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Introduction

Mathematics Education in the Digital Era (MEDEra) Series

The Mathematics Education in the Digital Era (MEDEra) is a new Springer
book series co-edited by Dragana Martinovic, University of Windsor, Canada,
and Viktor Freiman, Université de Moncton, Canada. With two annual volumes,
it attempts to explore ways in which digital technologies change conditions for
teaching and learning of mathematics. By paying attention also to educational
debates, each volume will address one specific issue in mathematics education (e.g.,
visual mathematics and cyber-learning; inclusive and community based e-learning;
teaching in the digital era) in an attempt to explore fundamental assumptions about
teaching and learning mathematics in the presence of digital technologies.

This series aims to attract diverse readers including: researchers in mathematics
education, mathematicians, cognitive scientists and computer scientists, graduate
students in education, policy-makers, educational software developers, administra-
tors and teachers-practitioners.

Among other things, the high quality scientific work published in this series will
address questions related to the suitability of pedagogies and digital technologies
for new generations of mathematics students who grew up with digital technologies
and social networks. The series will also provide readers with deeper insight into
how innovative teaching and assessment practices emerge, make their way into
the classroom, and shape the learning and attitude towards mathematics of young
students accustomed to various technologies.

The series will also look at how to bridge theory and practice to enhance
the different learning styles of today’s students, and turn their motivation and
natural interest in technology into an additional support for meaningful mathematics
learning. The series provides the opportunity for the dissemination of findings that
address the effects of digital technologies on learning outcomes and their integration
into effective teaching practices; the potential of mathematics educational software
for the transformation of instruction and curricula; and the power of the e-learning
of mathematics, as inclusive and community-based, yet personalized and hands-on.

v



vi Introduction

Visual Mathematics and Cyberlearning � The First Book
in the MEDEra Series

The first book in the MEDEra series, entitled Visual Mathematics and Cyber-
learning, is co-edited by Dragana Martinovic, University of Windsor, Canada,
Viktor Freiman, Université de Moncton, Canada, and Zekeriya Karadag, Bayburt
University, Turkey. It offers a platform for dissemination of new ideas in visual
mathematics and cyberlearning, addresses new developments in the field, and
evokes new theoretical perspectives in mathematics education.

Recent studies describe the Net Generation as visual learners who thrive
when surrounded with new technologies and whose needs can be met with the
technological innovations. These new learners seek novel ways of studying, such as
collaborating with peers, multitasking, as well as use of multimedia, the Internet,
and other Information and Communication Technologies. How this can be used
to present mathematics in new ways, as a contemporary subject that is engaging,
exciting and enlightening?

For example, in the distributed environment of cyber space, mathematics learners
play games, watch presentations on YouTube, create Java applets of mathematics
simulations and exchange thoughts over the Instant Messaging tool. How should
mathematics education resonate with these learners and technological novelties that
excite them? How can educators make a meaningful use of dynamic, interactive,
collaborative, and visual nature of new learning environments while having a
deeper understanding of their potential advantages and limitations? Authors of
nine chapters share their conceptual frameworks and research data that shed a
light on innovative theories and practices in the field of visual mathematics and
cyberlearning.

Jones, Geraniou, and Tiropanis study potential of Web 3.0 semantic tools that
enhance mathematics discussion within collaborative, shared workspace by means
of graphical argumentation and chat tools. Elementary students were given an
opportunity to explore different patterns and combination of patterns by finding
and augmenting an algebraic rule while working collaboratively in the eXpresser
environment accompanied by visual support provided by LASAD. The authors
reflect on innovative potential of cyberlearning to foster knowledge development
and mathematical thinking.

Alagic and Alagic, on their turn, provide in-depth analysis of research mathemati-
cians working together by means of large-scale computer supported collaborative
learning tools that enrich networking opportunities and enhance self-regulated
learning.

Çak{r and Stahl describe socially situated interactional processes involved in
collaborative online learning of mathematics. In the common online environment
their Virtual Math Teams problem solve using chat, shared drawings and mathemat-
ics symbols and thus co-construct a deep mathematical understanding at the group
level.
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Güçler, Hegedus, Robidoux, and Jackiw investigate mathematical discourse of
young learners involved in multi-modal mathematical inquiries. Using a context of
dynamic geometry with haptic devices, authors claim that such integration fosters
new learning experiences that lead to evolution of young learners’ expression from
informal to formal mathematical discourse.

Trninic and Abrahamson are interested in the role of embodied artefacts in the
emergence of mathematical competence, viewed as independent from the physical
world. By performing physically in the service of doing mathematics, students
make observable what is otherwise hidden away ‘in their heads’. In their chapter,
the authors enrich investigations of embodied artefacts in light of increasingly
ubiquitous monitor-sensor technologies, namely the Mathematical Imagery Trainer.
Students work with proportions by moving their hands in an environment that
changes its state in accord with the ratio of the hands’ respective heights, then reflect
on what they see on the computer screen, and analyze mathematically as particular
case of proportionality.

Radford uses an approach where human cognition is conceptualized in non-
dualistic, non-representational, and non-computational terms. The basic idea is that
cognition is a feature of living material bodies characterized by a capacity for
responsive sensation. As a result, human cognition can only be understood as a
culturally and historically constituted sentient form of creatively responding, acting,
feeling, transforming, and making sense of the world. In his chapter, the author
presents classroom experimental data involving 7–8-year-old students dealing with
pattern recognition that lead to suggesting that a sensuous-based materialistic
monistic view of cognition needs to attend not only to the plethora of sensorial
modalities that teachers and students display while engaging in mathematical
activities, but also to the manner in which sensorial modalities come to constitute
more and more complex psychic wholes of sensorial and artefactual units.

Gadanidis and Namukasa discuss a case study of online mathematics learning
for teachers through the lens of four affordances of new media: democratization,
multimodality, collaboration and performance, which help to rethink and disrupt
existing views of mathematics for teachers and for students.

LeSage used web-based video clips on rational numbers to provide pre-service
teachers with accessible and flexible learning opportunities to support their indi-
vidual learning needs. According to research findings from participants’ narratives,
careful consideration must be paid not only to the instructional design of video clips
but also to support the development of pre-service teachers’ pedagogical content
knowledge and content knowledge of mathematics.

In the final chapter, Martinovic, Freiman, and Karadag show that diverse
examples and deep insights given by the authors of the book chapters extend our
understanding of the features and complexity of virtual mathematics tools suitable
for visualization and exploration in the light of Activity and Affordance Theories,
thus opening new perspectives in researching mathematics education in the digital
era that can be investigated further in next volumes of the series.

Viktor Freiman and Dragana Martinovic, MEDEra Editors
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Patterns of Collaboration: Towards Learning
Mathematics in the Era of the Semantic Web

Keith Jones, Eirini Geraniou, and Thanassis Tiropanis

Abstract With current digital technologies there are a number of networked
computer-based tools that provide ways for users, be they learners or teachers, to
collaborate in tackling visual representations of mathematics, both algebraic and
geometric. For learners, there are various ways of collaborating that can occur while
the learners are tackling mathematical problems. In this chapter we use selected
outcomes from recent innovative research on this aspect of learning and teaching
mathematics with digital technologies to review the patterns of collaboration that
can occur in terms of teacher and learner experience. Given that such patterns of
collaboration are via current digital technologies, this chapter goes on to offer a
view on the likely impact on the cyberlearning of mathematics of progress towards
the next generation of Web technologies that seeks to make use of ideas related
to the web of data and the semantic web. Such impact is likely to be in terms of
enhancing the learning applications of digital technologies, improving ways of ad-
ministrating the educational programmes that they support, and potentially enabling
teachers to maintain involvement in technological development and use over the
longer-term.
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Introduction

During the 30 years since the launch in 1981 of the IBM model 5150 personal
computer (the PC that became the worldwide standard) there has been the imple-
mentation and enormous growth of communication between networked computers
via the World Wide Web. The term Web 2.0 was coined by DiNucci (1999) to
capture how Web technologies have developed since the beginning of the Web
in 1991 such that users are able to interact and collaborate with each other in
increasingly diverse ways. Since 2001, ideas about the nature of Web 3.0 (see,
Berners-Lee, Hendler, & Lassila, 2001) have centred on features such as increasing
personalisation and on the possible advent of what Berners-Lee calls the Semantic
Web, a new vision of the Web where computers ‘understand’ the semantics (or
meaning) of data and information on the World Wide Web.

Over the same time period governments across the world have been promoting
digital technologies as powerful tools for education (for current information, see, for
instance: Law, Pelgrum, & Plomp, 2008; EU Education, Audiovisual and Culture
Executive Agency, 2011). As a result of commercial and Governmental initiatives,
there are a range of computer-based networked tools that provide ways for users
to interact and collaborate. In this chapter we use carefully-selected outcomes
from recent innovative research involving digital technologies to review the various
patterns of collaboration that can take place. The aim is to review the inter-person
interaction and collaboration via digital technologies in terms of the experience
of those involved. Given that such collaborations are based around current digital
technologies and the current enactment of the World Wide Web, we use our
research experience to offer a view on the likely impact on the ‘cyberlearning’ of
mathematics of developments towards Web 3.0, especially developments relating to
the notion of the Semantic Web.

Cyberlearning: From Web 1.0 to Web 2.0

The Web, from its beginnings in the early 1990s, has provided new and powerful
ways for finding and accessing resources that could be used for learning. Regardless
of the context (whether formal or informal), individuals have been able to use the
Web to find content and software to support learning. The volume and types of
resources that have become available on the Web have made it possible for people
not only to find more content than ever before (and usually more efficiently too), but
also collaboratively to publish additional content – and even to categorise it using
taxonomies and tags. For many, this transition from a ‘read-only’ Web to a ‘read-
write’ Web signifies the transition from Web 1.0 to Web 2.0 (although Berners-Lee,
the inventor of the Web, always envisaged the Web as a means of connecting people;
see, Laningham, 2006).

Web 2.0 technologies have enabled user-generated content, and powerful
paradigms such as crowdsourcing (the outsourcing of tasks that might traditionally
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have been performed by employees, or a contractor, to an undefined group of
people – a “crowd” – often via an open call). Such possibilities have been
transformative by making the Web into a host for a large number of knowledge
repositories (an example being Wikipedia) and by paving the way for a transition
from a ‘Web of documents’ to a ‘Web of data’. In this way the Web is becoming
a repository of data (in addition to documents) and people are able efficiently to
aggregate the data that becomes available to create and provide new applications.
Another key characteristic of the Web is that it has leveraged network effects, with
resultant rapid growth. Such network effects have occurred because the more that
content and data becomes available on the Web, the higher the value of the Web
to the users and, in turn, the higher the volume of content and data that users are
willing to contribute. At the same time, the Web has provided an environment for
network effects to take place, examples being the growth of services like Wikipedia
and of online social networks such as Facebook.

Key applications that enabled the transition to Web 2.0, according to Anderson
(2007), include blogs, wikis, multimedia sharing, tagging and social bookmarking,
audio blogging and podcasting, and RSS and syndication. These have been comple-
mented by newer phenomena such as social networking, aggregation, data mash-
ups, and collaboration services (Anderson). All these developments have meant that
the use of Web 2.0 services for learning is becoming increasingly widespread. For
example, the UK Higher Education sector has adopted technologies for publication
repositories and wikis on an increasing scale; a survey in 2009 reported that 40
universities (out of 165) had adopted publication repository software systems and
14 had adopted wikis (see, Tiropanis, Davis, Millard, & Weal, 2009a).

The key value of Web 2.0 for education is in enhancing learning experiences,
given its potential for personalisation, customisation and collaboration for knowl-
edge creation (McLoughlin & Lee, 2007). Social software is increasingly an enabler
for pedagogical innovation in terms of peer-to-peer learning, extended learning,
cross-cultural collaborative work using student-generated content, and learner-
centred instruction. The benefits of Web 2.0 technologies have been identified for a
number of educational scenarios such as teacher-class communication and students’
participation in the collection and integration of learning material (Rollett et al.,
2007). Most such benefits centre on the ease of reporting progress (e.g. through
using blogs) and the efficiency of collaborative construction of complex reports
(e.g. through using wikis for assignments). Criticism of Web 2.0 use in education
often centres on the sometimes low quality of generated content and the way
amateurishness can flourish; in addition, critics bemoan the time and knowledge
investment that Web 2.0 technologies can require (see, Grosseck, 2009).

Overall, the unique value of Web 2.0 technologies seems to be in:

• Enabling information finding on a large scale, with the number of resources that
learners can find on the Web growing every day.

• Supporting collaborative knowledge construction amongst a large number of
people; using Web 2.0 services such as wikis and social software it is possible to
mobilise communities across the world as Web 2.0 technologies can cope with
the size and geographical distribution of these communities in efficient ways.
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• Enabling collaboration among individuals for learning purposes; this is more eas-
ily and more efficiently accomplished using Web 2.0 software and, furthermore,
when it comes to online collaboration, it is possible to achieve better matching
among learners when geographical constraints are not a barrier.

These affordances that Web 2.0 technologies offer have also been incorporated
into a number of areas of education including the teaching and learning of
mathematics. It is to the findings of selected aspects of two pertinent current
research projects that we turn next. In the next section we report on groups of
lower secondary school pupils (aged 11–14) interacting and collaborating whilst
tackling mathematical problems involving the visual and geometric representation
of algebraic ideas. Our aim in doing this is to review the patterns of such
collaboration in terms of learner and teacher experience.

Patterns of Collaboration: The Case of the MiGen
and Metafora Projects

In this section, we illustrate how advances in technological tools can aid student
collaboration by showing the patterns of collaboration in the cases of two such
tools that were developed as part of the MiGen1 and the Metafora2 projects. Further
below we elaborate on how these two tools, namely eXpresser and LASAD, impact
on student collaboration. We begin by summarising the general possibilities for
collaboration in exploratory learning environments.

Collaboration in Exploratory Learning Environments

Research (e.g. Cobb, Boufi, McClain, & Whitenack, 1997; Leonard, 2001;
Linchevski & Kutscher, 1998) has revealed the considerable value of collaboration
and classroom discourse towards students’ cognitive development. When working
in small groups, more students are likely to ask questions compared with whole
class situations. In addition, students are more likely to reflect on their own work
and attempt to make sense of the work of other students. Students who explain
their ideas and solutions to their peers have greater success in their learning than
those who do not (e.g. Cohen & Lotan, 1995; Lou et al., 1996). Through such

1The MiGen project is funded by the ESRC/EPSRC Teaching and Learning Research Programme
(Technology Enhanced Learning; Award no: RES-139-25-0381). For more details about the
project, see http://www.migen.org
2The Metafora project is co-funded by the European Union under the Information and Commu-
nication Technologies (ICT) theme of the 7th Framework Programme for R&D (FP7). For more
information, visit http://www.metafora-project.org

http://www.migen.org
http://www.metafora-project.org
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interactions, students participate actively in learning with their peers and tend to
adopt metacognitive skills, all of which is beneficial for learning (Biggs, 1985;
Maudsley, 1979; Schoenfeld, 1992).

Recent research (e.g. Geraniou, Mavrikis, Hoyles, & Noss, 2011; Healy &
Kynigos, 2010) is showing how the use of exploratory learning environments can
support, and moreover enhance, students’ knowledge development and interactions
through individual as well as collaborative activities. A pattern of collaboration is
therefore emerging where exploratory learning environments such as microworlds
(a “subset of reality or a constructed reality whose structure matches that of
a given cognitive mechanism so as to provide an environment where the latter
can operate effectively”, Papert, 1980, p. 204) are increasingly being used in the
classroom. Microworlds aim to embed “important ideas in a form that students
can readily explore”, with the best having “an easy-to-understand set of operations
that students can use to engage tasks of value to them, and in doing so, they
come to understanding powerful underlying principles” (diSessa, 2000, p. 47). As
such, microworlds can empower learners to engage with abstract ideas and explore
not only the structure of objects, but also the relationships through investigating
the underlying representations that enforce these relationships (Hoyles, 1993;
Thompson, 1987). This can happen through individual student interactions as well
as through discussions with their peers. In the particular case of the MiGen system,
we show in the next sub-section some of the forms of discussion between students
that can be supported by visual artefacts and dynamic objects that students can
interact with and explore.

The MiGen System and the Metafora Platform

The MiGen system provides digital tools that support students’ collaboration by
allowing them to interact with each other as they tackle algebraic generalisation
problems. The Metafora platform, currently under development, is being designed
to offer visual means (including pictorial symbols) for students to use to plan their
learning together and visualise their sub-tasks, stages of work, and required roles.
The Metafora platform is also being designed to provide an argumentation space
where students can discuss their findings and emerge with an agreed solution.
In what follows we illustrate the different patterns of collaboration of students
while they interact in the mathematical microworld of the MiGen system and when
their discussions and structured arguments are further supported by the Metafora
platform. We start by giving some information regarding the two projects.

The MiGen project aimed to tackle a well-known issue in mathematics educa-
tion – the difficulty that students in lower secondary school (when aged 11–14) can
have in coming to terms with algebraic generalisation. Such students are generally
able to verbalise algebraic rules in natural language but can struggle to use the
appropriate mathematical language (Warren & Cooper, 2008). In addition, students
can often fail to see the rationale, let alone the power, of algebraic generalisa-



6 K. Jones et al.

Fig. 1 An example of a
TrainTrack in eXpresser

tion. In an effort to support such students in learning algebraic generalisation,
a computational environment comprising a number of tools was developed. The
core of the MiGen system is a microworld, named eXpresser, in which students
build figural patterns of square tiles (as in Figs. 1, 2 and 3) and express the rules
underlying the chosen patterns. The eXpresser is designed to provide students with
a model for generalisation that could be used as a precursor to introducing algebra,
one that helps them develop an algebraic ‘habit of mind’ (Cuoco, Goldenberg,
& Mark, 1996). The sequence of student activity in eXpresser involves some free-
play to explore the system, some introductory tasks to become familiar with its
features, a generalisation task and a collaborative activity. The MiGen system also
has an ‘intelligent’ component, namely eGeneraliser, which provides feedback
to students throughout their interactions with the system (see, Gutierrez-Santos,
Mavrikis, & Magoulas, 2010; Noss et al., 2012). A suite of tools, named the
Teacher Assistance Tools, aim to help the teacher in monitoring students’ progress,
assisting with possible interventions and reviewing students’ achievements to aid
future lesson planning. One of these tools is the Grouping Tool which puts forward
possible pairings of students for collaboration based on the similarities between
students’ constructions in the MiGen system (for details of the other tools, see,
Gutierrez-Santos, Geraniou, Pearce-Lazard, & Poulovassilis, 2012; Pearce-Lazard,
Poulovassilis, & Geraniou, 2010).

The Metafora platform, in comparison, includes a web-based argumentation tool
called LASAD3 that enables discussions to take place within groups of learners in a
structured manner (Loll, Pinkwart, Scheuer, & McLaren, 2009; Scheuer, McLaren,
Loll, & Pinkwart, 2009). This collaborative, shared workspace, together with
graphical argumentation and chat tools, is used by students to share ideas, organise
their thoughts, discuss and argue as they learn new concepts (Dragon, McLaren,
Mavrikis, & Geraniou, 2011). In addition, other components of the Metafora plat-
form analyse the students’ work and provide feedback that supports collaboration

3http://cscwlab.in.tu-clausthal.de/lasad/

http://cscwlab.in.tu-clausthal.de/lasad/
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Nancy GREEN: BLUE:

Corresponding algebraic rule: 7n + 5

Janet

RED: BLUE:

GREEN:

Corresponding algebraic rule: 4n + 3 x (n + 1) + 2

Fig. 2 Nancy and Janet’s TrainTrack models

and helps students make progress while they grapple with the challenge. The system
also identifies situations where the teacher might encourage peer support or shared
knowledge evaluation.

Collaboration Within the MiGen System
and the Metafora Platform

To illustrate what patterns of collaboration are possible with the MiGen and the
Metafora systems, we analyse in this section some selected data from several
learning episodes with these systems. For analyses of the wider pedagogical use of
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Fig. 3 Students’ different TrainTrack models

eXpresser, we refer readers to Geraniou, Mavrikis, Kahn, Hoyles, and Noss (2009),
Mavrikis, Noss, Hoyles, and Geraniou (2012) and Noss et al. (2012).

The first scenario is from the work of two 12 year-old students, Janet and Nancy4

from a UK school. The students were part of a class of 22 Year seven students (aged
11–12) who participated in a series of lessons during which they were introduced
to eXpresser through a number of introductory and practice tasks and solved a
linear pattern generalisation task, namely TrainTrack. In this task the students
were presented with the TrainTrack model (see, Fig. 1) animated in the Activity
Document, a tool of eXpresser that presents the task-model, the task-questions
and the task-goals and in which students can type their answers. The students
were asked to construct the TrainTrack model in eXpresser using different patterns
and combinations of patterns depending on their perceptions of the TrainTrack’s
geometrical structure and to derive a general rule for the number of square tiles
needed for any Model Number.

At the end of the TrainTrack activity, and to prepare for the collaborative activity,
students were asked to use the Activity Document tool to record some arguments that
would support the correctness of their general rule. Students were then paired by
the system’s Grouping Tool based on the dissimilarity of their models and asked
to work on a new collaborative activity that involved discussing the correctness
and equivalence of their rules. This new activity was presented to them in a new
eXpresser window which was automatically generated by the system and included
the two students’ models and rules, and also the following two questions in the
Activity Document: (1) Convince each other that your rules are correct, (2) Can
you explain why the rules look different but are equivalent? Discuss and write down
your explanations.

The models and rules developed by the two students (Janet and Nancy) are
presented in Fig. 2 in the form that these are represented in eXpresser. To prepare
for the collaborative activity, Janet and Nancy were asked to type any arguments

4All names used for students are pseudonyms.
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they had for the correctness of their rules (using the Activity Document tool). Their
arguments were:

Nancy: “My rule is correct because each ‘block’ has 7 squares. So however many blocks
there are, there are 7 squares for each one so you multiply the number of blocks by 7. But,
at the end there is another block to finish the pattern off. In this block there are 5 squares so
you add the number of squares (the blocks multiplied by 7) to the final block (the 5 squares).
This rule should apply to this pattern each time.”

Janet: “I think my rule is correct, as it works every time and seems to make sense, as,
because the number of red building blocks is unlocked, you can put any number in and it
would work and is linked with the numbers of the blue and green building blocks”.

In the next lesson, Janet and Nancy were paired because they constructed the
TrainTrack model in different ways (see, Fig. 2).

The two students worked together on the collaborative activity. They looked at
each other’s rules and compared them by interacting with each other’s models in
eXpresser (i.e. by changing the model number, animating the models, etc.). As a
result they both stated that they understood each other’s model:

Nancy: “I understand the rule so I don’t see a reason why it shouldn’t be correct”

Janet: “Yeah, I understand yours too”

In this way, both students were able to ‘read’ each other’s rule and understand
them. Yet it seems that the students viewed the ‘correctness’ of each other’s models
as so obvious and so ‘understandable’ that they failed to produce any justification
during their collaboration. Even though they were prepared for this collaboration
and had typed in their arguments during the previous lesson, the students failed
to produce shared mathematically-valid arguments to justify the correctness of their
rules. A possible reason for this is the limitation of the MiGen system in not drawing
the students’ attention to their written arguments.

After both of these students were convinced of the correctness of their rules,
they continued by discussing their rules’ possible equivalence. In this case, inter-
acting with eXpresser and exploring each other’s models acted as a catalyst to a
constructive discussion. They benefitted from eXpresser’s immediate feedback on
their actions and were able to explore and validate their conjectures. After some
debate, Nancy stated that:

yeah, it’s one red building block plus one blue building block so that would actually kind
of make the : : :

and Janet interrupted to complete Nancy’s chain of thought by saying

yeah, it would make the same shape.

Nancy then added:

because one red building block added to one blue building block

and Janet finished the argument:

and that’s the same as one of my green building blocks.
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As a result, they reached agreement that their two seemingly different rules were
in fact equivalent and they justified their conclusion by appealing to the structure of
the models that they had constructed.

It is worth noting that there are many different ways of constructing the same
model (see, Fig. 3) and pairing students with interestingly different constructions
can lead to fruitful collaboration.

Collaboration in the context of the MiGen system entails students reading,
deconstructing and matching their rule with their partner’s by exploring, revisiting
their actions, building on them and taking new actions using the tools available
within the system. The eXpresser microworld provided the students with a visual
means to express algebraic generalisation and through the manipulation of its
entities, they were able to give meaning to algebraic concepts that are often
elusive (such as constants, variables or the n-th term of a sequence). Such an
expressive and exploratory tool proved to assist students in their development of
complex mathematical ideas and this illustrates ways in which students can adopt
an enquiry stance in making every effort to gain important mathematical skills (such
as abstracting and generalising), as originally advocated by Papert (1980) and more
recently by other researchers (e.g. Shaffer, 2007).

Although the potential of the MiGen system to support students’ learning of
algebraic generalisation, and of algebraic ways of thinking, was evident in the
MiGen research (see, for example, Mavrikis et al., 2012; Noss et al., 2012), there
was evidence of some inflexibility in terms of what collaborative actions the students
could take (see, Geraniou et al., 2011). For example, the system is limited to groups
of up to three students, they must work together on one machine, they have to store
their shared answers on a local server and not on the web, all their collaboration is
synchronous but offline, and while they can type their agreed answers they cannot
easily post them for other students to see immediately. The latter action of sharing
their final statements with fellow classmates could only be orchestrated by their
teacher.

Taking into account the advances in digital media, and on the basis of relevant
research on the affordances of new technology to support online collaboration
(e.g. Stahl, 2006; Stahl, Zhou, Cakir, & Sarmiento-Klapper, 2011), the Metafora
platform is innovative in integrating collaborative learning with microworlds that are
extended for collaborative online use. A key technical and pedagogic innovation of
the Metafora platform is that it gives students the opportunity to come together (not
necessarily in the same time and space) using LASAD, an argumentation tool, to
discuss the given challenge to solve, argue about their findings, and emerge with an
agreed solution. In particular, the argumentation tool helps the students to organise
their thoughts, discuss opinions, and display the relations between their arguments
in graphical form. In this way, the students’ discussions are structured and their
learning scaffolded.

Taking further the example of students working on the TrainTrack task (the
students who produced different models with equivalent rules and therefore were
grouped together) we now demonstrate how LASAD, the argumentation tool, was
used by the students to work on the collaborative activity of convincing each
other of the correctness and possible equivalence of their algebraic rules. To do
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Fig. 4 Shared models, rules and arguments for correctness in LASAD

so, we analyse the collaborative process of three 12 year old students, Alice,
Maria and Bob, while they interacted in the eXpresser mathematical microworld
and simultaneously engaged in discussions and structured arguments using the
argumentation tool LASAD.

After the students constructed their on-screen models and decided on the
algebraic rules, they were directed not only to share their models and rules but
also to prepare for the collaborative activity by stating arguments for their rule’s
correctness. All this is captured in Fig. 4.

From Fig. 4, we can see that Alice relied on the visual feedback from the
microworld to validate her rule’s correctness. Since her model remained coloured
for different values of the Model Number (or, in other words, the unlocked number
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that she named as “Train-Track”), she was convinced that her rule was correct;
providing further justification seemed unnecessary to her. In contrast, both the other
two students, Maria and Bob, derived arguments for their rules’ correctness based
on the structure of their constructed models. As such, they both deconstructed their
rules and models by matching each term in the rule to the corresponding component
of the model. Throughout their preparation for the collaborative activity, all three
students interacted with their models in eXpresser, explored their patterns’ proper-
ties, and conjectured why their rules were correct. The combination of eXpresser
and the argumentation tool LASAD provided them with the opportunity not only
to reflect on their interactions within an exploratory learning environment, but also
the opportunity to develop strategies to justify the correctness and equivalence of
their rules. Additionally, the argumentation tool allowed them to share their way of
thinking with each other and prompted their reflective thinking in terms of a valid
argumentation and a mathematically-correct justification.

At this point the teacher intervened by prompting Maria and Bob to comment
on Alice’s rule. This triggered the students’ reflective thinking and their discussion
commenced. Maria and Bob tried to make sense of Alice’s rule and compared it
to theirs. They continued to think structurally as they focused on matching their
building blocks to that of Alice’s and recognised that their two building blocks
formed Alice’s yellow building block.

The students’ discussion continued naturally until the issue arose of the equiva-
lence of their rules. Alice immediately claimed that their rules were in fact the same
rule. She supported her claim by explaining that if you add the terms “4 Marias and
3 Marias” in Maria’s rule, you’ll get the seven train-tracks she has. She recognised
the unlocked number in Maria’s rule and ignored the different name by focusing
on the mathematical operations that would help her justify the rules’ equivalence.
Bob followed a similar approach. Maria, on the other hand, noticed that the main
difference between their rules was in the name they chose for the unlocked number
or, in other words, the variable. This triggered a conversation on the use of a
meaningful name, like ‘Train-Track’, for the variable instead of ‘Maria’. Their
discussion revealed an appreciation of the notion of algebraic variable and what
it represents in their model.

Throughout their discussions, the students used the language of the argumen-
tation tool LASAD. As presented in Fig. 4, Bob and Maria, for example, added
supportive comments about the correctness of Alice’s rule and linked it to the
teacher’s prompt question; Bob made a claim reflecting on Maria’s comment; Alice
and Bob gave reasons for their rules being equivalent; and Maria shared her thoughts
on the name she gave to her unlocked number and her view on its meaning. Such
features allow students to go through stages in their argumentation process and form
mathematically-valid arguments gradually.

In the above example of a use of the argumentation tool LASAD and the
Metafora platform, the pedagogical benefits of allowing the interchange between the
individual eXpresser workspace and the discussion space, i.e. LASAD, are evident.
The students’ collaboration encouraged them to recognise their different approaches
to solving the same task as well as justifying the correctness and equivalence of



Patterns of Collaboration: Towards Learning Mathematics in the Era... 13

their rules. Their reflective comments convey a mutual willingness to support their
knowledge development and reach a consensus in terms of their collaborative task
as well as recognise mathematically-valid arguments.

Student Collaboration and the Teacher

As mentioned earlier, research has documented the benefits of collaboration towards
students’ knowledge development (e.g. Cobb et al., 1997; Leonard, 2001). In
presenting two different patterns of students’ collaboration, we show students not
only benefitting from being supported by the tool eXpresser (that provided them
with visual feedback on their actions, and allowed them to share their solutions
and their thoughts) but also another tool, LASAD, used in parallel to eXpresser,
that provided a visual way of structuring their collaboration that scaffolded their
knowledge development and mathematical thinking. As students’ collaboration
progresses from groupwork on paper, to groupwork with the assistance of digital
tools (e.g. eXpresser and MiGen), to groupwork within a collaborative platform
(e.g. LASAD and Metafora), attention needs to be paid to the integration of such
tools in the mathematics classroom.

Through the cases of the MiGen and the Metafora projects (and their systems),
and in parallel to the development of tools that support students’ different collab-
oration patterns, we know that there is a need to encompass tools to support the
teacher and move one step closer to successful integration of digital tools into the
classroom. Both the MiGen and the Metafora projects foresaw the challenges for
teachers in the digital era and aimed to provide assistance to teachers through the
production of appropriate tools; ones that are able to provide feedback and draw
the teacher’s attention to prominent information regarding students’ individual and
collaborative work. Even though teacher support is not the focus of this section,
we know that enabling the teacher to intervene when necessary is important in
fostering students’ collaboration. For example, when the teacher views a group’s
unproductive discussion, they could intervene in the argumentation space and
remind students of their task (such a case was demonstrated in Fig. 4), give them
hints to promote reflection on previous work, or extend their discussions to what
they have learnt about collaborative learning. Our argument is that environments
such as those created in the MiGen and the Metafora projects can offer the
groundwork for the integration of digital technologies in the classroom by creating
a collaborative workspace that can offer support to both students and teachers.

Cyberlearning: From Web 2.0 to Web 3.0

Having examined patterns of collaboration using current technologies, we now
turn toward the next step in Web evolution that is the transition from the Web
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of documents to the Web of data (Berners-Lee et al., 2001). No doubt Web 2.0
technologies are enabling unprecedented growth in the volume of online content
by enabling users not solely to be consumers of web content but also, if they
chose, to be content producers. At the same time, the participation of people has
been increasing significantly in intensity. The growth of online social networks in
recent years has been phenomenal, giving rise to increased interaction among people
on the Web. This includes the mechanisms of crowdsourcing that have evolved
from content contribution on YouTube and collaborative knowledge construction
on Wikipedia to the contribution of data and of applications that combine published
data. This new era of Web 3.0 is not only that of the Web of data but also of the Web
of online social networks.

This new stage of Web evolution provides significant opportunities for learning
by leveraging the increasing amount of data that is getting published on the Web
and by exploiting the connections that people form as part of their participation in
online social networks. However, from a technological viewpoint, coping with the
increased volume of content, data and people presents certain challenges when it
comes of developing applications for learning. Certain questions arise, such as the
following:

• How can one efficiently discover the most relevant content and data for learning
on a Web that keeps increasing in size?

• How can one find the right people with whom one can collaborate and learn?
• How can one efficiently combine information that potentially comes from

different data sources in order to provide new insights and new knowledge in
a formal or informal learning context?

• What are the processes that transform online data to information and to knowl-
edge and how can these processes be supported?

• What are the affordances of existing and emerging online social networks for
learning on the Web?

The research community, and corresponding parts of the industry, have invested,
and are continuing to invest, in technologies and operating standards in order to
respond to these questions. In the emergent Web of data (or Web 3.0), a number
of technologies for linked (open) data are available that enable both the publication
of data on the Web in inter-operable formats (an example being RDF5) and the
query and combination of those data (see, Bizer, 2009). The linked data movement
has demonstrated on many occasions how these technologies are efficient enough
to support ‘crowdsourcing’, not only of content production (as in classic Web 2.0
services) but also of linked data in a number of areas including e-government (see,
Shadbolt, O’Hara, Salvadores, & Alani, 2011).

Regarding existing content, annotation (such as rating a Web resource) has
always been central to efficient content discovery and aggregation. With the Web,
the annotation process involves providing data about online content that will

5Resource Description Framework http://www.w3.org/RDF/

http://www.w3.org/RDF/
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describe what the content is about; this data might be contained within this content
(in other words, hidden inside the source of a Web page) or in a separate document.
Annotation can also be used to describe people and their learning background and
objectives. In Web 2.0 applications, the process of annotation is often supported by
simple tags that are searchable by users. Support for more advanced searching often
requires more elaborate annotation where the tags are not just keywords but are
concepts and relationships (with such concepts and relationships being rigorously
described in an ontology).

In Web 3.0, semantic technologies are central in the discovery of data, content
or people, and in the combination with Web resources, the provision of innovative
applications. Semantic technologies make use of ontologies and annotations in order
to support searching and matching as well as drawing conclusions based on available
metadata. The vision of a Web in which content (documents or data) is described
using ontologies can enable the realisation of a plethora of advanced applications,
with such developments being part of the Semantic Web vision leading to Web 3.0
(Berners-Lee et al., 2001; Hendler, 2009).

The significance of semantic technologies for learning is being researched
widely. A recent survey of the value of semantic technologies for Higher Education
in the UK found that there is increasing adoption of semantic technologies in this
sector of education (see, Tiropanis et al., 2009a). The most significant value of
semantic technologies was identified as their support for well-formed metadata,
something which can enable efficient resource annotation and discovery. In addition,
semantic technologies were found valuable in providing inter-operability and
support for data integration. Finally, the potential for improved data analysis and
reasoning was another significant benefit. A classification of the tools and services
on which the value of semantic technology was surveyed produced the following
categories:

• Collaborative authoring and annotation tools (including semantic wikis and
argumentation tools). Semantic technologies can help with the forming of col-
laboration groups based on the similarity among individuals and with efficiently
discovering relevant resources or arguments. Such technologies also support
argumentation and visualisation of arguments to enable critical thinking in that
semantic technologies can help the learner to navigate to arguments online
or to seek patterns relevant patterns of argumentation. In addition, semantic
technologies can provide for precise representation of shared knowledge and
recommendation of related content and people for collaborative activities related
to learning.

• Searching and matching tools for discovering relevant content and individuals
related to learning activities. Semantic technologies can enable searches across
repositories and enable more efficient question and answer systems. At the same
time, they can provide for better matching among people for learning activities
(i.e. group formation). Learners can be grouped according to their background,
the skills that they need to develop and their learning objectives.
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• Repositories and VLEs that provide access to their data using semantic tech-
nologies. These enable interoperability and provides for aggregation of the
information that they hold. This supports learners (and learning solution devel-
opers) in discovering and processing learning content.

• Infrastructural tools and services that can assist in publishing, accessing and
integrating data sources inside or across organisations in interoperable semantic
formats. The growing number of such utilities illustrates the value of semantic
technologies and the trend to develop software to support their development.

Given these technological responses to the issues of the Web of data and
the Semantic Web, the former can be seen as a first step to reaching the latter.
In terms of technologies, RDF is the common approach for both (i) publishing
data in structured interoperable formats and (ii) publishing metadata about online
content and describing ontologies. Existing content available in Web repositories
that is collaboratively produced and/or annotated (tagged) could become available
in semantic formats such as RDF and there is evidence that this process is well
underway and is already bearing fruit (Tiropanis, Davis, Millard, & Weal, 2009b).

Opportunities presented by semantic technologies and Web 3.0 for education
include not only the development of semantic applications for use in education
but also the administration of educational programmes and educational institutions
in general. As an example, the Higher Education sector is beginning to report
benefits of using semantic technologies in terms of improving the visibility of degree
programmes, helping with curriculum design, and supporting student recruitment
and retention (Tiropanis et al., 2009a, 2009b). For more on semantic technologies
and Web 3.0 for education, see, Bittencourt, Isotani, Costa, and Mizoguchi (2008)
and Devedzic (2006).

The Likely Impact of Web 3.0 on Systems Such
as MiGen and Metafora

Systems that make use of collaborative learning such as the MiGen system and
Metafora can benefit from Web 3.0 technologies by enhancing their learning
applications and improving the administration of the educational programmes that
they support. Indicative enhancements might include:

• Enhancement of self-learning by proposing problems with patterns that the
learner has not successfully solved. By the use of ontologies and annotation
of the database of problems that can be presented to students, it is possible to
propose problems that are better targeted to the students’ past performance and
learning objectives. If a student is having difficulties with problems of a specific
type it will be possible to propose similar problems on a more appropriate level
of difficulty.
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• Enhancement of critical thinking by progressively offering ‘hints’ to problem so-
lutions based on argumentation recorded during previous collaborative problem
solving sessions. By annotating the database of problems and recording previous
answers it will be possible to provide students with alternative ways to solve
these problems. Further, it will be possible to recommend additional problems
that required different argumentation patterns.

• Improvement of the collaborative learning experience by forming groups of
learners based on their background, performance and goals. Providing semantic
descriptions of learners, their achievements, their background and their learning
objectives can provide for applications that will propose appropriate study groups
with criteria that will be deemed to be pedagogically appropriate by the teacher.
It will even be possible to form groups of learners across schools where, if
desirable, the chances of achieving an increased mix of students could be higher.

• Improvement of exploratory learning by pointing learners to relevant content on
the Web with historical information behind problems and additional visualisation
of solutions. The potential of Web 3.0 technologies for content annotation, data
interoperability and reasoning can enable the discovery of relevant content on a
global scale. It could make it possible to recommend resources that will enable
students to prepare to solve specific problems with which they appear to be
having difficulties.

One of the most important strengths of Web 3.0 technologies is that they
enable access to well-formed data in open repositories and that they can foster
crowdsourcing for the development of additional components. In systems such as
MiGen and Metafora, Web 3.0 technologies could enable the deployment of an
ecosystem of problem resources and applications to foster further innovation for
learning.

Conclusion

In the 30 years since the launch of the IBM model 510 PC, and particularly in
the 20 years since the launch of the World Wide Web, networked computer-based
tools have increasingly provided ways for users, be they learners or teachers, to
collaborate in tackling visual representations of mathematics, both algebraic and
geometric. As illustrated in this chapter, for learners these ways of collaborating can
occur while they are tackling mathematical problems. Other research, for example,
Lavicza, Hohenwarter, Jones, Lu, and Dawes (2010), is illustrating how, for teachers
such collaborations can involve them supporting the development and take-up of
technologies, not only through designing and sharing teaching ideas and resources,
but also through designing and providing professional development workshops for
other teachers of mathematics. The growth and increasingly-widespread availability
of Web 2.0 technologies (such as blogs, wikis, social bookmarking, etc.) is meaning
that users are enabled to discover information on a large scale, have ways of
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supporting collaborative knowledge construction amongst a large number of people,
and benefit from easier and more efficient matching of individuals for learning
purposes.

In reporting aspects of the MiGen project and the Metafora project, we focused
on two different patterns of collaboration. In doing so, we showed students not only
benefitting from using eXpresser, a tool that provided them with visual feedback on
their actions and allowed them to share their solutions and their thoughts, but also
LASAD, a tool that is used in parallel to eXpresser and that provides a visual means
to help structure their collaboration and scaffold their knowledge development
and mathematical thinking. The challenges in taking forward the findings of the
MiGen project into the Metafora project are how to enable groupwork within a
collaborative web-enabled digital platform, how the integration of such tools into
the mathematics classroom can occur, and what additional digital tools might be
provided to support the teacher to intervene when necessary to foster students’
collaboration and learning of mathematics.

The likely impact of Web 3.0 on systems such as MiGen/Metafora is in terms
of enhancing their learning applications and ways of administrating the educational
programmes that they support (for example, from progressively offering ‘hints’ to
problem solutions based on argumentation recorded during previous collaborative
sessions through to suggesting groups of learners based on their background,
previous performance and current learning goals).

Recently, Maddux and Johnson (2011a) have suggested that for emerging
technologies to succeed in education, they must first become popular in society at
large. In other words, successful technological innovations “succeed in education
only if they have attained a significant degree of cultural momentum” (Maddux
& Johnson, 2011b, p. 87). This notion has some similarities with the use that
Jones (2011) makes of the term canalization to capture the phenomenon that,
despite the widely-acknowledged potential of digital technologies, the integration
into education has progressed more slowly than has been predicted. This could
be because, according to Jones (ibid, p. 44), “the ‘normal’ pathway of educational
change over time is one that innovative technology : : : on its own may not perturb
enough to cause a major change”. Given the findings of Tiropanis et al. (2009a,
2009b), it could be that, for the moment, it is the Higher Education sector where
Web 3.0 will first begin to make an impact on educational practice. Tracking the
impact of Web 3.0 on the teaching and learning of mathematics at the school level
is going to be an exciting endeavour.
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graduate school, students are expected to learn mathematics primarily by being
taught by instructors with previous knowledge of the subject. Research mathe-
maticians, on the other hand, must rely on other methods; the mathematics they
are trying to understand may not, as yet, be known to anyone else. Hence, they
learn primarily through experimentation, self-directed study, and collaboration with
peers. In recent years, these methods have been expanded to use modern tools
and ideas. Research mathematicians initiated several successful large-scale online
collaboration projects, such as the Polymath project and the MathOverflow website.
In this chapter, we discuss these two projects, along with various other examples of
online collaborative learning of mathematics. Our primary motivation is captured in
the following question: why aren’t we all learning math this way? While a complete
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Introduction

We sometimes talk as if “original research” were a peculiar prerogative of scientists or at
least of advanced students. But all thinking is research, and all research is native, original,
with him who carries it on, even if everybody else in the world already is sure of what
he is still looking for. It also follows the all thinking involves a risk. Certainty cannot be
guaranteed in advance. (Dewey, 1916/2010; p. 102)

In the modern world, almost all formal education takes place in the confines of a
classroom environment. The classroom consists of learners led by a teacher who is
charged with implementing a predetermined plan for what is to be learned and how
it is to be learned. Since the teacher is vested with a significant amount of authority,
major deviations from this plan are rare. The primary role of the teacher is to deliver
knowledge, and the primary role of the learners is to absorb this knowledge. This
is Freire’s “banking” concept of education – “an act of depositing, in which the
students are the depositories and the teacher is the depositor” (Freire, 1970/2006,
p. 72). This “traditional/classroom model” is still pervasive and extends well beyond
the boundaries of schools and universities. Governments use it to certify workers,
and corporations use it to instruct employees on everything from work etiquette to
trade secrets. Even home schooling typically replaces traditional in-school practices
by emulating the teaching model found in schools, with the parent taking the place
of the teacher (Lois, 2006). One consequence of the pervasiveness of the traditional
model is that, broadly speaking, modern technology is often applied to education
and learning as a means of “enhancing” the standard school classroom (e.g., with
instruction tools such as interactive whiteboards and various courseware). In spite
of its widespread use and its many successes, there are plenty of reasons to suspect
that the classroom model is not the optimal learning environment for every student
(Cheung & Slavin, 2011; Schank, 2011; Serow & Callingham, 2011; Widaman
& Kagan, 1987). Instead of simply supplementing this model, modern technology
can also enable us to explore entirely different models of learning. In this chapter,
our focus will be on learning that involves a high degree of collaboration and
cooperation performed in an online environment.1 Our particular focus will be on
collaborative online learning of mathematics. The major portion of our chapter
will be spent on several detailed examples. Our aim is to discuss these examples
in an informal and accessible manner and stimulate a debate around the question:
why aren’t we all learning math this way? In section “Analysis and Contextualiza-
tion”, we contextualize these examples within the framework of recent education
research.

“Collaborative” and “Cooperative” Online Learning. Perhaps the most com-
monly encountered example of collaborative online learning is a Web forum run by a
community of users with a shared interest (e.g., gardening, sailing, car maintenance,
gaming, coding, etc.). The primary function of such a forum is to facilitate the

1For now, we will consider both “collaborative” and “cooperative” online learning, without
worrying too much about the differences between the two; we will come back to this issue and
discuss these differences briefly at the end of the chapter.
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sharing of knowledge and skills related to this shared interest. These forums are
quite numerous, and at least one exists for every imaginable topic or hobby. The
communities that maintain them vary in size, level of activity, geographic reach,
age range, etc. The quality of the learning that takes place in these communities is
hard to quantify; however, discussions containing carefully written instructions and
thorough explanations from such forums are often among the top Google results for
hobby-related queries.2 While the specific software used in a Web forum may vary,
the basic format remains the same: when accessing the site, one sees a list of user-
initiated topics, ordered according to the last time they were discussed; clicking
on a topic opens up the relevant thread of discussion. This format is not entirely
neutral, and has a tendency to promote certain kinds of discussions. For instance, a
single thread can meander through many unrelated topics over months or even years.
More recent tools (such as the Stack Exchange software) promote different kinds of
interactions. In the Stack Exchange format, a discussion is initiated by posing a
question, and is complete when the questioner accepts an answer given by another
member of the community. Both questions and answers are collaboratively edited,
and are rated according to the number of up/down votes they receive from members.
The Stack Exchange format is employed in two of the examples discussed in detail
later in the chapter, namely the “MathOverflow” (2011) and “math.stackexchange”
(2011) websites.

The Classroom Model vs. a Collaborative Online Environment. Despite its ubiq-
uity, the classroom model has not escaped criticism. Let us mention three of these
criticisms in no particular order, and then discuss how some of the aforementioned
collaborative online environments might do better. First, the classroom model is
autocratic rather than democratic;3 in particular, ideas can only be questioned or
pursued within the narrow bounds of the syllabus and course goals. Second, the
success of the model depends crucially on the qualities and abilities of a single
individual: the teacher. Third, learner motivation in a classroom can be a significant
problem (Hidi & Harackiewicz, 2000), as any high school teacher can attest.

The first criticism above does not apply to collaborative online learning commu-
nities almost by definition. The focus of the community is typically dictated by the
desires of the individuals. The topics are chosen by a sort-of popular vote, where
members vote for a topic simply by discussing it. The collaborative model also
seems less susceptible to the second criticism. The learning process of an entire
classroom can fail simply by the failure of one specific individual. Collaborative
online settings are more resistant to failure, and can withstand the complete removal
of many individuals before the learning process of the rest of the community
suffers.4 The third criticism is perhaps the most difficult one to overcome for any

2It would be an interesting study indeed, to examine effects of the collaboratively-edited (via
search-engines) results from such communities versus ones provided by “authoritative sources.”
3We are compelled to note that “democratic” in this context certainly does not mean that one should
decide the veracity of mathematical propositions by vote.
4Of course, there are technical exceptions, such as the loss of a person who is running the
server/software; in such a case, a strong community would presumably simply reform elsewhere
on the Web.



26 G. Alagic and M. Alagic

model of learning or education. Nonetheless, our expectation is that motivation
should be significantly higher among collaborative learners, especially when the
choice of subject matter and learning methods are left entirely up to them (e.g.,
Engel, 2011).

In his introduction to the Polymath project, open-science researcher Michael
Nielsen points out that open, large-scale collaboration has already been taking place
for years in the open source coding community (“Polymath,” 2011). An essential
difference is that the primary goal of open source projects is to produce a particular
outcome (i.e., a piece of software that performs a specific function) whereas the
primary goal of a collaborative online learning project might be more accurately
described as producing understanding or catalyzing learning. Nonetheless, at least
some of the same principles of large-scale technology-assisted open collaboration
that work for software engineering, should also work for learning mathematics.

Even if one accepts that collaborative online learning methods are superior,
supplanting the classroom model as one of the most basic and established building
blocks of all modern education is still largely a theoretical exercise. However, the
availability and flexibility of the Web has made it possible for learners to experiment
with other models. Given the preponderance of the activity-oriented collaborative
Web forum, it is reasonable to speculate that the collaborative online model has
already emerged as a victor in this setting; at some point in the future, it may
even be adopted by educational institutions themselves. One should also keep in
mind that a significant portion of the world population is simply not reached by
these institutions; in these cases, collaborative online learning may be an important
alternative (recognizing the fact that a large part of the world population does not yet
have access to Internet). After all, it is reasonable to suspect that Internet access and
basic computer technology has a wider geographic reach than physical schools with
trained teachers (Warschauer & Matuchniak, 2010). Indeed, most of our examples of
collaborative online learning of mathematics are open, in the sense that anyone with
an Internet connection can participate. Finally, we remark that even where schools
are available, some segments of the population choose to educate themselves and
their children at home or in small communities organized around friends and family.
It should not be taken as given that simply translating the school model to these
situations is the best course of action.

The next few sections of the chapter will concentrate on specific examples
of collaborative online learning of mathematics, ordered according to the reverse
of the standard progression of schooling. We will begin with examples of such
models as they are used at the highest level of academic research, continue
to undergraduate mathematics, and end with elementary school student-teachers.
While the complexity of subject matter obviously increases as one progresses
through the standard course of schooling in mathematics, our concern here is with
the teaching/learning methodology rather than the specifics of the subject matter.
Given that these are our priorities, there are a number of reasons to begin with the
academic research level.
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Collaborative Online Learning of Research-Level
Mathematics

Why Talk About the Research Level?

In this section, we will discuss collaborative online learning of mathematics at
the research level. For our purposes, “the research level” refers to those areas
of mathematics which are at or near the boundary of current human knowledge.
This is a broad landscape covering everything from minor incremental advances in
well-established areas to celebrated resolutions of fundamental conjectures. Given
the colloquial meaning of “learning,” it may seem strange that we are devoting a
significant amount of attention to research-level mathematics. In fact, as we now
argue, the decision to do so is quite natural.

We first point out that, in this context, “doing research” is simply a form
of learning in which the learned matter may not have been known to anyone
else. In fact, the lack of an outside authority which already knows the answers
makes self-directed or collaborative learning at the research level in some sense
more genuine. Second, the important complicating factor of learners’ motivation
is not a significant issue. It is reasonable to assume that most research-level
mathematicians are self-motivated and driven by an enjoyment of the learning itself;
this is in sharp contrast to, for example, the many high school students who view
learning mathematics as an uncomfortable means to some unrelated but desired
end (e.g., employment or parental approval) (Hannula, 2002; Schoenfeld, 1989).
Last, as we will discuss in later sections, the use of technology for collaborative
online learning appears to be fairly widespread and sophisticated at the research
level. Collaboration is ubiquitous in academic research.5 In this age, this typically
means technology-assisted collaboration, even though the sophistication level of
the technology might be quite low (e.g., e-mail). Academic researchers in general
and research-level mathematicians in particular also seem genuinely interested in
optimizing the productiveness of research through collaborative online learning.
This is clearly demonstrated by the success of the Polymath projects and the
MathOverflow website. Both of these are examples of open, large-scale self-directed
online collaborations; we will discuss them in detail below.

It is an interesting problem to consider the extent to which these tools and meth-
ods could translate to collaborative online learning of mathematics at undergraduate
and K-12 levels. Some examples (such as math.stackexchange, discussed in section
“Collaborative Online Learning: Undergraduate and School-Age Mathematics”
below) already exist. It is not merely fanciful to imagine that online tools of the

5One should be careful here not to confuse single authorship of papers (which is quite common in
mathematics) with working in complete isolation (which is exceptionally rare.)
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future will enable young students from across the globe to collaboratively explore
mathematics with the curiosity and drive of research mathematicians.6

Overview of Online Collaboration at the Research Level

While the overall historical trend in research-level mathematics has been towards
more collaboration rather than less, the growth has been slow indeed. The first
long-running American mathematics journal, the Annals of Mathematics, began
publishing in 1884, over two centuries after the first scientific journals appeared
in Europe. And yet, the first 89 articles of the Annals of Mathematics were all
single-author papers. In ten recent issues of the Annals, which is to this day one
of the most prestigious Mathematics journals in the world, single-author papers
comprised 36% of all articles, and the average number of authors per article was
only 1.5 (Sarvate, Wetzel, & Patterson, 2009). Still, some of the greatest advances in
modern mathematics have been the result of collaborations. Terence Tao, a famous
modern-day mathematician and Fields Medalist, is best known for a joint result with
Ben Green showing that there are arbitrarily long arithmetic progressions of prime
numbers. In a discussion on the blog of another Fields Medalist, Tim Gowers, Tao
wrote:

I can’t speak for others, but as for my own research, at least half of my papers are joint with
one or more authors, and amongst those papers that I consider among my best work, they
are virtually all joint.

This same discussion, begun by Gowers with the provocative question “Is mas-
sively collaborative mathematics possible?”, eventually spawned the first Polymath
project, a fascinating example of online collaboration, and one that we will return
to in a moment (“Gowers’s Weblog,” 2011).

