

Distributed Object Architectures
with CORBA

Managing Object Technology Series
Barry McGibbon, Series Editor

SIGS Publications, Inc.
New York, New York

1. What Every Software Manager Must Know to Succeed with Object Technology
• John D. Williams

2. Managing Your Move to Object Technology: Guidelines and Strategies for a
Smooth Transition • Barry McGibbon

3. The Object Primer: The Application Developer's Guide to Object Orientation •
Scott W. Ambler

4. Getting Results with the Object-Oriented Enterprise Model • Thornton Gale and
James Eldred

5. Deploying Distributed Business Software • Ted Lewis, Ph.D.
6. The Blueprint for Business Objects • Peter Fingar
7. Object Technology Strategies and Tactics • Gilbert Singer
8. Upgrading Relational Databases with Objects • Robert Vermeulen
9. Building Object Applications That Work: Your Step-by-Step Handbook for

Developing Robust Systems with Object Technology • Scott W. Ambler
10. CUC96: Component-Based Software Engineering • Collected and Introduced by

Thomas Jell
11. Developing Business Objects • Edited by Andy Carmichael
12. Component-Based Development for Enterprise Systems: Applying The SELECT

Perspective™ • Paul Allen and Stuart Frost
13. Developing Business Systems with CORBA • Waqar Sadiq and Fred Cummins, J.D.
14. Cognitive Patterns: Problem-Solving Frameworks for Object Technology • Karen

Gardner, Alex Rush, Michael Crist, Robert Konitzer, and Bobbin Teegarden.
15. Process Patterns: Building Large-Scale Systems Using Object Technology • Scott

W. Ambler
16. Tried & True Object Development: Industry-Proven Approaches with UML • Ari

Jaaksi, Juha-Markus Aalto, Ari Aalto, and Kimmo Vatto
17. Enterprise Architectural Patterns: Building Blocks of the Agile Company •

Michael A. Beedle
18. NO BULL Object Technology for Executives • William Perlman
19. More Process Patterns: Delivering Large-Scale Systems Using Object Technology

• Scott W. Ambler
21. Distributed Object Architectures with CORBA • Henry Balen
22. Enterprise Java" Computing: Applications and Architectures • Govind Seshadri

Additional Volumes in Preparation

Distributed Object
Architectures
with CORBA

Henry Balen
with Mark Elenko, Jan Jones, and Gordon Palumbo

i CAMBRIDGE H i S I G S
UNIVERSITY PRESS igfflM BOOKS

PUBLISHED BY THE PRESS SYNDICATE OF THE UNIVERSITY OF CAMBRIDGE

The Pitt Building, Trumpington Street, Cambridge, United Kingdom

www.cup.cam.ac.uk
www.cup.org

CAMBRIDGE UNIVERSITY PRESS

The Edinburgh Building, Cambridge CB2 2RU, UK
40 West 20th Street, New York, NY 10011-4211, USA
10 Stamford Road, Oakleigh, Melbourne 3166, Australia
Ruiz de Alarcon 13, 28014 Madrid, Spain

Published in association with SIGS Books

© 2000 Cambridge University Press 2000

All rights reserved.

This book is in copyright. Subject to statutory exception
and to the provisions of the relevant collective licensing agreements,
no reproduction of any part may take place without

the written permission of Cambridge University Press.

Any product mentioned in this book may be a trademark of its company.

First published in 2000
Design and composition by Andrea Cammarata
Cover design by Tom Jezek

Printed in the United States of America

A catalog record for this book is available from the British Library.

Library of Congress Cataloging-in-Publication Data is on record with the publisher.

ISBN 0 521 65418 1 paperback

To Renee

Biographies

Henry Balen:
Henry has been designing and implementing object-oriented systems since the
mid-1980s, when the technology was still in its infancy. His work emphasizes
parallel and distributed processing. Since moving to the USA, Henry is involved
with distributed object projects for the financial community at the epicenter of
capitalism, Wall Street. Henry has been a frequent speaker on the subject of
CORBA and distributed systems at various conferences. Henry co-founded
Xenotrope in 1997. In his spare time he sleeps.

Mark Elenko:
Mark has concentrated on Java-based design and development since 1995, work-
ing on all types of systems. He has a B.A. from Columbia University, an M.S.
from New York University, and an apartment full of modular origami. Mark is
professionally fond of objects but tries to avoid them socially.

Jan Jones:
Jan has designed and developed applications since 1993, including client-server
application, trading system development specializing in math intensive algo-
rithms and user interfaces, and web-based distributed systems using Java and
CORBA. She has a B.S. in Electrical Engineering from the Georgia Institute of
Technology. When not working at Xenotrope she can be found performing with
Fuscia Dance.

Gordon Palumbo:
Gordon has been entrenched in the CORBA front lines since 1995, and has
designed and implemented CORBA- and Java-based systems for major financial
institutions. While not working with computers, he can be found practicing his
other avocation, juggling.

vii

Contents

Foreword xvii

Acknowledgments xix

Chapter 1: Introduction
What Architecture Is
Why Architecture Is Important
Distributed Architectures
The OMG and CORBA
Purpose and Scope
Intended Audience
Organization of Contents

Chapter 2: Distributed Objects
Chapter 3: Partitioning, Interfaces,

and Granularity
Chapter 4: Meta-Information
Chapter 5: Life Cycle and Persistence
Chapter 6: Transactions
Chapter 7: Security
Chapter 8: CORBA and the Internet
Chapter 9: Architecture Considerations

for Deployment
Appendix: COM/CORBA Integration

References

1
1
2
4
5
7
8
8
9

9
9
9

10
10
10

10
10
11

IX

Distributed Object Architectures with CORBA

Chapter 2: Distributed Objects 13
Quick Review of Object-Oriented Concepts 13

Objects, classes, and inheritance 14
Encapsulation 16
Polymorphism 16
Patterns and components 16

Object Based Distribution 18
What CORBA Provides 20

OMGIDL 21
CORBA Interoperability 22
Object adapters 23
Services 23

What CORBA Does Not Provide 25
Semantics 25
Interoperable naming service 28
Interface versioning 28
Objects by value 29
Messaging 29
System management 30

Service-Oriented Architecture 30
Integration Strategies with Existing Systems 31

Integration strategy for a database 33
Integration strategy for a library 34
Integration strategy for an application 34
Summary 35
References 36
Notes 36

Chapter 3: Partitioning, Interfaces, and Granularity 37
The Project Life Cycle 38

Partitioning
Interfaces

Cohesion
Coupling
Exceptions
Polymorphism

Granularity
Granularity and coupling
Granularity and performance

Example: Document Retrieval
Object model
Partitioning
Initial Interface Definition
Refinements

Summary
References

Chapter 4: Meta-Information
Examples of Using Meta-Information

Document repository
Package descriptions

Meta-Information in CORBA
Naming Service
Implementation Repository
Interface Repository
Dynamic Interface Invocation
Dynamic Skeleton Interface
Meta-Object Facility
Trader

Summary

Contents xi

39
41
42
44
46
47
47
48
50
51
51
54
56
60
64
65

67
68
68
70
70
71
78
79
84
89
91
92
94

xii Distributed Object Architectures with CORBA

References 94
Notes 95

Chapter 5: Life Cycle And Persistence 97
Life Cycle 98

Life cycle support implementations 99
Distributed Object Life Cycle 106

Life cycle service 106
Persistence 112

Know when to save, know when to load 113
Knowing how to save and load 114
Where to save and load 115
Persistence layers 116
Vendor approaches 117
POA possibilities 118
The service approach 120
The component quest 121
Persistent conclusions 121

Life Cycle IDL (Partial) 122
Summary 123
Notes 123

Chapter 6: Transactions 125
Transaction Processing 126

Transactions 127
Database systems and TP monitors 128
Resource manager 130
Transaction manager 131
Locks 132
Lock granularity 133

Contents xiii

Deadlock 134
Two-phase commit 135

The OMG Object Transaction Service 138
Transaction model 139
Basic OTS programming model 140
Interfaces 141
Programming models 143
Transaction context propagation 143
Context management 144
Exceptions 144
Recoverable resources 145
Synchronization objects 150
Nested transactions 152
Example: transactional document management 152

Concurrency Control Service 155
Model 155
Using the CCS 157

Summary 159
References 160
Notes 160

Chapter 7: Security 161
Security Principles 162

Elements of security 162
Security threats 163
Security functionality (features) 165
Developing a security policy 166

Review of the OMG Security Service 168
Security model 172
Principals, authentication, and credentials 175

xiv Distributed Object Architectures with CORBA

Security context
Domains
Delegation
Authorization/access control
Privacy and integrity of messages
Audit
Nonrepudiation
Security interoperability

SSL and CORBA
Summary
References
Notes

Chapter 8: CORBA and the Internet
Architectures

CORBA Web clients
Web server/ORB gateway

HOP and Firewalls
Firewall technology
Filters
Proxies
HTTP tunneling
HOP proxies

HTTP-NG
XML and CORBA

Quick tour of XML
How XML fits in with CORBA

Summary
References

179
179
183
185
186
186
187
189
190
191
192
192

193
193
194
196
202
203
203
205
206
207
209
210
210
213
215
216

Chapter 9: Architecture Considerations
for Deployment

Required Characteristics
Keeping Track

Logging
Monitoring
Auditing

Achieving Fail-over
Issues of state
The act of failure
The switch

Load Balancing
Metrics on requests
Metrics on machines
Usage metrics
Global metrics
The balancing act
What to balance
Balancing by Naming Service
Balancing by OAD
Naming Service/OAD summary
Balancing by work

Summary

Appendix: COM/CORBA Integration
From Whence We COM
Motivation
In Terms of COM
Bridging the Gap
Metamodel

Contents xv

217
217
219
220
223
228
229
229
230
231
233
233
234
235
235
235
236
237
239
240
240
246

247
247
248
248
249
250

xvi Distributed Object Architectures with CORBA

Object life cycle and identity
Interfaces and interface identity
Interface composition
Requests
Parameters

Type Mapping
Basic types
Complex types
Exceptions

Integration
COM and Automation objects from

CORBA clients
CORBA objects from COM and

Automation clients
Distribution

Deployment models
References

251
253
254
256
257
257
258
258
258
262

262

263
264
264
265

Index 267

Foreword

When we started the Object Management Group a decade ago, we could
only hope that writers of the caliber of Henry Balen would take up the
cause. I can remember those early days where we spent most of our time
trying to explain to anyone that would listen why object technology was
important. In the last ten years it has become an ever increasingly com-
plex world, one where homogeneity of platforms is almost unheard of,
and where legacy applications continue to be an integral part of the mix.
It has become apparent that the old does not always make room for the
new when it comes to enterprise applications. It has also become appar-
ent that understanding the architectural issues involved in designing
and structuring systems based on distributed objects is one of the major
keys for successful deployment. The industry consolidation behind such
standards as Common Object Request Broker Architecture (CORBA), the
Unified Modeling Language (UML), and the Meta Object Facility (MOF)
have immensely helped to make analysis and design easier. Moreover,
there are better tools out in the market than ever before, but we have yet
to automate architecture—which provides good job security for those
who understand the issues!

Henry Balen's efforts in this book should provide a jump-start to those
who are planning on building distributed systems using object technol-
ogy. The importance of architecture cannot be overemphasized. Many
projects have not achieved the desired results or in some cases even
failed because of the lack of time or lack of skills spent up front on the
analysis and design of the system architecture.

Achieving the stated project requirements, achieving the targeted
return on investment, and making the time to market window are the
key measures of an application's successful deployment. Good analysis
and design work done up front has emerged as an important ingredient
for helping to achieve these goals. This book provides a very useful guide
with valuable insights, from lessons learned, which will hopefully save

xvii

xviii Distributed Object Architectures with CORBA

the reader both time and money, and increase the probability of design-
ing and implementing enterprise-wide distributed systems using object
technology.

William Hoffman
President and COO
Object Management Group

Acknowledgments

No book is written in a vacuum, nor is it a complete work. This book
could have easily been trapped in a continuous cycle of revision to reach
"publishing nirvana." During the long process of writing I have received
support, without which this book would not exist, from colleagues and
loved ones. I would like to thank my spouse, Renee, for her patience and
confidence during the long days. I would also like to thank Marvin
Wolfthal for his time reviewing each chapter and subsequent valuable
advice. I also thank my colleagues at Xenotrope for their support, and
help with the production of the book. Finally, I would like to thank
Lothlorien and the editorial team at Cambridge University Press.

XIX

Chapter 1

Introduction

Over the past few years, I have been giving presentations on distributed
systems and CORBA. My focus has been on the design and architecture of
such systems. In each presentation I refined my ideas and thoughts. It
seemed the next logical step to produce a book on the same subject. If the
audiences I have seen are indicative, there is a definite need to share infor-
mation on the construction of distributed systems. Our field improves
with the flow of information: the ability to learn and build upon each
other's experience. This book is a contribution from my coauthors and me
to the codification of the principles of distributed object architecture.

Software architecture, by its nature, is rather ephemeral and not easy
to write about. There are various ad hoc approaches to architecture, and
it has only been in recent years that we have seen increase in work to
codify architectural principles. Part of this codification is the adoption
of design patterns from the work done in real-world architecture by
Christopher Alexander. There is a growing literature on design patterns,
and the use of patterns goes some way to helping with the construction
of complex distributed systems. We will now take a quick look at what
architecture means for the world of software and lay the groundwork for
the rest of the book.

What Architecture Is
If you were to look up the definition of architecture in a standard dictio-
nary, you would find that architecture is the "art and science of design-

1

Distributed Object Architectures with CORBA

ing and constructing buildings." You could say likewise that software
architecture is the art and science of designing and constructing pro-
grams; however, the design and construction of programs is not a
mature science. The construction of software systems lies somewhere
between a craft and an engineering discipline!

Architecture also refers to the style of a building; when you refer to
Gothic architecture, a certain style and method of construction is evoked.
Likewise, with software architecture, we use the term to refer to the struc-
ture of the system and the style used in its construction. The terms "com-
ponent based architecture," "object-oriented architecture," "pipeline
architecture," and so on, refer to ideas and ways of constructing systems
that have evolved during the short history of software engineering.

The tools for software construction are relatively accessible. Just as
practically anyone can construct a chair, anyone can write simple pro-
grams. However, the design and construction of complex programs can
be more akin to the design and construction of a cathedral.
Unfortunately, it is not difficult to find software systems constructed
with shaky foundations. The choices we make when specifying our
architecture and its principles will determine the foundation of our
eventual system.

Software architecture, unlike its real-world analogue, resides in a fluid
world of bits and bytes. It is a world not seen by the majority of com-
puter users; you can not walk down the virtual street and admire the
Corinthian columns or the flying buttresses. However, just as in its real-
world counterpart, principles of good software architecture have devel-
oped. Some of the principles of software architecture have become philo-
sophical beliefs, many of which are ingrained within the gestalt of the
developer community.

Why Architecture Is Important
We live in a time of constant and rapid change. With the rising popular-
ity of the Internet and electronic commerce, we are seeing higher expec-
tations for systems created in short time frames. The number of users of
a Web-based application increases rapidly, and can be difficult (if not
impossible) to determine at the outset. These systems have to adapt, be
flexible, and take into account constant change and new demands.

Introduction

With all this in mind, it is even more important that we develop sys-
tems with good architectural principles. If we do not, then the cost will
be high. We will need to redesign, rewrite, and reinvent, all of which
introduces risk to the business. Our goal is to create a system that can be
extended so as to expand and encompass change.

In addition to the above concerns, systems are also getting larger. It is
no longer possible for one person to understand every component of a
system. It is necessary to adopt guiding principles that are shared among
the development team. The architect (or architects) of the system can
determine the principles that will be used, but they also need to convey
their ideas to the developers.

A good architecture should facilitate the construction of your system.
The quality of your architecture can be determined by its support for
abstraction, extensibility, scaleability, interoperability, and components.

The architecture should support the types of abstraction necessary to
model your business. It is not good if your model contains business
objects that represent financial instruments and your architecture only
deals with socket-based communications. On the other hand, you do
not want your architecture to be overly complex; if it is too complex,
your development team will not adopt it. Another aspect of good archi-
tecture is its simplicity—that is, its ease of understanding.

Your architecture should support interoperability. Most modern envi-
ronments contain a mixture of machines. Your architecture must con-
sider this. Adopting open industry standards within your architecture
helps in this process.

Good architectures allow you to extend your system. It should facili-
tate the addition of new components, and the use of existing compo-
nents for new applications. A good architecture will also allow your sys-
tem to scale—that is, to take into account increasing number of users by
possibly replicating services.

Architecture is an important aspect of your system because it enables
you to provide a framework for construction, embody principles in your
system that developers can follow, and support future enhancements. As
much of the literature will point out, we are in the early stages of turn-
ing computing from a craft into a science. Currently, books like this one
help convey the folklore and codify architectural principles.

Distributed Object Architectures with CORBA

Distributed Architectures
The importance of good architecture is greater when constructing a dis-
tributed system. With more disparate components interacting, the com-
plexity of the final system increases. A good architecture should help you
manage that complexity. Also, that elusive goal of the object-oriented
world, reuse, is realized within distributed architectures. Each of our dis-
tributed services may be used by client applications in ways that were
unforeseen by the original implementers.

Figure 1-1 illustrates the evolution of software systems from the
monolithic to multi-tiered and distributed components. The construc-
tion of each of these systems would not have been possible without sup-
port from the underlying technologies, and as the level of abstraction
embodied within those technologies increased so did the sophistication
of the systems produced. You should note each enabling technology's
implementation usually builds upon functionality provided at the lower
level of abstraction.

Monolithic
Applications

Distributed
Components

System
Types

Network
Programming

(sockets)

RPC

Object Broken;

Enabling
Technologies

Figure 1-1. Evolution of distributed systems

Introduction

A distributed architecture is not complete without a set of services.
These services support the functionality necessary for the success of a large
system. Services that are core to the success of a distributed system cover
the functionality of directory, persistence, security and transactions.
Directory service allows you to locate remote objects. Persistence provides
you with the mechanisms to store an object for long periods. Some form
of security is necessary in any network, and transaction support allows
you to ensure the integrity of information. You can usually purchase these
services, or tools that help with your own implementations.

Distributed objects facilitate the construction of multi-tiered architec-
tures. The object-oriented concepts of encapsulation and polymorphism
translate well to the world of network-based components. When we look
at each distributed object, we see that it provides a public interface to the
network. The actual implementation hides behind this interface, and
there is no way that a user of the object can see the implementation.
With this in mind, it should be relatively straightforward to switch the
implementation of the object without affecting the users.

The OMG and CORBA
The Common Object Request Broker Architecture (CORBA) is an open
standard that provides infrastructure to support the construction of dis-
tributed systems. CORBA is independent of computer languages and
operating systems, and is the best solution available if you want to build
a heterogeneous system of distributed objects.

In the late eighties, many people and organizations were developing
infrastructures to support distributed objects. Then in 1989 the Object
Management Group (OMG) was founded. The OMG is a standards body
with a mandate to define a standard for systems composed of distributed
objects. It is probably one of the largest standards bodies, with over 800
member companies. Its vision of interoperating distributed objects was
achieved with the advent of CORBA 2 in 1996. Since then the OMG has
expanded its effort and come up with standards that extend the base fea-
tures of an ORB.

The 800 or so members of the OMG vary from vendors (such as IONA,
Inprise, BEA and so on) to users (such as Boeing, Motorola, Cisco and so
on). The OMG provides a forum in which the users of the technology

Distributed Object Architectures with CORBA

interact with the vendors. This melting pot of the computer world is
responsible for a vision of a world of distributed objects based on open
standards. While the membership of the OMG contains organizations
with many viewpoints, it would be fair to say that the vast majority
agrees upon the need of open standards.

Many groups are working in parallel within the OMG to define standard
interfaces to objects supporting vertical markets (or Domains) and to define
and adopt specifications for analysis and design. There is now a Domain
Technical Committee within the OMG with subgroups in Healthcare,
Telecommunications, Finance, Electronic Commerce, Life Science,
Transportation, Manufacturing, and Business Objects. The Analysis and
Design Task Force within the OMG was responsible for adopting the
Unified Modeling Language (UML) as part of the OMG specification.

All of this leads to a grand vision of a single architecture that permeates
the software engineering process from design through implementation and
deployment. Central to this vision is the Object Management Architecture
(OMA). The OMA is illustrated in Figure 1-2. At its core is the Object
Request Broker (ORB). The core ORB provides the basis for location and

User
Applications

CORBA
Vertical
Facilities

CORBA
Horizontal
Facilities

ORB

CORBA
Services

Figure 1 -2. The Object Management Architecture

Introduction

communication between distributed objects, it supports the definition of
object interfaces and brokers requests for remote method invocations.

The CORBA Services define basic services that most distributed object
systems need; these include naming, security, transactions, persistence,
and others. The CORBA facilities build upon the ORB core and the
CORBA Services; in fact, if you look at the OMG call for proposals (CFP)
you will find that responses to requests for new facilities should state how
they fit into, and build upon, the OMA. There are two types of facilities:
horizontal and vertical. Horizontal facilities are not domain-specific; the
Meta-Object Facility is one such example. Vertical facilities are domain-
specific, such as Currency and Party Management in the Finance domain.

CORBA is probably one of the most important technologies of recent
years. It has helped us realize complex distributed systems. As the stan-
dard evolves, we will see more facilities that support higher levels of
abstraction. It will become an enabling technology for the enterprise.

Purpose and Scope
Development of multi-tiered systems using technologies such as CORBA
and Java has increased. Unfortunately, the software community current-
ly suffers from a shortfall of people with the skills necessary to build flex-
ible, distributed, object-based systems. In addition, the demand to pro-
duce such systems within many industries is increasing, especially with
increased interest in providing systems that work on the Web. In con-
junction, there has been an attitude of "learn the technology and the sys-
tem will follow." Because of organizational issues and unrealistic expec-
tations, however, programmers spend little time on the overall design of
a distributed architecture. This has led many people to produce inflexible
systems that do not perform well when systems need to expand.

Distributed systems are more complex than monolithic programs.
There are more interacting parts that rely on a physical network for com-
munications. There is greater potential for parallelism. There are syn-
chronization and integrity problems unique to the nature of distributed
systems. These systems are also less tractable and harder to debug.

This book is about the architectural issues involved in the design and
structure of distributed systems based on distributed objects. Principles
of building a distributed object system are similar, regardless of whether

Distributed Object Architectures with CORBA

you use CORBA or some other technology (such as RMI or DCOM). You
will still need to tackle the issues of interface design, transactions, per-
sistence, life cycle, and so forth. I picked CORBA since it is an open stan-
dard with plenty of implementations, with both commercial implemen-
tations and public domain versions available on the Internet.

The goal of this book is to help you learn different aspects of distrib-
uted architectures. Architecture encompasses the organization and com-
position of a system, assignment of functionality, development and use
of frameworks, selection of design, and decisions for deployment. The
composition of your system is determined by your interface design; we
shall take a closer look at aspects of interface design and how it affects
your distributed architecture. All of these will be explored in the context
of building a distributed object system.

In this book, we are going to explore distributed object architectures,
both as a type of architecture for a software system and the principles for
the design and construction of such systems.

Intended Audience
I wanted to produce a book for a wide audience, but not be another intro-
duction to CORBA or object-oriented techniques. There are plenty of other
texts that will provide you with more detailed information about CORBA
(see the references for some). My aim is to take an architectural viewpoint
to the construction of distributed systems without being yet another pat-
terns book. The book is also meant to be practical. The information con-
tained within is based on the experience of building such systems.

If you intend to learn about or develop a system of distributed objects,
or are developing such a system, this book is for you. Whether you are a
manager, system architect, application designer, or programmer, you
will find information of use in this book.

Organization of Contents
This book has been organized to take you through a description of distrib-
uted objects and help you understand the design issues, then look at the
various aspects of a distributed object system. Nowadays, no book is com-
plete without some mention of the Internet; we look at how CORBA relates

Introduction

to the Internet, especially some of the new standards that are emerging and
will influence future CORBA-based systems. We finish off by taking a look
at what is involved when you wish to deploy a system using CORBA.

Here are brief summaries of the rest of the chapters in the book. Most
chapters are fairly self-contained, so if you prefer to go through the book
in a semi-random manner, you can use this as your guide.

Chapter 2: Distributed Objects
Distributed objects provide good support for the construction of multi-
tiered systems. Here we look at what a distributed object is. Then we see
how CORBA supports the construction of distributed object systems, and
where CORBA can do with some enhancement. We finish the chapter by
looking at how existing systems can be integrated using object wrappers, in
particular existing systems are classified into three types: database, library,
and application. Each of these present their own challenges for integration.

Chapter 3: Partitioning, Interfaces, and
Granularity
The key to building a successful distributed system is in the design of
your interfaces. These are the aspects of your distributed objects that are
seen by all users. The decisions you make when designing your inter-
faces have a direct impact on the flexibility and performance of your
final system. We shall see why it is not sufficient to take an object model
and just distribute it on the network.

Chapter 4: Meta-lnformation
Meta-information holds the key to the production of flexible systems. We
take a look at meta-information within CORBA and how you can use it.

Chapter 5: Life Cycle and Persistence
Objects in your system have a life cycle. They are created, moved, and
destroyed. Sometimes the life of an object exceeds that of the process in
which it is created; in this case the object must reside in a persistent store.

10 Distributed Object Architectures with CORBA

Chapter 6: Transactions
Transactions provide us with the mechanism to maintain the integrity of
information within our system. Transaction monitors work in conjunction
with our databases to do just this. The CORBA standard has integrated the
functionality of transaction monitors within its Object Transaction Service.
We take a look at what transaction processing means for distributed objects.

Chapter 7: Security
Any computer system that is part of a network can be vulnerable to mis-
use and attack. Security services are needed to help minimize the possi-
bility of misuse. In addition, systems that perform electronic commerce
require security features that guarantee privacy and non-repudiation.
The CORBA security service provides a lot of the necessary functionality
in a relatively nonintrusive manner.

Chapter 8: CORBA and the Internet
With the importance of the Internet, we would be remiss not to look at
how CORBA and the Internet work together. We look at how CORBA fits
in with the Internet, and in particular, we look at architectures to extend a
CORBA-based system across the Internet. We will also take a brief look at
new standards such as XML and see how this is complementary to CORBA.

Chapter 9: Architecture Considerations for
Deployment
Once you have developed your system, you will need to deploy it. How
do you monitor what is going on? How do you handle failure and load
balancing? Here we will investigate some of the mechanisms that you
can use to help with the deployment of the final system.

Appendix: COM/CORBA Integration
It is the goal of the OMG for CORBA to be inclusive; this means that it
should work with other technologies. The OMG has defined mecha-
nisms for integration with Microsoft's COM. For completeness, we look
at the OMG specification. When you decide to obtain a product to help
in this area, you will know what is involved.

Introduction 11

References
Alexander, Christopher et al. A Pattern Language: Towns, Buildings,

Construction. Oxford University Press: New York, 1997.

IEEE Software, Special Issue Architecture 12, no. 6 (November 1995).

IEEE Software, Special Issue Object Methods, Patterns, and Architectures 14,
no. 1 (January/February 1997).

Mowbary, T and R. Malveau. CORBA Design Patterns. New York: John
Wiley & Sons, 1997.

Orfali, R., D. Harkey, and J. Edwards. The Distributed Objects Survival
Guide. New York: John Wiley & Sons, 1996.

Shaw, M and D. Garlan. Software Architecture. Prentice Hall, 1996.

For further information on the Web:

http://www.omg.org—here you can find the CORBA specification and
the current work of the OMG.

Chapter 2

Distributed
Objects

Why would you want to implement a system using distributed objects?
Maybe you have written a client/server system using other technologies
(such as TCP based sockets, RPC or DCE). You may wonder what the
motivation is to move to "distributed objects"? To answer that question,
we will first review the benefits of object-oriented technology; then we
will see how these benefits are utilized when object-oriented technology
is taken to the network.

Object-oriented concepts, tools, and techniques have been with us for
the best part of three decades. During that time the technologies based
on object-oriented principles have matured: languages, development
environments, case tools, and databases. Applications have become
more distributed in nature. Development tools have matured to support
the construction of distributed systems.

Quick Review of Object-Oriented
Concepts
This book doesn't aim to teach you object-oriented concepts. In this sec-
tion we will merely review some of the salient aspects. For further infor-
mation, I recommend that you read one of the many books on object-
oriented design such as "Object-Oriented Software Engineering" by

13

14 Distributed Object Architectures with CORBA

Jacobson et al. (See References at the end of this chapter.)
Over time, systems have increased in complexity. Software construc-

tion had to match that complexity. The object-oriented paradigm
enables us to manage the complexity of modern systems. Complexity is
handled through classes, inheritance, polymorphism, and objects.

Objects, classes, and inheritance
Every day we classify objects as a mechanism to help us make sense of
the world. When I ask you if you have trees in your garden, you under-
stand what I mean by the term tree. Tree is a classification that we use to
represent objects such as the oak tree that is in Renee's garden. (Renee's
garden is an instance of garden, but we will get to that later.) This helps
us communicate and share our model of a complex world. I do not have
to iterate through all the types of trees to ask you that simple question.
In object-oriented terms, tree is a class. Oak and maple trees are both a
specialization of the class tree and are themselves classes.

An object is an instance of a class. Objects are concrete realizations of
the type defined by the class. The oak in Renee's garden is an object (an
instance of the class oak).

In an object-oriented model, we represent the specialization of oak
and maple from tree by using an inheritance relationship. Figure 2-1
illustrates the inheritance relationship of oak and maple to tree. You
should note that inheritance should be considered a relationship we
refer to as "kind of."

An oak is a kind of tree.
A maple is a kind octree.
Some programming languages enable you to develop classes that can

inherit from more than one parent. This is called multiple inheritance.
Over the past few years, debate about the usefulness of multiple inheri-
tance (or lack thereof) has taken on the intensity of religious warfare. My
advice is that you remember that inheritance models "a kind of" rela-
tionship. Ask yourself if the child class is "a kind of" the parent class. If
it does not seem to be a match, then you may want to model the rela-
tionship by use of composition rather than inheritance. We would indi-
cate whether a tree is deciduous by use of an attribute of the class tree.

All instances of a class display similar behavior, properties, and meth-

Distributed Objects 15

Oak Maple

Figure 2-1. Sample inheritance relationship

ods. The specification of a class exposes only its interface to public view;
its underlying implementation is hidden, or "private." The interface
defines the methods (a method is the object-oriented term for a func-
tion) that are used when we interact with an instance of the class. The
private implementation contains the code that is executed whenever
one of the public methods is invoked. Other entities within the system
interact with the object through the interface defined by the class. Only
the person who provides the code for the implementation is concerned
with how the internals of the object work; the user is only concerned
with the interface.

When we define a class, we provide a public interface (set of methods)
and an implementation. When we use inheritance, the child class
(maple) inherits the methods and implementation from its parent. So
when we want to model the difference between deciduous and conifer-
ous trees, should we use an inheritance relationship or should this be an
attribute of the class tree? The answer to this will probably best be deter-
mined by the model that you develop as your solution.

You should note that CORBA does not support implementation inher-
itance. Though you can define an inheritance hierarchy in IDL, this is
interface inheritance. The method definitions are inherited—not the
implementation!

16 Distributed Object Architectures with CORBA

Encapsulation
The principle of encapsulation is not new to object-oriented program-
ming; structured programming made use of encapsulation. Encapsulation
refers to hiding the implementation of an object (or component) behind
a well-defined interface.

Switching to another analogy, most people today know how to drive
a car. They expect that the clutch, acceleratorl and brake pedals are
located in the same relative positions. It is not necessary to know how
to build a car in order to use it. This separation of interface (the driving)
from implementation (the construction) in object-oriented parlance is
encapsulation. Encapsulation enables us to understand an object from its
interface; we do not need to look at the internals.

Polymorphism
We may wish to model part of a transportation system with different
modes of transport. We have a general Vehicle class from which we inher-
it Boat, Car and Plane. Figure 2-2 illustrates this inheritance from Vehicle.
Vehicle defines the method drive; thus, it is possible to drive a vehicle by
invoking this method. Each of the subclasses also define this method,
they each provide an alternate implementation. What happens when
you drive a boat is different from what happens when you drive a car.
Instances of boat and car understand what you mean when you say drive.
This is polymorphism.

To support this type of software construction we need concepts that
support our methodology as well as our implementation language and
tools. Although we can write an object-oriented system in a non-object-
oriented language, the impedance mismatch between design and imple-
mentation will present a severe problem (and may indeed define a circle
in Dante's Inferno).

Patterns and components
Now that the construction of systems using object-oriented techniques
has matured, techniques are emerging to build upon the object-oriented
foundation. A recent technique is the use of Patterns. There are patterns

Distributed Objects 17

Vehicle

drive()

Automobile

driveO

Z\

Boat

driveO

Plane

driveQ

Figure 2-2. Types of Vehicle

of design and patterns of analysis. Developers noticed that they were
using recurring solutions when building software systems. They there-
fore borrowed an idea from the field of architecture: that there are pat-
terns reused in the design of buildings. The aim of the pattern move-
ment is to document a recurring solution; we then have a knowledge
repository that can be referenced and used in future designs (and analy-
sis) that may be applicable. The seminal book for patterns is by the
"gang of four" (Gamma et al 1994). Patterns for design and analysis pro-
vide a supplementary mechanism for conveying information about the
system.

Recently we also have witnessed the emergence of component mod-
els. These build upon the object-oriented paradigm to provide as a mech-
anism of construction standard objects that can be "plugged" together
to provide a working system. A component model defines a set of meth-
ods that a component should support; these enable components to
interact with each other in a standard manner.

18 Distributed Object Architectures with CORBA

Object Based Distribution
No computer is an island, for we have become a networked world.
Whether it is an Internet, Intranet, or Extranet, we are constructing net-
works of machines to share and exchange information and resources. As
with other applications systems, distributed systems are also becoming
more complex. In addition, the modern business makes use of many dif-
ferent types of computers and applications; there is a strong desire for all
of these systems to work together. Therefore, it makes sense to leverage
the advantages that accompany the object-oriented paradigm to the pro-
duction of distributed systems.

Getting systems to work together is only one reason for building a dis-
tributed application. You may want to distribute the work among a set
of processing resources: some of the computers may be better suited to
manipulation of large amounts of data, whereas others are better at fast
graphical display. You may want to share information across a corporate
network (or the Internet): the company's sales force may be in different
locations but need to see the same information. You may want to reduce
the cost of software distribution in your organization by providing thin
clients, while the business logic resides on remote services. The term thin
client became more promient soon after the introduction of Java; a thin
client is one with minimal code, usually just a user interface and all the
business logic resides at a server. Thin clients can be easily distributed on
a as demand basis and thus reduce the cost of maintaining large num-
bers of machines running the same application.

A distributed object is an object that can reside anywhere on the net-
work. The client does not know the implementation language (C++,
Smalltalk, or Java) that we used, nor does it need to know. We commu-
nicate with the distributed object by using a proxy; this proxy enables us
to view the distributed object as if it were local to the client application.
It is not necessary for the user of the proxy to know the location of the
corresponding distributed object. The infrastructure provides an object
bus, a transport that supports requests from the client to the distributed
object. The infrastructure to support distributed objects brokers the com-
munication from the client to the distributed object.

We are seeing architectures for distributed systems being composed of
many tiers. The client/sever architecture of the '80s is a two-tier archi-

Distributed Objects 19

User Interface/
Client Application

x
Application Services

,

i l i

i

Persistence Services

Figure 2-3. Components of a three-tier architecture

tecture, the first tier containing the client application and the second
tier the database service. Now we are seeing architectures that utilize
three or more tiers. Figure 2-3 illustrates a typical three-tier architecture.
We separate the user interface from the application logic and the data
persistence services. The Persistence services provide the means to make
an object persistent, to save its state. We implement the persistence by
using an object database, or providing a layer than can translate from
your object model to other storage (like a relational database).

Distributed objects provide natural support for implementing three-
tier and multi-tier architectures. By decoupling these layers, we provide
a system that facilitates the reuse of the distributed objects implement-
ed in the application and database layers. This allows us to view the dis-
tributed objects provided by the application services as network-aware
components, which we can reuse in a variety of clients.

The infrastructure needed to construct such a system of distributed
objects is a piece of middleware software called an Object Request Broker
(ORB).

We can build a basic distributed object system on top of the func-
tionality provided by the basic ORB. If we support large applications, we

20 Distributed Object Architectures with CORBA

will need other services: a directory service to find objects on the net-
work, a security service that manages access and encryption, support for
distributed transactions, and notification of significant events. Further
discussion of the services to support the production of a distributed
object architecture will be covered in later chapters of this book.

Distributed objects bring to the network the benefits that we first real-
ized from using object-oriented techniques. When we distribute an
object, we make its interface (methods) available to clients via an object
bus. Middleware tools such as an ORB provide us with this ability.

What CORBA Provides
The Object Management Group (OMG) has defined an open standard
for ORBs: the Common Object Request Broker (CORBA) standard.
CORBA has gone through a series of revisions since it was first intro-
duced. The version currently in use is CORBA 3. We shall soon see ORB
implementations incorporating the new features.

Describing what CORBA provides as a specification, and what is avail-
able to purchase from your local vendor, is a moving target—a target
that moves slowly, however. The standards process that the OMG goes
through is constant, with meetings every couple of months throughout
the year. Several books will give you an in-depth description of CORBA.
I am going to provide a brief description of the highlights that you
should be aware of before you continue with the rest of this book.

CORBA provides us an open standard for the production of distributed
object systems. This insures interoperability across programming lan-
guages, machines, and products. We can all see the benefits of standards
in our life: electrical sockets and plugs, music CD formats, road signs, and
railroad tracks. Without these standards, we would run into problems
while attending to our everyday business. In a similar manner, the use of
standards in the production of distributed object systems help us.

With CORBA, we have a mechanism where objects can communicate
with each other regardless of where they are located. Objects may be
located within the same program, within different programs on the
same machine, or on separate machines. Also, since CORBA provides
mappings from OMG Interface Definition Language (IDL) to all major
programming languages, we can choose to implement our objects in the

Distributed Objects 21

language and on the hardware of our choice. You can now find products
such as IONA's Orbix for MVS that enable you to implement CORBA
objects on the mainframe!

CORBA provides us with a standard model for distributing objects
across our network. CORBA also defines a rich set of services that facili-
tate the construction of distributed object systems. The ORB is the
plumbing that enables the operation of distributed object architectures.
Like all plumbing, the ORB should be transparent to the application. To
realize this it is necessary for there to exist services that use the plumb-
ing and facilitate the construction of distributed architectures.

OMG IDL
CORBA requires that we define our objects using Interface Definition
Language (IDL). Recall that we want to provide a system of distributed
objects in which the infrastructure is independent of the programming
language, operating system, and other implementation-specific details.
CORBA specifies how IDL is "mapped" to a variety of widely-used pro-
gramming languages. Every CORBA implementation supplies a code-
generation utility for some subset of the supported languages. Thus, we
may think of IDL as a kind of "universal" high-level language for speci-
fying the interfaces to networked services. When we use IDL, we provide
a "contract" between the distributed object and its users. We are oblig-
ating the distributed object to conform to the interface that we have
defined. The client can see what methods are supported by the distrib-
uted object and knows what information it needs to send to that object
when it wishes to invoke one of the methods.

As a quick comparison, Microsoft's DCOM also provides an IDL
(Microsoft IDL). However, you do not have to use MIDL, since the tools
provided by Microsoft will generate IDL for you. Java Remote Method
Invocation (RMI) does not use an IDL. RMI is a distributed object system
for Java servers and clients; since there is one homogeneous program-
ming language, there is no need to abstract the interfaces from the imple-
mentation language.

IDL is a declarative language; you explicitly declare your interfaces and
types. You may wonder, "Why should I learn another language?" Take
heart; IDL is very similar to other programming languages and its con-

22 Distributed Object Architectures with CORBA

structs are easy to understand (especially for those of you already famil-
iar with C++ and Java). Listing 2-1 provides an example of some IDL code.

Listing 2-1: Example IDL code

struct SearchCritera {
string documentType;
string criteria;

interface DocumentLocator {
exception NotFound {

string reason;

string FindDocument(in SearchCriteria criteria)
raises(NotFound);

Once you have written your interfaces in IDL, you will use an IDL
compiler supplied by your ORB vendor. The IDL compiler will generate
code in your target programming language; the produced code handles
the details of how the client and server communicate across the network
and consists of a client "proxy" and a server "skeleton." Your client uses
the proxy to interact with the remote object in a transparent manner.
You will implement the distributed object by providing an implementa-
tion for the skeleton.

CORBA Interoperability
CORBA Interoperability specifies how different implementations of the
standard communicate with one another, thus guaranteeing vendor-
independence in the area of networking. The General Inter-ORB
Protocol (GIOP) defines a protocol for all messages sent across the net-
work. Like IDL, GIOP is a high-level abstraction. Specific implementa-
tions are built on different network transport protocols. The Inter-ORB
Interoperability Protocol (HOP) is an implementation of GIOP using the

Distributed Objects 23

ubiquitous TCP/IP. ORB implementations wishing to comply with the
Interoperability portion of the CORBA standard must support HOP.

The ORB vendor may implement other protocols. These are called
Environment-Specific Inter-ORB Protocols (ESIOP) and allow the ORB to
bridge different networking protocols. One such ESIOP is based on DCE
(Distributed Computing Environment Common Inter-ORB Protocol).

In the HOP protocol, information about the network location of an
object is contained in an Interoperable Object Reference (IOR). You usu-
ally obtain an object reference from a directory service. The ORB takes
care of resolving the object reference to the actual distributed object;
your program will not normally be concerned with the details. CORBA
also enables the programmer to convert an IOR to and from a text string
representation. We can store and communicate this string to other
processes using a variety of methods.

Object adapters
For the ORB to manage remote objects in a manner transparent to the
client, an object adapter is required. Object adapters are responsible for
creating and activating a distributed object, and for invoking its opera-
tions or methods. Figure 2-4 illustrates the components of an ORB that
are involved when a client invokes a method, of a remote object.

There can be many different types of object adapters. CORBA 2 defines a
basic object adapter (BOA) that ORBs provide to fulfill this functionality.
Though the specification defines the behavior of the object adapter, it does
not specify a portable application programming interface (API). With CORBA
3, we will see the introduction of the Portable Object Adapter (POA). The
POA provides a standard interface to object adapters that is vendor-neutral.

Services
As of this writing the CORBA standard defines fifteen services, all of
which are meant to help with the construction of a distributed object
system. You will be hard pressed to find all services implemented by any
one vendor, although a core set of services are available for most com-
mercial ORBs. These are:

24 Distributed Object Architectures with CORBA

Figure 2-4. Remote method invocation

• Name Service—The name service provides a directory mecha-
nism. We use this service to store references to remote objects in
a directory structure so that a client can find them by name.
There is no assurance, however, that the object you are trying to
access is active.

• Event Service—The event service defines a mechanism for suppli-
ers to broadcast information to a set of consumers by the use of
event channels. The event service allows you to use push or pull
protocols (or even a combination). You can even set up channels of
filtered information. The CORBA standard, however, does not guar-
antee any quality of service; this is provided by the implementers
of the event service (this is a way that distinguishes vendors).

• Transaction Service—The Object Transaction Service (OTS) pro-
vides a way to manage distributed transactions. This is similar
to—or the same as, depending on the vendor—a mechanism used

Distributed Objects 25

by transaction monitor products such as Tuxedo from BEA, or
Encina from Transarc. The OTS provides us the means to ensure
transactional integrity for the persistent information within the
system. It also manages the database resources used by the system,
allowing the system to perform database commits or rollbacks
depending on the success or failure of the transaction.

• Security Service—The security service provides a mechanism to
implement all aspects of security, from user validation and authen-
tication, to access control, encryption, and non-repudiation.

• Trader Service—The trader service provides a "yellow pages" for
the system. Like the name service, it is a means by which we can
locate an object. However, instead of using a name, we search for
an object by criteria. Each service registered with the trader has
associated attributes that characterize the service.

We will be revisiting some of these services in more detail as we pro-
ceed with the discussion of distributed architectures in this book.

What CORBA Does Not Provide
The last section gave us with a quick review of what CORBA provides.
Here we will cover some of the services and facilities that vanilla CORBA
does not yet provide that would help when producing a production sys-
tem. Implementations of the next revision of the OMG standard,
CORBA 3, will soon emerge; these will provide us with improvements
(such as an Interoperable Naming Service, Objects by Value, Messaging,
and so on) that address some of the issues mentioned.

Despite the missing features, we can still produce a viable architecture
using CORBA for our infrastructure. We can compensate in the design
and implementation of our system, by either adjusting our architecture
or providing homegrown versions of the missing features.

Semantics
We use IDL to define the interface of our distributed objects, but IDL
does not capture the behavioral semantics of those services. We know

26 Distributed Object Architectures with CORBA

what methods an object provides, its arguments, what it returns, and
what exceptions it can handle. We do not know what preconditions may
exist before we use any particular method supplied by the object, nor
what postconditions may exist. We do not know the precise relation-
ships between the distributed objects or what relationship (if any) exists
between different methods in the interface. Currently CORBA does not
provide a mechanism to capture this information.

The Unified Modeling Language (UML) is the
leading modeling language for object-oriented
analysis and design (OOAD). UML was primar-
ily the work of Grady Booch, Ivar Jacobson,
and James Rumbaugh (the "three amigos" of
Rational Software Corporation) who brought
together elements of their Booch, OOSE, and
OMT methods. The UML standardization effort
was taken up by the OMC, which approved
UML as a standard in 1997. The OMC has con-
tinued to maintain and revise the standard and
has used it as the basis for other work.

UML is used as a graphical notation; it is not
itself a methodology for OOAD. Although
Rational Software promulgates the Unified
Process, UML is basically process-independent.
That said, UML provides the language for the
software blueprints that are the working ele-
ments of any OOAD method. UML can
describe how a system is to be used, how its
classes are related and packaged, how it runs,
and how it is physically deployed. UML serves
as a means of communication in 0 0 develop-
ment—among people working on a system,
and between people and CASE tools.

Figure 2-5 is a sample UML use case diagram
of some interactions between a user and a doc-
ument system. The user can find or format

documents, both cases involve authenticating
the user. Finding a document is a generaliza-
tion of finding by keyword or id. Changing
the view type of a document is an extension of
the ability to format a document. This dia-
gram captures some of the functional require-
ments of the system, and can be used to derive
design elements and test cases.

UML includes several types of diagrams:
• Use case diagrams capture interactions

between actors and the system.

• Class diagrams show classes and interfaces
and their relationships.

• Object diagrams illustrate object instances
and their relationships.

• Sequence diagrams show the sequence of
messages between objects.

• Collaboration diagrams elucidate the struc-
tural relationships between interacting
objects.

• Statechart diagrams are state machine dia-
grams for classes, use cases, and systems.

• Activity diagrams are activity flowcharts.

• Component diagrams show components
and their relationships.

• Deployment diagrams show relationships
between hardware and software elements.

Distributed Objects 27

A solution is to implement a repository of metadata information that
describes a system. Rather than implement a repository, we may achieve
the same goal by providing an IDL interface to a repository supplied
with a CASE tool. The use and access to metadata by the application at
runtime enables us to produce dynamic systems. These systems can dis-
cover and use new distributed objects as they are introduced with mini-
mal or no code change.

The OMG's meta-object facility (MOF) will provide us this functional-
ity. The MOF provides an interface to a repository in which we can store
the object model for the system being implemented. In the future we
should be able to produce dynamic systems that can utilize the metada-
ta within the MOF. For example, we can produce applications that will
query the MOF to discover the capabilities of a distributed object.

The metadata stored within the MOF can be expressed using the
Unified Modeling Language (UML). UML is a standard adopted by the
OMG; it provides a modeling language for the analysis and design of an
object-oriented system. UML is becoming the standard language used to
express object models regardless of methodology.

Change document view
«axtsnd» V type

Figure 2-5. Sample UML use case diagram

28 Distributed Object Architectures with CORBA

Interoperable naming service
You have provided a distributed object and you want others to use it, so
you advertise its object reference using the naming service. This service
allows us to name an object and associate its object reference with that
name. Now a colleague from another department wishes to make use of
your object. The problem is that the other department is using an ORB
supplied by another vendor.

Simple, you say: CORBA defines interoperability—we do not have to do
any work. In practice, you discover that there is a bootstrap problem. How
does your colleague's application get that initial object reference to your
object? The IOR for your object needs to be made available to the application.

You can use a variety of mechanisms to publish the initial object ref-
erence. One could be that you both make use of the same name service.
Whatever mechanism you end up using, even if it involves passing
around string representations of the object reference, you will have a
small amount of initialization and configuration to handle.

The mechanism of object activation, as performed by the object
adapter, is not standardized. When the ORB infrastructure receives an
object reference it needs to resolve, it will make use of an object adapter
to perform activation.

Interface versioning
Okay, now you have your interface defined and you have provided an
implementation. Now the business requires some enhancements to the
system: what do you do? Does this mean that you need to change your
IDL? What happens to all those deployed clients? Is updating client
installations a costly exercise? For large multinational companies this is
the case; also, the update of thousands of clients distributed throughout
the world can take several months. So how can CORBA help you? The
plain and simple answer to this question is that it does not help!

The more complicated answer is that if you spent enough time and ener-
gy on the design of your interfaces so that the system is extensible, then
you will have less of a problem. However, even then you may need to intro-
duce change. CORBA does not provide a mechanism to support multiple
versions of an interface; this was dropped from the OMG specification a
couple of years ago. The official OMG approach is to use inheritance.

Distributed Object: 29

Providing a mechanism to version interfaces is complicated. However,
some object-oriented databases have managed a similar process with the
ability to version schema. The lack of a version control mechanism for
interfaces increases the complexity of the development process.

Objects by value
With IDL, we define the interfaces of our distributed objects; however, we
can only define simple types and structures as arguments to the methods
of a distributed object. It is currently not possible to pass a CORBA object
from one process to another (we can only pass object references).

Our main problem of passing objects from one process to another is
how to pass the implementation of an object across different program-
ming languages. Java RMI solved this problem by just supporting the
one programming language.

A solution is for the implementation to be available to all processes—
maybe in a shared (or dynamic) library. Then we just need to transfer the
state of the object.

The object-by-value specification that the OMG recently adopted pro-
vides a mechanism to pass objects. Unfortunately, though, it does not
provide a mechanism for the migration of a distributed object. It would
be nice to be able to transfer a distributed object from one process to
another in a way that is transparent to the client. This would facilitate
management tasks: for instance, when we need to take a production
computer system down without interrupting service.

Messaging
Messaging-oriented middleware (MOM) products are a class of product
that facilitates asynchronous communication. MOMs provide control
over the quality of service, guaranteed message delivery, and mecha-
nisms for load balancing and specifying priority of messages.

Currently the CORBA Event service provides some of the abilities of
MOM products. You can even find some implementations of the Event ser-
vice that sit on top of other MOM products. However, current ORB imple-
mentations do not provide us with the full capabilities of a MOM product.

With CORBA 3, we will see all the capabilities provided by MOM products

30 Distributed Object Architectures with CORBA

as part of an ORB. This will provide us with a standard interface for true
asynchronous communication with distributed objects. Clients do not
need to block when invoking a method on a distributed object. We can
deliver messages with certainty even after the client is no longer active.
Your client can receive messages when reestablishing a connection to the
network after disconnection. Messages can be given a priority and servers
can process those messages according to a predetermined scheme.

