
Studies in Computational Intelligence 654

Roger Lee Editor

Software
Engineering
Research,
Management and
Applications

Studies in Computational Intelligence

Volume 654

Series editor

Janusz Kacprzyk, Polish Academy of Sciences, Warsaw, Poland
e-mail: kacprzyk@ibspan.waw.pl

About this Series

The series “Studies in Computational Intelligence” (SCI) publishes new develop-
ments and advances in the various areas of computational intelligence—quickly and
with a high quality. The intent is to cover the theory, applications, and design
methods of computational intelligence, as embedded in the fields of engineering,
computer science, physics and life sciences, as well as the methodologies behind
them. The series contains monographs, lecture notes and edited volumes in
computational intelligence spanning the areas of neural networks, connectionist
systems, genetic algorithms, evolutionary computation, artificial intelligence,
cellular automata, self-organizing systems, soft computing, fuzzy systems, and
hybrid intelligent systems. Of particular value to both the contributors and the
readership are the short publication timeframe and the worldwide distribution,
which enable both wide and rapid dissemination of research output.

More information about this series at http://www.springer.com/series/7092

http://www.springer.com/series/7092

Roger Lee
Editor

Software Engineering
Research, Management
and Applications

123

Editor
Roger Lee
Software Engineering and Information
Central Michigan University
Mount Pleasant
USA

ISSN 1860-949X ISSN 1860-9503 (electronic)
Studies in Computational Intelligence
ISBN 978-3-319-33902-3 ISBN 978-3-319-33903-0 (eBook)
DOI 10.1007/978-3-319-33903-0

Library of Congress Control Number: 2016938636

© Springer International Publishing Switzerland 2016
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, express or implied, with respect to the material contained herein or
for any errors or omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG Switzerland

Foreword

The purpose of the 14th International Conference on Software Engineering,
Artificial Intelligence Research, Management and Applications (SERA 2016) held
on June 8–10, 2015 at Towson University, USA is bringing together scientists,
engineers, computer users, and students to share their experiences and exchange
new ideas and research results about all aspects (theory, applications, and tools) of
software engineering research, management and applications, and to discuss the
practical challenges encountered along the way and the solutions adopted to solve
them. The conference organizers selected the best 13 papers from those papers
accepted for presentation at the conference in order to publish them in this volume.
The papers were chosen based on review scores submitted by members of the
program committee and underwent further rigorous rounds of review.

In Chap. “Human Motion Analysis and Classification Using Radar
Micro-Doppler Signatures”, Amirshahram Hematian, Yinan Yang, Chao Lu, and
Sepideh Yazdani present a novel nonparametric method to detect and calculate
human gait speed while analyzing human micro motions based on radar
micro-Doppler signatures to classify human motions.

In Chap. “Performance Evaluation of NETCONF Protocolin MANET Using
Emulation”, Weichao Gao, James Nguyen, Daniel Ku, Hanlin Zhang, and Wei Yu
leverage the Common Open Research Emulator (CORE), a network emulation tool,
to conduct the quantitative performance evaluation of NETCONF in an emulated
MANET environment.

In Chap. “A Fuzzy Logic Utility Framework (FLUF) to Support Information
Assurance”, E. Allison Newcomb and Robert J. Hammell discuss the use of fuzzy
logic for accelerating the transformation of network monitoring tool alerts to
actionable knowledge, suggest process improvement that combines information
assurance and cyber defender expertise for holistic computer network defense, and
describe an experimental design for collecting empirical data to support the
continued research in this area.

In Chap. “A Framework for Requirements Knowledge Acquisition Using UML
and Conceptual Graphs”, Bingyang Wei and Harry S. Delugach present a

v

http://dx.doi.org/10.1007/978-3-319-33903-0_1
http://dx.doi.org/10.1007/978-3-319-33903-0_1
http://dx.doi.org/10.1007/978-3-319-33903-0_2
http://dx.doi.org/10.1007/978-3-319-33903-0_2
http://dx.doi.org/10.1007/978-3-319-33903-0_3
http://dx.doi.org/10.1007/978-3-319-33903-0_3
http://dx.doi.org/10.1007/978-3-319-33903-0_4
http://dx.doi.org/10.1007/978-3-319-33903-0_4

knowledge-based framework to drive the process of acquiring requirements for
each UML model. This framework is based on a central knowledge representation,
the conceptual graphs.

In Chap. “Identification Method of Fault Level Based on Deep Learning for
Open Source Software”, Yoshinobu Tamura, Satoshi Ashida, Mitsuho Matsumoto,
and Shigeru Yamada propose a method of open-source software reliability
assessment based on the deep learning. Also, they show several numerical examples
of open-source software reliability assessment in the actual software projects.

In Chap. “Monitoring Target Through Satellite Images by Using Deep
Convolutional Networks”, Xudong Sui, Jinfang Zhang, Xiaohui Hu, and Lei
Zhang propose a method for target monitoring based on deep convolutional neural
networks (DCNN). The method is implemented by three procedures: (i) Label the
target and generate the dataset, (ii) train a classifier, and (iii) monitor the target.

In Chap. “A Method for Extracting Lexicon for Sentiment Analysis Based on
Morphological Sentence Patterns”, Youngsub Han, Yanggon Kim, and Ikhyeon
Jang propose an unsupervised system for building aspect expressions to minimize
human-coding efforts. The proposed method uses morphological sentence patterns
through an aspect expression pattern recognizer. It guarantees relatively higher
accuracy.

In Chap. “A Research for Finding Relationship Between Mass Media and Social
Media Based on Agenda Setting Theory”, Jinhyuck Choi, Youngsub Han, and
Yanggon Kim analyze important social issues using big data generated from social
media. They tried to apply the relationship between agenda setting theory and social
media because they have received social issues from official accounts like news
using social media, and then users shared social issues to other users; so they
choose tweets of Baltimore Riot to analyze.

In Chap. “On the Prevalence of Function Side Effects in General Purpose Open
Source Software Systems”, Saleh M. Alnaeli, Amanda Ali Taha, and Tyler Timm
examine the prevalence and distribution of function side effects in general-purpose
software systems is presented. The study is conducted on 19 open-source systems
comprising over 9.8 million lines of code (MLOC).

In Chap. “Object Oriented Method to Implement the Hierarchical and
Concurrent States in UML State Chart Diagrams”, Sunitha E.V. and Philip
Samuel present an implementation pattern for the state diagram which includes both
hierarchical and concurrent states. The state transitions of parallel states are
delegated to the composite state class.

In Chap. “A New and Fast Variant of the Strict Strong Coloring Based Graph
Distribution Algorithm”, Nousseiba Guidoum, Meriem Bensouyad, and
Djamel-EddineSaidouni propose a fast algorithm for distributing state spaces on a
network of workstations. Our solution is an improved version of SSCGDA
algorithm (for Strict Strong Coloring based Graph Distribution algorithm) which
introduced the coloring concept and dominance relation in graphs for finding the
good distribution of given graphs.

In Chap. “High Level Petri Net Modelling and Analysis of Flexible Web
Services Composition”, Ahmed Kheldoun, Kamel Barkaoui, Malika Ioualalen, and

vi Foreword

http://dx.doi.org/10.1007/978-3-319-33903-0_5
http://dx.doi.org/10.1007/978-3-319-33903-0_5
http://dx.doi.org/10.1007/978-3-319-33903-0_6
http://dx.doi.org/10.1007/978-3-319-33903-0_6
http://dx.doi.org/10.1007/978-3-319-33903-0_7
http://dx.doi.org/10.1007/978-3-319-33903-0_7
http://dx.doi.org/10.1007/978-3-319-33903-0_8
http://dx.doi.org/10.1007/978-3-319-33903-0_8
http://dx.doi.org/10.1007/978-3-319-33903-0_9
http://dx.doi.org/10.1007/978-3-319-33903-0_9
http://dx.doi.org/10.1007/978-3-319-33903-0_10
http://dx.doi.org/10.1007/978-3-319-33903-0_10
http://dx.doi.org/10.1007/978-3-319-33903-0_11
http://dx.doi.org/10.1007/978-3-319-33903-0_11
http://dx.doi.org/10.1007/978-3-319-33903-0_12
http://dx.doi.org/10.1007/978-3-319-33903-0_12

Djaouida Dahmani propose a model to deal with flexibility in complex Web
services composition (WSC). In this context, they use a model based on high-level
Petri nets called RECATNets, where control and data flows are easily supported.

In Chap. “PMRF: Parameterized Matching-Ranking Framework”, Fatma
Ezzahra Gmati, Nadia Yacoubi-Ayadi, Afef Bahri, Salem Chakhar, and Alessio
Ishizaka introduce the matching and the ranking algorithms supported by the
PMRF. Next, it presents the architecture of the developed system and discusses
some implementation issues. Then, it provides the results of performance evaluation
of the PMRF.

It is our sincere hope that this volume provides stimulation and inspiration and
that it will be used as a foundation for works to come.

June 2016 Yeong-Tae Song
Towson University, USA

Bixin Li
Southeast University, China

Foreword vii

http://dx.doi.org/10.1007/978-3-319-33903-0_13

Contents

Human Motion Analysis and Classification Using Radar
Micro-Doppler Signatures . 1
Amirshahram Hematian, Yinan Yang, Chao Lu and Sepideh Yazdani

Performance Evaluation of NETCONF Protocol in MANET
Using Emulation . 11
Weichao Gao, James Nguyen, Daniel Ku, Hanlin Zhang and Wei Yu

A Fuzzy Logic Utility Framework (FLUF) to Support
Information Assurance . 33
E. Allison Newcomb and Robert J. Hammell II

A Framework for Requirements Knowledge Acquisition
Using UML and Conceptual Graphs. 49
Bingyang Wei and Harry S. Delugach

Identification Method of Fault Level Based on Deep Learning
for Open Source Software . 65
Yoshinobu Tamura, Satoshi Ashida, Mitsuho Matsumoto
and Shigeru Yamada

Monitoring Target Through Satellite Images
by Using Deep Convolutional Networks . 77
Xudong Sui, Jinfang Zhang, Xiaohui Hu and Lei Zhang

A Method for Extracting Lexicon for Sentiment Analysis
Based on Morphological Sentence Patterns . 85
Youngsub Han, Yanggon Kim and Ikhyeon Jang

A Research for Finding Relationship Between Mass Media
and Social Media Based on Agenda Setting Theory 103
Jinhyuck Choi, Youngsub Han and Yanggon Kim

ix

http://dx.doi.org/10.1007/978-3-319-33903-0_1
http://dx.doi.org/10.1007/978-3-319-33903-0_1
http://dx.doi.org/10.1007/978-3-319-33903-0_2
http://dx.doi.org/10.1007/978-3-319-33903-0_2
http://dx.doi.org/10.1007/978-3-319-33903-0_3
http://dx.doi.org/10.1007/978-3-319-33903-0_3
http://dx.doi.org/10.1007/978-3-319-33903-0_4
http://dx.doi.org/10.1007/978-3-319-33903-0_4
http://dx.doi.org/10.1007/978-3-319-33903-0_5
http://dx.doi.org/10.1007/978-3-319-33903-0_5
http://dx.doi.org/10.1007/978-3-319-33903-0_6
http://dx.doi.org/10.1007/978-3-319-33903-0_6
http://dx.doi.org/10.1007/978-3-319-33903-0_7
http://dx.doi.org/10.1007/978-3-319-33903-0_7
http://dx.doi.org/10.1007/978-3-319-33903-0_8
http://dx.doi.org/10.1007/978-3-319-33903-0_8

On the Prevalence of Function Side Effects in General Purpose
Open Source Software Systems . 115
Saleh M. Alnaeli, Amanda Ali. Taha and Tyler Timm

Object Oriented Method to Implement the Hierarchical
and Concurrent States in UML State Chart Diagrams 133
E.V. Sunitha and Philip Samuel

A New and Fast Variant of the Strict Strong Coloring
Based Graph Distribution Algorithm . 151
Nousseiba Guidoum, Meriem Bensouyad and Djamel-Eddine Saïdouni

High Level Petri Net Modelling and Analysis of Flexible
Web Services Composition . 163
Ahmed Kheldoun, Kamel Barkaoui, Malika Ioualalen
and Djaouida Dahmani

PMRF: Parameterized Matching-Ranking Framework 181
Fatma Ezzahra Gmati, Nadia Yacoubi-Ayadi, Afef Bahri,
Salem Chakhar and Alessio Ishizaka

Author Index . 199

x Contents

http://dx.doi.org/10.1007/978-3-319-33903-0_9
http://dx.doi.org/10.1007/978-3-319-33903-0_9
http://dx.doi.org/10.1007/978-3-319-33903-0_10
http://dx.doi.org/10.1007/978-3-319-33903-0_10
http://dx.doi.org/10.1007/978-3-319-33903-0_11
http://dx.doi.org/10.1007/978-3-319-33903-0_11
http://dx.doi.org/10.1007/978-3-319-33903-0_12
http://dx.doi.org/10.1007/978-3-319-33903-0_12
http://dx.doi.org/10.1007/978-3-319-33903-0_13

Contributors

E. Allison Newcomb Towson University, Towson, MD, USA

Saleh M. Alnaeli Department of Computer Science, University of Wisconsin-Fox
Valley, Menasha, WI, USA

Satoshi Ashida Yamaguchi University, Yamaguchi, Japan

Afef Bahri MIRACL Laboratory, Higher School of Computing and Multimedia,
Sfax, Tunisia

Kamel Barkaoui CEDRIC-CNAM, Paris Cedex 03, France

Meriem Bensouyad MISC Laboratory, A. Mehri, Constantine 2 University,
Constantine, Algeria

Salem Chakhar Portsmouth Business School and Centre for Operational
Research and Logistics, University of Portsmouth, Portsmouth, UK

Jinhyuck Choi Department of Computer and Information Sciences, Towson
University, Towson, MD, USA

Djaouida Dahmani MOVEP, Computer Science Department, USTHB, Algiers,
Algeria

Harry S. Delugach Department of Computer Science, University of Alabama in
Huntsville, Huntsville, AL, USA

Weichao Gao Department of Computer and Information Systems, Towson
University, Towson, MD, USA

Fatma Ezzahra Gmati RIADI Research Laboratory, National School of
Computer Sciences, University of Manouba, Manouba, Tunisia

Nousseiba Guidoum MISC Laboratory, A. Mehri, Constantine 2 University,
Constantine, Algeria

xi

Robert J. Hammell II Department of Computer and Information Sciences,
Towson University, Towson, MD, USA

Youngsub Han Department of Computer and Information Sciences, Towson
University, Towson, MD, USA

Amirshahram Hematian Department of Computer and Information Sciences,
Towson University, Towson, MD, USA

Xiaohui Hu Institute of Software Chinese Academy of Sciences, Beijing, China

Malika Ioualalen MOVEP, Computer Science Department, USTHB, Algiers,
Algeria

Alessio Ishizaka Portsmouth Business School and Centre for Operational
Research and Logistics, University of Portsmouth, Portsmouth, UK

Ikhyeon Jang Department of Information and Communication Engineering,
Dongguk University Gyeongju, Gyeongbuk, South Korea

Ahmed Kheldoun MOVEP, Computer Science Department, USTHB, Algiers,
Algeria; Sciences and Technology Faculty, Yahia Fares University, Medea, Algeria

Yanggon Kim Department of Computer and Information Sciences, Towson
University, Towson, MD, USA

Daniel Ku US Army CECOM Communications-Electronics Research, Develop-
ment and Engineering Center (CERDEC), Fort Sill, USA

Chao Lu Department of Computer and Information Sciences, Towson University,
Towson, MD, USA

Mitsuho Matsumoto Tottori University, Tottori-shi, Japan

James Nguyen US Army CECOM Communications-Electronics Research,
Development and Engineering Center (CERDEC), Fort Sill, USA

Djamel-Eddine Saïdouni MISC Laboratory, A. Mehri, Constantine 2 University,
Constantine, Algeria

Philip Samuel Division of IT, School of Engineering, Cochin University of Sci-
ence & Technology, Kochi, India

Xudong Sui Institute of Software Chinese Academy of Sciences, Beijing, China

E.V. Sunitha Department of Computer Science, Cochin University of Science &
Technology, Kochi, India

Amanda Ali. Taha Department of Computer Science, University of
Wisconsin-Fox Valley, Menasha, WI, USA

Yoshinobu Tamura Yamaguchi University, Yamaguchi, Japan

xii Contributors

Tyler Timm Department of Computer Science, University of Wisconsin-Fox
Valley, Menasha, WI, USA

Bingyang Wei Department of Computer Science, Midwestern State University,
Wichita Falls, TX, USA

Nadia Yacoubi-Ayadi RIADI Research Laboratory, National School of Computer
Sciences, University of Manouba, Manouba, Tunisia

Shigeru Yamada Tottori University, Tottori-shi, Japan

Yinan Yang Department of Computer and Information Sciences, Towson
University, Towson, MD, USA

Sepideh Yazdani Japan International Institute of Technology (MJIIT), Universiti
Teknologi Malaysia, Kuala Lumpur, Malaysia

Wei Yu Department of Computer and Information Systems, Towson University,
Towson, MD, USA

Hanlin Zhang Department of Computer and Information Systems, Towson
University, Towson, MD, USA

Jinfang Zhang Institute of Software Chinese Academy of Sciences, Beijing,
China

Lei Zhang School of Computer Science, Beijing Information Science &
Technology University, Beijing, China

Contributors xiii

Human Motion Analysis and Classification
Using Radar Micro-Doppler Signatures

Amirshahram Hematian, Yinan Yang, Chao Lu
and Sepideh Yazdani

Abstract The ability to detect and analyze micro motions in human body is a cru-

cial task in surveillance systems. Although video based systems are currently avail-

able to address this problem, but they need high computational resources and under

good environmental lighting condition to capture high quality images. In this paper,

a novel non-parametric method is presented to detect and calculate human gait speed

while analyzing human micro motions based on radar micro-Doppler signatures to

classify human motions. The analysis was applied to real data captured by 10 GHz

radar from real human targets in a parking lot. Each individual was asked to per-

form different motions like walking, running, holding a bag while running, etc. The

analysis of the gathered data revealed the human motion directions, number of steps

taken per second, and whether the person is swinging arms while moving or not.

Based on human motion structure and limitations, motion profile of each individual

was recognizable to find the combinations between walking or running, and holding

an object or swinging arms. We conclude that by adopting this method we can detect

human motion profiles in radar based on micro motions of arms and legs in human

body for surveillance applications in adverse weather conditions.

Keywords Human motion analysis ⋅ Micro-Doppler signature ⋅ Radar surveil-

lance ⋅ Classification

A. Hematian (✉) ⋅ Y. Yang ⋅ C. Lu

Department of Computer and Information Sciences, Towson University,

7800 York Rd, Towson, MD 21252, USA

e-mail: ahemat1@students.towson.edu

C. Lu

e-mail: clu@towson.edu

S. Yazdani

Japan International Institute of Technology (MJIIT),

Universiti Teknologi Malaysia, 54100 Kuala Lumpur, Malaysia

© Springer International Publishing Switzerland 2016

R. Lee (ed.), Software Engineering Research, Management
and Applications, Studies in Computational Intelligence 654,

DOI 10.1007/978-3-319-33903-0_1

1

2 A. Hematian et al.

1 Introduction

In radar systems, in order to measure the radial velocity of a moving target, the well-

known Doppler effect is used to do such measurement. Yet in real world not all the

structural components of a target follow a perfect linear motion. It usually involves

complex motions, called micro-motion, such as acceleration, rotation or vibration.

As stated by Chen [1], the micro-motions, and their induced micro-Doppler effects

were introduced to characterize the movement of a target. Consequently, various

ways to extract and interpret radar micro-Doppler signatures becomes an active

research area specially to observe micro-Doppler signatures from real life samples

such as vehicle engine vibration, aircraft propellers or helicopter blades rotation,

flapping wings of birds, swinging arms and legs of a walking person, and even heart-

beat or respiration of a human. Returned radar signals from legs of a walking per-

son with swinging arms contain micro-Doppler signatures relevant to human motion

structure. The micro-Doppler effect empowers us to determine the dynamic proper-

ties of an object and it offers a new way to analyze object signatures. In order to

determine the movement and identify specific types of targets based on their motion

dynamics, the micro-Doppler effect may be used. We have already tested this concept

in our previous work using simulated data to classify targets with simple movements

[2–5]. Human motion is a combination of articulated and flexible motions that is

accomplished by complex movements of human body parts. Human motion recog-

nition has attracted ample attention in computer vision to become an approach for

human gait motion analysis that is mostly based on extraction of the motions from

a sequence of images [6]. Unlike DNA or fingerprint that are unique for each per-

son, human gait motion features may not be unique as they can be easily replicated by

doing the very same movements, especially when a radar is used to extract the move-

ment of human gait [7]. In contrast to visual perception that is very sensitive to range,

speed, light condition, and complex background, the radar does not suffer from visual

limitations and uses micro-Doppler signatures to extract target movements. Conse-

quently, the radar is very well suited for tracking human gait motions where visual

target observation is not possible. This research involved micro-Doppler signature

analysis of experimental data previously captured [3] from various human targets

with different motions. The data was collected using an X-band FMCW (frequency

modulated continuous wave) radar at 10 GHz. The experimental data presented here

include different motion combinations between legs and arms like walking, fast walk-

ing, jogging, and running with one or two arms swinging, or even without any arm

swinging. Moreover, some similar motion data was captured at different angles in

respect to radar LOS (line of sight). An algorithm is implemented and tested by the

given data to classify different human motions. Both our motion analysis algorithm

and the results of radar data analysis are reported here. In this paper we shed more

light on human motion structure and how each body part motion can be recognized

and classified in radar data by using micro-Doppler signatures.

Human Motion Analysis and Classification Using Radar Micro-Doppler Signatures 3

2 Micro-Doppler Signature Extraction from Radar Signal

Human gait has been studied for years in different fields of science like physiother-

apy, rehabilitation and sports. As previously mentioned, human gait micro-motion

is one of typical examples of radar micro-Doppler signatures. Many studies on radar

micro-Doppler signatures for human gait analysis have been conducted since 1998

[1]. After studying earlier works on micro-Doppler [1–15], we are using previously

captured radar data by Yang and Lu [3] to develop new motion analysis algorithm

in order to extract and classify human gain micro-Motions. The radar data was cap-

tured in an empty parking lot as seen in Fig. 1. In order to minimize multi-path prop-

agation, this site was selected to perform data capturing on weekends and it is on

top of the roof. As stated in [3] a total of 60 people participated in the experiment.

Each of them performed four different movements, including walking, walking at

fast speed, jogging, and running at fast speed, for a duration of 5 s and more. Some

of the people performed additional movements, including leaping, crawling, walk-

ing and running at different aspect angle, to fully illustrate the characteristic of the

micro-Doppler signatures of human motions. Figure 2 shows micro-Doppler signa-

tures of a human subject walking, fast walking, jogging, fast running and leaping.

The image is centered at Doppler frequency, not zero frequency, to make it easier

to compare micro-Doppler features between these motions. The similarities with all

these motions are obvious, with biggest return from the torso form the center line,

and the legs/arms swing causes the side band at both sides of the center line. The

differences with these motions are also visible; the biggest difference is the shape of

the leg swing, with the differences of the phase between leg swing and arm swing.

These differences make classifying different motions possible.

Fig. 1 Radar data capturing environment [3]

4 A. Hematian et al.

Fig. 2 Micro-Doppler signatures of different motions [3]. a Walking. b Fast Walking. c Jogging.

d Fast running. e Sprinting

3 Human Gait Micro-motions Analysis

In this section, we explain how extracted micro-Doppler signatures are post-

processed and analyzed to detect human body micro-Motions. These micro-Motions

are compared against a simulated model of micro-Doppler signatures. Human micro-

Motion classification results of captured radar data are also included in this paper.

Human Motion Analysis and Classification Using Radar Micro-Doppler Signatures 5

Following is the overview of the proposed human motion analysis and classification

using micro-Doppler signatures from radar data.

RadarDataCharacteristics In order to start processing the captured data by a radar,

we need to know the characteristics of the gathered data. The data we used [3] was

captured at rate of 1256 samples per radar sweep. Radar sweep time was 1006µs

that brings our capture rate up to 994.0358 Hz at maximum distance resolution 128

cells. We used Matlab software to read and analyze the captured data. The given

data files were in text format where all the content was numerical and readable.

Each file was properly labeled with the information about the subject like: a unique

file identification number, name of the person, motion types of legs and arms, extra

objects used like a chair or bag and how they were used.

Extracting Doppler Signatures Extracting Doppler signatures from one dimen-

sional data captured by radar is done by calculating Fast Furrier Transform (FFT)

from each sweep of radar data. By putting the FFT data together we can easily dis-

tinguish between static and moving objects. Due to the existence of other objects in

the capturing environment, we can clearly see static objects as straight horizontal

lines and the moving subject as a diagonal curved line in Fig. 3a, as they are called

the Doppler signatures of all objects. As indicated in Fig. 3a, the number of pulses

recorded was 8956 pulses in 9.0097 s where the subject was running and swinging

Fig. 3 Micro-motion analysis and classification of a running person. a Doppler signature (All

objects). b Doppler signature (Moving objects). c Micro-Doppler signature. d Micro-Doppler sig-

nature without Doppler shift. e Body parts signatures. f Simulated 3D micro-Doppler signature

6 A. Hematian et al.

arms fast. Toward extracting the only moving objects from radar data, since the run-

ning person is moving from one cell to another, we can filter down the static objects

by applying a high-pass filter on each cell. We decided to choose 60 Hz high-pass

filter in order to suppress both static objects and electrical noises in the radar data.

After extracting Doppler signatures from the radar data, we can calculate the average

movement and determine the direction of the subject. In Fig. 3b, Doppler Signature

of the moving person shows that our subject has moved from cell number 100–38

that the difference is −62 which indicates the moving subject is getting close to the

radar. To extract the micro-Doppler signatures from Doppler signatures we need to

determine a range of movement of the subject in the number of cells. Like here, the

movement range is between cell numbers 38 and 100. By removing the rest of the

data and only considering the data within the specified range, we can extract the

micro-Doppler signatures of our targeted subject as shown in Fig. 3c.

Extracting Micro-Doppler Signatures The previous step of our algorithm only

revealed the general motion of the moving subject. In order to extract the micro-

Motions of the subject we need to convert the diagonal curved line into a straight

line while preserving the details. To achieve this, we calculate the summation of each

column of the data from previous step and converted our two dimensional data (cell-

samples) into one dimension (samples). Then we apply one dimensional Gaussian

filter to remove the noise and make the Doppler signal smoother as shown in Fig. 3d.

Now it is time to use FFT again to display the frequency shifts of the summation

of Doppler signal and extract micro-Doppler signatures. Since our data has only

one dimension and we want to see the shifts of different frequencies, we need to

have a sliding window to read the data and apply FFT iteratively. At each iteration

starting from the first sample to 512th sample, we calculated the FFT that shows us

the frequency changes up to 256 Hz (half of sample rate) and in next iteration we

shifted the sliding window for one sample to calculate the FFT from 2nd sample

to 513th sample, and so on. This operation is done until the end of sliding window

reaches to the last sample available, for data shown in Fig. 3e is 8956th Sample.

As shown in Fig. 3e, Micro-Doppler Signatures, it is clear that the person, who was

running, started to accelerate at the beginning of the capturing process and decelerate

at the end. This means, at this stage, the Doppler shift and micro-Doppler signatures

are combined and the Doppler shift must be removed. Although in this 9 s of motion

capture we can visually see the motion cycle of legs and arms of the subject, but

extracting these information by signal processing is not easy as it may look.

Removing Doppler Shift Since we need to extract only micro-Doppler signatures

for human micro-motion analysis, the Doppler shift of the captured signal must be

removed. By removing the Doppler shift, the largest and main part of the human body

which is torso will always remain at zero hertz. Consequently, the micro-Doppler

signatures are always stabilized based on the torso of the target and repeated patterns

of micro-Motions become clearer. In order to remove Doppler shift from micro-

Doppler signatures that is a two dimensional data (Frequency-Time), we need to

find the peak (maximum amplitude) of the frequency shifts from each column and

then shift the data up or down within each column where the maximum peak meets

Human Motion Analysis and Classification Using Radar Micro-Doppler Signatures 7

the zero hertz frequency shift. Since we expect to find the maximum peaks from

torso, a one dimensional median filter with window size 51 samples is applied to the

index of the maximum peaks of all columns. This filter removes the unwanted noise

from the list of indexes that may be caused by having the very same amplitude in few

items close to shift frequency of torso at each column. Due to the fact that the human

torso is the largest part of the human body, the maximum peak in the frequency shifts

represents the torso where it reflects most of the radar signal. However, if the target

moves toward the radar or gets far away from it, the amplitude of the frequency shifts

increases or decreases, respectively. The major parameter that affects the reflected

signal amplitude is the distance of the subject from the radar. The farther a subject

moves the weaker signal we receive and we need to normalize the micro-Doppler

signals in order to have consistent amplitudes for all micro-Motions and frequency

shifts during a capture period.

Normalazing Micro-Doppler Signatures After removing the Doppler shift, we

still see that depending of the general movement direction of the target, the micro-

Doppler signatures get higher or lower amplitudes during time. In order to normalize

the micro-Doppler signatures during time we decided to select the torso of human

body as the reference point like the previous step. At this step we have a two dimen-

sional data (Frequency-Time) to normalize. For each column, we find the maximum

peak and calculate a multiplication ratio (MR). To calculate MR for each column,

we need to find the largest peak among all maximum peaks of all columns to put as

a reference amplitude and calculate the MRs. By finding the ratio between the max-

imum peak of each column and the largest peak of all, we calculate the MR and then

multiply each column with its own MR. The normalized result is shown in Fig. 3d,

Micro-Doppler Signatures Without Doppler Shift.

Extracting and Analysis of Micro-motion Signatures As shown in Fig. 3f (bottom

right), the 3D simulated micro Doppler signatures of human body show that after

torso, arms, lower legs and feet have consecutively lower amplitudes in normalized

micro-Doppler signatures. Since, micro-Doppler signatures are always normalized

by our method and human body mass variations and structure limitations cannot

change radically during movement of the targets, we can define multiple thresholds

in order to extract signatures for each part of the human body. Due to the symmetric

motion of arms and legs and knowing that none of our targets have a lost arm or

leg, we extracted the signatures for torso, both arms, both lower legs and both feet

by using thresholding. Seeing that humans have many limitations like they cannot

run faster than 45 km/h, we can draw a line around these limitations to calculate the

average speed of a human target while running and define a threshold to distinguish

walking from running based on the frequency of the steps taken per second. Same

type of calculation can also be applied to human arms when swinging. We decided

to extract the frequency of both feet and put two thresholds to determine the status

of the subject. For the frequencies of higher than 2.5 Hz we consider that the target

is running. For the frequencies between 2.5 and 1 Hz the target is walking and for

lower frequencies the target is moving very slowly. Although human gait is based

on motion of the legs, the rhythmic motions of the arms help the body to keep its

8 A. Hematian et al.

balance. Thus, we expect to get the same frequencies from the signatures for arms

and for the frequencies higher than 2.5 Hz we consider that the person is swinging

both arms very fast. Between 2.5 and 1 Hz we consider that the person is swinging

arms normally and for lower frequencies, if the person has a high gait speed then is

Fig. 4 Head to head comparison of micro-Doppler signatures between a walking (Left column)

and running (Right column) person

Human Motion Analysis and Classification Using Radar Micro-Doppler Signatures 9

holding something in his arm, otherwise he is not moving it. In Fig. 4, Body Parts

Signatures, it is clear that a running person has a higher frequency than a walking

person.

4 Human Gait Micro-motions Classification

Figure 4 shows the head to head comparison between each step of our method for typ-

ical running and walking states of a same person. As portrayed on the left column

(walking), the target is walking almost at constant speed of 2.2198 steps per sec-

ond toward radar while swinging arms. Unlike walking, the target starts to increase

its speed at the beginning of the capture for running and decrease it at the end. On

average, the target is running toward radar at speed of 2.6638 steps per second while

swinging arms very fast. The mentioned human motion profiles are the most typi-

cal patterns of human micro-motions in normal situations that can be classified as

normal behaviour of the target. In contrast to previous profiles, based on our experi-

ments, a target that is running toward radar while holding a bag with both hands has a

very different micro-Motion pattern. We calculated the average speed of 2.9971 steps

per second while the average frequency of arms was only 0.39961 Hz that shows the

target was on the move toward the radar while holding something in both arms. This

type of human motion profile can be classified for triggering an alert system espe-

cially where radar is used for monitoring boarders, coasts or where visual observation

is not possible.

5 Conclusion

In this paper, we proposed a new method for human motion analysis and classifica-

tion based on micro-Doppler signatures in radar signal. The captured data character-

istics and operating principle of our method including experimental results for each

step have been demonstrated. It has been proved that using stabilized and normal-

ized micro-Doppler signatures can reveal human micro-Motions and their patterns.

By analyzing the micro-Motions of human body, we can distinguish and classify dif-

ferent motion profiles of a moving human target. Some motion profiles can be used

as triggers for an alarm system in order to automatically reveal suspicious activities

under radar surveillance. Such experiments with 2.4 GHz radar prove that micro-

Doppler signatures carry ample information to detect and recognize human motions

in radar signal. Consequently, by using radar data with higher sample rates and data

resolution we will be able to extract more details of human micro-Motions like heart

beat or respiration. Proposed method works based on offline radar data analysis and

does not use real-time target tracking. In order to improve the accuracy and per-

formance of our method for real-time radar applications we want to use FPGA to

10 A. Hematian et al.

implement our method in VHDL. This can be considered as future work that radar

target tracking and motion analysis information can be achieved in real-time for radar

surveillance systems.

References

1. Chen, V. C. (2014). Advances in applications of radar micro-Doppler signatures. In IEEE
Conference on Antenna Measurements and Applications (CAMA), Conference Proceedings

(pp. 1–4).

2. Lei, J., & Lu, C. (2005). Target classification based on micro-Doppler signatures. In Radar
Conference, IEEE International, Conference Proceedings (pp. 179–183).

3. Yang, Y., & Lu, C. (2008). Human identifications using micro-Doppler signatures (pp. 69–73).

4. Yang, Y., Zhang, W., & Lu, C. (2008). Classify human motions using micro-Doppler radar. In

Conference Proceedings (Vol. 6944, pp. 69 440V–69 440V–8). http://dx.doi.org/10.1117/12.

779072.

5. Yang, Y., Lei, J., Zhang, W., & Lu, C. (2006). Target classification and pattern recognition using

micro-Doppler radar signatures. In Software Engineering, Artificial Intelligence, Networking,
and Parallel/Distributed Computing. SNPD, Conference Proceedings (pp. 213–217).

6. Zhang, Z., & Andreou, A. G. (2008). Human identification experiments using acoustic micro-

Doppler signatures. In Micro-Nanoelectronics, Technology and Applications. EAMTA, Con-

ference Proceedings (pp. 81–86).

7. Fairchild, D. P., & Narayanan, R. M. (2014). Classification of human motions using empirical

mode decomposition of human micro-Doppler signatures. Radar, Sonar and Navigation, IET,

8(5), 425–434.

8. Brewster, A., & Balleri, A. (2015). Extraction and analysis of micro-Doppler signatures by

the empirical mode decomposition. In Radar Conference (RadarCon), IEEE, Conference Pro-

ceedings (pp. 0947–0951).

9. Chen, V. C. (2003). Micro-Doppler effect of micromotion dynamics: A review. In AeroSense,
International Society for Optics and Photonics, Conference Proceedings (Vol. 5102, pp. 240–

249). http://dx.doi.org/10.1117/12.488855.

10. Garreau, G., Andreou, C. M., Andreou, A. G., Georgiou, J., Dura-Bernal, S., Wennekers, T., &

Denham, S. (2011). Gait-based person and gender recognition using micro-Doppler signatures.

In Biomedical Circuits and Systems Conference (BioCAS), IEEE, Conference Proceedings

(pp. 444–447).

11. Javier, R. J., & Youngwook, K. (2014). Application of linear predictive coding for human activ-

ity classification based on micro-Doppler signatures. Geoscience and Remote Sensing Letters,
IEEE, 11(10), 1831–1834.

12. Youngwook, K., & Hao, L. (2009). Human activity classification based on micro-Doppler sig-

natures using a support vector machine. IEEE Transactions on Geoscience and Remote Sens-
ing, 47(5), 1328–1337.

13. Youngwook, K., Sungjae, H., & Jihoon, K. (2015). Human detection using Doppler radar based

on physical characteristics of targets. Geoscience and Remote Sensing Letters, IEEE, 12(2),

289–293.

14. Yang, Y., Qiu, Y., & Lu, C. (2005). Automatic target classification—experiments on the

MSTAR SAR images. In Software Engineering, Artificial Intelligence, Networking and Paral-
lel/Distributed Computing, and First ACIS International Workshop on Self-Assembling Wire-
less Networks. SNPD/SAWN, Conference Proceedings (pp. 2–7).

15. Wang, X., Li, J., Yang, Y., Lu, C., Kwan, C., & Ayhan, B. (2011). Comparison of three radars

for through-the-wall sensing. In Defense, Security, and Sensing Conference SPIE Proceedings.
SPIE, Conference Proceedings.

http://dx.doi.org/10.1117/12.779072
http://dx.doi.org/10.1117/12.779072
http://dx.doi.org/10.1117/12.488855

Performance Evaluation of NETCONF
Protocol in MANET Using Emulation

Weichao Gao, James Nguyen, Daniel Ku, Hanlin Zhang and Wei Yu

Abstract The Mobile Ad-hoc Network (MANET) is an emerging infrastructure-

free network constructed by self-organized mobile devices. In order to manage

MANET, with its dynamic topology, several network management protocols have

been proposed, and Network Configuration Protocol (NETCONF) is representa-

tive one. Nonetheless, the performance of these network management protocols on

MANET remains unresolved. In this paper, we leverage the Common Open Research

Emulator (CORE), a network emulation tool, to conduct the quantitative perfor-

mance evaluation of NETCONF in an emulated MANET environment. We design a

framework that captures the key characteristics of MANET (i.e., distance, mobility,

and disruption), and develop subsequent emulation scenarios to perform the evalu-

ation. Our experimental data illustrates how NETCONF performance is affected by

each individual characteristic, and the results can serve as a guideline for deploying

NETCONF in MANET.

Keywords NETCONF ⋅YANG ⋅MANET ⋅Configuration management ⋅Network

management ⋅ Emulation

We would like to thank our Dr. Robert G. Cole for initially starting this effort and giving us

feedback.

W. Gao (✉) ⋅ H. Zhang ⋅ W. Yu

Department of Computer and Information Systems, Towson University,

Towson, MD 21252, USA

e-mail: wgao3@students.towson.edu

H. Zhang

e-mail: hzhang4@students.towson.edu

W. Yu

e-mail: wyu@towson.edu

J. Nguyen ⋅ D. Ku

US Army CECOM Communications-Electronics Research,

Development and Engineering Center (CERDEC), Fort Sill, USA

© Springer International Publishing Switzerland 2016

R. Lee (ed.), Software Engineering Research, Management
and Applications, Studies in Computational Intelligence 654,

DOI 10.1007/978-3-319-33903-0_2

11

12 W. Gao et al.

1 Introduction

The emerging MANET has an infrastructure-free and dynamic network topology

constructed by self-organized mobile devices. Compared to the traditional wired and

access-point-based wireless network topologies, MANET has more flexible struc-

tures due to the frequent joining and exiting of nodes in the network. This flexibility,

on one hand, enables MANET to better fit rapidly changing application scenarios,

but on the other hand, increases the difficulty in managing the network.

Various network management protocols have been proposed, including NET-

CONF [1], Simple Network Management Protocol (SNMP) [2]. Although a large

number of research efforts have focused on the performance evaluation of these

protocols in wired networks, the performance of these management protocols on

MANET are largely untested. In the research that does address this issue, various net-

work simulation tools [3], such as NS-3 [4] and OMNET++ [5], were developed to

evaluate the performance of protocols in MANET. However, these simulations pro-

vide the overall performance in the simulated topologies only, and the performance

in real-world MANET topologies has not been thoroughly evaluated. In addition,

while the simulated topologies were considered as the whole entities in the eval-

uation where the scale (i.e. number of nodes), random mobility pattern, and other

parameters such as bandwidth and transmission range were present, the impacts of

the individual characteristics of MANET on its performance are not clear.

In our investigation, we quantitatively evaluate the performance of NETCONF

in the MANET environment. Unlike prior research that is primarily based on simu-

lation, we leverage the network emulation tool, Common Open Research Emulator

(CORE), to carry out the performance evaluation of NETCONF in MANET. To

design the emulation scenarios, we develop a framework that captures the key char-

acteristics of MANET (i.e., distance, mobility, and disruption). Specifically, distance

encapsulates the structures that separate any two communicating nodes in MANET,

mobility represents the leaving and joining of nodes, and disruption characterizes the

environmental hindrance to the delivering packets over the network. Based on the

designed framework, we develop a set of scenarios for the performance evaluation.

The impact of distance is tested via increasing the number of hops in the scenarios

where the MANET topologies are fixed. The impact of mobility is examined through

varying the leaving time in the scenarios where a target node temporarily leaves the

transmission range and losses connection. Finally, we introduce disruptions into the

aforementioned scenarios to evaluate their impact.

We conduct extensive experiments to validate the performance of NETCONF in

various scenarios. Our experimental data illustrates the performance of NETCONF

with respect to individual characteristics and our data can be used as a guideline to

deploy NETCONF in MANET. For example, the incremental hop can increase the

delay in linear and exponentially enlarges the impact of disruption, and the disruption

not only increases the delay for packet transmissions, but also reduce the capability

of the NETCONF requests to tolerate the out-of-range time of a leaving node in the

MANET topology.

Performance Evaluation of NETCONF . . . 13

The remainder of this paper is organized as follows: We conduct a literature

review of the MANET and NETCONF and introduce the emulation tool CORE

in Sect. 2. In Sect. 3, we describe the decomposition of MANET topology and the

framework of simulation scenarios. In Sect. 4, we describe the testbed configuration

and present the evaluation methodology and results. Finally, we conclude the paper

in Sect. 5.

2 Background and Related Work

In this section, we provide the background of our work and conduct the literature

review of areas relevant to our study.

MANET: MANET is a network with highly dynamic topologies that are con-

structed by mobile nodes. In a MANET, infrastructures such as access points are not

required because nodes are self-organized and are able to act as routers in the net-

work. These mobile nodes are able to move frequently and independently, and their

neighboring nodes are continuously changing. The versatility of MANET makes

it ideal for a variety of applications, including tactical networks, disaster recovery,

entertainment, and the emerging Internet of Things (IoT) [6, 7].

With the advance of wireless technologies, there has been a tremendous increase

in number of mobile nodes, leading to larger and more complex, topologies of the

MANET. Many research efforts, for that reason, have investigated MANET in the

following areas [7]: (i) Routing [8], (ii) Energy conservation [9], (iii) Quality of

Service [10], (iv) Security [11], and (v) Network Management.

Several investigations have been devoted to studying network management pro-

tocols [12]. These efforts include the comparison of existing management protocols,

and implanting these protocols in MANET environments. The former one focused

on the performance comparison of protocols in the wired or wireless networks

[13, 14]. For example, Slabicki and Grochla in [14] conducted the performance eval-

uation of SNMP, NETCONF and CWMP on a tree topology-based wireless network.

The later one focused on how the existing protocols performed in a MANET environ-

ment [15, 16]. For example, Herberg et al. [15] evaluated the performance of SNMP

in an Optimized Link State Routing Protocol (OLSRv2)-routed MANET environ-

ment.

NETCONF and YANG: NETCONF [1], which is an emerging network config-

uration protocol, is one of the network management protocols and its performance

has been studied in wired or wireless networks based on access points [13, 14]. It

was developed and standardized by the Internet Engineering Task Force (IETF) (in

RFC6241), which provides the mechanism to retrieve, edit, and remove the configu-

ration of devices within the network. NETCONF is a session-based protocol that

enables multiple operations in the configuration procedures, and its client-server

infrastructure over the secure transport (usually SSH over TCP) ensures the reliable

and secure transactions.

14 W. Gao et al.

The NETCONF protocol includes four layers of content, operations, messages,

and secure transport. The content layer consists of the configuration data and noti-

fication data that is formed in XML. The operations layer defines the base protocol

operations, such as < get >, < edit − config >, and < delete − config >, to retrieve

and edit the configuration data. These operations and data are encoded in the mas-

sage layer as remote procedure calls or notifications. The messages are then trans-

ported over the secure transport layer between the client and server. YANG [17], the

acronym for “Yet Another Next Generation”, is the data modeling language for NET-

CONF protocol developed by IETF (in RFC 6020). It represents data structures in an

XML tree format and is used to model the configuration and state data manipulated

by the NETCONF protocol, NETCONF operations, and NETCONF notifications.

In the following, we describe the characteristics of NETCONF and YANG [18]:

(i) Session-oriented protocol over Secure Shell (SSH): The NETCONF protocol con-

sider SSH for its mandatory transport protocol. Other transports, including Transport

Layer Security (TLS), Simple Object Access Protocol (SOAP), are considered to be

optional. (ii) Data-driven content with YANG: The YANG is used to define the server

API contract between the client and the server. (iii) A stateful transaction model: The

NETCONF protocol is designed for one server and one client pair. The client and

server exchange < hello > messages at the start of the session to determine the char-

acteristics of the session that is always initiated by the client. Via it, the client then

learns the exact data model content of YANG supported by the server. (iv) RPC
exchange messages encoded in XML: A client encoded an RPC message in XML

and sends it to a server. The server, in turn, responds with a reply, which is also

encoded in XML. (v) Database operations are standardized and extensible: There

are four operations used to manipulate the conceptual data defined in YANG: create,

retrieve, update, and delete (CRUD). A datastore, which is a conceptual container

with a well-defined transaction model, is defined to store and access information.

