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Data is not information,
Information is not knowledge,
Knowledge is not understanding,
Understanding is not wisdom.

(attributed to) Clifford Stoll and Gary Schubert
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Supervisor’s Foreword

It is a great pleasure to introduce Dr. Massimiliano Izzo’s thesis work, accepted for
publication within Springer Theses and awarded with a prize for outstanding
original work. Dr. Izzo joined my research group for Biomedical Instrumentation
and Bioimaging after finishing his master’s degree in Bioengineering at the
University of Genoa (Italy), in March 2006, and after a limited experience as a
clinical engineer at the Hospital IRCCS Neuromed Pozzilli (IS) Italy (www.
neuromed.it). He started his Ph.D. programme in Bioengineering and Robotics at
the University of Genoa with a three-year scholarship of the Hospital IRCCS
Giannina Gaslini working in data management and integration for biomedical
research, and completed his Ph.D. thesis with an oral defense on 20 April 2015.

The Ph.D. programme in Bioengineering and Robotics is rooted in the multiple
ongoing collaborations between Università degli Studi di Genova/University of
Genoa (www.unige.it), Fondazione Istituto Italiano di Tecnologia/Italian Institute
of Technology Foundation (www.iit.it), and the Università degli Studi di
Cagliari/University of Cagliari (www.unica.it). Research in Bioengineering and
Robotics at the University of Genoa dates back to the 1980s and originates from the
convergence of multidisciplinary activities in the fields of automation, electronics,
ICT, and biophysics. Research activity in the field of Bioengineering has a long
tradition of scientific excellence at the University of Genoa. Since 1982, the
University of Genoa has been participating in the Ph.D. programme of
Bioengineering, coordinated by the Polytechnic University of Milan. A local Ph.D.
programme in Bioengineering was first established in 1999. A Ph.D. programme in
Robotics was established in 1991, and was later merged with the Ph.D. programme
in Computer Engineering.

The Hospital IRCCS Gaslini (“Istituto Giannina Gaslini”, www.gaslini.org) was
established in Genoa, in 1931, by an act of donation and solidarity of Senator
Gerolamo Gaslini, who wished to honour his daughter Giannina who passed away
in her infancy. Gerolamo Gaslini wanted to ensure that children receive only the
best possible type of medical treatment and care based on the most innovative
biomedical research. All paediatric and surgical services are practised at the
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Institute, which also houses scientific laboratories, as well as affiliated Genoa
University Departments, many of which also have their own related Graduate
Schools and postgraduate Specialisation Courses. Gaslini Institute has always been
a reference point at the national and international level in many disciplines, so much
so that it receives thousands of children of 90 nationalities every year, as well as
over twenty thousand children from all Italian Regions, which constitute around
half of all its patients. Data management and integration has become a major issue
in contemporary biomedical research.

Modern genomic profiling platforms, such as high-throughput gene sequencing
platforms, now produce outputs of several hundreds of gigabases. The gathered
genomic information must be integrated with all available data about patient clinical
history and lifestyle. Such an integrated approach will be of paramount importance
as healthcare paradigms move towards personalised medicine. Extensive metadata
are required to improve the collection and analysis of such information. For these
same reasons, life science research is evolving into international multidisciplinary
collaborations based upon increasing data sharing among scientific laboratories and
institutions. Each single lab implements different protocols and performs its anal-
yses by using different instrumentation. Therefore, metadata are inconsistent, poorly
defined, ambiguous, and do not use a common vocabulary or ontology. Research
collaborations are evolving from local to global scales, the heterogeneity of the
collected metadata grows and no single standardisation is possible. Moreover, as
detailed in the thesis, recent studies in Neural and Social Sciences encourage the
view of metadata as a fluid, dynamical process rather than a fixed product. The
main goal of Massimiliano was therefore to build an innovative data repository able
to provide adaptive metadata management and configuration tools to maximise
information sharing and understanding in multidisciplinary and possibly interna-
tional collaborations. Massimiliano has developed a novel data management plat-
form that is a valid alternative to more established technological solutions, because
it presents a number of advantages. As far as I know, this is the first JSON-based
metadata repository designed for Biomedical Sciences. I think it can provide sen-
sitive benefits if adopted for Research Collaborations where flexible and extensive
metadata support is required. The platform has been used with success in different
scenarios—ranging from Neuroscience to Biobanking and Functional Genomics.
As a biobanking management tool, it has been used on a daily basis for more than
one year at the Giannina Gaslini Children’s Hospital. The adoption of XTENS as a
collaborative platform promotes dynamical information sharing and heterogeneous
data integration. The overall goal is to use this platform to drive the discovery of
new biomarkers or the design of new predictors (i.e., classifiers) to better charac-
terize and study diseases with negative or heterogeneous outcomes, such as rare
diseases or developmental tumours.
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Massimiliano is distinguished for his solid knowledge of engineering basics and
his remarkable skill in problem solving both at the theoretical and practical levels in
an efficient manner. He has proved to have a strong motivation to work in the
bioengineering research field. His communication skills and ability to work in a
team enabled him to achieve important results in his research and in his career.

Genoa Prof. Marco M. Fato
December 2015
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Chapter 1
Background

In the last twodecades, huge investments in basic sciencehaveproduced a tremendous
progress in themethods and technologies available to clinicalmedicine. Imaging plat-
forms now detail the structure and the function of the human body and have been a
driving force in our growing understanding of various organs and apparatuses, most
notably the brain. High-throughput genomic1 technologies have allowed researchers
and clinicians to spot thousands of DNA mutations that play a role in the onset and
evolution of a variety of human diseases. This shift towards the individual genomic
profile has brought up the concept of personalised medicine, whose goal is to better
predict the patient’s responses to therapies on the basis of the genetic profile. The cur-
rent challenge is how to deliver the benefits of these discoveries and advancements
to patients. As stated by Hamburg in her guideline paper “the success of person-
alised medicine depends on having accurate diagnostic tests that identify patients
who can benefit from targeted therapies” [2]. Careful attention is now given to rare
and neglected diseases, that are used as models to study and identify molecularly
different subtypes of more common disorders. To achieve this, a particular focus is
on the development tissue biobanks, and in their workflow. Traditionally, biobanks
were centres dedicated to the collection and storage of biological specimens. Nowa-
days, they are evolving towards institutions that gather a whole spectrum of mostly
digital information, including social, clinical, and pathological records together with
genomic profiles. As a consequence, modern biobanking is shifting its focus from
sample-driven to data-driven strategies.

1The words genetics and genomics are used quite interchangeably in commonmedia. However they
bear a differentmeaning.Genetics ismostly concernedwith how inherited traits are transmitted from
one generation to the next through the genes and how mutations can produce new traits. Genomics
addresses all the genetic material of an organism and its function in order to determine its combined
influence on growth and development [1]. In nearly all my thesis I will focus on genomics.
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1.1 Big Data

The cost of an entire genome sequencing has dropped from millions to thousands of
dollars (or euros), given the improvements in sequencing technologies and computa-
tional power [3]. For instance, one of theworld’s largest biology and data repositories,
the European Bioinformatics Institute (EMBL-EBI) of Hixton, UK, currently stores
40petabytes (PB) of data and backups about genes, proteins and small molecules.
Genomic data alone account for about 5PB, a figure that more than doubles every
year [4]. To put it in perspective, this is about one tenth the volume of data stored
at CERN, the leading European’s particle physics organisation. By any account,
biology has joined the club of “Big Data”. Big Data is an umbrella term—or a buzz-
word, depending on your opinion on the subject—that encompass a new generation
of (mostly) software technologies and architectures developed to extract knowledge
and, ultimately, value from large volumes of heterogeneous data by allowing high
velocity capture, discovery and processing. Big data require a paradigm shift in both
storage requirements and data analysis. In my thesis I will examine the state of the
art on data management solution and propose a possible approach to store, manage
and search large biomedical datasets of heterogeneous nature. When dealing with
big data, the data are most frequently unstructured or semi-structured, and do not fit
well in a traditional relational database (i.e. with a fixed schema) design.2 Novel data
store approaches, such as those based on NoSQL solutions [6], should be adopted
alongside—and most often not in substitution of—relational databases. See Fig. 1.1
for further details on data structuredness.

As a consequence of the data explosion in biomedicine, the emphasis has moved
from population-based health care to personalised medicine with the goal of devel-
oping targeted diagnostics and therapies based on patients’ clinical history, ancestry
and genomic profile. A major challenge to achieve more reliable patients’ outcome
is the integration of clinical data, omics data, administrative data and financial infor-
mation on a single management system. These ongoing changes towards data-centric
health care will affect—in a positive way, one hopes—the physicians, as computer-
aided medicine, web-based solutions and big data analytics will support and guide
the individuation of the optimal therapy.

2As stated by Abiteboul, “semi-structured data is data that is neither raw data, nor very strictly typed
as in conventional database systems” [5]. Among the main aspects of semi-structured data there
are an irregular structure (due to the heterogeneity of the data components), an implicit structure
(the explicit structure must be parsed or extracted), and a large and rapidly evolving data schema.
In the context of semi-structured data the distinction between schema and data may even blur, as
some classification information (e.g. the sex of an individual) may be stored either as data or as
a type. Fully unstructured data do not have a pre-defined data model or schema and are typically
text-heavy though they also may contain numeric or date elements.
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Fig. 1.1 Taxonomy of data based on their internal structure. Structured data are associated to a
fixed data schema and usually presented in tabular form in database tables or spreadsheets. Semi-
structured data can be stored with flexible schema notations like XML or, preferably, JSON (see
Sects. 2.6 and 3.3). Unstructured data is usually text-based (email, word-processors documents,
……) or in binary form (images, audio, other signals). The figure highlights that the level of
structure in NGS data formats increases as we move from raw data (e.g. FASTQ), to indexed
alignments (SAM/BAM), and to variant calls (VCF). The scale is qualitative and by no means
resolutive, but it is meant to provide a general overview

1.2 Omics

Deriving from the Sanskrit root “om” “completedness and fullness”, the term omics
refers to a systems-oriented approach to biological science that aims to characterise
individual and population differences in living organisms. The postfix was first used
to create theword genome, to describe thewhole geneticmarkup of an individual, that
in turn gave origin to the discipline called genomics. Similarly, the exome refers to
the entire part of DNA that will be transcribed to RNA, while transcriptome refers to
its RNA counterpart. The entire set of protein of an organism is called proteome, and
its domain of study is now commonly name proteomics. Finally, the complete set of
small-molecule metabolites (such as signalling molecules, hormones and molecular
intermediates) of an organism constitute the so-called metabolome, whose branch of
study is now called metabolomics. Genomics, proteomics, metabolomics, together
with other disciplines focused on systems-wide exploration of biological organisms
all belong to the omics field.

Among the analysis available to study the genome at DNA level there is the
array-based Comparative Genomic Hybridisation (aCGH) technique, a molecular
cytogenetic method to identify Copy Number Variations—loss (deletions) or gains/
amplifications of DNA segments. It allows to study the entire genome with higher
(100–1000 times) resolution compared to other karyotype investigations, and permits
to identify the chromosomes regions and the genes involved in the rearrangements,
helping the clinician to highlight the link between certain genetic aberrations and

http://dx.doi.org/10.1007/978-3-319-31241-5_2
http://dx.doi.org/10.1007/978-3-319-31241-5_3
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the disease. Another karyotyping technique is the Single Nucleotide Polymorphism
(SNP) array, which are used to detect SNP, a variation at a single site in DNA.
SNPs are the most frequent type of variation in the genome. There are roughly
10 million SNPs per individual human genome (1 SNP in every 300 bases). SNP-
arrays and aCGH and are also used to locate abnormalities in cancer. At the latest
release, the comprehensive NCBI database dbSNP listed over 112 SNPs in humans
[7]. There is a huge number of SNP-array chips available on the market, each with
its own specifications. Currently the number of SNPs probed by a chip range from
600 thousand (e.g. Axiom Genome-Wide Human EU/ASI from Affimetrix) to 2.5
million (HumanOmni2.5-8 from Illumina) [8]. aCGH and SNP-arrays are also used
to identify genomic abnormalities in cancer.

DNAmicroarray was the first high-throughput genomic technology to investigate
gene expression at the level of RNA (i.e. transcriptome). TheHumanGenome Project
has estimated that there are about 30,000 protein-coding genes in the human genome.
A single microarray chip allows to measure the expression levels of a large number
of genes at once. Currently microarray chip target about 50,000 probes, and usually
more than one probe maps to a single gene. Next Generation Sequencing (NGS)
technologies have made whole genome, exome, and targeted sequencing available to
biology laboratories at an affordable price. NGS platforms adopt different strategies
to decode the DNA sequence, but are all characterised by a massive parallelism that
speeds up the analysis and allows a deep coverage (tens/hundreds of reads at any
genome position). Low parallelism and scarce automation of the workflows were
two main issues of Sanger sequencing [9], the method used before the outbreak of
NGS. As of 2014, NGS is the fastest growing segment in the genomic field, and
it is dominated by Illumina, that accounts for the 74% of the entire market. The
other competitors are Life Technologies (producers of the Ion Torrent sequencer),
454 Roche, and Pacific Bioscience.

Driven by this flood of new technologies and data produced, large scale projects
dedicated to investigate omics are already well on the way. One of the most famous is
the 1000 Genome Project [10], which aims at building the largest dataset of genomic
mutation, integrated with genotype and expression data. Another notable big data
effort is the ENCODEproject [11, 12], devoted tomap and characterise the behaviour
of the entire genome. It has already individuated biological functions for about 80%
of the human genome, evidencing that the great majority (∼90%) of the foundmuta-
tions are located in regions with no protein-coding genes. Moreover, the ENCODE
project found evidence to disproof the erroneous concept of “Junk DNA”, pointing
out that about the 75% of the DNA is transcribed in at least one cell type within
the organism. ENCODE studies have generated increasing interest on the role and
function of the so-called non protein-coding genes and noncoding-RNA. None of
these discoveries would have been possible without the huge amount of data brought
on the field by NGS platforms.

However, challenging data management and processing issues have stated to rise
on the surface. Presently, the DNA sequencing rate of the current technologies
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exceeds Moore’s Law3 [3]. As a consequence, only distributed, grid- and cloud-
based solutions can solve issues of data storage and computation. In the next years,
cloud computing could bolster a new industry whose foundations are set in mole-
cular biology and omics. Another option is the adoption of Graphical Processing
Units (GPUs) for executing highly parallel operations. Whenever a task can be split
in multiple parallel computations, GPUs will outperform cloud-based solutions.

Whichever will be the underlying technology, there are a number of issues that
researchers will face:

1. storage: biological and medical data are more heterogeneous that information
from any other research domain. No single comprehensive, cheap and secure
solution exists to solve the problem of data storage, even though many private
companies have started proposing solutions for the life science domain. This issue
will most likely affect small labs and institutions, that until now did not have to
consider this aspect.

2. security and privacy: the adoption of advanced encryption algorithms—like
those available to financial institution—is an available option to secure personal
information during storage and/or transmission. Distributed storage and comput-
ing environments can enforce security policies implementing the Grid Security
Infrastructure (GSI), a dedicated specification for secret communication [13].
GSI adopts both symmetric and asymmetric encryption to enable secure and
authenticatable communication. From the procedural point of view, proposals of
broad consent forms to allow datasets availability for research project are under
discussion under various institutions and organisations, including the European
Union. In the end, whenever security becomes a major issue (i.e. data containing
personal informations), internal/local solutions should be implemented instead
of recurring to public clouds.

3. transfer: usually it is solved dispatching bulk data through external hard disks.
A possible solution might be the adoption of efficient lossless compression algo-
rithms to sensitively reduce the files’ size. Other approaches include peer-to-
peer file sharing, or distributed storage paradigms—such as the so-called “data
grids”—that could take advantage of high-performance, secure and reliable data
transfer protocols such as GridFTP [14]. GridFTP is an extension of the standard
File Transfer Protocol (FTP) to distributed systems, and relies on GSI to han-
dle authentication and authorisation. In this sense, Globus Online is a Dropbox
like technology that implements GridFTP and provides “Software-as-a-Service”
(SaaS) solutions for data storage [15].

In my thesis I will assess the issue of heterogeneous data storage for biomedical
research. Obviously, this topic cannot be treated ignoring the other two issues: in
particular, I will take into account security and privacy regarding the access to a data

3Moore’s Law reflects the empirical observation that, over the history of computing hardware, the
density of transistors on integrated circuits and the computational speed doubles about every two
years.
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storage platform.While high-performance transmissionwill not be tackled explicitly,
I will expose how some solutions—such as GSI—can be implemented in the frame-
work for data management that I have developed.

1.3 Human Neuroimaging

Neuroscience requires to probe the Central Nervous System (CNS) structure and
functions at different scales to achieve a greater understanding of the brain. Usually
the CNS is investigated and modelled at molecular, cellular, network, whole system
and behavioural level, adopting a wide variety of technologies and approaches. One
of the driving forces behind multi-scale structural and functional modelling has
been the wide adoption of imaging technologies fromMagnetic Resonance Imaging
(MRI) [16]. In this sense, neuroscience is facing similar issues to those exposed
for molecular biology and omics. Neuroinformatics tools worldwide now produce
and collect more data in a few days than were generated over an entire year just
a decade ago [17]. Currently, MRI based neuroimaging techniques are sources of
information on:

• brain anatomy, with better tissue contrast and fewer artefacts than Computed
Tomography (CT). Besides tradition MRI recordings, Diffusion Tensor Imaging
(DTI) allows to reconstruct microscopic details about tissue architecture [18]. It
is now routinely used to visualise the location orientation and morphology of the
brain’s fibre (i.e. axonal) tracts.

• brain activity in response to a cognitive stimulus. Functional MRI (fMRI) adopts
MRI technology to detect variations in blood flow and estimate through it brain
activity. A non-invasive method adopted to stimulate small regions of the brain is
the Transcranial Magnetic Stimulation (TMS). Other imaging methods employed
to study brain activity are the Positron Emission Tomography (PET) and the Single
Photon Emission Computed Tomography (SPECT).

• complex patterns of inter-regional communication. To highlight neural interac-
tions at a systemic level, the techniques mentioned above are further integrated
withmulti-channel Electroencephalography (EEG) andMagnetoencephalography
(MEG) signals.

Multi-modal and multi-scale neuroscience has allowed to reveal the human brain
structure and function with increasing level of detail. It has been estimated that, as
of 2015, the amount of raw data associated to each published neuroscientifical study
will exceed 20GB, and this is most likely an underestimate [16]. These dataset, if
taken individually, do not pose issues for analysis and post-processing, but storage
issues may arise, when they are stored in large databases or digital repositories.
As I will illustrate in Sect. 2.5, many data management solutions have already been
developed with a specific focus on neuroscience and neuroimaging. However none
of these are yet taking into account the next big step forward: the integration of
neuroscience/neuroimaging datasets with omics information. This new (r)evolution
is already under way, as there is an increasing interest in mapping the influence of

http://dx.doi.org/10.1007/978-3-319-31241-5_2
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genome mutations and gene expression variations on the CNS. The size of the raw
datasets available to neuroscientists and neuroinformatiscians are likely to grow of
various orders of magnitude (up to the level of terabytes and petabytes). Besides
the sheer size, heterogeneity will be the main issue to achieve data integration and
ultimately extract knowledge that provides new insights on brain diseases’ outcome
and evolution. The bond between neuroscience and genomics is growing tighter and
many issues already mentioned in the previous section will affect also the brain
research. It must also be considered that the scientific efforts in the field become
increasingly multi-disciplinary (as we have seen) and collaborative. Research col-
laborations involve groupswith different expertise and technical background, located
in different geographical areas, possibly in different countries. Distributed data man-
agement solutions for heterogeneous information now become a major requirement
for biomedical research.
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Chapter 2
Motivation and State of the Art

Aswehave seen in the previous chapter, datamanagement and integrationhas become
a major component of contemporary biomedical research. To be of any usefulness
the flood of information produced by high-throughput genomic platforms (aCGH/
SNP-arrays, DNA Microarrays, NGS technologies…) and high-resolution imaging
platformsmust not remain isolated in a sandbox, but must be integrated with all other
available data about patient clinical history and lifestyle. This unified view is of para-
mount importance as healthcare paradigms move towards personalised medicine.
A report published in Nature in 2013 highlighted that data storage and management
requirements exceeded computational capabilities of one order of magnitude [1].
Management and integration of heterogeneous information has become an open
biomedical research problem. The scientific community has proposed different solu-
tions. So far, most of them are focused on specific subfields (i.e. functional genomics,
mass spectrometry, computational neuroscience…). As multi-disciplinary collabo-
rations become more and more pervasive in biomedical research, the limitations due
to repositories focused on a single domain or a discipline must be overcome. In the
next section I will introduce the concept of metadata, and discuss how they are used
in information technology for datamanagement. I will show that the concept ofmeta-
data as mere cataloguing tools has not changed as they were adopted in (biomedical)
research, and that a new view onmetadata must be attained as biomedicine is moving
towards multi-disciplinary personalised medicine. Subsequently, I will illustrate the
most common challenges a biomedical data repository must face, and then I will
analyse some of the existing platforms. In the end I will address the missing aspects
in the state of the art in order to envision a possible solution.

© Springer International Publishing Switzerland 2016
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2.1 Data Management and Metadata

The two most used words in publications dealing with data management are not
unsurprisingly “data” and “metadata”. Before proceeding further, I will clarify—as
much as possible—the meaning of the latter in the context of biomedical research.
Metadata are usually defined as “data about data”, or more extensively “data about
data and all the processes that produce, streamline and output data”.1 In themost gen-
eral definition, metadata are nothing else but description of ‘things’. The described
things can be physical (books, individuals, items stored in warehouse) or digital
objects (files or other resources). In information technology and data management
systems, physical objects will be mapped to digital entities (e.g. rows in a database).
As a consequence metadata will refer to data that reside in the same physical (i.e. file
system) or logical unit (database, digital repository, enterprise…). As stated byDavid
Marco in his book Building and Managing the Metadata Repository, [3] “when we
mention metadata we are talking about knowledge”. Without metadata we might
not be able to correctly interpret the data; they often contain essential information
that could not be otherwise retrieved or reconstructed. For instance, if you take into
consideration a three-dimensional MRI scan, the 3D image will be unravelled to a
one-dimensional sequence of pixel in order to be written to a file. The information of
width, height and depth of the image must be stored as metadata otherwise the image
cannot be reconstructed univocally. Before becoming a hot topic in collaborative
research, metadata were traditionally used to catalogue items such as books, articles,
and magazines in the card catalogues of libraries. Metadata management in library
catalogues was introduced through the adoption of Integrated Library Management
Systems. The library paradigm later shifted to the information technology domain,
with the institution of Digital Libraries, which are collections of digital objects hav-
ing heterogeneous nature: books, images, videos, and so on. In these environments
the main use of metadata is for the information retrieval. Some examples of digital
libraries are online long-term archives like arXiv.org [4] and the Internet Archive [5].
In the last thirty years, science has become more and more data-driven and collabo-
rative, both across scientific domains and geographical regions. Metadata have been
more and more extensively adopted in research, and have gained a fundamental role,
as the key to communicate data between groups in collaborations.