System management
The area that is seriously lacking with ORBs is the management of a pro-
duction system. At present, the OMG has not specified any mechanisms to
manage a system of distributed objects. Solutions for system management
are invariably homegrown. Some of these we will discuss later in the book.

ORBs need to obtain the functionality provided by transaction pro-
cessing monitors: load balancing (distributing server loads across multi-
ple systems while appearing as a single system to the client) and fault
tolerance (when a server fails, transparently routing messages to a new
server). We are seeing ORBs with these features emerge in the market
with the introduction of ORBs by TP monitor vendors such as BEA.

We also need services that enable us to monitor the distributed objects
in our system, manage those processes (shutdown and object migration),
and interact with network management tools.

Service-Oriented Architecture
Because we define distributed objects by their interface (IDL), each dis-
tributed object can be considered to provide a service. As we saw, the
OMA defines four categories of services, starting with the base CORBA
services (such as naming, security, and so on) and then the horizontal
and vertical facilities. Additionally, we have those services defined by the
application you develop. By defining the distributed objects you pro-
duce as services, you will produce a set of reusable components.

You will see as you work through this book that it's a good idea to
design a distributed object system as a set of cooperating services. This
does not mean that we are going back to a remote procedure call-like
model: remote processes providing services with a flat interface of func-

Distributed Objects 31

tions. We still provide a distributed object model. We should be cog-
nizant, however, of the limitations as well as the capabilities of the tech-
nologies that we use, including the network and the ORB infrastructure.

We will see in the next chapter that the granularity of our IDL interfaces
will also affect the performance of the system that we are implementing:
the more fine-grained the distributed interface, the more network over-
head. Now, some would argue that as networks improve and that fiber
optics become more prevalent, this will no longer be an issue. In my opin-
ion, this is a problem similar in nature to memory-hungry applications;
just because memory is cheap, that does not mean large applications are
justifiable. To satisfy the needs and expectations of the users of the system,
you need to be aware of the limitations of your technology.

Integration Strategies with Existing
Systems
Most of the time we do not develop a new system in a vacuum. There
exists some code or system that our business uses and wants to integrate
with the new application. We want to retain our investment in the devel-
opment and production of the existing system while moving into the New
World of distributed objects. Quite often, the literature refers to these pre-
existing systems as "legacy." Legacy always brings to mind COBOL code
written decades ago, but today the legacy system could have been devel-
oped last year. Therefore, I prefer to use the term existing system.

We can separate the types of existing systems into three categories:
database, library and application. In all of these categories, the system
usually has embedded business logic. It is the business logic that we wish
to keep and make available to the new application, while allowing the
old application to continue working. In all categories of existing sys-
tems, we need to have or obtain an understanding of the business prob-
lem that we want to model.

Integration occurs by providing a facade, otherwise known as an object
wrapper. Figure 2-6 shows a schematic of an object wrapper. The wrapper
itself will be a distributed object defined using IDL. The implementation
of the wrapper manages the interaction with the existing system. There
is no "correct" way to produce such a wrapper, although you should be

32 Distributed Object Architectures with CORBA

IDL

Object Wrapper

\7

Exiting System

Figure 2-6. Object Wrapper

aware of some concerns and techniques. I will try to give you a flavor of
these so that you will be better armed when you are in the position of
integrating an existing system with your distributed architecture.

Beware of creating an interface that just maps to the functions of the
existing system. While this may seem like the easy course in the short
term, you will produce an inflexible system. It is worth the extra effort
to produce a facade (set of object wrappers) that provides the model that
you want to expose to other parts of the system and hides the old imple-
mentation. A layer of abstraction should encapsulate the existing sys-
tem, one that provides a more intuitive object model.
There are three steps to the production of object wrappers.

• Analyze the business problem. Just as you would begin any pro-
ject analyzing the problem, you should understand the business
problem thoroughly. You will then have a domain model.

• Specify the interfaces. You will first produce a design model from
which you will extract the distributed objects. These distributed

Distributed Objects 33

objects model the problem domain used by the client applica-
tions. By specifying these objects in OMG IDL, you will have a
model of your existing application with which other parts of
your distributed system can interact.

• Provide an implementation. This is a deceptively easy task.
Depending on the complexity of the interface to the existing
code base, this task may be quite complex.

The cost of interfacing directly with the existing system may be too
much. A solution may be to provide an implementation with an indirect
interface; for example, your distributed object may work on data files
produced as output from the existing system.

Integration strategy for a database
As relational databases became popular we saw the introduction of such
features as triggers and stored procedures. These enabled the program-
mer to ensure the integrity of the data within the database by embed-
ding business logic into the actual operation of the database. This
increased the complexity of applications. Applications, which access the
database, do not necessarily have a uniform business model.

You may want just to provide an object model on top of the data
model through which the application performs all access. In this case, it
will be necessary to implement a layer that maps the data model into the
object model. As mentioned above, this database interface would form
part of the data services layer of a three-tier architecture.

I have found an implementation of the OMG query service to be a sim-
ple, yet useful way to wrap a relational database. The query service can also
be used to wrap other data sources. While this does not provide an object
model, it facilitates access to the database via a standard CORBA-based
interface. The query service provides all the functionality of the relational
model (see the OMG specification for more details). You can then provide
the new business logic in the application layer of the architecture.

Other tools on the market enable you to map from a relational model
to an object model. One such tool is the eponymously named Persistence.
Some of these tools will also generate OMG IDL, though you should be
aware of the issues related to interface granularity when dealing with

34 Distributed Object Architectures with CORBA

machine-generated code (these will be discussed in the next chapter).
Regardless of the method you chose to map from the relational (or

network) model to an object model, you should still design the public
IDL interfaces to reflect the business logic used by applications.

Integration strategy for a library
Typically, a library (if object-oriented) will already present a set of classes
that are used together to solve specific business problems. You will need to
look at how the classes are used and gain an understanding of the depen-
dencies. There will be a straightforward manner to map from the func-
tionality provided by the existing library to that provided by your IDL.

For a non-object-oriented library, you can still perform the same
process. However, it will be necessary to be aware of the strong depen-
dencies or coupling that may occur among the functions.

It is also important to know whether the library with which you are
integrating is thread-safe. Your distributed objects will probably exist in
a multi-threaded server to increase the performance of your distributed
application. If the library is not thread-safe, then you will need to ensure
the integrity of the system by providing locks. If this becomes a problem
with performance, then you may wish to replicate instances of servers.

Integration strategy for an application
Integration with an existing application is probably one of the hardest
tasks to achieve. Success will depend on not just how well you understand
the business domain, but also how well the application is structured.

Depending on how the existing application is structured, it may have
various mechanisms you can use to communicate with it:

• Use an application programming interface (API).

• The application understands some form of network messages. It
may be the server part of a "traditional" client/server system.

• The application is a batch program with file-based communication.

The existing application may consist of a monolithic piece of spaghet-
ti code. If this is the case, then your task may be next to impossible,

Distributed Objects 35

unless there is some way to interact with the application without touch-
ing the application's internals. If the code for the user interface is tight-
ly coupled with the business logic, however, then you have your work
cut out for you.

If you need to extract the business logic from the application code,
you will need to refactor the code (refactoring is a means to change the
internal structure of the program through a series of small steps).
Refactor to create a consistent interface that will support the desired
business model.

I have seen some clients present applications that have been developed
and deployed using systems such as Paradox or PowerBuilder. Their jump
to distributed object architecture is driven by the desire to leverage their
business by using some of the "cool" technologies that they have heard
about (such as Java and CORBA). Sometimes, after looking at their system
we see that the business logic is so dispersed within the application that
it would be simpler to rewrite the system. The justification for integration
may be insufficient to match the cost of integrating the existing system.

It should now be apparent that, when implementing a distributed
application, you should spend enough time and energy on your IDL
interfaces. These are the public faces of your distributed objects, with
which all the other parts of your system will interact. As far as the clients
are concerned, the implementation behind those interfaces can be any-
thing as long as they behave as advertised.

Summary
In this chapter we reviewed object-oriented concepts and looked at dis-
tributed objects, in particular the OMG's CORBA standard. We discussed
how CORBA-based products help with the construction of a distributed
object based system. In addition, we looked at some of the features
CORBA provides to help construct such systems, and we discussed what
will be forthcoming in the OMG's "CORBA store."

Most of you have existing systems that provide functionality that will
be incorporated into your new "state-of-the-art" system. We discussed the
integration of existing systems. The different types of existing systems
were classified into database, library, and application. We then looked at
each of these and discussed how integration may (or may not) be realized.

36 Distributed Object Architectures with CORBA

References
Fowler, Martin. Analysis Patterns: Reusable Object Models. Reading,

Massachusetts: Addison-Wesley, 1997.

Gamma, E., R. Helm, R. Johnson, and J Vlissides. Design Patterns.
Reading, Massachusetts: Addison-Wesley, 1994.

Jacobsen, I., M. Christenson, P. Jonsson, and G, Overgaard. Object-Oriented
Software Engineering. Reading, Massachusetts: Addison-Wesley, 1992.

Orfali, R., D. Harkey, and J. Edwards. The Distributed Objects Survival
Guide. New York: John Wiley & Sons, 1996.

Meyer, Bertrand. Object-Oriented Software Construction. 2nd Edition,
Hemel Hempstead, UK: Prentice Hall, 1997.

For further information on the Web: http://www.omg.org—here you
can find the CORBA specification and the current work of the OMG.

Notes
1. In America, the accelerator is the gas pedal. This shows that the use of

terminology in your object model is important. Use terms and words
that are common parlance for the domain that you are modeling.

Chapter 3

Partitioning,
Interfaces, and

Granularity

Building a system based of distributed objects is not the same as con-
structing a single object-oriented program. We need to take into account
the effects of the network, the fact that we can have tasks interacting
while running in parallel, and the possibility of partial failure.
Implementing mechanisms to handle failure and coordination of con-
current processes (which will be covered later in the book) may be
extremely important; however, the choices we make when designing dis-
tributed objects profoundly impacts the performance and flexibility of
the system.

It's not enough to take an object model and just distribute arbitrarily,
placing objects throughout the network without further consideration.
Once we have decided on how to distribute the functionality of the sys-
tem, we need to spend time and energy defining the interfaces to the dis-
tributed objects. Additionally, new users to distributed objects and
CORBA commonly encounter problems in identifying the best level of
granularity for their distributed objects. Incorrect identification can
make the resultant system performance far from satisfactory. Finding
alternatives may be too late when you no longer have the time or
resources for improvements.

37

38 Distributed Object Architectures with CORBA

When you initially design your system's distributed objects, you will
be concerned with each object's interface, the object model's granulari-
ty, and how the complete system is partitioned. The granularity of the
object model refers to the scale of abstraction and tasks embodied by the
objects and their associated methods. Partitioning refers to where you
are going to locate your objects; that is, in which server processes and
where on your network. All the decisions you make for these aspects of
your distributed object system have effects that you should understand.

In this chapter we will be looking at the issues involved in developing
a distributed object model and the production of a corresponding set of
interfaces. First, we will have a quick look at where this process fits into
the project life cycle. Then we will look at interface design, granularity
and partitioning. Finally, we will examine how this applies to an exam-
ple of a document publishing system.

The Project Life Cycle
Object-oriented software development takes places in phases. The vari-
ous stages in a project life cycle are analysis, design, development, imple-
mentation, testing and deployment. However, we do not go through
each of these stages in a straight line. Within each phase, we look for-
ward and we reflect back, tweaking the models that have been developed
to incorporate current discoveries and make refinements.

The models developed at each phase of the project represent an
abstraction of a real-world problem. This abstraction provides us with a
vocabulary, in object-oriented terms, of the system we are developing
and help with the production of code. Different methodologies have
used various names to describe the various models. This book doesn't
aim to provide a methodology, but rather to help you with the produc-
tion of a distributed system. Typically, the output of the analysis and
design stages of the project life cycle is the conceptual model of the sys-
tem. We then translate this to an implementation model, which is in
effect the code we are writing.

The conceptual model provides a description of the system. It also
includes static models (such as class and object models), dynamic mod-
els (such as sequence and state diagrams), usage models (such as use
cases), and architectural models (system composition). Plenty of work

Partitioning, Interfaces, and Granularity 39

has been done over the past couple of decades on how to produce all
these models. The design and construction of object-oriented systems,
within a single address space, is well understood (for further reference
see the books by Booch and Jacobson).

Let's assume for this project that we've decided that our system will be
distributed. This may have been a requirement inherent to our problem,
or we may have determined as part of our analysis that we needed a dis-
tributed system. Once we've made this decision, we need to design the dis-
tributed object model and make choices as to the interfaces of its objects.

Production of distributed object systems is relatively new, and intro-
duces new factors into the design process. This requires us to build an
additional model: a distributed object model. There are three aspects
that we should be aware of when producing such a model:

1. System partitioning.

2. Interface design.

3. Granularity of the distributed object model.

Each of these has an effect on the other. Figure 3-1 illustrates the inter-
dependence of these three aspects of interface design. It is difficult to deal
with issues of partitioning, interface design, and granularity in isolation.
A well-designed system will balance the forces from each of these areas,
providing interfaces at a suitable level of abstraction and granularity.

Partitioning
In the course of designing a distributed system, we create a lot of objects. How
do we distribute the things in our object model? We could take our objects
and just haphazardly scatter them across the network; however, we would
end up with an inefficient system, because we would have introduced an
unnecessarily high level of interaction among the objects across the network.

One of our goals when we "partition" our system is to create an archi-
tecture that will support evolution. New requirements can be incorporat-
ed when they are discovered. The system should also be flexible enough
to support the reuse of components so as to provide new functionality.
Why reinvent components later on when you can design a system now
to maximize the reuse of its parts?

40 Distributed Object Architectures with CORBA

Interface
Design

Cohesion/Coupling

Partioning Granularity

Figure 3-1. Forces in distributed object model design

The distributed system we are building will probably be decomposed
into a set of subsystems. Each subsystem is composed of a set of distrib-
uted objects that support the functionality of that subsystem. Partitioning
consists of the choices we make in dividing functionality into subsystems,
and the subsequent placement of distributed objects. We may also choose
to locate some of the objects in these subsystems on the same machine,
and even within the same process, depending on deployment and perfor-
mance issues. We can use a guiding set of principles to help us arrange the
distributed objects into the various subsystems.

By design, the subsystem should be cohesive; that is, the distributed
objects within the subsystem should support the object-oriented concept
represented by the subsystem. For example, a distributed object that repre-
sents a printer should be just a printer; it should not control a microwave.

Each subsystem should be coherent; that is, we design classes to make
them represent a well-defined abstraction. They should support a well-
defined concept, or set of concepts, derived from our business model.
For example, a subsystem that provides functionality for a print facility

Partitioning, Interfaces, and Granularity 41

should contain only distributed objects that support that functionality
(like a printer and print scheduler).

It is useful to consider each subsystem as providing a service. We
would produce subsystems for data access services, print facilities,
account management and so on. Taking this approach, our distributed
system uses an architecture based on a set of cooperating services.

This partitioning also affects the interface choices for distributed
objects that compose the subsystem. We should examine the flow of con-
trol among the subsystems so that no one subsystem becomes a bottle-
neck. We can look at our use cases and determine how each of the sub-
systems may be used in the application. From these, we derive scenarios
making use of the various subsystems we have identified. We will then
have an initial idea of how each of the parts of our system interact, and
we can adjust our decisions regarding partitioning if it looks unbalanced.

In addition, we can refine our decisions regarding partitioning based
on the examination of a sequence diagram. Sequence diagrams (such as
that in Figure 3-8 later) capture the interaction among the objects with-
in your model, and are a good indicator of the amount of communica-
tion necessary to perform the tasks required by the system. If a lot of
communication is necessary to perform a task then we should examine
the objects that are used for that task. These objects are good candidates
to be located within the same sub-system.

We have now defined partitions of subsystems containing distributed
objects. For each distributed object to be accessible by users of the sub-
system, we need to define an interface for it using IDL. This set of inter-
faces then becomes the public face of the subsystem, and the function-
ality defined by them is supported by the implementation within the
subsystem.

Interfaces
You will recall from Chapter 2 that an interface is a collection of meth-
ods and attributes. Interfaces are the expression of our distributed object
model and the public face of our subsystems. Our subsystems can con-
tain many distributed objects, so they can support multiple interfaces.
The structure of our interfaces will affect the performance and reusabili-
ty of components of the system.

42 Distributed Object Architectures with CORBA

In the process of developing the distributed object model, we identi-
fy the various subsystems, which may be located in disparate parts of the
network. Each of these subsystems will support one or more distributed
objects. Each of these distributed objects will provide a public interface
that we express in IDL.

Interfaces may represent both entity objects and process objects. An
entity object represents a thing, such as a document. A process object
provides an abstraction of a process; for example, a process object may
be a document locator.

We have to deal with many issues when we design an interface:

• The interface should be cohesive; it must support a single concept.

• We should minimize the coupling—a measure of the dependen-
cy between different parts of the system—between the imple-
mentation of the interface and the clients.

• We must define exceptions—standard methods of handling error
conditions.

• We must decide what use to make of polymorphism—the reuse
of common definitions of interfaces to serve different objects.

Cohesion
The concept of cohesion as applied to software construction was formulat-
ed, concurrent with the work on structured programming, in the late 1970s.
At that time cohesion was defined as a measure of the logical relationships
and connectivity between different parts of a software module. When we
bring this concept to the object-oriented world, cohesion is defined as the
measure of the logical relationship between the methods within a class and
the measure of logical relationships within a subsystem. We refer to the
cohesion of a class (or object) and the cohesion of subsystems. For a distrib-
uted object model we refer to the cohesion of interfaces and subsystems. A
cohesive software module helps support maintainability of the system by
expressing the parts of a system as easily understood units.

During the initial work on cohesion, different types were identified
(Yourdon and Constantine 1979, and Myers 1978). To help with this dis-

Partitioning, Interfaces, and Granularity 43

cussion, here is a quick overview of some of the types of cohesion as
applied to an object model, in order of desirability:

Coincidental cohesion—A class and its elements do not represent
a coherent abstraction. For example, a class that is defined as a set
of unrelated methods is coincidental.

Logical cohesion—Actions performed by a method vary according
to a switch passed as a parameter.

Temporal cohesion—Methods are grouped together to be execut-
ed at a certain time. For example, methods to perform initialization
tasks are only connected occasionally.

Procedural cohesion—A class is defined specifically for one appli-
cation. A method of such a class is a sequence of functions execut-
ed when a condition is met.

Sequential cohesion—The input of one method depends on the
results of a previous method.

Functional cohesion—All elements of a class work together, sup-
porting the class's well-defined abstraction.

When we produce a cohesive distributed object model, we find that
each of the interfaces represent essential concepts. Each object is easier
to understand; the overall system is more maintainable; and the com-
ponents that comprise the system are easier to reuse. All of this con-
tributes to reducing the overall cost of the system.

The following guidelines will help us produce a distributed object
model consisting of functionally cohesive interfaces:

• Each interface should embody an essential concept (abstraction)
and all the elements of an interface should be strongly related to
that abstraction. This implies that an interface should corre-
spond to either a real world or logical entity.

• Each of the methods should perform a single coherent function
or task. That is, if a method adds two numbers then it also should
not set the timer on your microwave.

• Each of the subsystems of our distributed architecture should

44 Distributed Object Architectures with CORBA

themselves be cohesive. For a subsystem to be cohesive then all
the interfaces that comprise that sub-system should also be cohe-
sive and support the object-oriented concept represented by that
subsystem. For example, we may provide an interface for a doc-
ument locator so that a client can find documents on an ad-hoc
basis for later perusal. The document locator interface should
provide us with the necessary functionality to locate the docu-
ment, but it should not provide us with the functionality to
examine a document's content (an interface to the document
would do that). Additionally, how the locator retrieves the docu-
ment is of no concern to the user of the locator.

Coupling
Whereas cohesion is a measure of the connectivity between related ele-
ments within a software module, coupling is a measure of the strength
of dependency between different software modules. The stronger the
coupling, then the stronger the interdependence of the different parts of
the system. And this is bad. Some level of coupling is unavoidable, but
we want to minimize it as much as possible.

Many levels of coupling can occur when you design an interface.
When we are dealing with an object model we are concerned with cou-
pling that exists between the different classes of the model and the cou-
pling between the items within a class. Likewise for a distributed object
model we are concerned with the coupling between distributed objects
and coupling between the components of a distributed objects interface.
Strongly coupled distributed objects will affect the flexibility of our sys-
tem. The stronger the coupling the more brittle (inflexible) the system
will be. As we will see later, the granularity of our object model also has
an impact on coupling.

In Object-Oriented Design Heuristics, Arthur Reil details the various
types of coupling that can occur:

Nil coupling—there is no dependency between the two classes.

Export coupling—one class is dependent only on the public inter-
face of another.

Partitioning, Interfaces, and Granularity 45

Overt coupling—a class is dependent on the implementation
details of another class, with permission.

Covert coupling—a class is dependent on the implementation
details of another class, but no permission was given.

While we want to reduce the amount of coupling between components
of a system, it is not possible to construct a system with nil coupling. That
is, as soon as two or more components need to interact there will be some
degree of coupling. Objects will always be related in some matter. Also, for
the same reason, we do have export coupling because the different parts
of our system interact by making use of the semantics defined by the dis-
tributed objects interfaces. However, the strength of that coupling will be
determined by the choices we make when designing our interfaces.

It is the other types of coupling that cause us the most problems.
Overt and covert coupling introduce dependencies that subvert our
desire to produce a loosely coupled system. Since IDL only expresses the
public interface of a distributed object and the internals are not exposed
we avoid covert coupling. Additionally if the interfaces of a sub-system
are at the same level of abstraction then we avoid overt coupling. If we
provide interfaces within a sub-system at lower levels of abstraction then
we expose unnecessary details of the internals of the sub-system. Then
we have a form of overt coupling.

A distributed system can also contain an implicit coupling, based on
shared knowledge between the components of the system. This occurs
when the distributed object and its clients depend on mutual knowledge
that is not captured in the semantics of the interface. In other words, the
interface may not explicitly define the form of information passed
between the user of the interface and the implementation; however, the
form of that information is captured within the implementation of both
client and server. This causes both the client and server to be coupled by
relying on implicit knowledge as to the form of information.

It is possible to design a system that provides what at first looks like
weak coupling, while actually providing strong implicit coupling. I have
seen this done in a system as a means to solve the problems of interface
versioning and management. Here one simple interface is provided for
all distributed objects. Listing 3-1 shows a portion of the IDL for this
type of coupling.

46 Distributed Object Architectures with CORBA

Listing 3-1: IDL with strong implicit coupling

interface Object {
any doit(in long version, in string method, in string

arguments);

The doit method of the object contains the information as to what
method to call and a set of arguments. This creates two problems. First,
this defeats the reason for using IDL, because we are no longer using IDL
to specify the interface to our distributed objects. Second, this imposes a
strong implicit coupling: both the client and the implementation of the
object need to know the correct formats and allowed types. Instead of
the interface of a distributed object being defined in the IDL, the inter-
faces are embedded in the actual implementation. Knowledge of the
interface for any distributed object is now implicit, since it includes our
decisions for the protocol used to represent the method and its argu-
ments. This knowledge is shared among the components of the system
and is not made explicit, so we have created a system that defeats the
purpose of IDL, for which we still have the same design issues (cohesion,
coupling and granularity), but in which the description of each interface
is embedded within code.

Exceptions
An exception enables you to define a uniform mechanism to report error
conditions for each method within your IDL. Exceptions can happen
whenever a remote method is executed. This helps the user of a distrib-
uted object determine the source of failure; also, the caller of a method,
which throws an exception, is forced to handle that exception.

You should make use of exceptions in your IDL, as this will help with
the process of trace and debugging. When you define your own types of
exceptions that are more meaningful to the application, then not only
do you gain knowledge as to what went wrong, but you can also provide
code to handle the error condition in a graceful manner.

Some programming languages provide constructs to handle excep-
tions, in which case CORBA exceptions map to the mechanism provid-

Partitioning, Interfaces, and Granularity 47

ed by the programming language you are using. If the language does not
have an exception mechanism, then an alternate mechanism is provid-
ed. This allows you to check the state of any possible exception as
defined by the CORBA mapping.

Polymorphism
Polymorphism refers to the ability to have many forms. In the object-
oriented world, this refers to the ability of an object to be many differ-
ent objects. For example, in our object-oriented programming language,
our code may refer to an object that represents a scanner; we can then
use this code to handle different types of scanner.

It is interesting to note that the class and type of an object are inter-
twined in many object-oriented languages. The class contains both the
interface definition and the implementation. However, IDL only allows
us to specify interfaces and says nothing about implementation. We can
view these interfaces as specifying a type. We can utilize the feature that
the interface is separate from the implementation. We can provide many
different implementations of the same interface. Moreover, our clients
can treat each of these implementations in a polymorphic manner.

An example would be an interface to a search engine. We could pro-
vide various implementations, one for a relational database, another for
an object database. Since each of these implementations provides the
same interface, our client can utilize both with no code change.

CORBA includes two mechanisms to provide polymorphism. You may
have more than one implementation for a specific interface; both imple-
mentations can be treated in the same way. Also, an object reference to
a specific interface may refer to an implementation of that interface, or
an implementation of a derived interface.

Granularity
Granularity refers to the fineness, or coarseness, of your object model.
Fine-grained models are composed of many small objects, each cooper-
ating to provide an implementation that solves your business problem.
On the other hand, coarse-grained models provide large controller-like
objects that represent large concepts.

48 Distributed Object Architectures with CORBA

When designing your interfaces, it is important to be aware of the
granularity of the distributed object model. The fact that the objects
reside in different locations does add another dimension to the decision-
making process. Fine-grained distributed object models have a negative
impact on performance due to a high level of interaction. This increased
amount of detail knowledge causes an increase in coupling.

If we take the naive approach of distributing the full domain object
model, we will produce a very fine-grained system. Conversely, if we pro-
vide a single interface to each remote process, we will end up with a
course-grained system. There is a cost associated with both approaches.
A fine-grained system will affect performance: more interactions
between objects are required to perform a single task. A course-grained
system will introduce problems with cohesion, usually because you are
embodying more than one concept from the domain model within a
single interface. This reduces flexibility, as the interface becomes more
restrictive in the ways it can be used.

Granularity and coupling
I mentioned above that a fine-grained distributed object model increas-
es the amount of coupling among the distributed components. The
amount of knowledge required by the client of a set of distributed
objects is simply greater. Another way to look at it is that a fine-grained
model provides an insufficiently high level of abstraction.

A low level of abstraction can create a stronger amount of coupling
among the different parts of the system. The user of the interfaces comes
to rely on the application-specific knowledge embodied within the inter-
faces. We will have produced a distributed system that solves only one
problem, and one in which the distributed objects are not reusable. In
addition, this will affect the extensibility (the ability to add new func-
tionality) and flexibility (ability to reuse parts of the system in previous-
ly unforeseen ways) of the system. You may hear such a system referred
to as a "stove pipe," an allusion to a system that has a very narrow focus
and a vertical problem.

The code illustrated in Listing 3-2 provides a simple example of a fine-
grained model. Here the IDL represents the document as a collection of
chapters, each chapter as a collection of paragraphs, and so on. Not only

Partitioning, Interfaces, and Granularity 49

does this affect the performance (as we discuss later), it also provides us
with an inflexible system. For example, what if we want to have sections
in our document?

Listing 3-2: Example of low abstraction

exception NotFound {};
exception Cannotlnsert{};

typedef sequence<string> Sentence-

interface Paragraph {

readonly attribute long nbrSentences;

void addSentence(in long posn, in Sentence sentence)
raises(Cannotlnsert);

Sentence readSentence(in long posn) raises(NotFound);

interface Chapter {
readonly attribute long nbrParagraphs;

void addParagraph(in long posn, in Paragraph paragraph)
raises(Cannotlnsert);

Paragraph getParagraph(in long posn) raises(NotFound);

interface Document {
readonly attribute long nbrChapters;

void addChapter(in long posn, in Chapter chapter)
raises(Cannotlnsert);

Chapter getChapter(in long posn) raises(NotFound);

One cautionary note: we can easily produce "stove pipe" systems
when we use development tools that generate IDL. Currently these tools

50 Distributed Object Architectures with CORBA

aren't sophisticated enough. They perform a simplistic mapping from an
object model (usually a model of the domain) straight to IDL. This does
not take into account constraints like the effect of communications over
the network. To avoid the "stove pipe" problem, the user must add the
sophistication by handcrafting the IDL.

The details conveyed by the interface directly affect the coupling. For
example, if an interface to a remote printer has in it methods that direct-
ly relate to the capabilities of a specific model of printer, then the client
is closely coupled to that specific type of printer. It is not a simple task
to replace the printer in this system with a different one, and new print-
ers would require new interfaces. However, if the printer interface pro-
vides us with a model of a generic printer, then we can easily provide dif-
ferent a printer implementation and the client is not coupled to any spe-
cific implementation.

Granularity and performance
Computers may be fast and communication overhead between two
objects on the same system may be infinitesimal; however, when you
multiply objects by the thousands, distribute them over a network, and
constrict the bandwidth, the cost adds up. It takes a significant amount
of time for communication to happen on our network, whether it is
fiber optic or modem. On top of this there is the overhead imposed on
communications from the ORB infrastructure. The ORB has to transform
the request into a standard communications protocol (HOP) and then
translate the request for the destination platform. All of these factors
contribute to network latency.

Moreover, every method invocation has a cost. If this cost exceeds the
cost to execute the remote method, then we have a problem. This is fur-
ther compounded by any task that requires numerous remote method
invocations. The responsiveness of the system will be adversely affected.

What are our options? Of course, we could get a faster network.
However, for most people this is not feasible, nor does it make business
sense. The answer is to design our interfaces so that the cost of commu-
nications does not overwhelm the cost of execution. Granularity affects
the communications performance of the system, especially the granu-
larity of the methods within an interface. We do not want to make the

Partitioning, Interfaces, and Granularity 51

distributed objects too fine-grained because of the resulting increase in
network communication. We could coarsen the system, but if it is too
coarse then our desire to produce a cohesive system is negated. This is a
difficult problem to solve. You will find that the craft of good interface
design will improve with experience. Being aware of the issues will help.

Example: Document Retrieval
To illustrate the issues raised in the previous sections, we will now look at a
document retrieval system. First we look at the object model for the system,
and then at the ways the system can be partitioned; then we derive an ini-
tial interface definition. After a short critique of the first set of IDL, we will
refine our choices and develop a new set of interfaces to provide a system
that is more flexible and maintainable, while retaining the cohesiveness of
the object model. We will return to, and expand on, this example later with-
in the book as we discuss other issues such as persistence and transactions.

Currently we are just concerned with the requirement for a user to
find a document using an ad hoc query and peruse its contents. It would
be useful later if we can add other sources of documents, and the ability
to transform the content of a document into many formats. We will also
take this into account as we progress through the example and produce
IDL that captures these requirements.

An example of the effect of granularity is where we have an interface
to a remote document in which every word is a separate distributed
object. Any meaningful task would require a huge amount of network
traffic. There would be a high cost of network communication to per-
form simple string manipulation, which normally takes a very short
time to execute in local address space. A solution would be to locate each
of the objects that compose the document within the same address
space, not expose them as individual distributed objects, and provide an
interface at a higher level of abstraction (Document).

Object model
Figure 3-2 is a diagram of the high-level classes within our system. These
include a document locator, document store, and the documents them-
selves. Here is a brief description of the components.

52 Distributed Object Architectures with CORBA

Document—provides a representation of a document within mem-
ory. A document consists of document elements.

Document Store—provides persistent storage for documents. For
example, this could be an object database. The store needs to pro-
vide the ability to find a document using an ad-hoc query. Once
found the document is translated from the stored form into the
form required by our object model.

Document Locator—takes a query and coordinates with the docu-
ment store to find the requisite document.

Formatter—enables us to transform a document into a format suit-
able for the browser. It will be clearer as we proceed through this
example where this class fits in, and we will alter what depends on
it accordingly.

Display/Browser—this is a client side program that allows a user to
interact with the system.

Display/Browser

Locator Document

A

->
Formatter

Document
Store

Figure 3-2. Static class diagram for a document location system

Partitioning, Interfaces, and Granularity 53

We can refine our object model further to provide more detail. Each
of the above components will also contain and collaborate with other
objects. However, for the purposes of our discussion it is currently suffi-
cient for us to work with the above set of components.

Figure 3-3 illustrates part of a class hierarchy that can be use to model
instances of documents. This is based on a composite pattern: documents
are composed of document elements, and a document is itself a docu-
ment element. This enables us to create quite a complex document by
building a tree-like structure with instances of these classes. Figure 3-4
provides an example of such a structure.

Document

0..N
Document
Element

I\

Text

0..N

Table Section J
Figure 3-3. Partial class diagram for document

It should be noted that this is a relatively simple object model, but it
is sufficient for the purposes of this example. As we proceed we will see
that we can provide a rich set of functionality.

54 Distributed Object Architectures with CORBA

Document
TOe = "Distributed Object

Architectures-

Section
Title = "Chapter

2:Distrtbuted Objects-

Text
content = quick review of

distributed objects

Figure 3-4. Partial document instance

Partitioning
Before we can design the interfaces to the remote objects, we need to
decide how we are going to partition the system. Figures 3-5 to 3-7 illus-
trate the various partitioning schemes that we are now going to discuss.

Scheme 1—Here we have one monolithic server. We can imple-
ment the various components of the server (document, locator,
store etc.) as a standard object-oriented application. Only the user
interface has been separated. Our server will be multithreaded to
help it handle many simultaneous requests for document retrieval.

Scheme 2—This is similar to the first scheme; however, we have
separated the persistent store into a separate sub-system, thus pro-
viding a three-tier architecture. This enables us to define a standard

Partitioning, Interfaces, and Granularity 55

Display/Browser

3=
Locator Document Formatter

Document
Store

Figure 3-5. Partition Scheme 1

interface to the persistent store and to choose alternate stores if we
like. For example, the locator could talk to more than one store to
find a document; given that all the stores implement the same
interface, the locator will be able to communicate to all of them.
We also could replicate locators if one locator wasn't enough to
handle the volume of requests.

Scheme 3—Here we have separated the formatter into its own sub-
system. This allows us to define different types of formatter, to pro-
duce different output without having to touch the subsystem con-
taining the locator and document.

Our choice of partitioning scheme will depend on our future vision
for the system. We will proceed using the third partitioning scheme, as
it offers us the most flexibility: it holds the promise that we can plug in
new implementations of each of the components with minimal impact.

56 Distributed Object Architectures with CORBA

Display/Browser

Locator Document Formatter

V

f
Document

Store

Figure 3-6. Partition Scheme 2

Initial Interface Definition
We will now develop interfaces to our distributed objects. Listing 3-3
shows interfaces for the locator and document model within a docu-
ment management module.

The locator enables us to find a document given a query. Once a docu-
ment has been found, we obtain an object reference to the remote docu-
ment. If the locator does not find a document, then an appropriate excep-
tion is thrown; we need to handle this case within our client program.

Listing 3-3: Initial IDL for the document model

module DocumentManagement {
exception NotFound {};

Partitioning, Interfaces, and Granularity 57

r71—
Document

Store

J

/

Figure 3-7. Partition Scheme 3

interface Document;

interface Locator {
Document find(in string query) raises(NotFound);

exception NoContent {};
exception NoDocument {};

interface DocumentElement {
readonly attribute string type;

typedef sequence<DocumentElement> DocumentElements;

58 Distributed Object Architectures with CORBA

interface Document: DocumentElement {
DocumentElements getSubDocuments()

raises(NoDocument);

interface Section : DocumentElement {
readonly attribute string title;

DocumentElements getSubDocuments()
raises(NoDocument);

interface Text: DocumentElement {
string getText() raises(NoContent);

interface Table : DocumentElement {
readonly attribute long rowSize;
readonly attribute long columnSize;

DocumentElement getCell(in long row, in long column)
raises(NoDocument);

Once we have a handle to the document, we can start to examine its
content. You can tell the type of document element, and hence the con-
tent, by looking at the type attribute. We could provide a very fine-
grained interface to the document model by defining methods that
allow us to access the contents of a document character by character,
though this would incur a lot of network traffic.

If we decide to add more document elements to our object model, we
will need to extend the above IDL. It will then be necessary to regener-
ate code from the IDL and adjust the logic in our client program appro-
priately. The client program is coupled to the server by the amount of
detail in the object model expressed by our IDL.

We should also be aware of some performance issues. Figure 3-8 shows

Partitioning, Interfaces, and Granularity 59

a part of a sequence diagram to examine the content of a document. In
the process of extracting the content of a document, there are many
method invocations. Inevitably, this will increase with the size and com-
plexity of the document. It would be fair to expect an increase in the
cost of communications to correspond with an increase in the size of a
document (because of the amount of information transferred); however,
we also impose a cost on the perusal of a document's content, because
the mechanism to navigate and extract information from a document is
done as a combination of small steps.

Composite
Document

a Text Document

isSection

geflitle

getSubDocuments i

i

getContent

I isSection

getTitle

getSubDocuments

getContent

a Composite
Document

a Text Document

Figure 3-8. Sequence diagram for content extraction

60 Distributed Object Architectures with CORBA

Refinements
We will now refine the IDL to produce an interface that will facilitate
flexibility and grow with our needs. We also want to reduce the cost of
extracting the content of a document.

In the previous IDL, if we needed to add a new document element type
(such as an image), then we would inherit the new document interface
from the document element. Not only do we need to update the server
to support the images; we also need to manage the IDL. This complicates
the support necessary for the implementation and users of the interface.

If we view all document elements as content providers then we can
factor out content provision as an interface. Listing 3-4 illustrates the
IDL for a content provider interface. Note that we use an IDL structure
to contain the content returned by the content provider. This structure
can support many different formats of content.

Listing 3-4: IDL for the content provider

exception NoContent-Q;

struct Content {
string format;
any data;

interface ContentProvider {
Content getContent() raises(NoContent);

In the listing, the content structure makes use of the CORBA type any.
An any can contain information built upon CORBA types; any is the
CORBA equivalent of a C++ void pointer, with the addition of runtime
type information. You may ask why the "format" string has been includ-
ed within the structure given that we have runtime type information.
This is because the type of the information returned might be constant;
however, the format may differ. Consider the case where we return a
string representation of the content: the format may be some markup
language or it could be PostScript.

Partitioning, Interfaces, and Granularity 61

The content structure does introduce some implicit coupling, because
both the implementation and the user of the interface need to agree as
to the form of the content. However, the structure contains some self-
description that can be used by the user to decide what to do. In my
opinion, the resultant flexibility outweighs the implicit coupling; and
the semantics of the interface are not hidden. This is the type of decision
that you will find yourself making when designing your interfaces.

Now we will return to the interface for documents. We can provide a
generic interface for a document, one that captures the functionality we
need for all types of documents and document elements. Listing 3-5
shows such a generic document interface. You will notice that there is
no longer a document hierarchy defined in IDL; our clients only need to
understand the one interface for all documents. To support different
types of documents, then, we just provide different implementations.

Listing 3-5: Revised IDL for the document interface

interface Document;

typedef string SectionName;
typedef sequence<SectionName> SectionNames;

typedef sequence<Document> Documents;

interface Document: ContentProvider {
attribute boolean isSection;
Documents getSubDocuments() raises(NoDocument);

SectionNames getSectionNames() raises(NoDocument);
Document getSection(in string name) raises(NoDocument);

Our document interface provides the ability to navigate a document
hierarchy, get the content of a document, extract sections of documents
by name, and determine what sections a document may contain. Once
we have determined what part of the document to get, we can then
obtain the corresponding content.

62 Distributed Object Architectures with CORBA

Now I will extend our system by introducing a new component, the
formatter. You use a formatter to transform the content of a document
into another form. For example, we may wish to implement a PostScript
formatter that will take a document and output PostScript. Alternately,
we may have a formatter that produces the document in a form suitable
for display, such as HTML.

It would also be nice to be able to make the functionality of a for-
matter available to future applications. The formatter then becomes a
good candidate to become a distributed object. Listing 3-6 illustrates IDL
for such a formatter. In it, you can see that the formatter just needs to
understand content providers. We can plug any content provider togeth-
er with the formatter of our choice.

Listing 3-6: IDL for the formatter

exception FormatError {
string reason;

interface Formatter {
Content format(in ContentProvider provider)

raises(FormatError, NoContent);

We can provide implementations for different formatters, all of which
conform to the defined interface. For example, we may have a formatter that
can transform a document to HTML for online viewing, or we may have one
that produces PDF. Maybe we will provide both! Our options are open. By
defining the interface in IDL, we can plug new formatters into our architec-
ture in a seamless manner. We can use other kinds of service, such as a name
service, to help us find the instance of the formatter that we want to use.

We can implement a version of the locator, still conforming to our
IDL, that utilizes other locators. Each of the other locators could either
provide a degree of parallelism for finding the document within the
same store, or they could search many different stores for the requested
document. This is a federation of locators, each independent but work-
ing in parallel to perform the task.

Partitioning, Interfaces, and Granularity 63

To achieve this we do not need to change our client, nor do we need
to alter our interfaces. We just provide a new implementation of the doc-
ument locator that uses and coordinates the search process with other
locators. Figure 3-9 illustrates such a system.

We can also do the same for the formatter, if a formatter does not
understand part of a document then it in turn can utilize another for-
matter that does. Again we can utilize parallelism by farming different
sections out to many formatters.

We have just gone through the development and evolution of inter-
faces defined in IDL to provide a mechanism to locate and publish doc-
uments. We have seen how our choices affect the flexibility of the final
system. Now we have a version of IDL for document location and for-
matting that provides loose coupling and flexibility and supports future
scalability. This provides a solid foundation for the future of our system.

Document
Browser

V
Locator I

Locator

Locator Locator

Locator
for relational DB

Locator
(or Text Engine

Figure 3-9. Federated document locators

64 Distributed Object Architectures with CORBA

Summary
We have discussed how to partition a distributed system, the design of
the interfaces for the distributed objects and the effects of granularity.
We also have seen how these are inter-related. Moreover, we have had to
be aware of the computational versus the communication cost of any
task to be performed. Inefficiencies will compound.

Designing a system of distributed objects and their interfaces is a
heuristic process, though after reading this chapter you should now
have an idea of some of the guiding principles. There is no one best solu-
tion; this will be determined by the requirements that have been set for
your system. However, it is a common desire to produce a distributed
system that is maintainable and flexible.

We have learned that a good object model is not necessarily a good dis-
tributed object model. Not all models that are good for monolithic appli-
cations translate well to a distributed system. We need to identify those
objects that will have interfaces made public over the network. The level
of granularity chosen for the distributed object model will have a direct
effect on the flexibility and performance of the final system.

Be careful when you create your IDL. Fine-grained distributed object
models have a direct impact on the performance of the system. Coarse-
grained models produce interfaces that are less cohesive, and therefore
lose flexibility. Think of the future when you design your IDL. Your sys-
tem will probably need to grow and be flexible in ways that are difficult
to predict.

Partitioning, Interfaces, and Granularity 65

References
Booch, Grady. Object-Oriented Analysis and Design with Applications.

Redwood City, California: Benjamin/Cummings, 1994.

Jacobsen, I., M. Christenson, P. Jonsson, and G, Overgaard. Object-
Oriented Software Engineering. Reading, Massachusetts: Addison-
Wesley, 1992.

Myers, G.J. Composite/Structured Design. Van Nostrand Reinhold, New
York, 1978.

Riel, Arthur J. Object-Oriented Design Heuristics. Reading, Massachusetts:
Addison Wesley, 1996.

Yourdon, E., and Constantine, L.L. Structure Design: Fundamentals of a
Discipline of Computer Program and System Design. Prentice Hall,
Englewood Cliffs, New Jersey, 1979.

Chapter 4

Meta-Information

Meta-information is information about information. Now you have the
definition, what does this actually imply for computational systems?
There are occasions where you naturally make use of meta-information:
the schema of your database, directory services, information about a sys-
tem's configuration, and so forth. Meta-information in each of these
cases allows us to increase the flexibility of the system. For example, if
the schema for a database is embedded within your application, then
you have negated any possible reuse of the information in the database.
Separating the schema from the application allows other applications to
make use of the same information.

The more flexible our systems are, the greater the chance of survival
they have in the ever-changing environment of the modern computing
system. To be flexible, you need to support dynamic discovery and
incorporate new services when they become available. The key to pro-
viding flexible systems lies in the amount of self-description within the
system. Some programming languages support such self-description (a
good example is reflection in Java). There is also support for dynamic
discovery of objects and meta-information within CORBA. In this chap-
ter we will explore why meta-information provides such flexibility and
how existing facilities can provide meta-information.

A lot of work done has been done in the past couple of decades on
reflection in object-oriented systems. Reflection is the ability of a system
of objects to reason about itself. This requires the use of a semantically
rich meta-model—a description of the system—that can be queried

67

68 Distributed Object Architectures with CORBA

programmatically. The ability of systems to be self-describing brings in
the possibility of adding dynamic and flexible capabilities.

Most component models require a mechanism for reflection, because
if you add a new component to the system, the current system needs a
way to discover the capabilities of the new component. As systems
increase in sophistication, we will see more use of meta-information at
the programming level. Also, if the model of the system is stored within
a repository, maybe using design tools, this helps with the documenta-
tion of the system, allowing other programmers/designers to gain access
to the same information and hence produce other components that are
consistent with the model.

The downside to building a system using meta-information is the
increase in complexity. The more generic a piece of code is, and the
more reliance on runtime information, then the greater the chance of
unexpected error situations. As with all architectural and design issues,
you need to weigh the expected benefits with the costs. With this in
mind, let's take a quick look at meta-information in CORBA.

Examples of Using Meta-information
Before we proceed, we'll look at a couple of examples that illustrate the
use of meta-information. The first example is a document repository:
meta-information is used to describe the documents held in store and
how they may be interpreted. In the second example, we will see that
the forthcoming CORBA component specification makes use of meta-
information to describe components for deployment.

Document repository
In this example, we have a repository for many different types of docu-
ments. The system needs to be flexible and provide support for new doc-
ument formats when they are released. Users can browse the documents
in the repository, check them out for editing, add new documents, and
perform criteria based searches for documents.

Alongside the documents in the repository, we keep meta-information
about each of the documents. Some of this information pertains to types
of documents. Each document type supported by the repository has an

Meta-lnformation 69

associated description; this description may contain information as to
the format of instances of that document type. Each document instance
has associated information containing details about the author, some key
words for classification, the date of publication, the document status, its
expiration date, and so forth. This system is illustrated in Figure 4-1.

For other components of the system to understand the information with-
in a document, they must able to interpret the meta-information. Since the
meta-information about document types contains information about the

Document
Description

author
date
key words

V

Information about
a particular
instance of a
document

Document
Types

Document

RTF PDF

Meta-information

Describes the
types of
documents, how
to read them etc.

Figure 4-1. Meta-information in a document repository

70 Distributed Object Architectures with CORBA

document's format, it is possible to extend the system to understand new
types of documents. When you want to add a new document type to the
system, you add a description of the document type to the system's meta-
information. Other system components can utilize this information to
determine how to look at the contents of the new document type.

Package descriptions
Another example of the use of meta-information is the "Package
Descriptor" that forms part of the CORBA component submission. This
is an extension of the vocabulary described in the W3C note on Open
Software Description (OSD).

A package consists of one or more implementations of a component
and an associated description. The description contains a "Software
Package Description" and a "Component Description." These descrip-
tions cover the implementation of the component, the deployment
environments supported, the components characteristics, and so on.
You would then use a deployment tool that takes the component pack-
age and deploys the individual components. The deployment tool
would use information within the description to determine where to
install the components contained within the package. This mechanism
provides a standard for the distribution and installation of components.
As it is still a work in progress at the OMG I suggest that you visit their
Website to review the current state of the Component Specification. This
system is illustrated in Figure 4-2.

Meta-information in CORBA
The CORBA standard defines various sources of meta-information as part
of the core architecture and as additional facilities. The Interface
Repository comes standard with an ORB; using this, you can obtain
meta-information about the CORBA objects on your network. Recent
additions to the CORBA specification include the Meta-Object Facility,
which helps you to capture richer meta-information about your system
of objects. You can publish and locate CORBA objects using the Naming
Service or look up the CORBA "yellow pages," the Trader Service, to find
an object that meets your criteria.

Meta-lnformation 71

1—' Document
1—1 Management

Package Description

Software Package
Description >

Component
Description

Describes the
J deployment

/ environment, files
needed, libraries
etc.

Describes the
componets
interface(s) etc.

Figure 4-2. Package descriptor for a CORBA component

All these services and facilities give you the tools to construct a flexible
architecture. The choice of which of these you use, and how you use them,
depends on your requirements, the need for flexibility, and potential com-
plexity of the system. We will take a quick look at each of the mechanisms
for meta-information in CORBA and see where they may be useful.

Naming Service
For one object to talk to another, you need to know the target object's
address, just as if you were to send a letter you need the address of the
intended recipient. In CORBA, the address of an object is its object ref-
erence, of which there is a version that works across ORBs, the IOR.
However, IORs can be quite difficult to remember. Most CORBA products
have propriety mechanisms that enable you to "bind" a proxy to a
remote object. This usually involves specifying the remote machine and
the interface name of the object, and works in conjunction with an
object activation daemon.

72 Distributed Object Architectures with CORBA

The Naming Service provides a mechanism for the publication and dis-
semination of object references. Rather than reinvent the wheel, or more
appropriately a directory service, the CORBA Naming Service specifies a
generic IDL interface that can be used to wrap standard mechanisms such
as LDAP, DCE Directory, NIS, and so on. Your ORB vendor probably sup-
plies a basic implementation of the Naming Service, though the interface
to the Naming Service is reasonably straightforward and it would not take
long to create your own implementation by wrapping another standard
service (such as LDAP) with the OMG IDL for the Naming Service.

You can view the Naming Service as providing meta-information
about your distributed system; it gives you the ability to name and locate
your distributed objects. Also, you can structure the name space to suit
the needs of your business.

Review
Anyone using computers over the past few decades will be familiar with
the concept of a directory (or folder) structure for the computer file sys-
tem. This structure allows you to organize and retrieve information in
the form of files. The CORBA Naming Service can provide a similar struc-
ture for the name space and provides a way to map from a name to an
object reference; however, you should note that the name space is more
like a directed graph than a tree.

The Naming Service contains a database of mappings between names
and object references. Using the OMG terminology, this mapping is
called a binding. The service provides you with the functionality to find
a name, create new bindings, delete bindings, and so on.

Listing 4-1 illustrates the essential interfaces for the Naming Service.
As you can see, each name in the name space consists of a sequence of
name components (represented by the IDL structure NameComponent)
and each name component can have an associated user-defined type. By
structuring names in this manner, the Naming Service does not impose
any "standard" separators upon the user (like slash, /, for the UNIX file
system and backslash ,\, for DOS). Name components are said to be
equivalent if the name and ID of one component is the same as the
name and ID of the other.

The key to navigation through the name space is to use naming con-

Meta-lnformation 73

texts. Each node of the name space consists of a context; each context
can contain name bindings. These bindings can be to other contexts or
object references. Naming contexts are similar to directories (or folders)
in a file system.

The top of the name space is the "root"; you can obtain the root nam-
ing context as an initial reference and navigate from there. All names
you resolve are relative to the naming context that you use.

