sn�1 þ an�2sn�2 þ . . .þ a1sþ a0
ð3:64Þ

Zeros of polynomials Y(s) and X(s) are called, respectively, zeros and poles of

the transfer function (or the system). A typical graphical representation of a

dynamic Single Input Single Output (SISO) system through the transfer function is

shown in Fig. 3.6.

The transfer function G(s) is in bijective correspondence with the following

differential equation in which x(t) is the input function and y(t) the output one:
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yðnÞ tð Þ þ . . .þ a1 _y tð Þ þ a0y tð Þ ¼ bmx
ðmÞ tð Þ þ . . .þ b1 _x tð Þ þ b0x tð Þ ð3:65Þ

With y(n)(t) is indicated the n-th derivative of the temporal function y(t). Note
that the transfer function G(s) is used only for linear constant-coefficients and

time-invariant systems.

The bijective correspondence means that at any time it must be possible to pass

by the differential equation to the transfer function and the other way round,

assuming that the initial conditions are all identically zero.

One way to write the linear dynamic systems is to use a representation in the

state space. In this case, the dynamic system can be described using a number of

variables (typically internal variables) which defines the state of the system. The

values assumed by the state variables at a generic instant of time contain, in their

entirety, all the information on the past response of the system useful in order to

evaluate the future response knowing the input variable values at following

instants of time.

To determine the state x(t) at time t, it is necessary to know the state x(t0) at
time t0 and the input function u(�) in the time interval [t0, t] (Fig. 3.7).

x tð Þ ¼ w t; t0; x0; uð�Þð Þ ð3:66Þ
The concept of the state does not take into account the past history of the

system prior to the instant t0.
A linear time invariant system is described in the state space form as follows:

_xðtÞ ¼ AxðtÞ þ BuðtÞ
yðtÞ ¼ CxðtÞ þ DuðtÞ

(
ð3:67Þ

where with xðtÞ ¼ ½x1x2. . .xn�T 2 <n the state vector is indicated, with uðtÞ 2 <m

the input vector, with yðtÞ 2 <p the output vector and with A 2 <n�n, B 2 <n�m,

C 2 <p�n, D 2 <p�m matrices of appropriate dimension.

3.4 Motion Equation of Dynamic Response of Single-
Degree-of-Freedom Systems in the State Space Form

In the previous sections, the dynamic response of SDOF and MDOF systems has

been illustrated by solving a constant-coefficients system of second order differ-

ential equations: ‘‘modal analysis’’. An alternative approach is to describe the

dynamic response in the state space form.

Fig. 3.6 Graphical

representation of the dynamic

SISO system
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Consider the dynamic Eq. (3.2) related to a SDOF system. The integration of

this equation, once having established the initial conditions of motion, leads to the

determination of the velocity and displacement for each instant of time. Note that

these two variables allow to value through the same Eq. (3.2), the acceleration of

the system and, therefore, all the dynamic actions on the system. In other words,

the two variables are sufficient for the complete description of the system and

define, therefore, ‘‘the dynamic state’’.

Thus, rather than describing the dynamic response by a differential second order

equation, it is convenient to transform the Eq. (3.2) into a system of two differ-

ential first order equations which contain as unknowns, the state variables dis-

placement, x(t), and velocity, _xðtÞ. The new form of the problem is as follows:

dx

dt
¼ _x

d _x

dt
¼ � c

m

� 
_xþ � k

m

� �
x� €ug

8>><
>>:

ð3:68Þ

This representation is called the ‘‘state space form’’ and presents a reduced

complexity on the research of analytical and numerical solutions of the problem.

To write the Eq. (3.68) by means of a matrix equation, the state vector z is

defined, with the variables that represent the state of the system as components:

zðtÞ ¼ xðtÞ
_xðtÞ

� �
ð3:69Þ

in such a way that the Eq. (3.68) can be represented through the following matrix

equation:

_zðtÞ ¼ AzðtÞ þ b€ugðtÞ ð3:70Þ
in which:

A ¼ 0 1

�k=m �c=m

� �
b ¼ 0

1

� �
ð3:71Þ

the matrix A is generally defined by the term ‘‘status matrix’’. Matrix A and vector

b, by introducing the magnitudes, presented in Eqs. (3.4) and (3.5), frequency x
and damping factor n, can be written:

Fig. 3.7 Physical meaning

of the state variables
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A ¼ 0 1

�x2 �2nx

� �
b ¼ 0

1

� �
ð3:72Þ

3.5 Motion Equation of Dynamic Response of Multi-
Degrees-of-Freedom Systems in the State Space Form

With reference to MDOF systems, it is possible to represent the matrix Eq. (3.33)

in the state space form. The state of the MDOF system will be represented by a

vector of dimension 2N containing the displacements and velocities in relation to

each of the N degrees of freedom:

zðtÞ ¼ uðtÞ
_uðtÞ

� �
ð3:73Þ

while the matrix A and the vector b will take the following form:

A ¼ 0N�N IN�N

�M�1K �M�1C

� �
b ¼ 0N�1

i

� �
ð3:74Þ

in which the terms 0N 9 N, 0N 9 1, IN 9 N and i represent, respectively, the zero

matrix of size N 9 N, the zero column vector of size N, the identity matrix of size

N 9 N and the vector of influence representative of the seismic action on the

structure. The matrices M, K and C contain the sum of the terms related to the

main system and the dissipative bracing-damper system.

The Eq. (3.70), therefore, for a N degrees-of-freedom structure is mathemati-

cally a system of 2N differential first order equations. The solution of this dif-

ferential matrix equation is illustrated below describing in advance the free

vibrations response of the structural system.

3.5.1 Free Vibration Response

A possible solution of the problem of free vibrations of the system can be obtained

through the following relation:

z ¼ vekt ð3:75Þ
where v is a generic vector of dimension 2N and k is a scalar.

Substituting Eq. (3.75) into (3.70), the following equation is obtained:

A� kI2N�2Nð Þv ¼ 02N�2N ð3:76Þ
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in which I2N92N and 02N92N are respectively the identity matrix and zero matrix of

dimension 2N 9 2N.

In order that the Eq. (3.76) presents non-trivial solutions, it must be:

det A� kI2N � 2Nð Þ ¼ det
�kIN � N IN � N

�M�1K �M�1C� kIN � N

� �
¼ 0 ð3:77Þ

which is an algebraic second degree equation in the variable k, and is mathe-

matically the eigen-problem to find the eigenvalues of the state matrix. Since, in

general, structural systems are under-damped, the Eq. (3.77) presents conjugate

imaginary solutions representative of the natural frequencies of vibration of the N

modes of the structure.

It will be indicated, therefore, with ki the eigenvalue corresponding to the i-th

mode of vibration, and with ~ki its conjugate.
The modal coordinates corresponding to each of the eigenvalues are determined

by substituting the latter in Eq. (3.76). It seems evident that the eigenvectors

corresponding to the conjugate imaginary eigenvalues are conjugate imaginary

vectors. The generic eigenvector will be indicated with vi and with ~vi, its conju-
gate. Note that the eigenvectors are characterized by a number of components

equal to 2N, they, in fact, are representative of the mode shapes relative to the state

vector, both in terms of displacement and velocity.

The solution of the associated homogeneous equation can thus be expressed by

the formula:

zom ¼
XN
i¼1

Cie
kitvi þ C0

ie
~kit~vi

� 
ð3:78Þ

where Ci and C
0
i can be written as follows:

Ci ¼ 1

2
Ci
R þ iCi

I

� � ð3:79Þ

C0
i ¼ ~Ci ð3:80Þ

and Ci
R, C

i
r for i ¼ 1. . .N are 2N arbitrary real constants to be defined according to

the initial conditions of motion.

Note that the modal analysis within the state space does not require a particular

form of the damping matrix C, which also allows to describe the non proportional

distribution of the dissipative resources.

3.5.2 Response to Harmonic Excitation

In the case of a system subjected to an external force, a possible solution by using

the convolution integral of Duhamel is provided.
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Consider, therefore, the following scalar differential first order equation:

_yðtÞ ¼ ayðtÞ þ gðtÞ ð3:81Þ
the total solution of this problem can be expressed in the following form:

yðtÞ ¼ eaðt�t0Þy0 þ
Z t

t0

eaðt�sÞgðsÞds ð3:82Þ

where y0 is the value of variable y at the instant t0.

With reference to the problem expressed by the Eq. (3.70), it is possible to

obtain a solution which has a similar form. Regarding the solution of the associ-

ated homogeneous equation, it is possible to demonstrate, in fact, how the Eq.

(3.78) can be written in a compact form as follows:

zomðtÞ ¼ eAtz0 ð3:83Þ
in which eAt, called as ‘‘transition matrix’’, is a matrix defined by the following

series:

eAt ¼ Iþ At þ 1

2
AAt2 þ . . .þ 1

n!
Antn þ . . . ð3:84Þ

The fundamental property of this matrix is that it presents a time derivative

entirely similar to that of the corresponding scalar function:

deAt

dt
¼ AeAt ð3:85Þ

By using the Eq. (3.83) and the integral of Duhamel, it is possible to provide a

general expression of the solution (3.70):

zðtÞ ¼ eAðt�t0Þz0 þ
Z t

t0

eAðt�sÞb€ugðsÞds ð3:86Þ

The Eq. (3.86) is particularly useful from a numerical point of view because it

simply allows the numerical integration of the problem through the discretization

of the time variable.

In this chapter, the main elements of the dynamic analysis of damped systems

with viscous devices have been provided. The issues covered, far from being a

complete discussion of the problem, have the aim of giving the main concepts

related to damped systems in order to understand what is described in the next

chapters.

The dynamic analysis in the state space allows for an assessment of the

response of the structure that is not bound by particularly restrictive hypothesis and
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describes the free response of the system through a modal approach relative to the

entire state of the system, which allows for a representation of the velocity vector

corresponding to the single degree of freedom.
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Chapter 4
Modeling of Viscoelastic Dissipative
Bracing Systems

Abstract This chapter deals with the theory of viscoelasticity and the discrete
models such as, for example, the Kelvin and Maxwell models. The aim of this
chapter is to assess the dynamic behavior of viscoelastic dissipative bracing sys-
tems taking into account the presence of the brace. In fact, the viscoelastic damper
is modeled as the Kelvin model, whose behavior is dependent, in itself, on fre-
quency; the viscoelastic damper-brace component can be studied through the
Poynting-Thomson model which presents even more dependence on the fre-
quency. Similarly, the viscous (linear or non-linear) damper-brace component can
be studied through the Maxwell model, characterized by a frequency dependent
dynamic response. In both cases, because of the frequency dependence, in the
dynamic field, dynamic ‘‘reduced’’ magnitudes correspond to the static magnitudes
of the viscoelastic dissipative bracing system, in other terms, between the static
and dynamic behavior, there is a reduction in the effectiveness of the viscoelastic
dissipative bracing system.

4.1 Principles and Models of Linear Viscoelasticity

The theory of linear viscoelasticity is often used because it allows to model and
predict the response of many mechanical systems. Applications of the linear vis-
coelasticity theory are also present in structural engineering with reference to the
study of the dynamic response of structural systems equipped with dissipative
elements.

Viscoelastic materials are characterized by both elastic (Hooke) and viscous
(Newtonian) properties in phase respectively with the displacement and the
velocity of motion. These can be considered as two boundary cases of a wide
spectrum of behaviors.

Viscoelastic phenomena are, for example, relaxation (stress under constant
strain) that occurs when a body is rapidly deformed, and the deformation is
maintained constant while the stress induced in the body decreases with time; the

P. Castaldo, Integrated Seismic Design of Structure and Control Systems,
Springer Tracts in Mechanical Engineering, DOI: 10.1007/978-3-319-02615-2_4,
� Springer International Publishing Switzerland 2014
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creep (strain under constant load) is when a body is rapidly put in tension and the
tension is kept constant while the body continues to deform; hysteresis in a body
subjected to a cyclic load and occurs when the stress–strain relationship for
increasing loads is other than that for decreasing loads.

The more general formulation under the assumption of linearity between the
cause and effect is due to Boltzmann (Fung 1965).

In the uni-dimensional case, a simple bar subjected to the force F(t) and
elongation u(t) can be considered. The elongation u(t) is caused by the entire load
history until time t.

If the function F(t) is continuous and differentiable, in a short interval ds at the
istant s the load increasing turns out to be:

dF

ds

� �

ds ð4:1Þ

At time t [ s, the elongation continues to increase, du(t). In terms of propor-
tionality and dependance on the interval (t� T), the following can be written:

duðtÞ ¼ cðt � sÞ dF

ds

� �

ds ð4:2Þ

where c(t) is the function of creep, that is, the elongation response to a unit load
variation.

If the origin of time is taken at the beginning of the motion and load, then,
summing the contributions of the loading history, the following is obtained:

uðtÞ ¼
Z t

0

cðt � sÞ dF

ds

� �

ds ð4:3Þ

Reserving the roles of F and u, the following relationship applies:

FðtÞ ¼
Z t

0

kðt � sÞ duðsÞ
ds

� �

ds ð4:4Þ

where k(t) is the relaxation function.
The above equation in the form of differential operators, with reference to the

specific terms, can be written as follows (Fung 1965):

XM

m¼0

am
dmr
dtm
¼
XN

n¼0

bn
dne
dtn

ð4:5Þ

where am and bn are constants and the exponents of the derivatives indicate the
order of the derivatives, which can be either integer order or fractional derivatives.

The Eq. (4.5) may be, in an equivalent manner, written in integral form (Bagley
and Torvik 1983):
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daf ðtÞ
dta

� 1
C 1� að Þ

d

dt

Z t

0

f ðsÞ
t � sð Þa ds

2

4

3

5 ð4:6Þ

where 0\a\1 and C �ð Þ is the Gamma function.
The linear viscoelastic behavior, however, is often described by means of

mechanical discrete models, composed of the combination of two elements:
‘‘linear elastic spring’’ (Hookean solid) (massless) with spring constant k and
‘‘viscous dashpot’’ (Newtonian Fluid) with viscosity coefficient c (Fig. 4.1).

From the combination of these two basic elements, different models are
obtained, widely described in the literature in order to understand the peculiarities
of the real mechanical behavior of different materials or different engineering
systems. Among them, the most employed models are the Maxwell model, built
from the serially connected spring and (linear (Newtonian) or non-linear) dashpot
as well as the Voigt-Kelvin model, consisting of the spring and dashpot connected
in parallel (Fig. 4.2).

More complex combinations, but no less useful, are for example the models
with three elements: the solid Poynting-Thomson model (or solid standard linear
SLS) (Fig. 4.3) and solid Jeffreys model (Fig. 4.4).

More general models, having an order greater than those described above, can
be constructed by combining several elements (in series or in parallel) and
obtaining the N-th order generalized Kelvin model or the N-th order generalized
Maxwell model, represented, respectively, in Figs. 4.5 and 4.6.

The Maxwell and Voigt-Kelvin models, with their generalizations, are the
discrete theory corresponding to the continuous Boltzman theory in the case of
considering the discrete values of the time variable.

Fig. 4.1 Basic elements
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The models of the linear visco-elasticity can be studied in the time, frequency
and Laplace domain through a mechanical standard model or the fractional
derivative model or by means of modified power law representations (Park 2001).

Furthermore, it should be noted that there are numerous models to study the
non-linear viscous behavior, whose basic element is a non-linear dashpot (frac-
tional dashpot), with the model being defined as a fractional model. There is, for
example, the ‘‘fractional Maxwell’’ model, built from the serially connected spring
and ‘‘fractional dashpot’’ and this class of model is studied through an approach to
the fractional derivatives.

Fig. 4.2 Maxwell and
Kelvin-Voigt models

Fig. 4.3 Poynting-Thomson
model

Fig. 4.4 Jeffreys model
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4.2 Modeling of the Viscoelastic Damper-Brace
Component

A viscoelastic dissipative bracing system defined as a damper–brace component
consists of a damper connecting with a brace in series. The mathematical models
of such viscous and viscoelastic damper–brace components are discussed in the
following sections.

For the analysis of the viscoelastic damper-brace component, the Poynting-
Thomson solid standard linear (SLS) model, consisting of a spring connecting with
a Kelvin model in series (Fig. 4.7) is used.

In a first step, it is necessary to analyse the Kelvin model representative of the
behavior only of the viscoelastic damper. The Kelvin model consists of a spring

Fig. 4.5 N-th order generalized Kelvin model

Fig. 4.6 N-th order generalized Maxwell model

Fig. 4.7 Viscoelastic
damper-brace component
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connected with a viscous damper in parallel, and the resistance force of the vis-
coelastic damper turns out to be:

FvðtÞ ¼ kvuvðtÞ þ cv _uvðtÞ ð4:7Þ

Consider the viscoelastic damper under an imposed sinusoidal displacement
time history characterised by a frequency xD:

uvðtÞ ¼ u0 sin xDt ð4:8Þ

the corresponding function of shear deformation cðtÞ characterised by a frequency
xD turns out to be:

cðtÞ ¼ u0

h
sin xDt ¼ c0 sin xDt ð4:9Þ

where h is the thickness of the viscoelastic device.
The resistance force of the Kelvin model, with reference to the Eq. (4.7), is:

FvðtÞ ¼ AG0ðxveÞcðtÞ þ A
G00ðxveÞ

xve
_cðtÞ

¼ AG0ðxveÞ
u0

h
sin xDðtÞ þ A

G00ðxveÞ
xve

u0

h
xD cos xDðtÞ

ð4:10Þ

where A is the cross-sectional area of the device, G0 and G00 are respectively the
shear storage modulus and the shear loss modulus. These two moduli describe the
dynamic shear behavior of the material and depend on the frequency xve of the
viscoelastic device, as introduced in Chap. 2. The first term, which is the in-phase
portion, represents the elastic modulus that gives a measure of the energy stored
and recovered per cycle, and the second term, which is the out-of-phase portion,
represents the energy dissipation component that gives a measure of the energy
dissipated per cycle.

Consider, from here onwards, xve ¼ xD since the response of the damper is
characterized by a dynamic pattern having energy concentrated on its frequency.

The quantity G00ðxveÞ=xve is the damping ratio of the device material.
Defining shear storage modulus, shear loss modulus and loss factor, respec-

tively, as follows:

kvðxveÞ ¼
AG0ðxveÞ

h
ð4:11Þ

cvðxveÞ ¼
AG00ðxveÞ

xveh
ð4:12Þ

gðxveÞ ¼
G00ðxveÞ
G0ðxveÞ

ð4:13Þ
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and exploiting the Eqs. (4.11)–(4.13), the shear storage modulus can be written as:

kvðxveÞ ¼
AG0ðxveÞ

h
¼ G0ðxveÞ

G00ðxveÞ
xvecvðxveÞ ¼

xve

gðxveÞ
cvðxveÞ ð4:14Þ

The resistance force of the damper using the Eqs. (4.11) and (4.12) is then equal
to:

FvðtÞ ¼ kvðxveÞuvðtÞ þ cvðxveÞ _uvðtÞ ð4:15Þ

in which the stiffness and viscosity coefficient of the viscoelastic material depend
on the frequency xve of the viscoelastic device.

In general, the shear deformation cðtÞ and shear stress sðtÞ, assessed as the force
divided by the area A, oscillate with the same frequency, but are out of phase since
the shear stress also depends on the viscous term correlated to the velocity of
relative deformation, as expressed by the following relations:

cðtÞ ¼ c0 sin xDt ð4:16Þ

sðtÞ ¼ s0 sinðxDt þ dÞ ð4:17Þ

where, as shown in Fig. 4.8, c0 and s0 are respectively the shear peak deformation
and shear peak stress, and d is the phase angle, which is equal to d ¼ xvet. It
follows that the time lag can be evaluated as d=xve.