1This is now the most widely accepted definition in biomedical research and information science
as well. However, it was not always so. In computer science, the term metadata was originally
introduced by Philip Bagley [2] to encompass both “descriptive” and “structural” metadata. The
latter category, defined as “data about the containers of data”, specifies how the data is stored within
a (digital) system, and has been the object of the ISO11179 standard specifications. The “valida-
tion” metadata category is a subcategory of structural metadata that provide validation constraints.
“Guide” metadata are descriptive metadata that help the users to find and retrieve their data. In my
thesis, whenever I will speak about “structural metadata” I will use the terms “metadata schema”,
“schema”, or “metadata model”, to distinguish it from the “descriptive metadata”, that I will call
simply metadata.
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2.2 Data Sharing in Biomedical Research: An Open Issue

The constantly increasing usage of advanced imaging and high-throughput platforms,
combined with the improvements of networking and fast computing technologies,
have brought up an environment where global, multi-disciplinary collaborations
between geographically distributed researchers are getting increasingly common.
Data repositories offer an efficient way to share informations and analysis outputs
of a study from different institutions in a multi-site collaborative effort, to provide
larger datasets and common resources. However, imaging techniques and NGS plat-
forms come in many flavours, are acquired in different modalities and process data
using different analysis pipelines. This is a well known problem in genomics: for
instance, Illumina technologies adopt a sequencing-by-synthesis approach [6] that
employs fluorescently labelled reversible-terminator nucleotide, while Ion Torrent
“harnesses the power of semiconductor technology” detecting the protons (i.e. H+
ions) released as nucleotides are incorporated during synthesis [7]. As a result Illu-
mina and Ion Torrent sequences are usually with different processing pipelines,
and increasing efforts are required for comparison and integration. If follows that
data originating from different sources or processing tools are heterogeneous in data
format representation and metadata content. In principle, metadata allow scientist
separated in time and space (different institution, country, regulation...) to interpret
in the correct way the data they refer to. In this sense, metadata allow different indi-
viduals or research groups to find a “common ground” or understanding of the data.
Usually the safest way to achieve this common ground is the definition of detailed
and standardised metadata. Since the advent of Functional Genomics and sequenc-
ing technologies, the concept of metadata in biomedicine is usually accompanied
with the concept of annotation. An annotation is metadata (usually in the form of a
comment, explanation or tag) attached to some resource or data. It refers frequently
to a specific portion of the original data. A genome annotation is therefore meta-
data containing biologically relevant information attached to a genomic sequence.
Genome annotation usually describes the whole process of identifying the location
of genes and other coding or non-coding regions in a genome, and determining what
is the biological function of these genes or regions.

2.3 Metadata Standardisation

The adoption of standards, with extensive and highly structured metadata is usually
invoked as the “holy grail”, the best solution to optimise heterogeneous data shar-
ing, to allow efficient and effective data analysis and to avoid misinterpretation and
wrong data usage. According to this view, data repositories should enforce good
management practices and standardised metadata. Shared repository should actually
encourage—or somehow force—scientists adopting the aforementioned practices.
Gray et al. [8] explicitly state that extensive metadata and metadata standards are one
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the keys to achieve scientific success in the contemporary research scenario.Hemain-
tains that standardised metadata ease data discovery and understanding of datasets
by scientists and processing tools alike. In the next subsections, I will show how
standardisation efforts have been carried within and without the biomedical research
field. Doing this, I hope to highlight the inherent limitations of the existing—and of
any foreseeable—standardisation approach.

2.3.1 Approaches to Standardisation

The earliest metadata standardisation efforts occurred outside the domain of scien-
tific research, to handle resource management in environments such as (physical or
digital) libraries, stores, and warehouses. The first standards, such as the Machine
Readable Cataloguing (MARC) were established in the 1960s to describe items cata-
logued in libraries. One of the first, simplest and most widely accepted standards for
digital metadata management is the Dublin Core Metadata Element Set (DCMES),
a set of 15 metadata terms that constitute the minimum requirement to describe any
(web) resource [9]. Despite its original aim of achieving omni-comprehensiveness—
that could be paraphrased with the motto “One metadata standard to manage them
all”—the shortcomings of the limited 15-element DCMES have raised criticism for
not offering the richness and specificity required for resource description outside the
web [10]. In Fig. 2.1 is shown an example of resource description using DCMES,
outlining the role of its elements.

A wide variety of more specialised metadata standards arose in the past years to
describe text documents (Text Encoding Initiative, TEI) and heterogeneous metadata
objects stored in digital archives, such as the Metadata Enconding Trasmission Stan-
dard (METS) and the Metadata Object Description Schema (MODS). In traditional
data management scenarios, metadata are always seen as a fixed product describing
a given physical or virtual object, to help cataloguing, search, and retrieval. There is
no strong need for metadata to mutate, adapt and evolve. The approach to data and
metadata management did not change when they started to be applied in the research
field, even if the scientific domain had different requirements and a more flexible
and dynamic nature. In fact, research paradigms, approaches and methods change
quickly over time, as goals are constantly adjusted and corrected to take up with
new discoveries and techniques. Despite this, in biomedical research metadata stan-
dardisation is usually achieved adopting the same two strategies used with success
in digital catalogues. The first is the adoption of minimum information sets—the so
called “metadata checklists”—while the second involves the use of shared controlled
vocabularies. The two approaches are strongly related to each other and overlap to
some extent. I will detail them in the following subsections.
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Fig. 2.1 The metadata element of an electronic version (EPUB 3.0 format [11]) of the book “The
Silmarillion” [12], as specified using the DCMES. EPUB stores metadata in XML language and
the Dublin Core Metadata Initiative (DCMI) elements are provided in the dc: namespace. For the
EPUB 3.0 specification, the identifier (a universal unique ID (UUID), ISBN, ISSN or DOI),
title and language elements are required together with the modified meta property. All
the other elements are optional. Notice than more than one value can be provided for each field.
The source element identifies the physical book from which the ebook was derived. The type
element describes the nature of the document (i.e.“text”) using the DCMI Type Vocabulary. Two
of the original 15 DCMES elements are missing in this example: relation and coverage.
Further details about DCMES elements can be found at [13]

2.3.2 Minimum Information Requirements and Metadata
Checklists

A minimum information standard is constituted by a set of guidelines for reporting
experimental data derived by relevant method in biomedical science. These guide-
lines aim at ensuring that the data can be easily verified, analysed and interpreted
by the scientific community. The overall goal of these efforts is to standardise the
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annotation and curation processes of the experiments, providing specifications about
which metadata is crucial together with the experiment’s output data to make it
comprehensive. One of the first efforts was the Minimum Information About a
Microarray Experiment (MIAME), first outlined nearly fifteen years ago [14]. At
that time, DNA microarray analysis was already widely adopted to generate gene
expression data at a genomic scale. MIAME established a standard for recording
and reporting microarray-based gene expression data, and it aimed at easing the
development of databases and public repositories, together with standardised data
processing tools. MIAME does not enforce a specific format, though formats that
facilitate data querying such as spreadsheet (MAGE-TAB [15]) or XML (MAGE-
ML [16]) were strongly encouraged. In its first specification, no terminology was
adopted or specified to constrain the metadata values. MIAME compliant data are
managed, stored and distributed by public repositories such as Array Express at EBI
(UK), GEO at NCBI (US) and CIBEX at DDBJ (Japan). In the subsequent years,
the scientific community specified other minimum information guidelines. Among
others, noteworthy are the Minimum Information for publication of Quantitative
real-time PCR Experiments (MIQE) [17] and the Minimum Information about a
functional Magnetic Resonance Imaging study (MifMRI) [18]. In 2008 all these
efforts were for the first time coordinated within the Minimum Information for Bio-
logical and Biomedical Investigation (MIBBI) project [19], which now provides
a web-based, freely accessible resource for checklist projects, providing straight-
forward access to extant checklists, together with controlled data vocabularies,
software tools and public databases. Not all the metadata checklist efforts are under-
taken within the MIBBI consortium. The Biobanking and Biomolecular Resources
Research Infrastructure (BBMRI) was instituted to harmonise biobanking manage-
ment and procedures across Europe. BBMRI developed a minimum data set for
biobanks and research studies using human biospecimens [20]. This data set—the
Minimum Information About BIobanking data Sharing (MIABIS)—consists of 52
attributes that—according to the proponents—provides the minimal description of
the biobank’s content. The harmonisation of metadata elements referring to biobanks
using theMIABIS standard should improve and facilitate samples’ discovery, result-
ing in time and cost savings and faster emergence of new scientific results.

The tremendous momentum generated by NGS technologies has also prompted
in the last few years the need for novel standardised metadata checklists. In January
2014 OMICS: A Journal of Integrative Biology has launched a coordinated initia-
tive for a comprehensive and flexible multi-omics (thus spanning through genomics,
proteomics, metabolomics, and so on...) metadata checklist [21]. The initiative aims
at enabling a thorough use of single and multi-omics datasets thanks to data harmon-
isation and improved visibility and accessibility.

All these standardisation efforts through checklists show a wide range of success
and acceptance by the research community, as one can see making a citation search
for each one of the resources mentioned above. Even the most widely accepted stan-
dards, such as MIAME, have their shortcomings that are summarised in dedicated
publications [22]. An issue considered by the authors is that implementing MIAME
requirements has turned out to be challenging. Specifically, since MIAME does
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not provide an explicit format for representing data, no standard computer-readable
format has been adopted. The MAGE-ML standard did not gain wide popularity,
because of its high complexity, caused by the intricate structure of XML schemas.
Themuch simplerMAGE-TAB format, which does not require any particular tool for
viewing/editing, has gained some popularity and novel more general formats (such
as ISA-TAB) tend to steer away from the XML complexity and keep the simplic-
ity of spreadsheet formats. As a general rule, the authors observe that developing
and adopting computer-readable standards is more difficult than adopting general
guidelines. Simplicity is the key to success to gain consensus within the research
community but this is not an easy task to achieve. A minimum set of information
cannot fit all needs of a community and is not conceived to tackle the requirements
of the increasingly dynamical and multidiscplinary field that is biomedical science.
I will proceed to illustrate an example on this in Sect. 2.4.

2.3.3 Controlled Vocabularies: Taxonomies and Ontologies

While several minimum information standards or metadata checklists do not enforce
the usage of controlled vocabularies, they frequently encourage their adoption.A con-
trolled vocabulary is an authoritative list of terms that is used in indexing. Controlled
vocabularies are adopted for consistent indexing (i.e. when indexing multiple docu-
ments) and do not necessary specify a structure or relationship between the terms in
the list. Controlled vocabularies are a broad category which include more specialised
classes: thesauri, taxonomies, and ontologies. A taxonomy is a controlled vocabulary
with a hierarchical structure. There are relations between terms within a taxonomy,
and they usually represent parent-child relationship. A thesaurus, is defined in the
literature retrieval and the information science as a controlled vocabulary where all
terms have relations to each other. There are typically three kinds of relationships:
hierarchical (parent/child, as for taxonomies), associative and equivalent. They are
scarcely used in life science, and their main field of application is the indexing of
periodical literature. An ontology is a category of taxonomies with structure and spe-
cific types of relationships between terms. An ontology supplies a greater variety of
relationships than the simple hierarchical associations supported by a thesaurus. Each
relationship is specified in its function. Ontologies define relationships and attributes
that are specific to a particular business area. They have gained a significant popular-
ity and are extensively adopted in biomedical science. Ideally, an ontologywell-fitted
for research should enjoy the following good properties. It should be:

• open, so that the ontology and the body of data described in its terms should be
available to the whole research community at no cost whatsoever. Being open also
mean a keen receptivity towards changes driven by community debate;

• orthogonal, to provide the benefits of modularity and ensure the additivity of
annotation;
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• instantiated in a well-specified syntax to support algorithmic processing;
• equipped with a common system of identifiers to ensure backwards compatibility
with legacy annotations as the ontology is updated.

The Open Biomedical Ontology (OBO) consortium applies the principles outlined
above to the development of life science ontologies [23]. All the ontologies vali-
dated by OBO are collected and published at the OBO Foundry website. Each OBO
Foundry ontology satisfies these requirements: (i) it possesses a unique identifier
space, (ii) it is, or can be, expressed in formal language, (iii) it includes textual defin-
itions for all terms, and (iv) it adopts unambiguously defined relationships according
to the specifications outlined in the OBO Relation Ontology [24]. The Stanford Cen-
ter for Biomedical Informatics Research of the Stanford University has developed
BioPortal [25, 26], a community-driven repository for Biomedical Ontologies. The
portal is equipped with a REpresentational State Transfer (REST) interface, to access
ontologies and their components. Ontologies provided by the OBO foundry consti-
tute an important core of the BioPortal ontologies. As opposed to OBI guidelines,
there are few constraints on the BioPortal ontologies, provided that the ontology has
some level of relevance to the domain of biomedicine and it is written in a supported
format.

2.3.4 Biomedical Metadata and the Semantic Web

Ontologies provide a systematised knowledge for a specific domain, and as a conse-
quence provide semantic content for each element and relation they define. The con-
nection between ontologies and the so-called Semantic Web—a (mostly theoretical)
extension of theWebwhere all the resources are described in away that machines can
understand and process to achieve inter-domain data linkage [27]—becomes appar-
ent exploring the ontologies contained in BioPortal. Most of the over 300 ontologies
stored on the BioPortal repository are either in OBO format or in the Web Ontol-
ogy Language (OWL), a World Wide Web Consortium (W3C) recommendation for
representing ontologies in the Semantic Web. The BioPortal dataset contains also
metadata related to each ontology and mappings among terms in different ontolo-
gies. Mappings are either submitted by users or generated automatically by internal
procedures of the system. Users can access the ontologies in BioPortal using the
SPARQL query language or retrieving de-referenceable terms and ontology Inter-
nationalised Resource Identifiers (IRIs) [28] in Resource Description Framework
(RDF) [29] format. The RDF data model is a core element to describe resources in
the Semantic Web. It structures any semantic expression as a triple, consisting of a
subject, a predicate and an object. A set of triples composes an RDF graph, where
subject and object are the nodes and the predicate is a link defining a relationship.
Nodes and links are univocally identified by a URI (or more in general, by an IRI).
The RDF specification is implemented in various formats: the two recommended by
theW3C are RDF-XML (the first standard format, anXML-based syntax) and Turtle,
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a compact and human-friendly format. The eXtensible Markup Language (XML) is
used to formalise metadata and metadata schemas. XML permits automated parsing
by software tools and the addition of semantic content. Addition of semantic content
to metadata has achieved a limited consensus, despite strong efforts by the W3C
consortium and the RDF Working Group. There is strong debate in the developer
community on the reasons behind this poor success and various indications have
pointed out some drawbacks of the semantic tools like RDF/XML, NTriples, Turtle,
SPARQL and so on. These tools do no provide native support for lists and gener-
alised graph structures and they have been accused of “creating esoteric solutions to
non-problems” [30]. In practice, most of the developers of data-driven applications
do not need to adopt semantic web solutions for managing their when there are more
“natural” and simpler solutions to address the problem. If this is true for software
developers, it will be even more true for biomedical scientists and researchers who
have different goals than spending time and efforts to provide semantic content to
their datasets. In conclusion, semantic support should be provided when the people
involved in a project feel comfortable in using it, but not enforced or tightly coupled
to the metadata schema of the digital repository.

2.3.5 Established Standards for Data Exchange
in Clinical Research

Numerous data models equipped with extensive metadata support have been pro-
posed and adopted for Clinical Data Exchange. The most notable is the Health Level
7 (HL7) Clinical Document Architecture (CDA), a document markup standard that
specifies the structure and the semantic content of a clinical document for the purpose
of exchange [31]. It employs an XML format and can contain any form of multime-
dia including text, images, videos, and so on. CDA tracks administrative workflow
together with clinical reports. An important aspect of CDA is the focus on document
exchange rather than data sharing, and the XML format is adopted precisely for this
scope. I will return on this point later on.

The Clinical Data Interchange Standards Consortium (CDISC) has produced var-
ious standards to manage both patient health care and biomedical research activities.
Their Operational DataModel (ODM) is yet another XML-based schema designed to
facilitate the regulatory-compliant acquisition, archiving, and interchanging of meta-
data and data for clinical research studies, and it is mainly focused on questionnaire-
based clinical trials [32]. Moving aside from pure clinical scenarios, the CCLRC
Scientific Metadata Model provides a general paradigm for storing metadata of sci-
entific provenance. Unfortunately it does not provide a subject-centric view, that is
seen as quintessential by the great majority of clinicians and biologists.
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2.3.6 The XCEDE Schema

The XML-based Clinical and Experimental Data Exchange (XCEDE) schema pro-
vides an extensive metadata hierarchy for storing, describing and documenting the
data produced by scientific studies [33]. Despite its omni-comprehensive objective—
somehow similar to DCMES in scope, if not in the applicability domain—it has been
used mainly in biomedical sciences and especially in computational neuroscience.
XCEDE hierarchical structure models scientific experiments using a set of hierar-
chy levels; each level can be annotated with specific metadata. Structured data, such
as time event-based data or clinical assessments and questionnaires can be stored
directly within the XML schema. XML has been adopted to provide a standardised
way to transport and interchange scientific data easing import/export procedures
between heterogeneous data sources, development of specialised web services, local
storage of experimental information within data collections, and creation of human
and machine readable descriptions of the actual data. XCEDE version 2 has adopted
reusable abstract data types, novel components to model analyses and terminologies,
and is built on a hierarchical structure for defining experiments. Data associations
are mapped using lists of elements linked by identifiers, thus permitting an easier
integration with relational databases.

XCEDE is built on eight main components:

1. an experimental hierarchy of multiple levels that allows the subdivision of an
experiment at different granularities, meaning that the user can omit some levels.
The project represents the top level element and collects multiple subjects or sub-
ject groups. A visit represents the subject’s appearance at the clinical institution
or experimental site, and it may consist of several study elements. Each study
contains one or more data-collecting episodes. An acquisition is defined as the
data produced during a single episode.

2. Resources. XCEDE elements can associate data to resources, (heterogeneous
external entities). There can be information resources—usually described by the
15 fields of the DCMES—that point to documents, publications or web pages,
and data resources that work as pointers to external files containing bulk data or
additional unstructured metadata.

3. Protocols are defined as a (possibly hierarchical) sequence of experimental steps.
4. Structured Data can be stored directlywithin theXML schema using the specific

<data> tag. XCEDE natively supports internal storage of clinical assessments
and events; the latter are defined as time interval annotated with metadata

5. Analysis is a component used to document the result of data processing steps. It
consists of inputs, a list of the employed software tools/methods, and the output
value(s) and/or file(s).

6. Catalogues are used to index and collect together data of interest. Catalogues can
be nested within another catalogue to build a multi-level hierarchy.

7. The data provenance module monitors the origins of data and the processing
steps. It allows repetition of processing workflows to test the results’ replication.
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8. A terminology component adds semantic content to the elements’ content, link-
ing them to terms within a terminology. Given the main focus on neuroscience
experiments, there is support for Brain Atlases and ontologies deputed to large-
scale experimental annotation.

2.4 The Shortcomings of Standards
in Research Collaborations

In any real-life scenario—and biomedical research is no exception—standards take
time to develop. The first issue is reaching a consensus, or “common ground” among
people with different expertise. Usually this process requires numerous corrective
steps, when the actors with different vocabularies negotiate a common terminol-
ogy. In a multi-disciplinary collaboration the same word(s) may convey a different
meaning for scientists trained in different disciplines. The second issue is due to a
diversity of objectives. Many times, metadata standards do not meet the investigation
purposes. Moreover, formal metadata conformant to a standard are not employed on
the daily routine or on a local basis. They are not felt as a priority but as a hindrance
by the researchers. A third complication is related to the multi-disciplinary nature
of many biomedical studies: research in the field can no more be bound within the
limited borders of a single domain. In practice, in any scientific work, well-refined
metadata products do not exist, even though they would be strongly desirable (espe-
cially by the scientists themselves!!). The concept of metadata as a product works
well in the settings where they were originally adopted: physical/digital libraries and
archives and businesses equipped with inventories. In collaborative research, uncod-
ified and informal knowledge plays a key role for correct data understanding. How
is this usually achieved? Using incomplete, loosely structured, ad hoc, and mutable
descriptions. The pieces of information are generated on-the-fly during communica-
tions among researchers, as soon as a common terminology is reached or restated. As
evidenced in a study by Edwards et al. focused on collaborative project on different
scales [34], metadata in scientific research can be envisioned as ephemeral process,
rather than a fixed, enduring product. Edwards observes that metadata seen as an
evolving and dynamical process enjoys some properties that make them difficult to
handle.

The metadata process:

• is fragmented, as it involves many contributors (i.e. individuals and research
groups);

• is divergent: often, beside the standardised efforts (and despite of them), other
metadata appear. The latter are usually simpler, more widely used, and are com-
municated in “unconventional” ways, like emails, phone calls and face-to-face
conversation, rather than data management systems and repositories;

• is iterative: both the metadata fields and their content is constantly changed and
repaired as the common terminology shifts in time;
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• is characterised by a local-centred focus, as for any scientist the internal usage of
data and the personal goals come before long-term sharing purposes.

Therefore, metadata management requires some level of paradigm shift to reach
a level of adaptability able to satisfy the researchers’ needs. As long as the focus
remains on fixed and highly defined metadata, there will be a strong friction and
misunderstanding in data sharing and communication among scientists. Biomedical
science makes no exception to this rule: there are different situations where the
inherent complexity of biological andmedical data cannot be captured or synthesised
only with the adoption of standards.