Using the list method, you can iterate through all the names at the
next level down from the current context and dynamically discover
what is bound to them. Additionally, the naming context interface also
enables you to create new contexts, bind names to objects and contexts,
remove bindings and so on.

Listing 4-1: Essential interfaces for the Naming Service

module CosNameing {

typedef string Istring;

struct NameComponent {
Istring id;
Istring kind;

typdef sequence<NameComponent> Name;

interface Naming Context {
Object resolve(in Name n)

raises (NotFound, CannotProceed, InvalidName);
void bind(in Name n, in Object o)

raises (NotFound, CannotProceed, InvalidName,
AlreadyBound);

void rebind(in Name n, in Object o)
raises (NotFound, CannotProceed, InvalidName);

void bind_context(in Name n, in Naming Context nc)
raises (NotFound, CannotProceed, InvalidName,

AlreadyBound);

74 Distributed Object Architectures with CORBA

void rebind_context(in Name n, in Naming Context nc)
raises (NotFound, CannotProceed, InvalidName);

void unbind(in Name n)
raises (NotFound, CannotProceed, InvalidName);

NamingContext new_context();
NamingContext bind_new_context(in Name n)

raises (NotFound, CannotProceed, InvalidName,
AlreadyBound);

void destroy() raises (NotEmpty);

void list(in unsigned long how_many,
out BindingList bl,
out Bindinglterator bi);

enum BindingType {nobject, ncontext};

struct Binding {
Name binding_name;
BindingType binding_type;

typedef sequence<Binding> BindingList;

interface Bindinglterator {
boolean next_one(out Binding b);
boolean next_n(in unsigned long how_many,

out BindingList bl);
void destroy();

You can also have federated Naming Services—that is, instances of a
Naming Service running on different machines. Each Naming Service

Meta-lnformation 75

can refer to the other, and the navigation from one to another is trans-
parent to the user. The way to achieve this is to bind a context from one
name service into another. Figure 4-3 illustrates a federated name space.
Each name service may be running in a different geographical location.

Simple example
We shall now look at an example using the Naming Service for a set of
Formatter objects. Figure 4-4 illustrates how we will structure the name
space. We have a location in the name space where we can find refer-
ences to formatters. We further structure the name space to indicate the
type of the formatter.

Initialization
Before you can do anything with the Naming Service, you need to
obtain a reference to the root naming context. This enables you to nav-
igate the name space. Listing 4-2 shows code for obtaining a root nam-
ing context. The resolve_initial_references method is used to obtain an

NameSpace 1

root

Formatters

RTF

NameSpace 2

root

y

Formatters

PDF

Figure 4-3. Federated CORBA name space

76 Distributed Object Architectures with CORBA

Figure 4-4. Multiple Formatters for different document types

object reference to the root context of the current ORB's Naming Service.
Since the method returns a generic object, we need to narrow it to the
type that we are interested in. (If the narrow operation is invalid, then
an exception will be thrown.)

Listing 4-2: Obtaining a root naming context

NamingContextRef rootContext;
ObjectRef initRef;

try { / / Find initial naming context.
org.omg.CORBA.Object initNCRef = ORB.init().resolve_initial_references

("NameService");

rootContext = NamingContextHelper.narrow(initNCRef);

Meta-lnformation 77

Publishing
The code in Listing 4-3 shows how an object reference is inserted into
the name space. In the example we are binding relative to the root con-
text, though you should be aware that the NameComponent is relative to
whichever context we use. For example, if we created a context at the
point Formatters in the name space, then the NameComponent would
only contain one element ("PDF"). You should be aware that the context
for "Formatters" should already exist in the name space.

Listing 4-3: Inserting an object reference into the name space

II allocate a sequence for the name
NameComponent[] name = new NameComponent[2];
name[0] = new NameComponent("Formatters",

"Formatters");
name[l] = new NameComponent("PDF",

"Formatter");

try{
/ / pdfFormatter is an instance of Formatter

rootContext.bind(name, pdfFormatter);

Resolving
The code in Listing 4-4 shows how a client would extract a reference to
the PDF formatter from the name space. Again, since the name space
contains a generic object, you need to narrow the selection to the type
of object you expect to get (and again, an appropriate exception will be
thrown if there is an error).

Listing 4-4: Extracting a reference to the PDF formatter

NameComponent[] name = new NameComponent[2];
name[0] = new NameComponent("Formatters",

"Formatters");
namefl] = new NameComponent("PDF",

78 Distributed Object Architectures with CORBA

"Formatter");

org.omg.CORBA.Object objRef=null;

Formatter pdfFormatter = null-

try {

objRef = rootContext.resolve(name);
pdfFormatter = Formatter.narrow(objRef);

As you can see, it can get quite clumsy creating NameComponents and
populating them. Especially when you have a deep name space. As an
alternate, you could establish a naming context closer to the point in the
name space in which you are interested.

If you devise a standard separator for names (such as the forward
slash), then you may want to wrap the functionality of the Naming
Service to provide lookup and publish functions that take names that are
more intuitive.

Implementation Repository
It is the responsibility of the ORB to ensure that an implementation of a
distributed object is active when it receives a request for that object. To
do this, the ORB also needs to keep track of which object implementa-
tions are available, and whether they are incarnated or etherialized.
(Incarnate and etherialize are part of the new CORBA terminology, respec-
tively referring to the activation and deactivation of an object by an
object adapter. See the next chapter on life cycle for more details.)

The ORB keeps an implementation repository to assist with its house-
keeping. The information in the implementation repository would con-
sist of the name of an executable, how to start the executable, what
interfaces it supports, and so on. When a request comes to the ORB for
an instance of the Document Locator, it can then look at the imple-
mentation repository and run the executable containing the Document
Locator if it is not already running.

As you have probably figured out, this information can be very oper-
ating system-specific. CORBA implementations can exist on a variety of

Meta-lnformation 79

machines, from the mainframe to embedded devices. The needs of the
implementation repository will vary from OS to OS and from machine
to device. As such, different ORB vendors may implement the
Implementation Repository in different ways. Considering this, the
CORBA specification does not standardize the implementation of the
Implementation Repository. Also, since Implementation Repositories are
vendor-specific, how you get information into the repository is not stan-
dard. Some vendors provide you with a set of administration tools that
allow you to manipulate the contents of the Implementation Repository.

Distributed objects may be transient or persistent. Transient objects
are those that are created at run time and do not outlive their creating
process. Persistent objects are those that can outlive their creating
process. Your client may have an IOR to a persistent object, and then,
when the client binds to this object, it is the responsibility of the ORB
to work in conjunction with the Object Adapter to incarnate the object.
This indirect binding allows for greater flexibility at the expense of a
small performance overhead.

You may also have more than one implementation of a given server.
Each implementation may be located on different machines. This infor-
mation can be incorporated within the Implementation Repository and
used by the ORB for load balancing. The Implementation Repository
itself may also be distributed and replicated among a set of machines,
allowing for redundancy in case an Implementation Repository is
unavailable. In this case, the IOR of an object will contain the addresses
of the various Implementation Repositories.

Interface Repository
In the previous chapter, we discussed the design of the interfaces for
your distributed objects using IDL. We can view IDL as both a contract
and as meta-information. IDL is a description of the interfaces to your
distributed objects. Remember that our distributed objects are only
accessible through their interfaces, so if you have a description of the
interface, you have a description of the distributed object from the user's
point of view. Once you insert IDL into an Interface Repository, you can
obtain this information at run time. The Interface Repository was the
first CORBA mechanism to provide run-time meta-object information.

80 Distributed Object Architectures with CORBA

The downside, as I mentioned before, is that IDL does not capture the
semantics or nature of dependencies between your distributed objects.
You can not know the pre- and postconditions for each method of an
object just from its IDL. Although all is not lost, for some applications
you can still go far with just the information in the Interface Repository.
If you need access to a richer meta-model, you may want to consider
using the more recent Meta-Object Facility.

How you insert your IDL into the Interface Repository is vendor-specif-
ic. Sometimes you will find that the ORB vendor supports options to their
IDL compiler that insert the interface into the Interface Repository. Other
vendors may provide you with a set of tools that allow you to manipulate
the repository. You will need to refer to the documentation for your ORB
for details; however, the programmatic interface to the Interface Repository
is standard, and, as with everything CORBA-related, defined in IDL.

A quick overview
The contents of the Interface Repository are instances of CORBA objects.
There is a close mapping from the IDL types to the CORBA objects defined
within the Interface Repository. Figure 4-5 shows the main types in the
Interface Repository and illustrates their containment relationships.

You can navigate the Interface Repository and interrogate each of the
instances to get a description of the object that it represents. For example,
an InterfaceDefwill contain objects that define its operations (OperationDef),
attributes (AttributeDef), and so on.

You can modify the contents of the Interface Repository through its
CORBA objects. Using this mechanism, it would be possible to write a
tool to help with the administration of the Interface Repository (if your
ORB vendor does not supply one).

Five abstract interfaces define the operations and attributes necessary
to create a representation within the Repository. These are IRObject,
Contained, IDLType, Container, and TypeDef. Figure 4-6 shows part of the
inheritance hierarchy for the interfaces in the Interface Repository. You
can navigate the bulk of the Interface Repository through the Contained
and Container interfaces.

To help make this concrete, let's look at the IDL defined in the previ-
ous chapter for Content and ContentProvider.

Meta-lnformation 81

exception NoContent{};
exception NoDocument{};

struct Content {
string format;
any data;

interface ContentProvider {
Content getContent() raises(NoContent);

Repository

£
ModuleDef

ConstantDef

TVpeDef

Exception Def

Interface Def OperatlonDef

AttrlbuteDet

Figure 4-5. Interface Repository types

82 Distributed Object Architectures with CORBA

Figure 4-6. Partial inheritance hierarchy for the Interface Repository

Figure 4-7 illustrates part of the instance representing this IDL in the
Interface Repository. As you can see, both the Content and ContentProvider
are contained within the Repository and the operation getContent is con-
tained within the ContentProvider. Now, if we were to extract the defini-
tion of ContentProvider from the Interface Repository, our code would look
like the following.

Contained contained = ifr.lookup("ContentProvider");
InterfaceDef interface = InterfaceDefHetper.narrow(contained);
FullDescription description = interface.describe_interface();

Other mechanisms to extract information from the Interface Repository
consist of iterating through all the elements of the Repository from the top
node, or, if you have an object reference, obtaining the name of the inter-
face from the object.

Meta-lnformation 83

Repository

/ 1 Content

StructDef

definedln
name

\ , Content

InterfaceDef

definedln
name

1

Provider

\ . getContent

OperationDef

definedln
name

Figure 4-7. Content and ContentProvider representation

A simple example
To use the Interface Repository you first need to get a handle to it. As far
as your client application is concerned, the interface repository is just
another server. You can obtain an object reference to the Interface
Repository through the method resolve_initial_references. After this you
can treat it just like any other object reference.

If you have a reference to a remote object, you can then use this to
obtain the name of the interface that the remote object implements.
Once you have the name of the interface, you can then to extract fur-
ther information about the object from the Interface Repository. Then,
with this information you can construct a request using the Dynamic
Interface Invocation mechanism (more on this later) to invoke one of
the methods of the remote object.

Listing 4-5 illustrates the code to extract the full description of an

84 Distributed Object Architectures with CORBA

interface from the repository. First we get a handle to the repository,
then we lookup the interface we are interested in by name. Once the
interface is found, we then extract the full description.

Listing 4-5: Extracting a full description of an interface

org.omg.CORBA.Object initRef =
ORB.init().resolve_initial_references("InterfaceRepository");

Repository ifr_repository = RepositoryHelper.narrow(initRef);

Contained contained = ifr_repository.lookup(interfaceName);
InterfaceDef interfaceDef = InterfaceDefHelper.narrow(contained);

FulUnterfaceDescription fullDescription =
interfaceDef.describe_interface();

Dynamic Interface Invocation
In most cases, when you implement a client application that communi-
cates with CORBA objects, you create client proxies for the remote
objects by compiling the IDL definitions of the CORBA objects. These
client proxies take care of the details of translating your request to a
remote method invocation. The type and nature of the remote objects
are known at the time of implementation. CORBA also provides a more
dynamic mechanism wherein you do not necessarily know the interface
to the remote object you are using until run time.

Dynamic Interface Invocation (DII) provides you the tools to create
and invoke requests at runtime. You may have several reasons to take
this approach. You may be implementing a system with rapid changes
and additions to the servers, where the clients are more "intelligent" and
discover interfaces at runtime. In addition, DII could be used as part of
a gateway between two different protocols (more on this later). You
should note that the server does not know whether the client is using
DII or generated proxies from IDL, nor does it need to know. Let's now
take a look at what is involved with using DII.

Meta-lnformation 85

Steps to use DM
To use DII, you need to obtain a description of the interface to the
remote object upon which you are going to invoke methods. You may
see many simple examples where the information is embedded in the
sample program. However, to be practical you will need to obtain the
information from a source of meta-information, such as the Interface
Repository. If you do use the Interface Repository, you will need to reg-
ister the interfaces of the distributed objects and make the repository vis-
ible to the client application.

You would take the following steps when performing a DII operation
and using the features of the Interface Repository:

1. Obtain the name of the interface.

2. Get the definition of the method you wish to invoke.

3. Create a request.

4. Invoke the request.

5. Extract the results.

We will now take a look at what is involved in the various steps.

Step 1: Obtain the name of the interface
Every CORBA object provides functionality to support reflective infor-
mation when used in conjunction with the Interface Repository. You can
obtain the name of the interface associated with the remote object and
use this to extract further details from the Interface Repository. This is
achieved by invoking the _get_interface method.

InterfaceDef interfaceDef = ((org.omg.CORBA.Object)obj)._get_interface();

Step 2: Get the definition of the method you wish to invoke
To make a useful dynamic program, you need to obtain a description of
the method you wish to invoke. You must then use this description to
create the necessary arguments for the request. You can either imple-
ment your own mechanism to get the method description, use a MOF,

86 Distributed Object Architectures with CORBA

or use the Interface Repository. In this example, we make use of the
Interface Repository.

Containedf] opSeq = interfaceDef.lookup_name(
"getSection",
1, / / just the current object
DefinitionKind.dk_Operation, / /
false / / exclude inherited

/ / test to see that the opSeq contains the operator for
/ / the getSection method
if (opSeq[0].name() = "getSection") {

/ / then extract the definition of the method
OperationDef opRef = OperationDefHelper.narrow(opSeqfO]);

}
/ / otherwise we have a problem

As an alternative, you could use the describeJnterface method to get a full
description of the interface. In the above example, we know what method
we are looking for. However, if we were writing an interactive application,
we could use the full description of the interface to construct a menu for
the user to select the method (and enter values for the arguments).

Step 3: Create the request
You can employ two possible mechanisms to construct your request. You
can either create your request object fully populated (using the
_create_request method) or create an empty request object that you then
populate. Both of these methods are defined as belonging to the CORBA
Object, and so have definitions in all the language mappings. The follow-
ing are the Java definitions of the _create_request and jequest methods:

/ / Both these methods are defined on the class Object, they allow
/ / the programmer to create an instance of the Request object
public org.omg.CORBA.Request _create_request(

org.omg.CORBA.Context ctx,
String operation.

I Meta-lnformation 87

org.omg.CORBA.NVList argjist,
org.omg.CORBA.NamedValue result

public org.omg.CORBA.Request _request(String operation)

We will now look at both approaches, and apply them to invoke the
getSection method of the Document interface introduced in Chapter 3.
The first method, _create_request, takes as parameters a context object,
name value list of arguments, and an object to hold the result.

String operation = "getSection"; / / name could be obtained by other means

NVList argList = _CORBA.Orbix.create_operation_list(opRef);
NamedValue arg = argList.item(O);
if (arg.name() = "name")

arg.value().insert_string("Chapter 4");
/ / note - we could also check the type

Context ctx = ORB.init().get_default_context();

org.omg.CORBA.Any return_val=_CORBA.Orbix.create_any();
return_val.type(opRef.result());

org.omg.CORBA.NamedValue result =
_CORBA.Orbix.create_named_value(null,

return_val,
org.omg.CORBA.ARG_OUT. value);

/ / Create the actual request
org.omg.CORBA.Request request =

obj._create_request(ctx, operation, arg_list, result);

In the code we needed to instantiate objects to represent the context,
arguments, and contain the result before we can create the request. As
you can see, the code is clumsier that just invoking a method through a
generated proxy.

We can simplify some of this by using a more compact form as follows:

88 Distributed Object Architectures with CORBA

org.omg.CORBA.Request request = obj._request("getSection");
request.add_named_in_arg("name").insert("Chapter4");
request.set_return_type(

orb.get_primitive_tc(org.omg.CORBA.TCKind.tk_string)

Step 4: Invoke the request
Perhaps the simplest part of the whole operation is invoking the request.
This is done by calling the invoke method on the request object.

request.invokeQ;

Step 5: Extract the results
Once you have invoked the remote method, you will want to extract the
results. You will need to test the request object to see if either the ORB
infrastructure or the remote object raised any exceptions.

if(request.env().exception() != null) {
/ / process the exception

} else {
/ / process the result
/ / request.return_value();

Deferred synchronous method invocation
CORBA does not have a mechanism to make asynchronous method
invocations, though some of the services, such as notification and event
services, do provide you with a mechanism to send information in an
asynchronous manner. You should note that the oneway IDL mecha-
nism is not actually asynchronous, and its implementation is vendor-
specific. When you use DH, you can make deferred synchronous method
invocations; here, you send the request to the remote object and test for
return results as a separate step.

request.send_deffered();

Meta-lnformation 89

You can then get the response using the get_response method (which
blocks) or you can poll for the response using the polljresponse method.
Once you have received the response, you can process the results as in
step 5 above.

Dtl summary
DII enables you to write dynamic clients. Examples of cases where you
may want to make use of this mechanism include:

* Writing a generic test harness

* Writing part of a gateway between different protocols

* Providing a scripting tool, where dynamic discovery of interfaces
may be necessary

The disadvantage of using DII is that to be truly dynamic, you need
to use the Interface Repository and interpret the meta-information. This
causes method invocation to be considerably slower (because of the
extra network traffic) than using a statically generated interface. A pos-
sible optimization would be to transfer the meta-information for the tar-
get object at the time that the client binds to the target. This may be
done using an interceptor mechanism (for a description of Interceptors
see the discussion in Chapter 6), where the information is captured
using a homegrown mechanism. This would optimize the reception of
meta-information, though it would not be a standard procedure.

Dynamic Skeleton Interface
While the DII mechanism enables you to write dynamic clients, what about
dynamic servers? CORBA provides us the Dynamic Skeleton Interface (DSI).
This enables us to write generic servers that can respond to method invoca-
tions without including code generated from the IDL. You can use DSI to
implement a generic server that can respond to a variety of requests.

To implement a dynamic server—that is, one that uses the DSI—you need
to write an invoke method. When a request comes in, the invoke method is
called. The method will then look at the request and the name of the oper-
ation, and invoke the corresponding method in the actual implementation.

90 Distributed Object Architectures with CORBA

Your invoke method needs to decode the arguments that have been passed
in as parameters. This is like the inverse of the DII mechanism. Instead of
dynamically creating a request, you are pulling apart the individual contents
of a request to determine subsequent actions and associated parameters. The
code in Listing 4-6 illustrates the skeleton for a generic gateway using DSL

Listing 4.6: Generic gateway skeleton using DSI

class MyServer extends org.omg.CORBA.Dynamiclmplementation {

/ / process incoming requests
public void invoke(org.omg.CORBA.ServerRequest _request)

{
/ / extract the name of the operation
String _opName = _request.op_name() ;
/ / extract the name of the interface ...
org.omg.CORBA.Object target = _request.target() ; / / return the tar-

get object...
target._get_interface(); / / get the interface for IFR processing

/ / we now know the interface and operation ...
/ / we can use the IFR to extract the contents of the
/ / request and build a suitable server-side invocation...

/ / in Java we may use a class loader to load a
/ / suitable server-side implementation...

Since the interface details are not compiled into the server-side code,
you can start to provide more flexibility in your server. If we use Java for
the implementation, we can make use of a class loader to bring into
memory the actual implementation of the server-side object. Then, com-
bining Java reflection with the reflective capabilities of the Interface
Repository, we can map between the incoming request and the method
invocation on the Java implementation.

Meta-lnformation 91

You will find that most if the time you will not make use of DSL This
mechanism is useful for those of you that need to write a bridge between
different protocols and CORBA or a gateway.

Meta-Object Facility
The Meta-Object Facility (MOF) is a recent addition to the expanding set
of services provided by the CORBA specification. The MOF provides a
richer meta-model than the Interface Repository: the Interface
Repository only described CORBA types, not relationships. The MOF
provides the necessary functionality to describe relationships.

The goal of the MOF is to provide an integration of CORBA applications
with development environments. It was envisioned that a development
environment would consist of a modeling tool and associated repository. By
making the information in the repository available to applications at run-
time, we can provide self-describing CORBA frameworks and components.

You can expect a MOF implementation to supply you a server, repos-
itory, and associated tools. You must be able to populate and manage the
repository. The MOF contains a simple meta-metamodel that can be
used to define meta-models, though for practical purposes you will find
that MOF implementations come with a meta-model that supports the
core UML. While the MOF does not have all the modeling constructs (if
it did, the standard would probably still be in committee) it is far richer
than the Interface Repository.

One of the goals of the MOF is to fill the holes left by the Interface
Repository. The Interface Repository only understands the CORBA inter-
face type system and does not represent relationships between the dis-
tributed objects. The MOF provides a "complete" solution for representa-
tion of meta-information within a CORBA environment. The MOF was
also designed to be useful to those of you that do not wish to use CORBA.

Here are some highlights of the goals that the designers of the MOF
had in mind:

* Share semantically rich meta-data.

* Support self-discovery, reflection.

* Allow the integration of tools with a CORBA environment (such
as a CASE tool).

92 Distributed Object Architectures with CORBA

* Support for the forthcoming CORBA components standard.

* Integrate with the Business Object Facility (BOF)1.

The MOF can also be used outside of CORBA! The meta-models that the
MOF supports can encompass a wide variety of object-oriented systems.
This means that the information captured within the MOF's repository
does not need to be limited to a CORBA system. Consequently, we are see-
ing the development of tools that utilize the MOF for the development of
other object-oriented systems (such as those based on Java beans).

Probably the most promise for the MOF lies in its use to support com-
ponent-based infrastructures. Components that are expressed in terms
of the MOF will provide reflective capabilities and can be understood by
the rest of the system.

Another use for the MOF is in an Enterprise Application Integration
(EAI) tool set. The goal of EAI is to integrate application across your
enterprise; if you model existing applications and insert the model into
a MOF, you can then incorporate those applications as components into
the rest of your infrastructure.

There is a standard mapping from the contents of the MOF to IDL. This
means that if you generate your business model using a standard CASE tool
and insert it into a MOF-compliant repository, you can generate the IDL for
your distributed objects. I would raise a caveat here in that you should be
aware of the issues regarding interface design raised in Chapter 3.

In addition to the MOF, the OMG has passed a standard that allows the
interchange of meta-information between repositories. The XML
Metadata Interchange (XMI) provides a vendor- and system-independent
mechanism to represent meta-information from a MOF repository. XMI
is an instance of an XML grammar (see Chapter 8 for a brief description
of XML), and as such is easily parsed by both applications and humans.

Trader
The Trader Service does what its name implies: it allows you to find other
objects on the network that match a set of criteria. Unlike the Naming
Service, wherein you publish objects by name, with the Trader you can
associate an object with a set of properties. For example, you may adver-
tise a Formatter object by its capabilities (PDF, RTF and so on) and an

Meta-lnformation 93

indication as to how busy the Formatter service is at the time of the
request. Rather than locating an object based on its name (Naming
Service) you can locate an object based on its capabilities. Given this
functionality, some people have likened the Trader Service to a "yellow
pages" for distributed objects. We'll take a brief look at the Trader Service.

A Trader works by taking an exporter and matching it with the require-
ments of an importer. Exporters are objects that advertise their services
with the Trader. Importers are clients that use the trader to find objects
that match their requirements.

To advertise (or export) the capabilities of an object, you must give the
following information to the trader: the object reference, the service
type name, and a list of properties. The object reference is the standard
CORBA object reference. The service type name is the name you use to
advertise the service and is held within a type repository. The properties
are a list of name-value pairs that describe the capabilities of the object;
you can indicate which properties are mandatory or optional, and prop-
erties can also be computed dynamically.

An importer will make a request for a service, such as the Formatter,
to a Trader using a the "trader constraint language." The constraint lan-
guage is a simple language consisting of Boolean expressions specifying
constraints on the possible properties. You would use the Lookup inter-
face to issue a query. Here you specify the type of service you are inter-
ested in as well as the constraints (you can also indicate what informa-
tion to return, the order of the offers and so on). It is possible to obtain
more than one offer as a result of a query; each offer represents an object
that meets your criteria. You may also receive offers from objects that are
derived from the type you were originally looking for.

You can easily see that Traders can be an important component to
large distributed systems that require dynamic discovery. Since the prop-
erties of an exporter can be dynamic, you can base your search on the
state of the object you want to use. For example, you may be looking for
a Formatter that can produce PDF and is currently formatting less than
ten other pieces of content.

Traders can also be federated. This allows us to link the offers from dif-
ferent traders (possibly in different parts of the organization) together to
provide a larger pool of potential offers. Traders can provide the core
mechanism for the dynamic use of distributed objects.

94 Distributed Object Architectures with CORBA

Summary
Meta-information is used in various guises in the modern software sys-
tem. By realizing and making explicit the use of such information, we
can improve the flexibility of our system and help ensure a long and use-
ful life. To help learn about meta-information, we looked at examples
that illustrate its use. Then we looked at meta-information with CORBA.

The usefulness of meta-information within your system is not limited
to CORBA or distributed objects. However, CORBA does provide support
for meta-information at various levels, from the implementation and
interface repositories, through the naming service, to the MOF. With the
introduction of the MOF, we are seeing a standard mechanism to share
models from repositories. This provides an open software framework to
support software construction from analysis and design through to
implementation. I hope this chapter has inspired some ideas for making
use of such information within your future (or current) systems.

References
Crawley, S. et al. Meta-meta is better-better! Presented at DAIS, Germany

1997.

Object Management Group. CORBA Specification. Available at
http://www.omg.org

Component Specification, vol. 1, http://www.omg.org/cgi-bin/doc7orbos/
99-07-01

Component Specification, vol. 2, http://www.omg.org/cgi-bin/doc7orbos/
99-07-02

Component Specification, vol. 3, http://www.omg.org/cgi-bin/doc7orbos/
99-07-03

van Hoff, Arthur, Hadi Partovi, and Tom Thai. "The Open Software
Description Format (OSD)" http://wwwl3.w3.org/TR/NOTE-OSD.html,
August 11,1997

Meta-lnformation 95

Notes
1. The BOF has metamorphosed into the BOI

Chapter 5

Life Cycle And
Persistence

A key part of object-oriented software development is mapping design
model entities to implementation model classes. Although we are used
to thinking of object instances as the primary players in a runtime sys-
tem, it is in fact the conceptual entities that they embody, not the
instances themselves, that are truly important. Objects come and go, but
what they represent lives on in the "minds" of clients. For example, a
client invocation may require activating a service and instantiating a
new object; or a single entity might be represented by objects in multi-
ple processes in a system with load balancing; or a business entity can
exist in a persistent data store and then be incarnated as objects in mul-
tiple services. Thus, what appears to be a single perpetual entity to
clients may not currently exist as a physical runtime object, or may exist
as multiple objects.

This difference between conceptual entities and the objects that serve
as their vessels lies at the heart of the areas of life cycle and persistence.
Questions raised by the entity/object duality that must be applied to
every entity include:

• How is the entity identified so that objects know what they are
implementing?

• What process or processes should the implementation objects live in?

97

98 Distributed Object Architectures with CORBA

• Does the entity exist only when an implementation object is created?

• Where and how is an entity's state stored if it exists beyond the
implementation object?

• Can an implementation move?

Life cycle and persistence are architecturally core topics in their own
right and will serve as the base for load balancing and failure recovery.
Life cycle largely addresses what it means to implement an entity that
may exist beyond the scope of a single process. Persistence is chiefly con-
cerned with what it means for an entity to exist when its implementa-
tion does not. The two topics are complementary and closely entwined.
We will cover life cycle first, during which we will assume the ability to
persist an object's state.

Life Cycle
Objects in the world have temporal boundaries; they come into being
and they meet their ends. In between they perform actions, get shuffled
around, change state, form and break relationships, and so on. The life
and times of an object exhibit a panoply of different aspects. Applying
this to our software object models, several aspects can be modeled in a
generic and useful way. Services can be created to observe and manipu-
late aspects such as the object's relationships to other objects
(Relationship Service), its modes of behavior (state models), its internal
makeup (persistence), how other objects view it (Property Service) and
more. The notion of life cycle refers to the changes in an object's con-
text within the system.

When developers refer to the life cycle of an entity, it is usually in one
of two contexts: intraprocess or interprocess. Intraprocess life cycle
describes how an implementation is disconnected from and tied to the sys-
tem entity it is implementing. When talking about intraprocess life cycle,
we talk about the instantiation of an object, how it might persist data,
exposing it as a remote object, and in general, managing real resources.

Interprocess life cycle is what we consider distributed object life cycle.
We do not so much consider the implementation object as manipulate
which part of the system is allowed to manage the implementation of

Life Cycle and Persistence 99

the system entity. Depending on how "part of the system" is defined,
this could mean which process has the right to instantiate an imple-
mentation, or which department has this employee on its payroll.

Life cycle support implementations
Even if there is no support to remote the manipulation of object life
cycle, some intraprocess life cycle support must be in place in order to
simply create objects. Most basic support for intraprocess object life
cycle in the ORB core lies within the object adapter. This will be evident
in the initial discussion below, which will explore managing the rela-
tionship between the system entity and the runtime instance life cycle
at the intraprocess level.

Life cycle transitions
Every entity has four main transition events in its life cycle: creation,
activation, deactivation, and destruction. These define the changes in
accessibility of the object in a system (Figure 5-1).

create

Figure 5-1: Life cycle transitions

100 Distributed Object Architectures with CORBA

Creation is when the entity first comes into being in the system; for
example, the first time the object is entered into the database.
Some objects, like services, are never explicitly created; they exist
from the moment of deployment. In such a case creation is when
the object is entered into the directory service.

Activation defines when the runtime instance is connected to the
system entity. It represents the point at which the object is truly
available to accept invocations.

Deactivation is when the object returns to a dormant state.
Normally the runtime instance is freed and the entity reverts to a
limbo state of existence, possibly back to the data store.

Destruction involves removing the entity altogether, such as deleting
the row in the database, or removing an object from the namespace.

The runtime instance of an object goes through its own life cycle dur-
ing activation and deactivation. The instance needs to be instantiated,
have the entity information loaded from the data store, and have the
object reference exported so it can be referenced remotely. From the sys-
tem view this is all part of activation and the reverse process is all part
of deactivation. Vendors will provide, to varying degrees, support for
these aspects of activation. The persistence section will cover details of
mapping the instance to the entity in the data store.

Activation/deactivation
We will now take a closer look at the mechanism of object activation and
deactivation within the ORB.

Activating objects
When a client makes a request using an object reference, the ORB finds
the correct process and passes the invocation to the object adapter in
that process. The object adapter in turn needs to find the correct imple-
mentation object internally and pass the request to that object. The def-
inition of an object reference provides for not only process location
information, but an identity, or marker, for the runtime instance to spec-
ify it uniquely in the process.

Life Cycle and Persistence 101

When a request comes in, the object adapter needs to look up the
marker in some internal table to find the runtime object. If it can't find
the object, it throws an exception back to the client. Most vendors pro-
vide hooks into this process. If the marker for the object can be made to
represent an object identity for the system entity (see the persistence dis-
cussion below, on the POA in particular), rather than just a reference for
the runtime object, then the object adapter can implement more sophis-
ticated activation policies. For instance, if the runtime object cannot be
found, a new instance can be created and loaded with the information
from the data store. Such object adapter policies are part of the internal
management of the life cycle process.

Activation/deactivation policies
The policies you adopt for activation and deactivation affect your sys-
tem. Ideally, you would not want an object deactivated while there are
interested clients, and conversely, the object need not hang around
when it is no longer wanted.

Activation Daemon: If you have an object activation daemon (OAD) to
support the ORB, then it can implement a number of activation policies
governing responses to client requests. The simplest policy is to start a
process if one is not currently running, and to have all clients share that
same process. The next step up is to start a new process for any new request.
This induces high overhead, but works if the service does not maintain any
session state. It is also workable if the objects are fully persistent.

A more intricate family of policies start a new process per client. These
are complicated by having to establish what really defines a client. You
can define a client as a username, or a client process, or something else
completely. Other policy possibilities include creating a new process per
object instance or per system entity. The OAD would make the decision
to make a new process or reuse an existing one by looking at the object
identity as well as the service identity in the object reference.

Object Adapter Policies: Assuming that we are using a shared service
process, runtime instances cannot be kept in memory forever. But if
instances are cleaned out too soon, some clients may be left with invalid
object references. Some policy for cleaning up objects needs to be in place.

The client processes can share in the responsibility for this part of the

102 Distributed Object Architectures with CORBA

intraprocess life cycle. You can provide a remote removeO method on the
object which, when invoked, notifies the object adapter that it can clean
up this runtime instance; or, if many clients share the same runtime
instance, the method manages a remote reference count. However, there
are many scenarios in which relying solely on the clients to call removeQ
is insufficient and far from robust. If a client dies unexpectedly, the ref-
erence count could be wrong. If a client passes a reference on, there can
be confusion about who owns the reference, and again the count can
become corrupted. A fundamental rule is that a service should be far
more robust than the many clients which depend upon it. The reliabili-
ty of the service, which involves such factors as memory management,
should not hinge on external clients.

Clients: An object can be removed when it has no more clients.
Distributed reference counts can try to give clues as to when this hap-
pens, but they're only as robust as the client processes, machines, and
network connections. Another strategy is to look at system connections
to the server process. Counting system client connections may not be
sufficient, however, because clients connected to a service may be look-
ing at disjoint or overlapping sets of objects, and it is nearly impossible
to be sure which objects are matched to which clients. In addition, since
CORBA object references can be externalized, they can be persisted or
transferred without an explicit client connection. Or a client can close a
socket as part of resource management, but expect to reopen and con-
tinue using the object reference. Or all the connections can be going
through a single proxy bridge, as is the case in many Web or firewall
access situations. Thus there is no sure method for exactly tracking
clients in order to safely remove objects.

Timeouts: The outcome of all these complications is that to make a
server robust, you must put a backup plan in place. One approach is to
have an object in the server which is responsible for looking at the object
adapter table and removing objects based on some criteria. Even if a given
CORBA implementation does not allow full access to the object adapter,
almost all implementations will provide hooks to instantiate objects from
a data store. At this point objects can be placed in a list for tracking. There
are also typically hooks to preprocess and postprocess calls going to spe-
cific objects or all objects (Figure 5-2). Using this pre/post processor it is
possible to track calls to objects to implement timeout or "least recently

Life Cycle and Persistence 103

Object Adapter

Persistence
control'

enter into map

invocation

create

Pre/Post
invocation
processer

invocation f
' »

Reclaiming Policy

(timeout)

view map/
touch objects

Implementation
Mapping

delete

?
holds

Implementation
Object

Figure 5-2. Reclaiming objects

used" mechanisms. As it is crucial to not remove objects while they are
servicing client requests, such a deactivator list must be very thread safe,
and should make good use of the pre/post processing hooks to prevent
objects from being improperly eliminated.

Reused Instances: Another policy is becoming more popular with
introductions of component models such as Enterprise Java Beans.
Normally, when an object is activated, three related steps happen at
once: the runtime object is instantiated, the data is pulled from the
store, and the object is made available. This new policy separates the
three steps. A goal of these component models is that by putting a layer
of indirection on top of the implementation objects, the implementa-
tion objects can be very insulated from the ORB core, and from other
basic services such as persistence.

104 Distributed Object Architectures with CORBA

Although we don't want to go deeply into a full component model,
which is far beyond the scope of this chapter, the basic life cycle pattern
involved is interesting. It requires the object identity to be reassignable.
A pool of implementation instances can be instantiated, but not loaded
from the store; in fact, with no identity preassigned (Figure 5-3). At
request time the adapter chooses an instance and morphs it into the cor-
rect entity by initiating a data load. Before each data load, the object
needs to be certain it is fully stored in the data store. This approach is
most appropriate for a system that must handle large numbers of fairly
fine-grained system entities, and a usage pattern in which each object is
touched for a relatively short duration.

Shared Instances: Given a very fine-grained and large set of system
entities, instantiating an object for each system entity is expensive in
both number of objects (memory) and time needed to instantiate all the
objects. A possible solution is to share the runtime instances between
system entities (Figure 5-4).

Object Adapter

Implementation
Pool

Implementation

Implementation

OR

Persistence
Memento

Persistence
Memento

Persistence
Layer

Figure 5-3. Pool

Life Cycle and Persistence 105

The object adapter can make many object references available, but map
all references to the same runtime instance. This works best when the mark-
er for the objects is that of the system entity. Then, during the processing of
a request, the implementation object can ask for the marker of the object
reference used to make the request. Interpreting the marker as a system enti-
ty identifier, the implementation can process the request as appropriate to
that entity. Internally there can be either one implementation object or a set
of objects that each handle a subset of the system entities.

A problem with this is that currently, only a few ORB vendors fully support
this kind of feature. Many make the assumption that the object implement-
ing the entity is the same instance that receives and processes an incoming
request. Or at least they assume they are tied in a one to one relation. It may
be necessary to build an indirection layer as in the component model
approach, or at least use in a mapping object which will allow the implemen-
tation objects to view the mapping performed by the object adapter. Note that
this situation is changing with the advent of the POA (discussed below).

Persistence
Memento

Object Adapter Implementation /

V
Persistence
Memento

Persistence
Memento

Persistence
Layer

Figure 5-4. Shared instance

106 Distributed Object Architectures with CORBA

Distributed Object Life Cycle
In the wider distributed scope we want to consider what it means to
manipulate system contexts. Trying to generalize operations on objects
in contexts actually produces a small possibility set. We can move an
object into a context or remove it from a context. We can copy the object
and put the copy into a different context. If an object doesn't exist, we
must create it before putting it into a system context; and likewise, if
there is no place for an object to go, we need to destroy the object. Now,
although to remove an object from a system context and to destroy it
are two separate concepts and the distinction may be useful in many sit-
uations, in the realm of distributed objects, if an object is removed from
a context, it must be moved elsewhere or it is lost. Thus either we move
the object or we destroy the object. So even though there is some bene-
fit in keeping the semantic difference between the two clear, for a gen-
eralized set of operations in distributed environments that supports the
idea of complete server encapsulation, the semantics of remove cover
those of destroy. So to sum up, combining destroy with remove, we have
four operations: createO, moveQ, copyQ, removeQ.

Life cycle service
The CORBA life cycle service concerns itself with the issue of construct-
ing interfaces to enable the above operations (see "Life cycle IDL" below)
from remote clients. It does not define what these operations mean
semantically to specific objects. For instance if an object lives longer
than its runtime implementation, what does it mean if removeO is called
on the runtime instance of that object?

The CORBA life cycle service defines how a client can "create" an
object in a remote space. This of course requires a factory on the service
side. It defines a generic factory interface, but still recognizes the need
for an application-specific interface. This generic interface has the
method create_object(), which takes an object identity and a list of
name/value pairs (Criteria) to add application-specific information.

The other methods in the life cycle interface are directed at manipu-
lating a particular object, and so are defined in an interface from which
we expect to derive application interfaces. MoveQ and copyQ both take a

Life Cycle and Persistence 107

reference to a generic factory to move or copy to, in addition to a Criteria
set for application particulars. The interface provides a very generic way
of dealing with remote objects and their creation in a foreign process
space. If the factory passed to the moveQ or copyQ method can handle the
same type of object, then the object can in effect move or copy itself,
given some way to transfer runtime state.

Life cycle interpretation
When considering the semantics of the basic operations it is important to
think about which system contexts we want to manipulate. If we consid-
er life cycle for the system entities, moveO could mean moving the data
store. If we constrain our view to runtime, we are shuffling instances from
process to process. If we consider where an object lives to be where its
access point is, moving it may be relocating its directory entry. The fol-
lowing expands the discussion of each operation and what it might mean.

Runtime instance
Managing the life cycle of runtime instances beyond the scope of a sin-
gle process can be extremely useful for managing resources. Exposing the
life cycle control in explicit remote method invocations eases the com-
plexity of load balancing and failover management.

Move()
Implementations can generally be summed up in terms of behavior and
state. If a mechanism is put in place to move the current state of an
object to another process that is capable of instantiating an implemen-
tation object with the correct behavior, you can effectively move the
runtime object to another process. This requires that a copy of a class
implementing the behavior be resident on the machine to which the
object is being moved. Version control of the objects is an important
issue. If the version of the receiving class is not the same as that of the
original class, the state transfer may be incompatible and the system will
crash. Far worse is if the versions differ by behavior. There will be noth-
ing so obvious as a crash; just incorrect business logic being executed,

108 Distributed Object Architectures with CORBA

which might not be detectable until the data store is corrupted. This is
where using a technology like Java may be useful. Java allows the possi-
ble transfer of the behavior, via Java class files, along with the encapsu-
lation of the state.

Moving the runtime object may be very nice for shuffling resources
around, or for moving a heavily used object to collocate it near the call-
ing process to speed up communications (a basic premise of mobile
agents). Although moving an object may be useful for optimization and
administration, moving an active runtime instance may cause client ref-
erences to go stale. Ways of coping with this include vendor-provided
interfaces for sending HOP location forward responses, and "smart prox-
ies" which can handle faults by performing a location forward.

Copy()
If we are copying the object implementation, then we can start with the
same mechanism used for the move operation to copy the state and
optionally behavior to another place. But consider that there are now
two implementations that can be updated and modify the data store.
Keeping the two copies in sync is vitally important; otherwise different
parts of the system will have an incomplete and perhaps inconsistent
view of the objects.

Inconsistency is usually unacceptable given most business require-
ments. So you must make some effort to be sure the copies do not over-
write each other in the data store. When all clients are touching the
same object, it is easy to lock or to coordinate between clients through
the single object instance. With multiple possible copies in existence,
you will need a concurrency service of some sort to coordinate the
copies. In many cases the concurrency controls inherent in the data
store will be enough for update consistency. There are very different pos-
sible approaches to locking (e.g., optimistic vs. pessimistic); for some
more involved discussion of locking, see Chapter 6, "Transactions."

However the transaction control is achieved, data consistency
between the copies must still be maintained. When an update occurs, all
copies should be aware of the change in order to reload or deal with it
in the manner appropriate to the update control. If the data store pro-
vides some sort of call back, the persistence layer could handle this by

Life Cycle and Persistence 109

forcing a behind-the-scenes reload. If not, then the persistence layer, or
application layer, could generate events on an event channel. Another
option is that if all instances are copies of a central original, the original
can coordinate the central view. The copies would not draw from the
data store, but would rely on the original to replicate the object state
when needed. All updates to the state in this case would be delegated to
the original object to be propagated to the data store.

Copy()—detached
Another option for copying the implementation object is to copy the
object into a detached state. This means making a full copy of the imple-
mentation object, except that the object is not connected to the data
store. Changes to true persistent objects should propagate to the data
store; however there may be times when a client may want to manipu-
late an object in possible "what if" scenarios. This concept is most use-
ful when a significant (as defined by the business) subset of the objects
are copied into a detached state. Then a user, such as a financial analyst,
can play with the object model to simulate changes in the system and
view interactions in the model. This can be useful if there is a simulation
aspect to the model, or even if the analyst just wants to play with the
numbers and make all the correct changes at once.

This detachment can be implemented by duplicating (forking) the
service process, then disconnecting the persistence layer from the actu-
al data store. This would mean the implementation object would not
have to know anything about the difference between the real imple-
mentation and the detached copy. An optional feature for this type of
process would be for the persistence layer to collect the differences
between the local model state and the state in the data store, and to
merge the two when it came time to commit.

Remove()
From the runtime instance viewpoint the remove operation is an impor-
tant method. CORBA does not define an automatic distributed reference
count, so garbage collecting is problematic, even if we don't have con-
cerns about sharing objects. If a client is given the ability to create an

110 Distributed Object Architectures with CORBA

object through a factory and then pass that reference around, it should
be the responsibility of that client to free or remove the instance it cre-
ated. Developers with a C/C++ heritage know all too well the importance
of proper management of instantiated objects.

Distributed reference counts
Since there is no concept in CORBA of distributed reference counts, allow-
ing clients to share objects can be a tricky thing. The copyQ operation can
be used as the mechanism for incrementing the reference count. The
removeO operation would then decrement the reference count. So each
client that owns a reference, or in other words, calls copyO to increment
the reference count, is thus responsible for calling removeQ for each "copy"
it owns. Cleanup is important, and clients (see above discussion of time-
outs in life cycle transitions) may not be fully reliable. The moveO opera-
tion could transfer the ownership of a reference, especially in cases when
the server instance knows something about the clients holding references.

System entity
As the idea of life cycle can be applied to objects in general, and not just
distributed objects, we want to consider a framework for managing the
life cycle of domain entities rather than just implementation objects.

Move()
A possible view is that the concrete existence of a system entity lies in
the data store of that object; so to move an object is to move the data
store of the object, rather than just its runtime instance. This may be a
business requirement, or may simply be desirable for managing data
store space. After an object's store is moved, you may need to move the
runtime instance to a process whose persistence layer has a connection
to the new data store. This is in fact a good way to move the object alto-
gether. The runtime object can be transferred to a new process, using a
mechanism discussed above. Then the object can be handled by the per-
sistence mechanism for that process. The persistence mechanism will
store the object in its natural intraprocess life cycle, which should create
a new entry in the appropriate data store for the object.

Life Cycle and Persistence 111

Copy()
In addition to the idea of copying an implementation instance, there is
the idea of copying the object in the data store. This could have two
meanings: copy for replication (fail-over protection and load balancing
) purposes or cloning. Cloning is creating a new object with a different
identity but the same state and behavior of the original. Copying for
replication brings with it concurrency issues, some of which may be sat-
isfied by the replication services of the underlying data store.

Directory access
Since the context of an object in a system can be considered the access
point to that object, an alternate place to implement life cycle manage-
ment is within the confines of the directory service. The directory service
most often used is the CORBA Naming Service. This can be used to estab-
lish semantic contexts indicated by the directory tree structure. In such a
system, changing the binding of an object can be quite significant.

Move()
Changing the context of an object, or moving the object, can mean sim-
ply reorganizing the name space where the object is registered, and thus
the object's accessibility. When you are organizing a name space, often
one branch of the naming service is for private objects and one for pub-
licly published objects. The public name space might have multiple
branches for different client audiences in the system. Thus, moving an
object could mean making it public, or changing which clients and/or
users can see it. For instance, if a printer is moved from floor A to floor
B, that change could be reflected by moving the corresponding printer
service in the name space. Or if a service is provided publicly from 9 a.m.
to 5 p.m., it could be placed in the public branch, and moved to the pri-
vate branch during off hours.

One system design strategy is that the security configuration (who is
allowed to access which objects or classes) is indicated by the structure of the
name space. Thus, an object's position in the directory tree defines which
users are able to access it. This allows for a very dynamic control over acces-
sibility on a per-object basis, rather than just the class level, as is typical of

112 Distributed Object Architectures with CORBA

many security packages. Another example is having the name an object is
bound to in the name space reflect some sort of ranking of objects, such as
a crude measure of load or primary vs. secondary systems. In such a system,
moving the object in the name space changes the ranking of the object.

Copy()
Most directory services allow objects to be bound more than once into
the directory. Copying would be simply binding the object in multiple
contexts, reflecting the accessibility of the object by multiple groups, or
from multiple positions. If the name is a ranking, then, in given contexts
or for different metrics, each object can have multiple rankings. If the
structure represents security access of groups or users, an object could be
made accessible to multiple users or groups by binding it multiple times.

Remove()
Removing the object from the name space, or removing one copy of it
reflects the loss of access to that object from that context. If the object
is destroyed, then during the process of destroying the object, every ref-
erence to the object in the name space should be removed.

Persistence
Although object instances have a finite lifetime, as we have discussed
above, what they represent must often span instance and server lifetimes.
A reliable long-term store is essential not only for many forms of applica-
tion data, but for session data as well, in order to recover from failures.
Almost every system that maintains any sort of state will need to persist
that state. Persistent storage mechanisms come in a wide variety of flavors,
ranging from file systems to relational databases, to object databases, and
beyond. The flavor used in a particular system will vary according to its
needs; from an architectural viewpoint, all are alike in that they require
the use of some operations to save and load data, and some notion of
identity to tie objects to the appropriate state. The true architectural issue
lies in resolving where and how in the system such operations are used
and tied to the business logic, and where and how such identity is defined.

Life Cycle and Persistence 113

Know when to save, know when to load
Persistence must be accomplished against the backdrop of object life
cycle above and system failure, which will be explored in chapter 9. As
objects flicker in and out of existence owing to invocation-induced acti-
vations and failure-induced recovery attempts, they must often retain
the same state and/or identity. Loading and saving state might be per-
formed at several points in the object life cycle.

In many systems persistent objects load their state upon creation. Thus,
the load occurs when the objects are created, often via a factory. At some
point the objects are destroyed until they are needed again. A rather differ-
ent approach is to use a pool of objects that are loaded with state when
needed, and then cleared instead of destroyed. The same objects are contin-
ually reused, serving as containers for a succession of identities and states.

A complication occurs when the information in the data store can
change via some path independent of the objects that use that data. In
this case, a notification mechanism is necessary so that a data store
change triggers a forced reload of the relevant objects.

One approach to saving object state is to perform the save at the nat-
ural end of the object's life cycle, thus persisting the state between acti-
vations. To guarantee that an object's state can be recovered after an
unnatural demise, however, it must be saved to a durable store upon any
state change during its lifetime. An alternative to this is queuing up save
requests to be handled in a background thread. Such an asynchronous
approach improves response times, but should only be used if recover-
ing up-to-date state is not deemed as important.

State must often be saved by using controlled transactions.
Transactions are the subject of the next chapter and will not be explicit-
ly discussed in this one. That said, it must be kept in mind that any ref-
erences to saving state can be understood as implying the potential use
of transaction handling. While this is a complication, it does not alter
the basic issues regarding state saves that we will address.

Sometimes state should not be saved. Systems with implied commits
or object copy support will require the ability to deal with some objects
that should be persisted and some which should not. This requires the
ability to differentiate between otherwise similar object instances based
on life cycle status.

114 Distributed Object Architectures with CORBA

Knowing how to save and load
There are two primary aspects to the actual work of loading and saving
objects: maintaining identity, and mapping between data in a store and
object state.

The work required in mapping between objects and the data store
depends on the nature of the store. An object database, for example, will
require minimal work to integrate. Typically, however, the store will be
a relational database. This necessitates an object-relational mapping
(ORM). Such mapping is a large subject in its own right and will not be
discussed here. There are many current ORM products and strategies, we
will only briefly discuss how such a mechanism can be employed, rather
than the details of any particular approach.

For an object to be persistent, it must have some long-lived identity
which can be used to uniquely identify the information required to
reconstitute it. This identity can be used as the basis for object IDs. Such
an identity is generally a primary key for the information set the objects
represent. This easily maps to relational keys.