The frequency of joint-paper authorship is not the sole indicator of the level
of collaboration taking place in mathematics research. Scientists often exchange
information and learn from each other informally, and these exchanges surely fit
the definition of “collaboration” and “collaborative learning” even if the result
is not a new journal paper. In fact, some of these low-level collaborations have
impacted science in a more significant way than many published journal papers.
Around 1912, while struggling with what later came to be the General Theory
of Relativity, Einstein realized that in reality (as opposed to abstract Euclidean
geometry) the angles of a triangle only add up to approximately 180ı. He knew
that this called for a new kind of geometry, but such ideas were outside his area of
expertise. He contacted a mathematician friend, Marcel Grossman, who made the
crucial observation that Einstein’s equations would be best described in terms of
Riemannian geometry (“The Future of Science,” 2011).

6Some projects of this kind already exist, e.g., the Global Nomads Group and iEarn; neither of
these focus specifically on mathematics.
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As we observe the way in which research-level mathematics is done today,
it becomes clear that online interactions are having a dramatic effect on both
types of collaborations mentioned above: the joint-author papers such as those
of Tao and Green, and informal collaborations such as the exchange between
Einstein and Grossman. The Polymath project is a natural example of the first
kind of collaboration in an open, online environment; it is the subject of section
“The Polymath Projects” below. The MathOverflow website, on the other hand,
is a natural example of the second kind of collaboration within an online format
designed to maximize the potential of such exchanges; it is the subject of section
“The MathOverflow Website” below. Before going on to these discussions, we
will briefly mention some other instructive examples of open, online collaborative
mathematics at the research level.

An essential aspect of doing science is peer review. The traditional format for
peer review, whereby a small number of experts (typically two or three) secretly
judge a paper for accuracy and importance is the universal standard even today. In
some cases, the potential importance of a result has recently driven scientists to
apply modern tools and methods to peer review. An interesting case occurred in
August of 2010, when Vijay Deolalikar, an engineer at Hewlett-Packard, made an
online posting with a proposed proof that P is not equal to NP. Roughly speaking, P
is the set of computational problems whose solution can be found quickly, while NP
is the set of computational problems for which a proposed solution can be checked
quickly. Whether P is equal to NP is one of the most fundamental questions in math-
ematics and computer science; the solution to this problem would have wide-ranging
practical implications. It is one of the problems for which the Clay Mathematics
Institute offers a million-dollar prize. Given the stature of this problem, it is not
surprising that scientists immediately began discussing Deolalikar’s proposed proof
on blogs and wikis. Within 1 week of the original posting, an organic, massively
collaborative online peer review process was completed. The conclusion was that
Deolalikar’s proof had interesting new ideas, but was nonetheless fundamentally
flawed. Dozens of scientists were involved in the analysis, with possibly hundreds
more reading and checking the analysis itself. By comparison, the traditional peer
review process can take many months and depends crucially on the expertise and
inerrancy of as few as two individuals (Markoff, 2010).

Much of the review of Deolalikar’s work was undertaken on the research blogs
of mathematicians and computer scientists. Such blogs are fairly common today,
and the exchanges that take place in their comments sections are fundamentally
very similar to the collaboration between Einstein and Grossman. One of the
first (and also most famous) scientific blogs is John Baez’s “This Week’s Finds
in Mathematical Physics.” As Baez writes in a recent article in the AMS about
blogging:

My introduction to blogging came in 1993 when I started an online column called “This
Week’s Finds in Mathematical Physics”. The idea was to write summaries of papers I’d
read and explain interesting ideas. I soon discovered that, when I made mistakes, readers
would kindly correct them—and when I admitted I didn’t understand things, experts would
appear from nowhere and help me out. Other math bloggers report similar results.
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This organic process observed by Baez (2010) is precisely what we mean by
open, collaborative online learning. As the examples in the next two sections
demonstrate, the online exchange of knowledge among mathematicians has become
more sophisticated in the time since Baez began his blog.

The Polymath Projects

Terence Tao’s (2011, July 15) blog “What’s new” is an illustrative example of why
scientific blogs should be taken quite seriously in any study of how modern science
(and more generally, modern learning) is done. The quality of Tao’s blog postings
is at such a level that the AMS published the first year of his posts as a 300-page
book, Structure and Randomness: Pages from year one of a mathematical blog,
essentially verbatim (Tao, 2008). Tao’s blog also played a significant role in the
Polymath project, which was itself spawned in 2009 as a result of a long discussion
on the blog of fellow Fields Medalist Tim Gowers.7 The discussion that initiated the
project began with a post of Gowers’, titled “Is massively collaborative mathematics
possible?” He proposed that the answer was “yes” and suggested some ground rules
for running an open, collaborative research project on his blog (“Gowers’s Weblog,”
2011). A typical research project in mathematics is done largely in secret, with
only one or two mathematicians participating; the final results are announced at
the end, in the form of a paper containing highly perfected reasoning and proofs. In
Gowers’ proposed project, the research would take place in the open, and anyone
could observe and participate simply by visiting Gowers’ blog. The final results
would still be written up as a paper, but a full record of the work would remain,
in the form of the relevant blog posts and comments of the participants. After
a lengthy discussion, with expressions of support from several other well-known
mathematicians, the blog participants agreed on some basic rules of conduct and
selected a goal for the project. They would attempt to find a combinatorial proof for
the so-called “density Hales-Jewett theorem,” or DHJ for short. While the theorem
is simple to state informally, the existing proof relied on heavy-duty ergodic theory.

The success of the Polymath project was nothing short of astounding. In his
summary of the project, Michael Nielsen (2010) writes:

On March 10, Gowers announced that he was confident that the polymaths had found a new
combinatorial proof of DHJ. Just 37 days had passed since the collaboration began, and
27 people had contributed approximately 800 mathematical comments, containing 170,000
words.

7In this context “polymath” really means “many mathematicians” rather than the usual definition,
i.e., “a person of wide-ranging knowledge or learning.” Rather than depending on the powers of
a single rare and remarkable individual of the mold of Newton or Einstein, the Polymath projects
depend on the combined strength of a number of more ordinary mathematicians.
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At a presentation at the Institute for Advanced Study, Gowers outlined some of
the benefits of this new way of doing mathematics. He estimated that the project
solved the DHJ problem in “six weeks rather than several years.” According to
Gowers, other benefits included a full record of all of the work done as part of the
collaboration, as well as unanticipated connections and different perspectives arising
from the openness of the model (The Institute Letter, 2010). The result of the project
will be at least two published papers, under the pseudonym “D.H.J. Polymath.”
Since this project, there have been five more major polymath projects on various
topics. The goal of “Polymath4,” for instance, is to resolve the following conjecture:

There exists a deterministic algorithm which, when given an integer k, is guaranteed to find
a prime of at least k digits in length of time polynomial in k.

These projects have been studied as a new way of doing mathematics (Sarvate
et al., 2009). They raise interesting research questions for education researchers
as well. One might try to understand, for instance, what kinds of mathematics
problems and learning tasks (research or not) are well-suited to large-scale online
collaboration, and what kinds are better suited to working in small groups or in
isolation.

The particular structure of hiring and promotion in academia poses a significant
barrier to the Polymath project and open science in general. Hiring, tenure and
promotion decisions are based largely on the candidate’s record of publication
in reputable journals. Young mathematicians are acutely aware of the pressure to
“publish or perish,” as the saying goes, and this pressure does not leave much room
for experimenting with new methods of doing science. The credit for authorship
in the Polymath project, for instance, amounts to a link to the full record of the
collaboration (i.e., the blog thread). The mathematics community at large has yet
to develop a methodical way of assigning credit for such work and taking it into
consideration for hiring, tenure and promotion. The obstacles are sometimes simply
technical, such as when journals require copyright release forms from every author
(“The Polymath Blog,” March 9, 2011).

The MathOverflow Website

In October of 2009, Berkeley graduate students and postdocs Anton Geraschenko,
David Brown, and Scott Morrison started a new website called MathOverflow. The
site was announced on the Secret Blogging Seminar, a mathematics blog maintained
by a small group of students at Berkeley (Geraschenko & Morrison, 2009). “Math-
Overflow” (2011) was based on the Stack Exchange software; the hope was that
the site would enjoy the same success as Stackoverflow, which is also built on Stack
Exchange software and is a very popular question-and-answer site for programmers.
While it started as only an experiment, MathOverflow immediately attracted a large
number of mathematicians who quickly began exchanging questions and answers
on any and all research topics in mathematics. The site has been featured in many
news articles, and many questions and answers have been cited in published journal



32 G. Alagic and M. Alagic

papers (“Meta Mathoverflow,” 2011). A sampling of topics from questions posted
on August 31st, 2011 included elliptic curves, Riemannian geometry, group theory,
algebraic geometry, partial differential equations, Banach spaces, cohomology, and
many others. As of that date, over 22,500 questions had been posed. Joining the
site as a member is free, and members can ask questions and provide answers,
and assign up/down votes to the questions and answers of other members. The
votes a member receives are added up, and higher scores allow access to more
advanced features of the site, such as editing the posts of others. Among the highest
scorers are several prominent mathematicians and Fields Medalists. Some of the
mathematicians involved have expended a tremendous amount of effort participating
in the site. The currently highest-rated member is Joel David Hamkins, a logician
at City University of New York, with 29 questions, 506 answers, and over 2,700
up-votes. A crude first-order approximation indicates that somewhere between
5 and 16% of all actively working mathematicians contribute to MathOverflow
(“MathOverflow Contributors,” 2011). It bears mentioning that, even though the
vast majority of the participants at MathOverflow are professors or postdocs, the
sixth-highest-rated and eighth-highest-rated contributors are undergraduate students
from MIT and Caltech, respectively.

Unlike its precursors (for example, the newsgroups sci.math and sci.math.
research), MathOverflow is focused on a question-and-answer role. The result
is a particular kind of online collaboration of learners (in this case, research
mathematicians). A single question-and-answer thread on MathOverflow may not
seem particularly collaborative; it may only involve two people, one with a question
and another with the answer. However, from the point of view of an involved
member, the site is a wealth of collaboration and cooperation. Given the sum total
expertise of the mathematicians involved, the community has a tremendous capacity
to educate the member and fill in gaps in their knowledge of mathematics. In
exchange, the member may provide answers to the questions of others and lend
his/her insight through commentary and collaborative editing. The result is that,
undoubtedly, a significant amount of mathematics learning is taking place.

As the meta discussions on the site itself can attest, MathOverflow is not
without problems. For instance, as one meta thread indicates, a significantly fewer-
than-representative number of women use MathOverflow (“Meta Mathoverflow
Discussions,” 2011). While this is not due to any active discrimination on the part
of site administrators, it is telling that the discussion itself had to be closed due to
less than amicable exchanges between members.

Collaborative Online Learning: Undergraduate
and School-Age Mathematics

The success of the open, collaborative mathematics done on the MathOverflow
website and within the Polymath project motivates us to consider the extent to
which similar efforts have been made in undergraduate and K-12 education. As
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we pointed out earlier, some of the most active participants in MathOverflow are
advanced undergraduate students. In this section we will instead consider some
examples of the online collaborative learning of subject matter which is typically
taught at undergraduate and K-12 levels in schools in the United States.

Mathematics – Stack Exchange

“Mathematics – Stack Exchange” (2011) (or M.SE for short) is self-described as
a “free, community driven and collaboratively edited site for learners studying
mathematics as well as for professionals in related fields.” Like MathOverflow,
M.SE is based on the Stack Exchange software, and follows roughly the same rules
of etiquette, moderation, and collaborative editing of content. Unlike MathOverflow,
it focuses on questions in mathematics which are not at the research level; as such,
questions about typical undergraduate-level mathematics are common. According
to the administrators of the site, the focus is on improving understanding of
mathematical concepts, exchanging hints for solving specific problems, and learning
about the history and development of mathematics (“Math Stack Exchange Q&A,”
2011). As an illustration of how the site functions, we will examine a specific Q&A
exchange on M.SE in the next section.

An Excerpt of an Exchange on Mathematics – Stack Exchange

Two engineering students familiar with M.SE were asked by one of the authors of
this paper to solve the following problem in a virtual environment:

Prove that the line segment joining the centers of two concurrent circles of equal radius is
perpendicular to the line segment joining the two intersection points of the circles.

In addition, students were required to record their online conversations and
provide a detailed solution to the problem. Students used Skype to chat about the
problem, sketched a drawing using GeoGebra and kept a record of their activities
in Google Documents. To illustrate their initial thinking, here is a verbatim excerpt
from their initial conversation via Skype:

[7/7/2011 12:36:27PM] S1: After reading the problem I have a few ideas on how to solve
the problem. I am making assumptions as it’s been a long time since I have opened my math
books. We should first draw a diagram (asymmetric) so that we don’t arrive at conclusions
very easily. What do you think?

[7/7/2011 12:41:39PM] S2: sketching diagram would be helpful. Using properties of circle
and chords we could get an idea regarding the problem.

[7/7/2011 12:44:09PM] S1: Lets use one of the online collaborative tools and see if it useful
as I have never used it before. I hope we can save and make changes to the diagram whenever
possible.
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Fig. 1 A sketch of the problem made with “GeoGebra” (2011)

[7/7/2011 12:51:22PM] S2: i have’nt used online tools before. But i have an idea of google
docs. I will try to draw a diagram by including my assumptions and share document with
you. so that you can modify if you have any better ideas.

[7/7/2011 12:56:11PM] S1: ok. I will use different online tools and choose which tool is
most user-friendly to work on.

S2 to S1: i found theorem proof for “line passing through the center of the circle bisect the
chord.”

[11:51:51AM] S2: will it be helpfull if l post the link to you.

[11:52:13] S2:

http://www.proofwiki.org/wiki/Perpendicular Bisector of Chord Passes Through Center

[11:56:53AM] S1: Yes, it works but it s a direct answer. If you look at the proof they have
made assumptions based on a few definitions so we need to start at the basic level.

[11:59:56AM] S2: i will try. if i could get proof for statements in the proof.

[12:01:26PM] S1: They are bisecting AB at D. We have that construction in our proof
Right?

[12:10:18PM] S2: yes. we have something similar. right now i have some assumptions
through which we can draw a conclusion. i will modify the google document that we are
using previously so that you can have visual of my idea (Fig. 1).

This conversation illustrates, in addition to use of Skype for communication, use
of three additional online resources: (i) Google document to record the problem and
solution attempts, (ii) GeoGebra (2011) to draw/construct an illustration supporting
the students’ understanding of the problem, and (iii) a wiki-proof – perpendicular
bisector of chord passes through center – that the student S2 was thinking might be
useful in the process. Eventually, the same student S2 posted a question to M.SE

http://www.proofwiki.org/wiki/Perpendicular_Bisector_of_Chord_Passes_Through_Center
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Fig. 2 Screen caption with the assigned problem posted to M.SE. (The Problem, 2011)

(The Problem, 2011) with an additional sentence: “I had come across statements
that common chord of the two circles is bisected if we draw a line segment joining
the two centers of circles.”

Figure 2 is a capture of the question and the follow-up activity during the
following 24 h by one of the engineering students trying to solve the problem.
Within that short period of time, the problem was tagged under the categories
geometry and circle, viewed 53 times, and given four answers. Notice that the
student (as user13359) added two more comments after posting the original
question, providing additional details about his thinking process.

Visible features of the M.SE are that viewers have an opportunity to (1) vote
“yes” or “no” if “this answer was helpful,” contributing to the reputation of the user
that posted a particular answer, and (2) improve the answer.

Two M.SE users provided different ways of thinking about the problem. One
wrote “This is true by symmetry. The figure with respect to reflection in the
line joining the centers; if the line joining the two intersection points weren’t
perpendicular to that line, it would break the symmetry.” The second user wrote,

Let the points of interaction of the circles be A and B, and the centers be C and C’. The
triangles ACB and AC’B are two isosceles triangles which share the same base. As you
have said, the line joining C and C’ bisects this base. But in an isosceles triangle, the main
altitude is the same line as the main median. Hence the line CC’ must be an altitude for
each of the triangles ACB and AC’B, i.e., it is perpendicular to AB (The Problem, 2011).

A coordinate geometry solution was provided by another user within 24 h of
posting the problem,
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Here’s is a coordinate geometry proof: let the two circles be of the form

.x � h1/2 C .y � k1/2 D r1
2;

.x � h2/2 C .y � k2/2 D r2
2

I ‘will be demonstrating a more general statement: the radical line of the two circles is
perpendicular to the line through the two centers. In the special case of intersecting circles,
the radical line is the line through the two intersection points.

It is trivial to write down the equation of the line joining the two centers:

.y � k1/ � .x � h1/ D .k2 � k1/ � .h2 � h1/

To construct the equation of the radical line, we expand the Cartesian equations of the two
circles:

x2 � 2h1x C h1
2 C y2 � 2k1y C k1

2 D r1
2; x2 � 2h2x C h2

2 C y2 � 2k2y C k2
2 D r2

2

And then subtract one from the other:

2 .h2 � h1/ x C h1
2 � h2

2 C 2 .k2 � k1/ y C k1
2 � k2

2 D r1
2 � r2

2

Whose slope is (h2 � h1)/(k2 � k1), which when multiplied by the slope (k2 � k1)/(h2 � h1)
of the line joining the centers gives -1, thus showing the perpendicularity (The Problem,
2011).

What followed is an opinion and comment included with yet another way to think
about the problem.

The argument by symmetry given by Joriki is in my opinion optimal.

If we want a maximally “high school” proof of the old-fashioned type, let the centers of
the circles be C and C’, and let the intersection points of the circles be A and B, as in the
answer y Bruno Joyal. Let M be the point where lines AB and CC’ meet.

Then triangles ACC’ and BCC’ are congruent, by what used to be called SSS.

It follows that < ACC’ D < BCC’;

So triangles ACM and BCM are congruent, by what used to be called SAS.
Thus, < CMA D <CMB. But these angles add up to a “straight angle,” so each is a right

angle (The Problem, 2011).

The next day, two users exchanged comments on coordinate geometry versus
“the classical route”

– Good demonstration of the “algorithmic” nature of coordinate geometry argu-
ments. – André Nicolas

– Indeed, @André : : : On the other hand, there remains a sort of panache when
one goes the classical route instead of the coordinate route : : : – J.M.

The follow-up reflective comment referred to a historical (not necessarily true)
anecdote, “Euclid is said to have told a Ptolemy, who was asking for shortcuts to
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proofs, and/or Menaechmus told Alexander ‘There is no royal road to geometry.’
: : : And the anecdote is unlikely to be true : : : – André Nicolas”. In response, J.M.
reflects on a possibility of revising the proof at some later “ : : : I could have made
the centers lie on the horizontal axis, and the proof certainly becomes much tidier
that way : : : maybe I’ll rewrite later.”

Later, user6312 added a comment which included (a) an expansion of the
problem, “ : : : the result is true without the assumption of equal radius : : : ,” and
(b) a speculative assumption about information being provided to students in the
class, “By a theorem which has presumably been proved in the course prior to this
problem : : : ,”

Curiously enough, we all seem to have missed the “equal radius” part of the statement of
the problem, which as far as I can tell was there from the beginning! Of course, the result is
true without the assumption of equal radius.

But the following argument may have been the intended one. Since the radii are equal, the
centers of the circles and their points of intersection form a rhombus. By a theorem which
has presumably been proved in the course prior to this problem, the diagonals of a rhombus
are perpendicular (and bisect each other). End of proof (The Problem, 2011).

The various users gave answers with very different approaches and styles, and
then exchanged comments on these differences. The answers were well-thought-
out, and were accompanied by LaTeX-coded equations and contextual commentary.
The users also returned later to add comments and edit their responses. No additional
interactions occurred between the student asking the question and the other users;
the other users did interact with each other in a meaningful and socially friendly way.
It should be mentioned that links to related problems are available on the right side
of the web page (Mathematics – Stack Exchange, 2011), providing opportunities
for additional exploration for self-regulated learners. We remark that, if one were
to access this question at a later time, the total record of the collaboration would
be available, providing a number of different approaches with complete proofs and
useful commentaries.

Relevance of exploration in selecting representations toward students’ conceptual
understanding of mathematical ideas is recognized as a tool for meaningful learning
by many researchers (e.g., Alagic, 2003; Greeno & Hall, 1997). In the example
provided here, students were able to access different ways in which other users are
thinking about the given problem. The same mathematical problem may be captured
with different representations and different modes of the same representation.
Multiple representations have been linked with greater flexibility in student thinking
and better transfer of learning (Perkins & Salomon, 1992; Zheng, 2008). A student
S2 reflected on his learning, “ : : : it would be better understood and remembered
for a long time when we try to learn things by comparing with other things that are
having some similar properties.”

The above exchange and accompanying reflection on M.SE raises many ques-
tions. For instance, what are the effects of integrating these kinds of interactions in
a traditional classroom? How different is this learning from traditional mathematics
education? How is the availability of websites such as M.SE already changing
traditional education?
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A Global Learning Project

One of the authors of this chapter co-facilitated a global learning project titled “From
Kansas to Queensland” (Alagic, Gibson, & Doyle, 2004; Watters, Rogers, Gibson,
Alagic, & Haack, 2004). The project connected preservice elementary teachers
enrolled in an Australian science methods course with a similar group in the United
States studying an integrated mathematics and science methods course. The goal of
the project was two-fold: to develop greater understanding of practices in teaching
elementary students, and to develop a global perspective on teaching and learning
science.

The 2-year project involved approximately 60 participants each year. The
participants consisted of a group of students from a major metropolitan university
in Queensland, Australia and a similar group of US preservice elementary teachers
from a university in Kansas, USA. Initially, the project faced many challenges,
e.g., the timing of the respective courses. Many of these initial technological and
organizational issues were resolved in the second year of the project, when most of
the exchanges between the participants were facilitated by the discussion forums
within the same courseware used by both universities. The observed exchanges
between participants reflected Salmon’s (2003) progressive stages of online learn-
ing, beginning with access and motivation, continuing to on-line socialization
and information exchange and finally to knowledge construction and development.
Eventually, the participants developed a level of autonomy that enabled them to
engage in spontaneous communication and knowledge exchange/building (Alagic
et al., 2004; Watters et al., 2004).

As part of the global learning project, students were encouraged to engage in
computer-mediated communication and to learn about mutual cultural practices
and primary/elementary science education in both countries. The initial social
interaction was facilitated by suggesting to students that they introduce themselves,
develop a name for their group, and reflect on their prior experiences of learning
science. Many shared negative experiences in their prior learning of science and
mathematics, which in turn fostered some discussions about possible ways to
provide positive experiences for their own students. They also discussed challenges
inherent to constructivist approaches to teaching and different ways in which cur-
ricula are designed in Australia and the United States. The outcomes demonstrated
that preservice elementary teachers, at both locations, benefited from the exchanges
by achieving a greater understanding of the common problems confronting science
education in both countries. Reflecting on the project experience, students expressed
support for the global learning initiative; below are four examples of their com-
ments:

– Thinking about learning: “ : : : the main thing I think I have learned is to not be
afraid to try something new or to meet someone new. I was very nervous about
having an e-mate, but so far, it has turned out to be awesome, and I am glad that
I was forced to do it. I probably would not have done it if I had a choice, so I am
glad I was pushed to do so.”
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– In terms of science/mathematics content, the teaching of the metric system
generated an interesting debate. Some of the US students demonstrated a miscon-
ception about the use of the metric system internationally. One Australian student
described her understanding of the system as the “English Metric System.”
A Kansas student shared, “I have also learned that I have a lot to learn about
science. In his last e-mail he [e-mate] was talking about doing a lesson about
how many Joules are in peanuts, and I don’t even know what a Joule is. I have a
lot to do still before I become a teacher.”

– Reflective of cultural awareness: “ : : : I’ve learned what netball is and how you
play it. My e-mate is really good at it and her sister also plays it. Her sister
represents Australia doing it, which I thought was really cool.” Other details
about daily lives were evident in communication related to “mascots” at the US
universities, a practice unknown in Australia.

– Value for preservice teachers’ future classrooms: Students made comments about
the transferability of their experience to their own future classrooms. Several
students shared ideas about e-corresponding next year when they have their own
classes, with an attempt to link their students.

Furthermore, it appeared that for some participants the opportunity to interact
with a neutral person (i.e., a peer, not the instructor), from another country, provided
an outside authority who validated content and methods selected by instructors in
respective courses. Although one could argue this can be accomplished in face-to-
face courses, notice that in a face-to-face course students are exposed to the same
curriculum and guided by the same instructor. Only a small number of students
indicated that they needed more time to develop a deeper connection and engage
more actively in discussions (Alagic et al., 2004; Watters et al., 2004).

Virtual Math Teams

The following is an example of a collaborative online learning opportunity for
K-12 students facilitated in a completely different manner from the above Global
Learning Project. The Virtual Math Teams (VMT) were implemented and re-
searched by a group of researchers since 2003 (Stahl, 2009). They were built on
the Problem-of-the-Week service at “Math Forum” (2011), an online resource for
improving math learning, teaching, and communication. The Math Forum has been
active since 1992, and offers a number of online services, including Problem of
the Week, Ask Dr. Math, Math Tools, and Teacher2Teacher. Students, who once
worked by themselves Problem of the Week, had an opportunity to work on open-
ended problems with a group of peers. The book Studying Virtual Math Teams
(Stahl) reports on empirical studies pursued by the author and his research team at
the Math Forum at Drexel University. Studies utilized chat interaction analysis on
researching how students in small online groups collaborate in solving problems and
develop understanding of mathematical ideas. Studies incorporate a description of
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the so-called Computer-Supported Collaborative Learning (CSCL) environment and
the corresponding pedagogical orientation. For the interested reader, a significant
collection of publications about VMT is referenced at Stahl’s webpage.

One of the studies (Litz, 2007) investigated why some K-12 students showed
resistance to using the VMT chat tools and why the number of participants in the
individually oriented Problems of the Week was substantially higher than those
of the VMT Chat. Some of the identified reasons included a lack of teacher
encouragement, a lack of integration of VMT Chat in math classes, difficulties with
using the computer environment itself, and a lack of advertising for the program.

Analysis and Contextualization

The examples in sections “Collaborative Online Learning of Research-Level Math-
ematics” and “Collaborative Online Learning: Undergraduate and School-Age
Mathematics” are a somewhat eclectic collection of online collaborative math-
ematics learning opportunities, selected to illustrate only a few (among many)
existing different models for online collaborative learning. Collaborative online
learning at the research level is illustrated by the Polymath project (a large-
scale open research collaboration) and the MathOverflow website (a Q&A site
for research mathematicians). At the undergraduate level, the two examples are
Mathematics – Stack Exchange (a Q&A site similar to MathOverflow, but for
non-research questions) and the Global Learning Project (which connected two
undergraduate classrooms from different parts of the world with an overarching
collaborative learning goal). Finally, we briefly discussed Virtual Math Teams as
an example of collaborative online learning of mathematics appropriate for K-12
students, and known to many K-12 teachers and their educators. We introduced
in more detail what we currently consider to be less known collaborative online
opportunities, and briefly mentioned those we deem better known to the general and
scholarly audiences. To clarify the significance of these examples, we now situate
them in the context of recent education research and briefly deliberate about various
forms of online collaborative learning, including open, self-directed, and massively
collaborative learning.

Computer Supported Collaborative Learning

Computer-Supported Collaborative Learning (CSCL) is a pedagogical methodology
in which learning takes place via social, collaborative interactions facilitated using
computers and the Internet. CSCL is closely related to collaborative learning and
computer-supported cooperative work. The distinguishing characteristic of CSCL
is that learning is accomplished by the sharing and construction of knowledge
among participants through online communication (e.g., Koschmann, 1996; Stahl,
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Koschmann, & Suthers, 2006). In addition to studying successful CSCL stories such
as those mentioned in sections “Collaborative Online Learning of Research-Level
Mathematics” (Polymath and Overflow) and “Collaborative Online Learning: Un-
dergraduate and School-Age Mathematics” (Global Learning and VMT), (see also,
Hurme, Merenluoto, & Järvelä, 2009; Stahl, 2010), it is relevant to recognize
the challenges of computer-supported collaborative learning in mathematics. In
Roberts (2004) two such challenges are identified: first, traditional mathematics
textbook problems do not necessarily lend themselves to collaborative engagement
in knowledge development; second, currently available tools for representation
are limited in their ability to support constructive knowledge-building activities.
Proposed remedies are given in the form of (1) authentic mathematical problems
that engage students in the collaborative construction and necessary revision of
mathematical models, and (2) user-friendly representational tools that not only
enable students to effectively represent mathematical problems but also to translate
within and across representations (Nason & Woodruff, 2004; Roberts, 2004). In
section “An Excerpt of an Exchange on Mathematics – Stack Exchange” we
illustrated how engagement of M.SE users around one relatively simple geometry
problem brings together a set of different solutions using available representational
tools. Readers of this chapter are encouraged to explore more complex, rich and
authentic mathematical problems as well as representational tools available at M.SE
in order to notice how Roberts’ ‘remedies’ play out in 2012 as compared to 2004
when the Roberts’ research was published.

The Computer Moderated Communication Model

Salmon (2003) described the Computer Moderated Communication (CMC) model
of online communication and learning through five stages of progression: access,
socialization, information exchange, knowledge construction, and further develop-
ment. In the access stage, students familiarize themselves with the technology tools
to be used in online interacting. During the socialization stage, students are engaged
in conversation about their related experiences and compare these experiences in
order to understand each other’s perspectives. The information exchange stage is
reached when students begin demonstrating an ability to exchange perspectives and
synthesize their knowledge; this provides conditions for the knowledge construction
stage, where students might operate as more independent learners. In the fifth and
final stage, that of further development, the students displayed a willingness to
engage in (or even initiate) similar projects. Salmon suggested that the CMC model
be introduced to students as a “new way of learning through networking” (Salmon,
p. 116).

In the Global Learning Project (as described in section “A Global Learning
Project” the exchanges between the members of the two student teams exhibited
Salmon’s progression through the various stages of CMC. The initial socialization
stage was initiated by instructors, and the information exchange stage was somewhat
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guided by the fact that the students were participating in the project as part of a
class. The commitment to engage in collaborative discussions varied among groups;
some committed to exchanging ideas well beyond the 6-week period, and continued
collaborating even after they were in their own classrooms with their own students
(Watters, Rogers, Gibson, Alagic, & Haack, 2004). The CMC model provided a
useful structure for studying the development of the interactions in this project and
for analyzing the collected data. However, researchers (Watters et al.) observed
that the final CMC stage (Stage 5) did not capture the most advanced student
behaviors. A small group of participants emerged from Stage Four with significant
contributions to knowledge construction, and subsequently explored options of
implementing similar projects with their own students. This display of leadership led
researchers to further analyze data for elements of self-regulated learning (Alagic et
al., 2004). Authors concluded with the proposition that making students aware of
the CMC model stages and related expectations could assist in facilitating a more
explicit path toward the interplay among the four major areas of self-regulated
learning: cognition, motivation, behavior and context (Snow, Corno, & Jackson,
1996).

Networked Learning, and Collaboration Versus Cooperation

At first, research and practice related to collaborative online learning environments
have focused mainly on tightly connected groups (as in the Global Learning
Project) facilitated by instructors willing to collaborate and co-teach. The concepts
of communities of practice have broadened this concept to include groups of
people sharing common personal or professional interests, with a goal of sharing
knowledge and developing shared understanding. With the expansion of social
networking, the structure of online groups now also includes loosely organized
communities in which people do not necessarily collaborate or communicate
directly (Dron & Anderson, 2007; Jones, Ferreday, & Hodgson, 2006; Siemens,
2005; Roschelle & Teasley, 1995).

Although we made no attempt to differentiate between “cooperative learning”
and “collaborative learning” in the previous sections, some authors do make a dis-
tinction (Dalsgaard & Paulsen, 2009; Panitz, 2003; Rockwood, 1995). For example,
Dalsgaard and Paulsen described collaborative learning as group-work within a
learning community, done with the expectation that all members actively participate
in accomplishing the given complex open-ended task. Three basic criteria are
often considered for collaboration: equal participation, genuine interactions, and
unified synthesis of work. Consequently, collaborative learning is seen as limiting
individual flexibility, while cooperative learning fosters an affinity to a learning
community while maintaining certain individual flexibility. According to Dalsgaard
and Paulsen, “collaborative learning depends on groups, and cooperative learning
takes place in social and/or professional networks. One may also add that the ties
between people are much tighter in groups than in networks” (p. 1). Classifying
the examples from sections “Collaborative Online Learning of Research-Level
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Mathematics” and “Collaborative Online Learning: Undergraduate and School-Age
Mathematics” within this strict distinction made by Dalsgaard and Paulsen appears
difficult. The participants of the Polymath project certainly referred to their work
as “collaborative” (Gowers’s Weblog, 2011); however, there were no specific
expectations of any individual, and the complete list of participants was not even
known until after the project was completed. The MathOverflow and Mathematics –
Stack Exchange websites are “collaboratively edited” according to their own
descriptions, but there again anyone is welcome to join and leave as they please,
and no individual is held responsible for anything at all. All of the work on
these sites is done voluntarily; it is thus distributed in a highly asymmetric way,
owing to the differing levels of motivation and commitment among the various
participants.

Networked learning is about connecting and communicating among individuals
and groups in ways that support one’s learning. In the information and communica-
tion technology paradigm, networked learning refers to the use of information and
communication technologies to foster necessary interactions and connections (e.g.,
Goodyear, Banks, Hodgson, & McConnell, 2004; Benkler, 2006). Salmon (2003)
suggested that we think about individual learners as nodes on a given network.
In formal educational settings, networked learning is achieved through formally
facilitated cooperative or collaborative processes (e.g., Dalsgaard & Paulsen, 2009;
Panitz, 2003).

Dalsgaard and Paulsen (2009) were seeking answers to the following question:
“what is the potential of social networking within cooperative online education?”
They defined transparency in cooperative learning as the learners’ insights into
each other’s activities and resources, within the defined learning environment.
Transparency is seen as a way of enabling learners to utilize each other’s work
while maintaining individual learning autonomy. In a classroom-oriented online
setting, the teacher facilitates transparency by setting or negotiating the conditions
of the learning environment. Dalsgaard and Paulsen contend that the pedagogical
potential of networked learning is situated within transparency and the capacity to
foster awareness related to information and resources among learners. “Informal”
and “transparent” seem to be crucial descriptors of Stack Exchange and Math
Overflow. An additional crucial descriptor is “self-regulated;” indeed, none of these
communities would exist if the participants did not choose to participate (Molenaar,
van Roda, Boxtel, & Sleegers, 2012).

Self-Regulated Learning

Informal learning is sometimes classified according to intentionality and awareness;
within this classification, the three forms of informal learning usually considered
are autonomous, incidental and socialized (Schugurensky, 2000). Most of the
examples discussed in sections “Collaborative Online Learning of Research-Level
Mathematics” and “Collaborative Online Learning: Undergraduate and School-
Age Mathematics” (Stack Exchange and Math Overflow) qualify as examples of
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informal, self-regulated learning within the context of an online learning environ-
ment. Global Learning project and Virtual Math Teams required various levels of
instructor/teacher facilitation and therefore, the extent to which learners are self
regulated is questionable and requires further analysis which is not a goal in this
chapter.

Self-regulation or self-direction in learning can be seen as a high degree of
learner independence that includes factors such as commitment to the learning task
and critical reflection (Cannatella, 2000). One definition of self-regulated learning
is “an active, constructive process whereby learners set goals for their learning
and then attempt to monitor, regulate, and control their cognition, motivation,
and behavior, guided and constrained by their goals and the contextual features
in the environment” (Wolters, Pintrich, & Karabenick, 2003, p. 4). The relations
between individuals and the environment, and their resulting overall achievement
are facilitated by these self-regulatory actions. Cognition, motivation, behavior
and context are often considered major, though not distinct, areas of regulation.
Models of self-regulation usually share four learner-directed phases: goal-setting,
monitoring, control and regulation, and reflective processes (Snow et al., 1996).
The development of lifelong learning is associated with certain criteria; among
those are active learner involvement, a democratic learning approach, flexibility of
time and amount of learning, provisions for individual learning differences, relevant
motivating content, opportunities for collaboration, integration of knowledge from
different fields, and an encouraging, risk-free atmosphere for learning (Knapper,
1988). To develop the qualities of long-term learner independence, opportunities for
active involvement, relevance, and risk-taking must be provided at all stages of the
educational process. Some learners require prolonged attention to these qualities,
some less, or none (Alagic et al., 2004; Cannatella, 2000; Knapper, 1988).

Self-regulated learning is considered to contribute to cognitive self-engagement
into higher-order thinking (Corno & Mandinach, 1983; Vygotsky, 1978; Winne
& Hadwin, 2008) during collaborative learning that occurs when learners interact
while seeking a solution to a task (Jonassen & Reeves, 1996). The purposeful
planning and monitoring of cognitive and affective processes involved in successful
completion of selected tasks is characterized by the use of metacognitive processes
of planning and monitoring that for some learners seem to occur automatically.
Gibbons (2004) explicated five stages/formats, each involving a set of tasks that
can facilitate scaffolding of opportunities for self-regulated learning. These stages
include: Incidental self-direction; Independent thinking; Self-managed learning;
Self-planned learning; and Self-directed learning. Stages can be a guiding sequence
for moving forward, or employed one at a time. The way in which the stages are
implemented is highly dependent on the learners’ active role in selecting, designing
and implementing their own learning activities. It is not a goal here to study all
the stages of self-regulation. However, there is a space for some illustration. If
we subject “An Excerpt of an Exchange on Mathematics – Stack Exchange” to
an analysis according to the mentioned stages, we may notice that the initial user
showed some incidental self-direction by posting the problem and later adding some
additional comments. Interaction among other users contributing to the conversation
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leads one of the users to promise improving his posted solution which at least
illustrate intentional self-planned learning (“tiding”).

Discussion

In the previous sections, we discussed several examples of collaborative online
learning of mathematics. The examples varied in their essential nature; some
involved small closed groups of K-12 peers (Virtual Math Teams) or preservice
elementary teachers (Global Learning Project), and others were large-scale massive
collaboration efforts open to anyone with an Internet connection, like Mathematics –
Stack Exchange. Our hope is that the discussion of these examples, along with the
contextual analysis of section “Analysis and Contextualization”, will spur further
discussion and research about the nature of both formal and informal learning
of mathematics with modern online technologies. We have discussed many of
the advantages and some of the challenges of collaborative online learning in its
various incarnations. Still, it bears pointing out that, just like the classroom model,
a collaborative online model has inherent limitations. For instance, most of the
examples we cited (e.g., Polymath, MathOverflow, Mathematics – StackExchange)
depend critically on self-motivation and self-regulation. The problem of developing
such a degree of self-motivation and self-regulation in the first place is left
unexamined. One should also exercise care in applying learning methods used by
research mathematicians to school-age and undergraduate mathematics learning. In
particular, learning mathematics without referring to outside authorities has strict
limits. We would certainly not expect a group of young children to independently
re-invent the entire field of mathematics without relying on any textbooks or outside
instruction, even if they worked together with the most advanced collaboration tools
available. We have only briefly touched upon the many challenges of integrating
online learning with traditional/formal education (e.g., Virtual Math Teams). With
these reservations in mind, we nonetheless see tremendous opportunities in collabo-
rative online learning of mathematics for students at all ages and knowledge levels.
In particular, we believe that online collaborative learning communities provide the
greatest benefit to their participants when participation is self-regulated and open to
anyone.
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by a Virtual Math Team
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Abstract Learning mathematics involves mastering specific forms of social prac-
tice. In this chapter, we describe socially situated, interactional processes involved
with collaborative learning of mathematics online. We provide a group-cognitive
account of mathematical understanding in an empirical case study of an online
collaborative learning environment called Virtual Math Teams. The chapter looks
closely at how an online small group of mathematics students coordinates their col-
laborative problem solving using chat, shared drawings and mathematics symbols.
Our analysis highlights the methodic ways group members enact the affordances of
their situation (a) to display their reasoning to each other by co-constructing shared
mathematical artifacts and (b) to coordinate their actions across multiple interaction
spaces to relate their narrative, graphical and symbolic contributions while they
are working on open-ended mathematics problems. In particular, we identify key
roles of referential and representational practices in the co-construction of deep
mathematical understanding at the group level, which is achieved through methodic
uses of the environment’s features to coordinate narrative, graphical and symbolic
resources.
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Mathematical Practices

Developing pedagogies and instructional tools to support learning mathematics
with understanding is a major goal in Mathematics Education (CCSSI, 2011;
NCTM, 2000). A common theme among various characterizations of mathematical
understanding in the mathematics education literature involves constructing rela-
tionships among mathematical facts and procedures (Hiebert & Wearne, 1996). In
particular, recognition of connections among multiple realizations of a mathematics
concept encapsulated in various inscriptional forms is considered as evidence of
deep understanding of that subject matter (Healy & Hoyles, 1999; Kaput, 1998;
Sfard, 2008). For instance, the concept of function in the modern mathematics
curriculum is introduced through its graphical, narrative, tabular and symbolic
realizations. Hence, a deep understanding of the function concept is ascribed to
a learner to the extent he/she can demonstrate how seemingly different graphical,
narrative and symbolic forms are interrelated as realizations of each other in specific
problem-solving circumstances that require the use of functions. On the other hand,
students who demonstrate difficulties in realizing such connections are considered
to perceive actions associated with distinct forms as isolated sets of skills, and hence
are said to have a shallow understanding of the subject matter (Carpenter & Lehrer,
1999).

Reflecting on one’s own actions and communicating/articulating mathematical
rationale are considered as important activities through which students realize con-
nections among seemingly isolated facts and procedures in mathematics education
theory (Hiebert et al., 1996; Sfard, 2002). Such activities are claimed to help learners
notice broader structural links among underlying concepts, reorganize their thoughts
around these structures, and hence develop their understanding of mathematics
(Carpenter & Lehrer, 1999; Skemp, 1976). Consequently, collaborative learning
in peer-group settings is receiving increasing interest in mathematics education
practice due to its potential for promoting student participation and creating a natural
setting where students can explain their reasoning and benefit from each others’
perspectives (Barron, 2003).

Representational capabilities offered by Information and Communication Tech-
nologies (ICT) provide important affordances for exploring connections among
different realizations of mathematical objects. Dynamic geometry applications like
Cabri, Geometer’s Sketchpad, GeoGebra (Goldenberg & Cuoco, 1998); algebra
applications such as Casyospee (Lagrange, 2005), or statistical modeling and
exploratory data analysis tools like TinkerPlots (Konold, 2007) provide represen-
tational capabilities and virtual manipulatives that surpass what can be done with
conventional methods of producing mathematical inscriptions in the classroom
(Olive, 1998). In addition to this, widespread popularity of social networking
and instant messaging technologies among the so-called Net Generation requires
designers of educational technology to think about innovative ways for engaging
the new generation of students with mathematical activity (Lenhart, Madden,
Macgill, & Smith, 2007). Therefore, bringing the representational capabilities
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of existing mathematical packages together with communicational affordances
of social-networking/messenger software can potentially support the kinds of
interactions that foster deeper understanding of mathematics. Computer-Supported
Collaborative Learning (CSCL) is a research paradigm in the field of Instructional
Technology that investigates how such opportunities can be realized through
carefully designed learning environments that support collective meaning-making
practices in computer-mediated settings (Stahl, Koschmann, & Suthers, 2006).

Multimodal interaction spaces—which typically bring together two or more
synchronous online communication technologies such as text-chat and a shared
graphical workspace—have been widely employed in CSCL research and in com-
mercial collaboration suites such as Elluminate and Blackboard-Wimba to support
collaborative-learning activities of small groups online (Dillenbourg & Traum,
2006; Suthers et al., 2001). The way such systems are designed as a juxtaposition
of several technologically independent online communication tools not only brings
various affordances (i.e., possibilities for and/or constraints on actions), but also
carries important interactional consequences for the users (Çakır, Zemel, & Stahl,
2009; Dohn, 2009; Suthers, 2006). Providing access to a rich set of modalities
for action allows users to demonstrate their reasoning in multiple semiotic forms.
However, the achievement of connections that foster the kind of mathematical
understanding desired by mathematics educators is conditioned upon team mem-
bers’ success in devising shared methods for coordinated use of these resources
(Mühlpfordt & Stahl, 2007).

Although CSCL environments with multimodal interaction spaces offer rich
possibilities for the creation, manipulation, and sharing of mathematical artifacts
online, the interactional organization of mathematical meaning-making activities
in such online environments is a relatively unexplored area in CSCL and in
mathematics education. In an effort to address this gap, we have designed an
online environment with multiple interaction spaces called Virtual Math Teams
(VMT), which allows users to exchange textual postings as well as share graphical
contributions online (Stahl, 2009). The VMT environment also provides additional
resources, such as explicit referencing and special awareness markers, to help users
coordinate their actions across multiple spaces. Of special interest to researchers,
this environment includes a Replayer tool to replay a chat session as it unfolded in
real time and inspect how students organize their joint activity to achieve the kinds
of connections indicative of deep understanding of mathematics (Stahl, 2011).

In this chapter we focus on the interactional practices through which VMT
participants achieve the kinds of connections across multiple semiotic modalities
that are indicative of deep mathematical understanding. In particular, the chapter
will look closely at how an online small group of mathematics students coordinated
their collaborative problem solving using digital text, drawings and symbols. We
take the mathematics-education practitioners’ account of what constitutes deep
learning of mathematics as a starting point, but instead of treating understanding
as a mental state of the individual learner that is typically inferred by outcome
measures, we argue that deep mathematical understanding can be located in the
practices of collective multimodal reasoning displayed by groups of students
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through the sequential and spatial organization of their actions (Stahl, 2006). In
an effort to study the practices of multimodal reasoning online, we employ an
ethnomethodological case-study approach and investigate the methods through
which small groups of students achieve joint attention to particular mathematical
features of their representations in order to ground their co-construction of shared
mathematical meaning (Sarmiento & Stahl, 2008; Stahl, Zhou, Çakır, & Sarmiento-
Klapper, 2011). Our analysis of the excerpts presented below has identified key
roles of referential and representational practices in the co-construction of deep
mathematical understanding at the group level, which is elaborated further in the
discussion section.

Data Collection and Methodology

The excerpts analyzed in this chapter are obtained from a problem-solving session
of a team of three upper-middle-school students who participated in the VMT
Spring Fest 2006. This event brought together several teams from the US, Singapore
and Scotland to collaborate on an open-ended mathematics task on combinatorial
patterns. Students were recruited anonymously through their teachers. Members of
the teams generally did not know each other before the first session. Neither they nor
we knew anything about each other (e.g., age or gender) except chat screen names
and information that may have been communicated during the sessions. Each group
participated in four sessions during a 2-week period, and each session lasted over an
hour. Each session was moderated by a Math Forum member; the facilitators’ task
was to help the teams when they experienced technical difficulties, not to participate
in the problem-solving work.

During their first session, all the teams were asked to work on a particular pattern
of squares made up of sticks (see Fig. 1). For the remaining three sessions the teams

(1) 4 sticks, 1 square

(2) 10 sticks, 3 squares

(3) 18 sticks, 6 squares

N Sticks Squares

1 4 1

2 10 3

3 18 6

4 ? ?

5 ? ?

6 ? ?

... ... ...

N ? ?

Session I

Draw the pattern for N=4, N=5, and N=6 in 
the whiteboard. Discuss as a group: How does 
the graphic pattern grow?  

Fill in the cells of the table for sticks and 
squares in rows N=4, N=5, and N=6. Once 
you agree on these results, post them on the 
VMT Wiki  

Can your group see a pattern of growth for the 
number of sticks and squares? When you are 
ready, post your ideas about the pattern of 
growth on the VMT Wiki. 

3.

2.

1.

Fig. 1 Task description for VMT Spring Fest 2006
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were asked to come up with their own stick patterns, describe the patterns they
observed as mathematical formulae, and share their observations with other teams
through a wiki page.

This task was chosen because of the possibilities it afforded for many different
solution approaches ranging from simple counting procedures to more advanced
methods, such as the use of recursive functions and exploring the arithmetic
properties of various number sequences. Moreover, the task had both algebraic and
geometric aspects, which would potentially allow us to observe how participants
put many features of the VMT software system into use. The open-ended nature
of the activity stemmed from the need to agree upon a new shape made by sticks.
This required groups to engage in a different kind of problem-solving activity as
compared to traditional situations where questions are given in advance and there
is a single “correct” answer—presumably already known by a teacher. We used a
traditional problem to seed the activity and then left it up to each group to decide the
kinds of shapes they found interesting and worth exploring further (Moss & Beatty,
2006; Watson & Mason, 2005).

The VMT system that hosted these sessions has two main interactive components
that conform to the typical layout of systems with dual-interaction spaces: a shared
whiteboard that provides basic drawing features on the left and a chat window on the
right. The online environment has features to help users relate the actions happening
across dual-interaction spaces. One of the unique features of the VMT chat system
is the referencing support mechanism (Mühlpfordt & Stahl, 2007), which allows
users to visually connect their chat postings to previous postings or to objects
on the whiteboard via arrows (e.g., Fig. 7 below illustrates a message-to-message
reference, whereas Fig. 6 shows a message-to-whiteboard reference). The referential
links attached to a message are displayed until a new message is posted. Messages
including referential links are marked with an arrow icon in the chat window. A user
can see where such a message is pointing at any time by clicking on it.

Studying the collective meaning-making practices enacted by the users of CSCL
systems requires a close analysis of the process of collaboration itself (Koschmann,
Stahl, & Zemel, 2007; Stahl et al., 2006). In an effort to investigate the organization
of interactions across the dual-interaction spaces of the VMT environment, we
consider the small group as the unit of analysis (Stahl, 2006), and we appropriate
methods of Ethnomethodology (EM) (Garfinkel, 1967; Livingston, 1987) and
Conversation Analysis (CA) (Sacks, 1962/1995; ten Have, 1999) to conduct case
studies of online group interaction. Our work is informed by EM/CA studies of
interaction mediated by online text-chat (Garcia & Jacobs, 1998; O’Neil & Martin,
2003). However, the availability of a shared drawing area and explicit support for
deictic references in our online environment, as well as our focus on mathematical
practice significantly differentiate our study from existing CA/EM studies of online
text-chat.

The goal of ethnomethodological conversation analysis is to describe the com-
monsense understandings and procedures group members use to organize their
conduct in particular interactional settings. Commonsense understandings and
procedures are subjected to analytical scrutiny because they “enable actors to



54 M.P. Çakır and G. Stahl

recognize and act on their real world circumstances, grasp the intentions and
motivations of others, and achieve mutual understandings” (Goodwin & Heritage,
1990, p. 285). Group members’ shared competencies in organizing their conduct
not only allow them to produce their own actions, but also to interpret the actions
of others (Garfinkel & Sacks, 1970). Since members enact these understandings
and/or procedures in their visually displayed situated actions, researchers can dis-
cover them through detailed analysis of members’ sequentially organized conduct
(Schegloff & Sacks, 1973).

We conducted numerous VMT Project data sessions, where we subjected our
analysis of VMT data to intersubjective agreement by conducting CA data sessions
(Jordan & Henderson, 1995; ten Have, 1999). During the data sessions we used
the VMT Replayer tool, which allows us to replay a VMT chat session as it
unfolded in real time based on the timestamps of actions recorded in the log
file. The temporal order of actions—chat postings, whiteboard actions, awareness
messages—we observe with the Replayer as researchers exactly matches the order
of actions originally observed by the users. This property of the Replayer allowed us
to study the sequential unfolding of events during the entire chat session. In short,
the VMT environment provided us as researchers a perspicuous setting in which
the mathematical meaning-making process is made visible as it is “observably and
accountably embedded in collaborative activity” (Koschmann, 2001, p. 19).

Setting Up the Mathematical Analysis

In the following excerpts we will observe a team of three upper-middle-school
students in action, who used “Qwertyuiop”, “137” and “Jason” as login screen
names. Prior to the session containing these excerpts, this team completed two chat
sessions where they explored similar stick patterns together. In the current session,
team members will be working on a new stick pattern that they co-constructed
and named as the “hexagonal pattern”, whose first three stages are illustrated in
Fig. 2. Details of this co-construction process was analyzed and published elsewhere
(Çakır, 2009; Çakır et al., 2009), so we will skip the part where the group constituted
this pattern as a shared problem and figured out a method to count the number of
triangles enclosed in its n-th stage. In the excerpts presented below, the team will be

Fig. 2 Hexagonal stick pattern co-constructed by this team
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working on devising a formula for characterizing the number of sticks that will be
needed to construct the hexagonal pattern in general (i.e., in its n-th stage). Our main
analytic goal is to identify the practices or group methods team members enacted
to achieve a shared understanding of the problem at hand by co-constructing and
acting on the mathematical artifacts in graphical, narrative and symbolic forms.

Excerpt 1: Constitution of a New Math Task

This excerpt illustrates a number of rich referencing methods: special terms, graph-
ical practices, VMT tools, etc. Excerpt 11 opens with Qwertyuiop’s announcement
of “an idea”2 in line 742. He suggests the team find the number of a set of objects he
calls “collinear sides” and multiply that number by 3. The statement in parenthesis
elaborates further that there are three such sets. The use of the term “sides” makes
it evident that this statement is about the problem of finding the number of sticks to
construct a given stage, rather than the problem of finding the number of triangles
that make up a hexagon that has been recently discussed by the team.3 Thus,
Qwertyuiop seems to be proposing to his teammates a way to approach the problem
of counting the number of sticks needed to construct the hexagonal shape in general.