In particular, data in omics and neuroscience—the fields of life science thatmostly
fall in my area of interest and that are converging faster one towards the other—are
subjected to a variety of local constraints, institutional practices and regulations and
specification due to themanufacturer of the analysis platforms. In these fields, a great
part of metadata is generated by scientific instruments—such as DNA sequencers,
CT/MRI scanners, mass spectrometers, …—and their elements are specified by the
manufacturer. Different vendors adopt different strategies even if they are using
similar metadata fields. A data repository must find a way to manage and possibly
integrate different metadata schemas—that is the way metadata is stored and con-
tained within the database or file system—describing the same data type (i.e. anMRI
image, or a whole genome sequencing assay). Ideally, a digital repository should pro-
vide automated mapping to translate the data content and its metadata from the data
source to the repository internal model. In practice, given the divergence of formats,
this approach is not feasible. Neu et al. [35] have shown the inherent difficulties of
heterogeneous data management and metadata standards in neuroimaging collabora-
tive studies. Radiological images come in a plethora of formats, devised in different
periods by groups of people having different goals. Formats are different: the most
used are DICOM, Nifti, Analyze 7.5. In the early 1980s, the DICOM standard was
established to make images independent by the scanner manufacturer. Over the last
thirty years DICOM has gradually changed to keep pace with the evolution of scan-
ner technologies. Even though a single standard was provided, each manufacturer
has applied with different approaches and it has added proprietary metadata to store
values that were not supported in the standard specification. DICOM provides both
public and private tags to store metadata. The latter should be used by the vendors
for non-standardised metadata. In practice, private tags are used by manufacturers
even when a public tag is provided, if the public terminology is not consistent with
the manufacturer requirements. For instance, many of the imaging modalities used
in current medical research, like Diffusion Tensor Imaging (DTI), functional MRI
(fMRI) and Magnetic Resonance Angiography (MRA) are not recognised by the
DICOM standards, that collects all of them under the term “MR”. To distinguish
the three different modalities, the scanners adopt private tags and these are different
among the manufacturers. Even if we consider the relatively constrained domain of
Neuroimaging global consistency cannot be achieved for a number of motivations:



2.4 The Shortcomings of Standards in Research Collaborations 21

• radiological images are used in the clinical and research domain, with different
purposes. From the point of view of themanufacturer, the clinical domain has often
a higher priority and frequently a more consistent terminology than the research
counterpart. An issue to consider when transferring radiological images from the
clinical field to research is a consistent anonymisation with removal of all the
metadata that refer to the patient identity and other sensitive information;

• research is less regulated and more dynamical, so it is less prone to adopt fixed and
standardised terminologies (and this is the same point highlighted by Edwards);

• when different groups collaborate, they try to find compromises to achieve a ter-
minological consistency;

The dynamical nature of research and the rapid evolution of technologies, require
metadata that vary over time. Variations in metadata are required on a continuous
basis for novel experimental acquisitions and for innovative research protocols, like
those that employ pharmaceuticals never tested before, and that are not supported by
the current terminology.

Researchers are frequently forced to adopt non-standard solutions during their
daily activity. There is therefore the need for innovative data repositories that can
adapt data models to mutating requirements, to describe novel data types or to extend
existing ones. Standardisation alone cannot achieve heterogeneous data integration
and an optimal sharing of information when scientists of different disciplines are
collaborating in a multi-disciplinary project. As research collaborations are moving
constantly to geographically distributed efforts among groups with different back-
ground the repositories must also implement adaptive metadata management tools
to share data on a national and global scale. As a note, the end user should be
able to extend the metadata model without resorting to computer science special-
ists. The repository should provide a graphical interface for data type definition and
modification, where metadata fields can be added or modified, vocabularies and ter-
minologies can be extended, and when necessary semantic content can be retrieved
from an ontology to annotate the metadata fields.

2.5 Data Repositories: The State of the Art

I will now proceed examining the mostly used digital repositories and data man-
agement system for biomedical science, with a particular interest on neuroscience,
Functional Genomics, and Integrated Biobanking. In the end I will draw a compar-
ison to highlight the strengths and the deficiencies of these platforms to support a
dynamical and adaptive management of metadata in a multi-disciplinary collabora-
tive scenario.
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2.5.1 XNAT

The eXtensible Neuroimaging Archive Toolkit (XNAT) platform is one of the oldest
andmore establisheddata repositories forNeuroscience [36].XNAT is anopen source
software suite developed by the Neuroinformatics Research Group of St. Louis, Mis-
souri, to address and facilitate datamanagement challenges in Neuroimaging studies.
WhileXNAT supportsmainlyDICOM images and reports, it can, at least in principle,
store data of different types. XNAT has automated tools to capture data from multi-
ple sources, keeps them in a secure repository and distributes the data to authorised
users. XNAT relies heavily on XML and XML Schema [37] for data representation
and for other repository functions such as security management and generation of
user interface content. XML Schema was chosen as it was theW3C standard specifi-
cation to extend XML data formats. XNAT uses XML Schema Definition (XSD) to
define data types and to generate custom components, graphical and logical content
for its Presentation, Application and Data tiers. Moreover, XML is employed for
security, input validation and queries. Imaging data are stored in their native format
on the platform file system: a link to the file URI is stored within the database. XNAT
provides neuroscientist with an ad hoc workflow for neuroimaging data acquisition
and sanitising, that consists of automated data and metadata capture directly from
the scanners followed by a strict quality control procedure. Non-imaging data are
first put in a virtual quarantine and must be verified by a qualified operator. This
wide adoption of XML schemas poses a certain number of drawbacks. Inefficient
metadata storage and querying is solved saving numeric and textual fields directly
within the database. Another problem that is not so easy to solve, as the authors
recognise, is the poor efficiency of the database tables generated from the XSD, due
to sub-optimal mapping. As a consequence of the dichotomy between XML schema
and database representation, whenever a change is made to the data model it must
somehow propagate to the database. This operation usually requires manual changes
by an administrator and cannot be independently executed by a user without some
level of computer literacy. The core data model of XNAT bears some resemblances
with XCEDE—the authors of XCEDE state on their publication [33] that they have
been developed to complement each other—and consists of three main data types:
Project, Subject and Experiment. A single project is the “owner” of a Subject and
Experiment entities, but it is possible to share them across projects. Experiment rep-
resents the event when new data are acquired. Experiment is an abstract model. From
it derives Subject Assessment, and from this in turn derives Imaging Session. Imaging
Session has three specialisations according to the scanning modalities accepted by
the DICOM standard: MR Session, PET Session and CT Session.

XNAT relies on a three-tiered software architecture made of a PostgreSQL data-
base back-end, a Java-based middleware tier usually deployed on an Apache Tomcat
servlet container, and a web-based user interface. The XSD-to-database mapping
happens as follows: each one of the XML Schema global elements is mapped to a
single database table, with its sub-elementsmapped to the table columns. Foreign key
and complex associations (one-to-many and many-to-may) can be constructed from
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the XSD. If there is more than one XML Schema additional tables are created using
different namespaces to avoid overwriting. To allow interaction with analysis tools
and external platforms, XNAT exposes a comprehensive RESTful Application Pro-
gramming Interface (API). Recently XNAT has been equipped with a data dictionary
service that allows to define relationships between data elements and taxonomical
structures across the XNAT installation [38].

2.5.2 COINS

A candidate competitor of XNAT is the Collaborative Informatics and Neuroimag-
ing Suite (COINS) project, developed at the Mind Research Network (MRN) of
Albuquerque, New Mexico, USA. COINS is a data repository focused on central-
isation of neuroimaging datasets from multiple studies. The focus is in building a
single centralised infrastructure for neuroimaging datasets from multiple studies,
rather than developing a distributed network, but the overall goal remains to max-
imise data sharing and reuse [39]. The authors highlight the documented benefits of
a centralised approach: reducing costs, increasing the citations’ rate (due to multiple
cross-referencing), and the possibility of novel discovery through datasets reuse. The
COINS framework backbone is constituted by a well structured taxonomy for data
and data sharing. The taxonomy is twofold: on one side, it classifies the data by
plurality (singleton or collection), medium (document or digital file), confidentiality
(sensitive or insensitive), sense (data or metadata), source (recording of observa-
tion or derivation) and mode of acquisition (by humans or by instrument). On the
other side, sharing is classified by a source entity (i.e. institution), a target entity, the
possible sharing operations (intersections or unions of datasets across studies), the
delivery venue (in situ or ex situ), the transfer method (through computer network, by
courier or a manu), and the security (encryption on source, transmission, or target).

In the first attempt to categorise in rigorous way the difficulties posed by data
sharing in a biomedical context, COINS developers identify five main challenges:

1. Secure Personal Health Information (PHI) management.
2. In situ versus ex situ sharing. The centralised repository helps avoiding the latter,

that is copy or transfer of data outside the repository domain. All the users can
log into the COINS platform and access the information in situ. This is actually
a requirement that all the biomedical data repositories should satisfy.

3. The adoption of standardised metadata without undermining the extensibility to
novel data types. The authors recognise that this is a major issue. They address
the support for non-standard DICOM metadata—such as those describing DTI
or fMRI acquisitions—with customised methods for the extraction of vendor-
specific metadata fields. They stress the point that these automated procedures
require continued maintenance for updates to the new scanners and technologies.
COINS adopts an EAV catalogue to allow some additional flexibility for data
types not natively supported by the system.
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4. Intuitive Ease of Use (IEU): it is emphasised by the authors, and rightly so, that
new users should require a very small effort to be productive when using the
repository. Otherwise, they will soon stop using it, and they will look for easier
and more profitable ways to share their datasets.

5. Expose a uniform, friendly, powerful query interface
6. Check data provenance and, when required, modify/correct metadata.

Similarly to the previously exposed platforms, COINS is developed using the estab-
lished Java-based software technologies and relies on PostgreSQL. It currently sup-
ports the following data types: MRI, EEG, MEG, genetic data, neuropsychological
and clinical assessments. The first four types are collectively labelled NeuroImaging
Data (NID), while the last two are labelled as Neuro-clinical Assessments (NA).
NA data and ND metadata are stored on the database, while the bulk ND data are
stored on a file system. The COINS platform is built of five main modules, that I
briefly describe. Users access the systems via web portal. Different studies can have
their own web portal, reducing security risks; moreover, portals do not store any
PHI or identifier. The assessment manager allows dual-entry conflict resolutions for
NA that are entered by humans, and might require manual checking and validation.
Data is submitted via web form. Only free-text and drop-down options are allowed,
which I personally feel as an over-exemplification, if researchers would like to store
information different from NA. Data can also be collected from a tablet-based client
and sent to the COINS server using a web service API. NID upload is handled by
a customised DICOM receiver based on the dcm4che Java library. At the time of
the referenced publication, no other formats than DICOM were explicitly supported
for data upload. A graphical query builder module provides an intuitive interface,
that is based on a query-by-example approach, without requiring knowledge of data-
base structure or table associations. Authorised users can query data from multiple
studies. Frequently used queries can be saved and reused later. The most important
module of COINS is the Medical Imaging Computer Information System (MICIS),
devoted to studies, subjects and scans management. MICIS supports definition of
custom subject types, for instance to distinguish between patients and controls. It is
also equipped with a mechanism to unlink PHI from an entire study when the study
expires. As of February 2015, COINS installation at MNR managed nearly 31,000
subjects from 558 studies, with more than 38,000 scan sessions and over 4,90,000
neuropsychological assessments [40]. In the end, the systemmain characteristics are
the adoption of a centralised infrastructure to avoid ex situ sharing and wide usage of
EAV catalogues to handle data extensibility without using explicit schemas in XML
or other formats.

2.5.3 CARMEN

The Code Analysis Repository and Modelling for e-Neuroscience (CARMEN) sys-
tem has been developed in the UK to provide a web-based portal platform to share
and exploit datasets, analyses, code, and expertise in neuroscience. It provides four
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main types of assets: data, metadata, services and workflows. The authors state that
“data and metadata are currently structured for neurophisiology, but the mechanisms
for data and metadata management are generic and hence the platform is applica-
ble for any science domain”, a somewhat bold assertion that is neither proved nor
disproved in the publication [41]. The CARMEN system employs a data format and
schema that has been agreed by the project collaborators. This might prove a strong
limiting factor for the data model extensibility, since it is not possible to modify the
model directly without accessing and operating on the source code. In CARMEN,
users can generate pre-populated templates to ease the metadata entry procedures.
The templates will automatically populate the data entry forms, and the user will just
have to update the fields that change during the experimental protocol. When the
system was originally published in 2011, metadata upload from XML files was con-
sidered as a future possibility but was not currently supported by the system. Despite
its lack of flexibility, a noteworthy feature of CARMEN is the adoption of Storage
Resource Broker (SRB), a file virtualisation system for distributed file storage. None
of the other repositories presented in this section is currently integrated with a dis-
tributed file management system. CARMEN also offers tools for data analysis and
workflow configuration. Processing applications are made available in an interactive
Software as a Service (SaaS) model for end users, thanks to a Java wrapper module
that handles command-line tools written in a variety of languages.

2.5.4 XTENS

The eXTENsible platform for biomedical Science (XTENS) digital repository was
originally developed by Corradi et al. at the Department of Informatics, Bioengi-
neering, Robotics, and Systems Engineering (DIBRIS) of the University of Genoa to
support integrated research in neuroscience, with a particular focus on Neuroimag-
ing [42]. Its data management paradigm was designed to handle a various range
of situations and environments in biomedical research, and already incorporates a
basic samplemanagement system, a feature not yet supported by any other repository
examined in this survey. XTENS allows the generation of several different data types
according to structured schemas. In this respect, XTENS shows some point of contact
with the XCEDE data model: data types are described by an XML metadata schema
associated to XSD and XSL files to respectively validate its structure and define its
representation [43]. The repository can be configured to store the metadata totally
or partially in the database. The metadata are stored as XML descriptions inside the
data table, to display the data in a rapid and dynamic way using XSL Transforma-
tions [44], and as records of specific metadata tables, to perform complex queries
in an easier way. The most striking difference with XCEDE, and all the platform I
have reviewed so far, is that XTENS abstracts Experiments, Studies, Visits, Episodes,
and Data Acquisitions using a taxonomic model, built of two entities: Process and
Event. An event can be any ‘atomic’ operation that is performed on patients or sam-
ples, or any processing of data or everything else related to the XTENS repository
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administration and management. A process is defined as a group of sequential events
or sub-processes related to an activity, allowing the creation of a flexible and yet hier-
archical structure. A data instance in XTENS is defined as the output of an Event.
The main innovative point of XTENS is that the extension of the data model through
the definition of new data types can be easily performed by users through an intuitive
graphical interface.

The XTENS repository architecture consists of:

1. A web portal, that provides a client interface and allows users to access and to
manage database requests. The XTENS portal is a Java Server Pages (JSP) and
servlet application deployed on Tomcat. To better enhance user experience and
interactivity, various components are designed using Asynchronous JavaScript
and XML (AJAX) programming technique. Client and server exchange messages
using JSON through JSON-RPC protocol whenever possible.

2. AMySQL relational database. Database access from the web application is man-
aged with MyBatis, a persistence framework that automates mapping between
SQLdatabases and Javaobjects. TheMyBatis persistence layer permits to adopt, if
required, a different SQL RDMS (PostgreSQL, Oracle,. . .) with moderate effort.
The database contains all the information about projects, patients, data and every-
thing related to the repository management (users, groups and accesses).

3. A data grid storage element, which contains all the files associated to registered
data instances. Thedata grid of choice is the integratedRule-OrientedDataSystem
(iRODS) middleware. SRB, the distributed file system adopted by CARMEN,
was a precursor of iRODS. iRODS possesses an internal metadata catalogue and
the administrator can configure XTENS to store metadata both on the internal
database and on the grid storage metadata catalogue, or only on one of the two
systems.

The users access the system using an existing LDAP or database account available
on the server. Each user is associated to Access Control Lists in order to guarantee
security and auditing. The access is via web browser without any client installation
and in a secure way through the HTTPS protocol. Authentication and access-control
ismanaged using the SpringSecurity framework.XTENSaddresses possible security
and privacy policies regarding the access to proprietary data and sensitive clinical
data. This is achieved by a thorough customisation of user permissions, defined by
administrator-defined entities called functions. Authenticated users are allowed to
view, insert, modify and retrieve data according to the set of functions enabled for
their own group. Administrators can define groups of users associated with different
access permission to the application pages and functions.

2.5.5 SIMBioMS

The System for Informative Management in BioMedical Studies (SIMBioMS) was
probably the first open-source platform designed to integrate phenotype information
with genomic data produced by high-throughput profiling technologies. SIMBioMS
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authors state that the driving force behind their development effort was the lack
of dedicated system for Collaborative Projects that could provide support both for
subject and biological sample management. SIMBioMS was originally developed
in the framework of a multi-site project. Afterwards it proved to be sufficiently
customisable and scalable to be adapted for other research collaborations focused
on population genomics [45]. SIMBioMS supports data-entry via graphical forms,
and provides facilities for data import and export. The platform can be configured
to satisfy the MIBBI requirements, while data can be exported according to MAGE-
TAB, ISA-TAB and customised XML and tab-delimited format. A query-by-form
interface provides content exploration and report building. SIMBioMS has amodular
structure and consists of two main components, that can be installed separately:

• The Sample Information Management System (SIMS), stores and manages
phenotypic, environmental and technical information about the collected samples.
It provides four main data types: Patient, Visit, Sample and Aliquot. A patient
can undergo many visits and have many samples stored within the system. One or
more aliquots may be extracted from each sample for analysis purpose.

• The Assay Data Information Management System (AIMS) handles the exper-
imental output for a variety of high-throughput technologies. When the platform
was originally published in 2009, no built-in support was yet available for NGS.
AIMS provides a hierarchical structure where an Experiment contains multiple
Studies consisting of many Assay. The Assay entity provide the link with the
SIMS module: an aliquot is used for one or more assays.

From the technological point of view, SIMBioMS is a Java-based application running
on Tomcat and supported by a PostgreSQL database. The communication between
the application classes and the database entities is handled by Hibernate [46], a popu-
lar Object-RelationalMapper (ORM). As it can be seen from the SIMS configuration
guide available on the internet [47], a modification to the data model—like adding
new metadata fields, or changing the names of the existing ones—require modifica-
tions to the Hibernate mapping files and to various XML configuration files of the
application. These operations require at least a programmer or software installer with
some previous experience, and does not provide a full control of the data model to the
end-user (i.e. the scientist). Metadata and controlled vocabularies can be imported
in the system using once again XML files, but the SIMBioMS developers advise the
reader that this is an error-prone procedure and must be undertaken with great care.

2.5.6 openBIS

TheOpenBiology Information System (openBIS) software suite [48] is a data reposi-
tory tailored for long-term collaborative projects adopting cutting-edge technologies,
where migrations of data and support for new data models are frequently needed. It
has been developed to support data management in systems biology since the acqui-
sition from a source—such as a microscope, a mass spectrometer, a sequencer…—to
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the publication. Similarly to XNAT and SIMBioMS, openBIS provides a canonical
hierarchy for Biological data management with four main entities: Project, Exper-
iment, Sample and Data. There is no explicit support for patient personal data and
electronic health records, and no issues of anonymisation are tackled in the publi-
cation. openBIS’s area of competence is systems biology and a distinct integration
system is needed to integrate clinical informationwith the high-throughput omics out-
puts. Another drawback is the tight coupling between the main data types, especially
between Experiment and Sample. An experiment can contain one or more samples,
but the reverse is not true. Therefore, there is no support many-to-many associa-
tion between samples and experiments,that limits the applicability if compared to
SIMBioMS, where a sample could be fragmented in many aliquots assigned to one
or more assays. There is no separation between the sample management domain
and the analysis domain, as it was the case with the SIMS and AIMS modules of
SIMBioMS. Nonetheless, openBIS shows a lot of nice features that were missing
in the other platforms. Dedicated mechanisms for data upload, metadata annotation,
and flexible querying have been developed for the most important fields of System
Biology research: NGS, quantitative imaging, and mass spectrometry for proteomics
and metabolomics. The API has been designed using a “loose coupling” approach,
to expose a unified façade to external programs. Metadata are managed separately
from bulk data to ease scalability issue. Metadata are stored within the relational
database located on the so-called Application Server, while the bulk data is stored
in one or more file systems managed by Data Store Servers. In this way, bandwidth
consuming operations like file uploads are not performed on the system that provides
metadata management, and that might be used frequently for searches and retrieval.
In openBIS, datasets are immutable: once uploaded, they cannot be modified any
more. If a dataset must be modified or new data are derived from it, the novel or
updated data will be saved as a child dataset for internal consistency and information
traceability. The data content is separated from its representation. If a dataset pos-
sesses different representations, the user can create multiple datasets within a single
dataset container: openBIS will show the different representations as a single entity,
making the duplicates transparent for the user. Data upload for small and medium
files is handled through a web-based drag and drop interface: for the supported data
types metadata is automatically extracted and saved on the database using dedicated
Extraction, Transform and Load (ETL) procedures. Metadata can be exported as
spreadsheets, and users can download bulk data directly from the web interface of
using the command line. All the services offered by openBIS are available to external
applications through a REST API, to allow third-party data retrieval, analysis, and
visualisation.

The underlying openBIS datamodel dividesmetadata in three different categories:

• Structured metadata: these represent custom properties and annotations and
are stored within the database as single fields. Each structured metadata element
belongs to a property type, that determineswhether it is a textual field, a number, an
email, a hyperlink, a date or a constrained value selected from some terminology
or controlled vocabulary.
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• Semi-structured metadata can be stored as an XML schema directly on the
database. There is no mention of tools for building or formatting these schemas,
so my guess it that you have to provide them already well structured and they will
be validated against an XSD.

• Unstructured metadata such as free-text can be provided as a file attachment
and associated directly to the Project, Experiment or Sample entity.

Anoutline of openBISdatamodel is shown inFig. 2.2. Structured and semi-structured
metadata are stored using the Entity–Attribute–Value (EAV) model, a paradigm that
we will see often used to build up metadata catalogues. The user can extend the data
model creating new Property Types and attaching them to any if the four hierarchical
components of openBIS.More details about the EAVmodel can be found in Sect. 2.6.

The software stack of openBIS, built on Java technology, is mostly similar to
the other platform exposed in this section. It relies on a PostgreSQL database for
the Application Server domain, and a file system with support for segmented and
distributed storage for the Data Storage Server domain. Queries that return a large
number of rows are optimised to reduce latency during data retrieval. openBIS adopts
a classical three-tier architecturewith presentation (WebGUI/API), domain (business
objects for internal data processing) and data (Data-Access-Object pattern) layers.
While the first two layers are public and accessible respectively by humans and
machines, the third is responsible for the Create–Retrieve–Update–Delete (CRUD)
operations on the database and is kept private. The openBIS group has additionally
developed two separate applications for large data transfer. The first one, the CISD
File EXchanger (CIFEX), permits web-based data upload of files larger than 2 GiB
(that is the current limit for theHTTP protocol), while the other, Datamover, manages
secure transfer on unreliable connection and limited storage space. Web services are

Fig. 2.2 openBISdatamodel.Data entities are built on afive-level taxonomy.Metadata can be either
unstructured—i.e. file attachments—or (semi-)structured. The latter are described by a property type
object
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provided through a JSON-RPC interface, a lightweight protocol for data transmission
across the internet.

2.5.7 i2b2

The Informatics for Integrating Biology and the Bedside (i2b2) platform was
designed to provide clinical researchers with the tools required to integrate medical
records and biomedical research data in the genomic age [49]. The i2b2 architec-
ture is built on server-side modules, called cells, that communicate each other using
web services. A set of connected cells constitute a i2b2 “hive”, that can be thus
extended according to custom requirements. i2b2 was designed to satisfy at least
two requirements (i) find cohorts of patients that can be of interest for subsequent
investigations, and (ii) use the information provided by medical records to mine the
phenotype of the identified subjects in support of omics or environmental studies.
The cohort of patient is selected directly from the institutional databases (e.g. clin-
ical and biobank databases), preserving the privacy of personal information, and
is copied in a project-specific data mart. A data mart is the access layer of a data
warehouse that is used to expose data to the users. Data marts, like data warehouses,
are read-only. i2b2 supports communication with commercial databases (Oracle and
Microsoft SQL Server) to extract, transform, and load (ETL) clinical data to the data
mart. The user accesses an i2b2 system from the project management cell, which
handles authentication and authorisation. Using the i2b2 web client the authorised
user can access the data repository cell and build up from the graphical interface
ad hoc queries that are run throughout the institution (or enterprise) databases. The
refined ad hoc queries will extract the data set to populate a new data mart. It is
possible to select specifically which part of the data must be copied to the data mart,
and specify dedicated privileges for other users. Personal data are either kept on a
separate repository or encrypted within the data mart.

i2b2 data marts are based on the “star schema” design [50] of data warehousing.
The schema consists of four tables:

• observation_fact: contains all the observations about a patient. It contains also
all the value objects associated with the observation. Each value object must be a
basic type (numeric, text, date,…) so composite values are stores in multiple rows.
This table can be queried using and EAV approach. The observation_fact refers to
the other four tables of the star schema.