The actual loading and/or saving of an object's state can be done in
several ways. The simplest is for the objects themselves to interact with
the store. This is a rather crude approach, as it entangles the object busi-
ness logic with store-mapping-specific code. Such a design leads
inevitably to development and maintenance problems. A more decou-
pled alternative is for factory type-mediators to handle the relationship
between the business objects and the store. Separating an object and the
entity that handles the associated persistence plumbing for it produces
a clean design in which the persistence mechanism can be more
smoothly changed. This leads to the notion of separate persistence han-
dlers, layers or services, which we will explore further later.

If an object does not handle its own persistence, then another object
must somehow have access to the first object's state in order to load or
save it. Direct access to state, however, is a notable violation of the
object-oriented principle of encapsulation. A standard object-oriented
approach to controlled exposure of state is to use accessor (get) and
mutator (set) methods. A more sophisticated possible solution to this is
a variation on the classic "Gang of Four" Memento pattern for capturing
and externalizing object state. A Memento implementation holds state

Life Cycle and Persistence 115

externalized from an Originator, which creates and accept mementos
(Figure 5-5). A memento has two effective interfaces, an all-revealing one
for the originator, and a narrow one for a Caretaker which holds on to
the memento. The variation is to open mementos up in a well-defined
way so that the persistence mechanism can get what it needs. Note that
there is no way to separate out the persistence function and not expose
access to the state in some manner.

Exposing state by itself is usually insufficient for accomplishing per-
sistence. Therefore, merely having accessors/mutators and/or accessible
mementos is not enough. For example, if a relational database is used,
then information concerning the tables involved and the SQL calls will
have to reside somewhere. It is possible to create a generic system using
introspection, but this is unusual. Instead, persistence code typically
includes the information needed, often via code generation by a tool.
This is the case with many of the approaches to be discussed.

Where to save and load
Persistence can occur in several places in distributed systems. Persistent
storage can be deemed a server-side facility, thus obviating the need to
examine client-side persistence. It is best if a system's persistence mech-

Orlglnator

-_state: State

+createMemento(): Memento
+setMemento(m: Memento)

creates

Memento

•_state: State
-getStateO: State
+setState(s: State)

Caretaker (Persistence)

Operations exposed to Originator.
Variation exposes ops to Caretaker

Figure 5-5. Persistence with Memento

116 Distributed Object Architectures with CORBA

anism is completely transparent to clients. This makes the clients sim-
pler and cleaner and decouples them from the server. The persistence
system on the back end can then be changed without any damage to the
clients. This allows for some degree of flexibility. The one exception to
this is systems in which clients require control of transaction processing.

There are various ways to structure the server for persistence. In par-
ticular, persistence could come into play at the object adapter level,
within objects, as a layer below objects, or via a dedicated service. In the
sections to follow we will examine these alternatives.

Persistence layers
One standard approach to persistence is to define a persistence layer
below the business logic layer. If the interface to such a layer is well con-
structed it can be backed by different data stores and caching systems
completely transparently to the higher level logic (Figure 5-6). Such lay-
ers can take many forms.

CORBA ObjacS i > Persistence Layer

Figure 5-6. Persistence layer

Life Cycle and Persistence 117

A layer will often use an engine that runs the interaction with the data
store. This can involve performing any object-store mapping, connections
and transactions management, and error recovery and reporting. A sam-
ple design is one in which the domain objects to be persisted have corre-
sponding data mapping objects that map from relational result sets to the
domain objects. The mapping objects or separate interaction objects have
the SQL and any specialized handling code. The mapping/interaction
objects are fed to an engine that handles connection pooling and the like,
and uses them to run transactions against relational databases.

A persistence layer can be more or less generic so that the information
that it requires can vary from actual SQL or OQL to property lists that indi-
cate mapping information to nothing but the domain objects themselves.
A persistence engine could simply use hard-wired SQL, or make use of
domain object metadata or introspection. While there is a wide spectrum
of variations, good designs allow for a large degree of flexibility so that it
is possible to change the data stores without affecting the higher-level
application logic. It might be desirable to have a persistence layer back end
that can deal with different data base types, so that it can front, for exam-
ple, both relational and object databases. Flexibility can also be important
with regards to allowing for customized object-data mapping logic to han-
dle special cases, complex mappings, and optimizations.

Given the many ways in which persistence can be organized, and the
complexities inherent in the problem, developers will often turn toward
vendor-supplied solutions.

Vendor approaches
Persistence is a fundamental need, and as such has spurred a variety of
vendor-specific solutions. Some of these have been point integrations
between ORB and database products. These can take the form of spe-
cialized adapters that overlay particular database products. Other vendor
products provide builder tools and middle-tier servers. Such tools can
generate data objects from data schema and provide the developer with
hooks for business logic. The finished system then runs in the special-
ized server, which provides runtime features such as transaction man-
agement. Such solutions impose their own frameworks on system archi-
tectures, locking systems into the products.

118 Distributed Object Architectures with CORBA

ORB vendors have also provided their own hooks for persistence by
exposing ORB functionality. An example of this is IONA's loaders.
Loaders can be defined at different levels of granularity (per class,
process, or database) and are called when a target object cannot be
found. A loader can use identifying object information, called a marker,
to create the desired object from the data store. Loaders also have a save
operation that can be called when the server process terminates, when
the object is disposed of, or via an explicit invocation. This ability to
instantiate the correct object given some identity is exactly what ORB
Object Adapters are supposed to do, leading to the possibility of a more
standardized solution.

POA possibilities
The Portable Object Adapter (POA) was approved by the OMG in mid-
1997 and replaced the original Basic Object Adapter (BOA) in the
CORBA 2.2 specification. Although the POA has thus far been the sub-
ject of more ink than full implementations, it is anticipated that the
POA will be completely incorporated into the major CORBA offerings by
the time this book is published1. In addition to providing server-side
portability, the POA supports a wide spectrum of server types, including
those with persistent state.

Like the BOA, the POA can activate servants in a variety of ways, but
it is more flexible. A server can use many POAs that support different
policies. Policy objects are used to specify key characteristics of a POA's
behavior when it is created. Some key POA policy types related to per-
sistent objects include LifespanPolicy (TRANSIENT, PERSISTENT),
IdAssignmentPolicy (USERJD, SYSTEMJD), and RequestProcessingPolicy
(USE_ACTIVE_OBJECT_MAP_ONLY, USE_DEFAULT_SERVANT, USE_SER-
VANT_MANAGER).

A PERSISTENT LifespanPolicy indicates that objects can outlive their
creating process. ID assignment can be done by either the POA or the
application, allowing for identity control. Application-assigned IDs can
be based on a primary key for a data set. Object IDs are encapsulated
within object references.

Request processing can be handled in several ways. The POA keeps an
Active Object Map for mapping Object IDs to running servant objects.

Life Cycle and Persistence 119

This can be supplemented by specifying the use of a default servant to
be used if an Object ID cannot be mapped. For more control, use of a ser-
vant manager can be specified.

Servant managers are user-developed objects that can control the full
life cycle of servant objects: creation, activation, deactivation, and
destruction. Servant managers are callback objects; they are registered
with a POA within the same process and then are invoked by the POA
when needed. There are two ServantManager interfaces that can be imple-
mented; the interface meant for persistent objects is ServantActivator.
This has an incarnateO operation called by the POA when it gets a request
for a non-active object. The etherializeO operation is called when deacti-
vating servants. Both operations are passed the object ID. Servant man-
agers standardize some of the techniques used for persistence in the past,
providing sufficient hooks for the use of key-based object IDs to
load/save object state to a data store.

The above discussion focuses on how the POA can react when given
an object reference for some request. In order for this to happen, the
object reference must exist. Object references can be created in several
ways. It is possible to have the POA create an object reference via facto-
ry methods without an active servant. Alternatively, a servant can be
activated and associated with a given object ID to produce a reference.
Other possible means also exist. Once a reference exists it can be used
and exported to clients.

A much needed feature that can be discussed in the context of the
POA is being able to handle large numbers of possibly fine-grained
objects. A strategy for accomplishing this leverages Object IDs. The IDs
can be created from two logical parts: one identifying a general object
type, the other specifying a key for a particular instance. A servant man-
ager can use the first ID part to map to a servant, which then uses the
second part to create or fill the actual domain/data object. This allows
for a smaller number of expensive distributed servants to support a larg-
er number of domain/data objects.

The brief survey of POA abilities is just an outline of the rich set of
object control mechanisms that the POA makes possible. The POA will
no doubt be used for some persistence solutions. However, using the
POA for persistence raises a basic architectural issue. Putting persistence
at the object adapter level ties it into the system at the ORB level; it

120 Distributed Object Architectures with CORBA

becomes part of the plumbing. A different approach is to make the func-
tionality widely available at a higher level: the service level.

The service approach
The Persistent Object Service (POS) was one of the original Common
Object Services. The POS has been deemed to be overly complex, poorly
specified, and flawed. Lacking any real implementations, the POS was
slated for termination under the OMG sunset policy and an RFP for a
replacement was issued in mid 1997. This replacement is the Persistent
State Service (PSS).

Persistence is a complex issue; the many views on how to structure per-
sistence result in part from the multiplicity of software elements it affects.
This has been reflected in the PSS specification process. The RFP resulted
in two initial submissions. Instead of merging their submissions, the
groups then splintered, producing three revised submissions. A PSS vote
may be held before this book is published. (The only thing that takes
longer to publish than a technology standard is a book that covers it.) As
the final victor in this process is unknown at the time of this writing, it
is worth exploring the salient features of the last round of submissions.

The goal of the PSS is to provide a bridge between the ORB domain of
the POA and servant objects and the storage domain of the persistent
store. Thus, the PSS is in some sense a specification of an interface inter-
nal to CORBA servers; it is not meant to be visible to clients. PSS is strict-
ly a back-end service.

The PSS RFP specified several requirements that all the submissions
have addressed. An example of this is generalized interfaces for datas-
tores so that a wide variety of persistent stores can be used.

The RFP called for an IDL-compatible way of expressing schema for
the state to be persisted. This has taken the form of language constructs
to be added to or extracted from IDL to represent state. Such a represen-
tation makes it possible to generate data objects and/or access mecha-
nisms. A benefit of this approach is increased clarity of design; schema
information that was previously hidden in auxiliary classes or the data
store is now part of the IDL design. A drawback is the possibility of brit-
tle schema being elevated to a high level, potentially broadening the
effects of any change.

Life Cycle and Persistence 121

A particularly interesting RFP requirement is the ability to support
large numbers of fine-grained objects efficiently. This requirement
appears to be indirectly addressed by the submissions; that is, this is
deemed an outcome of the proposed PSS structures.

The component quest
The PSS is an attempt to make it possible to simply specify the state to
be persisted and utilize a supporting infrastructure without too much
additional coding. A further step in this direction is the current trend
toward server side components.

The component vision is based on the notion of components with
application-specific logic, and server containers in which the compo-
nents run and that supply the components with persistence, transaction
handling, and other infrastructure services. The point of this is to be able
to buy a supporting server that handles all the plumbing and to have to
write nothing more than the business logic. This has long been a holy
grail of the development community. The current driving and emblem-
atic force behind this concept is Enterprise Java Beans (EJB).

Inspired to a large extent by EJB, a CORBA Components proposal is in
process at OMG and may be approved shortly after the writing of this
chapter. Component persistence will be based on the PSS. A Component
Implementation Definition Language (CIDL) is used to specify compo-
nent implementation structure and state. In practice, CIDL's state speci-
fication should be the state/schema language of PSS; at the very least, it
will map to it. Vendor tools will generate skeleton code from the CIDL.
This code, and the server container the component runs in, are meant
to then automatically manage persistence for the component state.
Thus, the problem of arranging persistence becomes merely specifying
the state to be persisted.

Persistent conclusions
Persistence is in some sense an artifact of the nature of computer mem-
ory. That said, all but the simplest architectures will require some form
of persistence. Persistence can often be a deciding factor in choosing a
software framework, as it can require a great deal of work and runtime

122 Distributed Object Architectures with CORBA

expense if done poorly—and may still require a great deal of work if
done well. We have discussed several approaches to persistence, of both
the buy and build flavors. As I hope I've made clear, regardless of the
approach taken, the persistence apparatus in a system can determine or
be determined by the design of the whole system. It is therefore essen-
tial to consider persistence from the outset of the architecture process: it
is truly a core architectural issue.

Life Cycle IDL (Partial)
Here is part of the IDL from the Life cycle Service discussed above.

typedef struct NVP {
Naming ::Istring name;
any value;

} NameValuePair;

typedef sequence <NameValuePair> Criteria;

interface LifeCycleObject {
LifeCycleObject copy(in FactoryFinder there, in Criteria

the_criteria)
raises(NoFactory,NotCopyable,

InvalidCriteria,CannotMeetCriteria);
void move (in FactoryFinder there, in Criteria the_criteria)

raises(NoFactory, NotMovable,
InvalidCriteria,CannotMeetCriteria);

void remove()
raises(NotRemovable);

interface GenericFactory {
boolean supports(in Key k);
Object create_object(in Key k,in Criteria the_criteria)

raises (NoFactory, InvalidCriteria,
CannotMeetCriteria) ;

Life Cycle and Persistence 123

Summary
In this chapter we examined the life cycle of a distributed object, both
active and inactive. We discussed why it is critical to establish the
responsibility for ensuring that the object is in the correct state at the
right time. This is difficult because of the very nature of a distributed
object system—we are referring to objects across process boundaries, ref-
erence counting and garbage collection is increasingly complicated, and
there are no silver bullets. You need to design with this in mind and
determine ahead of time how you will manage your distributed objects
life cycle.

Notes
1. POA implementations are already available in some free ORBs, such

as TAO (http://www.cs.wustl.edu/~schmidt/TAO.html) and MICO
(http://diamant-atm.vsb.cs.uni-frankfurt.de/~mico/).

Chapter 6

Transactions

Every day we perform transactions. A transaction is an interaction that
involves an exchange; this could be monetary, information, service
requests or other information. In addition, all the steps in a transaction
have to happen or none at all. Quite often the first thing that comes to
mind when transactions are mentioned are monetary exchanges, like
the transfer of funds from one account to another or the use of auto-
matic teller machines. The one thing that all transactional systems have
in common is the requirement to maintain the integrity of the infor-
mation. You do not want to transfer funds from your bank account to
another bank only to find that the money has been lost in the ether.

Information regarding business transactions used to be kept in written
ledgers; this provided a form of indelible record which could be audited
and easily (though painfully) accounted for. It also used to take some time
to perform the transfer of funds—on the order of days. This was fine for
relatively small volumes of transactions. Nowadays in the hectic bustle of
the modern capitalist world, we can easily see millions of transactions tak-
ing place on a daily basis within just one institution. The information for
these transactions is stored within databases and passed between systems
electronically over networks. While this is more efficient than the written
method, it is also more volatile. Therefore, developers have created mech-
anisms to help ensure the integrity of the information.

Database management products provide us with functionality to sup-
port transactions. They supply APIs that enable us to demarcate the
beginning and end of a transaction (the transaction boundaries), and

125

126 Distributed Object Architectures with CORBA

the means to store the record of the transaction in a persistent manner.
With the growth of systems and electronic interbusiness communica-
tion, we are seeing the need for transactions that span multiple databas-
es. Transaction monitors have been developed to coordinate transac-
tions across multiple databases. The OMG has specified the Object
Transaction Service (OTS) to be the transaction monitor for systems of
distributed objects. Now we can purchase off-the-shelf products that
implement the OTS for our CORBA-based systems.

In this chapter we will take a look at the workings of a transaction
processing system and the role of the transaction monitor, its main com-
ponents and how it coordinates transactions within a distributed sys-
tem. Then we will look at the OTS as defined by the OMG and see how
this is used within a system of distributed objects.

Transaction Processing
As I just mentioned, we need to record the effects of a transaction in a
persistent manner, and computer systems are ideal for handling the
large volume of transactions found in the modern business. We also
need to be sure that transactions run to completion with all the results
recorded. We do not want partial results. For example, when you make
an airline reservation you do not want your account debited and then
later to find you do not have a ticket. The system supporting the trans-
action needs to ensure the integrity of the information within all data-
bases involved. We need a system that ensures that requests are com-
pleted, and in the case of a failure, no changes were made. These are all-
or-nothing systems: Either the effects of all the work involved to per-
form a transaction happen or none of the effects happen.

Systems that handle transactions need to be responsive. We may have
many travel agents making airline reservations at the same time; the client
application making the reservation should still be responsive regardless of
the volume of requests happening at the server. Therefore, these systems
need to have the capability of running many transactions concurrently.

Transaction processing (TP) systems are usually part of a three-tier
architecture: client, application server, and database. The infrastructure
that supports the application server includes the Transaction Monitor.
TP monitors are designed and developed to help support the construe-

Transactions 127

tion of distributed systems. They help us realize better performance,
handle large volumes of concurrent transactions, and support the
requirements of a transaction.

Transactions
To ensure the integrity of a system a transaction has to be atomic, con-
sistent, isolated, and durable. The acronym ACID is commonly used to
refer to these properties:

• Atomic—for a transaction to be atomic it has to execute com-
pletely or not at all. The transaction is all-or-nothing; that is, all
the changes of state to the system happen or none of them hap-
pen. For example, if you transfer funds from one bank account
to another, and the update of the destination account fails for
some reason, you do not want the debit of the source account to
happen. For this transaction to be atomic, either both accounts
are updated or none is.

• Consistent—it is important that the consistency of information
within the data store is maintained as well as the application. A
transaction should not leave the application in an undetermined
state, and the integrity of the data store needs to be maintained.
Both the application code and the transaction processing system
share the responsibility of maintaining consistency. To maintain
the consistency of the database means that referential integrity is
preserved, all primary keys are unique, and the business rules are
maintained.

• Isolated—a transaction should execute as if it were the only
transaction on the system; that is, the effect of a set of transac-
tions running concurrently is the same if they were run one at a
time. Another name for this is to say that the transactions are
serializable: the effect is the same as if the transactions were run
in serial fashion.

For example, two transactions try concurrently to reserve the
last seat on a flight. If both determine availability of the seat
before any updates, then each transaction will go ahead and
both the customers will be charged. If we run each transaction in

128 Distributed Object Architectures with CORBA

serial fashion, however, the first would succeed and the second
would fail. Both of these transactions satisfy the requirement for
atomicity but are not isolated.

For each of the airline reservation transactions to be isolated,
they need to run as if there were no other transaction running
on the system. This is achieved in database systems by acquiring
a lock on the data that a transaction is accessing. This lock pre-
vents other transactions from manipulating the same data until
the holder of the lock is finished.

• Durable—for a transaction to be durable means that the results
of a transaction are not lost. If a transaction completes, the
results of the transaction are stored in a persistent store, usually
a database. Even if the transaction processing system subse-
quently fails, the information pertaining to completed transac-
tions will remain.

This is usually achieved by the transaction processing system
writing all changes that occur within a transaction to a log file.
Upon the commit of the transaction, the transaction processing
system ensures that the log file is on disk, then proceeds to
update the database. Since failure can occur after the commit,
but before all the updates occur, it becomes the responsibility of
the transaction processing system, upon recovery, to go through
the log files and apply the necessary changes. If a failure occurs
before the commit then none of the changes will be made and
the transaction is aborted.

Database systems and TP monitors
Modern database management systems (DBMSs) come with capabilities to
handle transactions, logging, lock management, and recovery. Usually, the
API for using a DBMS is vendor-specific, and applications that use such sys-
tems go through the API supplied by the vendor. Most DBMSs also allow a
database to be distributed, using the vendor's own protocols and APIs.

Database systems provide the application programmer with the func-
tionality to demarcate the boundaries of a transaction; that is, your appli-
cation can use the API supplied with the database to indicate the start and
end of a transaction. The DBMS takes care of ensuring that the results of

Transactions 129

the transaction are recorded within the database, and if necessary, han-
dles the rollback of information in case a transaction is aborted.

TP monitors provide the functionality to manage transactions across
heterogeneous databases. Most systems that provide distributed transaction
processing will use some form of TP monitor. You can find TP monitor
products on the market, such as Encina from Transarc, Top End from BEA,
and so on. Such TP monitor products provide interfaces in standard pro-
gramming languages such as C, C++ and COBOL. The functionality of data-
base management is abstracted within the resource management compo-
nent of a TP monitor; the resource manager can be a participant in a trans-
action. The TP monitor provides another component, the transaction man-
ager, that coordinates a transaction across one or more participants.

Figure 6-1 illustrates a model for distributed transaction processing as
defined by the X/Open Company Limited. The three main components
of the model are the transactional application, transaction manager, and
resource manager. The X/Open standard defines interfaces between each
of these components. The application makes transaction demarcation

Application

txRPC/

TX

Resource
Manager

XA Transaction
Manager

Database

Figure 6-1. X/Open model

130 Distributed Object Architectures with CORBA

calls (start, commit, and abort) to the transaction manager and transac-
tional remote procedure calls (txRPC) to the resource manager.
Contextual information about the transaction is passed along with the
txRPC communication. The resource manager is registered as a partici-
pant in the transaction with the transaction manager, which then com-
municates using the XA interface. The XA interface enables the resource
manager to participate in the two-phase commit protocol. The two-phase
commit protocol has been designed to help ensure the ACID properties
of a distributed transaction.

Resource manager
The resource manager, as its name implies, is responsible for handling
the interactions with a resource involved in a transaction. There will be
one resource manager per resource, though many resource managers can
participate in the transaction. These resources take the form of persistent
store, such as databases, queues, and file systems. The resource manager
works in conjunction with the resource to provide support to ensure
that the transaction is atomic, durable and isolated.

Fortunately, you do not need to write a resource manager; most database
vendors provide an implementation for their database system. Most of these
also provide an XA interface, which allows their products to be used in con-
junction with off-the-shelf transaction managers. In the jargon of the TP
world, the terms resource and database system have become synonymous.

The resource manager ensures the durability of a transaction by man-
aging the persistent storage (resource) for the transaction. It is responsible
for ensuring the reliability in case of failure. The resource manager also
makes use of durable logs during a transaction. These logs contain a
record of the effects of a transaction and can be used to roll back the state
of the persistent store in the case of failure. Information in the logs con-
tain the before- and after-images of each operation in a transaction. This
information can be used to roll back the effects of a transaction or to con-
tinue the commit of a transaction to the database. At the time of a trans-
action commit, the database stores all changes to a durable log before any
actual write to the database. The commit has not completed until all
changes have been put in durable storage. Saving the changes to durable
storage happens during the prepare stage of a two-phase commit.

Transactions 131

A transaction may have three states at the time of failure:

1. Completed—if the transaction completed, then there is no
need to do anything upon recovery. The information is in the
database.

2. Prepared to commit—a "prepare to commit" request will have
been issued. The resource manager should have a log of all
potential and actual database changes. If these database changes
have not been applied, then the resource manager can "play"
the log to complete the transaction.

3. Not prepared—again, the resource manager has a log of all
database changes so far. However, since the transaction did not
issue the "prepare to commit" request or the prepare was not
completed, the resource manager can use the log to roll back the
state of the database. If no writes happened to the database, we
can just discard the log.

Using these mechanisms to recover from failure enables the resource
manager to ensure the durability of the transaction. We can be confident
that the transaction has been recorded.

Transaction manager
The transaction manager provides facilities for the coordination of all
participants in the transaction. It keeps track of all transactions and their
participants and ensures that a transaction is atomic when there is more
than one resource involved.

When an application starts a transaction, the transaction manager
issues a unique transaction identifier. This helps identify the context of
the transaction: the context is passed along with each communication
and tells each participant with what transaction it is involved.

Whenever a resource is involved in the transaction, the transaction
manager is informed. This registration of resources is usually handled by
the application when needed. The transaction manager then coordi-
nates the registered resource managers (participants).

When the application finishes a transaction, it issues a commit to the
transaction manager, which then uses the two-phase commit protocol to

132 Distributed Object Architectures with CORBA

commit all the resources. If the transaction manager receives an abort
from any of its participants, it informs all the resource managers to undo
all the transaction updates.

The transaction manager works in conjunction with the lock manag-
er for each resource to ensure transaction is isolated. The lock manger
maintains a list of locks, for each transaction, on the associated resource;
it grants, or denies, lock requests based on whether there is a conflict.

Locks
To achieve an isolated transaction, we need to ensure that two different
transactions are not altering the same information in the database. The pre-
ferred mechanism to achieve this goal is through the use of locks. A lock is
a "token" associated with data in the store that is being manipulated. If a
lock is granted to a transaction, then subsequent requests by other transac-
tions to manipulate the same data may be blocked (if the locks conflict).

Most database systems provide a lock manager. The lock manager is
responsible for keeping a record of what information is locked, who
requested the lock, and the type of lock. This information is kept with-
in a lock table associated with the database.

Table 6-1 illustrates potential lock conflicts. If a transaction obtains a
write lock on some data, then requests by other transactions to read the
data will be blocked until the lock is released. Quite often, the underly-
ing database system will apply the locks to the data in a transparent
manner. The database system examines the query and the appropriate
lock is applied as necessary. For example, if your query were to read a
row from a table, then a read lock would be acquired, and if you were
updating, then a write lock would be acquired. Usually, you do not need
to be concerned with performing direct requests for locks.

Table 6-1:

read

write

Lock Conflicts

read

X

write

X

X

Transactions 133

The sequence of lock acquisition by a transaction is also important to
ensure that the transaction is serial. If a transaction releases a lock too
early—that is, before all the work of the transaction is finished—there is
the potential for a partial result to be used within another transaction.

A locking rule that guarantees that a transaction is serializable, and
therefore isolated, is two-phase locking. This rule states that a transaction
should obtain all its locks before releasing any of them; that is, a trans-
action may not obtain a new lock after it has released any locks.
Therefore, there are two phases: the first phase is when the transaction
obtains its locks; the second is when the transaction releases its locks,
which is at the time of commit, or abort, of the transaction. By using this
rule, the lock manager ensures that other transactions cannot see, or
alter, any data being manipulated by another transaction until the trans-
action has ended.

All database systems provide mechanisms to lock information accessed
during a transaction. However, the granularity of the information locked
can vary between different database systems. The lock can be at the level
of a database file, page, table, row, object and so on. The use of locks also
affects performance and complexity of your application. Lock conflicts
impose delays upon the execution of a transaction, and deadlocks can
occur when there are application transaction interdependencies.

Lock granularity
The granularity of the locks that the database system provides can affect
performance of your application. Coarse-grained locks can be at the level
of a database file, table, or page; fine-gained locks at the level of individ-
ual records or fields. When using coarse-grained locks, the likelihood of
conflict with other transactions is higher, though the lock management
overhead is smaller. Conversely, with fine-grained locks the likelihood of
lock conflict is reduced, but lock management overhead increases.

For example, if a transaction to update bank account information for
a customer locks the whole account table, then no other customer
account can be dealt with until that transaction is finished.
Alternatively, if your transaction has to perform an update on thousands
of accounts, each with fine-grained locks, then it needs to obtain thou-
sands of locks.

134 Distributed Object Architectures with CORBA

It is preferable to use fine-grained locks to minimize potential lock
contention in a system with a high volume of transactions. To solve
some of the complexity of lock management, the lock manager main-
tains locks at multiple granularities. Here the lock manager utilizes inten-
tion locks at the coarser granularity. For example, if your transaction is
going to read a record in a table, it will put an intention read lock on the
table (or page), and then a read lock on the record. This would warn
other transactions that want to update information within the table that
there is a potential conflict.

Deadlock
When two or more concurrent transactions are manipulating the same
information, it is possible to end up with deadlock. Deadlock occurs
when transactions are competing for the same lock. For example, each
transaction holds a write lock on some data that the other transaction
requires a read lock on. This circular dependency is not resolvable with-
out some system intervention.

Figure 6-2 illustrates such a situation where contention can arise. If
Transaction 1 obtains a read lock on account 1, then Transaction 2 will
block when it tries to obtain a write lock on account 1. In addition, if
Transaction 2 got the read lock on account 2 before Transaction 1 request-

Transaction 1
transfer $100 from

account 1
to

account 2

yr \/r

read

write " - *

3

account 1

account 2

Transaction 2
transfer $300 from

account 2
to

account 1

Figure 6-2. Contention

Transactions 135

ed its write lock, then Transaction 1 is blocked. This is a deadlock situa-
tion. To maintain the two-phase locking rule, the system has to decide
whether to abort one or both of the transactions. The decision may be
based on some heuristic; for example, terminate the transaction with the
shortest execution time or the one that uses the least system resources.

Deadlocks are detected either by using a time-out mechanism or by
using a graph-based approach. In the time-out approach, if a transaction
is taking too long, then it is aborted. The time-out mechanism can lead
to situations where transactions that were not deadlocked are aborted,
and deadlocks will not be detected until the time-out period is reached.
In the graph-based approach, a graph of all transactions and the
resources they have locked is maintained; if cycles are detected in the
graph, then there is a deadlock and the transactions involved in the
deadlock can be aborted.

Deadlocks can occur also in a distributed system. Here there are many
data managers that do not know about each other. The time-out and the
graph-based approaches can also be used; however, when using a graph-
based approach you need to have one central server on the system
responsible for maintaining information about all locks in all data man-
agers. This can get complicated to manage, and so the preferred mecha-
nism for deadlock detection in a distributed system is by using time-outs.

Two-phase commit
We shall now look at the mechanism used by a TP monitor to ensure
that a distributed transaction is atomic. If two or more databases are
involved in our transaction, then there is the added complexity of ensur-
ing the ACID properties of the transaction across all databases. If there
is a failure with one database, we need to ensure that the other databas-
es involved in the same transaction do not commit.

For example, consider a funds transfer from your checking account to
a savings account1, and the information for each account is kept in sep-
arate databases. If the withdrawal from your checking account is suc-
cessful, but the update of the savings account fails, then the transaction
is not atomic (and you would be upset with the bank). To ensure the
atomicity of the transaction and the happiness of the customer, the
update of the checking account database needs to be reversed. You could

136 Distributed Object Architectures with CORBA

write an application-specific solution, but such solutions will soon com-
plicate your application code. The two-phase commit protocol was
devised to solve these situations.

Two phase commit ensures that a transaction that updates data on
two or more distributed systems is atomic and durable. Either both sys-
tems are updated or neither of them is updated. The two-phase commit
protocol allows the transaction manager to coordinate all the partici-
pants in the transaction. The protocol takes into account that any of the
participants in the transaction can independently fail and recover.

The transaction application starts the transaction by sending a "begin
transaction" request to the transaction manager. The transaction man-
ager is then responsible for coordinating the transaction; it generates a
unique transaction context that is propagated to all transaction partici-
pants. All participants in requests associated with a particular transac-
tion use the transaction context. Every resource manager involved in the
transaction joins the transaction by being registered with the coordina-
tor for that transaction at the time of an initial request to use the
resource. Other transaction managers can also be participants in a trans-
action. Each of these transaction managers can be responsible for man-
aging resources at their nodes.

So let's take a look at how the two-phase commit works. When the
application finishes the transaction, it sends a commit message to the
transaction manager. The transaction manager then coordinates a two-
phase commit with all participants in the transaction. The two phases of
the protocol are a prepare phase and a commit phase.

Phase 1: Prepare phase
The coordinator sends request-to-prepare to all participants. After each
participant is prepared, it then "votes" by sending a message back to the
coordinator:

• Prepared—the effects of the transaction are in stable storage, but
have not yet been committed.

• No—this usually happens if there has been some form of local
failure.

Transactions 137

If the participant has suffered a catastrophic failure, or is overbur-
dened, it may not send any message to the coordinator.

Phase 2: Commit phase
If the coordinator has received prepared messages back from all partici-
pants then it can then proceed to the commit phase.

• If any participant votes no or does not reply to the prepare mes-
sage (the coordinator times out waiting for a reply), then the
coordinator decides to abort the transaction.

• The coordinator sends the commit or abort message to all partic-
ipants.

• Participants acknowledge receipt of the message by sending back
done.

It is important that your distributed TP system is able to handle fail-
ure, especially with the increased opportunity for failures to occur due
the distributed nature of the system. The two-phase commit protocol
has been designed to handle the various failures that can occur.

To facilitate recovery, the transaction coordinator and the participants
all maintain logs. These logs are durable records of the effects of a trans-
action. They can be used to roll back (return the state of all databases to
that before the transaction), or to continue the commit transaction from
the state at the time of failure.

During the prepare phase of the two-phase commit, all resource man-
agers should ensure that their logs are in durable storage before voting.
Even if one resource manager votes to commit, the eventual outcome of
the transaction is not determined until the transaction coordinator
hears from all participants. It just takes one resource manager to vote no,
or to fail in communicating its decision, for the coordinator to decide to
roll back the transaction.

Although the two-phase commit protocol helps handle failure and
coordinates distributed transactions, there are still situations where par-
ticipants in a transaction can block. Between the time of acknowledging
a prepare message to the coordinator and the receipt of a commit (or
abort) message, the participant is in an uncertain state. The participant

138 Distributed Object Architectures with CORBA

is blocked from proceeding with further work while it is waiting to hear
from the coordinator. If the coordinator fails and is down for a long
time, then the blocked participant needs to decide what to do. It can
make a heuristic decision, talk to other participants to see if anyone
received a message from the coordinator, or time out.

The OMG Object Transaction Service
The Object Transaction Service (OTS) brings the capabilities of a trans-
action manager to the world of distributed objects. Nowadays you can
find implementations of the Object Transaction Service (OTS) from
many ORB vendors and third parties. The OTS includes the functionali-
ty discussed in the previous section: transaction control, two-phase
commit, lock management, resource management and so on. We shall
now spend some time looking at the OTS and getting an idea of how to
use it to provide transactional semantics for our distributed objects.

As with most OMG specifications, the OTS is very flexible and pro-
vides users with a variety of programming models. We can let an imple-
mentation of the OTS take care of most of the work of managing a trans-
action, or we can be very explicit in how the transaction proceeds. We
can use off-the-shelf resource managers with the OTS as well as plug in
our own recoverable resources. Our applications can interact with other
non-ORB transaction applications that use the X/Open standard. Our
applications can also interact with other ORBs and other instances of the
OTS. Being flexible, the OTS is empowering when it comes to imple-
menting a transactional system. However, it can be easy to shoot your-
self in the foot!

As you proceed through the rest of this chapter, you will obtain an
idea of the flexibility and an understanding of the workings of the OTS.
I will not cover all aspects of programming the OTS (this is a book in its
own right), though you will get an idea of how the OTS works, the
salient features, and what you need to do to use it. This should be
enough information that will let you decide whether, and how, the OTS
fits into you distributed object architecture.

As was mentioned in Chapter 2, every CORBA specification uses IDL
to define the services, and the OTS is no exception. All the components
for transaction management have their interfaces specified in IDL. You

Transactions 139

can find the complete interface definitions and a more detailed expla-
nation within the OMG specification.

You should also note that the Concurrency Control Service (CCS) has
been designed to work in conjunction with the OTS. The CCS provides
mechanisms to implement and manage locks and thus help ensure the
isolation property of individual transactions. If you are using the OTS with
a compatible resource manager (usually one that supports the XA inter-
face), then you will not need to use the CCS; however, if you implement
your own recoverable resource or object cache and the application has any
degree of complexity, then you will probably need to use the CCS.

As we proceed through this section, the example code is mostly in
IDL. However, implementation examples have been provided in C++,
though these should be understandable to readers familiar with Java. I
have deliberately kept the implementations simple as a means to high-
light the concepts; a full implementation would need more code to han-
dle all the possible outcomes and exceptions.

Transaction model
The OTS provides an object-oriented model for a distributed transaction
processing system. The essential underlying functionality is the same as
discussed in the previous section on transaction.

In the OTS model, there are transactional clients, objects, and servers as
well as recoverable objects and servers. Each of these entities participates
with each other to provide the transactional properties of the system.

• Transactional Client—a transactional client is usually a user
interface to the application. This client invokes operations on
transactional objects, and usually is the originator of a transaction.

• Transactional Objects—transactional objects participate in the
transaction and contain, or reference, data affected by the trans-
action. Non-transactional objects can also participate in the
transaction, however you need to be aware of integrity consider-
ations if these objects contain state.

Transactional objects may inherit from the TransactionalObject
interface; however, this does not guarantee that all methods in
the implementation are transactional. You can provide transac-

140 Distributed Object Architectures with CORBA

tional implementations and non-transactional implementa-
tions. A transactional object may contain state that is affected by
the transaction but is not recoverable.

• Recoverable Objects—A recoverable object is also a transaction-
al object; however, it directly contains state affected by the trans-
action. A recoverable object registers an associated resource with
the transaction service. This resource stores the persistent state of
the recoverable object and participates in the two-phase commit
protocol.

The transactional client interacts with application servers. In the dis-
tributed transaction system, there are two types of application servers:

• Transactional Servers—contains one or more objects that are
affected by the transaction. We say that a server is transactional
if it contains one or more transactional objects. A transactional
server interacts with resource managers or other transactional or
recoverable servers.

• Recoverable Servers—like a transactional server, a recoverable
server contains objects that are affected by the transaction. We
say that a server is recoverable if it contains one or more recov-
erable objects. A recoverable server has an associated resource
that contains persistent data and interacts with the protocols of
the transaction service.

Basic OTS programming model
Usually the transaction client will also be the transaction originator. The
transaction originator will use the Current object to start the transaction.
The transaction originator will then make requests on transactional
objects. The transaction context is passed along automatically to objects
inherited from the TransactionalObject interface, with subsequent
method invocations to transaction, and recoverable, servers. These
servers become participants in the transaction.

Any of the transaction participants can rollback the transaction. This
is achieved by their use of the Current object. They can also inquire as to

Transactions 141

the state of the transaction. If the transactional object is involved in more
than one transaction at a time, it can distinguish between the transac-
tions using a handle to the coordinator. This enables you to implement a
transactional object so that the isolation requirement is met.

If the transactional object is also a recoverable object, it will have an
associated resource. This resource is registered with the coordinator of the
transaction. The coordinator can then communicate with the resource to
perform the necessary actions for the two-phase commit protocol.

Once the transaction originator is finished issuing its requests, it can
use the Current object to issue a commit or rollback. The transaction ser-
vice will then use the coordinator to do the necessary work of commit-
ting the transaction with the two-phase commit protocol.

Interfaces
We will now review the interfaces of the OTS that are used in the
"implicit indirect" programming model. This programming model is the
simplest provided by the OTS, and it is probably the most commonly
used. Additionally, it makes use of the major interfaces of the OTS and
we can see how they interact to produce the functionality of a distrib-
uted transactional application. Figure 6-3 illustrates these interfaces and
their methods.

• Current—The Current pseudo-object2 provides the mechanisms
to manage a transaction. An instance of the Current object is
associated with the thread of execution. You use the Current
object to begin, commit, and roll back transactions. If you need
to manage or propagate a transaction context explicitly, then
you would use the Current object to obtain a Control object,
which would then be passed as a method parameter.

• Control—The Control object provides mechanisms to help with
the explicit management or propagation of a transaction. Using
the getjerminator method, we can get obtain a Terminator object,
which can be used to end a transaction. We can also pass the
Control object as a parameter to remote methods for explicit
propagation of the transaction.

142 Distributed Object Architectures with CORBA

Current

begin
commit
rollback
rollback_only
suspend
resume
get_status
get_control
get_transaction_name

Control

» get_terminator
get-coordinator

Resource

prepare
commit_one_phase
commit
rollback
forget

3»

«£

Coordinator

reglster_resource
register_subtranaware
roilback_onry
gettransaction_name
creat8_subtransaction
geLstatus
geLparent_status
get_top_level_status
b_same_transaction
is_related_transaction
is_ancestor_transaction
is descendant_transaction
is_top_level_transaction
hash_transaction
hash_top_level_tran
geLtxcontext

SubtransactlonAwareResouree

commlt_subtransactton
rollback_subtransaction

Figure 6-3. Major Interfaces of the OTS

Coordinator—The Coordinator interface provides the mecha-
nism to register participants in a transaction. A recoverable
object registers its associated resource with the coordinator of
the current transaction. One Coordinator instance is associated
with each transaction.

Resource—The Resource interface defines the operations invoked
on each resource by the transaction service during a two-phase
commit. This allows each resource to vote as part of the two-
phase commit. Refer to the previous section for more informa-
tion on the two-phase commit protocol.

Transactions 143

• SubtransactionAwareResource—This is a specialization of the
resource interface used for a resource that is part of a nested
transaction.

• TransactionalObject—The TransactionalObject is an abstract
interface with no methods, used to tell the ORB infrastructure
that interfaces derived from it can be transactional. The transac-
tion context is propagated with all method invocations on an
object that inherits from the TransactionalObject interface.

Programming models
The OTS supports various programming models. Which of those models
you use is determined by how decide to manage and propagate the
transaction context. You can let the underlying infrastructure of the OTS
take care of transaction management, or you can explicitly propagate
the context and manage the transaction. You can also decide to mix
these approaches depending on the needs of your application.

Transaction context propagation
Objects can support two mechanisms to receive information associated
with the transaction.

• Implicit Propagation—If your object inherits from the
TransactionalObject interface, then a transaction context will be
propagated with each method that is invoked. You will also need
to link in the libraries corresponding to the ORB vendor's OTS
implementation.

• Explicit Propagation—The transaction context is propagated by
passing the Control object as an explicit parameter to methods
being invoked.

An advantage of implicit propagation is that you do not need to
change the signature of existing methods. You just inherit from the
TransactionalObject interface.

Explicit propagation allows you to mix transactional and non-trans-
actional methods within the same object. Also use explicit propagation

144 Distributed Object Architectures with CORBA

if you need to give other distributed objects the ability to terminate the
transaction.

A disadvantage of explicit propagation is that the OTS does not have
the ability to keep track of all objects that are involved in the transac-
tion. This prevents the OTS from providing "checked" behavior for the
transaction. "Checked" behavior allows the transaction manager to pro-
vide an extra level of integrity. A transaction is "checked" when the
transaction coordinator ensures that commits from all participants com-
plete. The coordinator builds a tree of all objects in the transaction; this
is used to ensure that an object has received replies for all of its requests.
This is useful if any of the transactional method invocations are deferred
synchronous (for a description of deferred synchronous, see the discus-
sion of DII in Chapter 4).

Context management
Client programs may use direct or indirect context management to man-
age a transaction.

• Indirect Context Management—The Current object is associat-
ed with the current thread of control and is used to manage the
transaction.

• Direct Context Management—An application uses the Control
and associated objects to manipulate the transaction directly.

Indirect context management simplifies your code and enables the
application to use any optimizations within the ORB infrastructure.
However, if you are using explicit propagation, then you may find it
more convenient to manage the transaction directly.

Exceptions
As with any application, you should be aware of the possible exceptions
and program accordingly. The OTS extends the exceptions included as
part of the standard ORB infrastructure. These exceptions inform you if
a method is called as part of an invalid transaction, if a transaction is
required, and if the transaction has been rolled back.

Transactions 145

Recall that in the discussion of two-phase commit, we talked about
the possibility of a resource manager being in an indeterminate state. At
this point, the resource manager may make a heuristic decision about
the transaction. This can lead to a situation where some resources have
made a decision to commit while others have rolled back. This can lead
to a problem with data integrity. The OTS specification defines a set of
heuristic exceptions that will be thrown in the case where a participant
makes a heuristic decision. You need to handle these exceptions when
they do occur and perform integrity checks as needed. For example, if
one of the resources made the decision to commit, but the transaction
was rolled back (or vice versa), then the data integrity has been compro-
mised. If this happened during a transfer of funds between accounts, we
could end up injecting more money into the system!

Though some resource managers will attempt to communicate with
other resources involved in the transaction before making their heuris-
tic decision, the final decision may not be appropriate. Also, recall that
if the transaction coordinator does not hear from a resource manager as
a result of the prepare stage, then the coordinator usually assumes that
the resource will vote "no" to the transaction and a rollback will pro-
ceed. It is not uncommon for manual intervention to be necessary to
resolve the effects of incomplete transactions.

Recoverable resources
With hope, you are using a database, or other form of persistent store,
for which there is a resource manager compatible with your OTS.
However, if you're not, then you can implement your own recoverable
resource. This may be a wrapper around another off-the-shelf persistence
mechanism, or completely homegrown; though before you do decide to
go down this path, you should be aware that in the current climate of
rapid development, you are potentially diverting development resources
from the actual business problem.

The OTS specification provides support for XA-compatible resource
managers. This covers the majority of relational databases. If your data
store falls into this category, you can avoid implementing your own
recoverable resource. You should refer to the documentation supplied
with your OTS implementation as to what steps need to be taken to reg-

146 Distributed Object Architectures with CORBA

ister your XA compatible resource manager with the OTS.
The Resource interface denned by the OTS specification allows you to

implement your own recoverable resource. Listing 6-1 shows the IDL for a
resource object. You can see that this interface supports the functionality for
the underlying resource to participate in the two-phase-commit protocol.

Listing 6-1: IDL for a resource object

interface Resource {
Vote prepare()

raises(HeuristicMixed,HeuristicHazard);
void rollback()

raises(HeuristicCommit,HeuristicMixed,HeuristicHazard);
void commit()

raises(NotPrepared,HeuristicRoUback,
HeuristicMixed,HeuristicHazard);

void commit_one_phase()
raises(HeuristicHazard);

void forget();

Here is a brief description of the methods:

• prepare—This method is invoked as part of the two-phase commit
protocol. The resource prepares the results of the transaction, and
it can vote. If the transaction does not change any persistent infor-
mation, the resource would vote VoteReadOnly. If all the informa-
tion for the transaction has been put into stable store, then we
would receive a VoteCommit. You should note that the resource
could still be asked to roll back the results of the transaction. If
there were a problem, then the resource would vote VoteRollback.

• rollback—The resource should roll back all changes due to the
transaction.

• commit—All changes that are part of the transaction are com-
mitted to the data store.

• commit_one_phase—The resource should commit all changes.

Transactions 147

This optimization is used in cases where there is only one
resource involved in the transaction.

• forget—li the resource causes a heuristic exception (see the section
on exceptions), then it is required to remember that the exception
has occurred. Once the coordinator has determined that the excep-
tion has been addressed, the resource will receive a forget message.

Your resource is registered with the OTS using the registerjesource
method of the transaction coordinator. As an example, Listing 6-2 illus-
trates part of the IDL for a document store. This is used as a resource to
store documents.

Listing 6-2: Partial IDL for a document store

interface DocumentStore :
CosTransactions::TransactionalObject,
CosTransactions::Resource

boolean save(in Document doc) raises (DBError);
Vote prepare ()

raises(HeuristicMixed,HeuristicHazard);
void rollback()

raises(HeuristicCommit,HeuristicMixed,HeuristicHazard);
void commit()

raises(NotPrepared,HeuristicRollback,
HeuristicMixed,HeuristicHazard);...

Now if we look at the implementation of the save method we can see
how the resource is registered with the transaction coordinator.

I have factored out the code for the resource registration into the regis-
ter method (Listing 6-3). This method is responsible for ensuring that the
resource is not already registered with the coordinator for this transac-
tion. This is achieved because the implementation of the document store
keeps track of the resource with which it has been registered. It is impor-
tant that you store the object reference to the recovery coordinator.

148 Distributed Object Architectures with CORBA

Listing 6-3: The register method

void
DocumentStore::register(CosTransaction::Current* current)

{
CosTransactions::Control control;
CosTransactions::Coordinator coord;
control = current.get_control();
coord = control->get_coordinator();
/ / make sure that the resource is only registered once
if (myTransaction != 0) {
/ / this resource is already associated with a transaction
/ / check to ensure that it is the same transaction

if (myTransaction != coord->hash_transaction())) {
/ / throw an exception ...

}
}else{

myTransaction = coord->hash_transction();

RecoveryCoordinator recCoord;
recCoord = coord->register_resource (this);

/ / do the work to store the recovery object

boolean
DocumentStore::save (Document doc)

{
/ / use OTS specific call to get a handle to the Current
/ / object
register(current); / / register this resource for this

transaction
/ / now save the document
/ / it may be necessary to obtain a write lock ...

Transactions 149

/ / end of transactional operation

Vote prepare()
raises(HeuristicMixed,HeuristicHazard)

{
/ / places all changes in durable storage
/ / if successful then return a Vote of VoteCommit
/ / else return VoteRollback, VoteReadOnly etc.

void
DocumentStore: :rollback()

raises(HeuristicCommit,HeuristicMixed,HeuristicHazard)

{
/ / rollback changes from the log

void
DocumentStore::commit()

raises(NotPrepared,HeuristicRollback,
HeuristicMixed,HeuristicHazard)

{
/ / commit any changes to the store

It is the responsibility of the resource to maintain a persistent log of
the transaction; the object reference to the recovery coordinator can be
put into the log associated with this transaction.

If a failure occurs within the process containing the document store
object then the recovery coordinator is used to recover the state of the
transaction. This is only necessary if the resource has gone through the
prepare phase of the commit protocol and voted VoteCommit. If the
resource has not prepared for the transaction at the time of failure then
the transaction coordinator will assume a VoteRollback when it fails to
get a vote from the resource.

The OTS specification does not say how the transaction manager restarts

150 Distributed Object Architectures with CORBA

the recoverable resource, though it does say the recovery coordinator's
replay_completion method should be called upon restart if the resource has
been prepared. How this is done is implementation dependent and you
should refer to the specific manual for your OTS implementation.

In general, when a server is restarted it needs to reinstantiate all the recov-
erable resources that were associated with that server. It is your responsibili-
ty to store the necessary information so that the server can recreate the
resource objects. When a resource object is recreated it needs to look
through its transaction log so that it can return to the state it was in at the
time of failure. Once this has happened, the recovery method is called.

The implementation of the recovery method will need to perform the
following steps to recover each resource:

1. rebind to the recovery coordinator

2. invoke replay completion

If there is no recovery coordinator, or the resource was not prepared,
the resource can be rolled back.

Synchronization objects
There may be situations where you wish to be notified just before the
start, and/or after the completion, of a two-phase commit. For example,
for optimization purposes you may decide to implement a cache mech-
anism and only make use of the underlying resource when a transaction
commits. In this case, you will want to be notified that the application
has initiated a commit so that the cache is flushed to persistent storage.

The OTS provides the synchronization interface for just this purpose.
This interface provides methods where an object can be notified before
the start of a two-phase commit and after the end of the two-phase com-
mit. You should note, however, that the OTS specification does not
require this interface to be supported by all implementations. You
should consult the documentation of the specific OTS that you are using
to see if the synchronization interface is supported.

Listing 6-4 shows the IDL for the synchronization interface. Objects
that implement this interface are registered with the transaction coordi-
nator using the register synchronization method. The coordinator invokes

Transactions 151

the before_completion method before the start of the two-phase commit,
and the after completion after the two-phase commit.

Listing 6-4: IDL for the synchronization interface

interface Synchronization : TransactionalObject {
void before_completion();
void after_completion(in Status status);

Having an object notified before the two-phase commit enables you
to write application-specific code. If you implement a cache, then as an
optimization you can flush changes of the objects within the cache to
the database. You can put trace information into the method, and
implement code to ensure the integrity of the object before it is com-
mitted to the database.

When your object is notified after the completion of the two-phase
commit, you may want to perform some application-specific cleanup.
For example, if the status says that the transaction failed, you may want
to remove the relevant objects from your cache. In addition, you may
want to trace the activity of the transaction.

Listing 6-5 shows IDL for a simple document cache. For performance
reasons, we want to cache documents as they are found, rather than
return to the database every time.