A minute after this posting, 137 begins to type at 19:26:20. While the awareness
marker continues to display that 137 is typing, he adds two green lines on the
hexagon that intersect each other and two green arrows (see Fig. 3). The arrows
are positioned outside the hexagon and their tips are mutually pointing at each
other through a projected diagonal axis. Shortly after his last drawing move, 137
completes his typing action by posting the message “as in those?” in line 746,
which is explicitly linked to Qwertyuiop’s previous posting with a referential arrow.
The plural4 deictic term “those” in this posting instructs others to attend to some

1The referential links used by the students to connect their messages to previous messages are
displayed in the right-most column in the excerpts. For instance, line 745 includes Message #742
in the right-most column. This indicates that message 745 was linked to 742 by its contributor (i.e.
Nan in this case). References to whiteboard objects are also marked in this column (e.g. see Fig. 6).
Whiteboard drawing actions are described in bold-italics to separate them from chat messages.
Note that chat postings and whiteboard drawings often interleave each other.
2Phrases quoted from chat messages are printed in bold to highlight the terms used by the
participants.
3There is a parallel conversation unfolding in chat at this moment between the facilitator (Nan) and
Jason about an administrative matter. Lines 740, 743, 744, and 745 are omitted from the analysis
to keep the focus on the math problem solving.
4137’s referential work involves multiple objects in this instance. Although the referencing tool of
VMT can be used to highlight more than one area on the whiteboard, this possibility was not
mentioned during the tutorial and hence was not available to the users. Although the explicit
referencing tool of the system seemed to be inadequate to fulfill this complicated referential
move, 137 achieves a similar referential display by temporally coordinating his moves across both
interaction spaces and by using the plural deictic term “those” to index his recent moves.
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Fig. 3 Two arrows and two green lines produced by 137. One of the lines splits the hexagon into
two halves horizontally, whereas the other line crosses the hexagon diagonally into two halves

objects beyond the chat statement itself, possibly located in the other interaction
space. The way the drawing actions are embedded as part of the typing activity
suggests that they are designed to be seen as part of a single turn or exposition.
Hence, the deictic term “those” can be read as a reference to the objects pointed
to by the recently added green arrows.5 Moreover, the use of the term “as” and
the referential link together suggest that these drawings are related to Qwertyuiop’s
proposal in line 746. Therefore, based on the evidence listed above, 137 proposes
a provisional graphical representation of what was described in narrative form by
Qwertyuiop earlier and calls for an assessment of its adequacy.

In line 747 Qwertyuiop posts a message linked to 137’s message with the
referential arrow, which indicates that he is responding to 137’s recent proposal.
The use of “no” at the beginning expresses disagreement and the following phrase
“in one triangle” gives further specificity to where the relevant relationship should
be located. The next sentence “I will draw it : : : ” in the same posting informs other

5We have observed that students use “those” (or “that”) in chat to reference items already existing
in the whiteboard, but “these” (or “this”) to reference items that they are about to add to the
whiteboard.
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Fig. 4 Qwertyuiop repositions the green lines on the left. Shortly after, 137 increases their
thickness

members that he will continue his elaboration on the whiteboard. The use of ellipsis
“ : : : ” also marks the incomplete status of this posting, which informs others that
his subsequent drawings should be seen as related to this thread.

Following this line, Qwertyuiop begins to reposition some of the green lines
that 137 drew earlier. He forms three green horizontal lines within one of the six
triangular partitions (see the snapshot on the left in Fig. 4). Then in line 748, he
posts the deictic term “those” that can be read as a reference to the recently added
lines. Immediately following Qwertyuiop’s statement, 137 modifies the recently
added lines by increasing their thickness (see the snapshot on the right in Fig. 4).
These moves make the new lines more visible. In line 749, Qwertyuiop continues
his exposition by stating that what has been marked (indexed by “those”) is what
needs to be found and then multiplied by 3.

137’s posting “the rows?” follows shortly after in line 750. The term “rows” has
been previously used by this team to describe a method to systematically count the
triangles located in one of the six regions of the hexagonal array. By invoking this
term here again, 137’s posting proposes a relationship between what is highlighted
on the drawing and a term the team has previously used to articulate a method of
counting. The question mark appended invites others to make an assessment of the
inferred relationship.

A minute after 137’s question, Qwertyuiop posts a further elaboration. The first
sentence states that the lines marked with green on the drawing are “collinear” to
each other. The way he uses the term collinear here in relation to recently highlighted
sticks indicates that this term is a reference to sticks that are aligned with respect to
each other along a grid line. The second sentence asserts that there are “3 identical
sets of collinear lines” (presumably located within the larger triangular partition,
since the green lines are carefully placed in such a partition). Finally, the last
sentence states that one needs to find the number of “sides” (i.e., sticks) in one set
and multiply that number by “3” (to find the total number of sticks in one partition).
Although Qwertyuiop does not explicitly state it here, the way he places the green
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lines indicates that he is oriented to one of the 6 larger partitions to perform the
counting operation he has just described. Following Qwertyuiop’s elaboration, 137
posts “Ah. I see.” in line 752. This is a token of cognitive change (Heritage, 2002),
where the person who made the utterance announces that she/he can see something
he has not been able to see earlier. Yet, it is still ambiguous what is understood or
seen since no display of understanding is produced by the recipients yet.

Excerpt 2: Co-construction of a Method for Counting Sticks

About 18 seconds after 137’s last posting, Qwertyuiop begins typing, but he does
not post anything in chat for a while. After 10 seconds elapsed since Qwertyuiop
started typing, 137 begins to produce a drawing on the whiteboard. In about 10 s,
137 produces a smaller hexagonal shape with orange color on the triangular grid.
The new elongated hexagonal shape is placed on the right side of the recently added
green lines, possibly to avoid overlap (see Fig. 5). Once the hexagon is completed,
137 posts a chat message in line 753. The message starts with “wait”6 which can
be read as an attempt to suspend the ongoing activity. The remaining part of the
message states that the aforementioned approach may not work for a case indexed
by the deictic term “that one”. Since 137 has just recently produced an addition to
the shared drawing, his message can be read in reference to the orange hexagon.
Moreover, since the referred case is part of a message designed to suspend ongoing
activity for bringing a potential problem to others’ attention, the recently produced
drawing seems to be presented as a counterexample to the current approach for
counting the sticks.

In the next line Jason posts the affirmative token “yes”. Since it follows 137’s
remark sequentially, the affirmation can be read as a response to 137. Jason’s fol-
lowing posting provides an account for the agreement by associating “irregularity”
with an object indexed by the deictic term “that”. When these two postings are
read together in response to 137’s message, the deictic term can be interpreted
as a reference to the orange hexagon. In short, Jason seems to be stating that the
strategy under consideration would not work for the orange hexagon because it is
“irregular”. In the meantime, 137 is still typing the statement that will appear in
line 756, which asks whether the hexagon under consideration is still assumed to
be regular. This question mitigates the prior problematization offered by the same
author since it leaves the possibility that the proposed strategy by Qwertyuiop may
still work for the regular case.

6The token “wait” is used frequently in math problem-solving chats to suspend ongoing activity
of the group and solicit attention to something problematic for the participant who uttered it. This
token may be used as a preface to request explanation (e.g., wait a minute, I am not following,
catch me up) or to critique a result or an approach as exemplified in this excerpt.
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Fig. 5 137 adds an elongated hexagon in orange

In line 758, Qwertyuiop posts a chat message stating “side length 1 D 1, side
length 2 D 3, side length 3 D 6 : : : ” It took about a minute for him to compose this
message after he was first seen as typing at 19:30:38. The way the commas are used
to separate the contents of the statement and the ellipsis placed at the end indicate
that this posting should be read as an open-ended, ordered list. Within each list item
the term “side length” is repeated. “Side length” was used by this team during a
prior session as a way to refer to different stages of a growing stick-pattern. In the
hexagonal case the pattern has 6 sides at its boundary and counting by side-length
means figuring out how many sticks would be needed to construct a given side as the
pattern grows step by step. Note that this method of indexing stages assumes a stick-
pattern that grows symmetrically. So a side length equal to 1, 2 or 3 corresponds to
the first, second or third stage of the hexagonal stick pattern, respectively. When
the statement is read in isolation, it is not clear what the numbers on the right of the
equals sign may mean, yet when this posting is read together with Qwertyuiop’s pre-
vious posting where he described what needs to be found, these numbers seem to in-
dex the number of sticks within a set of collinear lines as the hexagonal array grows.

After Qwertyuiop’s message, 137 removes the orange lines he drew earlier to
produce an irregular hexagon. By erasing the irregular hexagon example, 137 seems
to be taking Qwertyuiop’s recent posting as a response to his earlier question posted
in line 756, where he asked whether they were still considering regular hexagons or
not. Although Qwertyuiop did not explicitly respond to this question, his message in
line 758 (especially his use of the term “side length” which implicitly assumes such
a regularity) seems to be seen as a continuation of the line of reasoning presented
in his earlier postings. In other words, Qwertyuiop’s sustained orientation to the
symmetric case is taken as a response to the critique raised by 137.
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Fig. 6 Qwertyuiop points to the triangle which contains the sticks to be counted for the stage
indexed by side length D 2. The green lines enclosed by the reference correspond to 1 C 2 D 3
sticks

In line 759, 137 posts a message explicitly linked to Qwertyuiop’s most
recent posting. It begins with the negative token “Shouldn’t”, which expresses
disagreement. The subsequent “side length 2” indexes the problematic item and “be
fore” offers a repair for that item. Moreover, the posting is phrased as a question to
solicit a response from the intended recipient. 137’s next posting in line 760 repairs
his own statement with a repair notation peculiar to online chat environments. The
asterisk at the beginning instructs readers to attend to the posting as a correction
(usually to the most recent posting of the same author). In this case, due to its
syntactic similarity to the word in the repair statement, “fore” seems to be the token
that is supposed to be read as “four.”

In his reply in line 761, Qwertyuiop insists that his counting yields “three” for
the problematized case. In the next posting 137’s “oh” marks the previous response
as surprising or unexpected. The subsequent “sry”—short for “sorry”—can be read
as backing down. In line 763, Qwertyuiop posts a message that states “it’s this
triangle” and explicitly points at a region on the shared drawing with the referencing
tool. The explicit reference and the deictic terms again require the interlocutors to
attend to something beyond the text involved in the posting. In short, the sequential
unfolding of the recent postings suggests that this posting is designed to bring the
relevant triangle in which the counting operation is done for the problematic case
(indexed by side length 2) to other members’ attention (see Fig. 6).

In line 765, Qwertyuiop posts another message explicitly pointing to his earlier
proposal for the first few values he obtained through his method of counting,
where he states that he has not been able to “see a pattern yet.” Hence, this
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Fig. 7 137 adds a single stick in orange on the left of the line that horizontally splits the large
hexagon

statement explicitly specifies “the pattern” as what is missing or needed in this
circumstance. The message not only brings a prospective indexical7 (Goodwin,
1996), “the pattern,” into the ongoing discussion as a problem-solving objective,
but also invites other members of the team to join the search for that pattern.

In the next line, 137 posts a question that brings other members’ attention to
something potentially ignored so far. The term “bottom one” when used with
“ignore” indexes something excluded or left out. Nine seconds after his posting, 137
performs some drawing work on the whiteboard. He moves the longest green line to
the right first, then he adds a short line segment with orange color, and then he moves
the same green line back to its original location (see Fig. 7). These moves make
137’s orientation to a particular part of the drawing explicit. When read together
with his previous question, the orange line could be seen as a graphical illustration
for the left-out part previously referred as the “bottom one”. When read as a response
to Qwertyuiop’s recent exposition in lines 761 and 763, the “bottom one” seems to
be a reference to the part of the drawing that was not enclosed by Qwertyuiop’s
explicit reference.

The next posting by Qwertyuiop, which appears in line 767, is explicitly linked
to 137’s question in the previous line. The message begins with “no” which marks

7Goodwin (1996) proposes the term prospective indexicals for those terms whose sense is not yet
available to the participants when it is uttered, but will be discovered subsequently as the interaction
unfolds. Recipients need to attend to the subsequent events to see what constitutes a “pattern” in
this circumstance.
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the author’s disagreement with the linked content, and the subsequent part of the
message provides an account for the disagreement by stating that the value 3 is only
relevant to the case indexed by “side length 2”.

The sequence of exchanges between 137 and Qwertyuiop in this excerpt indicates
that there is a misalignment within the group about the procedure used for counting
the number of sticks. This misalignment is made evident through explicit problema-
tizations and disagreements. The way the members make use of both spaces as they
interact with each other makes it increasingly clear for them (a) where the relevant
pieces indexed by the terms like “collinear” and “triangle” are located, and (b) how
they are used in the counting process. Nevertheless, the misalignment between the
counting procedures suggested in 137’s and Qwertyuiop’s contributions have not
been resolved yet.

Excerpt 3: Collective Noticing of a Pattern of Growth

In line 768, 137 posts a message linked to Qwertyuiop’s posting in line 765. The
preface “And” and the explicit reference together differentiate this contribution
from the ongoing discussion about a piece that was potentially excluded from the
second stage. Note that Qwertyuiop’s message in line 765 refers further back to an
older posting where he proposed a sequence of numbers for the first three stages
“side length 1 D 1, side length 2 D 3, side length 3 D 6 : : : ” When 137’s message
is read in relation to these two prior messages, the phrase “they are all” seems to
be a reference to this sequence of numbers. Therefore, the message can be read
as an uptake of the issue of finding a pattern that fits this sequence. Moreover, by
proposing the term “triangular numbers” as a possible characterization for the
sequence, 137 offers further specificity to the prospective indexical, the “pattern”,
which was initially brought up by Qwertyuiop.

Following his proposal, 137 changes the color of the longest green line segment
at the bottom to red and then to green again. In the meantime Qwertyuiop is typing
what will appear in line 769, which can be read as a question soliciting further
elaboration of the newly contributed term “triangular numbers.” 137 continues to
act on the whiteboard and he adds a red hexagon to the shared drawing (see Fig. 8).
Since the hexagon is located on the section referenced by Qwertyuiop several times
earlier and shares an edge with the recently problematized orange section, this
drawing action can be treated as a move related to the discussion of the ignored
piece.

Jason joins the discussion thread about triangular numbers by offering a list of
numbers in line 770. The term “like” is used here again to relate a mathematical
term to what it may be indexing. This posting alone can be read as an assertion,
but the question mark Jason posts immediately after in the next line mitigates it
to a statement soliciting others’ assessment. At roughly the same time, 137 posts
a substantially longer sequence of numbers, and immediately after Qwertyuiop
points out the difference between 137’s sequence and what Jason offered as a list of
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Fig. 8 137 adds a red hexagon inside the partition the team has been oriented to

triangular numbers. In line 774, 137 elaborates his definition further by offering an
algebraic characterization of triangular numbers as integers that can be expressed
with the formula “n(n C 1)/2”.

In short, the sequence resulting from Qwertyuiop’s counting work based on
his notion of “collinearity” has led the team to notice a relationship between
that sequence and a mathematical object called “triangular numbers”. The latter
symbolic definition offered by 137 for triangular numbers in response to the ongoing
search for a pattern has established a relationship between geometrically motivated
counting work and an algebraic/symbolic representation stated in generic form as
n(n C 1)/2.

Excerpt 4: Resolution of Referential Ambiguity via Visual Proof

In line 776, 137 posts a message which is explicitly linked to his prior message
in line 766 where he mentioned a potentially ignored piece indexed by the phrase
“the bottom one”. The use of “So” at the beginning can be read as an attempt to
differentiate this message from the recently unfolding discussion about triangular
numbers. The subsequent part of the message brings other team members’ attention
to a potentially ignored piece indexed by the phrase “the bottom orange line”.
137 used the phrase “the bottom one” earlier, but this time he makes use of color
referencing as an additional resource to provide further specificity to what he is
referencing. At this moment a red hexagon and a short orange segment are visible
on the shared drawing space, which are layered on top of the triangular grid (see
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Fig. 9 137 changes the color of the green lines inside the red hexagon to blue

Fig. 8). The way 137 orients to the new state of the drawing indicates that his earlier
drawing actions (marked in the prior excerpt before line 770) seem to be performed
in preparation for this posting. Hence, this posting can be read as an attempt to re-
initiate a prior thread about a potentially ignored piece in the counting work, which
is distributed over both interaction spaces.

Qwertyuiop’s message in the next line involves “green” in quotes, ends with
a question mark, and is explicitly linked to 137’s last message in line 776. The
quotation marks seem to give significance to an object indexed by the color
reference. Note that there are three green lines on the shared drawing at the moment
(see Fig. 8). The use of the color reference and the explicit link suggest that this
message is posted in response to 137’s question in line 776. When it is read in this
way, Qwertyuiop seems to be asking if the relevant line located at the bottom should
have been the green one instead.

Following Qwertyuiop’s posting, 137 provides further specificity to the prob-
lematized object by first stating that it is “the short orange segment” in line 778.
Next, 137 modifies the two green lines inside the red hexagon by changing their
color to blue (see Fig. 9). Then, he posts another message in line 779 that refers to a
particular location on the whiteboard that is “parallel” to the recently added “blue
lines”. Thus, 137’s recent actions suggest that the object indexed by his phrase,
“short bottom orange line” segment, is the one parallel to the blue lines.

In line 780, Qwertyuiop states his disagreement. Since the message appears
shortly after 137’s point that the orange segment is left out of the computation,
Qwertyuiop seems to be disagreeing with the remark that there is a missing piece in
the counting method. In the next line, 137 posts a question prefaced with “wait” that
calls for suspending the ongoing activity and asks if one can still characterize what
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the team (“we”) is currently doing as “counting the sticks”. The posting is explicitly
linked to Qwertyuiop’s last message. By posting a question about the ongoing group
process following a sustained disagreement with his peer, 137 is making it explicit
that there is a misalignment within the team with respect to the task at hand. Hence,
this exchange marks a breakdown in interaction that needs to be attended to before
the team can proceed any further.

In the next line, Qwertyuiop takes up this question by providing his account
of the ongoing process as counting “one of the collinear sets of sticks.” Next, 137
posts another question explicitly linked to Qwertyuiop’s answer, which gives further
specificity to 137’s earlier characterization of the counting work undertaken by the
team (i.e., counting the sticks for the “whole hexagon”). Qwertyuiop’s response
to this question states that the focus is not on the whole hexagon yet, but on what
he is referring to as “one of the three sets”, which would then be followed by a
multiplication by 3. In the next line Qwertyuiop continues his explanation that this
will give them the number of sticks for “the whole triangle”, which can be read as
a reference to one of the six triangular partitions that altogether form the hexagon.

In line 787, 137 posts a message explicitly linked to the first part of Qwertyuiop’s
explanation. The posting is phrased as a question problematizing again that the
bottom line should also be included in the counting operation described by
Qwertyuiop. Next, Jason joins the discussion by posting a question linked to the
latter half of Qwertyuiop’s explanation in line 786, which asks him if he has taken
into account “the fact that some of the sticks will overlap”. The way Jason phrases
his posting brings “overlap” as an issue that needs to be addressed by the counting
method under discussion.

In line 789, 137 posts a chat message with a referential link to Qwertyuiop’s
last posting in line 786. This message seems to extend the order of computations
described in Qwertyuiop’s exposition by anticipating the next step of the computa-
tion, namely calculating the number of sticks needed for the hexagon once the step
mentioned in 786 is achieved. In other words, 137 displays that he is able to follow
the order of computations suggested by his peer to address the task at hand.

In line 788 Qwertyuiop responds to the overlapping sticks issue raised by Jason.
He makes reference to the blue and green/orange lines to describe one of the three
collinear sets of sides within the triangular partition (since the shared image has
remained unchanged, this message can be read in reference to the state displayed in
Fig. 9). He further asserts that each set is identical and does not overlap. In the next
line Jason concurs, and then asks if this should hold for hexagons of any size.

Following Jason’s messages, Qwertyuiop posts a message linked to 137’s earlier
question in line 789. Qwertyuiop stresses again that the focus has been on the
“triangle” so far. His next posting in line 795 includes a referential arrow to the
shared diagram and a deictic term “this one” that together provide further specificity
to which part of the hexagon he was referring to with the indexical term “triangle”
(see Fig. 10).

In lines 796 and 797, 137 first accepts what Qwertyuiop has asserted, but points
to a potential issue that will be faced when the result will be multiplied by 6 to extend
the counting operation to the whole hexagon. Before 137 posts his elaboration in line
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Fig. 10 Qwertyuiop highlights the triangle by using the referencing tool

797, Qwertyuiop begins typing a response to 137’s first remark that appears in line
798. In that message Qwertyuiop expresses his disagreement and asserts that “the
sets are not collinear with each other”. Hence, this posting shows that Qwertyuiop
has treated 137’s use of the pronoun “they” in line 796 as a reference to the notion
of collinear sets. In the latter part of his posting, Qwertyuiop announces that he will
draw what he is talking about, so this section of the message projects that a related
drawing action will follow his statement shortly.

Figures 11 and 12 display snapshots from Qwertyuiop’s drawing actions follow-
ing his last posting. First he moves the red and orange lines to the side, and then he
repositions the red lines to highlight three segments that are parallel to each other.
Next, he adds two green lines parallel to the remaining green line. Finally, he adds
three purple lines to cover the remaining sticks in that triangular section. The green
and purple lines are drawn with a thin brush (see Fig. 12).

Once the drawing reaches the stage in Fig. 12, 137 posts “oh I see” in line 800,
which can be read in response to Qwertyuiop’s recent drawing work. Qwertyuiop’s
graphical illustration seemed to have helped 137 to notice something he had not
been able to see earlier. Next, Qwertyuiop posts a message that refers to the lines
he has recently drawn with the plural deictic term “those”. The message provides
further specificity to the mathematics object “3 sets” by locating each set on the
diagram through the use of color references “red”, “green” and “purple”. In
other words, Qwertyuiop has provided a visual realization of the phrase “3 sets
of collinear sides” he coined earlier, which has been treated as problematic by his
teammates.
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Fig. 11 Qwertyuiop moves the lines added by 137 away

Fig. 12 Qwertyuiop repositions the red lines to mark a part of the larger triangle. Then he adds
two horizontal lines in green, parallel to the existing green line. Finally, he adds three more lines in
purple. Since Qwertyuiop uses a thinner brush to draw the green and purple lines, they are difficult
to see

In line 802, Jason states that he cannot see the green/purple lines, which were
marked with a thin brush by Qwertyuiop. In response 137 makes these new additions
more visible by increasing their thickness (see Fig. 13). The final state of the
diagram presents a visual proof that three sets of collinear lines marked with green,
purple, and red do not indeed overlap with each other.
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Fig. 13 137 increases the thickness of the newly added green and purple lines. The final state of
the diagram presents a visual proof that three sets of collinear lines do not overlap with each other

In line 803, Qwertyuiop provides further specificity as to what needs to be
found given the visual realization of the collinear sides recently produced on the
whiteboard. His message is explicitly linked to an old message posted by 137 several
lines ago (line 774 in Excerpt 3) that provides a formulaic realization for triangular
numbers previously associated with the pattern of growth of collinear sides. Hence,
Qwertyuiop’s statement, “find a function for that sequence and multiply by 3”,
can be read as a proposal for a strategy to find the number of sticks required to build a
triangular partition. In particular, Qwertyuiop is pointing (narratively) to a candidate
(symbolic) algebraic realization of what he has just demonstrated with (graphical)
visual resources on the whiteboard. This is the culmination of a subtle and complex
collaborative process in which mathematical discourse, graphical reasoning and
symbolic expression were tightly integrated by the group.

To sum up, in this episode the team has achieved a sense of common ground
(Clark & Brennan, 1991), intersubjectivity (Stahl et al., 2011) or indexical symme-
try8 (Hanks, 1992, 2000) with respect to the term “set of collinear sides” and its
projected application towards solving the task at hand. The challenges voiced by

8Hanks proposes the notion of indexical symmetry to characterize the degree to which the
interactants share, or fail to share, a common framework relative to some field of interaction
on which reference can be made. In particular, “ : : : the more interactants share, the more
congruent, reciprocal and transposable their perspectives, the more symmetric is the interactive
field. The greater the differences that divide them, the more asymmetric the field.” (Hanks, 2000,
p. 8.). These excerpts show that mathematical terms are inherently indexical. Establishing a
shared understanding of such indexical terms require collaborators to establish a reciprocity of
perspectives towards the reasoning practices displayed/embodied in the organization of the texts
and inscriptions in the shared scene (Zemel & Çakır, 2009).
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137 and Jason through the course of the episode solicited further elaboration from
Qwertyuiop regarding how collinear sides can be located in the shared diagram
and how they can be used to devise a method to count the number of sticks. In
particular, in this excerpt the team members worked out the overall organization of
their joint problem-solving work by discussing what they are trying to find, how
they should locate the objects relevant to the task, and how they should order some
of the steps that have been proposed so far to arrive at a solution. For instance,
Qwertyuiop’s initial proposal including the indexical term “collinear sets” focuses
on one of the triangular regions. Yet, the focus on a triangular region was left
implicit, which seemed to have led 137 to treat Qwertyuiop’s proposal as applied
to the whole hexagon. Through their discussion across both interaction spaces
the team has incrementally achieved a shared understanding in terms of how a
triangular region is decomposed into three sets of collinear, non-overlapping sides,
and how that can be used to systematically count the number of sticks in that
region. The visual practices have been encapsulated in linguistic terms in ways that
become shared within the small group through their interactions, which integrate
graphical and narrative actions. The graphical moves are strategically motivated to
decompose a complicated pattern into visually obvious sub-patterns, with an eye to
subsequently constructing a symbolic representation of the pattern. The elaboration
of a mathematical vocabulary allows the group to reference the elements of their
analysis in order to establish a shared view of the graphical constructions, to make
proposals about the patterns to each other and to index past established results.

Concluding the Mathematical Analysis

Excerpt 5: Re-initiating the Discussion of the Algebraic Formula

The group is now ready to return to the symbolic work. In line 818,9 Qwertyuiop
resumes the discussion about the shared task by proposing a formula “f(n) D 2n � 1”
where he declares n to be the “side length” (see Excerpt 5). It is not evident from the
text itself what the formula is standing for. Yet, the message is explicitly linked to an
older posting (line 772) where 137 posted the statement “Like 1,3,6,10,15,21,28”
as part of a prior discussion on triangular numbers (see Excerpt 3). Hence, when
this message is read in reference to line 772, it can be treated as a proposal to
generalize the values derived from Qwertyuiop’s geometrically informed counting
method with a formula stated in symbolic form.

137 rejects Qwertyuiop’s proposal in line 819 and then makes a counter proposal
in the next line. As we saw in Excerpt 3, the sequence of numbers resulting from
Qwertyuiop’s counting method was previously associated with a math artifact called
triangular numbers by 137. The counter proposal includes the same expression 137

9A brief administrative episode including the facilitator took place between Excerpts 4 and 5,
which is omitted in an effort to keep the focus of our analysis on problem solving.
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provided earlier when he gave a definition of triangular numbers as “integers that
can be represented as n(n C 1)/2” (see line 774). Jason joins the discussion in line
821 by asking if the proposed formula is for the number (“#”) of sticks. Although
Jason does not specify which object (e.g., the whole hexagon) he is associating the
formula with, his posting can be read as an attempt to solicit further elaboration with
regards to what the recently proposed formulas are about.

Qwertyuiop’s posting in the next line states that the object indexed by the deictic
term “that” corresponds to the “number of sides for one set”. Note that Qwertyuiop’s
message is explicitly linked to 137’s counterproposal in line 820, so the deictic
term “that” can be read as a reference to the expression “n(n C 1)/2” included
in 137’s posting. Moreover, the message sequentially follows Jason’s question.
Hence, Qwertyuiop seems to be responding to Jason’s query by pointing out which
object the recently proposed formulas are about. The question mark Qwertyuiop
posts in the next line mitigates his previous statement into a question. This can
be read as a move to solicit the remaining member’s (i.e. 137) assessment of the
association Qwertyuiop has just offered. By making his reading of 137’s formula
explicit, Qwertyuiop also indicates that he concurs with the alternative expression
proposed by his peer. Jason’s next posting in line 824 indicates that he is now
following his peers’ reasoning, which comes just before 137’s confirmation linked
to Qwertyuiop’s claim in 822. Therefore, at this point it seems to be evident for all
members in the group that the algebraic expression n(n C 1)/2 is associated with one
of the “collinear sets of sticks” within a triangular section.

In line 826, Qwertyuiop posts a message linked back to 137’s proposal in 820.
The use of “then” at the beginning suggests that this message is a consequence
or follow up of the message he is referring to. “x3” can be read as a reference to
multiplication by 3, where the remaining part of the message provides the expression
yielded by this operation. In other words, Qwertyuiop seems to be proposing the
next step in the computation, given the expression for the number of sticks for a
single “set”. In the next two lines he further simplifies this expression by evaluating
3/2 to 1.5.

In line 829, 137 posts a message phrased as a question. The posting begins with
“on second thought” which indicates that the author is about to change a position he
took prior with respect to the matter at hand. The rest of the statement is phrased as
a question and it is addressed to the whole team as indicated by the use of the first
person plural pronoun “we”. The question part associates the expression “n(n � 1)”
with the deictic term “these” which is yet to be specified.10 The posting ends with
“:” which projects that more content will likely follow this message subsequently.
Next, 137 begins to act on the whiteboard by changing the color of two horizontal
lines from green to orange (see Fig. 14). The temporal unfolding of these actions
suggests that the sticks highlighted in orange are somehow associated with the

10See footnote to line 746 on the use of “these” and “those”. The consistency of the usage of these
terms for forward and backward references from the narrative chat to the graphical whiteboard
suggests an established syntax of the relationships bridging those interaction spaces within the
temporal structure of the multi-modal discourse.
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Fig. 14 137 highlights two horizontal lines in orange following his proposal at 7:55:44 (line 829)

expression n(n � 1). In other words, 137’s recent actions can be seen as a move
for adjusting the index values in the generalized formula.

In this episode, the team achieves an important transition from a geometrically
motivated counting procedure applied on “one of the collinear sets” to a symbolic
formula generalizing the procedure to a set of any given sidelength. The generality is
achieved through one member’s noticing that the sequence of numbers derived from
the counting procedure corresponds to “triangular numbers”, which seems to be
a familiar concept at least for the member who proposed it. The formula that was
provided as part of the definition of triangular numbers is then applied to the relevant
portion of the pattern at hand to achieve the transition from geometric to algebraic
mode of reasoning, mediated by the narrative concept of “triangular numbers”.

Excerpt 6: Co-reflection on What the Team has Achieved So Far

At the end of Excerpt 5 an administrative discussion was initiated by the facilitator
about Jason’s departure from the chat session.11 Some of this exchange is left out
since it involved a brief chat about the schedule of the next session. However, while
Jason was saying farewell to his peers, an exchange related to the task at hand
occurred which is captured in Excerpt 6. This episode begins with Qwertyuiop’s
attempt to reinitiate the problem-solving work by making a reference to an older
message posted in line 829 by 137. Following 137’s acknowledgement in line 842,

11The session was scheduled to end at 7 p.m., yet the students were allowed to continue if they
wished to do so. In this case Jason informed the facilitators in advance that he had to leave at
7 p.m. Central (the log is displayed in US Eastern time).
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Qwertyuiop posts a question linked to line 829 which indicates that he is oriented to
the expression 137 proposed in that message.

About a second later, Jason posts a message stating that the formula for the
hexagon problem is pretty much done. Jason’s use of the phrase “you guys” ascribes
this achievement to the remaining members of the team. In line 845, Qwertyuiop
posts a message explicitly linked to Jason’s last comment. The first sentence “We
almost have it for the triangle” provides an alternative account of what has been
achieved so far. In his second sentence, Qwertyuiop declares that he does not know
about the hexagon yet. Hence, these postings make it evident how Qwertyuiop is
treating what the team has accomplished so far.

In line 846, Jason posts a message linked to Qwertyuiop’s latest remark. In his
response Jason states that getting the formula for the hexagon requires a simple
multiplicative step provided that the hexagon is regular. Qwertyuiop’s response (as
indicated by the referential arrow) follows next, where he brings in how the issue of
overlap will play out when they move from the large triangles to the whole hexagon.
This is followed by Jason’s exiting remark where he apologizes for not being able
to participate as much as he wanted.

In this excerpt, team members explicitly commented on how they characterize
their collective achievement. In other words, these postings can be read as a
joint reflection on what has been done so far. Another interesting aspect of this
short exchange is the apparent shift in the positions with respect to the issue of
overlapping sticks in the counting procedure. Jason was the person who raised the
issue of overlap for the first time in Excerpt 3, yet his most recent characterization
of the team’s work seems to dismiss overlap as a relevant matter. Surprisingly,
Qwertyuiop, who was the person previously critiqued by Jason for possibly ignoring
the issue of overlapping sticks, explains now why it is a relevant matter that needs to
be attended to, before the number of sticks in one triangle is multiplied by a certain
number as Jason suggested in 846. In Excerpt 3, Qwertyuiop argued that overlaps
would not be an issue in his counting work, but that assertion seems to be applied
only to the triangular section he was oriented to at that time. His most recent posting
displays his awareness with regards to when the overlapping sticks will become an
issue, i.e. when they move from the triangular partition to the whole hexagon. These
remarks also specify what has not been accomplished yet, and hence suggest the
team to find a way to address overlaps as an issue to consider next.

Excerpt 7: Overcoming the Problem of Overlapping Sticks

Excerpt 7 follows Jason’s departure.12 In line 854, 137 re-initiates the problem-
solving work by proposing to multiply by 3 what is indexed by “the orange”.
Figure 15 shows the state of the shared drawing at the moment, where there are

12The facilitator opens the possibility to end the session in line 855. The facilitator takes the
sustained orientation of the remaining team members to the problem as an affirmative answer
and lets the team continue their work.
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Fig. 15 The state of the whiteboard when 137 began his exposition at 8:01:31 (line 854)

Fig. 16 137’s drawing that followed his posting at 8:01:31 (i.e. line 854). The triangles added in
blue follow the chat posting that proposes the multiplication of what is marked with orange by 3

two dashed orange lines covering a portion of the hexagon. The remaining part of
the message announces the outcome of the suggested operation, but no result is
provided yet. The message ends with a colon “:” indicating that more content is
about to follow subsequently. Next, 137 performs a series of drawing actions where
he highlights a set of sticks on the triangular grid with blue lines (see Fig. 16). These
actions are done within a section of the shared drawing that has been empty. Based
on the way these actions sequentially unfold and the way the drawing was set up in
chat, one can read these actions as the visual outcome of the operation described in
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Fig. 17 137’s posting “So then we add 12n for:” is followed by his drawing work where he adds
the pink lines. Again the temporal sequencing suggests that the pink lines show visually which
sticks will be covered when the proposed computation is performed (i.e., “adding 12n”)

text in line 854. In short, multiplying the number of orange dashed lines by 3 seems
to yield the number of sticks highlighted in blue, which is an elaborate mathematical
move spanning across textual and graphical modalities.

137 posts another message in line 858 which announces adding “12n” as the next
step in his ongoing exposition. The message ends with “for:” which is consistent
with his prior use of the colon to project that more elaboration will follow, possibly
in the other interaction space. Next, 137 begins to add pink lines to the shared
drawing, which covers the boundaries and the diagonals of the hexagonal array (see
Fig. 17). The sequential continuity of 137’s actions suggests that the lines marked
with pink provide a geometric realization of what is indexed by the symbolic
expression “12n” on the particular instance represented by the shared drawing.

While 137 was composing his message, Qwertyuiop was busy typing the
message that will appear in line 859. The message appears 1 s after 137’s posting
and just before he begins adding the pink lines. Hence, the temporal unfolding
of actions suggests that these two messages were produced in parallel. In this
posting Qwertyuiop makes a reference to an older message where he mentioned the
problem of overlapping sticks among the six triangular regions. The current message
announces that this may not be a big complication. The next sentence in the same
post states that the overlaps can be accounted for with the expression “�6n”. 137’s
response (as suggested by his use of the explicit reference) to Qwertyuiop’s proposal
comes after he is done with marking the pink lines on the whiteboard. The “oh” in
line 861 makes 137’s noticing of Qwertyuiop’s proposal. In his next posting, 137
states that he prefers addition rather than subtraction. The contrast made between
addition and subtraction suggests that 137 is treating his and Qwertyuiop’s methods
as distinct but related approaches to the task at hand.
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What 137 is referring to as an “additive” approach can be observed through his
prior actions distributed across both interaction spaces. 137’s approach begins with
a method to cover a specific portion of one of the six partitions of the hexagon. This
is referred as “multiplying the orange by three” and the outcome of this operation
is marked in blue. In other words, the orange lines seem to be used as a way to
index a single side of a total of 1 C 2 D 3 triangles (or n(n � 1)/2 in general) inside
one of the six partitions. Hence, multiplying this value by 3 covers the three blue
triangles enclosed in a partition. Moreover, none of these triangles share a stick
with the diagonals and the boundary of the hexagon, so the sticks highlighted in
pink are added to cover the missing sticks. In short, 137’s reasoning for the additive
approach is evidenced in his drawing actions as well as in the way he coordinated
his chat postings with the drawings.

The other approach referred to as “subtraction” by 137 has been discussed by
the team for a while. This approach starts with counting the sticks for one of the six
partitions of the hexagon. A partition is further split into “3 collinear sets” of sticks
that do not “overlap” with each other. The number of sticks covered by a single
set turned out to be equivalent to a “triangular number”. Nevertheless, since this
approach covers all the sticks forming a partition and partitions share a boundary
with their neighbors, when this value is multiplied by 6 to cover the whole hexagon,
the sticks at the boundaries (i.e., at the diagonals) would be counted twice. This
is referred to by the team as the overlap problem. Qwertyuiop’s latest proposal
provides the expression that needs to be subtracted from the general formula to
make sure all sticks at the internal boundaries are counted exactly once. In contrast,
the additive approach does not need subtraction since it splits the shape in such a
way that each stick is counted exactly once.

The main point we would like to make about this excerpt is that 137’s approach
takes the previously demonstrated approaches and their critiques as resources. He
offers a new approach informed by previous discussion in an effort to address the
practical issues witnessed (e.g., overlaps, adjusting the index in the expression for
triangular numbers, etc.). Hence, 137’s additive approach is firmly situated within
the ongoing discussion. In other words, 137’s reasoning has been socially shaped;
it is not a pure cognitive accomplishment of an individual mind working in isolation
from others.

Excerpt 8: Derivation of the Formula for the Number of Sticks

Excerpt 8 immediately follows the prior one. It begins with Qwertyuiop’s question
addressed to 137, which asks if he could see why subtracting 6n would work. In the
meantime, 137 seems to be busy typing the message that will appear in line 864.
The use of “So” suggests that this message is stated as a consequence of what has
been discussed so far. The colon is followed by the formula “9n(n C 1)�6n”, which
involves the term “�6n” in it. By using the term “�6n”, 137 makes his orientation to
Qwertyuiop’s proposal explicit. Moreover, the sequential build up suggests that the
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proposed expression stands for the formula for the number of sticks for the hexag-
onal array. In these ways—through the details of its contextual situating—the sym-
bolic expression is tied to the on-going discourse, including the graphical features.

Qwertyuiop’s next posting in line 864 problematizes the appearance of 9 in the
proposed formula and asks if 3 should have appeared there instead. Next, 137 posts
a question mark linked to Qwertyuiop’s question, which can be read as a request for
more elaboration. Qwertyuiop elaborates in the next two lines by posting the part of
the formula that is problematic for him and then by suggesting a repair for that part.
His elaboration ends with a question mark that can be seen as an attempt to solicit
his peer’s feedback. 137’s reply in line 869 states that the steps of the computation
should also include multiplication by 6 and division by 2. In response Qwertyuiop
asks for what part of the pattern those operations need to be done. 137’s reply spans
three lines, where he first states “for each triangle” and then mentions that “/2”
comes from the equation n(n C 1)/2. Hence the sequential organization of these
messages suggest that 137 associates multiplication by 6 with the triangles (i.e.,
the larger triangular partitions) and “/2” with the equation for triangular numbers.

In the meantime, Qwertyuiop has been typing what will appear in line 874. The
first sentence associates each multiplication operation with a specific section of
the hexagonal pattern, namely “x3” for the 3 “collinear sets” within a triangular
partition and “x6” for the six triangular partitions of the hexagon. The next sentence
in that posting problematizes again the appearance of 9 and 2 in the steps of the
calculation. Eight seconds later, Qwertyuiop posts “oh” in response to 137’s remark
about the equation in line 872, which indicates that the referenced message has
led him to notice something new. This is followed by 137’s demonstration of the
derivation of 9 from the numbers previously mentioned. Meanwhile, Qwertyuiop
is composing an expression that brings all the items they have just talked about
together in symbolic form, which appears in line 878 in response to line 873 where
137 reminded him about the equation n(n C 1)/2. 137 expresses his agreement in
the next line. Next, they simplify the expression and add“�6n” to derive the final
formula for the number of sticks.

In short, the episode following 137’s proposal shows that Qwertyuiop had
trouble understanding how 137 derived the formula he reported in line 864. 137
seems to have gone ahead with putting together all the different pieces of the
problem that have been discussed so far to produce the final formula. Note that the
additive approach 137 was describing earlier included a step summarizing the pink
boundary as 12n, which also includes the diagonals causing the overlap issue. The
commonality between the two lines of reasoning may have informed 137’s quick
recognition of the algebraic implication of Qwertyuiop’s subtraction move as an
alternative to his approach.

Qwertyuiop’s problematizations of some of the terms that appear in the proposed
formula have led 137 to reveal more details of his algebraic derivation. This
exchange has revealed how each algebraic move is based on the corresponding
concept the team had developed earlier (e.g., n(n C 1)/2 sticks to cover a collinear
set, multiply by 3 to cover three collinear sets making up a triangular partition,
multiply by 6 to cover the hexagon, subtract 6n to remove those sticks at the internal
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boundaries that are counted twice). 137’s contributions in this and the previous
excerpts demonstrate that he can competently associate the narrative descriptions
and visual representations with symbolic formulas. Qwertyuiop’s initial trouble
and its resolution in the last excerpt provided us further evidence with regards to
how participants made use of the narrative/geometric resources to co-construct a
generalized symbolic formula addressing the problem at hand. In short, the team
members complemented each other’s skills as they incorporated geometric and
algebraic insights proposed by different members into a solution for the task at hand
during the course of their one hour long chat session.

Discussion

In this section we discuss the findings of our case study regarding the affordances
of a multimodal CSCL environment for joint mathematical meaning making online
and the interactional organization of mathematics discourse.

Visibility of the Production Process

Our first observation is related to the mathematical affordances of the drawing
area. As we have seen in Excerpts 1, 2, 4, and 7, the construction of most shared
diagrams includes multiple steps (e.g., addition of several lines). Moreover, the
object-oriented design of the whiteboard allows users to re-organize its content by
adding new objects and by moving, annotating, deleting and reproducing existing
ones. Hence, the sequencing of drawing actions that produce and/or modify these
diagrams is available for other members to observe. In other words, the whiteboard
affords an animated evolution of the shared space, which makes the reasoning
process visually manifest in drawing actions available for other members to observe.
For instance, the sequence of drawing actions that led to the drawing displayed in
Fig. 13 (Excerpt 4) allowed the team members to locate what was indexed by the
term “set of 3 collinear sides.” The drawing also served as a visual proof for the
argument that those three sets do not share any sticks (i.e., they do not overlap).
Finally, Figs. 16 and 17 show cases where a textually described algebraic operation
was subsequently animated on the whiteboard. Such demonstrable tweaks make the
mathematical details of the construction work visible and relevant to observers, and
hence serve as a vital resource for joint mathematical sense making.

Persistent Presence of Contributions

In the VMT online environment, contributions have a persistent presence that allows
participants to revisit a prior posting or reorganize a shared drawing to orient
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themselves to shared artifacts in new ways. One important consequence of persis-
tence is illustrated by Qwertyuiop in Excerpts 4 and 5 (lines 803 and 818) and by
137 in Excerpt 3 (line 776), where they used the explicit referencing tool to point to a
previous chat posting in an effort to re-initiate a past topic or thread. When combined
with the referential arrows, the persistent availability of the chat messages affords
re-initiation of past conversations and the management of multiple threads (e.g., the
discussion on a missing stick and the formula for triangular numbers that unfolded
in parallel in Excerpts 2 and 3 illustrates how users manage multiple threads).

One important consequence of quasi-synchronous interactions mediated by a
persistent display of text messages is that participants are not subjected to the
same set of physical constraints underlying the turn-taking apparatus associated
with talk in face-to-face settings. In natural conversations, speakers take turns due
to the practical intelligibility issues involved with overlapping speech. In contrast,
the persistent availability of the text messages affords simultaneous production of
contributions, and hence provides more possibilities for participation. This may
introduce intelligibility issues referred to as chat confusion (Fuks, Pimentel, &
de Lucena, 2006) or phantom adjacency pairs (Garcia & Jacobs, 1998), when
simultaneously produced messages can be mistakenly treated in relation to each
other. However, as we have seen in the excerpts analyzed above, participants
routinely provide enough specificity to their contributions (e.g., by using the
referential tool or specific tokens) and orient to the temporal/linear order in which
messages appear on the screen to avoid such issues of intelligibility. Finally, when
coupled with resources such as the explicit referencing tool and repetition of specific
terms (e.g., “sidelength”), the persistency of chat messages also allows participants
to make a previous discussion relevant to the current discussion. For instance, in
line 818 in Excerpt 5, Qwertyuiop re-oriented the current discussion to the issue of
devising a formula for the sequence of numbers that was stated back in line 772 by
using the explicit referencing tool. Likewise, in line 841 in Excerpt 6 Qwertyuiop
proposed that the team re-initiate a discussion on a point stated 13 lines above with
his message “go back to this” coupled with an explicit referential link.

The possibility of engaging activities across multiple threads spanning both
chat and whiteboard spaces is an important affordance of online environments
like VMT due to the opportunities it brings in for more people to contribute to
the ongoing discussion. For instance, in Excerpt 4 we have seen that 137 was
engaged in two simultaneous threads where (a) he drew a line segment that was
potentially ignored by the method of computation described by Qwertyuiop, and (b)
he contributed to the simultaneously unfolding discussion about characterizing the
pattern implicated by the numbers offered by Qwertyuiop as triangular numbers.
Although the management of multiple threads across spaces can create confusion,
the resolution of ambiguities and the intertwining of perspectives can lead to
germination/fertilization of mathematical ideas across threads. This point is well
demonstrated by how the aforementioned threads led to Qwertyuiop’s visual proof,
which (a) located visually what the term “3 sets of collinear lines” meant, (b)
established that the sets do not overlap with each other, and (c) highlighted the
association between the cardinality of a single set and a triangular number.
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Finally, there is a subtle but important difference between the chat and white-
board features in terms of the degree of persistence of their contents. As a session
progresses chat postings gradually scroll away, but whiteboard drawings stay on
the whiteboard until they are erased. For instance, in all the excerpts we have seen
above, the particular illustration of the hexagonal pattern continued to serve as
an interactional resource as team members illustrated and offered different ideas.
Several chat postings presume the availability of such a persistent resource on
display so that others can make sense of the contribution (e.g., indexical terms such
as “the orange”, “3 sets”, etc.). Such persistently available artifacts provided the
background against which new contributions were interpreted and made sense of.

Methods for Referencing Relevant Artifacts in the Shared
Visual Field

Bringing relevant mathematical artifacts to other members’ attention requires a
coordinated sequence of actions performed in both the chat and whiteboard spaces
(Stahl et al., 2011). In the excerpts above we have observed several referential meth-
ods enacted by participants to bring relevant graphical objects on the whiteboard
to other group members’ attention. In Excerpt 1, 137 marked the drawing with a
different color to identify what he thought collinear sides meant in reference to
the shared drawing. Qwertyuiop also used the same approach when he highlighted
the collinear sides in the shared drawing with different colors in Excerpts 1 and 3.
Color coding was another method used by members to draw others’ attention to
specific parts of the drawing (e.g., “the orange”, “the green times 3”). Finally,
members used the explicit referencing tool to support their textual descriptions.
For instance, Qwertyuiop used the explicit referencing tool in Excerpts 2 and 4
to direct his teammates’ attention to the relevant section of the hexagon where he
was performing his counting work. In all these cases, chat messages included either
an explicit reference or a deictic term such as “this”, “that”, or “the green”, which
are designed to inform other members of the group that they need to attend to some
features beyond the textual statement itself to make sense of the chat message.

These referential mechanisms play a key role in directing other members’
attention to features of the shared visual field in particular ways. This kind of deictic
usage isolates components of the shared drawing and constitutes them as relevant
objects to be attended to for the purposes at hand. Hence, such referential work
establishes a fundamental relationship between the narrative and mathematical
terminology used in text chat and the animated graphical constructions produced
on the whiteboard. The shared sense of the textual terms and the inscriptions co-
evolve through the referential linkages established as the interaction sequentially
unfolds in the dual-interaction space.

Deictic uses of text messages and drawings presume the availability of a shared
indexical ground (Hanks, 1992) where the referential action can be seen as the figure
oriented towards some part of the shared background. In other words, referential
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moves are not performed in isolation; they rely on a part/whole relationship between
the referential action (i.e., figure) and a shared visual ground. For example, the color
markings of collinear lines in Excerpt 4 worked as a referential action, because they
were performed on top of an existing graphical artifact, namely the triangular grid.
Even the design of the explicit referential tool, which attaches a semi-transparent
green rectangle to a chat message, reflects this visual relationship between the
figure (i.e., the green rectangle) and the background, which guides other members’
attention to a particular location in the shared visual field. As virtual teams collab-
oratively explore their problem and co-construct shared artifacts, they collectively
constitute a shared problem space with increasing complexity (Sarmiento & Stahl,
2008). By enacting referential practices, participants isolate features of the shared
scene, assign specific terminology to them, and guide other members’ perception of
the ongoing activity to achieve a shared mathematical vision.

Coordination of Whiteboard Visualizations and Chat Narratives

The previous section focused on single actions that refer to some feature of the
shared scene for its intelligibility. We argued that such actions involve a part/whole
relationship that presumes the availability of a shared visual ground for their mutual
intelligibility. In addition to this, such actions are also embedded within broader
sequences of actions that establish their relevance. In other words, messages that
establish a referential link between narrative and graphical resources routinely
respond to practical matters made relevant or projected by prior actions. Thus, such
actions are also tied to the context set by the sequentially unfolding discussion.

When the scope of analysis is broadened to sequences of actions that include
messages with referential links, one can observe an important affordance of online
environments with multiple interaction spaces: Since one can contribute to only one
of the interaction spaces at a time, a participant cannot narrate his/her whiteboard
actions with simultaneous chat postings, as can be done with talk in a face-to-
face setting. However, as we have observed in 137’s performance in Excerpts 1
and 7, participants can achieve a similar interactional organization by temporally
coordinating their actions in such a way that whiteboard actions can be seen as part
of an exposition performed in chat.

For instance, in Excerpt 1, Qwertyuiop’s drawing activity was prefaced by his
chat posting “I’ll draw it”. The posting was in response to a recent graphical
illustration proposed by 137. Hence, the pronoun “it” included in the preface was
not pointing to an existing drawing or to a prior posting. Instead, it projected a
subsequent action to be performed next by the same author. In contrast, prior to
Qwertyuiop’s actions in Excerpt 1, 137 produced his drawings before he was seen
as typing by others. Although the sequence of the chat and whiteboard actions are
the opposite in this case (i.e., the referential move was made after the drawing was
finished), 137 achieves a similar temporal organization through his use of deictic
terms (e.g., “those”, “that”, “it”), referential arrows, and tokens of similarity such
as “like” and “as”. Therefore, these instances suggest that, although they can be
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ordered in different ways, the sequential organization and temporal proximity of
actions are consequential for the treatment of a set of drawing actions in relation to
a narrative account produced in chat.

In face-to-face settings, locational deictic terms such as “this” and “those” are
used to point out contextual elements beyond the lexical content of the uttered
statement, and they are often accompanied by co-occurring pointing gestures and
body movements displaying the speaker’s orientation towards what is being referred
to in the vicinity (Goodwin, 2000; Hanks, 1992). As demonstrated by the actual
cases of use in the excerpts analyzed above, a similar organization presents an
interactional challenge for the participants in an online setting with dual interaction
spaces like VMT. However, as participants demonstrated in these excerpts, a
functionally comparable interactional organization can be achieved online through
the use of available features so that chat messages can be seen as related to
shared drawings that are either on display (“those”) or in production (“these”). The
sequential organization of actions, explicit referencing, and the temporal proximity
of actions across both spaces together guide other members’ attention so that they
can treat such discrete actions as a coherent whole addressed to a particular prior
message or to a thread of discussion unfolding at that moment.

Another important aspect of such achievements from a mathematics education
perspective is that it shows us how saming13 (Sfard, 2008) among narrative
and graphical accounts or realizations can be done as an interactional achieve-
ment across dual-interaction spaces. This phenomenon is demonstrated in various
episodes such as (a) Qwertyuiop’s demonstration of collinear set of lines on the
shared diagram in Excerpt 4, and (b) 137’s exposition in Excerpt 7, where he showed
the geometric implication of his proposal in narrative form by performing a drawing
immediately after his chat message. The referential links, the temporal proximity of
actions, the awareness indicators for those actions, and the persistent availability of
both prior messages and the recently added drawings all work together as a semiotic
system that allows group members to make connections among different realizations
of the mathematical artifacts that they have co-constructed. Therefore, referential
practices across modalities are consequential for the collective achievement of deep
understanding of mathematics, which is characterized in mathematics education
theory as establishing relationships between different realizations of mathematical
ideas encapsulated in graphical, narrative or symbolic forms.

Past and Future Relevancies Implied by Shared
Mathematical Artifacts

The objects on the whiteboard and their visually shared production index a horizon
of past and future activities. The indexical terms in many proposals made in

13Sfard (2008) describes saming as the process of “ : : : assigning one signifier (giving one name)
to a number of things previously not considered as being the same” (p. 302).
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the analyzed excerpts (like “hexagonal array”, “collinear lines”, “rows”) not only
rely on the availability of the whiteboard objects to propose a relevant activity
to pursue next, but also reflexively modify their sense by using linguistic and
semantic resources to label or gloss the whiteboard object and its production.
This allows actors to orient in particular ways to the whiteboard objects and the
procedures of their co-construction—providing a basis for subsequent coordinated
joint activity.

This suggests that shared representations are not simply manifestations or
externalizations of mental schemas as they are commonly treated in cognitive
models of problem-solving processes. Instead, our case studies suggest that shared
representations are used as resources to interactionally organize the ways actors
participate in collaborative problem-solving activities. As we have seen in this case
study, once produced as shared mathematical artifacts, drawings can be mobilized
and acted upon as resources for collective reasoning as different members continue
to engage with them. Shared meanings of those artifacts are contingently shaped
by these engagements, which are performed against the background of a shared
visual space including other artifacts and prior chat messages (i.e., against a shared
indexical ground). This does not mean that the achievement of shared understanding
implies that each member has to develop and maintain mental contents that are
isomorphic to each other’s, which is often referred as registering shared facts to a
“common ground” in psycholinguistics (Clark & Brennan, 1991). Instead, shared
understanding is a practical achievement of participants that is made visible through
their reciprocal engagements with shared mathematical artifacts.