For a given c0, both s0 and d depend on xve.
When xevt ¼ p=2, by using the Eqs. (4.10) and (4.17), the following rela-

tionship applies:

sðtÞ ¼ s0 sin p=2þ dð Þ

¼ s0 cos d ¼ c0G0ðxveÞ sin p = 2ð Þ ) s0

c0
cos d ¼ G0ðxveÞ

ð4:18Þ

When xevt ¼ 0, by considering xev ¼ xD and using the Eqs. (4.10) and (4.17),
it is obtained:

sðtÞ ¼ s0 sin dð Þ ¼ c0G00ðxveÞ cos p=2ð Þ ) s0

c0
sin d ¼ G00ðxveÞ ð4:19Þ

Fig. 4.8 Stress and strain
under sinusoidal load
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It follows that the shear stress can be written, similarly, by using the Eqs. (4.18)
and (4.19), as:

sðtÞ ¼ c0 G0ðxDÞ sin xDt þ G00ðxDÞ cos xDt½ � ð4:20Þ

The quantity c0 sin xDt may be replaced by cðtÞ and it is obtained:

cos xDt ¼ 1
c0G00ðxveÞ

sðtÞ � G0ðxveÞcðtÞ½ � ð4:21Þ

By exploiting the Eq. (4.20) and using the identity sin2 xDt þ cos2 xDt ¼ 1, the
following tension-deformation relationship is obtained:

sðtÞ ¼ G0ðxveÞcðtÞ � G00ðxveÞ c2
0 � c2ðtÞ

� �1=2 ð4:22Þ

that defines an ellipse shown in Fig. 4.9, whose area provides the energy dissipated
by the viscoelastic material per unit volume and per cycle of vibration. It is given by:

EH ¼
Z 2p

x

0
sðtÞ _cðtÞdt ¼ pc2

0G00ðxveÞ ð4:23Þ

As it can be noted from the Eq. (4.22), the first term of the shear stress is the
portion in phase and the second term is the part that is the out of phase component
of the energy dissipated. This is most visible when rewriting the Eq. (4.20) in the
form:

sðtÞ ¼ G0ðxveÞcðtÞ þ
G00ðxveÞ

xve
_cðtÞ ð4:24Þ

The equivalent damping ratio or rather the damping value that would charac-
terize an equivalent viscous device to dissipate the same energy is equal to:

Fig. 4.9 Plot of stress versus
strain
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n ¼ cvðxveÞ
2xm

¼ G00ðxveÞ
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m

r
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ð xve

2G0ðxveÞ
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2G0ðxveÞ

ð4:25Þ

By exploiting the relationship (4.13), the damping ratio becomes:

n ¼ g
2

ð4:26Þ

Recall that G0ðxDÞ is defined elastic modulus of the viscoelastic material and is
a measure of the energy stored and recovered per cycle, and that G00ðxDÞ is called
a dissipation modulus and provides a measure of the dissipated energy per cycle,
the loss factor g can also be defined, by using the Eqs. (4.18) and (4.19), as:

g ¼ G00ðxveÞ
G0ðxveÞ

¼ tan d ð4:27Þ

that is often used as a measure of the capacity to dissipate energy of the visco-
elastic material as expressed in the Eq. (4.26).

In order to model the viscoelastic damper connecting with an elastic brace in
series and to assess the dependence on the frequency of the coefficients of
Poynting-Thomson model, which will be more marked than that analyzed on loss
factor of the single device (Soong and Constantinou 1994; Soong and Dargush
1997), it is possible in this model, since it is a series, correlating the relative
displacement and the relative velocity between the ends of the viscoelastic device,
respectively, to the relative displacement and relative velocity between the ends of
the ‘‘viscoelastic damper-brace component’’ and, therefore, to obtain the differ-
ential equation that governs the dynamic response of such a system (Poynting-
Thomson model), in the time domain, by following an approach of mechanical
standard model (Park 2001). This equation turns out to be:

FvbðtÞ þ
cv

kb þ kv

_FvbðtÞ ¼ kvb uvbðtÞ þ
cv

kv
_uvbðtÞ

� �

ð4:28Þ

(Note that, for simplicity of writing, the dependence of cv and kv on xve is implied)
where kvb is the stiffness of the viscoelastic damper-brace component or rather the
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series kvb ¼ kvkb
kvþkb

of the two stiffnesses, cv is the viscosity coefficient of the vis-

coelastic device, kb is the axial stiffness of the brace, kv is the stiffness of the
viscoelastic device, FvbðtÞ is the resistance force of the viscoelastic damper-brace
component, _FvbðtÞ is its derivative with respect to time t, uvbðtÞ is the relative
displacement between the ends of the viscoelastic damper-brace component and
_uvbðtÞ its time derivative.

Consider a (damped) harmonic displacement time history with frequency xD

and amplitude u0, unless the transition regime represented by the solution of the
homogeneous equation associated, the resistance force of the viscoelastic damper-
brace component, which is the particular solution and representative of the con-
dition in stationary regime, can be expressed as:

FvbðtÞ ¼ kvb þ ~sxD
kvbcvxD � ~sxDkvkvb

ð1þ ~s2x2
DÞkv

� �� �

uvbðtÞ þ
kvbcv � ~skvkvb

ð1þ ~s2x2
DÞkv

� �

_uvbðtÞ

¼ k0ðxDÞ½u0 sinðxDtÞ� þ c0ðxDÞxD½u0 cosðxDtÞ�
ð4:29Þ

where ~s ¼ cv
kvþkb

, k0ðxDÞ and c0ðxDÞ are frequency dependent dynamic moduli of
the viscoelastic damper-brace component, also referred to as, respectively,
‘‘apparent stiffness’’ and ‘‘apparent damping’’. After simple mathematical opera-
tions, the latter are defined by the following relations (4.30) and (4.31):

kvbðxDÞ ¼ k0ðxDÞ ¼
kbk2

v þ k2
bkv þ kbc2

vx
2
D

kb þ kvð Þ2þ c2
vx

2
D

ð4:30Þ

cvbðxDÞ ¼ c0ðxDÞ ¼
k2

bcv

kb þ kvð Þ2þ c2
vx

2
D

ð4:31Þ

In the frequency domain through the Fourier transform and by using the
complex theory of linear viscoelasticity (Clough and Penzien 1993; Ou et al.
2007), the terms, defined by the Eqs. (4.30) and (4.31), can be interpreted as
storage and loss moduli. In Eqs. (4.32) and (4.33), the ‘‘storage modulus’’ and
‘‘loss modulus’’ are defined.

k0vbðxDÞ ¼ k0ðxDÞ ¼
kbk2

v þ k2
bkv þ kbc2

vx
2
D

kb þ kvð Þ2þ c2
vx

2
D

ð4:32Þ

k00vbðxDÞ ¼ c0ðxDÞ ¼
k2

bcvxD

kb þ kvð Þ2þ c2
vx

2
D

ð4:33Þ
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In the frequency domain, the loss factor of the viscoelastic system is expressed as:

gvbðxDÞ ¼
k00vbðxDÞ
k0vbðxDÞ

¼ sxD

k2
v

k2
b

þ kv

kb
þ s2x2

D

ð4:34Þ

where s ¼ cv
kb

is known as the relaxation time.
Similarly, by defining k0vðxDÞ ¼ kv and k00v ðxDÞ ¼ cvxD the loss factor of the

viscoelastic damper is:

gvðxDÞ ¼
k00v ðxDÞ
k0vðxDÞ

ð4:35Þ

The damping and stiffness reduction coefficients are, in conclusion, defined as:

bvc ¼
k00vbðxDÞ
k00v ðxDÞ

¼ 1

1þ 1
gvgvb

	 
2
þ 1

gvb
2

ð4:36Þ

bvk ¼
k0vbðxDÞ
k0vðxDÞ

¼
gvb

1
gv
þ gv þ gvb

	 


g2
vb þ 2gvb

1
gv
þ 1

g2
v
þ 1

ð4:37Þ

From the last equations, it is possible to highlight that the stiffness of the brace
connecting the viscoelastic damper to the structure actually affects the damper
efficiency significantly, which depends both on the viscoelastic damper-brace
component parameters and the natural frequencies of the structure. In most cases,
its influence on the performance of the damper should not be neglected; in other
words, the brace stiffness should not be approximately treated as infinite in the
seismic response analysis of the structure with dampers (Ou et al. 2007).

4.3 Modeling of the (Linear) Viscous Damper-Brace
Component

The resistance force of the linear viscous damper, in compliance with the Eq. (2.28),
is equal to:

FdðtÞ ¼ c _udðtÞ ð4:38Þ

where _udðtÞ is the relative velocity between the ends of the device.
In order to model the viscous damper connecting with an elastic brace in series

or rather to study the dependence on the frequency of the viscous damper-brace
component, the Maxwell model, consisting of a spring connecting with a linear
(Newtonian) damper in series (Figs. 4.10 and 4.11) is used.

It is also possible in the Maxwell model, since it is a series, correlating the
relative displacement and the relative velocity between the ends of the viscous
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device, respectively, to the relative displacement and relative velocity between the
ends of the viscous damper-brace component and, then, to obtain the differential
equation that governs the dynamic response of the serially connected brace and
linear viscous damper (Maxwell model), in the time domain, by following an
approach of mechanical standard model (Park 2001), that is:

FvbðtÞ þ
cv

kb

_FvbðtÞ ¼ cv _uvbðtÞ ð4:39Þ

where cv is the viscosity coefficient of the viscous fluid device, kb is the axial
stiffness of the brace, the ratio s ¼ cv=kb is defined relaxation time, FvbðtÞ is the
resistance force of the viscous damper-brace component (Maxwell model), _FvbðtÞ
is its derivative with respect to time t, uvbðtÞ is the relative displacement between
the ends of the viscous damper-brace component (Maxwell model) and _uvb tð Þ its
time derivative.

Fig. 4.10 Maxwell model

Fig. 4.11 Viscous damper-
brace component
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Consider a (damped) harmonic displacement time history with frequency xD

and amplitude u0, unless the transition regime represented by the solution of the
homogeneous equation associated, the resistance force of the viscous damper-
brace component (Maxwell model), which is the particular solution and repre-
sentative of the condition in stationary regime, can be expressed as:

FvbðtÞ ¼ kb
s2x2

D

1þ s2x2
D

uvbðtÞ þ cv
1

1þ s2x2
D

_uvbðtÞ

¼ k0ðxDÞ½u0 sinðxDtÞ� þ c0ðxDÞxD½u0 cosðxDtÞ�
ð4:40Þ

in which the frequency dependent dynamic moduli k0ðxDÞ and c0ðxDÞ of the
viscous damper-brace component (Maxwell model), also called, respectively,
‘‘apparent stiffness’’ and ‘‘apparent damping’’, are defined by the following rela-
tions (4.41) and (4.42):

kvbðxDÞ ¼ k0ðxDÞ ¼ kb
s2x2

D

1þ s2x2
D

ð4:41Þ

cvbðxDÞ ¼ c0ðxDÞ ¼ cv
1

1þ s2x2
D

ð4:42Þ

In the frequency domain through the Fourier transform and by using the
complex theory of linear viscoelasticity (Clough and Penzien 1993; Ou et al.
2007), the terms, defined by the Eqs. (4.41) and (4.42), can be interpreted as
storage and loss moduli. In Eqs. (4.43) and (4.44), the ‘‘storage modulus’’ and
‘‘loss modulus’’ are respectively defined.

k0vbðxDÞ ¼ kb
s2x2

D

1þ s2x2
D

ð4:43Þ

k00vbðxDÞ ¼ cv
1

1þ s2x2
D

xD ð4:44Þ

In the frequency domain, the loss factor is expressed as:

gvbðxDÞ ¼
k00vbðxDÞ
k0vbðxDÞ

¼ kb

cvxD
¼ 1

sxD
ð4:45Þ

The damping and stiffness reduction coefficients are, therefore, defined as:

bvcðxDÞ ¼
cvbðxDÞ

cv
¼ c0ðxDÞ

cv
ð4:46Þ

bvkðxDÞ ¼
kvbðxDÞ

kb
¼ k0ðxDÞ

kb
ð4:47Þ
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The variation of the damping and stiffness reduction coefficients of the viscous
damper-brace component with the product sxD is illustrated in Fig. 4.12.

By evaluating the limits at zero and infinity, the values of the two coefficients,
respectively, are:

lim
sx!0

c0ðxDÞ
cv

¼ 1 ð4:48Þ

lim
sx!þ1

c0ðxDÞ
cv

¼ 0 ð4:49Þ

lim
sx!0

k0ðxDÞ
kb

¼ 0 ð4:50Þ

lim
sx!þ1

k0ðxDÞ
kb

¼ 1 ð4:51Þ

Similar to the case of viscoelastic dampers, it is possible to highlight that the
stiffness of the brace connecting the viscous damper to the structure actually
affects the damper efficiency significantly, which depends both on the viscous
damper-brace component parameters and the natural frequencies of the structure.
In most cases, its influence on the performance of the damper should not be
neglected; in other words, the brace stiffness should not be approximately treated
as infinite in the seismic response analysis of the structure with dampers (Ou et al.
2007).

Within the framework of analysis developed and illustrated in the following
chapters, the Maxwell model is employed and the symbols cv and kb are used to
define, respectively, the static viscosity coefficient and brace stiffness and the

Fig. 4.12 The damping and stiffness reduction coefficients for different values of the product
sxD

100 4 Modeling of Viscoelastic Dissipative Bracing Systems



symbols c0 and k0 are used to define, respectively, the dynamic viscosity coefficient
and brace stiffness.
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Chapter 5
Integrated Design of Proportionally
Damped Framed Structural Systems
Equipped with Viscous Devices

Abstract This chapter deals with the integrated design of the elastic structural
system and the viscoelastic dissipative bracing system to achieve an expected
seismic design displacement. The variables that characterize the design problem,
their domain and the steps of the proposed methodology are illustrated and
commented in details by taking into account the concepts described in the previous
chapters. A set of seven historical unscaled acceleration records is selected to
develop dynamic analyses by testing the proposed integrated design methodology.
With reference to an equivalent SDOF integrated system, a cost index, assumed as
an optimized objective function and defined on the design variables, is described in
order to find the optimal design in economic terms, or rather, the economically
optimal combination of the design variables for each expected seismic target
performance. Finally, the extension of the results, developed on the substitute
structure, to a viscoelastically and proportionally damped MDOF framed inte-
grated system is explained in order to design the least expensive regular system.

5.1 Integrated Seismic Design Philosophy

Over the past years, structure and control systems have been independently
designed and, in some cases, optimized. Over the last 30 years, a lot of research
has been developed on the integrated optimal design of structural/control systems.

Specifically, the idea is to consider both the viscoelastic resources of the bracing-
damper system as well as the elastic ones of the structural system from the beginning
of design in order to obtain an integrated design of elastic structural/viscoelastic
control systems. In this sense, the main variables that characterize the dynamic
response of both systems are investigated as variables to be simultaneously opti-
mized within the same design, the so-called ‘‘integrated design’’ (Ramana 1990;
Smith et al. 1992; Zhang and Soong 1992; Cimellaro et al. 2009; Soong and
Cimellaro 2009; Rama et al. 2013; Xu 2013; Xu et al. 2012) (Fig. 5.1).

P. Castaldo, Integrated Seismic Design of Structure and Control Systems,
Springer Tracts in Mechanical Engineering, DOI: 10.1007/978-3-319-02615-2_5,
� Springer International Publishing Switzerland 2014
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By following this new design philosophy, the study proposes a simplified
method, based on a performance approach, aimed at achieving an integrated
optimal design of elastic structural/vicoselastic control systems minimizing a cost
index, assumed as an optimized objective function. In other words, the possibility
of assigning the vibration control will be explored, with it traditionally being only
assigned to the lateral elastic stiffness of the system as well as the viscoelastic ones
of a viscoelastic dissipative bracing system.

Assuming that the dynamic behavior of a n-degrees-of-freedom framed system
is governed by the first mode, the methodology of integrated design is conducted
on an equivalent single-degree-of-freedom structural system. In this context, the
lateral stiffness of the structure, with it being representative of its elastic dynamic
response, the stiffness of the brace and viscosity coefficient of the viscous damper,
connected with brace in series have been regarded as design variables. The last two
variables identify the non-linear dynamic response of the viscous damper-brace
component, whose effect on the dynamic response of the integrated system has
been explicitly considered.

The search for the optimal combination of design variables is performed
through the dynamic analyses on a substitute (SDOF) integrated system (Shibata
and Sozen 1976; Priestley et al. 1996) by considering a set of seven historical
unscaled acceleration records. These recordings have been chosen in such a way
that they are compatible (CEN 2005) in average with the elastic spectrum
(n = 5 %) relative to the ultimate limit state ULS, life safe, provided by the new
Italian seismic code NTC08 (NTC 2008) for a specific site in Italy.

The optimal design, related to the equivalent SDOF integrated system corre-
sponding to expected performances, is represented by the design variables, valued
on the average seismic displacement demand related to the acceleration records,
that minimize a cost index of the integrated system.

Fig. 5.1 Redesign procedure
in Sa–Sd plan (modified from
Cimellaro et al. 2009)
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5.2 Displacement-Based Integrated Seismic Design

The performance-based design is the new seismic design philosophy of the new
codes, in which the performance levels depend on the importance and function of
the structure. In fact, in a structure with a high level of importance and function,
the damage level must be negligible after earthquake events characterized by high
return period TR, i.e. high seismic intensity. A summary of the new design phi-
losophy called performance-based design is illustrated in the so-called perfor-
mance design objective matrix (Fig. 5.2), in which it is possible to arrange the
performance level to be achieved by a structure (also known as seismic limit state)
in function of the different levels of expected seismic intensity.

Arranging the performance is the main step of the design, the whole process, in
fact, should be based on the achievement of the objectives. These objectives are in
general related to the limit values of the measurable parameters of the structural
response, such as interstory drift, the ductility demand, the dissipated energy, or
more in general, damage indeces that represent the combined effect of these
factors. Once the performance objective has been indicated, satisfying these limit
values becomes the criterion of verification to be used. The identification of these
limits is still being discussed, with there being different opinions about the defi-
nition of indices that best represent damage by considering the overall behavior of
a structure.

The evaluation of the seismic response of a structure may be conducted by means
of a linear/non-linear static/dynamic analysis. All four methods are based on dis-
placement or variables directly or indirectly linked to it in order to carry out
assessments of control such as procedures presented in FEMA 273 and 274 (ATC
1997a, b). This is a considerable change in the practice of seismic design since the
focus of the analysis, design and evaluation has moved from force to displacement.
The actions on the elements of a building are classified as either displacement-control

Fig. 5.2 Performance design objective matrix (PDOM)
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actions for ductile mechanisms such as bending in the beams, or as force control
actions for brittle mechanisms as the shear in columns. The limits of ultimate rotation
capacity for displacement-control actions were presented in the chapters about the
materials of FEMA 273 (ATC 1997a) to check the estimation of the rotation capacity
using displacement-based methods.

The (direct) displacement-based seismic design DBD (Priestley et al. 2007),
which considers the displacement as a key design parameter, is considered an
effective method for the implementation of performance-based seismic design by
using the deformation capacity and ductility. In fact, there are various contribu-
tions in literature relating to the development of more or less simplified perfor-
mance-based design procedures of structural systems equipped with passive
dissipation devices by using the capacity spectrum method or the response spec-
trum in terms of acceleration-displacement (ADRS) or by using the response
spectrum in terms of displacement and the capacity curve of the structure (Sullivan
et al. 2003; Kim et al. 2003; Kim and Seo 2004; Lin et al. 2003; Kim and Choi
2006; ATC-40 (ATC 1996), FEMA-356 (ATC 2000), FEMA-273 (ATC 1997a);
Freeman 1998; SEAOC 1999).

In the proposed integrated design methodology, which will be presented in the
following paragraphs, concerning linear structural systems equipped with viscous
devices, a displacement-based seismic design (DBD) through the use of spectra in
terms of displacement has been employed.

For example, the interstory drift limits related to the four performance levels
corresponding to specific levels of seismic intensity reported in ATC-40 (ATC
1996) are shown in Table 5.1.

In Table 5.1 Vi and Pi are, respectively, the total shear force and the value of
the gravitational (dead and live) loads related to the i-th floor.

Other examples of limitations reported in literature (Ferraioli et al. 2005;
Ghobarah 2001) are shown in Table 5.2, in which (IDI: interstory drift index) the
damage index is related to the performance levels corresponding to different
seismic intensity levels.