Listing 6-5: IDL for a simple document cache

interface DocumentCache : Synchronization {
Document getDocument(string query) raises(NotFound);
void SaveDocument(Document);

This can raise other problems. You may have two servers that allow
applications to read and update documents; each server has an instance
of the document cache. When it's time to save a document, the server
will need logic to ensure that the document in the database has not been
changed by another application; this integrity check can be performed

152 Distributed Object Architectures with CORBA

in the before_completion method. Other solutions would be to have one
cache shared among all the servers, or, at the time of change, to broad-
cast to all caches the fact that there has been a change.

Nested transactions
Nested transactions are transactions that are embedded within other
transactions. The OTS specification refers to the nested transaction as a
subtransaction. Nested transactions can be used in a system where the
effect of a failure of a subtransaction does not require the rollback of the
whole transaction.

Subtransactions can be used to isolate failure and when parallelism is
needed. If a subtransaction fails, we may not need to abort the parent
transaction. Instead, the parent can execute code to compensate for the
failure of the subtransaction. This, of course, also complicates the imple-
mentation of the system. The parent transaction can not commit until
all the subtransactions have completed. If the parent transaction does
abort, then all the subtransactions may need to be rolled back; in other
words, the effect of a commit in a subtransaction may not happen unless
the parent transaction commits.

The OTS does support nested transactions, and so do some resource
manager implementations; but, if you do decide that you need to use
nested transactions within your application, you should consult the doc-
umentation for your OTS and choose a compatible resource manager.
You should be aware, however, that no relational database currently sup-
ports nested transactions, and neither does the XA protocol.

Example: transactional document management
To help illustrate the previous discussions we'll return to the document
management example. Here we want to make the retrieval and storage
of documents transactional. To do this, we can alter the ContentProvider
interface and provide a new DocumentManager interface to inherit from
TransactionalObject.

Listing 6-6 illustrates IDL for both the DocumentManager and
ContentProvider interfaces. The DocumentManager interface replaces the
pervious DocumentLocator interface. I have also added a create method to

Transactions 153

the document manager; this enables us to create new document
instances. The parameter to create indicates the name of the new docu-
ment. You should also be aware that since the ContentProvider interface
is transactional, all derived interfaces will also be transactional.

Listing 6-6: DocumentManager and ContentProvider interfaces

exception DBError { string reason };

interface ContentProvider: CosTransactions::TransactionalObject {
Content getContent() raises(NoContent);

interface DocumentManager : CosTransactions::TransactionalObject {
Document create(in string name) raises (DBError);
Document find(in string query) raises(NotFound);

Listing 6-7 illustrates an altered Document interface that enables us to
change the contents of the document and add new sections.

Listing 6-7: Document interface

interface Document : ContentProvider {
attribute boolean isSection;
Documents getSubDocuments() raises(NoDocument);

SectionNames getSectionNames() raises(NoDocument);
Document getSection(in string name) raises(NoDocument);

/ / editing capabilities
Boolean addSection(in Document section) raises(DBError);
Boolean removeSection(in String sectionName)

raises(DBError);
Boolean setContent(in Content) raises(DBError);

154 Distributed Object Architectures with CORBA

As you can see, this IDL does not restrict the location of all document
parts to the same database. It could be perfectly reasonable to have some
of the sections of a document located in another database, and for doc-
uments to share sections. An example of this would be a series of docu-
ments that describe funds; some funds may share the same prospectus.
Rather than have two copies of the same prospectus with each fund, we
have all the appropriate funds refer to the same prospectus document.
We can rely on the OTS to ensure that an alteration to a document that
is itself distributed will occur within the one transaction.

Listing 6-8 illustrates some client code in which we create a new sec-
tion and then add it to an existing document. This code uses the indi-
rect-implicit model.

Listing 6-8: Client code creating new section to a document

t ry{
current->begin();
Document_var newSection = docMgr->create("Fund Description");
newSection->setContent(newContent) ;
document->addSection(newSection);
current->commit();

} catch (CORBA: :TRANSACTION_ROLLEDBACK) {
/ / transaction was rolled back ...

} catch (const DBError ex) {
current->rollback();

Whenever any of the above methods are invoked from within a trans-
action, the transaction context will be propagated. If the implementa-
tion makes use of an XA-compatible resource, then the OTS will coordi-
nate the transaction. The application just needs to register the resource
with the OTS. The process of registration, however, is implementation-
specific. For example, IONA's OTS implementation takes a handle to the
XA "switch" structure, which contains pointers to all the underlying
resource managers' XA functions.

Transactions 155

Concurrency Control Service
The Concurrency Control Service (CCS) provides interfaces that enable
you to implement your own lock management. The CCS was designed
to work in conjunction with the OTS. If you do write your own shared
resource and you wish to ensure the isolated property of transactions,
you will also need to use a mechanism to manage locks; then you need
to use the CCS. I would advise, however, that you use the locking mech-
anism of the underlying database when possible.

You should be aware that off-the-shelf resource managers, especially
XA-compliant ones, provide their own lock management. If you are
using a resource manager that is compatible with the OTS, then you do
not need to concern yourself with the CCS.

The CCS does not define a resource or the granularity of the locks. For
example, in a document, each component could be a separate resource
or the whole underlying document database could be a resource. The
CCS allows you to provide a locking mechanism at a suitable level of
granularity for your service.

Model
Locks are used to control concurrent transactions accessing the same
resource. Before any access can occur, the current transaction needs to
acquire the appropriate lock on the resource. If a conflicting lock is
requested, then the request will either receive an exception or will block
until the lock request can be satisfied.

The CCS defines several modes of locks. Table 6-2 illustrates these
locks and their conflicts. The Upgrade lock is provided as a means to
avoid a common form of deadlock. For example, if two clients have a
read lock on the resource and both want to update the resource (and
therefore obtain a write lock), deadlock can occur as soon as one of the
clients asks for a write lock. However, if each client obtains an upgrade
lock first, then the conflict can be avoided.

156 Distributed Object Architectures with CORBA

Table 6-2: Lock Conflicts

Granted mode

Intention Read

Read

Upgrade
Intention Write

Write

Intention Read

X

Read

X

X

Requested Mode

Upgrade

X

X

X

Intention Write

X

X

X

Write

X

X

X
X

X

I mentioned in the previous discussion on locks that the intention
lock is used to manage mixed-granularity locks. An intention lock is
obtained at a higher granularity, and informs other requests that there
could be a potential conflict. For example, we can have a resource con-
taining documents, and a document can be hierarchical with sections
and chapters. To read a section, the client would obtain an intention
read lock on the document and then a read lock on the section.

Because it is possible for multiple locks on a resource to exist, the CCS
defines a lock set. You associate each resource with a lock set. This lock
set is a collection of all locks associated with the resource. The CCS
defines an IDL interface to the lock set; this interface is used to manage
the locks within the lock set. Related lock sets can be managed as a group
through the use of a lock set coordinator.

Two types of lock set can be associated with a resource: implicit and
explicit. This is analogous to the propagation types of a transaction con-
text. Operations on the implicit lock set are done as part of the current
transaction, whereas operations performed on the explicit lock set
require a reference to the transaction coordinator associated with the
transaction that is requesting the lock.

The CCS also allows a transaction to obtain multiple locks on the
same resource. These locks can be in the same or different modes. Other
clients trying to access the resource will only be granted a lock that is
compatible with all the modes of the first client. This means that the
lock set maintains a count for each lock type for each transaction.

Because of this interdependency between the child and parent transac-
tions, the rules for locks of conflicting modes can be relaxed. When a nest-

Transactions 157

ed transaction requests a lock, the request is successful if all the potential-
ly conflicting locks that exist were granted on behalf of the parent trans-
action or one of its subtransactions. However, a subtransaction cannot
drop a lock that was acquired by the parent or another subtransaction.

Using the CCS
Lock sets are created using a lock set factory. The IDL for a lock set fac-
tory is shown in Listing 6-9. This interface provides the ability to create
two types of lock sets. The first is an implicit lock set, using the create
method: the lock set is implicitly associated with the current transac-
tion. The second is an explicit lock set, using the create_transactional
method: the transaction coordinator has to be passed to the lock set
with each request.

Listing 6-9: IDL for lock set factory

interface LockSetFactory

{
LockSet createQ;
LockSet create_related(in LockSet which);
TransactionalLockSet create_transactional();
TransactionalLockSet create_transactional_related(in

TransactionalLockSet which);

Figure 6-4 illustrates the relationship between the resource and the
lock set. Each resource has an associated lock set. The resource uses a
lock set factory to obtain a lock set, this lock set is then used during the
lifetime of the resource. If the resource itself is inherited from
TransactionalObject, then it can use an implicit lock set; otherwise, the
transaction context is explicitly propagated and an explicit lock set will
be required.

When you implement a resource it is your responsibility to call the
necessary methods on the lock set appropriate to your method. For exam-
ple, if the the method reads information from the resource, then a read
lock should be set; similarly, if the method writes, then the appropriate

158 Distributed Object Architectures with CORBA

Resource LockSet

/

LockSetFactory

Figure 6-4. Resource and lock set

intention write and write locks should be set. The associated lock set will
manage these locks and return success or failure.

Listing 6.10 illustrates the interface to the lock set. The methods to
the transactional lock set are the same, only the first parameter is a
CosTransactions::Coordinator which allows the lock set to associate the
lock request with the appropriate transaction. The lock request will
block until the request can be satisfied, however if you require a non-
blocking request then use the tryjock method.

Listing 6-10: LockSet interface

interface LockSet

{
void lock(in lock_mode mode);
boolean try_lock(in lock_mode mode);
void unlock(in lockjnode mode) raises(LockNotHeld);
void change_mode(in lock_mode held_mode,in lock_mode

new_mode) raises(LockNotHeld);

Transactions 159

LockCoordinator get_coordinator
(in CosTransactions::Coordinator which);

To facilitate the two-phase locking model, the CCS provides a lock
coordinator. A lock set involved in a transaction can return an appropri-
ate lock coordinator. The lock coordinator provides the dropjocks
method, which drops all locks within a transaction family. You need to
tell the getjcoordinator method to return a coordinator for a specific
transaction; you can do this by passing the transaction coordinator as a
parameter to the method.

Summary
No large computing system is complete without some form of transac-
tion management. The integrity of your information is important, and
with distributed systems, the management of that information is much
more complex. Fortunately, many people have spent years tackling the
problems that arise in such systems, and solutions are reasonably well
understood. We looked at what is involved and learned what ACID
transactions means for your system. The principles are the same, regard-
less of whether your system is based on DCOM, EJB, or CORBA.

We have saw how the CORBA standard defines a transaction service
(the OTS). We saw that it can be relatively straightforward to turn your
distributed system into a transactional system. We also looked at the
flexibility of the OTS, which provides extensive control, enabling you to
integrate your own persistence mechanism.

160 Distributed Object Architectures with CORBA

References
Bernstein, Philip A., Newcomer, Eric. Principles of Transaction Processing.

San Francisco, California: Morgan Kaufmann, 1997.

OrbixOTS Programmer's Guide and Administrator's Guide, IONA
Technologies, 1998.

Gray, Jim and Reuter, Andreas. Transaction Processing: Concepts and
Techniques. San Francisco, California: Morgan Kaufman, 1993.

Object Management Group. Concurrency Control Service, OMG document
97-12-14. Available at http://www.omg.org

Object Management Group. Transaction Service Specification, OMG docu-
ment 97-12-17. Available at http://www.omg.org

X/Open DTP. X/Open Guide Distributed Transaction Processing: Reference
Model. Version 3. Reading, Berkshire, UK: X/Open Ltd., 1996.

Notes
1. In Britain, these are referred to as the current account and a deposit

account.

2. A CORBA pseudo-object is one that is specified using IDL, is imple-
mented by the ORB vendor, and is not a distributed object.

Chapter 7

Security

Any system you build can become a potential target for misuse and
attack by either the curious or the malicious. Regardless of the reason for
the intruders' invasion, you will want to provide some measures to pro-
tect the system. To be realistic, rather than paranoid, your security poli-
cy and implementation will depend very much on the nature of your
business and its associated risks. For this very reason, security is a term
whose meaning changes dependent to whom you are speaking.

As well as security for business reasons, there is also the need for secu-
rity for social reasons. Most respectable business will want to protect the
privacy of their customers; it is difficult to give privacy assurances to
potential customers if you have not implemented any security mecha-
nisms. This goes beyond securing a transaction for an online purchase.
For example, you may want to run an ethical online business and assure
that information collected about your customers will not be used for
nefarious marketing purposes.

In this chapter, we will be looking at what it means for a system of dis-
tributed objects to be secure. First, we look at what security is and what
you need to consider when determining your security policy. Next we
will review the salient features of the CORBA security service; this will
help you gain an understanding of how the security service works. Then
we will take a quick look at the integration of SSL with CORBA to pro-
vide security for distributed objects over the Internet. Finally, we will dis-
cuss the management issues that arise when dealing with a secure sys-
tem. After reading this chapter you will have an understanding of the

161

162 Distributed Object Architectures with CORBA

features provided by the security service and where it fits into a distrib-
uted object architecture.

Security Principles
To many people, security equates to encryption and authentication; that
is, the ability to keep information and the identification of your users
private. As you proceed through this chapter, however, you will see that
for many organizations security means more than encryption and
authentication.

Before we can look at how to implement a secure system, we need to
describe what we mean by security and discover how secure we need to
be. When you look at the literature describing secure systems, you find
security described in terms of the potential threats to the system and
how these can be averted.

The identification of security threats is the first step in determining
the security policy for your organization. Once these threats have been
identified you then devise mechanisms whereby the security problems
can either be stopped or avoided. It is important to be able to show how
these mechanisms prevent the perceived security risks. For example, if
you provide a mechanism for nonrepudiation—the ability to identify
without doubt the participants of a transaction—you may have to show
how this prevents a customer from denying a purchase.

The aim of the security component of your architecture is to restrict
access to information and resources; however, before you can demon-
strate that the security implementation meets your needs, you need to
classify the potential threats to the system and determine how those
threats can be perpetrated.

Elements of security
Implementations of security services commonly address these requirements:

• Confidentiality—Information, (messages) transmitted between
distributed components of the system should be private; that is,
an unauthorized user or component should not be able to deci-
pher the contents of a message.

Security 163

• Integrity—Information needs to be protected from unautho-
rized alteration. This includes ensuring the integrity of informa-
tion transmitted over the network.

• Availability—A system needs to be available when authorized
users need to use it. As well as the technical infrastructure taking
care of load balancing, failover and so on, mechanisms must be
in place to detect and prevent denial-of-service attacks.

• Accountability—Users of the system should be accountable for
their actions. You need to be able to trace the actions and the
results of those actions.

• Non-repudiation—In addition to accountability, you may need
to store nonrefutable proof of who the participants were in an
action. This is to stop either side from denying involvement in a
transaction.

You should be aware of which subset of the above requirements your
application will need. For example, you may not care who sees the con-
tent of messages, but do care that the message is delivered intact. You
will find, though, that most security products will provide functionality
to satisfy at least the first four requirements.

Security threats
Security threats to any system can originate from inside as well as out-
side the organization. A disgruntled employee can wreak havoc, or
someone with the wrong access privileges may unintentionally erase
information. Hackers can break into the system out of curiosity, or com-
petitors may infiltrate to perform industrial espionage. The reasons why
your system may become a target are varied.

Methods of attack on a distributed system are either through access to
the communications or being able to masquerade as an authorized user
(or other component of the system). We can classify threats to a system
within the following categories:

• Acquisition of Information—unauthorized access to informa-
tion. This may be achieved via eavesdropping of communications,

164 Distributed Object Architectures with CORBA

access to unprotected stored information, masquerading as a valid
user and so on.

• Alteration of Information—alteration of the content of mes-
sages communicated between components of the system, or
alteration of stored information.

• Resource stealing—use of computing facilities, such as compo-
nents, objects, services, computers without authorization.

• Vandalism—malicious damage to the system that prevents nor-
mal operations; information in the system may be altered, or the
system hindered, making it unusable. This also includes denial-
of-service attacks, in which the system receives a saturation of
requests from one source to prevent any other valid access.

• Repudiation—denial of participation in a transaction; for exam-
ple, a customer may deny participation in an electronic transac-
tion, or a merchant may claim a valid transaction that did not
actually occur.

Before anyone can attack your system, they need to gain access.
Networked systems by their very nature are more vulnerable to unwant-
ed attention. These attacks are usually done by use of existing commu-
nication mechanisms, or masquerading as users with authorized access.
You should be aware that when your applications use a standard proto-
col, it becomes easier to intercept and understand on-the-wire commu-
nications1. Some of the methods that may be utilized to attack your sys-
tem include:

• Masquerading—using the identity of another user. The user name
and password may have been stolen, or the attacker may have
obtained the access token generated for an authenticated user.

• Message tampering—altering the content of intercepted messages.

• Replaying—recording messages sent between systems and
replaying them at a later date. A previously privileged user may
use this after their privilege is revoked. This mechanism may also
be used to implement a denial of service attack.

Security 165

Large systems composed of distributed objects introduce extra security
problems. How much trust is there between the different objects, what hap-
pens when the implementations are changed (version problems?). Inter-
actions between each of the objects is less predictable, and the administra-
tion of security policies per object can become complicated and error-prone.

Unfortunately, there is no silver bullet when it comes to the security
of a system of distributed objects. The foundation of a secure system is
to be aware of potential security problems and to implement procedures
to deal with them. Products like the OMG security service help with the
implementation, but not with the identification of problems and the
development of policies.

Security functionality (features)
To meet the requirements mentioned above and alleviate the risks, a
security system would implement the follow functionality:

• Authentication—provides a mechanism to verify the identity of
every user of the system. All principals, users and other compo-
nents should be authenticated before they are allowed to pro-
ceed with interaction with the rest of the system.

• Encryption—prevents the interception of communications
between users and components. The degree of privacy this pro-
vides depends on the algorithm used and the security of the
cryptographic keys.

• Checksums—provides a mechanism to ensure the integrity of the
message. If we are not concerned with privacy, then we could just
encrypt the checksum to ensure that the message is not tampered
with; this has a lower computational cost than encrypting the
whole message.

• Authorization—provides assurance that the user, or entity, access-
ing a service, object, or method is allowed to do so. Once a user
has been authenticated, they should receive a set of one or more
credentials that can be used by any of the services to check the
validity of a request. The credentials can be checked with access
control lists (ACLs) to determine whether the request is valid.

166 Distributed Object Architectures with CORBA

• Auditing—provides a mechanism for accountability. The securi-
ty system should give you a means to log all requests. This log
should include a time stamp, proof of identity of the requester,
and the nature of the request. The information should also be
stored in a secure manner to prevent tampering.

• Nonrepudiation service—generates proof of the identity all par-
ties involved and records the request. This also needs to be
stored in a secure manner so that neither party can tamper with
it. For settlement of disputes an arbitrator (preferably a trusted
third party) should be used.

You can get an idea of how some of the above functionality may be
implemented from the sidebar on encryption technologies. The actual
implementation will depend on the vendor of the security product that
you purchase. You should also be aware of any legal requirements that
may be in force at the time you are implementing your system. For exam-
ple, there are export rules regarding encryption technology that origi-
nates in the USA and the size of cryptographic keys that may be used.

Developing a security policy
We have just covered a description of what security is, what functional-
ity can be provided by a security service, and the types of threats to a sys-
tem. We shall now take a look at what is involved in determining a secu-
rity policy for your system.

You need to determine what threats actually apply to your system before
you can implement effective security mechanisms. To do this you need to
perform a risk analysis. Your risk analysis should look at the actual security
threats to your system along with the cost of any threat actually happen-
ing. For example, if your system publishes news stories, you may be more
concerned with ensuring that the content of a story is not changed with-
out proper authority than who gets to read the final story. The cost to the
business is higher if news stories are altered without the proper authority.

To justify the investment in the security infrastructure, it helps to
express the risks in terms of the business. A mechanism to determine risk
is to look at the cost to the business if the security breach happens. There
will be a threshold that will help you determine what risks are more

Security 167

Encryption Technologies and Digital Signatures

We will now take a quick look at current
encryption technologies and their mecha-
nisms. For the more inquisitive of you I recom-
mend the book "Applied Cryptography" by
Bruce Schneier.

The encryption of messages plays an important,
usually central, role in the implementation of a
secure system. Encryption is used to secure the
lines of communication; that is to ensure that no
eavesdropper is able to decipher the message.
Additionally, techniques based on encryption
can be used to assist with authentication. For
example, encryption technology is used to
implement digital signatures. These are the dig-
ital analog to a written signature; digital signa-
tures are used to verify the identity of users.

The goal of cryptography is to transform the
message into a form that cannot be under-
stood by a third party, such that the only per-
son able to reverse the transform is the intend-
ed recipient. Encryption is said to transform
the message from "plain text" to "cipher text."
There are two broad categories of computer
cryptography: secret-key and public-key. The
technology used to implement the security ser-
vice can make use of either approach.

Secret-Key Encryption (Symmetric)
Encryption mechanisms based on shared knowl-
edge between the sender and receiver have
been used for centuries. With the advent of the
computer, the realm of encryption techniques
has expanded. Secret-key, or symmetric, encryp-
tion is based on the fact that both the sender
and receiver of the message must know the
encryption function (or its inverse) and a shared
secret key. The same key is used to encrypt the
message as is used to decrypt the message.

For this mechanism to work and ensure securi-
ty, the secret keys need to be distributed in a
secure manner. That is, each pair of users that
wish to communicate need to gain knowledge
of a shared secret key. For example, if Watson
wishes to send an encrypted message to
Holmes, Watson needs to communicate his
secret key to Holmes using a secure mecha-
nism (maybe meeting at Baker Street and writ-
ing down the key). This can become cumber-
some if Watson needs to send an encrypted
message to the whole of Scotland Yard. Each
pair of users of the system needs to share a
secret key. For systems with large numbers of
users the number of keys rapidly increases.

Public-Key Encryption (Asymmetric)
Public-key, or asymmetric, cryptography was
invented in the 1970's (this was first proposed
by Diffie and Hellman 1976). This eliminates
the need for trust between both communicat-
ing parties. Here one key is used to encrypt
the message while another is used to decrypt
the message.

Each user has two keys, one public and the
other private. A message encrypted with one
key can only be decrypted by use of the other
key; that is, any message encrypted with the
public key can only be decrypted with the pri-
vate key, and vice versa. Using the previous
example, when Watson wants to send a mes-
sage to Holmes he encrypts the message using
Holmes' public key. Holmes is then able to
decrypt the message using his corresponding
private key. Key management here is more
manageable than secret key encryption, since
the number of keys needed increases linearly
with the number of users.

168 Distributed Object Architectures with CORBA

important. You can look at each of the security risks and the cost to the
business if they are realized, then determine the appropriate action.

To determine your security policy you would do the following.

1. Identify your assets and determine their value.

2. Identify potential methods of attack.

3. Identify where your system is vulnerable.

4. Estimate potential loss and how much that loss may cost.

5. Identify countermeasures and how much it would cost to imple-
ment them.

6. Compare the cost of implementation with the cost of loss.

This may be achieved using formal or informal approaches. Regardless
of how you approach your risk analysis, you will probably not think of all
possible security holes. The process of performing this analysis, however,
will help you create a security infrastructure that can later be tweaked.

After you have performed your analysis, you need to find products
that will help you implement your security policies. You should also
look at the mechanisms provided by the security products for adminis-
tration and maintenance. You also need to assign responsibility to one
or more human administrators; a security mechanism that detects unau-
thorized access is not effective if a responsible person is not notified so
that appropriate action can be taken.

As well as the above considerations, you should take into account the
physical security of your computer systems. If the machine on which you
keep your certificates is easily accessed by anyone entering your organiza-
tion, then you may have a problem. Access to important machines should
be restricted. For example, besides ensuring that the access is by authenti-
cated users, you may want to restrict physical access to the machine room.
It is often a good idea to have a specialist perform a security audit.

Review of the OMG Security Service
Probably one of the most complicated pieces of infrastructure for a dis-
tributed system is provided by the security service. It took the OMG a
couple of years to produce the security specification, which is one of the

Security 169

Digital Signatures
Public-key encryption can be used to provide
digital signatures. A simple example is that
Holmes wishes to send a message and assure
his colleagues that the message is from him.
He can encrypt the message using his private
key. Anyone receiving the message can then
decrypt it using Holmes' public key. Since
Holmes is the only person who could have pro-
duced the message, his colleagues can be sure
that the message came from him. This relies on
the fact that each key pair is unique.

So now, we have a mechanism to sign a mes-
sage and provide the functionality for nonrepu-
diation of the originator. Holmes cannot deny
that he generated the message because he is
the only person with the corresponding private
key. But anyone with access to Holmes's public
key is able to read the message.

What if Holmes wants to send a private signed
message to Watson? This can be achieved by
combining two methods. First Holmes encrypts
the message with his private key (hence signing
it) and then encrypts the result with Watson's
public key. Only Watson can read the resultant
cipher text, and he knows that Holmes was the
originator based on the digital signature.

For public-key encryption and digital signa-
tures to work, we need to distribute the public
keys. Holmes could send out an email with his
public key, or it can be placed in a publicly
accessible database of keys. Your confidence
that the public key you retrieve for Holmes is
correct depends on the amount of trust you
have in the mechanism of key distribution. A
solution is to only accept keys from trusted
sources; this is dealt with in the section below
on digital certificates.

Hybrid Mechanisms
Public-key encryption is considerably slower
than secret-key methods (about 1000 times
slower, according to Schneier). As a result,
hybrid mechanisms have been developed.
Here public-key encryption is used to facilitate
the distribution of "session" keys that are then
used with secret key algorithms. The message
is encrypted using secret-key cryptography,
and then the associated secret key is encrypted
using public-key cryptography.

For example, Watson wishes to send a message
to Holmes using a hybrid approach. First, a
random key is generated for the session; this
"session" key is used to encrypt the message
using a secret-key algorithm. Next, the session
key is encrypted using Holmes's public key.
Both the encrypted message and the encrypt-
ed session key are then sent to Holmes. Holmes
can then decrypt the session key using his cor-
responding private key and then use the ses-
sion key to decrypt the rest of the message.

Message Digests
Message digests are one-way hash functions.
These operate on an arbitrary-length message
and produce a fixed-length value. They are one-
way because they are not reversible: you cannot
deduce the message from the value. It should
not be possible to find two messages that pro-
duce the same message digest. Several message
digest algorithms have been devised; the most
popular are MD4, MD5, and MD2, designed by
Ron Rivest of RSA; and Secure Hash Algorithm
(SHA) created by the U.S. National Institute of
Standards and Technology (NIST).

Message digests can be used to help protect the
integrity of the message and the nonrepudiation

170 Distributed Object Architectures with CORBA

largest chapters of the CORBA services specification. This reflects the
complexity and importance of security for any serious application.

The OMG specification defines a framework rather than a specific
implementation. An advantage of this is that a variety of underlying secu-
rity technologies can be used to implement the security service, allowing
a vendor to pick a technology appropriate to their market and political
constraints. For example, a security service implementation produced in
the USA would be constrained by the legislation regarding exports of cryp-
tography2. This does, however, add complications for inter-ORB interop-
erability when the underlying security technologies differ.

The features of the security service are available to your applications
with minimal programmatic intrusion. Most of you providing security
in your distributed applications using the security service will find that
the majority of the work will be determining the degree of security you
require, your policies, and administration.

When you look at the security specification, you will see that that it has
been divided into various features and interoperability "packages," some
of which are optional. When you look at various implementations of the
CORBA security service, you will see varying support for the packages from
different vendors. You should be aware of what functionality you need
from the security service before making your purchasing decision.

Two packages provide the main functionality of the security service. An
ORB has to supply these packages to be compliant with the specification:

• Level 1—Security is provided by the ORB infrastructure. There is
minimal to no programmatic intrusion; existing CORBA appli-
cations can be made secure using the provided infrastructure.
There are some, though minimal, interfaces that a programmer
can use to interface with the security service.

• Level 2—In addition to supporting the features of a level 1
implementation, there are a set of interfaces (specified in IDL, of
course) that the application programmer can utilize to interact
with features of the security service. More fine-grained control of
security features can be applied by the application, such as the
quality of protection, mechanisms for delegation of credentials,
options for audit, and so on.

Security 171

of the sender. For example, Watson wishes to
send a message to Holmes. Watson generates a
message digest of the message and then
encrypts it with his private key (effectively the
message digest is then signed by Watson). He
then sends the message along with the encrypt-
ed message digest to Holmes. Holmes can then
calculate the message digest for the message,
decrypt the encrypted message digest using
Watson's public key and compare the two, if
they are the same, Holmes can be sure that the
message has not been tampered with.
Furthermore, because the message digest was
encrypted using Watson's private key, Holmes
can be certain that only Watson could have orig-
inated the message.

By combining message digests with the hybrid
encryption mechanism, we can ensure the pri-
vacy of the message through encryption, the
integrity through message digests, and the
nonrepudiation of origin through the digital
signature. The algorithms used may vary with
the security software that you purchase,
though the principles will be similar.

Certificates
For digital signatures to work, you must have
the public key of the signer. Your assurance of
the identity of the signer can only be as good as
your confidence in the ownership of the public
key. If Moriarty wishes to forge electronic docu-
ments from Holmes, then he would create a pri-
vate/public key pair and publish the public key
as belonging to Holmes. Messages then sent to
Watson by Moriarty would then appear to be
signed by Holmes! One solution is for Holmes
and Watson to exchange public keys when they

meet; unfortunately, this is not possible when
the two cannot meet or there may be many
people with which to communicate.

A scaleable solution to this problem is the use
of certificates and certificate authorities. A cer-
tificate is a digital document containing identi-
fication information and a public key. A
Certificate Authority (CA) then signs the certifi-
cate to vouch for the validity of the certificate.
Now we have the problem of publishing the
public key of the certificate authority in a way
that is trusted. One mechanism is to ensure
that the certificate authority is well known (the
U.S. Post Office and VeriSign are two exam-
ples) and that its public key is widely adver-
tised. Trust may also be achieved through the
CA having its own certificate signed by anoth-
er CA known to the recipient.

For Holmes to obtain a certificate, he needs to
present his public key to the CA with evidence
as to his identity. The requirements that each
CA has for proof of identity may vary; the valid-
ity of the certificate depends on the trustwor-
thiness of the CA. (Watson needs to trust that
the CA has done its job before accepting a cer-
tificate from "Holmes.")

The ISO authentication framework (X.509)
makes use of digital certificates. Besides the
CA's signature, an X.509 certificate contains a
version number, unique serial number, user's
name, public key, encryption algorithm identi-
fier, and period of validity. This information
may be stored in, and obtained from, public
databases. If the private key is compromised,
the CA will issue a certificate revocation. •

172 Distributed Object Architectures with CORBA

One of the goals of the security service is to provide security for appli-
cations and users in a transparent manner. The Level 1 package of the
security specification supports applications composed of distributed
objects running in a secure environment without further modification.
This secure environment is provided by the infrastructure inherent in
the ORB with a security service implementation; however, if you do wish
to implement security aware objects, then you will need to use the inter-
faces defined as part of Level 2 of the specification.

In addition to the two main functionality packages, there are also
optional packages to define additional security functionality, replace-
ability, interoperability, and security mechanisms. Currently there is
only one optional security feature package; the functionality required
for nonrepudiation is optional. While the OMG has defined the inter-
faces, not all implementations are required to provide it.

An ORB implementation that provides one of the two replaceablity
packages allows you to alter the underlying security technology; an ORB
vendor can provide one of the replaceability packages (with no security
implementation) and thus allow third party security implementations.
An ORB that provides the replaceabilty package is said to be "security
ready"; it is ready for a third party to add security functionality.

Different levels of interoperability are achieved by the various
Common Secure Interoperability (CSI) feature packages. The Secure Inter-
ORB Protocol (SECIOP) package also defines how security information is
contained in the IOR, and the necessary negotiations to agree on a secu-
rity protocol so that requests can be transmitted securely between differ-
ent ORBs.

The revised security specification provides four mechanism packages. A
security service implementation that interoperates must do so using one
of the four security mechanisms. These mechanisms provide support for
the major security protocols (SPKM, GSS Kerberos, CSI-ECMA, and SSL).

Security model
The features provided by the OMG security service can be added to an
ORB in a non-intrusive manner. Existing distributed object applications
that make use of a CORBA ORB can run without alteration using a secure
ORB. The security service also provides interfaces that can be used by

Security 173

security-aware applications; you may wish to provide more fine-grained
control of access or audit to your objects.

For the more adventurous the security service provides replaceability
interfaces. You can insert the new mechanisms for encryption, authen-
tication and so on. It is not mandatory for an ORB vendor to provide
these interfaces, and not all implementations give you access to replace
the implementation of these interfaces. This is achieved using intercep-
tors (see sidebar).

Figure 7-1 provides a simple view of the security model as provided
within the OMG specification.

Client

i

\

Access
Control

Secure
Invocation

H

(Client "\
Access

^ Decision J

Vault j

Security |
I Context J

\

Security
Services

f Target >
Access

^ Decision J

f Security
I Context

(Vault

h
•

K Target
Object

i

Access
Control

Secure
Invocation

^ \ ORB Core s^
\ /

ORB Security Services

Figure 7-1. OMG security model

174 Distributed Object Architectures with CORBA

Interceptors

Interceptors were first introduced in the
Security Specification as a mechanism to pro-
vide security in a nonobtrusive manner. Since
their introduction they have become part of the
CORBA infrastructure, and have been incorpo-
rated into the revised security specification as
one of the optional replaceability packages.

By intercepting the communications before
the application deals with the request, or sends
the request on the wire, it is possible to add
the necessary extra work to perform security
functions. For example, you will want to
encrypt the message just before it is transmit-
ted and decrypt it just after it is received; this is
achieved by intercepting the message at these
points in the ORB infrastructure. There are two
types of interceptors, with their interfaces
defined using IDL:

• request-level—performs transforms on a
structured request

• message-level—performs transforms on
an unstructured buffer

Request-level interceptors are used regardless
of whether the client and target objects are
collocated or in separate processes. When a
request-level interceptor receives the message,
it is in a structured form; it is possible to extract
information about the request and optionally
add extra information to the request. The
interceptor may also invoke other methods on
remote objects before (and after) reinvoking
the original request. For example, the access
control interceptor is implemented so that the
dientjnvoke method can be used to check
client access control with the access decision
object and the targetjnvoke method can do
the same at the target side.

Message-level interceptors are only used when
the message has to go over the wire. By the
time that the message-level interceptor is used,
the request is in a form ready for transmittal
over the wire. The interceptor can do further
transformations of the message. For example,
the secure invocation interceptor is imple-
mented where the send_message method can
invoke the encrypt method on the security
interface to turn messages into cipher-text and
the receive_message method can decrypt
incoming messages.

It is the responsibility of the ORB to maintain a list
of interceptors and when they should be invoked.

module Interceptor {
native Message;
interface Interceptor {};

interface Requestlnterceptor: Interceptor {
void client_invoke(inout CORBA::Request

request);
void target_invoke(inout

CORBA::ServerRequest
request);

interface Messagelnterceptor: Interceptor {
void send_message(

in Object target,
in Message msg

);
void receive_message(

in Object target,
in Message msg

Security 175

Principals, authentication, and credentials
You will come across the term "principal" in most documents about
security. In this the CORBA security specification is not unique, and
defines a principal as follows:

A principal is a human user or system entity that is registered in
and authentic to the system.

A necessary feature of any secure system is the ability to identify the
users and other entities, principals, that make use of the system's ser-
vices. The system needs reasonable assurance that the principal access-
ing the system is whom they claim to be. A mechanism to achieve this
is to authenticate principals and provide them with a set of credentials.

Typically, a user initiates actions within the system, and this initiat-
ing principal needs to be authenticated with the system; that is, the
security system has to be satisfied that the principal is a valid user or sys-
tem entity. The mechanism used to authenticate a principal depends on
the underlying technology used to implement the security service.
Though commonly authentication requires that the principal provide
some proof of identity, this is achieved through the use of secret infor-
mation know only to the principal and the authentication system. For
example, the information could be the user name and password or a
cryptographic key.

By allowing the authentication mechanism to be supplied by the
underlying security technology, the OMG Security Service can support
practically any authentication mechanism. These include simple user
name/password, symmetric secret keys, asymmetric public keys, or a
combination. The underlying security services used are not visible to the
users of the security model.

In the case of a Level 1 implementation, the authentication mechanism
is usually supplied by the underlying security technology. For example,
IONA's security service implementation uses DCE Security as the underly-
ing technology and users would be authenticated as part of the DCE Cell.
Security-aware applications, using interfaces supplied with Level 2 of the
CORBA security service, could ask the user for identification and proceed
to authenticate the user with the principal authenticator.

176 Distributed Object Architectures with CORBA

The security service replaceability package re-
quires that the ORB implement two interceptors:

• Secure invocation interceptor—A mes-
sage-level interceptor used to establish the
security context. This interceptor uses
cryptographic services to provide message
protection and verification.

• Access control interceptor—A request-level
interceptor that determines whether a
method invocation should be allowed by
asking the Access Decision object. This inter-

ceptor also handles the auditing functionality.

These are illustrated in Figure 7-2.

You should note that not all ORB implementa-
tions provide an interceptor mechansim.
Though some products do provide similar
functionality with propriety implementations.
For example, lONA's Orbix3 implements "fil-
ters" and "transformers"; these provide similar
functionality to the request-level and message-
level interceptors respectively. •

Access
Control

Interceptor

1
Secure

Invocation
Interceptor

Access
Control

Interceptor

I
Secure

Invocation
Interceptor

Figure 7-2. Interceptors

Security 177

Distributed Computing Environment (DCE) is
an open standard promoted by the Open
Software Foundation (OSF). DCE provides a
procedural model for the construction of dis-
tributed systems. At its core, DCE provides a
mechanism to support remote procedure calls
(RPCs). You can view DCE as the procedural
predecessor to CORBA.

Construction of two-tier and multi-tier distrib-
uted systems using DCE is achieved in a similar
manner to CORBA. You use DCE IDL to define
the interfaces to your "remote procedures."
DCE IDL is based on the C programming lan-
guage and is easily understood. You compile
the IDL to produce client stubs and a sever
skeleton, which you use to provide an imple-
mentation. You use the client stubs to invoke
the remote procedure.

DCE provides services to support a distributed
computing environment; these include direc-
tory, time, and security services. Alongside
these services is a threads library that provides

a platform-neutral API for multi-threaded pro-
grams. In addition to these base services there
are extended services. The distributed file sys-
tem (DFS) and a management environment.

Unlike the OMG CORBA specification, the OSF
also provides a reference implementation as
part of the DCE standard. Like CORBA, there
are many vendors that supply DCE products,
such as Transarc and Gradient. Additionally,
Transarcs's transaction management product
was first developed for DCE; they have since
provided an implementation of the OMG
transaction service by leveraging the underly-
ing technology previously used (lONA's OTS
product incorporates Transarcs technology).

The crucial difference between DCE and
CORBA is the programming model: DCE pro-
vides a "traditional" procedural programming
model, whereas CORBA provides an object-
oriented model. For more information on
DCE, you can visit the Web site of the OSF at
www.osf.org. •

Once a principal has been authenticated with the security system, the
principal is given evidence of authentication that cannot be forged. This evi-
dence is known as the principal's credentials. Credentials are used to provide
proof that the principal has been authenticated with the system and are used
to validate actions that are initiated by, or done on behalf of, the principal.

Figure 7-3 illustrates the activity of authentication used by the ORB.
The user sponsor is the code, or program, responsible for communicat-
ing with the principal authenticator and creating a credentials object.
The principal authenticator returns an authenticated credentials object
for the principal; this credential object contains authenticated identifiers
and privileges. The user sponsor then sets the credentials with the
Current pseudo-object. This Current object represents the current execu-
tion context (thread of execution) at both the client and the server.

178 Distributed Object Architectures with CORBA

Figure 7-3. Authentication

Let's take a closer look at the credentials object as define in the
CORBA specification. Figure 7-4 illustrates the credentials object and its
contents. The credentials object contains security attributes for the asso-
ciated principal. The security attributes consist of both identity and priv-
ilege attributes. It is possible for a principal to have more than one iden-
tity, for example different identities may be assigned for audit, access
control, and accounting of system usage.

Privilege attributes are used to determine what the principal may
access. These attributes depend on the access policies that have been
determined for the system (see the "Authentication/access control" sec-
tion). Examples of such privilege attributes would be the principal's role,
group affiliation, security clearance, and so on.

Usually the credential object is only valid for a set time, the precise
amount of time is determined by your security policy. Once the creden-
tials have expired, the principal needs to be reauthenticated.

Security 179

Credentials

unauthentlcated
attributes

Authenticated Attributes

identity
attributes

privilege
attributes

Figure 7-4. Security credentials

Security context
Once trust has been established between the client and target the prin-
cipal's attributes are passed to the target. These attributes are used for
access control, auditing, and so on. This creates an association between
the client and the target object and in OMG parlance is called a binding.
Each binding has an associated security context.

For the binding the ORB creates a security context at both the target and
the client. The information contained within these contexts is specific for
that binding and is derived from the credentials of the client, its identity
and privilege attributes, and the policies associated with the target object.

Both the client and the target can check the state associated with the bind-
ing through the Current object. It is useful to note that for each binding a new
security context is generated. This is transparent to the client and target.

Domains
For a large distributed object system, the management and administra-
tion of each individual object can rapidly become unwieldy. Domains
provide us with a mechanism to group objects with similar security

180 Distributed Object Architectures with CORBA

requirements. A domain provides us with more coarse-grained control of
the security of our distributed objects.

The security specification mentions various types of domains:

• Security policy domain—defines the scope of security policy.

• Security environment domain—defines the scope of the local
mechanisms of enforcement for a policy.

• Security technology domain—defines the scope of the under-
lying security mechanisms.

Security policy domains
The security policy domain, otherwise known as the security domain,
provides a mechanism to enforce a common security policy over a group
of objects. A security authority defines policies for the domain, such as
access control, authentication, secure invocation, and so on. The
domain management utilities provided by your ORB vendor should pro-
vide you with functionality to define the security domain, its policies,
and member objects.

You can add "objects" from security-unaware applications to a securi-
ty policy domain. The policies defined by the domain are then enforced
by the ORB infrastructure in a transparent manner, though you should
note that the unit of management is at the level of interfaces rather than
instances; specific interfaces are associated with a domain.

As an aside, it would be nice to make entries in the namespace spe-
cific to a domain and provide management of security for specific
instances. This could be achieved by having federated name servers;
each associated with a different domain; each name server could be
"secure" and have associated access policies.

A domain may have subdomains. You can organize these subdomains
to represent different parts of your organization such as business units.
Additionally you can have a federation of security domains, though it
adds complexity as to how to map the privileges and roles between the
different domains.

You need to determine how pervasive the security mechanism is
going to be throughout your organization; then decide whether you

Security 181

need to provide subdomains, or federations of domains, and how they
are going to be managed. You will also need to determine to what extent
your security service implementation provides support for such domain
structure and management.

Security environment domains
A security environment domain defines the scope where the enforce-
ment of security policies can be achieved by means local to the envi-
ronment and not part of the object system.

This can provide mechanisms for optimizing the implementation of
security policies. For example, a valid environment domain could be the
execution environment for a set of objects on one machine. It may be safe
to assume that communications between objects on the local machine is
safe and therefore a requirement to encrypt messages can be relaxed.

The security environment domain is not visible to the application or
security services. Environment domains are implementation-specific
and the responsibility of the security service vendor.

Security technology domains
Usually there is a one-to-one mapping between the security service
implementation and the technology domain. The term security technolo-
gy domain refers to the objects using the same underlying implementa-
tion of the security technology: for example, if one ORB makes use of
Kerberos for its underlying technology while another uses SSL, then they
are in different technology domains.

Objects residing in different technology domains would have a prob-
lem communicating with each other, for obvious reasons. To facilitate
communication between technology domains would require the imple-
mentation of bridges (or gateways). The construction of such bridges at
this time is problematic. Such problems include the mechanisms to deal
with encrypted messages; sharing credentials and policies between
domains; management of credentials; and so on.

The underlying security technology may support multiple protocols;
in this case, there can be a negotiation between the different security
implementations as to the protocol used for interdomain communica-
tion. The technology for this is currently immature.

182 Distributed Object Architectures with CORBA

Kerberos was originally developed at MIT as
part of the Athena project. It was designed to
be suitable for the TCP/IP protocol, which
makes it a suitable candidate encryption tech-
nology for modern systems (the DCE Security
Service utilizes Kerberos). Kerberos is based on
symmetric (secret-key) cryptography.

The Kerberos model is illustrated in Figure 7-5.
The Key Distribution Center (KDC) has an
Authentication Service and a Ticket Granting
Service (TGS). The KDC maintains a database of
clients and their secret keys. If a user or other
principal wishes to use a service, there are three
steps as illustrated in Figure 7-5.

1. The client is authenticated by the Authentica-
tion Service and is given a ticket-granting

ticket. The client can the use this ticket to
obtain tickets and session keys for specific
services from the TGS.

2. The client requests a ticket for a specific
server. The ticket is issued by the Ticket
Granting Service.

3. Client then makes requests to the Server.

In Kerberos, tickets include a session key and
an expiration time. This enables the client to
continue to communicate with the server
without repeating step 1 and 2. Once the tick-
et has expired, the client needs to obtain a
new ticket if it needs to communicate further.
A client will need to obtain a ticket (with a
valid session key) for each server with which it
wishes to communicate. •

Ticket Distribution Center

Ticket Granting
Service

Figure 7-5. The Kerberos model

Security 183

Different security technology domains are a problem for very large-scale
networks such as the Internet, where many security technology domains
exist. The easier solution for the Internet is to make use of protocols devel-
oped for the Web such as SSL (see the SSL section later in this chapter).

Interoperability
Whether distributed objects can interoperate depends on whether they
are in the same policy and technology domains. For obvious reasons,
objects in two different technology domains would have a problem
communicating unless there were a gateway that bridged both security
technologies. Interoperability between security policy domains is only
possible if the security attributes from one domain are understood and
trusted in the other domain. This adds complications if you define your
own roles and privilege attributes within a domain.

Delegation
In a system of distributed objects, many objects working in unison may
perform a task. This results in a series of interobject method invocations.
How do you determine if the initiating principal has the authority to
invoke any of the methods of the remote objects? In addition, each of
the intermediate objects may have their own credentials and privileges;
how does this affect the task at hand? We may need to confer extra priv-
ileges to the principal so that a task can be completed.

Access decisions need to be made at each object within the chain. The
access model becomes complex, as the authority of a principal to per-
form the type of access must be tested at each object in the call chain.
Access control rules may differ for each object in the chain, and autho-
rization schemes can also differ.

The solution is to provide mechanisms for delegation of the princi-
pal's privileges. The initiating principal's security attributes are passed
along to objects in the call chain. This gives each of the objects the abil-
ity to act on behalf of the initiating principal. This also provides the
security system a mechanism to track the actions of any principal.

Rules for how the intermediate object uses the delegated credentials
are determined by the policy of the security domain, though it is possi-

184 Distributed Object Architectures with CORBA

ble for a security-aware application to impose additional rules. When an
intermediate object is invoking a method on another remote object, it
may use its own credentials, the delegated credentials, or a combination
of credentials. The mechanism used is determined by the security policies
for the domain, though a security aware application can influence this.

It is possible for the initiating principal to restrict the delegation of
privileges. For example, the credentials may contain more privileges
than needed for a specific operation, so it may choose just to delegate
the privileges needed to get the work done. Additionally a client may
impose limits on the amount of time, or the maximum number of
method invocations, for which delegated credentials are valid.
The security service defines five types of delegation:

• No delegation—the intermediate object uses the client's privi-
leges for access control, but the privileges are not delegated. The
intermediate object can not use the client's privileges when
invoking another object.

• Simple delegation—the intermediate object assumes the client's
privileges. The intermediate object impersonates the client when
invoking other objects in the series. The intermediate object may
further delegate the client's credentials.

• Composite delegation—the intermediate object uses both its
own credentials and the client's credentials when invoking other
objects. The subsequent target object can then individually
check the credentials of the intermediate object and client.

• Combined privileges delegation—this is similar to composite
delegation except that the target object is unable to tell whether
the privileges originated with the intermediate or the client.

• Traced delegation—a chain of credentials is created. Each inter-
mediate object adds its credentials to the chain that is then dele-
gated. It is then possible for the target to go through the chain of
credentials and trace all participating objects and their privileges.

The specification does not require implementations of the security
service to supply the last two types of delegation. If these are required as
part of your security policies, then you should check the documentation
of your security service.

Security 185

You can specify the type of delegation through the utilities supplied
with your security service. Additionally, target objects can extract
received privileges and use them to make local access decisions, use cre-
dentials for further method invocations, or build new credentials with
different attributes., Only security-aware applications can select delega-
tion schemes, however.

Authorization/access control
The security system ensures that authenticated clients only perform
actions for which they are authorized. Authorization can be controlled
through the use of access control lists (ACLs), capability lists, and role-
based access control. The security service provides administration func-
tionality to assign privileges to principals. As was mentioned above, the
privileges for a principal are contained within the associated credentials
objects. The ORB can obtain the privileges for the principal through the
associated security context, which is obtained via the Current object.

Access control is built into the ORB infrastructure. The ORB uses an
access control interceptor (for a description of interceptors see the side-
bar) to ask the access decision object whether the requested access is
allowed. Access control can occur both at the client and at the target.
Client-side decisions are whether the client can invoke the operation on
the target. Target-side access decisions define whether the target is
allowed to accept the request.

A security-aware application can make explicit use of the security ser-
vice interfaces to determine access control. The application can ask the
domain manager whether the requested access is allowed; the domain
manager would then use the privileges from the Current object and the
information within policy objects to determine whether the invocation
is valid. You may want make use of this mechanism for control of access
to more fine-grained objects that are not exposed through IDL.

The ORB bases its access decisions on the following:

• Privilege attributes of the principal—such as identity, role,
group, and so on.

• Controls on the privilege attributes—such as the time for
which they are valid.

186 Distributed Object Architectures with CORBA

• The method to be invoked—such as who is allowed to invoke
the method.

• Control attributes of the target object—such as the access con-
trol list.

Access control policies for each object are maintained using ACLs. For
practical purposes it is useful to use groups and roles for access control.
In a large organization it can be difficult to manage the privileges for
every individual user.

Privacy and integrity of messages
Communications send across a network can be intercepted and tam-
pered with. An important part of security is ensuring the privacy and
integrity of messages. This is achieved using encryption techniques.

• Integrity—we need to prevent the modification of the message.
Encrypted checksums can help ensure message integrity and
sequence numbers can be used to ensure that messages arrive in
the correct order.

• Confidentiality—encrypting a message ensures the privacy of
the content and that the message is not read in transit.

While the mechanisms used are transparent to the user and applica-
tions, some implementations of the security service allow you to specify
the strength of encryption and confidentiality. As you require higher
quality of protection (QoP) then you also need better encryption algo-
rithms supplied by the underlying security infrastructure. It is also pos-
sible to specify different QoP for the request and response. For further
discussion of encryption techniques see the encryption sidebar.

Audit
Sometimes you need to be able to tell who did what and when. To facil-
itate this, the security system must be able to audit actions taken. If you
recall, we mentioned that identity attributes are part of the principal's
credentials; the principal's identity is used for auditing. It is possible to
use a specific audit identity.