The way team members oriented themselves to the shared drawing while they
were exploring various properties of the hexagonal array showed that the drawings
on the whiteboard have a figurative role in addition to their concrete appearance
as illustrations of specific cases. In other words, the particular cases captured
by concrete, tangible marks on the whiteboard are routinely used as resources
to investigate and talk about the general properties of the mathematical artifacts
indexed by them. For example, the particular drawing of the hexagonal pattern in the
excerpts studied above was illustrating one particular stage (i.e., n D 3), yet it was
treated in a generic way throughout the whole session as a resource to investigate
the properties of the general pattern implied by the regularity/organization embodied
in that shared artifact. Noticing of such organizational features motivated the joint
development of counting practices, where relevant components of the pattern were
first isolated and then systematically counted.

Another important aspect of the team’s achievement of general formulas, which
summarize the number of sticks and triangles included in the n-th case respectively,
is the way they transformed a particular way of counting the relevant objects in
one of the partitions (i.e., a geometric observation) into an algebraic mode of
investigation. For instance, once the team discovered that a particular alignment of
sticks that they referred to as “collinear sides” corresponded to triangular numbers,
they were able to summarize the sequence of numbers they devised into the
algebraic formula 9n(n C 1)�6n. The shift to this symbolic mode of engagement,
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which relied on the presence of shared drawings and prior narratives as resources,
allowed the team to progress further in the task of generalizing the pattern of growth
by invoking algebraic methods. In other words, the team co-constructed general
symbolic formulas for their shared tasks by making coordinated use of multiple
realizations (graphical and linguistic) of the mathematical artifact (the hexagonal
array) distributed across the dual-interaction spaces.

Conclusion

Perhaps the most important contribution of online learning environments like VMT
to research is that they make the collective mathematical meaning-making process
visible to researchers through their logs. This allows us to explore the mecha-
nisms through which participants co-construct mathematical artifacts in graphical,
narrative and symbolic forms; and to study how they incrementally achieve a
shared understanding of them. Careful analysis of team members’ actions helps
us identify important affordances (i.e., possibilities and limitations on actions) of
digital environments for supporting collaborative discussion of mathematics online.
Such an understanding is vital not only for informing the design of cyberlearning
environments for mathematics, but for investigating the social-interactional nature
of mathematical practice.

Our analysis reveals that group members display their reasoning by enacting
representational affordances of online environments like VMT. The persistent
nature of the contributions and the availability of their production/organizationallow
other participants to witness the mathematical reasoning embodied in those actions.
Group members establish relevancies across graphical, narrative and symbolic
realizations of mathematics artifacts by enacting the referential uses of the available
system features. Verbal references, highlighting a drawing with different colors, and
the explicit referencing feature of the system are used to establish such relationships
between contributions. Through referential practices group members:

(a) isolate objects in the shared visual field,
(b) associate them with local terminology stated in chat, and
(c) establish sequential organization among actions performed in chat and white-

board spaces, which can be expressed in algebraic symbolism.

These practices had an important role in the achievement of a joint problem
space against which indexical terms, drawings and symbols made shared sense
for the team members. Development of shared understanding in cyberlearning
environments such as VMT heavily relies on such representational and referential
uses of its features.

Finally, this case study also showed us how mathematics terminology comes
into being in response to specific communicational needs. Mathematical discourse
has a deeply indexical nature; mathematics terminology often encodes certain ways
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of thinking about mathematical objects. As we have seen in the excerpts above,
terminology such as “sides”, “collinear set of sides”, etc., emerge from the need
to talk about and direct others’ attention to specific aspects of the task at hand.
Such glosses, names or indexicals become meaningful mathematical narrative
artifacts through the ways participants enact them by organizing the shared space
in particular ways and/or referring to some part of a drawing or a previous chat
posting. Once a shared sense of a term is established in interaction, subsequent uses
of the term encode certain ways of constructing/grouping/organizing some items
and begin to serve as a convenient way to refer to an overall strategy of looking at
a problem in a particular way. The term may then lead to a symbolic expression,
drawing upon associated practices of computation and manipulation.

In short,mathematical understanding at the group level is achieved through the
organization of representational and referential practices. Persistent whiteboard
objects and prior chat messages form a shared indexical ground for the group.
A new contribution is shaped by the indexical ground (i.e., interpreted in relation
to relevant features of the shared visual field and in response to prior actions);
it reflexively shapes the indexical ground (i.e., gives further specificity to prior
contents) and sets up relevant courses of action to be pursued next. Shared
mathematical understanding is an observable process, a temporal course of work
in the actual indexical detail of its practical actions, rather than a process hidden in
the minds of the group members. Deep mathematical understanding can be located
in the practices of collective multimodal reasoning displayed by teams of students
through the sequential and spatial organization of their actions. Mathematical results
are reached through a sequence of discourse interactions that build successively
(Stahl, 2011). The discourse moves within the media of graphical constructions,
narrative terminology and manipulable symbolisms, allowing progress to be made
through visual means, counting skills, encapsulation of knowledge in words, and
generalization in symbols.
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Çakır, M. P. (2009). The joint organization of visual, narrative, symbolic interactions. In G. Stahl

(Ed.), Studying virtual math teams (pp. 99–141). New York: Springer.
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ical perspective, we mainly focused on students’ discourse when exploring the
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Background and Rationale

Our chapter focuses on the use of new technologies to create multi-modal learning
environments for young children, allowing them to interact with mathematical
objects in a variety of ways. A multi-modal environment supports user interactions
in more than one modality or communication channel (e.g., speech, gesture,
writing) through perceptual, attentive or interactive interfaces. These forms of
interactions have evolved in various research areas and applications including
computer visualization, psychology and artificial intelligence with increasing use
in education, particularly in early learning and developmental psychology. Cur-
rently, the most common modalities in multi-media are audio-visuals, but in
recent years alternative input modes have become increasingly more available.
Multi-touch technologies (e.g., tablet PCs, SMART Boards, iPads) have been
rapidly evolving and these multi-modal environments, which combine visual feed-
back and kinesthetic input through gesture, are being integrated into mathematics
classrooms. For example, Thompson Avant and Heller (2011) examined the ef-
fectiveness of using TouchMath—a multisensory program that uses key signature
points on mathematical objects— with students with physical learning disabil-
ities. Although there is some work about student perceptions in multi-modal
environments and how such environments can support students with particular
needs, we do not yet know enough about students’ general experiences in multi-
modal environments, especially with respect to mathematics. The innovative and
exploratory work we present here is part of a project that investigates the affor-
dances of multi-modal environments in the mathematical experiences of young
learners.

For the purposes of this chapter, we focus on a particular multi-modal en-
vironment that combines physical force-feedback—experienced through a haptic
device—with visual feedback, in the context of dynamic geometry. In our work,
we aim to show that the integration of the two technologies—haptic and dynamic
geometry—forms an entirely new experience, dynamic haptic geometry. The multi-
modal environment we use combines highly interactive 3D visual images with
haptic hardware devices that allow users to touch and feel attributes of images they
see and manipulate on the screen.

The evolution of haptic technology and dynamic, interactive software in mathe-
matics education have evolved independently over the past 15 years. Our work has
taken some innovative first steps in integrating these two fields and investigating
the impact on how students talk and make meaning about 3D mathematical shapes.
In what follows, we first outline how these two separate fields have evolved and
provide a rationale for our study of integrating the affordances of such hardware
and mathematical software to create a multi-modal learning environment that builds
on prior work. We then outline our theory of change, which adheres to a social-
cultural theoretical perspective and takes the position that such technologies—and
resulting discourse practices of learners—are semiotic mediators. The second half of
our chapter outlines a series of activities whose design principles are a direct product
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of this theoretical perspective and prior work with examples of student discourse
from our preliminary data analysis. We conclude with next steps in our research that
focus on using other types of multi-modal technologies and the refinement of our
framework to analyze the evolution of young learners’ expression from informal to
formal mathematical discourse.

Dynamic Geometry

Dynamic media, in general, and dynamic geometry technology, in particular, have
significantly influenced mathematics education research. Kaput (1992) considered
abstraction of invariance as a key aspect of mathematical thinking and noted that
“to recognize invariance—to see what stays the same—one must have variation.
Dynamic media inherently make variation easier to achieve” (p. 525, italics
in original). Dynamic geometry is a form of mathematics visualization where
geometric constructions (and other forms of mathematical illustrations such as
diagrams, figures, and graphs) can be manipulated via a computer mouse. In
dynamic geometry environments, the dynamic illustrations on the screen are just
as rigid as—but never more than—the essential mathematical properties that define
them, making the exploration of invariance among the illustrations possible.

Dynamic software environments have certain anatomical features including the
ability for users to interact with virtual objects; manipulate figures or diagrams
according to the features of their construction; and construct mathematical figures
or diagrams through specific tools (Hegedus, 2005). These dynamic features
contribute to the co-action between a user’s utilization of a tool and the software
environment’s use of a tool, where the modes of feedback continually inform
both the user and environment (Hegedus, 2005). An example of this co-action
can be seen within a dynamic geometry environment where learners can generate
and explore a vast number of continuously related examples of a single set of
mathematical relationships through the manipulation of “hot-spots,” which results
in the capability to link—automatically or on demand—the user’s actions with those
of the environment (Kaput, 1992).

Over the past 15 years, dynamic geometry environments such as Geometer’s
Sketchpad® (Jackiw, 1991, 2009) and Cabri-géométre (Laborde & Straesser, 1990)
have had remarkable impact on geometry classrooms. Sketchpad’s construction
paradigm has led beyond high-school geometry material to enable varieties of
modeling practice (Jackiw & Sinclair, 2007) that address a broad spectrum of
mathematical topics, ranging from applications in the primary grades to advanced
mathematics. Such construction paradigms support students’ exploration of mathe-
matical constraints and invariance as well as the co-action and interactivity among
the users and the environment. This, in turn, allows students to reason quickly from
the specific to the general, from concrete to abstract, from example or illustration to
concept and idea (for a survey see King & Schattschneider, 1997).
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Haptic Technology

Haptic literally means “ability to touch” or “ability to lay hold of” (Revesz, 1950)
and has evolved in a technological era to be an interface for users to virtually touch,
push, or manipulate objects created and/or displayed in a digital visual environment
(McLaughlin, Hespanha, & Sukhatme, 2002). Haptic technology has evolved over
the past 10 years, particularly out of a focus on virtual reality in the 1990s, and has
become more available in a variety of commercial and educational applications,
including 3D design and modeling as well as medical, dental and industrial
applications. In a meta-analysis of the use of haptic devices, Minogue and Jones
(2006) found over 1,000 articles on haptics in the electronic databases ERIC and
PsycINFO, but only 78 related haptics to learning or education. A large proportion
of these were focused on “haptic perception”—a major field in psychology focused
on haptic sense—and the second main set was focused on multi-modality.

A main constraint observed by Dede (1999) was the high cost, and inflexibility
of haptic devices; for example, one could only experience a single haptic experience
at a time. However, recent technological progress has eroded these barriers, making
force-feedback devices more affordable and flexible in their application and use.
One particular haptic device, the PHANTOM Omni

® 1 (hereon referred to as the
Omni) by Sensable Technologies, Inc., has achieved significant success in bringing
its product to scale at an affordable price, enabling it to be used in schools. We
use this device in the work we report here and explore its affordances in terms of
meaningful mathematical experiences later in this chapter.

Merging Fields

In dynamic geometry, feedback is visual, and does not include the additional sensory
information of forces or kinesthetics that are directly linked to the properties of
the objects being manipulated on a screen. We now present how we rationalized
the potential educational benefits of integrating the dynamic geometry and haptic
technologies based upon prior work in various fields.

Historically, a multi-modal learning environment has been translated as a way to
create multiple learning pathways for students to work within, and predominantly
these were dominated by auditory and visual modalities. In fact, the audio/visual
modality is still the predominant “multi-” media form. However, students can
interpret visual, auditory, and physical feedback to gather information, while using
their proprioceptive system to navigate and control objects in their synthetic
environment (Dede, Salzman, Loftin, & Sprague, 1999). Multiple sensory repre-
sentations can offer mutually reinforcing information that a user can collect to
develop understanding of a mathematical or scientific model. In addition, physical

1The website for PHANTOM Omni
®

is http://www.sensable.com/haptic-phantom-omni.htm.

http://www.sensable.com/haptic-phantom-omni.htm
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feedback has been said to be superior to vision in the perception of properties
of texture and microspatial properties of pattern (Lederman, 1983; Zangaladze,
Epstein, Grafton, & Sathian, 1999), while vision is more useful in the perception
of macrogeometry—particularly shape and color (Sathian, Zangaladze, Hoffman, &
Grafton, 1997; Verry, 1998). Leveraging these relative strengths, our work proposes
that it is relevant to integrate haptic technology with dynamic geometry technology
to offer multiple sources of information-feedback for students; it is not enough to
offer a way for students to just see a mathematical object or a scientific model in a
static way (Moreno-Armella, Hegedus, & Kaput, 2008); they must also engage with
it dynamically and tactically.

Given the aforementioned advancements in haptic technologies and mathemati-
cal affordances of dynamic geometry environments, it is timely for us to integrate
haptic technologies into a highly visual, mathematics learning environment. For
our work, we developed a dynamic, multi-modal environment that incorporates
visual and physical feedback to the students via the Omni. The environment
simultaneously provides students with the two modes of feedback (based on the
students’ input and the dynamic environment’s reaction to that input), which are
defined programmatically. The physical feedback is generated by the Omni and can
be in the form of variable resistance (i.e., force-feedback) or kinesthetic resistance
(i.e., friction). The visual feedback is provided through a computer display, and
consists of the dynamic, digital representations of mathematical objects in the
environment (e.g., a cube). Students utilize the multi-modal feedback to manipulate
digital objects and navigate through the environment.

In the next section, we discuss our approach and theoretical assumptions
regarding our research in efforts to combine the worlds of haptic and dynamic
geometry technology with the world of mathematics education research to create
a form of dynamic haptic geometry.

Theoretical Perspectives

One of the main assumptions that guides our work is that although technology—in
particular, the Omni—is an important mediator for learners, what makes technology
significant for mathematics education is the mathematics learning it enables in
the classroom. In other words, what distinguishes the utilization of multi-modal
technologies in mathematics education from other contexts is whether they support
meaningful mathematical exploration and discussion, which is what we attend to in
this chapter.

Another critical assumption we make when exploring the affordances of multi-
modal technologies in students’ mathematical experiences is the role of student
discourse. In our design of a learning environment integrating new technologies
in mathematically relevant ways, we adhere to a socio-cultural perspective of
learning and focus on the interaction of students in terms of mathematically-relevant
discourse as mediated by the various tools and supports available to them. As a
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result, we use a formulation of discourse that does not only attend to students’
utterances but also to their interactions and the mediators shaping those interactions.

We use discourse to mean “the different types of communication set apart by
their objects, the kinds of mediators used, and the rules followed by participants and
thus defining different communities of communicating actors” (Sfard, 2008, p. 93).
This conceptualization goes beyond the approaches to discourse that focus only
on students’ word use or speech (e.g., Edwards, 1993), and highlights the roles of
mediators (e.g., symbols, graphs), and routines (e.g., gestures, participation patterns,
forms of argumentation) when exploring students’ mathematical communications.
Although Sfard mainly focuses on visual mediators in her framework, when
exploring students’ discourse, we extend her consideration of visual mediators to
any mediator that contributes to students’ mathematical communications. More
specifically, we consider the multi-modal environment we developed through the
Omni to be both a visual and a physical mediator due to the multi-modal nature of
the environment. We also consider students’ social interactions with each other as
another form of mediation that shapes students’ mathematical discourse.

Drawing on cross-cultural studies, Vygotsky (1980) highlighted an analogy
between tool-use and sign-use, suggesting how such activity structures the social
environment of interaction and the very behavioral routines of members of that
environment. While doing so, he emphasized how mediators of discourse shape
and are shaped by social interaction. Holland, Skinner, Lachicotte, and Cain (2003)
mentioned that “a typical mediating device is constructed by the assigning of
meaning to an object or a behavior” (p. 36), which again underlines the social
norms of construction in the process of mediation. Accordingly, for the purposes
of our study, mediating devices are not only the Omni but also the discursive
behaviors that young learners volunteer to make sense of the mathematical task, and
their actions that contribute to mediation and communication. The assumption that
students’ actions or routines impact their discursive behaviors is also widely held
in the mathematics education literature on dynamic geometry. For example, actions
of pointing, clicking, grabbing and dragging parts of geometric constructions allow
a form of mediation (Falcade, Laborde, & Mariotti, 2007; Kozulin, 1990; Mariotti,
2000; Pea, 1993) between the object and the user who is trying to make sense of,
or induce some particular attribute of a diagram or prove some theorem. Such form
of mediation is referred to as semiotic mediation, which corresponds to mediation
through the use of sign systems and artifacts whose meanings are generated by social
construction (Hasan, 1992; Vygotsky, 1980).

In summary, consistent with the arguments provided in this section, we focus
on (a) students’ word use; (b) Omni as a mediator; and (c) social interaction as
a mediator when examining students’ discourse in our multi-modal environment.
While exploring these aspects of students’ discourse, we also take into account
students’ actions (e.g., use of gestures and deixis) to characterize their routines that
impact their word use as well as discursive mediation.

Our main assumptions—mathematics and discourse matter—regarding the use
of the multi-modal technology are also reflected in our activity design process. To
ensure that the designed activities are mathematically meaningful, we examined
their curricular relevance and took into consideration the critical ideas related to
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measurement and geometry. To ensure that the designed activities reflect the social
nature of learning and lead to rich mathematical discourse, we created open-ended
tasks that lend themselves to innovative mathematical explorations originating from
students’ own discourse. In addition, we asked students to work in groups as
they discussed, developed, and negotiated mathematical meanings through their
interaction with the Omni as a mediator of their discourse.

In the next section, we outline the design of our multi-modal environment. Our
design process consisted of three stages: design of activities; intervention; and
redesign/revision. The design of the activities originated from (1) our theoretical
assumptions about the nature of learning and the importance of technology and
social-based mediation in students’ mathematical experiences; (2) mathematical
and technical affordances and limitations of our dynamic, multi-modal environment
based on our prior work; and (3) students’ motor, cognitive, and discursive
skills. The intervention stage provided us opportunities to observe and assess the
mathematical as well as technical affordances and limitations of our dynamic, multi-
modal environment; students’ mathematical discourse and interaction patterns; and
the enacted utilization of the activities by students. Finally, the redesign stage
originated from the feedback we received from the intervention stage with respect
to the utilization of technology; and elicited mathematical discourse.

Multi-modal Environment Design

In this section, we first discuss the specific technology that is employed within
our multi-modal environment. We then describe the activities we developed for
students’ mathematical investigations and their curricular relevance. This is fol-
lowed by the description of the context of our study.

Technical Specifications

The technical design of our multi-modal environment was built upon our prior
research on the affordances of haptic technology (Hegedus, Güçler, Robidoux,
& Burke, 2011). Our environment was a multi-modal environment consisting of
visual and physical feedback presented to students through two separate, mediating
platforms: a computer monitor and the Omni. Using the software development kit
provided by Sensable Technologies, Inc., we created applications that were operated
by students through the two mediating platforms. Therefore, in this chapter, we
will only discuss the technical details regarding students’ interactions within these
applications and not the specifics of developing the software.

The Omni is comprised of a swiveling, jointed arm connected to a stylus,
and operated within three-dimensional space. Physical feedback was relayed to
students via the device’s jointed arm, in the form of resistance, magnetism, and/or
friction. Students operated the Omni by moving and rotating the stylus, which
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Fig. 1 (a) A student operates the PHANTOM Omni
®

haptic device. (b) Students’ view of the
multi-modal environment

was designed to correspond to a pointer in our environment’s visual mode. The
visual mode was presented to students via the computer monitor and displayed the
pointer and all other visual elements within our applications with which the students
interacted. Unlike the Omni, which the students manipulated via its stylus, the
computer monitor was used solely for the visual representation of elements within
our software (see Fig. 1a, b). Researchers at the Kaput Center developed all software
elements of the dynamic, multi-modal environment.

Design of Mathematical Activities

Given the technical affordances of the Omni and our theoretical assumptions, we
focused on two types of mathematical investigations of 3D shapes: classification of
solids and planar intersections. Below, we describe these investigations and how we
expected them to mediate students’ mathematical discourse.

Classification of Solids

In this type of investigation, students were presented with a toolbar containing a
variety of digital representations of 3D shapes and a pointer (which was in the form
of a bug to make it visually appealing to students). The goal of this activity was
for students to select and inspect the shapes as well as classify them with respect
to their similarities and differences based on their visual and physical perceptions
of the shapes’ attributes. Students were able to use multiple forms of classification
depending on their focus on micro-terms (e.g., edges, vertices); macro-terms that
described the whole shape (e.g., triangular, circular, pointy); or any other classifier
they considered as relevant (e.g., color, size of the shapes).

The dynamic aspects of this investigation could be seen within each of the
modalities present within our multi-modal environment. Students could use the
Omni device to rotate any of the 3D shapes 360ı around any axis, allowing
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Fig. 2 A computer screen capture of a student’s navigation of the bug along the faces of a cube
within a multi-modal computer environment developed at the Kaput Center

them to visually inspect the mathematical properties of the shapes (e.g., number
of faces, number of vertices). Students could also navigate the bug along the
surface of any 3D shape and receive physical feedback from the environment
via the Omni. For example, while moving along the surface of a cube, a student
would feel a resistant force when they encountered an edge or vertex. Given that
the activity required the students to classify 3D shapes, we expected them to
hypothesize about the properties of the shapes through their visual and physical
perceptions. In combining the dynamics of visually inspecting a 3D shape (i.e.,
360ı rotation) and physical feedback through the Omni, this investigation gave
students an environment to test their hypotheses and group the shapes according
to students’ individual and collective perceptions and interactions. Figure 2 shows
three chronological screenshots of a student’s navigation of the bug along the faces
of a cube, while also rotating the cube.

Planar Intersections

In this type of investigation, students were presented with a static 3D shape, a
dynamic plane, and a pointer in the form of a bug. The goal of this activity
was for students to explore the varied intersections of a 3D shape with a plane
and describe the attributes of the intersections. There could be multiple types of
descriptions depending on whether the students focused on and described each
distinct intersection they created, or they focused on the generalizations pertaining
to the attributes of the different sets of intersections.

This investigation contained dynamic elements within both the visual and
physical feedback modalities of our environment. Students constructed planar
intersections by rotating and translating the dynamic plane so that its position
overlapped with the static 3D shape. Students could then visually inspect these
intersections. Since the 3D shape was static, the intersection could only be viewed
from one vantage point. Yet, students could gain physical feedback pertaining to the
unseen portions of the intersections by navigating the bug around the intersection.
For example, while navigating the bug along the boundaries of an intersection,
students would feel a magnetic force—which restricted the bug’s movements to
the boundaries—and a resistant force when they encountered a vertex. As with



106 B. Güçler et al.

Fig. 3 A computer screen
capture of a planar
intersections activity within
our multi-modal computer
environment developed at the
Kaput Center

the classification investigation, we expected students to hypothesize individually
and collectively about the attributes of the intersections they constructed through
their visual and physical perceptions. The dynamic, multi-modal features within
this investigation provided students with an environment to test their hypotheses.
Figure 3 provides a screenshot of this activity, where a student is navigating the bug
along a planar intersection of a cube.

Curricular Relevance

The use of Omni in other fields and in our prior work indicated that it has
potential affordances with respect to the visualization and feeling of 3D objects,
so we designed our activities for the exploration of 3D solids and their attributes.
Knowledge of geometric shapes and their characteristics is also a critical part of the
geometry standards for elementary grade levels as highlighted by National Council
of Teachers of Mathematics (NCTM) and Massachusetts Curriculum Framework
for Mathematics that incorporates the Common Core Standards for Mathematics.
Some general geometry standards for elementary level students are to “analyze
characteristics and properties of two- and three-dimensional geometric shapes and
develop mathematical arguments about geometric relationships” (NCTM, 2000, p.
41), and to “reason with shapes and their attributes” (Massachusetts Department of
Education, 2011, p. 37). More specifically, by Grade 5, students are expected to have
geometric skills such as:

• “Identify, compare, and analyze attributes of two- and three-dimensional shapes
and develop vocabulary to describe the attributes” (NCTM, 2000, p. 164).
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• “Classify two and three dimensional shapes according to their properties and
develop definitions of classes of shapes such as triangles and pyramids” (NCTM,
2000, p. 164).

• “Make and test conjectures about geometric properties and relationships and
develop logical arguments to justify conclusions” (NCTM, 2000, p. 164).

• “Distinguish between defining attributes (e.g., triangles are closed and three-
sided) versus non-defining attributes (e.g., color, orientation, overall size) : : : ”
(Massachusetts Department of Education, 2011, p. 33).

• “Recognize and draw shapes having specific attributes such as a given number
of angles or a given number of equal faces. Identify triangles, quadrilaterals,
pentagons, hexagons, and cubes” (Massachusetts Department of Education,
2011, p. 37).

In this chapter, we focus on the discursive features that help us characterize
students’ experiences within our dynamic, multi-modal environment, and possible
affordances of those discursive features to explore the mathematical affordances of
such environments. Our examination of the curricular frameworks helped us situate
our work in a curricular space but we also go beyond those frameworks since (a)
our activities embody a combination of the aforementioned curricular standards
rather than a single one, and (b) our activities also go beyond the elementary level
standards to explore the span of mathematical discourse our dynamic, multi-modal
environment supports. For example, students’ knowledge of planar intersections is
not required for elementary grades but their existing discourse does not necessarily
hinder the exploration of planar intersections. To sum up, we designed an open
exploration space to highlight its curricular relevance, which does not imply that
our exploration space was bounded by the curriculum. We wanted to learn how
students made sense of what they saw and felt collectively and also independently as
they communicated and negotiated meanings about the features of 3D geometrical
shapes. We wish to note that we do not use the curricular criteria mentioned above
to assess student learning since our study utilizes a new approach and is mainly
exploratory.

Context of the Study

This study is part of a 3-year project that examines the affordances of multi-modal
technology in elementary and undergraduate classrooms, involving 182 students
(150 elementary; 32 undergraduate-level) to date. In this chapter, we only focus on
the part of the study about elementary-level students’ use of the Omni, which took
place in a suburban elementary school in the Southcoast region of Massachusetts.
All seven fourth-grade teachers in the school agreed to select the students to be
interviewed for our study. We interviewed four students from each of the seven
classes over the course of 2 weeks. We interviewed students in groups because
(a) given that we had only one operating Omni device, we wanted to give access



108 B. Güçler et al.

to as many students as possible, and (b) we wanted to maintain students’ chances
for individual interaction with the device as well as their collective mathematical
discussions with their peers. Although there was one device per group, every
student used the Omni at some point during each activity. We conducted one
semi-structured interview (lasting approximately 45 min) with each group as they
worked on one or more of our activities. The interviews took place outside of
the students’ classrooms—in the school library—to avoid the interference of the
teachers’ ongoing classroom lessons.

In the next section, we discuss our data analysis and the common themes that
emerged from students’ interactions with the Omni and each other. The themes
reported are elements of students’ mathematical experience that we identified as
important as they participated in the multi-modal environment. We do not make any
claims about student learning at this stage, which may or may not have occurred
during students’ interactions with the multi-modal environment and each other.
Instead, we explored whether students’ discourse was mathematically rich and their
experience, mathematically meaningful.

Data Analysis and Common Themes

Data gathered for the study included video recordings that captured students’
individual and collective utterances as well as their actions with the Omni; video
recordings of the computer monitor that captured students’ manipulations of the 3D
objects on the screen; and written work of the students. We formulated discourse
using Sfard’s (2008) work and transcribed the video-taped sessions both with
respect to what the students said and what they did. We prepared the transcripts
so that students’ utterances and their actions were split into two distinct columns.
The columns were enumerated to link the utterances with students’ corresponding
actions, which also enabled easy referencing during analysis. We investigated the
general features of students’ multi-modal experiences on their discourse as they
associated mathematical meanings to their explorations.

Currently, we are still in the process of analyzing the data. Our goal is to develop
a systematic way to investigate students’ mathematical discourse in relation to
their experience with multi-modal environments and each other. The analysis we
present in this section is only at its preliminary stage and focuses on three important
elements that impacted students’ discourse: (1) students’ word use, (2) Omni as
a mediator of discourse, and (3) social interaction as a mediator of discourse. In
what follows, we discuss these features that framed students’ experiences in detail
and provide examples from student data. All the student names mentioned in this
section are pseudonyms.
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Word Use

An important feature of students’ discourse we explored was their word use.
We were interested in whether, and how, students moved between non-scholastic
(everyday and metaphorical word use) and scholastic (mathematical) word use.
Although we are also interested in coherence of non-scholastic and scholastic word
use, we are not making a claim about students’ transition mechanisms from informal
to formal mathematics in this chapter. Exploration of transition mechanisms in
students’ discourse would require a different implementation setting in which
students are observed more than once since a single snapshot of their experiences
would not suffice to capture “transitional” features, which occur across time. What
we provide here is a descriptive report of the types of words that students used to
make sense of their multi-modal experience.

During the activities, the students smoothly navigated between non-scholastic
and mathematical word use. Students did not freeze or become silent even if the
shapes or the goals of the activities were not apparent to them. There were instances
in which they had difficulties naming the 3D shapes provided to them. However, not
being able to name the object did not stop them from exploring the characteristics of
the object. While doing so, they sometimes referred to metaphorical word use (e.g.,
saying “jelly bean” or “oval” for an ellipsoid; “tube” or “tunnel” for a cylinder;
“diamond” or “kite” for a triangle-based pyramid) or used mathematical words
for the 2D features of the 3D shapes2 (e.g., saying “a triangle” for a triangle-
based pyramid; “rectangle” for a rectangular prism; “circle” for a sphere). In other
instances, they used mathematical language to describe the most basic features of the
3D shapes that were unfamiliar to them (e.g., identifying or counting the “edges,”
“corners,” or “vertices” of the shapes through their visual and physical experiences).

The activities supported utilization of mathematical discourse even though
students’ words were not always mathematically accurate. Table 1 shows the family
of words students commonly used as they explored 3D shapes, their characteristics,
and their planar intersections.

The Omni as a Mediator of Discourse

Like other mediators, Omni has its affordances and constraints. Omni is somewhat
clunky and fragile; it cannot be easily moved from one space to another. Omni also
requires the designer of mathematical activities to have significant knowledge of
the software environment. Despite these constraints, we found the Omni to be quite
useful for mathematical experiences if it is used according to its affordances.

2Using 2D vocabulary to talk about 3D shapes was quite common in students’ discourse.
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Table 1 Examples of students’ word use based on the types of their exploration

Type of exploration Examples of words used

General features of the shapes Edge, side, angle, vertices
Determining differential elements of the

shapes
Smooth, flat, circular, rough

Positioning of the shapes Inside, behind, top, bottom
Talking about 2D shapes or 2D features of 3D shapes

Scholastic Square, circle, trapezoid, parallelogram,
pentagon, triangle, rectangle

Non-scholastic Four sided-shape, circular shape
Talking about one-dimensional features of 3D

shapes
Line, length, height, width

Talking about 3D shapes
Scholastic Rectangular prism, cube, sphere, cylinder,

cone, pyramid
Non-scholastic Kite, tunnel, jelly bean, ball, ice cream cone

A significant affordance of the Omni is its support for powerful 3D dynamic
geometry activities, which we utilized specifically for the investigation of 3D
shapes. The Omni allows for multi-modal and dynamic investigations of 3D shapes;
enables three-dimensional manipulations of 3D objects; and allows a 360ı view of
those objects. Through force feedback, it makes possible the examination of depth
and texture of 3D shapes helping to identify the characteristics of those shapes.

Another affordance of the Omni, which we observed during the implementation
of our activities, is the level of student participation and engagement it supports.
Students were immediately engaged in the activities designed by the Omni and
they expressed their amazement frequently by means of gestures and words (e.g.,
“wow!,” “this is cool,” “I feel like touching the shape; so cool”). It may not
be surprising for a new type of technology to create such an effect on students.
What we want to particularly highlight is the continuous flow of hypothesizing,
argumentation, and discussion that followed students’ initial engagement. When
working on the activities—which lasted about 45 min—the students were on task
the entire time. In addition, they actively participated in the mathematical discourse
the activities supported. We found the Omni useful for a meaningful mathematical
experience in terms of “analyzing characteristics and properties of two- and
three-dimensional geometric shapes and developing mathematical arguments about
geometric relationships” (NCTM, 2000, p. 41) as described by the NCTM and other
relevant curricular standards.

During the design and implementation of the mathematical activities, we paid
attention to the impact of distracters in students’ mathematical explorations and
discourse. We wanted to minimize the visual and physical distracters as much as
possible so that students focused more on the mathematical features of the shapes
instead of color or size of the 3D shapes. This proved successful since none of the
groups classified the shapes based on attributes that were mathematically irrelevant.
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Table 2 A student’s discussion of why he believes color is an irrelevant attribute when classifying
3D shapes

What is said What is done

[1] Greg: there’s one category that I know
we’re not gonna use, colors, because that
would be the easiest one.

[1] All students giggle. They seem to agree
with Greg.

[2] Interviewer 1: Well that’s one way of
categorizing it, but why are you not happy
about it?

[3] Greg: Because it doesn’t really matter
about the color. It matters about how it
feels.

[4] Interviewer 2: Greg, can you : : : can you
tell me a bit more about what you just said
a moment ago, it doesn’t matter about the
color, it depends on how it feels? Can you
explain to me more what you mean by that?

[4] Interviewer brings Greg’s attention back to
color.

[5] Greg: Like : : : to me : : : like it doesn’t
need to really be green, the square, it
doesn’t need to be green.

[5] He places the bug onto the front face of the
cube, which is green.

[5a] It could be purple, blue, brown, red. [5a] He moves and rotates the cube with the
pointer.

[5b] But you can’t have a circle that has
edges.

[5b] He places the pointer on the surface of
the sphere, which is white.

So, that’s what I mean for how it feels.
[5c] And you can’t have a square that’s

round.
[5c] He places the bug on the front face of

the cube, and makes a circular gesture
with the pointer.

[5d] But you could have a circle that’s green
and a square that’s white.

[5d] Places the bug on the surface of the
sphere, which is white.

In fact, a student in one group explicitly conjectured that color should not be
considered as a relevant attribute when classifying 3D shapes, as shown in Table 2.

Greg mentioned that color is irrelevant and considered his physical perception
with respect to how the shapes felt more relevant when classifying 3D shapes
(Table 2, [1], [3]). He later added that it did not matter whether the shape he
investigated (a cube) was of a particular color (Table 2, [5a]). Instead, he focused on
the attributes of the shape such as edges and roundness he could (or could not) feel
through his experience with the Omni (Table 2, [5b], [5c]).

During the interviews, there were instances where students faced challenges
related to cross-modality. In other words, sometimes what students saw visually
was not compatible with what they felt physically. Interestingly—rather than
constraining students—instances where students dealt with cross-modality often led
to rich mathematical exploration and discourse as students examined individually
the features of 3D shapes and their planar intersections and negotiated or justified
their meanings with other students. Table 3 highlights one planar intersection
episode in which the intersection of the 3D shape (a cube) with the plane formed
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Table 3 Students examine a planar intersection and deal with the issue of cross-modality

What is said What is done

[1] Duane: [Referring to the intersection] It
looks like a pentagon.

[1] Points to the screen with his hand but does
not use the Omni.

[2] James: Yeah, it kinda does. Yeah, it is a
pentagon.

[2] Looks at the screen but doesn’t use the
Omni.

[3] Interviewer1: You said that really quick so
why? : : : What made you think pentagon?

[4] Duane: Yeah cuz it has five sides. [4] Points a pencil towards the screen to count
the sides a, b, c, d, e of the pentagon shown
in Fig. 4b.

[5] Olga: Oh it : : : it : : : does feel like a
pentagon.

[5] Uses Omni to trace the sides a, b, c (in
Fig. 4b) but it’s not clear what she
considers as the pentagon.

[6] Jessica: A pentagon or a hexagon. [6] Looks at the screen but doesn’t use the
Omni.

[7] Duane: No a hexagon has six sides. [7] He turns to Jessica as he talks.
[8] Jessica: Oh, yeah.
[9] Interviewer2: So Olga put the bug where

the red [the plane] and the blue one [the
cube] meet and move it along the path and
let’s see if it’s a pentagon. How would you
know if it’s a pentagon?

[9] Verbally directs Olga to focus on the
intersection, and to use the Omni to test the
students’ conjecture that the intersection is
a pentagon.

[10] Olga: Cuz a pentagon has five sides. [10] Looks at the interviewer.
[11] Interviewer 2: Okay, so do you feel five

sides as you move along?
[12] Olga: Uh huh : : : One : : : two, that’s one

side, three sides and four.
[12] Nods her head while tracing the sides a, b,

c, f of the shape shown (in Fig. 4b).
[13] Jessica: Wait : : : one : : : two : : : three

: : : four.
[13] Surprised, she traces in the air the same

sides Olga traced with the Omni.
[14] Olga & Duane: Uh : : : that’s one : : : two

: : : three : : : four.
[14] Olga retraces the intersection a, b, c, f

using the Omni, as she and Duane count
the sides.

[15] Jessica: Because you don’t : : : on the
back you don’t feel : : : you don’t feel that
curve. And you don’t technically count
that.

[15] Duane looks quite puzzled, while Jessica
conjectures that the sides d and e cannot be
felt while tracing the intersection with the
Omni, and therefore shouldn’t be counted.

[16] James: It’s kinda like this shape : : : [16] By repeatedly looking at the screen he
begins to draw on a sheet of paper the sides
of the intersection.

[17] Olga: It’s just a straight side. [17] Traces side f with the Omni, while Duane
points to each side of the intersection a, b,
c, f (in Fig. 4b) with his finger on the
screen.

[18] Interviewer2: So how many sides did you
end up counting?

[18] Students begin speaking simultaneously
after this question.

[19] Olga & Jessica: One : : : two : : : three
: : : four.

[19] Olga traces the sides of the intersection a,
b, c, f (in Fig. 4b) using the Omni, as she
and Jessica count the sides.

(continued)
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Table 3 (continued)

What is said. What is done.

[20] Duane: they’re counting four. [20] Refers to Olga and Jessica.
[21] Jessica: It’s not a pentagon.
[22] Olga: Oh no, actually four. It’s not a

pentagon.
[23] James: Oh, it’s a trapezoid. [23] Finishes drawing the sides a, b, c, f

(in Fig. 4b), looks at the drawing, and
concludes it is a trapezoid.

[24] Duane: A trapezoid? [24] Briefly glances at James’ drawing, but
looks confused.

[25] James: Yeah : : : the trail that [the bug] is
going on is a trapezoid.

[25] Points to the screen with his pencil.

[26] Duane: Oh yeah, I can see that too. [26] Glances at James’ drawing and then the
screen, and agrees with James.

[27] Jessica: You see a pentagon but : : : you
feel a trapezoid.

Fig. 4 (a) A group of students working on a planar intersection activity. (b) The planar intersection
of a cube that students discuss in Table 3

a trapezoid (see Fig. 4a, b). The actual intersection consisted of sides a, b, c, and
f; sides d and e were not part of the intersection but were among the sides of the
pentagon (with sides a, b, c, d, e) that students saw on the computer screen (Fig. 4b).

Note that students identified the intersection as a pentagon, initially relying only
on their visual perceptions (Table 3, [1–2], [6]). When one of the students used the
Omni to trace the intersection and felt four sides instead of five (Table 3, [12]),
students were faced with a cross-modality conflict resulting from the clash of their
visual and physical experiences with the intersection. As students joined in the
process of solving the conflict (Table 3, [13–27]), they eventually decided to rely
on their physical experiences to conclude that the intersection was a trapezoid.
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In our study, advantages of the Omni overpowered its limitations for the open-
ended investigation of 3D shapes and their features. The distracters were minimal
and generally supported further mathematizing as students continued to connect
what they saw with what they felt physically.

Social Interaction as a Mediator of Discourse

One of the leading assumptions that guided our design is the social nature of the
learning process as described in our theoretical perspectives section of this chapter.
Consistent with this assumption, students worked in groups of four in our study.
Each discussion drew on students’ prior knowledge as well as cultural, everyday,
metaphorical, or scholastic language they brought to the table. Students’ socially
mediated experience was also connected to the open-ended exploration space;
presence and participation of the research team; and the Omni as a mediator of
collectively developed mathematical reasoning.

The two types of activities we designed were open-ended in that initially students
were only given prompts to classify a family of 3D objects or to talk about
the intersection of a 3D object with a plane. Naming the objects, choosing the
differential and similar features of the objects to focus on, and identifying the visual
and physical prompts present in the investigation setting and associating them with
a relevant feature of a 3D object were mostly up to the students. These are possible
reasons why we observed continuous hypothesizing, conjecturing, argumentation,
and negotiation in students’ discourse as they worked on the activities.

The social nature of the activity setting was a crucial factor contributing to the
continuity of students’ discourse. There were instances in which one student could
not find a mathematical name for the 3D shape but another student in the group
did. In those cases, we observed that students using non-scholastic language to talk
about the shapes could adopt other students’ mathematical word use to refer to those
shapes. For example, in Table 3 ([12–22]), students talked about the intersection
being a four-sided shape but did not name the shape. Only after one of the students
drew a picture of what he thought and proclaimed it to be a trapezoid (Table 3, [23]),
did the other students start using the term (Table 3, [24], [27]). There were also
instances in which students using inaccurate language to refer to a mathematical
object were corrected by other students in the group. In Table 3 ([4–8]), Duane
corrected Jessica’s use of the term hexagon since the shape the students saw as the
intersection had five sides whereas a hexagon has six sides.

The presence of the researcher(s) also contributed to the social interaction among
students’ and their mathematical discourse. For example, in Table 3 ([9]), the
researcher directed the students’ attention to the intersection of the two shapes and
asked Olga to use the Omni after seeing that students focused on the pentagon-
looking shape only through their visual perceptions. The researcher’s mediation
then supported students’ interaction among each other and their mathematical
discourse as they explored the issue of cross-modality.
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Technology—the Omni—was also a factor in students’ collective reasoning.
For example, challenges students faced due to cross-modality resulted in rich
discussions, hypothesis testing, and negotiations (see Table 3). We believe that the
incompatibility of students’ visual and physical perceptions had some roles in the
refutation and negotiation process as students collectively and individually formed
their discourse regarding the conflict. In this respect, the technology contributed to
the continuation of the social and discursive argumentation space.

The Omni provided visual and physical feedback the students utilized as they
explored the characteristics of 3D shapes. Students were engaged in mathematical
thinking and generated plausible arguments about 3D shapes through their per-
ceptions and interactions with each other. The learning environment we created
through the use of a dynamic multi-modal technology has the potential to give
students access to mathematical ideas that may otherwise be inaccessible to them.
We have demonstrated this through our findings providing evidence that it is
possible for students to generate mathematical discourse—though not necessarily
formal—even when the content of the activities go beyond the requirements of their
curriculum (see Table 3). We also have evidence that the Omni can be useful in
facilitating students’ perceptions so that they can identify and differentiate among
the relevant and irrelevant features of 3D shapes (see Table 2). These findings
suggest that our dynamic multi-modal environment has the potential to present
students with meaningful opportunities to explore 3D objects through multiple
perceptions, supporting mathematical discourse as students engage in mathematical
activities such as exploring, conjecturing, negotiating meaning, and sense-making.

Discussion

Our study explored students’ mathematical experiences in multi-modal environ-
ments with a particular focus on the Omni. Overall, we observed that the students
had rich mathematical experiences as they interacted with the Omni. The experience
was rich because it supported hypothesizing and testing those hypotheses as well
as negotiating and creating mathematical meanings during social interactions. Our
multi-modal environment enabled an open-ended exploration space that students
found mathematically engaging. The open-ended exploration space supported
students’ word use both mathematically and metaphorically. In other words, the
multi-modal environment and students’ prior knowledge did not limit but supported
their mathematical word use. The Omni and students’ interactions with each other
were among the factors that contributed to the semiotic mediation resulting in
students’ generation of scholastic and non-scholastic word use. Students used the
Omni as a semiotic mediator when their visual perceptions contradicted their
physical perceptions. Students also utilized social interaction as a form of mediation
when they disagreed with each other; when they corrected each other’s word use
and adopted words used by peers; and when they individually and collectively
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hypothesized and tested their hypotheses. Our initial findings suggest that the
dynamic, multi-modal exploration space we designed was compatible with our
assumptions with respect to providing a rich experience in which individual and
collective mathematical meanings are created or enhanced.

Although at its preliminary stage, our analysis provides some evidence that
merging dynamic geometry environments with the haptic technology may be
significant and relevant for mathematics education, which is an issue that is not
addressed extensively by existing research on haptic technology. We propose that it
is relevant to integrate haptic technology with dynamic geometry software to offer
multiple sources of information-feedback for students; it is not enough to offer a
way for students to just see a mathematical object or a scientific model in a static
way; they must also engage with it dynamically, tactically, and naturally.

We have learned from our prior work that a key factor in the requirements for
our instructional technology product is the core content within which it is used,
in a sense redefining the roles of technology from being a prosthetic device for
amplifying existing pedagogical practices to one which is a partner in the learning
experience supporting the intentional constraints of the activity designer (Dede,
2007; Moreno-Armella et al., 2008). Such intentionality is deeply rooted in our
objectives for mathematical learning and discovery and pedagogical strategy. This
design philosophy allowed us to develop open-ended, multi-modal activities that did
not integrate the technological affordances in just a merely entertaining way but a
rather a sophisticated, rich mathematical way.

Our social-cultural perspective focused on how students interacted to make
meaning of the complex mathematical tasks we have and the various roles of
mediators within the learning environment. We examined student discourse to parse
out how multi-modality offers multiple information feedback loops that can enhance
meaning-making in mathematics and expose the challenges that students have in
understanding 3D geometry.

Building on this work and the rich discursive practices used by the young learners
in our present study, we aim to take two significant design trajectories forward:

1. Investigate the affordances of other types of haptic technologies in particular
multi-touch (e.g., iPad).

2. Explore a wider variety of mathematical investigations that are categorized by
mathematical routines (e.g., linking varying quantities to force feedback).

These two trajectories are deeply intersecting and work is already underway
to investigate the impact of iPad technologies given its wide spread use and
accessibility.

Another area we intend to focus on is the development of an analysis trajectory
to explore more systematically the features of students’ mathematical discourse as
they interact with each other and the multi-modal environments. In each of these
learning environments, our main aim is to observe changes in discourse patterns
(e.g., non-scholastic to scholastic word use), as we believe this is a fundamental
indicator of intellectual development and mathematical learning. We believe these



Investigating the Mathematical Discourse of Young Learners Involved. . . 117

new learning environments, designed with a deep focus on how the technology can
affect access to mathematical ideas, will help the field focus on the centrality of the
voice of the child in technology-enhanced mathematical investigations.
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Embodied Interaction as Designed Mediation
of Conceptual Performance

Dragan Trninic and Dor Abrahamson

Abstract Can conceptual understanding emerge from embodied interaction? We
believe the answer is affirmative, provided that individuals engaged in embodied-
interaction activity enjoy structured opportunities to describe their physical actions
using instruments, language, and forms pertaining to the targeted concept. In this
chapter, we draw on existing literature on embodiment and artifacts to coin and
elaborate on the construct of an embodied artifact—a cognitive product of rehearsed
performance such as, for example, an arabesque penchée in dance or a flying
sidekick in martial arts. We argue that embodied artifacts may encapsulate or
“package” cultural knowledge for entry into disciplinary competence not only in
explicitly embodied domains, such as dance or martial arts, but also implicitly
embodied domains, such as mathematics. Furthermore, we offer that current motion-
sensitive cyber-technologies may enable the engineering of precisely the type of
learning environments capable of leveraging embodied artifacts as both means
of learning and means for studying how learning occurs. We demonstrate one
such environment, the Mathematical Imagery Trainer for Proportion (MIT–P),
engineered in the context of a design-based research study investigating the me-
diated emergence of mathematical notions from embodied-interaction instructional
activities. In particular, we discuss innovative features of the MIT–P in terms of
the technological artifact as well as its user experience. We predict that embodied
interaction will become a focus of design for and research on mathematical learning.

Keywords Embodied interaction • Sociocultural theory • Educational
technology • Learning sciences • Mathematics • Proportion • Embodied artifact

D. Trninic (�) • D. Abrahamson
Embodied Design Research Laboratory, Graduate School of Education, University of California
at Berkeley, 4649 Tolman Hall, Berkeley, CA 94720-1670, USA
e-mail: trninic@berkeley.edu; dor@berkeley.edu

D. Martinovic et al. (eds.), Visual Mathematics and Cyberlearning, Mathematics
Education in the Digital Era 1, DOI 10.1007/978-94-007-2321-4 5,
© Springer ScienceCBusiness Media Dordrecht 2013

119



120 D. Trninic and D. Abrahamson

Introduction

Artifacts—cultural objects embedded in social practice—do not cease to fascinate
scholars of human cognition and development. As design-based researchers of
educational media, the pedagogical artifacts we investigate are historically young
technologies. Nevertheless, we view these novel artifacts from the same theoretical
perspectives as we would a seemingly humdrum manual tool. Specifically, we ask:
What educational gains can such an artifact foster? What can it teach us about
human learning?

Yet for the purposes of this particular chapter we are less interested in material
artifacts such as a piano or an abacus; neither are we presently concerned with
symbolic artifacts such as musical notes or numerals. We focus, instead, on
embodied artifacts—the cognitive products of rehearsed performances or trained
routines,1 such as the capacity to play Für Elise or manipulate an abacus. As
we shall argue, novel motion-sensitive cyber-technologies (e.g., Nintendo Wii) are
uniquely geared both to craft and leverage embodied artifacts as means of fostering
learning and, for researchers, opening a window into how learning occurs.

To illustrate and elaborate the construct of an embodied artifact, which will be
central to our thesis, we begin by taking the readers on a guided tour of a few
decidedly low-tech instantiations. For the sake of clarity, we initially focus on
embodied artifacts within explicitly embodied domains. Later in the text, we will
introduce a mathematical, technology-embedded embodied artifact.

To begin, imagine a first surfing lesson in Honolulu, Hawaii. Despite the endless
crowds at the sun-drenched Waikiki beach, a neophyte surfer is eager to get in
the water. Doing so immediately, however, is likely to invite disappointment. His
inability to distinguish the many types of waves, crowding by dozens of other
nearby surfers, neuromuscular fatigue from continuous paddling, an uneasy sense
of unspoken social hierarchies among more experienced surfers, and a myriad other
factors large and small all conspire to quickly dizzy and exhaust the novice. Yet the
beachboys (surfing instructors) of Waikiki are famous for claiming they can make
anyone ride a wave—at least, that is, for a second or two. How?

Before getting in the water, the beachboy will ask the first-timer to lay down upon
the surfboard on the sand. There, the beginner is taught the elementary sequence
of Stand Up (SU2) on the surfboard, roughly: (1) kneel; (2) one knee up; and (3)
stand up. Only once the beachboy determines the neophyte is capable of executing
this basic sequence with confidence does the surfer take to the water. There, the
instructor will wait for an appropriate wave, a selection process beyond the novice’s

1We invite the reader to compare our “embodied artifact” with the construct of “organizational
routines” (Feldman & Pentland, 2003). Though organizational routines share commonalities
with embodied artifacts in terms of constituting structured procedures, our construct serves
particular interests both in the embodiment of knowledge and in learning from an artifact-mediated
perspective.
2By naming this sequence with a phrase commonly used in the context of this particular cultural
practice, we are anticipating that it will be signified as a “chunked” performance.
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capacity, then push his charge into said wave at the appropriate moment. At this
point, all the neophyte must do is paddle hard into the wave—and (attempt to)
execute SU. A complex activity is thus partitioned into: (1) select a wave; (2)
approach a wave; and (3) SU. Hence the beachboys accomplish their claim of getting
anyone to surf by performing (1) and (2) on behalf of their charge and having given
the neophyte an embodied artifact, the elementary Stand Up sequence (3).

Note that the function of an embodied artifact is modular, in the sense that it
can be taught and learned as a standalone sequence of operations, yet later it can be
contextualized into a larger system as well as refined via analysis into component
parts. For example, the learner becomes more adept at timing, instigating, and
performing SU in respect to his distance to the wave (contextualization via
integration—recall that the SU sequence was learned on sand); and learns the
optimum placement for his knee during the kneeling portion of SU (refinement via
analysis). We therefore arrive at disciplinary competence by entering at the level of
actions in the form of rehearsed performances. In other words, embodied artifacts
serve as entry into disciplinary engagement—as knowledge through practice (cf.
Ericsson, 2002) and reflection (cf. Dewey, 1933; Schön, 1983). Importantly, the
learner may rehearse operatory elements of this modular action (SU) independently
of any larger activity system (surfing).

Because they are modular and thus portable, embodied artifacts tend to be
adaptable in their application. Consider the Flying Sidekick (FS; see Fig. 1b), an
aerial attack historically used to strike over ground fortifications (e.g., defensive
spikes) and dismount fighters off of warhorses and other beasts of war. In modern
times, neither mounted warriors nor spike-barricades pose a serious concern, yet
FS continues its existence as more than a text-bound technique. The flying sidekick
was practiced for centuries in martial arts halls concurrent to, yet independent of, its
combative application: due to its modular nature, it survived the disappearance of
its original context, mêlée warfare. Nowadays, FS continues its existence primarily
as a test of a learner’s discipline and body-mastery.

These two brief examples are meant to illustrate some of the variety of embodied
artifacts. While embodied artifacts may work in tandem with other artifacts (as in the
case of surfing, operating an abacus, or playing the piano), they may merely require
space and gravity (such as dance, see Fig. 2a). So, what does this have to do with
learning? The critical common thread is that all embodied artifacts are rehearsed
performances, ready-to-hand cultural equipment created by “packaging” procedures
for skillfully encountering particular situations in the world (cf. Rosenbaum, Kenny,
& Derr, 1983, on motor learning via “chunking”).3 Indeed, as we have defined them,
embodied artifacts, by mediating one’s encounters with the world, constitute an
integral part of cultural and individual development. First, humans embody cultural
procedures through participating in social activities. Through observation, demon-
stration, imitation, and training, these cultural procedures become our resources

3Esther Gokhale (2008) argues that embodied artifacts, such as those found in traditional dances,
serve to encapsulate and preserve traditional physiological knowledge, not unlike how a recipe
may preserve traditional (tacit) nutritional knowledge.
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Fig. 1 Embodied artifacts in practice: (a) A novice surfer and his coach (seated); and (b) a Flying
Kick demonstration by a Soo Bahk Do Master

Fig. 2 Embodied artifacts take many forms: (a) Traditional Cham dancers. (b) Mathematical
Imagery Trainer (MIT) in use by two 10-year-old students, with the tutor (center) prompting and
monitoring their problem solving

in the form of embodied artifacts. Therefore, through embodied artifacts we store
cultural knowledge in the body, using the body as both the material for and means
of encountering the world (cf. Dourish, 2001; Dreyfus & Dreyfus, 1999).