• patient_dimension: contains the subjects’ details, one patient per row.
• visit_dimension: describes the periods of time duringwhich the observationswere
recorded.

• concept_dimension: contains controlled vocabulary terms that map the original
codes that were used to specify the observation. The i2b2 internal
vocabulary allows hierarchical grouping specifying names with a Unix-like direc-
tory approach. For instance the /tumour group may contain the subgroups
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/tumour/carcinoma and /tumour/sarcoma. This approach allows effi-
cient queries based on pattern matching.

• observer_dimension: describes the operator or the mechanical instrument that
performed the recording of the observation

Overall, i2b2 collects the data of a biomedical enterprise or institution, usually located
in multiple data sources, to be integrated in a small set of tables. The main imple-
mentation of i2b2 at Partners HealthCare, as of 2009, contained 1.2 billion obser-
vations from 4.6 million subjects, Observations included diagnoses, medications,
procedures, and test results (including genomic test results).

i2b2 has been extended and used as a framework to integrate data in various
collaborative clinical and research projects, such as the Onco-i2b2 platform [51] and
the self-scaling chronic disease registry (i2b2-SSR) [52]. These implementations
allow fine grained control over data integrated for sharing purposes.

2.6 Data Repositories Comparison

Confronting all the digital repositories and platforms that I have exposed in the
previous section, it is possible to draw comparisons on at least three different grounds:

1. the underlying schema language/format;
2. the adaptability and ease of configurability of the metadata model;
3. the scaling properties of the system.

Concerning point 1, nearly all the metadata schemas that we have seen are structured
using XML. XCEDE is written in XML, and so are the data models of XNAT and
XTENS; CARMEN and openBIS have elected XML as their format of choice to
storage of semi-structured metadata. In clinical data management and biomedical
research XML is definitively popular. One of the main reasons for the wide adoption
of XML as data-exchange format is that HL7 version 3 messages are composed in
XML, and accordingly, HL7 CDA version 2 adopts the same specification. But as
explicitly stated in the Release 2 reference article [31], the objective of CDA is to
specify “the structure and semantics of a clinical document (such as a discharge
summary or a progress note) for the purpose of exchange” (emphasis mine). CDA is
designed to exchange documents, not data. Various software developers—Douglas
Crockford [53], most notably—have pointed out that XML has document-oriented
syntax poorly suited for data-oriented objects. While the distinction between the
two terms—data versus document—stretches very thin and is much open to debate,
from the information technology point of view I can see two requirement that a data-
oriented model should satisfy: (i) allow easy mapping to object-oriented languages
and (ii) be written in a language that is native in commonly used databases. With the
latter I mean that the format should be fast to search and that speed performances
should scale-up well with the database dimensions. Both of these statements are not
true for XML. Firstly, it was not conceived to be object-oriented and requires some
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level of manipulation and mapping, named data binding, to obtain a business object
from an XML document tree. Many binding tools have been developed for Java,
which is the language adopted by many of the biomedical repositories: the most
popular are JAXB, JiBX, and XMLBeans; C++ offers CodeSynthesis XSD. With
XML, data must be put within some document structure and this can be complicated
with elements that can be nested, attributes that cannot be nested and complex types
with their own peculiarities. When trying to develop a data model compliant with
modern object-oriented languages, a software engineer should evaluate other solu-
tions besides XML. Secondly, XML is extremely slow to search. Being a text-based
format, usually more information (i.e. bits) is required to store it rather than if it were
a cell value. There exists some XML-based databases—most notably BaseX, eXist
andMarkLogic Server—that are optimised to use languages for XML query and nav-
igation like XQuery and XPath/EXPath [54]. BaseX is the only open-source solution
that offers extended language features without recurring to proprietary extensions.
In practice though, query performance and scalability is limited, and in many cases
XML is stored as text field in a relational database. Such is the case in all the data
repositories I have examined. Thirdly, XML is extremely verbose, with both opening
and closing tags for each element, and not conceived to be read by humans. Overall,
XML works well as an exchange format for transferring data across applications
adopting the same data structure, but it is too rigid too allow the flexibility to model
the fluidmetadata process that could simplify data sharing in research collaborations.

The second point is to some degree related to the first: the more rigid is the
adopted language/format, the less adaptable will be the data model. This is the case
of XNAT. Existing data types can be extended adding new fields whose values will
be stored in a EAV catalogue. The operation of creating a new data type—like a
new observational or clinical assessment type—requires first the construction of a
new XML document that is likely to daunt the great majority of clinical users. The
procedure can be eased with the help of one the many available graphical editors
like Liquid XML or Eclipse Vex. Even so, once you have made a new model you
have to run an update script, update the database, redeploy the XNAT application
and setup XNAT security to allow access to the newly defined data types. All these
operations require an administrator of the repository with good computer literacy,
and this will likely take the control of the data model away from the scientists.
SIMBioMS suffers from similar limitations due to the Hibernate ORM mapping
files. COINS and openBIS consent a greater level of extensibility resorting to the
EAV paradigm. In openBIS new metadata fields are created a Property Types and be
attached to existing entities, while COINS allows the creation of customised clinical
assessments to complement the neuroimaging scans. However, it does not support
user-configurable fields for all the neuroimaging data types (only for MR andMEG),
and no explicit creation of new data types is available to integrate other data sources.
While the EAV approach provides a useful tool for defining new metadata fields, it
does not explicitly offer a method to construct new data schemas. The structure of the
schema must be reconstructed from the associations declared in the database tables.
Compared with the other systems, XTENS aims at finding a solution to generate
new data types giving full control to the end user (i.e. the scientist). It provides
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non-IT users with an experience friendlier than XNAT, removing all the burdensome
compilation and re-deploy steps: the user builds up your schema using a graphical
web form and once submitted the XML document is automatically generated and
ready for use. The administrator has only to configure the permissions to the new
data type for the authorised user groups, and this is done from graphical interface
as well. If a the new data type has a large set of metadata fields, the construction
from web form will be an overlong and tiresome procedure. In this circumstance,
it would be necessary to resort to an XML graphical editor. A good approach here
is keeping the driving principle of XTENS flexibility, while providing a different,
more object-oriented language for composing the metadata schema.

The issue of scalability (third point) is twofold: on the one side we must consider
the database and on the other the file system for bulk data storage. Concerning the
database, here the main issue is the storage of metadata: besides the adoption of
XML for semi-structured metadata, nearly all the systems I have presented either
put all the structured metadata in an EAV catalogue or adopt a mixed model, where
dedicated tables for widely used data types (e.g. subjects, samples and/orMRI scans)
exist along with an EAV representation for all the remaining metadata. COINS,
SIMBioMS, and openBIS fall in the first category, while XTENS and XNAT belong
to the second. EAV is very attractive because it allows a higher flexibility and requires
a small level of database modelling to get it to work: in the simplest implementation,
just three tables are required: one for the Entities (that in our case are the data
instances), one for the Attributes (the metadata fields), and one for the attribute
Values (metadata fields’ values and possibly measure units). EAV presents a number
of challenges that could hinder with the scalability of the system, in particular a
sensitive degradation of performance: if the catalogue grows beyond a certain size,
it will reach a point where the efficiency of data retrieval and manipulation will
hit a critical low. At that point, the database manager or the application developer
has very few choices to solve the issue. It won’t be possible to add table indexes,
because the table has no specific columns for each attribute as it is the case in a
standard relational representation. In general, EAV is less efficient in data retrieval
than “conventional” relational schema. As noted in previous studies dedicated to
Clinical Databases, attribute-centred searches, where the query criterion is based on
the value of a particular attribute, are most likely to show impaired performance [55].
This performance degradation is especially noticeable when query criteria combine
one or more simple conditions using boolean operators. The cause for the potential
performance degradation is the conversion from the relatively fast AND, OR, and
NOT operations that are used when operating on relational schema tables to the
sensitively slower set-based equivalents (intersection, union, and difference) for EAV
tables. This study, even though fairly ancient, provides us some interesting insight on
the limitations of EAV. They found that EAV query performance was three to twelve
times slower than the relational schema equivalent, with search speed decreasing
as the query complexity increased. The EAV structure consumed approximately for
times the size of a conventional schema. As stated by Nadkarni et al. [56] the EAV
model is useful for specific scenarios:
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1. When dealing withmetadata fields that are both numerous and sparse. Ametadata
field is sparse if it is present only in a small number of data instances. The case
for this could be a clinical data repository handling different specialities;

2. When, even if metadata fields are not sparse, the number of different data types
is large, and the number of instances for the data types is reasonably small;

3. When dealingwith so-called “hybrid” data types:where somefields are sparse and
some are not. In this case, even if it might be suitable, the EAV model represents
a sub-optimal solution.

As we can see, there are many scenarios that fall outside the three categories outline
above. As high-throughput omics technologies become more affordable and exten-
sively used, there will be a flood of metadata—such as the variant calls from a whole
genome sequencing analysis—that are not handy to wield and fast to search if stored
using EAV approaches. To assess file system scalability there are two main options:
(i) a distributed file system managed by a resource broker or a data grid middleware,
(ii) taking advantage of a cloud-based storage.While the second is an appealing solu-
tion, it not always feasible, especially when the files contain sensitive information
and the Institution regulations do not allow storing data in third-party companies’
servers.

In conclusion, there is the need for a data model, based on a more flexible, object-
oriented and possibly with better performances than the structures that are currently
adopted, mostly XML and EAV schemas. The data model should handle in an uni-
form yet flexible way the wide range of heterogeneous data that are found in the
current biomedical research scenario: clinical records, omics and imaging data, and
biological specimens. Ideally speaking, from the developer point of view, the model
should adopt a format/language that is both natural to the database where it will be
stored and, in perspective, to the applications that are going to use it. I have chosen
the JavaScript Object Notation (JSON) [57] format as a serious candidate to build
the model, because it satisfies all the conditions I have required, and it has become a
valid alternative to XML as a data exchange model for many data-driven application
on the web.
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Chapter 3
The JSON-Based Data Model

3.1 Introduction

As stated in Chap. 2, the goal of the JSON-based data model is to overcome the
issues and limitations evidenced by the literature. The model must provide a uniform
interface and structure to handle heterogeneous information, such as patient health
records, details about biological specimens, high throughput genomic outputs, and
so on. However, some data instances require additional operations that must be dealt
in a specific way. For instance, subjects may have sensitive information attached that
the system has to manage taking into account privacy issues and regulations. The
user must be able to associate samples (i.e. biological specimens) with a specific
biobank and, if required, locate it within a freezer. Therefore, I decided to proceed
as follows. First, I defined a generic (i.e. more abstracted) Data class, with a set of
common operations that all the data instances must implement. Afterwards I defined
two specialisations of the Data class, to describe subjects (such as human patients,
but possibly also animals or cell lines) and samples. In the following section I will
describe the generic Data entity.

3.2 Why JSON?

JSON is a text format for the serialisation of structured and semi-structured data. It
is derived from JavaScript object literals, hence the name. In practice, it is a minimal
and portable textual subset of JavaScript [1]. It has gained a huge popularity as the
preferred data exchange format on the web, given the ubiquitous nature of JavaScript
language, present and extensively employed in all the major web browsers.1 JSON

1For the sake of simplicity from now on, whenever I speak about the “major browsers” I refer to
these five guys: Internet Explorer, Mozilla Firefox, Google Chrome, Opera and Safari.
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Fig. 3.1 An example of a JSON data object. The three fundamental types are shown: strings (in
blue), numbers (orange), booleans (green) and null (grey). Other types—such as date, timestamps,
and emails are represented as formatted stings. Notice that array are allowed to contain heteroge-
neous values

provides a paradigm to store data and metadata in an organised yet flexible and easy-
to access way. I find surprising that so far there have been no academic effort to use
it as a format to store heterogeneous scientific metadata. An example of JSON is
provided in Fig. 3.1. A JSON object is enclosed within curly brackets. The object
is composed by a set of properties expressed as key—value pairs. Any recognised
Unicode string is a valid key. JSON support four primitive values—string, number,
boolean and null—and two structured subtypes: objects and arrays. It is therefore
possible to nest objects within other object, building up a hierarchical structure.
Arrays are ordered lists of objects or primitive types and are enclosed within square
brackets. There exist various comparisons between JSON and XML available on the
internet, so I am not going to repeat most of the arguments that have already been
raised by more expert developers. I limit myself to two key considerations relevant
to my design goals:

• JSON is an object-oriented model. Even though its syntax has been extrapo-
lated from JavaScript its textual nature makes it language-independent. It does
not required data binding libraries to be parsed in C-like languages like C++, Java
and C#. In Python, another languagewidely used by the scientific community, sup-
port is provided by the standard libraries. In MATLAB there are various options
available, the most popular being JSONlab.

• JSON natively supports ordered lists as arrays. Lists are what programmers use to
manage collections of objects. Document-oriented formats like XML (and RDF)
do not provide any internal construct to model lists. Arrays in XML have to be
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expressed by conventions: for instance using an outer placeholder element that
contains the arrays items as inner elements. The outer container is named by
convention with the plural form of the inner element name.

• JSON does not provide an equivalent to the XML <[CDATA[]]> feature to store
images, audio/video or binary payloads, but this is not an issue for my data model.
JSONwill be used to define the data schema and store metadata, while all the bulk
files will be stored separately on a distributed file system. This approach will easy
scaling-up the application to bigger data workloads.

There are other data exchange models that have proven to be very flexible and pro-
vide impressive performances on transmissions across computer networks. There
are other data-exchange formats, noticeably MessagePack [2] and ProtocolBuffers
[3], developed by Google. MessagePack is a binary format with a structure simi-
lar to JSON, but adopts strategies to store short integers and small strings in fewer
bytes. The ProtocolBuffers format allows the user to define a data schema, then a
compiler generates code for reading and writing the data. Binary data-interchange
formats generally outperform self-describing (i.e. text-based) ones like JSON and
XML in data serialisation [4] and transmission. On the downside they do not offer a
human readable data representation and are not as widely supported. Emeakaroha et
al. suggest a hybrid approach that combines the strengths of binary and text-based
data format to enhance efficient communication and interoperability in Grid– and
Cloud–based applications [5]. I have decided to adopt a text-based solution, keeping
in mind that the end-user friendliness is one of the main objectives to provide the
user with the better experience. Moreover, MessagePack and ProtocolBuffers are not
as popular as JSON or XML, and I did not want to build up a stand-alone system
who could not interoperate with the services and analysis platforms available online.

3.3 The JSON Metadata Schema

As previously stated in Sect. 2.1, the broadest definition ofmetadata is “description of
physical or digital things”. These “things”, from the data management point of view
aremapped to entities in a database—or,more generally, in a data store—and arewhat
from now on I will call data instances, data entities, or simply data. This abstracted
data entity lies at the core of the JSON data model. In biomedical science, a data
instance may refer to a subject, a sample, or any kind of analysis and processing steps
that may produced in a research project. Regardless of its nature, each data instance
will have a set ofmetadata attributes that describes it. Different types of datawill have
a different metadata structure, that is a different set of metadata attributes (or fields2).
It is the data “type” that uniquely specifies the metadata structure. The DataType
class has only two properties: a name, an alphanumeric string that uniquely identifies
the type, and a schema that is a JSON object that contains all the metadata structure

2The two words are used interchangeably in the text.

http://dx.doi.org/10.1007/978-3-319-31241-5_2
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for the type. The schema contains the metadata structure or model. It is composed
by two parts:

• a header containing the schema name, a brief description, a version number,
a boolean field stating whether the data type has associated files, an optional
reference to an ontology or terminology.

• a body containing all the metadata fields. Metadata fields are defined in a con-
strained hierarchical structure.

A metadata body contains one or more metadata groups. I introduced the concept of
metadata groups to allow the division of metadata according to their nature or origin.
This was inspired by the categorisation suggested by Nadkarni [6] in technical and
descriptive metadata. The separation between the two categories is blurred, so it
is to the user to divide its metadata in as many groups as she/he sees necessary.
For instance, users may want to identify these metadata groups: system metadata,
technicalmetadata, on the reproducibility of the experiment,metadata on the operator
performing the task/analysis, and descriptive metadata retrieved from a file they
are saving. Metadata groups are allowed to contain two different elements: single
metadata fields and/or metadata loops. The metadata field represents the leaf of the
model in its current implementation. A field cannot contain other subfields. The
metadata field is a JSON object with a set of properties that constitute the so called
structural and validation metadata. Here it follows the list of properties:

• label—it is the tag used by the software to recognise the object a metadata field.
Its value is constrained to the string “METADATA_FIELD”.

• type—the primitive type of the field. Currently the system supports five primitive
types: Text, Float, Integer, Date and Boolean.

• customValue (optional)—a default value to populate the field when no value is
provided by the user (optional).

• iri (optional)—an IRI that links the metadata field to some univocally identified
resource on the web. It can be used to store a term from a controlled vocabulary
or an ontology.

• required—boolean flag; if true the user must provide a value for the field.
• sensitive—boolean flag; if true the field will be removed before sending it to users
without access rights to personal and/or sensitive information.

• isList—boolean flag; if true the user will select the value from a list of terms.
• possibleValues—the list of options that are allowed for the field. Used only if
isList is set to true.

• hasTableConnection—boolean flag; if true, the value for the current field will
be selected from a list or a controlled vocabulary provided from some external
resource (a database table, a controlled vocabulary available online…).

• tableConnection—the Uniform Resource Identifier (URI) of the resource from
where the external controlled vocabulary can be retrieved; used only if hasTable-
Connection is set to true.

• hasUnit—boolean flag; it states whether the field has a measure unit, such as it
may be if it were a physical measure.
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• possibleUnits—if hasUnit is true, this property provides a list of units. For
consistency’s sake a single unit value is advisable. However the model supports
the adoption of multiple units for the same field. This might be useful, for instance,
when a time lapse can be measured in seconds, days or years. In the current imple-
mentation there is no support for unit conversion, that could be achieved using an
ontology such as the Ontology of Units of Measure and Related Concepts [7].

• isRange—boolean flag, currently used only for numerical fields. If it is set to
true, the values allowed must fall within a range, that can be constrained by three
properties: min, max, and step. The user can specify only one between min and
max, while step is used only if min is provided. The allowed values will therefore
be val = min + N × step, with N belonging to the natural numbers, as long as
val <= max .

This is the list of properties currently supported by the model. Given the flexible
nature of JSON—no validation is required against an XSD—it is easy to extend this
list to provide further structural, validation and guide metadata. One that I plan to
provide soon, is a notes field, to supply the user with a brief but essential explanation
of eachmetadata field, to support themost correct value section. Given the dynamical
approach of the model, guide metadata such as notes will be easy to edit by the end
user, and will positively reduce the “metadata friction”, as exposed in Sect. 2.4. I
have included the concept of metadata loops—mutuated from the XTENS original
data model of Corradi [8]—to describe recurring fields or ensembles of recurring
fields. A loop represents a collection of recursive fields (i.e. attributes). It is useful
to store recurrent metadata fields occurring an unforeseeable number of times. Two
examples of relevance for clinical research are the field ‘metastatic site’ for a data
type associated to a ‘relapse’ clinical event, or the ’overexpressed gene’ field for a
‘DNA microarray’ data type. Both of them may occur more than once in a specific
data instance, but the number of occurrences varies from time to time. The metadata
loop object contains three properties: name, an optional iri, and content, an array
containing its fields. Themetadata grouphas the same set of properties of themetadata
loop, but the content array can store both fields and loops in any order.