Security 187

Auditing can be used to detect actual or attempted security violations.
Information gathered for purposes of audit are sent to Audit Channels,
which in turn store the information in a persistent store. It is possible to
monitor this information and trigger actions based on suspicious activi-
ty. For example, if a principal has failed to authenticate for more than a
predetermined number of times, there may be someone trying to break
in by guessing passwords.

Because there may be many potential events, and your system can
rapidly become overwhelmed dealing with all of them, you need to
select some criteria on which to base your choice of what gets audited.
Audit policies can be set at both the system level and the application
level; audit policies enable you to determine the criteria for the type of
events to be audited. Your ability to automate triggers depends on the
implementation of the security service. The types of information cap-
tured and used to determine audit policies are:

• attributes of the principal, such as audit ID, group, or role

• target method

• object or object type

• time

• success or failure of the operation

Once your audit policies are set, then the audit information is sent to
audit channels. An audit channel is responsible for storing the gathered
information in a persistent manner. However, the CORBA specification
does not determine how the messages can be filtered, how to secure the
channel, or how the results can be analyzed. This is the responsibility of
the implementers of the Security service, and it is advisable that you
check the documentation for your security service.

Nonrepudiation
The nonrepudiation service is based on the ISO nonrepudiation model.
This service provides mechanisms to generate irrefutable evidence of
events (or actions) within the system. The ORB needs to provide proof
of receipt (that the information was delivered) and proof of origin (who

188 Distributed Object Architectures with CORBA

sent the information). This service can only be provided as part of a
Level 2 implementation, as the application objects need to interact
directly with the interface to the non-repudiation service.

Figure 7-6 illustrates the components of the nonrepudiation service.
It is important to note that the CORBA specification only supplies the
interfaces for evidence generation and verification. Neither evidence
delivery nor evidence storage/retrieval are specified by CORBA; the
implementation is determined totally by your security service provider.

To provide proof of origin the client calls the generatejevidence method
of the NRCredentials object. This information is then sent along with the

\

ant

I

NRCredentials

Target

N

i

NRCredenttals

Evidence
generation and

verification

Evidence
storage And
- retrehrtl

Figure 7-6. Nonrepudiation components

Security 189

request to the target. The target can then verify the credentials by asking
its NRCredentials object. Proof of receipt is achieved in a similar manner,
the target asks its NRCredentials object to generate evidence and the
resultant evidence is attached to the reply to the client. The client can
then verify the evidence via its NRCredentials object. A time stamp may
be included in the generated evidence; this prevents recording and play-
back of the communications.

Security interoperability
The CORBA security service specifies how two secure ORBs can interop-
erate. Common Secure Interoperability (CSI) defines three levels of inter-
operability. However, you should be aware that while the specification
describes the mechanisms for interoperability further work in this area is
currently under way within the OMG.
There are three levels to CSI and the Security specification defines
them as follows:

• CSI Level 0—identity-based policies without delegation

• CSI Level 1—identity-based policies with or without unrestrict-
ed delegation

• CSI Level 2—identity- and privilege-based policies with con-
trolled delegation

The inter-ORB communications protocol has been modified to sup-
port the transfer of security related information, this has been called
Secure Inter-ORB Protocol (SECIOP). Currently, for this to work, both
ORBs need to support the same underlying security technology, at least
for the encryption of communication. The CSI is under revision, and we
hope to see interoperability between security service implementations
with different underlying security technologies.

SECIOP provides a mechanism by which the ORBs can negotiate the
level of security required and the policies supported. This information
will indicate the level of protection for messages, whether the client
should be authenticated, and so on. For interoperability to succeed on a
practical level, however, not only do the ORBs need to speak the same
wire protocol, they also need to have consistent security policies.

190 Distributed Object Architectures with CORBA

SSL and CORBA
Secure Socket Layer is a security protocol that is usually layered between
an application and TCP/IP. The use of SSL from a programming perspec-
tive is relatively straightforward. If you have written an application that
makes use of TCP/IP sockets, then there is minimal code change; you
may need to add some initialization calls to set up the use of digital cer-
tificates, though the socket API is the same. Because of its relative sim-
plicity and the use of TCP/IP, SSL has become the mechanism of choice
for security on the Web, with support in most major browsers.

SSL makes use of a hybrid approach to secure communications.
Public-key encryption is used to share a private session key between the
client and server. The server can also authenticate the client by request-
ing the client's certificate. See the sidebar on encryption technologies for
more information on the underlying principles.

Since HOP is the application protocol for CORBA and sits on top of
TCP/IP, it would seem a natural fit to place SSL between the two as a
security mechanism; in fact, various ORB vendors support the use of SSL
in this manner. In response, the OMG incorporated SSL into the securi-
ty specification; SSL provides functionality for CSI level 0.

For SSL to be used, an IOR will contain a tag indicating that the object
accepts SSL communication and the associated TCP/IP port number. The
ORB infrastructure then passes HOP communications through the SSL
port. This provides a mechanism to encrypt messages using SSL. SSL also
supports client certificates, which can also be used for authentication,
though client authentication can only be achieved if the SSL option to
exchange certificates is enabled.

For secure communications to work, an X.509 certificate must be asso-
ciated with the server. This certificate contains the public key of the serv-
er. It is important that the corresponding private key is kept in a secure
manner by the underlying ORB infrastructure. If this private key is com-
promised all future communication is suspect. In one implementation of
CORBA SSL (from IONA), the private keys are kept in an encrypted form;
an application can retrieve its private key by use of a pass phrase.

The specification does not mention how you initialize you client and
target applications to use SSL, nor does it handle how you mange X.509
certificates. These details have been left to the implementation.

Security 191

Summary
An advantage of the CORBA Security Service is its nonintrusive nature. The
OMG security service is probably not a perfect solution, though it does pro-
vide many of the features you require to make your distributed system secure.

While the security service specification provides IDL interfaces to cre-
ate and manage security policies for your distributed objects, you do not
really want to write management utilities. Most implementations will
give you utilities to do just that, though the level of sophistication of
these interfaces varies with each vendor. In addition, while it is possible
to affect the policies of the secure system from an application, this also
opens potential security holes.

The creation and management of domains has been left to the facili-
ties specification and is not part of the security service specification. This
is a serious lag between the two specifications and means that this func-
tionality is vendor-specific. I suggest that you pick a implementation
that suits the scale of the security service you are deploying; more
sophisticated management tools will be necessary for enterprise security
than for small departments. Tools for managing the security service
should be provided by your vendor. It was beyond the scope of the secu-
rity specification to say what tools are used; however, a set of manage-
ment interfaces are provided that management applications can use (I
strongly advise that you buy rather than implement these tools).

192 Distributed Object Architectures with CORBA

References
Schneir, Bruce. Applied Cryptography, 2nd ed. New York: John Wiley and

Sons, 1996.

Orbix Security Guide, IONA Technologies, 1997.

Object Management Group. Security Service vl.5, OMG document for-
mal/98-12-03. Available at http://www.omg.org

OSF DCE Application Development Guide, Rev 1.0. Englewood Cliffs, New
Jersey: Prentice-Hall, 1993

OSF DCE Application Development Reference, Rev 1.0. Englewood Cliffs,
New Jersey: Prentice-Hall, 1993

SSL 3.0 Specification. Available at http://home.netscape.com/eng/ssl3

Schiller, Jeffrey I., Toward A Safe and Secure Distributed Computing
Environment. MIT I/T Integration Team. Available at http://big-
screw.mit.edu:8001/~jis/mitsec/

Stiener, J., Neumann, C, and Schiller, J. Kerberos: an authentication service
for open network systems. Proceedings Usenix Winter Conference,
Berkeley, California, 1998.

Notes
1. This is not to be taken as advocating the use of proprietary protocols

for your communications.

2. Crytographic products are considered by governments as munitions,
and as such are subject to import and export restrictions. The most
publicized example is the restriction placed on the size of keys used
in security products for export by the government of the USA.

3. Plans for the next generation of IONA's Orbix include support for
interceptors.

Chapter 8

CORBA and
the Internet

Use of the Internet has exploded since the first Web servers and browsers
were introduced to the public in 1993. Everyone is producing Web-
enabled versions of their applications. Companies are using the Web to
provide services to their clients and employees. Almost every new pro-
ject ends up having some Web component. Applications that make use
of distributed objects are not unique in this respect; in fact, technologies
like CORBA that provide the "universal object bus" are a good marriage
with Web technologies that provide the "universal user interface."

In this chapter, we take a look at distributed object architectures for
the Internet. How to integrate CORBA with Web technologies and the
interaction of CORBA with Internet security mechanisms. We will then
also look at upcoming standards and how these can be integrated with
CORBA—specifically, the use of Extensible Markup Language (XML) and
the next generation of HTTP (HTTP-NG).

Architectures
Two types of CORBA-based architectures exist for the Web. The first is
when your applications speak HOP over the Internet: the client applica-
tion can communicate directly with your CORBA objects. The second is an
architecture in which a gateway is built that translates from the standard

193

194 Distributed Object Architectures with CORBA

Web protocols to CORBA: an indirect communication exists between the
client application and the CORBA objects.

Your decision on which architecture to implement will depend on
various factors. How much influence do you have over the end user's
environment? What are your security considerations? What are the
characteristics of the network? To help you make an informed decision,
we will now take a quick tour of these architectures. For each architec-
ture, we will look at why you would use it, how it is implemented, and
what you need to be aware of when you make your decision.

CORBA Web clients
You may decide to expose your distributed objects directly to the
Internet. After all, CORBA does speak HOP, which uses TCP, the lingua
franca of the Internet. However, before you do so there are a few con-
siderations. What is the nature of the CORBA client that you will pro-
vide to your users, and how will you distribute it? Does your design take
into account the higher latency of a wide area network? Have you pro-
duced an infrastructure suitable for twenty-four hour use? Finally, are
there any "firewall" issues to be addressed?

We could decide to distribute the same CORBA client applications to
our global users that we have given to the users on our internal local
network. How do we deliver this and how much control, or influence,
do we have over the end user's environment? Even within a large glob-
al corporation there are issues with distribution of software to internal
users distributed over a large geographic base.

The advantage of using standards like CORBA is the support across
heterogeneous environments: machines, operating systems, and pro-
gramming languages. But we do not necessarily want to implement and
support a client application for different operating systems (or even dif-
ferent languages). We could publish our objects and say to a sophisticat-
ed, ORB savvy user, "Write your own client application." For the system
to be widely adopted and used, however, we need to distribute a client
application that can run anywhere. To achieve this goal the obvious tar-
get language and environment these days is Java.

Since its introduction in 1995 by Sun Microsystems, Java has become
not only ubiquitous but also associated with the Web. Any machine

CORBA and the Internet 195

capable of running a Java virtual machine can execute a Java applica-
tion. Because of Java's platform-neutral nature, we can be reasonably
assured that our application can run on any user's machine.
Additionally, since Java virtual machines can be embedded within other
applications, such as Web browsers, we can use already familiar tools to
deliver our functionality.

Java gains its portability from being compiled into "byte code." Byte
code is a file format that can be interpreted by the Java virtual machine
(JVM). The JVM is responsible for translating the byte code at run time
into code that the local machine understands and can execute. However,
because the byte code is interpreted, your application will run slower
than native applications for the same operating system and hardware.
Just-in-time (JIT) compilers, which transform the byte code into the
native machine code, can help to make the performance of a Java appli-
cation comparable with native applications.

Java applications executing within the context of a Web browser have
been termed applets. Applets are downloaded at run time, so code is dis-
tributed only on demand. The JVM enforces a security model on the
applet that helps to protect the user's local machine from unauthorized
access and ensures that the applet only speaks back to the machine that
served it—although if an applet is signed (has a digital signature that is
certified by a certificate authority), then it can be granted permission to
perform actions that would otherwise normally be denied.

The OMG has defined a mapping from IDL to Java. An implementa-
tion of this mapping is supplied as part of Java 2 (Java IDL). This means
that all Java applications and applets have access to CORBA functional-
ity as a standard! Even if you decide not to use Java IDL there are imple-
mentations of the IDL to Java mapping from various ORB vendors.

Figure 8-1 illustrates the Web client architecture, written in Java. We
can implement the client in Java, and distribute it as an application, or
as an applet that is downloaded when needed. This is similar to your
"standard" CORBA architecture, although part of the network will reside
in the public domain (and outside of your control).

One of the problems with this architecture is the amount of time it
takes to download the applet. We can minimize the download time for
our applet by using technology that allows the applet to be cached on
the user's machine and only updated when there is new code. We can

196 Distributed Object Architectures with CORBA

Figure 8-1. CORBA and the Web

obtain tools that help with the distribution of our applications, such as
Castanet from Marimba.

Web server/ORB gateway
You may want to provide the functionality of your distributed objects to
users on the Internet; however, the world outside is unknown. You may
have little or no influence on the user's environment. For instance, you
cannot require that the user install any special software, though it would
be nice if we can leverage the knowledge and skill that the user already

CORBA and the Internet 197

has by using the ubiquitous Web browser. To do so requires that we pro-
vide a gateway that does the work to translate from the protocol of the
Web to the protocol of the ORB. To understand how to achieved this, we
will take a quick look at Web servers, their protocol, and API.

Web browsers talk to Web servers using the HyperText Transfer
Protocol (HTTP). Browsers find resources on the Web by using a Uniform
Resource Identifier (URI); the commonly used form of URI is the
Uniform Resource Locator (URL). Figure 8-2 illustrates the structure of a
URL. A URL contains information on the location of a resource and asso-
ciated parameters. The Common Gateway Interface (CGI) is part of the
HTTP protocol that defines how external programs and scripts interact
with the Web server.

In the early days of the Web, you would have written a CGI script
using an interpreted language such as Perl. Since then Web servers have
become more sophisticated; most now provide hooks for that allow you
to write server-side programs in a variety of programming languages. For
example, the Web servers from Netscape and Microsoft provide applica-
tion programming interfaces (APIs) that enable you to use programming
languages such as C++, C, and Visual Basic. With the popularity of Java,
there is support for modules implemented in Java (known as "servlets")
to run within the Web server.

Using one of these approaches, we can write a CGI program that is
also a CORBA client. The responsibility of this program is to translate
Web requests into method invocations on your distributed objects and
to transform the response back into a form suitable for the Web. This
CGI program is a gateway between the Web and CORBA.

Figure 8-3 illustrates the architecture for such a Web server/ORB gate-
way. Web clients communicate using the standard HTTP mechanisms;

http://www.rnycompany.com/locate?document=''abstractll&contalns='1CORBAu>.com/|ocate?d

protocol host requested arguments
document

Figure 8-2. URL structure

198 Distributed Object Architectures with CORBA

that is, they use a Web page provided in HTML and interact with the sys-
tem using URLs and HTML forms. Then the gateway moderates the com-
munication with the various distributed objects. In effect, the gateway
maps URLs to method invocations on CORBA objects.

We shall now look at a specific example: providing a Web/ORB gate-
way for part of our Web publishing system. In this example we will look
at the locate functionality. We will not be changing the any of the dis-
tributed objects that we have already implemented; we will just provide
another type of ORB client.

Figure 8-3. Web server/ORB gateway.

CORBA and the Internet 199

How does the Web browser communicate with our gateway? The URL
for a locate request will take the following form:

http://www.library.com/servlets/locate

Now we add the parameter for the query:

http://www.library.com/servlets/locate?query="document=test"

Finally, we can also specify the format as part of the URL.

http://www.library.com/servlets/locate?query="document=test"&format="
HTML"

The URL now contains all the information necessary to locate the
document of interest and specify the format of the result. This request
can also be formulated as an HTML form. Listing 8-1 illustrates part of
the HTML for such a form.

Listing 8-1: Partial HTML for document location form

<FORM action=http://www.library.com/servlets/locate method=POST>

Locate document matching the criteria:
<INPUT TYPE="text" NAME="query" SIZE="30">
<INPUT TYPE="hidden" NAME="format" VALUE="html">
<INPUT TYPE="submit" NAME="locate" VALUE="Submit">
<INPUT TYPE="reset" NAME="reset">

</FORM>

Listing 8-2 illustrates the code for a CGI program to process the above
input. This has been written using Java and utilizing the Java Servlet API.
This code has been simplified for ease of illustration (more error-han-
dling code would be in the actual implementation).

Listing 8-2: CGI to process input from Listing 8-1

II
II Simplified servlet example for Document locator

200 Distributed Object Architectures with CORBA

public class Locator extends HttpServlet
{

NameServiceProxy NS; / / wrapper round Name service - see chapter 4
public void init(ServletConfig config) throws ServletException
{

try{
super.init(config);
/ / get a handle to the name service
org.omg.CORBA.Object initNCRef =

ORB.init().resolve_initial_references("NameService");
NamingContextRef rootContext =

NamingContextHelper.narrow(initNCRef);
NS = new NameServiceProxy (NS);

} catch () { / / Put error handling in here

public void doGet (HttpServletRequest req, HttpServletResponse res)
throws ServletException, IOException

{
processRequest(reqjes);

public void doPost(HttpServletRequest req, HttpServletResponse res)
throws ServletException, IOException

{
processRequest(req,res);

void processRequest(HttpServletRequest req, HttpServletResponse res)
throws ServletException, IOException

{
/ / use the document locator
String query = req.getParameterValues("query")[O];
String format = req.getParameterValues("format")[0];

try{

CORBA and the Internet 201

Document doc = locator.find(query); / / TODO - test for error

/ / get the formatter corresponding to format requested
if (content.format = "HTML")
{

org.omg.CORBA.Object objRef =
NS.resolve("Formatters/" + content.format);

Formatter formatter =
FormatterHelper.narrow(objRef);

Content content = formatter.format(doc);

res.setContentType("text/html");
PrintWriter out = res.getWriter();
out.write (content.data.extract_string());

}
out.close();

} catch () { / / put error handling in here

The above example provides an application-specific gateway between
the Web and CORBA objects. The code in the above servlet maps from
the "locate" request to the method invocations on both the document
locator and formatter objects. First, it uses the locator to find the docu-
ment and then uses the formatter to produce the result as HTML. The
resultant gateway is a very thin CORBA client.

If, however, you decide to implement a generic Web/CORBA bridge,
you should first consider several issues. You will need to provide a generic
mapping from HTTP requests to CORBA method invocations. This means
formulating a way to specify generic requests—that is, specify object
instance, method, and arguments—as part of the URL. This gets even
more complicated if more than one CORBA object needs to be involved to
satisfy the request. Also, devising a generic mechanism to map from the
results of method invocations on CORBA objects to HTML may not fit the
style of the sites you are going to support. Finally, to justify such effort,
you need to ask yourself, "On how many projects am I going to use this

202 Distributed Object Architectures with CORBA

gateway?" You will find that since application-specific gateways are rela-
tively simple, it is not necessary to provide such a generic approach.

A mixed blessing of the Web/ORB gateway approach is that no special
requirements are imposed on the user of the system. The look and feel,
capabilities, and vagaries of your user interface are at the mercy of the
user's Web browser and its configuration. To reach the widest audience,
you may want to limit the capabilities of your HTML interface to the
lowest common denominator or write code to detect the browser version
before generating any HTML. Additionally, HTML is not ideal for an
interactive application; it can become quite cumbersome to navigate
through a dozen pages to perform a simple task.

A benefit you can realize from this approach is that you can use stan-
dard Web-based mechanisms for security. Communications between the
user's Web browser and the Web server can use secure HTTP. You can use
digital signatures to verify and authenticate the identity of your users.
You can also use a security service approach (see chapter 7) and pass the
security context as part of an HTTP cookie.

HOP and Firewalls
Whenever you deal with the World Wide Web (WWW), you need to be
concerned with security. The Internet is a public place and any comput-
er attached to the Internet can be a target of unwanted access. A firewall
provides a degree of security. Almost every company, institution, and
school uses a mechanism to protect their internal network from unwant-
ed access. The degree of protection will vary according to the needs,
awareness, and budget of the organization.

The computing term firewall derives its name from the buffer created
around a forest to stop the spread of fire. In an analogous manner, a fire-
wall controls the communications into (and out of) a site attached to the
Internet and provides a mechanism to protect data on a private local area
network from uncontrolled access. The use of a firewall has an impact on
the use of HOP, the preferred protocol of your CORBA components.

While this is not a book about Internet security, you will need to
understand the implications of firewalls for a system of distributed
objects. In this section, we will take a brief look at the mechanisms that
can be used to construct a firewall. We will then see how distributed

CORBA and the Internet 203

objects using HOP can communicate when a firewall is present, and take
a brief look at the proposed OMG standard to do this.

Firewall technology
You can implement a firewall using hardware, or software, or a combination
of both. A firewall controls both inbound and outbound communication. It
enforces rules that the communication must satisfy before proceeding. All
applications communicating across the firewall will have to follow these
rules. Using tools or configuration files, you can configure the firewall to
allow communication between a set of known computers, individuals, or
services. A firewall is also a control point between a trusted network and an
untrusted network (like the Internet). Firewalls are a central point of control
and can become a potential bottleneck if not administered properly.

Two categories of technology are used within a firewall: filters and
proxies. Typically, a firewall will make use of both. Filters work at the
level of the network transport, whereas proxies work with the commu-
nication protocol of your application.

Filters
A filter may be implemented as a program running on a gateway
machine or within the hardware of the router. The mechanics of the fil-
ter is similar in either case. Usually, you will find that the router used by
your network has filtering capabilities. A router is often installed on the
connection between your internal network and the outside (Internet),
and is used to route the network traffic.

Filters work at the level of the network protocol. The majority of appli-
cations communicating over the Internet use TCP (sometimes UDP) as
their network protocol. Both TCP and UDP make use of "ports" to iden-
tify the destination on a machine. These ports allow multiple client con-
nections to an application on a single machine. Each connection to an
application is bound to a network port on the machine. Well-known
application protocols such as telnet, SMTP, DNS, and HTTP use well-
known port numbers; for example, telnet uses port 23, SMTP port 25, and
HTTP port 80. These numbers can be found in the IETF RFC 1700, which
can be obtained from their Web site (see References for the URL).

204 Distributed Object Architectures with CORBA

A packet-filtering router is a simple form of firewall. It directs network
traffic from the outside to the required destination. This filter is only
concerned with the addresses of the source of the network packets and
their destination; there is no need for the packet filter to understand any
application-specific information.

You configure the packet filter to direct the network traffic according
to a set of rules. These rules would define a set of allowed network
addresses and ports. When your router receives a communications pack-
et, the filter would decide whether to forward, drop, or reject the pack-
et. This is achieved by comparing the information within the packet
header and applying the rules accordingly. Each packet is screened based
on the network address and port of the source and destination. For
example, you can configure the router not to let through any network
traffic for telnet by restricting port 23, but allow SMTP traffic, which uses
port 25. Figure 8-4 illustrates such a router with a filter configured to
allow SMTP but not telnet.

Figure 8-4. Router configuration

CORBA and the Internet 205

Proxies
There are two types of proxies: application proxies and network proxies.
Application proxies are sometime referred to as application gateways,
and network proxies are sometimes referred to as circuit gateways.
Proxies act as relays, usually for a single service or protocol. For example,
there are proxies available for most common network applications such
as FTP and telnet. Proxies have the advantage of understanding the
application-specific communication protocol, and can therefore be a bit
more intelligent in ensuring that messages do not contain harmful infor-
mation. Normally, an off-the-shelf firewall product will come supplied
with various proxies for most of the standard Internet applications.

An application proxy acts as an intermediary between the application
server and client. It understands the application specific protocol; for
example, an FTP proxy understands the FTP protocol. Figure 8-5 illustrates
the use of an application proxy. All telnet communication is routed

X
X

Telnet
Proxy

X
X
I

• telnet

Figure 8-5. Firewall proxy

206 Distributed Object Architectures with CORBA

through the proxy. The proxy will then use its rules to determine whether
to allow the communication to proceed.

Network proxies consist of a process running on a gateway machine,
a machine through which all communication is routed. The most pop-
ular example of a network proxy is one that implements the SOCKS
standard, defined by the Internet Engineering Task Force (IETF). For
applications to communicate using a network proxy, they need to use
the protocol defined by the proxy. For example, when using SOCKS,
both the server and client are linked with the SOCKS libraries, which
substitute for the standard TCP functions.

There is no application logic within a circuit gateway. The gateway
does not understand the application-specific protocol, such as HOP, but
does speak a specific communications protocol such as SOCKS. The gate-
way behaves in a manner similar to the filters mentioned above, in that
it routes packets between the two networks. However, the SOCKS proto-
col includes a negotiation between the client application and the gateway
regarding security. The communication can be encrypted, and you can
define access control based on network address and user information.

HTTP tunneling
If our firewall uses a filter and our distributed object has been configured
to always use a well-known network port, then we can configure the fil-
ter to route communications for that network port. However, as we add
more distributed objects or produce a more dynamic system, this solu-
tion will not work. It will become infeasible to maintain the integrity of
the firewall and support a dynamic system of distributed objects. If there
is also a firewall at the user's site, then we do not have any control as to
its configuration. This means that we need to find another way for our
application to communicate through the firewalls.

"Tunneling" refers to a mechanism to bypass the standard firewall
security. (If all else fails then dig a tunnel under the wall!) When a fire-
wall does not understand the communication protocol used by our appli-
cations, a solution is to convince each firewall traversed by our commu-
nication that we are speaking a protocol, on a known port, that they
allow. The protocol of choice is HTTP, as it unlikely to be blocked, and the
mechanism is called tunneling—hence the term HTTP tunneling.

CORBA and the Internet 207

Figure 8-6 illustrates communication using HTTP tunneling. Here a
proxy is used that looks like a Web server—it speaks HTTP—but it exam-
ines incoming requests and translates from HTTP to the application pro-
tocol. For this to work, the client application also must translate from
the application protocol to HTTP.

The proxy, which implements the tunneling mechanism, may also
allow you to implement further access control. For example, you may be
able to configure it to restrict communications to certain clients and
instances of the application. In the case of distributed objects, you may be
able to determine visibility and access control to the distributed objects.

HOP proxies
Now that we have taken a brief look at firewall technology, let's have a
look at the implications for HOP. Currently, HOP is not a communica-
tion protocol understood by firewalls. However, the recently adopted
OMG Firewall submission defines how HOP and firewalls will interact.

Document
Locator

Document

Formatter

| HOP

HTTP
Tunneling

Proxy

• HTTP

Client
Application

Figure 8-6. Firewall tunneling

208 Distributed Object Architectures with CORBA

We can expect to see the first commercial products that conform to this
standard in the summer of 1999.

The OMG firewall submission defines an HOP proxy—one that under-
stands the communication protocol of CORBA. This is an application
proxy and operates in a similar manner to the application proxies we
discussed in the previous section.

Now let's take a look at how the HOP proxy works. The object refer-
ence (IOR) that the client receives contains the network address of the
distributed object. In the case of an inbound firewall—the firewall on
the system that hosts the server objects—the IOR of the server object is
altered to contain the address of the HOP proxy. A client application will
then talk to the HOP proxy, which then talks to the requested object. In
the case of an outbound firewall—the firewall installed on the client's
system—information about the outbound firewall is part of the client-
side ORB's configuration. All HOP requests that are for the outside sys-
tem will then go through the proxy on the outbound firewall.

Additionally, the firewall proposal recommends a change to GIOP to
allow for bidirectional communication. This is useful for situations
where your client provides callback objects. In this case the client creates
a CORBA object and passes the IOR to the object back to the server.
Thus, the server can communicate directly with the callback object (the
server has become the client and the callback object is a server).
Currently the CORBA standard specifies that a new connection on a new
port is created for the callback object. This is problematic with firewalls,
as they will block the new connection. The proposed solution is to reuse
the existing connection between the client and server for bidirectional
communication, so there is no need to create a new port.

The Internet standard for secure communications is Secure Socket
Layer (SSL). SSL defines a mechanism to encrypt TCP communications
and the use of digital certificates for the purpose of identification and
encryption. The OMG firewall proposal incorporates SSL technology.
The GIOP proxies need to handle digital certificates and either pass
through IIOP/SSL or have the ability to participate in the SSL communi-
cation. Digital certificates can be used to verify the identity of clients
and servers and access control can then be based on these.

You can find more information about the OMG firewall proposal from
the documentation at the OMG Web site; the details can be found in the

CORBA and the Internet 209

references at the end of the chapter. We can expect the first commercial
products that conform to the proposal to be available late 1999.
Currently there are two products available, WonderWall from IONA and
Gatekeeper from Visigenic, that the proposal is based on.

HTTP-NG
The World Wide Web is not a static place. There are continual improve-
ments, innovation, and new products emerging. The standards and tech-
nology that form the Web are defined by the World Wide Web Consortium
(W3C), and this organization is continually seeking to improve the under-
lying technology. One of these improvements is the proposed next gener-
ation of HTTP, which has been aptly named HTTP-NG.

The architecture of HTTP-NG consists of three levels: message transport,
remote invocation, and Web application. The message transport layer pro-
vides a mechanism to transport HTTP-NG messages; this layer can be built
using a variety of message transports, it may also include components that
deal with encryption, connection management, and compression. The
remote invocation layer is a generic object-oriented messaging layer,
which, like GIOP, provides a mechanism to invoke methods on remote
objects. This layer does not provide any application-specific logic, such as
caching or security. The top layer is the Web application, which includes
Web browsers, servers, and other Web-enabled applications.

New Web applications will provide public interfaces that contain
invokable methods. These interfaces will be defined using a "network
definition language." It is the responsibility of the middle layer to bro-
ker communications to the application through this interface. Although
this is similar to the mechanisms defined by the CORBA standard, the
W3C has decided not to adopt any existing standard. It has stated that
"It is not a viable solution to simply adopt CORBA, DCOM, or Java RMI
for this layer, because each—in its current form—has technical and/or
political liabilities for Web use" (HTTP-NG Overview, W3C). Rather, the
W3C sees the protocol defined for the middle layer to be "a force for uni-
fication" and "The hope is that HTTP-NG's invocation protocol is even-
tually adopted by those other systems."

The W3C has not yet defined the "network definition language,"
although they do suggest that many different interface languages could

210 Distributed Object Architectures with CORBA

be used to define the applications. We may see the use of OMG IDL, or
an approach based on a markup language (such as extensible Markup
Language, XML), used for the "network definition language."

HTTP-NG is designed to provide an efficient protocol for invocations
over the Web. Given that the CORBA standard allows ORBs to support
multiple protocols (using an ESIOP), we may in the future see an ORB
using HTTP-NG as its Web-based protocol.

It is still early to see if the goals for HTTP-NG will be achieved. If HTTP-
NG does provide "a force for unification," we can expect to see a conver-
gence of distributed object technology, at least at the protocol level.

XML and CORBA
It would be difficult to avoid talking about extensible Markup Language
(XML) in a section on CORBA and the Web. A lot of interest has been
generated in XML since the autumn of 1997; it has been gaining momen-
tum almost as fast as the Java "revolution" of 1995. So what is XML, what
is the hype about, and how can it work with CORBA? To give a full
answer to these questions would require another book; I shall present an
overview here of XML and some pointers as to where you can go for fur-
ther information. Then we shall look at how XML complements CORBA.

Quick tour of XML
XML, like HTML, is a subset of Standard Generalized Markup Language
(SGML). However, unlike HTML, in XML the term extensible means that
you can define your own tags and hence your own markup language.
You can define your own document types and the rules used for docu-
ment construction. In fact, lots of organizations and consortiums are
doing just that: using XML to define markup languages for everything
from electronic commerce to portable handheld devices.

XML is ideal for providing structure for information that you want to trans-
mit over the Internet, and is now a W3C recommendation (a recommenda-
tion is a W3C standard). The best way to get a flavor of XML is by example.
Listing 8-3 illustrates part of an XML document that represents an invoice.
You will notice the lack of formatting information within the document; in
fact, the document's content is just information specific to the transaction.

CORBA and the Internet 211

Listing 8-3: Partial XML for generating an invoice

<?xml version="1.0" encoding="IS0-8859-l"?>
<!D0CTYPE invoice SYSTEM "invoice.dtd">
<invoice>

<date>
<day>l</day>
<month>December</month>
<year> 1998 </month>

</date>
<due>

<day>l</day>
<month>January</month>
<year> 1999 </month>

</due>
<amount>

<currency>USD</currency>
<value>450</value>

</amount>
<Customer>

<Contact>
<forename>J ohn</forename>
<surname>Brown</surname>

</Contact>
<Company>Bits and Bobs</Company>
<address>

<street>l Wall Street</street>
<city>New York</city>
<state>NY</state>
<zip>10005</zip>
<country> USA </country>

</address>
</Customer>

</invoice>

Within a well-designed XML document, it is relatively easy for us to tell
what each of the individual document elements represents. In addition,

212 Distributed Object Architectures with CORBA

the document is structured to be easily parsed by a program. Plenty of
parsers are available that you can use within your application.

We define the type of a document using a Document Type Definition
(DTD). In XML, a DTD is similar to the concept of class in an object-ori-
ented language. The DTD is referenced within the DOCTYPE element of
the above example, it has a value invoice and can be obtained from a file
on the system called "invoice.dtd". If the parser has access, or can gain
access, to the DTD, then it can use the DTD to validate the document.

DTDs are being defined for multiple applications, from financial
transactions to markup languages for handheld devices. Examples of
these include the Resource Definition Format (RDF), which is used to
express meta-information about documents, and the Open Finance
eXchange (OFX) standard for the exchange of financial information
over the Internet. There are also plans to incorporate more XML capa-
bilities into the next generation of Web browsers.

Alongside XML, the W3C is defining the Document Object Model
(DOM). This is an object model into which all XML (and HTML) docu-
ments can be translated. The model has been defined in both Java inter-
faces and OMG IDL. Once an XML document has been translated into
an instance of the DOM, it can be manipulated, either within a Java pro-
gram or from within the Web browser, using ECMA script.

So if XML just conveys the content of the document, how do we tell
a browser or other application how the document is to look? The answer
to this is the use of stylesheets. A stylesheet coveys formating informa-
tion—how each of the elements within an XML document are to look
when displayed (or printed). The extensible Stylesheet language (XSL)
provides this functionality. XSL is similar to XML in syntax, with the
addition of a scripting capability. You can write stylesheets that define
how XML is to be displayed within a browser or on the printed page.

Part 2 of the XML specification deals with a richer linking model. It
will be possible to create two-way links and links to parts of documents
without requiring the equivalent of an HTML anchor. This helps with
the construction of a more interactive and richer Web-based application
for the browsers of the future. At the time of this writing, this is still
undergoing some changes; I recommend that you look at the current
specification to obtain more details.

To get started using XML, you will need an XML parser. The de facto

CORBA and the Internet 213

standard is a "Simple API to XML" (SAX) compliant parser. SAX provides
an event driven model, where you can implement your own handlers to
take care of events such as "start element." You can find many imple-
mentations of XML parsers on the Web (I have listed some of the URLs
in the reference section later), each complying to the SAX standard. You
can also find implementations using SAX that will take your XML doc-
ument and produce an instance of the DOM model. Both IBM and SUN
have made available SAX-compliant XML parsers. With these tools you
can be well on the way to implementing your first application—of
course, you need to design your DTD!

How XML fits in with CORBA
XML adds value to CORBA-based architectures. CORBA provides us an
open standard to represent and implement systems of distributed
objects. XML provides us an open standard to represent information in
a human- and machine-accessible form. We can use XML both for infor-
mation shared between applications and for the output of our system.

Part of any distributed system is the transfer and sharing of informa-
tion. We can use XML for the representation of this information. For
instance, in the "document publishing" example we can use XML to rep-
resent our content. Listing 8-4 illustrates the IDL for such a construct.

Listing 8-4: IDL for XML construct

struct content {
string dtd;
string data;

Note that the content structure provides both the DTD and the XML
data. We could alter this to make the DTD optional, as the destination appli-
cation may have another means to acquire the DTD if necessary. The system
can use the DTD to validate the information, while the data within the con-
tent contains only the information in which the application is interested.

We will now take a brief look at how XML affects the two CORBA Web
architectures mentioned in the previous section. In the case of the Web

214 Distributed Object Architectures with CORBA

Server/ORB gateway we can use XML for the format of information
passed between the CORBA services. We can also pass the XML back to
the CGI/servlet, which can then format the result into HTML using an
appropriate stylesheet. An alternative, if the user has a browser that
understands XML, or a Java application/applet, would be to pass the
XML back to the user's browser.

For the CORBA Web client we can use XML to pass information from
our distributed objects residing within our site to the clients. The client
application would be equipped with an XML parser. We can also use
XML as a streaming mechanism to transfer the state of our objects,
regardless of the programming language. This can be richer than using a
CORBA any, because we can convey more information about the data
than just its type.

In addition to devising your own application-specific DTD, you may
wish to make use of DTDs developed, and being developed, for other
applications and industries. You can find XML developments and the
latest status at Robin Cover's Web page (see References for the URL).
Work in XML varies from financial applications to healthcare, from
markup languages for vector-based graphics to markup languages for
handheld devices.

The OMG is even getting involved with the XML scene. XML Meta-
information Interchange (XMI) format is an XML DTD adopted by the
OMG. XMI is a standard markup language to exchange meta-information
between repositories like the MOF, applications, and design tools. Other
uses of XMI include the publication of meta-information on the Web and
the use of the meta-information by occasionally (or disconnected) clients
of a MOF. DTDs are being specified for both UML and the MOF; we will
be able to obtain an XML description of our distributed system.

There are some obvious trends for the use of XML and CORBA. We
will soon see tools based on the open standards (of XML and CORBA)
that integrate with our repositories. We will be able to take our UML
models and transform them to XML. We will also be able to represent
our distributed objects in XML, though we have yet to see if people will
use XML editors rather than IDL to define distributed objects.

CORBA and the Internet 215

Summary
We have now looked at various aspects of CORBA and the Internet, from
the types of architectures used by CORBA-based Internet applications to
the relationship of Internet technologies and CORBA. We have seen how
firewalls and the security implications of the Internet affect CORBA.

The next few years will be interesting, as architectures using CORBA
will increase for Web-based applications. We are seeing CORBA products
being embedded within application servers and electronic commerce
products, such as BEA's Tengha and Broadvision's e-commerce suite. Web
sites are already being deployed using the "Web Server/ORB Gateway"
approach (American Airlines and CNN Interactive).

In the next generation of CORBA-based Internet applications, we can
expect to see the inclusion of XML-based technologies. One constant about
the Web is that it is always changing. I have included in the References
some URLs to Web sites that will contain the latest information.

216 Distributed Object Architectures with CORBA

References
Bray, Tim, Jean Paoli, and C. M. Sperberg-McQueen. Extensible Markup

Language (XML) 1.0. FebruarylO, 1998. Available at
http://www.w3.org/TR/REC-xml

Cover, Robin. The SGML/XML Web Page. Available at http://www.oasis-
open.org/cover/sgml-xml.html

HTTP-NG information. Available at http://www.w3.org/Protocols/HTTP-
NG

IETF RFC1928 (SOCKS). Available at http://www.ietf.org/rfc/rfcl928.txt

Internet RFC 1700. Available at http://www.ietf.org/rfc/rfcl700.txt

Iona Technologies. WonderWall Administrators Guide. IONA
Technologies, 1997. Available at http://www.iona.com.

Luotonen, Ari. Web Proxy Servers. Englewood Cliffs, New Jersey: Prentice
Hall, 1998.

Mowbary, T. CORBA Design Patterns. New York: John Wiley and Sons,
1997.

OMG Firewall Proposal. Available at http://www.omg.org/cgi-
bin/doc?orbos/98-05-04

OMG Firewall Erratum. Available at http://www.omg.org/cgi-
bin/doc?orbos/98-07-04

XML resources and parser information from IBM. Available at
http://alphaworks.ibm.com/tech/xml

XML parser from Sun Microsystems. Available at
http: //developer, j ava. sun. com/developer/products/xml/

XML Parsers and tools, other. Available at http://www.xmlsoftware.com

XML information, general. Available at http://www.xml.com and
http://www.xml.org

Yaeger, Nancy J, and Robert E. McGarth. Web Server Technology. San
Francisco, California: Morgan Kaufman, 1996.

Chapter 9

Architecture
Considerations
for Deployment

Like people, real systems suffer from the vicissitudes of a whimsical real-
ity. An architecture built according to the basic precepts discussed thus
far would doubtless be flexible, scaleable, and able to handle the desired
business functions with panache—but when actually deployed, it would
probably fail in some way. Like people, real systems suffer. Your system
might freeze at 12:17 AM every Saturday, slow to a crawl during a criti-
cal usage period, crash only when the project sponsor's boss logs in, or
simply be hit by a power failure during a critical transaction. Above and
beyond the dictates of good theoretical system design, systems architec-
tures in the real world must be designed (and constructed) with an eye
for the uncertain world of deployment.

Required Characteristics
Distributed systems must possess certain characteristics to function reli-
ably after deployment. Several of these characteristics pertain to mainte-
nance of quality of service, which is essential in the face of unforeseen
interruptions in the flow of operations.

217

218 Distributed Object Architectures with CORBA

• Stability. When one part of a system fails, it can cause other
parts of the system to fail. Even if a failed subsystem restarts, it
may not be able to initialize itself properly if it depends upon
other system elements that have also failed. Thus, the system
may thrash as the failure cascades through the system in a chaot-
ic manner. Dependable systems must be stable.

• Continuity of service during failures. In some traditional sys-
tems, if part of the system goes down and it takes an hour, or
even a day, to come back up, very little is lost. A distributed sys-
tem constantly exporting a service to clients, however, should
have no perceivable interruptions. Forcing a client to re-login
after a minute's delay may be acceptable for some systems, but
automatically resubmitting login information and switching to a
contingency server, causing a 60-second delay in data transfer, is
far preferable. This is especially so with Web-based systems.

• Continuity of service during upgrades. Many traditional sys-
tems must be brought down during upgrades. Ideally, upgrades
should not result in interruptions.

• Awareness of fault severity. There are some things that man
cannot do alone; there are many more that machines cannot do
alone. Systems are prone to both little problems that can be han-
dled internally and bigger problems that cannot. It is important
for a system to distinguish between the two, and suspend service
and seek human mediation when required.

• Implementation transparency. As with security and transac-
tions, it would be ideal if the runtime environment that a system
lived in took care of fail-over and load balancing without having
to code for such functionality explicitly in the business logic.

• Optimization. If a thousand users access a system during the
middle of the day, a machine doing batch processing might be
better used to handle some of the user load. Load balancing is
related to fail-over: unacceptable response times can be consid-
ered failure and need to be addressed. Keep in mind that memo-
ry faults are seldom trapped and are very likely to kill processes

Architecture Considerations for Deployment 219

in which they occur, making lessening the load on any single
process an important prophylactic measure. In addition, many
load balancing techniques are useful for synching and switching
over to contingency servers for fail-over.

• Trackability. A system cannot be managed properly unless it
and/or its administrators know what it is doing. Tracking can
take many forms, from auditing pure business functions to fol-
lowing distributed stack traces. Collected information can feed
notification and escalation mechanisms or provide metrics for
load balancing. Tracking mechanisms are essential not only for
development and testing, but for production as well.

An architecture built on the preceding precepts will probably be flexi-
ble and scaleable, and solve many technological issues to support the
business domain; but once it is implemented and meets the real world,
like so many people, it will crumble in some way. Systems suffer, subject-
ed to elements outside of their control. Just because a system has the abil-
ity to be scaleable, that doesn't mean it has the wisdom to actually scale
when it meets a strange usage pattern. Achieving these characteristics will
be the goal of the mechanisms and patterns discussed in this chapter.

Keeping Track
Knowing what's going on at any given time in a system is the first step
in managing the system. Orwellian as it may appear, most system enti-
ties can be monitored — and most should be. Trackable entities range
from processes to users, from implementation objects to messages
between services. However, it is usually not feasible to track everything
all the time. The overhead of generating tracking messages can bog
down a system during normal operations. You can reduce this overhead
and make tracking feasible in several ways, notably by keeping the track-
ing dormant or functioning at a low level until you need to inspect a
specific aspect of your system.

There are three major forms of tracking:

• Logging captures runtime data and control flow information, is
typically archived, and often centers on one service at a time.

220 Distributed Object Architectures with CORBA

• Monitoring provides runtime information that is dealt with at
run time (although it may also be archived) and that captures
the state of the system as a whole. Information about entities
that affect multiple services, such as users, can be captured only
if a global monitoring mechanism is in place.

• Auditing records purely business-related information through-
out the system.

Before discussing the various tracking mechanisms in detail, it is valu-
able to examine a key pattern that can be used to implement most of
them. The base case is to have a single service where all information is
gathered. At the life cycle points of any entity to be tracked (creation,
destruction, state change, or other event), a message is sent to the cen-
tral information-gathering service. In a more sophisticated, distributed
version, local gatherers (one per machine) can be federated, feeding to
the central gatherer, which can provide a centralized archive and user
interface. Messages should be pushed from services to the local gatherer;
the communication between these gatherers and the central monitor
can then take a variety of forms. A variation of this is to archive logs at
the local gatherer level and have a central monitoring service access the
archives. One can also provide hooks to push messages up within the
services. This can be useful for capturing exception information in con-
text. Another possibility is to use multiple channels with different mes-
sage priority levels. In fact, there are many variations and decorations
possible, making for a great deal of flexibility.

Logging
Logging, at its simplest, captures the messages that the developers found
useful to send to standard output while debugging. A slightly more
sophisticated approach sends messages to the syslog (UNIX) or to the
event log (Windows NT). This allows messages to be captured in a sys-
tem-standard place, and in a slightly more scaleable fashion.

Regardless of how and where messages are captured, they are most
useful when they can be searched, parsed, or browsed to find informa-
tion of particular interest. This requires a common format. This also
works best when all messages contain the same basic information in

Architecture Considerations for Deployment 221

addition to the data specific to the message. Such basic information
should include the context in which the event happened and where it
happened in the system. The context includes information such as (in
no particular order):

• the transaction being processed

• the security context, including the user ID for which the request
was made (exercising care not to include any sensitive informa-
tion, even if it is transient)

• the event type. Examples are life cycle (creation, deletion), busi-
ness logic (calculations), communications protocol (servlet or
ORB overhead), and data access (SQL generation or execution)

• the implementation context, described by thread names and the
like

• whether the message represents an exception, and if it is recov-
erable

• a priority gauge of the "importance" of the information (for sort-
ing or filtering)

• a date and time stamp

The notion of where in the system an event happened refers firstly to
the class, the object instance, and the service name. Code references
(line/file) may be desirable, but they are not sufficient. Local and dis-
tributed stack traces can also be helpful for tracing purposes.

Since logs tend to be local captures, each service—in fact, each
instance of a service—will most probably have its own log, preserving
indication of locality. Local stack traces can be useful for understanding
exceptions. A fully distributed stack trace should be captured by a glob-
al system and does not really impact local logging, except as a possible
source of request origin. Determining the originator of a request, usual-
ly via a security context, can be very useful, particularly when analyzing
a service which is itself used by many other services.

Depending upon developer discipline to format all logging informa-
tion consistently is rather chancy. In addition, it is practically impossi-
ble to change all the logging calls in a system if the log format has to be

222 Distributed Object Architectures with CORBA

altered. For these reasons, and as a matter of good software design prac-
tice, it makes sense to have a system-standard logging class that is used
everywhere and supplants standard output for developer usage. Such a
class typically has a few static methods for performing logging and log-
ging control and is a very simple but powerful mechanism. Consider the
benefits of forcing all debugging tracing calls to look like the following:

Log.msg(this,l,"CTR:BusinessObject","Starting to build
relations");

The first parameter in the call above is the object reference itself, not
simply its class, making it possible to track individual instances. The sec-
ond parameter is a priority level, allowing for message ranking. This also
makes it possible to turn off logging for messages below a certain level
in production. The third parameter is a set of predefined tags to describe
the action involved. The sample message could pass through filters for
object construction, or for business object implementations. The last
parameter is the message-specific text. The msg() method can internally
add information such as the date and time, the thread name (if you have
conventions for naming threads), the process ID, etc.

The logging output generated by such a method can take any form
desired. A very useful format is XML, which is readily parsed:

Listing 9-1: Example XML log

<L0GMSG>
<DateTime date="l/l/1999" time="3:45:04 pm"/>
<Service name="fundsservice" host="hostid" pid="lll" />
<Priority level="l"/>
<Thread name="pricerthread"/>

<Object class="com.xenotrope.CalcEngine">objinstdesc</Object>
<Type> <tag name="CTR"/> <tag name="BusinessObject"/> </Type>
<MSG> Starting to build relations </MSG>

</L0GMSG>

The above example illustrates the wealth of filtering and tracing tech-
niques this approach makes possible. Particular objects or object types can
be watched, life cycles can be followed, and service activity can be tracked.

Architecture Considerations for Deployment 223

Another key benefit of this technique is that a Log object can implement
a remote interface or call another remote interface. This means that the
same logging calls can be used to print to standard output, write to a local
log, write to a distributed logging service, or do any combination of these.

In the distributed case, however, a problem arises in the form of time
stamp differences. If messages are time-stamped locally, it will be hard to
interpret the messages at the logging service endpoint because of
machine clock time disparities; however, if the Log object sends the mes-
sage to a remote service, that service can have the responsibility for
synching the messages. Such a remote service sequences the messages so
that they have time stamps that have meaning relative to each other.
This provides a particularly good way to log a service that is balanced
among different processes.

A standard first cut of the Log class mechanism allows the calls to the
remote logging service to be asynchronous or pseudo-asynchronous
(one-way). This is appropriate if the goal is just to generate a central
archive. But if the goal is to track interdependences of threads or
processes, it may not work. Messages from different services to the cen-
tral logging service could be processed out of sequence, as the source ser-
vices continue processing while the messages suffer various 10 lags. This
observation also applies if the logging service is multi-threaded.

The way to avoid the sequencing problem is to set up a single pipeline
that all logging calls block on. With synchronous calls and a single-thread-
ed logging service, messages will be logged in order of receipt, and services
cannot proceed until a message has been processed. The downside is that
the logging mechanism could become a bottleneck; thus, the design of
such a system requires a tradeoff analysis and care in implementation.

Monitoring
Monitoring captures the global state of a system. While this can be
archived, its power lies in delivering real-time performance metrics. An
overall real-time view makes it possible to trace system entities and make
administrative changes to the system. This makes monitoring a key com-
ponent of system management. You must address two key questions in
order to perform monitoring: what elements in the system constitute
the state of the system, and what metrics are possible? These questions

224 Distributed Object Architectures with CORBA

will drive much of the exploration below.
The granularity of the possible responses varies greatly. Monitoring

can be done as low as the instruction level, although this requires great
overhead and yields little insight. Clearly, you must capture higher-level
aspects, but it is possible to veer off the scale at the high end as well.
Entities to be monitored can also be implicit in the system, rather than
explicit; an example is the contexts of service requests. Metrics are often
established based on the numbers and types of objects in a system. As
will be discussed, however, you can use many interesting metrics. While
exploring the spectrum of possibilities below, it is important to remem-
ber that different systems will benefit from different forms of monitor-
ing; each approach has its place.

Processes
Perhaps the most obvious metric for a running system is the number of
processes it has running. The notion of processes as system entities is not
new in OO programming; many ways of tracking and managing process-
es have been developed. One of the best-known ways is via SNMP
(Simple Network Management Protocol), which has been in use for
many years. Vendors have become fairly comfortable with SNMP and a
few products integrate SNMP with server processes, while some even
provide a partial view of the objects in services as SNMP entities. Since
there is a one-to-one relationship between service and process in most
simple systems, such an approach may suffice for many, particularly as
a tried-and-true standard is an easier route to take than providing a
homegrown mechanism.