Table 5.1 Displacemnet limits in ATC-40 (ATC 1996)

Performance levels

Interstory drift Full Operation Operational Life safety Collapse

Maximum total
displacement/interstory
height

0.01 0.01–0.02 0.02 0.33 Vi/Pi

Maximum inelastic
displacement/interstory
height

0.005 0.005–0.015 Not considered Not considered
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In the philosophy of the above-described displacement-based design (DBD), the
proposed integrated design has been developed by considering as the performance
parameter of the integrated system, consisting of elastic structural and viscoelastic
control systems, the relative displacement between top of the structure and ground,
chosen ranging from 1 mm to 10 cm.

5.3 Integrated Design Approach

The design of passive dissipation devices are generally used as a seismic reha-
bilitation technique of an existing structural system. This approach is fully justified
only in the application of the seismic rehabilitation of monumental and historical
buildings, where it is not possible, for obvious reasons, to modify the primary
structure. This approach, as already discussed, appears inherently limited, since it
does not provide for the possibility of an integrated design between the structure
and control system which explicitly takes into account the dynamic interaction in
terms of performance between the two components of the integrated system. In the
literature of structural passive control related to linear viscous dampers, there are
very few research studies dealing with the optimal integrated design between these
two components of the integrated system that explicitly take into account their
dynamic behavior.

Therefore, an integrated design methodology of structural systems with linear
viscous devices is proposed so that the dynamic response of the system achieves an
expected seismic design displacement. The methodology proposed is aimed, in
particular, at the identification of the optimal design, in economic terms, between
all the solutions obtainable by an integrated design of equivalent linear single-
degree-of-freedom (SDOF) structural systems equipped with linear viscous dam-
pers, which present a dynamic response compatible with an expected target
performance.

The dynamic response equation of the SDOF integrated system in the state
space form, as already seen, is:

_z tð Þ ¼ Az tð Þ þ b€ug tð Þ ð5:1Þ

Table 5.2 Damage indeces expressed in terms of interstory drift (Ferraioli et al. 2005)

Seismic performance
levels

Return
period
(TR)

Structural damage Non structural damage

Damage
Index

Failure
probability

Index
IDI

Failure
probability

Full Operational 30 0.20 0.20 0.003 0.30
Operational 75 0.40 0.20 0.006 0.30
Life safety 475 0.60 0.10 0.015 0.20
Collapse Prevention 970 0.80 0.10 0.020 0.20

5.2 Displacement-Based Integrated Seismic Design 107



where

z tð Þ ¼ u tð Þ
_u tð Þ

� �

A ¼ 0 1
�x2 �2nx

� �

b ¼ 0
1

� �

ð5:2Þ

where u(t) represents both the relative displacement of the structural SDOF system
respect to the ground, indicated with x(t) in Chap. 3, that the relative displacement,
less than cos#, between the ends of the viscous damper-brace component, indi-
cated with uvb in Chap. 4; similarly _u tð Þ is the relative velocity between both the
top of the structural system that the upper end of the viscous damper-brace
component and the ground; x the natural (undamped) frequency of the integrated
system, where k is the sum of the lateral stiffness of the main structure, ks, and the
dynamic stiffness of the dissipative bracing system, k0 xDð Þ; n is the viscous
damping ratio seen as the sum (Eq. (5.3)) of the viscous inherent damping ratio of
the main structure assumed to be equal ns ¼ 2 % and to the contribution nd of the
dynamic viscosity coefficient of the dissipative bracing system, c0 xDð Þ; xD is the
damped frequency of the response of the integrated system equipped with viscous
damper.

n ¼ ns þ nd ð5:3Þ

Therefore, for a given seismic design displacement u and set a natural vibration
period T, the variables that influence the response and that, therefore, are con-
sidered as the design variables are: the lateral stiffness of the structural system ks,
the static stiffness kb and the static viscosity coefficient cv of the linear viscoelastic
dissipative bracing system. The dynamic behavior of the viscous damper-brace
component is explicitly considered in the analyses. In Fig. 5.3, the analytical
model considered in the analysis is shown.

Fig. 5.3 Analytical model of the equivalent SDOF system with viscous damper
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The lateral stiffness of the structural system is considered variable between
20 % and 100 % of the total lateral one and, assigned a value to that variable, its
complement to 100 is equal to the dynamic stiffness of the passive control system,
connected to the structural system in parallel. The value of 20 % was chosen as a
minimum value ks;min necessary for supporting the gravity loads, as indicated
in several scientific studies (Cimellaro et al. 2009; Soong and Cimellaro 2009;
Symans et al. 2008).

Another constraint has also been considered, in a second phase, on the maxi-
mum value of the damping ratio assumed to be equal to 40 %.

The parametric analysis has been carried out considering the natural vibration
period of the integrated system ranging from 0 to 3 s thus to obtain a spectral
representation of the results. In this way, the integrated design can be carried out
by considering the undamped natural vibration period both fixed and as a design
variable. The above-described variability may, for example, oscillate in a range
whose ends can be represented by the values of the period relating, respectively, to
unbraced and braced systems: there are several formulations in literature to esti-
mate the period of a structural system with or without braces depending on the
material (Tremblay 2005; Chrysanthakopoulos et al. 2006; Jalali and Milani 2004;
Crowley and Pinho 2009). It follows that the procedure is applicable both to the
case of existing structural systems and new constructions.

In this perspective, the performance in terms of relative displacement respect to
the ground has been chosen as variable in a wide range from 1 mm up to 10 cm.

The wide variation of the period is justified by the possibility that the single-
degree-of-freedom (SDOF) system may be representative of the dynamic behavior
of planar multi-degrees-of-freedom (MDOF) systems characterised by regularity
in elevation and, therefore, having a dynamic behavior governed by the first mode
(Shibata and Sozen 1976; Priestley et al. 1996). In this case, the aim is to have the
optimal design values of stiffness and viscosity and their relationship to be
extended, then, in elevation to each structural level of the corresponding viscoe-
lastically and proportionally damped multi-degrees-of-freedom (MDOF) framed
integrated system.

The integrated design can be, therefore, considered as a bound constrained
problem (Fig. 5.4), whose optimal design turns out to be the combination of the
three design variables which minimizes a cost index of the integrated system.
Then, for given target performance, period of the equivalent single-degree-of-
freedom integrated system and for fixed relative ratios of cost, the economically
optimal values of the viscosity coefficient and stiffness to assign to the viscoelastic
dissipative bracing system corresponding to an economically optimal value of the
lateral stiffness of the structural system are obtained. In a second phase, by con-
sidering the period of the integrated system as a design variable and imposing a
constraint on the maximum value of the damping ratio, it is possible to obtain the
optimal values of the design variables considered, too.
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5.4 Integrated Design Methodology

The methodology followed in order to research the optimal integrated design is
illustrated in Fig. 5.5 by means of a flow chart.

The first step consists of the evaluation of the viscous damping ratio n
demanded by each selected seismic registration (selected in Sect. 5.4.1), depending
on the seismic performance and the natural vibration period T of the single-degree-
of-freedom integrated system in order to obtain the displacement demand spectra
for different values of damping ratio with different seismic design displacements
(such spectra have been object of several contributions in the literature, as illus-
trated in Miranda and Bertero 1994). These analyses are carried out in the state
space by implementing the Eqs. (5.1)–(5.2). It follows that it is possible to evaluate
the average displacement spectrum by averaging the spectra in terms of dis-
placement of the selected acceleration records set (CEN 2005). The evaluation of
the average displacement spectrum allows to estimate the design damping ratio for
each period and average design performance, which is the first element to be
known through the proposed methodology.

Having evaluated n for every considered average displacement and frequency x
(period T), the second step consists of estimating the frequency xD (period TD) of
the damped response through the following relation:

xD ¼ x
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� n2
q

ð5:4Þ

Fig. 5.4 Integrated design: a
bound constrained problem
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By considering an overall mass m and an inclined angle # of the viscous damper-
brace component and using the Eq. (5.5), in the third step, k and c0 xDð Þ can be
evaluated by deducting the rate representative of the inherent damping of the
structural system, taken equal to ns ¼ 2 %, from the overall viscous damping ratio.

c0ðxDÞ ¼ nd
2
ffiffiffiffiffiffi

km
p

cos2 #
ð5:5Þ

The fourth step, for each considered vibration period, consists of continuously
varying the lateral stiffness of the structural system ks in the range 20=100 %ð Þk½ �
and, consequently, also the dynamic stiffness of the dissipative bracing system
k0 xDð Þ cos2 #ð Þ ¼ k � ksð Þ, in order to obtain for each period and performance the

static moduli of the viscous damper-brace component: cv and kb. The lateral
stiffness of the structural system is considered variable between 20 % and 100 %
of the total lateral one and, assigned a value to that variable, its complement to 100
is equal to the dynamic stiffness of the passive control system, connected to the
structural system in parallel. The value of 20 % was chosen as a minimum value
ks;min necessary for supporting the gravity loads, as indicated in several scientific
studies (Cimellaro et al. 2009; Soong and Cimellaro 2009; Symans et al. 2008).
By solving the Eqs. (4.41) and (4.42), the above-mentioned values can be obtained
in closed form through the following relations:

Fig. 5.5 Flow chart of the integrated design methodology
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cv ¼
c0 xDð Þ2x2

D þ k0 xDð Þ2

c0 xDð Þx2
D

ð5:6Þ

kb ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c2
vx

2
Dc0 xDð Þ

cv � c0 xDð Þ

s

ð5:7Þ

In the fifth step, a set of dimensionless cost ratios representing the ratios of cost
between a unit increase both in stiffness and viscosity of the viscoelastic dissipative
bracing system and a unit increase of the lateral stiffness of the structural system is
defined. In this way the optimal integrated design such as the combination of the
three design variables (ks, cv and kb) which minimizes the cost index of the equiv-
alent SDOF integrated system for each period and target performance is obtained
(Sect. 5.5). At the end of these five steps, three design abacuses can be defined.

Finally, in the last step the optimal values of the integrated design variables
related to the substitute structure are extended to a proportionally damped MDOF
framed integrated system (Sect. 5.6). In a practical design, starting from the three
design abacuses, only the sixth step has to be applied (Sects. 6.7–6.8).

Note that, if a limit on the strength of the vertical elements of the structural
system is considered, it should be checked that these elements, designed with that
optimal value of lateral stiffness, have adequate strength necessary for supporting
the gravity loads. Otherwise, the procedure has to be iterated by increasing the
lower limit value of the lateral stiffness of the structural system.

If a technological constraint on the overall damping ratio is considered, the
methodology can be applied by explicitly considering such a limit. In this case, if a
design performance can’t be achieved, the period T can be considered between the
design variables, too.

The proposed methodology is purely numerical since the problem, due to the
non-linearity, cannot be solved in closed form. However, investigating such a wide
range of parameters, aims at reaching the qualitative assessment of the role of
different variables in the optimization process and the definition of design
guidelines and abacuses for practical utility.

In order to apply the proposed integrated design, it should be specified that the
frequency, which is considered in the dynamic response of the viscous damper-
brace component, is the damped frequency of the response of the single-degree-of-
freedom integrated system, since the system filters the seismic signal and presents
a dynamic response having energy concentrated on its damped natural frequency.
This explains the choice in the previous chapter to use the frequency of the
integrated system as a damped frequency of the harmonic displacement function.

It is also highlighted that all the considered design variables, as it can be deduced
from the relations (5.6) and (5.7), for a given seismic design displacement and
period, are directly proportional to the mass and, therefore, the procedure was
carried out in dimensionless terms or with reference to a unit mass.
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5.4.1 Accelerometric Recordings Selection

As previously mentioned, the study is carried out on a single-degree-of-freedom
integrated system by means of dynamic analyses by selecting from the European
database a set of seven historical unscaled accelerometric recordings compatible
(CEN 2005) in average with the elastic spectrum (with viscous damping n = 5 %)
relative to the ultimate limit state ULS, life safe, provided by the new Italian
seismic code NTC08 (NTC 2008) and considering an ordinary structure on soil
type A with a nominal life of 50 years (which corresponds to design for a
475 years return period according to the code) located in Sant’Angelo dei Lom-
bardi (15.1784� longitude, 40.8931� latitude; close to Avellino in Southern Italy).

In particular, the choice of the set of seven acceleration records was conducted
by specifying, consistent with the results of the probabilistic seismic hazard
analysis (Bazzurro and Cornell 1999), the magnitude (M) and epicentral distance
(R) intervals to [6, 7] and [5, 30 km] respectively. In Fig. 5.6, the disaggregation
of PGA hazard on rock with a 10 % probability of exceedance in 50 years related
to the specified magnitude (M) and distance epicentral (R) intervals is shown.

By using a set of seven acceleration records, according to NTC08, CEN 2005
and Provisions (BSSC, 2004), considering the mean effects on the structure, rather
than the maxima, is possible. In fact, a minimum of three accelerograms is
required for dynamic linear or non-linear analyses, even though it is usually useful
to employ at least seven or more earthquakes. The main advantage of using seven

Fig. 5.6 Disaggregation of
PGA hazard by considering
an ordinary structure located
in Sant’Angelo dei Lombardi
on rock with a 10 %
probability of exceedance in
50 years and specifying the
magnitude (M) and distance
epicentral (R) intervals to [6,
7] and [5, 30 km]
respectively
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or more accelerograms is that the response system can be evaluated by considering
the mean effects of the seven responses, instead, if less than seven accelerograms
are performed, the maximum values among all the analyses must be considered.

In Fig. 5.7, the elastic spectra (with viscous damping n = 5 %) of the seven
selected acceleration records, their average spectrum, the reference spectrum and
other two spectra, obtained by assigning a tolerance compatibility of the average,

Fig. 5.7 Reference spectrum and spectra of the acceleromtric recordings

Table 5.3 Acceleromtric recordings selected

Waveform ID Station ID Earthquake Name Date Mw Fault Mechanism

198 ST64 Montenegro 15/04/1979 6.9 Thrust
7142 ST539 Bingol 01/05/2003 6.3 Strike slip
6335 ST2557 South Iceland

(after shock)
21/06/2000 6.4 Strike slip

55 ST20 Friuli 06/05/1976 6.5 Thrust
4675 ST2487 South Iceland 17/06/2000 6.5 Strike slip
665 ST238 Umbria Marche 26/09/1997 6 Normal
6332 ST2483 South Iceland

(after shock)
21/06/2000 6.4 Strike slip
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respectively, 10 % lower and 30 % upper (CEN 2005; Iervolino et al. 2009), are
represented. The spectrum compatibility has been searched in the range of periods
0.15–2 s. Table 5.3 gives a brief description of the selected earthquake events.

The ‘‘time-histories’’ of the seven acceleration records are shown in Figs. 5.8,
5.9, 5.10, 5.11, 5.12, 5.13, 5.14.

Fig. 5.8 000055xa-Friuli earthquake

Fig. 5.9 000198xa-Montenegro earthquake
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Fig. 5.10 000665xa-Umbria Marche earthquake

Fig. 5.11 004675ya-South Iceland earthquake
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Fig. 5.12 006332ya-South Iceland (after shock) earthquake

Fig. 5.13 006335xa-South Iceland (after shock) earthquake
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5.5 Dimensionless Cost Index

Within the cost-effectiveness in seismic design methods, an optimal combination of
design variables should be determined on the basis of the total expected life-cycle cost
and the acceptable risk of deaths and potential damage cost from future earthquakes
(Park et al. 2004; Ang and Leon 1997). Therefore, an optimal design problem can be
formulated as based on a tradeoff between the costs of protection versus potential
future losses caused by earthquakes. Life-cycle cost can be defined as the sum of the
initial construction cost (García-Pérez 2000; García-Pérez et al. 2007) and the
expected damage costs for a given seismic hazard (García-Pérez 2000; Ang and Leon
1997) and the minimization of this index is an optimization problem. In Fig. 5.15, the
meaning of the optimal design in economic terms is qualitatively shown.

As for the search of an optimal design, there are different studies in literature
which consider explicitly the relationship between the cost of different structural
components (Park et al. 2004; Ang and Lee 2001).

In the present work, the following variables have been considered for framed
structures equipped with viscoelastic dissipative bracing system in relation to the
cost ratios:

• cost Cb for a unit increase of stiffness of the viscoelastic dissipative bracing
system divided by the cost Cs for a unit increase of lateral stiffness of the
structural system: Cb=Cs;

• cost Cv for a unit increase of the viscosity coefficient of the viscoelastic dissi-
pative bracing system divided by the cost Cs for a unit increase of lateral
stiffness of the structural system: Cv=Cs.

Fig. 5.14 007142ya-Bingol earthquake
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Note that the cost of repair, maintenance or damage have not explicitly been
expressed as a function of the failure probability of the state limit considered since
the achievement of the target performance is a hypothesis of the proposed inte-
grated design.

Different cases of ratios of cost have been chosen by considering the ratio
Cb=Cs constant equal to 0.5 and varying only the ratio Cv=Cs, as reported in
Table 5.4.

The constant value chosen for the cost ratio Cb=Cs has been established equal to
0.5 since an increase of lateral stiffness can be more conveniently obtained by
increasing the cross section of bracing system rather than the bearing vertical
elements’ ones. Table 5.4 shows that a wide variability range for the ratio Cb=Cs

has been analysed since the cost of a viscous linear damper able to provide a
design viscosity coefficient depends on several technological parameters, dynamic
characteristics of the recordings and structural system (these characteristics

Fig. 5.15 Life-cycle cost
minimization concept

Table 5.4 Pairs of relative
ratios of cost

CASE Cb
Cs

Cv
Cs

1 0.5 2
2 0.5 3
3 0.5 5
4 0.5 10
5 0.5 25
6 0.5 50
7 0.5 100
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identify the maximum displacement, velocity and force which develop between
the ends of the device) and many logistical issues including the country where the
damped structural system will be built.

By considering the values of the variables corresponding to the average dis-
placement spectrum of the seven accelerometric recordings (CEN 2005), the
optimal design values are those which minimize the cost index (5.8), assumed as
optimized objective function, of the integrated system. If the Eq. (5.8) is divided
by the cost of the structural system, the normalized cost index can be obtained
(5.9).

Ctot ¼ Csks þ Cbkb þ Cvcv ð5:8Þ

Ctot ¼
Ctot

Cs
¼ ks þ

Cb

Cs
kb þ

Cv

Cs
cv ð5:9Þ

The normalized cost of the unbraced structural system and the normalized cost
of the braced structure without dampers are, respectively, defined as:

Cs ¼
Cs

Cs
ks ¼ ks ð5:10Þ

Csb ¼
Cs

Cs
ks þ

Cb

Cs
kb ð5:11Þ

5.6 Proportionally and Viscoelastically Damped MDOF
Framed Integrated Systems

Following the proposed integrated design approach (Fig. 5.5), the optimal values
of the integrated design variables related to the substitute structure can be extended
to a proportionally damped MDOF framed integrated system, whose dynamic
behavior can be characterised by using an equivalent SDOF (Shibata and Sozen
1976; Priestley et al. 1996). With reference to a viscoelastically damped and shear-
type framed structural system, the hypotheses, upon which the equivalence
between the MDOF framed integrated system and its corresponding substitute
structure is based, are:

1. MDOF integrated system characterised by mass and stiffness regularity in
elevation;

2. equality between the period and overall damping ratio of the substitute structure
and the ones of the first mode of the MDOF integrated system;

3. proportionally damped MDOF integrated system;
4. the economically optimal ratio ks/k of the equivalent SDOF system must be

achieved for each storey of the MDOF integrated system (regular distribution of
stiffness);
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5. the economically optimal value of the relaxation time s of the equivalent SDOF
system must be achieved for each storey of the MDOF integrated system;

6. the dynamic terms of the stiffness and damping matrices of the viscoelastic
dissipative bracing system are evaluated assuming that they only depend on the
fundamental frequency of the first mode.

In the above hypothesis the first mode is dominant and there is a straight
equivalence between the dynamic behavior of the MDOF system and its equivalent
SDOF. The drift profile is thus set by the first mode shape.

