

Grid Computing
for Electromagnetics

For a listing of recent related titles, turn to the back of this book.

Grid Computing
for Electromagnetics

Luciano Tarricone
Alessandra Esposito

Artech House, Inc.
Boston • London

www.artechhouse.com

Library of Congress Cataloguing-in-Publication Data
Tarricone, Luciano.

Grid computing for electromagnetics/Luciano Tarricone, Alessandra Esposito.
p. cm.

Includes bibliographical references and index.
ISBN 1-58053-777-4 (alk. paper)
1. Computational grids (Computer systems) 2. Electromagnetism–Data processing.
I. Esposito, Alessandra. II. Title.

QA76.9.C58T37 2004
004’.36—dc22

2004053827

British Library Cataloguing in Publication Data
Tarricone, Luciano

Grid computing for electromagnetics. –(Artech House electromagnetics library)
1. Electromagnetism 2. Computational grids (Computer systems) I. Title II. Esposito,

Alessandra

621.3’0285436

ISBN 1-58053-777-4

Cover design by Igor Valdman

© 2004 ARTECH HOUSE, INC.
685 Canton Street
Norwood, MA 02062

All rights reserved. Printed and bound in the United States of America. No part of this book
may be reproduced or utilized in any form or by any means, electronic or mechanical, includ-
ing photocopying, recording, or by any information storage and retrieval system, without
permission in writing from the publisher.

All terms mentioned in this book that are known to be trademarks or service marks have
been appropriately capitalized. Artech House cannot attest to the accuracy of this informa-
tion. Use of a term in this book should not be regarded as affecting the validity of any trade-
mark or service mark.

International Standard Book Number: 1-58053-777-4

10 9 8 7 6 5 4 3 2 1

Contents

Acknowledgments xi

Introduction xiii

Grid Computing: What Is It? xiii
Grid Computing: Who Is Who? xv
Grid Computing: An Opportunity for Electromagnetics Research xv
How to Read This Book xvii
A Final Note xviii
References xviii

CHAPTER 1
General Concepts on Grids 1

1.1 Introduction 1
1.2 Parallel and Distributed Architectures 2
1.3 Parallel and Distributed Topologies 5
1.4 Parallel and Distributed Programming 7

1.4.1 Message Passing 8
1.4.2 Shared-Memory Programming 9
1.4.3 Concluding Remarks: Programming Paradigms and
1.4.3 Parallel Architectures 10

1.5 Performance Assessment 10
1.6 Web Computing 11
1.7 Computational Grids 14

1.7.1 Introduction 14
1.7.2 What Is a Grid? 15
1.7.3 Grid Architecture 17
1.7.4 Grid Middleware 19
1.7.5 Applications 20

1.8 Conclusions 21
References 21

CHAPTER 2
Enabling Technologies and Dedicated Tools 23

2.1 Introduction 23
2.2 Enabling Technologies: Object Orientation 24

2.2.1 Object Orientation for Software Engineering 24
2.2.2 Object Orientation for Enabling Technologies 25
2.2.3 CORBA 26

v

2.2.4 Java 27
2.2.5 Object Orientation and Electromagnetic Simulators 28
2.2.6 Conclusions 29

2.3 Dedicated Tools: Grid Middleware 30
2.4 The Globus Toolkit: An Overview 30
2.5 The Globus Toolkit: The Globus Security Infrastructure 31

2.5.1 Authorization 32
2.5.2 Mutual Authentication 33
2.5.3 Single Sign On and Delegation 35
2.5.4 Other Services 37

2.6 The Globus Toolkit: The Resource Management Pillar 38
2.7 The Globus Toolkit: The Information Services Pillar 42

2.7.1 MDS Directory Service: Lightweight Directory Access Protocol 43
2.7.2 MDS Information Model 43

2.8 The Globus Toolkit: The Data Management Pillar 46
2.8.1 Distributed Data Access and Management 46
2.8.2 Dataset Replicas Services 47
2.8.3 Conclusions 48

2.9 The Globus Tools API 48
2.10 The MPI with Globus 49
2.11 Dedicated Tools: Economy-Driven RM in Grids 51
2.12 Web-Based Technologies and Projects 51
2.13 Grid-Enabled HTC: Condor-G 53

References 53

CHAPTER 3
Building Up a Grid 57

3.1 Introduction 57
3.2 Recalling Globus Basic Concepts 58
3.3 Setting Up the Environment 60

3.3.1 Hardware Requirements 60
3.3.2 Software Requirements 60
3.3.3 Setting Up the Network 60
3.3.4 Before Installing Globus 61

3.4 Globus Installation 62
3.4.1 Downloading the Package 62
3.4.2 Installing the Toolkit 63

3.5 Globus Configuration 64
3.5.1 Authorization 65
3.5.2 Authentication 66
3.5.3 Using the Globus CA 66
3.5.4 Using a Local CA 68

3.6 Services Start Up 72
3.6.1 Resource Management 72
3.6.2 Information Services 72
3.6.3 Data Management 73

3.7 Introducing a New User to the Grid 74

vi Contents

3.7.1 Client Side 74
3.7.2 Server Side 74

3.8 Globus-Relevant Commands to Use the Grid 74
3.8.1 Authentication 75
3.8.2 Resource Management 75
3.8.3 Information Services 78
3.8.4 Data Management 80

3.9 Developing Grid-Enabled Applications 82
3.9.1 An Example with Globus API 83

3.10 Message Passing in a Grid Framework 85
3.11 Summary and Conclusions 87

References 87

CHAPTER 4
Applications: FDTD with MPI in Grid Environments 89

4.1 Introduction 89
4.2 The FDTD Approach: Theoretical Background 89

4.2.1 Yee’s Algorithm 89
4.2.2 Stability of the Algorithm 92
4.2.3 Numerical Dispersion 92
4.2.4 Excitation and Absorbing Boundary Conditions 93
4.2.5 CPU Time and Memory Requirements 95

4.3 Parallel FDTD 96
4.3.1 A Simple and Portable Parallel Algorithm 96

4.4 Migration Toward Computational Grids 108
4.4.1 Introduction 108
4.4.2 Practical Guidelines 109
4.4.3 Pthread Libraries and MPICH-G2 110

4.5 Numerical Performance 111
4.5.1 Performance Evaluation of Parallel Distributed FDTD 111
4.5.2 MPICH-G2 Performance Evaluation 112
4.5.3 Benchmarking Parallel FDTD on a Grid 115

4.6 Remarkable Achievements 116
4.7 Conclusions 117

Acknowledgments 117
References 117

CHAPTER 5
CAE of Aperture-Antenna Arrays 121

5.1 Introduction 121
5.2 Numerical Techniques for the Analysis of Flange-Mounted

Rectangular Apertures 123
5.2.1 Theoretical Background 123
5.2.2 Approaches Based on Waveguide Modes 125
5.2.3 Approaches Based on Gegenbauer’s Polynomials 127

5.3 A Tool for the CAE of Rectangular Aperture Antenna Arrays 128
5.3.1 Evaluation of the Horns’ Scattering Matrix 129

Contents vii

5.3.2 Evaluation of the Aperture Array’s Scattering Matrix 130
5.3.3 Evaluation of the Scattering Matrix at External Ports 132
5.3.4 Evaluation of the Radiation Pattern 134

5.4 Parallel CAE of Aperture Arrays 135
5.4.1 Preliminary Analysis 136
5.4.2 Parallelization 139
5.4.3 Results on MIMD Supercomputing Platforms 142

5.5 Migration Toward Grid Environments 144
5.5.1 Supporting Cooperative Engineering with GC 145

5.6 Conclusions 150
Acknowledgments 151
References 151

CHAPTER 6
Wireless Radio Base Station Networks 153

6.1 Introduction 153
6.2 Foundations of Cellular Systems 154

6.2.1 General Considerations 154
6.2.2 Frequency Reuse 155
6.2.3 Capacity and Traffic 157
6.2.4 How a Cellular System Connects Users 158
6.2.5 BS Antennas 158

6.3 Key Factors for Current and Future Wireless Communications 160
6.3.1 Power Control 160
6.3.2 Managing with More and More Users 161
6.3.3 System Standardization and Interoperability 161
6.3.4 Concerns in the Public Opinion 162

6.4 Planning Wireless Networks 162
6.5 An Integrated System for Optimum Wireless Network Planning 163

6.5.1 Overview of the System 164
6.6 A Candidate Architecture for an Effective ISNOP 169
6.7 GC and Its Role in the ISNOP 170
6.8 Wireless Network Planning with GC 170

6.8.1 Data Communication with GC in a Simplified ISNOP 173
6.8.2 ENC Module Simulation 178

6.9 Conclusions 180
Acknowledgments 181
References 181

CHAPTER 7
Conclusions and Future Trends 183

7.1 GC: Benefits and Limitations 183
7.2 GC Trends 184

References 185

APPENDIX A
Useful UNIX/Linux Hints 187

viii Contents

A.1 UNIX/Linux Operating System: An Overview 187
A.2 UNIX/Linux: The Architecture 188
A.3 The File System 188

A.3.1 Introduction 188
A.3.2 File System Relevant Commands 189
A.3.3 Pathnames 191
A.3.4 System Calls for File Management 192
A.3.5 Permissions 192

A.4 Processes 193
A.5 Administration 194
A.6 The Shell 194

A.6.1 Introduction 194
A.6.2 Background Command Execution 196
A.6.3 Redirection 196
A.6.4 Pipes 197
A.6.5 Environment Variables 197
References 198

APPENDIX B
Foundations of Cryptography and Security 199

B.1 Introduction 199
B.2 Confidentiality and Cryptography 200
B.3 Digital Signature 202
B.4 Certificates and Certification Authorities 203

References 205

APPENDIX C
Foundations for Electromagnetic Theory 207

C.1 Maxwell’s Equations in the Time Domain 207
C.2 Helmholtz and Dispersion Equations 208
C.3 TE and TM Modes 209
C.4 Fourier Representation of Green’s Functions 210
C.5 The Far-Field Approximation 212

Reference 213

APPENDIX D
List of Useful Web Sites 215

Glossary 217

List of Acronyms 227

Selected Bibliography 233

About the Authors 239

Index 241

Contents ix

.

Acknowledgments

This book is intended as a guide to the use of grid computing, an emerging branch
of information technology for researchers involved in electromagnetics. It has a
practical orientation and aims at allowing researchers to learn how to set up a
computational grid, how to run electromagnetic applications on it, and how to use
grid computing to identify new and promising perspectives for their research. The
book could also be adopted as a text book in advanced courses of applied
electromagnetics.

Usually, a book is the result of several years of studies, teaching, research, inves-
tigations, and discussions, and this book is no different. In the most exciting cases, it
is also the starting point of new efforts, and we hope this is the case! Therefore, it is
quite often an achievement the authors share with the colleagues, students, and
friends who stimulated and encouraged their thoughts. Among them, Luciano
wants to acknowledge the colleagues Mauro Mongiardo and Roberto Sorrentino at
the University of Perugia, Italy, and Guglielmo d’Inzeo at the University of Rome,
La Sapienza, Italy. Alessandra is grateful to Giuseppe Vitillaro for his enthusiastic
discussions on current and future scientific computing. Both the authors thank Pro-
fessor Peter Excell at the University of Bradford, United Kingdom, for his revision of
parts of the book.

The authors also want to express their deep gratitude to their parents, who
more than anybody else have supported this long pathway, since the very beginning.

The authors want to remember now the memory of Salvatore, who left them
just as this book was being concluded.

Finally, the authors dedicate this work to their children, Silvia and Edoardo,
whose happy laughing has accompanied this long journey.

xi

.

Introduction

Grid Computing: What Is It?

The continuous progress in scientific research is itself an explanation of the insatia-
ble demand for computational power. On the other hand, one of the results of scien-
tific progress is the availability of more and more powerful computer platforms.
This self-feeding cycle is pushing our search for knowledge towards very challeng-
ing investigations, and parallel computing nowadays plays an important role in this
scenario. This is especially driven by the present-day enhancement in distributed
computing, which has produced a substantial reduction in the costs of effective
supercomputing facilities.

Another emerging trend, due to the improvement of distributed information
technologies (IT), is the acceleration of research and development processes
towards concurrent and cooperative engineering. Daily workflows in academic and
industrial activities are more and more based on interaction among remote entities,
which in some cases are physical people and in others are agents or facilities embed-
ding value-adding procedures. An IT infrastructure is, most of the time, the core of
such processes.

In the last decade, these important evolutions have been accompanied by the
so-called Internet revolution and the boom in Web applications. The extraordinary
perspectives opened by the Web have reinforced the momentum towards process
integration and cooperative computing. Consequently, joining together supercom-
puting facilities and the world of Web-based tools seems to be the key feature to
opening new perspectives in industrial and scientific computational processes, and
an emerging technology is being proposed as the most natural way to pursue such a
goal: grid computing (GC).

The technology of GC has led to the possibility of using networks of computers
as a single, unified computing tool, clustering or coupling a wide variety of facilities
potentially distributed over a wide geographical region, including supercomputers,
storage systems, data sources, and special classes of devices, and using them as a sin-
gle unifying resource (computational grid). The concept started as a project to link
supercomputing sites but has now grown far beyond its original intent, opening new
scenarios for collaborative engineering, data exploration, high-throughput comput-
ing (HTC), meta application, and high-performance computing (HPC).