As learning scientists, we are interested in the role of embodied artifacts in
the emergence of disciplinary competence, particularly disciplines traditionally
viewed as “pure” in the sense of independence from the physical world, such
as mathematics.4 Our interest is twofold. First, as we elaborate in the next

4As the mathematician G. H. Hardy famously stated, not without pride: “I have never done anything
‘useful’.”
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section, current empirically supported theories of mind suggest that embodiment—
having and using a physical body in the world—is fundamentally linked to all
reasoning, whether involving “pure” thought or getting one’s hands dirty (literally
or figuratively). Second, we hold that deliberate use of embodied artifacts in
mathematics instruction may render hitherto undetectable learning processes open
to both formative assessment in classrooms and empirical scrutiny in laboratories.
The idea is simple: if students must perform physically in the service of doing
mathematics, then such doing becomes publicly observable rather than hidden away
“in their heads.”

So, what does this have to do with technology? In addition to our practice as
learning scientists, we are designers of pedagogical artifacts. As designers, we are
interested in availing of novel technologies to engineer learning environments in
which students appropriate embodied artifacts in pursuit of mathematical compe-
tence. We then observe students engaged with our design and, hopefully, we learn
more about the process of learning (see Collins, 1992 on design-based research as
educational science). So doing, in turn, we also learn more about designing learning
environments. And on it goes. This chapter is, then, a design-meets-theory-meets-
design piece on embodied artifacts and educational technologies.

We begin with observations about the pedagogical potential of embodied artifacts
in light of increasingly ubiquitous motion-sensor technologies; these observations,
in turn, form the theme of the following section, where we situate our study in
the broader context of research on the role of embodiment in human learning and
knowing. From the perspective of educational design, we consider the following
question: How, if at all, may novel motion-sensor technologies be pedagogically
utilized, particularly in light of recent advances indicating the fundamental role of
embodiment?

Taking on this question, we present a proof-of-existence educational intervention
that leverages cutting-edge technology, namely the Mathematical Imagery Trainer
(hence, “MIT,” see Fig. 2b). Working with the MIT for Proportion (MIT–P),
students move their hands in an environment that changes its state in accord with
the ratio of the hands’ respective heights, effectively training an embodied artifact
of moving the hands in parallel and at different rates, that is, proportionately to
each other, with the distance between the hands increasing. Students then reflect on,
analyze mathematically, and articulate this spatial–dynamical embodied artifact and
then contextualize it as a particular case of proportionality.

Finally, we broaden our discussion to present a particular type of educational
design, embodied interaction. This type of design, we argue, is ideally suited to
foster embodied artifacts in a powerful way towards normative disciplinary compe-
tence and, furthermore, enables researchers a window into conceptual development.
We then contextualize our arguments by presenting a case of embodied interaction
design that suggests how mathematics education and embodied artifacts may be
systemically linked in practice.
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Theoretical Framework

The Rise of Embodied-Cognition Theory and Its Application
to Mathematics Education

Can conceptual understanding emerge from embodied interaction? One answer is
that we are physical beings living in a physical world; hence, attempts to understand
the development of conceptual thought need look to physical, sensory interaction.
Yet this answer appears naı̈ve and, perhaps due precisely to its apparent simplicity,
has been ignored by cognitive science throughout the last century. Traditional
cognitivist views partitioned mundane interaction into three mutually exclusive
constituent facets: perception, thought, and action (e.g., Fodor, 1975; Tulving,
1983). Thinking, or concepts, thus intervenes between perception and action and
is characterized as distinct from those real-time embodied processes by token of
being symbolic–propositional. Yet in alternative views discussed below, cognition
is not secluded or elevated from perception and action but is rather embedded in,
distributed across, and inseparable from these corporeal processes.

Embodiment studies rose fast in prominence towards the end of last century5

through the converging efforts of numerous pioneers in fields as disparate as
robotics, psychology, philosophy, and computer science (Brooks, 1991; Gibson,
1979; Varela, Thompson, & Rosch, 1991; Winograd & Flores, 1987). Though many
of these perspectives initially emerged in opposition to then-prevalent symbolic
architecture models of the mind, embodiment studies have, over the last few
decades, burgeoned into a vast area of investigation in their own right—replete with
a spectrum of proponents. Within this spectrum, we can roughly identify conser-
vatives, who cautiously posit that reasoning may be connected with some aspects
of non-corporeal cognition (e.g., Dove, 2009); moderates, who argue that physical
action underpins or forms the substrate of cognition (Barsalou, 2010; Goldstone,
Landy, & Son, 2010; e.g., Sheets-Johnstone, 1990); and radicals, who hold that
cognition itself is merely another action (e.g., Melser, 2004). Indeed, the scope of
embodiment studies has grown6 to the point where scholars concern themselves
defining what, exactly, it means to be “embodied” (Kiverstein & Clark, 2009).

In our current work we tend to hold with those who favor the middle ground, and
we interpret available empirical evidence as indicating that physical action indeed
undergirds thinking, including so-called “abstract” thinking (e.g., thinking about the
word antepenultimate, or solving for x). We are therefore not concerned by the con-
troversy over what role corporeality plays in thought: indeed, it gives us something

5That said, these studies date back to American pragmatism in relatively recent times (see
Chemero, 2009) and Buddhist psychologies many centuries before that (Varela, Thompson, &
Rosch, 1991).
6It is telling that the most popular workshop at the CHI 2011 conference on Human-Computer
Interaction was titled “Embodied Interaction”—and yet the idea of that very workshop was
considered untenable in the previous years at the same venue.
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to do. A fortiori, as interaction designers of mathematical learning we find ourselves
in a unique position to contribute toward resolving this theoretical controversy.

Particularly relevant to our work, embodiment has been presented as a useful
framework for theorizing processes inherent to “abstract” disciplinary mastery,
including mathematics learning and reasoning (Abrahamson, 2009a; Campbell,
2003; Namirovsky, 2003; Roth & Thom, 2009). One consequence of this view
is that observations, measurements, and analyses of physiological activities as-
sociated with brain and body behavior can provide insights into lived subjective
experiences pertaining to cognition and learning in general, and mathematical
thinking in particular. In a strong form, we conjecture that physical action is
neither epiphenomenal nor merely supportive to “pure” mental activity. Rather,
conceptual understanding—including reasoning about would-be “abstract” contents
such as pure mathematics—emerges through and is phenomenologically situated
and embedded in actual and simulated perceptuomotor interactions in the world.

Technology for Using the Body

Even as cognitive scientists recognize this essential role of the body, industry has
made dramatic advances in engineering technological affordances for embodied
interaction. At the time of this writing, Nintendo Wii and Playstation Move players
worldwide are waving hand-held “wands” so as to remote-control virtual tennis
rackets; iPhone owners are tilting their devices to navigate a virtual ball through
a maze; and Xbox Kinect users are controlling video-game avatars with their bare
hands—activities hitherto confined to the realms of futuristic fantasy, like flying
cars. Moreover, innovative designers tuned to this progress are constantly devising
ways of adapting commercial motion-sensor technology in the service of researchers
and practitioners (Antle, Corness, & Droumeva, 2009; Lee, 2008). As such, media
that only recently appeared as esoteric instructional equipment will imminently be
at the fingertips of billions of potential learners. We are excited about the prospect
of using these new media to create learning environments centered on embodied
artifacts that may be rehearsed and consequently investigated via mathematics,
allowing an embodied entry into this disciplinary domain. In the remainder of the
chapter we document our attempts to utilize these capabilities and what we have
learned doing so.

Learning as Performance: Appropriating Artifact-Bound
Conceptual Systems

Our work in the Embodied Design Research Laboratory involves the design, testing,
and refinement of pedagogical artifacts as well as the development of theoret-
ical models of learning via interaction with said artifacts (Abrahamson, 2009b;
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Abrahamson, Gutiérrez, Lee, Reinholz, & Trninic, 2011). The work we present
here is subpart of Action-Before-Concept (ABC), a cluster of cross-disciplinary
studies of performance in mathematics, music, climbing, and the martial arts
centered around relations between procedural and conceptual knowledge. ABC,
writ large, explores the relation between performance and knowledge. It is an
inquiry into cultural precedence for pedagogical practice within explicitly embodied
domains (e.g., martial arts), wherein procedures are initially learned on trust yet
subsequently—only toward perfecting the procedures toward mastery and further
dissemination—are interpreted by experts as embodying disciplinary knowledge.
The results of these inquiries within explicitly embodied domains are then leveraged
in investigations of, arguably, implicitly embodied domains, such as mathematics. In
practical terms of design, much of our work consists of creating learning situations
where (bi)manual performances culminate in the learner’s guided reinvention of
disciplinary knowledge (cf. Freudenthal, 1983). These performances take form as
concerted dynamical coordination of embodied, material, and symbolic artifacts.

Thus we espouse a position that learning is the residual effect of engaging
artifacts as means of accomplishing one’s goals (cf. Salomon, Perkins, & Globerson,
1991; Vérillon & Rabardel, 1995). Yet against the backdrop view of learning as imi-
tating, internalizing, and appropriating the elders’ artifactual actions (e.g., Vygotsky,
1987), we foreground the pedagogical philosophy of learning-as-discovering these
artifacts’ horizons in the course of explorative problem solving and theory building
(e.g., Karmiloff-Smith & Inhelder, 1975). The challenge for us as designers lies
in taking this position on learning and making it a product, that is, designing a
pedagogical artifact that encapsulates our theory of learning and respects current
embodiment-informed theories of mind. Our response to this challenge is addressed
in the following section.

Instructional and Experimental Design

Embodied-Interaction (EI) is a form of technology-supported training activity. By
participating in EI activities, users encounter, discover, rehearse, and ultimately
investigate embodied artifacts.

A general objective of EI design is for users to develop or enhance cognitive
resources that presumably undergird specialized forms of human practice, such as
proportional reasoning. As is true of all simulation-based training, EI is particularly
powerful when everyday authentic opportunities to develop the targeted schemes
are too infrequent, complex, expensive, or risky. Emblematic of EI activities, and
what distinguishes EI from “hands on” educational activities in general, whether
involving concrete or virtual objects, is that EI users’ physical actions are intrinsic,
and not just logistically instrumental, to obtaining information (Kirsh & Maglio,
1994). That is, the learner is to some degree physically immersed in the microworld,
so that the embodied artifact—instantiated in finger, limb, torso, or even whole-body
movements—emerges not only in the service of acting upon objects but rather the
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motions themselves become part of this learned cultural–perceptuomotor structure.
EI is “hands in.”

Before describing our design, it is useful to mention two related designs to
illustrate the present scope of this emerging field to the reader. Antle et al. (2009)
used EI to leverage participants’ embodied metaphors of “Music is a physical
body movement” as a means of developing fluency with music creation. Another
EI design (Fischer, Moeller, Bientzle, Cress, & Nuerk, 2011) used digital dance
mats in design intended to improve kindergarteners’ fluency with relative numerical
magnitude. As EI technologies become increasingly ubiquitous, we anticipate an
exponential growth in EI designs catering to various educational needs (see also
Birchfield & Johnson-Glenberg, 2010).

Embodied Interaction Design: Mathematical Imagery Trainer

Our overarching design conjecture is that some mathematical concepts are difficult
to learn because mundane life does not occasion opportunities to embody and
rehearse their spatial–dynamical foundations. Specifically, we conjectured that
students’ canonically incorrect solutions for rational-number problems—the mis-
application of additive reasoning and procedures to multiplicative situations (see
Lamon, 2007 for an overview)—indicate students’ lack of appropriate dynamical
imagery to ground proportion-related concepts (see also Pirie & Kieren, 1994).

In addition to theories of embodiment, this conjecture is grounded in our previous
work. In particular, a pilot study by Fuson and Abrahamson (2005) suggested
that children’s cognitive difficulties in understanding proportional reasoning may
be related to their difficulty in physically enacting proportion. Namely, when
asked to enact scenarios involving proportional growth of plants—e.g., “If a rose
grows twice as fast as a tulip, can you show me what that looks like with your
hands?”—children manually demonstrated a “fixed difference” misconception; that
is, they tended to raise their hands while keeping the distance between them
fixed. The similarity between this physical “fixed difference” performance and
aforementioned, presumably conceptual, “fixed difference” mathematical solution
suggested a possible relation between the two.

Accordingly, we engineered an EI computer-supported inquiry activity for stu-
dents to discover and rehearse the physical performance of a particular proportional
transformation of our design. This activity, we reasoned, should train students’
physical proportional skill via allowing them to experience “fixed difference” as
contextually inappropriate. Let us step back and elaborate on this central design
principle.

We define conceptual performances as embodied artifacts that are recognized by
their enactors as physically inscribing essential semantics and syntax of correspond-
ing mathematical content. For example, ‘adding’ gestures—such as bringing hands
together as if amassing stuff into a single location—are well suited for signifying
the arithmetic operation ‘addition,’ because the gestures objectify and manipulate
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Fig. 3 MIT in action: (a) a student’s “incorrect” performance (hand height locations do not match
a 1:2 ratio as measured from the table) turns the screen red; (b) “correct” performance (right hand
at approximately twice the height of the left hand, as measured from the table, forming a 1:2 ratio)
keeps the screen green

imagined quantity sets. As such, the objective of embodied-interaction mathematics
learning activities, per our framework, is to foster student development of cus-
tomized embodied artifacts that subsequently—through symbolic instrumentation
and regulating discursive interaction—emerge as conceptual performances. That
is, embodied artifacts become conceptual performances once they have served as
semiotic resources for discussing, and thus signifying, target curricular content. Our
solution to this general design problem is the Mathematical Imagery Trainer (MIT),7

which the following section further explains (see Fig. 3).
We wish to emphasize that we arrived at building the MIT–P technology only

after having considered a variety of “low-tech” design solutions. We feel privileged
to be designing in an age where we can expand on the vision of luminaries such as
Froebel or Montessori by using available media to expand everyday experience.

Technical and Interface Properties

Our instructional design leverages the high-resolution infrared camera available
in the inexpensive Nintendo Wii remote to perform motion tracking of students’
hands. In our setup, an array of 84 infrared (940 nm) LEDs aligned with the
camera provides the light source, and 3M 3000X high-gain reflective tape attached
to tennis balls can be effectively tracked at distances as great as 12 ft. Later
iterations used battery-powered, hand-held IR emitters that the students point
directly at the Wii camera. The Wii remote is a standard Bluetooth device, with
several open-source libraries available to access it through Java or .NET. Our

7See http://www.youtube.com/watch?v=n9xVC76PlWc for a video.

http://www.youtube.com/watch?v=n9xVC76PlWc
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Fig. 4 The Mathematical Imagery Trainer for Proportion (MIT-P) set at a 1:2 ratio, so that the right
hand needs to be twice as high along the monitor as the left hand in order to make the screen green
(a “success”). Schema of student paradigmatic interaction sequence—while exploring, student:
(a) positions hands “incorrectly” (red feedback); (b) stumbles on a “correct” position (green); (c)
raises hands maintaining constant distance between them (red); and (d) corrects position (green).
Compare (b) and (d) and note the embodied artifact constitutes different distances between the
hands/cursors

accompanying software, called WiiKinemathics, is Java-based and presents students
with a visual representation on a large display in the form of two crosshair symbols.
Further details on technical (Howison, Trninic, Reinholz, & Abrahamson, 2011)
and interface (Trninic, Gutiérrez, & Abrahamson, 2011) properties can be found
elsewhere.

The orientation of the 2200 LED display (rotated 90 degrees and aligned to table
height) and the responsiveness of the trackers are carefully calibrated so as to
continuously position each tracker at a height that is near to the actual physical
height of the students’ hand above the desk. This feature is an attempt to enhance
the embodied experience of the virtual, remote manipulation (Clinton, 2006).

In practice, the MIT measures the heights of the users’ hands above the desk.
When these heights (e.g., 1000 and 2000) match the unknown ratio set on the
interviewer’s console (e.g., 1:2), the screen is green. If the user then raises her hands
in front of this “mystery device” by proportionate increments the screen will remain
green (e.g., raising by 500 and 1000 to 1500 and 3000, thus maintaining a 1:2 ratio) but
will otherwise turn red (e.g., raising by a equal increments of 500 to 1500 and 2500). In
other words, the embodied artifact of the MIT–P activity is the continuous physical
articulation of all the pairs effecting a green screen. From this perspective, the initial
purpose of the MIT–P is to train a particular proportion-relevant embodied artifact
of Bimanual Proportional Transformation (BPT, see Fig. 4). As SU in surfing, BPT
constitutes an activity whose meaning is situational.

Participants, Protocol, and Data Analysis

Participants included 22 students from a private K–8 suburban school in the greater
San Francisco (33% on financial aid; 10% minority students). Care was taken to
include students of both genders from low-, middle-, and high-achieving groups as
ranked by their teachers. Students participated either individually or paired.
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Fig. 5 The Mathematical Imagery Trainer: (a) overview of the system featuring an earlier MIT
version, in which students held tennis balls with reflective tape. (b) 5b through 5e are schematic
representations of different display configurations, beginning with (b) a blank screen, and then
featuring a set of symbolical objects that are incrementally overlain onto the display: (c) crosshairs;
(d) a grid; and (e) numerals along the y-axis of the grid (in the actual design, the flexible grid and
corresponding numerals were initially set by default as ranging from 1 to 10)

Interviews took place in a quiet room within the school facility. Students
participated either individually or paired with a classmate in semi-structured clinical
interviews (duration: mean 70 min.; SD 20 min.). In addition to the interviewer,
typically at least one observer was present, whose duty included taking written notes
in real-time, crewing the video camera, and assisting in operating the technological
system.

Study participants were initially tasked to move their hands so as to find a
position that effects a green screen and, once they achieved this objective, to
keep moving their hands yet maintain a continuously green screen. That is, the
participants needed to discover a means of enacting a green-keeping performance
that the technology interprets as a transformation of two values sustaining an
invariant ratio, such as 1:2. In a sense, the MIT offers students a pre-numerical
“What’s-My-Rule?” mathematical game. The protocol included gradual layering of
supplementary mathematical instruments onto this microworld, such as a Cartesian
grid (see Fig. 5, below). Hence, once the proportional-transformation dynamical
image is embodied, semiotic resources (mathematical instruments) and discursive
support (the tutor) are present for it to be mathematically signified, elaborated, and
analyzed.

The interview ended with an informal conversation, in which the interviewer
explained the objectives of the study so as to help participants situate the activities
within their school curriculum and everyday experiences. Finally, the interviewer
answered any questions participants had, with the objective that they achieve closure
and depart with a sense of achievement in this challenging task.

Our investigation of the empirical data—field notes and videography—was
conducted post hoc in the leisure of the laboratory as collaborative, intensive
micro-ethnographic analysis of participants’ conceptual ontogenesis (Schoenfeld,
Smith, & Arcavi, 1991). Microgenetic analysis is a research methodology, typically
applied to video data, where study participants’ presumed cognitive trajectories
are interrogated and modeled via analyzing their moment-to-moment behaviors,
essentially actions, interactions, and multimodal utterance. This methodology is
emergent and iterative, in the sense that the researchers’ insights from specific
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events inform successive waves of scrutinizing the entire data corpus. Importantly,
microgenetic analysis enables us to maximize the theoretical significance of our
work (see Yin, 2009 on analytic generalizability).

Findings

General Findings

We began the chapter by way of introducing the notion of embodied artifacts as well
as their function in learning. We also mentioned the increasingly ubiquitous motion-
sensor technologies that utilize users’ bodily movements. Next, we explained our
work at the intersection of these recent theoretical and technological advances,
namely designing educational technologies that leverage embodied artifacts in the
service of teaching the chronically challenging mathematical concept of proportion.
Finally, we are in the position to summarily present some of our findings so as to
provide evidence for the feasibility of this design-based research program. Presently
we provide some general findings across all students and then focus on a case
indicative of the struggles and insights encountered by them all.

Importantly, all students succeeded in devising and articulating strategies for
making the screen green, and these initially qualitative strategies came to be aligned
with the mathematical content of proportionality. This particular finding serves as a
proof-of-existence supporting the conjecture that embodied artifacts such as Biman-
ual Proportional Transformation create pedagogical opportunities to support student
learning of targeted mathematical concepts. Naturally, there existed minor variations
in individual participants’ initial interpretation of the task as well as consequent
variation in their subsequent trajectory through the intervention protocol. However,
the students progressed through similar problem-solving stages, with the more
mathematically competent students generating more strategies and coordinating
more among quantitative properties, relations, and patterns they noticed. We now
elaborate on the learning trajectory.

Each student began either by working with only one hand at a time, waving
both hands up and down in opposite directions, or lifting both hands up at the
same pace, occasionally in abrupt gestures. They realized quickly (<1 min. on
average) that the simultaneous actions of both hands are necessary to achieve
green and, consequently, that the vertical distance between their hands was critical,
although at first they viewed the distance between their hands as fixed. We found
this default “fixed distance” approach of importance, as it arguably matches an
enduring (mis)conception where students see 2/3 as “the same” as 4/5 (for both the
numerator and denominator values respectively increased equally). Indeed, our hope
was that by uncovering and addressing such conceptions physically, we could elicit
and treat students’ pre-numerical conceptual reasoning underlying their arithmetic
competence.
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The following sequence of insights into problem-solving the MIT-P compiles
our observations based on real-time notes and close analysis of the video data from
all study participants’ interactions. Each step corresponds to students’ “successful”
or “correct” physical articulations with the MIT-P (that is, “making green”) and
consequent verbal articulations of what it is they are doing. The numerical example
case will be a 2:3 ratio.8

Student discoveries:

(a) The actions of both hands are necessary to achieve green.
(b) Green is achieved by positioning the hands at particular stable locations.
(c) The critical quality for achieving green is a type of relation between the hands’

relative positions.
(d) These positions can and should be reinterpreted as magnitudes—the distance

between the objects or their respective heights above a common base line.
(e) The distance between the hands in correct (green) pairs is not constant—it will

necessarily change between correct pairs.
(f) This distance should increase as the pair’s height increases (and vice versa).
(g) Moving from one correct position to another can be achieved by increasing the

hands’ heights differentially, for example, for every 2 units the left hand rises,
the right hand should rise 3 units (or the distance between the hands should grow
by 1 unit from move to move)—a recursive rule for iterated transitions.

(h) The multiplicative relation within each pair—for example at 4 and 6 units the
right hand is 1.5 times higher than the left hand—is also a constant across correct
pairs.

(i) One and the same number pair (e.g., 2 and 3) expresses three aspects of the
interaction: for example 2 and 3 units are the lowest correct integer pair of
heights, raising the left hand by 2 units for every 3 raised by the right hand
will result in another correct location, and 2/3 or 3/2 is the constant within-pair
multiplicative relation.

In brief, students were given the initial opportunity to practice the embodied
artifact BPT (Bimanual Proportional Transformation) amathematically. Gradually
the protocol encouraged integrating BPT within the broader world of proportional
mathematics and providing mathematical tools for analyzing and expressing it in
mathematically normative ways (see Fig. 5). As such, BPT gradually instantiated the
practice of “proportional reasoning.” Similar to the Waikiki surfer who embodied,
utilized, contextualized, and refined SU, the students in our study integrated
BPT into the broader world of proportional mathematics as well as analyzed its
component parts and, so doing, displayed an emerging mastery of the mathematical
concept of proportion. The following excerpt provides supporting evidence of this
gradual emergence.

8Students initially worked with a 1:2 ratio, though the protocol included 1:3, 2:3 ratios and beyond.
These more challenging scenarios were introduced only after a student displayed confidence with
a 1:2 ratio.
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Excerpts from an Empirical Study

Shani was a 5th-grade female student identified by her teachers as “low achieving.”
During the exploratory phase of the interview, as Shani attempted to discover a
means of making the screen green (refer to earlier Fig. 5b, c), she stumbled upon
the embodied artifact.

Shani: [excitedly] Oh! Is it about the distance between these two [pointing to hand-held
devices]?

Thus Shani, similar to all our participant students, noticed that an embedded
property of the interaction, the distance between her hands, was associated with the
desirable feedback. She articulated the “farther-up–more-apart” strategy, that is, the
distance between the hands should increase with the hands’ elevation in order to
effect green (see Item f. in the list of discoveries, above). Once we overlaid the grid
on the screen (see Fig. 5d), Shani discovered the “a-per-b” strategy, by which the
hands rise at different yet constant intervals (see Item g.). When we next introduced
the numerals (see Fig. 5d), Shani initially availed of them as mere location markers
rather than quantitative indices. In particular, she used the numerals to recite the
respective locations of her left and right hands, as she iteratively scaled the hands
up the screen at 1-per-2 quotas: “One and two, two and four, three and six, and four
and eight.” Even though the “doubling” multiplicative relation within each of these
number pairs is quite striking, Shani was oblivious to this relation. Indeed, it took a
gentle suggestion by the interviewer.

Interviewer: What else can you say about those numbers? One and two : : :

Shani: [continuing] One and two, then two and four, three and six. Hey wait. Um, oh, it’s
: : : [fidgets, becomes animated] It’s all doubles! The bottom number, like time : : : times
two is the top number. [motions at monitor] We had, like, one and two, then three and six,
then, um, then four and eight, then five and ten.

Prior to the introduction of the grid, Shani’s articulation of the embodied artifact
was based on the qualitative relation of “farther up” and “more apart,” yet once the
grid and numerals were introduced, she instrumentalized them so as to analyze the
embodied artifact BPT, rendering the description quantitative. Yet this was not a
straightforward process—it is not the case that Shani noticed the green pairs and
immediately saw them as proportionally related. Rather, her observation emerged
through interaction with numerals, which she initially used merely to mark green
locations.

Shani continued to discover new properties of the situation through appropriating
symbolic artifacts as means of better enacting her strategy. In the following tran-
scription, she responds to the interviewer’s request to recount her recent findings,
and in so doing she notices a relation between recursive (1-per-2) and multiplicative
(double) strategies:

Shani: Then : : : this one [indicates right hand] is always going up by two, and this one
[indicates left hand] is going up by one, which would mean that : : : that, uhm, this one
[right-hand side] is always double this [left-hand side].
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Shortly after, Shani accomplished what we believe was an important shift from
discrete proportion to continuous proportional reasoning.

Shani: Wait a minute. A while ago you asked me, uhm, how many green there are. It could
really be infinite. Like, because, if it is really all about the distance between them [the
hands]—which is, like, I think it is, because it’s getting darker depending on that—uhm,
then it really doesn’t matter where on the screen it is.

We would argue that this level of reasoning is surprisingly sophisticated for a
fifth grader—particularly a student labeled by her teacher as “low achieving.”

Eventually, Shani coordinated quantitative reasoning with a qualitative feel of
“faster.”

Shani: So this one [indicates right controller] should be : : : So my right hand should be
moving faster. So that it can make : : : be going up two spaces on the grid : : : while the
other one is only going up one.

Note how Shani’s embodied experience with the green-making artifact supported
her coordination between rate and speed, just as the embodied artifact supported
her leap from discrete to continuous reasoning in the previous excerpt. Like the
novice surfer, Shani used the embodied artifact as a means of gaining entry to a
novel activity—in her case, proportion. Her actions, initially amathematical, became
mathematically meaningful, a conceptual performance.

Discussion

Epistemic, Cognitive, and Pedagogical Features
of Embodied-Interaction Design

One of our design challenges rested on leading students via an embodied artifact
towards a conceptual performance without explicit instruction. In the MIT–P
activity, this is accomplished via the automated feedback “green,” which is triggered
whenever the user’s bimanual action matches the ratio setting on the interviewer’s
console interface. The meaning of “green” evolved throughout the activity, and
this evolution captures the process of embodying the dynamical artifact as well as
integrating and refining it, as follows.

Green: (a) began as the objective of the “Make the screen green” task; (b) soon
became feedback on the perceptuomotor activity, as the users attempted to complete
this task objective, thus shaping the emerging embodied artifact; and finally (c) came
to function as a conceptual placeholder by grouping a set of otherwise unrelated
hand-location pairs sharing a common effect of “green.” As such, “green” formed,
sculpted, and refined the embodied artifact Bimanual Proportional Transformation
(BPT), so that BPT—similar to ancient dance or martial arts forms perpetuated
across generations—inherited, instantiated, and preserved a cultural practice. Ul-
timately, once users determined the activity’s mathematical rule and recognized its
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power for anticipating, recording, and communicating BPT, this embodied artifact
became situated within the larger practice of proportional reasoning.

Learning Is Where the Action Is, Then Down to Operations
and Up to Activity

We offer a preliminary account for the emergence of conceptual knowledge from
performance as seen in our data. We have found Leontiev’s (1981) account of
activity useful, and here we modify it to suit our needs. In brief, Leontiev proposes
that social activity has a hierarchical structure with three distinct levels; the activity
level, the action level, and the operation level. Activities consist of actions; actions,
in turn, consist of operations. A typical example goes: building a house (activity),
fixing the roof (action), and using a hammer (operation). While the levels are
somewhat flexible, the basic message is that every activity consists of some number
of actions; each action, in turn, consists of some number of operations.

Our current conjecture is that that learning from others happens at the middle
level of action in the form of embodied artifacts. As an action becomes an embodied
artifact via deliberate training, the learner may analyze her activity, moving “down”
to the level of operations and refining those. Furthermore, through participation
in discourse broadly construed and observing the embodied artifact in various
contexts, the learner comes to understand the larger framework and how the
activity integrates within it. That is, she moves “up” toward contextualization.
For example, the students in our study practiced the embodied artifact BPT and
then mathematically analyzed it by articulating its constituent physical operations
with semiotic resources of the discipline. Even so doing, learners generate various
observations connecting BPT to their existing knowledge (sometimes appropriately
and sometimes not), and, in dialogue with the instructor and each other, come to
see the activity and the various ways of mathematically treating it as “cases of”
proportion. Thus the initially modular action becomes a conceptual performance.

Conclusion

Throughout this chapter we have been threading together two central themes. First
is that movement matters. Physically interacting in a physical world is our mode of
being and the roots of our thinking. This thread, then, dealt with the relation between
performance and knowledge: namely, we interpreted existing embodiment studies
as suggesting that conceptual understanding—including reasoning about would-be
“abstract” contents such as pure mathematics—emerges through and is embedded
in actual and simulated perceptuomotor interactions in the world. We introduced the
construct of an embodied artifact as a means of articulating how cultural practices
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are “packaged” and “given” to learners, enabling their entry into the world of skillful
action and, furthermore, disciplinary competence.

The second theme is that recent decades have witnessed advances not only in
theoretical models of embodiment but also remote-interaction cyber-technologies,
yet critical questions have remained unanswered regarding the interaction of the
two. It is in embodied-interaction (EI) design that our two themes meet. We
introduced EI as a form of physically immersed instrumented activity geared to
augment everyday learning by crafting embodied artifacts targeted towards specific
disciplinary practice, such as proportional reasoning. In pursuing these problems,
our strategy has been to engage in conjecture-driven cycles of building, testing, and
reflecting on these two themes. The current text aimed to share our conviction that
EI offers unique affordances for teaching mathematical concepts via cultivating the
conceptual performance of embodied artifacts.

To the extent that mathematics-education researchers and practitioners take
seriously the grounded-cognition thesis, the community should pay far greater
attention to the somatic substrate of subject matter. Students’ perceptuomotor
manifestations as they engage in learning activities could be far more than mere
support for, or communicative visualization of essentially abstract notions. On the
contrary, notions become abstracted only through bodily incorporation. In fact, the
grounded-cognition approach suggests that there need not be any tension at all
between concrete and abstract ideas, because intrinsically embodied mathematical
notions can transcend local contexts.

We anticipate that, when coupled with recent cyber-technological advances, EI
stands to become a focus of design for and research on mathematical learning.
As our work indicates, EI activities serve as highly useful empirical settings
for research on the ontogenesis of mathematical concepts and, more generally,
relations between performance and knowledge in mathematics education. These
immersive activities create opportunities for design-based researchers to observe
and help resolve tension between theoretical conceptualizations of: (a) unreflective
orientation in a multimodal instrumented space, such as riding a bicycle or playing
pong; and (b) reflective mastery over the symbol-based re-description of this
acquired competence, such as in mathematical numerical forms.

We hope this line of investigation will contribute to developing a model of
embodied mathematics instruction. Researchers could look to diverse cultural–
historical forms of physical performance, such as music, dance, and the martial
arts, as ethnographic entries into traditional and indigenous pedagogical acumen.
The skills inherent to these cultural practices might, at first blush, be viewed as
aconceptual and, as such, hardly bearing on mathematical reasoning and learning.
Yet as recent theoretical and empirical work, including our own, suggests, our
shared biology implies that even the most abstract of mathematical concepts may
first be embodied, then verbally articulated, and finally reified in conventional
semiotic forms. Such issues are more than academic, for all too often proverbial
lines are drawn in the sand regarding the importance of “conceptual” knowledge
versus “procedural” performance (e.g., see Schoenfeld, 2004 on “math wars”). Yet
corporeal actions performed in the context of disciplinary activity constitute vital
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aspects of cognition and knowledge (cf. Alač & Hutchins, 2004; Kirsh, 2009, 2010),
so that knowledge is developed, elaborated, and expressed as situated conceptual
performance. In our future work, we will continue to investigate the embodiment
of mathematical concepts through the reciprocal efforts of developing theories of
embodied learning and designing educational technologies.
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Introduction

Mathematics has been enduringly renowned for its impressive use of symbols.
Or at least this has been the case since the progressive invention of a succinct
symbolism in the Renaissance by mathematicians such as Piero de la Francesca,
Rafael Bombelli, and François Viète. Since then, mathematics has been conceived,
implicitly or explicitly, as an essential activity mediated by written signs. However,
mathematics can also be seen as an activity profoundly mediated by artifacts and
signs other than those of the written register. This is certainly the case in classroom
mathematics activity, where not only written signs, but also speech, gestures, body
posture, kinesthetic actions, and artifacts mediate students’ activities in a substantial
manner. Figure 1 shows three Grade 11 students during a trigonometry lesson where
they devised a formula to describe the position P(x(t), y(t)) of a train that moves
at a constant speed along a circular route. The student to the left measures time with
a chronometer; following the train, the student in the middle measures space with
a pen; the student to the right coordinates the other two students’ action and takes
notes on a field sheet.

Now, what exact role do we ascribe to the artifacts to which student resort? What
exact role do we ascribe to speech, body posture, gestures, and signs? Customarily,
in traditional cognitive psychology, artifacts are considered convenient devices that
reveal the functioning of the mind; they are hence thought to play a secondary role
in cognition in general, and mathematical cognition in particular (see, e.g., Piaget’s
use of artifacts in his research). Body posture, gestures and other embodied signs
have suffered the same fate. In some branches of traditional cognitive psychology,
the mind is conceived of as a computational device; the research focus is on the

Fig. 1 Grade 11 students investigating the equation of the point P(x(t), y(t)) of a train that moves
around a circle at constant speed
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linguistic formats through which information is transmitted and decoded (e.g.,
declarative vs. procedural sentences). In other trends, when attention has been paid
to embodiment and the sensorial realm—like in Piaget’s epistemology—the body
appears to play a role in the early stages of intellectual development only (the
Piagetian sensory-motor stage), apparently disappearing in more advanced stages.

A new research trend, however, offers a different approach to the understanding
of human cognition. In this trend our tactile-kinesthetic bodily experience of the
world and our interaction with artifacts and material culture are considered as much
more than merely auxiliary or secondary elements in our cognitive endeavours.
For instance, Sheets-Johnstone (2009) argues that, as a result of our biological
makeup, we are naturally equipped with a range of archetypal corporeal-kinetic
forms and relations that constitute the basis on which we make our ways into the
world. Echoing an increasing number of neuroscientists and linguists, Seitz (2000)
contends that the basis of thought is to be found in the body. Yet, it is clear that there
is not just one way in which to theorize the cognitive role of the body. As a result,
it is not surprising to find a variety of perspectives on what has come to be termed
“embodied cognition.”1 Thus, in her review of current perspectives, Wilson (2002,
p. 626) highlights six claims to which, she argues, theorists of embodied cognition
resort in their work:

1. cognition is situated;
2. cognition is time-pressured;
3. we off-load cognitive work onto the environment;
4. the environment is part of the cognitive system;
5. cognition is for action;
6. off-line cognition is body-based.

The most problematic of those claims, Wilson finds, is the fourth. Indeed, the
fourth claim requires a completely different point of departure about our ordinary
dualistic conceptualizations of thinking. As long as we keep a dualistic approach
to mind, Wilson’s fourth claim remains problematic. This is why it is not enough
to merely put the body and material culture back into thought. What we need is a
different starting point where thinking and environment are not conceptualized as
separate entities.

Dwelling upon Vygotsky’s and Leont’ev’s work and enactivism (Maturana
& Varela, 1998), in this chapter I elaborate on what I have previously termed
sensuous cognition (Radford, 2009). Sensuous cognition refers to a non-dualistic,
non-representational, and non-computational view of the mind. Starting from the
premise that cognition and environment are intertwined entities, the basic idea is
that cognition is a feature of living material bodies characterized by a capacity

1For some embodied perspectives in mathematics education, see the special isssue of Educational
Studies in Mathematics edited by Edwards, Radford, and Arzarello (2009), and the special issue
edited by Radford, Schubring, and Seeger (2011) in the same journal. See also Bautista and Roth
(2011) and the seminal book of Lakoff and Núñez (2000).
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for responsive sensation. In subsequent sections I argue that, as far as humans are
concerned, responsive sensation evolves—both at the phylogenetic and ontogenetic
levels—intertwined with the material culture in which individuals live and grow. As
a result, cognition can only be understood as a culturally and historically constituted
sentient form of creatively responding, acting, feeling, transforming, and making
sense of the world.

However, I should hasten to make clear that my interest is not purely cognitive.
As a mathematics educator I am deeply interested in exploring how a non-dualistic
view of mind translates into teaching and learning contexts. The chapter is divided
into two parts. The first part is of a theoretical nature. The goal is to present a cogent
sensuous-based monistic view of cognition. To reach this goal, I need to present
in some detail the concept of sensuous cognition and to discuss some theoretical
constructs, such as sensation—its plasticity and multimodal nature—as well as the
entanglement of sensuous cognition and material culture. In the second part of
the chapter, I present classroom experimental data involving 7–8-year-old students
dealing with pattern recognition. The classroom data allows me to illustrate the
interplay of the various sensuous modalities in mathematical cognition. I close the
chapter by suggesting that a sensuous-based monistic view of cognition needs to
attend not only to the plethora of sensorial modalities that teachers and students
display while engaging in mathematical activities, but also to the manner in which
sensorial modalities come to constitute more and more complex psychic wholes of
sensorial and artifactual units.

Sensuous Cognition

The idea of sensuous cognition that I would like to advocate here rests on a non-
dualistic view of the mind. In dualistic accounts, the mind is conceived of as
operating through two distinctive planes, one internal and one external. The internal
plane is usually considered to include consciousness, thought, ideas, intentions,
etc., while the external plane refers to the material world—which includes concrete
objects, our body, its movements, and so on. In opposition to this dualistic view,
drawing on Vygotsky (1987–1999) and Leont’ev (1978, 2009), and Maturana and
Varela (1998), I adopt a monistic position according to which mind is a property
of matter. More specifically, mind is conceptualized as a feature of living material
bodies characterized by a capacity for responsive sensation.

Sensation is a phylogenetically evolved feature of living organisms through
which they respond to, reflect or act on their environment. Since the organism is
itself a part of the material world, any reflection of reality is nothing other than a
function of a material, corporeal organism (Leont’ev, 2009, p. 12) against a material
milieu. As a result, reflection and action do not occur in two separate planes. They
occur in the same plane—the plane of life.

Now, reflection, as understood here, cannot be considered a passive act of receiv-
ing sensorial impressions, as seventeenth and eighteenth century empiricists hold.
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As its etymology suggests, in reflection the organism “bends back” something—
the “reality” or the “environment,” as the organism perceives or feels it. Reflection
hence involves both (1) something that transcends the organism as such (something
that, in order to differentiate it from the subject itself, we can call objective,
namely the object of reflection), and (2) the reflected object, something that is
subjective (in the sense that reflection depends on the specific organism reflecting
the environment).2

It is worth noticing that, phylogenetically speaking, the relationship between the
subjective world and objective reality is not absolute (Maturana & Varela, 1998);
nor is it something that is given a priori (Leont’ev, 2009). As far as humans
are concerned, this relationship is dialectical, where the objective world and its
subjective reflection co-evolve. On the one hand, mind can only arise from the
progressive complexity of processes of life; on the other hand, more complex
conditions of life require organisms to have the capacity to reflect reality through
more complex forms of sensation. This is why mind is not just something added
to the organisms’ vital functions: mind “arises in the course of [the organisms’]
development and provides the basis for a qualitatively new, higher form of life—life
linked with mind, with a capacity to reflect reality” (Leont’ev, p.18).

The historical origin of the printing press is a good example to illustrate these
ideas. The apparition of the printing press can only be understood within the
context of a complexification of previous forms of human labour, the unprecedented
systematization and mechanization of actions in various spheres of life in the late
Middle Ages, and the ensuing transformation of the human senses—e.g., mainly
vision and tactility (McLuhan, 1962). Reciprocally, for such a complexification to
occur, the capacity for psychic reflection of material reality was required. In short,
the human mind, as a culturally and historically evolved form of sensation, and
human consciousness—that is to say, the manner in which the individual’s reality
is subjectively reflected—can only be understood in light of the co-evolution of the
nervous system, more evolved forms of sensation, and the concomitant complexity
of social practices and material culture.

To sum up, instead of being purely “mental,” reflection and its products remain,
one way or another, intertwined with the environment that is been reflected and
with the organism’s capacities for sensation. Mind, in this context, is the ability
of organisms to reflect, and act on, the reality around them. Thinking, memory,
imagination and other cognitive functions are directly and indirectly related to a
large range of sensorimotor functions expressed through the organism’s movement,
tactility, sound reception and production, perception, etc. What I term sensuous
cognition refers precisely to this view where sensation is considered to be the
substrate of mind, and of all psychic activity (cognitive, affective, volitional, etc.).
In the next section I dwell in more detail on this point.

2My use of the adjective objective does not refer to claims about truth. It is rather a claim about
something that is distinct from the organism, something that objects the organism; in other words,
the term objective refers to something that we can term Otherness.
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The Plasticity of Human Sensation

A sensuous approach to mind cannot avoid noticing the specific plastic nature
of human sensation alluded to in the previous section, and without which the
co-evolution of life, social practices, material culture, and sensation would be
meaningless. Indeed, as the German social theorist Arnold Gehlen (1988) argues,
animals are endowed from birth with specific instincts and highly developed
sensorial systems that make them fit to survive in specific environments. The human
senses, by contrast, are highly unspecialized. Thus, the hearing, smelling, and
perceptual sensitive organs of the deer trigger an alert signal when presented with
recognized clues in the environment, clues that would remain beyond the range of
human attention. Similarly, the acute visual perception of the eagle and the thermal
sense of some predators surpass humans’ sensorial acuity.

To cope with this lack of particular instinctual and environment-specific sensorial
systems of animals, humans develop their highly unspecialized sensorial functions
into complex forms that allow them to adapt to virtually any environment. Tactility,
for instance, becomes a means to distinguish between temperature differences,
soft and rough surfaces, and distances; in this way, tactility is transformed in “an
intelligence in action” (Le Breton, 2007, p. 152). Through their hands humans grip
things and explore and palpate the environment in movements that can become
extremely specialized (Wilson, 1998). In short, the specific instincts and highly
developed sensorial systems that we find in animals are compensated for in humans
by the plasticity of their senses and the achievable levels of specialization that the
senses can acquire.

Multimodal Sensuous Cognition

In the previous section we have mentioned that one chief characteristic of the
human senses is constituted by their plasticity. Another central characteristic is the
human senses’ interrelated development and functioning. What this means is that
the various senses develop in integrative manners and come to collaborate in ways
that are truly specific to humans. The result is that the human mind and cognition are
not merely sensuous but also multimodal. This idea is certainly a cornerstone in the
new approaches to the human mind (Gogtay et al., 2004; Lewkowicz & Lickliter,
1994; Lickliter & Bahrick, 2000).

Indeed, the senses collaborate among themselves, allowing us to come up with a
complex perception of reality. Touch and sight, for instance, collaborate with each
other. Through a tactile experience, I can feel the weight of an orange; through a
perceptual one, I can have a sense of its relative chromatic characteristics. Later, I
can feel its porous skin even if it is out of my actual tactile reach. Touch and sight
collaborate at close distance in their experience of the world. Sight and language,
by contrast, collaborate at a long distance. Knowing hence is ensured through
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a multi-modal sensorial experience of the world. The sensorial modalities are
integrated into a complex of properties that bring together different sensuous modal
experiences (e.g., shape from perception and rigidity from tactility). Referring to
vision as a complex modal experience, Varela says:

vision is a patchwork of visual modalities, including at least form (shape, size, rigidity),
surface properties (color, texture, specular reflectance, transparency), three-dimensional
spatial relationships (relative positions, three dimensional orientation in space, distance) and
three-dimension movement (trajectory, rotation). It has become evident that these different
aspects of vision are emergent properties of concurrent subnetworks that make a visual
percept coherent. (Varela, 1999, p. 48)

This multi-sensory characteristic of cognition is not specific to humans; it
is shared by insects (Wessnitzer & Webb, 2006) and other primates as well.
However, compared to the case of insects and other primates, human sensorial
organs collaborate to a greater extent (Gómez, 2004; Köhler, 1951), so that what we
perceive or touch is endowed with a variety of sensuous coordinated characteristics.
For instance, the human hand does not only feel the trace of the object. We can say
that the hand also “perceives its colour, its volume, its weight” (Le Breton, 2009,
p. 151).

The Cultural Shaping of Senses

A third chief characteristic of the human senses is the manner in which they
co-evolve with culture. Indeed, our senses are not merely part of our biological
apparatus. The raw range of orienting-adjusting biological reactions we are born
with is transformed into complex, historically constituted forms of sensing. The
cultural nature of this transformation can be illustrated through the example of a
child who was found in the woods of Aveyron, between Montpellier and Toulouse
in France, in 1800. The young child

who trotted and grunted like the beasts of the fields : : : was apparently incapable of
attention or even of elementary perceptions : : : and spent his time apathetically rocking
himself backwards and forwards like the animals at the zoo. (Humphrey in Itard, 1962,
p. vi)

The so-called wild boy of Aveyron—or Victor as he was called later—was placed
under the care of Dr. Jean-Marc-Gaspard Itard, who designed a series of exercises to
teach Victor to speak and catch up with the development of his intellectual faculties.
Thus, the boy started distinguishing incrementally between the sound of a bell and
that of a drum, went on to discern among the tones of a wind instrument, and later
distinguished between vowels. Itard comments:

It was not without difficulty and much delay that I succeeded at last in giving him a distinct
idea of the vowels. The first that he distinguished clearly was O, next the vowel A. The
other three presented greater difficulty and for a long time he confused them. (Itard, 1962,
p. 58)
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The training of the sense of hearing was followed by the training of the
sense of sight and touch. Although from a developmental viewpoint Victor was
not able to catch up completely, the example shows clearly that without life in
society the raw biological ensemble of orienting-adjusting reactions with which
we are born remains undeveloped. As we live in society, interact with others, and
participate in more or less specialized forms of training, the biological orienting-
adjusting reactions undergo cultural transformation and are converted into complex
historically constituted forms of sensing, leading to specific features of human
development and the concomitant forms of cultural reflection. This is why in the
process of development the child not only matures, but is also equipped with
sophisticated ways of seeing, touching, hearing, tasting, and so on.

The ontogenetic process of the cultural transformation of the senses has been
investigated in great detail in the past few years. To mention but one example,
Zaporozhets (2002) reports research with 3- to 5-year old preschoolers who were
learning to discriminate between variants of two geometric figures: triangles and
quadrilaterals. In the beginning, the preschoolers were making a substantial number
of errors. Then, they were invited to trace systematically with a finger the outline
of the figure, paying attention to directional changes of the motions at angles, and
accompanying the tactile exploration with side counting (one, two three : : : ). The in-
vestigator reports that at this stage perception was accomplished through the tactile
experience, while the eye performed an auxiliary role. “Later,” Zaporozhets says,
“the eye developed the ability to solve these types of perceptual tasks independently,
consecutively tracing the outline of a figure, as it was earlier done by a touching
hand” (2002, p. 31). During this process, the eye undergoes a transformative change:
“initially, the eye motions have an extremely extensive nature, consecutively tracing
the entire outline of the perceived figure and simulating its specifics in all details”
(p. 32). In a subsequent stage, the eye’s motions “gradually begin to decrease and to
focus on the individual, most informative attributes of the object” (p. 32).

The Artifactual Dimension of Sensuous Cognition

A closer look at the previous examples shows that the new cultural forms of sen-
sation are deeply interrelated with the use of artifacts. Indeed, in the first example,
Itard makes recourse to two artifacts—a drum and a bell—and the artificial sounds
that they produce. Victor learns to distinguish between them. Aural discrimination
is consequently shaped by the cultural sounds that the ear meets. Itard also uses the
cultural distinction between vowels of the human artifact par excellence—speech. In
the second example, preschool children develop a mathematical form of perception
that allows them to distinguish between cultural categories of geometrical figures.
In doing so, the children have recourse to the material objects whose contours they
cover with a finger while using numbers to count aloud. What these examples show
is that our individual senses evolve intertwined not only one with the other senses
(which is the claim I made in section “Multimodal Sensuous Cognition”), but also
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with the materiality of the objects in our surroundings. The materiality that shapes
our senses is not, however, reduced to inert matter, but, as the examples show,
matter already endowed with meaning (e.g., ‘triangularity,’ ‘quadrilarity,’ the bell’s
sounds, etc.).

It is this key role of artifacts in the constitution and evolution of forms of
sensing and reflecting that Luria and Vygotsky underlined in their work. The use of
artifacts, they contended, constitutes the first phase in cultural development (Luria
& Vygotsky, 1998; Vygotsky & Luria, 1994). Such a phase marks the emergence
of new forms of actions and reflection and the concomitant appearance of psychic
functions. Vygotsky and Luria paid particular attention to the question of memory
and argued that the construction of artificial signs, like a knot, transforms “natural”
or eidetic memory (i.e., memory based on the recording of external impressions
with great photographic precision). In some cultural formations knot-use appears
as a material mechanism used to register events in information encoding systems,
and gives rise to a new, cultural form of memory. Naturally, knots or writing are
not the only historical artifacts at the base of the transformation of memory and
other cognitive functions. Artifacts in general create dispositions through which
to think, perceive, remember, etc. For instance, current electronic media and their
forms of dynamic visualization are creating new dispositions through which to
engage the world, much as pictorial representations and arithmetical calculations
did in the Renaissance. In both cases, the senses are transformed to respond to
new possibilities opened up by changes in material culture. For us mathematics
educators, the challenge is to understand the sensuous possibilities of the new
material culture so as to exploit it in design contexts as well as in teaching-learning
cyber- and visually-based activities.

All in all, these examples amount to making a point about the embedded nature
of artifacts in the evolution of our ways of sensing and reflecting. They stress the
fundamentally cognitive role of artifacts and material culture in the ways we come
to know. The claim that I am making, hence, goes beyond the conceptualization of
artifacts as merely mediators of human thinking and experience, or as prostheses
of the body. Artifacts do much more than mediate: they are a constitutive part of
thinking and sensing. Behind this view lies, of course, the general concept of mind
as a property of matter. This property expresses the enactive relationship between
materiality and mind that inspired Vygotsky’s, Luria’s, and Leont’ev’s work and
that Bateson (1973) illustrates so nicely in his example of the blind person’s stick.
It is in this context that anthropologists Malafouris and Renfrew (2010) claim that
we can speak of things as having a cognitive life. They say: “things have a cognitive
life because minds have a material life” (p. 4).

Sensuous cognition is hence a perspective that highlights the role of sensation
and materiality as the substrate of mind and of all psychic activity. But in contrast to
other approaches where the focus remains on the individual’s body, sensuous cog-
nition offers a perspective where sensation and its cultural transformation in sensing
forms of action and reflection are understood to be interwoven with cultural artifacts
and materiality at large. Sensuous cognition calls into question the usual divide
between mind and matter and casts in new terms the classical boundaries of mind.
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A Classroom Example

As mentioned in the introduction, my interest is not purely cognitive. I am first of all
interested in exploring how the idea of sensuous cognition translates into teaching-
learning contexts. It is in this spirit that in this section I would like to discuss an
example from a Grade 2 class (7–8-year-old students) involving the generalization
of an elementary figural sequence. The example comes from the first of a series of
lessons that were intended to introduce the students to a cultural-historical form of
thinking that we recognize as algebraic. The first step is getting acquainted with
what matters and what has to be attended to in the terms of a figural sequence.
Figure 2 shows the terms of the sequence given to the students.

Mathematicians would attend without difficulty to those aspects of the terms that
are relevant for the task at hand: they would, for instance, see the terms as divided
into two rows and notice the immediate relationship between the number of the term
and the number of squares in each one of the rows. The perception of those varia-
tional relationships usually moves so fast that mathematicians virtually do not even
notice the complex work behind it. They would also extend without difficulty the no-
ticed property of the rows to other terms that are not present in the perceptual field,
like Term 100, and conclude that this term has100 C 101 squares, that is 2001 (see
Fig. 3). Or even better, that the number of squares in any term, say Term n, is 2n C 1.

Yet, the novice eye does not necessarily see the sequence in this way. Figure 4
shows an example of how some Grade 2 students extend the sequence beyond the
four given terms shown in Fig. 2.

The student focuses on the numerosity of the squares, leaving in the background
the spatiality of the terms (Radford, 2011a). We cannot say, I think, that the student’s
answer shown in Fig. 4 is wrong. The answer makes sense for the student, even if it
is probably true that by focusing on the numerosity of the terms of the sequence, it
might be difficult later on to end up with a general formula like ‘2n C 1.’ This is in
fact what we have observed again and again in our research with older students (13–
17-year-old students). In the latter case, the students tend to rely on trial-and-error

Fig. 2 The first terms of a
sequence that 7–8-year-old
students investigate
in a Grade 2 class

101

100

Fig. 3 A frequently reported
quick imagination of Term
100 by the trained eye
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Fig. 4 Terms 5 and 6 as drawn by a Grade 2 student

Fig. 5 A student pointing to the top row (left) and to the bottom top (right) of Term 2

methods that, as I have argued elsewhere, are not algebraic, but arithmetic in nature
(Radford, 2008, 2010a, 2010b).