The server advertises the datastores it supports in the form of capability strings.

CORE: Unlike the simulation-based approaches of other research efforts, we

implement an emulation-based approach for the performance evaluation in this

study. We utilize the Common Open Research Emulator (CORE) [19] to emulate

the MANET environments. CORE is a python framework, providing a graphic user

interface for building emulated networks. Consisting of an graphic user interface for

drawing topologies of lightweight virtual machines (nodes) and Python modules for

scripting network emulation, CORE is able to emulate a network environment (wired

and/or wireless) and run applications and protocols on the emulated nodes. It also

enables the connection between emulated networks and live networks. Using CORE,

we are able to establish the scenarios for the performance evaluation of NETCONF

in MANET environments.

Performance Evaluation of NETCONF . . . 15

3 Our Approach

In our data transaction model, we emulate the data traffic between one pair of nodes

(source and destination), managed by NETCONF. We define “connected nodes” to

be any pair of nodes, which are able to communicate in the MANET. Via decon-

structing the complex MANET topology into several key characteristics, we formu-

late the test configurations to examine the individual and combined effects of these

characteristics, and quantitatively measure their impact on the performance. In the

following, we first present the key characteristics of MANET dynamic topology and

then design the scenarios for emulation.

3.1 Key Characteristics

Figure 1 illustrates the coupling/decoupling model. Choosing n1 and n2 as a pair to

observe the communication. Once n2 moves to the range of n4 as shown in the figure,

n1 and n2 are “connected”. During the data transmission between the connected pair,

the performance will be impacted by the following three characteristics: (i) Distance,

(ii) Mobility, and (iii) Disruption, which will be detailed in the next few subsections.

Distance: The distance between a pair of connected nodes is characterized by

the combination of the physical and “processing” distance between them. It can be

formalized in general terms as the sum of the delay of all of the hops on the route and

the delay of all of the physical distances between each adjacent or connected node on

the route. Figure 2 shows an example of the distance of a pair of nodes n1 and n2. The

number of hops between n1 and n2 is 2 (n3 and n4) and the sum of physical distance

between n1 and n2 is 700 m (250 + 250 + 200). The performance, as a measure of

Fig. 1 MANET

coupling/decoupling model

16 W. Gao et al.

Fig. 2 Distance between

two nodes (n1 and n2)

network speed or delay, is thus affected by the processing delay of every hop and the

physical delay of data transmission over the distance. The latter can be computed by

dividing the total physical distance by the speed of light. At any given point in time,

both the distance and number of hops will be constants.

Mobility: This is the characteristic of the flexible morphology of the MANET.

Mobility allows for the reconfiguration of the nodes, and therefore degrades per-

formance due to the delay raised by disconnection and reconnection. The change

in the connection between a pair of nodes can be modeled by three mobility pat-

terns. We name the first pattern Fixed Connection, where the route does not change

between the source and destination nodes and any of the nodes in the route during

the data transmission. This pattern can be considered the same as a static topol-

ogy. The second pattern is denoted Same Route Returning. During the data trans-

mission, one or more nodes move out from the original route and cause the loss of

connection between the source and destination nodes. The leaving nodes then returns

and recovers the connection through the original route. The third pattern is named

Change Route Returning. The nodes leave and cause the loss of connection as in the

second pattern, but the difference is that the connection is reformed, either by the

relocation of the remaining nodes, or after the leaving nodes return through a dif-

ferent route from the original one. This situation is considered because the routing

table would be updated for the data transaction. Figure 3 illustrates the connection

between two nodes n1 and n2 as the result of three mobility patterns. The performance

affected by the mobility of nodes comes from the delay or failure of data transmission

caused by the change of connection status. In the latter two patterns, the original data

packet in the transmission is not delivered due to the loss of connection on the route.

The data will be either delivered by the retransmission after the route is recovered

or reformed, or failed to deliver due to a timeout, according to the retransmission

schedule.

Disruption: Disruption is characterized as packet loss. There are many factors

that can contribute to disruption, such as weak signal and shielding materials, and

Performance Evaluation of NETCONF . . . 17

Fig. 3 Mobility patterns of nodes

in general these factors are the result of unintended or unavoidable environmental

factors. The disruption results in the packet loss during the data transmission, which

triggers the data retransmission and leads to additional delay, overhead, and some-

times the failure of the request or the response. The degree of disruption, with respect

to the packet loss rate, can affect the performance of network management.

In a real-world MANET environment, the performance of NETCONF is affected

by the complexity of the topologies. In our assumption, there are a variety of factors

18 W. Gao et al.

in a typical MANET topology, which can affect the performance. Nonetheless, all

of them can be categorized into the three key characteristics. For example, the faster

the nodes move in MANET, the more frequent the loss of connection and recovery

occurs. Another example is that a larger density of nodes can reduce the number of

hops between a pair of nodes that is communicating, because it allows the nodes

to find shorter routes to reach other nodes. Under this assumption, we are able to

create a 3-dimensional framework, generating the emulation scenarios by combining

different levels of performance impact in individual dimensions. It also allows us to

estimate the performance of NETCONF in a complex MANET environment, and

find the conditions that NETCONF can perform as well.

3.2 Emulation Scenarios

To design the emulation scenarios, we create a 3-dimensional framework based on

the key characteristics to capture MANET dynamic topology. Figure 4 illustrates this

framework.

Fig. 4 Framework to design emulation scenarios

Performance Evaluation of NETCONF . . . 19

Fig. 5 Scenario groups

The X-axis represents the dimension of Disruption, in the form of Packet Loss
Rate. We evaluate four levels of packet loss rate, 0, 5, 10, and 20%, to describe

the degree of disruption to the MANET. The Y-axis represents the dimension of

Mobility. In our experiment, we set only the destination node of the communicating

pair as the candidate node to move, while all other nodes on the route are fixed. As

illustrated in Fig. 3, the three mobility patterns are (i) Fixed Connection, where the

destination node stays static during the data transmission, (ii) Same Route Returning,

where the node leaves and returns to the previous position to recover the original

route to the source node, and (iii) Change Route Returning, where the node leaves

and returns to a new position and forms a new route. Notice that the duration that

a node spends out of the network range can affect the performance, and therefore

becomes a variable in our evaluation. The Z-axis represents the Distance between

the pair of communicating nodes, in the form of number of hops. We set the distance

between every two adjacent nodes on the route to an equal and fixed value such that

the sum of physical distance is a constant multiplied by the number of hops plus

one. The number of hops ranges from 0 to 4 in our emulation scenarios. By applying

different level in each dimension, we generate 12 emulation scenarios grouped in 3

groups, as shown in Fig. 5.

∙ Scenario Group 1 (Sc1-I, Sc1-II, Sc1-III, and Sc1-IV): Scenario Group 1 includes

4 subsets that represent the fixed MANET topologies, where the nodes are static

during the data transmission. Each subset is evaluated with one of the four levels

of packet loss rate as defined in the dimension of disruption, i.e. 0% in Sc1 − I,
5% in Sc1 − II, 10% in Sc1 − III, and 20% in Sc1 − IV . Additionally, each subset

is evaluated at values of the variable hops 0 to 4. The goal is to observe how

the distance affect the performance in a fixed topology under different levels of

disruptions.

∙ Scenario Group 2 (Sc2-I, Sc2-II, Sc2-III, and Sc2-IV): Scenario Group 2 includes

4 subsets that represent Same Route Returning, where the destination node moves

out of the transmission range in the MANET, stays out of range for a variable

period of time, and returns with the original route recovered. Each subset in this

group is tested with the disruption levels described above. For the dimension of

distance, we only consider the situation, where the number of hops is 1. This

simplifies the scenario and provides the same structure in comparison with the

20 W. Gao et al.

Change Route Returning scenario. The variable in each subset is the time that the

leaving node stays out, named stay-out-time. We observe the delay and the suc-

cess rate by increasing the stay-out-time in each emulation subset to evaluate the

performance in Same Route Returning pattern across different levels of disrup-

tion. Another important assumption is that the leaving nodes “jump” out of the

range instead of “move”, which omits the time that the leaving nodes moves from

the original position to the edge of the signal range. This allows us to evaluate

the reconnection delay purely, without the contribution of the delay from varying

distance.

∙ Scenario Group 3 (Sc3-I, Sc3-II, Sc3-III, and Sc3-IV): Scenario Group 3 includes

4 subsets that represent the Change Route Returning, where the destination node

moves out of the MANET range, stays out of range for a variable period of time,

and returns with a new route formed. Just as in Scenario Group 2, we observe

the delay and the success rate by increasing the stay-out-time in each subset, and

evaluate the comparative performance in Change Route Returning under different

levels of disruption.

By comparing the emulation results across the scenario groups, we can evalu-

ate the impact of the mobility patterns on the performance of NETCONF. We can

also study the impact of the disruption on the performance of network management

protocol, by comparing the results across the four subsets in each scenario group.

4 Performance Evaluation

We setup an emulation environment to evaluate the performance of NETCONF

based on scenarios designed in Sect. 3. The testbed utilizes CORE v4.8 to emulate

the MANET environment. CORE requires a Linux environment, for which we used

Ubuntu (v14.04 LTS). OpenYuma [20], which is an open source NETCONF imple-

mentation, contains a netconfd service for the server node and a yangcli client for

the client node. Other necessary protocols and services in the emulation environment

include OLSRv2 [21] for the MANET topology and SSH for NETCONF to run. We

used olsrd2 [22] from the OLSR.org Network Framework (OONF) for the OLSRv2

protocol, and OpenSSH [23] for the SSH service.

The wireless connection of the emulated MANET environment is set to the default

value of 54 Mbit/s, with the maximum range of 275 m. During the emulation, data

traffic and the mobility script are set to start after the initial MANET topology is

constructed. Tcpdump is also initialized to capture all TCP traffic, and the trace file

is processed by using awk scripts for data analysis.

Several customized settings were required to override the default CORE configu-

ration: (i) The OLSRv2 protocol is used in each emulated node with the OONF ver-

sion. (ii) The SSH is directed the configuration file to a customized file that enables

the ports and service for the netconfd server. A global key pair is setup for non-

password login between emulated nodes. (iii) The service that launches the tcpdump

Performance Evaluation of NETCONF . . . 21

Fig. 6 Emulation process

for both server (n1) and client (n2) nodes is added and the request sending command

on the client node is added. This configuration can be implemented by either cus-

tomizing the node configuration in CORE’s graphic user interface, or adding it to

the Python script.

The quantitative evaluation of the performance of NETCONF is conducted

through observing the traffic of simple NETCONF requests in the scenarios that

we have created. The emulation in each scenario is designed as a simple NETCONF

request and feedback process between a pair of target nodes in the MANET environ-

ment. We define the target pair of nodes named n1 and n2 for each scenario emulated

in CORE. The node n1 is set as the NETCONF client running yangcli, and the node

n2 is set as the NETCONF server running netconfd. The data traffic is a simple, one-

time NETCONF server login and “GET” request sent from n1 to n2, and the expected

feedback of the request from n2. All TCP packets sent and received by n1 and n2 are

recorded by Tcpdump.

Figure 6 illustrates the process of each emulation. When the emulation process

starts, the MANET topology is initialized and constructed by the pair of target nodes

along with the other nodes in between. Tcpdump starts to trace and record the TCP

packets on both client (n1) and server (n2) nodes. Next, a “GET” command with login

request, which is delay-triggered to wait for the construction of the MANET, is sent

from the client (n1). If it is in a moving scenario, the mobility script is triggered right

after the request, and the server (n2) starts jumping out from the current topology.

The leaving node (n2) stays out of range for T seconds, and moves back in range.

22 W. Gao et al.

Fig. 7 Metrics

The data traffic may continue after MANET is reconstructed or stops if the node

stays out longer than the threshold. If it is a fixed topology, the server node stays in

range during the emulation. Finally, the emulation stops and records everything to

a trace file.

By repeating the emulation, changing the value of variables in each subset, and

analyzing each trace record, we are able to obtain (i) the actual packets and bytes

sent and received by each node, (ii) the number of packets and bytes needed to be

sent for a connection, by the sequence number, (iii) the largest delay in each full

request/feedback process, which is the largest time interval of any packet from being

sent out to being acknowledged, and (iv) the stay-out-time that we define as the time

that the leaving node stays out of range. To measure the performance of the NET-

CONF, we define the metrics in detail shown in Fig. 7. Each emulation scenario with

be run 5 times.

Our evaluation is separated into the categories based on the two variables: dis-

tance and mobility. The third variable, disruption, is a variability condition for the

evaluation of the distance and mobility. We will discuss the disruption when we

show the results of scenarios associated with distance and mobility. Additionally, in

our emulation we note that the NETCONF request can only be initialized success-

fully while the client and server nodes are connected. Furthermore, for any node that

has left, the request can only be successfully delivered and executed once the route

between the pair of nodes is recovered or reformed and the routing table is corrected,

before timeout.

Distance: Figure 8 shows the variation of the largest delay from the number of

hops in the Fixed Connection scenarios without disruption (Sc1-I defined in Sect. 5).

It can be observed from the scatter chart that the largest delay (Y-Axis) increases lin-

early with the number of hops (X-Axis) between the client and server nodes, indicat-

ing a constant increase in delay per hop. Therefore, a steady route can be considered

similar to the wired network or wireless network based on access points. Notice that

the delay due to the physical distance between two nodes, at less than 1 µs for the

transmission across 250 m, can be discarded because the total delay is in the range

of 100 ms, leaving us to simply the delay for the hops.

Performance Evaluation of NETCONF . . . 23

Fig. 8 Largest delay in fixed connection w/o disruption

Fig. 9 Largest delay in fixed connection w/disruptions

When disruption occurs, the delay increases with increasing the number of hops.

Figure 9 compares the distribution of largest delay by hops under 4 different levels of

disruptions (results of the emulations in Group 1: Sc1-I, Sc1-II, Sc1-III, and Sc1-IV

defined in Sect. 5). Under a higher disruption level, as observed in the scatter chart,

24 W. Gao et al.

Fig. 10 Transaction failure in fixed connection w/disruption

the upper bound of the largest delay increases significantly by every incremental hop.

For example, under a 10% packet loss rate, the largest delay can increase from 1500

ms at 0 hop to 15000 ms at four hops, where the delay under the 0% packet loss rate

increases only from 86 to 375 ms.

In Fig. 10, we directly compare the number of packet failures by hops under the

4 levels of disruption. In a disruption free environment (0% packet loss rate), the

request does not fail since all packet will be delivered. Once disruption occurs, how-

ever, the probability of request failure increases by increasing the number of hops. In

these scenarios (Sc1-II, Sc1-III, and Sc1-IV defined in Sect. 5), a packet is lost during

the transmission between the adjacent nodes, and every incremental hop exponen-

tially increases the probability of packet loss. For example, when the packet loss

rate is 10%, the overall probability of a packet loss for a 2-hop route is 27.1% (or

1 − 90%3
) and for a 3-hop route is 34.4% (or 1 − 90%4

). As the scatter chart shows,

under the 10% packet loss rate, the NETCONF request fails 1 out of 5 attempts when

there is 1 hop between the client and server nodes, and increases to 3 times when

number of hops raises to 3.

Once the packet loss triggers the retransmission, the delivery of the packet is

delayed, and a greater packet overhead is incurred. Figure 11 compares the number

of duplicate packets (overhead) by hops for each level of disruption. In each sce-

nario where the packet loss occurs (Sc1-II, Sc1-III, and Sc1-IV defined in Sect. 5),

the overhead increases with increasing hops. This distribution pattern of Overhead-

Distance matches the Delay-Distance, where the delay is a measure of the time effect

Performance Evaluation of NETCONF . . . 25

Fig. 11 Packet overhead in fixed connection

of retransmitting packets. Likewise, as the probability of disruption is exponential

with distance, so is overhead, as each disruption results in a retransmission. It fol-

lows, then, that the Delay-Distance trend also increases exponentially.

The result of emulation in Scenario Group 1 indicates how the distance between

two pairs of nodes will affect the performance of the NETCONF traffic in MANET.

Greater distance linearly increases the delay in a disruption-free environment, and

exponentially increases the delay and overhead proportionally with the probability

of disruption.

Mobility: While Scenario Group 1 represents the performance of NETCONF

traffic in the steady connection circumstances, Scenario Group 2 and 3 shows the

influences resulting from the moving nodes. Excluding the disruption (Sc2-I defined

in Sect. 5), Fig. 12 shows the variation of the Recovery Delay from the stay-out-
time in the Same-Route-Returning scenarios without disruption (Sc-2-I defined in

Sect. 5). Theoretically, the time for restructuring a same topology MANET should be

steady. The scatter chart, however, indicates a non-linear pattern of Recovery Delay
by stay-out-time. With the increase of stay-out-time, the delay jumps to a high level

and slowly decreases repeatedly. This indicates that the retransmission may not be

triggered right after the recovery of the route, and the time interval from the recovery

of route to the actual retransmission varies by stay-out-time. When not deducting the

stay-out-time, Fig. 13 shows the scatter chart of the Largest Delay (Y-Axis) by stay-

out-time (X-Axis). It can be observed that the Largest Delay increases in almost

double at certain time point and remains the same level until next jump. This is

because the time a packet to be re-sent is scheduled after the last failure, once the

leaving node moves back and recovers the route before next scheduled transmission

26 W. Gao et al.

Fig. 12 Recovery delay in SameRouteReturning w/o disruption

Fig. 13 Largest delay in SameRouteReturning w/o disruption

Performance Evaluation of NETCONF . . . 27

Fig. 14 Largest delay in SameRouteReturning w/disruption

time, it has to wait until the time is reached. Thus, earlier returning nodes would have

the same retransmission time. For example, a node leaves for 40 and 50 s will both

retransmit its packet at 68000 ms, leading to the same delay level in the figure.

Once disruption is taken into consideration (Sc-2-II, Sc-2-III, and Sc-2-IV defined

in Sect. 5), the packet loss will increase the Largest Delay of a target stay-out-
time to a higher level than the scenario without disruption, due to the failure of

packet transmission. Figure 14 compares the Largest Delay by Stay-out-time in the

Same Route Returning pattern across different levels of disruption. The figure shows

that a higher disruption level like 10% packet loss rate can increase the largest delay

from 17000 to 32000 ms or even 65000 ms level for the same stay-out-time (15 s).

Additionally, there are a significant number of data points that fall between two TCP

retransmission schedule delay levels, due to the additional retransmission because

of dropped packets. This increase of the largest delay by disruption also lowers the

tolerance to the out-of-range time. Figure 15 compares the transaction failures in

Same Route Returning among different levels of disruptions. For example, when the

leaving node stays out for 10 s, there is 1 failure under 5% packet loss rate scenario,

2 under 10% scenario, and 3 under 20% scenario, respectively. During the evalua-

tion, we also find that, under the disruption-free scenario, the failure starts to occur

at 66 s of stay-out-time.

28 W. Gao et al.

Fig. 15 Transaction failure in SameRouteReturning w/disruption

Fig. 16 Largest delay in Same versus ChangeRouteReturning w/o disruption

Performance Evaluation of NETCONF . . . 29

In the Change Route Returning Scenario without disruption (Sc-3-I defined in

Sect. 5), the pattern is similar to the Same Route Returning with under the same

conditions. In Fig. 16, we compare the Largest Delay by stay-out-time between Same
Route Returning and Change Route Returning. It can be observed that when stay-

out-time is above 15 s, the two scenarios follows the same pattern. Nonetheless,

when the stay-out-time is under 15 s, the Largest Delay is a constant of 30 s for

ChangeRouteReturning. This contrasts the Same Route Returning, where there are

Largest Delayminima at 10 and 20 s, for stay-out-times of 5 and 10–15 s respectively.

The distinction can be explained by the time necessary to correct the routing table

for the Change Route Returning that does not exist for the Same Route Returning.

When disruption is involved (Sc-3-II, Sc-3-III, and Sc-3-IV defined in Sect. 5),

Change Route Returning follows the same pattern as in Same Route Returning sce-

narios. Figures 17 and 18 compare the largest delay and transaction failure in dif-

ferent levels under different levels of disruption. From these figures, the result of

emulation in Scenario Groups 2 and 3 indicates how the mobility patten of the leav-

ing node will affect the performance of the NETCONF traffic in a MANET topology.

The NETCONF requests in a MANET environment rely on the TCP retransmission

strategy. The delay caused by the change of route in a MANET is determined by

the TCP retransmission scheduling. Requests can be successfully sent, received, and

executed as long as the route can be reconstructed before the last retransmission try.

In a disruption-free environment, the transaction can tolerate 60 s for a leaving node

Fig. 17 Largest delay in ChangeRouteReturning w/disruption

30 W. Gao et al.

Fig. 18 Transaction failure in ChangeRouteReturning w/disruption

to stay out of range. Finally, there is no significant difference whether the original

route is reconstructed or changed once the stay-out-time is greater than 15 s.

Disruption: Based on the emulation scenarios we have designed, the impact of

disruption is compared among the 4 scenarios. Again, in Figs. 9, 14, and 17, the

largest delay under 4
◦

of disruption are compared in Fixed Connection, Same Route
Returning, and Change Route Returning scenarios, and Figs. 10, 15, and 18 compare

the request failure. As we can observe form each figure, a higher packet loss rate

always results in a higher delay and the number of failures. This is because in a

disruptive environment, the packet loss occurs during the transmission between two

adjacent nodes, leading to the retransmission of packets. A higher packet loss rate

can lead to more retransmissions, which further increases the delay and overhead,

and reduces the capability of the NETCONF request to tolerate the stay-out-time of

the leaving nodes.

5 Final Remarks

In our investigation, we leveraged the network emulation tool, CORE and carried

out the quantitative evaluation of NETCONF in a MANET. We developed a generic

framework that considers the key characteristics of MANET (distance, mobility, and

Performance Evaluation of NETCONF . . . 31

disruption) and designed scenarios to perform the emulation study. Our experimental

data show how NETCONF performance was affected by individual characteristics,

and the results can serve as a guideline for deploying NETCONF in MANET. The 3-

dimensional framework that we designed to create MANET emulation scenarios can

be applied not only to evaluate NETCONF, but to other protocols that are applicable

to the MANET topology.

References

1. Enns, R., Bjorklund, M., Schoenwaelder, J., & Bierman, A. (2011). Network configuration

protocol (netconf). Internet Engineering Task Force, RFC 6241.

2. Harrington, D., Presuhn, R., & Wijnen, B. (2002). An architecture for describing simple net-

work management protocol (snmp) management frameworks. Internet Engineering Task Force,

RFC 3411.

3. Imran, M., Said, A., & Hasbullah, H. (2010). An overview of mobile ad hoc networks: Applica-

tions and challenges. InProceedings of 2010 International Symposium Information Technology
(ITSim).

4. Network Simulator V3 (NS-3). http://www.nsnam.org.

5. OMNET++. http://www.omnetpp.org.

6. Bellavista, P., Cardone, G., Corradi, A., & Foschini, L. (2013). Convergence of manet and wsn

in iot urban scenarios. IEEE Sensor Journal, 13(10), 3558–3567.

7. Hoebeke, J., Moerman, I., Dhoedt, B., & Demeester, P. (2004). An overview of mobile ad hoc

networks: Applications and challenges. Journal of the Communications Network (JCN), 3(3),

60–66.

8. Patel, D. N., Patel, S. B., Kothadiya, H. R., Jethwa, P. D., & Jhaverii, R. H. (2014). A survey

of reactive routing protocols in manet. In Proceedings of 2014 IEEE International Conference
on Information Communication and Embedded Systems (ICICES).

9. Chawda, K., Gorana, D. (2015). A survey of energy efficient routing protocol in manet. In

Proceedings of 2nd International Conference on Electronics and Communication Systems
(ICECS).

10. Yu, Y., Ni, L., & Zheng, Y. (2011). Survey of qos multicast routing protocols in manets. In Pro-
ceedings of 2011 International Conference on Computer Science and Service System (CSSS).

11. Alani, M. M. (2014). Manet security: A survey. In Proceedings of 2014 IEEE International
Conference on Control System, Computing and Engineering (ICCSCE).

12. Goncalves, P. (2009). An evaluation of network management protocols. In Proceedings of
IFIP/IEEE International Symposium on Integrated Network Management.

13. Hedstrom, B., Watwe, A., & Sakthidharanr, S. (2011). http://morse.colorado.edu/~tlen5710/

11s.

14. Slabicki, M., & Grochla, K. (2014). Performance evaluation of snmp, netconf and cwmp man-

agement protocols in wireless network. In Proceedings of the 4th Internationa Conference on
Electronics, Communications and Networks.

15. Herberg, U., Cole, R. G., & Yi, J. (2011). Performance analysis of snmp in olsrv2-routed

manets. In Proceedings of the 7th International Conference on Network and Services Man-
agement, October 24–28.

16. Kuthethoor, G. (2008). Performance improvements to netconf for airborne tactical networks.

In Proceedings of IEEE Intertional Conference on Military Communication (MILCOM).
17. Bjorklund, M. (2010). Yang—a data modeling language for the network configuration protocol

(netconf). Internet Engineering Task Force, RFC 6020.

18. NETCONFCENTRAL. https://www.netconfcentral.org.

19. Common Open Research Emulator. http://www.nrl.navy.mil/itd/ncs/products/core.

http://www.nsnam.org
http://www.omnetpp.org
http://morse.colorado.edu/~tlen5710/11s
http://morse.colorado.edu/~tlen5710/11s
https://www.netconfcentral.org
http://www.nrl.navy.mil/itd/ncs/products/core

32 W. Gao et al.

20. OpenYuma. https://github.com/OpenClovis/OpenYuma.

21. Herberg, U., Clausen, T., Jacquet, P., & Dearlove, C. (2014). The optimized link state routing

protocol version 2. Internet Engineering Task Force, RFC 7181.

22. OLSRD2. http://www.olsr.org.

23. OpenSSH. http://www.openssh.com.

https://github.com/OpenClovis/OpenYuma
http://www.olsr.org
http://www.openssh.com

A Fuzzy Logic Utility Framework (FLUF)
to Support Information Assurance

E. Allison Newcomb and Robert J. Hammell II

Abstract The highly complex and dynamic nature of information and communi-
cations networks necessitates that cyber defenders make decisions under uncer-
tainty within a time-constrained environment using incomplete information. There
is an abundance of network security tools on the market; these products collect
massive amounts of data, perform event correlations, and alert cyber defenders to
potential problems. The real challenge is in making sense of the data, turning it into
useful information, and acting upon it in time for it to be effective. This is known as
actionable knowledge. This paper discusses the use of fuzzy logic for accelerating
the transformation of network monitoring tool alerts to actionable knowledge,
suggests process improvement that combines information assurance and cyber
defender expertise for holistic computer network defense, and describes an
experimental design for collecting empirical data to support the continued research
in this area.

Keywords Fuzzy logic ⋅ Information assurance ⋅ Network defense ⋅ Decision
support ⋅ Process improvement

1 Introduction

Our growing dependence on computers and information, paired with the ubiquity of
computing devices, demands we treat cyber security as a suite of many different
problems involving many different, often unpredictable, outcomes. Cyber defense is

E. Allison Newcomb (✉)
Towson University, Towson, MD 21252, USA
e-mail: enewco2@students.towson.edu

R.J. Hammell II
Department of Computer and Information Sciences,
Towson University, Towson, MD 21252, USA
e-mail: rhammell@towson.edu

© Springer International Publishing Switzerland 2016
R. Lee (ed.), Software Engineering Research, Management
and Applications, Studies in Computational Intelligence 654,
DOI 10.1007/978-3-319-33903-0_3

33

performed in Computer Network Defense (CND) centers or Cyber Security
Operations Centers (CSOC). Teams of cyber defenders working in these centers are
composed of system administrators, network defense analysts and forensics experts.
Cyber defenders must protect all access points, be able to quickly assess and
minimize damage and/or downtime, and detect and eliminate adversarial presence
in the network. These are monumental tasks when considering the dynamic nature
of network assets, their potentially diverse configurations, and the fact than an
adversary needs only to find one way into the infrastructure to cause problems.

Detecting, analyzing and responding to unusual network activities are critical
functions performed by cyber defenders. There is an abundance of network mon-
itoring tools, Intrusion Detection Systems (IDS), Intrusion Prevention Systems
(IPS), and Security Information and Event Management (SIEM) products and
services to integrate any or all of the outputs from those systems. The amount of
data and information generated by these technologies is overwhelming. As an
example, consider a recent article [1] that states more than 50 TB of data can be
generated by a medium-sized enterprise network in a 24-h period. Assuming the
software tools used by CND or CSOC were accurate and reliable, cyber defenders
would be presented with approximately 5 GB of data to process each second to
recognize cyber attacks in near real-time.

It is clear that cyber defenders have a deluge of information and would benefit
from automation that assists in prioritizing that information. The real need is the
ability to turn all this information into actionable knowledge—useful information
that can be acted upon in time to provide effective cyber defense [2].

Vulnerability analyses on computer systems and information networks have
been performed for well over a decade. So many vulnerabilities exist, with new
ones emerging almost daily, that it is practically impossible to address them all.
These analyses have historically taken a defensive posture. For a more complete
understanding of weaknesses, perhaps we should think in terms of what the
adversary might target rather than just performing vulnerability scans and running
security readiness scripts; that is, take an offensive posture. The adage postulating
that “the best defense is a good offense” suggests that we should know as much as
possible about how an adversary might exploit, or target, a weakness.

The work presented here incorporates a targeting methodology developed for
and used by US Special Forces units to determine the feasibility of a plan of attack.
This targeting methodology has been adopted and modified for risk assessments to
our nation’s food supply, and vulnerability assessments for critical infrastructure.
The methodology, CARVER (Criticality, Accessibility, Recuperability, Vulnera-
bility, Effect, Recognizability), will be detailed in a later section of this paper.

The research we have undertaken seeks to help cyber defenders function more
efficiently and lighten their burden of analysis and interpretation through a com-
bination of a fuzzy-based decision support tool and business process improvement
strategy. This paper introduces the Fuzzy Logic Utility Framework (FLUF); a
decision support tool to assist cyber analysts in addressing intrusion detection alerts
on devices deemed most critical relative to an organization’s mission. The FLUF is
used to determine the Alert Priority Rating (APR), which arranges IDS/IPS alerts in

34 E. Allison Newcomb and R.J. Hammell II

high to low order of severity. The FLUF considers the criticality of the affected
asset, the level of access needed to infiltrate the asset, and the effect of the affected
asset’s compromise to the enterprise or mission.

The framework also supports process improvement by providing a means for the
teams most familiar with the network architecture to participate in defining the rules
that dictate alert priority and recommended actions. It is designed to be customized
by individual organizations to address its particular needs and concerns. Further,
because it is a framework, different components from the CARVER or other risk
assessment methodology can be used in place of the components selected for this
preliminary design. Elements of the Risk Management Framework (RMF) may also
be used instead of the CARVER approach.

While presenting our approach for prioritizing network sensor alerts to provide
improved support to cyber defenders, the work herein provides several main con-
tributions. First, a fuzzy logic architecture previously constructed to assist military
intelligence analysts is extended to assist analysts in the cyber defense domain.
Secondly, a widely-used military targeting tool is leveraged to develop a method-
ology for prioritizing IDS/IPS alerts. To our knowledge, this is the first work to
apply this targeting methodology in developing intrusion detection rulesets. Finally,
a fuzzy rule set is designed that translates subject matter experts’ (SME) knowledge
into actionable knowledge [2] for cyber defenders.

The remainder of the paper is organized as follows: Sect. 2 provides an overview
of cyber security in organizations and highlights an opportunity to improve busi-
ness processes. Section 3 provides a brief discussion of fuzzy logic, related work in
the cyber security domain, and similarities between military intelligence analysts
and cyber defense analysts. Section 4 introduces the targeting methodology being
applied in a unique manner to cyber defense. The Fuzzy Logic Utility Framework
details are discussed in Sect. 5. Conclusions and future work are presented in
Sect. 6.

2 Cyber Security in Organizations

Computers, information technology, and networking have had a tremendous impact
on society and have transformed business, academia and military organizations.
Our increasing reliance on computer information and communications networks
dictates that systems must be secure, reliable and robust. Industry, financial insti-
tutions, academia, retailers and governments all have experienced security breaches
of their enterprise networks [3–5]. Cyber security in organizations has become
increasingly important in terms of protecting intellectual property, individuals’
privacy, and business reputation.

Enterprise networks are often geographically dispersed, with potentially thou-
sands of users, multiple types of network servers, and a wide array of networking
equipment [6]. Considering the complexity and diversity of an enterprise network’s
resources and configurations, it is easy to see the cyber defender’s challenge in

A Fuzzy Logic Utility Framework (FLUF) … 35

developing and maintaining situation understanding of the network. It is unrea-
sonable to expect the cyber defender to comprehend the enterprise network’s
complete operational picture and quickly ascertain the implications of sensor alerts.

Many organizations have CND or CSOC capabilities. These security centers are
equipped with technologies and equipment that collect network data (flows and
behaviors), perform correlation, and fire alerts when events of interest occur. Cyber
defenders use these tools, threat intelligence, and their expert knowledge to gather
contextual information to further evaluate the event(s). It is important to realize that
no single cyber defender can be expected to have high proficiency in every tech-
nology used in the CND center or CSOC, or to know the “normal” behaviors of
devices on every segment or within every enclave of the network he is responsible
for monitoring.

An approach is needed that better supports the cyber defender by reducing
cognitive load and decreasing the mean time to remediate; prioritizing sensor alerts
will accomplish both objectives.

A recommended best practice for creating continuous improvement in CND
functions and tools is to define a security operations center that encompasses
essential elements of the CND. Reference [7] recommends placing all CSOC
functions in a single CND organizational unit. Creating a tight coupling of all CND
functions promotes efficiency, maximizes CND resources and enhances situational
understanding and awareness for all cyber defenders and the Information Assurance
Manager (IAM) staff.

The IAM staff is typically responsible for maintaining awareness of all network
devices, configurations and enclaves, user privilege levels, and regulatory com-
pliance. The IAM staff is also responsible for leading and maintaining contingency
planning and continuity of operations planning, and is, therefore likely to be the
entity most aware of senior leadership’s intentions regarding mission critical
operations. We view these as primary reasons for involving the IAM staff in the
development of rules for prioritizing sensor alerts.

2.1 Process Improvement Strategy

Our approach will benefit organizations that lack the structuring recommendation in
[7] by combining enterprise-wide (strategic) knowledge with real-time
monitoring/incident coordination and response (operational) experts. This
approach also applies to the computer network defense service provider (CNDSP)
model, which is mandated by [8] as the foundation of the Department of Defense
(DoD) Cyber Incident Handling Program.

This approach involves staff with expert strategic awareness and understanding
of the enterprise network infrastructure and staff with expert knowledge of network
monitoring technologies and threat intelligence. Further, it can be customized to fit
any organization’s desire or need to emphasize protection of particular assets,
enclaves, or systems that support a specific mission.

36 E. Allison Newcomb and R.J. Hammell II

The following list summarizes the rationale and steps for our approach.

1. Systems Security Plans (SSP) and Risk Assessment planning, contingency
plans, etc., typically are the responsibility of the Information Assurance Man-
ager (IAM) staff.

2. Cyber defenders stay abreast of cyber news, cyber intelligence, malware anal-
ysis, threat assessment, IDS and network monitoring tools.

3. The IAM staff use the FLUF application to define fuzzy rules for prioritizing
alerts.

4. Alert Priorities via FLUF are intended to be reviewed on a weekly or bi-weekly
basis. The ruleset must be kept current and synchronized with the organization’s
contingency plans and missions in order to be effective.

Our approach is designed to be compatible with any tool that offers a
user-configurable rule-based engine. This approach can be used with either corre-
lated or raw alerts.

3 Fuzzy Logic and Cyber Security

Human intelligence allows us to routinely make complex decisions when presented
with incomplete, sometimes contradictory, and imprecise information. Artificial
Intelligence (AI) techniques are used heavily in CND tools that are intended to help
cyber defenders cope with the sheer amount of data [9, 10]. CND tools can unin-
tentionally increase analyst workload by generating a high number of alerts that
may be of little or no consequence but nevertheless must be investigated. Einstein 2
sensors, the IDS deployed by the Department of Homeland Security, “generate
approximately 30,000 alerts on a typical day” and each alert is “evaluated by DHS
security personnel to determine whether the alert represents a compromise” [11].
Reference [12] notes that some IDS trigger thousands of alerts each day, “99 % of
which are false positives”.

False positives represent imperfect information. The overwhelming amount of
imperfect information makes fuzzy-based systems an appropriate choice for
managing sensor alerts. Examples of imperfect information in the cyber domain
include information that is imprecise, incomplete, and/or uncertain.

3.1 Fuzzy Logic’s Appeal

As within many other domains, our need is to draw conclusions from imperfect
information. We typically have to use words, or linguistic variables, to represent
data and relationships. This suggests fuzzy logic would be an appropriate mecha-
nism for us to use to develop the system for prioritizing sensor alerts.

A Fuzzy Logic Utility Framework (FLUF) … 37

In 1965, a method of computing qualitatively instead of quantitatively was
introduced. Lotfi Zadeh formally defined multi-valued, or fuzzy, set theory [13].
Fuzzy sets provided a method for programming computers to draw deductive
inferences.

Approximate reasoning can be defined as the “process or processes by which a
possibly imprecise conclusion is deduced from a collection of imprecise state-
ments” [14]. Inference systems to be used for approximate reasoning can easily be
developed using fuzzy logic.

Using fuzzy sets, the approximate relationships between the input(s) (an-
tecedent) and the output (consequent) are captured by the fuzzy rules of inference.
A fuzzy rule with two antecedents and one consequent has the form “If X is A and
Y is B then Z is C” where A and B are fuzzy sets over the two distinct input domains
and C is a fuzzy set over some output domain [15].

The well-known advantages of fuzzy systems include their ability to handle
imprecise, uncertain, and vague information; model complex non-linear systems
which might be impossible to do mathematically; represent human decision making
by handling vague data; and provide robustness due to being able to handle noisy
and/or missing data [16]. These characteristics make a fuzzy-based approach highly
attractive for our problem domain.

3.2 Fuzzy Logic and IDS—Related Work

The literature offers many examples of applying fuzzy logic to IDS. Reference [17]
used fuzzy logic to reduce the number of correlated alerts based on alert occurrence
frequency and the ratio of the attack to the total number of attacks. Related work
using fuzzy logic focuses on reducing the number of false positives, with little or no
effort applied toward prioritizing the remaining alerts [18].

Other closely related work was proposed by [19] in which fuzzy logic was used
to score network asset valuation. Their proof-of-concept model indicates that the
relative value of network assets can be accurately derived by combining knowledge
of “experienced analysts” and those possessing expert knowledge of the monitored
network. The author does not apply the scored network assets to any detection
system.

Reference [20] used a fuzzy-based approach to prioritize alerts for
signature-based IDS only. Their work does not address anomaly-based systems.

Work in [21] provides a comprehensive review of network event prioritization
efforts and details their unique Event Prioritization Framework. Their framework
offers a complete tool suite for network and host event correlation and prioritiza-
tion. Data from industry and government standard sources are ingested, fused and
processed to provide automated event prioritization. Due to the high level of
automation of source data, network asset criticality in relation to specific missions
cannot be determined within their framework.

38 E. Allison Newcomb and R.J. Hammell II

Fuzzy logic has been used to classify alert severity as high, medium and low [22,
23]. It is easy to see this can result in having a large number of “high” severity alerts
and the problem of prioritizing the high risk alerts remains.

Our approach to prioritizing alerts distinguishes itself from the works reviewed
above by (1) considering the criticality of network assets in relation to the mission,
(2) requiring no changes to existing tool configurations or data sources, and
(3) integrating with behavior, anomaly, or signature-based alerts. Another distin-
guishing feature of our approach is the use of the CARVER military targeting
methodology; the methodology will be explained in Sect. 4.

3.3 Intelligence Analysts and Cyber Analysts

As mentioned above, a primary obstacle faced by cyber defense analysts is handling
imprecise, uncertain, and vague information within a time critical environment. An
analogous situation occurs within the domain of military intelligence. In our con-
text, intelligence is defined as the “product resulting from the collection, processing
integration, evaluation, analysis, and interpretation of available information” [24].
In the domains of both the cyber analyst and military intelligence analyst, one can
see that analysis and interpretation are processes which largely fall on the human
while automation, if available, only assists with the other listed processes.

Another similarity of the cyber defender and the military intelligence analyst is
the consequential results their decisions have on operations and people beyond their
immediate circle. Further, there is a shortage of qualified and experienced intelli-
gence analysts, just as the demand for cyber defenders has outgrown the supply. In
both cases, these shortages impact our national security [25]. High stakes decision
making under uncertainty and time constraints, and access to tremendous amounts
of information are characteristic of the environments in which cyber defenders and
intelligence analysts operate.

By this point it should be clear that the problems within the decision cycle for
cyber analysts are very similar to those of military intelligence analysts. Having
recognized that, our work seeks to leverage recent research done with respect to
developing a fuzzy-based automated decision aid for military intelligence analysts.
The system is a tool for supplying intelligence analysts with relevant, reliable
information, rank ordered by the information’s importance within a specific mission
context. Recent validation has shown that this Value of Information (VoI) metric
positively affects decision making quality and workload in military intelligence
analyst teams at the tactical level [26–28].

The fuzzy VoI system has been described in detail in previous publications
[29–33]; space constraints do not allow the specifics to be repeated here. Basically,
the system is composed of a two-level Fuzzy Associative Memory (FAM) archi-
tecture where each of the two FAMs has two inputs and one output. Thus, each
FAM is a two-dimensional table (matrix) where each dimension corresponds to one
of the input domains. Fuzzy if-then rules are represented in the FAM by allowing

A Fuzzy Logic Utility Framework (FLUF) … 39

each cell to be indexed by the fuzzy sets that comprise the specific input domains
(the fuzzy rule antecedents); the contents of the cell then represent the associated
output based on these inputs (the fuzzy rule consequent). The fuzzy rules were
developed through a combination of regulatory guidance and a significant knowl-
edge elicitation process with subject matter experts [34]. The efficacy of the system
has been validated by both SME feedback and human performance model simu-
lation results [26, 27].

4 CARVER Targeting Methodology

This section discusses the CARVER targeting methodology and provides a foun-
dation for understanding how it, combined with the fuzzy logic construct, offers a
mechanism to rate alerts based on factors specific to a particular networking
environment and its mission/business function.

As discussed in Sect. 1, the demand and critical need for cyber defenders out-
paces a ready supply. Our reliance on technology and networks has caused US
policy makers to view cyberspace as a domain in military operations [35]. These
two conditions suggested researching target selection approaches used by small
units or teams.

A target analysis process developed by the US Army’s Special Operations
Forces (SOF) emerged as good choice. It has historically been used as an offensive
targeting tool to prioritize targets within complex systems. Since the 9/11 attacks
and the rise in concern of terrorism in the US, it has been adapted for use in
vulnerability and risk assessments, primarily in the food industry [36].

CARVER stands for Criticality, Accessibility, Recuperability, Vulnerability,
Effect, and Recognizability; it is used to determine the military value and priority of
potential targets. Each of the six components is rated and placed in a matrix to rank
systems or subsystems that are considered eligible targets. The elements that rank at
or above a designated threshold are deemed suitable for attack.

The following definitions of each component selected for this initial study are
taken from [37]:

• Criticality reflects the degree to which the target’s “destruction, denial, dis-
ruption” and damage will impair the adversary.

• Accessibility is an estimate of the SOF to physically or indirectly reach the
target. SOF must also be able to clear out of the target area without detection.

• Recuperability supports the Criticality element. If a target can be easily repaired
or replaced, it may garner a low rating.

• Vulnerability reflects the degree to which SOF is able to inflict the desired level
and type of damage.

• Effect is a rating of the impact the target destruction, denial, or disruption will
have on the adversary.

40 E. Allison Newcomb and R.J. Hammell II

• Recognizability reflects the level to which the target can be distinguished from
similar objects in the area.

CARVER is a semi-quantitative risk assessment. According to [38], this method
of assessment is “most useful in providing a structured way to rank risks according
to their probability, impact or both (severity)”.

As previously explained, the fuzzy logic VoI construct was developed to assist
intelligence analysts with identifying valuable information under time and resource
constraints. We believe that by selecting the appropriate CARVER components, the
advantages of the fuzzy-based VoI architecture can be directly translated to the
cyber domain to provide similar assistance to cyber analysts.

5 Fuzzy Logic Utility Framework

As discussed previously, the domains of the cyber defender and military intelli-
gence analyst are similar in terms of having to make decisions under uncertainty
with incomplete and/or possibly inaccurate information. It is with this under-
standing that our proposed Fuzzy Logic Utility Framework (FLUF) has been
mirrored after the fuzzy-based VoI system developed for military intelligence
analysts.

The current state of FLUF is that of a prototype, proof-of-concept decision
support tool to assist cyber intelligence analysts in addressing intrusion detection
alerts based on the order of their severity. The FLUF is used to determine the Alert
Priority Rating (APR), which arranges IDS/IPS alerts in high to low order of
severity. The FLUF considers the criticality of the affected asset, the level of access
needed to infiltrate the asset, and the effect of the affected asset’s compromise to the
enterprise or mission.

Due to the effectiveness of the VoI system, the small computational impact, and
rule set economy [28], the same fuzzy logic architecture was adopted for the FLUF
system. Extending the foundational structure of the VoI system to other domains is
expected to provide support to decision makers in terms of reduced cognitive load,
increased time in performing analysis rather than foraging for information [27] and
potentially reduce the number of sensor alerts. Further, it provides an excellent
opportunity to exercise the software engineering principle of reuse.