Collaborative (or cooperative) engineering means providing engineers and
researchers with tools for cooperating online. These tools allow them to share
remote resources, modify them, and design, implement, and launch applications
in cooperation. In such a context, a grid can be seen as a global production

xiii

environment, where distributed systems can be prototyped and tested. The flexibil-
ity of grids makes this system dynamic and configurable. Via the grid, researchers
are able to rapidly modify their products in order to adapt them to the changes of
underlying environments, infrastructure, and resources.

Data exploration is particularly critical when dealing with huge amounts of data
and their access from remote sites is needed. Several research fields, such as climate
analysis and biological studies, require the storage and accessing of data up to the
terabyte or petabyte range. In these cases, data are distributed on a number of
remote sites and then accessed uniformly. Taking this further, redundancy can help
in improving access performance and reliability. Redundancy is obtained by creat-
ing replicas of data sets, increasing performance by accessing the nearest data set.
Services to manage distributed data sets and replicas are central in grid computing.

HTC applications require large amounts of computational power over a long
period of time. Examples of HTC applications are large-scale simulations and para-
metric studies. HTC environments try to optimize the number of jobs they can com-
plete over a long period of time. A grid allows exploitation of the idle central
processing unit (CPU) cycles of connected machines and use of them for HTC
applications.

Meta applications are applications made up of components owned and devel-
oped by different organizations and resident on remote nodes. A meta application is
usually a multidisciplinary application that combines contributions from differently
skilled scientific groups. A meta application is dynamic (i.e., it may require a differ-
ent resource mix depending on the requirements of the current problem to solve). In
addition, research teams are able to preserve their property on their own application
components, by granting usage through a recognized brokering entity.

HPC applications are, by definition, those that require a huge amount of power
(relative to the norm for contemporary computers), usually over a short period of
time. This is the primary field for which grids were conceived, as a direct evolution
of parallel and distributed processing concepts. Scientific simulations for weather
forecasting or astrophysics research are examples of applications requiring huge
computational power. The scope of these simulations is limited by the available
computational power, even when using supercomputers. Grids allow scientists
belonging to different organizations to join their computational resources and
acquire amounts of computational power otherwise unaffordable.

All of these applications are supported by GC in a secure framework that is Web
compliant and open to heterogeneous platforms and systems. When we mention
security, we refer to the capability of guaranteeing that the owner of a resource can,
at any moment, establish who can access the resource, when, and for what. Web
compliance is the ability to develop or use applications that take full advantage of
recent technologies supporting multimedia applications over the Web. Finally, when
we cite heterogeneous environments, we refer to the ability to bypass all of the
obstacles represented by the coexistence of several architectures, operating sys-
tems, programming languages, networking protocols, software methodologies, and
technologies.

All of these applications are exemplified in this book. We suggest reading
Chapter 4 for an HPC application, Chapter 5 for an application focused on collabo-
rative engineering and meta applications, and Chapter 6 for an application oriented

xiv Introduction

to data exploration and HTC. Should you be interested just in one of the mentioned
areas, you may want to read further in the Introduction, where we suggest how to
read the whole book or parts of it.

Grid Computing: Who Is Who?

GC is mature and is attracting large companies, boards, and research centers. For
instance, IBM is building the Distributed Terascale Facility (DTF), with $53 million
funding from the National Science Foundation (NSF) [1]. Examples of working grid
applications can be found in different scientific disciplines. In the field of distributed
supercomputing, one of the primary areas in which GC has sparked interest is in
large-scale sequence similarity searches. An individual sequence similarity search
requires little computation time, but it is common for researchers to perform such
searches for thousands or even tens of thousands of sequences at a time. These
searches, each dependent on the others, can be spread across as many hosts as are
available. The storage and exploitation of genomes and of the huge amount of data
coming from post genomics puts a growing pressure on computing tools—such as
databases and code management—for storing data and data mining. Genomic
research needs, together with requirements coming from other disciplines, gave
place to the DataGrid project [2]. This European initiative joins researchers coming
from European Organization for Nuclear Research (CERN), European Space
Agency (ESA), and other outstanding European scientific centers and is actively fos-
tered by the European Union. It is focused on building up an international grid to
store large volumes of data and to provide a uniform platform for data mining. This
helps researchers from biological science, Earth observation and high-energy phys-
ics, where large scale, data-intensive computing is essential.

Other interesting grid applications are those oriented towards the promotion of
synchronous cooperation between persons. The Access Grid [3] is focused on online
collaboration through audio/video conferencing. The Astrophysics Simulation Col-
laboratory (ASC) portal [4] allows users to form virtual organizations over the
Internet. People belonging to a virtual organization access the grid to collabora-
tively assemble code, start-stop simulations, and update and access a repository of
simulation components shared with their remote colleagues. In Chapter 2 of this
book and in [5], more thorough lists of projects involving grids are to be found. In
this introductory context, it is interesting to recall that the reference point for grid
communities is the Global Grid Forum (GGF) [6]. The GGF coordinates a growing
number of research groups cooperating to ratify community standards for grid soft-
ware and services and to develop vendor- and architecture-independent protocols
and interfaces.

Grid Computing: An Opportunity for Electromagnetics Research

Though the community of electromagnetics (EM) research has been only peripher-
ally interested in GC until now, several practical EM applications can immediately
take advantage of GC.

Grid Computing: Who Is Who? xv

An excellent example is the use of HPC for CPU-demanding tasks, such as the
ones using finite-difference time-domain (FDTD) codes for human-antenna interac-
tion. This is a typical CPU-intensive application, quite amenable to parallel comput-
ing. Until now, its solution with parallel computing has required the use of costly
parallel platforms to achieve effective performance. GC, however, offers a low-cost
supercomputing environment, which can be dynamically arranged in order to fulfill
the requirements of a specific problem. This is a relevant point, as one of the severe
limitations to the diffusion of parallel computing has been the affordability of plat-
forms to achieve high performance.

Another major example is in the computer-aided engineering (CAE) of
microwave (MW) circuits and antennas. In such a case, GC allows the integration
of design and analysis capabilities in a secure, Web-enabled, high-performance
environment.

Consider, for instance, the development of complex MW circuits or antennas
composed of several parts, each requiring specific simulation approaches. Suppose
also that several research groups are in charge of developing parts of the whole cir-
cuit and that some groups are interested in selling, via the Web, their contribution to
the other cooperating groups. In addition to allowing the cooperative development
of the project and ensuring a high-performance no-cost environment, GC acts as a
broker, regulating such interactions, even managing payments (when requested)
and commercial transactions. The same GC infrastructure can also support the
dominant numerical effort typically required by optimization cycles, which at the
moment represent one of the crucial steps for achieving adequate performance and
yields. Optimization is especially hard when a satisfactory tradeoff must be sought
between circuit performance and manufacturing issues, leading to the integration of
EM, thermal, mechanical, and economic specifications. In such a case, which is
often the bottleneck of industrial processes, GC can represent an appealing and
affordable answer to the need of concentrating cooperative/integrated engineering
and supercomputing in a single framework.

Finally, an attractive example is represented by the optimum design and plan-
ning of wireless networks, an area experiencing a booming growth. We refer, for
instance, to the problem of identifying optimum locations and electrical parameters
(e.g., tilting, power levels, and orientations) for radio base station antennas, so that a
high quality of service, coverage, and traffic management is guaranteed, along with
compliance with safety standards for human exposure to EM fields. In such a case,
the traditional expertise of EM researchers, such as radio propagation and antenna
skills, must harmonize with telecommunication and optimization requirements, in
a single integrated information system that also uses digital cartography and
high-performance visualization. This very multidisciplinary and complex challenge
involves problems typical of cooperative engineering, meta applications, and super-
computing, as well as severe problems of management of large amounts of data, dis-
tributed on a geographical basis and critical from a security point of view. Even in
this case, GC is the compact answer to the wide variety of enumerated problems and
requirements.

The three examples mentioned (FDTD for human interaction, CAE of cir-
cuits/antennas, and design/management of wireless networks) are the application
areas we focus on in this book. They represent, in our opinion, only some of the

xvi Introduction

interesting demonstrations of the exciting perspectives opened by GC for EM
research: many other challenging opportunities for EM scientists are just around the
corner.

How to Read This Book

Different users will have different needs, and so it is appropriate that we give some
guidance on approaches in typical cases. Thus, we now give a very short description
of how the book is structured and some suggestions on reading it, permitting the
skipping of parts some readers may not be interested in or may want to read in a
latter step.

In this book, we introduce the interested reader to the use of GC in computa-
tional EM (CEM). The book is oriented towards practical applications and aims at
enabling the beginner to build up a grid, install or migrate his or her applications,
and run them. Therefore, in Chapter 1, we propose general concepts about grids. In
Chapter 2, we give a short overview on Globus, a fundamental tool for grid imple-
mentation. In Chapter 3, we summarize the main steps in building up a grid. In the
next chapters, we propose three EM applications. Chapter 4 deals with the use of
GC for parallel FDTD; Chapter 5 deals with the use of GC for cooperative CAE of
rectangular aperture array antennas; and Chapter 6 deals with the use of GC for
optimum planning, managing, and monitoring of wireless radio base station net-
works. Finally, in Chapter 7, we discuss advantages and limitations of GC for CEM,
and draw some conclusions. A CD-ROM is enclosed, with some sample code for the
several application areas. The CD-ROM also includes all of the software needed to
build up a grid, assuming that you have at least some UNIX-enabled PCs connected
to the Internet.

The reader interested only in building up a grid can directly access Chapter 3
and could substantially benefit from the support of a system engineer with expertise
in UNIX systems and networking. This is even more relevant if either the reader
wants to use versions of the suggested software different from the ones enclosed in
the CD-ROM or platforms adopt different operating systems from the ones to
which we refer.

The reader interested only in one of the three proposed EM applications can, in
principle, skip the other applications. For instance, the reader interested in wireless
networks (Chapter 6) can skip Chapters 4 and 5 without affecting the readability of
the text. Nonetheless, it is worth noting that the order in which applications are dis-
cussed follows a rationale. Indeed, the FDTD application reported in Chapter 4 is
an example of GC for HPC. The application reported in Chapter 5 (CAE of anten-
nas) is an example of GC for HPC and cooperative engineering. The application in
Chapter 6 (wireless networks) is an example of GC for HPC and cooperative engi-
neering and data management. Consequently, Chapter 5 omits details on HPC and
refers back to Chapter 4 for this part of the application. Equivalently, Chapter 6
omits details on HPC and cooperative engineering, referring to Chapters 4 and 5,
respectively, for these parts.

We have also prepared a glossary, where the majority of terms with a technical
and scientific relevance are succinctly explained. We have taken special care over

How to Read This Book xvii

terms coming from the IT and telecommunication areas, trying to propose simple,
yet rigorous, definitions. Finally, you can also find an alphabetical list of the adopted
acronyms. We hope this renders reading the book easier.

A Final Note

As reference tool for computational grids, the book refers to Globus Toolkit (GT)
2.2.4, which is also attached in the CD-ROM. New Globus versions are continu-
ously being published. Typically, new versions are backward compatible: they usu-
ally add new facilities, preserving the existing ones. This seems to be confirmed also
with version 3, the forthcoming version, with the exception of a simplification of the
installation procedure and heavier software requirements to install GT. In conclu-
sion, the CD-ROM-attached GT 2.2.4 version renders the material nonevanescent,
and, in general, the only part strictly tied with that version is the part of Chapter 3
describing its installation.

References

[1] http://www.ibm.com/grid.
[2] DataGrid Project Home Page, http://www.eu-datagrid.org.
[3] Access Grid Project Home Page, http://www.accessgrid.org.
[4] ASC Portal Home Page, http://www.acsportal.org.
[5] Baker, M., R. Buyya, and D. Laforenza, “The Grid: International Efforts in Global Comput-

ing,” International Conference on Advances in Infrastructure for Electronic Business, Sci-
ence, and Education on the Internet, Italy, 2000.

[6] GGF Home Page, http://www.gridforum.org.

xviii Introduction

C H A P T E R 1

General Concepts on Grids

1.1 Introduction

Computational grids find their origins and background in the field of HPC, with the
preeminent goal of linking supercomputing sites and optimally exploiting CPU time
available through a wide area multidomain networking connection. It is a common
situation, indeed, that on a certain node, at a given instant, a strong computational
effort must be sustained, while huge CPU-time amounts are left idle on remote sites.
The existence of a pervasive intelligence could monitor the status of each processor,
assigning CPU power where needed in a right-sized fashion, thus reducing as much
as possible idle CPU times and allowing controlled access to large-scale CPU facili-
ties. The role played by the evoked pervasive intelligence is starred by what we call
now a computational grid.

After (or, more realistically, while) achieving the goal of facilitating and
improving HPC, grids have naturally evolved: the same idea of controlled and opti-
mized management of available distributed CPU power has been extended to the
more general concept of resource management. As you may need CPU time at a cer-
tain moment, you may also want to access a remote database, store large amounts
of data on remote storage systems, and access software services and electronic
instruments. Grids are in charge of enabling users to do this.

In such a new and variegated context, which evolves along with the impressive
Internet revolution and its Web facilities, grids have grown far beyond their early
conception, representing the natural melting pot of distributed systems, network-
ing, security, parallel computing, and Web tools.