Most ORB vendors still supply proprietary products to track and man-
age processes, usually on a service-by-service level, and almost always
tied to their proprietary object location (naming) services. The OADs
(object activation daemons) supplied with almost every ORB all work in
the same basic way. In a data store (typically file-based) the OADs keep
a mapping from service name to an executable with command-line para-
meters. When the object location service receives a request for a service,
it asks the OAD if the process for that service is running, and if it isn't,
to please start that process. Thus, the OAD needs to know which process-
es are running and how to start them, and since the information is

Architecture Considerations for Deployment 225

already centralized, many vendors offer an API or a GUI interface to the
information so it is possible to start and stop services by hand. In point
of fact, the OAD and the object location service are usually very tightly
coupled. The OAD often doesn't know if a process is up, but relies on the
process registering itself with the location service, from which the OAD
gets the information.

A downside to such services is that they are almost never federated.
The OAD by necessity has to be a local daemon, living on the machine
on which it will start processes. It is rare to find a vendor who also sup-
plies a service that ties all the local OADs together, although as the need
has become more obvious in deployed systems, vendors have started to
show interest in addressing it.

As matters stand now, the products that come with ORBs to monitor
processes are often not fully featured enough to really do what they need
to do, or to measure up to the many pre-existing systems that already sup-
port protocols like SNMP. The lack of systemwide federalization, as well as
the lack of any finer control than just bringing services up or down, means
that in many situations, roll-your-own solutions are still necessary.

Services and objects
As just noted, OADs can be used to monitor the existence of services. While
they often support a few ways of starting new processes, which will be
explored while discussing load balancing, these ways typically lack sophis-
tication and boil down to the same simple ability to bring whole processes
up or down. This is insufficient for dealing with the complexities of moni-
toring services and objects. Standard OAD failings include a paucity of sup-
port for service properties and reinitialization policies and the fundamen-
tal limitation of only going into action upon a client request and of having
that action constrained to a single machine. Once again, this means that a
roll-your-own approach may be necessary. In order to facilitate this, you'll
find it helpful to investigate several issues and strategies.

Unlike a process, a service itself can be distributed across multiple
locations. This can occur when a service is balanced across machines. A
more interesting case is that of a federated service composed of slightly
different, but conceptually singular, subservices such as a query service
or a printing service.

226 Distributed Object Architectures with CORBA

Another issue pertains to how services are represented and referenced.
Consider the strategy of using a central monitor to track service activity.
This monitor may group services in various ways such as logical function
or process space. When a service registers with the monitor, it must pro-
vide some information about itself in order to be tracked correctly.
Having an object that lives in a service's process and represents the ser-
vice is often useful for resolving this issue. This object instance may or
may not be connected to the object that implements the service inter-
face; what it supports are the interfaces that the monitoring and man-
agement services need.

Monitoring objects occasions similar representation issues and adds
the additional thorny issue of scale. Finer-grained monitoring, if done
poorly, can lead to an unacceptable amount of overhead in code com-
plexity and runtime memory and performance, as in a system in which
every one of a great many objects must register with the monitor and
expose administrative support. Fortunately, you can obviate these prob-
lems by simply centralizing the administrative representation within the
service, creating a facade-like structure.

An example of this approach (Figure 9-1) can be applied as follows:
Consider a service that generates a new object for each user session—a
common design. Such a non-singleton service will use a factory mecha-
nism. The factory entity can be set up to support monitoring also, as it
already knows about all the objects it is generating. Instead of forcing the
monitor to query each of the many individual objects, the monitor now
needs to communicate only with the factory/administration entity,
which can readily supply information tracked internally within the con-
fines of the service.

Users
The ability to capture the interactions of a particular user with a system
is a common design goal. This can be done by tracking the objects that
have been allocated for a user. Given a factory mechanism for generat-
ing a session object for every new client, all that is required is that the
factory maintain a user identification and pass it on to the objects it cre-
ates; then, by inspecting the objects, the monitor can get a view of the
state the user is maintaining across the system.

Architecture Considerations for Deployment 227

Local Monitor Local Monitor Local Monitor

Service Service

Service
Factory

Service

Object Object

Process

Machine

Figure 9-1. Monitoring chain

228 Distributed Object Architectures with CORBA

What this strategy does not yield is a view of what a user is currently
doing. Such a view requires tracking method requests and associating
them with a user. If a security service that allows delegation of user iden-
tification (i.e., a service can make a request to another service, not with
its own security context but with the one from the user) is being used,
then simply requiring all services in the system to require the security
context allows access to the user information.

Requiring every service to generate a log message every time a user
makes a request can be lot to ask of large and/or diverse development
teams. This is why a transparent mechanism is highly desirable. Most
ORB vendors have long provided API hooks called interceptors or filters
that can accomplish this transparency. Such hooks have now been stan-
dardized by the OMG under the name of interceptors. Interceptors allow
a process to globally interrupt and inspect the requests coming into the
process before (or just after) they reach the object adapter. Using an
interceptor that identifies the user from whom a request originates, and
logs the user and the request, frees service developers from having to
cope with the problem.

Another issue arises in multi-threaded environments in which a user
can make more than one request at a time. The problem is evaluating
whether a call to a service was ultimately made in response to one
request from the user, or another request from the user. To deal with this,
you need to put in place a tagging mechanism; this is often beyond the
ken of most security services. Every time a request is made, you must put
into the message an identifier, either marking the request's origin or
marking it as a response to a previous request. This identifier also needs
to be put into the context being sent to the next service, or piggybacked
on to the request, so that the service receiving the request can know
what it should log. It may also be valuable if the whole apparatus can be
enabled or disabled as needed. All of this does add complexity and some
overhead to a system, but it can be a powerful tool for debugging in
development, and for monitoring user access patterns in production.

Auditing
Auditing is the capture of purely business-related information. The
information archived is highly specialized and is usually a business

Architecture Considerations for Deployment 229

requirement in its own right. Although auditing uses most of the same
techniques as system logging and monitoring, the information is dis-
tinctly different, and the communications channels for auditing often
need to be of a much higher reliability. An auditing system should not
be part of a monitoring system, because the monitoring system is often
the first line of defense for fail-over, and as a business requirement, the
audit trail needs to be protected.

Achieving Fail-over
Discussing fail-over as an architectural issue means discussing it at the
service level. While we are interested to some degree in how faults per-
colate through a service, as architects we will focus on how to restart
entire services cleanly after a failure has become serious enough to bring
them down.

Issues of state
A key issue in the resurrection of a service is maintenance of state—in
particular, session state. As far as ease of recovery goes, the less state
there is, the better. A stateless service is pure process; it can go down and
be brought back up with a simple restart and no regrets. Many services,
however, are stateful.

The impact of state on fail-over complexity varies. Some state may not
need to be restored. A prime example of this is a service cache for read-
ing that can be built back up over time. Session state, in contrast, must
be fully restored in a consistent manner if the session itself is not to
appear to die. This requires a persistence mechanism.

Although persistence was explored in depth in Chapter 5, a few rele-
vant points are worth noting here. Systems will often use persistence lay-
ers so that state changes are written to a store such as a relational data-
base. In addition, some CORBA implementations provide loader mecha-
nisms, which are activation hooks for saving and loading objects. For
the purposes of recovery, it is key that the saved state always be consis-
tent. This can be done via regular transaction management approaches,
such as using the OTS. If a system cannot guarantee that the data in its
store is consistent, it will need a means of detecting and dealing with

230 Distributed Object Architectures with CORBA

any inconsistency—a complexity best avoided.
A stateful server can maintain a cache or log of ongoing session state.

Such a log can itself be replicated for additional safety. For the purposes of
recovery, clients must have proxy object IDs that can be mapped to par-
ticular state points in the log. IDs or markers can be used with Object
Adaptors (BOA/POA), and passed to the servers to recover the correct state.

It is worth remembering that not only can services fail, but that the
persistent stores holding their state can fail as well. In distributed systems
as in other systems, it can be desirable to maintain copies of the data
stores. You can generally handle this by either duplication or replication.
A system can use duplicate stores and each transaction/operation can be
done on all the stores at once, thus giving the responsibility for data back-
up to the persistence/transaction layers. Alternatively, all operations can
be done against the primary store, which then uses a store-specific mech-
anism to synchronize the backup store. You can implement this via the
replication features supported by all current major databases.

The act of failure
To state the obvious, services fail when some internal operation goes
wrong. The details of internal failures are not relevant here, but how those
failures percolate up to the service level are. Any service will need some
way to deal with errors that occur in the course of processing. Major pro-
gramming languages today, such as C++ and Java, have exception-han-
dling features for trapping and signaling errors. Several points are worth
making about ways in which exception handling plays into architecture.

Exceptions can be typed and grouped into strata that match levels of
program structure; that is, each level of the system will have its own fami-
ly of exceptions based on what can go wrong at that level. Each level in
general knows best what errors to trap and how to recover from them.
Exceptions are often mapped from level to level by trapping for an excep-
tion at the current level, trying to recover, and failing that, by throwing an
exception of the next higher level up to that level. In such a system, the
original causative exception can be conveyed as part of the new exception.
If multiple errors are possible and can be usefully sorted out, then their
matching exceptions can be chained together. This mapping pattern can be
applied up to the system level where it can be decided how critical a given

Architecture Considerations for Deployment 231

error is, and whether that error warrants shutting down the service.
Once a failure signal has reached the top level of a service and is

trapped, the service can shut down cleanly if recovery is not possible.
Death can be either quiet or involved; which is better depends on the
complexity of the overall architecture. If services have no interdependen-
cies, and are activated and accessed via an OAD, then a service could sim-
ply be allowed to down itself and be brought back up by the OAD upon
the next attempted access. A more active system would have the service
notify a central service monitor before shutting down. The service moni-
tor could then take action with regard to not only the deceased service,
but also services that depend on it—a possibility that will be explored
more below. Notifying administrators via email, paging gateways, or the
like is also then possible if the system deems human mediation necessary.

A last important detail is the question of partial failure. Services do
things because clients have asked them to do things, so if something
goes wrong in a service, it is almost always in the context of a client
invocation. Many systems are designed to indicate the degree of com-
pletion of operations, for which the possibilities are yes, no, and maybe.
By providing this information to clients, services can signal their degree
of failure and give the clients the option of deciding how to proceed
next. For some applications, it may be possible for clients to work with
partial data, perhaps while trying to retrieve the rest. Clients must be
able to deal with both communication and service failures so they must
trap exceptions and respond appropriately. Client recovery from faults is
just as necessary as resuscitating the services themselves.

The switch
Once a service is down, it must be restarted or replaced. There are sever-
al issues to discuss with regard to this: notably, how and where services
are restarted, and how dependencies among services are to be handled
so that the system remains stable in the face of the failure.

Systems that use OADs to bring up server processes will normally sup-
port various activation modes. You can choose different modes to
enhance stability. For example, many CORBA systems support per-client
activation, in which different processes are spun up for different clients
or client processes. This isolates each server process so that if one dies,

232 Distributed Object Architectures with CORBA

only its client is affected. It is also possible for distributed objects to
share or not share the same server process, another isolation control.
When evaluating activation policies, it is important to remember that
they also affect the scalability of the system.

When a service goes down and is brought back up, entities publishing
references to that service may have to be alerted. OADs, Naming services,
Trading services, and the like fall into this category. OADs, which add a
layer of indirection by publishing references to themselves, take care of
this automatically; but it is important to remember to maintain any infor-
mation that is exported by Naming, Trading, and other services correctly.

One key area of weakness in current CORBA products is support for han-
dling service dependencies. This means that if an architecture does have
non-trivial dependencies between services, it will also need its own depen-
dency-handling mechanism. You can implement this in several possible
ways. A central service monitor that has OAD functionality could have the
responsibility for controlling restarts. Alternatively, the services themselves
could be given some restart responsibilities. The central service monitor
makes for a cleaner, more scaleable system, however, and is more readily
generalized. Such a monitor can be empowered to send shut down mes-
sages to services, and to activate them by process invocation or OAD access.

Whoever has the responsibility for taking action needs to know two
pieces of information: what the dependencies are and what action to
take based on the dependencies. The dependency map can either be
internalized or externalized by the services; that is, each service could
maintain its own dependency information, which could be opaque or
not, or the central monitor could hold all dependency information.
Dependency information could be preconfigured, or, in a more dynam-
ic system, discovered at run time by keeping track of other services used.

Issues of state also have an impact on dependency maintenance. If a
service depends on another, stateless, service, then it can use any
instance of the second service at any location. If the second service had
some session state related to or required by the first service, then the first
service would depend on the particular instance it had been using, and
would have to be put back in contact with a fully restored version of that
service instance after a failure.

Much of the above applies to the actions that should be taken after a
failure. These could be notifications of services to re-establish references

Architecture Considerations for Deployment 233

and information, or full stop and start signals. One approach is for each
service to be aware of its dependencies. Services could then notify the
service monitor and/or each other about impending failures. Services
could indicate their intended course of action to the service monitor and
request additional action; for example, a service could inform the mon-
itor that it is reinitializing in some fashion and then request that the
monitor restart another service.

Load Balancing
Load is some quantified description of how busy a computer is. There is
no standard for this metric. Performance meters on nearly every current
OS desktop measure load in various forms. But what do they mean? If
the CPU utilization reads 30%, is the OS really sending 7 no-ops for
every 3 instructions? You must choose a proper metric for load on a sys-
tem-by-system basis.

Load balancing is about resource management. A load-balancing sys-
tem analyzes the load on all available resources to determine the opti-
mal allocation of those resources. Computing what the "best" perfor-
mance is, however, depends on what aspects of the system are targeted
for optimization. Before discussing load balancing, we must explore the
subject of possible load metrics.

Metrics on requests
In order to determine a good load metric, the first question to ask con-
cerns what work the services do that actually consumes resources. If the
work is I/O-intensive, involving processing large files or making many
short calls to a database, the bandwidth and number of connections
might be a good measure for the load. If work is very compute-intensive,
such as calculating transforms or solving differential equations, then a
good measure might be CPU utilization.

The tough part of computing a metric lies in assigning a reasonable
load number to each method that processes a request. You must examine
the load for a method in two ways: how much load the method can be
expected to generate in general, and how much load it actually generates
for a particular request at run time. A load-balancing system will need at

234 Distributed Object Architectures with CORBA

least a general estimate in order to make intelligent decisions for routing
requests, and will benefit from actual runtime checks to increase the sys-
tem's accuracy. Sometimes load may not be estimable with any accuracy
until processing is underway. In other cases, you can estimate the load of
an incoming request based on the request parameters. In simple cases you
can perform an estimation based on knowledge of the implementation.

If all the requests to a particular service have the same characteristics,
then a good measure of load is simply how many requests that service is
handling at the moment. Since the characteristics (in terms of resources
used) are exclusive, even if there are multiple categories of request types,
each can be considered separately. For example, the best place to run a com-
pute-intensive process may be on a machine that is currently I/O bound.

If processing requests uses a varying set of resources, strictly catego-
rizing methods may not have much meaning. In such cases, you may
need a more complicated optimizing routine. Take care, however, that
the overhead of load calculation and optimization does not itself offset
the gain from doing the load balancing. A sophisticated balancing sys-
tem may prove worthwhile for a system with long jobs, such as a scien-
tific model processor, and quite a detriment for a system with short jobs,
such as one that does short data queries.

Metrics on machines
Another element to consider when evaluating metrics for load is the
amount of load an individual machine is able to handle. A slow machine
with a fast network card may be able to handle nearly the same I/O load
as a fast machine with the same card, but not half the compute load.
Accurately computing the amount of load a particular machine can han-
dle can be tricky. If all the machines are equivalent, then this measure
can be ignored, but if they differ, it is vitally important for proper bal-
ancing. In addition, the load a machine can handle is always relative to
the performance criteria for a given system.

What you must determine is how many requests a machine can han-
dle before performance becomes unacceptable. Accurate measure of the
capacity of a machine may involve running performance tests on the
machine, measuring completion time for average runs of each method.
It is also important to run tests in parallel on the same machine to allow

Architecture Considerations for Deployment 235

for the cost of process and thread switching. Resulting numbers can
yield an estimate of how machines compare to each other. This is an
area, however, where it is important to decide in advance how accurate
the tests must be versus the amount of work they will require. It should
also be remembered that the average run of a set of methods depends
highly on the user's usage patterns, which may very well not be evident
in a brand-new system, or which may change drastically as more features
are added to the system.

Usage metrics
As truly accurate load metrics can become overly complex, common
simplified estimations are often used. A core factor in making many such
estimations is that of user usage patterns. If usage patterns are consistent
from user to user, then the load can be estimated from the current num-
ber of users and the point in the pattern, rather than having to be cal-
culated based on every method. If usage tends to fall into one of a few
patterns, a client application or user preferences module can build up
usage profiles so that when a particular user logs on, the system can ask
the client application for a description of the expected load for the ses-
sion. Even if a system's usage patterns are not exactly uniform or cannot
be categorized, the number of users being serviced per process is a sim-
ple metric that can suffice for many systems.

Global metrics
Every running process adds to the load on a machine; thus, the load of
a single service is not meaningful as a measure of load on a machine. The
load of all services running on that machine must be considered to make
meaningful decisions about balancing load between machines. This is
why a global monitoring system is vital to coordinate service metrics
across machines to support load balancing.

The balancing act
Deciding how the gross balancing will work depends highly on the
resources available. You could simply divide up a given set of dedicated

236 Distributed Object Architectures with CORBA

resources among the given services. Depending on the expected usage
patterns and the characteristics of the requests handled by each service,
services that use different resources can be placed on the same machines
and services that use the same kind of resource split among different
machines. This requires a static evaluation of the load each service will
produce, given regular user usage patterns. The main benefit of this is
that little or no runtime intelligence is needed. The main drawback is
that there is no dynamic adjustment of load for unexpected usage, or
optimization based on current processing; thus, the performance of the
system hinges on the accuracy of the initial estimates.

A more common and much more dynamic technique is to more or
less copy the system onto each resource. For every request the balancer
then simply checks the appropriate load metric on all the machines and
sends the request to the best-fit choice. This method tries to secure the
best performance possible at the time of the request, but is dependent
on the accuracy of runtime load estimates.

The approach usually taken is somewhere between the two above.
Certain services, such as one backed by a local database, run on their
own machines and the rest of the system is balanced among the
machines remaining.

Another alternative is to try to assure some minimum level of perfor-
mance, as opposed to the best performance. Given a very limited set of
resources, you can set a minimum performance level for the system. If per-
formance on the main application server machine for the system drops
below the threshold, you can press another machine into service. This
machine may not be determined beforehand; it can be the machine from
a specific set with the lowest current load. Thus, the resources can be allo-
cated to different systems, each resource ready to catch the overflow.

What to balance
There are really two general ways of balancing load: balancing sessions
and balancing work. Balancing sessions is basically done by finding the
least-loaded server when an initial request comes through, either via the
Naming Service or a service factory. Balancing the work means deciding,
for every request to the service, where the work can be handled with the
best performance. The first approach is generally done on the global level,

Architecture Considerations for Deployment 237

outside of the service implementation as much as possible. The latter is
done almost solely within the implementation of a particular service,
although it often uses monitoring, naming, and client code for support.

Balancing by Naming Service
If the load metrics chosen center around client sessions, then an effec-
tive place to handle balancing is when the client connects to a new serv-
er, or more preferably, when the client tries to locate the server for the
first time using a Naming Service. As always in distributed systems, a
client can itself be a service.

The OMG Naming Service defines the NamingContext as a core inter-
face; therefore, even if a vendor-supplied implementation of the Naming
Service doesn't support any load-balancing features, it is possible to
implement the NamingContext interface to perform balancing and bind
such contexts in the appropriate places in a naming hierarchy. This
NamingContext implementation works by not simply binding a name to
a single object reference, but rather to a list of references. When resolv-
ing a name, the context picks the best fit for balancing purposes and
returns that reference.

To find the best balance, the context can ask the monitoring service for
current load metrics and choose accordingly, as illustrated in Figure 9-2.
However if the usage patterns and session length for the specific service
are fairly consistent across sessions, then a simple cycling selection
method works quite well. This may not always yield the best performance,
but the average load of each service instance should be fairly even. If ses-
sion lengths vary significantly, a randomized selection from the service
instance list might tend to produce a slightly better average performance.

Sometimes it is more important to maintain a minimum performance
level than to provide a service at all. If the loads on all the service instances
are at their maximum, then the naming service has the ability to refuse a
client access to the service. This forces the client to cancel or postpone its
request, allowing the current jobs to run in a reasonable time.

With more information, the Naming Service can make better deci-
sions. It can be useful to extend the NamingContext interface. CORBA
connections are basically anonymous, so any information about the spe-
cific user or type of client application must be sent from the client, by

238 Distributed Object Architectures with CORBA

either a security context or an explicit call in the interface. The interface
can take usage hints, such as expected functions or subapplications to be

get load
for machine

global
monitor

Local
Monitor

MachineA

Local
Monitor

MachineA

Servce
MachineA

Servce
MachineB

find
service

return objref based on
load

Figure 9-2. Load balancing utilizing the Name Service

Architecture Considerations for Deployment 239

used. If a system provides a service for persistent user preferences, a sim-
ple learning algorithm (using average statistics from previous sessions)
can be used to learn the usage pattern for a user, and a client can send
this to the Naming Service. A client that is aware of this extended func-
tionality can find the context and narrow it to the extended interface,
and then send the extra information with the request to resolve an
object reference. This will not prevent other clients from using the
NamingContext in the standard form; the service will just not be quite as
optimized. An extended context interface could also allow access to the
list of service instances, a possibility that we will discuss below.

Balancing by OAD
The Naming Service approach requires multiple service instances run-
ning and bound into the NamingContext before a request comes in. This
works, but if the services are not used, then the idle processes take up
resources and degrade the performance of other services; thus, an opti-
mal solution is for the processes to start up when needed.

The function of the OAD is to map services to processes, and to man-
age the processes. It is responsible for starting up new processes or copies
of services for incoming client requests. Standard activation policy possi-
bilities include starting processes for each client connection or each client
request. Also common is having a maximum number of processes and
either reusing them or simply refusing more connections. Another com-
mon extension is process per user, even if a user can indirectly request
connections from different client processes through other services.

Since most OADs work on a single machine, using them alone to bal-
ance load does not really add value unless the critical resources are file
descriptors or threads. If an OAD that is RPC- or SNMP-aware can be
found, it might solve the problem; otherwise, the solution is a federation
of local OADs. One approach to this is to define a clique of OADs on var-
ious machines, the members of which always coordinate with the oth-
ers when a request to start a process occurs. The other approach is to
devise a consolidation service that will coordinate the OADs on various
machines to provide automatic creation of processes. In either case the
federation needs to know which machines a service can be started on,
and on which machines there is an already-running process; for exam-

240 Distributed Object Architectures with CORBA

pie, if the activation policy is per user, if a request comes to one OAD, it
first needs to see if any other OAD has a process for the specified user.

Using the Naming Service as the balancing coordinator along with an
OAD-based mechanism makes for good synergy. Many current vendor
OADs allow for automatic service creation from an IOR. The IOR will actu-
ally point to the ORB's OAD and will cause a forwarding response from the
OAD on first connection to the right process according to the activation
policies. If a given OAD supports this, then storing these IORs in the
Naming Service provides a decent and moderately dynamic solution.

If a still more dynamic solution is desired, the Naming Service can be
responsible for growing the list of service instances. When the load on
the currently running instances passes a threshold value, the Naming
Service can contact the federated OAD and request a new process. The
OAD federation would find a new machine that can run the service and
does not already have one. If the OAD can start a new useful process, the
Naming Service can add it to the list. When setting up such a system, it
is important to provide a mechanism for service instances to be removed
from the naming service list so that processes can be released.

Naming Service/OAD summary
Solutions involving Naming Services, traders, and OADs work well for
addressing basic to medium-complex balancing needs. They also have the
great advantage that they are nonintrusive to the services themselves, and
completely transparent to the client. The only possible intrusion is the
metrics collection, when you're opting for more precision. But often the
same metrics needed for balancing will be important for monitoring the
runtime system (especially if your system is complex enough to require
sophisticated balancing) and this will collected anyway. This means that
the load-balancing system can ride on top of the monitoring system.

Balancing by work
In some cases balancing among user connections is completely inappro-
priate due to the resource-intensive nature of the work done. As a sys-
temwide technique the above works well, but on a service-by-service eval-
uation of balancing needs, it may well miss the mark. For example, if there

Architecture Considerations for Deployment 241

are a few critically resource-intensive methods, to the extent that the rest
of the request generates relatively little load, it is more important to bal-
ance the load among these expensive methods on a request-by-request
basis rather than on a user basis. As this is very fine-grained, the reason to
use it is to be very precise in allocating the work, and so a very accurate
view of the load is needed. This does not have to use complex metrics. The
rules can be as simple as not using a machine that is already processing a
request. The metric, however, does need to be current and correct.

This kind of balancing involves sending each request to a different
service instance. Therefore it is highly desirable that the service handling
these requests be as stateless as possible. This avoids the need to replicate
session state across machines. All the techniques we'll discuss benefit
from being stateless, but some are more resilient than others.

Simplifying the service
The first option is to define a completely stateless service that handles only
one type of request. Every time a client wants to make that kind of request,
it obtains a new reference from a load-balancing Naming Service, makes the
request, and forgets about the object reference. If the client needs to make
the request again, it obtains a new reference from the Naming Service.

One of the drawbacks to this method that it depends on the client to
use the mechanism responsibly. A larger possible drawback is a very
unnatural breaking up of service interfaces. Since one of the most impor-
tant goals of distributed object-oriented systems is proper modulariza-
tion and encapsulation, this is a severe downside that may in turn revert
a system to old RPC-style programming. On the upside, this technique
can reuse the given load balancing mechanisms of a system.

Client responsible
Another option is to very deliberately leave it to the client to decide what
kind of performance is needed throughout the client's life. This can be done
with or without user intervention, although it can be very useful for the
client application to ask the user for performance and priority requirements.

The client switches service instances when it can improve perfor-
mance and when it is able to do so. If the service is stateful, but the

242 Distributed Object Architectures with CORBA

client reaches a point where it can stand to lose the current session state,
then the client application can drop the session and go back to the
Naming Service. This lets the system shuffle its balance whenever it can,
but also lets the client securely keep its session information. Another
option is having the client ask the user for a performance minimum and
then monitor the performance of requests. If the performance is drop-
ping, the user can be given the option to abort current jobs and reissue
them to another service instance.

The implementation of this technique often involves the client obtain-
ing a list of service instances (perhaps from an extended version of a
NamingContext) and checking the loads directly. This again allows the client
to define its priority and performance criteria and choose appropriately.

Often this whole mechanism is hidden within an intelligent service proxy
object (Figure 9-3). Many ORB vendors provide such an API hook, with
which an object reference is automatically narrowed to a user-defined object
type rather than the default generated proxy. All requests by necessity go
through the proxy, so the proxy can make a decision for each method call as
to which service instance the call will be made to. If the service is stateful, the
proxy can decide to maintain a main session, but delegate those calls that do
not require the state. Or it may maintain multiple sessions, duplicating only
those calls (hopefully very few) that change the session state so it will be free
to distribute all other calls. Another option is for the client proxy to cache the
state locally, replicating it to services it wants to talk to.

The biggest drawback to this is having to maintain the client code. In
addition, given that there are often many more clients then there are ser-
vices, if all the clients are making multiple requests for metrics from the
monitoring service, this will create a lot more traffic than a load-balanc-
ing Naming Service sitting on the same machine as the monitoring ser-
vice. It is also a very narrow solution that may interfere with maintain-
ability and change management of the services. This may also buck the
growing trend towards thin clients.

The benefits include a possibly interesting and useful interaction with
users, keeping coherent interfaces to services, and not impacting the ser-
vices, especially in terms of state replication. Giving the client proxy the
power to switch service instances and replicate state also couples a pow-
erful fail-over mechanism to the load-balancing.

Architecture Considerations for Deployment 243

Facade
An in-between route is to facade the service (Figure 9-4). This method
uses a version of the service that maintains a list of other service
instances. Clients get a reference to this service and the implementation
of this service delegates to the other service instances, which do the
actual work. All the code that could be put in a smart proxy, except for
code supporting user intervention, can be put in the facade, which can
even include state replication. The facade thus functions as a remote
proxy to the service, rather than a local proxy.

Monitor

Figure 9-3. Client responsible for balancing with smart proxies

244 Distributed Object Architectures with CORBA

Service
Worker

get metrics

get service
list

Service
Worker

NS

Monitor

, get metrics

Figure 9-4. Service facade, transparently balancing work

Workers
Distilling the facade strategy leads to the idea of a main service with a
number of worker slaves (Figure 9-5). The main service maintains the
state, and any request that needs to be balanced is repackaged with the
relevant session state and sent to one of the workers. In this case the
interface for the workers does not need to be the same as the main ser-
vice, so the main service can be stateful while the workers receive all the
information they need for each request. All the client sees is the main
service; the worker interface is completely hidden.

If a repackaging of the request can be placed into one object (all CORBA
objects are represented in a Request object) then it can be useful to reverse

Architecture Considerations for Deployment 245

Worker

Does not interact with the
global monitor to get

metrics. Workers decide
on their own when they

can do work

Worker

\
\

Worker

Worker

Figure 9-5. Service with individual workers and request queue

the balancing intelligence. If the main service needs to decide which work-
er can next handle a request, it needs to be able to compare machines and
loads. Instead of doing this, the service could place the requests in a queue.
Each worker, when it decides it can handle another request, grabs one from
the queue and processes the request. Obviously this technique requires an
asynchronous mechanism to get the results from the worker and pass them
back to the client. This requires a tag on each job so that it can be traced
back to the specific client request. Even though the worker-service interface
must be asynchronous, the client-service interface can remain synchro-
nous. The thread processing the client request can simply be suspended,
blocking the client, until the reply is received from the worker.

246 Distributed Object Architectures with CORBA

Summary
The fail-over and load balancing strategies to be used for a particular
architecture really depend on the nature of the architecture and its
deployment environment. When designing systems, it is valuable to go
over the characteristics enumerated at the beginning of the chapter and
map them to the needs of the system. At the very least, most distributed
systems benefit from a good logging system and require some basic acti-
vation management and consistent persistence mechanism. More com-
plex systems will need fuller tracking and load balancing in order to
guarantee robustness. The architect must always pick the best design ele-
ments for the job at hand.

Although system management has been a weak area in CORBA prod-
ucts, vendors have started to produce more sophisticated solutions. As
this technology matures and becomes both more standard and more
standardized, designing an architecture for deployment should become
less of a do-it-yourself endeavor. Until then, the issues and strategies out-
lined in this chapter should serve as guide for evaluating requirements
and designs for robust deployment.

Appendix

COM/CORBA
Integration

In 1995, the OMG published a COM/CORBA Interworking Request for
Propsals (RFP). The RFP was composed of two parts. Part A dealt with
interworking between CORBA and the commercially available imple-
mentation of COM. Part B dealt with interworking between CORBA and
DCOM, which was still in development at that time. The OMG ratified
Part A of the COM/CORBA Interworking Specification in 1996 and Part
B in 1998. There are currently commercial implementations of Part A.

Our goal in this appendix is take a look at the concepts and considera-
tions put forth in the specification. To begin, we will consider motivations
for COM/CORBA integration. Then, we will give a very brief overview of
COM. Moving into the meat of our topic, we will discuss a conceptual
model for bridging, examine features common to COM and CORBA, and
investigate mapping issues. We will look at locating and managing dis-
tributed objects from the perspectives of both COM and CORBA. We will
conclude by examining COM/CORBA distribution issues.

From Whence We COM
COM evolved from OLE, Object Linking and Embedding, a technology
which was developed for the single-user, single-machine environment
of Windows 3.1. OLE enabled users to create and manage compound

247

248 Distributed Object Architectures with CORBA

documents, thereby maximizing code reuse within and across applica-
tions on the Windows platform. OLE2 was designed to extend the par-
adigm to the component level. OLE2 interfaces and protocols mediate
dynamic component interaction on a desk top. COM, the Component
Object Model, emerged as the standard that supports OLE2.

Motivation
Why create a bidirectional bridge for communication between COM and
CORBA? What does their integration buy us? One answer to that question
is that integrating the two would enable us to benefit from the inherent
strengths of both standards. We could create and extend distributed systems
using existing applications and components. From the CORBA perspective,
we gain access to the mature GUIs found in COM-based applications like
Excel and IDEs like Visual Basic. From the COM perspective, we achieve
robust, platform-independent distribution based on an open architecture.

What's more, standardizing the integration process affords us an effi-
cient, component-based approach. In addition to the best of what both
models offer, we get well-defined integration interfaces and interopera-
ble implementations.

In Terms of COM
Let's quickly define some COM terms:

• OLE: Object Linking and Embedding is an infrastructure that
allows dynamic interaction between documents and between
applications. Using OLE, we can embed a document created in one
Windows application into a document created by another. OLE
essentially allows for code to be reused at the application level.

• OLE2: OLE2 was an extension to OLE and improved the
Component Object Model. It laid the groundwork for DCOM and
ActiveX by providing support for automation.

• COM: The Component Object Model is a specification that defines
component integration at the binary level and serves as the basis of
OLE, Microsoft Transactional Service (MTS), and other Microsoft

Appendix 249

components. According to the COM specification, interfaces are
implemented as C++ virtual function tables. Interaction with the
vtable is provided by the IUnknown interface, from which all COM
classes inherit. Accessing a COM interface requires static, compile-
time knowledge of the interface's definition. In code, COM inter-
faces are declared as interface types that inherit from the IUnknown
interface. An example of a simple COM interface is as follows:

//DocManager.idl
[object, uuid(...)]
interface IDocManagenlUnknown {

HRESULT GetDocument([in] long docNum);

}

• DCOM: COM with its functionality extended to the network
level.

• Automation: Automation makes the dynamic, runtime invocation
of COM objects possible; it is conceptually equivalent to DII. The
functionality is presented through the IDispatch interface; opera-
tions are located with a textual representation of an interface signa-
ture. IDispatch inherits from IUnknown, but does not allow direct
access to IUnknown methods. Therefore, Automation interfaces can-
not be invoked statically. In code, Automation interfaces are
declared as dispinterface types that inherit from the IDispatch inter-
face. Automation allows an application to expose functionality that
can be utilized within another application or tool. An example is
the Automation Interface to Microsoft Word which can be invoked
from Excel's macro language (Visual BASIC for Applications, VBA).

• Dual interfaces: Dual interfaces are COM interfaces that inherit
from the IDispatch interface. Functionally, they can be accessed
both statically and dynamically. In code, Dual interfaces are
declared as interface types that inherit from the IDispatch interface.

Bridging the Gap
A bridge is an implementation of the Interworking architecture. The
Interworking architecture specifies how CORBA and COM can work

250 Distributed Object Architectures with CORBA

together. Bridges perform the mapping between the COM and CORBA
object models. Bridges use special proxy objects, referred to as views, to
make an object from a foreign system appear to be native. Bridges pro-
vide CORBA views of COM objects and vice versa (Figures A-l and A-2).

Metamodel
To begin our discussion about the issues involved in specifying a bridge
between COM and CORBA, we will consider what their object models
have in common. We will use these common concepts and features to
develop a conceptual model that accurately represents the object mod-
els of both system. This metamodel, referred to in the specification as
the Interworking model (see Figure 3), will serve as the starting point for
creating a bidirectional mapping between the two.

The Interworking model describes an object as a discrete unit of
functionality that is accessed through a published interface. This object
has a life cycle: it is created and destroyed at discrete points in time.
While the object is in existence, it can be identified by its reference. The

Figure A-1. COM view of a CORBA object

Appendix 251

published interface is defined in terms of a set of fully described inter-
face semantics, and this interface can also be assigned an identity. The
interface can be composed of other interfaces according to a well-
defined set of rules. Requests can target a specific object instance using
a reference to that object. An object instance will service the request by
invoking the desired operation in its implementation of the behavior.
Parameters to requests are either object references or basic data types.

Object life cycle and identity
CORBA and COM have very different concepts of the life cycle of an
object. CORBA objects are often long-lived; activation and passivation
are done in a transparent fashion. Over the course of a CORBA object's
lifetime, it may be activated (loaded into memory on the server) and pas-
sivated (stored in some persistent way) many times. The notion of an
object in the CORBA world is decoupled from its instantiation state.
Throughout its lifetime, activated and passivated states included, a
CORBA object can be identified using the same object reference. Also,

CORBA
Client

S -N

CORBA
Object

v Reference,

HOP

Bridge

CORBA
View

Object
Map

DCOM.

Automation
Server

Target
Automation

Object

DCOM.

COM
Server

Target
COM

Object

Figure A-2. CORBA view of a COM object

252 Distributed Object Architectures with CORBA

Object
Implementation

Instance

Create

Activate

. Passlvate

Destroy

Life
Cycle

Manager

Figure A-3. Interworking model

the initial creation and ultimate destruction of a CORBA object are
explicit events determined within the design of the application.

In contrast, the concept of a COM or Automation object is tightly cou-
pled to its instantiated state. COM and Automation object references,
implemented as in-memory pointers, don't exist for inactive objects and
are not valid across instantiations. In addition, both COM and
Automation objects are instantiated by a standard factory and with con-
structors that do not take parameters. Since reference counting is used to
determine the fate of their existence, they are implicitly destroyed.

Mapping between COM and CORBA object models merits more dis-
cussion than we will give it in this appendix. That said, here are two pos-
sible scenarios.

If the interface in question is implemented by a CORBA object, the
problem from the COM perspective is retaining a copy of the object's
immutable, life-long CORBA object reference. This can be done by
retrieving and "stringifying" the CORBA object reference (an IOR) and
then storing it in a file. A subtle point to consider is that the object ref-
erence storage is not encapsulated by the CORBA object reference. If
there are multiple references to the object within the COM component
of the system, the CORBA object reference will be retained only by the
reference holders who implement their own storage functionality.

If the interface is implemented on the COM side, the problem is cor-
relating CORBA's "long-lived object" expectations with COM's transient

Appendix 253

nature. In COM, an object is identified by where it exists in memory. If
its state needs to be retained, it is identified in some other way, such as
a file. Since COM constructors don't take parameters, the COM objects
have to have their state loaded into them after they are instantiated. The
challenge is associating a newly born COM object with the state desired
by a given CORBA client. One solution would be to implement COM tar-
get objects that provide factory functionality. The factory could be cre-
ated without state, instantiate the object that is actually desired with the
expected state, and return its reference to the CORBA client. The COM
API function CoGetlnstanceFromFile will load objects from files.

Interfaces and interface identity
CORBA interfaces are described in terms of OMG IDL. They are identi-
fied at runtime by a CORBA Interface Repository ID key, which is, by
default, the fully scoped name of the interface. Alternately, you can use
a Globally Unique Identifier (GUID), a 128-bit binary string, for the
repository ID key by placing the #pragma ID <interface_name> = <GUID>
preprocessor directive in the IDL file.

Both COM and Automation interfaces are described in term of MIDL.
They are identified at runtime by Interface Identifiers (IIDs)—GUIDs. As
we mentioned before, COM interfaces are statically typed. Automation
interfaces are stored in type libraries for dynamic retrieval.

We need to map OMG IDL to MIDL and CORBA Interface Repository IDs
to COM IIDs. Mapping OMG IDL to MIDL is accomplished with a naming
convention. We will explain it with an example. The OMG IDL interface

module ContentManagement{
module DocumentManagement{

interface Text{

maps to the COM interface IContentManagement_DocumentManagement_Text,
the Automation interface DContentManagement_DocumentManagement_Text,
and the Dual interface DIContentManagement_DocumentManagement_Text.

254 Distributed Object Architectures with CORBA

COM IIDs can be generated by an algorithm that takes CORBA Interface
Repository IDs and outputs GUIDs.

Interface composition
CORBA interfaces are defined in terms of existing interfaces according to
the rules of C++ style inheritance. Both single and multiple inheritance
are supported.

COM supports single inheritance. Multiple inheritance is accommo-
dated by aggregating a set of interfaces and using the Querylnterface(...)
method on the IUnknown interface to traverse them.

Newer Automation controllers, like Visual Basic, support aggregation
and, for them, inheritance is built on top of and very similar to COM
inheritance. For older versions, inheritance is implemented by lumping
all of the derived methods into one interface. Keep in mind that both
Automation and COM interfaces are expressed in terms of MIDL.

CORBA is flexible enough to replicate COM and Automation inter-
faces in the way that they are implemented in their native environ-
ments, so CORBA can implement a disjoint collection of interfaces to
mimic COM aggregation or one all-inclusive interface for the older
Automation controllers. The implementation is left up to vendors.

COM and Automation representations of CORBA inheritance are diffi-
cult to produce. A major consideration is that COM-based interfaces are
sensitive to how their methods are ordered. If you took a single COM
interface, ordered its methods from A to Z, and compiled it, and then
took the same COM interface and ordered its methods from Z to A and
compiled it again, they would be considered separate and unrelated in
the COM world—remember, it's a binary standard. Automation differen-
tiates between operations and attributes; get and set methods are attrib-
utes and all other methods are operations. Within Automation interfaces,
attributes are listed before operations, gets are listed before sets, and every-
thing is in A<Z<a<z order. Interfaces in inheritance relationships are
grouped by inheritance level and then sorted according to the same rule.

In the mapping from CORBA to COM, there are three simple rules:

1. A CORBA interface without parents maps to a COM interface
that inherits from IUnknown.

Appendix 255

CORBA COM

u
Opuo

f

V
OpV()

\ \

>
\

w
OpW()

/

X
OpX()

z
OpZO

/

Y
OpY()

[Unknown

t
IU

OpU()

(Unknown

IU
OpU()

t •
IV

OpV()

(Unknown

t
IY

OpY()

(Unknown

t
IX

OpX()

(Unknown

t
IZ

OpZ()

IW
OpW()

Figure A-4. CORBA to COM inheritance mapping

2. A CORBA interface with a single parent maps to a COM inter-
face that inherits from the parent.

3. A CORBA interface with multiple parents maps to a COM inter-
face that inherits from IUnknown.

The interfaces retain their identities across the mapping. Figure 4 is a
diagram of the mapping. Notice that the interface names are mapped
according the naming convention put forth in the Interfaces and Interface
Identity section.

The CORBA to Automation mapping has to strike the delicate balance of
being compatible with all Automation controllers while still maintaining
the identity of all interfaces—or, enough identity so that the functionality
of each interface is available. Here are the rules illustrated in Figure 5:

1. A CORBA interface without parents maps to an Automation
interface that inherits from IDispatch.

2. A CORBA interface with a single parent maps to an Automation
interface that inherits from the parent.

256 Distributed Object Architectures with CORBA

CORBA Automation

/
V

OpV()

\

u
OpU()

1 \

\ /
X

OpX()

\

w
OpW()

/

Y
OpY()

z
OpZ()

. \
I Map)y

IDIipalch

1

DU
OpU()

i

IDIapuch

t
DU

OpU()

IDIipatcl)

J

DY
OpY()

T
DV

OpV()
i

DX

OpXO
OpW()

DW
OpW()

DZ

OpZ()
OpY()

Figure A-5. CORBA to Automation inheritance mapping

3. A CORBA interface with multiple parents maps to an
Automation interface that inherits from the left-most parent—
after sorting rules are applied. The methods of all other parents
are included in the interface's definition in their sorted order. In
order to preserve the identity of the non left-most parents, their
interfaces are defined again.

Requests
CORBA requests are bidirectional interactions in the form of method
invocations. The actual request includes a reference to the target object,
the name of the operation, and parameters. The reply includes return
parameters and, in case of failure, exceptions. When a request is of the
oneway type, there is no reply component.

Appendix 257

COM and Automation requests are expressed essentially the same way
as CORBA requests. The major difference is that COM requests don't
return exceptions. Instead, they return a status parameter called HRESULT.

For the most part, the mapping between COM and CORBA for
requests is straight forward and one-to-one. CORBA oneway requests are
mapped to COM requests without return parameters. Also, because
COM does not support dynamic invocation, CORBA DII/DSI-related
interfaces are not mapped. Exceptions require special treatment and will
be discussed in a section of their own below.

Parameters
CORBA interfaces have three types of parameters that must be explicitly
declared: in parameters are passed to the target object, out parameters are
passed from the target object, and inout parameters are passed both ways.

Similarly, COM and Automation interfaces support [in], [out], and
[inout] parameters. HRESULT is an implicitly declared return parameter.

The parameter lists are maintained across the mapping. There are
some exceptions, however. In order to accommodate the fact that the
return value of all COM MIDL method invocations is HRESULT, explicit
OMG IDL return values are mapped to [retval,out], which is placed in the
parameter list after all declared parameters. If the OMG IDL interface has
a raises clause, a parameter that maps to a mechanism to retrieve the
exception information is added onto the end of the COM operation's list
of return exceptions. The exception retrieval functionality is explained
more fully in the section on exceptions below.

Type Mapping
The mapping for basic types is almost one-to-one between CORBA and
COM and between CORBA and Automation. COM and CORBA are able
to exchange user defined types, enums, structs, and classes, in a straight
forward manner. Automation represents types that can't be stored in its
VARIANT type as native interfaces; so the mapping between CORBA and
Automation is more involved. The simplest and most efficient way to
communicate this information is in a table format. We will do that in
the sections that follow. Special considerations will follow the tables.

258 Distributed Object Architectures with CORBA

Basic types
There are three special mappings to be considered in the basic type mapping.

• Automation long to CORBA unsigned long should return the
HRESULT DISP_E_OVERFLOW when the Automation long para-
meter is a negative number.

• CORBA unsigned long to Automation long should return the
HRESULT DISP_E_OVERFLOW when the CORBA unsigned long
parameter is greater than the maximum value of an Automation
long.

• Automation long to CORBA unsigned short should return the
HRESULT DISP_E_OVERFLOW when the Automation long para-
meter is negative or is greater than the maximum value of a
CORBA unsigned short.

Complex types
In order to provide a well-known interface for the mapping between
CORBA non-object data types, like unions, and their Automation inter-
face counterparts, the interworking specification supplies the interface
DICORBAComplexType. Take special notice of the fact that a CORBA non-
object data type is represented as an Automation interface which will be
implemented as an Automation object. Automation objects are passed
by reference while CORBA non-objects are passed by value. So, if we
declare a CORBA struct, myStruct, it will always be passed by value in the
CORBA world. However, if myStruct is passed into the Automation world
for further distribution, there will be one copy of it being referenced by
all interested clients. A change to myStruct by one client will be seen by
all of them.

Exceptions
Exception types provide error reporting. Typically, there are two kinds of
exceptions: system and user-defined. The mapping of exceptions is not
straightforward.

Appendix 259

Table A-1. Basic types

CORBA Type

short

long

unsigned short

unsigned long

float

double

char

char

octet

octet

boolean

string

bounded string

wstring

COM Type

short
16-bit signed integer

long
32-bit signed integer

unsigned short
16-bit unsigned integer

unsigned long
32-bit unsigned integer

32-bit IEEE floating point
number

double
64-bit IEEE floating point number
number

char
8-bit quantity limited to ISO
Latin-1 character set

byte
8-bit opaque data type

bool
8-bit quantity limited to 0 and 1

LPSTR
Null terminated 8-bit character string
[string,unique] char*

13B-2-4 1 3B-42

LPWSTR
Null terminated Unicode string
[string,unique] wchar_t*

Automation Type

short
16-bit unsigned integer

long
32-bit signed integer

long
32-bit signed integer

long
32-bit signed integer

float
32-bit IEEE floating point
number

double
64-bit IEEE floating point
number

short
16-bit unsigned integer

unsigned char*
8-bit unsigned integer

short
16-bit unsigned integer

unsigned char*
8-bit unsigned integer

VARIANT_BOOL
True = - 1 , False = 0

BSTR
Length-prefixed string. Prefix
is an integer

BSTR
Length-prefixed string. Prefix
is an integer

BSTR
Length-prefixed string. Prefix
is an integer

260 Distributed Object Architectures with CORBA

Table A-2. Complex

CORBA Type

typedef

const

enum

struct

sequence

array

union

any

object

types

COM Type

typedef

const
32-bit signed integer

enum
8-bit opaque data type

struct

struct
A struct with a member to declare,
a member to declare upward bound,
and a pointer to an array

array

32-bit IEEE floating point number

union
64-bit IEEE floating point number

ICORBAAny
An interface defined by the
Interworking Architecture

lUnknown
An interface to the Automation
view

Automation Type

alias
An alias wi th the scoped

name

alias
An alias wi th the scoped
name

enum
16-bit unsigned integer

DICORBAStruct
An interface wi th property
accessors for each structure
member

SAFEARRAY
An array wi th lower and
upper bounds

SAFEARRAY

An array wi th lower and
upper bounds

DICORBAUnion
An interface wi th property
accessors for the union
discriminator and members

DICORBAAny
An interface defined by the
Interworking Architecture

IDispatch
An interface to the Automation
view

System
CORBA system exceptions have a well-defined structure. They contain
three pieces of data: a completion status, a major code, and a minor
code. The completion status is an enum with three possible values: YES,

Appendix 261

NO, and MAYBE. The major code, a 32-bit unsigned integer, is specified
by the CORBA specification and is intended to report general error infor-
mation. The minor code, also a 32-bit unsigned integer, is defined by
vendors and is intended to report more specific error information.

All COM operations return HRESULT. HRESULT is a 32-bit value the
conveys success or failure in the first bit, the error source in the next 15
bits, and information about the error itself in the last 16 bits.

All Automation operations also return HRESULT. In newer automation
controllers, like Visual Basic, the first bit of HRESULT can be used to trig-
ger built-in error handling routines. In an effort to improve on COM's
error handling abilities, Automation supplies an EXCEPINFO struct as the
return value of the IDispatch::Invoke() method. The EXCEPINFO struct
contains a string describing the source of the error, a string describing
the error itself, the ID of the related help file, and a help file topic. The
struct is intended to be used by humans and it cannot be extended. An
EXCEPINFO struct can be accessed by assigning a pointer to the option-
al last parameter in the IDispatch::InvokeO parameter list. Non-null point-
ers denote that the client would like to access the EXCEPINFO object.

The Interworking Architecture defines a CORBA System exception
major code to COM HRESULT mapping. The standard COM interface,
ISupportErrorlnfo, can used to convey a CORBA system exception's minor
code and repository ID. Whether or not it is used is left up to vendors.

Automation system exceptions are mapped to DICORBASystemException.
In order to make use of this interface, include an optional parameter at the
end of the operation's parameter list. The implementation of the
DICORBASystemException interface will function much the same way as the
native Automation error handling system. The difference is that the built
in Automation error-handling routines will not be triggered because the
HRESULT bit will not be set to failure status. You could simply use
Automation's native routines; however, the native routines do not give
access to the data actually contained in the exception.

User-defined
CORBA user exception declaration and implementation is left to the
developer. User-defined exceptions must be explicitly declared in the
raises clause of an OMG IDL operation.

262 Distributed Object Architectures with CORBA

The specified mapping between CORBA/COM user exceptions is cum-
bersome. Similar to the Automation mechanism mentioned earlier, an
optional pointer parameter is added onto the end of a COM mapping for
a CORBA operation with a raises clause. The pointer references a COM
struct that is a union of all exceptions declared in the raises clause. The
COM struct provides a standard mechanism for gaining access to an
undetermined number of secondary structures. These secondary struc-
tures actually represent the user-defined exceptions. Information con-
tained in the COM struct can be retrieved by passing a pointer to the
optional pointer parameter.