The starting point for developing any fuzzy rule-based system is to decompose
the input and output domains into fuzzy sets. As an example, the decomposition of
the FLUF Criticality domain is shown in Fig. 1. It is decomposed into five over-
lapping fuzzy sets, with each fuzzy set representing a classification. An element in
the domain has some grade of membership, from 0 to 1 inclusive as shown on the y
axis, in each fuzzy set in the domain. The membership function determines the
grade of membership; the shape of the fuzzy sets determines the membership
function.

A Fuzzy Logic Utility Framework (FLUF) … 41

In Fig. 1, any input within the domain will belong to at most two fuzzy sets; that
is, any input will have non-zero membership in no more than two fuzzy sets. This
means that, for each input, the antecedents for at most two fuzzy rules associated
with that domain will be satisfied.

Further, the sum for all membership values in the sets to which any input
belongs will equal 1. The decomposition shown in Fig. 1 illustrates the membership
functions as isosceles triangles with bases of the same width, and has been called a
TPE system (triangular decomposition with evenly spaced midpoints) [39].

Note that the shape of the fuzzy sets does not have to be triangular as shown in
Fig. 1. Also, the fuzzy sets decomposing a domain do not have to overlap in a
regular pattern, nor does the sum have to be 1 for membership values for all sets in
which an element is a member.

5.1 Designing the Fuzzy Rule Base

Requirements engineering and user-centered design practices recommend engaging
the proposed users early in the system design in order to better understand their
needs [40]. Following the iterative user-centered design process described in [41],
we derived understanding of our users’ environments, processes and tasks in the
early envisioning phase. In this research, our users are the SMEs from the IAM and
CND organizations.

The majority of the SMEs were very familiar with the DoD Risk Assessment
Guide [38], and the entire SME pool was well acquainted with the Common
Vulnerability Scoring System (CVSS), its exploitability metrics, and vulnerability
impact scope. We immediately recognized similarities between the CVSS and
CARVER scales, and chose to nominate the criticality and accessibility CARVER
components as two of the FLUF input domains. These were presented to the SMEs
in a follow-up discussion. The SMEs agreed with those choices and collaboratively
selected effect as the third input domain for the initial study.

The three domains were presented to the SMEs as follows:
Criticality—Can the organization complete its mission if the asset fails to meet

the basic security principles of Confidentiality, Integrity and Authentication?

Fig. 1 Criticality domain

42 E. Allison Newcomb and R.J. Hammell II

Accessibility—How easily can the asset be reached? How secure is its config-
uration and are other technical and/or physical defenses employed to protect it?
Does access require insider knowledge and physical presence?

Effect—An initial effect of a data breach may be the company’s reputation. If
intellectual property was compromised, the effect may be even greater in the long
term.

The design decision to combine the criticality and accessibility domains to
produce an impact determination was influenced by CVSS’ exploitability metrics.
The SMEs agreed that the essence of those metrics, Attack Vector, Attack Com-
plexity, Privileges Required, and User Interaction, were reflected in the descriptions
provided for the criticality and accessibility domains.

These two domains provide the inputs to the first of two Fuzzy Associative
Memories (FAMs) shown in Fig. 2.

The SMEs agreed that combining the effect input with the Impact FAM output
would provide context that is much needed to understand the value of a network
asset. The output of the Impact FAM, and the effect measure are then input to the
Alert Priority FAM, which in turn produces the Alert Priority Rating (APR). The
overall output of the entire system, the APR, would then be included in an IDS rule
alert, Snort for example, that when triggered, would indicate to CND analysts
which devices should receive attention first.

At this point, the input and output domains and the overall architecture for the
FLUF were decided; the next step was to decompose the input and output domains
into fuzzy sets, thereby determining the language of the rule base. That is, the
decompositions define the possible antecedents and consequents for the fuzzy rules.

The linguistic decomposition of the criticality domain is as shown in Fig. 1. The
accessibility domain is similarly decomposed into five fuzzy sets, with linguistic
terms that range from “easily accessible” to “not accessible”. The effect input
domain is decomposed into three fuzzy sets: High (extensive), Medium
(wide-ranging) and Low (limited, still functional). The Impact FAM output domain
is decomposed into nine fuzzy sets that linguistically range from “very low” to
“very high” impact. There are nine output fuzzy sets for the Alert Priority FAM that
range from “negligible” to “urgent”. Note that all fuzzy sets use triangular mem-
bership functions that follow the TPE requirements mentioned previously. This
decision was made to leverage the advantages of the previously developed
fuzzy-based VoI system, which include computational efficiency and facilitation of
the knowledge acquisition process with the SMEs [28].

Fig. 2 FLUF System Architecture

A Fuzzy Logic Utility Framework (FLUF) … 43

The decisions for how to decompose the input and output domains came from a
combination of regulatory guidance and domain experience. The categories for
criticality, effect and impact align with classifications used in [42]. The accessibility
categories were developed by the authors and IAM staff, and consider physical
security as well as technical security controls. The Alert Priority FAM output
categories were proposed by the authors and accepted by the SMEs.

In addition to reusing the favorably received VoI architecture, the resulting
FLUF system architecture provides significant flexibility in changing CARVER
components or introducing Risk Management Framework (RMF) components.
Since the domains were decomposed to reflect the assessment scales in [38], any of
the RMF risk elements can be substituted in the FLUF.

5.2 Fuzzy Rule Base Review

After the FLUF architecture was defined, the SMEs were provided a 5 × 5 square
matrix with criticality categories as the rows and accessibility categories as the
columns. They received the Impact FAM scale, with categories ranging from “very
high” through “very low”.

The SMEs were provided a network diagram representative of a small business
enterprise network. They were asked to rank each device’s criticality and acces-
sibility using their knowledge of best security practices and regulations governing
network architecture, device configurations and physical security. From this inter-
action, the authors wrote the Impact FAM rules and distributed them to the SMEs
for comment. The SMEs analyzed and accepted the rules with only minor changes.

Based on having the criticality and accessibility domains each decomposed into
five fuzzy sets, the resulting Impact FAM consists of 25 rules. Example actual rules
include:

• If Criticality is Very High, and Accessibility is Easily Accessible, then Impact is
Very High.

• If Criticality is Very High, and Accessibility is Accessible, then Impact is High.
• If Criticality is Moderate, and Accessibility is Easily Accessible, then Impact is

High to Moderate.

The SMEs then rendered their opinions of effect to the mission/business func-
tion. The values for effect range from High (1) to Low (3), and are combined with
the impact input to derive the APR result. The linguistic decompositions for effect
and the descriptions were provided by the authors and accepted by the SMEs.

After some initial discussion with the SMEs, the rules for the Alert Priority FAM
were developed based on the effect and impact ratings previously produced by the
SMEs. These rules were distributed for comment; no changes were requested.

Since the impact domain has nine fuzzy sets while the effect domain has three
fuzzy sets, the Alert Priority FAM consists of 27 fuzzy rules. Example rules in this
FAM include:

44 E. Allison Newcomb and R.J. Hammell II

• If Effect is High, and Impact is Very High, then Alert Priority is Critical to
Urgent.

• If Effect is High, and Impact is High, then Alert Priority is Critical.
• If Effect is Medium, and Impact is High, then Alert Priority is High to Critical.

At this point the SMEs were satisfied that the resulting fuzzy rules in both FAMs
accurately and appropriately reflected the reasoning methodology for correctly
prioritizing alerts. Note that space and other limitations preclude the exhaustive
listing of all fuzzy rules within the FLUF architecture. It should also be noted that
we do not claim that the rule bases have been “verified” by the SME review as
described above. However, given that the FLUF is currently a prototype,
proof-of-concept system, we consider the system to be “validated” by the user.
Future experiments are certainly planned to more exhaustively and scientifically
validate, as well as verify, the system.

5.3 Additional Remarks Regarding FLUF and APR

To further ensure that the users (SMEs) were satisfied that the resulting system
would meet their needs, survey questions were distributed and group discussions
were held. The SMEs were asked if they believed the proposed process improve-
ment and Alert Priority Rating would have a positive effect on CND responses to
events and incidents. 100 % of the SMEs agreed this research would improve
response time to incidents threatening critical assets and improve CND analysts’
situational awareness of the networks they monitor since the IAM staff provided
assessments of which assets were most critical.

One of the SMEs, a system administrator, observed that without understanding
the layout and structure of the network they are defending, and the critical assets,
they are “blindly” analyzing traffic. The FLUF architecture provides, and indeed is
designed to require, the tuning of IDS sensor rule sets for particular subnets or
devices, depending on asset criticality.

Another SME noted that a compromise on a desktop machine of the CEO could
be of greater concern to an organization than an alert firing on a piece of key
infrastructure. The proposed process improvement and the Alert Priority Rating
provide means of addressing that situation.

In addition to discussions with the SMEs, a very rudimentary and preliminary
empirical experiment was performed. Alert priority ratings, modeled after those that
would be produced by a particular FLUF implementation, were manually plugged
into some Snort rules and applied to part of the VAST 2011 Challenge data set. The
results showed that of the 49,000 alerts occurring over an 8-h period, only 3 of them
were truly high priority. It is also interesting to consider (and study in the future)
how many of those alerts would have been negated if any one of the 3 serious alerts
had been attended to first.

A Fuzzy Logic Utility Framework (FLUF) … 45

These remarks and results reinforce our belief that the FLUF and APR will
support CND analysts in their overwhelming task of addressing the most important
alerts first, and provide the necessary proof-of-concept confirmation to justify
continued investigation and evolution of the FLUF system.

6 Conclusions and Future Work

The FLUF approach is entirely system-agnostic; it will integrate with signature,
anomaly or behavior-based IDS methods. We believe that relying on expert human
judgments regarding network asset criticality is an essential element of prioritizing
sensor alerts and accordingly increasing defense of those assets. We expect the
FLUF approach to prioritizing alerts to increase defenses of critical network assets
and decrease the mean time to remediate actual network incidents.

The work presented in this paper offers several main contributions. First, a fuzzy
logic architecture previously constructed to assist military intelligence analysts is
extended to assist analysts in the cyber defense domain. Secondly, a widely-used
military targeting tool is leveraged to develop a methodology for prioritizing
IDS/IPS alerts. To our knowledge, this is the first work to apply this targeting
methodology in developing intrusion detection rulesets. Finally, a fuzzy rule set is
designed that translates subject matter experts’ (SME) knowledge into actionable
knowledge for cyber defenders.

In summary, benefits of the FLUF include:

• Valuation of network assets as an element of the priority rating; informing
contingency plans and supporting synchronization with operation.

• FLUF rules can be changed as dictated by mission, changes in the operational
environment, and discovery of new knowledge (infiltrations, infections, attack
campaigns) evolves.

• FLUF rules are synchronized with changes in network and asset configurations,
and mission functions.

• Increased collaboration among the IAM/CND/CSOC teams to spread informa-
tion assurance/network security expertise throughout the organization.

• Expansion of cyber defenders’ domain expertise.

Future work will focus on executing an experiment on the VAST 2011 Chal-
lenge data set to collect empirical evidence demonstrating the effects of the APR.
The VAST 2011 solution guide details attacks against the network described in the
Challenge. Snort rules designed for use in the VAST Challenge will be augmented
with the APR to quantify the effect and efficacy of the FLUF and APR on that data
set.

Additional research could include studying how the FLUF and APR affect the
number of subsequent alerts, and investigating new feature-value pairs in the
criticality fuzzy domain in relation to mission priorities. Each of these activities
could contribute to information assurance research efforts within the organization.

46 E. Allison Newcomb and R.J. Hammell II

References

1. Pegna, D. L. (2015). Big data sends cybersecurity back to the future. Retrieved June 15, 2015,
from http://www.computerworld.com/article/2893656/the-future-of-cybersecurity-big-data-
and-data-science.html.

2. Leedom, D. K. (2004). Analytic representation of sensemaking and kowledge management
within a military C2 organization. Vienna, VA: Evidence Based Research Inc.

3. Ramanan, S. (2015). Top ten security breaches of 2015. Forbes.com. Retrieved from http://
www.forbes.com/sites/quora/2015/12/31/the-top-10-security-breaches-of-2015/#2f01eff01f76.

4. (ISC)2 US Government Adviory Council Bureau. (2015). There were so many data breaches
in 2015. Did we learn anything from them? Retrieved December 29, 2015, from http://www.
nextgov.com/technology-news/tech-insider/2015/12/there-were-so-many-data-breaches-2015-
did-we-learn-anything-them/124780/.

5. Cirilli, K. (2014). Home depot breach costs doubled target’s. Retrieved October 30, 2014,
from http://thehill.com/policy/finance/222340-home-depot-breach-costs-doubled-targets.

6. Juniper Networks. (2014). Network configuration example midsize enterprise campus solution.
7. Zimmerman, C. (2014). Ten strategies of a world-class cybersecurity operations center. In M.

A. Bedford (Ed.), MITRE corporate communications and public affairs. Appendices.
8. Joint Staff. (2012). CJCSM 6510.01B department of defense cyber incident handling program.
9. Lee, D., Hamilton, S. N., & Hamilton, W. L. (2011). Modeling cyber knowledge uncertainty.

In 2011 IEEE Symposium on Computational Intelligence in Cyber Security (CICS).
10. Alrajeh, N. A., & Lloret, J. (2013). Intrusion detection systems based on artificial intelligence

techniques in wireless sensor networks. International Journal of Distributed Sensor Networks,
2013, 6.

11. Anonymous. (2015). Department of homeland security, Einstein. Retrieved January 15, 2016,
from http://www.dhs.gov/einstein.

12. Julisch, K., & Dacier, M. (2002). Mining intrusion detection alarms for actionable knowledge.
In Proceedings of the Eighth ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (pp. 366–375).

13. Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8, 15.
14. Zadeh, L. A. (1973). Outline of a new approach to the analysis of complex systems and

decision processes. IEEE Transactions on Systems, Man and Cybernetics, 28–44.
15. Hammell II, R. J., Powell, J., Wood, J., & Christensen, M. (2010). Computational intelligence

for information technology project management. In Intelligent Systems in Operations:
Methods, Models and Applications in the Supply Chain (p. 80).

16. Yen, J., & Langari, R. (1998). Fuzzy logic: Intelligence, control, and information.
Prentice-Hall, Inc.

17. Huang, C., Hu, K., Cheng, H., Chang, T., Luo, Y., & Lien, Y. (2012). Application of type-2
fuzzy logic to rule-based intrusion alert correlation detection. International Journal Innov
Computing Inform and Control, 8, 65–74.

18. Alshammari, R., Sonamthiang, S., Teimouri, M., & Riordan, D. (2007) Using neuro-fuzzy
approach to reduce false positive alerts. In Fifth Annual Conference on Communication
Networks and Services Research. CNSR’07. (pp. 345–349)

19. Leung, H. (2015). An asset valuation approach using fuzzy logic. In SPIE Sensing Technology
+ Applications.

20. Alsubhi, K., Al-Shaer, E., & Boutaba, R. (2008). Alert prioritization in intrusion detection
systems. In IEEE Network Operations and Management Symposium. NOMS 2008
(pp. 33–40).

21. Kim, A., Kang, M., Luo, J. Z., & Velasquez, A. (2014). A framework for event prioritization
in cyber network defense. DTIC Document.

22. Tabia, K., Benferhat, S., Leray, P., & Mé, L. (2011). Alert correlation in intrusion detection:
Combining ai-based approaches for exploiting security operators’ knowledge and preferences.
In Security and Artificial Intelligence (SecArt).

A Fuzzy Logic Utility Framework (FLUF) … 47

http://www.computerworld.com/article/2893656/the-future-of-cybersecurity-big-data-and-data-science.html
http://www.computerworld.com/article/2893656/the-future-of-cybersecurity-big-data-and-data-science.html
http://www.forbes.com/sites/quora/2015/12/31/the-top-10-security-breaches-of-2015/%232f01eff01f76
http://www.forbes.com/sites/quora/2015/12/31/the-top-10-security-breaches-of-2015/%232f01eff01f76
http://www.nextgov.com/technology-news/tech-insider/2015/12/there-were-so-many-data-breaches-2015-did-we-learn-anything-them/124780/
http://www.nextgov.com/technology-news/tech-insider/2015/12/there-were-so-many-data-breaches-2015-did-we-learn-anything-them/124780/
http://www.nextgov.com/technology-news/tech-insider/2015/12/there-were-so-many-data-breaches-2015-did-we-learn-anything-them/124780/
http://thehill.com/policy/finance/222340-home-depot-breach-costs-doubled-targets
http://www.dhs.gov/einstein

23. Alsubhi, K., Aib, I., & Boutaba, R. (2012). FuzMet: A fuzzy‐logic based alert prioritization
engine for intrusion detection systems. International Journal of Network Management, 22,
263–284.

24. Joint Staff. (2015). Joint Publication 1-02 Department of Defense Dictionary of Military and
Associated Terms.

25. Libicki, M. (2014). Shortage of cybersecurity professionals poses risk to national security.
Rand.org. Retrieved from http://www.rand.org/news/press/2014/06/18.html.

26. Newcomb, E. A., & Hammell II, R. J. (2013). A method to assess a fuzzy-based mechanism to
improve military decision support. In 14th ACIS International Conference on Software
Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing (SNPD)
(pp. 143–148).

27. Hanratty, T. P., Newcomb, E. A., Hammell II, R. J., Richardson, J. T., & Mittrick, M. R.
(2016). A fuzzy-based approach to support decision making in complex military
environments. International Journal of Intelligent Information Technologies (IJIIT), 12, 1–30.

28. Newcomb, E. A., & Hammell II, R. J. (2012). Examining the effects of the value of
information on intelligence analyst performance. In Proceedings of the Conference on
Information Systems Applied Research ISSN (p. 1508).

29. Hammell, R. J., Hanratty, T., & Heilman, E. (2012). Capturing the value of information in
complex military environments: A fuzzy-based approach. In 2012 IEEE International
Conference on Fuzzy Systems (FUZZ-IEEE) (pp. 1–7).

30. Hanratty, T. P., Hammell II, J.R., Bodt, B.A., Heilman, E.G., & Dumer, J.C. (2013).
Enhancing battlefield situational awareness through fuzzy-based value of information. In 2013
46th Hawaii International Conference on System Sciences (HICSS) (pp. 1402–1411).

31. Hanratty, T. P., Dumer, J. C., Hammell II, R. J., Miao, S., & Tang, Z. (2014). Tuning fuzzy
membership functions to improve value of information calculations. In 2014 IEEE Conference
on Norbert Wiener in the 21st Century (21CW) (pp. 1–7).

32. Miao, S., Hammell II, R. J., Hanratty, T., & Tang, Z. (2014). Comparison of fuzzy
membership functions for value of information determination. In MAICS (pp. 53–60).

33. Miao, S., Hammell II, R.J., Tang, Z., Hannratty, T. P., Dumer, J. C., & Richardson, J. (2015).
Integrating complementary/contradictory information into fuzzy-based voi determinations. In
2015 IEEE Symposium on Computational Intelligence for Security and Defense Applications
(CISDA) (pp. 1–7).

34. Hanratty, T., Heilman, E., Dumer, J., & Hammell II, R. J. (2012). Knowledge Elicitation to
Prototype the Value of Information. In Midwest Artificial Intelligence and Cognitive Science
Conference (p. 173).

35. Joint Staff. (2014). Joint Publication 3-13 Information Operations.
36. Catlin, M., & Kautter, D. (2007). An overview of the Carver Plus Shock method for food

sector vulnerability assessments. USFDA, editor. USFDA. (pp. 1–14).
37. U. S. Army. (2012). Army Doctrinal Reference Publication (ADRP) 3-05, Special Operations

ed. Washington, DC: Headquarters, Department of the Army.
38. Microbiological Risk Assessment Series. (2009). No. 17, Chapter 4. Semi-quantitative risk

characterization. ISBN 978 92 4 154789 5.
39. Sudkamp, T., & Hammell, R. J, I. I. (1994). Interpolation, completion, and learning fuzzy

rules. IEEE Transactions on Systems, Man and Cybernetics, 24, 332–342.
40. Sommerville, I., & Kotonya, G. (1998) Requirements engineering: Processes and techniques.

Wiley.
41. Wassink, I., Kulyk, O., van Dijk, B., van der Veer, G., & van der Vet, P. (2009). Applying a

user-centered approach to interactive visualisation design. In Trends in Interactive
Visualization (pp. 175–199). Springer.

42. NIST Computer Security Division. (2010). Guide for applying the risk management
framework to federal information systems (Vol. 800-37 rev1). NIST Special Publication.

48 E. Allison Newcomb and R.J. Hammell II

http://www.rand.org/news/press/2014/06/18.html

A Framework for Requirements Knowledge
Acquisition Using UML and Conceptual
Graphs

Bingyang Wei and Harry S. Delugach

Abstract UML provides different models for understanding and describing the

requirements of a system. The completeness of each model with respect to other

models is critical to further analysis of the requirements and design. One problem

that always plagues modelers is the acquisition of requirements knowledge for build-

ing models. In this paper, we present a knowledge-based framework to drive the

process of acquiring requirements for each UML model. This framework is based on

a central knowledge representation, the conceptual graphs. A set of partially com-

plete UML models is first converted to conceptual graphs to form a requirements

knowledge reservoir; then this knowledge reservoir is used to generate each UML

model by transforming conceptual graphs back to UML notations. This bidirectional

transforming process enables the discovery of additional requirements and possible

missing requirements so that eliciting more requirements knowledge from modelers

is made possible.

1 Introduction

Software requirements modelers build different types of models for a system under

development. Each of them holds partial requirements from a particular view and

all of them together constitute the overall description of the system. UML makes

this multiple-viewed modeling technique possible by providing different types of

diagrams. An important concern of modelers during multiple-viewed modeling is

the acquisition of enough useful requirements to make a model complete. However,

B. Wei (✉)

Department of Computer Science, Midwestern State University,

Wichita Falls, TX 76308, USA

e-mail: bingyang.wei@mwsu.edu

H.S. Delugach

Department of Computer Science, University of Alabama in Huntsville,

Huntsville, AL 35899, USA

e-mail: delugach@cs.uah.edu

© Springer International Publishing Switzerland 2016

R. Lee (ed.), Software Engineering Research, Management
and Applications, Studies in Computational Intelligence 654,

DOI 10.1007/978-3-319-33903-0_4

49

50 B. Wei and H.S. Delugach

it is difficult for a modeler to know whether a model is complete or what requirements

are missing in the current model [6]. Modelers need to be made aware of the missing

requirements.

Delugach proposed the idea of conceptual feedback [5] which can provide prompts

for the missing requirements of a model to modelers (Fig. 1). This approach is based

on the requirements knowledge overlap among different models of the same system.

During conceptual feedback, requirements in Model0 to Modeln in Fig. 1b are trans-

formed to generate requirements needed for constructing a target modelModelx. This

process introduces new requirements to Modelx that a modeler is not aware of before

the generation process, making it more complete. More importantly, such newly gen-

erated requirements may be used as stimulations to elicit more requirements about

the model from modelers (This is shown as a backtracking from Specification to Elic-

itation in Fig. 1a). After eliciting and adding more new requirements in the model,

this augmented model (Modelx) would in turn affect other models (dotted arrows in

Fig. 1b), causing further generation and completion processes in other models. The

process may repeat until no more new requirements knowledge can be acquired by

transforming models, i.e., the set of models is internally complete and self-consistent.

In this paper, we present a knowledge-based framework to facilitate requirements

acquisition for a set of UML models using conceptual feedback. This framework

is based on a central knowledge representation, the conceptual graphs (CGs) [11].

CGs are based on existential conjunctive first-order logic. Since the models of a

software system can be regarded as a collection of statements that evaluate to truth,

i.e. assertional knowledge, CGs have been widely used to represent requirements

subsequent RE activities

[semantic holes]

Elicitation

[No more semantic holes]

Evaluation

Specification
(see (b))

Model1 Model 2

Model0 Model n

Model x

transform to transform to

transform to transform to

Specification

Model0 … Modeln are currently available models of the system
Modelx is the target model to be built

(a)

(b)

Fig. 1 Conceptual feedback in requirements engineering process

A Framework for Requirements Knowledge . . . 51

knowledge in UML diagrams [2, 5, 7, 12]. Two basic elements of CGs are concepts

and relations. Concepts are represented by rectangles and relations are represented

by ovals.

The rest of the paper is structured as follows. Section 2 provides an overview of

the CGs-based knowledge acquisition framework and its key component. The bidi-

rectional transformation between UML diagrams and CGs are described in detail in

Sect. 3 using a case study. In Sect. 4, we evaluate the framework. Several issues, limi-

tations, related work and future work are discussed in Sect. 5. In Sect. 6, we conclude

the paper.

2 The CGs-Based Requirements Acquisition Framework

Our framework can be illustrated in Fig. 2. In this work, we include three types of

UML diagrams in the framework. The framework consists of a CGs Reservoir where

requirements knowledge of UML diagrams is stored in the form of CGs and a CGs

Support which guides the bidirectional transformation between UML diagrams and

CGs.

The process of generating UML diagrams with requirements acquisition opportu-

nities consists of two major phases. In phase 1, a set of already developed but incom-

plete UML diagrams is converted to CGs in order to populate the CGs Reservoir

(inward arrows in Fig. 2); in phase 2, each UML diagram is generated from the CGs

Reservoir (the outgoing arrows). The generated UML diagrams during phase 2 keep

their original requirements before phase 1 and are augmented with new requirements

inferred from other UML diagrams in the set. A requirements knowledge acquisition

process then starts in which modeler of each diagram provides necessary require-

ments to accommodate the newly generated requirements in the diagram, thereby

adding more requirements.

Fig. 2 CGs-based

requirements acquisition

framework

CGs Reservoir
CGs Support

Class
diagram

State
diagram

Sequence
diagram

52 B. Wei and H.S. Delugach

2.1 The CGs Support

A key component of our framework is the CGs Support. It defines, in CGs form,

canonical graphs which are used to express the three types of UML diagrams in

CGs, and inference rules for generating UML diagrams from the CGs Reservoir.

2.1.1 Canonical Graphs

In the framework, each type of UML diagram has a corresponding set of canoni-

cal graphs that describes its semantics in CGs. Canonical graphs are CGs used as

templates to represent meaningful relationships among concepts in a particular type

of UML diagram. The canonical graphs are not models themselves. UML diagrams

are converted to CGs by instantiating corresponding sets of canonical graphs so that

all of the semantics captured by the UML diagram are preserved in the central CGs

Reservoir.

Canonical graphs of class diagrams are shown (Fig. 3). Interested readers can find

canonical graphs of state diagrams and sequence diagrams in [16].

The canonical graph for a class is shown in Fig. 3a. Since a class describes a set

of similar objects, the concept ClassName: @forall means “for all objects of this

class.” In this concept, ClassName denotes the name of a class and will be replaced

with the name of a real class when this canonical graph is instantiated. An attribute

is represented by a T type concept, which is related to the class concept through

an attribute relation, while an operation is represented by an Activity type concept,

which is related to the class concept by an operation relation. The association relates

each object of this class to other objects. In Fig. 3a, only one attribute, one operation,

and one association are shown in the canonical graph. Canonical graphs (b) and (c)

of Fig. 3 represent composition and generalization, respectively.

The canonical graph in Fig. 3a represents “For each object of a class ClassName
(ClassName is used as a placeholder), it has an attribute of type T, an operation of

type Activity and is associated with an object of type Object.”

2.1.2 Inference Rules

Besides canonical graphs for expressing meanings of UML diagrams, the CGs Sup-

port also contains rules which are used to infer requirements knowledge for gen-

erating UML diagrams with requirements acquisition opportunities. The generation

process is based on a forward-chaining inference method. As in any logical inference,

the presence of a rule’s antecedent in the CGs Reservoir implies its consequent which

represents the desired requirements knowledge used to build a target UML diagram.

During the inference process, for each inference rule of the target UML diagram, the

CGs Reservoir is scanned to look for CGs snippets that match the antecedent of the

A Framework for Requirements Knowledge . . . 53

(a)

(b)

(c)

Fig. 3 Canonical graphs for class diagrams

rule. If a match is found, the consequent of the rule is asserted, thereby resulting in

the derivation of requirements knowledge needed for building the diagram.

Two of the inference rules for class diagrams are shown in Figs. 4 and 5. When

applying the Association Rule, the CGs snippet we are looking for in the CGs Reser-

voir is “an Object type concept receives a Message type concept issued by another

Object type concept,’’ which, if found, would imply the existence of an association

between the two objects’ classes. Note that the inferred CGs are colored in light gray

in Fig. 5. Colors do not mean anything in CGs, they are used as a convenience here.

Part of the inference process can be supported by the inference engine provided by

CoGUI [1].

3 Case Study

In this section, we apply the requirements knowledge acquisition framework to a

safety critical system, the Mine Safety Control System (MineSys) from [15]. In this

system, sensors constantly collect environmental data of a mine and if a hazardous

54 B. Wei and H.S. Delugach

Fig. 4 Class inference rule

1: attribute rule

Fig. 5 Class inference rule

2: association rule

situation is detected, the system should enable the corresponding safety measures to

protect miners. For example, a distributed real-time safety control system monitors

water-level sensors to detect when the water in a sump is above a high or below

a low level; pump should be turned on whenever the water has reached the high

water level; it also monitors sensors detecting various gases in a mine, and alarm

should be raised if any of these levels has reached a critical threshold. Based on

the requirements, three initial UML models are built (see Figs. 6, 7 and 8). These

diagrams have been significantly simplified for this paper.

In the framework, the three UML diagrams are converted to CGs according to

their corresponding canonical graphs. Because of space limitations, only four classes

in the class diagram are converted and shown in Fig. 9; CG of one transition in the

state diagram is shown in Fig. 10; the sequence diagram’s CG is shown in Fig. 11.

With the CGs Reservoir populated, the requirements acquisition process is able

to start. For example, the modeler of the class diagram of MineSys is trying to make

A Framework for Requirements Knowledge . . . 55

CarbonMonoxide
Alarm Alert

HighWaterSensor

GasAlarm

Monitor

1..*
1 Mine

1 1

Regulate PumpSump
waterLevel

Fig. 6 Class diagram of MineSys

methaneAlarmReset
[MethaneSensor.HMS='off']

when(MethaneSensor.HMS='on')

MASwitch_OnMASwitch_Off

Fig. 7 State diagram of methane alarm

methaneAlarmOn

:MethaneAlarm
Actuator

pumpSwitchOff

HMS

:MethaneSensor :PumpActuator:SafetyController

Fig. 8 A snippet of sequence diagram of MineSys

it more complete by finding more classes, attributes and relations. In our framework,

this is accomplished by applying the inference rules (Figs. 4 and 5) to the current CGs

Reservoir to generate new requirements in the form of CGs (Fig. 12). New require-

ments (shown as gray concepts and relations) are added to the CGs Reservoir.

When the CGs are transformed back to UML class diagram notations (Fig. 13),

the class diagram modeler would find those new requirements (gray classes and

question marks) that were not in the original diagram (Fig. 6). This generated UML

classes diagram clearly provides several knowledge acquisition opportunities:

attributes need to be added in the previously existing and newly generated classes,

and associations need to be specified between previously existing classes and newly

generated classes.

After the modeler resolves all issues in the generated class diagram, this more

complete class diagram is converted to CGs again, so the CGs Reservoir becomes

more complete than before. State diagrams and sequence diagrams modelers can pull

their diagrams out of the central CGs Reservoir in a similar manner. That is to say,

another requirements discovering and completing iteration starts.

56 B. Wei and H.S. Delugach

Fig. 9 The CGs of several classes in the class diagram of MineSys

4 Evaluation

In order to evaluate the effectiveness of exposing requirements acquisition oppor-

tunities using our framework, we applied it to the Mine Safety Control system and

proposed one evaluation metric: The number of missing requirements that can be

potentially acquired from a modeler given a generated UML diagram. This is mea-

sured by counting “semantic holes” in a generated UML diagram.

In this work, a semantic hole refers to something that needs clarification in a gen-

erated UML diagram. For example, a question mark at one end of an association or

a question mark in the attribute compartment of a class or an automatically gener-

ated class name like MethaneAlarmResetMSGSender in a generated class diagram

(Fig. 13). Different kinds of semantic holes that we can find for three UML dia-

grams are listed in Table 1. A semantic hole reveals some missing requirement that

a modeler needs to provide and there is no way that a framework can generate that

missing requirement automatically. An advantage of using the quantity of semantic

holes as the metric is that this is objective, the number of requirements that we can

get from modelers does not depend on any subjective judgment of incompleteness or

A Framework for Requirements Knowledge . . . 57

Fig. 10 The CG of one state transition

experience of requirements modelers. For example, different class diagram modelers

have different ways to complete the generated class diagram in Fig. 13. So instead

of asking several modelers to really fill in the holes and calculating an average, we

decide to simply count the number of semantic holes that need to be filled, since

these requirements (semantic holes) are missing for sure, and need to be provided by

the requirements modelers.

During our evaluation process, one class diagram, four state diagrams and one

sequence diagram of the MineSys were converted to CGs to populate the CGs Reser-

voir; based on inference rules defined in the CGs Support, new class diagram, state

diagram and sequence diagrams were generated from the CGs Reservoir. Our results

for the MineSys are presented in Table 1. A high number of semantic holes in a UML

diagram is a sign that more requirements knowledge will be potentially acquired from

a modeler. For example, in the generated class diagram, 127 semantic holes need to

be resolved by the modelers.

58 B. Wei and H.S. Delugach

Fig. 11 The CG of the sequence diagram of MineSys

5 Discussion

In this section, we discuss several issues and the limitations of this work as well as

related work and future work.

5.1 Representing Requirements in CGs

Readers may want to know more about the concepts and relations used in the canon-

ical graphs for the three kinds of UML diagrams. Software engineering researchers

have tried to identify the minimal set of fundamental elements that underlies the

requirements of an object-oriented system [3, 4]. In the light of their work, the CGs

Support of our framework defines a set of primitive concepts and relations under-

lying the three UML diagrams so that any requirement captured by the three UML

diagrams can be expressed in terms of the primitives. The primitive concepts and

relations in this framework are to UML as assembly language statements are to high-

A Framework for Requirements Knowledge . . . 59

Fig. 12 New requirements inferred by applying the attribute and association inference rules

?

?
MethaneAlarmResetMSGSender

?

?

?

? ?

PumpActuator

?

?

?
MethaneSensor

HMS:{on, off}

MethaneAlarm
State: {MASwitch_On, MASwitch_Off}

MethaneAlarmActuator

?

SafetyController

?

CarbonMonoxide
Alarm

?

Alert

HighWaterSensor

?

GasAlarm
?

Monitor

1..*
1 Mine

?

1 1

Regulate Pump
?

Sump

waterLevel

Fig. 13 Generated UML class diagram where gray represents new requirements and a ‘?’ repre-

sents a semantic hole

60 B. Wei and H.S. Delugach

Table 1 Evaluation results

Semantic holes MineSys

In generated class diagram

Number of unknown class names 6

Number of unknown attribute names 25

Number of unknown operation names 81

Number of unknown association names 15

Total 127

In generated state diagram

Number of unknown/potential states 13

Number of unknown transitions 3

Number of unknown events 3

Number of unknown effects 5

Number of unknown guards 10

Number of unknown entry/exit, do activities 39

Number of state invariants 7

Total 80

In generated sequence diagram

Number of unknown neighboring lifelines 8

Number of unknown messages 0

Number of unknown execution specs 58

Total 66

Fig. 14 Primitive concept

type hierarchy

level programming languages. The types of those primitive concepts and relations

are organized in a CGs concept type hierarchy (Fig. 14) and a CGs relation type

hierarchy (Fig. 15), respectively.

5.2 The Size of CGs Expressing Semantics of UML Diagrams

The size of the CGs in this work is large (Look at the CG of one transition in state

diagram in Fig. 10). The reason is that we are using low-level primitive concepts and

relations to define each model element in a UML diagram. As a result, a semantically

A Framework for Requirements Knowledge . . . 61

Fig. 15 Primitive relation type hierarchy

rich UML diagram takes more time and space to be expressed in primitives because

each model element contains a lot of semantics. A good thing about this framework is

that CGs are used as an internal representation and software requirements modelers

do not have to read and understand the CGs of the three UML diagrams.

5.3 Limitations

In this work, only essential elements of the three types of UML diagrams are consid-

ered. Complex elements like association classes in class diagrams, combined frag-

ments (loop and alt) in sequence diagrams and nested states, and concurrent states

and history states in state diagrams are not supported in the framework.

Another current limitation of this work is the lack of automation support for trans-

forming between UML and CGs. Although a CGs inference engine and a UML

diagrams editor are already available [1, 13], manually converting UML diagrams

to CGs and generating UML diagrams from CGs are both tedious and error-prone.

Future work will focus on automating these by adopting ATL modeling transforma-

tion technique [8].

This research is still in progress. More thorough and formal evaluation with mod-

elers involved will be carried out once the tool is available. Questionnaires and

surveys with the modelers will be developed to discover their thoughts, and feel-

ings about the tool and the transformation process. Furthermore, a comparative

study is needed where we compare the effectiveness of our framework against other

alternatives.

5.4 Related Work

Several previous work [2, 9, 10, 12, 14] convert requirements analysis models to a

knowledge representation for the purpose of consistency checking. By contrast, our

62 B. Wei and H.S. Delugach

purpose in converting models to CGs is to generate UML diagrams with require-

ments acquisition opportunities so that more requirements can be elicited from the

modelers.

Our work is greatly inspired by the work of Delugach [5] and Crye [2]. How-

ever, in [5], the semantics of the requirements models are only partially described

and no systematic process of converting and generating models is provided; in [2],

after converting different types of analysis models to CGs, no further discussion is

provided on requirements acquisition through transforming CGs back to the analysis

models.

5.5 Future Work

More UML diagrams will be included in our framework and we plan to develop a

web-based system adopting the framework which facilitates requirements acquisi-

tion process among a team of requirements modelers preparing a software specifica-

tion in different views. Through the web, the team members can get quick feedback

from other models. Also, a real industrial-strength example will be used in the frame-

work for further evaluation.

6 Conclusion

In this work, a requirements acquisition framework using UML and conceptual

graphs is developed. By transforming UML diagrams to and from CGs, requirements

acquisition opportunities are exposed. This framework is useful for the requirements

acquisition process among a team of requirements modelers preparing a software

specification from different viewpoints. Our framework has been successfully used

in a case study; the results and evaluations have shown the effectiveness of our frame-

work in facilitating modelers in acquiring requirements.

References

1. CoGui-Lirmm: A Conceptual Graph Editor. http://www.lirmm.fr/cogui/. Accessed 18 Mar

2016.

2. Cyre, W. R. (1997). Capture, integration, and analysis of digital system requirements with

conceptual graphs. IEEE Transactions on Knowledge and Data Engineering, 9(1), 8–23.

3. Dardenne, A., Van Lamsweerde, A., & Fickas, S. (1993). Goal-directed requirements acquisi-

tion. Science of Computer Programming, 20(1), 3–50.

4. Davis, A. M., Jordan, K., & Nakajima, T. (1997). Elements underlying the specification of

requirements. Annals of Software Engineering, 3(1), 63–100.

http://www.lirmm.fr/cogui/

A Framework for Requirements Knowledge . . . 63

5. Delugach, H. S. (1996). An approach to conceptual feedback in multiple viewed software

requirements modeling. In Joint Proceedings of the Second International Software Architec-
ture Workshop (ISAW-2) and International Workshop on Multiple Perspectives in Software
Development (Viewpoints’ 96) on SIGSOFT’96 Workshops (pp. 242–246).

6. Firesmith, D. (2005). Journal of Object Technology, 4(1), 27–44.

7. Jaramillo, C. M. Z., Gelbukh, A., & Isaza, F. A. (2006). Pre-conceptual schema: A conceptual-

graph-like knowledge representation for requirements elicitation. In MICAI 2006: Advances in
Artificial Intelligence (pp. 27–37).

8. Jouault, F., Allilaire, F., & Bzivin, J., Kurtev, I. (2008). ATL: A model transformation tool.

Science of Computer Programming, 72(1), 31–9.

9. Lucas, F. J, Molina, F., & Toval, A. A systematic review of UML model consistency manage-

ment. Information and Software Technology, 51(12), 1631–45.

10. Shan, L., & Zhu, H. (2008). A formal descriptive semantics of UML. Formal methods and
software engineering (pp. 375–396). Heidelberg: Springer.

11. Sowa, J. F. (1983). Conceptual structures: Information processing in mind and machine. Read-

ing, MA: Addison-Wesley Publication.

12. Sunetnanta, T., & Finkelstein, A. (2001). Automated consistency checking for multiperspective

software specifications. In Workshop on Advanced Separation of Concerns. Toronto.

13. UMLet—Free UML Tool for Fast UML Diagrams. http://www.umlet.com/. Accessed 18 Mar

2016.

14. Van Der Straeten, R., Mens, T., Simmonds, J., & Jonckers, V. (2003). Using description logic to

maintain consistency between UML models. In UML 2003-The Unified Modeling Language.

15. Van Lamsweerde, A. (2009). Requirements engineering: From system goals to UML models
to software specifications. England: Wiley.

16. Wei B (2015) A comparison of two frameworks for multiple-viewed software requirements

acquisition. Dissertation, University of Alabama in Huntsville.

http://www.umlet.com/

Identification Method of Fault Level Based
on Deep Learning for Open Source Software

Yoshinobu Tamura, Satoshi Ashida, Mitsuho Matsumoto
and Shigeru Yamada

Abstract Recently, many open source software are used for quick delivery, cost

reduction, standardization. The bug tracking systems are managed by many open

source projects. Then, many data sets are recorded on the bug tracking systems

by many users and project members. The quality of open source software will be

improved significantly if the software managers can make an effective use of these

data sets on the bug tracking systems. In this paper, we propose a method of open

source software reliability assessment based on the deep learning. Also, we show

several numerical examples of open source software reliability assessment in the

actual software projects. Moreover, we compare the methods to estimate the level

of software faults based on the deep learning by using the fault data sets of actual

software projects.

1 Introduction

Various open source software (OSS) have been developed under many open source

projects. However, the poor handling of quality problem prohibits the progress of

OSS, because the development cycle of OSS has no specified testing-phase. In par-

ticular, the bug tracking systems are used in many open source projects. Many fault

data sets are recorded on these bug tracking system. The quality of open source soft-

Y. Tamura (✉) ⋅ S. Ashida

Yamaguchi University, Tokiwadai 2-16-1, Ube-shi, Yamaguchi 755-8611, Japan

e-mail: tamura@yamaguchi-u.ac.jp

S. Ashida

e-mail: v002vk@yamaguchi-u.ac.jp

M. Matsumoto ⋅ S. Yamada

Tottori University, Minami 4-101, Koyama, Tottori-shi 680-8552, Japan

e-mail: M15T7019Y@edu.tottori-u.ac.jp

S. Yamada

e-mail: yamada@sse.tottori-u.ac.jp

© Springer International Publishing Switzerland 2016

R. Lee (ed.), Software Engineering Research, Management
and Applications, Studies in Computational Intelligence 654,

DOI 10.1007/978-3-319-33903-0_5

65

66 Y. Tamura et al.

ware will be improved significantly if the software managers can make an effective

use of these data sets on the bug tracking systems.

In the past, many software reliability models [1–3] have been applied to assess the

reliability for quality management and testing-progress control of software develop-

ment. However, it is difficult for the software managers to select the optimal soft-

ware reliability model for the actual software development project. As an example,

the software managers can assess the software reliability for the past data sets by

using the model evaluation criteria. On the other hand, the estimation results based

on the past fault data cannot be guaranteed for the future data sets of actual software

projects. Therefore, it is difficult for the software managers to assess the reliability of

OSS by using the SRGM’s. Moreover, the software managers will be need to convert

the fault data on bug tracking system from the raw data to the fault count data. It is

efficient compared with the conventional method based on SRGM’s if the software

managers can use all raw data of bug tracking system.

In this paper, we focus on the identification method of software fault level. Then,

we propose the method of OSS reliability assessment based on deep learning. Also,

several numerical examples of software reliability assessment by using the fault data

in the actual OSS projects are shown. Moreover, we compare the methods to estimate

the cumulative numbers of detected faults based on the deep learning with that based

on neural network.

2 Identification Method of Software Fault Level Based
on Neural Network

The structure of the neural networks in this paper is shown in Fig. 1. Let w1
ij(i =

1, 2,… , I; j = 1, 2,… , J) be the connection weights from i-th unit on the sensory

layer to j-th unit on the association layer, w2
jk(j = 1, 2,… , J; k = 1, 2,… ,K) denote

the connection weights from j-th unit on the association layer to k-th unit on the

response layer. Moreover, xi(i = 1, 2,… , I) represent the normalized input values

of i-th unit on the sensory layer, and yk(k = 1, 2,… ,K) are the output values. We

apply the actual number of detected faults per unit time Ni(i = 1, 2,… , I) to the input

values xi(i = 1, 2,… , I).
Considering the amount of characteristics for the software fault data on bug track-

ing systems, we apply the following amount of information as parameters to the input

data xi(i = 1, 2,… , I).

∙ Date recorded on bug tracking system

∙ Name of software product

∙ Name of software component

∙ Number of software version

∙ Nickname of fault reporter

∙ Nickname of fault assignee

∙ Status of software fault

∙ Name of operating system

Identification Method of Fault Level Based . . . 67

Fig. 1 The structure of our

neural network based on

back-propagation

The input-output rules of each unit on each layer are given by

hj = f

(I∑
i=1

w1
ijxi

)
, (1)

yk = f

(J∑
j=1

w2
jkhj

)
, (2)

where a logistic activation function f (⋅)which is widely-known as a sigmoid function

given by the following equation:

f (x) = 1
1 + e−𝜃x

, (3)

where 𝜃 is the gain of sigmoid function. We apply the multi-layered neural networks

by back-propagation in order to learn the interaction among software components

[4]. We define the error function given by the following equation:

E = 1
2

K∑
k=1

(yk − dk)2, (4)

where dk(k = 1, 2,… ,K) are the target input values for the output values. We apply

8 kinds of fault level to the amount of compressed characteristics, i.e., Trivial,

Enhancement, Minor, Normal, Regression, Blocker, Major, and Critical, respec-

tively. Then, the number of units K in response layer is 8 because of 8 fault levels.