Consequently, the ideal profile of a researcher to be involved in the migration of
scientific applications towards the multidisciplinary context of grid computing
should lie on a basic knowledge of parallel and distributed computing, supported by
specific skills covering the cultural areas mentioned earlier.

In this chapter, a synoptic overview is given on parallel and distributed comput-
ing, with some historical and perspective discussions on architectures and program-
ming paradigms. The important issues of architecture topologies and performance
evaluation are described. The reader is given a very brief summary, aimed more at
focusing on the most relevant arguments than on discussing them in an exhaustive
fashion. Later on, the same analysis is proposed for the area of Web technologies,
introducing several themes that are more thoroughly described in the following
chapters. On such bases, an introductory description of grid technology is finally
proposed, identifying the main possible applications as well as the services and the
candidate architecture to support them.

1

1.2 Parallel and Distributed Architectures

Traditional computers follow the universal model of von Neumann [1] (see
Figure 1.1). This model describes the functioning of every computer machine. A
CPU processes sequentially instructions stored in memory. The CPU consists of two
main components, the control unit (CU) and the arithmetic logical unit (ALU). The
CU is responsible for decoding instructions fetched from memory in a CPU local reg-
ister, labeled instruction register (IR) in the figure. The ALU is responsible for exe-
cuting them. Input data are moved from memory to the ALU local register, labeled
data register (DR) in the figure. Output data are moved from CPU to memory.
Input/output (I/O) devices are controlled by the CPU and provide interaction with
end users.

The model describes the computer as being made up of three components:

• Memory;
• CPU;
• I/O devices.

Memory provides storage space to contain instructions and data. The CPU
processes program instructions by using two units, the CU and the ALU. I/O devices
(e.g., video or printer) provide the interface with end users. Computer components
interact with one another by exchanging data and signals through a fast communi-
cation line (called a bus).

The computer executes instructions coded in a specific language and listed in a
program that is stored in memory. Processing is carried out serially by performing
the following actions:

1. Loading the next program instruction from memory to a special register
local to the CPU;

2. Decoding the loaded instruction;
3. Loading data and executing.

Step two is performed by the CU, which interprets the current instruction and
sends control signals to the ALU, so that it performs the operations as requested by
the loaded instruction.

2 General Concepts on Grids

CPU

CU

ALU

Memory I/O
Instructions

Data

DR

IR

Figure 1.1 Von Neumann model.

The speed of such a machine depends on the time required to load the
instruction and to execute it. To increase the computing performance, the von
Neumann model has been improved in the last decades. This happened thanks to
the evolution of microelectronics, which is more and more able to concentrate chips
in small spaces. The availability of more hardware components, in fact, led to
designing computer architectures with higher performances than the traditional von
Neumann machine. Parallelism was introduced by adding new ALUs (see
Figure 1.2) controlled by a common CU or by introducing several cooperating CPUs
(see Figure 1.3). A local high-speed interconnection network allowed these compo-
nents to exchange data.

According to Flynn’s classification [2], the former architecture corresponds to
the so-called SIMD model, where the same instruction is executed in parallel on dif-
ferent data by the ALUs. According to the SIMD model, the CU broadcasts a single
instruction to all of the ALUs, which execute the instruction synchronously on local
data.

1.2 Parallel and Distributed Architectures 3

CPU

CU

ALU ALUALU

DR DR DR

IR

Figure 1.2 Simple instruction multiple data (SIMD) parallel architecture. A single CU controls a
number of ALUs. ALUs execute in parallel the same instruction (stored in the CU local register known
as IR) on different local data (each stored in a different local register, called DR).

CPU

CU

ALU

DR

IR

CPU

CU

ALU

DR

IR

CPU

CU

ALU

DR

IR

Figure 1.3 Multiple instruction multiple data (MIMD) model. A parallel machine in the MIMD
architecture contains a number of CPUs interconnected by a high-speed network. The different CPUs
execute in parallel different instructions and operate on different data. In order to achieve a common
goal, the processors must synchronize and exchange data.

The latter corresponds to the MIMD model, where the processors interpret in a
parallel fashion different instructions, each operating on different local data. There-
fore, MIMD computers support parallel solutions that require processors to operate
in a largely autonomous manner. They are substantially composed of asynchronous
computers, characterized by decentralized hardware control.

MIMD architectures may differ depending on whether memory is shared. The
processors, in fact, can address a global, shared memory (in the so-called shared-
memory architectures) or can each address a local memory (in the so-called
distributed-memory architectures). The two different models imply different kinds
of communication between processors. In distributed-memory architectures, proc-
essors share data by explicitly passing messages through the interconnection net-
work, with performances depending on the bandwidth of the network (message
passing programming paradigm). In the shared-memory architectures, processors
must synchronize their access to shared data to prevent one process from accessing
one datum before another finishes updating it. In Section 1.4, more details regarding
the two architectures are provided, with a particular emphasis on the implied pro-
gramming paradigm.

In the past, parallel architectures were implemented in the so-called massively
parallel processors (MPPs), computers containing hundreds or thousands of proc-
essors interconnected by a fast local interconnection network. In recent years, as the
price of commodity personal computers has fallen, these special-purpose parallel
machines have, for the most part, ceased to be manufactured. Parallel architectures,
in fact, can nowadays be implemented as well by connecting a number of isolated
machines and by building clusters. With the power and low prices of today's
off-the-shelf PCs, the availability of networking equipment, and low-cost, mostly
public-domain operating systems and other software, it makes sense for a large
number of applications to build HPC environments by assembling commodity
PCs to form a cluster. Nonetheless, traditional supercomputers are still used for
applications with very stringent performance requirements, as well as in sev-
eral applications that are not strictly amenable for a successful implementa-
tion on clusters (e.g., due to fine computational granularity or intensive data
communication).

As a result of this trend from built-in supercomputers to the aggregation of
machines, nowadays parallel applications come along with distributed applications,
a more general concept defining applications made up of a number of dispersed
components performing different tasks that have the capability to interact in order
to perform a well-specified goal. Distributed applications run on distributed mem-
ory architectures obtained by assembling dispersed computers, often with heteroge-
neous platforms and operating systems.

Incidentally, the use of such architectures and applications goes along with the
spreading of adequate software technologies [3, 4], most of them based on object-
oriented (OO) concepts, permitting:

• The assembly of heterogeneous computers;
• The distribution of application tasks;
• A transparent usage of distributed machines, which are perceived as forming a

single entity.

4 General Concepts on Grids

Distributed computing technologies work well in local area networks (LANs)
or when gluing machines belonging to the same organization. This limitation is cur-
rently overridden by the introduction of grid computing.

1.3 Parallel and Distributed Topologies

Distributed memory architectures are implemented in MPPs by connecting nodes
with a fast interconnection network. Nodes share data by exchanging messages
through the interconnection network. The way nodes are interconnected (i.e., the
way the topology nodes form via the interconnection network) must be designed
with care, as at least two critical features depend on it:

• The scalability (i.e., the easy accommodation of an increasing number of
processors);

• The adaptability to the requirements of scientific programs (i.e., the ability to
minimize communication times given the nature of the problem to be solved
and its communication patterns).

A number of topologies have been proposed [5], each being the most appropri-
ate for a different class of problems and situations. An interesting parameter used to
classify topologies is the communication diameter (i.e., the maximum number of
nodes a packet must traverse when traveling from the sender to the destination).
What follows is a list of the basic topologies.

1. Ring. The N nodes are interconnected to form a ring (see Figure 1.4). Each
node is directly connected to two neighbors. The communication diameter is
N/2 and can be reduced by adding chordal connections. Ring topologies are
appropriate for a reduced number of processors executing algorithms with
little data communications.

2. Mesh. The N = n2 processors are interconnected to form a two-dimensional
mesh (see Figure 1.5). Each internal node directly communicates with four
neighbors. The communication diameter is equal to 2*(n – 1) and can be
reduced if wraparound connections at the edges are added. The similarity
between this topology and matrix data structures make this topology
amenable for matrix-oriented algorithms.

1.3 Parallel and Distributed Topologies 5

A B

C

Figure 1.4 Ring topology. The N (4 in the example) nodes form a ring. Each node has two
neighbors. The communication diameter is equal to N/2 (2 in the example). When node A needs to
communicate with node B, the packet must traverse two nodes (C and B).

3. Tree. The nodes are interconnected to form a tree (see Figure 1.6). The most
diffused tree topology is the binary one and fits well for tree-oriented
algorithms, such as searching, sorting, and image-processing algorithms. If
the binary tree has got n levels (with 2n – 1 processors), the communication
diameter is 2*n and can be reduced by adding a direct link between nodes at
the same tree level.

Recently, a number of software utilities have been developed to allow the user to
choose among a set of logical topologies (i.e., topologies not necessarily
implemented in the underlying physical topology). The software is responsible for
efficiently mapping the logical topology to the underlying physical topology (see
Figure 1.7).

The growing diffusion of such software tools is itself a demonstration that the
perfect topology, ideally suited for any kind of applications, does not exist: the
choice of a favorite topology cannot be separated from the application to be run.
Consequently, the flexibility of the topology, as well as the ability to dynamically
adapt the main networking features of the computational environment, is highly rec-
ommended. Flexibility is required more and more when considering a target envi-
ronment for the immediate future, and this could be an appealing characteristic
grids let us foresee. An apparent evidence of the intrinsic link between application

6 General Concepts on Grids

A

B

Figure 1.5 Mesh topology. The N = n2 (16 in the example) nodes form a mesh. The communication
diameter is equal to 2*(n – 1) (6 in the example). When node A needs to communicate with node B,
the packet must traverse the six colored nodes.

A B

Figure 1.6 Tree topology. The N = 2n – 1 (7 in the example) nodes form a complete binary tree with
n levels (n = 3 in the figure). The communication diameter is equal to 2*(n – 1) (4 in the example).
When node A needs to communicate with node B, the packet must traverse the 4 colored nodes.

and architectural customization is represented by adaptive mesh refinement [6],
performed by applications that dynamically adapt their behavior to the availability
of resources inside a grid.

1.4 Parallel and Distributed Programming

When a program is run in parallel, program units must have the ability to communi-
cate with one another in order to cooperatively complete a task. As overviewed in
Section 1.2, shared-memory architectures allow processor communication through
variables stored in a shared address space, while distributed-memory architectures
are built by connecting each component with a communication network.

With a shared-memory multiprocessor, different processors can access the same
variables. This makes referencing data stored in memory similar to traditional
single-processor programs, but adds the problem of shared data integrity. A
distributed-memory system introduces a different problem: how to distribute a
computational task to multiple processors with distinct memory spaces and gather
the results from each processor into one solution.

These differences produce two parallel programming paradigms:

• Message passing. In message passing, any interaction among processes is
achieved through an explicit exchange of messages.

• Shared memory. All program units access data from a central memory and, at
any moment, the data can be accessed and eventually changed by any proces-
sor node. Every interaction among processor nodes is performed through the
shared memory.

Though the architectural difference between distributed- and shared-memory
systems is apparent, and it seems quite natural to adopt a message-passing paradigm
when using distributed systems as well as a dedicated shared-memory paradigm for
the corresponding architecture, in several real cases the addressed application

1.4 Parallel and Distributed Programming 7

2 2

1
1

2
2

0

Figure 1.7 Binary tree mapped to a physical mesh. A two-level tree topology is logically mapped
onto a reconfigurable mesh. The node labeled with the 0 label is the root of the tree. The nodes
labeled with the 1 label belong to the first level. The nodes labeled with the 2 label belong to the
second level of the logical tree.

may request to break the rule. A very trivial example is represented by applica-
tions that intensively resort to vector operations, highly amenable to an efficient
implementation by using shared-memory facilities. In such a case, even when a
distributed memory platform is available, a shared-memory programming paradigm
can be very attractive. Indeed, several hardware and software vendors propose dedi-
cated libraries for simulating—most of the times via virtual memory mapping—a
shared-memory behavior in a distributed system (an outstanding example was rep-
resented by the SHMEM library for Cray T3D and T3E platforms).

This is evidence of the difficulty in proposing a rigid classification of architec-
tural and programming solutions: indeed, the core of the choice is the application
and the consequent identification of suitable hardware and software strategies.

Being aware of the evanescent separability between programming strategies,
hardware solutions, and applications, we propose some details for the two men-
tioned programming paradigms in Sections 1.4.1 (message passing) and 1.4.2
(shared memory).

Before going on with the description of these programming paradigms, it is
worthwhile to recall that a basic form of parallelism can be obtained in multiproces-
sing environments when using threads [7]. A thread can be defined as a stream of
instructions that can be scheduled to run as if it were a process with an autonomous
identity with respect to the program of which it is part. This means that a thread can
run asynchronously with respect to the process that created it, the parent process
(see Appendix A for an introduction to UNIX processes). Indeed, threads are strictly
bound to their parent, as they share critical resources, such as files and memory data,
with it (and with any other threads created by it).

To the software developer, the concept of a “procedure” that runs independ-
ently from its main program may best describe a thread. A multithreaded applica-
tion is an application in which a number of tasks are carried out in parallel by
simultaneously running threads. Multithreaded applications provide good perform-
ance in many situations, such as:

• CPU computation overlapping with I/O. The program may invoke two
threads: one thread waiting for the I/O completion, the other thread making
computations.

• Asynchronous event handling. Threads may be used to interleave tasks serving
events of unpredictable frequency and duration. For example, a Web server
can use threads to both transfer data from previous requests and manage the
arrival of new requests.