3.4 A First Implementation: XTENS 1.5

Given the need to test the applicability of the JSON data model, I first decided
to incorporate it as the core of an existing platform. The reason was one of time:
designing, developing, and testing an entirely new data repository was an effort too
huge at the beginning, since I was still quite inexperienced in web programming and
data management. Moreover it might have proved a worthless risk, if in the end the
model did notwork as I hoped.Therefore I decided to use theXTENS repository as the
exoskeleton for a JSON-based data management platform. The choice of XTENS
was driven by its capability to extend the data model (i.e. create new data types)
online, without having to reconfigure, rebuild and restart the system. Furthermore,
it already provided dedicated functionalities for sample management, a feature that

http://dx.doi.org/10.1007/978-3-319-31241-5_2
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was required for tackling properly the integrated biobanking setup. I redesigned the
XTENS object model in order to incorporate in it the JSONmetadata schema. I have
distinguished the object model in two separate domains, as it can be seen in Fig. 3.2:

• The operational model, a traditional object-oriented (OO) class model where all
the classes that map operational entities of the biomedical domain are defined,
together with their associations (see Fig. 3.3). A subset of these classes—those
shown in Fig. 3.2, namely Patient, Sample, Process, Event, Data and
MdataValue —are typed classes. All typed classes extend the abstract
TypedElement class;

• The meta model, an OO class model that contains all the type definition classes.
All the type definition classes implement the abstract Type class;

Therefore, each typed class instance is univocally defined by its type. The con-
cepts of meta and operational models are borrowed, though applied in a different
context, from the work of Bush and Wedemann [9]. In the operational model, the
Project is—similarly to XCEDE—a macro group where all kind of patients’ data
and information are collected. Each project contains one or more Patient enti-
ties. In a generic biomedical scenario, when a patient is enrolled in a project, she/
he may enter in a research study, composed by a (maybe flexible) set of analysis
steps. The process-event paradigm of XTENS as described in Sect. 2.5.4 uses the
two entities Process and Event to model these workflows. To briefly recap the
concept, a process is a collection of sequential events and/or sub-processes related
to an activity, allowing the design of a multi-layered hierarchical structure. The
entity PatientCollection is an aggregate of Patient, employed to decouple
patients from processes and manage possible situations where a process (e.g. study
or visit) contains analyses that require merging data coming from more than one
patient. Process and Event objects are fully characterised by the corresponding
ProcessType and EventType instances as defined in the meta model. The same
patient may be involved in more studies, such as a gene expression profiling and/or
a clinical trial. In the process-event model, every time a patient enters a study a new
process is created and activated. A study is composed by a sequence of events, and
each of themmay produce a Data instance, fully described by itsDataType. In the
XTENS repository authorised users can create and activate on the fly new process,
event and data types, without the need to recompile the application. A form-based
graphical interface (containing all the fields that map to properties in the metadata
JSON schema) allows users/operators to manually define new data types, adding
metadata groups, attributes and loops. When creating a novel data type, the users
can select an ontology from a list, if they want to name the metadata fields using
controlled and semantically associated terms. The ontology is downloaded directly
online from the Bioportal repository. The selected ontology will be loaded and the
application will suggest the terms to the operator using an auto-complete widget.
All the parameters and properties specified in the schema as described in Sect. 3.3,
can be set from the form-based interface. I have developed a client-side JavaScript
routine that scans all its fields when the form is submitted, builds the JSON schema
and sends it to the XTENS server. The server stores the newly created data type as

http://dx.doi.org/10.1007/978-3-319-31241-5_2
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Fig. 3.2 Details of the class model, showing the operational model (right, in black), which contains
all classes involved in the biomedical workflow and the meta model (left, in red) representing the
types. All typed classes in the operational model inherit from TypedElement, while all types in
the meta model inherit from Type. The property jsonSchema of DataType contains the metadata
schema template as JSON for the specific data type. MdataField properties contain info about
the metadata group and (optionally) loop that the attribute belongs to, its name and type, and an
optional link to a terminology. The property jsonSchema of Data contains the metadata schema
populated with values (and units) selected by the operator when the data instance was registered
in the system. MdataValues represents a single metadata field instance, and has properties for
value and unit. Event and Process both have a property (eventState and procState) to check whether
they are still active, terminated or paused. The full list of Sample properties is not shown in the
picture. Each class in the diagram realises an XTENS database table
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Fig. 3.3 The diagram shows the main entities of the biomedical operative model. The Project
class represents the top-level component of our model. A PersonalData class contains all the
sensitive information about a patient. Only authorised operators can access the identifier that maps
Patient objects to PersonalData. The details of the freezer management system, that had
already been implemented in XTENS by Corradi, are not shown. A process contains sub-processes
and/or events, outlining a flexible hierarchical structure. Each Data object maps to a single Event
and is described by a set of MdataValues objects. The property irodsPath of File contains the logical
path of the document in the iRODS file system

a DataType instance in the XTENS database. The metadata schema is stored in
the property jsonSchema of DataType. Additionally, XTENS stores each attribute
definition as a type in theMdataField table, one of the classes outlined of themeta-
model as shown in Fig. 3.2. Once the data type is activated for a user group, users
belonging to the group can select it to save its data instances. The associated event
is first created and inserted in the appropriate process when a user wants to register
a new data instance in the repository. Then the metadata schema from the selected
data type is retrieved from the database, is parsed, and dynamically converted to a
web form using jQuery.dForm [10], a jQuery plugin. The metadata schema, popu-
lated with the values selected by the user, is stored in the property jsonSchema of
the Data entity (see Fig. 3.2). On submission each metadata attribute is parsed, and
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its value and measure unit are saved in the MdataValue table. The three tables
Data, MdataField and MdataValue are respectively the Entity, Attribute and
Value tables of the XTENS EAV catalogue. One might wonder why, after talking so
much about the scalability issues of the EAV model, I decided to adopt it in this first
implementation. It was necessary because, to incorporate the JSON schema within
XTENS, I had to adopt a mixed model for metadata storage and management. In this
mixed model, metadata from patients and samples are stored as columns in dedi-
cated tables, while all the other metadata are stored both as a single JSON document.
MySQL, the Relational Database Management System (RDBMS) used by XTENS,
does not provide a primitive type to store JSON document, so the JSON schemas are
stored as textual fields, with serious impairment for query speed. To overcome this
issue, each metadata field value is also stored separately in an EAV catalogue.

If the fileUpload option is set to true in the jsonSchema header, one or more files
can be uploaded by the user and registered in the in the XTENS data grid system
managed by the iRODS middleware. A new file collection is created on iRODS,
all the uploaded files are stored within it and the metadata are stored as attribute-
value-unit (AVU) triples on the iRODS metadata catalogue (iCAT) and associated
to each file in the collection. XTENS also saves the JSON schema as a text file in
the same iRODS collection where all related data files are saved. This way, in a
virtual community scenario involving many institutions, both files and the metadata
description could be replicated and shared among all the centres deploying an iRODS
server. The operations of data type creation and subsequent data management have
been described inmy publication onBMC Genomics [11]. In 2013 I recorded a video,
that is available online, detailing the two procedures [12].

In selected cases, new data insertion may require additional operations and
modifications inside the database. I have developed an abstract server side Java class
loosely based on the Command design pattern [13] to handle these situations. The
abstract class contains three methods: check, retrieve and recovery. Check is exe-
cuted before inserting the new data, to verify whether all the required conditions (for
data submission) are met and/or satisfied. The check method may also be used any
time an event—and the related data entity—depends on previous events (as stated
by a protocol workflow or pipeline), to verify that all previous required events have
been registered in XTENS.Execute is called immediately after the new data insertion
to apply all the additional modifications to database entities. It may also contain a
procedure to automatically populate a metadata instance parsing a file header using,
if necessary, an appropriate ETL procedure, without need for the user to load them
manually using the web form. Recovery is run if the execute step fails for any reason,
in order to fall back to the original configuration. This abstract Command class can
be extended to handle different situations. I will show an implementation of it to
manage sample aliquot deliveries in the next chapter. Finally, to support the meta-
data mixed-model, I newly designed a flexible search interface that allows users to
compose queries based on the custom-defined metadata attributes and run them on
the database and on the grid, to recover patient and sample information, and files. In
the following chapter, I illustrate the first practical application of it, in an integrated
biobanking scenario.
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Chapter 4
Results: The Integrated Biobanking Use Case

The new version of XTENS equipped with the JSON metadata schema, named
XTENS 1.5, has first been adopted at the BiolMol of the Giannina Gaslini Insti-
tute (IGG) of Genoa. BiolMol has an ongoing collaboration with DIBRIS for data
management and analysis. IGG is a Paediatric Hospital with a long tradition and
experience in developmental-related diseases. BiolMol, together with the Anatomi-
cal Pathology unit, manages Gaslini’s main biobank, the Biobank Integrating Tissue-
omics (BIT).

4.1 BIT Workflow

BIT collects tissue and blood samples of paediatric patients, with a main focus on
neuroblastic tumours. BIT centralises samples of neuroblastic tumours—in particu-
lar neuroblastoma—from all over Italy. The biobank was founded in 2009 and, as of
March 2015, more than 2400 different samples (see Table4.1) have been collected
and stored. Currently BIT has histopathological and genomic characterisation of
the samples including structural alterations in DNA (CGH array) and gene expres-
sion profiles (Affymetrix DNA Microarray) of about 150 neuroblastoma tumours.
Every six months, the patients’ updated clinical history is provided from the Ital-
ian Neuroblastoma Registry [1]. All this information—samples, clinical, genomic
and personal data—must be integrated and stored inside the biobank database. The
use-case diagram of the activity related to BIT are shown in Fig. 4.1. Every time a
new sample arrives—it is usually sent from the Anatomical Pathology facilities (if
it is a tumour), from the Central Laboratories (if it is a whole blood sample) or from
another hospital—the biologist stores it in the biobank and registers it in the system.
Each clinical sample must be associated to a patient. By convention, the patient is
univocally identified by name, surname and birth date, which are the only personal
informations available to the biobank. For any banked sample, the pathologist pro-
vides the histopathological diagnosis and other pertinent information such as the

© Springer International Publishing Switzerland 2016
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Table 4.1 Summary of patients, samples (by tipe), and clinical/molecular data stored in the BIT
digital repository as of 25th March 2015

Total Neuroblastoma

Subjects 1241 758

Tissues 1881 1065

Fluids 519 320

DNA 916 819

RNA 475 400

Microarray 175 172

aCGH 155 155

ALK mutation (Sanger) 30 30

Clinical and molecular details 680 680
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Fig. 4.1 Use case diagram for the biobanking activity at BIT-Gaslini. I have identified four actors in
the biobank management system. The biologist banks tissue and blood samples, extracts RNA and
DNAfrom themandperforms structural and expressiongenomic analyses. The clinicianperiodically
provides clinical data about patients. The bioinformatician retrieves the collected information and
processes it using classifiers and machine learning tools. The repository administrator manages
users, groups and functions. She/he creates and activates functions and data types for specific
groups. In a small lab or group another actor (e.g. biologist) may also have administrative role

percentage of tumour cells. This information may arrive after some days (less than a
week), depending on the pathologist’s schedule. Afterwards, if the sample meets the
requirements of specified by the clinical protocols requiring genomic investigations,
the biologist extracts nucleic acid derivatives. Multiple extractions from the same
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tissue can be performed, especially if the derivative quantity is not sufficient for all
the genomic analyses, or the quality is poor. The tissue and its derivatives are stored
and preserved in the biobank for further use.

4.2 XTENS for BIT

One limitation of XTENS 1.0 was that it did not support associations between sam-
ples, such as the hierarchical one-to-many association existing between a “parent”
sample (e.g. a tissue) and its “children” samples (DNA and RNA, for instance, but
also plasma and serum obtained from whole blood fit in this category). Therefore I
have newly designed the samplemanagement system as it follows. A patient can have
one or more samples associated to it; I have introduced the typed class Sample in
XTENS operational model and the associated typeSampleType in themetamodel,
as it was shown in Fig. 3.2. I performed a furthermodification to the datamanagement
policy enabling data instances association to samples as well as patients. This is cru-
cial in the BIT use case, where researchers perform the same functional genomic
analysis—let’s say a microarray or an NGS assay—on DNA or RNA extracted
from two different samples (e.g. lymphocytes and tumour tissue) belonging to the
same patient, to compare the genomic profile of sane and diseased cells. In such a
situation, they must be able to associate each data instance to a specific sample. I
introduced the entity SampleCollection as an aggregate of Sample to decou-
ple the mapping from Sample to Data and handle also data instances that merge
information coming from multiple samples (see Fig. 3.3). It has a role analogous to
PatientCollection for Patient. In this way, patient has one or more sam-
ples, and in addition each tissue or blood sample may generate “children” samples as
in the case of genomic derivatives. Use of a foreign key pointing to the “parent sam-
ple” in the Sample entity allows to track each final product or aliquot to the master
sample. I have separated personal sensitive information from the remaining patient
data into two different entities (i.e. database tables) to guarantee pseudononymisa-
tion. Only authorised users may access the unique identifier that allows retracing
and retrieving personal information and link it to clinical data and samples. Each
molecular analysis or bioinformatical processing step performed on biobank-related
samples or data is associated to a new data instance registered in the repository.
Using the process-event schema, I identified three main process types for biobanking
management at BIT-Gaslini: patient management, sample management and genomic
analysis. Through patient management it is possible to track patient creation, mod-
ification, and deletion, and any periodical insertion and update to the Clinical Data
provided by Physicians. Sample Management comprises, besides sample insertion
and update, also aliquot deliveries of tissue derivatives to other labs or institutions
outside IGG for specific genomic analyses or research collaborations. When the sys-
temwas first set up and installed, two genomic analyseswere performed at IGG:CGH
Array and cDNAMicroarray. CGH stands for Comparative Genomic Hybridisation,
and is amolecular cytogenetic technique for studying copy number variations (CNV)

http://dx.doi.org/10.1007/978-3-319-31241-5_3
http://dx.doi.org/10.1007/978-3-319-31241-5_3
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relative to ploidy level (i.e. number of sets of chromosomes in the nucleus of a cell)
in a test sample compared to a control [2]. In other words, it allows to detect losses
and gains in DNA copy number across the entire genome, without prior information.
The comparison is executed between a DNA sample of tumoural origin (our test)
and a reference DNA. For the European Low and Intermediate Risk Neuroblastoma
Protocol (LINES) and, to a lesser extent, the High Risk Neuroblastoma Treatment,
there are three significant outcomes:

• Segmental Chromosome Abnormality (SCA): if the structure of one or more
chromosomes is altered. SCA comprises: deletions, gains, amplifications, and
more complicated mutations like translocations, inversions, and insertions. In
neuroblastoma the presence of SCA is associated with a higher risk of relapse
[3]. Since high-risk neuroblastoma demonstrates SCA in the great majority of
cases, this abnormality is mostly of interest in low and intermediate risk cases [4].

• Numerical Chromosome Abnormality (NCA): if there is no SCA, and either a
chromosome is missing from a pair, or there are more than two pairs of a chromo-
some (trisomy, tetrasomy, …);

• No Result: if none of the above mutations are found. No result must be due to a
flat profile (no mutations), but also to the poor quality of the analysis (no sufficient
material);

DNA Microarray is one of the oldest and the most established techniques for Gene
expression estimation, measuring the quantity of RNA in the cell’s cytoplasm (see
[5] and Sect. 1.3). I created within the genomic analysis process type a dedicated sub-
process type for each of the two analyses (CGH and Microarray). The sub-process
types contain a set of (sequential) events to track the whole processing pipeline.
Details of the Microarray analysis workflow are shown in Fig. 4.2. At BiolMol we
store the raw data as .CEL files, and we performed two different microarray normal-
isations (MAS5 or RMA [6]), depending on the study requirements. We also store
reports about a set of outcome and prognostic feature predictors, developed at IGG,
and based on two machine learning classifiers: (i) a multilayer perceptron neural
network developed by Cornero et al. [7], and a Logic Learning Machine (LLM)
algorithm [8] implemented with the Rulex proprietary machine learning suite [9].
I have adopted the general purpose module inspired by the Command design pat-
tern, as described in Sect. 3.4 to update stored material following deliveries of part
of it to other labs or institutions. In this scenario, the check method controls the
selected sample quantity and compares it with the quantity to be delivered. If the
latter is greater an error message is returned and the procedure stops. Otherwise, a
new sample delivery event and related data are registered in the database and the
execute method updates the remaining quantity. If any error occurs during the new
data registration, the recovery method restores the previous quantity value.

http://dx.doi.org/10.1007/978-3-319-31241-5_1
http://dx.doi.org/10.1007/978-3-319-31241-5_3
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4.2.1 Sample Management

Sample management has two principal activities: sample registration (i.e. creation
of a new sample entity in the database) and search of samples, based on their meta-
data and on other data (such as molecular and genomic analyses) performed on the
samples. In Fig. 4.3 is shown the form used to register a new sample. All the four
main sample types (tissue, fluid, DNA, RNA) currently used in BIT expose a com-
mon interface with a two shared fields (BIT code, Arrival Date). The other sample
metadata differ depending on the type. For primary samples, it is possible to specify
a hospital and a unit of provenance, together with a possible external code, assigned
before the sample’s arrival at BIT. For tissue and fluid samples, Sample Codification
and Pathology are values selected from controlled vocabulary, that can be extended
by authorised users. I have personalised the original XTENS research page to handle
complex searches within the BIT digital biobank. Searches can be performed either
on patients or tissue/fluid samples, depending on what is the focus of the operator.
For sake of brevity I will describe now only the sample search, which is the more
detailed of the two, since it contains all patient data aswell. The search page, shown in
Fig. 4.4, is a multi-tab form, where search fields are divided on five panels, where the
user can select the fields she/he is interested in querying and/or visualising. The first
panel contains metadata fields related to the subject, the second (specific for patients
enlisted in the neuroblastoma projects) contains a list of metadata describing clinical,

Fig. 4.3 Interface for a tissue sample creation and update
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Fig. 4.4 XTENS graphical query builder

biological and molecular parameters significant for neuroblastoma prognosis. These
parameters are stored in a dedicated table to allow ad hoc searches and separate man-
agement of sensitive information. The third table contains all themetadata fields used
to describe tissue and fluid samples while the last two panels allow to add conditions
on the derivative DNA and RNA samples extracted from the tissues and fluids. Each
tab contains a full list of fields; using a checkbox list users select the fields they want
to be shown in the result table. For each selected item they can specify one or more
values for the query. Additional tuning can be performed using the custom-defined
data types and metadata fields as they have been described in Sects. 3.3 and 3.4. The
result provides an integrated view on all the requested information, as it is shown in
Fig. 4.5. For each sample the full list of stored data instances can be visualised, and
for any data instance the associated metadata and files. Authorised users can export
the result as CSV or Excel file and download files stored in the data grid. External
applications can access data and files using a RESTful web service interface.

http://dx.doi.org/10.1007/978-3-319-31241-5_3
http://dx.doi.org/10.1007/978-3-319-31241-5_3
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Fig. 4.5 XTENS graphical query builder

4.2.2 ALK Management

Since September 2014, the Biotherapy Department of the SanMartino-IST Hospital,
in Genoa, participates to the collaboration, providing the results of the mutation
analyses of the gene ALK for a specific category of high-risk neuroblastoma patients.
Germinal mutations of ALK are themain cause of familial neuroblastoma [10], while
somatic alterations occur in∼8% of all neuroblastoma cases [11]. XTENSmanages
the ALKworkflow as follows: the clinicians from the Oncology Clinical Department
(OCD) of IGG enlist new candidates. A new “ALK analysis” process is activated on
XTENS. The biologist checks whether there is DNA available on the biobank, and
sends an aliquot to SanMartino-IST. The analysis is currently executed using Sanger
sequencing and by the end of the year will be executed with targeted NGS. Once the
analysis is run, anALK report is uploaded onXTENS and the associatedmetadata are
populated. On the graphical web form, shown in Fig. 4.6, the operator can report the
foundmutations in the exons of interest for neuroblastoma (exons 20–25), the overall
result of the analysis, and (optionally) whether a germinal mutation was found. The
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Fig. 4.6 The web form for reporting an ALK mutation analysis

“ALK analysis” process is closed and the results are available online to consult for
the clinicians. As of March 2015, 30 ALK mutation reports are recorded on XTENS
1.5 at IGG.

4.3 BIT Installation Setup

All the Digital Biobank Platform is currently hosted on two servers with RAID 5
storage virtualisation located at IGG, equipped with Ubuntu Linux 12.04 LTS. I
set up on the two machines an iRODS Zone (i.e. an autonomous iRODS system),
named iggZone. iggZone consists of an ICAT-Enabled Server (IES), a secondary
iRODS Server, and two storage resources: mainResc, located in an iRODS vault
within the IES server, and bakResc, located in a vault within the secondary server.
A single user—named xtens—is activated for users accessing iRODS from the
Digital Biobank portal. All the files uploaded from XTENS are stored inside the
collection /xtens/xtens-repo and further divided depending on patient and data
type identifiers. For instance, a microarray CEL file named test_gene_expr.cel,
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belonging to patient PAT001 will be stored at the irods path ‘/iggZone/home/xtens/
xtens-repo/microarray/PAT001/test_gene_expr.cel’.

I have modified an iRODS system rule for file management after submission,
called acPostProcessForPut, to check file integrity and automatically manage repli-
cation of data on the two resources for all the files saved in iRODS using the Digital
Biobank portal. The code snippet is shown here as an example of iRODS rule syntax.

acPostProcForPut {
ON($objPath like "/iggZone/home/xtens /xtens−repo/∗")

{
msiSysChksumDataObj;
msiSysReplDataObj("mainResc" ,"bakResc");

}
}

The Digital Biobank platform has currently been used in production for two
years (since September 2013). We have inserted over 1800 primary tissue samples
together with all extracted DNA and RNA derivatives form over 1400 patients. I
have written a set of Java procedures to retrieve information from spreadsheets and
automatically populate database entities, to automatise time-consuming operations
such as the initial data import from CSV/Excel files and the periodical update of
clinical data. I tested the database performances using a fixed set of queries on tissue
samples with multiple table joins. These queries are built with 4–6 different data and
metadata parameters. Then, I used a MySQL database, populated with about 10,000
data instances, 120,000 metadata, and hosted on a 64-bit computer equipped with
3.5GB of RAM. I identified a set of table indexes to optimise the test searches, and
I was able to reduce the query time of two orders of magnitude. At the end of the
optimisation, all the tested queries took less than 0.9 s to be executed, transmission
overhead included. As a consequence of indexing, new data insert speed is 31%
slower. The system’s performance is more than suitable for BIT daily workload.
In perspective, performances can be improved by more tailored indexing, query
caching, and possibly by alternative tuning of MySQL configuration properties, and
this strategies will be particularly useful if the dataset scales up. I have published the
JSON-based data model and the results about the XTENS 1.5 setup at IGG on BMC
Genomics [12].
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Chapter 5
Results: XTENS 2, A JSON-Compliant
Repository

In this chapter Iwill present the efforts done to develop a novel, fully JSON-compliant
environment for the JSON data model outlined in Chap.3. The original XTENS
repository and XTENS 1.5—from now on collectively named “old XTENS”—were
developed using a Java-based software stack and a MySQL database backend. As
illustrated in Chap. 4, it proved to be successful in managing the workflow of a
medium-sized integrated biobank. However, there were various limitations to flex-
ibility yet. These were in part due to the fact that the XTENS platform was first
developedwithXML-based schemas. These strictures became apparent as I collected
various feedbacks from the biobank operators. Here I will outline the main points of
criticality, that convincedme tomove towards a thorough refactoring of XTENS core
architecture. First, as it was shown in Sect. 3.4 and in Fig. 3.3, old XTENS treated
Patients, Samples, and other Data as separate entities, without exposing a common
interface.1 This pronounced separation forces the programmer to develop a different
method for each of the three models (Patient, Sample, Data) even though the method
should perform the same operation. More critically, Patient and Sample do not have
an extensible metadata property, which is present only in Data. Previously I have
defined the UML model of Fig. 3.3 as having a mixed metadata model. Patient and
Sample entities store metadata in dedicated tables, where each property is mapped
to a column. Data entities store the JSON schema in a table column, and all the
metadata fields are individually stored in the EAV catalogue. Every time the scien-
tist/operator needs to add a metadata field to either Sample or Patient the database
schema must be modified. The procedure involves several steps, and in most cases,
if the user wants to perform complex queries on the new field, also the source code
requires modification. A possible way to overcome this limitation is to create a new
Data Type to contain all the “extended” properties of the Patient (or Sample) type.
There should be only one instance of this Data Type for each correspondent Patient
and/or Sample entity. This mixed solution seems to be feebler than the one adopted,

1Here I speak of interface in the Software Engineering sense: a common set of public methods and
properties.
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for instance, by openBIS (see Sect. 2.5.6), where it is possible to attach metadata
elements to patients, samples and datasets in a uniform way.

A second issue related to the platform architecture was the lack of a service-
oriented interface. In its original implementation therewere noRESTfulweb services
forCRUDoperations onPatient, Sample, andData. I developed aRESTfulAPI, using
the Jersey Java library, but, due to various XTENS internal model shortcomings that
became apparent as I delved more into the code base, they just allowed a very limited
functionality. For instance, because of a limited abstraction in the design of the EAV
module, extensive source code rewriting would have been necessary, to implement
a general GET method on Data instances based on their metadata values. Given
the inner fragility of other parts of the core modules, I thought a better approach
redesigning the service-oriented API de novo. Furthermore, the old XTENS platform
was designed using JSP and servlet with a tight coupling between the front-end and
the back-end. It was not infrequent to find some scriptlet—native embedded Java
code intended to run on the server—written directly on the JSP files. In practice,
a JSP file, which should contain only the representational details (i.e. the “view”),
incorporated also server-side code retrieval operations. This is a serious violation of
the Model-View-Controller decoupling principle. The adoption of scriptlets within a
Java Server Page is highly discouraged since the issue of the code conventions for JSP
1.1 [1]. I had already removed all the scriptlets during the development of XTENS
1.5, but I could not get rid of other subtler couplings that avoided the code being
modular and with a clear separation of concerns between client- and server- side
operations. The lack of modularity generates, among others, the following issues:

• little or null code reuse
• the effort to add a new software feature to the platform is considerably high
• there is a high risk of uncontrolled error propagation due to the lack of a test suite,
with unit and integration tests at least for the most critical functions.