68 Y. Tamura et al.

3 Identification Method of Software Fault Level Based
on Deep Learning

The structure of the deep learning in this paper is shown in Fig. 2. In Fig. 2,

zl(l = 1, 2,… ,L) and zm(m = 1, 2,… ,M) means the pre-training units. Also, on(n =
1, 2,… ,N) is the amount of compressed characteristics. Several algorithms in terms

of deep learning have been proposed [5–10]. In this paper, we apply the deep neural

network to learn the fault data on bug tracking systems of open source projects.

As with the neural network, we apply the following amount of information to

the parameters of pre-training units. Then, the objective variable is given as the

fault levels as shown in Table 1. We apply 8 kinds of fault level to the amount of

compressed characteristics, i.e., Trivial, Enhancement, Minor, Normal, Regression,

Blocker, Major, and Critical, respectively.

∙ Date recorded on bug tracking system

∙ Name of software product

∙ Name of software component

Fig. 2 The structure of deep learning

Identification Method of Fault Level Based . . . 69

Table 1 The fault levels in

learning data
Index number Fault level

1 Trivial

2 Enhancement

3 Minor

4 Normal

5 Regression

6 Blocker

7 Major

8 Critical

∙ Number of software version

∙ Nickname of fault reporter

∙ Nickname of fault assignee

∙ Status of software fault

∙ Name of operating system

8 kinds of explanatory variables are set to the amount of pre-training units. Then,

each data of explanatory variable is converted from the character data to the numer-

ical value such as the rate of occurrence.

4 Numerical Examples

The OSS is closely watched from the point of view of the cost reduction and the

quick delivery. There are several open source projects in the area of server software.

In particular, we focus on Apache HTTP server [11] in order to evaluate the perfor-

mance of our methods. In this paper, we show numerical examples by using the data

sets for Apache HTTP server as OSS. The data used in this paper are collected in

the bug tracking system on the website of Apache HTTP server open source project.

We show the raw data obtained from the bug tracking system in Fig. 3. Also, Fig. 4

is the input data for deep learning. Figure 4 can be obtained by converting from the

character data to the numerical value such as the rate of occurrence.

Fig. 3 A part of the raw data obtained from the bug tracking system

70 Y. Tamura et al.

Fig. 4 A part of the input data for deep learning

0

3

6

9

0 2000 4000 6000 8000

TIME (DAYS)

FA
U

L
T

 L
E

V
E

L

Learning Data

Fig. 5 The learning data recorded on bug tracking system

0

3

6

9

0 500 1000 1500 2000

TIME (DAYS)

FA
U

L
T

 L
E

V
E

L

Testing Data

Fig. 6 The testing data recorded on bug tracking system

Identification Method of Fault Level Based . . . 71

0

3

6

9

0 500 1000 1500 2000

TIME (DAYS)

FA
U

L
T

 L
E

V
E

L

Actual

Neural Network

Fig. 7 The estimation results of fault levels based on neural network

We obtain 10,000 fault data set from the data recorded on bug tracking system of

Apache HTTP server. Then, 80 % of the recorded data is used as the learning data.

Figure 5 shows the learning data. The fault levels of Fig. 5 are shown in Table 1. We

show the estimation results by using the testing data sets in Fig. 6.

4.1 Estimation Results

We apply 8 fault levels as the fault levels on bug tracking systems to the objective

variable. The estimation results for 2,000 testing data set based on neural network

by using 8,000 learning data set is shown in Fig. 7. Similarly, the estimation results

for 2,000 testing data set based on deep learning by using 8,000 learning data set is

shown in Fig. 8. Moreover, we show the estimation results based on neural network

and deep learning in Tables 2 and 3.

From Figs. 7 and 8, we can confirm that the estimate based on deep learning fits

better than one based on neural network for the future in fact.

4.2 Comparison Results

The estimated results of recognition rate based on the neural network and deep learn-

ing are shown in Table 4. From Table 4, we found that the estimated recognition rates

based on the deep learning perform better than that of the neural network.

72 Y. Tamura et al.

0

3

6

9

0 500 1000 1500 2000

TIME (DAYS)

FA
U

L
T

 L
E

V
E

L

Actual

Deep Learning

Fig. 8 The estimation results of fault levels based on deep learning

Table 2 The estimation results based on neural network

Estimate Blocker Critical Enhancement Major Minor Normal Regression Trivial

Blocker 0 0 0 0 0 0 0 0

Critical 0 0 0 0 0 0 0 0

Enhancement 0 0 0 1 0 0 0 0

Major 57 87 2 146 0 190 35 0

Minor 0 0 0 0 0 0 0 0

Normal 55 121 5 246 0 988 65 1

Regression 0 0 0 0 0 0 0 0

Trivial 0 0 0 0 0 0 0 0

Table 3 The estimation results based on deep learning

Estimate Blocker Critical Enhancement Major Minor Normal Regression Trivial

Blocker 5 14 0 24 0 47 8 0

Critical 22 39 0 57 0 125 16 0

Enhancement 2 5 2 5 0 15 1 0

Major 47 71 1 128 0 315 33 1

Minor 0 0 0 0 0 8 0 0

Normal 33 73 4 166 0 645 41 0

Regression 3 6 0 13 0 23 0 0

Trivial 0 0 0 0 0 0 1 0

Identification Method of Fault Level Based . . . 73

Table 4 The comparison

results for methods based on

neural network and deep

learning

Estimation method Recognition rate (%)

Neural network 4.6023

Deep learning 40.970

Table 5 The fault levels in

learning data in case of two

categories

Index number Fault level

1 Other (Trivial)

1 Other (Enhancement)

1 Other (Minor)

1 Other (Normal)

1 Other (Regression)

1 Other (Blocker)

2 Major (Major)

2 Major (Critical)

0

1

2

3

4

0 500 1000 1500 2000

TIME (DAYS)

FA
U

L
T

 L
E

V
E

L

Actual

Neural Network

Fig. 9 The estimation results of fault levels based on neural network in case of two categories

Moreover, we assess the effectiveness in case of two kinds of fault level consider-

ing the practicality of the proposed method. Then, we consider the case of Table 5.

Figures 9 and 10 show the estimation results for 2,000 testing data set based on neural

network and deep learning by using 8,000 learning data set, respectively. Table 6

shows the comparison results for methods based on neural network and deep learn-

ing in case of two categories. In particular, the estimation results based on the deep

learning give a high-recognition rates. It will be possible for the software managers

to predict the fault level of importance from the fault data recorded on bug track-

ing system. The proposed method will be useful to make a quick modification of

74 Y. Tamura et al.

0

1

2

3

4

0 500 1000 1500 2000

TIME (DAYS)

FA
U

L
T

 L
E

V
E

L

Actual

Deep Learning

Fig. 10 The estimation results of fault levels based on deep learning in case of two categories

Table 6 The comparison results for methods based on neural network and deep learning in case

of two categories

Estimation method Recognition rate (%)

Neural network 65.183

Deep learning 68.584

software fault depending on the level. Also, the software managers will be able to

take prompt action for the debugging by using the standards of judgment with regard

to major fault or not.

5 Conclusion

At present, the bug tracking systems are used in many open source projects. Then,

many fault data sets are recorded on these bug tracking system. The quality of open

source software will be improved significantly if the software managers can make an

effective use of these data sets on the bug tracking systems. In case of using the bug

tracking systems, the software managers will be able to take prompt action for the

debugging process, if the software managers can judge with regard to major fault or

not.

This paper have focused on the identification method of software fault level. We

have proposed the method of reliability assessment based on deep learning. In par-

ticular, it is difficult to judge the major fault by only using the data on bug tracking

system, because the contents of data recorded on bug tracking system cannot be

Identification Method of Fault Level Based . . . 75

guaranteed for the results occurred from the actual OSS, i.e., many general users as

well as the major project member can report on the bug tracking system. Also, sev-

eral numerical examples of OSS reliability assessment by using the fault data in the

actual OSS project have been shown in this paper. Moreover, we have compared the

estimation method based on the deep learning with that based on neural network.

Thereby, we have found that our method can assess OSS reliability in the future with

high accuracy based on the data on bug tracking system.

In the future study, it will be necessary to analyze by using many training data sets

in actual software development projects. Thereby, the proposed method based on the

deep learning will be useful for the software managers to assess the OSS reliability.

Acknowledgments This work was supported in part by the Telecommunications Advancement

Foundation in Japan, and the JSPS KAKENHI Grant No. 15K00102 and No. 25350445 in Japan.

References

1. Lyu, M. R. (Ed.). (1996). Handbook of software reliability engineering. Los Alamitos, CA:

IEEE Computer Society Press.

2. Yamada, S. (2014). Software reliability modeling: Fundamentals and applications. Heidelberg:

Springer.

3. Kapur, P. K., Pham, H., Gupta, A., & Jha, P. C. (2011). Software reliability assessment with or
applications. London: Springer.

4. Karnin, E. D. (1990). A simple procedure for pruning back-propagation trained neural net-

works. IEEE Transactions on Neural Networks, 1, 239–242.

5. Kingma, D. P., Rezende, D. J., Mohamed, S., & Welling, M. (2014). Semi-supervised learning

with deep generative models. Proceedings of Neural Information Processing Systems.
6. Blum, A., Lafferty, J., Rwebangira, M. R., & Reddy, R. (2004). Semi-supervised learning using

randomized mincuts. Proceedings of the International Conference on Machine Learning.

7. George, E. D., Dong, Y., Li, D., & Alex, A. (2012). Context-dependent pre-trained deep neural

networks for large-vocabulary speech recognition. IEEE Transactions on Audio, Speech, and
Language Processing, 20(1), 30–42.

8. Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., & Manzagol, P. A. (2010). Stacked denois-

ing autoencoders: Learning useful representations in a deep network with a local denoising

criterion. Journal of Machine Learning Research, 11(2), 3371–3408.

9. Martinez, H. P., Bengio, Y., & Yannakakis, G. N. (2013). Learning deep physiological models

of affect. IEEE Computational Intelligence Magazine, 8(2), 20–33.

10. Hutchinson, B., Deng, L., & Yu, D. (2013). Tensor deep stacking networks. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 35(8), 1944–1957.

11. The Apache Software Foundation, The Apache HTTP Server Project. http://httpd.apache.org/.

http://httpd.apache.org/

Monitoring Target Through Satellite Images
by Using Deep Convolutional Networks

Xudong Sui, Jinfang Zhang, Xiaohui Hu and Lei Zhang

Abstract Monitoring target through satellite images is widely used in intelligence

analysis and for anomaly detection. Meanwhile, it is also challenging due to the

shooting conditions and the huge amounts of data. We propose a method for tar-

get monitoring based on deep convolutional neural networks (DCNN). The method

is implemented by three procedures: (i) Label the target and generate the dataset,

(ii) train a classifier, and (iii) monitor the target. First, the target area is labelled man-

ually to form a dataset. In the second stage a classifier based on DCNN using Keras

library is well-trained. In the last stage the target is monitored in the test satellite

images. The method was tested on two different application scenarios. The results

show that the mothed is effective.

Keywords Target monitoring ⋅ DCNN ⋅ Intelligence analysis ⋅ Abnormal weather

detection

1 Introduction

With the rapid technological development of various satellites, a huge volume of

high-resolution images can now be obtained easily from Google Earth Pro, which

also provides historical images in many areas. Such development makes it possible

X. Sui (✉) ⋅ J. Zhang ⋅ X. Hu

Institute of Software Chinese Academy of Sciences, Beijing, China

e-mail: xudong2014@iscas.ac.cn

J. Zhang

e-mail: jinfang@iscas.ac.cn

X. Hu

e-mail: hxh@iscas.ac.cn

L. Zhang

School of Computer Science, Beijing Information Science & Technology University,

Beijing 100101, China

e-mail: 398173551@qq.com

© Springer International Publishing Switzerland 2016

R. Lee (ed.), Software Engineering Research, Management
and Applications, Studies in Computational Intelligence 654,

DOI 10.1007/978-3-319-33903-0_6

77

78 X. Sui et al.

for target monitoring in satellite image series, which can be used in intelligence

analysis, anomaly detection, and various other purposes. Xi Li et al. [1] used the

night-time light images to evaluate the Syrian crisis and it has been paid attention in

the international society. Yet affected by the shooting conditions such as illumination,

clouds, fog, noise and other factors, target monitoring is a challenging job. Mean-

while, the huge amounts of satellite remote sensing images also cost researchers

much more time to do the job. Relying on manual work is extremely time-consuming

and costly. Therefore, there is a need to automate the process of monitoring target.

Monitoring problem can be treated as a detection problem in image series. In

general, a well-trained classifier is needed to detect. The CNN [2], which was first

proposed by LeCun et al. In 2012, Krizhevsky et al. [3] demonstrated that convo-

lutional neural networks (CNNs) obtained substantially higher image classification

accuracy on the ImageNet Large Visual Recognition Challenge (ILSVRC). From

then on, a classifier based on DCNN [3–5] is the best choice in image processing

area. The features like colors, shape, appearance of different targets are different in

different application scenarios. Design feature manually is a giant project. However,

we don’t need to design features by hand using DCNN. So we choose the DCNN as

the classifier of the monitor. Features extracted by using DCNN and then used by a

classifier can gain a high accuracy. Salberg [6] used it to detect seals in remote sens-

ing images and got an accuracy of 98.2 %. Wu et al. [7] used it to detect planes and

gained a fast and accurate result. However, their methods handle only one image from

a specific moment, which is not enough. Chen et al. [8] developed a deep tracking

system, which inspired us. The GPU has developed a lot and the GPGPU technology

is easier to use in these few years [9]. Chollet [10] is a deep learning library using

GPU to accelerate, which inspired us to apply the monitoring job with GPU. We use

a GTX Titan X GPU card to accelerate the job. It can save much time on monitoring

job.

In this paper, we issued a method based on DCNN using Keras library. After

labeling the target using Photoshop by hand, the system can automatically do the

monitoring. We will test the mothed for a military target scenario and an abnormal

weather detection scenario.

The rest of the paper is organized as follows. In Sect. 2, we describe our method

in details. Details of experiments and results are presented in Sect. 3. Section 4 con-

cludes the paper.

2 Method

To monitor target in satellite image series accurately and efficiently, the classifier is

the key. So we consult some classic DCNN architecture [2–5]. The proposed target

monitoring method consists of three stages: Label and generate the dataset, train a

classifier, monitor the target. Figure 1 shows the pipeline of our target monitoring

system.

Monitoring Target Through Satellite Images . . . 79

Fig. 1 Target monitoring

pipeline

2.1 Label and Generate the Dataset

We have n satellite image series with no label, k of n images are after registration

and will be used for training. The left images will be used for test.

Around the area of interest, we use two different colors to label the target area

and the background respectively. We label the target area by white color and label

the background by black color. Save the label layer as label image L. Consider a

3 × 3 grids, the center is the target and the others are background. So the negative

ones (background area) is 8 times of the positive ones (target area).

Label image L is matched well to any one of the satellite image S from time t0 to

time tk, so the class of one sample in any coordinates (x, y) from L is as same as the

one in the coordinate (x, y) from any one of the satellite image S. Then we get the

training dataset.

To make sure the classifier based on DCNN works well, we need to prepare

enough positive and negative samples. If we did not get enough samples in the last

step, we can random rotate the samples with a small angle (less than 2
◦
) to generate

enough samples.

2.2 Architecture of DCNN

A typical DCNN is a multilayer architecture which stacks convolution and pooling

layers in alternation, with a fully connected layer to produce the final result of the

task. In classification tasks, each unit of the final layer indicates the class probability.

80 X. Sui et al.

The hierarchical Convolutional Neural Networks model considers high level

image representation. However, the more layers, the more parameters in the networks

needed to learn and more time needed to train. And it’s more easily to become over-

fitting when the network becomes very deep while the training data is not sufficient.

So we choose a simple architecture. The DCNN architecture we use is: C1-S2-C3-

S4-C5-S6-F7, where C, S and F represent convolutional layer, max pooling layer

and full connected layer respectively. We feed the output of the last fully-connected

layer to a softmax function which produces a distribution over the class labels. The

configuration we use is C1(8@7 × 7), C3(16@5 × 5), C5(24@3 × 3) and F7(512).

We put a dropout layer after S6 and F7 to prevent overfitting. The input of DCNN is

RGB images with size (64 × 64). We use Stochastic gradient descent, with support

for momentum = 0.9, decay = 1e-6, and Nesterov momentum to train the model.

The learning rate is 0.01 at beginning. The batch size is 128. We use early-stopping

to stop training when the validation loss stops improving with patience 2.

2.3 Monitoring Job

Because image from tk+1 to tn is not registered and the target is randomly drift less

than 20 m due to the GPS error and other reasons, we have to resample from the

area around. We use the coordinates information we got in the first step to reduce the

search space.

Then we give the samples to the classifier we trained last stage. We set a threshold

of 0.989 to get the right activation, that is, the sample is more like a positive one. If

the class is positive, we mark it with red color and show it in the picture.

We apply the classifier to every test image frame and will get an events flow. The

visualization result will tell the changes (exist or not) of the target in the image series.

3 Experiment and Results

3.1 Dataset

We will test the method for a scenario of military target (used for intelligence analy-

sis) and a scenario of abnormal weather detection case. These two scenarios actually

provide two different datasets (airplane and buildings). We have 6 parking apron

images and 20 building images from different time downloaded from Google Earth

Pro with resolution 1 and 0.5 m/pixel respectively. 6 parking apron images are not

enough but Google cannot provide more full images of the area shot from the same

time due to unknown reasons.

Monitoring Target Through Satellite Images . . . 81

3.2 Military Intelligence Analysis Scenarios

We pick 3 images containing an airplane in target area. First, label one airplane with

white color and label the background with black color at one time. Figure 2 shows

the fusion effects of the satellite image series from 3 moments and part of the label

layer.

The sample size is 64 × 64. Figure 3 shows part of the positive samples and neg-

ative samples. Generally, we have to rotate the positive samples with small angles

(less than 2
◦
) to get more (data augmentation [3]). Then we get the training dataset

(1998 positive samples and 7998 negative ones, 90 % is from data augmentation).

20 % of the data will be used as validation data.

The classifier can achieve training accuracy at almost 98 % with validation accu-

racy at 98 % on the dataset. We have tested the code provided by the Keras’ author

Fig. 2 The fusion of satellite image series and part of the label image

Fig. 3 Positive patches and negative patches

82 X. Sui et al.

Fig. 4 Visualization of the monitoring results

on mnist dataset and get the similar result. So it is not likely overfitting. We test the

classifier on the test image and it can give the right answer. We test many times. Our

monitor can mark the image with airplane correctly. Figure 4 shows a success one.

First two doesn’t have airplanes in the target area, the last one have an airplane.

We even take one image as the training dataset, but this time the monitor makes

two mistakes. It doesn’t report two images which contains planes. We also test k =

2, the classifier makes one mistake this time. If the classifier remembers not enough,

the monitor will not work. DCNN has a good memory. So far, it cannot tell different

kinds of fighter plane because the classifier is a binary classifier.

These additional experiments demonstrate that we have to provide sufficient data.

3.3 Abnormal Weather Detection Scenarios

Beijing suffers from hazy weather in recent. The second dataset is from Beijing,

China. It has more frames (Fig. 5 shows the fusion of the satellite image series of

this area and part of the label layer). We can see many different shooting conditions.

We take a building as reference because it changes very little. The weather conditions

in the k images are clear and good. The image size is 128 × 128, so we have to do

subsampling before we give it to the classifier.

Figure 6 shows the result given by the monitor. We can see most of time it can

tell the target. But if the weather is hazy, the monitor cannot recognize the target.

Because the training dataset do not have one hazy day. We can use this phenomenon

to do abnormal weather detection if we choose normal weather as the training dataset.

More samples, more training time. So we also test different size (less than 2000)

positive samples. With 400 positive samples, it makes 12 mistakes in ten times. It

didn’t tell the target in the image with many noise twice. The other is due to the mild

contamination weather (row 2 col 2). The average time (generate dataset, train and

test) is 133 s. With 800 positive samples, it makes 10 mistakes. It also cannot tell the

target in mild contamination weather. The average time is 162 s. With 1200 positive

samples, it makes 8 mistakes. It can tell the target in mild contamination weather

Monitoring Target Through Satellite Images . . . 83

Fig. 5 The fusion of satellite image series and part of the label image

Fig. 6 Visualization of the monitoring results

twice in ten times. The average time is 184 s. All the configuration cannot tell the

target in severe haze day.

We put the high resolution images and the source code in our Github repository.

Now they are available at https://github.com/suixudongi8/SITS.

4 Conclusion

In this paper, we propose a method based on DCNN to monitor target in satel-

lite image series. DCNN can learn features from raw data and is invariant to some

noise like illumination change, small rotation and shift (good memory). The exper-

iment shows that our method is effective in typical target monitoring tasks if the

data is enough. The method can be used for reporting the activity of the fighter

https://github.com/suixudongi8/SITS

84 X. Sui et al.

in military intelligence analysis scenarios and detecting abnormal events (hazy

weather), depending on which class you define and give to the system.

In our future works, we will be devoted to improve the performance of the method.

Two classes cannot represent more attribute of the target, which leaves much to be

desired. We will add more classes to do better job. Adding the application of multi-

target monitoring is also in our schedule.

Acknowledgments The authors would like to thank Jianjun Zhang and Yifei Fan for their con-

structive discussions and comments.

References

1. Li, Xi, & Li, Deren. (2014). Can night-time light images play a role in evaluating the syrian

crisis? International Journal of Remote Sensing, 35(18), 6648–6661.

2. LeCun, Yann, Bottou, Léon, Bengio, Yoshua, & Haffner, Patrick. (1998). Gradient-based learn-

ing applied to document recognition. Proceedings of the IEEE, 86(11), 2278–2324.

3. Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep con-

volutional neural networks. In Advances in neural information processing systems (pp. 1097–

1105).

4. Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for large-scale

image recognition. arXiv:1409.1556.

5. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, R., Anguelov, D., Erhan, D., Vanhoucke, V., &

Rabinovich, A. (2015). Going deeper with convolutions. Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (pp. 1–9).

6. Salberg, A. B. (2015). Detection of seals in remote sensing images using features extracted

from deep convolutional neural networks. 2015 IEEE International Geoscience and Remote
Sensing Symposium (IGARSS) (pp. 1893–1896).

7. Wu, H., Zhang, H., Zhang, J., & Xu, XU. (2015). Fast aircraft detection in satellite images based

on convolutional neural networks. 2015 IEEE International Conference on Image Processing

(ICIP) (pp. 4210–4214).

8. Hahn, M., Chen, S., & Dehghan, A. (2015). Deep tracking: Visual tracking using deep convo-

lutional networks. arXiv:1512.03993.

9. CUDA Nvidia. (2007). Compute unified device architecture programming guide.

10. Chollet, F. (2015). Keras: Theano-based deep learning library. Code: https://github.com/

fchollet. Documentation: http://keras.io.

http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1512.03993
https://github.com/fchollet
https://github.com/fchollet
http://keras.io

A Method for Extracting Lexicon
for Sentiment Analysis Based
on Morphological Sentence Patterns

Youngsub Han, Yanggon Kim and Ikhyeon Jang

Abstract In these days, people share their emotions, opinions, and experiences of
products or services using online review services on their comments, and the people
concern the reviews to make decision when buying products or services. Sentiment
analysis is one of the solution to observe and summarize emotional opinions from
the data. In spite of high demands for developing sentiment analysis, the devel-
opment of the sentiment analysis faces some challenges to analyze the data, because
the data is unstructured, unlabeled, and noisy. The aspect-based sentiment analysis
approach helps for more in-depth analysis, however building aspect and emotional
expression is one of the challenge for the aspect-based sentiment analysis approach.
Accordingly, we propose an unsupervised system for building aspect-expressions to
minimize human-coding efforts. The proposed method uses morphological sentence
patterns through an aspect-expression pattern recognizer. It guarantees relatively
higher accuracy. As well as, we found some characteristics for selecting patterns to
extracting aspect-expressions accurately. The greatest advantage of our system is
performing without any human coded train-set.

Keywords Data mining ⋅ Lexicon building ⋅ Sentiment analysis ⋅
Aspect-based sentiment analysis

Y. Han (✉) ⋅ Y. Kim (✉)
Department of Computer and Information Sciences, Towson University,
Towson, MD 21204, USA
e-mail: yhan3@students.towson.edu

I. Jang (✉)
Department of Information and Communication Engineering,
Dongguk University Gyeongju, Gyeongbuk, South Korea
e-mail: ihjang@dongguk.ac.kr

© Springer International Publishing Switzerland 2016
R. Lee (ed.), Software Engineering Research, Management
and Applications, Studies in Computational Intelligence 654,
DOI 10.1007/978-3-319-33903-0_7

85

1 Introduction

In these days, people share and post reviews of products or services with comments.
The user-generated online reviews contain user’s emotional state and opinion about
topics or issues, such as events, products, entertainers, politicians, movies, services
and so on [1, 2]. Furthermore, the people concern the reviews to make decision
when buying products or services. As the increasing the population of the data,
demanding of analyzing the data is increasing continuously [3]. Sentiment analysis
is aimed to observe and summarize their sentimental opinions from the data. In spite
of high demands for developing sentiment analysis, it faces some challenges
because the data is unstructured, unlabeled, and noisy. In our previous research, we
already proposed a probability model based sentiment analyzer [4]. It guarantees
higher accuracy (89 %) than other approaches, and it can be broadly used to analyze
text based data [5]. However, this model has some limitations to maintain the
accuracy. The one of problems from the method is that all words have polarity
while the words not containing meaningful information. For examples, determiners
“a” or “the”, and prepositions “to” or “on” have certain polarity. It causes incorrect
results or over-analysis. Also, the approach requires human coded trains-set. It
means the train-set must be re-built continuously to maintain the accuracy [4]. To
minimize the limitations, we decide to apply the aspect-based sentiment analysis
approach because it helps for more in-depth analysis [3, 6, 7]. For example, if we
analyze movie reviews, some keywords are considered to more meaningful aspects
such as “character”, “story-line”, “plot”, “effect” and “music”, and some keywords
are considered to more meaningful emotional expressions as such as “good”,
“awesome”, “amazing”, “bad”, “awful”. However, building lexicon of aspect and
emotional expression is one of the biggest challenge for the aspect-based sentiment
analysis approach. Accordingly, we propose an unsupervised method for building
aspect-expressions lexicons for aspect-based sentiment using morphological sen-
tence. Thus, the main purpose of this system is to minimize human-coding efforts to
building sentiment lexicon.

2 Related Works

2.1 Natural Language Processing

To analyze text based data, we used a natural language processing tool which is the
“Stanford Core NLP” made by The Stanford Natural Language Processing
Group. This tool provides refined and sophisticated results from text data based on
English grammar such as the base forms of words, the parts of speech (POS), the
named entity and the structure of sentences in terms of phrases and word depen-
dencies [8]. In this research, we used the tool for two main reasons. The first reason
is that the online textual data has a lot of linguistic problems to be analyzed such as

86 Y. Han et al.

spacing errors, idioms, and jargons. Another reason is that our method extracts
morphological patterns to build lexicon of aspects and emotional expressions for
further analysis using the structure of sentences and part of speeches.

2.2 Sentiment Analysis

The purpose of sentiment analysis is extracting opinion or emotional states
regarding certain topics such as events, products, entertainers, politicians, movies,
services from the text based data to find people’s interesting and thought [5]. In this
section, we will discuss about three existing approaches which are the “Lexicon
based Sentiment Analysis”, the “Probability Model based Sentiment Analysis”, and
the “Aspect based Sentiment Analysis”.

2.2.1 Lexicon Based Sentiment Analysis

This approach is based on matching emotional words or word phrases using sen-
timental lexicon. Each word in the lexicon can be categorized as either positive or
negative keywords. A message can be categorized as positive depending on the
ratio of positive words versus negative words containing in the message. The
accuracy of the existing approaches is as high as 80 % [4]. The results shows that
the approach can be used as a supplement for traditional survey. However, the
lexicon based approach has a weakness that even if a message contains positive
words, the message doesn’t necessary to categorize into positive. For example, the
word “like” is categorized as a positive word in the lexicon because the word is
usually used to express positive meaning but the word has different meaning such
as “similar”. If the message containing the word “like” must be categorized into
positive, it is considered to error in terms of sentiment analysis. In this sense, such
lexicon based approach should be improved regarding the nature of language.

2.2.2 Probability Model Based Sentiment Analysis

Lee et al. [4] proposed a method for sentiment analysis using the probability model.
The method reads sample text messages in a train set and builds a sentiment lexicon
that contains the list of words that appeared in the text messages and probability that
a text message is positive opinion if it includes those words. Then, it computes the
positivity score of text messages in a test set using the list of words in a message
and sentiment lexicon. Each message is categorized as either positive or negative,
depending on threshold value calculated using a train set. However, this model has
some limitations and problems. For example, all of terms have positivity even
though the term has not meaningful opinion such as “a”, “the”, “to” and so on. It
causes over-analysis to extract opinion from the data. Also, the train-set must be

A Method for Extracting Lexicon for Sentiment Analysis … 87

up-to-date because the online textual data is trendy but the approach didn’t concern
it. This model seems a powerful approach but it need to improve in terms of the
reasons.

2.2.3 Aspect Based Sentiment Analysis

The aspect based sentiment analysis is the lexicon based sentiment analysis because
this approach also uses the lexicon as a measurement. However, this approach
performs more in-depth sentiment analysis. In the aspect-based opinion mining, all
result are categorized into each aspect which means features of entities or objects
paired with expression. For example, if an object is a mobile phone, its aspects are
the display, size, price, camera, or battery. In this case, aspects seems the attributes
of the objects to describe more detail. Thus, expected result are “display-clean”,
“price-good”, or “camera-awesome” from this approach while “clean”, “good”, or
“awesome” from the lexicon based sentiment analysis [3, 6, 7]. Therefore, we
decide to apply the aspect-based sentiment analysis approach for more in-depth
analysis than our previous approach.

2.3 Lexicon Building

In sentiment analysis, the building lexicon is a fundamental challenge because the
lexicon is a main measurement for extracting opinions from the data. For example,
incorrect words or a less amount of words may cause a bad influence on the
accuracy of result. Many studies have proposed unsupervised or semi-supervised
approach for building lexicon. They were focused on constructing emotional lex-
icons that assign into fine-grained categories of emotions, such as happiness, like,
disgust, sadness, and anger, have emerged recently [9–13]. Particularly, J. Bross,
and H. Ehrig proposed a method that allows to automatically adapt and extend
existing lexicons to a specific product domain, but they simply used morphological
patterns to extract aspect-expressions [3]. Therefore, we proposes a system to
extract aspects-expression lexicon using morphological pattern with focusing on
how the patterns works effectively and accurately.

3 System Architecture and Implementation

The system consists of three main phases; collecting data, recognizing morpho-
logical sentence patterns, and extracting aspect-expressions. The first phase is data
collection. The crawler collects movie review data from the IMDB, Rotten
Tomatoes, and Metacritic. We developed crawler using a HTML parser. The second
phase is morphological sentence pattern recognition. In this phase, the pattern

88 Y. Han et al.

recognizer extracts morphological sentence patterns using aspect and expression
candidates which are extracted through term extractor. At the last phase, the system
extracts aspect-expressions using the patterns. Then, we proposed a manner of
applying thresholds for the accuracy of extracting aspect-expressions. We expect
that the aspect-expression lexicon can be used to aspect based sentiment analysis.
The Fig. 1 shows architecture and flow of our proposed system.

The system consists of three main phases; collecting data, recognizing mor-
phological sentence patterns, and extracting aspect-expressions. The first phase is
data collection. The crawler collects movie review data from the IMDB, Rotten
Tomatoes, and Metacritic. We developed crawler using a HTML parser. The second
phase is morphological sentence pattern recognition. In this phase, the pattern
recognizer extracts morphological sentence patterns using aspect and expression
candidates which are extracted through term extractor. At the last phase, the system
extracts aspect-expressions using the patterns. Then, we proposed a manner of
applying thresholds for the accuracy of extracting aspect-expressions. We expect
that the aspect-expression lexicon can be used to aspect based sentiment analysis.
The Fig. 1 shows architecture and flow of our proposed system.

Fig. 1 The system architecture and flow

A Method for Extracting Lexicon for Sentiment Analysis … 89

3.1 Data Collection

The crawler collects movie reviews with ratings generated by users through online
movie review services which are “Rotten Tomatoes”, “IMDB”, and “Metacritic”.
To collect the data, we uses the Jsoup HTML parser which is an open-source Java
library designed to extract and manipulate data stored in HTML documents
developed by Hedley [14]. The crawler automatically collects review using a movie
name as a seed such as “Jurassic World” or “Avengers: Age of Ultron”. There are
some difference in their rating scales. In the Rotten Tomatoes, a writer indicates
their opinion weather “Fresh”, or “Rotten”. The Fresh means a positive and the
Rotten means a negative. In the IMDB and Metacritic, a writer indicates their
opinion from 1 to 10 point. The bigger number means more positive. We decided
8–10 are positive opinions and 1–3 are negative opinions to calculate their polarity.

3.2 Aspect-Expression Extractor

People indicates their opinion in a sentence including objects, aspects, and
expressions. For example, in a sentence “This movie is awesome”, the word
“movie” is an aspect and the word “awesome” is an expression. Also, in a sentence
“the movie was too focused on action”, the word “action” is an aspect and the word
“too focused” is an expression. This perspective of analysis called aspect based
sentiment analysis [3, 6].

To extract aspect-expressions, the first step is the natural language processing
(NLP) using a tool which is Stanford Core NLP made by The Stanford Natural
Language Processing Group. This software is an integrated suite of natural lan-
guage processing tools for English. It provided refined and sophisticated results
based on English grammar. In this paper, we used a part of speech tagger and a
sentence parser. The second step is extracting terms. The noun or noun phrase is an
important part of speech because the subject word names a person, place or thing
and the verb identifies an action or a state of being. An object receives the action
and usually follows the verb [6]. Thus, noun or noun phrase is to be a clue word for
next step. The second step is morphological pattern recognition. To extract more
aspect candidates, the system extract morphological sentence patterns when the clue
word occurs in the sentence. After this step, the system extract aspect candidates
using the patterns. The system extracts expressions as extracting aspect. In addition,
using the scores of movie reviews generated from the movie review crawler, the
system calculates polarity (positive/negative), called the positivity in this paper, for
sentiment analysis. The Fig. 2 shows the aspect candidate system flow.

90 Y. Han et al.

3.2.1 Term Extractor

The term extractor extracts noun, noun phrase, pronoun, adjective, verb, and adverb
as terms from the documents because the part-of-speeches may have meaningful
opinions from the document in general [6]. The extracted terms can be used to
discover important information related to the issues such as a product, company or
movies from the documents. Also the extractor calculates document frequency
(DF), is defined to be the number of documents in the collection that contain a term,
to extract aspect candidates because it is used for extracting common used term
from the collection of documents. And then, the system uses the top 100 terms
which are most frequently used in the documents. The extractor stores part-of-
speeches (POS) to extract further aspect-expression candidates.

Fig. 2 Aspect candidate extractor system flow

A Method for Extracting Lexicon for Sentiment Analysis … 91

3.2.2 Morphological Pattern Recognizer

To extract aspect-expressions, we developed the Morphological pattern recognizer.
The recognizer extracts what Part of speeches (POS) are surrounding the aspect or
expression candidates in a sentence.

As shown in the Fig. 3, the term “character” and “sequel” are aspect candidates
which are top frequently occurred terms in the movie reviews related to a movie,
“Jurassic World”. The system extract morphological sentence patterns (POS pat-
terns) from a sentence when the sentence contains the words. Then, extractor
matches the patterns to retrieve aspect-expressions. We considered N-grams model
for matching the patterns because if the extractor uses the pattern only perfect/full
matched words as aspect candidates, diversity of extraction may decrease. N-gram
is defined as a contiguous sequence of n items from a given sequence of text or
speech and N-gram widely used for text based analysis [15].

Fig. 3 Example of extracting morphological sentence patterns

92 Y. Han et al.

The Table 1 shows an example of the extracted patterns after applying n-gram
model. At the first row in the table, the pattern consists of 6 length sequence of
POSs (PRP$ + JJR + IN + JJ + NNP + CD+, +CC). The aspect and expression
extractor matches all possible patterns. In addition, the longest pattern has a more
priority to avoid duplicate extraction.

After Morphological pattern reorganization, aspect extractor retrieves aspects
when the morphological patterns are matched and the aspect candidates is are
occurred in a sentence. The Table 2 shows examples of extracted aspect candidates.
The total number of extracted words are 4,999 words through the extract using all
patterns while 450 words through the term extractor as aspect candidates from same
1,000 movie reviews. It implies that our aspect candidate extractor could find the
more number of candidates than the term extractor.

3.2.3 Aspect Extractor

After Morphological pattern reorganization, aspect extractor retrieves aspects when
the morphological patterns are matched and the aspect candidates is are occurred in

Table 1 Examples of extracted morphological sentence pattern using terms. (P is POS, Number is
Sequence of POS)

Len. Prefix Aspect Postfix
*Pi – 3 Pi – 2 Pi – 1 Wi Pi + 1 Pi + 2 Pi + 3

6 PRP$ JJR IN JJ NNP CD , CC
5 PRP$ JJR IN JJ NNP CD ,
5 JJR IN JJ NNP CD , CC
4 JJR IN JJ NNP CD ,
3 JJR IN JJ NNP CD
3 IN JJ NNP CD ,
2 IN JJ NNP CD
*P-n Sequence of POSs

Table 2 Examples of
extracted aspect candidates
from aspect candidate
extractor

Rank Expression Count

1 MOVIE 882
2 FILM 678
3 DINOSAUR 498
4 CHARACTER 403
5 JURASSIC PARK 367
6 ORIGINAL 362
7 JURASSIC WORLD 222
8 ACTION 174
9 STORY 173
10 SEQUEL 168

A Method for Extracting Lexicon for Sentiment Analysis … 93

a sentence. The Table 2 shows examples of extracted aspect candidates. The total
number of extracted words are 4,999 words through the extract using all patterns
while 450 words through the term extractor as aspect candidates from same 1,000
movie reviews. It implies that our aspect candidate extractor could find the more
number of candidates than the term extractor.

3.2.4 Expression Extractor

Expression extractor retrieves expressions as the aspect candidate extractor. The
Table 3 shows examples of extracted aspect candidates. The total number of
extracted words are 5,096 words through the extract using all patterns while 450
words through the term extractor as expressions. It show similar results as aspect
candidate extractor.

4 Experiment Result

This section presents the experiment results of lexicon building method we proposed.
We collected 1,000 reviews related to a Movie, “Jurassic world” using the data
crawler. Then, we selected 1,000 sentences from the data for experiments. To evaluate
our method, we built aspects and expression lexicon as answer-sets which is labeled
by human annotators. We found 230 aspects and 250 expressions in this study.

4.1 Measurement

To evaluate the performance, we calculated the F-measure which is broadly used to
measure the performance for this type of systems [16]. Also, we compered the

Table 3 Examples of
extracted expression
candidates from aspect
candidate extractor

Rank Expression Count

1 GOOD 282
2 BETTER 155
3 FUN 149
4 ENOUGH 136
5 WELL 104
6 BLOCKBUSTER 99
7 STUPID 94
8 BEST 93
9 BIG 81
10 BAD 80

94 Y. Han et al.

measures with existing related researches at the end of this section. The definition of
the measure is:

Recall =
TP

TP+FN
ð1Þ

Precision =
TP

TP+FP
ð2Þ

F−measure = 2*
Precision * Recall
Precision+Recall

ð3Þ

The F-measure considers the “Recall” and “Precision”. The recall means the
portion of relevant instances that are retrieved, and the precision means the portion
of retrieved instances that are relevant. In this equations, TP is true positive, TN is
true negative, FP is false positive, and FN is false negative. For example, when an
extracted aspect or expression is classified as ‘correct’ by the extractor while the
aspect or expression is labelled by answer-set which is labeled by human annotators
is ‘related’, the aspect or expression is considered TP (true positive). On the other
hand, when an extracted aspect or expression is classified as ‘correct’ by the
extractor while the aspect or expression is labelled by answer-set which is labeled
by human annotators is ‘non-related’, then the aspect or expression is considered
TN (true negative).

4.2 Morphological Sentence Pattern Selection

4.2.1 Extracting Aspect

The recognizer generates the morphological sentence patterns using the N-gram
method from original patterns as seeds which are containing top 100 aspects
extracted through term extractor. The recognizer generated 59,111 patterns (2–20
lengths patterns) from 1,000 sentences of movie reviews. To use the patterns to
extract aspect candidates, it is required to verify what types of patterns can extract
aspect candidates effectively and accurately. Accordingly, we examined what type
of patterns can extract the most number of correct in terms of the length and
frequency. In the Fig. 4, 3–7 lengths patterns could extract 90.29 % (1,833 out of
2,030). Therefore, we select the 3–7 lengths patterns to use for extracting aspects.

At this point, we examined to compare performance with “Noun Phrase”,
“Aspect Pattern”, “Aspect Sentence Pattern”, and “3–7 Sentence pattern” using the
F-measure. The “Noun Phrase means” that using only noun phrase to extract aspect
because most of aspects consist of noun based phrase [6, 7]. The Aspect Pattern
means that we extract the patterns based on our aspect candidates extracted through
term extractor. The Aspect Sentence Pattern means that we extract the patterns

A Method for Extracting Lexicon for Sentiment Analysis … 95

extracted through our pattern recognizer. The 3–7 Aspect Sentence pattern means
that we selected 3–7 lengths patterns from all extracted patterns through the pattern
recognizer. The Table 4 show the results of precisions, recalls and F-scores for each
type of patterns. As shown in the table, the 3–7 patterns can extracted more
accurately (F-score 80.86 %). Thus, we decided to use 3–7 lengths patterns.

4.2.2 Extracting Expression

As the experiment of extracting aspect, the recognizer generates 21,101 patterns
(2–20 lengths patterns) from 1,000 sentences of movie reviews. We verified pat-
terns in the same manner of the extracting aspect. In the Fig. 5, the 2–6 lengths

Fig. 4 The numbers of extracted correct aspect by the length of patterns

Table 4 The F-score of extracted aspect by the types of patterns

Pattern Extracted Correct Answer Precision (%) Recall (%) F-score (%)

Noun
phrase

450 90 230 20.00 39.13 26.47

Aspect
pattern

4,999 230 230 4.60 100.00 8.80

Aspect sentence
pattern

1,068 227 230 21.25 98.70 34.98

3–7 sentence
pattern

329 226 230 68.69 98.26 80.86

3–7 sentence
pattern
(freq. >= 1)

236 205 230 86.86 89.13 87.98

Co-occurrence 243 208 230 85.60 90.43 87.95

96 Y. Han et al.

patterns could extract 90.29 % (1,833 out of 2,030). Therefore, we select the 2–6
lengths patterns to use for extracting expressions.

At this point, we examined to compare performance using the F-measure with
“Adj. Phrase”, “Expression Pattern”, “Expression Sentence Pattern”, and “2–6
Sentence Pattern”. The Adj. Phrase means that using adjective phrase because most
of expression consist of adjective based phrase [6, 7].

The Expr. Pattern means that we extract the patterns based on our expression
candidates extracted through term extractor. The Expr. Sentence Pattern means that
we extract the patterns extracted through our pattern recognizer. The 2–6 Sentence
Pattern means that we selected 2–6 lengths patterns from all patterns extracted
through our pattern recognizer. The Table 5 show the results of precisions, recalls
and F-scores for each type of patterns. As shown in the Table V, the 2–6 Sentence
Pattern can extract more accurately (F-score 58.01 %). Thus, we decided to use 2–6
lengths.

Fig. 5 The numbers of extracted correct expression by the length of patterns

Table 5 The F-score of extracted expression by the types of patterns

Pattern Extracted Correct Answer Precision (%) Recall (%) F-score (%)

Adj. phrase 450 54 250 12.00 21.60 15.43
Expression pattern 5,096 250 250 4.91 100.00 9.35
Expression
sentence pattern

610 202 250 33.11 80.80 46.98

2–6 sentence
pattern

605 248 250 40.99 99.20 58.01

2–6 sentence
pattern
(freq. >= 1)

329 220 250 66.87 88.00 75.99

Co-occurrence 283 206 250 72.79 82.40 77.30

A Method for Extracting Lexicon for Sentiment Analysis … 97

4.2.3 Improving Accuracy of Extraction

We found characteristics that the frequency and co-occurrence of aspect-expressions
affect accuracy of extraction. When an aspect is occurred more than once (87.98 %)
and an aspect is co-occurred in a sentencewith one ormore expressions (87.95 %), the
results show higher accuracy than the others (See Table 4). Also, when an expression
is occurred more than once (75.99 %) and an aspect is co-occurred in a sentence with
one or more expressions (77.30 %), the results show higher accuracy (See Table 5).
Especially, we examined what numbers of co-occurrence affects to the result.

The Figs. 6 and 7 show the results of precisions, recalls and F-scores depending
on the numbers of co-occurrences. When the numbers of an aspect and an
expression is greater than the average number of all co-occurrence which numbers
are 227 for the aspects and 129 for the expressions, the precision of aspects is
100 % (See Fig. 6) and the precision of expression is 99.14 % (See Fig. 7). This
finding suggests.