Threads are a simple and effective way of exploiting program natural parallel-
ism and concurrency on multiprocessor hardware.

1.4.1 Message Passing

Existing message-passing libraries are based on two separate standards, parallel
virtual machine (PVM) and message-passing interface (MPI). PVM [8], written at
Oak Ridge National Lab, is a portable heterogeneous message-passing system. It
provides tools for interprocess communication, process spawning, and execution on

8 General Concepts on Grids

multiple architectures. The PVM standard is well defined, and PVM has been a
standard tool for parallel computing for several years.

MPI [9] has come into the mainstream more recently than PVM, but it is now a
mature standard. MPI has been defined by a committee of vendors, government
labs, and universities. The implementation of the standard is usually left up to the
designers of the systems on which MPI runs. Anyway, a public domain implementa-
tion, MPICH [10], is available.

MPI is designed primarily to support the single program multiple data (SPMD)
model, even though it works fine for other models as well. In the SPMD program-
ming paradigm, all tasks execute the same program on different sets of data. All of
the nodes receive identical copies of the program to be executed. However, the
program can contain conditional statements that execute different portions of the
program, depending on the node where the program is executing, thereby enabling
the programmer to run different instructions within different tasks.

When an MPI program starts, it spawns a number of processes as specified by
the user. Each process runs and communicates with other instances of the program,
possibly running on the same processor or different processors. Basic communica-
tion consists of sending and receiving data from one process to another.

In the simplest MPI programs, a master process sends off work to worker
processes. Those processes receive the data, perform tasks on it, and send the results
back to the master process, which combines the results. This is called the master-
worker or host-node model (see Figure 1.8).

More information about MPI and MPICH is in Chapter 2, where a schematic
classification of MPI routines is reported together with an introduction to MPICH
and MPICH-G2, the MPICH implementation for grid computing, and in Chapter 3,
where practical details about how migrating MPI applications to MPICH-G2 are
reported. In Chapter 4, practical hints are given with reference to a real application
(FDTD implemented with MPI and MPICH-G2).

1.4.2 Shared-Memory Programming

OpenMP [11] is an open standard for providing parallelization mechanisms on
shared-memory multiprocessors. Specifications exist for C/C++ and FORTRAN.

1.4 Parallel and Distributed Programming 9

Process 0

Process 1

Process 2

Process 3

Data
distribution Work

Data
collection

Figure 1.8 MPI execution model. MPI fits well with the SPMD programming paradigm. According
to it, programmers write a single program that gives place to multiple processes. Processes exchange
data by using MPI library calls. Normally, a root process (process 0 in the example) is responsible for
distributing problem data among the remaining processes and for collecting results at the end of the
executions.

The standard provides a specification of compiler directives, library routines, and
environment variables that control the parallelization and runtime characteristics of
a program. Like MPI, OpenMP is portable to other platforms. The compiler direc-
tives defined by OpenMP tell a compiler which regions of code should be paral-
lelized and define specific options for parallelization. In addition, some precompiler
tools exist which can automatically convert serial programs into parallel programs
by inserting compiler directives in appropriate places, making the parallelization of
a program even easier. One example is the Visual KAP for OpenMP [12].

1.4.3 Concluding Remarks: Programming Paradigms and Parallel
Architectures

Both shared-memory and message-passing paradigms have advantages and
disadvantages in terms of ease of programming. Porting a serial program to a
shared-memory system can often be a simple matter of adding loop-level parallel-
ism, but one must be aware of synchronization problems related to simultaneous
access to the same data.

Writing a message-passing program, on the other hand, involves the additional
problem of how to divide the domain of a task among processes with separate
memory spaces. Coordinating processes with communication routines can be quite
a challenge.

Despite other interesting features, shared-memory systems in general have poor
scalability. Adding processors to a shared-memory multiprocessor increases the bus
traffic on the system, slowing down memory access time and delaying program exe-
cution. Distributed-memory multiprocessors, however, have the advantage that
each processor has a separate bus with access to its own memory. Because of this,
they are much more scalable. In addition, it is possible to build large, inexpensive
distributed systems by using commodity systems connected via a network. How-
ever, latency of the network connecting the individual processors is an issue, so effi-
cient communication schemes must be devised.

1.5 Performance Assessment

It is of the utmost importance in parallel computing to assess the speed gain obtained
from the operation of N processors in parallel. For this purpose, a parameter called
speed-up ratio is introduced. Suppose you run a program using a single processor,
and it takes time T(1). Suppose the program is written to take advantage of the avail-
able number of processors. You then run the program using N processors and it
takes time T(N). Then, we call computational speed up [13] the ratio:

() ()S T T N= 1 (1.1)

and efficiency the ratio:

E S N= (1.2)

The longer processors are idle or carry out calculation due to the parallelization,
the smaller E becomes.

10 General Concepts on Grids

Now, suppose we isolate in the program the strictly serial part (i.e., the part that
cannot be parallelized) from the parallel part. Call B the percentage of the strictly
serial portion of the program (B<=1). Then, the strictly serial part of the program
is performed in B*T(1) time. The remaining part, (1 – B), is demanded to a set of N
processors. If we assume that each processor requires 1/N time of one processor
working alone, then the strictly parallel part is performed in ((1−B)*T(1)) / N time.
With some manipulations, we get the formula:

() ()
S

N
B* N B

=
+ −1

This is Amdahl’s Law [14], which establishes limits to the speed up obtainable
when increasing the number of processors. To understand the Amdahl’s law, we
refer to a speed-up curve. A speed-up curve is a graph with the number of processors
on the x axis, and the speed up S on the y axis. The best speed is when B = 0 (i.e., the
whole program is parallelizable). This would yield a 45-deg curve (i.e., S = N).
When B is constant, Amdahl's Law yields a speed-up curve that is logarithmic and
remains below the line S = N. This law shows that it is indeed the algorithm and not
the number of processors that limits the speed up. Also note that as the curve begins
to flatten out, efficiency is drastically reduced.

Amdhal’s law is useful to assess the amenability of an algorithm to be paral-
lelized, but it is not a practical tool. In real applications, performance depends on a
number of key factors, such as network bandwidth in the case of distributed mem-
ory architectures and processor load in multiuser environments. This becomes truer
and truer when migrating from dedicated parallel machines to wide area environ-
ments, where distributed architectures assemble heterogeneous systems shared
among a number of users. To exploit to the utmost the available computing power,
processes must be dispatched to the processors by taking into account the current
status of resources and their match with job requirements. A number of tools tar-
geted to this job scheduling work exist. Among them we recall Platform’s Load
Sharing Facility (LSF) [15], and Altair’s Portable Batch System [16] and Condor
[17]. Job scheduling tools accept, as input, files listing the jobs to be submitted and
their requirements. Once job requirements are known, they inspect the status of the
connected machines and schedule the tasks by following some load-balancing crite-
ria. In this way users can submit their jobs and later contact the tool to query their
status. Some tools provide checkpointing and restart facilities so that computations
can be migrated from overloaded or failed machines to lightly loaded ones. The set
of machines that are configured to be managed under the same scheduling system is
usually called pool and is normally administered by a single organization, as the
configuration of the pool is at its best when centrally managed.

1.6 Web Computing

The Web was born as a uniform and easy way to distribute information. Documents
were written in the Web language, the hypertext markup language (HTML), to per-
mit hyperlinks and multimedial representation of data. Servers hosting the same
documents were equipped to retrieve the suited HTML file on demand. This simple

1.6 Web Computing 11

architecture follows the traditional client-server model (also referred to as two-tier
model) [18] (see Figure 1.9), in which the client is equipped with a graphic interface
(browser) from which users can issue their requests, and the server is equipped with
the software needed to respond to requests coming from clients and hosts the HTML
files to be sent when requested.

This is a static model, where users can only access and read documents stored in
the Web servers.

In the last decade, the Web evolved from the document publishing arena to
become a data sharing and computing environment. This has happened thanks to
the development of software technologies that, fitting well with Web models, give
the Web the ability to process data, both on the client side and on the server side. The
first software technology was the common gateway interface (CGI), which allows a
Web server to provide HTML pages generated on the fly on the basis of data stored
in an electronic archive. The Java revolution gave a further impulse to this transfor-
mation. The Java language was created to develop applications running on the
Web and exploitable by the classical Web client tool, the browser. The “write
once run everywhere” Java property has the ability to automatically migrate Java
applications, located in Web servers, to the Java-enabled client. On the server side,
the Java servlets allow enriching Web servers with potentially unlimited computing
capability.

The new software technologies make the Web an interactive tool, with enriched
capabilities:

• Users can query, modify, and mine data disseminated on the Internet;
• Applications can migrate from platform to platform;
• Users can insert their data and manipulate them via the Web.

12 General Concepts on Grids

Client

Browser

Web server

Client

Browser

Client

Browser

<HTML>

…

Tier 1 Tier 2

HTTP query

Figure 1.9 Client-server Web architecture. This is the document publishing model. This model
contains two tiers—a client tier, where end users make queries by using a browser, and a server tier.
Queries follow the hypertext transfer protocol (HTTP). The server answers the HTTP queries by
sending back pages written in the HTML language.

In the new scenario, where servers play an active role, application software is
separated from data, thus improving the manageability and flexibility of the Web
architecture. This gives place to the multitier architecture (see Figure 1.10), where a
number of machines (three or more) cooperate to build the Web page.

In its simplest realization, this architecture involves three tiers:

• The front-end tier, the client from which the end user expresses requests by
using a browser;

• The middle tier, the Web server equipped with software capable of building
HTML pages on the fly, starting from data originated by users as well as data
fetched from the backend tier;

• The backend tier, a backend database where data are stored.

Now, the Web resembles more and more a giant computer, where users can run
remote applications via a uniform interface. Users contact Web servers to perform
calculations, mine data, and launch applications. Why not further fragment Web
applications in the naturally distributed Internet framework? Once the original,
static client-server architecture has been abandoned, why not making the HTML
pages originate from the cooperation between distributed application components?

This appears as an easy step: it is sufficient to merge Web technologies and pro-
tocols with distributed and parallel technologies. As a result, distributed computing
technologies [3, 4], being originally targeted to local area distributed environments,
are now opening to Web standards and protocols, thus contributing to this evolu-
tion. Also Java produces a component model oriented to the Web environment,
called Javabeans [19], which requires that distributed applications are written in the
Java language. Particularly interesting are the Java mobile agents (JMAs) as well. A
JMA [20] is a Java program with the ability to transfer itself from host to host
within a network and to interact with other agents in order to perform its task.

1.6 Web Computing 13

Web server

Client

Browser

<HTML>

…

Tier 1

HTTP query

Tier 2 Tier 3

DataClient

Browser

Client

Browser

Figure 1.10 Three-tier Web model. The front-end tier is where end users make queries through a
browser. Web servers (the second tier, commonly called the application tier) are equipped with
software capable of building HTML pages on the fly, starting from data originated by users as well as
data fetched from databases, belonging to the third tier.

When an agent travels, it transports its state and code, so that it can have an intelli-
gent behavior and decide autonomously its itinerary and the way it interacts with
other agents and objects.

Together with the evolution of distributed architectures towards the Web, a new
concept begins to spread among Web users. Peer-to-peer computing [21] allows dis-
persed and networked computers to talk and cooperate without hierarchies in their
behavior. In these architectures, each node may behave interchangeably as client or
server, depending on the situations. The traditional distinction between server and
client machines is vanishing. An example is the SETI@home project [22]: using free
software downloaded over Internet, home computers lose their passive role as client
and actively contribute with peers disseminated throughout the Internet to the
research of extraterrestrial signals.

Such a componentized Web can still be improved indeed, migrating distributed
concepts from LANs to Internet environments opens a number of new problems.
Wide area distributed applications must deal with transient, slow, and unreliable
Internet connections. Furthermore, Internet applications must glue components
coming from different organizations, each with its own policies and technologies
regarding security, scheduling, and so on. Distributed computing technologies do
not seem to cope completely with these aspects, being often proprietary or bound to
a specific platform or language. On the other side, peer-to-peer computing has given
rise to several application-oriented systems without defining a common and general
infrastructure.

As a matter of fact, a new technology is needed to take full advantage of the new
trends in Web computing. These demands can be fulfilled by grid computing tech-
nology, which is leading the Web to the even wider transformation towards a
resource-sharing architecture (see Figure 1.11). A resource-sharing architecture
enables diverse resources, including not only software components, but hardware

14 General Concepts on Grids

Middleware

Client

Browser

<HTML>

…

Tier 1

Query

Tier 2 Tier 3

Data

Instruments
and sensors

HPC
computers

Client

Browser

Client

browser

Figure 1.11 Resource-sharing Web. When extending Web functionalities to the sharing of
resources (both software and hardware), the middle tier becomes a more general middleware bag of
services, including brokering of distributed resources, security services, and application integration.
The back-end tier may include high-performance computers (MPP or clusters), tools, data, and
scientific instruments. The end users still access backend services by using the browser.

resources and logical entities (such as single domain clusters), to be merged to
achieve specific goals.

1.7 Computational Grids

1.7.1 Introduction

As discussed in the previous sections, parallel computing, originally conceived as
the exploitation of dedicated and expensive multiprocessor or vector architec-
tures, has progressively switched towards the adoption of distributed paradigms,
opening appealing frontiers to low-cost high-performance computing. Meanwhile,
Web technologies have emerged, thus enforcing the trend towards distributed
applications.