The issue is not that the students do not see the two rows of the terms. In Fig. 5,
we see a Grade 2 student pointing with his pen to the top row, then to the bottom
row, after moving the pen across the top and bottom rows to properly distinguish
between them. However, when the student draws Term 5, the spatial dimension of
the terms is relegated to a second plane and does not play an organizing role in the
drawing of the term. He draws a heap of rectangles. The issue is rather about not
realizing yet that the spatiality of the terms provides us with clues that are interesting
from an algebraic viewpoint.

To become sensitive to the cultural-historical algebraic forms of perceiving terms
in sequences like the one discussed here, students engage in processes that are far
from mental. They engage with the task of exploring the sequence in a sensuous
manner. I would like to illustrate this point by discussing the way in which the
teacher and a group of students reflect on Term 8 of the sequence. As mentioned
previously, the first question of the mathematical activity consisted in extending
the terms of the sequence up to Term 6. Then, in questions 2 and 3, the students
were asked to find out the number of squares in terms 12 and 25. In question 4, the
students were given a term that looked like Term 8 of the sequence (see Fig. 6). They
were told that this term was drawn by Monique (an imaginary Grade 2 student) and
encouraged to discuss in small groups to decide whether or not Monique’s term was
Term 8. The trained eye would not have difficulties in noticing the missing white
square on the top row. The untrained eye, by contrast, may be satisfied with the
apparent spatial resemblance of these terms with the other terms of the sequence
and might consequently fail to note the missing square.

Let me focus on the discussion that a group of students had with the teacher—
a group formed by James, Sandra and Carla. When the teacher came to see their
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Fig. 6 The students were
requested to discuss whether
Monique’s term is Term 8 of
the given sequence

work the students had already worked together for about 32 min. They had finished
drawing Terms 5 and 6, tried (unsuccessfully) to find the number of squares in Term
12 and 25, and answered the question about Term 8 (which they considered to be
Term 8 of the sequence). The teacher engaged in collaborative actions to create
the conditions of possibility for the students to perceive a general structure behind
the sequence. She started by referring to the first four terms of the sequence that
were drawn on the first page of the activity sheet (Monique’s term, which the
students examined previously, was drawn on the second page of the activity sheet
and was hence not in the students’ perceptual field in the first turns of the following
episode):

1. Teacher: We will just look at the squares that are on the bottom (while saying
this, the teacher makes three consecutive sliding gestures, each one going from
bottom row of Term 1 to bottom row of Term 4; Pics. 1–2 in Fig. 7 show the
beginning and end of the first sliding gesture). Only the ones on the bottom.
Not the ones that are on the top. In Term 1 (she points with her two index
fingers to the bottom row of Term 1; see Pic. 3), how many [squares] are there?

2. Students: 1!
3. Teacher: (Pointing with her two-finger indexical gesture to the bottom row of

Term 2) Term 2?
4. Students: 2! (James points to the bottom row of Term 2; see Pic. 4).
5. Teacher: (Pointing with her two-finger indexical gesture to the bottom row of

Term 3) Term 3?
6. Students: 3!
7. Teacher: (Pointing with her two-finger indexical gesture to the bottom row of

Term 4; see Pic. 5) Term 4?
8. Students: 4!
9. Teacher: (Making a short pause and breaking the rhythmic count of the previous

terms, as if starting a new theme in the counting process, she moves the hand
far away from Term 4 and points with a two-finger indexical gesture to the place
where one would hypothetically expect to find Term 8; see Pic. 6) How many
squares would Term 8 have on the bottom?

10. Sandra: (hesitantly, after a relatively long pause) 4?

In Line 1, the teacher makes three sliding gestures to emphasize the fact that
they will count the bottom row of the four given terms. The gestural dimension
of the teacher-students’ joint activity is somehow similar to the material-tactile
experience of the students who, in the aforementioned experiment reported by
Zaporozhets (2002), follow the contour of shapes with their fingers. Here, the
material-tactile dimension is carried out instead with gestures through which the
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Fig. 7 The teacher’s and students’ sensuous (perceptual, gestural, tactile, aural, vocal) engage-
ment in the task

teacher suggests a cultural form of perceiving the terms of the sequence—one in
which the mathematical ideas of variable, and the relationship between them, are
emphasized.

Now, the teacher does not gesture silently. Gestures are coordinated with
utterances. This is why it might be more useful to consider the teacher’s utterance
as a multimodal utterance: that is to say as a bodily expression that resorts to
various sensorial channels and different semiotic registers. In this case, the teacher
coordinates eye, hand, and speech through a series of organized simultaneous
actions that orient the students’ perception and emergent understanding of the
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target mathematical ideas. In our previous work we have termed semiotic node
this complex coordination of various sensorial and semiotic registers (Radford,
2009). The investigation of semiotic nodes in classroom activity, we have suggested
(Radford, Demers, Guzmán, & Cerulli, 2003), is a crucial point in understanding
the students’ learning processes. The concept of semiotic node rests indeed on the
idea that the understanding of multi-modal action does not consist in making an
inventory of material signs and sensorial channels at work in a certain context. From
a methodological viewpoint, the problem is to understand how the diverse sensorial
channels and semiotic signs (linguistic, written symbols, diagrams, etc.) are related,
coordinated, and subsumed into a new thinking or psychic unity (Radford, 2011a,
2012). Such a methodological problem makes sense only against the background
of a conception of the mind that overcomes the dualistic view of internal-external
processes. In our case, the methodological problem makes sense against the
background of a concept of the human mind as sensuous through and through.

Methodologically speaking, we still need to account for the manner in which the
new ideational-material psychic activity comes into being. And in order to do so,
we need to pay attention to the manner in which individuals engage in the task,
and they position themselves towards each other. In the classroom passage under
discussion we note the teacher’s posture and other means to which she resorts to
engage the students in the task, not only asking explicit questions but also opening
up a space for an ethical engagement to occur. That is, she becomes a presence
and a call to which students are invited to respond (Radford & Roth, 2011). The
students respond to the teacher by perceptually and aurally following her hands’
movement and speech along the material terms, and answering her sequence of
questions. We cannot fail to notice the tremendous role that rhythm comes to play
here. Rhythm appears through different sensuous modalities: it appears in the aural
modality through the flow of speech (in the regularly time-governed occurrence
of the words “Term 1?,” “Term 2?,” “Term 3?,” “Term 4?”); it appears in the
kinesthetic modality of hands’ movement through the regularly spatial-governed
occurrence of the two-finger pointing gesture; it appears at a kind of supra-level,
where the aural and kinesthetic modalities are coordinated so that they occur in a
synchronized manner (Radford, Bardini, & Sabena, 2007). It is easy to imagine
how disastrous a mismatching between these two forms of rhythm would be—
e.g., producing the pointing gestures faster or slower than the production of words.
Indeed, it is rhythm that ensures an efficient link between the various sensorial
modalities and material culture that paves the way for the students to become aware
of the historical-cultural algebraic way of perceiving the given sequence. But, as
mentioned previously, this link is not a mere connection between disparate and
heterogenous sensuous-psychic elements. Rather, and this is the most important
point, rhythm, psychologically speaking, is the token of the emergence of a new
psychic unity: the unity of perception, gesture, symbol, and speech. Each one of
these units has now been rearranged in a new plane of psychic activity where they
do not operate in isolation, but along with the others as a whole.

From a semiotic viewpoint, let me note that rhythm is a sign, but of a very special
sensuous sort. It does not point to an object as an indexical gesture or a linguistic
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term like ‘this’ does. That is, it does not have an existential relationship to its object.
In other words, it is not an index. It is not a symbol either, in the Peircean sense
of having an arbitrary relationship with its object (Peirce, 1931). Rhythm is an icon
whose object is the embodied process that incarnates the target concept, in this case
the relationship between mathematical variables. In our Grade 2 episode, rhythm
appears as a complex icon embedded in various sensorial modalities (vocal, aural,
kinesthetic, visual), wrapped in a composite supra coordination that emphasizes its
object not by revealing it in an existential manner (as, for instance, when we point
to a chair and say ‘this chair’) but by disclosing its meaning.

Yet, as Line 10 intimates, the passage from Term 4 to Term 8 was not successful.
The objectification (that is, the becoming aware; see Radford, 2002, 2010b) of the
algebraic manner in which sequences can be algebraically perceived has not yet
occurred. The teacher hence decided to restart the process, with some important
modifications, as we shall see.

As mentioned previously, Term 8 of the sequence was not materially drawn
on the first page. Only the first four terms of the sequence were shown. In the
previous excerpt, the teacher pretends that Term 8 is on the empty space of the sheet,
somewhere to the right of Term 4. She points to the empty space, as she pointed to
the other terms, to help the students imagine the term under consideration. During
the second attempt, the teacher does not go from Term 4 to Term 8; this time she
goes term after term until Term 8.

11. Teacher: We will do it again : : :

12. Teacher: (Pointing to Term 1 with a two-finger indexical gesture) Term 1, has
how many?

13. Carla: (Pointing with her pen to the bottom row) 1, (without talking to the
teacher points to Term 2 with a two-finger indexical gesture; Carla points with
her pen to the bottom row of Term 2) 2, (again without talking the teacher points
to Term 3 with a two-finger indexical gesture; Carla points with her pen to the
bottom row of Term 3), 3, (same as above) 4, (now moving to the hypothetical
place of Term 5 would be expected to be and doing as above) 5.

14. Teacher: Now it’s Term 8! (The teacher comes back to Term 1. She points again
with a two-finger indexical gesture to the bottom row of Term 1) Term 1, has
how many [squares] on the bottom?

15. Students: 1.
16. Teacher: (Pointing with a two-finger indexical gesture to the bottom row of Term

2) Term 2?
17. Students: 2!
18. Teacher: (Pointing with a two-finger indexical gesture to the bottom row of Term

3) Term 3?
19. Students: 3!
20. Teacher: (Pointing with a two-finger indexical gesture to the hypothetical place

where bottom row of Term 4 would be) Term 4?
21. Students: 4!
22. Teacher: (Pointing as above) Term 6?
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Fig. 8 Using the four given terms of the sequence, in Pics. 1 and 2, the teacher and the students
count the squares on the top row of the visible Terms 1–4 and the imagined Terms 5–8. In Pics. 3
and 4 the students count the squares on the top row of Monique’s term

23. Students: 6!
24. Teacher: (Pointing as above) Term 7?
25. Students: 7!
26. Teacher: (Pointing as above) Term 8?
27. Students: 8!
28. Sandra: There would be 8 on the bottom!

The teacher and the students counted together the squares on the bottom row
of Monique’s term and realized that the number was indeed 8. At this point the
relationship between variables started becoming apparent for the students. The
relationship started being objectified. The teacher then moved to a joint process
of counting the squares on the top row:

29. Teacher: (She turns the page and the students can see Monique’s term). Very,
very good. Now, we will verify if Monique has the good amount [of squares]
on top. We will just look at the top : : : (like in the previous episode, she makes
two sliding gestures, but this time pointing to the top row; see Fig. 8, Pic. 1).
Term 1 has how many?

30. Students: 2!
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31. Teacher: Term 2?
32. Students: 3! : : :

33. Teacher: Term 3?
34. Students: 4!
35. Teacher: Term 4?
36. Students: 5! (see Pic. 2)
37. Teacher: Term 6?
38. James: 7
39. Teacher: (Repeating) 7 : : : Bravo! Term 8, will have how many?
40. Students: 9!
41. Teacher: Ok. Oh! Excellent. Are there 9 [squares] here (pointing to Monique’s

term)?
42. Sandra: Yes, there are 9.
43. Teacher: We will count it together.
44. Students: (The teacher points orderly and rhythmically to the terms one after the

other, while the Sandra says) 1, 2, 3, 4, 5, 6, 7, 8 : : : !? (long pause following a
general surprise. See Pics. 3 and 4 in Fig. 8).

The students were perplexed to see that contrary to what they believed,
Monique’s Term 8 did not fit into the sequence. Here the activity reached a tension.
Picture 4 in Fig. 8 shows Sandra’s surprise. The students and the teacher remained
silent for 2.5 s, that is to say, for a lapse of time that was 21 times longer than the
average elapsed time between uttered words that proceeded the moment of surprise
(for details of this poetic moment in the teacher-students’ objectification process,
see Radford, 2010b).

Later on in the lesson the students were able to quickly answer questions about
remote terms, such as term 12 and Term 25, which were not perceptually accessible.
They refined the manner in which the terms of the sequence could be perceived. The
number of squares on the bottom row was equated to the number of the term in the
sequence, while the number of squares on the top row was equated to the number of
the term plus one (identified as the dark square in the corner; see Radford, 2011b).
Here is an excerpt from the dialogue of Sandra’s group as they discuss without the
teacher:

45. Sandra: (Referring to Term 12) 12 plus 12, plus 1.
46. Carla: (Using a calculator) 12 plus 12 : : : plus 1 equal to : : :

47. James: (Interrupting) 25.
48. Sandra: Yeah!
49. Carla: (looking at the calculator) 25!

At this point, the target cultural knowledge has been objectified and a new
ideational-material psychic unity has been forged. The students no longer need to
see the terms of the sequence or to touch them with their hands. What could only be
made apparent through an intense interplay between material culture and the various
sensorial modalities is now contracted, subsumed and reorganized in a new complex
psychic unity where no reference is made to top or bottom rows (see lines 45–49).
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Implications for Teaching and Learning in a Digital Era

As mentioned previously, the concept of sensuous cognition elaborated in this
chapter is based on the idea that human sensation is consubstantial with material
culture. This consubstantiality means, in particular, that our senses and the way
we come to think about our world are shaped, oriented, and transformed by the
ubiquitous presence of material culture in the activities we engage in. Our digital
era is certainly provoking a transformation of the senses and our ways of thinking
that we still need to better understand (Gee, 2003; Trend, 2010). Audiovisual forms
of knowledge mediation are likely to lead to the creation of new dispositions or
sensibilities in the ways we imagine, recall, reflect, visualize, and generalize. To
give but one example, in her book The skin of the film, Canadian critic Laura
Marks, shows that instead of being a flat screen, the skin of the film works rather
as a “membrane that brings its audience into contact with the material forms of
memory” (2000, p. 243) expressed through cultural forms of touching, smelling,
and caressing, for example. The digital era and new material culture in general
operates under new organizations of cultural sensoria with an increasing and definite
“abstraction and symbolization of all sense modalities” (p. 244). Visual images
and media are challenging the longstanding role that the written word has had for
centuries in the Western world (see, e.g., Stephens, 1998). In a chapter entitled “The
disappearing world,” Trend summarizes the ongoing transformation as follows:

The dawn of the digit era [in the 1990s] marked the biggest change in our relationship to
language since the invention of the printing press, the rise of personal computing, networked
communication, and other technologies at the turn of the millennium coincided with the
death of Enlightenment thinking that separated the word from the image. : : : [Written]
Language is being taken over by images as experience itself becomes increasingly visual.
(Trend, 2010, p. 31)

The implications for the teaching and learning of mathematics are evident. Hege-
dus and Moreno-Armella (2011), from the Kaput Research Center, are exploring the
potentials of haptic devices, which work as semiotic mediators much as a dragged
mouse does in dynamic geometry environments to mediate visual information.
The haptic devices allow young students to sense mathematical structures, both
physically and visually. Yet, we need to understand the reorganization of the senses
and the creation of new sensibilities and forms of mathematical thinking that emerge
from the contact and the engagement with digital environments and cyberlearning.
Dynamic geometry, haptic devices and similar cultural artifacts provide the students
with forms of exploration that are incommensurate with those offered by paper-
and-pencil environments. The question concerns more than economy of time. These
technological devices offer room for the creation of an experimental space that
might require the appearance of new sensibilities and new embodied ways of
thinking—dynamic new literate ways of scrutinizing, enquiring, looking into, and
thinking about, mathematics, mathematical objects and their relationships.
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Synthesis and Concluding Remarks

In the first part of this chapter, drawing on Vygotsky and his cultural-historical
psychological school (Leont’ev, 1978, 2009; Luria, 1984; Luria & Vygotsky, 1998;
Vygotsky, 1987–1999), as well as on the work of Maturana and Varela (1998), I
sketched a theoretical approach to cognition that highlights the role of sensation
as the substrate of mind and of all psychic activity. The role of sensation in our
cognitive endeavours is not, however, something new. It has been a recurrent theme
in philosophical inquiries since the pre-Socratics. Since Plato and in fact since
the Eleatic thinkers sensation was nevertheless understood in negative terms—
as something that hinders the road to knowledge (see e.g., Radford, Edwards, &
Arzarello, 2009). This is the sense with which rationalist epistemologies of the
seventeenth and eighteenth centuries up to the present have endowed sensation.
Thus, to give but one example, for Kant, sensations such as colour, sound, heat, and
smell, “are connected with the appearance only as effects accidentally added by the
particular constitution of the sense organs” (Kant, 1787, p. 72), and as such they are
unable to yield true knowledge. They do not constitute an objective determination
of the object, as they pertain to the subjective dimension of the sensing subject. As
a result, sensations are not, according to Kant, necessary conditions of the object’s
appearance and consequently are not a constitutive part of the process of knowing
(for a detailed discussion, see Radford, 2011c). For some contemporary rationalists,
sensation does play a cognitive and epistemic role. Yet, our sensing organs are
considered as having little (if any) relation with culture and history. Their only
history is the one of biology and natural development. Piaget’s genetic epistemology
is not, of course, the only example. By contrast, within the theoretical approach
here sketched (which, I suggested, might be best captured by the term sensuous
cognition) sensation is not merely part of our bodily and biological constitution.
Sensation is rather conceived of as a culturally transformed sensing form of action
and reflection interwoven with cultural artifacts (language, signs, diagrams, etc.) and
material culture more generally. Sensuous cognition calls into question the usual
divide between mind and matter and offers a perspective through which to cast the
role of the body and artifacts in knowing processes.

In the second part of the article, I presented a short example that, I hope, gives an
idea of the manner in which sensuous cognition may help us understand teaching-
learning activity. Sensuous cognition, I argued, does not amount to claiming that
our various senses come into play in classroom interaction. This is no more
than a banal statement. The real question, I argued, is about understanding how,
through classroom activity, our forms of sensing and reflecting are culturally
transformed. The example discussed in the previous section intimates that as
knowledge objectification proceeds, new ideational-material psychic unities emerge
out of previous psychic formations. Within this context, the concept of semiotic
node is a practical construct that may be useful in investigating this important aspect
of teaching-learning and conceptual development. Thus, in the Grade 2 example we
noticed how a complex psychic unity was revealed by a semiotic node constituted
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by the teacher’s and the students’ intercorporeal and material activity. This complex
psychic unity gave rise to a new psychic formation where students were able to
quickly tackle questions about remote terms (like Term 25). The complex and
dynamic unity of perception, language, gestures, rhythm, diagrams revealed by the
semiotic node yielded place to a new, more compact unity where language and
cultural artifacts predominated (see lines 45–49). The issue, however, is not that
knowledge has become disembodied. Behind language and cultural artifacts, there
still resonates the complex bodily, material, and semiotic activity of the previous
sensuous actions and forms of sensing. They have been contracted (Radford, 2010a)
and reorganized, and will re-emerge if difficult questions arise (see Radford, 2011b).
Previous psychic formations do not disappear. They are subsumed in the new ones
and are reactivated if necessary, although not in an intact form: the eye, for instance,
cannot regain the primary purity and naivety through which it saw the world before.
The same could be argued of hearing and touching. Human sensuous cognition is not
an additive formation. Its structure is rather made up of new formations subsuming
the previous ones by relations of a dialectical nature. As French philosopher Jean
Hyppolite (1961) notes in his essay on Hegel’s system, a word, in its truly dialectical
nature, signifies what is not there by signifying what is there, and signifies what is
there by signifying what is not there.
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New Media and Online Mathematics Learning
for Teachers

George Gadanidis and Immaculate Kizito Namukasa

Abstract In this chapter we offer a case study of an online Mathematics for
Teachers course through the lens of four affordances of new media: democratization,
multimodality, collaboration and performance. Mathematics, perhaps more so than
other school subjects, has traditionally been a subject that people do not talk about
outside of classroom settings. However, we demonstrate through the case of the
Mathematics for Teachers course that this does not have to be the case. Mathematics,
even mathematics that traditionally has been seen as abstract or inaccessible, can
be talked about in ways that can engage not only adults but also young children.
The affordances of new media can help us rethink and disrupt our existing views
of mathematics (for teachers and for students) and of how it might be taught
and learned, by (1) blurring teacher/student distinctions and crossing hierarchical
curriculum boundaries; (2) communicating mathematics in multimodal ways; (3)
seeing mathematics as a collaborative enterprise; and (4) helping us learn how to
relate good math stories to classmates and family when asked “What did you do in
math today?”

Online courses for teachers have gained popularity in a short period of time. For
example, in just over a decade our Faculty of Education has grown from two online
courses to over 150 online courses offered in its Continuing Teacher Education
Program, several fully online and hybrid courses in its Preservice Teacher Education
Program, a fully online cohort in its Masters of Education Program and several
online courses offered in the rest of its graduate program. At the same time, the
nature of our courses is changing due to the increased availability of multimodal,
interactive and collaborative forms of communication. While our first courses were
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designed to be primarily text-based, they are now making use of new media forms of
communication, such as online videos, interactive content, and collaborative tools.

One of our online courses that makes extensive use of new media is the
Mathematics for Teachers course, which we have been offering for the last 4 years as
an optional summer course (in August) to each incoming elementary (K-8) teacher
candidate cohort. Teacher candidates pay for this course in addition to their tuition
and it is listed on their university transcripts as a separate course. The course is
advertised for teacher candidates who fear and/or dislike mathematics and as a form
of “mathematics therapy” (Gadanidis & Namukasa, 2005). The course offers teacher
candidates opportunities to experience the pleasure of doing mathematics.

In this chapter we examine the design of the Mathematics for Teachers course
through the lens of four affordances of new media: democratization, multimodality,
collaboration and performance. In the context of analyzing students’ course discus-
sions and shared assignments, we ask: in what ways are these affordances present
in our course design?

Theoretical Perspective

It is important to note that through our theoretical perspective, we see new media
not simply as a tool for pursuing and amplifying our educational purposes, but also
as an actor that shapes our thinking and our purposes. As Borba and Villarreal
(2005) suggest, humans-with-media form a collective where new media serves to
disrupt and reorganize human thinking. Likewise, Levy (1993) sees technology not
simply as a tool used by humans, but rather as an integral component of a cognitive
ecology of the humans-with-technology thinking collectives. Levy (1998) claims
“as humans we never think alone or without tools. Institutions, languages, sign
systems, technologies of communication, representation, and recording all form our
cognitive activities in a profound manner” (p. 121). Levy (1993) also suggests that
technologies condition thinking, implying that the thinking collective of humans-
with-media may persist even when the media is not present.

We are sympathetic to the view that the use of new media can help change how
we think about mathematics education, and we have some anecdotal evidence from
our personal experience. However, in this exploratory work we do not try to prove a
causal link between the affordances of new media and the design of the Mathematics
for Teachers course. Comparing the affordances of new media to the design features
of our course, and thus better understanding how new media affordances may be
seen to be manifested or mirrored in our pedagogical choices, nonetheless, may be
a first step in investigating how thinking-with-new-media affects how educators and
researchers think about mathematics education.
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New Media Affordances

For the purpose of this chapter, new media refers to technology tools that are widely
and publicly accessible, such as the YouTube, Google, Facebook, Ning, wikis and
blogs. Below we describe four affordances of new media that we use in our analysis
of the Mathematics for Teachers course.

Democratization

At the time of writing, the democratization affordance of new media is evident in the
political upheavals in the Middle East, where hierarchical power relationships have
been disrupted in part through the use of social media. In the last decade, authoritar-
ian regimes that in the past have silenced political dissent are finding that new media
tools have given people opportunities to express themselves through text, voice, and
video (Al-Obaidi, 2003). In educational settings, new media also potentially disrupts
existing power relationships in three important areas: (1) when/where learning takes
place; (2) what curriculum and content is to be learned; and (3) who the teacher is. In
a traditional classroom, what is available to learn is determined by “representatives”
of hierarchical authority structures such as the teacher, the textbook and the
mandated curriculum. Knowledge is classified by grade level and students do not
have access to knowledge that is above their mandated grade. In contrast, a student
in a new media setting can use Google or YouTube, for example, to search for
information on a given topic they are studying or are curious about and freely access
multimodal learning material that is not grade specific. Also in contrast to traditional
education, where learning occurs in a classroom during a specified time period, new
media learning resources are continuously available from any place with Internet ac-
cess. Lastly, new media disrupts the labels of “teacher” and “student” as anyone with
a camera and a YouTube account, for example, can teach about a topic of interest.

It needs to be cautioned, however, that the democratization affordances of new
media do not provide a guarantee of democratization. Chester (2007) notes that there
is a history of new communication technologies being subverted. In the classroom
context, Cuban (1986), looking at 60 years of educational use of technology since
1920 notes that: classroom situations change minimally; when they do change, it is
in non-standard ways; and, teachers and schools have a predominant effect on how
technology is used in classrooms.

Multimodality

In contrast to the increasingly multimodal nature of the Web, many school experi-
ences, especially in mathematics, continue to rely on discourses that are monomodal
or bimodal (in cases where diagrams or graphs are employed). Kress and van
Leeuwen (2001) suggest that in a digital environment “meaning is made in many
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different ways, always, in the many different modes and media which are co-present
in a communicational ensemble” (p. 111). The shift from text-based communication
to multimodal communication is not simply a quantitative change. It is not just a
case of having more communication modes. It is a qualitative shift, analogous to
the change that occurred when we moved from an oral to a print culture (Gadanidis,
Hoogland, & Hughes, 2008). Print culture, for instance, supported the creation of
fixed media and records.

Kaput (2002) also talked about the new technologies, used in the world of busi-
ness but yet to be harnessed in the world of education, as connected and inexpensive
technologies as opposed to isolated and expensive technologies. He also talked
about “newly intimate connections among physical, linguistic, cognitive and sym-
bolic experiences [of mathematics concepts]” that become possible with newer com-
puter and WWW technologies (p. 91) as used in learning mathematics. “Revisiting
the analogies with change made possible by the printing press : : : ” (p. 92) he talks
about the “impact of the printing press on the democratization of literacy.” Kaput
hypothesizes a similar change in the twenty-first century “relative to the new rep-
resentational infrastructures made possible by the computation mediums” (p. 92).
He also stipulates that the “crossing between interfaces [on hand-held, networked
devises used for learning] may help in exposing the mathematics structure” (p. 97).

Collaboration

Our digital age has been labelled as an information revolution (as contrasted with
the industrial revolution). Schrage (2001) suggests that this label misses the essence
of the paradigm shift.

In reality, viewing these technologies through the lens of “information” is dangerously
myopic. The value of the Internet and the ever-expanding World Wide Web does not live
mostly in bits and bytes and bandwidth. To say that the Internet is about “information” is
a bit like saying that “cooking” is about oven temperatures; it’s technically accurate but
fundamentally untrue. (p. 1, original emphasis)

Schrage suggests that a more appropriate label is relationship revolution.

The so-called “information revolution” itself is actually, and more accurately, a “relation-
ship revolution.” Anyone trying to get a handle on the dazzling technologies of today and
the impact they’ll have tomorrow, would be well advised to re-orient their worldview around
relationships. : : : When it comes to the impact of new media, the importance of information
is subordinate to the importance of community. The real value of a medium lies less in the
information that it carries than in the communities it creates. (pp. 1–2; original emphasis)

Lankshear and Knobel (2006) suggest that the relatively recent “development and
mass uptake of digital electronic technologies” represent changes on a “historical
scale”, which “have been accompanied by the emergence of different (new) ways
of thinking about the world and responding to it.” (pp. 29–30). These new ways
of thinking can be characterized as “more ‘participatory,’ ‘collaborative,’ and
‘distributed’ and less ‘published,’ ‘individuated,’ and ‘author-centric’ : : : also less
‘expert-dominated.’” (Knobel & Lankshear, 2007, p. 9).
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Performance

Hughes (2008) and Kress and van Leeuwen (2001), note that the multimodal nature
of new media offers performative affordances. This is evident in the multimedia
authoring tools used to create online content, such as Flash, which often use
performance metaphors in their programming environment. For example, you
program on what is referred to as the “stage”, you use “scenes” to organise “actors”
or “objects” and their relationships, and you control the performance using “scripts”.
The Web as a performative medium is evident in the popularity of portals like
YouTube. Hughes suggests that the new media that is infusing the Web draws us into
performative relationships with and representations of our “content”. Gadanidis and
Borba (2008) have explored digital performance in mathematics education settings,
and the idea of students as performance mathematicians.

Research Setting and Participants

We study the design and implementation of a Mathematics for Teachers online
course. This online course makes extensive use of new media. We have been offering
it for the last 4 years as an optional summer course (in August) to each incoming
elementary (K-8) teacher candidate cohort. Teacher candidates choose to enrol and
pay for this course in addition to their tuition. Because the course is advertised for
teacher candidates who fear and/or dislike mathematics several teacher candidates
who enrol for it have specific needs for learning mathematics in different ways than
those that likely turned them away from mathematics. The course, therefore, offers
teacher candidates opportunities to experience the pleasure of doing mathematics.

In the summer of 2010, 37 elementary school teacher candidates attended the
course. They consented to having their course participations used for research
purposes. One of the online resources used in the course is the www.researchideas.ca
website, where in collaboration with project schools we are creating multimodal and
performative documentaries of how the “content” of our Mathematics-for-Teachers
courses has been used in elementary school classrooms. In this paper we draw data
from the Summer course online conversations.

Methods: Analyzing the Mathematics for Teachers Course

In the next section we analyze the design and implementation of the summer of
2010 Mathematics for Teachers course. We use a case study approach, with the
course design, mathematics activities, and teacher candidate contributions to the
online discussion constituting a single case. Case study method is suitable for
collecting and re-telling in-depth stories of teaching and learning and for studying
a ‘bounded system’ (that is, the thoughts and actions of participants of a particular

www.researchideas.ca
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education setting) so as to understand it as it functions under natural conditions
(Stake, 2000a, 2000b; Yin, 2006). The analysis is qualitative in nature, in keeping
with the established practice of in-depth studies of classroom-based learning and
case studies in general (Stake, 2000a). Content analysis is employed to identify,
code and organize patterns of discourse (Denzin & Lincoln, 2005; Patton, 2002)
that fit the four new media affordances noted above: democratization, multimodality,
collaboration and performance. The case study answers the question: in what ways
are these affordances present in our course design? The style of writing of the case
study is at once analytical (using the four new media affordances) and descriptive
(offering a detailed account of the Mathematics for Teachers course experience).

Democratization

In what ways did the Mathematics for Teachers course reflect the democratization
affordances of new media?

Where/When Learning Takes Place

Using an asynchronous online discussion platform, teacher candidates had access
at any time and from any place with an Internet connection. Had we offered the
course in a university classroom we would have limited the number of participants
due to (a) increased cost of accommodation for out-of-area participants, (b) summer
employment commitments, and/or (c) summer vacation plans. In fact, some of the
teacher candidates participated in the course while working or vacationing outside
of Ontario, and across various time zones.

What Is to Be Learned

The mathematics in our Mathematics for Teachers course disrupts common con-
ceptions of content in two important ways. First, we don’t distinguish between the
mathematics that teachers study and the mathematics that students study (Gadanidis
& Namukasa, 2007). That is, the activities we bring to our Mathematics for Teachers
course are the same activities we use with students in elementary school classrooms.
Second, the activities are designed to have a low mathematical floor, allowing for
engagement with minimal prerequisite knowledge, and a high mathematical ceiling,
allowing for extensions to more complex ideas (Gadanidis & Hughes, 2011). We
elaborate on these ideas below.



New Media and Online Mathematics Learning for Teachers 169

Mathematics for All

Ball and Bass (2003), Ball (2002), and Davis and Simmt (2006) distinguish
mathematics-for-teaching from the mathematics that students need to know. Ball,
Bass, Sleep, and Thames (2005) give the example of the mathematical task of
307 � 168 D 139 and state that “[t]o teach, being able to perform this calculation
is necessary. But being able to carry out the procedure is not sufficient for teaching
it.” They identify four distinct domains of mathematical knowledge for teaching:
(a) common content knowledge (calculating the answer to 307 � 168), (b) special-
ized content knowledge (such as analyzing calculation errors), (c) knowledge of
students and content (identifying student thinking that might have produced such
errors), and (d) knowledge of teaching and content (recognizing which manipulative
materials would best highlight place-value features of the algorithm). The sugges-
tion is that the last three domains – knowledge of specialized content, of students
and content, and of teaching and content – distinguish what teachers need to know
from what students need to know. This work on mathematics-for-teaching offers
a powerful unit of analysis of teacher education and development. However, the
distinction that mathematics-for-teaching is different from students’ mathematics
may not fit well with research-based reform recommendations, where students are
also expected to be engaged in the four mathematics-for-teaching domains identified
by Ball et al.: performing calculations, analyzing errors, identifying thinking that
might have produced such errors, and selecting tools for modelling mathematical
ideas (e.g., Ontario Ministry of Education, 2005).

Begle (1979), Eisenberg (1977), Fennema and Franke (1992), General Account-
ing Office (1984), and Monk (1994) note that university mathematics courses may
not offer the mathematics knowledge that teachers need for teaching. An emphasis
on more mathematics may be inappropriate (Davis & Simmt, 2006). We agree
that offering teachers more of the mathematics that turned them away from the
subject is not helpful. But, that teachers need a totally different mathematics than
what they experienced during their schooling does not necessarily imply that they
need a different mathematics than their students. Rather, we think it implies that
both teachers and students need to experience a better mathematics that is aligned
to reform initiatives such as teaching through problem solving and focusing on
understanding mathematical concepts (NCTM, 2000).

Low Floor, High Ceiling

How do we stretch mathematical concepts so that the key ideas are accessible across
grades? This is not an easy task as traditionally our pedagogical thinking has focused
in the opposite direction, by making mathematics content grade specific. Below we
provide two examples of activities from the Mathematics for Teachers course that
are designed to have a low mathematical floor, allowing engagement with minimal
prerequisite knowledge, and a high mathematical ceiling, offering opportunities for
extending ideas to more complex and more sophisticated representations.
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Infinity and Limit

The Mathematics for Teachers course started with a module consisting of an activity
on the themes of infinity and limit, which are typically covered in grade 11 through
the topic of sequences and series and in grade 12 through Calculus. One goal of the
activity is to help teacher candidates who fear mathematics realize that topics that
are usually considered abstract and complex can be accessed in meaningful ways
even by young children. In fact, a similar activity was completed by grades 2–3
students at a summer camp (as a context for exploring representations of fractions)
and a grade 4 classroom (as an exploration of linear measurement). Videos of the
students and one of the teachers were available online for teacher candidates to view.

All mathematics tasks were available at once, and teacher candidates were
encouraged to complete the tasks in the sequence listed in order to achieve the
best experience possible. After completing each task, they were asked to share and
discuss their findings online. The tasks are carefully designed and sequenced to help
teacher candidates experience mathematics ideas in new ways and in new light, and
elicit mathematical surprise.

The first task of the module, specifically, asked teacher candidates to consider
the following questions: (1) What do you know about infinity? (2) How big is it?
(3) Can it fit in a gym? (3) Can you hold it in your hands? There was consensus
among teacher candidates that infinity would not fit in a gym or in their hands.
Three representative comments are listed below.

By definition, infinity cannot be assigned a number value, and in math I believe it is usually
associated with a symbol.

It is all around us as “time” and “space”.

Infinity is not something tangible, as it is a concept that is greater than any measurable
space, like a gym. It cannot be held in your hand.

In the second task, teacher candidates accessed, printed and completed a handout
consisting of ten 16 � 16 grids, with the first one shaded to represent the fraction 1/2.
For each of the subsequent grids they were asked to shade in representations of the
fractions 1/4, 1/8, 1/16, 1/32, 1/64, 1/128, 1/256, 1/512 and 1/1024, respectively. The
last page had a 32 � 32 grid with the following instructions: “Suppose you repeated
the above process forever. Now imagine taking all of the shaded pieces and joining
them together to form one solid shape. What might the shape be and what would its
size be? Draw the shape on the grid below.” (see Fig. 1)

Teacher candidates were then asked to consider the following “walk to the door”
task.

• You are standing in a room, facing an open door, which is 1 m away from you.
• Is it possible to walk to the door, and actually go past it, and leave the room?
• You’re probably thinking this is a silly question, and that of course you can walk

to the door, and even walk past it. After all, it’s open.
• But think of it this way: To get to the door, you first have to first pass half of the

distance to the door (1/2 of a metre), then half the remaining distance to the door
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Fig. 1 The finite sum of an
infinite number of fractions

(1/4 of a metre), then half of the remaining distance (1/8 of a metre), and so on
and on and on : : :

• So let me ask again, can you reach the door if you have to actually travel 1/2 of
the distance, then 1/4, then 1/8, then 1/16 and so on?

• What does this tell us about the sum of 1/2, 1/4, 1/8, 1/16, and so on forever?
• Here’s a song by grade 4 students on this theme : : : http://www.edu.uwo.ca/mpc/

mpf2010/mpf2010-131.html
• Teachers candidates also read a retelling of the story of Rapunzel, where

Rapunzel’s tower cell door is open but she does not escape because she is
imagining passing through all the fractional distances discussed above.

Teacher candidates were also asked to consider the sum of the following infinite
set of fractions: 1/2 C 1/4 C 1/8 C 1/16 C 1/32 C 1/64 C 1/128 : : : and to decide if
there is a sum and what it might be. Then teacher candidates viewed the following
online videos:

• A teacher talking about this activity (done with grade 2–3 students)

http://www.edu.uwo.ca/mpc/camp2010/day4/infinity2.html

• Songs by the grade 2–3 students on the theme of infinity

http://www.edu.uwo.ca/mpc/camp2010/day4/infinity1.html
http://www.edu.uwo.ca/mpc/camp2010/day5/ms9.html
http://www.edu.uwo.ca/mpc/camp2010/day5/ms10.html

Historically, mathematicians have struggled with the concepts of infinity and
limit, as is evident by Zeno’s paradoxes, which “have puzzled, challenged,
influenced, inspired, infuriated, and amused philosophers, mathematicians, and

http://www.edu.uwo.ca/mpc/mpf2010/mpf2010-131.html
http://www.edu.uwo.ca/mpc/mpf2010/mpf2010-131.html
http://www.edu.uwo.ca/mpc/camp2010/day4/infinity2.html
http://www.edu.uwo.ca/mpc/camp2010/day4/infinity1.html
http://www.edu.uwo.ca/mpc/camp2010/day5/ms9.html
http://www.edu.uwo.ca/mpc/camp2010/day5/ms10.html
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Fig. 2 Arrays for the
number 4

physicists for over two millennia” (Tall & Tirosh, 2001; Wikipedia, 2011). The
“walk to the door” problem posed in the Mathematics for Teachers course is
a variation of Zeno’s paradoxes. The traditional curriculum keeps the ideas of
infinity, be it the limiting processes or finite values of limits, away from children,
typically until they reach grades 11 and 12. Through the above activities, using
familiar contexts of fractions and halving, teacher candidates came to realize that
these ideas are in fact accessible to young children who are curious about ideas such
as infinity even at kindergarten.

I thought that this concept would be difficult to teach to anyone, let alone young students.
After watching the videos, it became apparent that the students were in fact able to
understand the idea of infinity and represent it in visual form.

I was struck by the seeming simplicity of infinity (and its explanations) in all of this. Kids
appeared to have little trouble grasping the fact that “infinity never stops” (to quote one of
their catchy tunes).

The exercise that the children did by creating the piece of paper to represent infinity was
great. What I got out of the exercise and videos is that an abstract concept can go along way
and be brought into easier terms for the students, causing them to express enthusiasm and
creativity through a tangible means and at the same time using other media such as music
and drama.

Previous encounters with infinity usually involved an explanation that managed to compli-
cate the whole thing unnecessarily. I am far less intimidated by infinity now.

Optimization

Another mathematics activity of the Mathematics for Teachers course involved an
exploration of optimizing perimeter for a given rectangular area. Teacher candidates
accessed, printed and completed a handout where they drew rectangular representa-
tions of the numbers 1 through 12. For example, two possible arrangements for the
number 4 are shown in Fig. 2. Then they were given the following problem.

Imagine that you are planning for a mathematics party.

• You have 16 square tables that you can use to form a bigger rectangular table
(like the rectangular arrays you created for the numbers 1–12, with no holes in
the middle)

• What arrangement would you use so you can fit the most number of chairs around
the big table?

• What arrangement would you use so you can fit the least number of chairs around
the big table?
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Fig. 3 The story “Wolf gets Hurt”

Use the grid in the handout to show the various table arrangements and the
number of chairs that fit.

Then teacher candidates accessed an online story called “Wolf gets hurt” (see
Fig. 3) that included a video reading and interactive mathematics content. In this
retelling of the Three Little Pigs story, the Piggies capture Wolf and try to build the
biggest rectangular pen possible with only 18 m of fence. They also accessed (1)
an online video of a grade 2 teacher describing how she did this activity with her
students (2) a video of the song that summarized the learning of the grade 2 students
and (3) a stop motion animation video created by a teacher candidate who took the
Mathematics for Teachers course in 2008:

• Teacher interview: http://www.edu.uwo.ca/mpc/bigideas/arrays
• Student song: http://www.edu.uwo.ca/mpc/bigideas/arrays/perimeter.html
• Animation: http://www.edu.uwo.ca/mpc/mpf2010/mpf2010-106.html

Optimization is a topic that is typically not taught until grades 9 and 10, when
students first encounter quadratic functions. It is also part of the grade 12 Calculus
curriculum. It can also potentially be found in grades 5 and 6, where students
explore relationships between area and perimeter. However, when we have included
optimization activities in workshops for grades 4–6 teachers, most teachers express
surprise that the perimeter can change if the area does not, indicating that they
have not addressed these area/perimeter relationships in their classrooms. Similarly,
teacher candidates in the Mathematics for Teachers course were surprised by the
optimization relationships between area and perimeter.

http://www.edu.uwo.ca/mpc/bigideas/arrays
http://www.edu.uwo.ca/mpc/bigideas/arrays/perimeter.html
http://www.edu.uwo.ca/mpc/mpf2010/mpf2010-106.html
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I thought originally that I understood arrays, and immediately saw how it could be a lesson
that might lead to factoring and such. Having to do the activity myself though, slowing
down and taking the time, I found myself incredibly humbled.

Terrific way to see how you can make the perimeter change.

I learned that perimeter changes as shape changes, even though the area stays the same, and
that there are fun ways to express this.

I felt amazed at the patterns and relationships present in math - it really is cool that when
area stays the same but changes shape, the perimeter changes.

They also realized that these concepts are accessible to young children, like the
grade 2 students in one of the teacher interviews that they could view online, along
with student samples of work.

My most significant insight from Module 2 was the number of activities that were involved
to teach one concept to children. When learning about arrays, the teacher had the children
perform various activities. They read stories, learned about division with distributing their
“cookies”, created arrays and drew real life objects, used linking cubes and grid paper, and
made up and performed songs. It seems like a lot of activities to learn one concept. However,
as I watched the explanation of each activity and what the children learned, even I began
to feel as if the concept was more ingrained in my memory. I also liked how the activities
could be related to real life to make them more concrete and easily understood.

I enjoyed looking at multiplication arrays and doing the Math Party. I had my 5 year old
work along side me and he understood as well, and thought it was pretty neat to have a
different number of chairs around the table with the different arrangements.

The preceding quote from one of the teacher candidates noted that the tables
and chairs representation made the concepts of area and perimeter optimization
accessible to her 5 year old child.

Who Is the Teacher

The role of the instructor in the Mathematics for Teachers course was to pose
problems and scaffold and encourage teacher candidates to individually and col-
laboratively explore multiple solutions and representations. The instructor avoided
giving answers or commenting on whether answers were correct. This helped create
an atmosphere (discussed in greater depth in the section on collaboration) where
teacher candidates relied on one another for learning.

Sharing ideas with 30-some people in the manner we have also has confirmed for me that
every class member will have their own take on the material and their own gift to offer to
the discussion.

I think it is SO important to work as a group and allow students to teach each other concepts
as well, because who [is] better to teach something than someone who has JUST learned it!
(Capitalization emphasis in original)



New Media and Online Mathematics Learning for Teachers 175

The use of video resources of classroom teachers discussing the activities of the
course from the point of view of how they were implemented in their classrooms as
well as videos of young students sharing their mathematics learning helped expand
the scope of who the teacher was.

The interview with Pam King and the song were helpful to watch. The song especially for
me reinforced that 2�6 and 6�2 though mathematically the same, are two different ideas
to children. 2 friends sharing 12 cookies, or 6 friends sharing 12 cookies - sooooo not the
same thing to youngsters :)

The children in all of the examples had a much better and more simpler means of
understanding infinity and I LOVE that!

External resources including interviews with classroom teachers and perfor-
mances by school children on the problem had a significant impact on the
mathematical and pedagogical learning of teacher candidates. This helped to
reinforce the idea that fellow teachers and even our students can be our “teachers”.

Multimodality

Teacher candidates noticed the multimodal nature of the course experiences and
made ongoing comments about them. Figure 4 shows a screen shot of the interview
with a Grade 2 teacher on the theme of optimization. Figure 5 shows the optimiza-
tion stop-motion animation created by a teacher candidate in the 2008 Mathematics
for Teachers course.

Following are representative comments about multimodality that arose from the
infinity activity.

All of this caused me to reflect on how I was taught in the lower grades as I recall far less
visual aids and interesting stories. It impressed on me how much more effective teaching
a subject could be if you present it in different formats (stories, videos, puzzles) rather
explaining it and giving work to try out. This really has made me think about how teaching
has evolved too.

I found the structure of this exercise appealing because it (1) began with an intellectual
challenge (i.e., the request that we interrogate our understanding of what “infinity” refers
to); (2) invited us to engage in a series of hands-on paper-and-pen tasks; and, after
encouraging us to contemplate the import of our doing so; (3) exposed us to a novel way
in which an elementary school teacher has attempted to introduce the concept of infinity
to her students and, simultaneously, elicit their creativity. Contemplating my reaction to
these activities, I realized that what made the activity especially enjoyable was that it was
not singular in its style of delivery and, instead, included activities that would appeal to
different “types” of learners.

Teacher candidates made similar comments about the optimization activity.

(I have developed an) awareness that one doesn’t have to explain a mathematical concept
using only the lexicon of that discipline and with a singular reliance upon other mathemati-
cal concepts - one can/should exercise one’s creativity and, in doing so, encourage students
to think holistically - to merge a mathematical concept with the concerns of other subjects -
health studies, social studies, etc..
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Fig. 4 Screenshots of teacher interview on optimization in Grade 2

Fig. 5 Screenshot of
optimization stop-motion
animation

After doing the assignment and watching the videos, I noticed that the visual representations
made the concepts of area and perimeter more clear to me.

Treating math as a fun interplay between numbers (i.e., watching the buttons move around)
and asking questions that require a little imagination from the learner seem to be very
effective in making math a subject to enjoy.
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When I did the activities for this module and saw the video of the animation that visually
demonstrated area and perimeter, I was surprised by how much these visual representations
helped to clarify the concepts – even for me. It opened my mind to the possibility of using
visual aids to help explain math, and has therefore changed my mind about taking a strictly
auditory approach to the subject.

I really enjoyed seeing the different ways that this lesson can be taught. I thought the button
video was a really cool idea, having the different colour buttons and seeing that each time
there are always 16 black buttons, (as the area doesn’t change) but that different amounts of
white buttons were needed as the perimeter does change.

I have been wondering whether Pam King’s methods may be too time consuming for a rigid
classroom schedule. With more thought, I feel that developing a solid foundation in basic
mathematical concepts is worth the time and effort Pam places in the planning and execution
of her lesson. Really, she is able to kill two birds with one stone, as she incorporates music
and English into her math lessons.

For me I find visual examples to be very helpful, but I agree that all students learn
differently, so it was neat to hear the songs and story which explained the lesson in a
different way.

Teacher candidates also used multimodal ways to present their own ideas in the
discussion, such as creating drawings and diagrams as attachments to their postings
and authoring songs and stories that expressed their learning. One of them had this
to say:

I definitely enjoyed this course. It has been an eye opener because it was not at all what I
was expecting. I love writing poetry, photography, music and art and now to have learned
that I can use all of the above to teach math gave me insight to how I view math and how I
have been afraid all these years.

For example, one of the teacher candidates wrote a song called “The infinity
cake”, shown in Fig. 6 and available as a musical performance at http://www.joyofx.
com/music/m4t-2010-infinityCake.html.

Collaboration

Several teacher candidates commented that they had low expectations of the level
of community that could be experienced in an online course.

Admittedly, I was not expecting genuine community from an online course

I had worried that taking a course that didn’t involve in-class lectures would be intimidating
and impersonal.

The course design attempted to create a sense of community and a collaborative
spirit in the following ways. To reduce stress, especially since many elementary
school teacher candidates fear or dislike mathematics, the course did not have
any mathematics content tests and no final examination. In addition, to take the
focus away from mathematics achievement, the course used a pass/fail assessment

http://www.joyofx.com/music/m4t-2010-infinityCake.html
http://www.joyofx.com/music/m4t-2010-infinityCake.html
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The Infinity Cake

I have the most delicious cake
I want the world to sample
I didn’t have much time to bake
But I think just one 
should be ample

All my friends had a laugh
They said it could not be done
But I’ll just keep cutting 
my cake in half
Until the whole world 
has had some

I cut my cake in half for you
And gave a quarter to him
One eighth went to little Sue
And one sixteenth to Jim

The cake kept shrinking
My friends kept laughing
But I knew just what to do
I simply took what I had left 
and cut it into two

At the end of the day 
they all had a treat
Ever so small it may be
I smiled at my friends saying 
“This was no feat”
Because I knew fractions 
were the key

Fig. 6 Lyrics of song
“The infinity cake”

scheme. The standard for achieving a passing grade was high, based on a B or 75%
level of performance on course assignments. However, none of the assignments
required a mastery of any given set of mathematics content. Rather, the assessment
expectation was that teacher candidates (a) explore a variety of ways of seeing or
connecting mathematics concepts, (b) reflect deeply on mathematics teaching and
learning, and (c) participate in course discussion on a regular basis. The comments
made by the instructor focused on providing positive feedback and conceptual
scaffolding when necessary. The course discussion was organized in smaller groups
of 9–10 people in a discussion area, however teacher candidates had the freedom
to read the discussions of other groups, and also comment on them. It was evident
that teacher candidates read the discussions of other groups, as they regularly made
explicit references to ideas discussed outside of their own discussion area. Part of the
course discussion occurred in a wiki environment, where teacher candidates worked
in small groups to collectively identify what they learned from certain activities
and how they felt about the experience. The opportunity to express feelings, gave
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teacher candidates the opportunity to realize that they came to the course with a
shared view of mathematics (fearing or disliking the subject) and shared similar
experiences of initial apprehension and subsequent surprise and delight about the
mathematics patterns they explored.

It is also important that the course focused on mathematics with (1) a low
floor, allowing teacher candidates to engage with minimal mathematics knowledge,
and (2) a high ceiling, offering opportunities for deep mathematical insight and
consequently mathematics that is worth talking about. In traditional mathematics
education, as will also be discussed in the next section on performance, when
a student is asked “What did you do in math today?” the typical response is
“Nothing” or “I don’t know”. Teacher candidates found the mathematics in this
course interesting to talk about and in course discussions even related stories of
their related mathematics conversations with family, friends and co-workers.

Below are representative comments about the community and collaborative
nature of the Mathematics for Teachers course.

This class, in the course of a single week, has fostered a greater sense of “community”
and involvement among students than any of the classes that I took (including seminars
with a very small group) during the course of my 4 year-undergraduate degree. It’s really
wonderful to read all the warm and supportive feedback that each submission has garnered
(and I’m sure that others are equally appreciative, especially since so many of us admitted
in our introductory remarks that we were white-knuckled re: teaching math). I have never
taken an on-line course until now and it is awesome. I too feel the “community” atmosphere
with everyone by such positive feedback, words of encouragement and creative energy
from all.

I’m enjoying learning because of the safe environment everyone here has helped to create.
I so appreciate that.

I have always been an individual who is nervous about participating in class and writing
comments on discussion boards. This course has managed to help me break down my
barriers and feel more confident in my ideas, comments, math ability, and myself overall.

Hope that, in the future, I can encourage this kind of welcoming atmosphere in the classes
that I teach.

In a hybrid course or in a fully online course involving students who met face to
face before a sense community would be more expected in. In the four reflections
above, it is surprising, that students in a fully online mathematics class experienced,
in their own words, a sense of warm, supportive, positive, energizing, and safe
community.

Performance

What makes for a good performance? Boorstin (1990) identifies three pleasures that
we derive from performances such as movies: (1) the new and the surprising; (2)
emotional moments; and (3) visceral sensations. It is interesting that Norman (2004)
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states that his principles for technological design “bear perfect correspondence” to
the principles of what make movies work identified by Boorstin. These principles
have been used in Canada and in Brazil to research how they might be used as a basis
for pedagogical design in mathematics education and how they might help us see
teachers and students as performance mathematicians (Gadanidis & Borba, 2008;
Gadanidis & Hughes, 2011). Below we use Boorstin’s principles of what makes
movies work to examine the performative nature of experiences in the Mathematics
for Teachers course.

New and Surprising

Good movies take you to a new world. The wide angle camera shot is a typical
tool used in movies to give the audience of the new world in which the plot will
unfold. Good movies also surprise you. When you watch a movie, you typically
guess ahead; if your guesses are always correct, the movie becomes predictable
and less interesting; however, if your guesses are incorrect then you experience the
pleasure of surprise.

As two teacher candidates commented,

After doing the activities and watching the videos I learned that it is possible to explain
the concept of infinity to everybody. I guess I was initially thinking that it would be an
impossible concept to explain clearly since it doesn’t have a beginning or an end but now I
see how it is possible.

I really liked these activities, because they got me to think about infinity in a way I haven’t
before.

It surprised me at how comfortable I felt and that it was a simple way to explain it to
children.