Fig. 6 The F-score of
extracted correct aspect by the
length of patterns

Fig. 7 The F-score of
extracted correct expression
by the length of patterns

98 Y. Han et al.

4.2.4 Comparison with Related Researches

Table 6 shows results of F-measures for comparison with related researches. We
compare our result with HL [17], MPQA9 [18], HashtagLex and Sentimen-
t140Lex11 [19], and TS-Lex [16]. HL, MPQA and NRC-Emotion [20] are tradi-
tional model with a relative small lexicon. HashtagLex, Sentiment140Lex and
TS-Lex are sentiment lexicons for Twitter. F1 score of our approach is 82.81 which
is relatively higher than other approaches.

5 Conclusion

This research proposed a method for building aspect-expression lexicon for
aspect-based sentiment analysis using morphological sentence patterns that guar-
antees relatively higher accuracy (F-measure) than existing approaches. Through
the results, we found some characteristics for selecting patterns to extract
aspect-expressions accurately. The first characteristic is the length of pattern.
Therefore, we suggest 3–7 lengths pattern for extracting aspects and 2–6 lengths
patterns for extracting expressions. The second characteristic is the frequency of
extracted aspect-expressions. More frequently occurred aspect-expression tend to
more accurate. The last characteristic is co-occurrence of aspects and expressions.
The more number of co-occurrences tend to more accurate. We can assume that
aspects can be clues for extracting expression and expressions can be clues for
extracting aspects. Also, we suggest that the threshold can be adjusted depending
on needs. For example, when a user concerns the higher precision while the recall,
the user adjust threshold to be higher following our results. Finally, our system
shows a exceeding performance compared with existing emotional lexicon building
approaches in terms of accuracy, and it performs without any human coded train-set
and knowledge-base. The future work is how our system performs to cross domain
such as social media (Tweets, YouTube comments), News and so on. We can
assume that the data has different characteristic to extracting information from that
sources. Also, we will apply this method for improving the probability model based
sentiment analysis.

Table 6 Comparison of
F-score with related
researches

Methods F-score

HL [17] 60.49
MPQA [18] 59.15
NRC-Emotion [20] 54.81
HashtagLex [19] 65.30
Sentiment140Lex [19] 72.51
TS-Lex [16] 78.07
Proposed system 82.81

A Method for Extracting Lexicon for Sentiment Analysis … 99

References

1. Sharma, A., & Dey, S. (2012). A comparative study of feature selection and machine learing
techniques for sentiment analysis. Proceedings of the 2012 ACM Research in Applied
Computation Symposium (pp. 1–7), October 2012. ISBN: 978- 1-4503-1492-3.

2. Goncalves, P., Araújo, M., Benevenuto, F., & Cha, M. (2013). Comparing and combining
sentiment analysis methods. Proceedings of the First ACM Conference on Online Social
Networks (pp. 27–38), October 2013. ISBN: 978-1-4503-2084-9.

3. Bross, J., & Ehrig, H. (2013) Automatic Construction of Domain and Aspect Specific
Sentiment Lexicons for Customer Review Mining, CIKM’13, October 27–November 1. 2013.
San Francisco, CA, USA, ISBN: 978-1-4503-2263-8.

4. Lee, H., Han, Y., Kim, Y., & Kim, K. (2014). Sentiment analysis on online social network
using probability Model. Proceedings of the Sixth International Conference on Advances in
Future Internet (pp. 14–19).

5. Melville, P., Gryc, W., & Lawrence, R. D. (2009). Sentiment analysis of blogs by combining
lexical knowledge with text classification. Proceedings of the 15th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining (pp. 1275–1284), June
2009. ISBN: 978-1-60558-495-9.

6. Thet, T. T., Na, J.-C., & Khoo, C. S. G. (2010). Aspect-based sentiment analysis of movie
reviews on discussion boards. Journal of Information Science, 36, 823–848.

7. Wogenstein, F., Drescher, J., Reinel, D., Rill, S., & Scheidt, J. (2013). Evaluation of an
Algorithm for Aspect-Based Opinion Mining Using a Lexicon-Based Approach, WISDOM’13,
August 11. Chicago, USA. ISBN: 978-1-4503-2332-1.

8. Manning, C.D., Surdeanu, M., Bauer, J., Finkel, J., Bethard, S.J., & McClosky, D. (2014). The
stanford CoreNLP natural language processing toolkit. Proceedings of the 52nd Annual
Meeting of the Association for Computational Linguistics: System Demonstrations
(pp. 55–60), June 2014.

9. Kaji, N., & Kitsuregawa, M.: Building lexicon for sentiment analysis from massive collection
of html documents. Proceedings of EMNLP-CoNLL (pp 1075–1083), 2007.

10. Xu, J., Xu, R., Zheng, Y., Lu, Q., Wong, K.-F., & Wang, X. (2013). Chinese emotion lexicon
developing via multi-lingual lexical resources integration. Proceedings of the 14th
International Conference on Computational Linguistics and Intelligent Text Processing
(Vol. 2, pp. 174–182).

11. Xu, L., Lin, H., Pan, Y., Ren, H., & Chen, J. (2008) Constructing the afective lexicon
ontology. Journal of the China Society For Scientific and Technical Information, 27
(2):180–185

12. Zhang, Z., & Singh, M. P. (2014) Renew: A semi-supervised framework for generating
domain-specific lexicons and sentiment analysis. Proceedings of the 52nd Annual Meeting of
the Association for Computational Linguistics (pp. 542–551).

13. Tai, Y.-J., & Kao, H.-Y. (2013). Automatic Domain-Specific Sentiment Lexicon Generation
with Label Propagation. IIWAS ‘13 Proceedings of International Conference on Information
Integration and Web-based Applications and Services (p. 53). ISBN: 978-1-4503-2113-6.

14. Hedley, J. Jsoup HTML parser. http://jsoup.org/.
15. Tomovic, A., Janicic, P., & Keselj, V. (2006). n-Gram-based classification and unsupervised

hierarchical clustering of genome sequences. Journal of computer methods and programs in
biomedicine, 81, 137–153.

16. Tang, D., Wei, F., Qin, B., & Zhou, M., Liu, T. (2014). Building large-scale twitter-specific
sentiment lexicon. Proceedings of the 25th International Conference on Computational
Linguistics: Technical Papers (pp. 172–182). Dublin, Ireland.

17. Hu, M., & Liu, B. (2004). Mining and summarizing customer reviews. Proceedings of the
ACM SIGKDD International Conference on Knowledge Discovery & Data Mining
(KDD-2004, full paper), Aug 22–25. Seattle, Washington, USA.

100 Y. Han et al.

http://jsoup.org/

18. Wilson, T., Wiebe, J., & Hoffmann, P. (2005). Recognizing contextual polarity in phrase-level
sentiment analysis. Proceedings of HLT-EMNLP-2005 (pp. 347–354). Stroudsburg, PA, USA.
doi:10.3115/1220575.1220619.

19. Mohammad, S. M., Kiritchenko, S., & Zhu, X. NRC-Canada: Building the State-of-the-Art in
sentiment analysis of tweets. Proceedings of the International Workshop on Semantic
Evaluation.

20. Mohammad, S. M., & Turney, Peter D. (2012). Crowdsourcing a word–emotion association
lexicon. Computational Intelligence, 29(3), 436–465.

A Method for Extracting Lexicon for Sentiment Analysis … 101

http://dx.doi.org/10.3115/1220575.1220619

A Research for Finding Relationship
Between Mass Media and Social Media
Based on Agenda Setting Theory

Jinhyuck Choi, Youngsub Han and Yanggon Kim

Abstract We are living in a flood of information. We hear about lots of social issues
such as politics and economies in every day from the mass media. Before the
appearance social media, it is difficult to interact people’s opinions with the others
about the social issues. However, we can analyze important social issues using big
data generated from social media. We tried to apply the relationship between agenda
setting theory and social media because we have received social issues from official
accounts like news using social media, and then users shared social issues to other
users, so we choose tweets of Baltimore Riot to analyze. We collected tweets related
with Baltimore Riot, and then we extracted term keywords using text mining
technologies such as TF-IDF. Actually, we analyzed tweets of 04-27-2015 Based on
detected important words, we analyzed tweets at 5-min intervals, and we extracted
tweets of mass media and others. Based on user’s profiles, we found relationship of
mass media and social issues. About initial phase of the social issues as it happened,
local mass media leaded about incidents, and tweets exchanged and shared in local
area. After writing an influence Twitter user, social issues of Baltimore Riot spread
to other areas. As a result, we could detect agenda setting theory in social media
using big data technology. It implies that the local mass media led the social issues,
the Baltimore Riot became one of major social issues to people at the end.

Keywords Agenda setting theory ⋅ Data mining ⋅ Baltimore riot ⋅ Keyword
extraction

J. Choi (✉) ⋅ Y. Han (✉) ⋅ Y. Kim (✉)
Department of Computer and Information Sciences, Towson University,
Towson, MD 21204, USA
e-mail: jchoi16@students.towson.edu

Y. Han
e-mail: yhan3@students.towson.edu

Y. Kim
e-mail: ykim@towson.edu

© Springer International Publishing Switzerland 2016
R. Lee (ed.), Software Engineering Research, Management
and Applications, Studies in Computational Intelligence 654,
DOI 10.1007/978-3-319-33903-0_8

103

1 Introduction

We have been living in the era of smartphones since Steve Jobs left his great legacy,
IPhone. In recent years, we have experienced swift change in our communication
style because of social media and smartphones. After the appearance of smart-
phones, people can share news, information, and even their emotions through the
social media as smartphones enabled people to access to the Internet anywhere and
anytime they want. Also, social media provide diverse platforms such as Twitter
and Facebook, which have an incredible amount of influence in the recent society.
For instance, Twitter has become one of the most famous social media in the world
since 2006 [1]. Additionally, according to the statistics of Twitter Company, the
number of its monthly active users is 302 M, and the percentage of active users on
mobile such as a smartphone and tablet PC is 80 % [2]. All these statistics are the
analysis materials of December 31, 2015 cited from the official website of Twitter.
It means Twitter is currently one of the major social media, so we planned to
analyze Twitter among social media platforms.

There are three reasons why we picked Twitter among a lot of social media. First
of all, Twitter is one of the most influential social media in the world, so it is easy to
collect a lot of data for analyzing unpredictable incidents such as Baltimore Riot.
Second of all, a Twitter user can write comment up to 140 characters, so most of
them write their comments by implication to express their message more effec-
tively. Thus, with the comments full of implications, we can easily extract the core
of the messages which the users tried to express. Third, as many users and media
companies post a lot of news and opinions in real time, it is easy to collect
meaningful information through Twitter. Recently, this kind of information is
actively discussed and studied for researches about analyzing Twitter.

As we know, we are now living in the information age, and we are introduced to
numerous social issues through the traditional mass media such as newspaper or
broadcasting. However, we may not easily catch every social issue as we can be
overwhelmed by too much information that the mass media gives us every day,
such as issues about politics, economy, education, or entertainment. Since the
appearance of the traditional forms of mass media like a newspaper or broadcasting,
we have depended on these forms of mass media in our daily lives whenever we
tried to get any kind of information about our society. It means that people were
restricted only to the information or opinions that the mass media gave although the
traditional mass media allowed people to easily access to the information that
covers a wide variety of social issues including terrorism or illness. In other words,
we had no choice to decide which information or social issue was important to us;
we were forced to regard what the mass media emphasize as the important infor-
mation in our society.

Before the appearance of social media, as mentioned above, along with the fact
that the traditional mass media could not provide the all kinds of information or
opinions, there is another weakness in the traditional mass media. Since the mass
media offered offline services only, it was difficult for the public to catch a general

104 J. Choi et al.

consensus about the important social issues immediately. That is because, the tra-
ditional mass media required time for offline public opinion poll using question-
naires or telephone surveys to figure out the public opinion, and to analyze the
social issues. Also, limitations of the scope in public opinion poll such as the small
size of samples in surveys made it much harder for people to get the precise public
opinion about the social issues. However, due to the appearance of social media, we
can analyze social issues much easier though the new methods from big data than
the traditional methods like offline questionnaires. It means that people can access
to the important social issues and the various opinions about them immediately
based on the technology of big data. Therefore, we planned to analyze the rela-
tionship between Twitter of social media and the traditional mass media. For our
research, we used the methods including TF-IDF and filtering for accuracy.

In the media field, there is a theory which is agenda setting theory. Agenda
setting theory is the ability to influence the salience of topics on the public agenda
[3]. It means if mass media emphasize their news to people, we would realize this
issues are important. Based on agenda setting theory, as case study, we chose
Baltimore Riot because it is one of the unpredictable social issues. As a result, we
found interesting things of relationship between social media and mass media. As
whole tweets, Twitter users liked to communication with their opinions with
Twitter. However, as splited times, in the beginning, tweets of local mass media,
journalist, and reporter led a social issue as local issues of Baltimore Riot, and then
an influential Twitter user posted a tweet of Baltimore Riot, so tweets of Baltimore
Riot were spread as a major social issue. It means that it was one of the important
social issues because of agenda setting theory of mass media.

For analyzing tweets related to the Baltimore Riot, we constructed the Twitter
Analyzer System. The system has 2 divided parts: crawler and analyzer. Crawler is
a part for collecting tweets as seeds such as Baltimore or Baltimore Riot. Analyzer
is a part for detecting important words. We calculated numerical values using the
TF-IDF method at 5-min intervals, and we also searched user profiles of the Twitter
users in order to figure out the relationship between the mass media and other
Twitter users [4].

2 Related Work

2.1 Agenda Setting Theory

Agenda setting theory defines how mass media can be affected to people [5]. As
traditional ways, we have used questionnaires and telephone surveys as manual
sorting [6]. However, after the appearance social media such as Twitter, we could
easily get what is important social issues because social media users like to post
tweets in real time, so there are lots of tweets in online. Based on agenda setting
theory, we wanted to catch relationship with mass media and tweets. Approaching
to detect social issues from mass media in social media, we used tweets.

A Research for Finding Relationship Between Mass … 105

2.2 Keyword Extraction

Approaching agenda setting theory in social media, keyword extraction is definitely
important because if we do not know important keywords, we could not realize
what is important social issues, so we used TF-IDF to detect important keywords
during that time [7].

2.2.1 Natural Language Processing (NLP)

We used a natural language processing tool to analyze text based data such as
tweets. This tool is the “Stanford Core NLP” made by The Stanford Natural
Language Processing Group [8]. Because of this tool, we could get refined and
sophisticated results from text data. In this paper, we used Natural Language
Processing to get refined data from tweets.

2.2.2 Term Frequency-Inverse Document Frequency (TF-IDF)

In this research, we used Term Frequency-Inverse Document Frequency) TF-IDF
for the system to calculating numerical values [9]. Typically, TF-IDF is composed
by two terms. First, it is Term Frequency which measures how frequently a term
occurs in a document. It means that Term Frequency is the significance of a term in
a document [10, 11]. Second is Inverse Document Frequency which measures the
significance of a term in connection with the whole corpus [5, 12, 13]. Thus, the
TF-IDF is often used in information retrieval and text mining. It means that we
could get important meaningful words using TF-IDF.

The conventional TF-IDF weight scheme is defined as [10]:

tfidfi, j = tfi, j × idfi

TF value is raw frequency normalized by the number of times all terms appears in
a document to prevent a bias towards longer documents. TF values is calculated as:

tfi, j =
ni, j

∑k ni, j

where ni, j is the number of times term i in document dj and ∑k ni, j is the number of
time all terms appears in document dj.

Also, IDF of a term can be defined as:

idfi = log
N

j d∈D: t∈ df gj

106 J. Choi et al.

where j d∈D: t∈ df gj is the number of documents in which term t appears and N is
total number of all documents in a corpus.

In this research, a tweet is a document, so we could get numerical values as term
frequency, and tweets at 5-min intervals are a document for Inverse Document
Frequency.

3 System Architecture

Instead of using analysis of a traditional social issues such as questionnaire and
telephone survey, this research used data-mining techniques to catch relationship
with massive amount of tweets about Baltimore Riot using TF-IDF and the number
of tweets (buzz). We applied to automated Twitter data-collecting tool to collect
tweets for this research [14].

This research needs to build Twitter crawler and analyzer. For analyzing tweets,
we collected the number of 1,967,451 tweets during 04-22-2015–05-12-2015 as
seeds such as Baltimore and Baltimore Riot. We calculated TF-IDF from all col-
lected tweets during at that time, and then we chose the number of 28,333 tweets
during 04-27-2015 because this day was Baltimore riot’s day, and then we
extracted 5,998 user profiles including user id and description based on meaningful
words from numerical numbers of TF-IDF.

3.1 Twitter Craweler

As shown in the Fig. 1, the Twitter crawler has 3 divided different parts which are
Twitter Access, Real-time Search, and Duplication Check. First of all, to access
Twitter, we need to get 4 keys such as ConsumerKey, ConsumerSecret, Acces-
sToken, and AccessTokenSecret from Twitter. If all of keys are correct, we can
access into Twitter. It means we can use Twitter data for collecting. Second of all, if
we choose seeds such as ‘Baltimore Riot’, we would collect tweets including
‘Baltimore Riot’, but Twitter has limit of collecting tweets. It means a Twitter app
key can give the system 180 quires during 15 min. To reduce time-wasting and
inefficient, we made a total of 5 app keys to collect tweets. For example, if an app key
finishes to collect data within 15 min, another twitter app key should be operated to
collect tweets in real time. Third of all, the system have to check duplication check of
tweets because duplicated tweets are the problem for accuracy. Especially, a tweet
have a unique id consisted of numbers like 0421942. As a result, because of Twitter
crawler, tweets would be collected as seeds for Twitter analyzer [15].

A Research for Finding Relationship Between Mass … 107

3.2 Twitter Analyzer

As shown in the Fig. 2, the Twitter analyzer has 4 divided different parts which are
Time Division, Splited Tweet, The Number of Tweets(Buzz), and TF-IDF. First,
based on collected tweets related with seeds, we recollected tweets at 5-min interval
to catch important words. Second, based on recollected tweets, we extracted words
to get numerical values of term frequency and TF-IDF, so we could get important
words at 5-min interval. Third, based on extracted words, the system could get
buzz, term frequency, and TF-IDF. To get numerical values to detect important
words, we used all data during 04-22-2015–05-12-2015. Whole tweets are
1,967,451.

A tweet have 3 different categories; Singleton, Retweet, and Reply [1]. A Sin-
gleton is to write a tweet for oneself, so it is useful to find the first writer. If a
Twitter user reposted a tweet by someone’s tweets, it is Retweet. Retweet is marked
by ‘RT’. Tweets including ‘RT’ are useful to detect relationship of tweets of mass
media and others. If a user writes a tweet by another user, we could see @id, it is
reply. Reply is also useful to detect tweets of mass media and others based on user
profiles. Based on collected tweets, we could get user’s profiles such as user id and
location. It is useful to classify tweets of mass media and others (Fig. 3).

Fig. 1 The system architecture of Twitter crawler

Fig. 2 The system architecture of Twitter analyzer

108 J. Choi et al.

4 Result

We collected tweets related to Baltimore Riot as seeds such as Baltimore and
Baltimore riot. As a result, during 04-22-2015 and 05-12-2015, whole tweets was
1,967,451. All data used for calculating meaningful words using TF-IDF. Espe-
cially, we analyzed tweets written by 04-27-2015 2:25 p.m.–7:30 p.m. because it
was important time of Baltimore riot, total tweets were 28,333. The number of
related tweets of mass media were 3,926, 14 %. The others were the number of
24,407 tweets, 86 % as shown in the Fig. 4. So, we assumed that Twitter users
looked like to lead social issues in the online world as whole buzz (Fig. 5).

Fig. 3 Whole tweet buzz about Baltimore and Baltimore Riot

Fig. 4 Percentage of tweet
buzz about mass media and
others

A Research for Finding Relationship Between Mass … 109

For understanding the role of mass media in detail, we could get meaningful
words based on TF-IDF at 5-min interval. As shown in the Fig. 6, we could choose
words as important incidents such as purge, Mondawin, clash, streets, @Dru-
ge_Report_, and CVS because the result has very high scores compared with other

Fig. 5 Meaningful words using TF-IDF and term frequency

Fig. 6 Location of tweets related with mass media

110 J. Choi et al.

words. Especially, during the period, students of high school gathered at Mon-
dawim mall due to purge movie, and then riot was begun by students, and then CVS
was fired.

First, during 2:25 p.m.–3:20 p.m., Purge was the most important word among
words from TF-IDF at 2:26 p.m. At that time, Jessica Anderson, reporter of The
Baltimore Sun, wrote a first tweet about purge. The tweet was ‘Student ‘purge’
threat shuts down Baltimore businesses’, and then Kevin Rector, crime reporter of
the Baltimore Sun, at 2:28 p.m. and Mark Puente, investigative reporter of the
Baltimore Sun, at 2:29 p.m. did a retweet from Jessica Anderson, and then Shimon
Prokeuperz, CNN Producer, did a retweet at 2:56 p.m. Official Twitter of the
Baltimore Sun wrote a tweet about purge at 2:30 p.m. At that time, the number of
the total buzz was 170, and the number of tweets including purge was 120.
However, the number of tweets including purge related with mass media was 107.

Based on user profiles of tweets, tweets related with mass media were 89 %, and
tweets related with Maryland and Baltimore were 78 % as shown in the Fig. 6. As a
result, local mass media, The Baltimore Sun, leaded a social issue about the initial
purge incident, and Twitter users shared and exchanged local mass media’s tweets as
retweets, and tweets were exchanged in local area, Maryland and Baltimore, and it
implies that it was one of the local social issues at that time based on analyzed tweets.

Second, during 3:20 p.m.–3:35 p.m., based on TF-IDF Mondawmin is one of the
important words. Especially, a Twitter user wrote the first tweet of Mondawmin at
2:32 pm. However, The Baltimore Sun wrote a tweet of the first mass media related
with Mondawmin at 3:30 p.m. The tweet was ‘Heavy police presence at Mon-
dawmin Mall, which has closed. Transit hub there is many students’ way home
from school’, and then Malieka Flippen,announcer for radio One Baltimore,
updated a tweet at 3:25 p.m. and then DanDuring, Baltimore Sun columnist,
updated a tweet at 3:25 p.m. During this period, whole buzz was 133, and the
number of tweets related with Mondawmin was 69, and tweets related with mass
media was 66. As a result, in fact, although the first Mondawmin tweet was one of
the Twitter users, the tweet didn’t retweet to anyone, and local mass media, The
Baltimore Sun, was a first writer related with mass media including Mondawmin,
and we could not see any major mass media tweets. As a result, although a first
writer about Mondawmin was one of the Twitter users, local mass media leaded to
Mondawmin incident.

The percentage of tweets of local mass media related with Mondawmin was
96 %. Based on user profiles of tweets, tweets related with mass media were 96 %,
and tweets related with Maryland and Baltimore were 61 % as shown in the Fig. 6.
As a result, Twitter users shared and exchanged tweets about local mass media, and
tweets shared and exchanged in local area, Maryland and Baltimore. Based on
analyzed tweets, it implies that it was one of the local social issues.

Third, during 3:40 p.m.–4:00 p.m., based on TF-IDF, @Drudge_Report_, clash,
and street were the most important words. As the result of user profiles, @Dru-
ge_Report is one of influential Twitter users. They have followers of 554 k. The
Baltimore Sun has followers of 156 k. A tweet of @Druge_Report was ‘New
#clashes in #streets; #businesses shut down…’. During this period, the total number

A Research for Finding Relationship Between Mass … 111

of buzz was 493, and the number of tweets of mass media including @Drud-
ge_Report_ was 238, and tweets of @Drudge_Report_ were 176. Based on location
information of tweets, the number of tweets written by other states were 80 %. As a
result, from this period, because of @Drudge_Report_ tweets, tweets spread
throughout the other states.

During 4:40 p.m.–7:30 p.m., CVS was one of the most important words using
TF-IDF. Tweets written by other states related with CVS were 94 %, and tweets
related with mass media were 1,123 among the total number of 25,208 tweets. Due
to the CVS incident, people shared and exchanged their tweets to other users.

Based on user profiles of tweets, tweets written by other state were 94 %.
As a result, because of local mass media, it was one of the local social issues

until the Mondawin incident, and then after the appearance of a influential twitter
user in the online world, @Drudge_Report, it was one of major social issues at that
time in United State.

5 Conclusion

This study aimed to address how the mass media intensively is related to the social
media. Especially, we discover the relation between them based on the agenda
setting theory.

As the result from our research, the mass media related Twitter users have a
strong influence on social issues. It affects that the other users as audiences would
be interested in the issues. We extract meaningful keywords using a method,
TF-IDF. Then, we selected tweets generated in specific time when the keyword
were exchanged. Then, we found out the role of mass media according to agenda
setting theory into the social issue which is “Baltimore Riot”. We found two
characteristics to support agenda setting in a case study which is “Baltimore Riot”.
The first one is that mass media announced and leaded important incidents at initial
period of the issue. Then, Twitter users exchanged and shared tweets related the
issue. The second one is that the location of Twitter users located in local areas
which are Baltimore and Maryland in the initial period. Then, the other users
located in the other location exchanged and shared tweets about the issues. We
assume that the influence users who have numerous followers or mass media related
users affect the number of tweets. It implies that the agenda setting theory is
existing in the social media.

References

1. Kwak, H., Lee, C., & Park, H. Sue Moon, What is Twitter, a Social Network or a News
Media?

2. https://about.twitter.com/company.

112 J. Choi et al.

https://about.twitter.com/company

3. McCombs, M., & Reynolds, A., (2002). News influence on our pictures of the world. Media
effects: Advances in theory and research.

4. Lee, K., & Palsetia, D. Twitter Trending Topic Classification.
5. Kim, Y., Kim, S., Jaimes, A., & Oh, A. A Computational Analysis of Agenda Setting.
6. Camaj, L. Need for orientation, selective exposure, and attribute agenda-setting effects.
7. Wartena, C., Slakhorst, W., & Wibbels, M. Selecting keywords for content based

recommendation.
8. Manning, C. D., Surdeanu, M., Bauer, J., Finkel, J., Bethard, S. J., & McClosky, D. (2014).

The Stanford CoreNLP Natural Language Processing Toolkit (pp. 55–60). Proceedings of the
52nd Annual Meeting of the Association for Computational Linguistics: System
Demonstrations.

9. Lott, B. Survey of Keyword Extraction Techniques. UNM Education, 2012.
10. Lee, S., & Kim, H. (2008). News keyword extraction for topic tracking. Fourth International

Conference on Networked Computing and Advanced Information Management (pp. 554–559).
NCM’08, IEEE.

11. Manning, C. D., Raghavan, P., & Schutze, H. (2008). Scoring, term weighting, and the vector
space model. Introduction to Information Retrieval. pp. 100.

12. Liu, F., Liu, F., & Liu, Y. (2008). Automatic keyword extraction for the meeting corpus using
supervised approach and bigram expansion. Proceedings of IEEE SLT.

13. Matsuo, Y., & Ishizuka, M. (2004). Keyword extraction from a single document using word
co-occurrence statistical information. International Journal on Artificial Intelligence, 13(1),
157–169.

14. Byun, C., Lee, H., Kim, Y., & Kim, K. Automated Twitter Data Collecting Tool and Case
Study with Rule-based Analysis.

15. Twitter Developers. https://dev.twitter.com.

A Research for Finding Relationship Between Mass … 113

https://dev.twitter.com

On the Prevalence of Function Side
Effects in General Purpose Open
Source Software Systems

Saleh M. Alnaeli, Amanda Ali. Taha and Tyler Timm

Abstract A study that examines the prevalence and distribution of function side
effects in general-purpose software systems is presented. The study is conducted on
19 open source systems comprising over 9.8 Million lines of code (MLOC). Each
system is analyzed and the number of function side effects is determined. The
results show that global variables modification and parameters by reference are the
most prevalent side effect types. Thus, conducting accurate program analysis or
many adaptive changes processes (e.g., automatic parallelization to improve their
parallelizability to better utilize multi-core architectures) becomes very costly or
impractical to conduct. Analysis of the historical data over a 7-year period for 10
systems shows that there is a relatively large percentage of affected functions over
the lifetime of the systems although trend is flat in general, thus posing further
problems for inter-procedural analysis.

Keywords Function side effects ⋅ Pass by reference ⋅ Function calls ⋅ Static
analysis ⋅ Software evolution ⋅ Open source systems

1 Introduction

It is very challenging to statically analyze or optimize programs that have functions
with side effects. Most studies show functions with side effects poses a greater
challenge in many software engineering and evolution contexts including system

S.M. Alnaeli (✉) ⋅ A.Ali.Taha ⋅ T. Timm
Department of Computer Science, University of Wisconsin-Fox Valley,
Menasha, WI 54952, USA
e-mail: saleh.alnaeli@uwc.edu

A.Ali.Taha
e-mail: RICEA9147@studnest.uwc.edu

T. Timm
e-mail: TIMMT4191@studnest.uwc.edu

© Springer International Publishing Switzerland 2016
R. Lee (ed.), Software Engineering Research, Management
and Applications, Studies in Computational Intelligence 654,
DOI 10.1007/978-3-319-33903-0_9

115

maintainability, comprehension, reverse engineering, source code validation, static
analysis, and automatic transformation and parallelization.

For development teams, identifying functions that have side effects is critical
knowledge when it comes to optimizing and refactoring software systems due to
many reasons including regular adaptive maintenance or for more efficient software.

One example is in the context of automatic parallelization (transformation of
sequential code to a parallel one that can efficiently work on multicore architec-
tures), where a for-loop that contains a function call with a side effect is considered
un-parallelizable, e.g., cannot be parallelized using Openmp. It has been proved that
the mosat prevalent inhibitor to parallelization is functions called within for-loops
that have side effects. That is, this single inhibitor poses the greatest challenge in
re-engineering systems to better utilize modern multi-core architectures.

A side effect can be produced by function call in multiple ways. Basically, any
modification of the non-local environment is referred to as side effect [12, 18] (e.g.,
modification of a global variable or passing arguments by reference). Moreover, a
function call in a for-loop or in a call from that function can introduce data
dependence that might be hidden [15]. The static analysis of the body of the
function increases compilation time; hence this is to be avoided. In automatic
parallelization context, in spite the fact that parallelizing compilers, such as Intel’s
[13] and gcc [11], have the ability to analyze loops to determine if they can be
safely executed in parallel on multi-core systems, they have many limitations. For
example, compilers still cannot determine the thread-safety of a loop containing
external function calls because it does not know whether the function call has side
effects that would introduce dependences.

As such, it is usually left to the programmer to ensure that no function calls with
side effects are used and the loop is parallelized by explicit markup using an API.
There are many algorithms proposed for side-effect detection [5, 18], with varying
efficiency and complexity.

In general, a function has a side effect due to one or more of the following:

1. Modifies a global variable
2. Modifies a static variable
3. Modifies a parameter passed by reference
4. Performs I/O
5. Calls another function that has side effects

When it comes to side effects detection, the problem gets worse if indirect calls
via function pointers or virtual functions are involved. It is very challenging to
statically analyze programs that make function calls using function pointers [6, 17]
and virtual methods [4]. A single function pointer or virtual method can alias
multiple different functions/methods (some of which may have side effects) and
determining which one is actually called can only be done at run time. An
imprecise, but still valid, analysis is to resolve all function pointers in the system
and then assume that a call using each function pointer/virtual method reaches all
possible candidate functions in the program. This, of course, adds more complexity
and inaccuracy to static analysis. In general, the problem has been shown to be

116 S.M. Alnaeli et al.

NP-hard based on the ways function pointers are declared and manipulated in the
system [6, 17, 19].

In spite of the fact that a variety of studies have been done using inter-procedural
and static analysis on function side effects, to the best of our knowledge, no his-
torical study has been conducted on the evolution of the open-source systems over
time on regard to function side effect types distribution on open source systems. We
believe that an extensive comprehension of the nature of side effect types distri-
bution is needed for better understanding of the problem and its obstacles that must
be considered when static analysis is conducted. We believe that development
teams who may plan for conducting system refactorings for eliminating function
side effects due to whatever reason (e.g., adapting the system for better exporting of
multicore architectures) they should know what is the most prevalent type so that
they consider starting with it for gaining better and optimal results and outputs from
their work.

In this study, 19 large-scale C/C++ open source software systems from different
domains are examined. For each system, the history of each system was examined
based on multiple metrics. The number of functions with side effects are determined
for each release. Then each kind of function side effect is determined (pass by
reference, modification of global variable, in/out operation, and calling affected
function). A count of all types are found and kept.

This data is presented to compare the different systems and uncover trends and
general observations. The trend of increasing or decreasing numbers of side effect
type is then presented.

We are particularly interested in determining the most prevalent function side
effect type that occur in most of general open source applications, and if there are
general trends. This work serves as a foundation for understanding the problem
requirements in the context of a broad set of general purpose applications.

We are specifically interested in addressing the following questions. How many
functions and methods in these systems do not have any side effects? Which types of
side effects are most frequent? Understanding which side effect occur alone in func-
tions is also relevant. That is very important for many software engineering context,
e.g., automatic parallelization where functions side effects creates a well-known
inhibitor to parallelization [1, 2]. Additionally, we propose and provide some simple
techniques that can help avoiding and eliminating the function side effects, thus
improving overall system maintainability, analyzability, and parallelizability.

This work contributes in several ways. First, it is one of the only large studies on
the function side effects distribution and evolution on open source general purpose
software systems. Our findings show that modification of global variables and
parameters sent by reference represent the vast majority of function side effect types
occurring in these systems. This fact will assist researchers in formulating and
directing their work to address those problems for better software analysis, opti-
mization, and maintenance in many recent software engineering contexts including
source code transformation and parallelization.

The remainder of this paper is organized as follows. Section 2 presents related
work on the topic of function side effects. Section 3 describes the functions with side

On the Prevalence of Function Side Effects … 117

effects and approached used for the detection and determination, along with all pos-
sible limitations in our approach. Section 4 describes the methodology we used in the
study alongwith howwe performed the analysis to identify each side effect. Section 5
presents the data collection processes. Section 6 presents the findings of our study of
19 open source general purpose systems, followed by conclusions in Sect. 6.

2 Related Work

There are multiple algorithms used for identifying and detecting function side effects.
Our concern in this study is the distribution of side effect types and how software
systems evolve overtime with respect to function side effect presence, in particular
for general purpose large-scale open-source software systems, for better under-
standing and uncovering any trends or evolutionary patterns. That is, we believe that
can be a valuable information in determining and predicting the solutions and effort
required to better statically analyze those systems written in C/C++ languages and
design efficient tools that can help eliminating those side effects for better quality
source code.

The bulk of previous research on this topic has focused on the impact of side
effects on system maintainability, analyzability, code validation, optimization, and
parallelization. Additionally, Research continues to focus on improving the effi-
ciency of interprocedural techniques and analyzing the complexity of interproce-
dural side effect analysis [16].

However, no study has been conducted on the evolution of the open source
systems over time with respect to the presence of function side effects and their
distribution on source code level as we are going to conduct in this work by
examining the history of subset of systems for each release for 5-year period.

Cooper and Kennedy [10] conducted a study that shows a new method for
solving Banning’s alias-free flow-insensitive side-effect analysis problem. The
algorithm employs a new data structure, called the binding multi-graph, along with
depth-first search to achieve a running time that is linear in the size of the call
multi-graph of the program. They proved that their method can be extended to
produce fast algorithms for data-flow problems with more complex lattice struc-
tures. The study focused on the detection of side effects but did not provide any
statistics about the usage and distribution of function side effects on the systems
they studied and all software systems in general.

In source code parallelization context, most of compilers still cannot determine
the thread-safety of a loop containing external function calls because it does not
know whether the function call has side effects that would introduce dependences.
That is, parallelizing compilers, such as Intel’s [13] and gcc [11], have the ability to
analyze loops to determine if they can be safely executed in parallel on multi-core
systems, multi-processor computers, clusters, MPPs, and grids. The main limitation
is effectively analyzing the loops when it comes to function side effects especially if
function pointers or virtual functions are involved [16].

118 S.M. Alnaeli et al.

Alnaeli et al. [2] conducted an empirical study that examines the potential to
parallelize large-scale general-purpose software systems. They found that the
greatest inhibitor to automated parallelization of for-loops is the presence of func-
tion calls with side effects and they empirically proved that this is a common trend.
They recommended that more attention needs to be placed on dealing with
function-call inhibitors, caused by function side effects, if a large amount of par-
allelization is to occur in general purpose software systems so they can take better
advantage of modern multicore hardware.

However, they have not provided and results that show the distribution of
function side effect types in general purpose software systems. The work presented
here differs from previous work on open source general purpose systems in that we
conduct an empirical study of actual side effects in the source code level and all the
potential challenges in this process. We empirically examine a reasonable number
of systems, 19, to determine what is the most prevalent function side effect present
in open source systems and how open source systems evolve over time with respect
to function with side effects.

3 Functions Side Effects

We now describe the way we determine and detect side effects and the approach we
followed in dealing with indirect calls that are conducted via function pointers and
virtual methods within all detected functions. In general, any execution or inter-
action with outside world that may make the system run into unexpected status is
considered a side effect. For example, any input/output operation conducted within
a called function, or modification of the non-local environment is referred to as side
effect [12, 18] (e.g., modification of a global variable or passing arguments by
reference).

In this study, a function considered to have a side effect if it contains one or more
of the following: (modification of a global variable, modification of a parameter
passed by reference, I/O operation, or calling another function that has side effects.)

3.1 Determining Side Effects

To determine if a function/method has a side effect we do static analysis of the code
within the function/method. We basically used the same approach in our previous
studies, however in this study no user defined function/method is excluded [1, 2].
Any variables that are directly modified via an assignment statement (e.g., x =
x + y) are detected by finding the l-value (left hand side variables) of an expression
that contains an assignment operator, i.e., =, +=, etc. For each l-value variable it is
determined if it has a local, non-static declaration, or is a parameter that is passed by
value. If there are any l-value variables that do not pass this test, then the function is

On the Prevalence of Function Side Effects … 119

labeled as having a side effect. That is, the function is modifying either a global,
static, or reference parameter. This type of side effect can be determined with 100 %
accuracy since the analysis is done local to the function only.

Of course, pointer aliasing can make detecting side effects on reference
parameters and global variables quite complex. Our approach detects all direct
pointer aliases to reference parameters and globals such as a pointer being assigned
to a variable’s address (int *ptr; ptr = &x;). If any alias is an l-value we consider
this to cause a side effect. However, we currently do not support full type resolution
and will miss some pointer variables. Also, there are many complicated pointer
aliasing situations that are extremely difficult to address [14] even with very time
consuming analysis approaches. For example, the flow-sensitive and context-
sensitive analysis algorithms can produce precise results but their complexity, at
least O(n3), makes them impractical for large systems [14]. As such, our approach
to detection of side effects is not completely accurate in the presences of pointer
aliasing. However, this type of limited static pointer analysis has shown [3] to
produce very good results on large open source systems.

The detection of I/O operations is accomplished by identifying any calls to
standard library functions (e.g., printf, fopen). A list of known I/O calls from the
standard libraries of C and C++ was created. Our tool checks for any occurrence of
these and if a function contains one it is labeled as having a side effect. Also,
standard (library) functions can be labeled as side effect free or not. As such, a list
of safe and unsafe functions is kept and our tool checks against this list to further
identify side effects.

Our detection approach identifies all function/method calls within a caller
function/method. The functions directly called are located and statically analyzed for
possible side effects through the chain of calls. This is done for any functions in the
call graph originating from the calls in the caller function/method. This call graph is
then used to propagate any side effect detected among all callers of the function.

Even with our analysis there could still be some functions that appear to have side
effects when none actually exists or that the side effect would not be a problem to
parallelization. These cases typically require knowledge of the context and problem
being addressed and may require human judgment (i.e., may not be automatically
determinable). However, our approach does not miss detecting any potential side
effects. As such we may over count side effects but not under count them.

3.2 Dealing with Function Pointers and Virtual Methods

Our approach for calls using function pointers and virtual methods is to assume that all
carry side effects. It is the same approach we used in past studied but this time with
more involved functions and methods regardless their locations in the system (my
papers). At the onset, this may appear to be a problematic, however conservative,
limitation. It is very challenging to statically analyze programs that make function
calls using function pointers [6, 17] and virtual methods [4]. A single function pointer

120 S.M. Alnaeli et al.

or virtual method can alias multiple different functions/methods and determining
which one is actually called can only be done at run time. An imprecise, but still valid,
analysis is to resolve all function pointers in the system and then assume that a call
using each function pointer/virtual method reaches all possible candidate functions in
the program. This, of course, adds more complexity and inaccuracy to static analysis.
In general, the problem has been shown to be NP-hard based on the ways function
pointers are declared and manipulated in the system [6, 17, 19].

Function pointers can come in various forms: global and local function pointers.
Global forms are further categorized into defined, class members, array of function
pointers, and formal parameters [17]. Our tool, SideEffectDetector, detects all of these
types of function pointers whenever they are present in a function/method. Pointers to
member functions declared inside C++ classes are detected as well. Classes that
contain at least one function pointer and instances derived from them are detected.
Locally declared function pointers (as long as they are not class members, in struc-
tures, formal parameters, or an array of function pointers) that are defined in blocks or
within function bodies are considered as simple or typically resolved pointers.

Detecting calls to virtual methods is a fairly simple lookup. We identify all
virtual methods in a class and any subsequent overrides in derived classes. We do
not perform analysis on virtual methods, instead it is assumed that any call to a
virtual has a side effect. Again, this is a conservative assumption and we will label
some methods that in actuality do not have a side effect to be a problem. A slightly
more accurate approach would be to analyze all variations of a virtual method and if
none have side effects then it would be a safe call. However, this would require
quite a lot of extra analysis with little overall improvement in accuracy.

4 Methodology for Detecting Function Side Effects

A function or method is considered a pure if it does not contain any side effect. We
used a tool, ParaSta, developed by one of the main authors and used in [1]; Alnaeli
et al. [2], to analyze functions and determine if they contain any side effect as
defined in previous section. First, we collected all files with C/C++ source-code
extensions (i.e., c, cc, cpp, cxx, h, and hpp). Then we used the srcML (www.srcML.
org) toolkit (Collard et al. [7–9] to parse and analyze each file. The srcML format
wraps the statements and structures of the source-code syntax with XML elements,
allowing tools, such as SideEffectDetector, to use XML APIs to locate such things
as function/method implementation and to analyze expressions. Once in the srcML
format, SideEffectDetector iteratively found each function/method and then ana-
lyzed the expressions in the function/method to find the different side effects.
A count of each side effect per function was recorded. It also recorded the number
of pure functions found. The final output is a report of the number of pure (clear)
functions and functions with one or more types of side effects. All functions were
deeply analyzed and side effect types distributions were determined as well.

Findings are discussed later in this paper along with limitations of our approach.

On the Prevalence of Function Side Effects … 121

http://www.srcML.org
http://www.srcML.org

5 Data Collection

Software tools were used, which automatically analyze functions and determines if
they contain any side effects. The srcML toolkit produces an XML representation of
the parse tree for the C/C++ systems we examined. SideEffectDetector, which was
developed in C#, analyze the srcML produced using XML tools to search the parse
tree information using system.xml from the.NET framework. The body of each
function is then extracted and examined for each type of side effects in functions.
For the function, if no side effect exists in a function it is counted as a pure function
otherwise the existence of each side effect is recorded. The systems that were
chosen in this study were carefully selected to represent a variety of general purpose
open source systems developed in C/C++. These are well-known large scale sys-
tems to research communities.

6 Findings, Results, and Discussion

We now study the distribution of 19 general purpose open-source software projects.
Table 1 presents the list of systems examined along with number of files, functions,
and LOCs for each of them.

Table 1 The 19 open source systems used in the study

System Language KLOC Functions Files

gcc.3.3.2 C/C++ 1,300,000 35,566 10,274
TAO C++ 1,543,805 39,720 10,000
openDDS3.8 C++ 326,471 9,185 1,779
ofono C 242,153 7,331 527
GEOS C++ 173,742 5,738 815
CIAO C++ 191,535 5,937 1,044
DanCE C++ 102,568 5,292 345
xmlBlaster C/C++ 92,929 2,590 429
Cryto++ C++ 70,365 3,183 274
GMT C++ 261,121 4,204 290
GWY C++ 392,130 8,340 594
ICU C++ 825,709 15,771 1,719
KOFFICE C/C++ 1,185,000 40,195 5,884
LLVM C/C++ 736,000 27,922 1,796
QUANTLIB C++ 449,000 12,338 3,398
PYTHON C 695,000 12,824 767
OSG C++ 503,000 15,255 1,994
IT++ C++ 120,236 4,220 394
SAGAGIS C++ 616,102 11,422 1,853
TOTAL – 9,826,102 89,180 18,215

122 S.M. Alnaeli et al.

These systems were chosen because they represent a variety of applications
including compilers, desktop applications, libraries, a web server, and a version
control system. They represent a set of general-purpose open-source applications
that are widely used. We have a strong feeling gained from their popularity in
literature that they represent a good reflection of the types of systems that would
undergo reengineering or migration to better take advantage of available tech-
nologies and architectures, and targeted for regular maintenance, parallelization,
evolution, and software engineering processes in general.

6.1 Design of the Study

This study focuses on three aspects regarding side effect type distribution and
evolution in general purpose systems. First, the percentage of functions containing
one or more side effects. Second, we examine which side effect type are most
prevalent. Third, we seek to understand the cause of parallelizability inhibitors and
as a case study we focus on function side effects.

Third, we seek to understand the when side effects are the sole cause in function
affection. That is, function can have multiple side effects and therefore would
require a large amount of effort to remove all the side effects. Thus we are interested
in understanding how often only one type of side effect occurs in a functions. These
types of functions would hopefully be easier to refactor into something that is pure
and simple to analyze. Lastly, we examine how the presence of side effects changes
over the lifetime of a software system. We propose the following research questions
as a more formal definition of the study:

RQ1: What is a typical percentage of function that are pure and clear from any
side effects (have no side effects)?