The Web on one side and the distributed computing on the other have
remained, until some years ago, substantially disjointed, except for very trivial
issues regarding networking. Recently, the technology of computational grids is
performing a revolutionary action, joining together these two worlds so that they
not only collapse into one concept, but mutually reinforce themselves thanks to a
wide standardization effort. This effort induces, as a relevant side effect, the open-
ing of complex and powerful tools to very large numbers of end users, with a conse-
quent increase in the kinds and numbers of possible applications, multidisciplinary
actions, and cooperative initiatives. One quite immediate witness of this digital uni-
fication and equalization is the nearly unlimited availability of computational
power to the generic end user inside a large grid, which makes effective HPC afford-
able for anybody.

Of course, many problems are still barriers to completely achieving the goal
(one of the most critical being the availability of high-speed networks). Nonetheless,
it is definitely worth exploring such new working methodologies and tools, which
will change the management of research projects and facilities as well.

We propose in the remaining part of this chapter a simple description of what a
computational grid is, discuss the global architecture and its core, and finally review
the nature of several possible applications.

1.7.2 What Is a Grid?

A computational grid [23] consists of distributed software and hardware facilities,
such as computational resources, storage systems, catalogs, network resources, and
sensors. A resource may also be a logical entity, such as a distributed file system or a
computing cluster. GC software pools disperse resources into a unique virtual system
and allow anyone on the network to access it (or its facilities). As shown in
Figure 1.12, a grid can span domains of different dimensions, starting from local
grids made up of nodes connected by LANs, up to global grids, made up of heteroge-
neous nodes owned by different organizations and connected by the Internet.

As seen in the previous section, GC arises from the emerging need to transform
the Web into a giant repository, where users can pick up resources as needed. This is
possible because a grid is conceived as a set of universally recognized standards, pro-
tocols, and Web-compliant technologies open to the majority of existing distributed
visions and methodologies.

1.7 Computational Grids 15

GC technology:

• Talks with Web standards and protocols;
• Integrates established software technologies for Web and distributed

computing.

Rather than summing these two features, grids envelope them in a larger and
pervasive environment. To do this, grids cope with the challenges related to the
Internet environment:

1. Fault tolerance. Grids are complex environments, including a huge number
of heterogeneous entities, each of which may fail at any moment. Robustness
with respect to failure of network connections, machines, software
components, and so on is then a critical issue.

2. Security. The Internet is intrinsically insecure and decentralized. When
defining a grid, users must be recognizable and access to resources must be
traced and controlled.

3. Dynamism. The Internet environment is continuously changing, resources
may be added or removed at any moment, and their status (load, traffic, and
so on) is variable. Grids must tailor their behavior in agreement with
changing conditions of the environment.

4. Scalability. Once operative, a grid is presumed to increase its number of
resources and users. Grids performance must not be affected by this.

5. Heterogeneity. Grids resources are heterogeneous: network, platforms,
operating systems, electronic devices, and software tools provided by
different vendors and following different architectures and paradigms are
merged in a grid. Grids must define uniform and standard ways of
interaction with them so that heterogeneity is hidden.

16 General Concepts on Grids

LAN

Local grid

WAN

LAN

LANLAN

Internet

Global grid

Department grid
Condor
pool

Figure 1.12 Examples of grids. A LAN can host a local grid, and its local grid can itself be part of a
wider grid—for example, at wide area network (WAN) level. A distributed system (Condor pool in this
figure) can in turn be another portion of the grid.

6. Autonomy. Grid resources belong to diverse organizations. Grids must
federate these resources by leaving owners free to establish and implement
their own policy regarding security, scheduling, and so on.

Meanwhile, other requirements are fulfilled to simplify the interaction with the
end user:

I. Transparency. Users must access the dispersed resources while perceiving
them as a whole. Location and access to a resource must be straightforward,
both if the resource is local and if it is remote.

II. Uniformity. The interaction with a grid must happen via a uniform
interface, possibly the Web browser.

III. Homogeneity. Grids must mask to end users their underlying heterogeneity,
allowing the access to each resource without taking care of its peculiar
characteristics.

As discussed so far, grids must manage with a multiplicity of resources, with the
main goal of guaranteeing a simple access to them. This requires dedicated software
interfaces to drive resources, as well as suitable software tools to allow a user-
friendly interaction with such drivers. More schematically, grids can be seen as com-
posed of three kinds of entities:

• Resources;
• Grid software hiding the complexity of the Internet environment and satisfy-

ing requirements 1–6;
• Tools for the interaction of end users with the grid and fulfilling requirements

I–III.

These three groups result in a three-level architecture: fabric level, middleware
level, and application level. The intermediate layer, also called grid middleware
(GM), contains the core grid software. The GM mediates between the other layers,
talking with them via well-defined protocols and application programming inter-
faces (APIs), so that integration of heterogeneous technologies and encapsulation of
legacy systems are possible. End users work with the grid by using grid-enabled
applications and software tools (at the application level). Grid-enabled applications
and software tools operate with grid resources (belonging to the fabric level) via a
number of services provided by the GM layer.

In the following section, a schematic view of the grid architecture is given, while
in Section 1.7.4 the most fundamental grid services offered by GM are summarized.

1.7.3 Grid Architecture

As introduced earlier, the grid architecture [24] contains three layers (see
Figure 1.13):

• Fabric level, which includes everything the grid must glue. They are all of the
resources belonging to the grid, dispersed in the world and interconnected by

1.7 Computational Grids 17

the Internet. Resources can be physical, such as hardware (CPU, memory,
electronic devices, network) and software (application components, data-
bases) entities, or logical (clusters, distributed pools). All of the packages
providing basic services used in local domains also belong to the fabric layer.
For example, local resource managers, such as operating systems and distrib-
uted management systems [the already mentioned LSF, Condor, and Portable
Batch System (PBS)], as well as security tools (such as Kerberos), are included
in this layer. The fabric level composition is dynamic, as the set of resources
can change over time. Resources are shared among grid users, whose number
changes over time as well.

• Middleware level, which includes the software responsible for mediating
between the resources and their higher level managers in order to hide to grid
end users and application developers the complexity of the fabric level. The
GM operates on grid resources and the local managers (i.e., single domain
schedulers, allocators, and load balancers) to offer core grid services to
distributed applications. This level contains basic elements needed to develop
grid-enabled applications as well. This means that it also contains libraries and
languages oriented to grid development.

18 General Concepts on Grids

Fabric

Middleware

Application

Security

Information

Scheduling API

Languages

Accounting

Parametric
studies

Simulations
E-business

Cooperative
development

Problem-solving environments

Data storage system

Condor pool

Linux Red Hat

Figure 1.13 Grid environments have a layered architecture. On the top of the architecture there is
the application level, where users develop and use grid-enabled applications. Applications are
implemented with development tools (e.g., APIs, libraries, and languages) provided by the
middleware level and operate in a distributed environment by using such services as information
management (IM), allocation, and scheduling provided by that level. The middleware level hides the
complexity of grid environments, made up of a number of heterogeneous resources, forming the
fabric level. The fabric level consists of network resources (devices and communication protocols),
computing software resources (local resource management tools, operating systems, and data
storage systems), computing hardware resources (CPUs and storage devices), and scientific
instruments.

• Application level, which is the level with which end users interact. It includes
both high-level services that allow software developers to implement
grid-aware applications and Web tools to permit end users to work with the
grid by submitting jobs, collecting and analyzing results, and cooperating with
remote colleagues. Any grid-oriented application belongs to this level as well.

1.7.4 Grid Middleware

Grid resources are supposed to be geographically distributed and owned by differ-
ent organizations, each with proprietary policies regarding security, resource alloca-
tion, platform maintenance, and so on. Such an environment strongly depends on
the construction of a robust infrastructure of fundamental services able to smooth
out mismatches among different machines, security and scheduling policies, operat-
ing systems, platforms, file systems, and so on. The middleware layer is in charge of
playing this role. Example of services provided by GM are:

• Allocation of resources. Access to resources, CPU time, memory, network
bandwidth, storage systems, and so on, has to be carefully scheduled in order
to extract the maximum performance from them. For example, users must be
given the ability to schedule their jobs, to track their behavior, and to analyze
the status of allocated resources. Application components must be able to
change their working machines to improve load balancing or because of a fail-
ure. A number of resource managers [15–17] exist that work well in single-
domain distributed environments. When including such systems, grids
provide a uniform and transparent interface to them. This means that when a
user connects to a grid, he allocates grid resources by simply specifying the
application requirements. The grid itself is responsible for dispatching
requests to resources, eventually contacting the local resource managers.

• Computational economy. Grids federate resources coming from heterogene-
ous organizations. Some organizations could decide to rent their resources
upon a payment. Accountability services, accompanied by an ad-hoc
economic model, give providers of grid resources such an opportunity. In this
way, consumers pay for their use of servers, storage, CPU, and so on. These
resources are metered through software measurement tools and can be billed
to consumers. In Chapter 2, billing services are explained when introducing
grid architecture for computational economy (GRACE), an architecture
designed for integrating resource managers with economic models, so that
resources can be chosen on the basis of their price as well.

• Information management. This allows the continuous monitoring of
resources and their status. The information management service implements
two mechanisms, registration and discovery. Registration is in charge of
allowing entities to enroll themselves as part of the resource pool and commu-
nicate their characteristics to the whole grid. Discovery locates and accesses
the resources and their attributes once they have been registered. Information
management service relies on the creation of a universal naming service inte-
grated with existing protocols and with established conventions for accessing
resources, such as file transfer protocol (ftp) and HTTP.

1.7 Computational Grids 19

• Security. Resource sharing must be highly controlled, with resource providers
and consumers clearly defining what is shared, who is allowed to share, and
the conditions under which sharing occurs. This implies that the grid must
allow resource owners to define authorization policies to moderate the access
to their resources and that some services must exist monitoring who accesses
resources and when. Furthermore, authentication and, if required, confidenti-
ality must be granted (see Appendix B for an introduction to these concepts). A
number of tools exist that guarantee security services at the single domain
level, such as Kerberos [25]. Grids must also in this case interact with lower
level services to provide a transparent access to them via a uniform, high-
level service.

• Data management. Data management is focused on access and transfer of
data. When large amounts of data are managed, speed, security, and reliability
become key factors. A number of distributed storage systems such as High-
Performance Storage System (HPSS) [26] from IBM, Distributed Parallel Stor-
age System (DPSS) [27] from LBNL, and Storage Resource Broker (SRB) [28]
from San Diego Supercomputer Center actually provide these services. These
systems are proprietary or work well in single-domain contexts. Grids provide
data-management services in a standardized way, so that previously installed
distributed storage systems can talk to one another and be absorbed into a uni-
fied system for data-intensive applications. Grids provide services to create,
manage, and access data sets replicas as well. Replicas are multiple copies of
data stored in different, dispersed sites. When access to these data is needed,
the nearest copy is chosen, so that performance is optimized.

In Chapter 2 and in Chapter 3, these services are analyzed into details, with ref-
erence to a well-known tool for grids implementation, namely the Globus Toolkit.

1.7.5 Applications

Grid technology opens a new spectrum of applications. Several areas may benefit
from the new environment, such as collaborative engineering, data exploration,
HTC, the so-called meta applications, and of course HPC.

Collaborative engineering means providing engineers and researchers with tools
for cooperating online. These tools allow them to share remote resources and
design, implement, and launch applications in cooperation. In such a context, a grid
can be seen as a global production environment, where distributed systems can be
prototyped and tested. The flexibility of grids makes this system dynamic and con-
figurable. Via the grid, researchers are able to rapidly modify their products in order
to adapt them to the changes of underlying environments, infrastructure, and
resources.

Data exploration with grids allows managing and mining distributed data. A
number of research fields, such as climate analysis and biological studies, benefit
from grid technology as they need storing and accessing data up to the terabyte or
petabyte range. Grids distribute data on dispersed sites and allow access to them uni-
formly. Performance and reliability are improved by replicating data sets on multi-
ple sites. Grids gather data originated by a multiplicity of sources as well. Sensors,

20 General Concepts on Grids

scientific instruments, and devices merge the data they produce into a unique virtual
pool, where information can be extracted and analyzed through uniform interfaces.

HTC applications require large amounts of computational power over a long
period of time. Examples of HTC applications are large-scale simulations and
parameter studies. HTC environments try to optimize the number of jobs they can
complete over a long period of time. A grid allows exploiting the idle CPU cycles of
connected machines and using them for HTC applications.

Meta applications are applications made up of components owned and
developed by different organizations and resident on remote nodes. A meta applica-
tion is usually a multidisciplinary application that combines contributions coming
from differently skilled scientific groups. A meta application is dynamic (i.e., it may
require a different resource mix depending on the requirements of the current
problem to solve). Besides, research teams preserve their properties on their own
application components by granting the usage through a recognized brokering
entity.

HPC applications require a huge amount of power, usually over a short period
of time. This is the primary field for which grids were conceived, as a direct evolu-
tion of parallel and distributed concepts. Scientific simulations for weather forecast
or astrophysics research are an example of applications requiring huge computa-
tional power. Before grid explosion, the scope of these simulations was limited by
the available computational power, even when using supercomputers. Nowadays,
grids allow scientists belonging to diverse organizations to join their computational
resources and acquire amounts of computational power otherwise unaffordable.