In order to extend the proposed procedure to a MDOF system, it is necessary to
refer to a design performance u which has to be divided by the first mode par-
ticipation factor g1 of the MDOF integrated system (Shibata and Sozen 1976). It
follows that the design damping ratio, the economically optimal ratio ks/k, the
economically optimal value of the relaxation time s and the fundamental damped
frequency have to be related to the substitute structure able to achieve the design
performance u/g1.

Finally, it’s important to highlight that the choice of the design displacement is
generally governed by the limit strains of the critical members. For example, the
design displacement for frame buildings will normally be governed by drift limits
in the lower storeys of the building. It follows that the methodology can be applied
by choosing smaller design displacements in order to respect the drifts limits in
accordance to the codes.

On the basis of the above-mentioned hypotheses, the results obtained through
the proposed integrated design procedure can be extended to a MDOF framed
integrated structure as illustrated in Sects. 6.7 and 6.8. In fact, a proportionally
damped MDOF framed integrated system, equipped with ‘‘viscous damper-brace
component’’ at each level and designed according to the principles explained in
these chapters, can be easily modeled through a substitute structure (Sects. 6.1–6.6)
in order to search the optimal values of the design variables. The hypothesis of
proportionally damped integrated structural system (i.e., Rayleigh damping) allows
to evaluate the dynamic response of the integrated system by considering the
dynamic behavior of the viscous damper-brace component and taking into account
the presence of the stiffness of the brace of each level or rather the dependence on
the product between the damped frequency of the first mode of the (MDOF)
integrated system and the relaxation time corresponding to each structural level has
been considered to evaluate the dynamic response of each structural level.

On the basis of the above-mentioned hypotheses, the proposed integrated
design procedure allows to obtain an economically optimal design of a propor-
tionally damped MDOF framed integrated structure equipped with viscous dam-
pers, in other terms, the least expensive regular system.
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5.6.1 Future Developments

The proposed procedure can be extended to other different proportionally and
viscoelastically damped elastic earthquake resistant systems, which respect the
regularity hypotheses and equipped, in parallel, with a control system which
consists of viscoelastc bracing-damper system to dissipate the seismic energy. It
follows that the value minimum of the lateral stiffness of the structural system
should be modified depending on the type of the lateral loading support system.

The proposed methodology can also be extended to inelastic earthquake
resistant systems equipped with a viscoelastic bracing-damper system, which
respect the regularity hypotheses and are able to dissipate seismic energy. On the
basis of a design hypothesis, the overall viscous damping ratio developed by the
integrated system should be devided in three rates:

• inherent damping ns of the structural system;
• supplemental damping nd of the viscoelastic bracing-damper system
• equivalent supplemental damping nH;eq of the inelastic system.
The equivalent viscous damping ratio represents the energy dissipated through
hystretetic loops by the inelastic earthquake resistant system (Priestley et al. 2007).
It follows that other different cost ratios related to the inelastic components should
also be defined in order to search the optimal inelastic and elastic design variables.
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Chapter 6
Applying the Optimal Integrated Design
Methodology

Abstract This chapter deals with the proposed parametric analysis of the inte-

grated design methodology by considering the set of acceleration records selected

in the previous chapter. With reference to an equivalent SDOF integrated system,

starting from the evaluation of the average displacement spectrum, combinations

of the design variables, which are the lateral stiffness of the structural system, the

static stiffness and the static damping coefficient of the viscoelastic dissipative

bracing system, are evaluated for different values of the period of the system and

of the seismic design displacement considered. Subsequently, the minimum of the

cost index is searched for each group of cost ratios in order to find the optimal

values of the design variables. This is followed by an economic comparison

between the optimal integrated structural/control system and the optimal elastic

braced structural system or the optimal elastic unbraced structural system without

dampers for each target performance. In the last part, a validation of the proposed

procedure is performed by verifying that an optimal single-degree-of-freedom

integrated system achieves the expected seismic design displacement. Finally, the

extension of this methodology to a proportionally damped multi-degrees-of-free-

dom framed integrated system is developed on the basis of specific hypotheses to

demonstrate the effectiveness of the proposed integrated design methodology.

6.1 Structural Model Employed in Parametric Analyses

In the dynamic analyses carried out to develop the parametric study described in

the previous chapter, the equivalence between single-degree-of-freedom (SDOF)

integrated systems and the corresponding multi-degrees-of-freedom (MDOF)

integrated framed systems was exploited (Shibata and Sozen 1976; Priestley et al.

P. Castaldo, Integrated Seismic Design of Structure and Control Systems,
Springer Tracts in Mechanical Engineering, DOI: 10.1007/978-3-319-02615-2_6,

� Springer International Publishing Switzerland 2014
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1996). This equivalence does not involve strong approximations in the case of

structural systems characterized by a regularity in elevation so that the first mode

can be regarded as representative of the dynamic response of the system. Exper-

imental evidence, as already mentioned, (Hwang and Huang 2003; Hwang et al.

2008; Hwang 2005) has shown that if the damping ratio of a structure is increased,

the higher mode responses of the structure will be suppressed. It follows that in the

case of supplemental damping in regular MDOF structural systems, the hypothesis

to refer only to first mode, in the practical applications, can be considered an

approximation even more acceptable especially with reference to the new con-

structions, whose seismic design is based on criteria of structural regularity. In

relation to systems irregular in elevation, the combined effects of higher modes can

hardly be overlooked because they may be important in order to evaluate the

velocities of the plane and, consequently, for the design of the rate-dependent

devices. The hypotheses to consider the fundamental mode alone is present in

various codes (ATC 1996, 1997a, b; NTC 2008; CEN 2005) in which it is pre-

scribed that the collapse mechanism for the construction is a single-degree-of-

freedom mechanism so that the distribution of displacements over the entire height

of the building can be reasonably estimated by using both the first mode shape or

another linear profile, as an inverted triangle.

Therefore, assuming that the dynamic behavior of a n-degrees-of-freedom

framed system regular in elevation, equipped with viscous linear dampers

(Fig. 6.1) is governed by the first mode, a single-degree-of-freedom system

equipped with the viscous damper-brace component has been employed (Fig. 6.2).

With reference to the single-degree-of-freedom integrated system, therefore,

the results of numerical analyses with the aim of investigating the response of the

Fig. 6.1 MDOF system

equipped with linear viscous

dampers
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elastic structural system equipped with viscoelastic dissipative bracing system,

based on the equations presented in Chap. 4 and represented in the state space form

(Chap. 3), are described. The numerical algorithm presented in the previous

chapter has been implemented in MATLAB by taking into account the set of the

historical unscaled accelerometric recordings selected and described in Sect. 5.4.1.

6.2 Evaluation of Viscous Damping Ratio for Each Average
Design Displacement

With reference to each of the seven accelerometric recordings, described in

Sect. 5.4.1, the damping ratio demanded by each one of the seismic events con-

sidered, for different values of the period T and the sesmic design displacements u,
was evaluated in order to obtain the displacement demand spectra of damping ratio

for each average design displacement.

These spectra have been discussed in several literature studies, as illustrated in

Miranda and Bertero (1994).

In the analyses, in a first phase, it was chosen to investigate all the variabilities

of the supplemental damping ratio with regard to under-damped structures.

In Fig. 6.3a, the viscous damping ratio n, of which the rate variable between

2 % and 100 % is the supplemental damping ratio nd, demanded by one of the

seismic events considered, for different values of the period T of the integrated

structural system and the expected target performance u is illustrated. The contour

lines representing the value of the viscous damping ratio n, demanded by each

earthquake considered, for different values of the period T of the integrated

structural system and seismic design displacement u are shown in Figs. 6.3b, 6.4,

6.5, 6.6, 6.7, 6.8 and 6.9.

On the basis of the seven displacement spectra corresponding to the accelero-

metric recordings, it has been possible to evaluate the average displacement

spectrum represented in Fig. 6.10. In Fig. 6.11, the corresponding contour lines are

plotted.

The area in which no control is required is the portion of the spectrum with

n ¼ ns ¼ 2% according to Eq. (5.3). The dashed area represents the portion of the

spectrum in which the oscillator is overdamped or critically damped. This area has

Fig. 6.2 Analytical model of

the equivalent SDOF system

with viscous damper
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Fig. 6.3 Damping ratio

demanded by the 000055xa

accelerometric recording

(a) and contour lines (b)

Fig. 6.4 Contour lines of the

damping ratio demanded by

the 000198xa accelerometric

recording
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Fig. 6.5 Contour lines of the

damping ratio demanded by

the 000665xa accelerometric

recording

Fig. 6.6 Contour lines of the

damping ratio demanded by

the 004675ya accelerometric

recording

Fig. 6.7 Contour lines of the

damping ratio demanded by

the 006332ya accelerometric

recording
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not been taken into account in the analyses. Only (under)damped systems have

been considered.

For application, moreover, in a second phase, analyses have also been carried out

by imposing a maximum limit on the overall viscous damping ratio n equal to 40 %.

6.3 Applying the Integrated Design Methodology
by Evaluating the Viscoelastic Design Variables

The evaluation of the average displacement spectrum, represented in Fig. 6.11,

presents the first step of the integrated design procedure and defines the design

damping ratio for each period and average design performance. The design overall

Fig. 6.8 Contour lines of the

damping ratio demanded by

the 006335xa accelerometric

recording

Fig. 6.9 Contour lines of the

damping ratio demanded by

the 007142ya accelerometric

recording
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viscous damping ratio is composted of the rate representative of the inherent

damping of the structural system, assumed equal to ns ¼ 2%, and the one repre-

sentative of the supplemental damping of the viscoelastic dissipative bracing

system, nd ¼ n� ns, according to Eq. (5.3). By assuming a unit mass m and an

inclined angle # of the viscous damper-brace component, which will be always

supposed equal to 45°, it has been, therefore, possible to evaluate, for each period

T (i.e., undamped natural frequency x) and design displacement u, the total lateral
stiffness of the integrated structural system k and the dynamic damping coefficient

of the dissipative bracing system c0ðxDÞ according to Eqs. (5.4) and (5.5).

Note that the seismic design displacement ranges from 1 mm to 10 cm with a

very dense pitch equal to one tenth of a millimeter.

Then, continuously varying, with percentage unit changes, the lateral stiffness

of the structural system ks and the dynamic stiffeness of the viscoelastic bracing

system connected in parallel k0ðxDÞ for each period and target performance, as

Fig. 6.10 Average

displacement spectrum

Fig. 6.11 Average

displacement spectrum:

contour lines
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described in Sect. 5.4, the static moduli of the viscous damper-brace component cv
and kb have been valuated by using the Eqs. (5.6) and (5.7).

In this section the steps 2–4 of the proposed integrated design methodology

(Sect. 5.4, Fig. 5.5) have been developed.

With reference to some of the seismic design displacements analysed, in par-

ticular the displacement values: u = 2, 3, 4, 5, 6, 7 cm, respectively, in Figs. 6.12,

6.13, 6.14, 6.15, 6.16, and 6.17 the values, expressed in base-10 logarithmic scale,

of the two viscoelastic design variables, static stiffness kb and static damping

coefficient cv of the dissipative bracing system, are represented for different values

of the period T and ks/k, which guarantee in average the achievement of the target

performance.

Fig. 6.12 For a seismic

design performance

u = 2 cm, # ¼ p=4: a cv; b kb
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From Fig. 6.12b, 6.13, 6.14, 6.15, 6.16 and 6.17b, it must be highlighted that, on

the basis of the reduction coefficients illustrated in Fig. 4.12, when the ratio of the

lateral stiffness of the structural system divided by the total one tends to 1, or rather

when the dynamic (apparent) stiffness k0ðxDÞ of the viscoelastic dissipative

bracing system tends to zero the static stiffness kb tends to increase significantly, as

discussed in Sect. 4.3.

It is also worth noting that the inclination angle, assumed equal to 45°, rep-
resents an indicative value that can be highly variable in function of the geo-

metrical characteristics of the structure or geometric configurations of the energy

dissipation assemblies for the purpose of amplification (Sigaher and Constantinou

2003) (Sect. 6.3.1).

Fig. 6.13 For a seismic

design performance

u = 3 cm, # ¼ p=4: a cv; b kb
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6.3.1 The Device Configurations

The device configurations either in-line with diagonal bracing or as horizontal

elements atop chevron bracing (Sigaher and Constantinou 2003) are the most

employed. The popularity of these configurations is based on the engineers’

familiarity with such bracing systems and the fact that all experimental research

studies have utilized mostly these two configurations for energy dissipation sys-

tems. Another device configuration recently developed is the toggle-brace con-

figuration. As the name implies, this configuration is based on the toggle

mechanism, which magnifies the damper displacement for a given interstory drift.

This amplification results in a reduction in the required damping force, and

Fig. 6.14 For a seismic

design performance

u = 4 cm, # ¼ p=4: a cv; b kb
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reduction in the damper volume, which may lead to reduction of damper costs.

With the intent that the energy dissipation assemblies do not occupy entire bays in

frames and often violate architectural requirements such as open space and

unobstructed view, the scissor-jack-damper system was developed as a variant of

the toggle-brace-damper system. The system combines the displacement magni-

fication feature with small size, which is achieved through compactness and near-

vertical installation. The displacement of the energy dissipation devices is either

less than (case of diagonal brace) or equal to (case of chevron brace) the drift of

the story at which the devices are installed. If u and ud denote the interstory drift

and the damper relative displacement, respectively, it can be written:

Fig. 6.15 For a seismic

design performance

u = 5 cm, # ¼ p=4: a cv; b kb

6.3 Applying the Integrated Design Methodology 135



ud ¼ f � u ð6:1Þ
where f is the magnification factor. For the chevron brace configuration, f = 1; for

the diagonal configuration f = cos#, where # is angle of inclination of the damper

with respect to the horizontal axis. The force Fd along the damper axis is similarly

related to F, the horizontal component of the damper force exerted on the frame,

through:

F ¼ f � Fd ð6:2Þ

Fig. 6.16 For a seismic

design performance

u = 6 cm, # ¼ p=4: a cv; b kb
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Consider a SDOF system having mass m, a fundamental vibration period T and

that is equipped with a linear fluid viscous damper, the resistance force, evaluated

through Eq. (2.28), is equal to:

Fd ¼ c _ud ð6:3Þ
where c is the viscosity coefficient, and _ud relative velocity between the ends of the
damper along its axis. The damping force F, exerted on the frame by the damper

assembly is given by:

F ¼ f � Fd ¼ f � c � _ud ¼ f 2 � c � _u ð6:4Þ

Fig. 6.17 For a seismic

design performance

u = 7 cm, # ¼ p=4: a cv; b kb
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in which _u is interstory velocity. It follows that the supplemental damping ratio of

a single-story frame with a linear fluid viscous device can be written as:

nd ¼
cf 2

2xm
ð6:5Þ

It is essential to realize the effect of the magnification factor on the damping

ratio, in fact, the damping ratio varies proportionally with the square of the

magnification factor.

In contrast to the familiar diagonal and chevron brace configurations, the

scissor-jack configuration can achieve magnification factors substantially greater

than unity. The presence of the magnifying mechanism in the scissor-jack system

extends the utility of fluid viscous devices to cases of small interstory drifts and

velocities, which are typical of stiff structural systems under seismic excitation and

structures subjected to wind load. Assuming a supplemental damping ratio equal to

0.05, developed by a linear fluid viscous damper in chevron configuration,

Fig. 6.18 shows the values of both the supplemental damping ratio and magnifi-

cation factor f for the different configurations.

6.4 The Optimal Design: Evaluation of the Optimal Design
Variables

In this section the optimal design of the integrated structural system is evaluated in

economic terms regarding the seven cases of relative cost ratios defined on the

design variables considered, shown in Table 5.4, by evaluating the minimum of the

normalized cost index (Eq. (5.9), in Sect. 5.5), calculated by comparing all the

integrated design solutions able to achieve the seismic design displacement. This is

the fifth step of the proposed integrated design methodology (Sect. 5.4, Fig. 5.5).

In fact, for each pair of cost ratios, the optimal value of the stiffness of the

structural system is chosen corresponding to the optimal values of the static

stiffness and static viscosity coefficient of the viscoelastic dissipative bracing

system so that these three optimal values of the design variables minimize the cost

index considered. The above-mentioned choice is made among all the combina-

tions obtained by continuously varying the stiffness of the structural system and

that of the dissipative bracing system, as discussed in Sect. 5.3. The methodology

developed, as mentioned in Sect. 5.4, is purely numerical since the problem, due to

the non-linearity, cannot be solved in closed form.

With reference to the case 1, Cb=Cs ¼ 0:5 and Cv=Cs ¼ 2, by considering

# ¼ p=4 and a unit mass, in Fig. 6.19 the economically optimal value of the ratio

of the lateral stiffness of the structural system divided by the total lateral stiffness

of the integrated system ks/k is shown for different values of the period T (i.e.,

undamped natural frequency x), and seismic design performance u.
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Figures 6.20 and 6.21 represent, respectively, the optimal values of the static

stiffness kb and the static damping coefficient cv of the viscoelastic dissipative

bracing system corresponding to the optimal values of the ratio of the lateral

stiffness of the structural system divided by the total lateral stiffness of the inte-

grated system ks/k, for different values of the period T (i.e., undamped natural

frequency x), and seismic design performance u.

Fig. 6.18 Illustration of diagonal, chevron brace, scissor-jack-damper, and toggle-brace-damper

configurations, magnification factors, and damping ratios of a single-story structure with linear

fluid viscous devices (modified from Sigaher and Constantinou 2003)
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Fig. 6.19 Optimal ratio ks/k

Fig. 6.20 Optimal value of

kb related to optimal ratio ks/k

Fig. 6.21 Optimal value of

cv related to optimal ratio ks/k
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In Figs. 6.22, 6.23 and 6.24, the corresponding contour lines are represented

respectively.

Similarly, the results relating to case 2, Cb=Cs ¼ 0:5 and Cv=Cs ¼ 3, are shown

in Figs. 6.25, 6.26, 6.27, 6.28, 6.29 and 6.30.

Similarly, the results relating to case 3, Cb=Cs ¼ 0:5 and Cv=Cs ¼ 5, are shown

in Figs. 6.31, 6.32, 6.33, 6.34, 6.35 and 6.36.

Similarly, the results relating to case 4, Cb=Cs ¼ 0:5 and Cv=Cs ¼ 10, are

shown in Figs. 6.37, 6.38, 6.39, 6.40, 6.41 and 6.42.

Similarly, the results relating to case 5, Cb=Cs ¼ 0:5 and Cv=Cs ¼ 25,

are shown in Figs. 6.43, 6.44, 6.45, 6.46, 6.47 and 6.48.

Similarly, the results relating to case 6, Cb=Cs ¼ 0:5 and Cv=Cs ¼ 50, are

shown in Figs. 6.49, 6.50, 6.51, 6.52, 6.53 and 6.54.

Fig. 6.22 Contour lines of

optimal ratio ks/k

Fig. 6.23 Contour lines of

optimal value of kb related to

optimal ratio ks/k
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Fig. 6.24 Contour lines of

optimal value of cv related to

optimal ratio ks/k

Fig. 6.25 Optimal ratio ks/k

Fig. 6.26 Optimal value of

kb related to optimal

ratio ks/k
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Similarly, the results relating to case 7, Cb=Cs ¼ 0:5 and Cv=Cs ¼ 100, are

shown in Figs. 6.55, 6.56, 6.57, 6.58, 6.59 and 6.60.

For each of the seven cases analysed, three design abacuses and their respective

contour lines have been defined in order to design an optimal integrated system

located in an area characterized by the seismic intensity corresponding to the

reference displacement average spectrum considered. In fact, from these abacuses,

it is possible to obtain the economically optimal values of the lateral stiffness of

the structural system, the static stiffness and static viscosity coefficient of the

viscoelastic dissipative bracing system, for different values of the elastic natural

period T and the target performance u.
From Fig. 6.19, 6.25, 6.31, 6.37, 6.43, 6.49 and 6.55, it can be highlighted that

the dashed area relative to the very small displacements is the area in which the

Fig. 6.27 Optimal value of

cv related to optimal ratio ks/k

Fig. 6.28 Contour lines of

optimal ratio ks/k
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SDOF system should be overdamped; the red area of the surface, corresponding to

very low periods and bounded by the contour line with value 1.0, represents the

target displacements can be achieved without any dissipation (passive control)

n ¼ ns ¼ 2%ð Þ. It follows that, therefore, in the remaining part of the surface, the

integrated design has been developed.