It appeared clear tome that in order to achieve ameaningful improvement on all these
aspects I had to perform a more radical modification on the software architecture.
I decided that, if I was to adopt a different technological stack, I must set as a first
goal to adopt an environment where JSON is a first-class citizen. This approach
has brought me to a somehow uncharted territory, at least as long as biomedical
digital repositories are concerned. One can easily risk to step into some pitfall,
such as adopting a language that does not provide extensive support for relevant
functionalities (e.g. solid libraries for ontology management). Nonetheless, JSON
has gained the status of de facto, for data exchange in the web, and I think that
there is no reason to not try to adopt the same solutions that have obtained such a
wide consensus for the same good properties—simplicity and flexibility—that are
required in modern biomedical data management systems. Given these assumptions,
I have resolved to adopt a so called full-stack JavaScript solution, that is a set of
loosely connected JavaScript-based technologies that allow to develop all your web-
based platform—in my case, the XTENS 2 repository—using JavaScript. I will now
describe the technologies and the architecture I have adopted on the server, and how
this approach allows a complete decoupling between back-end and the front-end.

http://dx.doi.org/10.1007/978-3-319-31241-5_2
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5.1 XTENS 2 Back-End Architecture

The building-block of the XTENS 2 back-end is Node.js, a server-side JavaScript
environment, designed for executing applications in real-time [2]. Node.js—usually
simply called Node—has at its core V8, Google’s open source JavaScript engine.
While V8 was conceived to support JavaScript on the browser—notably on
Chromium and Google Chrome—Node aims to support long-running server pro-
grams. When it first came out, Node had two innovative characteristics that set it
apart from other existing server-side environments. It did not rely on multi-threading
to handle concurrent execution of business logic, and it was based on an asynchro-
nous, event-driven, non-blocking, I/O model. Running on a single thread, Node has
a lighter memory footprint than Apache or Tomcat. It is conceived for data-intensive
(i.e. I/O intensive) programs while a computing-intensive operation would block all
other concurrent requests. In practice, every time the Node process executes an I/O
request, it does not stop waiting for a response (from the database or the remote
file system, for instance). The code executing I/O saves the callback function and
returns the control to Node. The Node event loop2 will execute the callback once the
data is available or the I/O request is satisfied. Once the response arrives, the waiting
code will be executed (as soon a the Node process ends executing the current code,
and any other program with higher priority is executed as well). JavaScript supports
event callbacks and is therefore an excellent language to use with in asynchronous
environment. On top of Node I have adopted Sails.js [4], a server-side JavaScript
framework for developing modular web applications. Sails.js provides the following
functionalities:

• An data-orientedMVC architecture that automatically generates a REST interface
with the five CRUD operations—find, findOne, create, update, delete—for the
models you have defined. For HTTP request processing and routing, Sails (in
versions 0.9–0.11.x) takes advantages of Express [5], a minimal framework for
Node-based applications.

• a database-agnostic ORM/Object-Document Mapper (ODM) called Waterline.
Waterline is defined as a “storage and retrieval engine”, and provides a uniform
API to access items stored in relational databases (MySQL and PostgreSQL are
officially supported), NoSQL databases (MongoDB, Redis…), protocols (LDAP),
third party API (Twitter), volatile memory (for testing and development) and disk.
Waterline supports associations (one-to-many and many-to-many) that work also
across different connections or adapters: for instance, you can join a table stored
on a MySQL database with a collection living on a MongoDB installation.

• the capability of defining declarative and reusable security policies for autho-
risation and access control. Policies allow/deny access to Sails controllers and
controller methods at different granularities.

2An event loop is “an entity that handles and processes external events and converts them into
callback invocations” [3].
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• built-in support for WebSockets [6], a protocol that enables two-way communi-
cation between client and server. WebSockets are particularly useful for real-time
functionalities, such as online chats, news reports or medical device readings. In
Sails, WebSockets work on the same routes specified by the REST API, without
having to develop a dedicated code base.

The next step was to identify a database which allowedme to store data using a JSON
or JSON-compatible format, while supporting associations and transactions. For this
reason, I dropped out MySQL.3 NoSQL solution, while attractive for their schema-
less4 design and their scalability properties, do not provide solutions that are both fast
and reliable for handling associations, especially many-to-many associations. The
standard “NoSQLway” for associations is to embed recordswithin other records and/
or to store data redundantly (replicate across the associated entities). In the latter case,
ensuring that all the collections are correctly synchronised becomes a major issue for
the developer. Moreover, if the relations between the various entities are on multiple
levels and of complex nature, a NoSQL document-based storage system is a poor fit.
On these ground, I have chosen to adopt PostgreSQL (also known as Postgres). It is
an open-source RDBMSwith a solid community and extensive functionalities. It has
been already adopted in various biomedical scenarios, as testified by my survey in
Sect. 2.5, with good success. Last but not least, it provides storage of semi-structured
data in JSON format. PostgreSQL natively supports the text-based JSON format—
called json—since version 9.2. In 9.3, a set of operators to access properties within
json were introduced. In Postgres 9.4—the major version released in December
2014—Postgres developers team introduced a binary JSON format, named jsonb,
designed to support schemaless data storage on a relational database [7]. The only
differences besides the format itself are that jsonb (i) does not preserve seman-
tically insignificant whitespaces, (ii) does not keep track of the order of the object
keys, and (iii) does not maintain duplicates of the keys (if duplicates are provided,
only the last value is stored). All the JSON-specific functions and operators of 9.3
work on jsonb as well; additionally, new operators specific for jsonb have been
introduced. A full list can be found on Postgres official documentation (see [8] for
Postgres 9.4). Finally, for the management of bulk data and unstructured metadata, I
have kept on using iRODS, for its good properties on distributed storage scalability,
data management through user-defined rules, and internal metadata support. How-
ever, I decided to decouple the storage system from the XTENS 2 core application.
The decoupling is handled through a Strategy design pattern (originally formalised
by the Gang of Four [9]) and will be described in the next section. Its main objective
is allowing easier interchangeability of the storage system, if specific projects have
different requirements.

3At the time I started developing the system MySQL had no native JSON support. Binary JSON
support in MySQL was first introduced in 5.7.8 (July 2015).
4Here and afterwards, “schemaless” means that no fixed (tabular) schema is enforced or constrained
by the RDBMS on write. The schema may be provided or enforced by an external application (in
our case XTENS 2).

http://dx.doi.org/10.1007/978-3-319-31241-5_2
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5.2 XTENS 2 UML Class Diagram

As a first step, I applied at least a single major modification to the UML model
described in Sect. 3.4 and outlined in Fig. 3.3, to solve the issue of the separate man-
agement of patients and samples. Therefore in XTENS 2 I have modelled Data as
a generalised class devised to describe all the “things” (in the sense introduced in
Sect. 2.1) that aremanaged by the repository.Data is still a typed class: its type prop-
erty refers to a DataType object. DataType has a schema property—equivalent
to the jsonSchema property in XTENS 1.5—that contains the metadata schema in
JSON format. Data instances only contain, for each metadata field, its value and
unit (if requested): all metadata fields are stored as JSON in the metadata property.
The Subject and Sample classes are specialisations of Data, and their meta-
data is handled exactly the same way. In Sails terminology, Subject, Sample,
and Data are called models.5 Accordingly, the model property of a DataType
object determines which is its target model (i.e. in which table its data instances
are stored) and allows three values: ‘Subject’, ‘Sample’, and ‘Data’. Subject has
two additional associations. The first association is with the PersonalDetails
model, which is used to store in a separate entity all the sensitive informations rel-
ative to a subject. A subject is univocally identified in the system by the its first
name, last name and birth date. This triple represents the minimum information
to be submitted if the system keeps track of the personal information. A second

Fig. 5.1 XTENS 2 core UML class diagram

5I know, this is an unfortunate naming choice, because it may create ambiguity with the JSON
metadatamodel. But I found all the other possible candidate names, namely template, classTemplate,
or class even more inappropriate. Every time I refer to the JSON data model I call it explicitly the
JSON data model.

http://dx.doi.org/10.1007/978-3-319-31241-5_3
http://dx.doi.org/10.1007/978-3-319-31241-5_3
http://dx.doi.org/10.1007/978-3-319-31241-5_2
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association is with Project: I have modelled it as a many-to-many associations,
thus allowing each subject to participate to multiple projects. A sample is
associated to a subject through the donor attribute, and to aBiobank. InXTENS2.0, a
biobank is described according to theminimum information required by theMIABIS
checklist (see Sect. 2.3.2 and [10]). This information is stored in two separate enti-
ties: Biobank and ContactInformation. The XTENS 2 data model allows to
build a constrained hierarchical structure based on the entities Data, Sample and
Subject. Each data instance can have one or more children data instances. More-
over, subject and sample can have as children both sample and data entities. The type
of allowed children is specified by the relations that are defined among the various
data types. Data types are related to each other with many-to-many associations: that
is, a data type can have many progenitors and in turn it can have many descendants.
The class diagram is shown in Fig. 5.1.

5.2.1 XTENS 2 Metadata Management

In a Data instance, each metadata field is stored within a JSON property having
the same name of the field. Let’s say for instance that we have a Data Type ‘Clinical
Report’ having the following metadata fields: Diagnosis Age, Clinical status, and
Diagnosis. For sakeof simplicity they are stored in the schemaof DataTypewith the
field names converted to lower case and with whitespaces replaced by underscores.
Therefore, the metadata attribute of a ‘Clinical Report’ Data instance contains the
three property diagnosis_age, clinical_status, and diagnosis. Within each property
there are two subproperties: value, where the actual metadata field value is stored,
and an optional unit field.

This is the complete JSON schema of the ‘Clinical Report’ DataType:

1 {
2 "header":{
3 "schemaName":"Clinical Situation",
4 "description":"an example of a patient clinical summary",
5 "version":"0.1",
6 "fileUpload":false,
7 "model":"Data",
8 "parents":["Patient"]
9 },

10 "body":[{
11 "label":"METADATA GROUP",
12 "name":"Clinical Report",
13 "content":[{
14 "label":"METADATA FIELD",
15 "fieldType":"Text",
16 "name":"disease",
17 "iri":"http://purl.obolibrary.org/obo/OBI_1110055",
18 "customValue":null,
19 "required":true,
20 "sensitive":false,
21 "hasRange":false,
22 "isList":true,
23 "possibleValues":[
24 "neuroblastoma","medulloblastoma",
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25 "rhabdomyosarcoma","retinoblastoma","wilms tumour
",

26 "osteosarcoma","leukemia","other tumour"
27 ],
28 "hasUnit":false,
29 "possibleUnits":null
30 },{
31 "label":"METADATA FIELD",
32 "fieldType":"Integer",
33 "name":"diagnosis_age",
34 "iri":null,
35 "customValue":null,
36 "required":false,
37 "sensitive":false,
38 "hasRange":false,
39 "isList":false,
40 "possibleValues":null,
41 "hasUnit":true,
42 "possibleUnits":["day","month","year"]
43 },{
44 "label":"METADATA FIELD",
45 "fieldType":"Text",
46 "name":"overall_status",
47 "iri":null,
48 "customValue":null,
49 "required":true,
50 "sensitive":false,
51 "hasRange":false,
52 "isList":true,
53 "possibleValues":[
54 "complite remission","diseased",
55 "deceased","N.A."
56 ],
57 "hasUnit":false,
58 "possibleUnits":null
59 }]
60 }]
61 }

In the header, it is specified that no files can be associated to this data type (file-
Upload is set tofalse), that the data type is applicable to a genericData object (no
Subject or Sample), and that data instances of the type ‘Clinical Situation’ can
be children of data instances of the type ‘Patient’ (i.e. the parent type). The schema
body consists of a singleMetadata Group containing in turn the three aforementioned
metadata fields. The first one, disease, is a textual field whose name is associated to
an IRI specified by the Ontology of Biomedical Investigation. A value is required
and must be chosen from the controlled list specified in possibleValues. The second
field, diagnosis_age is a numeric (integer) value that admits three possible measure
units: days, months or years. The last field, overall_status is another required textual
field with four admitted values. For the second and third metadata fields, no ontology
identifier is provided. A data instance of ‘Clinical Situation’ contains ametadata field
such as the following:

1 {
2 "disease": {
3 "value":"neuroblastoma"
4 },
5 "diagnosis_age": {
6 "value":23,
7 "unit":"month"
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8 },
9 "overall_status": {

10 "value":"complete remission"
11 }
12 }

5.3 The Query Builder

My final aim with the new XTENS application was to provide a more flexible query
tool for advanced data search on a heterogeneous data set. As a purpose of example,
I will proceed to illustrate the query builder using an Integrated Biomedical scenario
similar to the one outlined in Chap. 4. The query in the query builder can be con-
structed using any of the data types that a user is allowed to use. Let us consider an
example where I have the following data types: Patient (model Subject), Tissue,
Fluid, DNA, RNA (model Sample), Clinical Situation, Microarray Report, CGH
Report, Genome Sequencing and Variant (model Data). Patient has three children:
Tissue, Fluid and Clinical Situation. Tissue and Fluid share the same two children:
DNA andRNA. RNAbegetsMicroarray Report, while DNAoriginates CGHReport,
WholeGenomeSequencing andHumanVariant. The relationships among the various
data types are described in Figs. 5.2, 5.3, 5.4, together with all the metadata fields
specified in each data type schema. The query builder allows the user to configure
queries using a graphical form on the web client interface. There are basically two
main categories of queries that can be performed:

1. queries performed on a single data type, such asMicroarray Report, CGHReport,
Genome Sequencing, or Human Variant.

2. queries with conditions on multiple data types. In this case the user identifies a
root data type, that is the type that she/he wants to search. Then, it is possible to
add further conditions on the descendants of the root data type. For instance, if
we choose to perform a query on Tissue samples, we can add conditions based on
the fields of DNA, RNA, Microarray Report, CGH Report, Genome Sequencing
and Variant Annotation. The query builder web form automatically suggests the
correct data types to compose the subqueries. In general, if the query is performed
using parameters from N different data types, at least N − 1 table joins will be
required to obtain the result.

I have designed the query builder client interface with the aim of keeping it simple
and minimal. When the user first enters in the page, there are only two select boxes
with a limited set of options. The first one, labelled as “Search for”, contains the list
of data types that the logged user is allowed to search. The other one, labelled as
“matching”, contains two options: “all conditions” and “any of the conditions”. Their
meaning will be clarified afterwards. Let us first consider the simpler case, a query
on a single data type without nested conditions. As the user selects the data type of
interest, a new select box and two buttons appear on the page. The select box, labelled
“Field Name”, contains a list with the name of the metadata fields contained in the

http://dx.doi.org/10.1007/978-3-319-31241-5_4
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PATIENT (Subject)

ethnic_group text (list)

body_mass_index float

TISSUE (Sample)

sampling_date date

topography text (list)

morphology text (list)

volume float

tumour boolean

benign boolean

FLUID (Sample)

sampling_date date

volume float

subtype text (list)

CLINICAL SITUATION (Data)

current_status text (list)

disease text (list)

diagnosis_age integer

DNA (Data)

sampling_date date

quantity float

concentration float

RNA (Data)

sampling_date date

quantity float

concentration float

WHOLE GENOME SEQUENCING (Data)

instrument_model text (list)

read_length integer

is_paired_end boolean

total_reads integer

high_quality_reads integer

reference_genome text

HUMAN VARIANT (Data)

chromosome text (list)

position integer

txetdi

reference_base(s) text

alternate_base(s) Array<text>

allele_frequency Array<float>

quality text

filter string

somatic boolean

dbsnp_id text

gene(s) Array<text>

variant_type text (list)

variant_subtype text (list)

ancestral_allele text

CGH REPORT (Data)

overall_status text

structural_abnormality boolean

numerical_abnormality boolean

MICROARRAY REPORT (Data)

array_designed_ref text

normalization_name text

overexpressed_genes: Array<text>

underexpressed_genes Array<text>

Fig. 5.2 The data structure designed and implemented to describe the query builder and test the
query performance of the system

afore-selected data type schema. Once the user selects a metadata field, depending
on its primitive type, additional filtering conditions can be enforced. If it is a numeric
or date field the standard comparison operations can be applied (=, <, >, ≤, ≥).
If it is a textual field, only equality and inequality comparisons are allowed; when
the field values are limited to a controlled list, it is possible to select more than one
option at once. The first of the two buttons, labelled “Add Field”, allows to add new
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Fig. 5.3 A table summary of all the data types defined in the schema of Fig. 5.2

conditions on the metadata fields. This should allow to build a sample query such as
the following two:

1. retrieve all tissue samples of neuroblastoma extracted from the adrenal gland and
liver whose mass is greater than 0.5 grams

2. retrieve all the somatic variants in the following region of interest (Chr16:
72,801,786–73,107,534)

When the user runs the search after composing the query, a client-side procedure
parses all the fields and converts the web form to a JSON-based structure. The
client sends a POST/query/dataSearch request to the XTENS server with
the JSON parameters object in the request body. I have developed a dedicated Node
module to compose the queries according to a specific strategy. In this way, the query
composition procedure is decoupled from the core XTENS application, allowing
easier interchangeability. Different strategies might be required for a number of
reasons. For instance, in addition to themetadata attribute of Data (Subject, Sample),
the single metadata values could be stored also on an EAV catalogue, or in dedicated
table (for testing, but also for production purposes). Or, in another future scenario,
it might be required to store the metadata in a different document store system,
for instance a NoSQL database (e.g. the already mentioned MongoDB). As I have
stated before most of the operations on the database are handled by the Sails ORM,
waterline, that can be seamlessly used with different database solutions. Therefore,
embedding the PostgreSQL-specific query composition in a strategy pattern will
permit an easier switch to another database system ormodel paradigm (i.e. a different
strategy), without the XTENS core system being aware of the change. The query
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Fig. 5.4 The graph view of the data structure defined in Figs. 5.2 and 5.3, as shown in XTENS 2.
The three different models (Subject, Sample and Data) are shown in different colours

compositionmodel, which is simply called xtens-query,6 is open source and available
on GitHub [12]. The goal of xtens-query is to convert the JSON object contained
in the POST request sent by the client into an SQL parametrised statement that can
be executed by the RDBMS. The query is composed using a divide and conquer
approach: the dataType and model terms are used to compose the SELECT clause,
while each leaf—that is, each condition on ametadata field—is first parsed, converted
to SQL, and stored within an array of strings. Then, all the elements in the array are
joined using a junction operator, that was specified by the user, with the “matching”
option (see above). If “matching” was set to “all conditions” the conjunction operator
AND will be used to join all the terms. Otherwise, if the user selected “any of the
operations” the OR operator will be adopted. The result string will be appended to
the SELECT statement as its WHERE clause. In the current implementation is not
possible to mix AND and OR conditions on the same WHERE clause. Figures5.5,

6To futher decouple the Postgres database from the XTENS application, the xtens-query together
with all the transactional CRUD operations handled in the xtens-transact module have been merged
at a later time (November 2015) in a single “Postgres” module, named xtens-pg [11].
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Fig. 5.5 Query a as composed from the XTENS 2 query builder interface

5.7, 5.9 and 5.11, in section show how the user composes query on the query builder
client interface.

The only strategy currently implemented composes queries on the fields contained
within themetadata JSONobject. PostgreSQL provides various operators for access-
ing the properties of a json/jsonb element. Here I provide a summary of the most
useful ones:

• -> is used to access both JSON elements within an array (specifying the element
index) and a JSON element field by key;

• -» works as ->, but returns the array element or the object field as text. The
returned element/field can then be further converted to other PostgreSQL native
types using explicit type cast;

• #> is used to retrieve a JSON object at a specified path. The path is specified by a
list of keys or array indexes;

• #» works as #> but returns a text field instead of a JSON object;
• @> (only for jsonb fields) checks whether the right operand, which must be
a valid JSON, is contained within the left operand. This is extremely useful for
key-value searches and pattern matching, also because it can take advantage of the
Generalised Inverted Index (GIN) of Postgres to perform the query.

5.4 Performance Tests

One of the aim ofmy study is to evaluate whether this new implementation is suitable
to handle large datasets, such as those produced as output of a modern NGS analysis.
I will not assess the management of the bulk data files, here—i.e. SAM/BAM files—
because this will be delegated to iRODS, and the storage resources available for the
tests were limited. I have chosen to focus specifically on the database performance
in the case when a large number of variants, as those obtained after a variant calling
analysis and stored in Variant Call Format (VCF) file, are saved as semi-structured
metadata on the repository for query research. I have written a dedicated JavaScript
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class to automatically generate and populate a dataset based on the data model shown
in Fig. 5.2. I populated a tests datasets with 2500 subjects. These fictitious subjects
are modelled as patients affected by a variety of tumours. For each patient, a tissue
sample—for instance from a biopsy—and a whole blood sample have been collected
in one among five biobanks afferent to the project. In this way, I can also test the
multi-centric biobank management scenario. From each tissue sample, DNA and
RNA have been extracted and used to perform aCGH and microarray analysis. Then,
I have hypothesised that about the 50% of the subjects (chosen randomly by the
program) have undergone a Whole Genome Sequencing (WGS) analysis. In the
generated dataset, 1242 WGS data instances were produced. Each WGS analysis
was further annotated with a list of variants. The 1000 Genome Project estimated
that there are approximately 10 million variants in each human genome, and of
these about 15–20,000 variant are located in the exome (the whole set of protein-
coding genes). I decided to consider only the exosome and annotated each WGS
analysis with 20,000 variants each. I used two datasets of exosomal variants for
populating the database: (i) the Exome Variant Server (EVS) dataset [13], containing
only germinal mutations, and (ii) the dataset of protein-coding mutations from the
COSMIC catalogue [14]. The purpose here was one of performance testing, not one
of plausibility. Therefore I assigned randomly to each WGS analysis—that is, to
each subject—19,500 germinal variants from EVS and 500 somatic variants from
COSMIC. While 500 somatic variants is an over-estimation, as in average a tumours
contains 33–60 somatically mutated genes, it is a reasonable number for colorectal
and breast cancer [15]. In any case, an overestimation will not affect or falsify the
results of the performance tests. I used the generated dataset to test the following test
queries:

A. Retrieve (or count) the number of variants with a specific id (one condition);
B. Retrieve (or count) the number of SNP somatic variants from a specific chromo-

some (three conditions);
C. Retrieve (or count) the number of mutations in a specific chromosome and within

a position interval [pos_min, pos_max];
D. Retrieve all the tissue samples of morphology “neuroblastoma” removed from a

given anatomical position, “adrenal gland”. Of these samples I require that DNA
and RNA be already available in sufficient quantity for further genomic analyses
(e.g. at least 0.5µg). Furthermore I require CGH Report to be already executed
on the DNA, resulting in a bad prognosis (i.e. SCA profile). This query must be
composed using four different (yet related) data types;

For each of the queries I compared the result obtained querying the
jsonb metadata field, with the query performed against the EAV catalogue. The
EAVwas implemented in the database following the advices and guidelines exposed
by Nadkarni ([16], see in particular Chaps. 11 and 15). All the attributes defined
in the data types were stored in a dedicated table named eav_attribute.
Then I implemented a separate EAV catalogue for each of the three models
(data, sample, and subject) that contain the entities. For each model I cre-
ated five separate tables, one for fundamental field type (text, integer, float, date,
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boolean). The catalogue tables are named according to the following conven-
tion: eav_value_{type_name}_{model_name}. For the Data model the
five EAV tables are: eav_value_text_data, eav_value_integer_data,
eav_value_float_data, eav_value_date_data, and eav_value_
boolean_data.