All of these applications are exemplified in this book; we suggest reading
Chapter 4 for an HPC application, Chapter 5 for an application focused on collabo-
rative engineering and meta applications, and Chapter 6 for an application oriented
to data exploration and HTC.

1.8 Conclusions

Grid technologies are the convergence of parallel and distributed computing with
several other areas (e.g., Web and security). The GM is the place where the multidis-
ciplinary nature and the complexity of grids are managed and masked to the appli-
cation developer. In other words, GM is the place where the scientists interested in
migrating their applications must more largely invest in order to guarantee
themselves an adequate return. Consequently, GM is the core object, according to
the goals of this book, and it will be dealt with in the next chapters when GM tools
and technologies are examined into details.

References

[1] Hennessy, J., and D. Patterson, Computer Organization & Design, San Francisco, CA:
Morgan Kaufmann Publishers, 1998.

[2] Flynn, M. J., “Very High Speed Computing Systems,” Proceedings. IEEE, Vol. 14, 1966,
pp. 1901–1909.

[3] Thai, T. L., and Andy Oram, Learning Dcom, O’Reilly & Associates, April 1999.

1.8 Conclusions 21

[4] CORBA, http://www.omg.org.
[5] Duncan, R., “A Survey of Parallel Computer Architectures,” IEEE Computer, Vol. 23,

No. 2, February 1990, pp. 5–16.
[6] Allen, G., E. Seidel, and J. Shalf, “Scientific Computing on the Grid,” Byte, Spring 2002,

pp. 24–32.
[7] Butenhof, D. R., Programming with POSIX Threads, Reading, MA: Addison-Wesley,

1997, pp. 1–12.
[8] Dongarra, J., et al., “Integrated PVM Framework Supports Heterogeneous Network Com-

puting,” Computers in Physics, April 1993.
[9] The Message Passing Interface Standard, http://www-unix.mcs.anl.gov/mpi.

[10] MPICH, http://www.mcs.anl.gov/mpi/mpich/download.html.
[11] OpenMP C and C++ Application Program Interface, OpenMP Architecture Review Board,

October, 1998, http://www.openmp.org/specs.
[12] Visual KAP for OpenMP, http://www.kai.com/vkomp/_index.html.
[13] Lewis, Ted G., and Hesham El-Rewini, Introduction to Parallel Computing, Englewood

Cliffs, NJ: Prentice-Hall, Inc., 1992, pp. 31–32, 38–39.
[14] Schendel, U. “Introduction to Numerical Methods for Parallel Computers,” Ellis Horwood

Lim. Publishers, Chichester, UK: 1984.
[15] LSF, http://www.platform.com.
[16] PBS, http://www.altair.de.
[17] Condor, http://www.cs.wisc.edu/condor.
[18] Fox, G. C., “Portals and Frameworks for Web Based Education and Computational Sci-

ence,” http://www.new-npac.org/users/fox/documents/pajavaapril00.
[19] Monson-Haefel, R., Enterprise JavaBeans, O’Reilly & Associates, October 2001.
[20] Siniaris, C. G., et al., “Implementing Distributed FDTD Codes with Java Mobile Agents,”

IEEE Antennas and Propagation Magazine, Vol. 44, No. 6, December 2002, pp. 115–119.
[21] Peer to peer working group, http://www.peer-to-peerwg.org.
[22] SETI@home, http://setiathome.ssl.berkeley.net.
[23] Foster, I., C. Kesselman, and S. Tuecke, “The Anatomy of the Grid: Enabling Scalable Vir-

tual Organizations,” Int. Journal of High Performance Computing Applications, Vol. 15,
No. 3, 2001, pp. 200–222.

[24] Baker, M., R. Buyya and D. Laforenza, “The Grid: International Efforts in Global Comput-
ing,” International Conference on Advances in Infrastructure for Electronic Business, Sci-
ence, and Education on the Internet, Italy, 2000.

[25] Steiner, J., et al., “An Authentication System for Open Network Systems,” Proc. Usenix
Conference, 1988, 191–202.

[26] HPSS, http://www.sdsc.edu/hpss.
[27] DPSS, http://www-didc-lbl.gov/DPSS.
[28] SRB, www.sdsc.edu/DICE.

22 General Concepts on Grids

C H A P T E R 2

Enabling Technologies and Dedicated
Tools

2.1 Introduction

As discussed in Chapter 1, the implementation of a grid must cope with a number of
challenges related to the complexity of the involved environments. Grids, in fact,
include a multiplicity of resources that are heterogeneous in nature and might span
numerous administrative domains. Each domain may contain its own policies and
tools regarding security, scheduling, and resource allocation. Grids should include
some software able to glue all of the different installed tools, services, and protocols
in order to provide all of the high-level services needed for transparent access to
resources as if they were belonging to a single unified “metacomputer.” This can be
achieved by a layered architecture [1], as the one shown in Figure 1.13, where an
intermediate-level software (GM) mediates between the resources and their manag-
ers (both belonging to the fabric level) and grid applications (the application level).
The GM operates on grid resources and their local managers (i.e., single domain
schedulers, allocators, and load balancers) to offer core grid services to distributed
applications. Examples of grid services are remote process management, allocation
of resources, storage access, information management, and security, which have
already been discussed in Chapter 1. Each grid service must be achieved by harmo-
nizing and hiding low-level services and must be exploitable by applications in a
straightforward way.

A number of technologies (called enabling technologies) help to implement this
architecture. These technologies include protocols, programming paradigms, stan-
dards, and services, which were introduced before grid evolution and in contexts
unrelated to grids. They paved the way for the development of grid concepts and are
nowadays the building blocks of GC.

The most outstanding enabling technologies are security, which spread out after
the boom of Internet, and object orientation, which was devised to improve soft-
ware reusability and portability. Security is discussed both in Appendix B, where the
basic principles are introduced, and in this chapter, where security mechanisms as
implemented in the most widespread GM tools are overviewed. Object orientation
and its relationship with grid technology are described in the following section.

The remaining part of the chapter is devoted to tools supporting grids. In fact, if
the enabling technologies paved the way to the grid booming, the real grid evolution
took place when the first grid tools were developed. The tools providing basic serv-
ices (the already-cited remote process management, allocation of resources, storage
access, information management, and security services) belong to the GM and form

23

a software level above which application-oriented tools are built. Therefore, in this
chapter, a brief overview of both GM and application-oriented tools is given, with a
focus on the GM toolkit called Globus, which is currently the de facto standard
adopted in GC.

2.2 Enabling Technologies: Object Orientation

OO concepts originated in the programming-language domain [2], to reduce the
cost and complexity of software design, implementation, and maintenance. Since
then, several computing disciplines, such as software engineering, databases, artifi-
cial intelligence and distributed systems, have adopted the OO principles.

At the moment, OO technologies have two main fields of application: the
former deals with software engineering; the latter deals with enabling technologies
and consequently distributed computing. In the framework of this book, attention is
prevalently paid to the latter issue, and this section is mostly devoted to a very basic
introduction to the concept of OO enabling technologies. Nonetheless, it is worth
spending a few lines to give a schematic description of the main concepts of OO soft-
ware engineering (see also Section 2.2.5 for a more detailed analysis of such an issue
in the EM arena).

2.2.1 Object Orientation for Software Engineering

The impact of object orientation on the rethinking of software design and develop-
ment procedures is evident, especially when recalling that the traditional cycle of
production of numerical EM software can be considered as the serial processing of
three main steps:

• Problem analysis;
• Code design;
• Implementation.

These steps, in a traditional approach, are each tackled with different tools and
models.

In the first step (problem analysis), a conceptual model of the problem is
formulated and an unambiguous description of it is given with appropriate symbolic
schemas (such as flow diagrams). For instance, when dealing with a guided-wave
problem in anysotropical media, Maxwell’s equations with suitable boundary
conditions and constitutive relationships are adopted.

In the second step (code design), the design strategy is defined by selecting a
certain numerical technique (FEM or FDTD).

Finally, the implementation step is performed by identifying a computer
language and a programming paradigm.

The long pathway from the first to the final step unavoidably implies a progres-
sive and impressive loss of abstraction and generality. In the code-design step, the
general and abstract model of the first step is translated into data structures and
functions, then implemented in a specific software language in the third step, with a

24 Enabling Technologies and Dedicated Tools

relevant loss of information demonstrated by the difficulty of returning to the analy-
sis step once the software has been written and starts to evolve. This results in a dif-
ficult scalability and maintenance of software.

On the contrary, in object orientation, the three steps have quite less apparent
boundaries. The same object model (the one formulated in the first step) is used
throughout the whole process, up to the implementation step. The identification of
suitable objects to describe the problem (the first step) is crucial in order to deal with
the widest range of applications up to the implementation level, thus ensuring high
adaptability, reusability, maintainability, and flexibility of the code. These key-
words are the synthetic explanation of object orientation’s appeal for software engi-
neers. These themes are thoroughly proposed in the literature. Probably, one of the
most complete, critical, and educationally oriented discussions can be found in [3],
where the interested reader is referred to for further details.

2.2.2 Object Orientation for Enabling Technologies

OO concepts relevant for enabling technologies can be found in the following
features [3]:

• Encapsulation. Object orientation represents each entity as objects that group
data and operations. Each object hides its data and exposes a well-defined
interface (i.e., the operations) allowing operation on hidden data.

• Abstraction. Entities (objects) having common properties can be grouped to
form a class.

• Polymorphism. Classes can overlap and intersect (i.e., they can include a com-
mon set of operations), eventually assuming different meanings depending on
the class to which they are applied. An example of polymorphism is inheri-
tance, which allows definition of subclasses of a given class, which inherit
class operations.

Objects form a natural model for distributed systems because distributed com-
ponents (objects) can communicate with one another by using messages addressed
to their interfaces. The interface to each object is defined very strictly. By contrast,
the implementation of an object—its running code and its data—is hidden from the
rest of the system (that is, encapsulated) behind a boundary the client cannot cross.
Clients access objects only through their advertised interface, invoking only those
operations that the object exposes through its interface and referring only to those
parameters (input and output) that are included in the invocation.

The feature of encapsulation fulfills the heterogeneity and autonomy
requirements of large-scale distributed systems. As for heterogeneity requirements,
encapsulation means that messages sent to distributed components depend only on
the component’s interfaces, not on their internals. As concerns autonomy, compo-
nents can change independently and transparently, provided they maintain their
interfaces.

The most recent OO trends are evolving so that the complete set of
resources available on a distributed network—including computers, network
facilities, data, and programs—can be treated as a commonly accessible collection

2.2 Enabling Technologies: Object Orientation 25

of objects. Distributed object computing [4] is a computing paradigm that allows
objects (components) to be distributed across a heterogeneous network and allows
each of the components to interoperate as a unified whole.

Distributed object models and tools extend the OO programming paradigm.
The objects may be distributed on different computers throughout a network, living
outside of the application (container) that uses them, and yet appear as though they
were local (i.e., resident within the application). Software systems development
benefits from distributed object components, as they can be based on prebuilt com-
ponents, which can be reused and assembled thanks to the features of object
orientation.

The movement toward this sort of full object orientation is witnessed by the con-
tinuous progress in the specifications for distributed object computing frameworks,
the most relevant being overviewed in Table 2.1.

In the following sections, we focus on a couple of outstanding OO frameworks
for distributed systems, the CORBA and some of the Java-related systems. The
former has been chosen as representative of fully OO distributed frameworks; the
latter, because of its suitability for Web-oriented environments. Both often consti-
tute a component of grid environments, interacting with other technologies in wide
area networks, as shown in Section 2.12.

2.2.3 CORBA

CORBA was specified by the OMG [7], a company consortium with several
hundred member organizations dedicated to producing specifications for OO
environments.

A CORBA system consists of an arbitrary number of distributed nodes and cli-
ents. Nodes contain application programs and database systems, which constitute
the system’s computing resources. Clients request operations to be performed by

26 Enabling Technologies and Dedicated Tools

Table 2.1 Most Relevant Distributed Object Computing Frameworks
Name Description

Open Source Foundation (OSF) Distributed
Computing Environment (DCE) [5]

DCE provides a traditional remote procedure call
mechanism for the communication between client and
server. DCE supports encapsulation as servers accept
only the operations defined in their interface.

Microsoft Distributed Component
Object Model (DCOM) [6]

DCOM is a Windows-centric platform for distributed
computing.

Object Management group (OMG)
Common Object Request Broker
Architecture (CORBA) [7]

CORBA is a fully OO specification, based on the
development of object request brokers able to mediate
between clients and server components.

JavaBeans [8] JavaBeans is the component architecture for Java. The
JavaBeans specification allows the transformation of
Java classes into beans (i.e., components) by making
little changes to the code.

Jini [9] Jini is a Java-based distributed architecture based on
service registering and discovery through an
intermediate lookup service.

JMAs [10] Mobile agents are intelligent components, written in
Java, that are able to travel in the network to fulfill
their task.

the system resources. One or more distributed object managers, called object
request brokers (ORBs), act as interface between clients and resources. Clients do
not need to know the location and implementation details of the resources: they
connect to the ORBs via well-defined interfaces. ORBs translate the requests so
that the target components can interpret them, and they send the results back to the
clients.