RQ2: Which types of side effects are the most prevalent?
RQ3: What their distributions? Exclusively and inclusively (affected by only one

type of side effects)
RQ4: Over the history of a system, is the presence of function side effects

increasing or decreasing?

We now examine our findings within the context of these research questions.

6.2 Percentage of Pure Functions (Has No Side Effects)

Figure 1 presents the results collected for the 19 open source systems. We give the
total number of functions that have side effects along with the percentage of all side
effects we detected. Figure 1 shows the percentage of affected functions computed
over the total number of function. As can be seen from 1, affected functions account

On the Prevalence of Function Side Effects … 123

for between 29 and 95 % of all function and methods in these systems, with an
overall average of 62 %. However, in general, the percentage is high for most of the
systems. That is, on average, a big portion of the detected functions in these open
source systems could hold side effects. This addresses RQ1.

6.3 Distribution of Function Side Effects

We now use our finding to address RQ2. 1 present the details of our findings on the
distribution of side effects in studied open source systems. It clearly the counts of
each side effect that occur within functions. Many of the functions have multiple side
effects (e.g., a pass by reference and modification of global variables). As can be
seen, modification of global variables is by far the most prevalent across all systems.

For most of the systems this is then followed by passing parameters by reference
and then calling a function that has a side effect, thus addressing R2. The findings
show that DanCE has the lowest percentage which make it a model system when it
comes to function side effects addressing through development processes. In con-
trast, Python seems to have big challenges when it comes to function side effects.

Figures 1 and 2 give the percentage of functions that contain only one type of
side effects for each category (addressing R3). The average percentage is also given
and this indicates that functions that have modification of global variable are clearly
more prevalent. We see that CIAO has the largest percentage of modification of
global variables as a side effect 25 %, followed by IT++ at 22 %. GWY has the
lowest, at 3 %. The percentage of the for-loops that contain only a I/O operation
across all the systems is quite small by comparison. Interesting fact here is that
passing parameters by reference is considerably high as well for multiple systems as
shown in Fig. 3 and Table 2.

Fig. 1 total average of pure functions versus affected functions in all 19 systems

124 S.M. Alnaeli et al.

6.4 Historical Change of Function Side Effect Frequency

Now we present a historical study we conducted on a subset of ten systems chosen
from the 19 studied systems, for 7-year period. Each of those systems, has been
under development for 7 years or more. To address R4, we examined the versions
from 2005 to 2011 (7-year period those 10 systems). Our goal is to uncover how
each system evolves in the context of function purity and complexity. Here we
measure this by examining the change of side effects within function/methods. Our
feeling is that this information could lead to recommendations for utilizing and
adapting to the current software and hardware trends.

The change in the percentage of affected function with side effects, and pres-
ences of each side effect was computed for each version in the same manner as we
described in the previous sections.

These values were aggregated for each year so the systems could be compared
on a yearly basis. The systems were updated to the last revision for each year. As
before, all files with source code extensions (i.e., c, cc, cpp, cxx, h, and hpp) were
examined and their functions were then extracted. Figure 4 presents the change in
the percentage of affected functions for each of the 10 systems.

During the 7-year period all systems show a fairly flat trend during the duration.
Two systems, OSG and Crypto++, have a steep decline at the end of the period.
Geos, Loki, and Koffice have increase for about one year early on and then are
relatively flat in proceeding years. Figure 5 presents the percentage of functions that
contain a modification of global variable as a side effect. It is approximately a same
trend of Fig. 6.

Figure 7 presents the change in the percentage of affected functions by passing
arguments by reference for each of the 10 systems. During the 7-year period all
systems show a fairly flat trend during the duration except for GMT which starts to

Fig. 2 Average Percentage of functions in all systems that contain only a single type of side
effects. The remaining functions are either pure or have multiple types of side effects

On the Prevalence of Function Side Effects … 125

Fig. 3 Distribution of Percentage of functions in all systems that contain only a single type of side
effects. The remaining functions are either pure or have multiple types of side effects

126 S.M. Alnaeli et al.

increase by mid of 2010 to reach about 90 %. Loki has a steep decline early on and
then are relatively flat in proceeding years.

Figure 3 presents the percentage of functions that contain a side effect caused by
calling another function that has side effect. Figure 3 shows that a flat trend for most
of the systems except for Loki which has an identical trend with other side effects.
That is, it is approximately a same trend of Figs. 4, 5, 6 and 7.

Table 2 Side effects distribution the 19 open source systems used in the study

System Functions with
side effects

Parameters by
reference

In/out
operation

Global variable
modification

Calling
effected
function

gcc.3.3.2 18,803 (52 %) 7,098 (19 %) 1,728
(4 %)

12,685 (35 %) 11,015
(30 %)

TAO 20,349 (51 %) 11,451 (28) 361
(<1 %)

13,315 (33 %) 8,135 (20 %)

openDDS3.8 4,414 (48 %) 2,398 (26 %) 244
(2 %)

2,815 (30 %) 2,026 (22 %)

ofono 6,822 (93 %) 5,816 (79 %) 61
(<10 %)

5,283 (72 %) 5,256 (71 %)

GEOS 3,638 (63 %) 1,684 (29 %) 63 (1 %) 1,840 (32 %) 2,515 (43 %)
CIAO 2,187 (36 %) 526 (8 %) 18

(<1 %)
1,953 (32 %) 405 (6 %)

DanCE 1,584 (29 %) 1,217 (22 %) 4 (<1 %) 459 (8 %) 165 (3 %)
xmlBlaster 1,415 (54 %) 630 (24 %) 131

(5 %)
988 (38 %) 810 (31 %)

Cryto++ 1,700 (53 %) 834 (26 %) 96 950 (29 %) 1,084 (34 %)
GMT 3,961 (94 %) 3,886 (92 %) 86 (2 %) 3,559 (86 %) 1,919 (59 %)
GWY 7,524 (90 %) 6,619 (79 %) 12

(<1 %)
6,261 (75 %) 5,056 (30 %)

ICU 11,545 (73 %) 6,388 (40 %) 302
(1 %)

6,801 (43 %) 8,572 (54 %)

KOFFICE 21,259 (52 %) 9,109 (22 %) 205
(<1 %)

11,918 (29 %) 13,682
(34 %)

LLVM 15,135 (54 %) 10,080 (36 %) 76
(<1 %)

7,804 (27 %) 10,289
(36 %)

QUANTLIB 6,242 (50 %) 2,344 (18 %) 96
(<1 %)

3,772 (30 %) 3,427 (27 %)

PYTHON 12,282 (95 %) 11,081 (86 %) 183
(1 %)

10,466 (81 %) 10,156
(79 %)

OSG 10,160 (66 %) 6,035 (39 %) 376
(2 %)

5,464 (35 %) 6,643 (43 %)

IT++ 2,562 (60 %) 1010 (23 %) 174
(4 %)

1,712 (40 %) 1,646 (39 %)

SAGAGIS 7,089 (62 %) 3,634 (31 %) 65
(<1 %)

3,948 (34 %) 4,715 (41 %)

Average 62 % 38 % 2 % 40 % 37 %

On the Prevalence of Function Side Effects … 127

Fig. 4 The evolution of the percentage of functions that has side effects over a seven-year period
for the ten systems

Fig. 5 The percentage of function that modify global variable over a seven-year period for the ten
systems

Fig. 6 The percentage of function that had parameters by reference over a seven-year period for
the ten systems

128 S.M. Alnaeli et al.

7 Conclusion

This study empirically examined the distribution and purity of functions (thus most
of affected software engineering contexts by side effects) of 19 open source general
purpose software systems from different system domains. There are no other recent
studies of this type currently in the literature targeting function side effects in
particular. We found that the greatest side effect of functions is the presence of
modification to global variables followed closely by passing parameters by refer-
ence. As such, more attention needs to be placed on dealing with those types of side
effects if a large amount of flexibility and easiness is to occur in general purpose
software systems so they can be adapted to many recent techniques (e.g., source
code parallelization and optimization). While we cannot completely generalize this
finding to all software systems (across all domains) there is some indication that this
is a common trend.

From our findings we believe that most development teams and organizations
have not focused on developing software in a way that has minimum use of side
effects so that they could one day take advantage of many new technologies e.g.,
parallel architectures. In the parallelization context for example, the recent ubiquity
of multicore processors gives rise to the need to educate developers and make them
more aware of the problems that can greatly affect their source code. As we have
shown in many studies (Alnaeli et al. [2]), coding style can play a big role in
advancing a system’s parallelizability. The software engineering community needs
to develop standards and idioms that help developers to avoid the side effects.

The objective of this study was to better understand what obstacles are in place
for advancing the reengineering of systems to better take advantage of software
engineering techniques e.g., static analysis. We are particularly interested in tools
that assist developers in an automated or semi-automated manner to refactor or
transform functions that have side effects to pure versions that can facilitate static

Fig. 7 The percentage of function that calls another affected function over a seven-year period for
the ten systems

On the Prevalence of Function Side Effects … 129

analysis by other tools. From the results of this work we are developing methods to
assist in removing side effects e.g., sending parameters by values instead of by
reference, and using structures sent by value to return multiple values from a
function call to elimination the use of parameters by reference.

We found that the most prevalent side effect type is global variables modifica-
tion. As such, more attention needs to be placed on dealing with this type if a large
amount of improvement is to occur in open source software systems so they can
take better advantage of software engineering techniques and the recent technolo-
gies in the market. Our results show some indication that this is a common trend.

Additionally, we empirically showed that coding style can play a big role in
advancing a system’s maintainability, transformability, parallelizability, and ana-
lyzability. That is, developers cause challenges by using parameters by reference in
their functions and having their functions modify global variables that can be easily
handled outside of the functions. That is at least to some extent due to development
teams and organizations not focusing on developing software in a way that could be
easily analyzed, comprehended, and maintained. However, the recent challenges in
software systems in general when it comes to adaptive changes gives rise to the
need to educate software developers and engineers and make them aware of the
problems that may be caused by using side effects when developing functions.

Acknowledgments This work was supported in part by a grant from the professional develop-
ment program at University of Wisconsin-Fox Valley and UW-Colleges.

References

1. Alnaeli, S. M., Alali, A., & Maletic, J. I. (2012). Empirically Examining the Parallelizability of
Open Source Software System. In Proceedings of the 2012 19th Working Conference on
Reverse Engineering (pp. 377–386). IEEE Computer Society.

2. Alnaeli, S., Maletic, J., & Collard, M. (2015). An empirical examination of the prevalence of
inhibitors to the parallelizability of open source software systems. Empirical Software
Engineering, 1–30.

3. Alomari, H. W., Collard, M. L., Maletic, J. I., Alhindawi, N., & Meqdadi, O. (2014). srcSlice:
very efficient and scalable forward static slicing. Journal of Software: Evolution and Process.

4. Bacon, D. F., & Sweeney, P. F. (1996). Fast static analysis of C++ virtual function calls.
SIGPLAN Not., 31(10), 324–341.

5. Banning, J. P. (1979). An efficient way to find the side effects of procedure calls and the aliases
of variables. In Proceedings of the 6th ACM SIGACT-SIGPLAN Symposium on Principles of
Programming Languages (pp. 29–41). San Antonio, Texas: ACM.

6. Cheng, B.-C., & Hwu, W. (2000). An empirical study of function pointers using SPEC
benchmarks. In Proceedings of the 12th International Workshop on Languages and Compilers
for Parallel Computing (pp. 490–493). Springer-Verlag.

7. Collard, M. L., Maletic, J. I., & Marcus, A. (2002). Supporting document and data views of
source code. In Proceedings of ACM Symposium on Document Engineering (p. 8).

8. Collard, M. L., Kagdi, H. H., & Maletic, J. I. (2003). An XML-based lightweight C++ fact
extractor. In 11th IEEE International Workshop on Program Comprehension, 2003.

9. Collard, M. L., Decker, M. J., & Maletic, J. I. (2011). Lightweight Transformation and Fact
Extraction with the srcML Toolkit. In Proceedings of the 2011 IEEE 11th International

130 S.M. Alnaeli et al.

Working Conference on Source Code Analysis and Manipulation (pp. 173–184). IEEE
Computer Society.

10. Cooper, K. D., & Kennedy, K. (1988). Interprocedural side-effect analysis in linear time.
SIGPLAN Not., 23(7), 57–66.

11. Feng, L. (2009). Automatic parallelization in graphite. Retrieved from http://gcc.gnu.org/wiki/
Graphite/Parallelization.

12. Ghezzi, C., & Jazayeri, M. (1982). Programming language concepts. Wiley.
13. Intel. (2010). Automatic parallelization with intel compilers. Retrieved from http://software.

intel.com/en-us/articles/automatic-parallelization-with-intel-compilers/.
14. Mock, M., Atkinson, D. C., Chambers, C., & Eggers, S. J. (2005). Program slicing with

dynamic points-to sets. IEEE Transactions on Software Engineering, 31(8), 657–678.
15. Oracle. (2010). Subprogram call in a loop. Retrieved from http://docs.oracle.com/cd/E19205-

01/819-5262/aeuje/index.html.
16. Richardson, S., & Ganapathi, M. (1987). Interprocedural analysis useless for code

optimization. Stanford University.
17. Shah Anand, R. B. G. (1995). Function pointers in C—An empirical study. Technical report

LCSR-TR-244, p. 11.
18. Spuler, D. A., & Sajeev, A. S. M. (1994). Compiler detection of function call side effects.

Technical report 94/01.
19. Zhang, S., & Ryder, B. G. (1994). Complexity of single level function pointer aliasing

analysis. Rutgers University, Department of Computer Science, Laboratory for Computer
Science Research.

On the Prevalence of Function Side Effects … 131

http://gcc.gnu.org/wiki/Graphite/Parallelization
http://gcc.gnu.org/wiki/Graphite/Parallelization
http://software.intel.com/en-us/articles/automatic-parallelization-with-intel-compilers/
http://software.intel.com/en-us/articles/automatic-parallelization-with-intel-compilers/
http://docs.oracle.com/cd/E19205-01/819-5262/aeuje/index.html
http://docs.oracle.com/cd/E19205-01/819-5262/aeuje/index.html

Object Oriented Method to Implement
the Hierarchical and Concurrent States
in UML State Chart Diagrams

E.V. Sunitha and Philip Samuel

Abstract The event driven systems can be modeled and implemented using UML
state chart diagrams. Code generation tools are used in the software development for
making software systemdesigns and for automatically generating skeletal source code
from the system designs. Many research works concentrate on the automatic code
generation from the state diagrams. Unfortunately the existing Object oriented lan-
guages do not support the direct implementation of state diagrams. We cannot find a
one to one mapping between elements in the state chart diagram and the Object
oriented programming constructs. The two main components of state diagram that
cannot be effectively implemented in object oriented way is state hierarchy and
concurrency. In this paper, we present an implementation pattern for the state diagram
which includes both hierarchical and concurrent states. The state transitions of parallel
states are delegated to the composite state class. We implemented the proposed
approach and compared with similar tools and the result is promising.

Keywords Code generation ⋅ State machine ⋅ MDD ⋅ Executable UML

1 Introduction

Object Orientation plays an important role in software development. It represents a
problem domain as a set of interacting objects coming under the problem domain.
Object orientation made a revolution in analysis, design, and implementation

E.V. Sunitha (✉)
Department of Computer Science, Cochin University of Science & Technology,
Kochi, India
e-mail: sunithaev@gmail.com

P. Samuel
Division of IT, School of Engineering, Cochin University of Science & Technology,
Kochi, India
e-mail: Philips@cusat.ac.in

© Springer International Publishing Switzerland 2016
R. Lee (ed.), Software Engineering Research, Management
and Applications, Studies in Computational Intelligence 654,
DOI 10.1007/978-3-319-33903-0_10

133

phases of the software development. Object Oriented Analysis (OOA) is used for
developing an object model of the application domain. Object Oriented Design
(OOD) develops an object oriented system model which satisfies the user
requirements. Object Oriented Programming (OOP) implements the OOD using an
OO programming language. This object orientation in all major phases of software
development introduces increased understandability, maintainability, and reusabil-
ity of design as well as code [1]. Hence, the object oriented methodology is advised
for cost-effective, faster, and flexible software development.

UML is one of the designing languages which support object orientation in the
design phase. It supports the important concepts of OOD such as, abstraction,
inheritance, modularity, polymorphism etc. UML help us to design the structure as
well as behavior of the system. They are called structural modeling and behavioral
modeling. Structure diagram includes class diagram, object diagram, deployment
diagram etc. Behavioral diagrams include activity diagram, state chart diagram,
interaction diagram etc.

Similarly, OO programming languages like Java, C++, C# etc. are useful in the
implementation phase. This helps us to continue the object orientation in the design
phase to the implementation phase. There are some elements in UML design which
can be directly mapped to any object oriented programming construct. Some ele-
ments in UML cannot be directly mapped to any programming element. Earlier, the
designers design the system models using UML or other tools and given to the
software engineers for coding. The software engineers had to start from the scratch,
beginning from the inclusion of header files, declaration of variables etc. Over time,
this scenario had been changed and there came some CASE tools, IDEs etc. for
supporting the software engineers. These tools generate skeletal code from the
designs we have modeled in UML or similar languages so that the programmer
need not start from the scratch.

In the next generation of software development, there comes the Model Driven
Development (MDD). MDD describes methods to develop software purely based
on the system design. This concept leads us to a method of directly executing the
system models even without converting them to the implementation code. It is
called executable UML [2].

Many tools are available to convert the system designs to the source code. The
system design may include class diagrams, state charts, activity diagrams, sequence
diagrams etc. UML diagrams like class diagram can be easily converted to the
source code because OO languages support the class concept. The class declaration
statements, class definition statements, method definition statements, object cre-
ation, method invocation statement etc. are available in the existing OO languages.
Some other diagrams like state chart diagram, activity diagram etc. cannot be
directly mapped to OO program [3]. This is because of the lack of programming
elements that can represent the elements in these diagrams.

In this paper we focus on state machines. State machines are useful to model
event driven systems. It can represent the full life cycle of an object. It shows

134 E.V. Sunitha and P. Samuel

different states of the object and the transition between the states. We need to find
out an efficient way to convert state charts to a program since there is no pro-
gramming construct exist to directly represent elements in the state diagram.

In this paper we present a method to convert hierarchical states and concurrent
states to Java code. In our method we follow a design pattern based approach.
A design pattern gives the overall implementation outline using a class diagram.
The surveys on code generation from state machines [4] show that the research
outcomes are not giving an effective method to implement the concurrent states. We
present a design pattern to implement both the state hierarchy and concurrency.

The main contributions of the paper are as follows:

• It presents a less complex design pattern for state machine implementation.
• It gives an effective method to implement Composite states with parallel regions.

The paper is organized as follows. Section 2 surveys different methods to
convert state charts to programs. Section 3 introduces a new approach to convert
the UML state chart diagrams to object oriented code. Section 4 presents a case
study to demonstrate the proposed approach. Section 5 presents the related works.
Section 6 describes the implementation and evaluation of the proposed approach
and Sect. 7 concludes the paper.

2 Mapping State Charts to Programming—Different
Approaches

In this section we discuss standard state machine implementation techniques which
we can find in the literature. The methods include nested switch statement, state
table, state design patterns, and UML meta class. The section ends with a proposal
of new approach which supports hierarchical state machines and concurrent states.
Figure 1 shows the basic elements in the UML state diagram.

2.1 Using Switch Statement

It is one of the simple and straight forward way of implementing simple state charts
[5]. Here the state of the object is represented using a scalar variable and the events
are represented as methods. Transitions are shown as the change in the state
variables. Switch statements will be used for selecting the state and inside each case
statement the internal, exit, and entry actions will be specified. There will be a
context class corresponds to each state diagram and event methods will be the
member functions of the same class.

Nested switch statements can be used instead of simple switch statement so that
there is no need to represent different event methods. All the events can be handled

Object Oriented Method to Implement the Hierarchical … 135

in one event method. The outer switch statement is used for state/event selection
and the inner one is used for event/state selection. The transition logic will be given
inside the case statement.

This method is suitable for simple state charts. As the state chart becomes
complex, the code generated will be bulky. It will be difficult to modify the state
chart because of the redundancy of code. Only OR-states can be represented in this
method. AND-states cannot be included. This switch case approach does not
support code reusability.

Jakimi [6] presents a different approach to implement state chart diagrams. Here,
each state chart will be converted to a single class in the Java code. Different states
in the state machine will be defined as the attributes of the implemented class, and
the events will be represented as methods in the implemented class. For example,
see the Fig. 2 where a simple state machine of an engine is shown. It has two states,
idle and running. It is mentioned in the state diagram that the attribute on should be
zero during idle state and on should be 1 during running state. In the implemen-
tation phase a single class, class Engine, is generated. The attributes that decides the
state of the object becomes attributes in the generated class. Here it is the attribute
on. The event that triggers the transition becomes a member function of the class.
Here it is switchOn(). Inside the switchOn() function the value of the attributes will
be updated according to the state machine.

Fig. 1 State chart essentials (Source UML Reference manual, p. 527)

136 E.V. Sunitha and P. Samuel

2.2 Using State Design Patterns

In state design pattern approach, there will be a class diagram pattern that has to be
followed for implementing all state chart diagrams [7]. There will be one class in the
pattern which represents the context (domain) of the state chart diagram. The states
in the state chart diagram are abstracted in a single abstract class which will act as an
interface to the states in the state chart. The events will be the virtual member
functions of the abstract state class. Each individual state in the state chart will be
represented as the object of the derived class of abstract state class. If there are ‘m’

states in the state chart, then there will be ‘m’ different concrete state classes derived
from the abstract state class. A sample state design pattern is shown in Fig. 2.

The object of the context class represents the domain object that needs to be
represented in the program. The context class will have a data member (state
variable) which represents the current state of the domain object. All the events are
represented as member functions of the context class which in turn delegates the
function to the corresponding state class objects.

Using state design patterns we can bring the object orientation in the state
machine implementation. The domain object, whose state chart is drawn, is imple-
mented as the object of the context class, each state of the domain object is
implemented as the object of the corresponding concrete state class. Events are
represented as the handles of the abstract state class and the transitions are accom-
plished by updating the state variables. This approach supports code reusability and
avoids redundancy in coding.

There can be variable type of patterns that can be used to represent the state chart
diagram. In the patterns, there is an abstract class which acts as an interface for the
state classes. The interface will be connected to the context class. The pattern has an
additional object called collaboration object to accomplish the sub states. It is an
abstract class which acts as an interface for the sub states [8]. This object oriented
approach creates some inconvenience too. In order to add a new state, we have to

Fig. 2 Sample state design pattern

Object Oriented Method to Implement the Hierarchical … 137

derive one more concrete state class from the abstract state class. Similarly, to add a
new event, we need to add one more virtual function to the abstract state class.

2.3 Using UML Meta Class

Similar to state design pattern approach, the state chart can be mapped to the meta
class structure defined for UML state machine [9]. That means, the implementation
of the state chart uses a collection of related class. In this approach, state machine is
represented as an object which is composed of 3 objects; State, Transition, and
Events. Transition is again interconnected to State and Events.

Whenever a state machine is implemented it must include these four classes;
State machine class, State class, Transition class, and Event class. Each state in the
state diagram will be an object of the State class, likewise each event will be an
object of the Event class and so.

2.4 Using State Tables

In this approach, the events and the states are entered in a table. The rows show the
states and the columns show the events. The internal data of the tables shows the
new state of the object when event ‘t’ happens during the state ‘s’ and the internal
actions. Figure 3 gives the structure of a state table. The transitions are given inside
the table. For example, if Event 1 occurs, when the object is in State 1, then action1
() will take place and the object will be changed to State 3.

Fig. 3 State table structure for UML state chart diagrams

138 E.V. Sunitha and P. Samuel

The state table can be directly used for coding. It makes the processing easier
and faster. One drawback of this approach is that, it does not support object ori-
entation. Moreover, the size of the table depends on the number of states and the
number of events present in the state chart diagram. The table size does not depend
on the number of transitions. Hence the table can be large even though the numbers
of transitions are less. This in turn results in wastage of memory.

3 New Approach for Mapping State Chart to OO
Program

The code generation from hierarchical and concurrent states in UML state machines
are addressed in some research works [8, 10, 11]. Those methods give a complex
design pattern to implement the state machine. In this paper, we propose a pattern
based approach to convert the state machine to object oriented program. Figure 4
shows the proposed design pattern. Table 1 gives the mapping between state chart
and the Object Oriented programming constructs.

Fig. 4 The proposed design pattern for state machines

Object Oriented Method to Implement the Hierarchical … 139

In the proposed method states and events are represented as classes. The state
hierarchies are represented as hierarchy of State classes.

The state chart of a system will be represented as Context Class. It includes a
state transition() function which changes the current state of the system. An event
dispatch() function is also defined in the Context Class. It delegates the event
handling to the respective State Classes.

State Class is the base class for deriving different state classes of the system. It
defines an event dispatch function for supporting the function delegation. Each state
in the system is derived as a child of State Class. In order to derive composite states,
we define OrthogonalState Class in addition to the State Class.

The OrthogonalState Class defines the number of regions in the orthogonal states.
In addition to that it records the active sub states in the regions. The number of active
sub states varies depending on the number of regions. If there are concurrent states
then the number of regions will be greater than 1. Otherwise it will be equal to 1.
This class provides an init() function to initialize the number of regions and active
sub states. It also provides a transition function for the sub states. The event handling
is delegated to the corresponding State Classes based on the active sub states.

The parallel states are represented as the sub_state variables in the Orthogo-
nalState Class. Depending on the concurrent regions in the composite state, the no
of regions will be defined. The concurrent transitions are implemented as the
subTransition() functions. Based on the no of regions the subTansition() functions
and event dispatch() functions will be called. The states in a composite/hierarchical
state can be AND type or OR type. AND type states form the orthogonal regions. It
shows that the states in the orthogonal regions are concurrent. If there is only OR
states, then we need to define only one region.

The skeletal code structure of the pattern is as follows. It includes the classes for
Events, State, StateMachine, ContextClass, OrthogonalState, and CompositeState.

Table 1 Mapping state
machine elements to oo
program constructs

State machine element Program construct

State State class
Transition Method in context class
Erem Events class
Entry/exit actions Method in state class
Internal action Method in state class
Hierarchical states Hierarchy of state classes
Concurrent transitions Method in the orthogonalstate class

140 E.V. Sunitha and P. Samuel

Object Oriented Method to Implement the Hierarchical … 141

CompositeState class is inherited from State class as well as OrthogonalState
class. In Java multiple inheritance is not directly supported. So, we make use of
interface to define the OrthogonalState.

4 Case Study

We consider the case of an Explosion System which has four buttons to operate.
The system can be in setting state or timing state. In setting state we can set a

defuse code, and increment or decrement the time out for the explosion system. In
the timingmode the system exists in two concurrent states, defuse state and tick state.

The four events (corresponds to each button of the system) that can happen in
the systems are, UP, DOWN, ARM, and TICK. When the system is in setting mode,
if event UP occurs, it increments the timeout value. If the DOWN event occurs, then
it decrements the timeout value. If the event ARM occurs, then the system changes
to timing state. The tick event has no effect while the system is in setting mode.

Fig. 5 UML state diagram
representing the explosion
system

142 E.V. Sunitha and P. Samuel

When the system is in timing mode, the system will be in defuse state as well as
tick state, two parallel states. If an UP/DOWN event occurs then it sets the secret key
to defuse the system. When the ARM event occurs, it checks the secret key entered
and the defuse code of the system. If it matches the systemwill be defused. In parallel,
the TICK event exists where the time out decreases continuously. Each TICK event
decreases the timeout value. When the time out reaches 0, the system explodes.

The state diagram of the explosion system is shown in Fig. 5 and the state
transition table of the system is shown in Table 2. The implementation pattern of
the Explosion system is shown in Fig. 6.

The context class here is the ExplosionSystem. It uses the Events class and the
State class for setting the state of the system and event dispatching. The initial state
is set to SettingState. Whenever an event encounters the corresponding event
handling function will be called by using the run time polymorphism. Whenever the
system enters the composite states, the init() function of the class has to be invoked.
So this function call is included in the transition function.

Table 2 State transition table of the explosion system

Current state Sub state Events [gurad] Next state

Setting UP [timeout < 60] Setting
DOWN timeout > l Setting
ARM Timing
TICK Setting

Timing Diffusion UP Timing
DOWN Timing
ARM [code ==difuse Setting

Tick TICK [fine_time ==0] Choice
[timeout ==0] Final
[else] Timing

Object Oriented Method to Implement the Hierarchical … 143

The State class acts as the base class for deriving the states of the system. It
consists of the event dispatch function which will be overridden in the child classes.
The dispatch function takes the context class object and the event that occurred as
the arguments. The overridden dispatch functions in the child classes will act as the
event handlers. In different state classes the dispatch function is implemented dif-
ferently according to how each state responds to that particular event.

The setting mode of the system is implemented as the SettingState which is
derived from the State class. The dispatch function in this class handles the UP,
DOWN and ARM events.

Fig. 6 The implementation
pattern of the explosive
system

144 E.V. Sunitha and P. Samuel

The timing mode is a composite state which has two AND states, i.e., defuse
state and tick state. So the timing mode is implemented as the composite state,
TImingCompoState, which is derived from State class and OrthogonalState. The
dispatch function delegates the events to the DefuseState and TickState. We store
the active sub states and the sub transitions and event dispatching is done based on
the active sub states.

The defuse state is implemented as the DefuseState class. It handles the UP,
DOWN and ARM events. The tick state is implemented as the TickState class which
handles the TICK event.

Object Oriented Method to Implement the Hierarchical … 145

The Events class defines the events that can happen in the explosive system.

5 Related Works

Dominguez et al. [4] presented a review of research works that propose methods to
implement UML state chart diagrams. Dominguez et al. summarize their review by
saying that the state transition process in most of the works are based on switch
statement or state table. Another key finding of [4] is that very few papers support
hierarchy and concurrency of states.

Ali [12] presents the implementation of concurrent and hierarchical state
machines by making use of enumerators in Java language. It proposes a Java
implementation pattern for state machines. The method presented in the paper is
language dependent and so it cannot be extended to other languages like C++, C#
etc.

Spinke [10] addresses concurrent and hierarchical state implementation. The
paper proposed a double dispatch based event handling. The reaction of the state
machine depends on the current state of the system as well as the event occurred.
This is the theory behind double dispatch. The paper presents a case study to show
case the proposed method. The implementation pattern presented in the paper is
very bulky since it requires 17 classes in the implementation for representing a stat
machine with 6 states and 6 events.

Niaz and Tanaka [8] propose a method to implement composite and concurrent
states. In the proposed approach single event can trigger multiple transitions. This is
against the semantics of the UML state machine. UML specifies that one event
should be consumed for only one transition.

Schattkowsky [13] demonstrates how a fully featured UML 2.0 state machine
can be represented using a small subset of the UML state machine features that
enables efficient execution. They are trying to directly execute the state machines
without converting it to implementation code. It is an alternative to native code
generation approaches since it significantly increases portability. The paper
describes the necessary model transformations in terms of graph transformations
and discusses the underlying semantics and implications for execution.

Rudhal [14] presents a multi language code generator named as YAMDAT (Yet
Another MDA Tool). As the name indicates, it’s an MDA tool. It generates C++
and Java code from UML designs of the system. UML models will be represented

146 E.V. Sunitha and P. Samuel

in XML and this XML representation is the code model in the tool. They generate
skeleton code for all methods and attributes in the UML class diagram. Moreover,
unit test framework will be generated for the class. YAMDAT generates finite state
machine class from each state diagram of the class.

6 Implementation and Evaluation

In this section we propose a code generator to generate prototype from UML State
chart diagrams (SM) and Class Diagrams (CD). It takes the SM and CD in XML
format as input. The Transformation Engine converts the SM and CD to Java source
code. The transformation engine has three main parts, the Parsers, Transformation
Rules and the Prototype Generator.

There are two parsers, one is CD Parser which parses the class diagram for code
generation and the other one is SM Parser which parses the state machine. The
Transformation Rule specifies which component in SM and CD converts to which
programming construct. For example, a compound state has to be converted to an
abstract super state class. The transformation rules strictly follow the design pattern
proposed in this paper. It defines how to convert the compound states, parallel states
and sequential states. This conversion rules are specified in Transformation Rules.
The SM Prototype Generator converts the CD and SM to Java code by considering
the Transformation Rules.

Table 3 Efficiency of SMConverter compared with Rhapsody and OCode

OCode
(ms)

Rhapsody
(ms)

SMConverter
(ms)

Efficiency
over OCode

Efficiency
over Rhapsody

Total time for events
without transitions

4.4 5.05 4

Average time per
event without
transition

0.00248 0.00284 0.00225 9.27 20.77

Total time for events
having transitions

22.05 23.1 10.1

Average time per
event having
transition

0.00992 0.01039 0.0045 54.64 56.69

Total time for all
events

26.4 28.15 14.1

Average time per
event

0.0066 0.00704 0.00353 46.52 49.86

Object Oriented Method to Implement the Hierarchical … 147

We have developed a tool, SMConverter, based on the proposed method.
SMConverter is compared with similar tools like Rhapsody and OCode. The
number of lines generated by each tool, the number of bytes generated and total
number of classes generated is compared. Table 3 shows the comparison of
SMConverter, Rhapsody and OCode. We considered the events with and without
transitions. Total time taken for each type is calculated in milliseconds. Total
number of requests for events without transition is 1778 and for events with
transition is 2222. The efficiency of our tool (SMConverter) over other tools is
shown in the Table 3. Figures 7 and 8 compare the total time taken for events
without and with transition respectively.

Fig. 7 Total time for events without transition

Fig. 8 Total time for events having transition

148 E.V. Sunitha and P. Samuel

7 Conclusion

Code generation from UML models is very essential in software development. In
this paper, we introduce an object oriented method to implement the hierarchical
and concurrent states in the state machine. The proposed approach helps us to
implement both composition and concurrency with same design pattern. The case
study and comparison with other tools reveals that the proposed approach gives less
complex code and promising results. The object orientation that we used in the
proposed approach provides flexibility in coding as well as its modification.

References

1. Rumbaugh, J., Jacobson, I., & Booch, G. (2007). Object-oriented analysis and design with
applications (3rd ed.). Addison-Wesley.

2. Mellor, S. J., & Balcer, M. J. (2002) Executable UML a foundation for model-driven
architecture. Addison-Wesley.

3. Ali, J., & Tanaka, J. (2001). Implementing the dynamic behavior represented as multiple state
diagrams and activity diagrams. Journal of Computer Science and Information Management
(JCSIM), 2(1), 24–34.

4. Dominguez, E., et al. (2012). A systematic review of code generation proposals from state
machine specifications. Journal of Information and Software Technology, 54, 1045–1066.

5. Douglass, B. P. (1998). Real time UML—developing efficient objects for embedded systems.
Massachusetts: Addison-Wesley.

6. Jakimi, A., & Elkoutbi, M. (2009). Automatic code generation from UML state chart.
International Journal of Engineering and Technology, 1(2), 165–168.

7. Ali, J., & Tanaka, J. (2000). Converting state charts into Java code. In Proceedings Fourth
World Conference on Integrated Design and Process Technology (IDPT’99), Dallas, Texas,
USA.

8. Niaz, I. A., & Tanaka, J. (2005). An object-oriented approach to generate Java code from
UML state charts. International Journal of Computer and Information Science, 6(2).

9. Lazareviae, L., & Miliaev, D. (2000). Finite state machine automatic code generation. In
IASTED conference, Austria.

10. Spinke, V. (2013) An object-oriented implementation of concurrent and hierarchical state
machines, Journal of Information and Software Technology, l–55, 1726–1740.

11. Aabidi, M. H., et al. (2013). An object oriented approach to generate Java code from
hierarchical-concurrent and history states. International Journal of Information and Network
Security, 2, 429–440.

12. Ali, J. (2010). Using Java Enums to implement concurrent-hierarchical state machines.
Journal of Software Engineering 4(3), 215–230. ISSN 1819-4311.

13. Schattkowsky, T., & Muller, W. (2005). Transformation of UML state machines for direct
execution, VLHCC. In Proceedings of the 2005 IEEE Symposium on Visual Languages and
Human-Centric Computing (pp. 117–124).

14. Rudhal, K. T., & Goldin, S. E. (2008). Adaptive multi-language code generation using
YAMDAT. In Proceedings of ECTI-CON 2008, Electrical Engineering/Electronics,
Computer, Telecommunications and Information Technology, 5th International Conference,
2008, 14–17 May 2008 (Vol. 1, pp. 181–184).

Object Oriented Method to Implement the Hierarchical … 149

A New and Fast Variant of the Strict
Strong Coloring Based Graph Distribution
Algorithm

Nousseiba Guidoum, Meriem Bensouyad
and Djamel-Eddine Saïdouni

Abstract We consider the state space explosion problem which is a fundamental
obstacle in formal verification of critical systems. In this paper, we propose a fast
algorithm for distributing state spaces on a network of workstations. Our solution is
an improvement version of SSCGDA algorithm (for Strict Strong Coloring based
Graph Distribution Algorithm) which introduced the coloring concept and domi-
nance relation in graphs for finding the good distribution of given graphs [1]. We
report on a thorough experimental study to evaluate the performance of this new
algorithm. The quality of the proposed algorithm is illustrated by comparison with
existing algorithms.

Keywords Formal verification ⋅ Graph distribution ⋅ Graph strict strong
coloring ⋅ Combinatorial optimization ⋅ Heuristics ⋅ SSCGDA ⋅ GGSSCA

1 Introduction

Formal verification is one of the main approaches to aid engineers on the devel-
opment and validation of concurrent systems. In this approach, system’s behavior
can be modeled as a state space. The set of states forms a graph where states are
connected if there is an action that can be executed to transform the state into the
other. The graphs, modeling finite state systems, can be explored exhaustively
because of the graph size and the exploration time which may grow exponentially

N. Guidoum (✉) ⋅ M. Bensouyad ⋅ D.-E. Saïdouni
MISC Laboratory, A. Mehri, Constantine 2 University, Constantine, Algeria
e-mail: guidoum_nousseiba@hotmail.fr

M. Bensouyad
e-mail: meriem_bensouyad@hotmail.com

D.-E. Saïdouni
e-mail: saidounid@hotmail.com

© Springer International Publishing Switzerland 2016
R. Lee (ed.), Software Engineering Research, Management
and Applications, Studies in Computational Intelligence 654,
DOI 10.1007/978-3-319-33903-0_11

151

with the size of the system description. In this case, the formal verification process
becomes more and more slowly and may not be terminated. This problem is known
as state space explosion problem [2–4]. One solution consists in the distribution of
the graph. In fact, the need for parallel and distributed computing becomes inevi-
table to deal not only with the presented problem but with all applications using
large scale graphs.

Graph distribution is a well-known optimization problem [5] where several
factors should be taken into account to have a good distribution. The most
important of them are the workload balancing of the workers (i.e. no unemployed or
overloaded workers) and the minimization of the distribution cost (i.e. edges to be
cut). In practice, graph distribution occurs in applications on many areas, others
than formal verification, like parallel computing, communication protocols, dis-
tributed algorithms and industrial case studies.

Distributing the state space among several workstations (workers) which com-
municate through a message in a network is the subject of this paper. A heuristic
based on coloring concept and dominance relation in graphs is presented to find a
good distribution within a reasonable time.

Many papers present several approaches for solving this NP-hard problem [5]
and other distributed applications on large graphs [6–8]. Authors in [9] have pre-
sented deeply the different solutions proposed up to 2009. All these solutions are
based on a partition function which assigns each state to a fixed worker. These
approaches differ mainly by the nature of this function. In [8], authors have used ten
heuristics such that each one of them gives an algorithm for selecting the index of
the partition where a state is assigned.

Recently, a new graph coloring based distribution approach is proposed [1, 10].
This approach is called “SSCGDA” (for Strict Strong Coloring based Graph
Distribution Algorithm). It has been successfully employed to ensure a good dis-
tribution of a given graph modeling the system state space. The SSCGDA is the first
heuristic algorithm, for resolving the state space distribution, based on the strict
strong coloring. Particularly, the dominance property is used to make the initial
distribution. After that, other processes are used to build the final distribution.

In this paper, the proposed approach adopts the same principle of SSCGDA
algorithm to consolidate the idea of using the strict strong coloring for graph
distribution but it runs significantly faster. The aim is to improve the algorithm
performances and even its results quality. This is done by adjusting the initial
distribution construction process and omitting some phases like grouping process.

The remainder of this paper is organized as follows: Sect. 2 gives some pre-
liminary notations and definitions. In Sect. 3, the new proposed variant of the
SSCGDA algorithm is presented. Section 4 discusses obtained experimental results.
Conclusion and future works are given in the last section.

152 N. Guidoum et al.

2 Preliminaries

Graphs are abstraction in computer science. The most common form of graph
consists of a set of objects called vertices and set of edges.

State space representation of system’s behavior is described as follow:

• All the states, the system can be in, are represented as vertices of a graph.
• A transition, that can change the system from one state to another, is represented

by an edge from one node to another.

Let G = (V, E) be a graph such that V = {v1, v2 … vn} is a finite set of vertices
and E ⊆ V × V is a finite set of edges (nodes).

For any u ∈ V, let N(u) = {v ∈ V| (u, v) ∈ E} be the set of adjacent vertices
of u. Let deg(u) =|N(u)| be the degree of the vertex u.

For u ∈ V and Y ⊆ V, u ∼ Y means that u is adjacent to all vertices of Y. We say
also u dominates the set Y.

2.1 Distribution Concept

The distribution problem has been formulated as an NP-complete graph opti-
mization problem [5].

A distribution of state space graph on W network nodes (parts, workers) is a
partition of its set of vertices into W pair-wise disjoint subsets (V = ∪ w

i=1 Vi and
Vi ∩ Vj = Ø for all 1 ≤ i, j ≤ W). We denote by Eij the cross (external) edges (i.e.
the set of edges between the vertices assigned to worker i and the vertices assigned
to worker j). Then, the elements of the sets Eii are internal (local) edges.

In fact, an efficient distribution should have:

• A minimal number of cross (external) edges Eij, in other words, as many internal
(local) edges Eii as possible. We express this factor by the rate φ which is equal
to the number of internal edges divided by the total number of edges:

φð%Þ=100× ∑
w

i= 1

Eiij j
Ej j . ð1Þ

• Balance, i.e., more-or-less the same number of vertices on each part. To
determine this, we establish the notion of standard deviation of the number of
nodes, denoted by σV and defined as follows:

A New and Fast Variant of the Strict Strong Coloring … 153

σV =

ffi

1
w

∑
w

i=1
ð Vij j− avgÞ2

s

. ð2Þ

Such that, the average load avg is the total number of vertices divided by the
parts number W: avg= jV j

W , since the vertices sets assigned to different parts are
disjoints.

2.2 Coloring Concept

A proper vertex coloring of a graph is a vertex coloring such that no two adjacent
vertices have the same color. A proper coloring C using at most k colors is called a
proper k-coloring. It is a function C: V → {1… k} such that C(u) ≠ C(v) for any
(u, v) ∈ E [11]. C(v) is called the color of v. The vertices having the same color
form a color class. Since each color class is an independent set of G, a coloring may
also be seen as a partition of V into independent sets (C1, C2 … Ck) where
Ci = {x ∈ V such that C(x) = i} [12]. A graph is k-colorable if it has a proper
k-coloring. The chromatic number χ(G) is the minimum number of colors required
for coloring G.

A strong coloring is a graph coloring such that for each vertex v, there is a color
class Ci such that v is adjacent to every vertex of Ci (i.e. u ∼ Ci). A graph is
strongly k-colorable if it has a strong k-coloring [13].

A strict strong k-coloring (k-SSColoring) is a strong k-coloring such that there is
non-empty color class. More formally, the k-SSColoring of G is a proper k-coloring
{C1, C2 … Ck} of G such that for every vertex u ∈ V, there exists i ∈ {1, 2 … k}
where u is adjacent to every vertex of Ci and Ci ≠ Ø (i.e. u ∼ Ci). So, a strict strong
coloring of G is a proper coloring of G such that every vertex of G is strict strong.
We say that a color i is a dominated color by a vertex u, with u ∈ V (or u domi-
nates i) if and only if u ∼ Ci [14]. The strict strong chromatic number χss(G) is
defined as the minimum number of colors among all strict strong colorings [14].

3 Proposed Algorithm

3.1 Global Algorithm

The proposed algorithm is a refinement of the SSCGDA. It adopts the same
principle where the purpose is to reduce as possible the algorithm complexity with
preserving a good distribution.

154 N. Guidoum et al.

The SSCGDA algorithm is divided into two phases: an initialization and an
optimization processes. In the initialization process, it uses the strict strong coloring
to make the initial distribution. Particularly, the first phase of the GGSSCA algo-
rithm presented in [15] is used to give the initial number of parts and their centers.
Then, it reorganizes the initial distribution using the initial distribution construction
process. At the end of this step, each vertex colored with dominated color is
considered as a center of each part and its neighbors which dominate this color class
are put with it on the same part.

In the following process, the grouping (splitting) process is used to fusion (split)
initial parts if the initial part number DC is upper (less) than the required number of
parts W.

The basic idea of this new variant is to update the initialization step to give
exactly (or less than) the available number of workers W. In this case, the GGSSCA
algorithm should be updated.

Contrary to the SSCGDA algorithm which applies the first step of the GGSSCA
until obtaining DC centers, the new variant uses a modified GGSSCA algorithm to
get exactly (or less than) W centers. In this case, the grouping process used in
SSCGDA, will be useless in this version. This minimizes the running time and
reduces the algorithm complexity. Consequently, the proposed algorithm will be
more simple and faster than the SSCGDA.

In the case where the dominated colors number obtained after applying the
modified GGSSCA algorithm is less than W, the splitting process will be used after
the construction of the initial distribution to split the obtained parts.