Each EAV catalogue table contains two columns “entity” and “attribute”, respec-
tively referring to the model table and eav_attribute, and a “value” column
where the actual metadata value is stored. The database was installed on an Ubuntu
12.04 LTS virtual machine with 4 GB of RAM. The RDBMS parameters were tuned
according to the guidelines of Postgres official documentation and the indications
provided by Smith [17]. In details, shared_buffers was set to 950 MB (∼25%
of free memory), effective_cache_size was set to 2500 MB (∼65% of free
memory) and work_mem was increased up to 32 MB to encourage the building
of large hash tables in memory (otherwise, the RDBMS switches to disk which
is slower). The data tables were indexed on type (using BTREE) and metadata
(using GIN), while the EAV catalogues were indexed (using BTREE) on entity,
attribute, and value. Additionally, a multi-column index was created for the pair
(attribute,value). The textual catalogue of data (eav_value_date_data) were
indexed on the MD5 hash of value, because some cells exceeded the limit size for
BTREE indexes. There is a caveat here: the MD5 index cannot be used for pat-
tern searches using the LIKE operator (e.g. search all terms containing the pattern
‘neuro’ to find neuroblastoma, ganglioneuroblastoma, and ganglioneuroma all at
once). However, this is not an issue in the queries I am testing. The whole database
was analysed before running the tests, to allow Posgres to collect statistics about
all tables. The data table contained over 25 million records and has a size of 22
GB. The largest EAV table is eav_value_text_data, counting over 247 mil-
lion rows for 15 GB. The other four tables together account for 5438 MB and over
94 million records. The GIN index on the metadata field of the data table weighs
1.2 GB (∼5.4% of the table size), while the BTREE index on the value column of
eav_value_text_data weighs 14 GB (∼93% of the table size), as a conse-
quence of using the MD5 hash, which is 32 characters long. Nonetheless, also the
indexes on entity and attribute are larger, weighing 5.3 GB (∼35% of the table size).
The other EAV tables show similar patterns. Therefore, the indexes’ cost in term of
storage space is higher for the EAV catalogue.

I have executed each of the three tests detailed in Sects. 5.4.1–5.4.2 according to
the following protocol:

1. before running each query I stopped the PostgreSQL server, flushed the system
cache and restarted the RDBMS;

2. the statement, as formulated by xtens-query, was run a first time and its execution
time was saved as “cold cache” performance;

3. the statement was executed three more times. The three values were recorded
and their average was saved as warm cache performance. This procedure was
inspired by the approach adopted by Chen [18] and the considerations of Smith
(see [17], Chap. 10);
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4. two onerous queries—i.e. a row count on large EAV tables—were executed,
to avoid cache-independent memory effects of Postgres. When I first ran the
tests, I observed noticeable performance boosts if the same query was executed
immediately after restart, even after flushing the cache as explained at point 1.

5. points 1–4 were repeated for the equivalent statement written against the EAV
catalogues;

The procedure above was repeated five times to collect 5 samples for each query
strategy on cold cache, and 5 on warm cache. Cold cache represents a worst-case
scenario, when the RDBMS has to retrieve all the data from disk, at a considerably
slower speed. This is realistic for queries on tables that are accessed, or when the
table(s) size exceeds the RAM capability.

5.4.1 1-Parameter Query

Query A, when composed on the query builder as shown in Fig. 5.5, will produce the
following JSON message to be sent to the server:

1 {
2 "dataType":11,
3 "model":"Data",
4 "content":[{
5 "fieldName":"id",
6 "fieldType":"text",
7 "isList":false,
8 "comparator":"=",
9 "fieldValue":"rs145368920"

10 }]
11 }

The class PostgreSQLJSONStrategy of the xtens-query module converts the JSON
query message into a parametrised SQL statement. The conversion procedure can be
described in pseudocode as follows:

1 SET $select = ’SELECT d.id , d.metadata ’;
2 SET $queryConditions = [], $parameters = [];
3 IF "junction" THEN:
4 SET $junction = ’junction ’ value;
5 ELSE
6 SET $junction = ’AND ’;
7 determine the target table of the query from ’model

’;
8 determine additional columns to retrieve and add to

$select;
9 add the FROM clause (with target table) to $select;
10 FOR EACH element IN "content" array DO:
11 IF (comparator IS equality OR inequality

comparator) THEN:
12 compose a query condition using the containment

operator (@>)
13 against the metadata column;
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14 push ‘{element.fieldName:
15 {" fieldValue ": element.fieldValue ,
16 "fieldUnit ": element.fieldUnit}
17 }’ into $parameters;
18 ELSE
19 compose a range query condition using JSON

accessor operators
20 (-> & ->>);
21 push element.fieldName , element.fieldValue ,

element.fieldUnit
22 into $parameters;
23 ENDIF
24 push resulting query condition in $queryConditions

;
25 END FOR
26 SET $where = join all elements $queryConditions with

$junction;
27 SET $statement = join $select with $where using a

WHERE statement;
28 RETURN $statement , $parameters

If themodel property is set to “sample” or “subject” the querywill be executed against
one of those two tables. For the JSON message above, the resulting parametrised
SQL query will be:

1 SELECT d.id , d.metadata FROM data d
2 WHERE d.type = $1
3 AND d.metadata @> $2;

where the parameters are:

1 [11, ’"id":{"value":"rs145368920"}’]

Currently there is no strategy implemented in xtens-query to convert the JSON
message to a query against the EAV catalogue. I composed the queries manually and
tried different formulations to identify the most performant, For the one-parameter
search on variant IDs, the only value table to consider iseav_value_text_data,
the table containing textual fields. The query can be written in one statement, as
shown below. To obtain the best performance, I hypothesised that the primary key
of the eav_attribute row corresponding to the attribute id of the data type
Human Variant is already available to the server. This is reasonable when the query is
composed graphically from an online tools.

1 SELECT d.id , d.metadata FROM data d
2 INNER JOIN ( -- subquery on variant ID value
3 SELECT v1.entity FROM eav_value_text_data v1
4 WHERE v1.attribute = 35 -- variant.id
5 AND md5(v1.value) = md5(’rs145368920 ’)
6 ) as varid ON d.id = varid.entity;

SQL allows different ways of writing this statement—for instance using Common
Table Expressions (CTE, also called WITH statements) or wrapping the subquery
inside an IN predicate—but the query written above gives the best performance
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Fig. 5.6 One-parameter query performance on cold (left) and warm (right) cache condition

as the number of metadata parameters increases. The statement is highly selective,
returning 15 rows out of the whole table. The results, as illustrated in Fig. 5.6, show
that the two approaches are not significantly different when executed on cold cache,
but that JSONB strategy is significantly faster once the data are loaded on RAM. The
JSONB strategy has an average execution time of 1.6 ± 0.2 s on cold cache, which
jumps down to 0.93 ± 0.02 ms on warm cache. The submillisecond execution time
is consistent with the performances computed by jsonb developers [19]. The EAV
approach takes 2.3 ± 0.15 s on cold cache and 2.03 ± 0.04 ms on warm cache. The
JSONB strategy is 2.2 times faster than EAV on warm cache, even though after the
EAV tables were clustered and their statistics were improved (see next paragraph).
All the queries perform index scans on the tables and have optimised plans.

5.4.2 3-Parameter Query

The user composes query B from the query form as shown in Fig. 5.7. Here I omit
the JSON message sent to the server, since its structure is analogous to the message
produced by query A. The JSONB strategy of xtens-query will output the following
parametrised statement:

1 SELECT d.id , d.metadata FROM data d
2 WHERE d.type = $1 AND d.metadata @> $2
3 AND d.metadata @> $3 AND d.metadata @> $4;
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Fig. 5.7 3-parameter query as built from the XTENS interface

with the following parameters array:

1 [11, ’{"chromosome":{"value":"3"}}’,
2 ’{"somatic":{"value":true}}’, ’{"variant_subtype":{"value":"ins"}

}’]

This statement returns 451 rows from the data table (i.e.∼30 times the rows returned
by query A), executing on in 10.5 ± 0.6 s on cold cache and 64.4 ± 0.1 ms on
warm cache. Checking the internal strategy adopted by PostgreSQL query planner,
I noticed that the query planner performs a single index scan checking all the three
conditions on metadata at once. This means that writing the query in a more compact
form (i.e. merging the three conditions on metadata in a single clause) does not
improve the performance in any sensitive way. I did try the compact query, and
the execution doubles, sticking at 128 ms. The worse performance is likely due to
an overestimation of the returned rows by the query planner. Therefore, I have not
considered the compact jsonb statement it in these tests. It is more challenging
now to help PostgreSQL query planner in determining the best strategy for the EAV
search. The query is:

1 SELECT d.id , d.metadata FROM data d
2 INNER JOIN (
3 SELECT v1.entity FROM eav_value_text_data v1
4 WHERE v1.attribute = 30 -- attribute id for ’

chromosome ’
5 AND md5(v1.value) = md5(’3’)
6 ) AS ch ON ch.entity = d.id
7 INNER JOIN (
8 SELECT v2.entity FROM eav_value_boolean_data v2
9 WHERE v2.attribute = 43 -- attribute id for ’

somatic ’
10 AND v2.value = true
11 ) AS so ON so.entity = d.id
12 INNER JOIN (
13 SELECT v3.entity FROM eav_value_text_data v3
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14 WHERE v3.attribute = 48 -- attribute id for ’
variant_subtype ’

15 AND md5(v3.value) = md5(’ins’)
16 ) AS st ON st.entity = d.id;

When I executed it the first time over five trials on cold cache, its execution time
was 995± 5 s, which is on average over 17min. The execution time did not improve
when run on hot cache, so the bottleneck was not the disk, but a wrong planning.
PostgreSQL collects statistics of all the tables in a database to guess the number of
rows returned by each query. Due to the high variability of the “value” field in the
EAV catalogues, the query planner underestimated the number of returned rows by
an order of magnitude, and executed the three joins using three nested loops. As a
result the EAV execution time was several orders of magnitude greater than using the
default xtens-query jsonb strategy. To improve the EAV performance, I performed
two operations:

• increased the statistics target (i.e. the size of the data sample7 used to compute
statistics on a table column) for eav_value_text_data.value and for its
index. The statistics target was first increased up from the default value of 100 to
500, and subsequently to 5000.

• clustered the rows in eav_value_text_data on the index that is adopted by
the query planner. Clustering is a una tantum operation, which locks the table
to reads and writes, and must be carried offline. New rows inserted subsequently
are not clustered. The operation took over 32h consuming over 99% of the CPU
resources.

Afterwards, the planner picked up more correct rows estimates, and the execution
time dropped to 83.0 ± 2.2 s on cold cache and 4.15 ± 0.1 s on warm cache. Both
cold- and warm-cache mean execution times are significantly better for JSONB
strategy, when tested with a paired t-test (see Fig. 5.8). On warm cache, JSONB
strategy is ∼64.4 times faster than EAV. To put it in perspective, if a database server
for a large biomedical project had to satisfy one such request every few minutes on
peak workloads, it would be a necessary improvement. There are other approaches to
further improve the EAV query performance. However, they require a careful tuning
of the costs8 and their modification could impair other most used queries. Query
C, as shown in Fig. 5.9, takes once again three parameters. However, the position
parameter is numeric and clause requires that a range of values be satisfied. For this
clause the query builder cannot adopt the containment operator, and must resort to
accessing the numeric values within the ‘position’ property of metadata. The JSON
message posted to the server in this case is:

7As defined in statistics, “a data sample is a set of data collected and/or selected from a statistical
population by a defined procedure” [20].
8The cost is an arbitrary unit used by the RDBMS to estimate the best query plan.
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Fig. 5.8 Three-parameter query performance on cold (left) and warm (right) cache condition

Fig. 5.9 3-parameter query with range condition as built from the XTENS interface

1 {
2 "dataType":11,
3 "model":"Data",
4 "content":[{
5 "fieldName":"chromosome",
6 "fieldType":"text",
7 "isList":true,
8 "comparator":"IN",
9 "fieldValue":["17"]

10 },{
11 "fieldName":"position",
12 "fieldType":"integer",
13 "isList":false,
14 "comparator":">=",
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15 "fieldValue":40900000
16 },{
17 "fieldName":"position",
18 "fieldType":"integer",
19 "isList":false,
20 "comparator":"<=",
21 "fieldValue":50200000
22 },{
23 "fieldName":"somatic",
24 "fieldType":"boolean",
25 "isList":false,
26 "comparator":"=",
27 "fieldValue":true
28 }]
29 }

And the parametrised query, as computed from xtens-query is:

1 SELECT d.id , d.metadata FROM data d
2 WHERE d.type = $1
3 AND d.metadata @> $2 AND d.metadata @> $3
4 AND (d.metadata ->’position ’->>’value’):: integer >=

$4
5 AND (d.metadata ->’position ’->>’value’):: integer >=

$5;

with the following parameters array:

1 [11, ’{"chromosome":{"value":"3"}}’,
2 ’{"somatic":{"value":true}}’,
3 40900000, 50200000]

The range condition and, to a lesser extent, the larger number of returned rows
(4121) impair the query speed. The execution time on cold cache is 78.6 ± 1.2 s
and 292.7 ± 1.7 ms on warm cache. The result does not improve if a BETWEEN
operator is used in place of the two range clauses. Currently xtens-query does not
support BETWEEN statements, but I plan to add them in the next future. The query
against EAV, whose structure is similar to the previous one and is not reported here,
takes 176.8 ± 0.8 s on cold cache and 5.27 ± 0.02 s on warm cache, respectively.
Both conditions are significantly—2.25 times for cold cache and 18 times for warm
cache—faster when executed by JSONB strategy (see Fig. 5.10). However, further
optimisation are required if range-based queries are executed with a high frequency
against the jsonb metadata. Dedicated functional (BTREE) indexes on numerical
metadata values can help improving range-based search.

In conclusion, multi-parameter queries on a single data type are consistently exe-
cuted faster using the schemaless jsonb strategy currently adopted by XTENS 2
rather than EAV, except on cold cache condition for 1-parameter query. The perfor-
mance gap increases as the number of exact matching conditions increases, while
tends to be less pronounced for range-based queries. More sophisticated EAV archi-
tectures and database tunings may further improve the performances and reduce this
gap. Nonetheless, they require a deep knowledge of optimising the database, which
is more common among professional database administrators than among academic
researchers and software developers. The number of table joins in the EAV query
increases proportionally to the number parameters in the query. Query optimisation
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Fig. 5.10 Performance of a three-parameter query whith range condition on cold (left) and warm
(right) cache

is a factorial (n! = ∏n
k=1 k) problem with respect to the number of tables involved in

the join. The query planner cannot explore all the combinations and has to adopt some
sub-optimal heuristics. Above few parameters, the developer has to explore alterna-
tive approaches—such as using materialised views or temporary tables—otherwise
the execution times diverge. These database tunings and query rewritings are not
required—at least for small–medium size projects and collaborations—to achieve
query speeds below 100 ms for multi-parameter queries, using xtens-query default
strategy.

5.4.3 Multi-datatype Query

Using the query builder, the user can also compose queries based on multiple data
types if these are hierarchically related. Query D, for instance, can be composed as
shown in Fig. 5.11, which is sent to the server as the following JSON object:

1 {"dataType":4,"model":"Sample","content":[
2 {"specializedQuery":"Sample"},
3 {"fieldName":"topography","fieldType":"text","isList":false,
4 "comparator":"=","fieldValue":"Adrenal gland"},
5 {"fieldName":"morphology","fieldType":"text","isList":false,
6 "comparator":"=","fieldValue":"Neuroblastoma"},
7 {"dataType":6,"model":"Sample","content":[
8 {"specializedQuery":"Sample"},
9 {"fieldName":"quantity","fieldType":"float","isList":false,

10 "comparator":">=","fieldValue":"0.5","fieldUnit":"µg"},
11 {"dataType":9,"model":"Data","content":[
12 {"fieldName":"prognostic_profile","fieldType":"text","

isList":true,
13 "comparator":"IN","fieldValue":["SCA profile"]}
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Fig. 5.11 A three-level hierarchical query con tissue samples

14 ]}
15 ]},
16 {"dataType":7,"model":"Sample","content":[
17 {"specializedQuery":"Sample"},
18 {"fieldName":"quantity","fieldType":"float","isList":false,
19 "comparator":">=","fieldValue":"0.5","fieldUnit":"µg"}
20 ]}
21 ]}

Now I describe howPostgreSQLJSONStrategyworks onmulti-level queries. A select
statement is computed for each level of the query, that is for each data type specified
in the “dataType” property. For sample and subjectmodels the user may specify
additional query parameters besides the ones that are contained in metadata, These
parameters—such as the biobank and the code for a sample, or the personal details
for a subject—are handled by dedicated functions. In our example there are no
additional specialised parameters. All the single level queries are recursively built
(using a depth-first tree traversal) and a single parameter array is generated. Then
all the subqueries—in our example those on DNA, RNA, and CGH Report—are put
into a WITH statement (i.e. a CTE). The main query is converted into a SELECT
DISTINCT statement to ensure that each entity is returned only once from the table
against which the main query is run (in our example the sample table). The views
returned by the queries in the CTE are joined according to the data hierarchy (as
shown in Fig. 5.11).
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The resulting composite statement is:

1 -- WITH queries (Common Table Expressions)
2 WITH nested_1 AS ( -- subquery on "DNA" data_type
3 SELECT id , parent_subject , parent_sample FROM sample
4 WHERE type = $4
5 AND ((( metadata ->$5->>’value’)::float >= $6 AND

metadata @> $7))
6 ), nested_2 AS ( -- subquery on "CGH Report"

data_type
7 SELECT id , parent_subject , parent_sample ,

parent_data FROM data
8 WHERE type = $8 AND metadata @> $9
9 ), nested_3 AS ( -- subquery on "RNA" data_type
10 SELECT id , parent_subject , parent_sample FROM sample
11 WHERE type = $10
12 AND ((( metadata ->$11 ->>’value’)::float >= $12 AND

metadata @> $13))
13 )
14 -- main query on "Tissue" data_type
15 SELECT DISTINCT d.id , d.metadata FROM sample d
16 INNER JOIN nested_1 ON nested_1.parent_sample = d.id
17 INNER JOIN nested_2 ON nested_2.parent_sample =

nested_1.id
18 INNER JOIN nested_3 ON nested_3.parent_sample = d.id
19 WHERE d.type = $1
20 AND d.metadata @> $2
21 AND d.metadata @> $3;

with the following parameters array.

1 [
2 4, ’{"topography":{"value":"Adrenal Gland"}}’, ’
3 {"morphology":{"value":"Neuroblastoma"}}’,
4 6, ’quantity ’, 0.5, ’{"quantity":{"unit":"µg"}}’,
5 ’{"prognostic_profile":{"value":"SCA profile"}}’,
6 7, ’quantity ’, 0.5, ’{"quantity":{"unit":"µg"}}’
7 ]

This statement is much more time-consuming, due to the three JOIN operations and
(if many duplicates are returned) the SELECT DISTINCT statement. These queries
are intended for reporting and cohort identification, and not optimised to be executed
in real-time.

5.5 Collaborative SEEG Project Use Case

AtDIBRIS, I have set up afirstXTENS2prototype installation dedicated to heteroge-
neous data management for a neuroscientific collaborative project focused on Stere-
oelectroencephalography (SEEG). The participants to the project are (i) Niguarda
Hospital ofMilan, providing data, (ii) theNeuroscienceCentre (NC) at theUniversity
of Helsinki, sharing analysis methods and tools, and (iii) DIBRIS at the University
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of Genoa, which took charge of data storage and management. The aim of the project
is to exploit recent advancements in functional and effective connectomics to tenta-
tively define biomarkers for focal epilepsy. Functional (and effective) connectomics
studies describe how different brain areas interact with each other and how modifi-
cation of such functional (or effective) couplings is directly linked to neurological
diseases. In this context, it is quintessential to have access to high quality tools to
store, analyse, and retrievemultimodal datasets, also in order to complywith national
and international (in our case, of the European Union) regulations that govern the
sharing of medical information and patients details.

Details about the methods adopted in data preprocessing and analyses can be
found in dedicated publications [21, 22]. Here I briefly summarise the peculiar
steps that interact with the XTENS 2 repository. SEEG is a highly invasive tech-
niques to record neural activity that is routinely used in clinical application aimed at
localising seizure onset zones in patients with drug-resistant focal epilepsy undergo-
ing presurgical evaluation [23, 24]. Despite the sparsity of SEEG implants, recently
the project consortium showed that SEEG can successfully be used in the context
of functional connectomics studies fully exploiting its potential. The project partic-
ipants estimated that ∼100 patients are required to obtain a 85% coverage of all the
possible interactions in a 250-parcel anatomical atlas.