A language, the interface definition language (IDL), allows object implementa-
tions to inform potential clients about the operations they offer and how these
should be invoked. In this manner, even legacy applications can be encapsulated
into CORBA systems by writing the appropriate IDL wrapper.

OMG’s definition of CORBA contains the fundamental guidelines to imple-
ment OO distributed systems. OMG leaves ORBs developers the freedom to choose
the manner in which and the tools with which ORBs are implemented. This causes
some problems of scarce interoperability among different ORBs implementations.
Because of this and of its complexity, CORBA is currently quite widespread among
single-domain distributed systems but still has difficulty penetrating wider environ-
ments. For this reason, most GM tools cope with CORBA deficiencies and have
been designed to interoperate with CORBA, thus preserving existing CORBA
implementations in local domains and integrating these domains with others to
compose a grid.

2.2.4 Java

Java [11] is an OO language whose boom was related to its being the first Web-
oriented language, fully developed to fulfill requirements of Web applications. The
most relevant feature of Java is portability, thanks to its ability to move code from
the server to the client machine. When a Java program is written and compiled, the
result is not a processor-specific code, but the so called virtual-machine code. When
a client connects to a server to run Java applications, the virtual machine code
migrates to the client platform, where it is interpreted by the local browser (see
Figure 2.1). Java has built-in security features, which on one side guarantee that
malicious code cannot run on client machines, while on the other side consti-
tute a limitation to the language potentialities. Another limitation is speed with
respect to processor-specific code: programs written in the Java language cannot be
tailored and optimized for the processor where they are going to run (which is
unpredictable).

The success of Java has rapidly generated the extension of the language to a
number of tools, architectures, and frameworks. A typical context where Java tech-
nologies have a competitive advantage is the one related to Web applications or,
more generally, computational agents distributed inside heterogeneous networked
systems. Java servlets, for instance, are a well-known technology enabling the writ-
ing of Java pieces of code that cooperate with Java-compliant Web servers to pro-
vide services to Web clients. A Java servlet can interface with Web servers with
databases and other back-end services and elaborate data to give back the results to
the Web.

The experiences with Java servlets have paved the way towards a systematic
development of distributed object computing, which is currently supported by sev-
eral frameworks, two leading examples being Jini and JMAs.

2.2 Enabling Technologies: Object Orientation 27

A Jini system [9] consists of services (i.e., software entities written in Java lan-
guage that can respond to requests coming from programs or other services). Exam-
ples of services include printing a document or returning data about a device. Jini
supports a number of specific services that are responsible for the location of distrib-
uted services and for calling them. Service requests are satisfied by moving service
code from the server to the client with a Java virtual machine procedure.

A JMA [10] is a Java program with the ability to transfer itself from host to host
within a network and to interact with other agents in order to perform its task.
When an agent travels, it transports its state and code, so that it can behave intelli-
gently and decide autonomously its itinerary and the way it interacts with other
agents and objects. Thanks to the mobility of agents, JMA systems do not require
the compiled application code to be installed on the remote systems. This character-
istic distinguishes JMAs from other distributed frameworks (such as MPI, which is
discussed in Section 2.10): it allows the design of flexible and dynamic distributed
systems (i.e., systems where the computing nodes can be changed dynamically dur-
ing the execution of the distributed application).

Unfortunately, Jini and other Java-related technologies suffer from the previ-
ously enumerated Java limitations, plus their intrinsic constraint of requiring that
application components must be written in a specific language. Nonetheless, they
are a fundamental component of grid applications when cooperating with other
technologies through middleware services.

2.2.5 Object Orientation and Electromagnetic Simulators

The EM community has discovered the interest and charming flavor of object orien-
tation with some delay, with respect to other scientific contexts, such as signal or
image processing. As reviewed in a recent paper [12], the first relevant papers in the
EM literature were published around mid 1990s.

28 Enabling Technologies and Dedicated Tools

0100
1001
0110

1010
1011
0000

Browser

Client

Import java.awt.*;
import java.applet.*;
public class JavaHow

1010
1011
0000

Java
compiler

Server

Java source code Virtual machine code

Virtual machine code Processor code

Figure 2.1 Java virtual machine. The Java language allows programs to be written that can be
executed on several heterogeneous platforms by code moving and intermediate compiling. The pro-
gram is written in Java and compiled into an intermediate bytecode, the virtual machine code. When
a client connects to the server, the virtual machine code is moved to the client, where a compiler
embedded into the browser translates the virtual machine code into the local processor code, making
it suitable to run locally.

Despite the challenging perspectives opened by object orientation as an enabling
technology (which are directly related to the applications proposed in the following
sections of this book), the large majority of the available examples of OO applica-
tions to EM problems are based on the implications of object orientation in EM soft-
ware engineering. The development of EM software can take substantial advantages
of OO technologies, and it seems reasonable to predict a continuous increase in the
use of such methodologies in EM numerical methods in the forthcoming years.

One of the immediate explanations of this trend is related to the increasing effi-
ciency of numerical techniques, as well as available computing resources. This
induces a continuous growth of the complexity of affordable circuits and systems,
thus compelling dedicated strategies of domain and problem partitioning, technique
hybridization, and system integration [13–15]. This leads to the need to solve differ-
ent portions of the same problem with different methods, so that the peculiar advan-
tages of a certain approach are exploited where they make the difference, without
paying for their drawbacks where they could be more apparent. This casts severe
problems of integrating interfaces among heterogeneous methods and codes, as well
as the need to solve the problems without affecting the potential independency
among the different codes. Consequently, a demand for interoperability, requiring a
high capability of information sharing among different methodologies and imple-
mentations, cannot be satisfied without preserving the ability of hiding proprietary
information.

The characteristics of object orientation, shortly summarized in Section 2.2.1,
render this approach extremely suitable to fulfill such requirements. For the sake of
brevity, we address the interested reader to [9–20] as reported in [12] for a panel
of applications. Other interesting and more recent experiences in the field of
computer-aided design (CAD) of MW circuits are also available [16] and even in the
development of general-purpose FDTD tools [17].

Unfortunately, as mentioned earlier, EM OO applications related to enabling
technologies are rather seldom encountered. One of the few exceptions is
represented by the exploitation of OO amenability to code encapsulation and
integration. An effective experience was performed in the late 1990s to develop an
OO software encapsulator [18, 19] (i.e., a framework devoted to the integra-
tion of heterogeneous software tools for antenna design). A more recent excep-
tion, very close to the purest concept of enabling technology, is represented by
an FDTD implementation based on JMAs [11]. Despite these couple of counter-
examples, it is a matter of fact that a substantial limitation persists in the diffusion
of OO enabling technologies. GC and its penetration inside the EM commu-
nity can help to fill in the gap, thanks to the consequent increase of diffused
knowledge on the concepts of enabling technologies as well as on their promising
perspectives.

2.2.6 Conclusions

In this section, we have overviewed the OO paradigm and its suitability for distrib-
uted environments, as well as its suitability to EM applications. The choice of the
appropriate enabling technology is not an easy task, as each one has its own potenti-
alities, limits, and drawbacks. None of them must be rejected a priori, as each
contains specific benefits for distributed environments.

2.2 Enabling Technologies: Object Orientation 29

In a good number of cases, the different technologies are able to talk to one
another, via well known protocols and standards. Therefore, the best approach is to
choose the set of technologies that appears to be the most suitable for the specific
context and to set up an environment allowing them to interoperate. On the other
hand, interoperability is viable if a GM software is installed, thus providing basic
services for the chosen technologies. Consequently, GM tools are crucial for the
effective use of enabling technologies. In the next section, the most widespread tech-
nologies for GM are overviewed.

2.3 Dedicated Tools: Grid Middleware

As seen in the introduction of this chapter and in Chapter 1, the implementation of a
grid requires the existence of a software layer, the GM, able to provide all of the
basic services needed for transparent access to resources as if they were belonging to
a single unified metacomputer.

There are many projects worldwide aiming at achieving this ambitious goal.
Legion [20] and Globus [21] are the most widespread.

Legion is a middleware developed at the University of Virginia. It embraces the
OO paradigm (i.e., it encapsulates all grid components as objects). The methodol-
ogy used has all of the normal advantages of OO approaches, such as data abstrac-
tion, encapsulation, and polymorphism (as discussed in Section 2.2). This approach
can be potentially ideal for designing and implementing a complex environment,
such as a metacomputer. However, using an OO methodology does not solve a
number of problems, the hottest of which is the need to interact with legacy applica-
tions and services.

Unlike Legion, which tethers the end user to the OO programming paradigm,
the GT offers services and libraries accessible with a dedicated API, from which the
developers can choose the ones best fitting with their application. Due to its flexibil-
ity and high interoperability with the most common technologies for distributed and
parallel computing, GT is rapidly becoming the GM de facto standard and has been
chosen for our experimentation. It is described in the following sections.

2.4 The Globus Toolkit: An Overview

GT is a joint initiative of the University of Southern California, the Argonne
National Lab, and the University of Chicago. It provides an open-source set of serv-
ices addressing fundamental grid issues, such as security, information discovery,
resource management, data management, and communication.

GT is described by its authors as being made up of three pillars [22]. The first
one, resource management (RM), allocates resources provided by the grid to the
respective consumer. The second one, information services (IS), provides informa-
tion about available resources and their attributes. The third, data management
(DM), deals with accessing and managing data in a grid (e.g., it provides a more
robust and high-performance ftp, customized to grid needs). Each pillar embeds core
services given by Globus Security Infrastructure (GSI). GSI ensures fundamental
security services such as authentication, confidentiality, and integrity.

30 Enabling Technologies and Dedicated Tools

As GSI is a shared infrastructure among the three pillars, we propose in the next
section an overview of this relevant part of GT. Later, we give a detailed description
of each pillar (Sections 2.6, 2.7, and 2.8), as well as some important related tools for
grid-oriented application development (Sections 2.9 and 2.10).

2.5 The Globus Toolkit: The Globus Security Infrastructure

To introduce GSI protocols [23], we now recall the case depicted in Figure 2.2 (i.e.,
the access of a generic user to grid services).

In the grid transaction shown in figure, the following steps take place:

• User A logs onto a client machine and asks to start a process Pa on a server
machine;

• Process Pa starts on a server machine;
• Process Pa asks to read data resident on a third machine.

In order to perform these tasks, it should happen that:

• User A is authorized to start processes on the server machine;
• The server machine recognizes the authenticity of user A;
• User A recognizes the authenticity of the server machine;
• Process Pa is authorized to read data from the third machine;
• The third machine recognizes the authenticity of process Pa;
• Process Pa recognizes the authenticity of the third machine.

2.5 The Globus Toolkit: The Globus Security Infrastructure 31

Client

Server1 Server2

Pa

Grid

Figure 2.2 In a grid environment, users connect to client machines, from which they start
computation on server machines. The launching of an application on a server machine (process Pa in
Server1 in the example) can generate the request for the allocation of other resources, eventually
located on different machines. In the figure, process Pa, started on the Server1 machine, requests the
access to data located on the machine named Server2.

So, each access to a remote resource must be authorized and each resource must
be authenticated in a mutual form (i.e., both provider and consumer must authenti-
cate each other when interacting). Authentication and authorization of users are
performed via the insertion of a password, as described in detail later. Note also that
the resources involved are dynamic (i.e., they change over time in an often unpredict-
able way) and heterogeneous. When users start up a process, it can in turn request
access to other resources, eventually located on different machines of the grid. Each
time this happens, a new authentication and authorization session begins. This
requires the user to enter the password again. To avoid such a burden, GSI includes
the single sign-on service, based on the delegation of user credentials to the so-called
proxies, which act on behalf of the user for a short period of time, as described in
Section 2.5.3.

To summarize, GSI guarantees a number of security services, the most impor-
tant being:

• Authorization. This is a mechanism to control the access to resources.
• Mutual authentication. Both parties must authenticate (i.e., prove the authen-

ticity of their declared identity) each other in each transaction;
• Single sign on and delegation. To eliminate the burden of inserting the pass-

word every time access to a resource is needed, the so-called proxies act on
behalf of users for a limited period of time.

Such security services are now shortly described.

2.5.1 Authorization

The authorization is performed via mapping between global identities and local
identities.

Each user is given a globally unique name, called distinguished name
(DN), which identifies it in the context of the grid. A DN contains at least three
attributes:

• A user’s name or user ID;
• An organization name;
• A country designation.

Other attributes can be entered in order to store additional user and group infor-
mation. For example, the DNs for two users in the same research group might look
like this:

cn=Luciano Tarricone, ou=Electronics, o=Elemgrid, st=Italy, c=I;
cn=Mary Smith, ou=Marketing, o=Elemgrid, st=CA, c=US

In this example, the users work in different departments (ou) for the same
group (o). The latter user works in a different state (st) with respect to the former
one.

These and other attributes are summarized in Table 2.2.

32 Enabling Technologies and Dedicated Tools

Local identities coincide with local user names as defined on Globus server
machines. If the administrator decides to allow access to server resources to a grid
user, he must create a userid or choose among the userids available in the server
machine. In order to allow the user to access server resources under the chosen
userid, the administrator must associate the DN, which identifies unambiguously
the user in the grid, to the local userid. Therefore, he must update a mapping table in
the server containing the associations between global DNs and local user names (see
Figure 2.3).

When a user asks to launch an application on a server machine, the mapping
table is checked by Globus daemons. If the user DN appears in the table and is asso-
ciated to a valid userid, the user is authorized to access server resources under the
userid matching his DN.