It is deduced that for fixed ratios of cost, the economically optimal combination

of the design variables depends on the period of the equivalent single-degree-of-

freedom integrated system and the desired performance.

In fact, with reference to cases 1, 2, 3 and 4, as shown in Figs. 6.19, 6.25, 6.31

and 6.37, for periods longer than 0.5 s and for high performance (small dis-

placements) it is always cheaper to use viscoelastic resources and have a minimum

Fig. 6.29 Contour lines of

optimal value of kb related to

optimal ratio ks/k

Fig. 6.30 Contour lines of

optimal value of cv related to

optimal ratio ks/k
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Fig. 6.31 Optimal ratio ks/k

Fig. 6.32 Optimal value of

kb related to optimal ratio ks/k

Fig. 6.33 Optimal value of

cv related to optimal ratio ks/k
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Fig. 6.34 Contour lines of

optimal ratio ks/k

Fig. 6.35 Contour lines of

optimal value of kb related to

optimal ratio ks/k

Fig. 6.36 Contour lines of

optimal value of cv related to

optimal ratio ks/k
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Fig. 6.37 Optimal ratio ks/k

Fig. 6.38 Optimal value of

kb related to optimal ratio ks/k

Fig. 6.39 Optimal value of

cv related to optimal ratio ks/k
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Fig. 6.40 Contour lines of

optimal ratio ks/k

Fig. 6.41 Contour lines of

optimal value of kb related to

optimal ratio ks/k

Fig. 6.42 Contour lines of

optimal value of cv related to

optimal ratio ks/k
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Fig. 6.43 Optimal ratio ks/k

Fig. 6.44 Optimal value of

kb related to optimal ratio ks/k

Fig. 6.45 Optimal value of

cv related to optimal ratio ks/k
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Fig. 6.46 Contour lines of

optimal ratio ks/k

Fig. 6.47 Contour lines of

optimal value of kb related to

optimal ratio ks/k

Fig. 6.48 Contour lines of

optimal value of cv related to

optimal ratio ks/k
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Fig. 6.49 Optimal ratio ks/k

Fig. 6.50 Optimal value of

kb related to optimal ratio ks/k

Fig. 6.51 Optimal value of

cv related to optimal ratio ks/k
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Fig. 6.52 Contour lines of

optimal ratio ks/k

Fig. 6.53 Contour lines of

optimal value of kb related to

optimal ratio ks/k

Fig. 6.54 Contour lines of

optimal value of cv related to

optimal ratio ks/k
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Fig. 6.55 Optimal ratio ks/k

Fig. 6.56 Optimal value of

kb related to optimal ratio ks/k

Fig. 6.57 Optimal value of

cv related to optimal ratio ks/k
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value of lateral stiffness of the structural system necessary for supporting the

gravity loads: ks/k is equal to 0.2. In the case of low performance (high dis-

placements), having only the lateral stiffness of the structural system is econom-

ically more convenient. With reference to periods of less than 0.5 s, it is

economically advantageous to use the elastic resources of the structural system

also in the case of very high performance.

With reference to the cases 5, 6 and 7, as shown in Figs. 6.43, 6.49 and 6.55,

since the relative ratio of the cost Cv=Cs is higher, the optimal design consists, as it

is intuitively expected, of an increasing use of elastic resources of the structural

system by reducing the viscoelastic resources of the dissipative system.

Figure 6.61, obtained by overlapping, for example, the contour lines of the

cases 2 and 4, illustrated in Figs. 6.28 and 6.40, shows the incidence of the relative

ratio of cost Cv=Cs on the economically optimal choice: it is clear that, compared

to case 2, in case 4, the surface with a high value of lateral stiffness of the

Fig. 6.58 Contour lines of

optimal ratio ks/k

Fig. 6.59 Contour lines of

optimal value of kb related to

optimal ratio ks/k
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structural system is much broader and extends to low performances (high dis-

placements); only with increasing the period and for smaller displacements, is

there a trend to exploit the viscoelastic resources without which the desired per-

formance could not be achieved; with decreasing performance (high displace-

ments), it is convenient to have almost exclusively the elastic resources of the

structural system.

For each cost ratio, two design values, respectively, representing the optimal

values of kb and cv, correspond to each design value of the optimal stiffness ratio

ks/k. For example, from Figs. 6.29 and 6.30 it is possible to deduce that a low

period structural system demands high value of kb and less high value of cv in

order to achieve small displacement by developing the design damping ratio n.
These values of kb, cv and n lead to a low value of the product sxD improving the

effectiveness of the viscoelastic dissipative bracing system trough a high value of

c0 xDð Þ. With reference to high period structural systems and less small

Fig. 6.60 Contour lines of

optimal value of cv related to

optimal ratio ks/k

Fig. 6.61 Overlapping the

contour lines of optimal ratio

ks/k related to case 2 “—”

and case 4 “- -”
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displacements, the values of kb and cv are less high since xD decreases. As for high

displacements, this trend is more evident since the required viscoelastic resources

are lesser.

From the above-mentioned discussion and critical analysis of the results and

figures relating to the proposed parametric study, it can be concluded that the

choice of the economically optimal combination of design variables depends on

the values of the cost ratios, the natural vibration period and the expected seismic

design displacement. For relatively low cost ratios, the supplemental viscoelastic

energy dissipation can represent a very important design component to be

employed in order to reduce the dynamic response of the integrated system and,

thus, any damage.

Finally, it is worth noting that the above results with corresponding curves are

extensible also to the case of viscoelastic devices in which the properties of the

viscous damper-brace component kvb and cvb correspond, respectively, to kvb and

cvb of viscoelastic damper-brace component as shown in Eqs. (4.30) and (4.31).

6.5 Cost Comparison

With reference to an equivalent SDOF system, in this section, the normalized cost

of an optimal integrated structural system, equipped with viscoelastic dissipative

bracing system, is compared with the normalized ones of both optimal unbraced

and braced structures for fixed seismic design performance in order to verify the

cost-effectiveness in designing an integrated system compared to conventional

seismic-resistant systems which achieve an expected performance requirement.

This comparison was made by considering all the pairs of relative cost ratios

(Table 5.4) to evaluate the optimal normalized cost of the integrated system, in

accordance with Eq. (5.9), while the normalized cost of the optimal unbraced

structure was evaluated as indicated by Eq. (5.10). Finally, the normalized cost of

the optimal braced structure has been evaluated as expressed by Eq. (5.11), by

always considering # ¼ p=4 and a unit mass.

Subsequently, moreover, the above-mentioned comparison was carried out by

also considering the natural vibration period as a design variable and, in a second

phase, a constraint on the maximum value of the overall viscous damping ratio

assumed to be equal to 40 %, too.

With reference to the case 1, Cb=Cs ¼ 0:5 and Cv=Cs ¼ 2, in Fig. 6.62 the

value, in base-e logarithmic scale, of the normalized cost of the optimal integrated

structural system is represented for different values of the period T (i.e., undamped

natural frequency x), and seismic design performance u and, in Fig. 6.63, the

corresponding contour lines are represented.

From Fig. 6.63, it is possible to deduce that the dashed area of the diagram

relative to very small displacements is the area in which the oscillator is over-

damped or critically damped. This area has not been taken into account in the

analyses. The portion of the surface related to the very low periods is the area in
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which there is n ¼ ns ¼ 2% or rather no passive control is required and, therefore,

the remaining part of the surface was interested by the optimal integrated design.

This consideration is valid for all the cases from 1 to 7.

By also considering the elastic structural period of the integrated system as

design variable, the periods, for which the normalized cost of the integrated

structural system is minimum, are shown in Fig. 6.64 for different design dis-

placements values.

From Fig. 6.64, it is clear that, since the relative ratio Cv=Cs of this case is low,

there is a trend to choose integrated structural systems having a high period with

high viscoelastic damping resources resulting the most economically convenient.

The trend is also justified by the fact that as the period T increases and, thus, the

natural frequency x decreases, the efficacy of the reduction factor of the static

viscosity coefficient increases, as shown in Fig. 4.12. This trend is characterised by

jump discontinuities indicating the convenience to choose structures with more

stiffness and less viscoelastic damping resources.

Fig. 6.62 Total normalized

cost of the optimal integrated

structural system for different

values of period and

performance

Fig. 6.63 Contour lines of

total normalized cost of the

optimal integrated structural

system for different values of

period and performance
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In order to develop an economic comparison between the integrated design

solution with two other conventional design solutions, unbraced or braced struc-

tural systems, the costs of economically optimal configurations of the two con-

ventional design solutions were also evaluated.

In Fig. 6.65, the value, in base-e logarithmic scale, of the normalized cost of

the optimal unbraced structural system is shown for different values of the period

T (i.e., undamped natural frequency x), and seismic performance u and in

Fig. 6.66 the corresponding contour lines are represented.

In Fig. 6.67, the value, in base-e logarithmic scale, of the normalized cost of the

optimal braced structural system is shown for different values of the period T (i.e.,

undamped natural frequency x), and seismic design displacement u and, in

Fig. 6.68, the corresponding contour lines are represented. The above-mentioned

cost has been assessed by giving 80 % of the total lateral stiffness to the bracing

Fig. 6.64 Economically

optimal period for different

performance values

Fig. 6.65 Optimal

normalized cost of the

unbraced structural system

for different values of period

and performance
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system and 20 %, which is the minimum imposed and discussed in Sects. 5.3 and

5.4, to the lateral stiffness of the structural system. The minimum value of lateral

stiffness of the structural system is chosen since, on the basis of the relative ratio of

cost Cb=Cs ¼ 0:5, this solution always provides the optimal cost.

From Figs. 6.65, 6.66, 6.67 and 6.68, it is possible to observe that only the area

in which n ¼ 2% has been considered because there is no need of passive dissi-

pation to achieve the target performance. With reference to the solutions of both

unbraced and braced structures, the economic optimal solution, by considering the

vibration period as a design variable, is achievable by regarding the highest period,

i.e. the system with the lowest stiffness. These considerations related to the design

solution both of the unbraced and braced structures are, obviously, valid for all the

cases from 1 to 7.

Fig. 6.66 Contour lines of

optimal normalized cost of

the unbraced structural

system for different values of

period and performance

Fig. 6.67 Optimal

normalized cost of the braced

structural system for different

values of period and

performance
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In Fig. 6.69, therefore, the minimum values of the normalized cost of the

integrated structural system Ctot, the normalized ones of both unbraced Cs and

braced Csb structures relative to the optimal periods are represented for different

seismic performance values.

Note that the integrated system, consisting of the structural and viscoelastic

dissipative bracing systems, is the cheapest for all the seismic design displacements.

In a second phase, a constraint on the maximum value of the supplemental

damping ratio has been imposed that’s the supplemental damping produced by the

viscoelastic dissipative system may not exceed 38 % such that the integrated

system presents an overall viscous damping ratio equal to 40 %. The periods, for

which the normalized cost of the integrated system is minimum, are represented in

Fig. 6.68 Contour lines of

optimal normalized cost of

the braced structural system

for different values of period

and performance

Fig. 6.69 Comparison

between normalized costs

related to the optimal design

solutions considered for

different performance values
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Fig. 6.70 for different performance values in the presence of the upper limit on the

damping ratio.

From Fig. 6.70, it can be highlighted that, unlike the situation without constraint

on the damping ratio, there is a more continuous and gradual trend to choose

integrated structural systems having a high period with high viscoelastic damping

resources resulting the most economically convenient. This trend, as already

mentioned, is also justified by the fact that as the period T increases and, so, the

natural frequency x decreases, the efficacy of the reduction factor of the static

viscosity coefficient increases, as is shown in Fig. 4.12. In Fig. 6.71, the damping

value, limited superiorly to 40 %, related to each period of the economically

optimal integrated system relating to each seismic performance is shown.

Finally, in Fig. 6.72, the minimum values of the normalized cost of the inte-

grated structural system Ctot, having a damping ratio at most equal to 40 %, the

Fig. 6.70 Economically

optimal period for different

values of performance

considering the upper limit on

the damping ratio equal to

40 %

Fig. 6.71 Damping value,

limited superiorly to 40 %,

related to each optimal period

and each performance
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normalized ones of both unbraced Cs and braced Csb structures relative to the

optimal periods are represented.

Similarly, with reference to case 2, Cb=Cs ¼ 0:5 and Cv=Cs ¼ 3, the value, in

base-e logarithmic scale, of the normalized cost of the optimal integrated structural

system for different values of the period T (i.e., undamped natural frequency x),
and seismic design performance u is represented in Fig. 6.73 and, in Fig. 6.74, the

corresponding contour lines are represented.

The periods, for which the normalized cost of the integrated structural system is

minimum, are represented in Fig. 6.75 for different seismic design displacement

values.

With regard to Fig. 6.75 the considerations discussed relating to the previous

case are the same.

Fig. 6.72 Comparison

between normalized costs

related to the optimal design

solutions considered for

different values of

performance with the upper

limit on the damping ratio

equal to 40 %

Fig. 6.73 Total normalized

cost of the optimal integrated

structural system for different

values of period and

performance
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With reference both to the normalized cost of the optimal unbraced structural

system as well as the normalized cost of the optimal braced structural system

evaluated for different values of the period T (i.e., undamped natural frequency x)
and seismic performance u, Figs. 6.65, 6.66, 6.67 and 6.68 remain unchanged.

In Fig. 6.76, the minimum values of the normalized cost of the integrated

structural system Ctot, the normalized ones of both unbraced Cs and braced Csb

structures relative to the optimal periods are represented.

It can be noted that, even in this case, the integrated system, constituted by the

structural system and viscoelastic dissipative bracing system, is always cheaper

than the other solutions for every performance considered.

By imposing the constraint on the maximum value of the overall damping ratio

equal to 40 %, the periods, for which the normalized cost of the integrated

structural system is minimum, are represented in Fig. 6.77 for different seismic

performance values.

Fig. 6.74 Contour lines of

total normalized cost of the

optimal integrated structural

system for different values of

period and performance

Fig. 6.75 Economically

optimal period for different

performance values
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In Fig. 6.77, a trend similar to that discussed in the previous case can be

observed.

In Fig. 6.78, the damping value, limited superiorly to 40 %, related to each

period of the economically optimal integrated system relatively to each seismic

performance is shown.

Finally, in Fig. 6.79, the minimum values of the normalized cost of the inte-

grated structural system Ctot, having a damping ratio at most equal to 40 %, the

normalized ones of both unbraced Cs and braced Csb structures relative to the

optimal periods are represented.

Similarly, with reference to case 3, Cb=Cs ¼ 0:5 and Cv=Cs ¼ 5, the value, in

base-e logarithmic scale, of the normalized cost of the optimal integrated structural

system for different values of the period T (i.e., undamped natural frequency x),

Fig. 6.76 Comparison

between normalized costs

related to the optimal design

solutions considered for

different performance values

Fig. 6.77 Economically

optimal period for different

values of performance

considering the upper limit on

the damping ratio equal to

40 %
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and seismic design displacement u is represented in Fig. 6.80 and, in Fig. 6.81, the

corresponding contour lines are represented.

The periods, for which the normalized cost of the integrated structural system is

minimum, are represented in Fig. 6.82 for different seismic performance values.

Regarding Fig. 6.82, the considerations discussed relating to the previous case

are the same.

With reference both to the normalized cost of the optimal unbraced structural

system as well as the normalized cost of the optimal braced structural system

evaluated for different values of the period T (i.e., undamped natural frequency x)
and seismic performance u, Figs. 6.65, 6.66, 6.67 and 6.68 remain unchanged.

In Fig. 6.83, the minimum values of the normalized cost of the integrated

structural system Ctot, the normalized ones of both unbraced Cs and braced Csb

structures relative to the optimal periods are represented.

Fig. 6.78 Damping value,

limited superiorly to 40 %,

related to each optimal period

and each performance

Fig. 6.79 Comparison

between normalized costs

related to the optimal design

solutions considered for

different values of

performance with the upper

limit on the damping ratio

equal to 40 %
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Fig. 6.80 Total normalized

cost of the optimal integrated

structural system for different

values of period and

performance

Fig. 6.81 Contour lines of

total normalized cost of the

optimal integrated structural

system for different values of

period and performance

Fig. 6.82 Economically

optimal period for different

performance values
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It can be noted that the integrated system, constituted by the structural system

and the viscoelastic dissipative bracing system, is cheaper than the other solutions

for almost all seismic design displacements considered.

By imposing the constraint on the maximum value of the overall damping ratio

equal to 40 %, the periods, for which the normalized cost of the integrated

structural system is minimum, are represented in Fig. 6.84 for different seismic

performance values.

In Fig. 6.84, a trend similar to that discussed in the previous case can be

observed.

In Fig. 6.85, the damping value, limited superiorly to 40 %, related to each

period of the economically optimal integrated system relatively to each seismic

performance is shown.

Fig. 6.83 Comparison

between normalized costs

related to the optimal design

solutions considered for

different performance values

Fig. 6.84 Economically

optimal period for different

performance values

considering the upper limit on

the damping ratio equal to

40 %
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Finally, in Fig. 6.86, the minimum values of the normalized cost of the inte-

grated structural system Ctot, having a damping ratio at most equal to 40 %, the

normalized ones of both unbraced Cs and braced Csb structures relative to the

optimal periods are represented.

Similarly, with reference to case 4, Cb=Cs ¼ 0:5 and Cv=Cs ¼ 10, the value, in

base-e logarithmic scale, of the normalized cost of the optimal integrated structural

system for different values of the period T (i.e., undamped natural frequency x),
and seismic design displacement u is represented in Fig. 6.87 and, in Fig. 6.88, the

corresponding contour lines are represented.

The periods, for which the normalized cost of the integrated structural system is

minimum, are represented in Fig. 6.89 for different seismic performance values.

Fig. 6.85 Damping value,

limited superiorly to 40 %,

related to each optimal period

and each performance

Fig. 6.86 Comparison

between normalized costs

related to the optimal design

solutions considered for

different performance values

with the upper limit on the

damping ratio equal to 40 %
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From Fig. 6.89, it is clear that, since the relative ratio Cv=Cs of this case is

medium, there is a sufficient gradual trend to choose integrated structural systems

having a high period with high viscoelastic damping resources resulting the most

economically convenient. The trend is also justified by the fact that as the period T

increases and, thus, the natural frequency x decreases, the efficacy of the reduction

factor of the static viscosity coefficient increases, as is shown in Fig. 4.12. This

trend is characterised by jump discontinuities indicating the convenience to choose

structures with more stiffness and less viscoelastic damping resources.

With reference both to the normalized cost of the optimal unbraced structural

system as well as the normalized cost of the optimal braced structural system

evaluated for different values of the period T (i.e., undamped natural frequency x)
and target performance u, Figs. 6.65, 6.66, 6.67 and 6.68 remain unchanged.

In Fig. 6.90, the minimum values of the normalized cost of the integrated

structural system Ctot, the normalized ones of both unbraced Cs and braced Csb

structures relative to the optimal periods are represented.

Fig. 6.87 Total normalized

cost of the optimal integrated

structural system for different

values of period and

performance

Fig. 6.88 Contour lines of

total normalized cost of the

optimal integrated structural

system for different values of

period and performance
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It can be noted that the integrated system, constituted by the structural system

and the viscoelastic dissipative bracing system, is not always cheaper than the

other solutions for every seismic performance considered.

By imposing the constraint on the maximum value of the overall damping ratio

equal to 40 %, the periods, for which the normalized cost of the integrated

structural system is minimum, are represented in Fig. 6.91 for different seismic

performance values.

In Fig. 6.91, a more gradual trend with less jump discontinuities can be

observed.