A New and Fast Variant of the Strict Strong Coloring … 155

3.2 Modified Generalized Graph Strict Strong Coloring
Algorithm

The GGSSCA algorithm was used to make the initial distribution in the
SSCGDA algorithm. This latter has used the first phase of GGSSCA which ensures
the dominance property. At the end of this phase, each vertex is adjacent to at least
one non empty color class and the dominated colors number DC is given to define
the number of initial parts.

However, in this paper, this heuristic is updated to obtain exactly (or less than)
W parts centers (see Box 2). The goal is to reduce the number of iterations. This
implies the minimization of the process complexity: the complexity of the
GGSSCA based process used in the basic version of SSCGDA algorithm is O(|V|2)
while the complexity of the updated one, given in Box 2, is only O(W × |V|).

156 N. Guidoum et al.

3.3 Initial Distribution Construction

The initial distribution construction process (See Box 3) is used for constructing
the initial pair-wise disjoint parts.

After applying the updated GGSSCA algorithm, we get centers for all parts such
that the part center is defined as a colored vertex with dominated color.

Each part Vi initially contains exactly one center which is a colored vertex (u ∈
Centers). Then, its neighbors (Not_Conflicting _verticesu set), that dominate only
the color class containing the colored vertex u, will be added to Vi.

For the vertices (Conflicting _vertices set), that dominate more than one color
class, each one will be added to the appropriate part Vj having with it the maximum
connections.

A New and Fast Variant of the Strict Strong Coloring … 157

After associating all vertices that dominate at least one color, it remains the
vertices that are not adjacent to any center. For that, each vertex of them will be
added to the part that has with it maximum connections.

3.4 Splitting Process

The splitting process (see Box 4) selects, at each iteration, the part Vi having the
maximum number of vertices for obtaining a relaxed balanced between different
parts. Then, it searches in Vi the vertices which have a strong connection in order to
keep them in the new and same part V|π+1|. Finally, the distribution will be updated
by adding the new part V|π+1| and removing all vertices existing in it from the main
part Vi. This process will be repeated until obtaining W parts.

4 Experiments

To show the quality of the proposed algorithm, a comparison with existing
approaches is conducted. For instance, we have picked the basic approach
SSCGDA [1] and the hash function (MD5) based algorithm [6]. In fact, the MD5
based algorithm offers a distributed state space, using a hash function based on the
function of encoding MD5 (for Message Digest Algorithm 5).

158 N. Guidoum et al.

In order to illustrate the performance of the proposed approach, we consider
measurements given above (1 and 2). The experiment consists of the distributing
state space of the systems and the computation of given measurements.

In the context of our experiments, we have selected 3 well known classic case
studies in system models. These models include dining philosophers system [16],
Peterson solution for mutual exclusion [17] and shared memory system [18].

The obtained results are shown in Tables 1 and 2 where:

• |V| denotes the number of vertices,
• |E| denotes the number of edges,
• W is the required number of parts (workers),
• σV is the standard deviation of vertices on each part,

It is important to note that the standard derivation, reported in this paper, is
calculated after removing the outlier points. Outliers are extreme (exceptional)
values that stand out from the other values of a data set. If not removed, these
extreme values can skew the conclusions that might be drawn from the data in
question. To identify and remove these outlying values, a statistical test, called
Grubbs [19], has been applied on our data set (the workload of each part of the
partition).

• φ: the fraction of the local connections number divided by the number of all
connections.

• DC is the number of dominated colors obtained by the first phase of GGSSCA,
• T-exe: the average execution run-time (in seconds) is taken using 10 runs.

Table 1 Comparative results of the proposed approach, SSCGDA and MD5 based algorithm

W = 20 |V| |E| DC Moy Approach σv φ (%)

Philosophers 729 3402 127 36 MD5 based algorithm 18.92 6
SSCGDA algorithm 11.04 46.2
Proposed algorithm 7.9 52.94

Shared memory 8019 52974 432 400 MD5 based algorithm 201.26 7
SSCGDA algorithm 176.70 65.7
Proposed algorithm 48.13 56.88

Peterson 20754 62262 4669 1037 MD5 based algorithm 519 7
SSCGDA algorithm 387.80 91.2
Proposed algorithm 1434.4 90.9

Table 2 Comparative results of the proposed approach and SSCGDA algorithm relative to
execution time

W = 20 |V| |E| DC T-exe SSCGDA T-exe Proposed approach

Philosophers 729 3402 127 0.27 0.24
Shared memory 8019 2974 432 17.32 11.16
Peterson 20754 2262 4669 1251.82 55.77

A New and Fast Variant of the Strict Strong Coloring … 159

According to the results reported on Table 1, we can remark that, in all cases, the
proposed approach gives a quite good rate of local edges and provides a good
balance.

Compared to the hash function MD5 based algorithm, the proposed one gives a
significant improvement in both balance and local edges rate. For instance, the
improvement reaches 83 % of local connections rate for the Peterson graph.

Compared to the SSCGDA algorithm, it is remarked that the results vary
according to the experimental model:

For philosophers’ graph, the proposed approach gives the well results in term of
both balance and local edges rate compared to the ones given by the basic version
of SSCGDA.

For shared memory graph, although the proposed approach does not give a better
local edges rate compared to SSCGDA but it can guarantee the best load balancing.
This means that the network workers are well balanced when using the proposed
approach.

For the last model: Peterson, the proposed approach does not provide the better
results compared to SSCGDA.

The diversity of the obtained results can be explained as follow. In fact, the
quality of the proposed approach depends enormously on the behavior of the
systems and the choice of the number of workers. After several runs, we have
observed that the proposed algorithm gives good results when the number of
workers W is near to the number of dominated colors DC. This can be explained
through the example of Peterson: By applying SSCGDA, 4669 centers are initially
obtained which are well distributed among all the graph contrary to the proposed
algorithm which manipulates only 20 centers. This limited number cannot be well
distributed on the entirely graph. For that, we have obtained this balance interval.

Regarding now the running time, it appears that the basic version of SSCGDA
algorithm takes more time compared to the proposed one (see Table 2). Indeed, we
observe that it depends on the number of vertices, edges and also the number of
workers.

In addition to keeping good results, the brought modifications in this approach
are adjusted to achieve a significant improvement in term of execution time. This
improvement is outlined due to:

• The update of GGSSCA where its complexity is decreased. It becomes O(W × |
V|) instead O(|V|2).

• The omission of the grouping process which affects enormously the execution
time.

According to the Table 2, the reader can remark that the proposed approach is
fast and efficient in term of execution time compared to the basic version of
SSCGDA algorithm.

160 N. Guidoum et al.

5 Conclusion

In this paper, we have presented a new approach based on graph coloring algorithm
to solve the graph distribution problem. This approach is based on the graph strict
strong coloring concept. More precisely, we have used the modified GGSSCA
algorithm which ensures the dominance property. This latter is exploited to initially
distribute the graph and obtain W or less pair-wise disjoint parts. In the case where
the obtained number of dominated colors DC is less than the required number W,
the splitting process is used to find a good distribution with W parts.

The algorithm is experimented on several graphs with different nature. The
obtained results showed that the presented heuristic gives generally good statistics
compared to the SSCGDA and hash function MD5 based algorithm. In addition, we
have observed that the performance quality depends on the choice of the number of
workers (W): It gives an optimal distribution when the number of workers is closer
to the number of dominated colors. This property will be very useful in future
works.

To put in practice the result of this work, the proposed approach will be
improved by integrating the distribution process during the graph generation. Also,
it remains to see the effect of the proposed method on the performance of verifi-
cation algorithms.

References

1. Guidoum, N., Bensouyad, M., & Saïdouni, D. E. (2013). The strict strong coloring based
graph distribution algorithm. International Journal of Applied Metaheuristic Computing, 4,
50–66.

2. Valmari, A. (1998). The state explosion problem. In Lectures on Petri Nets I: Basic Models:
Of Lecture Notes in Computer Science (vol. 1491, pp. 429–528). London, UK.

3. Clarke, E., Grumberg, O., & Peled, D. (1999). Model checking. Cambridge, MA: The MIT
Press.

4. Bérard, B., Bidoit, M., Finkel, A., Laroussinie, F., Petit, A., Petrucci, L., et al. (2001). Systems
and software verification: Model-checking techniques and tools. Springer.

5. Bixby, R., Kennedy, K., & Kremer, U. (1993). Automatic data layout using 0–1 integer
programming, Houston, TX, United State: Rice University, Center for Research on Parallel
Computation, Tech. Rep. CRPC-TR93349-S.

6. Bouneb, Z., & Saïdouni, D. E. (2009). Parallel state space construction for a model checking
based on maximality semantics. In Proceedings of the 2nd Mediterranean Conference on
Intelligent Systems and Automation (vol. 1107, pp. 7–12).

7. Orzan, S., van de Pol, S., & Valero Espada, M. (2005). A state space distribution policy based
on abstract interpretation. Electronic Notes in Theoretical Computer Science, 128(3), 35–45.

8. Stanton, I., & Kliot, G. (2011). Streaming graph partitioning for large distributed graphs
(Tech. Rep. MSR-TR-2011-121). Microsoft Research Lab.

9. Saad, R., Dal Zilio, S., Berthomieu, B,. & Vernadat, F. (2009). Enumerative parallel and
distributed state space construction. In Ecoled’Eté Temps Réel (ETR’09), Paris, France.

A New and Fast Variant of the Strict Strong Coloring … 161

10. Bensouyad, M., Bouzenada, M., Guidoum, N., & Saïdouni, D. E. (2014). A generalized graph
strict strong coloring algorithm: Application on graph distribution. Contemporary
Advancements in Information Technology Development in Dynamic Environments, 181.

11. Klotz, W. (2002). Graph coloring algorithms. Clausthal, Germany: Clausthal University of
Technology, Tech. Rep. No.

12. Dharwadker, A. (2006). The independent set algorithm. Institute of Mathematics. Retrieved
from http://www.dharwadker.org/independent_set/.

13. ZverovichI, E. (2006). A new kind of graph coloring. Journal of Algorithms, 58(2), 118–133.
14. Haddad, M., & Kheddouci, H. (2009). A strict strong coloring of trees. Information

Processing Letters, 109(18), 1047–1054.
15. Bouzenada, M., Bensouyad, M., Guidoum, N., Reghioua, A., & Saïdouni, D. E. (2012).

A generalized graph strict strong coloring algorithm. International Journal of Applied
Metaheuristic Computing (IJAMC), 3(1), 24–33.

16. NetLogo Models Library: Sample Models/Computer Science Standards, ccl.northwestern.edu.
Retrieved from http://ccl.northwestern.edu/netlogo/models/DiningPhilosophers.

17. Model Checking Contest, “Peterson” model, sumo.lip6.fr. Retrieved from http://sumo.lip6.fr/
Peterson_model.html.

18. Dijkstra, E. W. (1965). Solution of a problem in concurrent programming control. CACM,
8(9), 569. doi:10.1145/365559.365617.

19. Grubbs, F. E. (1969). Procedures for detecting outlying observations in samples.
Technometrics, 11(1), 1–21.

162 N. Guidoum et al.

http://www.dharwadker.org/independent_set/
http://ccl.northwestern.edu/netlogo/models/DiningPhilosophers
http://sumo.lip6.fr/Peterson_model.html
http://sumo.lip6.fr/Peterson_model.html
http://dx.doi.org/10.1145/365559.365617

High Level Petri Net Modelling and Analysis
of Flexible Web Services Composition

Ahmed Kheldoun, Kamel Barkaoui, Malika Ioualalen
and Djaouida Dahmani

Abstract In this paper we propose a model to deal with flexibility in complex Web

services composition (WSC). In this context, we use a model based on high level

Petri nets called RECATNets, where control and data flows are easily supported.

Indeed, RECATNets combine the strengths of recursive Petri nets with the expressive

power of abstract data types. Since RECATNets semantics is expressed in terms

of the conditional rewriting logic, one can use the Maude LTL Model-Checker to

investigate several behavioral properties of Web services composition.

1 Introduction

With the increasing complexity of business requirements, the distributed and flexible

characteristics of Web services, the possibility of errors in Web service composition

(WSC for short) is greatly increased. As a result, many researchers tried to propose

formal methods, Finite State Machine [1], Pi calculus [2] or Petri nets [3, 4] to build

the formal description and verification models of WSC. However, one of the weak-

nesses of these methods is their lack of support for managing flexible WSC which

require dynamic adaptation of their structure. We refer to flexible WSC as the abil-

ity to create, modify, extend or suppress (sub)processes in a structured way, at the

A. Kheldoun (✉) ⋅ M. Ioualalen ⋅ D. Dahmani

MOVEP, Computer Science Department, USTHB, Algiers, Algeria

e-mail: ahmedkheldoun@yahoo.fr

M. Ioualalen

e-mail: mioualalen@usthb.dz

D. Dahmani

e-mail: ddahmani2000@yahoo.com

A. Kheldoun

Sciences and Technology Faculty, Yahia Fares University, Medea, Algeria

K. Barkaoui

CEDRIC-CNAM, 292 Rue Saint-Martin, 75141 Paris Cedex 03, France

e-mail: kamel.barkaoui@cnam.fr

© Springer International Publishing Switzerland 2016

R. Lee (ed.), Software Engineering Research, Management
and Applications, Studies in Computational Intelligence 654,

DOI 10.1007/978-3-319-33903-0_12

163

164 A. Kheldoun et al.

occurrence of exceptions. In addition, such a composite Web services can potentially

be very large, complex and cumbersome. In regard to the previous points, if we want

to describe, faithfully, real-life WSC, we need an expressive modeling formalism

that allows, in one hand, to specify their flexible and distributed features, and in other

hand, to check the interaction (control-flow) correctness of these business processes

while taking into account their data flow aspect. In this paper, a new model based on

a kind of high level algebraic Petri nets combining the expressive power of abstract

data types and Recursive Petri nets [5] called Recursive ECATNets (RECATNets for

short) [6] is proposed in order to cope with the flexibility problem in complex WSC.

The RECATNets model offers practical mechanisms for a direct and intuitive support

of dynamic creation and suppression of processes. They are well-suited for handling

the most advanced WSC patterns (involving cancellation and multiple instances).

The proposed model is expressive enough to capture the semantics of complex ser-

vice compositions and their respective specificities. Since RECATNets semantics is

expressed in terms of the conditional rewriting logic [7], one can use the Maude

LTL model-checker [8] to investigate several behavioral properties of Web services

composition. The remainder of this paper is organized as follows. Section 2 gives a

brief overview of related work. Section 3 presents the basic concepts of RECTANets.

Web service modeling and specification using RECATNet are presented in Sect. 4.

Section 5 is devoted to the algebra for composing Web services and its RECATNets-

based formal semantics. A case study is presented in Sect. 6. Section 7 presents the

analysis method and the verification process. Finally, Sect. 8 concludes and gives

some further research directions.

2 Related Works

The composition of web services requires the modelling of different combinations of

web services involved in this composition [9]. The modelling of web services com-

position is addressed in several papers. In this section, we briefly overview some

approaches that are closely related to our work. In [10], the authors propose in their

project e-flow to use workflow management system in order to compose web ser-

vices. However, this approach lacks a formal model for specifying web services

composition. In [11], the authors developed a Petri net based approach that uses

several structural properties for identifying inconsistent dependency specification in

a workflow. However, the proposed approach is restricted to acyclic workflows. In

[3], the authors propose a Petri net-based algebra for composing web services. They

provide a direct mapping from each composition operator to Petri nets. Their model

is expressive enough; but data types cannot distinguish because they used elemen-

tary Petri nets. Contrary to our model, data types can be distinguished because the

model used the expressive power of abstract data types. In [4], the authors used col-

ored Petri nets [12] for modelling web services and their composition where data

types can be distinguished. However, the author focalise in modeling, only, simple

patterns. The author propose in [13] a model for composing web services based high

High Level Petri Net Modelling and Analysis . . . 165

level Petri nets, called G-nets. In this model, the authors propose to compose web ser-

vices via special places called instantiated switch places. For the analysis, the author

need to tranform their G-net models into Predicate/Transition nets (PrT-nets). How-

ever, some useful patterns like multiple instance and cancellation of service are not

addressed. In [14], the author present a review of forty-three patterns for modeling

business process using Colored Petri-Net (CPN). However, we note that the pattern

of multiple instantiation of a sub-process is difficult to implement when a particular

instance of a sub-process initiates other sub-process instances or involves recursive

calls to the one of these ancestors process. This is even more complex when the num-

ber of such instances is not known prior to the execution of the process or where such

instances require synchronization on many levels. One of the weakness of the previ-

ous approach is their lack a support for modeling useful advanced patterns like mul-

tiple instance and cancellation of service. In order to address this issue, we present a

modular and hierarchical formalism called RECATNet that allows composition via

abstract transitions. The usefulness of our proposed model is: (1) offering a practi-

cal mechanisms for handling the most advanced flow patterns (dynamic) multiple

instance and cancellation of Web service, (2) providing a hierarchical composition

of web services, (3) its modular specification and its flexibility by adding/removing

service’s instances in a dynamic manner, (4) allowing distributed execution of web

services composition and (5) its semantic may be defined in terms of conditional

rewriting logic [7] therefore, the model-checker MAUDE [8] can be used to check

its correctness.

3 Recursive ECATNet Review

Recursive ECATNets (abbreviated RECATNets) [6] are a kind of high level alge-

braic Petri nets combining the expressive power of abstract data types and Recursive

Petri nets [5]. Each place in such a net is associated to a sort (i.e. a data type of the

underlying algebraic specification associated to this net). The marking of a place is a

multiset of algebraic terms (without variables) of the same sort of this place. More-

over, transitions in RECATNet are partitioned into two types (Fig. 1): elementary

and abstract transitions. Each abstract transition is associated to a starting marking,

denoted like a multi-set of places put inside bracket. A capacity associated to a place

p specifies the number of algebraic terms which can be contained in this place for

(a) (b)

Fig. 1 Transition types in RECATNets. a Elementary transition. b Abstract transition

166 A. Kheldoun et al.

Table 1 Different forms of

Input Condition IC(p, t)
IC(p, t) Enabling condition

a0 The marking of the place p must be equal to

a (e.g. IC(p, t) = 𝜙

0
means the marking of p

must be empty)

a+ The marking of the place p must include a
(e.g. IC(p, t) = 𝜙

+
means condition is always

satisfied)

a− The marking of the place p must not include

a, with a ≠ 𝜙

𝛼1 ∧ 𝛼2 Conditions 𝛼1 and 𝛼2 are both true

𝛼1 ∨ 𝛼2 𝛼1 or 𝛼2 is true

each element of the sort associated to p. As shown in Fig. 1, the places p and p′ are

respectively associated to the sorts s and s′ and to the capacity c and c′. An arc from

an input place p to a transition t (elementary or abstract) is labelled by two algebraic

expressions IC(p, t) (Input Condition) and DT(p, t) (Destroyed Tokens). The expres-

sion IC(p, t) specifies the partial condition on the marking of the place p for the

enabling of t (see Table 1). The expression DT(p, t) specifies the multiset of terms to

be removed from the marking of place p when t is fired. Also, each transition t may

be labelled by a Boolean expression TC(t) which specifies an additional enabling

condition on the values taken by contextual variables of t (i.e. local variables of the

expressions IC and DT labelling all the input arcs of t). When the condition TC(t)
is omitted, the default value is the term True. For an elementary transition t, an out-

put arc (t, p′) connecting this transition t to a place p′ is labelled by the expression

CT(t, p′) (Created Tokens). However, for an abstract transition t, an output arc (t, p′)
is labelled by the expression ⟨i⟩CT(t, p′) (Indexed Created Tokens). These two alge-

braic expressions specify the multiset of terms to produce in the output place p′ when

the transition t is fired. In the graphical representation of RECATNets, we note the

capacity of a place regarding an element of its sort only if this number is finite.

If IC(p, t) =def DT(p, t) on input arc (p, t) (e.g. IC(p, t) = a+ and DT(p, t) = a), the

expression DT(p, t) is omitted on this arc. In what follows, we note Spec = (Σ,E)
an algebraic specification of an abstract data type associated to a RECATNet, where

Σ = (S,OP) is its multi-sort signature (S is a finite set of sort symbols and OP is a

finite set operations, such OP ∩ S = 𝜙). E is the set of equations associated to Spec.

X = (Xs)s∈S is a set of disjoint variables associated to Spec where OP ∩ X = 𝜙 and

Xs is the set of variables of sort s. We denote by TΣ,s(X) the set of S-sorted S-terms

with variables in the set X.[TΣ(X)]⊕ denotes the set of the multisets of the Σ-terms

TΣ(X) where the multiset union operator (
⊕

) is associative, commutative and admits

the empty multiset 𝜙 as the identity element.

Definition 1 A recursive ECATNet is a tupleRECATNet = ⟨Spec;P,T ,F; sort,Cap,
IC,DT ,CT ,TC, I,Υ, ICT ,K⟩ where:

∙ Spec = (Σ,E) is a many sorted algebra where the sorts domains are finite (with

Σ = (S,OP)), and X = (Xs)s∈S is a set of S-sorted variables,

High Level Petri Net Modelling and Analysis . . . 167

∙ [P,T ,F] is a net where (T ∩ P = 𝜙) and T = Telt ∪ Tabs is finite set of transi-

tions partitioned into abstract and elementary ones. Tabs and Telt denoted the set

of abstract and elementary transitions,

∙ sort: P → S, is a mapping called a sort assignment,

∙ Cap: is a P-vector on capacity places: p∈P, Cap(p): TΣ(𝜙) → ℕ ∪ {∞},

∙ IC ∶ P × T → [TΣ,sort(p)(X)]∗
⊕

where ∗∈ {0,+,−} maps a multiset of terms for

every input arc,

∙ DT ∶ P × T → [TΣ,sort(p)(X)]⊕ maps a multiset of terms for every input arc,

∙ CT ∶ P × T → [TΣ,sort(p)(X)]⊕ maps a multiset of terms for every output arc (p, t)
where t ∈ Telt and a starting marking associated to t ∈ Tabs according to place p,

∙ TC ∶ T → [TΣ,bool(X)] maps a boolean expression for each transition,

∙ I = Icut ∪ Ipre is a finite set of indices, called termination indices, dedicated to cut

steps and preemptions (interruptions) respectively,

∙ Υ is a family, indexed by I, of effective representation of semi-linear sets of final

markings,

∙ ICT ∶ P × Tabs × I → [TΣ,sort(p)(X)]⊕ maps a multiset of terms for every output arc

(p, t, i) where t ∈ Tabs and i ∈ I,
∙ K ∶ Telt → Tabs × Ipre, maps a set of interrupted abstract trasitions, and their asso-

ciated termination indexes, for every elementary transition.

Let’s use the net presented in Fig. 2a to highlight RECATNet’s graphical symbols and

associated notations. (1) An elementary transition is represented by a filled rectangle;

its name is possibly followed by a set of terms t′⟨i⟩ ∈ Tabs × I. Each term specifies

an abstract transition t′ which is under the control of t, associated with a termination

index to be used when aborting t′ consequently to a firing of t. For instance tcancel is an

elementary transition where its firing preempts threads started by the firing of t1 and

the associated termination index is 1. (2) An abstract transition t is represented by a

double rectangles with the center filled; its name is followed by the starting marking

CT(t). For instance, t1 is an abstract transition and CT(t1) = ⟨p5,Rq⟩ means that

any thread created by firing of t1 starts with one token i.e. one request Rq in place

p5. (3) Any termination set can be defined concisely based on place marking. For

instance, Υ0 specifies the final marking of threads such that the place p6 is marked at

least by one token. (4) The set I of termination indices is deduced from the indices

used to subscript the termination sets and from the indices bound to elementary

(a) (b)

Fig. 2 Example of a RECATNet and two possible firing sequences

168 A. Kheldoun et al.

transitions i.e. interruption. From the example I = {0, 1}. Informally, a RECATNet

generates during its execution a dynamical tree of marked threads called an extended

marking, which reflects the global state of such net. This latter denotes the fatherhood

relation between the generated threads (describing the inter-threads calls). Each of

these threads has its own execution context.

Definition 2 (Extendedmarking) An extended marking of a RECATNet is a labelled

rooted tree denoted Tr = ⟨V ,M,E,A⟩ where:

∙ V is the set of nodes (i.e. threads),

∙ M is a Mapping V → [TΣ(𝜙)]⊕ associating an ordinary marking with each node

of the tree, such that ∀v ∈ V ,∀p ∈ P,M(v)(p) ≤ Cap(p),
∙ E ⊆ V × V is the set of edges,

∙ A is a mapping E → Tabs associating an abstract transition with each edge.

Note that contrary to ordinary nets, RECATNet are often disconnected since each

connected component may be activated by the firing of abstract transitions.

Running example. Figure 2b highlights a possible firing sequences of the

RECATNet represented in Fig. 2a. The graphical representation of any extended

marking Tr is a tree where an arc v1(m1) → v2(m2) labeled by tabs means that v2 is a

child of v1 created by firing abstract transition tabs and m1 (resp. m2) is the marking

of v1 (resp. v2). Note that the initial extended marking Tr0 is reduced to a single node

v0 whose marking is ⟨p1,Rq1⟩⊗ ⟨p0, ok⟩. From the initial extended marking Tr0, the

abstract transition t1 is enabled; its firing leads to the extended marking Tr1 which

contains a fresh node v1 marked by the starting marking CT(t1). Then, the firing of

the elementary transition t2 from node v1 of Tr1 leads to an extended marking Tr2,

having the same structure as Tr1 but only the marking of node v1 is changed. From

node v1 in Tr2, the cut step 𝜏0 is enabled; its firing leads to an extended marking Tr3
by removing the node v1 and change the marking on its node father i.e. v0 by adding

ICT(t1, 0) = (p4, achieved). Also, another way to remove nodes in extended marking

using elementary transition with associated preemption. For instance, from node v0
in Tr1, the elementary transition tcancel with associated preemption (t1, 1) is enabled;

its firing leads to an extended marking Tr4 by removing the node v1 and change the

marking on its node father i.e. v0 by adding ICT(t1, 1) = (p3, cancelled). More details

about RECATNets such as formal firing and fundamental properties are presented

in [6, 15]. This paper shows the usefulness of using the formalism of RECATNets

in the field of Web services composition.

4 Modeling Web Services Using RECATNet

We give now a formal definition of a Web service.

Definition 3 (Web Service) A Web service is a tuple [3] S = ⟨NameS,Desc,Loc,
URL,CS,RECATNetS⟩ where:

High Level Petri Net Modelling and Analysis . . . 169

∙ NameS is the name of the service used as its unique identifier,

∙ Desc is the description of the provided service. It summarizes what functionalities

the service offers,

∙ Loc is the server in which the service is located,

∙ URL is the invocation of the Web service,

∙ CS is a set of the component services of the Web service, if CS = {NameS} then

S is a basic service, otherwiseS is a Composite service,

∙ RECATNetS = ⟨Spec;P,T ,F; sort,Cap, IC,DT ,CT ,TC, I,Υ, ICT ,K⟩ is the

RECATNet service modeling the dynamic behavior of the Web service.

We show in the next section how Web services can be incrementally composed.

5 Web Services Composition

The common control structure in Web services composition usually includes sim-

ple patterns like: sequential, choice, iteration, parallel and discriminator operators

and complex patterns like multiple instance and cancellation service [14]. Suppose

S1, S2 and S3 are three different atomic Web services i.e. each service Si perfoms

an individual operation that cannot be split into sub-operations. The algebra opera-

tor descriptions of these control structure can be seen as: S = 𝜀 ∣ S1 ∙ S2 ∣ S1 + S2 ∣
𝜇(S1) ∣ S1 ∥ S2 ∣ (S1 ∣ S2) ⊳ S3 ∣ (S1)⋆ ∣ S1! where:

∙ 𝜀 stands for an empty service, i.e., a service performs no operation.

∙ S1 ∙ S2 performs the service S1 followed by the service S2, i.e., ∙ is an operator of

sequence.

∙ S1 + S2 can reproduce either the behavior S1 or S2, i.e., + is an alternative operator.

∙ 𝜇(S1) represents a composite service where the behavior S1 may be executed mul-

tiple times, i.e., 𝜇 is an iteration operator.

∙ S1 ∥ S2 performs concurrently the two services S1 and S2 i.e., ∥ is a Parallel oper-

ator.

∙ (S1 ∣ S2) ⊳ S3 waits for the execution of one service (among the S1 and S2) before

activating the service S3 i.e.⊳ is a discriminator operator. Note that S1 and S2 are

executed in parallel and independently,

∙ (S1)⋆ repressents a composite service which allows creating multiple instances of

a given Web service S1. These instances are independent of each other and run

concurrently,

∙ S1! represents a composite service which if the Web service S1 has started, it is dis-

abled and, where possible, the currently running instance is halted and removed.

In this section, we give a formal definition, in term of RECATNet, of the com-

position operators. Let specified, as defined in Definition 1, each atomic Web ser-

vice by Si = ⟨NameSi,Desci,Loci,URLi,CSi,RECATNetSi⟩ where RECATNetSi =⟨Speci;Pi,Ti,Fi; sorti,Capi, ICi,DTi,CTi,TCi, Ii,Υi, ICTi,Ki⟩. Let’s define a func-

tion initMarking(WS) that is used to return the start marking i.e. initial state of the

170 A. Kheldoun et al.

invoked Web serviceWS. The following notations are common to all the composition

operators:

∙ NameS is the name of the new service,

∙ Desc is the description of the new service,

∙ Loc is the location of the new service,

∙ URL is the invocation of the new service.

5.1 Empty Service

The empty service 𝜀 is a service that performs no operation. It is used for technical

and theoretical reasons.

Definition 4 The empty service is defined as 𝜀 = ⟨NameS,Desc,Loc,URL,CS,
RECATNetS⟩ where:

∙ NameS = Empty
∙ Desc = “EmptyWebService”

∙ Loc = Null stating that there is no server for the service,

∙ URL = Null stating that there is no URL for the service,

∙ CS = {Empty} and

∙ RECATNetS = ⟨Spec; {p}, 𝜙, 𝜙;𝜙, 𝜙, 𝜙, 𝜙, 𝜙⟩
In Fig. 3a, we show the graphic representation of the empty service 𝜀.

5.2 Sequence

The sequence operator allows the construction of a service composed of two services

executed one after the other. This is typically the case when a service should wait

the execution result of another one before starting its execution.

(a)

(b)

(c)

Fig. 3 Empty service (a), sequence service (b) and choice service (c)

High Level Petri Net Modelling and Analysis . . . 171

Definition 5 The sequence operator S1 ∙ S2 is defined as S = ⟨NameS,Desc,Loc,
URL,CS,RECATNetS⟩ where:

∙ CS = CS1 ∪ CS2 and

∙ RECATNetS = ⟨Spec;P,T ,F; ...⟩ where: P = {p1 ∪ p2 ∪ p3}, T = {t1 ∪ t2}, F =
{(p1, t1), (t1, p2), (p2, t2), (t2, p3)}, CT = {(t1, initMarking(S1)), (t2, initMarking
(S2))}.

Graphically, given two services S1 and S2, the composite service S1 ∙ S2 is repre-

sented by the RECATNet shown in Fig. 3b.

5.3 Choice

Given two services S1 and S2, the choice (alternative) operator allows modelling the

execution of either S1 or S1, but not both.

Definition 6 The choice operator S1 + S2 is defined as S = ⟨NameS,Desc,Loc,URL,
CS,RECATNetS⟩ where:

∙ CS == CS1 ∪ CS2 and

∙ RECATNetS = ⟨Spec;P,T ,F; ...⟩ where: P = {p1 ∪ p2}, T = {t1 ∪ t2}, F =
{(p1, t1), (p1, t2), (t1, p2), (t2, p2)}, CT = {(t1, initMarking(S1)), (t2, initMarking
(S2))}.

Graphically, given two services S1 and S2, the composite service S1 + S2 is repre-

sented by the RECATNet shown in Fig. 3c.

5.4 Iteration

The iteration operator allows a service S to be performed a certain number of times.

Definition 7 The iteration operator𝜇(S1) is defined as S = ⟨NameS,Desc,Loc,URL,
CS,RECATNetS⟩ where:

∙ CS = CS1 and

∙ RECATNetS = ⟨Spec;P,T ,F; ...⟩ where: P = {p1 ∪ p2}, T = {t1 ∪ t2}, F =
{(p1, t1), (p1, t2), (t2, p2)}, CT = {(t1, initMarking(S1))}.

Graphically, if we consider the service S1, the composite service 𝜇(S1) is represented

by the RECATNet shown in Fig. 4a.

172 A. Kheldoun et al.

(a)
(b)

(c)

Fig. 4 Iteration (a), parallel (b) and discriminator service (c)

5.5 Parallel

Given two services S1 and S1, the parallel operator builds a composite service per-

forming the two services in parallel and without interaction between them. The

accomplishment of the resulting service is achieved when the two services are com-

pleted.

Definition 8 The parallel operator S1 ∥ S2 is defined as S = ⟨NameS,Desc,Loc,
URL,CS,RECATNetS⟩ where:

∙ CS = CS1 ∪ CS2 and

∙ RECATNetS = ⟨Spec;P,T ,F; ...⟩ where: P = {p1 ∪ p2 ∪ p3 ∪ p4}, T = {t1 ∪ t2 ∪
t3}, F = {(p1, t1), (t1, p2), (t1, p3), (p2, t2), (p3, t3), (t3, p4), (t3, p4)}, CT = {(t2,
initMarking(S1)), (t3, initMarking(S2))}.

Graphically, if we consider two services S1 and S2, the composite service S1 ∥ S2 is

represented by the RECATNet shown in Fig. 4b.

5.6 Discriminator

Two or more equivalent services are invoked in parallel to achieve a given task but

only one is required to finish before proceeding with the invocation of the next com-

posed services of the composite service. It is presumed that these services are equiv-

alent in terms of functionalities. The results of the first service to finish are used

while the results of the remaining invoked services are ignored. At least one service

of the invoked set of services must succeed for the composite service to succeed. The

main goal of the discriminator operator is to increase reliability and delays of the ser-

vices through the Web. For the customers, best services are those which respond in

optimal time and are constantly available.

Definition 9 The discriminator operator (S1 ∣ S2) ⊳ S3 is defined as S = ⟨NameS,
Desc,Loc,URL,CS,RECATNetS⟩ where:

High Level Petri Net Modelling and Analysis . . . 173

∙ CS = CS1 ∪ CS2 ∪ CS3 and

∙ RECATNetS = ⟨Spec;P,T ,F; ...⟩ where: P = {p1 ∪ p2 ∪ p3 ∪ p4 ∪ p5 ∪ p6}, T =
{t1 ∪ t2 ∪ t3 ∪ t4 ∪ t5}, F = {(p1, t1), (t1, p2), (t1, p3), (t1, p5), (t2, p4), (t3, p4), (p4,
t4), (p4, t5, (p5, t5), (t4, p6), (t5, p6))}, CT = {(t2, initMarking(S1)), (t3, initMarking
(S2)), (t5, initMarking(S3))}.

Graphically, if we consider three Web services S1, S2 and S3, the composite service

(S1 ∣ S2) ⊳ S3 is represented by the RECATNet shown in Fig. 4c.

5.7 Multiple Instance Service

Multiple instance operator allows for a given Web service to be instantiated multiple

times in a business process. The number of instances is not known during the design

or run time. These instances are run concurrently but, whilst they are running, new

ones can be created.

Definition 10 Multiple instance service operator (S1)⋆ is defined as S = ⟨NameS,
Desc,Loc,URL,CS,RECATNetS⟩ where:

∙ CS = CS1 and

∙ RECATNetS = ⟨Spec;P,T ,F; ...⟩ where: P = {p1 ∪ p2 ∪ pcreate ∪ pstopcreate}, T =
{t1 ∪ taddIns ∪ tremove},F = {(p1, t1), (t1, p2), (p1, taddIns), (taddIns, p1), (pcreate, taddIns),
(pcreate, tremove), (tremove, pstopcreate)}, CT = {(t1, initMarking(S1))}.

Graphically, if we consider a Web service S1, the composite service (S1)⋆ is repre-

sented by the RECATNet shown in Fig. 5a.

5.8 Cancel Service

The cancel service operator provides the ability to stop a running instance of a Web

service. For instance, the purchaser can cancel his buyonline’s order at any time

before it starts or during its running but not after the payment was done.

(a) (b)

Fig. 5 Multiple instance service (a) and Cancel service (b)

174 A. Kheldoun et al.

Definition 11 Cancel service operator S1! is defined as S = ⟨NameS,Desc,Loc,
URL,CS,RECATNetS⟩ where:

∙ CS = CS1 and

∙ RECATNetS = ⟨Spec;P,T ,F; ...⟩ where: P = {p1 ∪ p2 ∪ p3 ∪ pstartCancel ∪
pendCancel}, T = {t1 ∪ tcancel}, F = {(p1, t1), (t1, p2, ⟨0⟩), (t1, p3, ⟨1⟩), (pstartCancel,
tcancel), (tcancel, pendCancel)},

CT = {(t1, initMarking(S1))}, K(tcancel) = (t1, 1).

Graphically, if we consider a Web service S1, the composite service S1! is represented

by the RECATNet shown in Fig. 5b.

6 A Case Study

Figure 6 shows an illustrative example of modelling a simplified BuyOnline ser-

vice adapted from [16]. BuyOnline web service provides online book buying ser-

vice which is composed of four atomic services: LocateBook, SigIn, CreateAcct and

Payement. The composite web service may receive a list of request, sent by users,

through the Place StartBO. Each request is represented by a token (ID,BN, SII,CAI,
CCI) denotes repsectivelly Identifier,BookName, SignInInfo,CreateAcctInfo,Credit
CardInfo. At the beginning, BuyOnline service starts by searching a book in web site

according to the book name using service LocateBook. This operation is performed

by firing the abstract transition LocateBook which, if this book can be found, returns

its ISBN number. Then, the user can by this book but a valid register is required.

If the user has a legal account, then finish loging using service SignIn; otherwise

the user needs to create a new account using the service CreateAcct. In the last one,

informations about the created account must be returned i.e. CAO ≠ 𝜙. Finally, the

service payment can finish the payment for the book according to ISBN number

and credit card information CCI provided by user. Two cases are distinguished, if

the credit card information are valid, the service payment will perform the payment

by success; otherwise the service payment terminates by error i.e. echecP, and an

error meaasge CCI − not − valid is sent to user. Note that the user can cancel his/her

online book buying service by firing the elementary transition CancelBO. Note that

for each request sent by user, an instance of BuyOnline service is created. These

instances are independent and may be executed in a distributed manner. In order

to support dynamic creation instances of BuyOnline service, we need to update the

model according to the pattern of Multiple instance operator shown in Fig. 5a. Here,

and in order to perform analysis, we assume that our model is finite i.e. starts by a

finite set of requests.

High Level Petri Net Modelling and Analysis . . . 175

Fig. 6 BuyOnline book service

7 Verification of Web Services Composition

Our approach of verification can be described in Fig. 7. First, atomic services must be

described in their associated RECATNets. Then, based on composition rules defined

previously, generates the composite web services in terms of RECATNet. This opera-

tion may be insured by our java’s tool RECATNet-WSC that is partially implemented.

After that, from the obtained RECATNet, we generate in an automated manner its

semantics in terms of rewriting logic [7] using the model-to-text (M2T) transforma-

tion tool Acceleo.
1

The rewriting logic files are used as an input of the model-checker

Maude [8] to investigate several behavioral properties of Web services composition.

1
http://www.eclipse.org/acceleo/.

http://www.eclipse.org/acceleo/

176 A. Kheldoun et al.

Fig. 7 Our approach

Fig. 8 RECATNets meta-model

7.1 RECATNets Meta-Modeling

In order to use M2T transformation using tool Acceleo, we need to define the meta-

model of RECATNet. As shown in Fig. 8, we propose a general meta-model of our

formalism using the UML class diagram model. Our proposed meta-model is com-

posed mainly of the following classes.

∙ RECATNet: it builds the final model from a set of Place, Arc, Transition and

CutStep.

∙ Place: it represents the RECATNet places. It has three attributes :name, marking
and capacity.

High Level Petri Net Modelling and Analysis . . . 177

∙ Transition: it represents the RECATNet transitions. It has three attributes: name,

TC and K. One classe inherits from the super-class Transition: AbsTransition for

abstract transition. This class contains one attribute startMarking.

∙ Arc: it represents the RECATNet arcs. It contains one attribute inscription. This

class is a super-class of two classes. The first one is InputArc for arcs going from

places to transitions. It contains two attributes IC for Input Condition and DT
for Destroyed Token. The second is OutputArc for arcs going from transitions to

places. It contains only the attribute CT for Created Token. In addition, the last

class is a super-class of IndexedOutputArc for arcs going from abstract transition to

places. It contains one attribute index to identify the set of indices of termination.

∙ CutStep: it represents the RECATNet cut steps. It contains two attributes index to

identify the index of termination and condition to identify the condition for firing

the cut step.

7.2 RECATNet Semantics in Terms of Rewriting Logic

RECATNet’s semantics may be defined, easily, in terms of rewriting logic, therefore

someone can use the LTL model-checker of MAUDE to investigate several behav-

ioral properties of Web services compositions. A set of rewriting rules has been

introduced in [6, 15] in order to express the semantics of RECATNet in terms of

rewriting rules. In order to automate this approach, we have developed a model-to-

text (M2T) transformation tool based Acceleo generator code. The transformation’s

rules have been inspired from rewriting rules proposed in [6]. For instance, if we con-

sider the RECATNet of the atomic service Payment in Fig. 6, the generated Maude

specification using M2T transformation is shown in Fig. 9. In fact, three rewriting

rules are generated associated to the three elementary transitions in the RECAT-

Net of the atomic service Payment in Fig. 6. For instance, the rewriting rule in line

4 rl[Payment-running] describes the firing of the elementary transition Payment-
running. So, this rewrite rule requires that the left-hand side is a marking where

the place Payment-Ready is marked and yields to a marking i.e. the right-hand side,

where the place EndP is marked.

Fig. 9 Generated Maude specification

178 A. Kheldoun et al.

7.3 Implementation Using the Maude Tool

An important property will be checked in Web service composition called soundness
which concerns the correctness of internal control-flow of a composite Web service.

The soundness of a Web services component is based on two criteria:

∙ Proper termination: This property called also compatibility of component Web

services [17]. Proper termination means that starting from an initial extended

marking, every possible execution path properly terminates (eventually) i.e.

reaches a final extended marking. This property is expressed in LTL by the fol-

lowing formula: F finalState where the proposition finalState is valid in extended

marking Tr if this latter is reduced to its root node with only terms in place

ReqAchieved. The temporal operator F is denoted by ⟨⟩ in MAUDE notation. This

formula has been proven to be true by MAUDE LTL-model checker in Fig. 10.

∙ No dead service: This property means that every atomic Web service must be

invoked, at least, once. This requirement imposes that the Web services com-

ponent should not contain Web services that can never be executed. In order

to check this property, we define the proposition isInvoked(ws) which is valid

in an extended marking Tr, if the specified Web service ws is invoked i.e. is

running. Thus, to check that there is no dead service, we express the nega-

tion of this formula as the following LTL formula
⋁

ws∈WS
G¬isInvoked(ws) where

WS is the set of atomic web services used during composition. Here, WS =
{LocateBook, SigIn,CreateAcct,Payement}. If this formula is not valid, it means

that the property No dead service is verified. The temporal operators G (Gener-

ally) and ¬ (not) are denoted, respectively, by [] and ∼ in MAUDE notation. In

our case study, as we have a choice between the service SigIn and CreateAcct,
this formula is expressed in LTL as following: [] ∼ isInvoked(LocateBook)∖∕[] ∼
(isInvoked(SignIn)∖∕isInvoked(CreateAcct))∖∕ [] ∼ isInvoked(Payment). This for-

mula has been proven to be not valid by MAUDE LTL-model checker in Fig. 11.

The model-checker returns the expected counterexample.

As the two properties Proper termination and No dead service are proved to be

valid, therefore, the generated composite Web service is sound.

Fig. 10 Checking Proper termination property under Maude

High Level Petri Net Modelling and Analysis . . . 179

Fig. 11 Checking No dead service property under Maude

8 Conclusion

In this paper, an effecient and flexible approach for Web services composition has

been proposed. This approach takes fully advantage of modular, distributed exe-

cution aspects of RECATNets formalism. The formal semantic of the composition

operators is expressed easily in terms of RECATNets by providing a direct transfor-

mation of each operator in terms of RECATNets. In fact, the model of RECATNets is

particularly adequate for handling the most advanced flow patterns such as dynamic

creation of processes and specifying exceptional behaviors in WSC at design time.

Also, our method allows the verification of some properties using the LTL model-

checker of the Maude system. In the future, we plan to complete this work by devel-

oping a tool capable of making automatic the mapping WSDL-descriptions into

RECATNets.

References

1. Berardi, D., Calvanese, D., Giacomo, G., Lenzerini, M., & Mecella, M. (2003). Automatic

composition of e-services that export their behavior. Service-Oriented Computing—ICSOC
2003 (Vol. 2910, pp. 43–58), series Lecture Notes in Computer Science.

2. Lucchi, R., & Mazzara, M. (2007). A pi-calculus based semantics for ws-bpel. The Journal of
Logic and Algebraic Programming, 70(1), 96–118.

180 A. Kheldoun et al.

3. Hamadi, R., & Benatallah, B. (2003). A petri net-based model for web service composition.

Proceedings of the 14th Australasian Database Conference (Vol. 17, pp. 191–200), series

ADC ’03.

4. Zhang, Z.-L., Hong, F., & Xiao, H.-J. (2008). A colored petri net-based model for web service

composition. Journal of Shanghai University (English Edition), 12(4), 323–329.

5. Haddad, S., & Poitrenaud, D. (2007). Recursive petri nets: Theory and application to discrete

event systems. Acta Informatica, 44(7), 463–508.