The course intentionally sought to offer teacher candidates opportunities to see
mathematics in new and wonderful ways. The design of low floor, high ceiling
mathematics activities can be seen as being equivalent to the wide angle camera
shot in movies. It helped teacher candidates see traditionally abstract concepts such
as infinity and optimization as accessible.

After watching the videos, I learned that *shock* [sic] you can hold infinity in your hands! It
is surprising to see that there are ways of representing something so abstract and conveying
these themes to such young students. (Asterisks in original)

I felt amazed at the patterns and relationships present in math - it really is cool that when
area stays the same but changes shape, the perimeter changes.

Wow this activity completely changed how I looked at the concept of infinity.

Teacher candidates also experienced mathematical surprise, both from a mathe-
matics and a pedagogical perspective.
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Emotional Moments

Good movies help you experience emotional moments (vicariously through the
actors). One of the opportunities that teacher candidates had to experience emotional
moments in the course was by sharing how they felt during their mathematics ac-
tivities of the course. One area of “feeling” that they commonly expressed was their
unease with mathematics. This is not surprising as the course was advertised for
teacher candidates who fear and/or dislike mathematics. Representative comments
by the teacher candidates listed below indicate that in fact the majority fell in this
category.

I know when I received the email describing this course, I just kept saying “that’s me : : :

that’s me!” I immediately knew I had to take this course.

I feel that others are in the same boat as I am when I read other comments about the “fear”
of math.

I think it seems to be a common thread that many of us found math “scary” or intimidating.

I struggled so much with math throughout my schooling years but [the reason] wasn’t
because I wasn’t good at it, I just needed more than one way of learning it. It led to many
frustrating nights.

I grew up hating math.

Some teacher candidates also expressed an apprehension about taking the course.

What really surprised me in this course, is that there are a lot of people who felt the same
way I did, very hesitant about starting this course at first, but felt it was important in order
to be a future educator.

When I signed up for this course I was uptight and scared because I thought that we were
going to be going back to the old way of learning a lesson.

As a student, I always was aware that math was a very important subject, but I was never
taught it in a way where I actually enjoyed it.

The methods that it was taught to me also did not help : : : I was often told to “just do it”.

As the course progressed, however, teacher candidates made repeated comments
about the positive effect of course activities on their view of mathematics.

At the beginning of each lesson so far I have felt a little anxious because I am realizing how
much math I do need to brush up on. However, after completing each lesson I am feeling
much more confident in my math abilities!

When I signed up for this course I was very hesitant on taking it, but even more hesitant in
taking a math course in the fall. You have dispelled my anxiety.

This will make a huge difference in how I teach math!

Math was never taught to me ever in such a creative, fun, interactive, and interpretive way!
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Children’s literature was used to either introduce or supplement all of the
mathematics activities of the Mathematics for Teachers course. This created an
opportunity for teacher candidates to experience mathematics through the characters
involved and vicariously experience their emotional moments. Teacher candidates
made overwhelmingly positive comments with respect to the use of children’s
literature.

I really enjoyed the 3 little pigs video as a learner. I wanted to watch to the end.

I felt at ease with this lesson. Incorporating the story of the three little pigs and wolf
into learning arrays helped to keep me focused because I was also interested in the other
(environmental) lesson I was learning with the wolf’s story.

I found the best activity for me was the wolf story. I suppose this is because I am such a
reader and really connected to the visualizations.

The use of stories and math is wonderful! A math lesson is taught but also as in Wolf Gets
Hurt, an underlying message is relayed! Clever!

I loved the moral of the story and I think the best thing a teacher can do is just create interest
so the child wants to find out more for themselves.

Wolf gets hurt: Having a dialogue was helpful because as the three little pigs verbalize their
plan and rationale, its easier to understand the thought process that got them to the final
solution. When the three little pigs try out a few ideas that do not work, it also demonstrates
that it’s ok to try out some ideas; they may not work the first time, but if you keep trying
you will likely find the solution.

The story was amazing it really helped bring it all together!

For these teacher candidates the stories were as source of motivation: “I wanted
to watch to the end,” “keep me focused,” “really connected.” Mathematics was cast
as the “message,” “the moral of the story”, and “the thought processes” of the story
characters.

Visceral Sensations

Good movies help you experience visceral sensations (such as beauty, fear, disgust,
and lust). In the Mathematics for Teachers course, teacher candidates had numerous
opportunities (through their hands-on explorations, discussions, interactive anima-
tions, and teacher interviews) to experience a sense of mathematics pattern and fit,
which give a sense of mathematical beauty.

In movies, visceral sensations are enhanced by the movie soundtrack. Music
was also present in the course, through songs from young students and from fellow
classmates (see Fig. 7).

That was amazing!! Definitely turns math into a more active and enjoyable subject,
especially for students who are intimidated with numbers.

Thank you so much!
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Infinity in my Hand

Shade a square One-half 
then a quarter
An eighth and a sixteenth
On and on forever
What’s the sum of the parts?
My fractions get smaller
Yet still continue on and on
Can I hold it in my hand?

Infinity is pretty
intangible to me
Annoyingly elusive 
and abstract
Something monstrous
or unreachable
I feel unsure, frustrated, overwhelmed
But I enjoy
that it makes me think
Think outside the box

An infinite number of fractions
Can fit in my hand
If I display them
As part of a whole

Cut an apple in half
Then the half in half
And the half in half in half
On and on and on
You get apple juice or mush
Eureka, it still fits in your hand

I am far less intimidated now
Infinity does not have to be large
It can be tiny and small
Wow, what a great exercise
I completely changed
How I look at infinity

It’s kind of cool
A very odd pleasure
To physically do something that 
Seems mathematically impossible
To hold infinity 
in the palm of my hand

An infinite number of fractions
Can fit in my hand
If I display them
As part of a whole

Fig. 7 Lyrics of the song “Infinity in my hand”

I also really enjoyed the songs; I’m a big GreenDay fan, loved the melody choice ;)

I also learned that good math songs will really help when it’s time to take a test! I can’t get
the “making 12” song out of my head now - haha.

In addition, the instructor composed songs that he used to summarize teacher
candidate learning, where the songs used as much as possible actual comments made
in course discussions.

Whooaa! This is real cool! all the songs act like a summation to the discussions.

What Did You Do in Math Today?

In this chapter we looked at online mathematics learning for teachers through the
four affordances of new media: democratization, multimodality, collaboration and
performance. All of these affordances enable us to better connect and communicate
with one another in educational settings. It is interesting that mathematics, perhaps
more so than other school subjects, has traditionally been a subject that people
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do not talk about outside of classroom settings. However, we have demonstrated
through the case of the Mathematics for Teachers course that this does not have
to be the case. Mathematics, even mathematics that traditionally has been seen as
abstract or inaccessible, can be talked about in ways that can engage not only adults
but also young children.

After doing the activities and watching the videos I learned that it is possible to explain the
concept of infinity to everybody.

I guess I was initially thinking that it would be an impossible concept to explain clearly
since it doesn’t have a beginning or an end but now I see how it is possible.

In fact, many of the teacher candidates in the course did discuss the mathematics
of the course with family, friends and colleagues.

My son and I worked on some of the activities together, and math is becoming something
fun for me.

After debating with my husband about whether or not you can *actually* hold infinity, I am
convinced that indeed you can.

One of my kids walked by and asked if it was the bare naked ladies I was listening to. This
has all been ridiculously fun to follow.

The affordances of new media do, in many ways, help us rethink and disrupt our
existing views of mathematics (for teachers and for students) and of how it might
be taught and learned, by (1) blurring teacher/student distinctions and crossing
hierarchical curriculum boundaries; (2) communicating mathematics in multimodal
ways; (3) seeing mathematics as a collaborative enterprise; and (4) helping us learn
how to relate good math stories to classmates and family when asked “What did you
do in math today?”

Looking Ahead

It is important to reiterate that our goal in this case study is not to prove a
causal link between the affordances of new media and the design of the Math-
ematics for Teachers course. Rather, the affordances of new media are used as
an analytical lens to better understand how new media affordances may be seen
to be manifested or mirrored in our pedagogical choices and teacher candidate
interactions in the course. At the same time, the case study is a glimpse of what-
might-be in mathematics for teachers courses in a new media setting, especially
in helping transform mathematics as a subject that can be discussed with family
and friends as one might for a good movie or a favourite book. What needs to
be noticed here is that such a transformation of mathematics can be facilitated
through the affordances of new media. As such, our case study serves as an
artefact for discussion and critique and as a starting point for designing similar or
alternative course offerings in online settings. In our work, we continue to develop
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a capacity for democratization, multimodality, collaboration and performance in
mathematics education, for teachers and for students. One example of this is the
www.researchideas.ca website, where in collaboration with project schools we are
creating multimodal and performative documentaries of how the “content” of our
Mathematics-for-Teachers courses has been used in elementary school classrooms.
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Web-Based Video Clips: A Supplemental
Resource for Supporting Pre-service
Elementary Mathematics Teachers

Ann LeSage

Abstract Teacher understanding and confidence with rational numbers are
important factors contributing to student success with this foundational concept.
The challenge facing many Ontario elementary mathematics teacher educators is
finding the time, within a 1-year teacher education program, to provide opportunities
for elementary pre-service teachers to re-learn rational number concepts in ways
they are required to teach. In an effort to address this challenge, web-based video
clips were created as an accessible learning resource to support the needs of pre-
service elementary teachers. This chapter describes how and why the videos were
incorporated into the program and describes the reflections of elementary pre-
service teachers after viewing selected videos. The reflections reveal the influence
of web-based videos on pre-service teachers’ perceived understanding of and
confidence with rational numbers.

Keywords Elementary mathematics teacher education • Knowledge for teaching
mathematics • Rational number understanding • Web-based videos • Teacher
efficacy • Instructional design

Introduction

Effective mathematics instruction is based on mathematical and pedagogical knowledge
and understanding of students’ mathematical development (Ontario Ministry of Education,
2011, p. 6).
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Inherent to this statement is the presumed breadth and depth of teachers’
mathematical content and pedagogical content knowledge. Research highlights a
significant relationship between student achievement and teachers’ understanding
of the mathematics they teach (Burton, Daane, & Giesen, 2008; Hill, Rowan,
& Ball, 2005; Ma, 1999). More specifically, two seminal studies on the effect
of teacher mathematical knowledge on student achievement conclude that the
combined influence of teachers’ mathematical content knowledge and pedagogical
content knowledge more strongly correlate with student achievement than any
other moderating factor, including socioeconomic and language status (Darling-
Hammond, 2000; Hill et al., 2005).

Given this assertion, faculties of education are obliged to modify the structure and
content of their programs to provide prospective elementary teachers opportunities
to re-learn mathematics in ways they are required to teach. Regrettably, this mandate
is particularly challenging for Ontario elementary mathematics teacher educators as
instructional time devoted to mathematics methods courses is generally restricted to
36-h (18 h per semester). Consequently, with limited face-to-face instructional time,
many pre-service teachers become frustrated and more anxious as they struggle to
re-learn mathematics in new ways.

In an effort to address these issues, the author, an elementary mathematics teacher
educator, designed a technology-enhanced elective course to support pre-service
teachers’ understanding of mathematics content and nurture their confidence as
elementary mathematics teachers. The Math4Teachers course was introduced as
an elective offered in the first semester of the program (9 weeks � 2 h/week). In
addition to the technologies utilized during the face-to-face component of the course
(e.g., interactive whiteboard, virtual manipulatives, interactive applets/software),
web-based video clips were created as virtual resources to support learning beyond
the physical classroom environment.

This chapter describes how and why web-based videos were integrated into
the structure and content of a face-to-face elementary mathematics course. More
specifically, the chapter summarizes the current literature on teaching and learning
mathematics as well as integrating technology in teacher education; it describes how
the web-based video clips (WBVCs) were incorporated into the course; conveys the
reflections of pre-service teachers on the perceived impact of the videos on their
understanding of and confidence with mathematics; and outlines some of the issues
and implications of incorporating WBVCs into an elementary pre-service program.

Literature Review

Four bodies of literature were influential in guiding the development of the course
and the WBVCs: knowledge for teaching mathematics, knowledge of rational num-
bers, web-based learning tools, and integrating digital video in teacher education.
Analysis of the literature provides the theoretical lens for modifying the course
structure and designing the web-based video clips (WBVCs).
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Knowledge for Teaching Elementary Mathematics

Research highlights a direct correlation between student achievement in mathe-
matics and their teachers’ understanding of the mathematics content they teach
(Burton et al., 2008; Hill et al., 2005; Ma, 1999; Schmidt, Houang, & Cogan, 2002).
Although this connection seems self-evident, the paucity of empirical evidence on
effective ways to develop knowledge for teaching mathematics has been highlighted
in recent research (Berk & Hiebert, 2009; Burton et al., 2008; Hill & Ball, 2009;
Kilpatrick, Swafford, & Findell, 2001). One explanation for the scarcity of this
empirical research may be the lack of consensus on the nature and depth of
knowledge required for teaching mathematics. Initially, Shulman (1986) described
the knowledge required for teaching as the interconnection between subject-matter
knowledge, pedagogical content knowledge and curricular knowledge. Yet, a decade
later, Schifter (1998) bemoaned the absence of research on this topic. She urged re-
searchers and mathematics teacher educators to pursue the question: “What kinds of
understandings are required of teachers working to enact the new pedagogy?” (p. 57)

Since Schifter’s (1998) call for research, the breadth and depth of teachers’
mathematical knowledge has been explored largely by Ball and her colleagues
(Ball, Hill, & Bass, 2005; Ball, Thames, & Phelps, 2004; Hill et al., 2008; Hill &
Ball, 2009; Hill, Schilling, & Ball, 2004; Hill et al., 2005). Ball and her colleagues
have focused on a complex dimension of teacher knowledge, namely, mathematical
knowledge for teaching. At the core of mathematical knowledge for teaching is a
deep understanding of mathematics content. Specifically, mathematical knowledge
for teaching assumes an understanding of “common” mathematics knowledge,
which is the content knowledge “that any well-educated adult should have” (Ball
et al., 2005, p. 22). Unfortunately, many elementary teachers lack this common
knowledge and, therefore do not have the foundation to build their mathematical
knowledge for teaching.

The collective effect of insufficient content knowledge and high levels of
mathematics anxiety can overwhelm novice teachers as they begin their careers as
elementary mathematics educators. Thus, the impetus for designing the WBVCs
were two-fold: to foster an affinity for mathematics such that pre-service teachers
can engage their students and get them excited about mathematics; and to contribute
to the research on how to nurture pre-service elementary teachers’ mathematical
knowledge for teaching, and their efficacy as mathematics teachers and learners.

Knowledge of Rational Numbers

In decomposing the depth of content knowledge required for teaching elementary
mathematics it becomes apparent that an understanding of rational numbers is
central in the upper elementary curriculum (e.g. Grades 4–6). Gersten et al.
(2009) acknowledge this content focus in their report on interventions that best
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support students struggling with mathematics. Specifically, the authors make five
recommendations, of which one includes focusing “intensely on in-depth treatment
of rational numbers in grades 4 through 8” (p. 18). Gersten et al. advocate focusing
the curriculum content on “understanding the meaning of fractions, decimals, ratios,
and percents, using visual representations, and solving problems with fractions,
decimals, ratios, and percents” (p. 19).

Nurturing students’ understanding of rational numbers is often deemed one
of the most challenging aspects of teaching elementary mathematics (Gould,
Outhred, & Mitchelmore, 2006; Li & Kulm, 2008). This pedagogical challenge is
complicated by teachers’ own conceptual misunderstandings of rational numbers
(Hill et al., 2005; Jones Newton, 2009; Li & Kulm, 2008; Ma, 1999; McLeman &
Cavell, 2009). Regrettably, teachers’ misunderstandings inevitably lead to students’
misunderstandings; which often follow children into adulthood (Lipkus, Samsa, &
Rimer, 2001; Reyna & Brainerd, 2007) and further intensify should these adults
pursue careers as elementary teachers (Ball et al., 2005; Ma, 1999; Menon, 2008;
Yeping, 2008).

In spite of this pessimistic perspective, research also reveals that it may be
possible to disrupt this cycle of conceptual misunderstanding by targeting teacher
education. For example, Siegler et al. (2010) conducted an extensive review of
research published over the past 20 years on the effects of instructional interventions
on student understanding of rational numbers. The authors put forth five recommen-
dations, of which one recommendation recognized the significant impact of teacher
knowledge on student learning. Specifically, Siegler et al., believe it is critical for
preservice teacher education and professional development programs to “place a
high priority on improving teachers’ understanding of fractions and of how to teach
them” (p. 42).

As a mathematics teacher educator, I embrace this recommendation by providing
opportunities for pre-service elementary teachers to re-form their mathematics
content knowledge and re-learn mathematics in ways they are required to teach. To
this end, the instructional design of the Math4Teachers elective course and WBVCs,
adhere to research rooted in effective teaching strategies that support students
struggling with mathematics and effective professional development models for
teachers of mathematics. Specifically, research highlights positive student achieve-
ment outcomes for mathematics interventions which: (1) combine manipulatives
and pictorial representations to model abstract concepts (Butler, Miller, Crehan,
Babbitt, & Pierce, 2003; Siegler et al., 2010); (2) incorporate a mixed model
of instruction which blends principles of explicit instruction including teacher
modeling, guided practice, and corrective feedback (Baker, Gersten, & Lee, 2002;
Flores & Kaylor, 2007; Gersten et al., 2009; Kroesbergen & Van Luit, 2003); and
(3) feature ample time for discussion, including student-focused discussions which
provide alternative solution strategies expressed in students’ language (Grouws,
2004; Shellard, 2004).

A related body of research on effective professional development advocates
providing teachers with opportunities to develop their pedagogical content knowl-
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edge and deepen their conceptual understanding of mathematics through actively
engaging in the learning process (Hill, 2004; Manouchehri & Goodman, 2000;
Ross, 1999; Spillane, 2000). The NCTM Professional Teaching Standards (1991)
extends this recommendation stating that teacher education focus on “mathematical
concepts and procedures and the connections among them; : : : [as well as] multiple
representations of mathematical concepts and procedures” (p. 132). Consequently,
embedded in the Math4Teachers course design as well as the design of the WBVCs
are opportunities for pre-service teachers to do similar tasks as their students (Saxe,
Gearhart, & Nasir, 2001; Siegler et al., 2010), to explore multiple representations of
concepts to discuss the nature of the mathematics and mathematics pedagogy, and
to reflect on their learning experiences (Li & Kulm, 2008; Saxe et al., 2001; Tirosh,
2000).

Web-Based Learning Tools

Web-based learning tools (WBLTs), such as web-based video clips (WBVCs)
evolved from a need for accessible, affordable and flexible learning via the Internet
(Ally, 2004; Downes, 2004). WBLT are distinct from other digital resources in that
“instructional design theory : : : must play a large role in the application of WBLTs
if they are to succeed in facilitating learning” (Wiley, 2000, p. 9). Kay and Knaack’s
(2005) review of the WBLT literature, categorized the many WBLT definitions as
either technology-focused or learning-focused. They, in turn, defined WBLTs as
“reusable, interactive web-based tools that support the learning of specific concepts
by enhancing, amplifying, and guiding the cognitive processes of learners” (p. 231).
The WBVCs discussed in this paper adhere to Kay and Knaack’s definition of
WBLTs.

Given the ubiquitous computing environment at this lap-top university, the devel-
opment and use of WBLTs have been the focus of various research studies within our
Faculty of Education (Kay & Kletskin, 2010; Kay & Knaack, 2009a, 2009b; Kay,
Knaack, & Muirhead, 2009). Consequently, the design and implementation of the
WBVCs discussed in this chapter are grounded in sound theory and practice both in
the relevant literature and in other examples of implementation within the university.
For example, the WBVC format and design were guided by Kay and Knaack’s
(2007) findings on conditions that most benefit student learning via technology,
including student perceptions of the usefulness of the content, clear instructions,
and visual appeal.

Thus, the WBVCs described in this chapter are brief (2–3 min), easy to navigate,
have visual appeal and explore content considered useful to the end-user. More
importantly, the WBVCs begin to address the challenge of limited face-to-face
instructional time common in pre-service education programs.
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Digital Videos and Teacher Education

In 2000, the National Council of Teachers of Mathematics (NCTM) established
the Technology Principle as a component of their Principles and Standards of
School Mathematics The Principle states that the “existence, versatility, and power
of technology make it possible and necessary to re-examine what mathematics
students should learn as well as how they can best learn it” (p. 25). Consequently,
teachers need to re-examine how they might integrate technology into their existing
mathematics curriculum to meet the diverse needs of their students. Similarly,
teacher educators are obliged to prepare pre-service teachers for the task of guiding
students in exploring mathematics supported by technology.

A variety of technologies can be useful for exploring elementary school
mathematics, including: interactive whiteboards, interactive applets and software,
classroom response systems, virtual manipulatives, dynamic geometry tools (i.e.,
Geometer’s Sketchpad®), and exploratory data analysis software (i.e., TinkerPlots®

& Fathom®). These technologies not only provide multiple representations of
mathematical concepts; but they allow students to explore mathematics in more
dynamic ways.

Niess and Walker (2010) advocate integrating digital videos as another viable
technology tool. Specifically, they assert that digital videos provide “students with
a different and often more engaging way for communicating what they know
and understand” (p. 103). However, if teachers are to integrate digital videos into
their teaching practices; they need opportunities to explore learning through this
medium. Thus, the challenge for mathematics teacher educators is to restructure
courses to prepared teachers to effectively incorporate “digital videos in ways that
provide exciting, effective, and rigorous mathematics learning opportunities for K-
12 students” (Niess & Walker, p. 104).

Kellogg and Kersaint (2004) advocate restructuring pre-service elementary
mathematics methods courses to include videos which “help teachers examine
mathematics teaching and learning” (p. 25). For that reason, they incorporated
ready-made digital videos (i.e., accessible on the Internet) demonstrating reform-
oriented mathematics teaching into their mathematics methods courses. Kellogg
and Kersaint conclude that integrating these videos helped pre-service teachers
“ : : : appreciate alternatives to traditional methods for learning and presenting
mathematics ideas” (p. 32).

Although an appreciation for alternative pedagogies is important, teachers can
only provide “exciting, effective and rigorous mathematics learning opportunities
for their students” (Niess & Walker, 2010, p. 104) if they possess a deep conceptual
understanding of the mathematics they are expected to teach. Consequently, Gawlik
(2009) recommends developing digital video tutorials to support elementary pre-
service teachers’ understanding of mathematical concepts. Specifically, she asserts
that digital videos are a particularly valuable instructional tool for auditory or visual
learners. Furthermore, Gawlik concludes that the length of the videos, the inclusion
of step-by-step explanations and visual demonstrations were key components that
impacted students’ perceptions of the usefulness of the video tutorials.
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Given the extant research on the positive effects of integrating digital videos
into pre-service mathematics course, the videos described in this chapter extend the
research by focusing on the particular mathematics concept of rational numbers.
More specifically, the videos described in this chapter were designed to meet
the needs of pre-service elementary teachers who lack the capacity to identify,
understand and engage in the mathematics they are required to teach.

In the subsequent section I describe how current research informed the devel-
opment of the video clips, and explain how the videos were incorporated into the
pre-service mathematics program.

From Theory to Practice

In August 2009, a technology-enhanced elective course, titled Math4Teachers,
was introduced to provide additional support for elementary pre-service teachers
struggling with the mathematics they were expected to teach. However, as the course
ended (November 2009), many of the teachers requested additional resources be
provided that would support their continued development as elementary mathemat-
ics teachers. Consequently, the WBVCs evolved in an effort to provide this support
in the most cost-effective manner.

Development of the WBVCs began in April 2010 with the intent of providing
targeted instruction on specific mathematics concepts deemed problematic for
elementary teachers. Previous research confirmed my experiences as an educator
of elementary pre-service teachers; that strengthening teachers’ conceptual under-
standing of rational numbers was critical (Hill et al., 2005; Jones Newton, 2009; Li
& Kulm, 2008; Ma, 1999; McLeman & Cavell, 2009; Newton, 2008). Beyond the
content focus, previous research on web-based learning objects (Kay & Knaack,
2007; Lim, Lee, & Richards, 2006; Wiley, 2000) and online videos in teacher
education (Gawlik, 2009; Kellogg & Kersaint, 2004; Niess & Walker, 2010) guided
the design of the video clips; while research on instructional practices supporting
students struggling in mathematics guided the pedagogical focus (Baker et al., 2002;
Butler et al. 2003; Gersten et al., 2004, 2009; Kroesbergen & Van Luit, 2003; Siegler
et al., 2010). Consequently, each 2–4 min video explicitly demonstrates one aspect
in an instructional sequence supporting the progressive development of rational
number understanding.

Instructional Sequence D Developmental Continuum

The initial WBVC instructional sequence was modeled on three principal resources:
(i) grade level curriculum expectations from the Ontario Mathematics Curriculum,
Grades 1–8 (Ontario Ministry of Education, 2005); (ii) research by Moss and
Case (1999) on teaching rational numbers; and (iii) Professional Resources and
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Instruction for Mathematics Educators, PRIME, an empirically validated teaching
resource (Small, McDougall, Ross, & Ben Jaafar, 2006) which supports the
progressive development of mathematical understanding.

In particular, the Canadian developed resource PRIME, details a continuum of
developmental phases that students’ progress through as they develop conceptual
understandings in mathematics. PRIME also describes appropriate instructional
strategies to support students’ movement along the learning continuum (Small,
2005a, 2005b, 2005c). The earlier work of Canadian researchers, Moss and Case
(1999), also highlighted the significance of exploring rational numbers in a specific
teaching – learning sequence. Moss and Case advocate for teaching fractions and
decimals using a lesson sequence which builds on students’ understanding of bench-
mark percentages. Thus, their lesson sequence begins with visual representations of
benchmark percentages, and then progresses to connecting percentage to decimal
representations and finally connecting decimals to fractional representations.

In knowing that the WBVCs would not be viewed by pre-service teachers until
they had completed at least 2 weeks of the Math4Teachers elective course, initial
explorations of rational numbers began in a face-to-face environment. Thus, prior to
viewing the WBVCs, pre-service teachers were introduced to benchmark numbers,
including percentage values which could be represented using concrete or virtual
manipulatives (e.g., 10 � 10 Geoboards, Base Ten Blocks, and money). By limiting
exploration of percentages to only those that can be represented as terminating
decimals (e.g., 25, 50, 90%, etc.), it ensures that each quantity can easily be modeled
concretely. Consequently, the learner associates a visual model or concrete represen-
tation to an abstract concept. The face-to-face instructional sequence transitioned
from representing benchmark percentages to concrete representations of decimals
using the same virtual and concrete manipulatives (e.g., 10 � 10 Geoboards, Base
Ten Blocks, and money).

Approximately half of the face-to-face instructional time (�10 h) was allocated
to representing, comparing and decomposing decimals using manipulatives; and
then connecting the concrete models to pictorial representations; and finally, to
the abstract representation. The balance of the face-to-face instructional time was
dedicated to the exploration of fractions. The subsequent fraction lessons progressed
from representing tenths and hundredths using area models (e.g., Geoboards, Base
Ten Blocks) to representing and comparing unit fractions and then simple fractions
using area models (e.g., Geoboards, Tangrams, pattern blocks) and measured
models (e.g., fraction strips, linking cubes, Cuisenaire Rods™). The face-to-face
instructional sequence concluded with an introduction to addition and subtraction
of fractions by extending the comparison of fractions lessons. For example, pre-
service teachers were asked to use fraction strips to compare 1/2 and 1/3. Next, they
were asked: “Which fraction is greater?” followed by “How much greater?” By
creating a concrete or virtual model, the pre-service teachers were able to visualize
the missing 1/6 fraction piece and then create an addition and subtraction sentence
based on the concrete representation.

The face-to-face instructional sequence was used to create the parallel series of
WBVCs. Consequently, the specific pedagogical sequence of the videos reinforces
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the progressive development of rational number understanding. Although the
WBVCs’ instructional sequence evolved from current research and my experiences
teaching the concepts face-to-face; as the videos were created it became apparent
that the sequence required refinement. Thus, multiple video clips were often
necessary to demonstrate the micro-components within a single concept and ensure
each video was within the 2–4 min time frame. Moreover, it was important to
“ : : : attend to potential cognitive overload caused by too much information being
presented too quickly” (Bell & Bull, 2010, p. 2).

For example, the Using Geoboards to Represent Decimals video explores
fraction and decimal representations to tenths and hundredths. However, upon
creating the original version of this video clip, it became apparent that additional
videos were required to introduce basic decimal vocabulary, and represent decimals
to tenths and hundredths individually prior to representing them in a single WBVC.
Additional video clips are currently under construction to address other conceptual
gaps within the existing instructional sequence.

The next section summarizes the WBVCs pre-service teachers viewed for this
research project, and illustrates a sample instruction sequence modeled on the video
clips.

Development of the WBVCs

Development of the WBVCs began in April 2010 with the intent of providing
targeted instruction on specific mathematics concepts deemed problematic for
elementary teachers. The following WBVCs were viewed by pre-service teachers
participating in this study:

• Decimal Vocabulary (4:55 min)
• Comparing Decimals (5:32 min)
• Exploring Tenths (3:24 min)
• Exploring Hundredth using Geoboards (2:55 min)
• Using Geoboards to Represent Decimals (3:28 min)
• Representing Fractions: Area Model (3:41 min)
• Representing Fractions: Measured Model (3:05 min)
• Representing Fractions: Set Model (3:26 min)
• Representing Mixed Fractions: Area Model (2:21 min)
• Representing Mixed Fractions: Measured Model (2:13 min)

The WBVCs posted online represent the first phase of a longer term research
project (available at http://lesage.blogs.uoit.ca/?page id=30). The clips are inten-
tionally designed to build on the pre-service teachers’ strengths, existing knowledge,
and learning needs. The video clips allow for some user interaction by allowing the
user to control the speed at which s/he views the demonstration (e.g., play, pause,
stop, fast-forward and rewind). However, the long term goal is to expand the format
of each WBVC to include: interactive tasks, extension problems, and an on-line

http://lesage.blogs.uoit.ca/?page_id=30
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self-assessment. That said, Bell and Bull (2010) acknowledge that “evidence is still
evolving regarding the types of video and associated pedagogical methods that are
most effective for teaching specific curricular topics” (p. 4).

Although the video clips to date include only instructor demonstration through
guided discovery, the mathematics content within each clip is supported by current
research on scaffolding rational number understanding (Moss & Case, 1999; Small,
2005a, 2005b, 2005c). The instructor guides the user through a series of tasks as she
demonstrates the connection between the abstract concept (e.g., decimal numbers)
and the concrete representation (e.g., Geoboard).

For illustrative purposes, the details of one WBVC are described here:

The WBVC on Using Geoboards to Represent Decimals is a 3:28 min video clip
modelling how a 10 � 10 Geoboard can be used to represent decimal equivalents.
The previous clips in this developmental video sequence demonstrate represent-
ing simpler decimal numbers, including decimals to the tenth and hundredth
place value. Consequently, if the user views the clips in the sequence they are
posted, the clips should extend the user’s existing knowledge incrementally.

Three primary components of the instructional sequence demonstrated in this
WBVC are highlighted in Table 1 including screen shots supplemented by a
summary of the instructor’s explanations.

Methodology

The goal of this qualitative study is to describe the experiences of elementary pre-
service teachers in their journey toward understanding rational numbers assisted by
online digital videos. The research participants are 40 elementary pre-service teach-
ers who completed the Math4Teachers elective course from August to November
2010. The participants are a purposive sample of pre-service teachers who agreed to
participate in the study.

The dual purpose of this study is to describe the experience of using WBVCs
as a tool for developing rational number understanding; and to evaluate the efficacy
of the WBVCs as established by pre-service teachers’ perceptions of cognitive and
affective gains.

Data Collection

“Qualitative research uses narrative, descriptive approaches to data collection to un-
derstand the way things are and what it means from the perspectives of the research
participants,” (Mills, 2003, p. 4). The qualitative data collection instruments include:
narrative reflections from two homework assignments completed during the course;
voluntary post-course feedback concerning the value of the WBVCs; and the official
course evaluations completed at the end of the term.
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The homework reflections required pre-service teachers to view the five Repre-
senting Decimals WBVCs (total viewing time of the 5 WBVCs D 20:14 min), and
then provide a descriptive reflection of their significant learning and their enduring
questions. At the end of the term, 40 of the 57 pre-service teachers voluntarily re-
submit their reflective assignments and provided post-course feedback on the value
of the WBVCs to be used for research purposes.

Data Analysis

Given the purpose of the study is to describe the phenomenon of using WBVCs as
learning tools; qualitative content analysis was used to analyse the collected data.
All data were transcribed into the qualitative data analysis program, ATLAS.ti™,
which was used to process the data, create codes, and analyze and interpret codes by
searching for common words, phrases, themes and patterns. ATLAS.ti™ provided
an exploratory approach through which to build complex queries, and begin to
develop a comprehensive understanding of the data.

Data analysis began by creating first level codes generated from extent literature
on: knowledge for teaching mathematics; knowledge of rational numbers; and
digital videos in teacher education. The first level codes were then entered into
ATLAS.ti™. Next, all data were read repeatedly to achieve immersion and obtain a
sense of the whole (Tesch, 1990). Each document in ATLAS.ti™ was then reviewed,
both line by line and as paragraphs or chunks of information. As relevant data was
encountered, the text was highlighted, creating a quotation to which a code was
attached. Each quotation was automatically identified by ATLAS.ti™ and assigned
a display name based on the document number, the location of the quotation within
the document, the line numbers of the quotation and its first 20 letters. For example,
“2:13 (100:101) I did not know that we had to : : : ” identifies the quotation from
Document #2, the 13th quotation within that document which is located from line
100 to line 101. A code is then attached to the quotation using either open coding
(the researcher creates the code name) or in-vivo coding (the quotation text acts as
the code name).

As this process continued, codes were added, merged, and removed as new
insights emerged from the data (Miles & Huberman, 1994). Codes were then
organized into categories based on how they were related “to one another in
coherent, study-important ways” (Miles & Huberman, p. 62).

The selection of quotations and coding procedures denote the beginning of the
interpretation phase. Through the coding process I developed initial interpretations
and identified themes and patterns as they emerged from the data. Thus, as I began to
analyze the data, I had created memos and anecdotal notes highlighting patterns that
had become apparent during coding. These interpretations of the descriptive codes
marked the initial stages in the development of pattern-based themes from the data.
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Summary of Findings

It is through interpretation that raw data evolves into organized information allowing
themes to emerge and inferences to develop. In this section, I present the themes that
evolved from the data analysis and describe the 40 participants’ experiences using
web-based video clips with examples from their narratives to illustrate the responses
of the group.

Based on the analyses of the participants’ experiences viewing and reflecting
upon the five Representing Decimals WBVCs, the following three shared themes
emerged which describe the perceived impact of the videos on the participants’
understanding of and confidence with mathematics:

• Development of rational number understandingC self-efficacy;
• Development of pedagogical content knowledge C teacher efficacy; and
• Considerations for instruction design of WBVCs.

Each of the three themes is described in detail as follows:

Development of Rational Number
Understanding C Self-Efficacy

The majority (n D 34; 85%) of the pre-service elementary teachers indicated the
WBVCs influenced their understanding of rational numbers. Specifically, 21 of the
participants indicated that the WBVCs served as a “refresher” of previously “for-
gotten or never really understood” knowledge; while the remaining 13 participants
indicated that the videos presented new information that they had not previously
known or had misunderstood.

Within this theme, three sub-themes emerged highlighting specific domains
participants identified as significant in supporting their understanding of rational
numbers. These included: vocabulary of decimal numbers, comparing decimal
quantities, and face value versus place value of decimal numbers.

Vocabulary of Decimal Numbers

The majority (n D 31; 78%) of the participants identified learning new vocabulary
specific to decimal numbers as an outcome of viewing the 5 min “Decimal
Vocabulary” video. In particular, participants misunderstood that the word “and”
denotes a decimal; while the term “point” should not be used when naming a
decimal (i.e., 3.2 should be read as “three and two-tenths” not “three point two”).
Additionally, participants indicated that, prior to viewing the video, they did not
realize that the place value of the digit furthest to the right dictates the name of a
decimal number (i.e., 3.04 is read “three and four hundredths” because the place
value of the 4 indicates hundredths).
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Comparing Decimal Quantities

Although a half of the participants (n D 20) viewed the 5 min “Comparing Deci-
mals” video; most of them (n D 14) focused their attention simply on the vocabulary
of the decimal numbers as opposed to the concept of decimal equivalence. The
principal focus of the video clip was to illustrate how one might think about the
comparison between two equivalent decimal numbers: 0.2 and 0.20. However, most
participants (n D 14) seemed to focus their attention on what they had just learned
in the “Decimal Vocabulary” clip viewed previously.

As an example, one participant explained, “I would have pronounced these two
numbers the same, not counting the zero. Now I have learned the proper way is
pronouncing the second number as twenty-hundredths.”

Although many of the participants acquired a rudimentary understanding of
decimal comparisons, other participants (n D 6) were able to assimilate their
previous knowledge of rational numbers to construct new understandings of the
relationship between fractions, decimals and visual representations. As an example,
one participant explained,

[The video] helped me understand fractions as well as decimals. The part of clip on 0.20
and 0.2 being hundredths and tenths finally made sense to me. I always knew this, but I
don’t think that I really understood why.

Similarly, another participant highlighted a similar learning outcome based on
the inclusion of a concrete model to represent the decimal numbers. She stated:

When I saw the clip on this, it was as if a light bulb went on in my head! I always knew that
0.20 and 0.2 were the same, but it really makes a difference when you can see that 0.20 is
twenty hundredths and 0.2 is two tenths on the Geoboard!

Face Value Versus Place Value of Decimal Numbers

Although only a few participants (n D 6; 15%) explicitly indicated that the videos
helped them rectify their place value misunderstandings; this sub-theme is con-
nected to the two previous sub-themes. For example, participants indicated that
in viewing the “Comparing Decimals” video, they now understood that “it is the
place value of the digits that matter not the number of digits.” Similarly, another
participant explained, “I thought 0.0948 was greater than 0.13. Unlike whole
numbers, it is not how many digits you have (i.e., 948 versus 13), but their place
value.”

While another participant described her feelings of empowerment based on her
newly-discovered understanding, stating:

I could never picture a number written to three decimal places because I always said
‘point four three two’ (0.432). I was hearing the ‘hundred’ and perhaps picturing the whole
number; so it was difficult to visualize a hundredth decimal number. I was really confused
about where the ‘thousandths’ came in. : : : [By watching the video, it] has now fused my
imagined numeral with the verbal and visual representations.
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Though the participants’ descriptions of their place value learning experiences
provide insight into the existing knowledge of pre-service elementary teachers; one
participant’s comment describes an undeveloped understanding of rational numbers.
Specifically, the participant stated, “I now know that the first position behind the
decimal is called ‘tenths’, I would have called it the ‘ones’ position.”

Although the majority of the participants (n D 34; 85%) indicated that the
WBVCs substantively influenced their understanding of rational numbers; only a
few participants (n D 7; 18%) explicitly cited influences on their mathematics self-
efficacy or improved confidence in their abilities to do mathematics. Participants
offered comments concerning their improved mathematics self-efficacy, making
statements such as; “After seeing these five short videos, I already feel more
confident in my understanding of decimals : : : ”

Finally, one participant’s comment is worthy of sharing as it illustrates the
potential impact of digital videos on pre-service teachers’ confidence and self-
efficacy:

I am really surprised at how well I am grasping decimals. I remember this as one of my
worst mathematics experiences; which usually ended in a lot of tears. But, watching the
clips and using the manipulatives just made something click.

Development of Pedagogical Content Knowledge
C Teacher Efficacy

Perhaps not surprising, all 40 of the study participants indicated that the WBVCs
influenced their understanding of how to teach rational numbers. However, the
purpose of the WBVCs was to provide explicit, teacher directed, just-in-time
instruction on concepts deemed difficult for students struggling with mathematics.
Thus, although the sequence of five Representing Decimals WBVCs is developmen-
tally appropriate, illustrates decimal numbers using various manipulatives (e.g., Ten
frames, Base-Ten Blocks, Geoboards), and demonstrates multiple representations of
rational numbers (e.g., visual, verbal and symbolic); the WBVCs are not exemplary
models of reform oriented mathematics teaching practices. Unfortunately, some
participants (n D 8; 20%) extrapolated the explicit instruction model demonstrated
in the videos as an example of exemplary classroom practice.

As an example, one participant concluded, “I will definitely be applying these
video clips to teach my future students, as it made [the content] very clear and
straightforward”. Another participant commented, “I think that watching the videos
was a good reminder to speak slowly when explaining a topic to children.”

In spite of this unanticipated learning outcome, the majority of the pre-service
teachers (n D 32; 80%) seemed to have generalized beyond the explicit instruction
modeled in the WBVCs and gained new pedagogical insights into reform math-
ematics teaching practices. Specifically, participants emphasized the value of the
following:
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• encouraging multiple representations, including variability in the materials used
to explore the same concept;

• focusing instruction on progressive development of concepts by encouraging
concrete models, pictorial representations, verbal descriptions, and symbolic or
numeric representations;

• providing students with sufficient time to explore concepts using concrete
materials;

• utilizing diverse teaching strategies;
• incorporating technology (e.g., interactive whiteboard technology, virtual manip-

ulatives, WBVCs); and
• supporting continued professional development and access to on-line resources

(e.g., WBVCs).

As a final point, besides improved pedagogical content knowledge specific to
teaching decimal numbers, all 40 pre-service elementary teachers indicated that
the WBVCs influenced their teaching efficacy. The participants cited improved
confidence in how to teach rational numbers and integrate reform teaching strategies
into their classroom practice. As an example, one participant stated:

I now feel more confident in introducing decimals while paving the way for the young
learners to explore ways of interpreting and estimating decimals.

Considerations for the Instruction Design of WBVCs

In addition to the cognitive and affective outcomes described, the study participants
emphasized the significant influence of the WBVC design on the quality of their
learning experiences. Specifically, the participants highlighted the following instruc-
tional design components as contributing to their understanding of the concepts
presented in the WBVC:

• integration of the WBVCs into the Math4Teachers face-to-face course design;
• careful sequencing of the content presented in each WBVC (e.g., each clip

explores one component of a broader concept);
• clarity of the explanations including step-by-step explanations;
• combined use of visual models/virtual manipulativesC symbolic representation

(numbers) C clear verbal explanations;
• abbreviated viewing time (e.g., each clip was less than 5 min in length);
• slower pace than actual classroom lessons;
• ability to control the pace of the learning (e.g., pause to take notes, rewind to

review);
• the inclusion of practice questions; and
• the absence of judgement (e.g., pause or rewind the video as often as needed

without the judgement of others).
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Although the study participants deemed the WBVCs an effective tool for
improving their understanding of decimal numbers; there was a general consensus
that additional WBVCs are needed to support pre-service elementary teachers’
understanding of and confidence with rational numbers. The participants offered
the following ‘next-step’ suggestions which will be considered in subsequent stages
of this research project:

• provide additional examples of each concept within each WBVC;
• include additional manipulatives for representing decimals (e.g., money, rela-

tional rods, fraction strips);
• create additional practice questions for each WBVC;
• include sample classroom vignettes for some of the WBVCs;
• discuss common misconceptions associated with teaching and learning rational

numbers; and
• create WBVCs modelling ineffective teaching strategies for teaching rational

numbers.

Issues and Implications

The WBVCs discussed in this chapter were developed to address challenging
content areas; provide pre-service elementary teachers with accessible and flexible
learning opportunities; and offer additional support for previewing or reviewing
important concepts addressed during face-to-face instruction. These instructional
design considerations allow pre-service teachers more control over their learning
experiences. For elementary teachers with a history of negative mathematics
experiences; being in control of mathematics is a novel yet welcome change. Thus,
providing on-line resources which can be accessed in a “just-in-time” manner seems
to be a promising strategy for supporting the individual learning needs of pre-service
elementary teachers.

Although the WBVCs were positively received by the pre-service teachers in
this study, the process of designing and creating this supplemental resource was
an arduous task. When designing video clips to support pre-service mathematics
teachers, careful consideration must be paid not only to the instructional design of
the learning tool, but also to effectively supporting the development of pre-service
teachers’ pedagogical content knowledge and content knowledge of mathematics.

Consequently, video clips must model effective teaching strategies; such as,
using concrete and pictorial representations to model rational numbers. However,
similar to face-to-face instructional tasks, the video clip activities should also “help
teachers understand how the representations relate to the concepts being taught”
(Siegler et al., 2010, p. 44). Equally important is the careful sequencing of the
video clip content. Conceptual understanding of mathematics is incremental and
develops over a life-time of learning experiences. The specific sequence of the
knowledge and skills developed while progressing along the mathematical learning
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continuum warrant further research and consideration from an adult learning/pre-
service teacher education perspective.

The research described in this chapter marks a small step toward better un-
derstanding the specific program components and lesson sequence which may
contribute to the development of pre-service elementary teachers’ conceptual
understanding of rational numbers. However, the ultimate goal for this research is
to: (1) contribute to the collective body of research in determining the breadth and
depth of mathematical knowledge necessary for teaching elementary mathematics;
and (2) design effective, open-access learning tools, such as WBVCs, to support
pre-service teachers in developing this knowledge.
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Introduction

This chapter provides a global reflection on the various aspects of visual math-
ematics and cyberlearning emphasized by the contributing authors to this book.
More precisely, we use Activity Theory and Affordance Theory as lenses to deepen
our understanding of features and complexities of digital technology use in visual
mathematics and cyberlearning. Further, possible impact of digital technology tools
(Hoyles & Noss, 2009) on the mathematics teaching and learning in different
contexts, advances in research and practice, as well as unresolved issues and
prospective questions will be investigated.

The idea of using cross-theoretical analysis of teaching and learning mathematics
with technology in order to build a meta-conceptual view of the work already
accomplished in this area and to create a foundation for further steps is not new.
For instance, Artigue, Cerulli, Haspekian, and Maracci (2009) used this method
to address fragmentary character of existing theoretical approaches in the context
of the Technology Enhanced Learning in Mathematics (TELMA) project thus
establishing productive connections and complementarities. Based on the authors’
remark of the limitation of such approach regarding making common frameworks
easily accessible to researchers who do not share the same experience (Artigue et al.,
2009), we begin this chapter with a clarification of the terms visual mathematics and
cyberlearning.

Recent attention to cyberlearning has been fueled by the work of the National
Science Foundation (NSF) Task Force and its subsequent call through its Cyber-
learning: Transforming Education program (Montfort & Brown, 2012; NSF, 2011)
for further research. Based on their meta-analysis of the existing literature, the
Task Force defined cyberlearning as “ : : : the use of networked computing and
communications technologies to support learning” (Borgman, 2008, p. 5). Interest-
ingly, although the prefix “cyber” has become associated with computer technology,
the task force intended it to be used in its original sense: as a term “ : : : built
etymologically on the Greek term for ‘steering’” (NSF, 2011, p. 11). In other words,
although the focus of the NSF program was clearly on the networking technologies
that define the so-called Information Age (e.g., cloud computing, social media),
the report intentionally left the term “cyberlearning” open to refer to any form of
future technology that mediates (i.e., “steers”) the human interactions that are at the
heart of education, including human–computer and human–human interactions in
cyberspace. Thus, instead of attempting to name the newest technologically driven
advances in education, the task force aimed to create a term that would encapsulate
the way technology and education could be integrated, without specific reference to
or limitation by any particular innovation or even era. It is this inclusiveness inherent
in the term “cyberlearning” that also defines our approach to this field of study.

The use of the term ‘visual mathematics’ may refer to various concepts, like
fractals, to the topics related to vector geometry (see, for example, http://vismath.
tripod.com/) to the variety of representational tools, like diagrams, to aid the
exploration and visualization of ideas (Howse & Stapleton, 2008), or visualization

http://vismath.tripod.com/
http://vismath.tripod.com/
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and image processing (Laidlaw & Vilanova, 2012). Another view shared by a
number of researchers in mathematics education refers to the context of visual
learning and/or visual approaches to learning mathematics (Duval, 1999; Laborde,
2001; Presmeg, 2006; Zimmermann & Cunningham, 1991).

In this sense, it is meaningful to consider visual mathematics as a way to denote
the visual learning of mathematics, particularly in cyberlearning environments or
with computational tools. In its turn, cyberlearning, as such, reflects dramatic
changes of the ways people think, act, and learn in a digital era, especially those
who grew up with technology and belong to so-called Net Generation. In the next
section, we will examine these phenomena and their relationship to mathematics
education.

The New Generation of Learners: Visual and Cyber-Oriented

Berk (2010) defines N-Gen’ers as individuals born between 1982 and 2003
(˙2 years). The pervasiveness of digital media (e.g., the Internet, computers,
cell phones) in the lives of these youth is confirmed by statistical data from
numerous surveys (e.g., Ipsos-Reid, 2004; Junco & Mastrodicasa, 2007; Kaiser
Family Foundation, 2010; Weiss, 2003). In fact, recent literature suggests that
digital media and communication technologies have had a profound impact on the
learning styles and behaviours of today’s youth who prefer receiving information
quickly, are adept at processing information rapidly, prefer multitasking and non-
linear access to information, are kinesthetic, experiential, hands-on learners who
must be engaged with first-person learning, games, simulations, and role-playing.
They also rely heavily on communication technologies to access information and
to carry out social and professional interactions (Martinovic, Freiman, & Karadag,
2011; Ministry of Child and Youth Services [MCYS], 2012; Pletka, 2007; Veen &
Vrakking, 2006).

Other studies (Brown, 2005; Howe & Strauss, 2000; Oblinger & Oblinger, 2005)
portray the N-Gen’er student as a strong visual but usually weaker textual learner,
which may mean that N-Gen’ers’ thinking and learning processes are primarily
perceptual. According to a perceptual theory of knowledge, “perceptual experiences
[that come in different sensory modalities based on audition, vision, taste, smell,
touch, and movement] are directly stored in memory and can therefore form the
basis for visual thinking” (Reed, 2010, p. 6).

What kind of mathematical activities are suitable for this type of learners? For
instance, Rivera (2011) describes visual activities in mathematics as “informal and
experimental,” “intuitive,” “experiential,” and taking the form of “multiple paths,”
which coincides with how the literature describes the preferred learning activities
of N-Gen’ers who (a) favor informal learning in exploring a concept or a process
and therefore follow multiple paths in solving a problem, and (b) learn better when
they are able to perform their exploration experientially and intuitively (e.g., Brown,
2005; Rivera, 2011; Windham, 2005).
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The N-Gen’er does not limit his/her actions in cyberspace only to using
information; as an experiential learner, s/he learns by exploring and by doing, thus
taking opportunities to create new information (e.g., making movies in addition to
downloading them) (Barone, 2005). This type of learner is an excellent collaborator
and likes to work in groups (Gokhale, 2007; Veen & Vrakking, 2006), using a
variety of technical skills and competencies to personalize the digital world for
his/her needs. In view of such a learner’s characteristics, Pletka (2007) emphasizes
the benefits of providing multitasking, fast-paced, visually oriented environments in
which the N-Gen’er student can randomly access information in associative contexts
rather than in step-by-step, linear ways.

Virtual Tools to Support Cyberlearning

Here we briefly analyze some examples of Internet tools and environments used by
N-Gen’ers, particularly those tools and environments referred to in earlier chapters
in this book, to determine the kind of mathematical learning opportunities they
might generate.

Solomon and Schrum (2007) refer to the year 2000 as a turning point in the
evolution of the Internet with the development of a new Internet-based technology
called Web 2.0. They begin their timeline with 2000, when the number of web
sites stood at 20,000,000. The year 2001 was marked by the creation of Wikipedia
(see http://en.wikipedia.org/wiki/Main Page), the first online encyclopedia written
by everyone who wanted to contribute to the creation of shared knowledge. In 2003,
the site iTunes allowed for the creation and sharing of musical fragments. In 2004,
the Internet bookstore Amazon.com allowed people to buy books entirely online.
In 2005, the video-sharing site Youtube.com appeared, allowing for the production
and sharing of short video sequences.

The result of this tremendous growth of the Internet-based educational resources
and new socially oriented networked environments is that teachers have now
a choice of multitude Web 2.0 tools—such as blogs, wikis, and other social
software—to support the creation of ad hoc learning communities. Examples of
these tools and learning opportunities they generate are provided by our authors:

• wikis that are suitable for the collective writing of mathematics texts and for
sharing pictures and graphics (see the chapters in this book by Jones, Geraniou,
& Tiropanis, Chapter “Patterns of Collaboration: Towards Learning Mathematics
in the Era of the Semantic Web”; Çakır & Stahl, Chapter “The Integration of
Mathematics Discourse, Graphical Reasoning and Symbolic Expression by a
Virtual Math Team”; and Gadanidis & Namukasa, Chapter “New Media and
Online Mathematics Learning for Teachers”)

• videocasting that allows for the creation and sharing of video sequences (some
examples are given in this book in the chapter by LeSage, Chapter “Web-based
video clips: A supplemental resource for supporting pre-service elementary
mathematics teachers”)

http://en.wikipedia.org/wiki/Main_Page
http://dx.doi.org/10.1007/978-94-007-2321-4_1
http://dx.doi.org/10.1007/978-94-007-2321-4_3
http://dx.doi.org/10.1007/978-94-007-2321-4_7
http://dx.doi.org/10.1007/978-94-007-2321-4_8
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• math homework help sites that enable a student who is struggling with homework
to ask others for help (see the Math Forum site at http://mathforum.org/;
Martinovic, 2005, 2006, 2007; also in the chapters in this book by Jones et al.,
Chapter “Patterns of Collaboration: Towards Learning Mathematics in the Era
of the Semantic Web”; Alagic & Alagic, Chapter “Collaborative Mathematics
Learning in Online Environments”; Çakır & Stahl, Chapter “The Integration
of Mathematics Discourse, Graphical Reasoning and Symbolic Expression by
a Virtual Math Team”)

• blogs with their “journal” format that encourages students to keep a record of
their mathematical thinking over time, thus facilitating critical feedback from
teachers, peers, or a wider audience (see the chapters in this book by Jones et al.,
Chapter “Patterns of Collaboration: Towards Learning Mathematics in the Era
of the Semantic Web”; Alagic & Alagic, Chapter “Collaborative Mathematics
Learning in Online Environments”; and Gadanidis & Namukasa, Chapter “New
Media and Online Mathematics Learning for Teachers”).