In Fig. 6.92, the damping value, limited superiorly to 40 %, related to each

period of the economically optimal integrated system relatively to each target

performance is shown.

Fig. 6.89 Economically

optimal period for different

performance values

Fig. 6.90 Comparison

between normalized costs

related to the optimal design

solutions considered for

different performance values
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Finally, in Fig. 6.93, the minimum values of the normalized cost of the inte-

grated structural system Ctot, having a damping ratio at most equal to 40 %, the

normalized ones of both unbraced Cs and braced Csb structures relative to the

optimal periods are represented.

Similarly, with reference to the 5, Cb=Cs ¼ 0:5 and Cv=Cs ¼ 25, the value, in

base-e logarithmic scale, of the normalized cost of the optimal integrated structural

system for different values of the period T (i.e., undamped natural frequency x),
and seismic design displacement u is represented in Fig. 6.94 and, in Fig. 6.95, the

corresponding contour lines are represented.

The periods, for which the normalized cost of the integrated structural system is

minimum, are represented in Fig. 6.96 for different seismic performance values.

Fig. 6.91 Economically

optimal period for different

performance values

considering the upper limit on

the damping ratio equal to

40 %

Fig. 6.92 Damping value,

limited superiorly to 40 %,

related to each optimal period

and each performance
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From Fig. 6.96, it is clear that, since the relative ratio Cv=Cs of this case is high,

there is a trend to choose integrated structural systems having a less high period

with less high viscoelastic damping resources resulting the most economically

convenient. This trend is always characterised by jump discontinuities indicating

the convenience to choose structures with more stiffness and less viscoelastic

damping resources.

With reference both to the normalized cost of the optimal unbraced structural

system as well as the normalized cost of the optimal braced structural system

evaluated for different values of the period T (i.e., undamped natural frequency x)
and seismic performance u, Figs. 6.65, 6.66, 6.67 and 6.68 remain unchanged.

In Fig. 6.97, the minimum values of the normalized cost of the integrated

structural system Ctot, the normalized ones of both unbraced Cs and braced Csb

structures relative to the optimal periods are represented.

Fig. 6.93 Comparison

between normalized costs

related to the optimal design

solutions considered for

different performance values

with the upper limit on the

damping ratio equal to 40 %

Fig. 6.94 Total normalized

cost of the optimal integrated

structural system for different

values of period and

performance
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It can be noted that the integrated system, constituted by the structural system

and the viscoelastic dissipative bracing system, is never cheaper than the solution

of the braced structural system and it is cheaper than the solution of the unbraced

structural system for some seismic design displacements considered.

The constraint on the maximum value of the overall damping ratio, in this case,

is respected.

Similarly, with reference to the 6, Cb=Cs ¼ 0:5 and Cv=Cs ¼ 50, the value, in

base-e logarithmic scale, of the normalized cost of the optimal integrated structural

system for different values of the period T (i.e., undamped natural frequency x),
and seismic performance u is represented in Fig. 6.98 and, in Fig. 6.99, the

corresponding contour lines are represented.

The periods, for which the normalized cost of the integrated structural system is

minimum, are represented in Fig. 6.100 for different seismic performance values.

Fig. 6.95 Contour lines of

total normalized cost of the

optimal integrated structural

system for different values of

period and performance

Fig. 6.96 Economically

optimal period for different

performance values
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Fig. 6.97 Comparison

between normalized costs

related to the optimal design

solutions considered for

different performance values

Fig. 6.98 Total normalized

cost of the optimal integrated

structural system for different

values of period and

performance

Fig. 6.99 Contour lines of

total normalized cost of the

optimal integrated structural

system for different values of

period and performance
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From Fig. 6.100, it is clear that, since the relative ratio Cv=Cs of this case is

high, like in the previous case, there is a trend to choose integrated structural

systems having a less high period with less high viscoelastic damping resources

resulting the most economically convenient.

With reference both to the normalized cost of the optimal unbraced structural

system as well as the normalized cost of the optimal braced structural system

evaluated for different values of the period T (i.e., undamped natural frequency x)
and seismic design displacement u, Figs. 6.65, 6.66, 6.67 and 6.68 remain

unchanged.

In Fig. 6.101, the minimum values of the normalized cost of the integrated

structural system Ctot, the normalized ones of both unbraced Cs and braced Csb

structures relative to the optimal periods are represented.

Fig. 6.100 Economically

optimal period for different

performance values

Fig. 6.101 Comparison

between normalized costs

related to the optimal design

solutions considered for

different performance values
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It can be observed that the integrated system, constituted by the structural

system and the viscoelastic dissipative bracing system, is never cheaper than the

solution of the braced structural system and it is cheaper than the solution of the

unbraced structural system for a few of the seismic design displacements

considered.

The constraint on the maximum value of the overall damping ratio, also in this

case, is respected.

Similarly, with reference to the 7, Cb=Cs ¼ 0:5 and Cv=Cs ¼ 100, the value, in

base-e logarithmic scale, of the normalized cost of the optimal integrated structural

system for different values of the period T (i.e., undamped natural frequency x),
and target performance u is represented in Fig. 6.102 and, in Fig. 6.103, the

corresponding contour lines are represented.

Fig. 6.102 Total normalized

cost of the optimal integrated

structural system for different

values of period and

performance

Fig. 6.103 Contour lines of

total normalized cost of the

optimal integrated structural

system for different values of

period and performance
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The periods, for which the normalized cost of the integrated structural system is

minimum, are represented in Fig. 6.104 for different performance values.

From Fig. 6.104, it is clear that, since the relative ratio Cv=Cs of this case is

high, like in the previous case, there is a regular trend to choose integrated

structural systems having a less high period with less high viscoelastic damping

resources resulting the most economically convenient.

With reference both to the normalized cost of the optimal unbraced structural

system as well as the normalized cost of the optimal braced structural system

evaluated for different values of the period T (i.e., undamped natural frequency x)
and seismic performance u, Figs. 6.65, 6.66, 6.67 and 6.68 remain unchanged.

In Fig. 6.105, the minimum values of the normalized cost of the integrated

structural system Ctot, the normalized ones of both unbraced Cs and braced Csb

structures relative to the optimal periods are represented.

Fig. 6.104 Economically

optimal period for different

performance values

Fig. 6.105 Comparison

between normalized costs

related to the optimal design

solutions considered for

different performance values
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It can be noted that the integrated system, constituted by the structural system

and the viscoelastic dissipative bracing system, is never cheaper than the solution

of the braced structural system and it is cheaper than the solution of the unbraced

structural system for very few of the seismic design displacements considered.

The constraint on the maximum value of the overall damping ratio, also in this

case, is respected.

With reference to the cases 1, 2, and 3, as shown in Figs. 6.69, 6.76, and 6.83,

relative to the economic optimum of the integrated system obtained by considering

the optimal vibration period, it is noted that the cost of the integrated system is

always lower than the cost of the other two systems considered showing, thus, the

convenience of viscoelastic dissipation in seismic design of structural systems. In

such cases, as shown in Figs. 6.64, 6.75 and 6.82, there is a trend for different

values of the seismic performance to choose integrated structural systems with a

high period and with high viscoelastic damping resources resulting the most

economically convenient. This trend is also justified by the fact that as the period T

increases and, thus, the natural frequency x decreases, the efficacy of the reduction

factor of the static viscosity coefficient increases.

With reference to case 4, as shown in Fig. 6.90, the integrated design is the

cheapest, as highlighted in the first three cases, only for some seismic design

displacements considered. However, the integrated design is cheaper than the

design solution of the structural system with the function of transferring both the

vertical loads as well as seismic actions. In fact, from Fig. 6.89 it is deduced that,

since the relative ratio Cv=Cs of this case is medium, the trend to choose integrated

structural systems with a high period and with high viscoelastic damping resources

for different values of the seismic performance is less marked.

With reference to the cases 5, 6, and 7, as shown in Figs. 6.97, 6.101 and 6.105,

relative to the economic optimum of the integrated system obtained by considering

the optimal vibration period, it is noted that the cost of the integrated system tends

to be more and more comparable to that of the structural system with the result that

the braced system is the economically optimal solution. In fact, from Figs. 6.96,

6.100 and 6.104, it should be noted that, since the relative ratio Cv=Cs of this case

is high, there is a regular trend to choose integrated structural systems with more

lateral stiffness and less viscoelastic damping resources for different target per-

formance values.

Considering the results and Figs. 6.72, 6.79, 6.86 and 6.93, where a comparison

between the costs related to the integrated design and the costs of the other two

conventional design solutions is developed by also imposing the upper limit on the

dimensionless overall viscous damping ratio, it is evident that in cases 1, 2, 3 and 4

imposing the upper limit on damping ratio necessarily leads to choose structures

with more lateral stiffness (decrease of the economically optimal period) with a

consequential increase in costs so that not for all seismic design displacements is

the integrated design cheaper than the braced structure. In fact, it is possible to

deduce from Figs. 6.70, 6.77, 6.84 and 6.91, that, unlike the respective analysis

without constraint on the damping ratio, there is a more gradual and less marked
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trend to choose structural integrated systems with a high period and high visco-

elastic damping resources resulting more cost-effective.

With reference to cases 5, 6 and 7 (Figs. 6.97, 6.101 and 6.105), the costs

associated to integrated design turn out to be already related to periods of struc-

tural systems which correspond to damping ratios lower than 40 %.

From the above-mentioned critical analysis of cost comparisons for the three

considered design solutions, it is possible to conclude that for relatively low ratios

of cost, the integrated design with supplemental viscoelastic energy dissipation is

the cost-effective optimal solution for any seismic performance. In other cases, the

solution of braced system can be the most convenient.

Note, however, that these results are relative to the geometric configuration of

the viscous damper-brace component with an inclination angle equal to 45°,
which, as discussed in Sect. 6.3.1, is the configuration with the lowest dynamic

efficiency. Referring to the other configurations, also for example the one in which

the device is horizontal, it follows that the efficiency of the damper is double or

more than double, as it can be seen in the equations illustrated in Fig. 5.5, and,

therefore, the values of the static stiffness would be reduced approximately by

50 % with the consequence that the costs curves related to integrated systems

would be always lower than the other two curves of the conventional design

solutions considered.

6.6 The Effectiveness of the Integrated Design Methodology
Evaluated on a SDOF System

A numerical example of an equivalent single-degree-of-freedom (SDOF) system is

used to illustrate the feasibility and effectiveness of the integrated design proce-

dure by using the design abacuses proposed and illustrated in Figs. 6.106, 6.107

and 6.108.

Consider, therefore, a regular structure, whose fundamental vibration period,

evaluated, for example, or through simple empirical relations or with reference to

an existing structural system, is equal to T = 0.78 s and the natural undamped

frequency equal to x = 7.97 rad/s, with a mass m, and a seismic design perfor-

mance u = 3 cm is requested.

In order to have an economically optimal integrated design and by assuming the

following ratios of cost (case 2): Cb=Cs ¼ 0:5 and Cv=Cs ¼ 3, the total lateral

stiffness of the structure with this period and mass can be evaluated:

k ¼ 63:59 N/m � mass

From Fig. 6.106 (point A0), it is obtained that the ratio of the economically

optimal lateral stiffness of the structural system divided by the total lateral stiffness

of the integrated structural system is equal to:
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ks=k ¼ 0:57

and it follows that the value of the lateral stiffness of the structural system is:

ks ¼ ks optimum ¼ 36:12 N/m � mass

By using Figs. 6.107 and 6.108 (points A00 and A000), the above-mentioned

economically optimal relationship of stiffness corresponds to the two economically

optimal values of the static stiffness and static damping coefficient of the visco-

elastic dissipative bracing system, with an inclined angle equal to # ¼ p=4, which
are respectively:

Fig. 6.107 Contour lines of

optimal value of kb related to

optimal ratio ks/k

Fig. 6.106 Contour lines of

optimal ratio ks/k
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kb ¼ kb optimum ¼ 50:61 N=m � mass

cv ¼ cv optimum ¼ 6:96 Ns=m � mass

It follows that the relaxation time is:

s ¼ cv optimum=kb optimum ¼ 0:14 s

From Fig. 6.11 the value of the overall viscous damping ratio n = 12 %

(ns ¼ 2% and nd ¼ 10%) is known. It is thus possible to estimate the fundamental

damped frequency xD = 7.92 rad/s (Eq. (5.4)) of the integrated structural system

and, finally, the corresponding values of the dynamic damping coefficient and

stiffness of the viscoelastic bracing-damper system, in accordance with the

Eqs. (4.41) and (4.42), which are equal to:

capp ¼ cvb xDð Þ ¼ c0 xDð Þ ¼ cv
1

1þ s2x2
D

¼ 3:19 Ns=m � mass

kappcos
2# ¼ kvb xDð Þcos2# ¼ k0 xDð Þcos2# ¼ kb

s2x2
D

1þ s2x2
D

� �
cos2#

¼ 27:47N/m � mass

In Fig. 6.109, the model of the integrated system is shown.

Finally, the response of the integrated structural system subjected to the set of

the seven acceleration records considered has been analysed to assess whether the

expected seismic design displacement is achieved in average. Figures 6.110, 6.111,

Fig. 6.108 Contour lines of

optimal value of cv related to

optimal ratio ks/k
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6.112, 6.113, 6.114, 6.115 and 6.116 show the time responses in terms of dis-

placement to the seven accelerometric recordings.

Fig. 6.109 Analytical model

of the optimal integrated

SDOF structure

Fig. 6.110 The dynamic

response of the integrated

system subjected to the

000055xa-Friuli earthquake

Fig. 6.111 The dynamic

response of the integrated

system subjected to the

000198xa-Montenegro

earthquake
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Fig. 6.112 The dynamic

response of the integrated

system subjected to the

000665xa-Umbria Marche

earthquake

Fig. 6.113 The dynamic

response of the integrated

system subjected to the

004675ya-South Iceland

earthquake

Fig. 6.114 The dynamic

response of the integrated

system subjected to the

006332ya-South Iceland

(after shock) earthquake
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Fig. 6.115 The dynamic

response of the integrated

system subjected to the

006335xa-South Iceland

(after shock) earthquake

Fig. 6.116 The dynamic

response of the integrated

system subjected to the

007142ya-Bingol earthquake

Table 6.1 The dynamic

response of the integrated

system subjected to the seven

accelerometric recordings

selected

Earthquake u (cm)

000055xa-Friuli 3.39

000198xa-Montenegro 2.45

000665xa-Umbria Marche 1.08

004675ya-South Iceland 1.55

006332ya-South Iceland (after shock) 7.83

006335xa-South Iceland (after shock) 2.71

007142ya-Bingol 3.43

u (average) 3.16
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The average displacement is equal to u (average) = 3.16 cm. In Table 6.1, there

is a summary of the results.

From Fig. 6.73 or 6.74, the normalized cost of the integrated structure

considered is equal to �Ctot = 107.63 multiplied by the mass.

Subsequently, the response of a structure without supplemental damping (i.e.,

n = 2 %), which is able to achieve the expected performance, has been analysed.

The period T has been chosen as high as possible in order to have the minimum

value of the normalized cost: period T = 0.43 s or undamped natural frequency

x = 14.49 rad/s. This structure is representative of both unbraced and braced

structures.

The total lateral stiffness is:

k ¼ 209:87 N/m � mass

Fig. 6.117 The dynamic

response of the structural

system without damper

subjected to the 000055xa-

Friuli earthquake

Fig. 6.118 The dynamic

response of the structural

system without damper

subjected to the 000198xa-

Montenegro earthquake
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Fig. 6.119 The dynamic

response of the structural

system without damper

subjected to the 000665xa-

Umbria Marche earthquake

Fig. 6.120 The dynamic

response of the structural

system without damper

subjected to the 004675ya-

South Iceland earthquake

Fig. 6.121 The dynamic

response of the structural

system without damper

subjected to the 006332ya-

South Iceland (after shock)

earthquake
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Figures 6.117, 6.118, 6.119, 6.120, 6.121, 6.122 and 6.123 show the time

responses in terms of displacement to the seven accelerometric records.

The average displacement is equal to u (average) = 3.10 cm. In Table 6.2 a

summary of the results is reported.

From Fig. 6.76, the normalized cost of the unbraced structure considered is

equal to �Cs = 209.87 multiplied by the mass; the normalized cost of the braced

structure is equal to �Csb = 125.92 multiplied by the mass.

Both values are higher than the normalized cost of the optimal integrated

structural system with period T = 0.78 s demonstrating the cost-effectiveness of

the solution found through the proposed integrated design methodology.

In these analyses, the period of the structure is considered fixed, i.e. it has not

been treated as a design variable.

Fig. 6.122 The dynamic

response of the structural

system without damper

subjected to the 006335xa-

South Iceland (after shock)

earthquake

Fig. 6.123 The dynamic

response of the structural

system without damper

subjected to the 007142ya-

Bingol earthquake
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By removing this hypothesis and including T between the design parameters, it

is possible to find even cheaper solutions. In fact, with reference to the analyses

carried out considering the constraint on the overall damping ratio of 40 %, the

optimal period is equal to T = 1.05 s with n = 26 % and a corresponding

normalized cost �Ctot = 103.75 relative to a unit mass, as seen in Fig. 6.79.

6.7 The Effectiveness of the Integrated Design Methodology
Evaluated on a MDOF System with a Uniform
Distribution of Stiffness

In this section, the design procedure developed on an equivalent SDOF integrated

system will be extended to a proportionally damped MDOF framed integrated

system on the basis of the hypotheses explained in Sect. 5.6 and by using the

design abacuses proposed and illustrated in Sect. 6.4. This is the last step of

the proposed integrated design methodology (Sect. 5.4, Fig. 5.5) in order to design

the least expensive regular MDOF framed structure. In particular, this extension is

illustrated through an application approach based on the results of the case study

described in Sect. 6.6. It should be noted that such an extension is possible both in

the case of designing new structures (i.e., the vibration period is not known a

priori), as well as in the case of the existing structure with period known.

Consider, therefore, a three-storey regular structure (Fig. 6.124), whose fun-

damental vibration period, in analogy to the previous case, is equal to T1 = 0.78 s

or undamped natural frequency equal to x1 = 7.97 rad/s, and having a mass

“m = 1000 Ns2/m” per level, and a seismic design performance, in terms of

relative displacement between the top level and the ground, equal to u = 3 cm is

requested. The relationship of the cost of the case 2, Cb=Cs ¼ 0:5 and Cv=Cs ¼ 3,

an inclination angle of the viscoelastic dissipative bracing system, in each of the

three structural levels, equal to # ¼ p=4, are always considered.

Table 6.2 The dynamic

response of the structural

system without damper

subjected to the seven

accelerometric recordings

selected

Earthquake u (cm)

000055xa-Friuli 3.91

000198xa-Montenegro 3.43

000665xa-Umbria Marche 1.82

004675ya-South Iceland 1.85

006332ya-South Iceland (after shock) 5.08

006335xa-South Iceland (after shock) 2.04

007142ya-Bingol 3.59

u (average) 3.10
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By writing the motion equations of the three levels in the time domain and

defining k1 the stiffness of the last level and k3 the stiffness of the first level, as

shown in Fig. 6.124, it follows that the displacement of each level ui is the relative
displacement between that level and the ground. The system of motion Eq. (6.6) is:

m1 u1
::

tð Þ þ k1u1 tð Þ � k1u2 tð Þ ¼ f1 tð Þ
m2 u2

::
tð Þ � k1u1 tð Þ þ k1u2 tð Þ þ k2u2 tð Þ � k2u3 tð Þ ¼ f2 tð Þ

m3 u3
::

tð Þ � k2u2 tð Þ þ k2u3 tð Þ þ k3u3 tð Þ ¼ f3 tð Þ ð6:6Þ
that in matrix form becomes:

m1 0 0

0 m2 0

0 0 m3

2
4

3
5 u1

::
tð Þ

u2
::

tð Þ
u3
::

tð Þ

2
4

3
5þ

k1 �k1 0

�k1 k1 þ k2 �k2
0 �k2 k2 þ k3

2
4

3
5 u1 tð Þ

u2 tð Þ
u3 tð Þ

2
4

3
5 ¼

f1 tð Þ
f2 tð Þ
f3 tð Þ

2
4

3
5
ð6:7Þ

Since the mass and the lateral stiffness of each level are respectivily m and k, in
order to have the frequency of the first mode equal to x1 = 7.97 rad/s, the value of

the stiffness k must be equal to 320800 N/m, as shown in Fig. 6.125 in which the

trend of the stiffness of a generic floor is represented for different values of the

square of the frequency of the first mode with reference to a structure with three

levels and a mass m = 1000 Ns2/m per level.