In the outlined scenario the analysis workflow can be divided in two domains:
structural and functional. Each domain is characterised by different data, methods
and analyses outputs. The structural domain deals with anatomical data and is com-
posed of a post-implant CT (postCT) scans that show the electrode in their final
locations and pre-implant MRI (preMRI) that contain the information about individ-
ual brain anatomy. DIBRIS and NC provided the physicians with a set of medical
image processing tools that are specifically designed to deal with SEEG implants
(i) to localise each contact in both individual and common geometrical spaces
and (ii) to assign to each contact its neuronal source on a probabilistic reference
atlas (e.g. Destrieux atlas, see [25, 26]). The functional domain deals with signal
processing techniques aimed at quantifying the degree of synchrony between brain
regions and at characterising the so called functional connectome. XTENS success-
fully manages data describing both domains and provides client-side services for
physicians to submit data and retrieve analyses results. I have installed an XTENS
setup on a Linux Server (Ubuntu 12.04 LTS) at DIBRIS. Details of the installation
are shown in Fig. 5.12. Together with the clinical collaborators, we have defined
the following data types: Patient, Preimplant_MRI, Postimplant_CT,
Fiducial_List, SEEG_Implant, SEEG_Data, and Adjacency_Matrix.
SEEG_Implant data instances are the output of the segmentation process oper-
ated on Postimplant_CT using Fiducial_List metadata as reference. On
the other hand, Adjacency_Matrix is the data describing brain region phase
couplings in individual patient geometry estimated using SEEG_Data.
Postimplant_CT, Fiducial_List, and SEEG_Data are directly

uploaded by the physician on the XTENS repository. I have developed a Node.js
package, called xpr-seeg (source code available online, see [27]), to provide a web
interface with the segmentation tool running on a separate server. The user triggers
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Fig. 5.12 XTENS 2 setup for the Stereo-EEG collaborative project. XTENS communicates with
xpr-seeg using REST. After the analysis (e.g. segmentation) is run by xpr-seeg, the results’ file is
stored in iRODS and a new Data instance is saved on XTENS

Fig. 5.13 A connectivity graph built from the client interface from the resting state adiacency maps
of two subjects. The user selects the subjects and the study condition then runs the analysis and the
graph is computed. Each ellipses corresponds to a brain region according to the Destrieux atlas

the tool through the XTENS client interface. In turn, XTENS sends a POST request
to xpr-seeg forwarding all the required information about the two data instances. xpr-
seeg executes a bash script that retrieves the required files from iRODS and runs the
segmentation algorithm. Once the procedure is done, the computed SEEG Implant is



5.5 Collaborative SEEG Project Use Case 87

stored on a file. A novel data instance of SEEG_Implant is composed by xpr-seeg
and saved in XTENS through a POST request. In a similar fashion, SEEG_Data
are downloaded by operators, manually investigated to rejected artefactual channels
(i.e., non physiological data) and analysed to build theAdjacency_matrix. Here,
xpr-seeg provides the tool to correctly upload the analysed data to its data parent (i.e.,
Patient) in the XTENS repository. This setup is currently used for testing and devel-
opment of the new features of XTENS 2. The XTENS 2 setup for SEEG currently
hosts 42 patients with Preimplant MRI, Postimplant CT, and SEEG data. I have
developed a dedicated module, under testing, to visualise connectivity maps medi-
ating the Adiacency Matrices of a subset of patients under a specific condition (i.e.
resting state, sleep, REM sleep, seizure). A provisional result is shown in Fig. 5.13.
The details of this prototype are being presented at IWBBIO2015 conference, in
Granada [28].
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Chapter 6
Discussion

My aims, as stated in the introduction, were:

1. To design a data model for biomedical research, able to describe flexible, poorly
structured and constantly evolving data types and metadata. The model should
allow the adoption of standards but not enforce them.

2. To implement the data model into a biomedical digital repository where scientists
can configure and modify the structure of their data types without executing oner-
ous IT tasks (such asmodifyingXML/SQL schemas, and recompiling, rebuilding,
or reinstalling the application).

3. To test whether the data model is able to handle heterogeneous data in a local
scenario (in my case, the Integrated biobank).

4. To test how the data model and the digital repository newly implemented (i.e.
XTENS 2) can handle large datasets of semi-structured metadata (e.g. variant
annotations).

5. To evaluate how the XTENS repositories 1.5–2 work in multi-centric and multi-
disciplinary collaborations.

InSect. 6.1 Iwill asses points 1 and2. Points 3 and4will be discussed, respectively,
in Sects. 6.3 and 6.4.

6.1 XTENS 1.5–2 and the State of the Art

In Table6.1 I have summarised the main points of comparison among the last two
XTENS implementations and the literature. Here I will provide some explanation,
clarifying the advancements done on the current knowledge. XTENS 1.5 provided
the first JSON-based data model to manage heterogeneous biomedical information.
The adoption of JSON in lieu of XML provided a number of advantages. First of all,
being JavaScript the natural scripting language on all major web browsers, the JSON
data model can be parsed and processed, in XTENS 1.5 on the client side without

© Springer International Publishing Switzerland 2016
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loading the server with additional processing and computation. In XTENS 2, both
the back-end and the front-end are coded in JavaScript, extending the benefit to all
levels of the application stack. Compared to the XML-based repositories (XNAT,
XTENS 1.0) no binding tool is required in XTENS 1.5 and XTENS 2. Overall, the
JSON metadata schema I propose is a novel approach to document and describe
in a highly flexible but consistent format heterogeneous datasets and information
in biomedical science, both for clinical and research support. The metadata were
stored as a JSON document in a textual field within the database, and as separate
entities in the EAV catalogue. Queries on metadata fields were always run against
the EAV, while the JSON document was used as a model to present and visualise the
data. XTENS 2 adopted JSON for the storage of metadata in any format. In XTENS
2, JavaScript is the language both on the client and the server, therefore JSON is
the native format, not only to exchange messages, but also to construct objects. In
the state of the art—namely in XNAT, SIMBioMS, openBIS, i2b2, and XTENS
1.0—semi-structured metadata were stored as XML documents. Being stored in
RDBMS (MySQL, Postgres, or Oracle) it follows that semi-structured metadata
are stored as textual documents, which hampers query capability and performance.
XTENS 2 adopts the binary JSON model, which allows to query large datasets
in real-time.1 An advantage of XML format is that XML schemas can be validated
against XSD. JSON specifications do not yet provide validation support, even though
JSON Schema [1], a JSON media type for defining the structure and validation of
JSON data has been proposed. JSON Schema is currently in draft form, and I did not
consider it sufficiently mature to be used in XTENS 2. XTENS 1.5-2.0 web clients
perform a client-side validation of the metadata against its data type schema before
form submission. A server-side validation of the metadata has been implemented
in XTENS 2 core application, using the Joi validation library [2]. The server-side
validation step can be turned off to increase write operations performances. The
aim of XTENS 2 data model is suggesting a schema, not to force it, supporting
the view of metadata in research collaborations as an adaptive, fluid and ephemeral
process as stated in Sect. 2.4. For practical purposes, the scientists may want to store
unstructured or semi-structured metadata in a different format along with the list of
fields that are specified in the data type schema. These metadata will be transparent
for xtens-query, but may be searched or inspected by third-party programs or ad hoc
modules of XTENS developed in the future. A daemon tool can provide offline strict
validation of the JSON metadata, if this is required.

The biobanking management features of XTENS 1.5 are comparable to those of
SIMBioMS, allowing to describeDNA/RNAderivatives and aliquots as “children” of
the primary sample. This hierarchical sample management was missing in XTENS
1.0. Furthermore, XTENS 2, introduces multi-centric biobanking management, a
feature that in perspective, will allow to integrate multiple biobanks on a single
repository installation.

1In my tests large datasets mean tens of million records with about ten-fifteen metadata each, and
real-time means that (i) a single parameter query is run in less than 1 ms, and (ii) a multi-parameter
query is executed in less than 100 ms, once the cache has warmed up.

http://dx.doi.org/10.1007/978-3-319-31241-5_2
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The schemaless nature of jsonb allows also to implement horizontal scaling on
PostgreSQL, a feature that is usually not available on RDBMS, but that characterise
NoSQLdocument stores. The easiest way to scale PostgreSQLhorizontally is though
the pg_shard extension [3], an open-source tool developed by CitusData to shard
and replicate PostgreSQL tables for horizontal scale and high availability, distribut-
ing the SQL statementswithout requiring any changes to the application.pg_shard
does not support table JOINS, therefore the sharded tables should already contain all
the information required for distributed search (i.e. they should be denormalised).
CitusData also offers a fully scalable (i.e. JOIN support included), distributed exten-
sion to PostgreSQL called CitusDB, but this is a proprietary, commercial software.

6.2 XTENS 1.5 for Integrated Biobanking

At the IGG installation, XTENS 1.5 and its data model provide the users three
main advantages, relative to data management. First, the process-event model, im-
plemented as in Fig. 3.3, canmanage both clinical visits/events histories and genomic
experiments (with subsequent analyses and post-processing steps) in a uniform yet
fluid way. Second, researchers and clinical operators can define new data types and
describe them with customised metadata using a graphical web form, without deal-
ing with JSON or XML formats directly, thus not requiring the help of a computer
science expert. Third, XTENS 1.5 provides a user-friendly interface with a data grid
system, which can easily scale-up to manage huge files such as high-resolution clin-
ical images or WGS data. The choice of iRODS as a distributed storage manager has
proved successful, because its metadata capability fits the scientists requirements of
annotating the files with complex user-defined metadata. Moreover, iRODS is rela-
tively easy and quick to install, and enables flexible data management thanks to its
Rule Engine. Through iRODS, XTENS 1.5 can manage and track in a seamless and
efficient way both relatively small datasets, such as microarray expressions profiles,
and, in a soon-to-be future, larger ones, as whole genome sequences. iRODS is al-
ready used in production in various genomic centres and biomedical consortia, such
as theWellcome Trust Sanger Institute [4] and the Services@MediGRID project [5].
In the two years of production, iRODS did not require any particular maintenance
operation, so it presented no overhead when compared with a standard file system.
No consistency errors have been found so far on the stored files.

6.3 XTENS 2: Performance and Scalability

In the performance tests I have run on XTENS 2, the JSON metadata model was
a better storage tool than a general purpose EAV catalogue, for data search and
retrieval.While the performances are on the same time scale for 1-parameter queries,

http://dx.doi.org/10.1007/978-3-319-31241-5_3
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they worsen as the number of parameters increase. Overall, XTENS 2 schemaless
metadata in PostgreSQL jsonb format work better than an EAV catalogue in these
scenarios:

• the storage of large poorly structured (or semi structured) metadata. An example is
the attribute alternate_base(s) of the “HumanVariant” data type described
in Fig. 5.2. This attribute may contain a very long base sequence in case of long
insertions (such as the mutation of Exome Variant Server). These sequences are
poorly suited to be stored in an EAV. If they are too long they will exceed the limit
size (which currently is 8191 bytes) for a cell to be indexed with a BTREE index in
Postgres. I did incur in this issue when populating the dataset for the performance
tests. A possible solution, and the one that I have adopted, is indexing the column
using the MD5 hash of the actual value. MD5 is 32-digit hexadecimal value and
always fits theBTREEsize requirements. This approach is safe enoughbut requires
MD5 computation every time a new value is inserted in the catalogue and every
time a search is performed. Even though it is extremely unlikely, MD5 uniqueness
is not guaranteed as a consequence of the pigeonhole principle [6]. I did not take
into consideration other collision-safe hashing strategies for my tests.

• multi-parameters pattern matching queries, where the xtens-query module can
leverage the jsonb containment operator on the GIN-indexed metadata column.
A good example is provided by the the first query shown in Sect. 5.4.2 (@>).

EAV is a valid alternative to the schemaless jsonb metadata format to perform
range-only queries on numeric and data fields. On EAV catalogues, the query plan-
ner can leverage effectively the indexes if the selected range is selective enough, and
only a small portion of the table must be retrieved. Using the JSONmetadata format,
it is not possible to leverage the GIN index for range-based queries on integer or
float values. Threfore the query must access the values within the metadata column
using the jsonb accessor operator, first convert them from JSON numerical to text,
and then convert them from text to either integer or float. The first operation is time
consuming, because the values are stored as JSON numericals inmetadata, and at the
moment there is no operator to directly cast a JSON numerical to SQL integer/float.
This feature is under discussion in the Postgres community and it may be introduced
in the next release. The double conversion is less costly for dates, because they are
already stored as strings in JSON. The jsonb format is new to PostgreSQL, having
been introduced in the 9.4 release (December 2014). New operators and functions
will be introduced with new releases, increasing its applicability and performance,
at the same time polishing the rough edges in the implementation. As a final con-
sideration, the dataset that I have used in the performance tests is not optimal for
an EAV catalogue: indeed, it falls in the third scenario exposed by Nadkarni (hy-
brid data types, see Sect. 2.6). Even though there are four different data types for
the Data model—Clinical Situation, CGH Report, Microarray, Whole Genome Se-
quencing, and Human Variant—over the 99% of the Data entities belong to the last
type. However, because of the semi-structuredness of the variants as described by
VCF format, they do not fit easily in a regular table: there might be more than one
alternate base and associated gene. Further dedicated database engineering would

http://dx.doi.org/10.1007/978-3-319-31241-5_5
http://dx.doi.org/10.1007/978-3-319-31241-5_5
http://dx.doi.org/10.1007/978-3-319-31241-5_2


94 6 Discussion

be required to provide a suitable schema, and this would violate my requirement of
user-configurability of XTENS 2. Using the schemaless jsonb metadata storage,
the user can configure all the data types described in the previous chapter, without any
additional programming or database design. The database schema does not match
the data structure: flexibility comes at a price in performance optimisation. But, as I
have shown in Sect. 6.3, the cost is lower than adopting an EAV catalogue.

6.4 XTENS for Multidisciplinary Collaborations

XTENS 1.5, as adopted for institutional use at IGG, has allowed to integrate data
produced by four different laboratories at IGG:Molecular Biology (sample biobank-
ing, derivatives extraction, and Microarray), Anatomical Pathology (tissue charac-
terisation), Oncology Facility (aCGH), and the Haematology and Oncology Clinical
Department (clinical reports). In addition, the “ALK Research” of the San Martino-
IST hospital provides data relative to ALKmutations in neuroblastoma, as described
in Sect. 4.2.2. Overall, eleven people from five different departments have been
granted access to the digital biobanks: a paediatrician, two oncologists, two
“internal” biologists (i.e. belonging to the biobank) and five “external” biologists,
and a bioinformatician. The five user groups have different security access level
regulated by functions (as defined in 2.5.4).
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Chapter 7
Conclusions

I have designed a novel highly configurable JSON-based metadata model, to
overcome data sharing limitations in biomedical research collaborations. The JSON-
based model has been first tested on XTENS, a previously existing data repository
written in Java language and has been successfully used in production to manage
an Integrated Biobank at the IGG paediatric hospital in Genoa. The biobanking data
repository manages different sample workflows—tissue and fluid banking, DNA and
RNA extractions, aliquot deliveries—and keeps track of the genomic analysis that
are subsequently performed on the nucleic acids, namely aCGH, microarray and tar-
geted Sanger sequencing. As ofMarch 2015 the XTENS biobank at IGG stored 2400
tissue and fluid sample from 1240 individual patients. The JSON metadata model
demonstrated its good flexibility in describing a heterogeneous sources of informa-
tion: quality control reports, deliveries, patient clinical records, and genomic profiles.
Given its good applicability inmanaging an integrated biobank involvingworks from
different laboratories, my next step was to extend the repository capabilities to sup-
port multi-centric data sharing. To this end I have developed a novel repository,
XTENS 2, completely written in JavaScript code to provide an environment where
the JSON model is a first-class citizen. XTENS 2 runs on a Node.js server and takes
advantage of the json/jsonb data formats of the PostgreSQL database to store
structured and semi-structured metadata as defined by the data model. XTENS 2 has
been provided of various modules to ensure (i) transactional safety of data, sample
and subject creation and update, (ii) distributed file system support for bulk data,
and (iii) composition of complex multi-level queries based on parameters specified
by the user (e.g. via graphical form). The flexible query composition is handled in a
safe way, converting a JSON element into a sanitised prepared statement. XTENS 2
performances have been tested, building up a multi-level data hierarchy and pop-
ulating the database with increasingly greatest numbers of subjects and associated
datasets. I have used a set of 3 relevant queries to evaluate the retrieval time and
adopted different index strategies to envision the better approach for optimising the
database.
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I have tested a first XTENS 2 prototype in an ongoing SEEGmulti-centric project
where external programs interact with the repository using a service-oriented REST-
ful interface. I have demonstrated the usefulness of XTENS 2 also in computational
neuroscience because, using it, the project collaborators could (i) remotely input
imaging (CT/MRI) and signal (SEEG) recordings, (ii) run the required processing
tools, and (iii) output the relevant connectivity results on both individual and common
anatomical spaces. The next objective is to migrate the Gaslini biobank to XTENS 2
using a multi-biobank environment, with the goal of bringing all the neuroblastoma
biobanks under a single platform. This setup will provide a serious test scenario for
management of Biomedical data that are at the same time heterogeneous and geo-
graphically distributed. A point that I have not discussed in detail here is the security
and privacy of data. In XTENS 2, personal details are stored in a separate table as it
is required by Italian and European regulations. The access to sensitive information
is currently controlled by Sails.js policies.

7.1 Future Developments

XTENS 2 development and testing have been the main activities during my Ph.D.
thesis and are in progress. Given the modular structure of XTENS 2, new function-
alities can be added afterwards while the core system, beforehand tested, is used
for pilot projects, as it happens for the SEEG multi-centric collaboration. There are
some concepts from “old XTENS” that I have not yet adopted in XTENS 2: the most
egregious is the Process-Event model model detailed in Sect. 2.5.4. While an event
could be modelled as a data instance without metadata but a timestamp, I plan to
add a fourth model (in the Sails.js sense), to describe studies and/or processes. In
this way, a process would be a specialised data instance with its own metadata, and,
possibly, and additional JSON structure that describe its workflow or protocol. In this
way a process could consist of a sequence of sub-processes and events that produce
data, just as it happens in “old XTENS”. An important “old XTENS” administrative
tool are the functions (see [1]), used to handle fine grained authorisation control to
specific parts. They have the highest priority before the system is installed in pro-
duction. Concerning the BIT digital biobank, I plan to upgrade the installation from
XTENS 1.5 to XTENS 2 before the end of June 2015. I will have to develop ad hoc
procedures to migrate the database fromMySQL to Postgres, which will be the most
onerous task. The BiolMol group has proposed to adopt the system to manage all the
neuroblastoma biobanks and repositories across Italy.

7.2 Implications and Predictions

As the size of data produced by biomedical instruments increases and its com-
plexity grows apace, more and more scientists and clinicians will require adaptive
and schemaless solutions to manage their datasets. This has been the trend in the
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Enterprise for the last five years and I see no reasons for clinical research to follow a
different path. If possible, given the more fluid nature of life science, the demands of
biomedical researchers will be even more pressing. I think that digital repositories—
like XTENS 2—able to accommodate both standardised and fluid data represent
a solution to tackle the Big Data challenge for biology clinical research, and life
science as a whole.
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Appendix
XTENS 2 Database Schemas

Here I report the database schemas used in XTENS 2 as described in Chap.5. The
schema in Fig.A.1 represents the persistence layer for the UML class diagram shown
in Fig. 5.1. The schema in Fig.A.2 refers to the EAv catalogue implementation used
to execute the performance tests. The schemas have been drawn from the database
testing installation using the graphic tool DbVisualizer Free 9.2.
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contact_information

id INTEGER

surname TEXT

given_name TEXT

phone TEXT

email TEXT

address TEXT

zip TEXT

city TEXT

country TEXT

created_at TIMESTAMP(6) WITH TIME ZONE

updated_at TIMESTAMP(6) WITH TIME ZONE

biobank

id INTEGER

biobank_id TEXT

acronym TEXT

name TEXT

url TEXT

contact_information INTEGER

juristic_person TEXT

country TEXT

description TEXT

created_at TIMESTAMP(6) WITH TIME ZONE

updated_at TIMESTAMP(6) WITH TIME ZONE

data

id INTEGER

type INTEGER

parent_subject INTEGER

parent_sample INTEGER

parent_data INTEGER

acquisition_date DATE

metadata JSONB

tags JSONB

notes TEXT

created_at TIMESTAMP(6) WITH TIME ZONE

updated_at TIMESTAMP(6) WITH TIME ZONE

data_type

id INTEGER

name TEXT

model TEXT

schema JSONB

created_at TIMESTAMP(6) WITH TIME ZONE

updated_at TIMESTAMP(6) WITH TIME ZONE

sample

id INTEGER

type INTEGER

parent_subject INTEGER

parent_sample INTEGER

biobank INTEGER

biobank_code TEXT

metadata JSONB

tags JSONB

notes TEXT

created_at TIMESTAMP(6) WITH TIME ZONE

updated_at TIMESTAMP(6) WITH TIME ZONE

subject

id INTEGER

type INTEGER

personal_info INTEGER

code TEXT

sex TEXT

metadata JSONB

tags JSONB

notes TEXT

created_at TIMESTAMP(6) WITH TIME ZONE

updated_at TIMESTAMP(6) WITH TIME ZONE

datatype_children__datatype_parents

id INTEGER

datatype_parents INTEGER

datatype_children INTEGER

project

id INTEGER

name TEXT

description TEXT

created_at TIMESTAMP(6) WITH TIME ZONE

updated_at TIMESTAMP(6) WITH TIME ZONE

project_subjects__subject_projects

id INTEGER

project_subjects INTEGER

subject_projects INTEGER

personal_details

id INTEGER

surname TEXT

given_name TEXT

birth_date DATE

created_at TIMESTAMP(6) WITH TIME ZONE

updated_at TIMESTAMP(6) WITH TIME ZONE

Fig. A.1 XTENS 2 core database schema. The table dedicated to the repository administrations
(i.e. xtns_group, operator, …) are not shown
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data

id INTEGER

type INTEGER

parent_subject INTEGER

parent_sample INTEGER

parent_data INTEGER

acquisition_date DATE

metadata JSONB

tags JSONB

notes TEXT

created_at TIMESTAMP(6) WITH TIME ZONE

updated_at TIMESTAMP(6) WITH TIME ZONE

eav_value_text_data

id INTEGER

entity INTEGER

attribute INTEGER

value TEXT

created_at TIMESTAMP(6) WITH TIME ZONE

updated_at TIMESTAMP(6) WITH TIME ZONE

eav_attribute

id INTEGER

data_type INTEGER

loop INTEGER

name TEXT

field_type TEXT

has_unit BOOLEAN

created_at TIMESTAMP(6) WITH TIME ZONE

updated_at TIMESTAMP(6) WITH TIME ZONE

eav_value_integer_data

id INTEGER

entity INTEGER

attribute INTEGER

value INTEGER

unit TEXT

created_at TIMESTAMP(6) WITH TIME ZONE

updated_at TIMESTAMP(6) WITH TIME ZONE

eav_value_date_data

id INTEGER

entity INTEGER

attribute INTEGER

value DATE

created_at TIMESTAMP(6) WITH TIME ZONE

updated_at TIMESTAMP(6) WITH TIME ZONE

eav_value_float_data

id INTEGER

entity INTEGER

attribute INTEGER

value REAL

unit TEXT

created_at TIMESTAMP(6) WITH TIME ZONE

updated_at TIMESTAMP(6) WITH TIME ZONE

eav_value_boolean_data

id INTEGER

entity INTEGER

attribute INTEGER

value BOOLEAN

created_at TIMESTAMP(6) WITH TIME ZONE

updated_at TIMESTAMP(6) WITH TIME ZONE

data_type

id INTEGER

name TEXT

model TEXT

schema JSONB

created_at TIMESTAMP(6) WITH TIME ZONE

updated_at TIMESTAMP(6) WITH TIME ZONE

sample

id INTEGER

type INTEGER

parent_subject INTEGER

parent_sample INTEGER

biobank INTEGER

biobank_code TEXT

metadata JSONB

tags JSONB

notes TEXT

created_at TIMESTAMP(6) WITH TIME ZONE

updated_at TIMESTAMP(6) WITH TIME ZONE

subject

id INTEGER

type INTEGER

personal_info INTEGER

code TEXT

sex TEXT

metadata JSONB

tags JSONB

notes TEXT

created_at TIMESTAMP(6) WITH TIME ZONE

updated_at TIMESTAMP(6) WITH TIME ZONE

Fig. A.2 Database schema of the EAV architecture adopted for the performance tests detailed in
Sect. 5.4. The schema is outlined only for the data table
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