The exception-handling capabilities described for Automation system
exceptions also apply for Automation user-defined exceptions. For a lit-
tle extra work, COM implementations can make use of Automation
exception-handling capabilities by way of the native COM interface
ISupportErrorlnfo and global functions SetErrorlnfo and GetErrorlnfo. The
COM implementation could set error information with SetErrorlnfo. A
client could confirm that the implementation supports the exception
handling mechanism with ISupportErrorlnfo and retrieve it with
GetErrorlnfo.

Automation user exceptions are mapped to DICORIBASystemException.
The functionality described above applies here as well.

Integration
In the context of the CORBA Interworking Architectures, integration
boils down to being able to reference and invoke methods on COM
objects from CORBA and vice versa. In this section, we will look at
options for obtaining views from both perspectives.

COM and Automation objects from CORBA
clients
The specification does not provide a standard way for a CORBA client to
get an initial view of a COM or Automation object. A few options are pos-
sible. The simplest is to initiate creation of the target object in COM and
then pass the reference into CORBA as is typical for callback architec-
tures. Another approach would be to expose COM class factories to

Appendix 263

CORBA clients with the SimpleFactory interface, one of the CORBA Life
Cycle interfaces. SimpleFactory mimics the behavior of COM and
Automation class factories by instantiating objects with no initialization
parameters. Along the same lines, you could expose the native COM
IClassFactory and Automation DIClassFactory interfaces to CORBA as well.
The CORBA Naming Service is also an avenue for retrieving initial views.

As mentioned earlier, COM and Automation objects are inherently
transient and special care must be taken to give them a persistent feel.
Each time a reference is needed for an object that is not currently in
memory, the object must be created and explicitly related to a desired
state. The persistence will be transparent to the client if the vendor
implements views that bind monikers.

Finally, when working with CORBA views of COM objects, it is impor-
tant to remember that COM and Automation manage the life cycles of
their objects by reference counting. The Life CycleObject::remove() method
is supported by all CORBA views. It should always be called when the ref-
erence is no longer needed in order to prevent dangling views. View
implementations that bind monikers can also release references to views
in a fashion that is transparent to the client.

CORBA objects from COM and Automation
clients
COM clients can obtain initial views of CORBA objects in much the
same way that the CORBA views were obtained. The COM API presents
a CreateObjectO method that can be used to create views of CORBA
objects. In addition, an initial view can be obtained by invoking the
CreateObjectO method of the DICORBAFactory interface, which is sup-
plied by the Interworking Architecture. Using the Naming Service is a
possibility as well.

These mechanisms, the native COM API, the DICORBAFactory inter-
face and the Naming Service, also provide ways of retrieving views of
existing objects. Resolving an IOR or a moniker are other options.
Because CORBA object references are decoupled from the life cycle state
of their corresponding objects, COM clients don't have to worry about
explicitly releasing references to CORBA servers.

264 Distributed Object Architectures with CORBA

Distribution

Deployment models
Basically, a bridge can be deployed according to two models: it can reside
on all client machines or it can reside on a single machine. Placing a
bridge on each client machine can improve runtime performance in
some cases and enables HOP to be used for commucation throughout
the system. It also takes advantage of CORBA's open, platform-indepen-
dent and mature distributed architecture. You could also choose to
deploy the bridge on a single machine and use DCOM for some or all
distribution. Which solution is preferable? Where should your bridge
reside? The only real answer, of course, is that it depends. Let us take a
look at some general considerations.

How is your system currently architected?
If your system is completely Windows-centric, perhaps you should use
DCOM for distribution. However, if your system has multiple platforms
or will have multiple platforms, CORBA would provide the platform
independence and portability you need.

What are your requirements for robustness and extensibility?
COM+ is promising improvements in security, better distributed life
cycle management, and extended threading models. Even though
Microsoft has expanded its product suite to include services like the
Transaction Server, DCOM as a distributed architecture is not mature
and its reliability and extensibility is an unknown. CORBA, on the other
hand, has already survived many development cycles. Its open, stan-
dards-driven architecture allows for an application-driven response to
object life cycle and threading issues.

What is the skill set of your staff?
An important consideration is the skill set of your staff. If your program-
mers are fluent with the languages and paradigms of object-oriented

Appendix 265

development, then CORBA could be a natural fit. However, if your devel-
opers are most familiar with a Visual Basic and the COM environment,
then DCOM would be more desirable.

When you have considered all of these questions, you will have a
preference for deploying your bridge. We would like to close this appen-
dix by saying that we think is best to structure a system to take full
advantage of the strengths of each of its components. Given a choice, we
would build a CORBA-centric system that can also support COM clients.
We would reap the benefits of CORBA's distribution capabilities and of
COM's presentation capabilities. This is a fitting conclusion for a book
about CORBA architectures.

References
Box, Don. Essential COM. Reading, Massachussetts: Addison Wesley

Longman, Inc., 1998.

Brockschmidt, Kraig. Inside OLE2. Redmond, Washington: Microsoft
Press, 1994.

Chung, P. Emerald. Huang, Yennun. Yajnik, Shalini. Liang, Deron. Shih,
Joanne C. Wang, Chung-Yih. Frankel, David S., and Guttman,
Michael K. Resolving Differences in the Life Cycle of COMvs. CORBA.
Genesis Development Corporation 1996, 97. http://www.gendev.com/
pubs/whitepapers.htm.

Genesis Development Corporation, Objects, http://www.gendev.com/pubs/
whitepapers.htm, 1996,97.

Geraghty, Ronan. Joyce, Sean. Moriaty, Tom, and Noone, Gary.
COM_CORBA Interoperability. Upper Saddle River, NJ: Prentice-Hall,
Inc., 1999.

IONA Technologies PLC. OrbixCOMet Desktop Programmer's Guide and
Reference. Dublin, Ireland, 1998.

Object Management Group, Inc. Comparing ActiveX and CORBA/IIOP,
Framingham, Massachusetts, 1997, 1998, http://www.omg.org/
library/activex.html, Object Management Group, Inc. CORBA 2.3 -

266 Distributed Object Architectures with CORBA

chapter 17 - Interworking Architecture. Framingham, Massachusetts,
1997. ftp.omg.org/pub/docs/formal/99-07-21.pdf.

Ouoin, Inc., COM versus CORBA: A decision Framework, Version 1.3,
Cambridge, Massachusetts, June 1998.

Rosen, Michael, and Curtis, David. Integrating CORBA and COM
Applications. New York, NY: John Wiley & Sons, Inc., 1998.

Wang, Yi-Min. DC0M and CORBA Side by Side, Step by Step, and Layer by
Layer, Bell Laboratoies, Murray Hill New Jersey, 1997, http://www.bell-
labs.com/~emerald/dcom_corba/Paper.html.

Index

abort calls, for transactions, 130
abstraction, software architecture support

for, 3
access control interceptor, description of,

176
access control lists (ACLs), in security

systems, 165, 185-186
accessor (get) method, for controlled

exposure to state, 114
accountability, role in information

transfer, 163
account management, of distributed

systems, 41
ACID properties, of transactions, 127,130,

135, 159
activation, of objects, in life cycle,

100-101, 199
activation daemon, purpose of, 101
Active Object Map, of Portable Object

Adapter, 118-119
activity diagram, of UML, 26
after ̂ completion method, for synchroniza-

tion interface, 150-151
airline reservations, transaction processing

in, 126, 127-128
Alexander, Christopher, 1
algorithms, role in encryption for security,

165
American Airlines, Web Server/ORB

Gateway use by, 215
Analysis and Design Task Force, of OMG, 6
analysis patterns, 17
analysis phase, in project life cycle, 38
any code, of CORBA, 60
API. See application programming inter-

face (API)

applets, as Java Web applications, 195-196,
214

application
as existing system, 31
integration strategy for, 34-35, 36
for transactions, 129

application programming interface (API),
23, 34, 225

COM function of, 253
database management by, 123-126,128
load balancing and, 242
Web servers and, 197

application server, in transaction process-
ing, 126

Applied Cryptography (Schneier), 167
architectural models, of object-oriented

software, 38
architecture

CORBA-based, for Web, 193-202
deployment considerations for,

217-246
service-oriented, 30-31
of software. See software architecture

asymmetric public keys, in security system,
175

Athena project (MIT), Kerberos developed
as part of, 182

atomic transactions, requirements for, 127,
130, 135, 136

AttributeDef, 80
auditing, of distributed systems, 220,

228-229
authentication, use in security, 162, 165,

175, 177, 178
Authentication Center, of Kerberos, 182
automatic teller machines, transactions by,

125

267

268 Distributed Object Architectures with CORBA

Automation inheritance mapping, of
CORBA, 256

Automation Interface, of COM objects,
249, 252

availability, role in information transfer,
163

B
backslash, for DOS Naming Service, 72
Basic Object Adapter (BOA), of CORBA 2,

23, 118
BEA

OMG of, 5
Tengha of, 215
Top End of, 129
as transaction processing monitor

vendor, 30, 129
Tuxedo of, 25

before_completion method
for simple document cache, 151-152
for synchronization interface, 150-151

binding
by Naming Service, 72, 73
in security service, 179

Boeing, as OMG user, 5
BOI, as new name for Business Object

Facility, 95
Booch, Grady, 26, 39, 65
Boolean expressions, in "trader constraint

language", 93
bridge, in CORBA/COM integration,

249-250, 264
Broadvision, e-commerce suite of, 215
builder tools, for persistence solution, 117
business information, auditing of, 228-229
business logic

incorrect execution of, 107
layer for, 116
persistence and, 112
store-mapping-specific code and, 114
system failure and, 218
use in applications, 34, 35
vendor hooks for, 117

Business Object Facility (BOF)
BOI as new designation for, 95

Meta-Object Facility integration with,
92

Business Objects subgroup, of OMG, 6
business problem, analysis of, for object

wrapper, 32

C
c

DCEIDLin, 177
transaction processing products in, 129
use for Application Programming

Interfaces, 197
C++, 18, 22, 110

Object Transaction Service code in, 139
transaction processing products in, 129
use for Application Programming

Interfaces, 197
void pointer of, 60

call for proposals (CFP), of OMG, 7
case diagram

sample use of, 27
of UML, 26

CASE tools, 26, 27
integration with CORBA environment,

91
Castanet, as CORBA Internet application,

196
certificates, for identification, 170
checked behavior, in Object Transaction

Service, 144
checksums, role in message security, 165,

186
cipher text, encryption conversion to, 167
Cisco, as OMG user, 5
class(es)

cohesion of, 42-43
description of, 14-15

class diagram, of UML, 26
class models, of object-oriented software,

38
client(s)

creation of object in remote space by,
106

definition of, 101
locking between, 108

Index 269

object removal after death of, 102
recovery after system failure, 231
responsibility in load blaancing,

241-242, 243
transactional, 126, 139-140

client/server architecture, of 1980s, 18-19
cloning, copy for replication in, 111
CNN Interactive, Web Server/ORB Gateway

use by, 215
coarse-grained locks, 133
COBOL, transaction processing products

in, 129
cohesion

definition of, 42, 43
of interfaces, 42
types of, 43

collaboration diagram, of UML, 26
COM (Microsoft)

CORBA integration with, 10, 21,
247-266

terms used in, 248-249
commit calls, for transactions, 130
commit method, in Object Transaction

Service, 146-147
Common Gateway Interface (CGI)

for input from document location form,
199-201

as part of HTTP protocol, 197
Common Object Request Broker

Architecture. See CORBA
Common Secure Interoperability (CSI),

172, 189
Competent Object Model. See COM
competitor espionage, effects on security,

163
complex mapping, in CORBA/COM

integration, 258
component based architecture, 2
"Component Description", 70
component diagram, of UML, 26
Component Implementation Definition

Language (CIDL), use to specify
component implementation, 121

component models, definition of, 17
component persistence, of Persistent

State Service, 121

components, software architecture support
for, 3

composite delegation, in security service,
184

computer
crash of, 217
cryptography for, 167
physical security of, 168

conceptual model, of object-oriented
software, 38

Concurrency Control Service (CCS)
locks defined by, 155-156
use of, 157-159
use with Object Transaction Service,

139, 155-159
confidentiality, role in information

transfer, 163
conincidental cohesion, definition of, 43
consistent transactions, requirements for,

127
Contained, use for Interface Repository, 80
Container, use for Interface Repository, 80
Content

IDL defined for, 80, 82
representation of, 83

contention, in transactions, 134-135
ContentProvider

IDL for, 80, 82, 152-154
representation of, 83
for transactional document manage-

ment, 152
Control object, use for transaction propaga-

tion, 141
Coordinator interface, of Object Transaction

Service, 142
copy operation, 106, 107

in CORBA, 108-109
in detached state, 109
for directory access, 112
in distributed reference accounts, 110
for domain entities, 110

CORBA, 35
any code of, 60
Automation inheritance mapping from,

256
Automation objects from clients of,

270 Distributed Object Architectures with CORBA

262-263
basic services provided by, 7, 23-25,

30,36
COM inheritance mapping from, 255
COM integration with, 10, 247-266
components proposal of, 121
description of, 5-7
event service of, 20, 24
exceptions mapping of, 46-47
facilities of, 7, 30
importance of, 7
interface descriptions for, 253-256
Internet and, 8-9, 10, 94, 193-216
interoperability of, 22-23
Interworking Architectures of, 262
lack of support for implementation

inheritance, 15
life cycle service of, 106-112
meta-information in, 67, 70-94
multi-tiered systems based on, 7
Naming Service of, 24, 25, 28, 30,

71-78. See also Naming Service
new users of, 37
objects from COM and Automation

cleints, 263
polymorphism mechanisms of, 47
pseudo-object of, definition of, 160
requests to, 256-257
revisions of, 20
Secure Socket Layer protocol and, 190
security service of, 10, 25, 30,171. See

also security/security servcie
service dependencies in, 232
services not provided by, 25
"Software Package Description" of,

70, 71
trader service of, 25, 70
transaction service of, 24-25
uses of, 20-21
Web clients of, 194-196
Web site for, 11
"yellow pages" of, 25, 70

CORBA 2, basic object adapter of, 23
CORBA 3, 20, 25

Portable Object Adapter of, 23, 105
use of MOM products by, 29-30

corporate network, information sharing in,
18

CosTransactionsCoordinator, use for lock
set, 158

costs
of document retrieval, 59, 60
of interface design, 50

coupling
definition of, 44
effects of interface on, 50
granularity and, 48-50
IDL for, 45-46
minimization in interfaces, 42
reduction of, 45
types of, 44-45

Cover, Robin, Web page of, 214, 216
covert coupling

definition of, 44
problems from, 44

create operation, 106
_create_request method, for Interface

Repository, 86
creation, of objects, in life cycle, 100
credentials, use for security, 177
Criteria, as name/value pair list, 106-107
cryptographic keys, use for security, 166
cryptographic products, government

restrictions on, 192(2)
cryptography

goal of, 167
hybrid mechanisms for, 169

CSI-ECMA, as security protocol, 172
Currency and Party Management, in

CORBA Finance domain, 7
Current object

as transaction starter, 140, 141
use in security, 177, 179, 185

Current pseudo-object
definition of, 160
transaction management by, 141, 144
use in security, 177

D
Dante, 16
data access services, of distributed systems,

41

Index 271

database management systems (DBMs)
capabilities of, 128-130
lock management by, 128, 132-133
logging by, 128, 130, 137

databases
consistency maintenance in, 127
as existing system, 31
integration strategy for, 33-34, 36
lock manager for, 132
locks on, 128
management products for, 125
meta-information in, 67
resource as equivalent of, 130
reuse of information in, 67
transaction information in, 125
in transaction processing, 126

data load, initialing of, 104
DCE. See Distributed Computing

Environment (DCE)
DCOM

definition of, 249
transaction management in, 159
use to build distributed object systems,

8,264
deactivation, of objects, in life cycle, 100
deadlocks

avoidance of, 155
in transactions, 134-135

debugging, logging use for, 222
deferred synchronous methods, in

Dynamic Interface Invocation,
88-89

denial-of-service attacks
detection of, 163
as security threat, 164

deployment
architecture considerations for, 217-246
of CORBA/COM integration, 264-265
in project life cycle, 38
UML diagram for, 26

describeJnterface, 86
design patterns, 1, 16-17, 36
design phase, in project life cycle, 38
destroy operation, 106
destruction, of objects, in life cycle, 100

detachment, implementation object
copied as, 109

development phase, in project life cycle,
38

digital certificates, for information security,
170, 208

digital signatures, for security, 167, 169
directory (folder) structure, for computer

file system, 72
directory service

copy operation for, 111-112
of distributed architectures, 5
meta-information role in, 67
move operation for, 111-112
use to find objects on network, 20, 111

display/browser, for documents, 52
distributed architectures, 1, 4-5

directory service of, 5
for Internet, 193-216
persistence service of, 5
reuse of, 4
security service of, 5
services of, 5
transaction service of, 5

Distributed Computing Environment
(DCE)

Common Inter-ORB Protocol of, 23
description of, 177
Directory of, 72
Kerberos use by, 182
Security Service of, 162, 175

distributed file system, of Distributed
Computing Environment, 177

distributed object model, 39, 42
coarse graining in, 47, 48, 64
coupling in, 43-44
document retrieval in, 51-52
fine graining in, 47, 48
with functionally cohesive interfaces,

43-44
granularity of, 44, 47-48

distributed objects, 13-36
benefits of, 20
definition of, 18
design of, 38

272 Distributed Object Architectures with CORBA

implementation repository of, 78-79
life cycle of, 106-112
persistent, 79
reuse of, 19, 39, 41, 42
semantics of, 25-26
as support for multi-tiered systems, 9,

19
as transient or persistent, 78-79

distributed object systems
auditing of, 220, 228-229
construction of, 1
deadlocks in, 135
design and structure of, 7-8, 123
evolution of, 4
failure of, 230-231
load balancing of, 233-245
logging of, 219
monitoring of, 220, 223-228
process number in, 224-225
production of, 39
reliable function of, 217-219
service monitoring of, 225-226
stability of, 218
subsystems of, 40
trackability of, 219-229
upgrades of, 218
user interactions in, 226-228

distributed reference accounts, copy
operation used for, 110

DNS, as Internet application protocol, 203
document

class diagram for, 53
client code for creation of new section,

154
content extraction from, 59, 61
definition of, 52
formatters for, 61, 62, 63, 76
generic interface for, 61
HTML display of, 62
images in, 60
information in, 69-70
interfaces for, 61, 87
location of, 26, 63
online viewing of, 62
partial instance for, 54
publication of, 63

retrieval of, 51
storage of, 51
type attribute of, 58

document cache, IDL for, 151-152
document locator

definition of, 52
implementation repository and, 78
interface for, 44, 152
as process object, 42
refinements for, 60-63
system diagram for, 52

Documen tManager
creation of, 152
IDL for, 152-154

Document Object Model (DOM), W3C
definition of, 212, 213

document repository, meta-information
use in, 68-70

document store
definition of, 52
partial IDL for, 147

Document Type Definition (DTD), in
extensible Markup Language, 211,
213

doit method, 46
domain entities, life cycle management of,

110-112
Domains, 6
Domain Technical Committee (OMG),

subgroups of, 6
DOS, Naming Service code in, 72
dropjocks, for lock coordinator, 159
Dual interfaces, definition of, 249
durable transactions, 128, 130, 136
Dynamic Interface Invocation (DII)

creation of request from, 86-88
deferred synchronous methods and,

88-89
disadvantage of, 89
generic test harness from, 89
interface name procurement in, 85
invoking request from, 83, 88
obtain definition of desired method,

85-86
protocol gateways from, 89
result extraction from, 88

Index 273

scripting tools from, 89
steps for use of, 85-88
summary of, 89
uses of, 84, 89

dynamic models, of object-oriented
software, 38

Dynamic Skeleton Interface (DSI)
generic servers from, 89-91
implementation of, 89-90

E-commerce suite, of Broadvision, 215
Electronic Commerce subgroup, of OMG,

6
electronic interbusiness communications,

125, 126
employee, disgruntled, effects on security,

163
encapsulation

definition of, 16
as object-oriented concept, 5

Encina, from Transarc, 25, 129
encryption

goal of, 167
role in security, 162, 165, 186
technologies for, 166, 167

Enterprise Application Integration tool set,
Meta-Object Facility use for, 92

Enterprise Java Beans (EJB), 103, 121
transaction management in, 159

entity/object
duality of, 97
interface representation of, 42

Environment-Specific Inter-ORB
Protocols (ESIOP), purpose of, 23

error conditions
exception reporting of, 46-47, 117,

258, 260-261
interfaces and, 42

etherialize, as deactivation of an object, 78
etherializeO operation, for deactivation of

an object, 119
event log (Windows NT), for message

logging, 220
event service, of CORBA, 20, 24, 29
Excel, COM-based application of, 248

exceptions, use for reporting error condi-
tions, 446-47

existing systems, integration strategies for,
31-35, 36

explicit locks, 156
export coupling, definition of, 44
exporter, in Trader Service, 93
extensibility, software architecture support

for, 3
extensible Markup Language (XML)

complementarity with CORBA, 10,193,
210-214

logging use of, 222
as subset of Standard Generalized

Markup Language, 210
use for document publishing, 213
use for invoice generation, 211

extensible Stylesheet language (XSL),
description of, 212

Extranet, 17

facade service, in load balancing, 243, 244
factory-type mediators, for business

objects, 114
fail-over, management of, 107, 108, 111,

229-233
failure

continuity of service during, 218
effects on other parts of system, 218
handling of, 37, 137-138, 149-150
implementation transparency in, 218
load-balancing and, 218
optimization and, 218-219
recovery from, life cycle and persistence

in, 98, 113
severity of, 218
subtransaction use to detect, 152
switching after, 231-233
trackability and, 219
in transactions, 130-131, 137

fault tolerance, by transaction processing
monitors, 30

federated name space, 75
fiber optic network, communication times

in, 50

274 Distributed Object Architectures with CORBA

filters, in firewall technology, 203-204
Finance subgroup, of OMG, 6, 7
financial analyst, use of copy operation by,

109
financial transfers

markup language use for, 212
transaction monitoring of, 135-136,

154
fine-grained locks, 133, 134
fine-grained objects, handling large

numbers of, 119
firewalls

CORBA, Internet, and, 194
definition of, 202
filters for, 203-204
HTTP tunneling as, 206-207
Inter-ORB Interoperability Protocol

proxy for, 202-209
proxies for, 102, 205-206
technology of, 203
tunneling as, 206-207

flavors, of persistent storage mechanisms,
112

forget message, in Object Transaction
Service, 147

Formatters
for documents, 52, 55, 61, 62, 63
for Naming Service, 76, 92-93

FTP, proxies for, 205-206
functional cohesion, definition of, 43

"Gang of Four", pattern book by, 17, 36,
114

garbage collection, CORBA and, 109, 123
Gatekeeper (Visigenic), as firewall, 209
General Inter-ORB Protocol (GIOP)

proxy for firewall of, 208
purpose of, 22, 209

generate_evidence, in nonrepudiation ser-
vice, 188

generic servers, from Dynamic Skeleton
Interface, 89-91

generic test harness, from Dynamic
Interface Invocation, 89

get_coordinator, for locks, 159

_get_interface code, 85
get_response, in Dynamic Interface

Invocation, 89
getsection, of Document interface, 87
get_termination method, use for trans-

action control, 141
Globally Unique Identifier (GUID), for

CORBA interfaces, 253, 254
global metrics, in load balancing, 235
Gradient, as DCE vendor, 177
granularity, 9, 37-65

coupling and, 48-50
definition of, 47
of distributed object model, 39
effect on coupling, 44
effects on monitoring, 224
of IDL interfaces, 31
of locks, 133-134
performance and, 50-51

graph-based approach, in detection of
deadlocks, 135

GUI interface, 225, 248

H
hackers, effects on security, 163
Healthcare subgroup, of OMG, 6
horizontal facilities, of CORBA, 7, 30
HTML

as subset of Standard Generalized
Markup Language, 210

use for document display, 62
Web pages provided in, 198, 199-202,

212
HTTP

port number for, 203
Web server use of, 197, 202

HTTP-NG, 193, 209-210
architecture of, 209

HTTP tunneling, as firewall, 206-207
hybrid mechanisms, for encryption, 169
Hypertext Transfer Protocol. See HTTP

I
IBM, SAX-compliant XML parser of, 213
IdAssisgnmentPolicy, of Portable Object

Adapter, 118

Index 275

IDEs. See COM
IDL. See Interface Definition Language

(IDL)
IdlType, use for Interface Repository, 80
HOP. See Inter-ORB Interoperability

Protocol (HOP)
implementation

definition of, 15
in project life cycle, 38, 97
provision for object wrapper, 33

implementation repository
of distributed objects, 78-79
incarnate and etherialize parts of, 78
as vendor-specific, 79

implicit coupling
of content structure, 61
description of, 45

implicit locks, 156
importer, in Trader Service, 93
incarnateO operation, for activation of an

object, 78, 119
Inferno (Dante), 16
information

accountability role in transfer of, 163
acquisition of, as security threat, 163
alteration of, as security threat, 164
availability role in transfer of, 163
integrity role in transfer of, 163
non-repudiation role in transfer of, 163
transactions involving, 125

inheritance
definition of, 14
multiple, 14

Inprise, as OMG vendor, 5
integration strategies

for applications, 34-35, 36
for databases, 33-34, 36
for existing systems, 31-35, 36
for libraries, 34, 36

integrity, role in information transfer, 163
interceptors

diagram of, 176
in security service, 172-173, 176
use for transparency, 228

MerfaceDef, 80
Interface Definition Language (IDL)

for ContentProvider, 152-154
CORBA's use of, 20-21, 27, 29,138, 253
coupling expression in, 45-46
for document interface, 61, 63
for DocumentManager, 152-154
for document model, 56, 58, 60, 64
Document Object Model in, 212
for document store, 147
inheritance hierarchy defined in, 15
for interceptors, 174
interface expression in, 35, 41, 45, 47,

.79
for Java 2, 195
for lock set factory, 157
of Microsoft, 21
MOF mapping to, 92
Persistent State Service in, 120
for resource object, 146
for synchronization interface, 150-152
use by Object Transaction Service,

138-139, 146, 147
for XML construct, 213

Interface Repository
abstract interfaces in, 80
code for extraction of interface from,

83-84
contents of, 80
example of, 83
information extraction from, 82
inheritance hierarchy for, 80, 82
meta-object information in, 79, 80,91,

94
types in, 80, 81
use for CORBA meta-information, 70,

253
interface(s), 37-65

analysis of specifications of, 32-33
cohesion, 42-44
coupling minimization in, 42
definition of, 41-42
design costs of, 50
design of, 9, 39, 42
in document location, 56-59
for documents, 61
effects on coupling, 50
as entity object, 42

276 Distributed Object Architectures with CORBA

error conditions and, 42
functionally cohesive, 43-44
for Naming Service, 72, 73-74
of Object Transaction Service, 141-43
polymorphism of, 42
as process object, 42
for search engines, 47
structure of, 41-42

interface versioning, CORBA and, 28-29
Internet

application-specific gateway for CORBA
and, 199-202

application users on, 2, 18
CORBA implementations on, 8-9, 10,

94, 193-216
exchange of financial information over,

212
security of objects over, 161, 183, 193

Internet Engineering Task Force (IETF),
SOCKS standard

defined by, 206
interoperability

CORBA, 22-23
software architecture support for, 3

Interoperable Naming Service, of CORBA
3, 25, 28

Interoperable Object Reference (IOR), 23,
71, 240

Inter-ORB Interoperability Protocol
(HOP)

CORBA use of, 194
firewalls and, 202-209
ORB request transformation into, 50
purpose of, 22-23, 108

interprocess life cycle, 98
Interworking model, of CORBA/COM,

242, 250-251
Intranet, 17
intraprocess life cycle, 98
invoice, Extensible Markup Language use

for generation of, 211
IONA

loaders of, 118
as OMG vendor, 5
Orbix for MVS of, 21, 192(n3)
OTS product of, 154, 177

security service of, 175, 190
WonderWall (firewall) of, 209

IRObject, use for Interface Repository, 80
isolated transactions, requirements for,

127, 130

J
Jacobson, Ivar, 13-14, 26, 39, 65
Java, 22, 35, 139

applets of, 195-196, 214
behavior transfer by, 108
definitions for Interface Repository of,

86
Document Object Model use in, 212
for implementation of Dynamic

Skeleton Interface, 90
Internet and, 194-195
multi-tiered systems based on, 7
reflection in, 67
Remote Method Invocation (RMI) of,

21, 29
servlets, 197 of
thin clients and, 18

Java 2, IDL for, 195
Java beans, MOF utilization by, 92
Java virtual machine QVM), 195
Just-in-time (JIT) compilers, for Java

applications on Web, 195

Kerberos, as security protocol, 172, 181,
182

Key Distribution Center, of Kerberos, 182

layers, for persistence, 116-117
LDAP, 72
legacy, as pre-existing system, 31
library

as existing system, 31
integration strategy for, 34, 36
as thread-safe, 34

life cycle
of CORBA and COM objects, 251-253
creation in, 100
deactivation in, 100

Index 277

definition of, 98
destruction in, 100
of distributed objects, 9, 106-112, 123
of domain entities, 110-112
interpretation of, 107
interprocess, 98
intraprocess, 98
loading and saving state in, 113
object activation in, 100
persistence and, 97-123
of runtime instances, 107
support implementations of, 98- 99,

105
timeouts in, 110
transitions of, 99-100

Life Science subgroup, of OMG, 6
LifespanPolicy, of Portable Object Adapter,

118
list method, in Naming Service, 73
load balancing

client responsible, 241
fail-over and, 218, 233-245
life cycle and persistence in, 98, 107,

111
methods for, 236-237
metrics in, 233-235
by Naming Service, 237-239
resource dependency of, 235-236
by transaction processing monitors, 30
by work, 240-245
by worker system, 244-245

loaders, of IONA, 118
loading state

how to use, 114-115
in persistent storage, 115-117

locking, between clients, 108
locks

conflicts in, 132, 133, 156
coordinator for, 159
by database management systems, 128
explicit, 156
granularity of, 133-134, 155
implicit, 156
intention type, 134
interface for, 158-159
of mixed-granularity, 156

two-phase, 133
uses of, 155

lock set factory, resource and, 157
logging

by database management systems, 128,
130, 137

information compiled by, 221
multi-threaded, 223, 228
as type of system trackability, 219, 228

logical cohesion, definition of, 43
Lookup interface, in Trader Service, 93

M
Manufacturing subgroup, of OMG, 6
mapping

by Naming Service, 72
between objects and data store, 114
system failure and, 230
types of, in CORBA/COM integration,

258, 259, 260-262
Marimba, as CORBA Internet application,

196
markers, for loaders, 118
masquerading, as system attack, 164
MD4, MD5, and MD2, as message digest

algorithms, 169
Memento implementation, for capturing

and externalizing object state,
114-115

message digests, in security systems,
169-170

message-level interceptors, in security
service, 174

message tampering, as system attack, 164
Messaging, of CORBA 3, 25
messaging-oriented middleware (MOM),

CORBA and, 29-30
meta-information, 67-94

in CORBA, 68-70
definition of, 67
in document repository, 68-70, 212
downside of use of, 68
in package descriptions, 70
role in production of flexible systems,

9,67
uses of, 67, 68-70, 94

278 Distributed Object Architectures with CORBA

Meta-Information Interchange (XMI), 214
meta-model

in CORBA/COM integration, 250-251
definition of, 67-68

Meta-Object Facility (MOF)
of CORBA, 70, 80, 91-94
CORBA tool integration by, 91
Enterprise Application Integration tool

set using, 92
integration with Business Object

Facility, 92
Interface Repository and, 91
mapping to IDL by, 92
meta-data sharing by, 91, 214
purpose of, 27, 80, 85, 91
self-discovery support by, 91
support for CORBA components by, 92
support of component-based infra-

structures by, 92
methods, definition of, 15
metrics

global, 235
in load balancing, 233-234
on machines, 234-235

MICO, Website for, 123
Microsoft

COM of. See COM (Microsoft)
Web servers from, 197

Microsoft Transactional Service (MTS), 248
middle-tier servers, for persistence solution,

117
middleware software, Object Request

Broker as, 19, 20
modem, communication times in, 50
monetary transactions, 125
monitoring

chain diagram of, 227
of distributed systems, 220, 223-228
granularity effects on, 224

monolithic programs, 7, 54
Motorola, as OMG user, 5
move operation, 106, 107

in CORBA, 107-108
for directory access, 111-112
for domain entities, 110

multiple inheritance, 14
multi-tiered systems

development of, 4, 7
distributed objects as support for, 9,19

mutator (set) method, for controlled
exposure to state, 114

N
NameComponent, of Naming Service, 72,

77, 78
name/password, in security system, 175
name space

move operation applied to, 111
remove operation applied to, 111

NamingContext interface, in load balancing,
237, 239, 242

Naming Service
of CORBA, 24, 25, 28, 30, 70, 71-78,

93,94
description and use of, 72, 111-112,

224
federated, 74-75
for Formatter objects, 75-78
interfaces for, 72, 73-74
load balancing by, 237-239, 241, 242
meta-information provided by, 72
name equivalents in, 72
resolution in, 77-78
root naming context in, 73

nested transactions, 152
Netscape, Web servers from, 197
network

granularity effects on, 50-51
latency of, 50

network definition language, Web inter-
faces to be defined in, 209

news stories, security measures for, 166
nil coupling, definition of, 44
NIS, 72
nonrepudiation

role in information transfer, 163
role in system security, 164, 166,

187-189
NRCredentials object, in nonrepudiation

service, 188, 189

Index 279

object activation daemon (OAD), 71
load balancing by, 239-240
system failure and, 231

object adapters
policies for, 101-102, 105
purpose of, 23, 99, 101, 118, 230

object based distribution, 18
object-by-value specification, OMG

adoption of, 29
object diagram, of UML, 26
Object Linking and Embedding. See OLE1;

OLE2
Object Management Architecture (OMA)

diagram of, 6
Object Request Broker of, 6

Object Management Group (OMG)
Analysis and Design Task Force in, 6
description of, 5-6
Domain Technical Committee of, 6
members of, 5
open standard for ORBs of, 20
query service of, 33
security service of, 165, 168-189
subgroups of, 6
Website for, 70

object models, of object-oriented software,
38

object-oriented analysis and design
(OOAD), Unified Modeling
Language for, 26

Object-Oriented Analysis and Design with
Applications (Booch), 65

object-oriented architecture, 2
Object-Oriented Software Engineering

Qacobson et al.), 13-14, 65
object-oriented systems, reflection in, 67
object-oriented technology, review of,

13-17
object reference, insertion into name

space, 77
object-relational mapping (ORM), 114
Object Request Broker (ORB)

object adapter for, 23
purpose of, 6-7, 19-20
system management and, 30, 50, 228

Web server and gateway of, 196-202
object(s)

copying implementations of, 108-109
as instance of a class, 14
reclaiming of, 103
transactional, 139-140
version control of, 107

Objects by Value, of CORBA 3, 25
object-store mapping, in persistence, 117
Object Transaction Service (OTS), 138-154

basic programming model for, 140-141
context management in, 144
Coordinator interface of, 142
of CORBA, 10, 24-25, 159
exceptions in, 144-145
explicit propagation in, 143
flexibility of, 159
IDL use by, 138
implicit propagation in, 143, 154
interfaces of, 141-43
prepare method in, 146
programming models for, 143
properties of, 138
recoverable objects in, 140
Resource interface of, 142
resource managers for, 145-150
rollback in, 146
SubtransactionAwareResource of, 143
transactional objects of, 139-140, 143
transactional servers in, 140
transaction client of, 139
transaction context propagation in,

143-144
transaction model of, 139-140
as transaction monitor, 126, 229

object wrapper
diagram of, 32
production of, 32-33
purpose of, 31-32

OLE1, 247, 248
OLE2, 248
OMG. See Object Management Group

(OMG)
OMT method, 26
OOSE method, 26
Open Finance exchange (OFX), use on

280 Distributed Object Architectures with CORBA

Internet, 212
Open Software Description (OSD), 70
Open Software Foundation (OSF),

Website of, 177
OperationDef, 80
OQL, 117
ORB. See Object Request Broker (ORB)
Originator, creation and acceptance of

mementos by, 115
OTS. See Object Transaction Service (OTS)
overt coupling

definition of, 44
problems from, 44

P
package

definition of, 70
meta-information in descriptions of, 70

packet-filtering router, as firewall, 204
Paradox, 35
parallelism, subtransaction use for, 152
partitioning of systems, 9, 54-55, 64

description of, 40
goals of, 39

Patterns, description of, 16-17
PDF

of Formatter object, 92, 93
of NarneComponent, 77

performance
in document location, 58-59
granularity effects on, 50-51

Perl, early use to write CGI script, 197
persistence

choice of software and, 121-122
definition of, 98
layers for, 116-117
life cycle and, 97-123
with Memento, 115
occurrence of, 115-116
organization of, 117
server structure for, 116
service approach to, 120
vendor-specific solutions for, 117-118

persistence engine, for object-store map-
ping, 117

Persistence service, of distributed archi-
tectures, 5, 19, 33

persistent distributed objects, 79
Persistent Object Service (POS), 120
Persistent State Service (PSS)

component quest of, 121
goal of, 120
as replacement for Persistent Object

Service, 120
pipeline architecture, 2
poll_response, in Dynamic Interface

Invocation, 89
polymorphism

CORBA mechanisms for, 47
definition of, 16, 47
as object-oriented concept, 5, 47
in reuse of interfaces, 42

Portable Object Adapter (POA)
Active Object Map of, 118-119
of CORBA 3, 23, 105
operation of, 118
policy types of, 118
Website for, 123

port numbers, for Internet protocols, 203
PostScript format, 60, 62
PowerBuilder, 35
prepare method, in Object Transaction

Service, 146
principals

authentication of, 175-179
definition of, 175
delegation of privileges of, 183-185

printer, interface for, 50
print facilities, of distributed systems, 41
privacy, security for, 161
privilege attributes, use in security, 178
procedural cohesion, definition of, 43
process object, interface representation of,

42
project life cycle

analysis phase of, 38
deployment phase of, 38
design phase of, 38
development phase of, 38
implementation phase of, 38

Index 281

phases of, 38-39
testing phase of, 38

Property Service, 98
protocol gateways, from Dynamic

Interface Invocation, 89
proxy(ies)

for client, 22, 84
for firewalls, 205-206
for load balancing, 243
use for communication with distributed

object, 18, 22, 71, 87, 230
public-key cryptography, for computers,

167, 169, 170

Rational Software Corporation, 26
reference counting, 123
reflection

definition of, 67
in object-oriented systems, 67

register method, code for, 147-149
register jesource method, in Object

Transaction Service, 147
register^synchronization method, for

transaction coordination, 150-151
Reil, Arthur, on coupling, 44
Relationship Service, 98
reloading, in transaction control, 108-109
Remote Method Invocation (RMI)

diagram of, 24
of Java, 21, 29
use to build distributed object systems,

8
remove operation, 102, 106

in distributed reference accounts, 110
replay completion method, in Object

Transaction Service, 149
replaying, as system attack, 164
Repository code, 82
Request for Proposals (RFP), 120

for COM/CORBA Integration, 247
fine-grained object support by, 121

request-level interceptors, in security
service, 174

jequest method, for Interface Repository,
86-87

RequestProcessingPolicy, of Portable Object
Adapter, 118

resolve_initial_references method
in rootnaming context, 75
use for Interface Repository, 83

resource, stealing of, as security threat,
164

Resource interface, of Object Transaction
Service, 142, 146

resource managers
logging by, 137
for transaction processing, 129,130-131
XA-compatible, 145-146

reused instances, in activation/deactivation
policies, 103

RFP. See Request for Proposals (RFP)
risk analysis, for security, 166, 168
Rivest, Ron, 169
rollback method, in Object Transaction

Service, 146
root naming context, 77

code for, 76
routers, as firewalls, 204
RPC-style programming, load balancing

and, 239, 241
RTF, of Formatter object, 92
Rumbaugh, James, 26
runtime instances, life cycle of, 107

saving state
how to use, 114
in persistence, 113

scaleability, software architecture support
for, 3

scanner, object representation of, 47
Schneier, Bruce, 167, 169
scripting tools, from Dynamic Interface

Invocation, 89
search engine, interface for, 47
secret-key cryptography, for computer

security, 167, 169, 182
Secure Hash Algorithm (SHA), for message

digests, 169
Secure Inter-ORB Protocol (SECIOP), 172,

189

282 Distributed Object Architectures with CORBA

secure invocation interceptor, description
of, 176

Secure Socket Layer (SSL)
CORBOL and, 190
integration with CORBA, 161
as Internet standard for security,

208-209
as security protocol, 172, 181, 183

security environment domains
description and use of, 180, 181
interoperability in, 183

security policy domains, description and
use of, 180-181

security/security service, 161-192
auditing role in, 166-187
authentication use in, 162, 165, 175,

177, 178
authorization/access control in, 165,

185-186
certificates for, 170
confidentiality in, 162
context of, 179
of CORBA, 10, 100, 161-192
credentials use in, 177, 178, 185
delegation in, 183-185
of distributed architectures, 5
domains for, 179-183, 191
elements of, 162-163
encryption role in, 162, 165, 186
features of, 165-166
firewalls and, 202-209
goals of, 172
interceptors for, 172-173
interoperability in, 183, 189
of large systems, 165
levels of, 171
logging in, 221
management issues of, 161, 191
message digests in, 169
message integrity in, 186
model for, 172-173
name space as indication of, 111
nonrepudiation in, 187-189
policy for, 166, 168
principals in, 175, 183
principles of, 162-168

privacy in, 186
purpose of, 20
quality of protection in, 186
reasons for, 161
risk analysis for, 166
system attacks on, 164-165
threats to, 163-165

security technology domains, description
and use of, 181, 183

sequence diagrams
of object-oriented software, 38
for tasks required by systems, 41
of UML, 26

sequential cohesion, definition of, 43
ServantActivator interface, 119
ServantManager interface, 119
servant managers, description and use of,

119
servers

generic, from Dynamic Skeleton
Interface, 89

recoverable, 140
structure for persistence in, 116
transactional, 140

service-oriented architecture, 30-31
service requests, as trnasactions, 125
servlets, in Web server for Java, 197
session key

in Kerberos, 182
for message encryption, 169

shared instances
in activation/deactivation policies, 104
diagram of, 105

Simple API to XML (SAX) compliant
parser, 213

Simple Network Management Protocol
(SNMP), use for process tracking,
224, 225, 239

"skeleton", of server, 22
slash (/), for UNIX Naming Service, 72, 78
Smalltalk, 18
SMTP, as Internet application protocol,

203, 204
SOCKS, network proxy for, 206
software architecture, 1

abstraction support by, 3

Index 283

changes in, 3
component support by, 3
definition of, 7
extensibility support by, 3
good qualities of, 3
importance of, 2-3
interoperability support by, 3
scaleability support by, 3
types of, 2

"Software Package Description", 70, 71
software systems

architecture of. See software architecture
evolution of, 4
shaky foundations in, 2

spaghetti code, application in, 34
SPKM, as security protocol, 172
SQL, 115, 117
SSL. See Secure Socket Layer (SSL)
stability, of distributed systems, 218
Standard Generalized Markup Language

(SGML), Extensible Markup
Language (XML) as subset of, 210

start calls, for transactions, 130
statechart diagram, of UML, 26
state diagrams, of object-oriented software,

38
static models, of object-oriented software,

38
store-mapping-specific code, 114
stove pipe system

avoidance of, 50
definition of, 48
production of, 49-50

stringifying, of CORBA object reference,
252

subsystems
cohesion of, 42, 44
of distributed systems, 40

SubtransactionAwareResource interface, of
Object Transaction Service, 143

subtransactions, 152
Sun Microsystems

Java of. See Java
SAX-complianmt XML parser of, 213

support service, for distributed transactions,
20

symmetric cryptography, for computer
security, 167, 182

symmetric secret keys, in security system,
175

synchronization objects, Object Trans-
action Service provision for, 150-152

syslog (UNIX), logging by, 220
systems

configuration of, meta-information
role in, 67

flexibility of, 67
partitioning of, 54-55, 64
security for, 161-192
self-description in, 68

TAO, Website for, 123
TCP

Internet application use of, 203
sockets based on, 13

Telecommunications subgroup, of OMG,
6

telnet
as Internet application protocol, 203,

204
proxies for, 205

temporal cohesion, definition of, 43
Tengha, of BEA, 215
Terminator object, use to end transaction,

141
testing phase, in project life cycle, 38
thin client, definition of, 18
thread-safe library, integration strategy for,

34
"three amigos", of Rational Software

Corporation, 26
three-tier architecture

components of, 19
partitioning of, 54-55
of transaction processing, 126

Ticket Granting Service (TGS), of Kerberos,
182

timeouts
in detection of deadlocks, 135
in life cycle transitions, 102-103, 110

Top End, from BEA, 129

284 Distributed Object Architectures with CORBA

traced delegation, in security service, 184
trackability, of distributed systems,

219-229
trader constraint language, use in Trader

Service, 93
Trader Service

of CORBA, 25, 70, 92-93
federation in, 93
use after system failure, 232
uses of, 92-93

transactional client, definition of, 139
transactional document management,

example of, 152-154
TransactionalObject interface

inherited from DocumentManager, 152
of Object Transaction Service, 143
use in Object Transaction Service, 140

transactional objects, definition of,
139-140

transaction context propagation, of Object
Transaction Service, 143-144

transaction manager, for transaction
processing, 129, 131-132

Transaction Monitor, 126
transaction processing monitor, uses of,

129, 135-136
transaction processing (TP), 126-138

three-tier architecture of, 126
transactions, 125-160. See also Object

Transaction Service (OTS)
ACID properties of, 127, 130, 135, 159
atomic, 127, 130, 135, 136
completed, 131
consistent, 127
contention in, 134-135
control of, 108
database management systems for, 128
deadlock in, 134-135
definition of, 125
demarcation calls for, 129-130
of distributed objects, 10
durable, 128, 130, 136
failure in, 130
information databases for, 125
integrity of, 125-128
isolated, 127-128, 130

locks in, 132-134
logs of, 130, 221
monitors for, 126
nested, 152
not prepared to commit, 131
Object Transaction Service for, 138-154
prepared to commit, 131
processing of. See transaction process-

ing (TP)
roll back in, 130
subtransactions, 152
transaction manager for, 129,130-131
two-phase commit in, 130, 131,

135-138, 142, 145, 150-152
types of, 125

transaction service, of distributed archi-
tectures, 5

Transarc
as DCE vendor, 177
as Encina vendor, 25, 129

transient distributed objects, 79
Transportation subgroup, of OMG, 6
tree metaphor, for objects, 14
tryjock method, use for lock set, 158
Tuxedo, of BEA, 25
two-phase commit protocol

commit phase for, 136-137
prepare phase for, 136-137
for transactions, 130, 131, 135-138,

142, 145, 146
two-tier architecture, 18-19
type attribute, of document, 58
TypeDef, use for Interface Repository, 80

U
UDP, Internet application use of, 203
Unified Modeling Language (UML)

activity diagram of, 26
adoption by OMG, 6, 26
case diagram of, 26, 27
class diagram of, 26
collaboration diagram of, 26
component diagram of, 26
deployment diagram of, 26
description of, 26
diagrams of, 26

Index 285

metadata storage expression by, 27
MOF implementations in, 91
object diagram of, 26
sequence diagram of, 26
statechart diagram of, 26

Uniform Resource Identifier (URI), use for
location of Web resources, 197

Uniform Resource Locator (URL), for
location of Web resources, 197,
199, 203, 214

U.S. National Institute of Standards and
Technology (NIST), Secure Hash
Algorithm of, 169

U.S. Post Office, certificate authority of,
170

UNIX file system, Naming Service code in,
72

Upgrade lock, uses of, 155
upgrades, of distributed systems, 218
URI. See Uniform Resource Identifier (URI)
URL. See Uniform Resource Locator (URL)
usage metrics, in load balancing, 235
usage models, of object-oriented software,

38
use cases, of object-oriented software, 38

vandalism, as security threat, 164
vehicle metaphor, for encapsulation, 16,

17
vendors, persistence solutions of, 117-118
VeriSign, certificate authority of, 170
version control, of objects, 107
versioning, of interfaces, 28-29
vertical facilities, of CORBA, 7, 30
Visigenic, Gatekeeper (firewall) of, 209
Visual Basic. See COM
void pointer, of C++, 60
VoteCommit method, for Object Transaction

Service, 146, 149
VoteReadOnly method, for Object Trans-

action Service, 146
VoteRollback method, in Object Transaction

Service, 149

W
Web access, by proxy brdige, 102
Web Server/ORB Gateway, Website use of,

215
Website

for MICO, 123
for Object Management Group, 70, 94
of Open Software Foundation, 177
for TAO, 123

"what if" scenario, for object manipula-
tion, 109

Windows, DCOM recomended for, 264
WonderWall (IONA), as firewall, 209
World Wide Web Consortium (W3C),

Web standards denned by, 209
write lock, uses of, 155

XA-compatible resource managers, 145,
146, 152, 154, 155

XA "switch" structure, 54
X.509 certificates, for information security,

170, 190
XML. See Extensible Markup Language

(XML)
XML Metadata Interchange (XMI), use of,

92
X/Open Company Limited, transaction

processing model from, 129
X/Open standard, applications using, 138

"yellow pages", of CORBA, 25, 70, 93

	Biographies
	Contents
	Foreword
	Acknowledgments
	1 Introduction
	What Architecture Is
	Why Architecture Is Important
	Distributed Architectures
	The OMG and CORBA
	Purpose and Scope
	Intended Audience
	Organization of Contents
	References

	2 Distributed Objects
	Quick Review of Object-Oriented Concepts
	Object Based Distribution
	What CORBA Provides
	What CORBA Does Not Provide
	Service-Oriented Architecture
	Integration Strategies with Existing Systems
	Summary
	References
	Notes
	Chapter 3

	3 Partitioning, Interfaces, and Granularity
	The Project Life Cycle
	Partitioning
	Interfaces
	Granularity
	Example: Document Retrieval
	Summary
	References
	Chapter 4

	4 Meta-Information
	Examples of Using Meta-information
	Meta-information in CORBA
	Summary
	References
	Notes

	5 Life Cycle And Persistence
	Life Cycle
	Persistence
	Life Cycle IDL (Partial)
	Summary
	Notes

	6 Transactions
	Transaction Processing
	Locks
	The OMG Object Transaction Service
	Concurrency Control Service
	Model
	Summary
	References
	Notes

	7 Security
	Security Principles
	Review of the OMG Security Service
	Security context
	SSL and CORBA
	Summary
	References
	Notes

	8 CORBA and the Internet
	Architectures
	HOP and Firewalls
	HTTP-NG
	XML and CORBA
	Summary
	References

	9 Architecture Considerations for Deployment
	Required Characteristics
	Keeping Track
	Achieving Fail-over
	Load Balancing
	What to balance
	Summary
	Appendix

	COM/CORBA Integration
	From Whence We COM
	Motivation
	In Terms of COM
	Bridging the Gap
	Metamodel
	Type Mapping
	Integration
	Distribution

	References
	Index