The mass matrix M is:

Fig. 6.124 MDOF system

equipped with linear viscous

dampers
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M ¼
m1 0 0

0 m2 0

0 0 m3

2
4

3
5 ¼

1000 0 0

0 1000 0

0 0 1000

2
4

3
5Ns2=m ð6:8Þ

Note that the increase of the masses produced by the viscoelastic dissipative

bracing system is considered negligible.

Then the total lateral stiffness matrix K of the integrated system is:

K ¼
k1 �k1 0

�k1 k1 þ k2 �k2
0 �k2 k2 þ k3

2
4

3
5 ¼

320800 �320800 0

�320800 641600 �320800

0 �320800 641600

2
4

3
5N=m

ð6:9Þ
By solving the homogeneous system:

Mu tð Þ þKu tð Þ ¼ 0 ð6:10Þ
since the matrices are symmetric, for the Spectral Theorem, from the diagonal-

ization of the following matrix:

det K � kMj j ¼ 0 ð6:11Þ
the eigenvectors ui, which constitute the basis of the modal space, and the asso-

ciated eigenvalues ki are obtained. It is possible to write the eigenvectors ui of the

mode shapes in columns of a square matrix U.

It is, then, possible to normalize these eigenvectors by imposing the first

component of each eigenvector (Eq. (6.12)) equal to 1 or normalize them with

respect to UTMU ¼ I.

Fig. 6.125 The lateral

stiffness k for different values

of x2
1
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U ¼
1:00 1:00 1:00
0:80 �0:56 �2:25
0:44 �1:25 1:80

2
4

3
5 ð6:12Þ

The eigenvectors represent the shapes of the corresponding modes. The eigen-

values are the squares of the frequencies of the relative modes: ki ¼ x2
i . The

diagonal matrix of the eigenvalues X2 (Eq. (6.13)) can, similarly, be obtained.

X2 ¼
x2

1 0 0

0 x2
2 0

0 0 x2
3

2
4

3
5 ¼

63:54 0 0

0 498:83 0

0 0 1041:6

2
4

3
5 rad=sð Þ2 ð6:13Þ

Making the modal transformation of coordinates from normal coordinates (i.e.,

displacements at the nodes) into modal coordinates:

u ¼ Uy ð6:14Þ
it is possible to calculate the generalized mass matrix:

UTMU ¼
m�

1 0 0

0 m�
2 0

0 0 m�
3

2
4

3
5 ¼

1841:2 0 0

0 2862:9 0

0 0 9295:9

2
4

3
5Ns2=m ð6:15Þ

the generalized stiffness matrix:

UTKU ¼
k�1 0 0

0 k�2 0

0 0 k�3

2
4

3
5 ¼ 106

0:12 0:00 �0:00
0:00 1:43 0:00
�0:00 0:00 9:68

2
4

3
5N=m ð6:16Þ

the generalized force vector:

UTF tð Þ ¼
f �1 tð Þ
f �2 tð Þ
f �3 tð Þ

2
4

3
5 ¼ �UT Mrð Þu::g tð Þ ð6:17Þ

where

r ¼
1

1

1

2
4
3
5 ð6:18Þ

The participation factor of the i-th mode is defined as:

gi ¼ uT
i Mrð Þ

uT
i Mui

¼ uiT Mrð Þ
m�

i

ð6:19Þ

Then, the vector of participation factors turns out to be:
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g ¼
1:22
�0:28
0:06

2
4

3
5 ð6:20Þ

As regards the period T1 = 0.78 s or x1 = 7.97 rad/s and the performance equal

to “u/g1”, from Figs. 6.11, 6.28, 6.29 and 6.30, the following values apply:

• n1 ¼ 22%
• ks=k ¼ 0:21
• cv optimum ¼ 12:95Ns=m � mass

• kb optimum ¼ 99:11N=m � mass

• s ¼ 0:13 s

• xD;1 ¼ x1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� n21

q
¼ 7:78 rad=s

On basis of the economically optimal relationship of the lateral stiffness of the

structural system divided by the total lateral stiffness of the integrated structural

system ks/k, that is 0.21, it follows that the lateral stiffness matrix of the structural

system Ks is:

Ks ¼ 0:21K ð6:21Þ
the dynamic stiffness matrix K0

b of the viscoelastic dissipative bracing system,

indicated �K in Chap. 3, is the complementary and, therefore, is the following:

K0
b cos

2 # ¼ K �Ks ð6:22Þ
Knowing the relaxation time s and the damped frequency of the first mode, in

accordance with the Eq. (4.41), the static stiffness matrix of the viscoelastic dis-

sipative bracing system Kb can be obtained by using the following equation:

Kb ¼ K0
b

1þ s2x2
1;D

s2x2
1;D

 !
ð6:23Þ

With reference to the damping, it can be, in general, expressed by the definition

of a damping matrix proportional to the mass matrix and/or stiffness one (Rayleigh

proportional damping) or by directly specifying damping values in the uncoupled

motion equations written in the modal space as proposed by Wilson (discrete

modal damping) (Clough and Penzien 1993; Wilson 2000). By following these

approaches, the system is called proportionally damped system.

With reference to the inherent damping matrix of the structure, a Rayleigh

damping matrix has been adopted proportional both to the mass and stiffness

matrices in order to obtain a damping ratio equal to 2 % on the first and second

modes:
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Cs ¼ aMþ bK ¼
651:9 �417 0

�417 1069 �417

0 �417 1069

2
4

3
5Ns=m ð6:24Þ

where

b ¼ n
2

x1 þ x2ð Þ ¼ 0:0013

a ¼ b x1x2ð Þ ¼ 0:235

ð6:25Þ

With reference to the dynamic supplemental damping matrix C0
v of the vis-

coelastic dissipative bracing system, a Rayleigh damping matrix has been adopted

so that the corresponding static supplemental damping matrix is proportional only

to the static stiffness matrix of the viscoelastic dissipative system via the pro-

portionality factor: relaxation time s (Eq. (6.26)). The proportionality only with the
stiffness matrix has been chosen both in order to have a dynamic behavior of the

dissipative system in analogy to that studied on the substitute SDOF system as well

as to have a profile of the velocities similar to the one of the displacements.

Cv ¼ sKb ð6:26Þ
It is possible to obtain the dynamic supplemental damping matrix C0

v of the

viscoelastic dissipative bracing system, indicated as �C in Chap. 3, in accordance

with Eq. (4.42), by using the following equation:

C0
v cos

2 # ¼ Cv

1

ð1þ s2x2
1;DÞ

 !
cos2 #

¼
c01 �c01 0

�c01 c01 þ c02 �c02
0 �c02 c02 þ c03

2
64

3
75 cos2 # ¼

16083 �16083 0

�16083 32166 �16083

0 �16083 32166

2
64

3
75Ns=m

ð6:27Þ
In this way, the overall damping matrix C ¼ Cs þ C0

v cos
2 # is diagonalizable

with the same basis of eigenvectors, since the criterion of Caughey is also verified:

CM�1K ¼ KM�1C

Making the modal transformation of coordinates from normal coordinates (i.e.,

displacements at the nodes) into modal coordinates (Eq. (6.14)), the generalized

damping matrix can be calculated:

UTCU ¼
c�1 0 0

0 c�2 0

0 0 c�3

2
4

3
5 ¼ 105

0:06 0:00 �0:00
0:00 0:72 0:00
�0:00 0:00 4:85

2
4

3
5Ns=m ð6:28Þ

It follows that the modal space equations are decoupled because all the gen-

eralized matrices are diagonal and, therefore, the system of equations becomes:
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m�
1 y1

::
tð Þ þ c�1 _y1 tð Þ þ k�1y1 tð Þ ¼ f �1 tð Þ

m�
2 y2

::
tð Þ þ c�1 _y2 tð Þ þ k�2y2 tð Þ ¼ f �2 tð Þ

m�
3 y3

::
tð Þ þ c�1 _y3 tð Þ þ k�3y3 tð Þ ¼ f �3 tð Þ

ð6:29Þ

in matrix form:

UTMU y
:: þUTCU _yþ UTKU y ¼ UTF tð Þ ð6:30Þ

Dividing the Eq. (6.29) by the i-th generalized mass, it is obtained:

y1
::

tð Þ þ 2n1x1 _y1 tð Þ þ x2
1y1 tð Þ ¼ �g1 ug

::
tð Þ

y2
::

tð Þ þ 2n2x2 _y2 tð Þ þ x2
2y2 tð Þ ¼ �g2 ug

::
tð Þ

y3
::

tð Þ þ 2n3x3 _y3 tð Þ þ x2
3y3 tð Þ ¼ �g3 ug

::
tð Þ

ð6:31Þ

The damping ratios are:

n ¼
22%
58%
81%

2
4

3
5 ð6:32Þ

The effective modal masses can be evaluated as follows:

m
_

i ¼ uT
i Mrð Þu

T
i Mrð Þ

uT
i Mui

¼ uT
i Mrð Þu

T
i Mrð Þ

uT
i Mui

uT
i Muið Þ

uT
i Muið Þ ¼ uT

i Muig
2
i ð6:33Þ

The effective modal mass matrix is equal to:

M
_ ¼

m
_

1 0 0

0 m
_

2 0

0 0 m
_

3

2
4

3
5 ¼

2742:2 0 0

0 224:6 0

0 0 33:1

2
4

3
5Ns2=m ð6:34Þ

The sum of the effective modal masses of all the modes must give the sum of

the masses of all the floors of the building that is 3000 Ns2/m.

The percentage of each effective modal mass turns out to be:

M
_

3m
¼

m
_

1

3m
0 0

0 m
_

2

3m
0

0 0 m
_

3

3m

2
664

3
775 ¼

91:41% �0:00% 0:00%
�0:00% 7:49% 0:00%

0% 0:00% 1:10%

2
4

3
5 ð6:35Þ

The trace of the above-mentioned matrix is equal to 100 %. Note that only the

effective mass related to the first mode exceeds 90 %, the minimum value that

must be achieved by summing the effective modal masses of the modes considered

(BSSC 2004).

In order to carry out the dynamic analyses, the whole procedure has also been

developed, as shown in Chap. 3, in the time domain both in terms of relative

motions of the mass and in state space form.
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With reference to the 000055xa-Friuli accelerometric registration, in

Figs. 6.126, 6.127 and 6.128, by having examined the contribution only of the first

vibration mode of the integrated structural system, the viscoelastic and viscous

responses, respectively, of the linear viscous damper and viscous damper-brace

component for each level are shown and compared to the global viscoelastic

response of the corresponding structural level by considering the horizontal pro-

jection of all the forces.

By applying the modal strain energy method on MDOF systems, illustrated in

Sect. 3.2.1, and using the Eqs. (3.55)–(3.57), it has been possible to estimate the

energy dissipated by linear viscous dampers and the elastic energy of the system

relative to the first mode shape of the system, which result being:

Fig. 6.126 Hysteresis loops

at level 3, evaluated by

considering the contribution

only of the first vibration

mode, related to the

000055xa-Friuli earthquake

Fig. 6.127 Hysteresis loops

at level 2, evaluated by

considering the contribution

only of the first vibration

mode, related to the

000055xa-Friuli earthquake
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X
j

Wj ¼ 2p2

T1

X
j

c0 xD;1

� �
j
/2
d;j cos

2 #j ¼ 1:47 � 105 Nm

Wk ¼ UT
1KU1 ¼ UT

1x
2
1MU1 ¼

X
i

x2
1mi/

2
i ¼

4p2

T2
1

X
i

mi/
2
i ¼ 1:17 � 105 Nm

it has been therefore, possible, by using the Eqs. (3.54) and (3.58), to evaluate the

damping ratio of the first mode, which results being:

nd;1 ¼
2p2
T1

P
j

c0 xD;1

� �
j
/2
r;j cos

2 #j

2p 4p2
T2
1

P
i

mi/
2
i

¼
T1
P
j

c0j/2
r;j cos

2 #j

4p
P
i

mi/
2
i

¼ 0:20

In accordance with Eq. (3.53), the overall damping ratio is:

n1 ¼ ns;1 þ nd;1 ¼ 22%

It is emphasized that the application of the modal strain energy method, used

for evaluation of the damping ratio of the first mode, has expressly taken into

account the dynamic behavior of the viscoelastic system by employing the

dynamic values of the viscosity coefficients and stiffnesses of the each viscous

damper-brace component of each structural level assessed and considering the

damped frequency of the first mode of the integrated structural system.

With reference to the same 000055xa-Friuli accelerometric recording, in

Figs. 6.129, 6.130 and 6.131, by having examined the contribution of all the

vibration modes of the integrated structural system, the viscoelastic and viscous

responses, respectively, of the linear viscous damper and viscous damper-brace

component for each level are shown and compared to the global viscoelastic

Fig. 6.128 Hysteresis loops

at level 1, evaluated by

considering the contribution

only of the first vibration

mode, related to the

000055xa-Friuli earthquake
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Fig. 6.129 Hysteresis loops

at level 3, evaluated by

considering the contributions

of all the vibration modes,

related to the 000055xa-Friuli

earthquake

Fig. 6.130 Hysteresis loops

at level 2, evaluated by

considering the contributions

of all the vibration modes,

related to the 000055xa-Friuli

earthquake

Fig. 6.131 Hysteresis loops

at level 1, evaluated by

considering the contributions

of all the vibration modes,

related to the 000055xa-Friuli

earthquake
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response of the corresponding structural level by considering the horizontal pro-

jection of all the forces.

With reference to the same 000055xa-Friuli accelerometric recording,

Fig. 6.132 shows the contributions of the three modes.

On the basis of the Eqs. (1.6)–(1.11), (1.13), (6.6)–(6.9), (6.21)–(6.27), it is

possible to extend the “relative” energy balance (Bertero and Uang 1992; Fajfar

and Krawinkler 2005) of a single-degree-of-freedom system to the multi-degrees-

of-freedom structural integrated system, as follows:Z
t

_uTMu
::
dt þ

Z
t

_uTCs _udt þ
Z
t

_uT C0
v cos

2 #
� �

_udt

þ
Z
t

_uTKsudt þ
Z
t

_uT K0
b cos

2 #
� �

udt ¼ �
Z
t

_uTMug
::
dt

ð6:36Þ

1

2
_uTM_uþ

Z
t

_uTCs _udt þ
Z
t

_uT C0
v cos

2 #
� �

_udt

þ 1

2
uTKsuþ 1

2
uT K0

b cos
2 #

� �
u ¼ �

Z
t

_uTMug
::
dt

ð6:37Þ

EK þ ED; structure þ ED; devices þ EE; structure þ EE; braces ¼ EI ð6:38Þ
in which, in the first member, the different rates, evaluated in relative terms, of the

kinetic energy of the system, the viscous energy both of the structural system that

the dissipative bracing system and the elastic energy of both systems are com-

bined, the whose sum must equal the cumulative energy input.

In Fig. 6.133, the above-mentioned accumulated energy rates of the integrated

structural system are represented for different values of the time, with reference to

the same 000055xa-Friuli accelerometric recording.

Fig. 6.132 Contributions of

all vibration modes related to

000055xa-Friuli earthquake
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Then, by considering the seven accelerometric recordings, the responses in

terms of relative displacements between each level of the MDOF system and the

ground are illustrated in Figs. 6.134, 6.135, 6.136, 6.137, 6.138, 6.139 and 6.140.

In Table 6.3, the maximum values of the response of the MDOF integrated

structural system subjected to the seven accelerometric recordings considered and

the corresponding average value are shown.

Fig. 6.133 Accumulated

energy rates of the MDOF

integrated structural system

related to the 000055xa-Friuli

earthquake

Fig. 6.134 The dynamic

response of the MDOF

integrated system subjected

to the 000055xa-Friuli

earthquake
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Fig. 6.135 The dynamic

response of the MDOF

integrated system subjected

to the 000198xa-Montenegro

earthquake

Fig. 6.136 The dynamic

response of the MDOF

integrated system subjected

to the 000665xa-Umbria

Marche earthquake

Fig. 6.137 The dynamic

response of the MDOF

integrated system subjected

to the 004675ya-South

Iceland earthquake
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Fig. 6.138 The dynamic

response of the MDOF

integrated system subjected

to the 006332ya-South

Iceland (after shock)

earthquake

Fig. 6.139 The dynamic

response of the MDOF

integrated system subjected

to the 006335xa-South

Iceland (after shock)

earthquake

Fig. 6.140 The dynamic

response of the MDOF

integrated system subjected

to the 007142ya-Bingol

earthquake
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The average displacement is equal to 3.02 cm confirming the effectiveness of

the integrated design methodology.

6.8 The Effectiveness of the Integrated Design Methodology
Evaluated on a MDOF System with a Non Uniform
Distribution of Stiffness

In this section, a MDOF framed integrated structure similar to the one (Fig. 6.124)

described in the previous paragraph is illustrated with the only difference being

20 % variations of stiffness between two consecutive floors. This stiffness variation

does not exceed the limits indicated by NTC08 (NTC 2008), and, so the structure

can still be defined regular.

The system of motion equations is similar to Eq. (6.6).

Table 6.3 The dynamic

response of the MDOF

integrated system subjected

to the seven accelerometric

recordings selected

Earthquake u (cm)

000055xa-Friuli 2.74

000198xa-Montenegro 2.41

000665xa-Umbria Marche 1.17

004675ya-South Iceland 1.42

006332ya-South Iceland (after shock) 8.33

006335xa-South Iceland (after shock) 2.24

007142ya-Bingol 2.86

u (average) 3.02

Fig. 6.141 The lateral

stiffness k for different

values of x2
1
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The mass of each level is m1 = m2 = m3 = m. By defining k2 = k the lateral

stiffness of the second level, the lateral stiffness of the uppest level and first level

one will be, respectivily, k3 = k/1.2 and k1 = 1.2 k. In order to have the frequency

of the first mode equal to x1 = 7.97 rad/s, the value of the stiffness k must be equal

to 300000 N/m, as shown in Fig. 6.141 in which the trend of the stiffness of the

second floor is represented for different values of the square of the frequency of the

first mode with reference to a structure with three levels and a mass m = 1000 Ns2/

m per level and 20 % variations of stiffness between two consecutive floors.

The mass matrix M turns out to be completely equal to Eq. (6.8).

Then, the total lateral stiffness matrix K of the integrated system is:

K ¼
k1 �k1 0

�k1 k1 þ k2 �k2
0 �k2 k2 þ k3

2
4

3
5 ¼ 104

25 �25 0

�25 55 �30

0 �30 66

2
4

3
5N=m ð6:39Þ

The matrix U of the eigenvectors normalized by imposing the first component

of each eigenvector equal to 1 results being (Eq. (6.40)):

U ¼
1:00 1:00 1:00
0:74 �0:79 �2:80
0:37 �1:10 2:90

2
4

3
5 ð6:40Þ

The eigenvectors represent the shapes of the corresponding modes. The eigen-

values are the squares of the frequencies of the relative modes: ki ¼ x2
i . The

diagonal matrix of the eigenvalues X2 (Eq. (6.41)) can, similarly, be obtained.