6. Barkaoui, K., & Hicheur, A. (2008). Towards analysis of flexible and collaborative workflow

using recursive ecatnets. In: A. Hofstede, B. Benatallah & H.-Y. Paik (Eds.), Business Process
Management Workshops (vol. 4928, pp. 232–244), series Lecture Notes in Computer Science.

7. Bruni, R., & Meseguer, J. (2006). Semantic foundations for generalized rewrite theories. The-
oretical Computer Science, 360(1), 386–414.

8. Clavel, M. et al. (2007). Maude manual (version 2.3). http://maude.cs.uiuc.edu.

9. Srivastava, B., & Koehler, J. (2003). Web service composition—current solutions and open

problems. In: ICAPS 2003 Workshop on Planning for Web Services (pp. 28–35).

10. Casati, F., Ilnicki, S., Jin, L.-J. & Shan, M.-C. (2000). An Open, Flexible, and Configurable
System for Service Composition (pp. 125–132).

11. Adam, N. R., Atluri, V., & Huang, W.-K. (1998). Modeling and analysis of workflows using

petri nets. Journal of Intelligent Information Systems, 10(2), 131–158.

12. Jensen, K. (1990). Coloured petri nets: A high level language for system design and analysis.

Technical Report.

13. Chemaa, S., Elmansouri, R., & Chaoui, A. (2013). Web services modeling and composition

approach using object-oriented petri nets. CoRR, abs/1304.2080.

14. Russell, N., ter Hofstede, A., van der Aalst, W., & Mulyar, N. (2006). Workflow control-flow

patterns: A revised view, BPM Center, Technical Report BPM-06-22.

15. Barkaoui, K., Boucheneb, H., & Hicheur, A. (2009). Modelling and Analysis of Time-
constrained Flexible Workflows with Time Recursive Ecatnets (vol. 5387, pp. 19–36), series

Lecture Notes in Computer Science. Berlin, Heidelberg: Springer.

16. Ding, Z., Wang, J., & Jiang, C. (2008). An approach for synthesis petri nets for modeling and

verifying composite web service. Journal of Information Science and Engineering 1309–1328.

17. Li, X., Fan, Y., Sheng, Q., Maamar, Z., & Zhu, H. (2011). A petri net approach to analyzing

behavioral compatibility and similarity of web services. IEEE Transactions on Systems, Man
and Cybernetics, Part A: Systems and Humans, 41(3), 510–521.

http://maude.cs.uiuc.edu

PMRF: Parameterized Matching-Ranking
Framework

Fatma Ezzahra Gmati, Nadia Yacoubi-Ayadi, Afef Bahri,
Salem Chakhar and Alessio Ishizaka

Abstract The PMRF (Parameterized Matching-Ranking Framework) is a highly

configurable framework supporting a parameterized matching and ranking of Web

services. This paper first introduces the matching and ranking algorithms supported

by the PMRF. Next, it presents the architecture of the developed system and dis-

cusses some implementation issues. Then, it provides the results of performance

evaluation of the PMRF. It also compares PMRF to two exiting frameworks, namely

iSeM-logic-based and SPARQLent. The different matching and ranking algorithms

have been evaluated using the OWLS-TC4 datasets. The evaluation has been con-

ducted employing the SME2 (Semantic Matchmaker Evaluation Environment) tool.

The results show that the algorithms behave globally well in comparison to iSeM-

logic-based and SPARQLent.

F.E. Gmati ⋅ N. Yacoubi-Ayadi

RIADI Research Laboratory, National School of Computer Sciences,

University of Manouba, 2010, Manouba, Tunisia

e-mail: fatma.ezzahra.gmati@gmail.com

N. Yacoubi-Ayadi

e-mail: nadia.yacoubi.ayadi@gmail.com

A. Bahri

MIRACL Laboratory, Higher School of Computing and Multimedia,

Technopole Sfax, 3021 Sfax, Tunisia

e-mail: afef.bahri@gmail.com

S. Chakhar (✉) ⋅ A. Ishizaka

Portsmouth Business School and Centre for Operational Research and Logistics,

University of Portsmouth, Portland Street, Portsmouth PO1 3AH, UK

e-mail: salem.chakhar@port.ac.uk

A. Ishizaka

e-mail: alessio.ishizaka@port.ac.uk

© Springer International Publishing Switzerland 2016

R. Lee (ed.), Software Engineering Research, Management
and Applications, Studies in Computational Intelligence 654,

DOI 10.1007/978-3-319-33903-0_13

181

182 F.E. Gmati et al.

1 Introduction

The matchmaking is a crucial operation in Web service composition. The objective

of the matchmaking is to discover and select the most appropriate (i.e., that responds

better to the user request) Web service among the different available candidates.

Several matchmaking frameworks are now available in the literature, e.g., [1, 14,

16, 17, 19, 20, 23, 24, 26–28]. However, most of these frameworks present at least

one of the following shortcomings:

1. use of strict syntactic matching, which generally leads to low recall and low pre-

cision of the retrieved services;

2. use of capability-based matchmaking, which is proven [6] to be inadequate in

practice;

3. lack of customization and configurability support for both the user and the

provider;

4. lack of accurate ranking of matching Web services, especially within semantic-

based matching.

Several conceptual and algorithmic solutions to jointly deal with the previous

shortcomings are under investigation in an ongoing research project. The first results

are given in [8]. The objective of this paper is to present the developed prototype,

PMRF (Parameterized Matching-Ranking Framework), supporting the different pro-

posed matching and ranking algorithms. The paper first introduces the matching and

ranking algorithms supported by the PMRF. Then, it presents the architecture of the

developed system and discusses some implementation issues. Finally, it provides

the results of performance evaluation of the PMRF and also compares it to two well-

known matchmakers, namely iSeM-logic-based [11] and SPARQLent [21, 22].

To evaluate the performance of PMRF, we used seven different configurations

with different versions of matching and ranking algorithms. All the algorithms have

been evaluated using the OWLS-TC4 datasets. The evaluation has been conducted

employing the SME2 (Semantic Matchmaker Evaluation Environment) tool [12].

The results show that the algorithms behave globally well in comparison to iSeM-

logic-based and SPARQLent.

The rest of the paper is organized as follows. Section 2 reviews the matching and

ranking algorithms. Section 3 presents the architecture of the PMRF. Section 4 stud-

ies the performance of the PMRF. Section 5 compares the PMRF to other similar

frameworks. Section 6 comments on the users/providers acceptability. Section 7 dis-

cusses some related work. Section 8 concludes the paper.

2 Matching and Ranking Algorithms

In this section, we briefly review the matching and ranking algorithms supported by

the PMRF.

PMRF: Parameterized Matching-Ranking Framework 183

2.1 Matching Algorithms

The PMRF supports three matching algorithms: trivial, partially parameterized and

fully parameterized. These algorithms support different levels of customization. The

trivial matching algorithm supports no customization. The partially parameterized

matching algorithm allows the user to specify the set of attributes to be used in the

matching. Within the fully parameterized matching algorithm, three customizations

are taken into account: (i) A first customization consists in allowing the user to spec-

ify the list of attributes to consider; (ii) A second customization consists in allowing

the user to specify the order in which the attributes are considered; and (iii) A third

customization is to allow the user to specify a desired similarity measure for each

attribute. In the rest of this section, we present the third algorithm.

In order to support all the above-cited customizations, we used the concept of

Criteria Table, introduced by [6], that serves as a parameter to the matching process.

A Criteria Table, C, is a relation consisting of two attributes, C.A and C.M. C.A
describes the service attribute to be compared, and C.M gives the least preferred
similarity measure for that attribute. Let C.Ai and C.Mi denote the service attribute

value and the desired measure in the ith tuple of the relation. C.N denotes the total

number of tuples in C.

Let SR be the service that is requested, and SA be the service that is advertised.

Let C be a criteria table. A sufficient match exists between SR and SA if for every
attribute in C.A there exists an identical attribute of SR and SA and the values of the

attributes satisfy the desired similarity measure as specified in C.M. Formally,

∀i∃j,k(C.Ai = SR.Aj = SA.Ak) ∧ 𝜇(SR.Aj, SA.Ak) ⪰ C.Mi
⇒ SuffMatch(SR, SA) 1 ≤ i ≤ C.N. (1)

According to this definition, only the attributes specified by the user in the Criteria

Table are considered during the matching process.

The fully parameterized matching algorithm is formalized in Algorithm 1. This

algorithm follows directly from Sentence (1). Algorithm 1 proceeds as follows: (i)

Loops over the Criteria Table and for each attribute it identifies the corresponding

attribute in the requested service SR and the potentially advisable service under con-

sideration SA. The corresponding attributes are appended into two different lists rAt-
trSet (for requested Web service SA) and aAttrSet (for advisable Web service SA).

This operation is implemented by sentences 1–10 in Algorithm 1; and (ii) Loops over

the Criteria Table and for each attribute it computes the similarity degree between the

corresponding attributes in rAttrSet and aAttrSet. This operation is implemented by

sentences 11–14 in Algorithm 1. The output of Algorithm 1 is either success (if for

every attribute in the Criteria Table C there are similar attribute in the advertised

service SA with a sufficient similarity degree) or fail (if the similarity for at least one

attribute in the Criteria Table C fails).

Let us now focus on the complexity of Algorithm 1. Generally, we have SA.N ≫

SR.N, hence the complexity of the first outer while loop is O(C.N × SA.N). Then, the

184 F.E. Gmati et al.

worst case complexity of Algorithm1 is O(C.N × SA.N) + 𝛼 where 𝛼 is the com-

plexity of computing 𝜇. The value of 𝛼 depends on the approach used to infer

𝜇(⋅, ⋅). As underlined in [6], inferring 𝜇(⋅, ⋅) by ontological parse of pieces of infor-

mation into facts and then utilizing commercial rule-based engines, which use the

fast Rete [7] pattern-matching algorithm leads to 𝛼 = O(|R||F||P|) where |R| is

the number of rules, |F| is the number of facts, and |P| is the average number

of patterns in each rule. In this case, the worst case complexity of Algorithm 1 is

O(C.N × SA.N) + O(|R||F||P|). Furthermore, we observe, as in [6], that the process

of computing 𝜇(⋅, ⋅) is the most ‘expensive’ step of Algorithm 1. Hence, we obtain:

O(C.N × SA.N) + O(|R||F||P|) ≍ O(|R||F||P|).
Algorithm 1: Fully Parameterized Matching

Input : SR, // Requested service.

SA, // Advertised service.

C, // Criteria Table.

Output: Boolean, // fail/success.

while (i ≤ C.N) do1
while

(
j ≤ SR.N

)
do2

if
(
SR.Aj = C.Ai

)
then3

Append SR.Aj to rAttrSet;4
j ⟵ j + 1;5

while
(
k ≤ SA.N

)
do6

if
(
SA.Ak = C.Ai

)
then7

Append SA.Ak to aAttrSet;8
k ⟵ k + 1;9

i ⟵ i + 1;10
while (t ≤ C.N) do11

if
(
𝜇(rAttrSet[t],aAttrSet[t]) ≺ C.Mt

)
then12

return fail;13
t ⟵ t + 1;14

return success;15

Different versions and extensions of this algorithm are available in [4, 5, 8]. We

remark that Algorithm 1 permits to compute the similarly between a requested Web

service SR and an advertised Web service SA. In practice, however, matching process

should consider all the Web services available in the registry. An extended version

of Algorithm 1 that takes into account this fact is given in [8].

2.2 Ranking Algorithms

The PMRF supports three ranking algorithms: score-based, rule-based and tree-

based. The first algorithm relies on the scores only. The second algorithm defines

and uses a series of rules to rank Web services. It permits to solve the ties prob-

lem encountered by the score-based ranking algorithm. The tree-based algorithm is

PMRF: Parameterized Matching-Ranking Framework 185

based on the use of a tree data structure. It permits to solve the problem of ties of the

first algorithm. In addition, it is computationally better than the rule-based ranking

algorithm. In the present paper, we present the score-based ranking algorithm. We

note that the rule-based ranking algorithm is available in [8] while the tree-based

algorithm is given in [9].

The score-based ranking approach is implemented by Algorithm 2. The main

input of this algorithm is a list mServices of matching Web services. The function

ComputeNormalizedScores in Algorithm 2 permits to calculate the scores of Web

services. It implements the idea we proposed in [8]. The score-based ranking algo-

rithm uses then a merge sort procedure (implemented by lines 3–11 in Algorithm 2

to rank the Web services based on their normalized scores.

The list mServices used as input to Algorithm 2 has the following generic defin-

ition:

(SAi , 𝜇(S
A
i .A1, SR.A1),… , 𝜇(SAi .AN , SR.AN)),

where: SAi is an advertised Web service, SR is the requested Web service, N the

total number of attributes and 𝜇(SAi .Aj, SR.Aj) (j = 1,… ,N) is the similarity mea-

sure between the requested Web service and the advertised Web service on the jth
attribute Aj.

The list mServices will be first updated by ComputeNormalizedScores and it will

have the following new generic definition:

(SAi , 𝜇(S
A
i .A1, SR.A1),… , 𝜇(SAi .AN , SR.AN), 𝜌′(SAi)),

where: SAi , SR,N and 𝜇(SAi .Aj, SR.Aj) (j = 1,… ,N) are as described above; and 𝜌
′(SAi)

is the normalized score of advertised Web service SAi .

Algorithm 2: Score-Based Ranking

Input : mServices, // List of matching Web services.

N, // Number of attributes.

Output: mServices, // Ranked list of Web services.

mServices ← ComputeNormalizedScores(mServices,N);1
r ← length(mServices);2
while (i ≤ r) do3

Let rowi be the ith row in mServices ;4
while (j ≤ r) do5

Let rowj be the jth row in mServices ;6
if (mServices[i,N + 2] > mServices[j,N + 2])) then7

tmp ⟵ rowj;8
rowj ⟵ rowi;9
rowi ⟵ tmp;10
update mServices ;11

return mServices ;12

Two versions can be distinguished for the definition of the list mServices at the

input level, along with the way the similarity degrees are computed. The first version

of mServices is as follows:

186 F.E. Gmati et al.

(SAi , 𝜇max(SAi .A1, SR.A1),… , 𝜇max(SAi .AN , SR.AN)),

where: SAi , SR and N are as defined above; and 𝜇max(SAi .Aj, SR.Aj) (j = 1,… ,N) is

the similarity measure between the requested Web service and the advertised Web

service on the jth attribute Aj. In this case, the similarity measure is computed by

selecting the edge with the maximum weight in the matching graph.

The second version of mServices is as follows:

(SAi , 𝜇min(SAi .A1, SR.A1),… , 𝜇min(SAi .AN , SR.AN)),

where SAi , SR and N are as defined above; and 𝜇min(SAi .Aj, SR.Aj) (j = 1,… ,N) is

the similarity measure between the requested Web service and the advertised Web

service on the jth attribute Aj. In this case, the similarity measure is computed by

selecting the edge with the minimum weight in the matching graph.

To obtain the final rank, we need to use these two versions separately and then

combine the obtained rankings. However, a problem of ties may occur since several

Web services may have the same scores with both versions. This will deteriorate

the precision of the ranking algorithm. The tree-based ranking algorithm permits to

completely solve the ties problem.

The function ComputeNormalizedScores in Algorithm 2 has a complexity of

O(r(2 + N2)) where r is the number of Web services and N is the number of

attributes. The length in line 2 is assumed to be a built-in function and its complex-

ity is not considered here. The sentences in lines 3–11 in Algorithm 2 implement a

merge sort procedure, which at best has a time complexity of O(r log r) and in worst

case, it makes O(r2). Hence, the overall complexity of Algorithm 2 in best case is

O(r(2 + N2)) + O(r log r) and in worst case is O(r(2 + N2)) + O(r2).

3 System Architecture and Implementation

In this section, we first present the conceptual and functional architectures of the

PMRF. Then, we discuss some implementation issues.

3.1 System Design and Conceptual Architecture

Figure 1 provides the conceptual architecture of the PMRF. The inputs of the sys-

tem are: the Criteria Table/List, the published Web services repository, the user

request and its corresponding Ontologies. The other parameters (namely, the sim-

ilarity degrees weights and the order functions; see [8]) are computed by the PMRF.

The output of the PMRF is a ranked list of Web services.

PMRF: Parameterized Matching-Ranking Framework 187

Fig. 1 Conceptual architecture of the PMRF

The PMRF is composed of two layers. The role of the first layer is to parse the

input data and parameters and then transfer it to the second layer, which represents

the matching and ranking engine. The Matching Module filters Web service offers

that match with the Criteria Table/List. The result is then passed to the Ranking Mod-

ule. This module produces a ranked list of Web services. The assembler guarantees

a coherent interaction between the different modules in the second layer.

The three main components of the second layer of the PMRF are:

∙ Matching Module: This component contains the different matching algorithms:

– Trivial matching algorithm,

– Partially parameterized matching algorithm,

– Fully parameterized matching algorithm.

∙ Similarity Computing Module: This component supports the different similarity

measure computing approaches:

– Efficient similarity with MinEdge,

– Accurate similarity with MinEdg,

– Accurate similarity with MaxEdge,

– Accurate similarity with MaxMinEdge.

188 F.E. Gmati et al.

Fig. 2 Functional architecture of the PMRF

∙ Ranking Module: This component is the repository of the score computing tech-

nique and the different ranking algorithms. It contains the following elements:

– Score computing technique,

– Score-based ranking algorithm,

– Rule-based ranking algorithm,

– Tree-based ranking algorithm.

3.2 Functional Architecture

The functional architecture of the PMRF is given in Fig. 2. It shows graphically the

different steps from receiving the user query (including the specifications of the

requested Web service and the different parameters) until the delivery of the final

results (ranked list of Web services matching the query) to the user. We can distin-

guish the following main operations:

∙ The PMRF receives (1) the user query including the specifications of the desired

Web service and the required parameters;

∙ The Matching Module scans (2) the Registry in order to identify the Web services

matching the user query;

∙ During the matching process, the Matching Module uses (3) the Similarity Com-

puting Module to calculate the similarity degrees;

∙ The Matching Module delivers (4) the Web services matching the user query;

∙ The Ranking Module receives (5) the matching Web services and processes them

for ranking;

∙ During the ranking operation, the Ranking Module uses (6) the Scoring Technique

to compute the scores of the Web services;

∙ The Ranking Module delivers (7) a ranked list of Web services;

∙ The PMRF delivers (8) the ranked list of Web services to the user.

PMRF: Parameterized Matching-Ranking Framework 189

3.3 Implementation

To develop the PMRF, we have used the following tools:

∙ Eclipse IDE (http://eclipse.org/ide/) as the developing platform;

∙ OWLS-API (http://on.cs.unibas.ch/owls-api/) to parse the OWLS service descrip-

tions;

∙ OWL-API (http://owlapi.sourceforge.net/) along with the Pellet reasoner (http://

clarkparsia.com/pellet/) to perform the inference for computing the similarity

degrees.

The inference is one of the main issues encountered during the developing of the

PMRF. We perform the following procedure in order to minimize resources con-

sumption, especially memory:

1. A local Ontology is created at the start of the matchmaking process. The incre-

mental classifier class, taken from the Pellet reasoner library, is associated to this

Ontology.

2. The service parser based on the OWLs-API retrieves the Uniform Resource Iden-

tifier (URI) of the attributes values of each service. The concepts related to these

URIs are added incrementally to the local Ontology and the classifier is updated

accordingly.

3. In order to infer the semantic relations between concepts, the similarity measure

module uses the knowledge base constructed by the incremental classifier.

Figure 3 provides an extract from the class Matchmaker. In this figure, we can

see the input and output functions. The latter contains the call for the matching and

ranking operations.

4 Performance Evaluation

In this section, we provide the performance evaluation results.

4.1 Evaluation Framework

To evaluate the performance of the PMRF, we used the SME2 [12], which is an

open source tool for testing different semantic matchmakers in a consistent way.

The SME2 uses OWLS-TC collections to provide the matchmakers with Web ser-

vice descriptions, and to compare their answers to the relevance sets of the various

queries.

The SME2 provides several metrics to evaluate the performance and effective-

ness of a Web service matchmaker. The metrics that have been considered in this

paper are: precision and recall, average precision, query response time and memory

consumption. The definition of these metrics are given in [12, 13].

http://eclipse.org/ide/
http://on.cs.unibas.ch/owls-api/
http://owlapi.sourceforge.net/
http://clarkparsia.com/pellet/
http://clarkparsia.com/pellet/

190 F.E. Gmati et al.

Fig. 3 Extract from the class matchmaker

A series of experimentations have been conducted on a Dell Inspiron 15 3735

Laptop with an Intel Core I5 processor (1.6 GHz) and 2 GB of memory. The test

collection used is OWLS-TC4, which consists of 1083 Web service offers described

in OWL-S 1.1 and 42 queries.

4.2 Performance Evaluation Analysis

In order to study the performance of each instance of the modules supported by the

PMRF and describe the difference between them, we implemented seven plugins to

be used with the SME2 tool. Each of these plugins represents a different combination

of the matching, similarity computing and ranking algorithms. The characteristics of

these plugins are summarized in Table 1.

PMRF: Parameterized Matching-Ranking Framework 191

Table 1 Description of the evaluated configurations

Configuration Similarity measure Matching Ranking

1 Accurate MinEdge Trivial Trivial

2 Efficient MinEdge Trivial Trivial

3 Accurate MaxEdge Trivial Trivial

4 Accurate MinEdge Fully parameterized Trivial

5 Accurate

MaxMinEdge

Trivial RankMinMax

6 Accurate MinEdge Trivial Rule based

7 Efficient MinEdge Trivial Rule based

Fig. 4 Configuration 1 versus configuration 2: a average precision, b recall/precision, c query

response time

4.2.1 Comparison of Configurations 1 and 2

The evaluation of configurations 1 and 2 yields to the results shown in Fig. 4. The

difference between the two configurations is the similarity measure module instance.

Indeed, the first configuration employs the Accurate MinEdge instance while the

192 F.E. Gmati et al.

Fig. 5 Configuration 1 versus configuration 4: a average precision, b recall/precision

second employs the Efficient MinEdge instance. Figure 4a shows the Average Pre-

cision and Fig. 4b illustrates the Recall/Precision plot. We can see that configuration

1 outperforms configuration 2 for these two metrics, this is due to the use of logical

inference, that obviously enhances the precision of the first configuration. In Fig. 4c,

however, configuration 2 is shown to be remarkably faster than configuration 1. This

is due to the inference process (which is used in configuration 1) that consumes con-

siderable resources.

4.2.2 Comparison of Configurations 1 and 4

The results of comparison of configuration 1 and 4 are shown in Fig. 5. The difference

between these two configurations is the matching module instance. The first config-

uration is based on the trivial matching algorithm while the second uses the fully

parameterized matching. Figure 5a shows the Average Precision metric results. It is

easy to see that configuration 4 outperforms configuration 1. This is due to the fact

that the Criteria Table restricts the results to the most relevant Web services, which

will have the best ranking leading to a high Average Precision value. Figure 5b illus-

trates the Recall/Precision plot. It shows that configuration 4 has a low recall rate.

The overly restrictive Criteria Table explains these results, since it fails to return

some relevant services.

4.2.3 Comparison of Configurations 5 and 6

Figure 6 show the evaluation results of configurations 5 and 6. The difference between

these two configurations is the ranking module instance. The first uses the tree-

based ranking algorithm while the second employs the rule-based ranking algorithm.

Figure 6a shows that configuration 5 has a slightly better Average Precision than con-

figuration 6. Figure 6b shows that configuration 6 is obviously faster than configura-

tion 5.

PMRF: Parameterized Matching-Ranking Framework 193

Fig. 6 Configuration 5 versus configuration 6: a average precision, b query response time

5 Comparative Study

We compared the results of the PMRF matchmaker with SPARQLent [21, 22] and

iSeM [11] frameworks. Configuration 7 was chosen to perform this comparison. The

SPARQLent is a logic-based matchmaker based on the OWL-DL reasoner Pellet

to provide exact and relaxed Web services matchmaking. The iSeM is an hybrid

matchmaker offering different filter matchings: logic-based, approximate reasoning

based on logical concept abduction for matching Inputs and Outputs. We considered

only the I-O logic-based in this comparative study. We note that SPARQLent and

iSeM consider preconditions and effects of Web services, which are not considered

in our work.

5.1 Average Precision

The Average Precision is shown in Fig. 7a. This figure shows that PMRF has a

more accurate Average Precision than iSeM logic-based and SPARQLent. It is

possible to conclude that PMRF has better ranking precision than the two other

approaches. In addition, the ranking generated is more fine-grained than SPARQ-

Lent and iSeM. This is due to the score-based ranking that gives a more coarse eval-

uation than a degree aggregation. Indeed, SPARQLent and iSeM approaches adopt a

subsumption-based ranking strategy as described in [18], which gives equal weights

to all similarity degrees.

5.2 Recall/Precision

Figure 7b presents the Recall/Precision of PMRF, iSeM logic-based and SPARQ-

Lent. This figure shows that PMRF recall is significantly better than both iSeM

194 F.E. Gmati et al.

Fig. 7 Comparative study: a average precision, b recall/precision, c query response time, d mem-

ory usage

logic-based and SPARQLent. This means that our approach is able to reduce the

amount of false positives (see [2] for a discussion on the false positives problem).

5.3 Query Response Time

Figure 7c compares the Query Response Time of the PMRF, logic-based iSeM and

SPARLent. The first column (Avg) gives the average response time for the three

matchmakers. The experimental results show that the PMRF is faster than SPAR-

QLent (760 ms for SPARQLent vs. 128 ms for PMRF) and slightly less faster than

logic-based iSeM (65 ms for iSeM). We note that SPARQLent has especially high

query response time if the query include preconditions/effects. The SPARQLent is

also based on an OWL DL reasoner, which is an expensive processing. PMRF and

iSeM have close query response time because both consider direct parent/child rela-

tions in a subsumption graph, which reduces significantly the query processing. The

PMRF highest query response time limit is 248 ms.

PMRF: Parameterized Matching-Ranking Framework 195

5.4 Memory Usage

Figure 7d shows the Memory Usage for PMRF, iSeM logic-based and SPARQLent.

It is easy to see that PMRF consumes less memory than iSeM logic-based and SPAR-

QLent. This can be explained by the fact that the PMRF does not require a reasoner

(in the case of Configuration 7) neither a SPARQL queries in order to compute sim-

ilarities between concepts.

6 Discussion

An important characteristic of the proposed framework is its configurability by

allowing the user to specify a set of parameters and apply different algorithms sup-

porting different levels of customization. This, however, leads to the problem of

users/providers acceptability and their ability to specify the required parameters,

especially the Criteria Table. Indeed, the specification of these parameters may

require an important cognitive effort from the user/providers. A possible solution

to reduce this effort is to use a predefined Criteria Table. This solution can be fur-

ther enhanced by including in the framework some appropriate Artificial Intelligence

techniques to learn from the previous choices of the user.

Another possible solution to reduce the cognitive effort consists in exploiting the

context of the user queries. First, the description of elementary services can be textu-

ally analysed and, based on the query domain, the system uses either the efficient or

the accurate configurations. Second, a global time limit to the composition process

can be used to orient the system towards the use of the accurate version or efficient

version of the similarity measure computing algorithm. Third, the context of the

query in the workflow can be used to determine the level of customization needed

and also in the generation of a suitable Criteria Table or Attributes List.

A more advanced solution consists in combining all the solutions cited above.

7 Related Work

Several existing frameworks have influenced this research project, especially the

proposals of [2, 4–6, 11, 18]. Table 2 provides the characteristics of some existing

frameworks. Ludwig [16] proposes two matchmaking approaches: one that is based

on a genetic algorithm, and the other is based on a memetic algorithm to match con-

sumers with services based on Quality of Service (QoS) attributes. Wang et al. [27]

propose the use of utility function to evaluate each component service based on the

definition given in [28] and then map the multi-dimensional QoS composite Web ser-

vice to the multi-dimensional multi-choice knapsack. Finally, they use an heuristic

algorithm for solving the problem.

196 F.E. Gmati et al.

Table 2 Comparison of matchmaking frameworks

Matchmaker Matching type Attributes Customization Ranking Description

language

Jini [1] Syntactic Capability No No No

Konark [14] Syntactic Capability No No XML

Salutation [17] Logic-based Capability No Yes OWL-S

MatchMaker [25] Syntactic Capability No No DAMS/UDDI

RACER [15] Syntactic Capability No No DAML-S

PSMF [6] Logic-based Capability Yes No DAML-

S/WSDL/

UDDI

SPARQLent [22] Logic-based Capability No Yes OWL-S

iSeM-logic-

based [11]

Logic-based Capability No Yes OWL-

S/SAWSDL

QoSeBroker [5] Logic-based Capability/

QoS/property

Yes No OWL-S

PMRF Logic-based Capability/

property

Yes Yes OWL-S

Some proposals including [3, 10] propose to use semantics to enhance the match-

making process but most of them still consider capability attributes only. The pro-

posal of [4, 5] lack effective implementation of the proposed matchmaking frame-

work. Indeed, the authors discuss very generally and very briefly the technical issues.

In addition, the authors do not precise how the similarity degree is computed and how

the different matching Web services are ranked. Finally, there is a lack of effective

evaluation and performance analysis of matching algorithms.

Although that these proposals are based on semantics, they fail to take into

account jointly the shortcomings of Web services matchmaking enumerated in the

introduction. Indeed, the proposal of [2, 11, 22] do not support any customization

while those of [4–6] do not propose solutions for ranking Web services.

8 Conclusion

In this paper, we presented a highly customizable framework, called PMRF, for

matching and ranking Web services. We briefly reviewed the matching and ranking

algorithms supported by the PMRF, provided its conceptual and functional architec-

ture and discussed some implementation issues. We also presented the results of the

performance evaluation of the PMRF using the OWLS-TC4 datasets. The evalua-

tion has been conducted using the SME2 tool [12]. We finally compared PMRF to

two exiting frameworks, namely iSeM-logic-based [11] and SPARQLent [21, 22].

The results show that the algorithms supported by PMRF behave globally well in

comparison to iSeM-logic-based and SPARQLent frameworks.

PMRF: Parameterized Matching-Ranking Framework 197

In the future, we intend to enhance PMRF by (i) including other matching tech-

niques; namely textual matching and Ontology distance calculation; (ii) adapt it to

Ontology evolvement in a dynamic Web service environment; (iii) make the PMRF

useable over the cloud technology; and (iv) use Artificial Intelligence techniques to

reduce the cognitive effort required from the users/providers.

References

1. Arnold, K., O’Sullivan, B., Scheifler, R., Waldo, J., & Woolrath, A. (1999). The Jini specifi-
cation. Reading, MA: Addison-Wesley.

2. Bellur, U., & Kulkarni, R. (2007). Improved matchmaking algorithm for semantic Web services

based on bipartite graph matching. IEEE International Conference on Web Services (pp. 86–

93). Salt Lake City, Utah, USA.

3. Ben Mokhtar, S., Kaul, A., Georgantas, N., & Issarny, V. (2006). Efficient semantic service

discovery in pervasive computing environments. ACM/IFIP/USENIX 2006 International Con-
ference on Middleware (pp. 240–259). Melbourne, Australia.

4. Chakhar, S. (2013). Parameterized attribute and service levels semantic matchmaking frame-

work for service composition. Fifth International Conference on Advances in Databases (pp.

159–165), Knowledge, and Data Applications (DBKDA 2013) Spain: Seville.

5. Chakhar, S., Ishizaka, A., & Labib, A. (2014). QoS-aware parameterized semantic matchmak-

ing framework for Web service composition. In: V. Monfort & K.H. Krempels (Eds.), WEBIST
2014—Proceedings of the 10th International Conference on Web Information Systems and
Technologies (Vol. 1, pp. 50–61). Barcelona, Spain: SciTePress, 3–5 April 2014.

6. Doshi, P., Goodwin, R., Akkiraju, R., & Roeder, S. (2004). Parameterized semantic match-

making for workflow composition. IBM Research Report RC23133, IBM Research Division

7. Forgy, C. (1982). Rete: A fast algorithm for the many patterns/many objects match problem.

Artificial Intelligence, 19(1), 17–37.

8. Gmati, F. E., Yacoubi-Ayadi, N., Chakhar, S. (2014). Parameterized algorithms for matching

and ranking Web services. Proceedings of the On the Move to Meaningful Internet Systems:
OTM 2014 Conferences 2014 (Vol. 8841, pp. 784–791), Lecture Notes in Computer Science.

Springer.

9. Gmati, F. E., Yacoubi-Ayadi, N., Bahri, A., Chakhar, S., Ishizaka, A. (2015). A tree-based

algorithm for ranking Web services. In: V. Monfort, & K.H. Krempels (Eds.), WEBIST 2015—
Proceedings of the 11th International Conference on Web Information Systems and Technolo-
gies. Lisbon, Portugal: SciTePress, 20–22 May 2015.

10. Guo, R., Le, J., & Xiao, X. (2005). Capability matching of Web services based on OWL-S.

Sixteenth International Workshop on Database and Expert Systems Applications (pp. 653–

657).

11. Klusch, M., & Kapahnke, P. (2012). The iSeM matchmaker: A flexible approach for adaptive

hybrid semantic service selection. Web Semantics: Science, Services and Agents on the World

Wide Web, vol. 15, pp. 1–14.

12. Klusch, M., Dudev, M., Misutka, J., Kapahnke, P., & Vasileski, M. (2010). SME
2

Version 2.2.

User Manual. The German Research Center for Artificial Intelligence (DFKI), Germany.

13. Küster, U., & König-Ries, B. (2010). Measures for benchmarking semantic Web service

matchmaking correctness. Proceedings of the 7th International Conference on The Semantic
Web: Research and Applications—Volume Part II (pp. 45–59). ESWC’10, Berlin, Heidelberg:

Springer.

14. Lee, C., Helal, A., Desai, N., Verma, V., & Arslan, B. (2003). Konark: A system and protocols

for device independent, peer-to-peer discovery and delivery of mobile services. IEEE Trans-
actions on Systems, Man and Cybernetics, Part A: Systems and Humans, 33(6), 682–696.

198 F.E. Gmati et al.

15. Li, L., & Horrocks, I. (2003). A software framework for matchmaking based on semantic web

technology. Proceedings of the 12th International Conference on World Wide Web (pp. 331–

339). WWW ’03, New York, NY, USA: ACM.

16. Ludwig, S. (2011). Memetic algorithm for Web service selection. Proceedings of the 3rdWork-
shop on Biologically Inspired Algorithms for Distributed Systems (pp. 1–8). BADS ’11, New

York, NY, USA: ACM.

17. Miller, B., & Pascoe, R. (2000). Salutation service discovery in pervasive computing environ-
ments. IBM Pervasive Computing: White paper.

18. Paolucci, M., Kawamura, T., Payne, T., & Sycara, K. (2002). Semantic matching of web ser-

vices capabilities. Proceedings of the First International Semantic Web Conference on The
Semantic Web (pp. 333–347). ISWC ’02, London, UK: Springer.

19. Rodriguez-Mier, P., Pedrinaci, C., Lama, M., & Mucientes, M. (2015). An integrated semantic

Web service discovery and composition framework. IEEE Transactions on Services Comput-

ing. Forthcoming.

20. Samper, Z. J., Llido, E. L., Soriano G. F., & Martinez D. J. (2015). Semantic Web service

discovery system for road traffic information services.Expert Systems with Applications, 42(8),

3833–3842.

21. Sbodio, M. (2012). SPARQLent: A SPARQL based intelligent agent performing service

matchmaking. In B. Blake, L. Cabral, B. König-Ries, U. Küster & D. Martin (Eds.), Semantic
Web Services (pp. 83–105). Berlin Heidelberg: Springer.

22. Sbodio, M., Martin, D., & Moulin, C. (2010). Discovering semantic Web services using

SPARQL and intelligent agents. Web Semantics: Science, Services and Agents on the World
Wide Web, 8(4), 310–328.

23. Sharma, S., Lather, J., & Dave, M. (2015). Google based hybrid approach for discovering

services. IEEE International Conference on Semantic Computing (ICSC 2015) (pp. 498–502).

Anaheim, CA: IEEE.

24. Srujana, S., Raju, V., & Kiran, M. (2014). Semantic Web services discovery using logic based

method. Proceedings of the 3rd International Conference on Frontiers of Intelligent Comput-
ing: Theory and Applications (FICTA) 2014 (Vol. 1, pp. 623–629). Bhubaneswar, Odisa, India,

14–15 November 2014.

25. Sycara, K., Paolucci, M., van Velsen, M., & Giampapa, J. (2003). The retsina mas infrastruc-

ture. Autonomous Agents and Multi-Agent Systems, 7(1–2), 29–48.

26. Syu, Y., Ma, S. P., Kuo, J. Y., & FanJiang, Y. Y.: A survey on automated service composi-

tion methods and related techniques. The IEEE Ninth International Conference on Services
Computing (SCC 2012) (pp. 290–297). Hawaii, USA.

27. Wang, R., Chi, C. H., & Deng, J. (2009). A fast heuristic algorithm for the composite Web

service selection. Proceedings of the Joint International Conferences on Advances in Data
and Web Management (pp. 506–518). APWeb/WAIM ’09, Berlin, Heidelberg: Springer.

28. Yu, T., & Lin, K. J. (2004). Service selection algorithms for Web services with end-to-end qos

constraints. Proceedings of the IEEE International Conference on e-Commerce Technology
(CEC 2004) (pp. 129–136).

Author Index

A
Allison Newcomb, E., 33
Alnaeli, Saleh M., 115
Ashida, Satoshi, 65

B
Bahri, Afef, 181
Barkaoui, Kamel, 163
Bensouyad, Meriem, 151

C
Chakhar, Salem, 181
Choi, Jinhyuck, 103

D
Dahmani, Djaouida, 163
Delugach, Harry S., 49

G
Gao, Weichao, 11
Gmati, Fatma Ezzahra, 181
Guidoum, Nousseiba, 151

H
Hammell, Robert J., 33
Han, Youngsub, 85, 103
Hematian, Amirshahram, 1
Hu, Xiaohui, 77

I
Ioualalen, Malika, 163
Ishizaka, Alessio, 181

J
Jang, Ikhyeon, 85

K
Kheldoun, Ahmed, 163

Kim, Yanggon, 85, 103
Ku, Daniel, 11

L
Lu, Chao, 1

M
Matsumoto, Mitsuho, 65

N
Nguyen, James, 11

S
Saïdouni, Djamel-Eddine, 151
Samuel, Philip, 133
Sui, Xudong, 77
Sunitha, E.V., 133

T
Taha, Amanda Ali., 115
Tamura, Yoshinobu, 65
Timm, Tyler, 115

W
Wei, Bingyang, 49

Y
Yacoubi-Ayadi, Nadia, 181
Yamada, Shigeru, 65
Yang, Yinan, 1
Yazdani, Sepideh, 1
Yu, Wei, 11

Z
Zhang, Hanlin, 11
Zhang, Jinfang, 77
Zhang, Lei, 77

© Springer International Publishing Switzerland 2016
R. Lee (ed.), Software Engineering Research, Management
and Applications, Studies in Computational Intelligence 654,
DOI 10.1007/978-3-319-33903-0

199

	Foreword
	Contents
	Contributors
	Human Motion Analysis and Classification Using Radar Micro-Doppler Signatures
	1 Introduction
	2 Micro-Doppler Signature Extraction from Radar Signal
	3 Human Gait Micro-motions Analysis
	4 Human Gait Micro-motions Classification
	5 Conclusion
	References

	Performance Evaluation of NETCONF Protocol in MANET Using Emulation
	1 Introduction
	2 Background and Related Work
	3 Our Approach
	3.1 Key Characteristics
	3.2 Emulation Scenarios

	4 Performance Evaluation
	5 Final Remarks
	References

	3 A Fuzzy Logic Utility Framework (FLUF) to Support Information Assurance
	Abstract
	1 Introduction
	2 Cyber Security in Organizations
	2.1 Process Improvement Strategy

	3 Fuzzy Logic and Cyber Security
	3.1 Fuzzy Logic’s Appeal
	3.2 Fuzzy Logic and IDS—Related Work
	3.3 Intelligence Analysts and Cyber Analysts

	4 CARVER Targeting Methodology
	5 Fuzzy Logic Utility Framework
	5.1 Designing the Fuzzy Rule Base
	5.2 Fuzzy Rule Base Review
	5.3 Additional Remarks Regarding FLUF and APR

	6 Conclusions and Future Work
	References

	A Framework for Requirements Knowledge Acquisition Using UML and Conceptual Graphs
	1 Introduction
	2 The CGs-Based Requirements Acquisition Framework
	2.1 The CGs Support

	3 Case Study
	4 Evaluation
	5 Discussion
	5.1 Representing Requirements in CGs
	5.2 The Size of CGs Expressing Semantics of UML Diagrams
	5.3 Limitations
	5.4 Related Work
	5.5 Future Work

	6 Conclusion
	References

	Identification Method of Fault Level Based on Deep Learning for Open Source Software
	1 Introduction
	2 Identification Method of Software Fault Level Based on Neural Network
	3 Identification Method of Software Fault Level Based on Deep Learning
	4 Numerical Examples
	4.1 Estimation Results
	4.2 Comparison Results

	5 Conclusion
	References

	Monitoring Target Through Satellite Images by Using Deep Convolutional Networks
	1 Introduction
	2 Method
	2.1 Label and Generate the Dataset
	2.2 Architecture of DCNN
	2.3 Monitoring Job

	3 Experiment and Results
	3.1 Dataset
	3.2 Military Intelligence Analysis Scenarios
	3.3 Abnormal Weather Detection Scenarios

	4 Conclusion
	References

	7 A Method for Extracting Lexicon for Sentiment Analysis Based on Morphological Sentence Patterns
	Abstract
	1 Introduction
	2 Related Works
	2.1 Natural Language Processing
	2.2 Sentiment Analysis
	2.2.1 Lexicon Based Sentiment Analysis
	2.2.2 Probability Model Based Sentiment Analysis
	2.2.3 Aspect Based Sentiment Analysis

	2.3 Lexicon Building

	3 System Architecture and Implementation
	3.1 Data Collection
	3.2 Aspect-Expression Extractor
	3.2.1 Term Extractor
	3.2.2 Morphological Pattern Recognizer
	3.2.3 Aspect Extractor
	3.2.4 Expression Extractor

	4 Experiment Result
	4.1 Measurement
	4.2 Morphological Sentence Pattern Selection
	4.2.1 Extracting Aspect
	4.2.2 Extracting Expression
	4.2.3 Improving Accuracy of Extraction
	4.2.4 Comparison with Related Researches

	5 Conclusion
	References

	8 A Research for Finding Relationship Between Mass Media and Social Media Based on Agenda Setting Theory
	Abstract
	1 Introduction
	2 Related Work
	2.1 Agenda Setting Theory
	2.2 Keyword Extraction
	2.2.1 Natural Language Processing (NLP)
	2.2.2 Term Frequency-Inverse Document Frequency (TF-IDF)

	3 System Architecture
	3.1 Twitter Craweler
	3.2 Twitter Analyzer

	4 Result
	5 Conclusion
	References

	9 On the Prevalence of Function Side Effects in General Purpose Open Source Software Systems
	Abstract
	1 Introduction
	2 Related Work
	3 Functions Side Effects
	3.1 Determining Side Effects
	3.2 Dealing with Function Pointers and Virtual Methods

	4 Methodology for Detecting Function Side Effects
	5 Data Collection
	6 Findings, Results, and Discussion
	6.1 Design of the Study
	6.2 Percentage of Pure Functions (Has No Side Effects)
	6.3 Distribution of Function Side Effects
	6.4 Historical Change of Function Side Effect Frequency

	7 Conclusion
	Acknowledgments
	References

	10 Object Oriented Method to Implement the Hierarchical and Concurrent States in UML State Chart Diagrams
	Abstract
	1 Introduction
	2 Mapping State Charts to Programming—Different Approaches
	2.1 Using Switch Statement
	2.2 Using State Design Patterns
	2.3 Using UML Meta Class
	2.4 Using State Tables

	3 New Approach for Mapping State Chart to OO Program
	4 Case Study
	5 Related Works
	6 Implementation and Evaluation
	7 Conclusion
	References

	11 A New and Fast Variant of the Strict Strong Coloring Based Graph Distribution Algorithm
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Distribution Concept
	2.2 Coloring Concept

	3 Proposed Algorithm
	3.1 Global Algorithm
	3.2 Modified Generalized Graph Strict Strong Coloring Algorithm
	3.3 Initial Distribution Construction
	3.4 Splitting Process

	4 Experiments
	5 Conclusion
	References

	High Level Petri Net Modelling and Analysis of Flexible Web Services Composition
	1 Introduction
	2 Related Works
	3 Recursive ECATNet Review
	4 Modeling Web Services Using RECATNet
	5 Web Services Composition
	5.1 Empty Service
	5.2 Sequence
	5.3 Choice
	5.4 Iteration
	5.5 Parallel
	5.6 Discriminator
	5.7 Multiple Instance Service
	5.8 Cancel Service

	6 A Case Study
	7 Verification of Web Services Composition
	7.1 RECATNets Meta-Modeling
	7.2 RECATNet Semantics in Terms of Rewriting Logic
	7.3 Implementation Using the Maude Tool

	8 Conclusion
	References

	PMRF: Parameterized Matching-Ranking Framework
	1 Introduction
	2 Matching and Ranking Algorithms
	2.1 Matching Algorithms
	2.2 Ranking Algorithms

	3 System Architecture and Implementation
	3.1 System Design and Conceptual Architecture
	3.2 Functional Architecture
	3.3 Implementation

	4 Performance Evaluation
	4.1 Evaluation Framework
	4.2 Performance Evaluation Analysis

	5 Comparative Study
	5.1 Average Precision
	5.2 Recall/Precision
	5.3 Query Response Time
	5.4 Memory Usage

	6 Discussion
	7 Related Work
	8 Conclusion
	References

	Author Index