Overall, then, cyberlearning opportunities encompass: (a) making connections
between individuals and groups working on challenging problems and engaging
in questioning and finding solutions (Freiman & Lirette-Pitre, 2009; Renninger &
Shumar, 2004); (b) helping students to gain a wide appreciation of mathematics
(Jones & Simons, 1999); (c) supporting in-depth explorations of mathematics
(Pallascio, 2003) that complement new opportunities for learning by means of tools
that reinforce cognitive development (Depover, Karsenti, & Komis, 2007; Rotigel &
Fello, 2004); and (d) collaborating online, which fosters initiative, creativity, critical
thinking, and the generation of new knowledge (Palloff & Pratt, 2007).

Digital Tools to Support Visual Learning of Mathematics

The role of visual learning in mathematics has been explored by mathematicians,
mathematics educators, and cognitive scientists (e.g., Arcavi, 2003; Barwise &
Etchemendy, 1991; Giaquinto, 2007; Goldenberg, 1991; Ozdemir, Ayvaz-Reis, &
Karadag, 2012; Reed, 2010; Rivera, 2011; Yerushalmy & Chazan, 2008; Zimmer-
mann & Cunningham, 1991). There is consensus among these authors that visual
learning in mathematics has been historically relatively less appreciated than the use
of linguistic methods and algebraic approaches for teaching/learning mathematics,
although these latter approaches may be overrated. Reed, for example, cautions
that “language is a marvelous tool for communication, but it is greatly overrated
as a tool for thought” (2010, p. 1). Zimmermann and Cunningham (1991) point
out that visualization in both doing and learning mathematics contributes to the
development of a deep and meaningful understanding of both mathematical ideas
and the relationships among mathematical concepts. Moreover, problem-solving can
be enhanced through visual exploration (Ozdemir et al. 2012).

Visualization as a cognitive tool to foster mathematical thinking and mathe-
matical understanding is analyzed by Karadag and McDougall (2011) and Rivera

http://mathforum.org/
http://dx.doi.org/10.1007/978-94-007-2321-4_1
http://dx.doi.org/10.1007/978-94-007-2321-4_2
http://dx.doi.org/10.1007/978-94-007-2321-4_3
http://dx.doi.org/10.1007/978-94-007-2321-4_1
http://dx.doi.org/10.1007/978-94-007-2321-4_2
http://dx.doi.org/10.1007/978-94-007-2321-4_7
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(2011). For Rivera, visual thinking in mathematics is not “static” as in “seeing
images or pictures for the sake of having a visual or sense experience in order to
make mathematics learning fun. It is, more importantly, a concept- or process-driven
seeing with the mind’s eye” (p. 36). Similarly, Karadag and McDougall (2011) put
forward that

[t]oday’s students are more familiar with visual learning because they learn [to use] many
new technologies such as computers, Internet, and cell phones visually. Therefore, it might
be very challenging for them to learn [mathematics through] symbolic algebra first. Rather,
they may better understand algebraic notations after they developed a visual understanding
of mathematical concepts. (p. 179)

The contributors to this book approach visual learning in a number of ways.
Gadanidis and Namukasa (Chapter “New Media and Online Mathematics Learning
for Teachers”) refer to the term “multimodality” for which the visual is but an
instance. According to these authors, the multimodal nature of the Internet supports
multiple modes of communication—speech, print, image, movement, gesture, and
sound—thus bringing about a qualitative change in how we teach and learn math-
ematics and presenting a broad range of possibilities of how mathematics can be
done. Taking another perspective, Radford (Chapter “Sensuous Cognition”) prefers
to use the term “sensuous” rather than a more restrictive term “visual cognition,”
and proposes that sensation is not only a biological way of understanding the world
around us, but is culturally and historically shaped and inseparable from thinking.

For Jones et al. (Chapter “Patterns of Collaboration: Towards Learning Mathe-
matics in the Era of the Semantic Web”), visual is a component of the micro-world
in which students learn. Their students used visual means and pictorial symbols in
a number of ways: (a) to visualize sub-tasks, stages of work, and required roles;
(b) to discuss algebraic generalizations and to receive feedback from the computer
environment (MiGen system); and (c) to visually compare their solutions during
collaboration.

LeSage (Chapter “Web-based video clips: A supplemental resource for support-
ing pre-service elementary mathematics teachers”) used online videos to provide
elementary pre-service teachers with additional visual support in gaining a con-
ceptual understanding of rational numbers. LeSage’s means of instruction were
especially beneficial for visual learners who could associate the visual model
presented in a video with an abstract mathematical concept.

Çakır and Stahl (Chapter “The Integration of Mathematics Discourse, Graphical
Reasoning and Symbolic Expression by a Virtual Math Team”) emphasize the visual
nature of their virtual learning space. Their learners moved seamlessly between
visual and linguistic practices, performed visual proofs, and used the visual display
of the whiteboard to achieve a shared understanding of mathematics.

For Güçler, Hegedus, Robidoux, and Jackiw (Chapter “Investigating the Math-
ematical Discourse of Young Learners Involved in Multi-Modal Mathematical
Investigations: The Case of Haptic Technologies”), the visual is an essential part
of the multimodality of the environment. The authors wanted their learners to
experience the mathematics of geometry in the same way as they experienced the 3D
world around them naturally. They accomplished this by using haptic devices that

http://dx.doi.org/10.1007/978-94-007-2321-4_7
http://dx.doi.org/10.1007/978-94-007-2321-4_6
http://dx.doi.org/10.1007/978-94-007-2321-4_1
http://dx.doi.org/10.1007/978-94-007-2321-4_8
http://dx.doi.org/10.1007/978-94-007-2321-4_3
http://dx.doi.org/10.1007/978-94-007-2321-4_4
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allowed for the concretization of abstract geometry concepts and through which
the visual once again became only one representation of geometry. Similar to
Radford’s position (Chapter “Sensuous Cognition”), the mathematics experience
offered by Güçler et al. (Chapter “Investigating the Mathematical Discourse of
Young Learners Involved in Multi-Modal Mathematical Investigations: The Case
of Haptic Technologies”) became sensuous, combining visual and kinesthetic
experiences in doing geometry.

Trninic and Abrahamson’s students (Chapter “Embodied Interaction as Designed
Mediation of Conceptual Performance”) adapted their body movements to keep the
computer screen green; to do so, both the student’s hands had to be positioned
properly to demonstrate a mathematical concept provided by the interviewer. This
visual feedback from the computer helped students to “discover a means of enacting
a green-keeping performance.” With the gradual inclusion of symbols on the screen,
such as crosshairs (to allow students to visualize the movement of their hands)
and a grid (first unlabeled and then labeled with numerals), the students developed
an embodied understanding of proportional mathematics and were able to move
towards a more articulate and normative mathematics performance.

In summary, the authors of the chapters in this book have pushed the boundaries
of our understanding of visual mathematics and visual learning by using existing
technological means (e.g., videos) in novel ways or by developing new technological
tools (e.g., online learning environments, haptic devices) for mathematics students.

Once the technological tools of different kind are applied, new questions arise
regarding their potential to support mathematics learning which we address in the
next section.

Digital Tools and How They “Steer” the Learning
of Mathematics

Celia Hoyles and Richard Noss (2009) posit four types of computational tools,
which have the potential to shape the formation of mathematical meanings in
specific ways as described in the following list (see Fig. 1):

1. Dynamic and interactive tools, which put the locus of control in the learner and
allow for the creation of accurate diagrams, which in turn help the learner both
to notice important relationships and to make conjectures.

2. Tools for outsourcing the processing power (such as calculators and computer
algebra software), which allow users to perform calculations that may be
complicated, lengthy, or beyond their current level of skill.

3. Representation tools, which allow for previously hard-to-grasp insights to be
made more obvious for the learners. Through the use of a specific semiotic
system, mathematics terms and concepts may be represented in new ways (e.g.,
how the introduction of Arabic numerals to replace Roman numerals helped to
turn multiplication into a basic skill). Similarly to the way the invention of the

http://dx.doi.org/10.1007/978-94-007-2321-4_6
http://dx.doi.org/10.1007/978-94-007-2321-4_4
http://dx.doi.org/10.1007/978-94-007-2321-4_5
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Fig. 1 Opportunities provided by the four types of computational tools, based on Hoyles and Noss
(2009)

Cartesian system helped to establish connections between geometry and algebra,
the new representations implemented here through computational tools allow for
new understandings to emerge.

4. Connectivity tools (synchronous or asynchronous), which provide for remote
communication and the exchange and/or collaborative development of mathe-
matical ideas.

A computational tool may belong to more than one of the above categories and
may be used for various, increasingly sophisticated purposes (e.g., a basic calculator
can be used to help with calculations; a more advanced model may have a graphical
display with different simultaneous representations; an even more advanced model
may be networked with other calculators and used for exchange of data). Given
both the complexities of learning/teaching situations and the rapid evolution in
computational tools, these changes in technology and their effect on mathematics
education are still to be grasped (Hoyles & Noss, 2009; Moreno-Armella, Hegedus,
& Kaput, 2008). Through the contributions of our authors, this book seeks to raise
questions about the potential of computational tools in relation to new ways of
learning to create an outcome that is collaborative, self-directed, democratic, co-
constructed, coordinated, multimodal, sensuous, and empowering.

In order to reflect globally on contributions regarding to our extended under-
standing on new ways of learning in both cyber- and visual aspects, we will use
the lenses of two theories (see Fig. 2): Activity Theory (AcT) (Leont’ev, 1978) and
Affordance Theory (AffT) (Gibson, 1979).

So as to increase our understanding of how two theories can work together to
explain complexity of visual mathematics and cyberlearning, we shall begin with a
brief overview of main ideas of each.
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Activity Theory Affordance Theory
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Affordances of
ComputationalTools

Activities Mediated with
Computational Tools

Fig. 2 Viewing the affordances of computational tools and the activities with computational tools
in visual mathematics and cyberlearning through the lenses of AcT and AffT

Overview of the Activity Theory

The Activity theory (AcT) was developed in the 1920s—some 25 years before
the first computers were created—by Soviet psychologists Vygotsky, Rubinshtein,
Leont’ev, and others. Starting from the Vygotskian idea of a mediated act (i.e.,
a person’s behavior in relation to his/her sociocultural environment), Leont’ev
conceptualized activity as being composed of three different units of analysis:
activity, actions, and operations. Then, in 1987, Engeström introduced the concept
of an activity system that included the components of community, division of labor,
and rules (Nunez, 2009).

Every activity has four major components: the subject, or the person doing
the activity; the object on which the activity is performed; the tool used during
the activity; and the activity’s goal/outcome. According to Bedny and Karwowski
(2007), the goal is the conscious, desired result of the subject’s own actions or
activity and is the cognitive component of the activity. An object may be physical,
symbolic, or visual, and is modified and transformed during the activity. Depending
on the character of the object, the performed actions could be practical/external or
mental/internal; Leont’ev (1978) called the object the “true motive” (p. 62) of the
activity.
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Fig. 3 Relationship between components during the mathematics learning activity

In class, the teacher usually sets up a task along with the conditions for the
task. The student is then expected to perform actions (often modeled by the same
teacher some time earlier in the process) that will ultimately lead to achieving the
educational goal: namely, making a qualitative change in the student. From this per-
spective, the teacher is the facilitator of the activity and creates—together with the
underlying pedagogy and class rules that s/he implements as well as his/her mathe-
matics content knowledge and the mathematics content knowledge of the student—
the conditions under which the activity is performed by the student (see Fig. 3).
Note that the central triad of activity consists of three elements: a Subject/Actor
(e.g., student), an Object/Motive (e.g., mathematical exercise, problem to solve) and
a Tool/Means/Mediating Artifact (according to Bellamy, 1996; e.g., software, radio,
pen and paper, language, computer). This triad is emphasized in the diagram, which
also contains additional nodes, according to Engeström’s (1987) model.

In Fig. 3 and in our interpretation, a Tool/Mediating Artifact (e.g., computing
software) is a tool that the student uses to act upon the Object (e.g., worksheet,
applet). The student can also use other mental tools to work on the object, which
is why there is also a direct connection between the student (i.e., Subject) and
the mathematical object (i.e., Object) in the diagram. The activity also takes place
in the context of the classroom or other rules (e.g., rules of the mathematics
task, mathematics discipline) with the teacher as facilitator of the activity and
with other students (if they are involved in the activity) (i.e., Community). The
teacher usually designs or suggests an activity with certain pedagogical goals in
mind (e.g., to motivate students, to help them learn). The student (Subject) $
teacher (Community) $ mathematical object (Object) triangle represents didactical
relationships in Brousseau’s (1997) sense. Both learner and teacher know their roles
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in didactic situations: the learner, to attempt to perform the task; the teacher, to set
the task and facilitate its realization. Other students participate in their own ways,
depending on the activity. All the concepts in the diagram (except for the Outcome)
are interconnected within a particular learning task. In the larger picture, all six
nodes in the diagram present key elements of the activity, thereby representing a
learning process and its consequent outcome (i.e., Outcome) that may be as general
as “understanding the difference between a function and its derivative” or more
task-related, as in “finding relations of a point on the graph of a function and the
function.”

The use of tools, including symbolic tools, is important in AcT (Bedny &
Karwowski, 2007). Tools do not have to be physical objects. They can be symbols,
signs, or images (e.g., according to Vygotsky (1962), language is a tool, too). Given
that tools are the means for action and that they play a transformative role, computer
software (e.g., spreadsheet and calculator programs) can also be considered a tool
for learning, teaching, and doing mathematics.

Based on Engeström (1999), AcT went through three substantial changes: (a)
from first being primarily concerned with the individual’s activity as mediated by
cultural artifacts (i.e., the subject/object/mediating-tool triangle), (b) to Engeström’s
(1987) model, which sought to present human activity in the context of the
larger activity system (i.e., the original triangle extended to include the elements
of community, rules, and division of labor), (c) to Engeström’s model, which
incorporates multiple activity systems and their connections, relationships, and
evolution.

AcT is especially central for those who work on developing, investigating, and
evaluating educational software because, as Jonassen and Rohrer-Murphy (1999)
state: “A fundamental assumption of activity theory is that tools mediate or alter
the nature of human activity and, when internalised, influence humans’ mental
development” (pp. 66–67). Thus, according to AcT, the alteration of the nature
of human activity caused by computer use may translate into specific mental
development of the user.

Actions in a digital environment depend on the student’s knowledge and skill,
the type of activity (i.e., individual or group, explorative or procedural), the
software used, and many more factors (including technological and socio-cultural).
In computer software, the environment for action is created with a purpose in mind
by the software developer. To better understand what such an environment offers
and how it can be acted upon, we now turn our attention to affordance theory.

Overview of the Affordance Theory

In 1966, American psychologist James Jerome Gibson developed the concept of
Affordance in which he posited that the perception of environment inevitably leads
to some course of action.
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According to Gibson (1979), we perceive objects in terms of the possibilities
for action they offer, or afford, us. Affordances, or clues in the environment that
indicate possibilities for action, are perceived in a direct, immediate way with
no sensory processing. While this view may be acceptable in the case of natural
affordances (i.e., those that emerge in the natural environment), which became
directly perceivable to humans through the evolution and adaptation of our species,
this view has been criticized when applied to artificial environments (e.g., buttons
on a keyboard for pushing, computer mouse for rolling, cursor for pointing, point
for dragging on the screen, software package, computer).

Bærentsen and Trettvik (2002) argue that the affordances of artificial forms
are nested in “the webs of social activities of praxis and : : : these webs are
in fact their objective basis” (p. 57). Affordances of such artificial forms are
culturally and historically embedded in our present environment (e.g., the size,
shape, placement, and features of the Windows ENTER and CTRL keys, which
are common to all keyboards). This point can be easily illustrated by observing the
convergence of the “feel and look” of software packages developed for different
purposes and even by different companies. Hammond (2010) defines affordance as
“the perception of a possibility of action (in the broad sense of thought as well as
physical activity) provided by properties of, in this case, the computer plus software.
These possibilities are shaped by past experience and context, may be conceptually
sophisticated, and may need to be signposted by peers and teachers” (p. 216).

Walsh (2012, The affordance landscape: The spatial metaphors of evolution,
personal communication) describes reciprocity between organisms and their affor-
dances as “co-constituting and ‘commingled’” (p. 15). He further specifies that a
goal and a purpose are necessary conditions for an affordance to exist. In fact, “an
affordance is an opportunity for, or an impediment to, the attainment of a goal”
(p. 15), so some affordances may well be negative (Akhras & Self, 2002; Brown,
Stillman, & Herbert, 2004; Gibson, 1979), such as the helpfulness of the teacher or
a peer that precludes a student from constructing his/her own learning. Akhras and
Self (2002), for example, propose that teachers need to be aware of the affordances
of the environment and need to determine which affordances may support or prevent
a student’s learning in a particular situation.

Putting the Two Theories Together

AcT has been used in the analysis of human–computer interactions since the 1990s
(Kaptelinin, 1996), while AffT helped to introduce the notion of affordance as
“critical for building a science of educational technology” (de Vries, 2003, p. 170).
However, although their terminology has become part of current educational jargon
(e.g., affordance, activity, tool, division of labor, learning community), the use of
these two theories in conjunction with each other is rare.

To rectify this oversight, we have looked for instances in this book where an
explicit connection between these two theories and between these theories and the
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teaching/learning of mathematics can be made. Finding these connections is also
important in terms of contributing to the theories themselves, which need to be
constantly challenged in light of contextual changes brought about by the advent
of new digital technologies. Or as Rückriem (2003) asks: “Is the current activity-
oriented concept of mediation, with its notions of tool, symbol, and artifact, still
sufficient for an adequate understanding of the societal and individual importance
of digital technology? Is it adequate to deal with the epistemological quality of a
‘leading medium’ as if it were just a material object or a tool : : : ?” (pp. 88–89). He
asks further: “Can activity theory and its methodology still be applied to a digitalized
reality?” (p. 91).

Here, Rückriem refers specifically to the evolution of the World Wide Web
(WWW) into Web 2.0, which in many ways removes the distinction between tool
and medium (i.e., one uses the WWW, but is also immersed in it), as well as
presenting an environment “in which the machines talk as much to each other
as humans talk to machines or other humans” (2003, p. 91). Although the AffT
was first posited when computers were already in use (i.e., in 1977), today’s more
sophisticated and pervasive digital environment poses questions pertaining to AffT
that remain to be answered, especially in terms of how to go beyond the perceptual
notion of a tool, as initiated by Gibson (i.e., affordances of a tool are perceived
directly), towards treating tools as social and cultural constructs (e.g., computers
as tools for writing, drawing, calculating, etc., are perceived as such through social
praxis; see Bærentsen & Trettvik, 2002; Hammond, 2010).

Our attempt to establish connections between two theories also fits in with
the foundations for mathematics education in the twenty-first century suggested
by Hegedus, Kaput, and Lesh (2007), which involve the symbiotic relationship
between technology/mathematics education and the tools themselves. On one hand,
there is the complexity of mathematics itself (e.g., the multiplicity of mathematical
domains; the relationship between pure and applied mathematics; the epistemic
dimensions within mathematics, such as the nature of mathematical objects and
their relationships, the different kinds of representations and languages, and the
forms and modes of justification and truth), which necessitates advances in both
technology and education.

On the other hand, the advances in the development of the technological tools
themselves provide opportunities for, and even require, new research into both
mathematics and education (see, for example, Presmeg, 2006; Rivera, 2011). These
advances in technology have, for example, added two major aspects to mathemat-
ics education: representational (e.g., dynamic geometry, programming languages,
spreadsheets, new forms of computer–human interaction), and communicational
(in terms of infrastructure: information systems, networks, computer devices; and
in terms of visible interaction: Internet, WWW, electronic documents exchange,
connectivity, social media) (Hegedus et al., 2007; see also Hoyles & Noss, 2009).

In other words, much as Rückriem (2003) does explicitly, Hegedus et al. (2007)
implicitly raise issues in both AcT and AffT, such as the concept of a tool or a
context. They note that the role of technology is gradually becoming “infrastruc-
tural,” such that “technology and tools co-constitute both the material upon which
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Fig. 4 Visualizing affordances in the context of activity

[individuals] operate and the conditions, particularly social conditions, within which
such operations occur” (Hegedus et al., 2007, p. 173; see also Hoyles & Noss, 2009).

At the same time, the focus of education research is shifting to the “affordances
of ubiquitous forms of technology in schools [e.g., representational and communica-
tional] and its impact and co-evolution on new forms of teaching, improved learning,
new curriculum and more effective problem solving skills” (Hegedus et al., 2007,
p. 173). In our view, this sets the stage for using the two theories together.

There have been attempts to date to connect the AcT and AffT (e.g., Cram,
Kuswara, & Richards, 2008). This seems to be quite natural: On one hand, AcT
recognizes context/environment as a determining factor of any activity, while on the
other hand, AffT is rooted in the interaction between the subject and its environment.
Our interpretation of the connection between these two theories is portrayed in
Fig. 4. Here, the living organisms (subjects) have abilities, while the objects (in
the environment) have affordances.

Building on Greeno’s (1994) notion of the interdependence between affordances
and abilities, we conceptualize their relationship as a “handshake.” In other words,
a handshake is a prerequisite for an action by the subject to have a positive effect.
For example, during explorative activities in mathematics software, a student needs
to be able to use features of the software and to consider the objects created
in/by the software as material/real. Thus, the student exploits the realness of the
objects constructed in/by the software and uses this realness as a scaffold to
gain an understanding of mathematics principles on the abstract level and/or to
develop connections between different mathematics representations (e.g., visual and
symbolic; geometric and algebraic).

The affordances of the tool need to match the abilities of the subject; the
affordances of the object need to match the abilities of the subject. Cram et al.
(2008) found that

[b]oth activity theory and the concept of affordances are concerned with the way people
interact with the world. However, while activity theory emphasizes the socially mediated
aspect of group work, affordances emphasize how each individual within a group utilizes
the environment to perform their contribution. A change in the form of activity is reflected
by a change in which affordances are utilized. (p. 77)
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Here, Cram et al. (2008) emphasize the social aspect of activity. At the same
time, AffT needs to take the social component of the environment (e.g., in the case
of group activity or when the teacher or an adult is present) into account, treating it
as an affordance (Gibson, 1986) or a constraint (Greeno, 1998). Kennewell (2001),
on his turn, assumes that “if students work collaboratively towards a single product,
then their abilities may be considered jointly. When each student works towards
an individual product, then the abilities of other students may be considered as
affordances and constraints for the activity” (p.109). Kennewell uses as an example
the research of Hoyles, Pozzi, and Healy (1994), in which it appeared that under
the constraints of group collaboration, the affordances of peer discussion (i.e., the
exchange of ideas and feedback) enhanced the learning.

Visual Mathematics and Cyberlearning in View
of AcT and AffT

The work of Celia Hoyles and Richard Noss has been inspirational for this book.
Its title, Visual Mathematics and Cyberlearning, touches on two new opportunities
mentioned earlier: (a) making previously hard-to-grasp insights more obvious
through the introduction of new semiotics systems, a concept closely related to the
visual aspects of different mathematics representations in software (approached and
discussed in various ways in chapters by Alagic & Alagic, Chapter “Collaborative
Mathematics Learning in Online Environments”; Çakır & Stahl, Chapter “The Inte-
gration of Mathematics Discourse, Graphical Reasoning and Symbolic Expression
by a Virtual Math Team”; Güçler et al., Chapter “Investigating the Mathematical
Discourse of Young Learners Involved in Multi-Modal Mathematical Investigations:
The Case of Haptic Technologies”; Trninic & Abrahamson, Chapter “Embodied
Interaction as Designed Mediation of Conceptual Performance”; Radford, Chapter
“Sensuous Cognition”; Gadanidis & Namukasa, Chapter “New Media and Online
Mathematics Learning for Teachers”; and LeSage, Chapter “Web-based video clips:
A supplemental resource for supporting pre-service elementary mathematics teach-
ers”); and (b) establishing connectivity, which is the driving force of cyberlearning
(Borgman, 2008; also in chapters by Jones et al., Chapter “Patterns of Collaboration:
Towards Learning Mathematics in the Era of the Semantic Web”; Alagic & Alagic,
Chapter “Collaborative Mathematics Learning in Online Environments”; Çakır &
Stahl, Chapter “The Integration of Mathematics Discourse, Graphical Reasoning
and Symbolic Expression by a Virtual Math Team”; Gadanidis & Namukasa,
Chapter “New Media and Online Mathematics Learning for Teachers”; and LeSage,
Chapter “Web-based video clips: A supplemental resource for supporting pre-ser-
vice elementary mathematics teachers”).

This book also contains references to the other two opportunities discussed in
Hoyles and Noss (2009): dynamism and interactivity (in chapters by Alagic &
Alagic, Chapter “Collaborative Mathematics Learning in Online Environments”;
Çakır & Stahl, Chapter “The Integration of Mathematics Discourse, Graphical
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Fig. 5 Connecting the affordances with the activities described in Visual Mathematics and
Cyberlearning: Introducing new research domains

Reasoning and Symbolic Expression by a Virtual Math Team”; Güçler et al.,
Chapter “Investigating the Mathematical Discourse of Young Learners Involved
in Multi-Modal Mathematical Investigations: The Case of Haptic Technologies”;
Trninic & Abrahamson, Chapter “Embodied Interaction as Designed Mediation
of Conceptual Performance”), and processing power (in chapters by Alagic &
Alagic, Chapter “Collaborative Mathematics Learning in Online Environments”;
Çakır & Stahl, Chapter “The Integration of Mathematics Discourse, Graphical
Reasoning and Symbolic Expression by a Virtual Math Team”; Güçler et al.,
Chapter “Investigating the Mathematical Discourse of Young Learners Involved
in Multi-Modal Mathematical Investigations: The Case of Haptic Technologies”).
Such opportunities for action (see Fig. 5) also function as affordances in the
examples provided by the authors of these chapters.

Which of these four affordances—that is, the potentials for action under given
contextual constraints as well as the subject’s ability and goal (Kennewell, 2001;
Young, Depalma, & Garrett, 2002)—will be used in any given situation depends on
the form the activity takes (Cram et al., 2008). In our view, the connection between
these affordances (i.e., dynamism and interactivity, processing power, different
representations, and connectivity) and the elements of the activity systems described
in this book can be made in five domains: collaborative learning, self-directed
learning, democratization, formalization of discourse, and embodied interaction
(including coordinated action across multiple spaces).
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Collaborative Learning

In their chapter, Gadanidis and Namukasa (Chapter “New Media and Online Math-
ematics Learning for Teachers”) analyzed a teacher education course, Mathematics
for Teachers, through the lens of affordances of new media. The affordance they
explored is collaboration, which is also of interest among activity theorists. The
teacher-candidates and the instructor divided the work involved in course activities.
The instructor’s role was to facilitate collaboration by providing positive feedback
and by scaffolding ideas when needed.

Çakır and Stahl (Chapter “The Integration of Mathematics Discourse, Graphical
Reasoning and Symbolic Expression by a Virtual Math Team”), for their part,
demonstrate how their participants benefited from the affordances of an online
collaborative learning environment called Virtual Math Teams (VMT). In fact, their
demonstration provides a well-integrated example of how AcT and AffT come
together because VMT provided participants with opportunities to perform activities
in collaboration and to co-construct artifacts by utilizing the affordances of the
environment.

Jones et al. (Chapter “Patterns of Collaboration: Towards Learning Mathematics
in the Era of the Semantic Web”) describe the features of eXpresser (a microworld
“designed to provide students with a model for generalization”) and the class
activities designed to support collaborative learning. Their example illustrates how
the affordance of the system, in this case the collaboration tool, needs to match
the ability of the student to be able to benefit from it. A “handshake” between the
affordance and the ability, however, did not appear to fully take place in their study,
as the students “failed to produce shared mathematically valid arguments to justify
the correctness of their rules.” Jones et al. (Chapter “Patterns of Collaboration:
Towards Learning Mathematics in the Era of the Semantic Web”) posit the weak
affordance of the system (i.e., collaboration) as a possible reason for this failure.
Other analyses of different online learning environments (see Martinovic, 2007),
instead, point to possible inherent rules of behavior in peer-to-peer online learning
activity systems, where indirect language (e.g., avoidance of criticism) is used
among peers both to save face either of other or of self (Goffman, 1967) and to
keep the fellowship intact (Lim & Bowers, 1991).

Collaborative learning environments in Alagic and Alagic (Chapter “Collabora-
tive Mathematics Learning in Online Environments”; e.g., the Polymath project and
the MathOverflow website) are presented as activity systems resistant to failure.
These massive, open-access online communities consist of volunteers who gather
together to discuss mathematics based on their need and wish. Subgroups may
instinctively gather together based on their interest, and individuals may join or
leave without creating much disturbance in the community. Such distributed and
flexible organizational structures are described by Alagic and Alagic as suitable for
both research and the learning of mathematics.
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Here we are reminded of the writing of Radford and Roth (2011) who introduce
the concept of a space of joint action—a space in which collaborative activity hap-
pens where “the students : : : think, and act together” (p. 233, italics in the original).
In Radford and Roth’s example, this space was created in a classroom environment,
but in our view it could be created in a cyberlearning environment, such as those
described in this book. For collaborative learning to become togetherness, both the
students and the teacher need to be committed to “a collectively motivated activity
based on trust and responsibility” (Radford & Roth, 2011, p. 244). Togetherness is
more than just working together on a problem; the object of the activity is changed
as well, so that it is “reflected similarly in the consciousness of all participants” and
“becomes a common object of activity because of togethering” (p. 242).

We are adding togethering to the list of collaborative activities described in this
book; indeed, many of these activities deserve the question asked by Alagic and
Alagic (Chapter “Collaborative Mathematics Learning in Online Environments”):
“Why aren’t we all learning math this way?” (italics in the original).

Self-Directed Learning

In this book, several authors address various opportunities for self-directed learning
afforded by the new technologies. LeSage (Chapter “Web-based video clips: A
supplemental resource for supporting pre-service elementary mathematics teach-
ers”) writes about pre-service teachers’ use of online resources. Accessibility of
online resources in a just-in-time manner is also recognized by other chapter
contributors (e.g., Alagic & Alagic, Chapter “Collaborative Mathematics Learning
in Online Environments”; Gadanidis & Namukasa, Chapter “New Media and Online
Mathematics Learning for Teachers”) as an important element of support for the
individual’s learning needs.

Namely, Alagic and Alagic describe various cyberlearning environments that
provide self-regulated learners with opportunities for additional exploration, such as
access to resources, records of discussions, complete proofs, and explanations. The
authors see self-regulation or self-direction in learning as necessitating a high degree
of learner independence, which includes the learner establishing and then following
his/her own goals in conjunction with monitoring, regulating, and controlling his/her
cognition, motivation, and behavior.

The question is how to develop such a learning style in school children. This
is a valid question, especially since the literature suggests that children engage
in informal self-initiated and self-directed learning more at home than at school.
In homes with Internet access, computer use is often child-directed (i.e., with
minimal parental involvement), with time for exploration and incidental learning.
Compare this to school-based computer use, which is teacher-directed and focused
on purposeful learning (Johnson & Puplampu, 2008; Kerawalla & Crook, 2002).
At home, moreover, the child’s skills in using the computer are recognized and
appreciated, while in schools, this is rarely the case. Schools may need to embrace
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some of the typically out-of-school activities to increase engagement and achieve-
ment of children because, as Barron (2006) notes, out-of-school activities “allow
for expertise development while simultaneously supporting aspects of identity
development such as a sense of belonging in a community, feelings of competence,
and interest development. The breadth and qualities of these activities are significant
developmentally, as are the roles and relationships that emerge across contexts”
(p. 194).

This situation is also recognized by a number of AcT theorists. Davydov and
Markova (1983) criticize school as a place where genuine educational activity does
not happen. This is because schools are not places where students formulate and
accept the goals of actions in which they engage. The authors go on to explain:
“In the course of development of educational activity, it is necessary to ascertain
and create conditions that will enable activity to acquire personal meaning, to
become a source [both] of the person’s self-development and [of the] comprehensive
development of his [sic] personality, [as well as] a condition for his [sic] entry
into social practice” (Davydov & Markova, Theoretical Sources and Stages in the
Development of the Concept). The authors distinguish here between formal (i.e.,
in-school) and informal (e.g., in-play) learning. In both instances, knowledge and
abilities may be assimilated, but in the first case, assimilation is a goal, while in the
second, assimilation is a by-product.

More recent critics of formal learning claim that it is antithetical to developing
self-regulatory characteristics such as persistence, determination, use of multiple
strategies, willingness to try and be wrong, confidence, and total lack of fear of the
technology (Mason, 2004).

Instead of looking at learning as polarized between formal and informal, Barron
(2006) writes about the “learning landscape,” acknowledging that there are a
number of contexts in which learning happens. Anyone can develop an interest and
pursue it, if given the time, resources, and freedom to do so. For a person who has
developed an interest in something, different contexts (formal or informal) do not
present barriers to learning; on the contrary, they allow for the transfer and cross-
fertilization of knowledge. Some examples of technology-mediated development
of self-directed interests include searching for information on the Internet, creating
materials using multimedia, following podcasts and YouTube videos, exploring new
media, and taking a role of mentor in social media.

We argue that opportunities created by digital technologies blur the lines that
exist between informal and formal learning. There are ample opportunities for a
person to access online resources to satisfy his/her need or interest to learn. The
policy framework for Youth Development in Ontario (MCYS, 2012) describes ado-
lescence (13–17 years of age) as a period in life when (a) emotional self-regulation
matures, (b) self-concept becomes more complex and situation-dependent, (c) self-
appraisal and self-efficacy skills improve, and (d) youth become more self-sufficient
in making decisions about their relationships and activities. Adolescence may be an
appropriate time to develop new interests through the use of technology because,
as Berk (2006) suggests: “An imagined future self helps motivate learning, as does
the simple pleasure of creating” (p. 220). Engaging young people with mathematics
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through technology and describing opportunities for them to take part in society may
spark an interest in mathematics that they will continue to nurture both formally and
informally.

Democratization

In this book, both Alagic and Alagic (Chapter “Collaborative Mathematics Learning
in Online Environments”), and Gadanidis and Namukasa (Chapter “New Media and
Online Mathematics Learning for Teachers”) caution that the current classroom
model may be more autocratic than democratic, particularly when ideas can be
questioned or pursued only within the narrow bounds of (a) the classroom walls and
practices, and (b) the course syllabus and learning goals (Gadanidis and Namukasa
refer to this as a “traditional” classroom, while Alagic and Alagic consider this
even more generally as a “classroom model”). For these authors, new computer
technologies are deemed disruptive in the sense that they allow students to escape
from authoritarian education (i.e., an education system that is prescribed, controlled,
fixed, and limited). New technologies provide opportunities for democratization;
however, democratization will happen only in an activity system that supports it.
Jones (2011), for example, cautions that “innovative technology : : : on its own
may not perturb enough to cause a major change” (p. 44, italics in the original)
in education.

Jones et al. in this book (Chapter “Patterns of Collaboration: Towards Learning
Mathematics in the Era of the Semantic Web”) predict that real changes and a
real move towards democratization may start first in the higher education sector
and then trickle down to other school levels. The experiences of Gadanidis and
Namukasa (Chapter “New Media and Online Mathematics Learning for Teachers”)
in the teacher education program seem to confirm this prediction. Their Mathematics
for Teachers course reflects the democratization affordance of the new media,
which provide an asynchronous online discussion platform to teacher-candidates,
providing access at any time and from any place (with an Internet connection),
flexibility in what is to be learned and how, and distributed teaching within the
community. Thus, once these teacher-candidates have their own students, they may
be more willing to incorporate the democratic affordance of computer networks in
their classes.

Another example of democratization—in this case where students took over
the role of teacher—can be found in the chapter by Çakır and Stahl (Chapter
“The Integration of Mathematics Discourse, Graphical Reasoning and Symbolic
Expression by a Virtual Math Team”). After an open-ended problem in mathematics
was given to the students, they reached an agreement on which interesting and
worth-exploring direction to pursue, and then continued working as a group with
minimal supervision from the tutor.

The chapters by Alagic and Alagic (Chapter “Collaborative Mathematics Learn-
ing in Online Environments”), and by Gadanidis and Namukasa (Chapter “New
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Media and Online Mathematics Learning for Teachers”) remind us that democ-
ratization does not necessarily mean lowering the standards of generated content,
replacing professionalism with amateurishness, and expecting that novices can by
themselves discover mathematics. Their cautionary remarks join the voices of others
who believe educators should ensure that we do not enter the era of information
without knowledge and computer networks without community (Martinovic &
Magliaro, 2007; Noveck, 2000). There is much evidence that computer networks
as part of the ecology of the Web have in fact a multifaceted nature, in that they
provide for democratization on one hand, but also for globalization, surveillance,
and control of communication and information on the other.

Emergence of Discourse

The chapter by Çakır and Stahl (Chapter “The Integration of Mathematics Dis-
course, Graphical Reasoning and Symbolic Expression by a Virtual Math Team”)
analyzes how the VMT group members used representational affordances in an
online environment to show, among other things, how mathematics terminology
comes into being in response to the specific communications needs of the speakers.
The participants in their study used verbal references or highlighted drawings with
different colors to (a) isolate objects on the whiteboard, (b) associate these objects
with communal chat terminology, and (c) use the verbal and nonverbal references to
the objects to develop a shared understanding.

This multi-step process demonstrated how mathematical discourse can encode
certain ways of thinking about mathematical objects—the students’ new-found
mathematical terms first emerging from the need to talk, then becoming meaningful
mathematical artifacts through the ways that the participants enacted them, and
finally reaching the stage of symbolic expressions.

In their analysis of the mathematical discourse of young learners involved in
multimodal mathematical investigations (e.g., through the use of various com-
munication channels—speech, gesture, writing), Güçler et al. in their chapter
(Chapter “Investigating the Mathematical Discourse of Young Learners Involved
in Multi-Modal Mathematical Investigations: The Case of Haptic Technologies”)
refer to Sfard’s (2008) concept of discourse as evolving from being simply words
used in speech to involving different (visual) mediators (e.g., symbols, graphs)
and routines (e.g., gestures, participation patterns, forms of argumentation) when
exploring how students communicate mathematical concepts. Using a combination
of visual and haptic tools as well as social interactions to shape their students’
discourse, the authors demonstrated how such tools could enhance meaning-making
in mathematics in more dynamic, tactile, and natural ways. Through observing the
changes in their students’ discourse patterns (i.e., from non-scholastic “everyday
language” to scholastic terminology), the authors could point at the changes in how
the students discussed the concepts as indicators of intellectual development and
mathematical learning.
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Formalization of discourse does not happen automatically and without contra-
dictions, but that is to be expected in any activity system. In fact, contradiction
is the “motive force of change and development” (Engeström, 1999, p. 9), and
the transitions and reorganizations within and between activity systems is part of
these systems’ evolution. The students of Güçler et al. (Chapter “Investigating the
Mathematical Discourse of Young Learners Involved in Multi-Modal Mathematical
Investigations: The Case of Haptic Technologies”) “used the [haptic device, the
PHANTOM Omni®] as a semiotic mediator when their visual perceptions con-
tradicted their physical perceptions. Students also utilized social interaction as a
form of mediation when they disagreed with each other; when they corrected each
other’s word use and adopted words used by peers; and when they individually and
collectively hypothesized and tested their hypotheses.” Thus, this “dynamic, multi-
modal exploration space” afforded the development of both personal and collective
mathematical meanings.

Embodied Interaction

Understanding mathematical embodiment is becoming recently an important issue
in mathematics education which requires building new paradigms in order to
conceptualize the relationship between gesture and diagram. De Frietas and Sinclair
(2012) suggest that “such an approach might open up new ways of conceptualizing
the very idea of mathematical embodiment” (p. 134). In our volume, the topic is
explored under the view of embodied interactions.

According to Trninic and Abrahamson (Chapter “Embodied Interaction as De-
signed Mediation of Conceptual Performance”), embodied interaction is a particular
type of pedagogical design that fosters learner development of embodied artifacts—
that is, cognitive products targeted towards specific mathematical skills, such as
proportional reasoning. The authors analyzed the pedagogical potential of the
ubiquitous motion-sensor technologies (e.g., Mathematical Imagery Trainer for
Proportion) to create learning environments in which students could use body
movements to learn about proportions.

Trninic and Abrahamson (Chapter “Embodied Interaction as Designed Medi-
ation of Conceptual Performance”) challenge the outdated view that conceptual
learning is achieved essentially via developing fluency in a discipline’s semiotic
system centered on manipulating symbols in paper media. Instead, they foreground
the critical role of subjective meaning in this acculturation process, and they offer
that these meanings are generated through engaging in embodied interactions (EI)
and then experiencing guided reflection on these interactions.

In his chapter, Radford refers to a person’s capacity for responsive sensation
(italics in the original) to represent the idea of cognition as a feature of living mate-
rial bodies (italics by the authors). Here, Radford (Chapter “Sensuous Cognition”)
makes an important reference to Leont’ev (2009) by discussing how complex forms
of sensations arising “from [the] progressive complexity of [the] processes of life”
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can develop the human mind’s capacity to reflect reality. According to Radford
(Chapter “Sensuous Cognition”), “our tactile–kinesthetic bodily experience of the
world and our interaction with artifacts and material culture are considered as much
more than merely auxiliary or secondary elements in our cognitive endeavors.” In
agreement with Güçler et al. (Chapter “Investigating the Mathematical Discourse of
Young Learners Involved in Multi-Modal Mathematical Investigations: The Case
of Haptic Technologies”), Radford (Chapter “Sensuous Cognition”) argues that
technological devices, such as dynamic geometry software and haptic devices,
“offer room for the creation of an experimental space that might require the
appearance of new sensibilities and new embodied ways of thinking—dynamic
new literate ways of scrutinizing, enquiring, looking into, and thinking about,
mathematics, mathematical objects and their relationships.”

Çakır and Stahl (Chapter “The Integration of Mathematics Discourse, Graphical
Reasoning and Symbolic Expression by a Virtual Math Team”), for their part,
analyze mathematical reasoning as the enactment of representational affordances
(italics by the authors) as demonstrated in the interactions among their VMT
participants. The authors reflect on the challenges of interaction in an online
setting with a dual space for action, such as a whiteboard and a chat window,
and compare this online interaction to face-to-face interaction where pointing
gestures and body movements can clarify what the speaker is referring to. The
authors found, however, that their students overcame the limitations of online
environment and achieved functionally comparable interactions online through their
use of available features (e.g., narrative, graphical, and symbolic). Çakır and Stahl’s
analysis seems to confirm that their students demonstrated “dynamic new literate
ways” (see also the Chapter “Sensuous Cognition”, by Radford, in this book) in
using dynamic mathematics software in the whiteboard space and making references
in the threaded discussion taking place simultaneously.

Embodied interaction calls for coordinated action across multiple spaces, and
the chapters by Güçler et al. (Chapter “Investigating the Mathematical Discourse
of Young Learners Involved in Multi-Modal Mathematical Investigations: The
Case of Haptic Technologies”) and by Çakır and Stahl (Chapter “The Integration
of Mathematics Discourse, Graphical Reasoning and Symbolic Expression by a
Virtual Math Team”) both illustrate how learners can accomplish this. For example,
Çakır and Stahl’s participants performed their activities through verbal, symbolic,
and graphical representations. They switched from one space of representation
to another, as needed, and did so quite intuitively. This dynamic switch between
representations as well as the ability to coordinate actions in one space with the
intent of generating a specific response in another could be interpreted as a high
level of mathematical thinking. Kaput (1992) argues that acting in any specific
representation (notation) system evokes a particular cognition. When working
across different representations, learners engage their corresponding cognitions as
well as a “translation” mechanism that helps in switching from one notation system
to another. Mathematics software may perform such a translation automatically
and with a certain accuracy, which allows for the learning objective to be changed
from obtaining mastery in one representation (notation) system to understanding

http://dx.doi.org/10.1007/978-94-007-2321-4_6
http://dx.doi.org/10.1007/978-94-007-2321-4_4
http://dx.doi.org/10.1007/978-94-007-2321-4_6
http://dx.doi.org/10.1007/978-94-007-2321-4_3
http://dx.doi.org/10.1007/978-94-007-2321-4_6
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the connections between different systems. This is especially important for learning
mathematics, as mathematics concepts are usually complex and require multiple
representations.

Similarly, the participants in the study by Güçler et al. (Chapter “Investigating the
Mathematical Discourse of Young Learners Involved in Multi-Modal Mathematical
Investigations: The Case of Haptic Technologies”) switched between their physical
manipulation with the haptic device and the visual representation of 3D objects
produced on the computer screen. Moving between these physical and visual
modalities allowed the students to learn to classify solids and to describe attributes
of the planar intersections of the 3D object on the screen.

The research shared by these authors as well as by the other contributors to this
book can guide the reader to follow how AffT and AcT have the potential to explore
and explain the coordinated actions of participants across the multiple spaces of
cyberlearning environments.

Conclusions

This book presents a diverse look at embodiment through technology: first, with
haptic devices and body movement; second, within face-to-face interaction; and
third, as reasoning embodied in interaction.

In this chapter, we have summarized the current understanding of how today’s
students can benefit from learning mathematics in conjunction with various digital
technologies. Our intent was not to give an in-depth analysis of each author’s
contribution to this volume, but rather to review their chapters reflectively to uncover
and discuss common findings and unresolved issues through the perspective of
activity theory and affordance theory, two theories frequently used in modern
mathematics education research in general and in teaching and learning in digital
environments in particular.

From a global perspective, the opportunities for learning, teaching, and doing
mathematics with computer-based technology are becoming more prevalent, and
activity systems where this happens are becoming more complex. In addressing
both the socially mediated aspects of learning and the ways in which individuals
utilize the learning environment, we have identified various formal and informal
opportunities for learning. In addition, by identifying the different roles that tech-
nology can play in learning/teaching/doing mathematics, we have also addressed
issues around the superficial or inadequate use of technology. The emerging focus
on embodiment, for example, may alleviate two fears: first, that technology might
eliminate hand and body motions that may be necessary for cognitive development;
and second, that human perceptual intelligence may degenerate in the technological
era (Knipp, 2003). From the examples provided in this book, it is evident that
today’s technologies, in particular the haptic ones (e.g., the PHANTOM Omni®

haptic device in Güçler et al., Chapter “Investigating the Mathematical Discourse
of Young Learners Involved in Multi-Modal Mathematical Investigations: The

http://dx.doi.org/10.1007/978-94-007-2321-4_4
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Case of Haptic Technologies”; the Mathematical Imagery Trainer for Proportion
in Trninic & Abrahamson, Chapter “Embodied Interaction as Designed Mediation
of Conceptual Performance”) can deal with these issues.

Bypassing the limiting role that digital technology may be given in schools, such
as being used to primarily grab the students’ attention, to motivate them, or to reward
their good behavior, we looked at its educational potential for becoming “a catalyst
for changing pedagogy” (Zevenbergen & Lerman, 2007, p. 854). By investigating
recent developments in mathematics education in the digital world, we have come to
share the view that technologies, activities, artifacts, and environments do not exist
independently of their use (LeBaron, 2002), but are constituted within practice in
more collaborative and productive ways through the organized actions of their users.

Based on the literature and on our personal experience, it seems that active
participation in virtual mathematical opportunities may help not only to preserve
students’ natural motivation and the interest they have in the world around them, but
also turn such interest into meaningful mathematics learning, full of opportunities
for enrichment and collaboration, and thus supporting the emergence of a new
learning culture. However, more research is needed to better understand the
outcomes of cyberlearning from (meta-)cognitive, affective, and social perspectives
(Freiman, 2008). Moving away from the often too idealistic and unsubstantiated
glorification of the positive changes brought about by technology and exploring
instead the realities of young peoples’ lives and educational settings would better
inform effective policymaking and practice (Selwyn, 2009).

This goal is also evident in the recently released request for proposals in the
NSF’s Cyberlearning: Transforming Education program, which “seeks to integrate
advances in technology with advances in what is known about how people learn
to better understand how people learn with technology : : : through individual
use and/or through collaborations mediated by technology” (NSF Request for
Proposals, 2011, p. 12; italics by the authors). The NSF anticipates that this research
will produce new forms of educational practice as well as have positive effects on the
productivity of the workforce and on the engagement of citizens in lifelong learning
both in and out of school.
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2008, pp. 85–94.

Freiman, V., & Lirette-Pitre, N. (2009). Building a virtual learning community of problem solvers:
Example of CASMI community. ZDM – The International Journal in Mathematics Education,
41(1–2), 245–256.

Giaquinto, M. (2007). Visual thinking in mathematics: An epistemological study. Oxford, UK:
Oxford University Press.

Gibson, J. J. (1979). The ecological approach to visual perception. Boston: Houghton Mifflin.
Gibson, J. J. (1986). The ecological approach to visual perception. Hillsdale, NJ: Erlbaum.

(Original work published 1979)
Goffman, E. (1967). Interaction ritual: Essays in face-to-face behavior. Garden City, NY: Anchor

Books.
Gokhale, A. A. (2007). Effectiveness of online learning communities to enhance student learning.

Digital learning, July 1, 2007. Retrieved October 1, 2012, from http://digitallearning.
eletsonline.com/2007/07/effectiveness-of-online-learning-communities-to-enhance-student-
learning/

Goldenberg, P. E. (1991). Seeing beauty in mathematics: Using fractal geometry to build a
spirit of mathematical inquiry. In W. Zimmermann & S. Cunningham (Eds.), Visualization in
teaching and learning mathematics (pp. 39–66). MAA Notes Number 19. Washington, DC:
Mathematical Association of America.

Greeno, J. G. (1994). Gibson’s affordances. Psychological Review, 101(2), 336–342.
Greeno, J. G. (1998). The situativity of knowing, learning, and research. American Psychologist,

53(1), 5–26.
Hammond, M. (2010). What is an affordance and can it help us understand the use of ICT in

education? Education and Information Technologies, 15(3), 205–217.
Hegedus, S., Kaput, J., & Lesh, R. (2007). Technology becoming infrastructural in mathematics

education. In R. Lesh, E. Hamilton, & J. Kaput (Eds.), Foundations for the future in
mathematics and science (pp. 173–192). Mahwah, NJ: Lawrence Erlbaum.

Howe, N., & Strauss, W. (2000). Millennials rising: The next great generation. New York: Vintage.
Howse, J., & Stapleton, G. (2008). Visual mathematics: Diagrammatic formalization and proof.

In S. Autexier, J. Campbell, J. Rubio, V. Sorge, M. Suzuki, & F. Wiedijk (Eds.), Intelligent
computer mathematics. Proceedings of the 9th international conference, AISC 2008, 15th
symposium, Calculemus 2008, 7th International Conference, MKM 2008, Birmingham, UK,
July 28–August 1, 2008. Lecture notes in computer science – Intelligent computer mathematics,
5144 (pp. 478–493). Berlin/Heidelberg, Germany: Springer.

Hoyles, C., & Noss, R. (2009). The technological mediation of mathematics and its learning.
Human Development, 52(2), 129–147.

Hoyles, C., Pozzi, S., & Healy, L. (1994). Groupwork with computers: An overview of findings.
Journal of Computer Assisted Learning, 10(4), 202–215.

Ipsos-Reid. (2004). Email and instant messaging top lists of things teenagers do online. Media in
Canada, News Briefs. Retrieved July 30, 2012, from http://www.mediaincanada.com/articles/
mic/20041130/online.html

Johnson, G. M., & Puplampu, K. P. (2008). Internet use during childhood and the ecological
techno-subsystem. Canadian Journal of Learning and Technology, 34(1). Retrieved July 30,
2012, from http://www.cjlt.ca/index.php/cjlt/article/view/172/168

Jonassen, D. H., & Rohrer-Murphy, L. (1999). Activity theory as a framework for designing
constructivist learning environments. Educational Technology Research and Development,
47(1), 61–79.

Jones, K. (2011). The value of learning geometry with ICT: Lessons from innovative educational
research. In A. Oldknow & C. Knights (Eds.), Mathematics education with digital technology
(pp. 39–45). London: Continuum.

http://digitallearning.eletsonline.com/2007/07/effectiveness-of-online-learning-communities-to-enhance-student-learning/
http://digitallearning.eletsonline.com/2007/07/effectiveness-of-online-learning-communities-to-enhance-student-learning/
http://digitallearning.eletsonline.com/2007/07/effectiveness-of-online-learning-communities-to-enhance-student-learning/
http://www.mediaincanada.com/articles/mic/20041130/online.html
http://www.mediaincanada.com/articles/mic/20041130/online.html
http://www.cjlt.ca/index.php/cjlt/article/view/172/168


236 D. Martinovic et al.

Jones, K., & Simons, H. (1999). Online mathematics enrichment: An evaluation of the NRICH
project. Southampton, UK: University of Southampton. Retrieved October 1, 2012, from http://
eprints.soton.ac.uk/11252/1/Jones Simons NRICH final report 1999.pdf

Junco, R., & Mastrodicasa, J. (2007). Connecting to the net.generation: What higher education
professionals need to know about today’s students. Washington, DC: Student Affairs Adminis-
trators in Higher Education (NASPA).

Kaiser Family Foundation. (2010). Generation M2: Media in the lives of 8- to 18-year olds. Menlo
Park, CA: Henry J. Kaiser Family Foundation. Retrieved October 1, 2012, from www.kff.org/
entmedia/upload/8010.pdf

Kaptelinin, V. (1996). Activity theory: Implications for human-computer interaction. In B. A. Nardi
(Ed.), Context and consciousness: Activity Theory and human-computer interaction (pp. 53–
59). Cambridge, MA: The MIT Press.

Kaput, J. J. (1992). Technology and mathematics education. In D. A. Grouws (Ed.), Handbook of
research on mathematics teaching and learning (pp. 515–556). New York: Macmillan.

Karadag, Z., & McDougall, D. (2011). GeoGebra as a cognitive tool: Where cognitive theories
and technology meet. In L. Bu & R. Schoen (Eds.), Model-centered learning: Pathways to
mathematical understanding using GeoGebra (pp. 169–181). Rotterdam, The Netherlands:
Sense.

Kennewell, S. (2001). Using affordances and constraints to evaluate the use of information and
communications technology in teaching and learning. Technology, Pedagogy and Education,
10(1), 101–116.

Kerawalla, L., & Crook, C. (2002). Children’s computer use at home and at school: Context and
continuity. British Educational Research Journal, 28(6), 751–771.

Knipp, T. (2003). Design education in the era of technology: Considering visual perception.
In X. Perrot (Ed.), International cultural heritage informatics meeting: Proceedings from
ICHIM03. (Archives & museum informatics). Paris: École du Louvre.
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