X2 ¼
x2

1 0 0

0 x2
2 0

0 0 x2
3

2
4

3
5 ¼

63:66 0 0

0 446:50 0

0 0 949:83

2
4

3
5 rad=sð Þ2 ð6:41Þ

Making the modal transformation of coordinates from normal coordinates (i.e.,

displacements at the nodes) into modal coordinates:

u ¼ Uy ð6:42Þ
it is possible to calculate the generalized mass matrix:

UTMU ¼
m�

1 0 0

0 m�
2 0

0 0 m�
3

2
4

3
5 ¼

1696 0 0

0 2838 0

0 0 17232

2
4

3
5Ns2=m ð6:43Þ

the generalized stiffness matrix:

UTKU ¼
k�1 0 0

0 k�2 0

0 0 k�3

2
4

3
5 ¼ 107

0:01 0:00 0:00
0:00 0:13 �0:00
0:00 �0:00 1:64

2
4

3
5N=m ð6:44Þ

the generalized force vector:
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UTF tð Þ ¼
f �1 tð Þ
f �2 tð Þ
f �3 tð Þ

2
4

3
5 ¼ �UT Mrð Þu::g tð Þ ð6:45Þ

where

r ¼
1

1

1

2
4
3
5 ð6:46Þ

The participation factor of the i-th mode is defined as:

gi ¼ uT
i Mrð Þ

uT
i Mui

¼ uiT Mrð Þ
m�

i

ð6:47Þ

Then, the vector of participation factors turns out to be:

g ¼
1:25
�0:31
0:06

2
4

3
5 ð6:48Þ

This variation of the stiffness matrix will change the participation factor of the

first mode g1 as it can be seen from Eq. (6.48). Similarly to the previous case, with

reference to the period T1 = 0.78 s or x1 = 7.97 rad/s and the seismic performance

equal to u/g1, from Figs. 6.11, 6.28, 6.29 and 6.30, the following values apply:

• n1 ¼ 23%;
• ks=k ¼ 0:21;
• cv optimum ¼ 12:99Ns=m � mass;
• kb optimum ¼ 103:86N=m � mass;
• s ¼ 0:12 s;

• xD;1 ¼ x1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� n21

q
¼ 7:76 rad=s:

Similarly, the economically optimal relationship of the lateral stiffness of the

structural system divided by the total lateral stiffness of the integrated structural

system ks/k, is 0.21 and it follows that the lateral stiffness matrix of the structural

system Ks is:

Ks ¼ 0:21K ð6:49Þ
the dynamic stiffness matrix K0

b of the viscoelastic dissipative bracing system is

the complementary and, therefore, is the following:

K0
b cos

2 # ¼ K �Ks ð6:50Þ
As in the previous case, knowing the relaxation time s and damped frequency of

the first mode, in accordance with the Eq. (4.41), the static stiffness matrix of the
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viscoelastic dissipative bracing system Kb can be obtained by using the following

equation:

Kb ¼ K0
b

1þ s2x2
1;D

s2x2
1;D

 !
ð6:51Þ

As in the previous case, with reference to the inherent damping matrix of the

structure, a Rayleigh damping matrix has been adopted proportional both to the

mass and stiffness matrices in order to obtain a damping ratio equal to 2 % on the

first and second modes:

Cs ¼ aMþ bK ¼
557:2 �343:5 0

�343:5 987:4 �412:2
0 �412:2 1138:6

2
4

3
5Ns=m ð6:52Þ

where

b ¼ n
2

x1 þ x2ð Þ ¼ 0:0014

a ¼ b x1x2ð Þ ¼ 0:2317

ð6:53Þ

With reference to the dynamic supplemental damping matrix C0
v of the vis-

coelastic dissipative bracing system, a Rayleigh damping matrix has been adopted

so that the corresponding static supplemental damping matrix is proportional only

to the static stiffness matrix of the viscoelastic dissipative bracing system via the

proportionality factor: relaxation time s.

Cv ¼ sKb ð6:54Þ
It is possible to obtain the dynamic supplemental damping matrix C0

v of the

viscoelastic dissipative bracing system, in accordance with the Eq. (4.42), by using

the following equation:

C0
v cos

2 # ¼ Cv

1

ð1þ s2x2
1;DÞ

 !
cos2 #

¼
c01 �c01 0

�c01 c01 þ c02 �c02
0 �c02 c02 þ c03

2
64

3
75 cos2 # ¼

13157 �13157 0

�13157 28946 �15789

0 �15789 34735

2
64

3
75Ns=m

ð6:55Þ
In this way, the overall damping matrix C ¼ Cs þ C0

v cos
2 # is diagonalizable

with the same basis of eigenvectors, since the criterion of Caughey is also verified:

CM�1K ¼ KM�1C
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Making the modal transformation of coordinates from normal coordinates (i.e.,

displacements at the nodes) into modal coordinates (Eq. (6.42)), the generalized

damping matrix can be calculated:

UTCU ¼
c�1 0 0

0 c�2 0

0 0 c�3

2
4

3
5 ¼ 105

0:06 0:00 0:00
0:00 0:67 �0:00
0:00 �0:00 8:61

2
4

3
5Ns=m ð6:56Þ

It follows that the modal space equations are decoupled because all the gen-

eralized matrices are diagonal and, therefore, the system of equations becomes:

m�
1 y1

::
tð Þ þ c�1 _y1 tð Þ þ k�1y1 tð Þ ¼ f �1 tð Þ

m�
2 y2

::
tð Þ þ c�1 _y2 tð Þ þ k�2y2 tð Þ ¼ f �2 tð Þ

m�
3 y3

::
tð Þ þ c�1 _y3 tð Þ þ k�3y3 tð Þ ¼ f �3 tð Þ

ð6:57Þ

in matrix form:

UTMU y
:: þUTCU _yþ UTKU y ¼ UTF tð Þ ð6:58Þ

Dividing the Eq. (6.57) by the i-th generalized mass, it is obtained:

y1
::

tð Þ þ 2n1x1 _y1 tð Þ þ x2
1y1 tð Þ ¼ �g1 ug

::
tð Þ

y2
::

tð Þ þ 2n2x2 _y2 tð Þ þ x2
2y2 tð Þ ¼ �g2 ug

::
tð Þ

y3
::

tð Þ þ 2n3x3 _y3 tð Þ þ x2
3y3 tð Þ ¼ �g3 ug

::
tð Þ

ð6:59Þ

The damping ratios are:

n ¼
23%
58%
81%

2
4

3
5 ð6:60Þ

The effective modal masses can be evaluated as follows:

m
_

i ¼ uT
i Mrð Þu

T
i Mrð Þ

uT
i Mui

¼ uT
i Mrð Þu

T
i Mrð Þ

uT
i Mui

uT
i Muið Þ
u

T

i

Muið Þ ¼ uT
i Muig

2
i

ð6:61Þ
The effective modal mass matrix is equal to:

M
_ ¼

m
_

1 0 0

0 m
_

2 0

0 0 m
_

3

2
4

3
5 ¼

2650:6 0 0

0 279:5 0

0 0 70:0

2
4

3
5Ns2=m ð6:62Þ

The sum of the effective modal masses of all the modes must give the sum of

the masses of all the floors of the building that is 3000 Ns2/m.

The percentage of each effective modal mass turns out to be:
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M
_

3m
¼

m
_

1

3m
0 0

0 m
_

2

3m
0

0 0 m
_

3

3m

2
664

3
775 ¼

88:35% �0:00% 0:00%
�0:00% 9:32% 0:00%

0% 0:00% 2:33%

2
4

3
5 ð6:63Þ

the trace of the above-mentioned matrix is equal to 100 %.

The whole procedure has also been developed, as shown in Chap. 3, in the time

domain both in terms of relative motions of the mass and in state space form.

As in the previous case, with reference to the 000055xa-Friuli accelerometric

registration, in Figs. 6.142, 6.143 and 6.144, by having examined the contribution

only of the first vibration mode of the integrated structural system, the viscoelastic

and viscous responses, respectively, of the linear viscous damper and viscous

damper-brace component for each level are shown and compared to the global

viscoelastic response of the corresponding structural level by considering the

horizontal projection of all the forces.

By applying the modal strain energy method on MDOF systems, as in the

previous case, it has been possible to estimate the energy dissipated by linear

viscous dampers and the elastic energy of the system relative to the first mode

shape of the system, which result being:

X
j

Wj ¼ 2p2

T1

X
j

c0 xD;1

� �
j
/2
d;j cos

2 #j ¼ 1:42 � 105 Nm

Wk ¼ UT
1KU1 ¼ UT

1x
2
1MU1 ¼

X
i

x2
1mi/

2
i ¼

4p2

T2
1

X
i

mi/
2
i ¼ 1:08 � 105 Nm

it has been, therefore, possible to evaluate the damping ratio of the first mode,

which results being:

Fig. 6.142 Hysteresis loops

at level 3, evaluated by

considering the contribution

only of the first vibration

mode, related to the

000055xa-Friuli earthquake
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nd;1 ¼
2p2
T1

P
j

c0 xD;1

� �
j
/2
r;j cos

2 #j

2p 4p2
T2
1

P
i

mi/
2
i

¼
T1
P
j

c0j/2
r;j cos

2 #j

4p
P
i

mi/
2
i

¼ 0:21

In accordance with Eq. (3.53), the overall damping ratio is:

n1 ¼ ns;1 þ nd;1 ¼ 23%

With reference to the same 000055xa-Friuli accelerometric recording, in

Figs. 6.145, 6.146 and 6.147, by having examined the contribution of all the

vibration modes of the integrated structural system, the viscoelastic and viscous

responses, respectively, of the linear viscous damper and viscous damper-brace

component for each level are shown and compared to the global viscoelastic

response of the corresponding structural level by considering the horizontal pro-

jection of all the forces.

Fig. 6.143 Hysteresis loops

at level 2, evaluated by

considering the contribution

only of the first vibration

mode, related to the

000055xa-Friuli earthquake

Fig. 6.144 Hysteresis loops

at level 1, evaluated by

considering the contribution

only of the first vibration

mode, related to the

000055xa-Friuli earthquake
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Fig. 6.145 Hysteresis loops

at level 3, evaluated by

considering the contributions

of all the vibration modes,

related to the 000055xa-Friuli

earthquake

Fig. 6.146 Hysteresis loops

at level 2, evaluated by

considering the contributions

of all the vibration modes,

related to the 000055xa-Friuli

earthquake

Fig. 6.147 Hysteresis loops

at level 1, evaluated by

considering the contributions

of all the vibration modes,

related to the 000055xa-Friuli

earthquake
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Fig. 6.148 Contributions of

all vibration modes related to

000055xa-Friuli earthquake

Fig. 6.149 Accumulated

energy rates of the MDOF

integrated structural system

related to the 000055xa-Friuli

earthquake

Fig. 6.150 The dynamic

response of the MDOF

integrated system subjected

to the 000055xa-Friuli

earthquake
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Fig. 6.151 The dynamic

response of the MDOF

integrated system subjected

to the 000198xa-Montenegro

earthquake

Fig. 6.152 The dynamic

response of the MDOF

integrated system subjected

to the 000665xa-Umbria

Marche earthquake

Fig. 6.153 The dynamic

response of the MDOF

integrated system subjected

to the 004675ya-South

Iceland earthquake
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Fig. 6.154 The dynamic

response of the MDOF

integrated system subjected

to the 006332ya-South

Iceland (after shock)

earthquake

Fig. 6.155 The dynamic

response of the MDOF

integrated system subjected

to the 006335xa-South

Iceland (after shock)

earthquake

Fig. 6.156 The dynamic

response of the MDOF

integrated system subjected

to the 007142ya-Bingol

earthquake
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From Figs. 6.142, 6.143, 6.144, 6.145 and 6.147, it is observed that the struc-

ture, compared to the previous case, is more deformable at the uppest level and

less deformable at the first level. In fact, the system presents, being subjceted to the

same force since the mass and the seismic demand are the same, and being

characterized by a distribution in elevation of viscosity coefficients proportional to

the stiffness values, greater displacements at the uppest level and smaller drifts at

the first level. In other words, not being varied seismic demand and global seismic

capacity of the integrated structural system, but being varied distribution of its

viscoelastic capacity in elevation, the dynamic response of the system in its

development in elevation is varied.

With reference to the 000055xa-Friuli accelerometric recording, Fig. 6.148

shows the contributions of the three modes and, as in the previous case, in

Fig. 6.149, the accumulated energy rates, evaluated in relative terms, of the input

energy, of the kinetic energy of the system, the viscous energy both of the

structural system as well as the dissipative bracing system and the elastic energy of

both systems are represented for different time values.

Finally, by considering the seven accelerometric recordings, the responses in

terms of relative displacements between each level of the MDOF system and the

ground are illustrated in Figs. 6.150, 6.151, 6.152, 6.153, 6.154, 6.155 and 6.156.

In Table 6.4, the maximum values of the response of the MDOF integrated

structural system subjected to the seven accelerometric recordings considered and

the corresponding average value are reported.

Also in this case, the average displacement is equal to 3.02 cm confirming the

effectiveness of the integrated design methodology.

6.9 Conclusions

This book, as extensively discussed and illustrated, has explored the possibility of

assigning the vibration control, traditionally assigned only to elastic lateral stiff-

ness of the system, even to the viscoelastic resources of a passive dissipation

control system.

Table 6.4 The dynamic

response of the MDOF

integrated system subjected

to the seven accelerometric

recordings selected

Earthquake u (cm)

000055xa-Friuli 2.71

000198xa-Montenegro 2.43

000665xa-Umbria Marche 1.17

004675ya-South Iceland 1.41

006332ya-South Iceland (after shock) 8.39

006335xa-South Iceland (after shock) 2.21

007142ya-Bingol 2.84

u (average) 3.02
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By following this new integrated design philosophy, the study proposes a

simplified method, in accordance to a displacement-based seismic design, aimed at

reaching an economically optimal integrated design of elastic structural/vicoselastic

control systems which achieves an expected seismic design displacement ranging in

a large interval. By assuming that the dynamic behavior of a n-degrees-of-freedom

system, characterised by a regularity in elevation, is governed by the first mode,

the methodology of the integrated design is developed on an equivalent single-

degree-of-freedom structural system. The parametric analysis has been carried out

by considering the natural vibration period of the integrated system ranging from 0

to 3 s thus to obtain a spectral representation of the results.

As regards the above-mentioned SDOF system, the design variables considered

are, in a first phase, the lateral stiffness of the structural system, the static stiffness

and the static viscosity coefficient of the viscoelastic dissipative bracing system by

considering a minimum value of the lateral stiffness of the structural system. In a

second phase, the natural vibration period of the integrated system has been

considered as a design variable and, then, another constraint has also been defined

on the maximum value of the overall viscous damping ratio.

The search for the optimal combination of design variables is performed

through dynamic analyses on a substitute (SDOF) integrated system by consid-

ering a set of seven historical unscaled acceleration records compatible in average

with an elastic reference design spectrum.

The optimal design, related to the substitute integrated system corresponding to

an expected performance, is represented by the design variables, valued on the

average seismic displacement demand related to the acceleration records, that

minimize the cost index, assumed as optimized objective function and evaluated

for each pair of relative cost ratios considered.

For each of the seven cases analyzed, three design abacuses and their respective

contour lines were defined in order to design an optimal integrated system located

in an area characterized by the seismic intensity corresponding to the reference

displacement average spectrum considered. In fact, from these abacuses, it is

possible to obtain the economically optimal values of lateral stiffness of the

structural system, the static stiffness and static viscosity coefficient of the visco-

elastic dissipative bracing system, for different values of the elastic natural period

T and the expected seismic performance u.
The methodology consists of defining, for fixed relative cost ratios, the eco-

nomically optimal combination of the design variables for different values of the

period of the single-degree-of-freedom integrated system and the desired perfor-

mance. In fact, with reference to the relative ratios Cv=Cs equal or lower than 10,

for periods longer than 0.5 s and for high performance (small displacements), it is

always cheaper to use viscoelastic resources and have a minimum value of lateral

stiffness of the structural system necessary for supporting the gravity loads: ks/k is

equal to 0.2. In the case of low performance (high displacements), having only the

lateral stiffness of the structural system is economically more convenient. With

reference to periods of less than 0.5 s, it is economically advantageous to use the
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elastic resources of the structural system also in the case of a very high

performance.

With reference to the higher relative ratio of the cost Cv=Cs, it can be deduced

that the optimal design consists, as it is intuitively expected, of an increasing use of

elastic resources of the structural system by reducing the viscoelastic resources of

the dissipative bracing system; only for smaller displacements and high periods, is

it economically advantageous to use the viscoelastic resources of the dissipative

bracing system.

In a second phase, with reference to the relative ratios Cv=Cs equal or lower

than 10, relative to the economic optimum of the integrated system obtained by

considering the optimal vibration period, it is noted that the cost of the integrated

system is always lower than the cost of the other two systems considered showing,

thus, the convenience of viscoelastic dissipation in seismic design of structural

systems. In such cases, there is a trend for different seismic design displacement

values to choose integrated structural systems with a high period and high vis-

coelastic damping resources resulting the most economically convenient.

In tha case of the higher relative ratio of the cost Cv=Cs, with reference to the

economic optimum of the integrated system obtained by considering the optimal

vibration period, it is noted that the cost of the integrated system tends to be more

and more comparable to that of the structural system with the result that the braced

system is the economically optimal solution. In fact, it is observed that there is a

regular trend to choose integrated structural systems with more lateral stiffness and

with less viscoelastic damping resources for different seismic performance values.

Also in the cases of low relative cost ratios, imposing the upper limit on

damping ratio necessarily leads to choose structures with more lateral stiffness

(decrease of the economically optimal period) with a consequential increase in

costs so that not for all seismic design displacements the integrated design is

cheaper than the braced structure. In fact, it is possible to deduce that, unlike the

respective analysis without constraint on the damping ratio, there is a more gradual

and less marked trend to choose structural integrated systems with a high period

and with high viscoelastic damping resources resulting more cost-effective.

Note, however, that these results are relative to the geometric configuration of

the viscous damper-brace component with an inclined angle equal to 45°, which is

the configuration with the lowest dynamic efficiency. Referring to the other con-

figurations, also for example the one in which the device is horizontal, it follows

that the efficiency of the damper is double or more than double and, therefore, the

values of the static stiffness would be reduced approximately by 50 % with the

consequence that the curves of the costs related to integrated systems would be

always lower than the other two curves of the conventional design solutions

considered.

An application example of a equivalent single-degree-of-freedom (SDOF)

system is used to illustrate the feasibility of the integrated design procedure by

using the design abacuses proposed confirming the effectiveness of the integrated

design methodology when compared to the other two conventional design

solutions.
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Finally, the design procedure, developed on a substitute integrated system, has

been extended to a proportionally damped MDOF framed integrated system

characterised both by a unfirm that variable stiffness distribution in elevation to

demonstrate the effectiveness of the integrated design methodology. The equiva-

lence between the SDOF system and the corresponding MDOF one is based on

specific hypotheses. In both cases, the integrated system, in accordance to the

proposed integrated design methodology, is designed by using the economically

optimal values of the stiffness and viscosity coefficient of the structural and vis-

coelastic dissipative bracing systems for the seismic performance considered. The

hypothesis of proportionally damped integrated structural system (i.e., Rayleigh

damping) has allowed to evaluate the dynamic response of the integrated system

by considering the dynamic behavior of the viscous damper-brace component and

taking into account the presence of the stiffness of the brace of each level, or

rather, the dependence on the product between the damped frequency of the first

mode of the integrated system and the relaxation time correponding to each

structural level has been considered to evaluate the dynamic response of each

structural level.

Note that by considering a limit on the strength of the vertical elements of the

structural system, it should be checked that these elements, designed with that

optimal value of lateral stiffness, have adequate strength necessary for supporting

the gravity loads. Otherwise, the procedure has to be iterated by increasing

the lower limit value of the lateral stiffness of the structural system.

Note that, in the case of the proportionally distributed damping, the linear

viscous dampers, unlike viscoelastic, but above all, unlike all the other devices and

the two design conventional seismic resistant solutions (unbraced or braced

structures), produce forces within a given story that are 90° out of phase with

respect to the restoring forces in the same story and, thus, the viscous force is

maximum when other forces are zero. This is an exploitable feature especially in

the case of existing structures. In fact, the impact of the damping forces on the

existing foundation may be minor and therefore the foundations, which are usually

very difficult and expensive to retrofit, may require minimal, if any, strengthening.

It is possible to conclude, therefore, that both the fluid viscous and viscoelastic

devices are very efficient in reducing the damage to the main structure and often

represent economically convenient design solutions.
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