In Chapter 3, practical guidelines are given to implement the authorization
issues.

2.5.2 Mutual Authentication

The GSI adopts the secure sockets layer (SSL) [24] for its mutual authentication pro-
tocol. SSL is also known by a new Internet Engineer Task Force (IETF) standard
name: transport layer security (TLS).

SSL is based on public-key cryptography [25] and assumes that each entity
owns a couple of keys, a private key and a public one (see Appendix B for details on
public-key cryptography and all basic security concepts cited in this section). The
private key must be kept secret, while the public key must be distributed to other
parties. The user’s private key is expected by GSI to be stored in a file in the local
computer’s storage. To prevent other computer users from stealing it, the file con-
taining the key is encrypted via a password (also known as a pass phrase). To use the
GSI, the user must enter the pass phrase required to decrypt the file containing his
private key.

2.5 The Globus Toolkit: The Globus Security Infrastructure 33

Table 2.2 Examples of DN’s Attributes

Attribute Name Syntax Description Examples

Country c Country where the user or
group resides

c=US
c=GB

Common name or full name cn Full name of person or object
defined by the entry

cn=Alessandra Esposito
cn=printer 3b

Email address Email User’s or group’s email
address

Email=alexa@libero.it

Locality L Locality where the user or
group resides—it can be the
name of a city, country, or
other geographic region

l=Rome
l=Anoka County

Organization o Organization to which the
user or group belongs

o=University of Naples

Organizational unit ou Unit within an organization ou=Sales
ou=Department of Electronics

State or province st State or province in which
the user or group resides

st=Iowa
st=British Columbia

The public key is contained in a certificate together with other data:

• Identity of the owner of the certificate (i.e., his DN);
• Expiration date of the key.

To initiate a communication, users exhibit their certificate. A trusted neutral
entity, the Certification Authority (CA), must exist to guarantee the authenticity of
the association between users and certificates (to defend against the “man in the
middle attack” described in Appendix B).

The CA owns a public and a private key as well. The CA uses its private key to
sign certificates. When a certificate is created, the administrator must contact the CA
and request to sign the certificate. If the CA believes that the certificate is valid, then
it signs it.

When a communication session begins, the signature is exhibited together with
the certificate, which also contains the identity of the CA (i.e., its DN).

The CA public key is distributed among the parties so that everyone can verify
the authenticity of certificates by checking the validity of the CA signature (i.e.,
decrypting it and comparing the result with the clear text certificate) (see Figure 2.4).
Details about digital signing and verification are reported in Appendix B.

So, if two parties have their own certificate, and if both parties trust the CA that
signed the counterpart’s certificate, then they can prove each other that they are who
they are expected to be.

This happens with the SSL protocol steps described here and shown in
Figure 2.5:

34 Enabling Technologies and Dedicated Tools

Client machine

“/C=IT/ST=Italy/L=Lecce/O=elemgrid/CN=Alessandra Esposito”

Certificate

Server machine

“/C=IT/ST=Italy/L=Lecce/O=elemgrid/CN=Alessandra Esposito” alexa

Configuration file

Figure 2.3 In order to allow users access to grid services, client and server machines must be config-
ured to implement authorization polices. On the client side, users should be given an account, a DN
(“C=IT/ST=Italy/L=Lecce/O=elemgrid/CN=Alessandra Esposito” in the example), and a certificate
associated with that DN. On the server side, a configuration file must be created, where the global
DN is mapped onto a local userid (“alexa” in the example). When the end user wants to access
resources located in the remote server, he must exhibit his certificate. At the server side, the DN is
extracted from the certificate and searched in the authorization file. If the DN is found, the user is
authorized to access server resources under the userid matching his DN (”alexa” in the example).

1. Party A establishes a connection with the second party (B).
2. To start the authentication process, B gives A its certificate. Party A makes

sure that the certificate is valid by checking the CA’s digital signature and the
expiration date.

3. Party A generates a random message (nonce) and sends it to B, asking B to
encrypt it.

4. Party B encrypts the nonce using his private key and sends it back to A.
5. Party A decrypts the message using B’s public key. If this results in the

original random message, then A knows that B is who he claims to be.

Now that A trusts B’s identity, steps 2 to 5 happen in reverse (i.e., changing A
with B and vice versa, so that A can trust B’s identity).

At this point, A and B have established a connection each other and are certain
that they know their identities: the mutual authentication process has been
completed.

2.5.3 Single Sign On and Delegation

The GSI provides a single sign on capability: an extension of the standard SSL pro-
tocol that reduces the number of times the user must enter his pass phrase. If a grid

2.5 The Globus Toolkit: The Globus Security Infrastructure 35

CA private key

/C=IT/L=Lecce/
O=elemgrid/OU
=research/

Sign @er#[]**

Clear text certificate

CA signature of the certificate

CA public key

/C=IT/L=Lecce/
O=elemgrid/O
U=research/

Decrypt

@er#[]** Decrypted signature

CA signature of the certificate

Compare

/C=IT/L=Lecce
/O=elemgrid/O
U=research/

OK!!

Clear text certificate

Figure 2.4 Procedure for signing certificates and verifying the validity of the signature. In the first
panel, the digital signature procedure is shown: the CA crypts the certificate with its own private key.
In the second panel, the signed certificate is first decrypted and then compared with the clear text
one. The signature is reputed valid if the decrypted signature matches with the clear text certificate.

computation requires that several grid resources be used (each requiring mutual
authentication) or if there is a need to have agents (local or remote) requesting serv-
ices on behalf of a user, the need to reenter the user’s pass phrase can be avoided by
creating a proxy.

A proxy consists of a new certificate (with a new public key in it) and a new pri-
vate key. The new certificate contains the owner’s identity, slightly modified in order
to indicate that it is a proxy. The new certificate is signed by the owner, rather than a
CA. For example, if the user certificate contains the following information:

• CA identity: “/O=Grid/O=Globus/OU=elemgrid.org/CN=CA”
• User identity: “/O=Grid/O=Globus/OU=elemgrid.org/CN=Alessandra

Esposito”

Then, the proxy certificate contains:

• Identity of the entity certifying the proxy public key: “/O=Grid/O=Globus/
OU=elemgrid.org/CN=Alessandra Esposito”

• Proxy identity: “/O=Grid/O=Globus/OU=elemgrid.org/CN=Alessandra
Esposito/proxy”

When proxies are used, the mutual authentication process differs slightly. The
remote party receives not only the proxy’s certificate (signed by the owner), but also

36 Enabling Technologies and Dedicated Tools

2 Certificate request

1 Hello

1 Hello

2 Certificate

3 Nonce

4rev crypted nonce

5 Done

5rev done

B

CA signature
verification

B’s trust

A’s trust

2rev certificate request
2rev certificate

3rev nonce

4 Crypted nonce

CA signature
verification

A

Figure 2.5 GSI uses the SSL protocol for mutual authentication. The protocol consists of a sequence
of steps. Steps 2 to 5 authenticate part B to part A. Steps 2rev to 5rev perform the authentication of
part A to part B. In step 2 (2rev), part A (B) verifies the validity of the certificate exhibited by part B (A)
by checking the CA signature. In steps 3, 4, and 5 (3rev, 4rev, 5rev), part A (B) verifies the authenticity
of the identity of B (A) by checking the validity of the encryption performed by part B (A) of a random
nonce, sent by part A (B) to part B (A).

the owner’s certificate. During mutual authentication, the owner’s public key is
used to validate the signature on the proxy certificate. The CA’s public key is then
used to validate the signature on the owner’s certificate. This establishes a chain of
trust from the CA up to the proxy through the owner (see Figure 2.6).

As with any private key, the proxy’s private key must be kept secure. Nonethe-
less, proxies have limited lifetimes. Because of this, the security problem related to
the proxy’s key is less critical than the one being cast by the owner’s private key. It is
thus possible to store the proxy’s private key in a local storage system without
encrypting it, as long as the permissions on the file prevent anyone else from easily
looking at it. Once a proxy is created and stored, the user can use the proxy certifi-
cate and private key for mutual authentication without entering a password.

2.5.4 Other Services

In this section, we have described the fundamental security services provided by
GSI: authorization, mutual authentication, and single sign on. Other basic services
worth mentioning are confidentiality and integrity.

By default, the GSI does not establish confidential (encrypted) communication
between parties: once mutual authentication is performed, the GSI gets out of the
way so that communication can occur without the overhead of constant encryption
and decryption. Confidentiality is an optional feature, so, if properly configured,
the GSI can be used to establish a shared key for encryption.

Integrity is assured when eavesdroppers are prevented from modifying the com-
munication data in any way. Because communication integrity introduces a smaller
overhead than encryption, the GSI provides communication integrity by default (it
can be turned off if desired).

2.5 The Globus Toolkit: The Globus Security Infrastructure 37

CA Proxy2User Proxy1

Ca private key Proxy1 private key

Sign Sign Sign

Chain of trust

User private key

CA Proxy2User Proxy1

CA public key Proxy1 public key

Verify Verify Verify

User public key

Figure 2.6 Mutual authentication process using proxies. Proxy certificates are signed by their
owner (who can in turn be a proxy). When a mutual authentication process occurs, the remote party
receives not only the proxy’s certificate, but also the owner’s certificate. The owner’s public key is
used to validate the signature on the proxy certificate. The CA’s public key is then used to validate the
signature on the user’s certificate. This establishes a chain of trust from the CA up to the proxy
through the owner.

2.6 The Globus Toolkit: The Resource Management Pillar

The RM pillar is responsible for scheduling and allocating resources specifying, for
example, resource requirements and the operations to be performed, such as process
creation or data access. Core RM services are managed by the Globus Resource
Allocation Manager (GRAM). Each GRAM is responsible for a set of resources
operating under the same allocation policy, often implemented by a local RM sys-
tem (such as Condor [26], Load Sharing Facility [27], Load Leveler, or Network
Queuing Environment). Thus, a computational grid built using Globus typically
contains many GRAMs, each responsible for a local set of resources. In this manner,
individual sites are not constrained in their choice of RM tools. A coallocator dis-
tributes requests to GRAMs and manages return values. A schematic overview of
RM is proposed in Figure 2.7.

The GRAM service is mainly provided by a combination of two programs: the
gatekeeper and the job manager.

The gatekeeper is the user interface to GRAM. When a job is submitted, the
request is sent to the gatekeeper of the remote computer. It authenticates the request
using GSI and determines how that user will be authorized locally by mapping it
onto a local userid. Then the gatekeeper creates a job manager (see Figure 2.8),
which handles the execution of the job as well as any communications with the user.
It starts and monitors the remote program, communicating changes of status back to
the user on the local machine. When the remote application terminates, correctly or
with a failure, the job manager terminates as well.

Applications express resource allocation requests to GRAM via a standard API
and a specific language, the resource specification language (RSL). The client com-
poses its request in the RSL, which is passed to the job manager by the gatekeeper.
The job manager parses the request and translates it into the language of the local
scheduler (see Figure 2.9).

RSL allows the users to express the characteristics of the jobs they are going to
launch. This can be done via a sequence of relations. Relations associate an attribute
name with a value (e.g., the relation “executable=a.out” provides the name of an
executable in a resource request). By using the relations, users can describe the job to
be launched in terms of its environment (e.g., the remote directory where it must
work, the standard input, and error and output; see Appendix A for details on these

38 Enabling Technologies and Dedicated Tools

GRAM GRAM GRAM

NQE LoadLeveler LSF

Coallocator

Application

Figure 2.7 Layered architecture of RM pillar. GRAM services are responsible for interacting with
local resource managers (NQE, LoadLeveler, LSF in the example), while a coallocator schedules and
assigns tasks to the GRAMs.

concepts) and of its resource requirements (e.g., maximum amount of memory and
maximum CPU time required). In Table 2.3 a list of the most used RSL relations,
with their meanings and examples of usage, is reported, while in Chapter 3 exam-
ples of real RSL script files are shown.

2.6 The Globus Toolkit: The Resource Management Pillar 39

Client

Gatekeeper Job manager

Server

Job request State change callback

Fork,exec,
condor,lsf

GRAM client API

Create

GSI

Authenticate

Process

Figure 2.8 The gatekeeper is the user interface to GRAM. When a job is submitted, the request is
sent to the gatekeeper of the remote computer. The gatekeeper talks with GSI to authenticate the
request. Then it creates a job manager, which handles the execution of the job as well as any
communications with the user. The job manager starts and monitors the remote program by calling
the local resource manager (i.e., Condor, LSF, or single operating system calls like fork and exec) and
then communicates changes of status back to the user on the local machine.

Client

Gatekeeper Job manager

Server

Request

RSL file

RSL
library

a.out process

Parsecreate

Local resource manager

Allocate

(Executable=a.out)

(Executable=a.out)

Job request

Figure 2.9 Clients can express job requests by writing script files in RSL. The gatekeeper passes RSL
instructions to the job manager, which parses them and translates RSL into the language of the local
resource manager.

Another relevant component of the RM pillar is the Globus Access to Secondary
Storage (GASS), a service implementing a variety of automatic and programmer-
managed data-movement and data-access strategies, enabling programs to read and
write remote data. GASS is of fundamental importance in improving the perform-
ance of write/read operations onto remote files. Consider, for instance, a sequence of
read or write operations from the client machine of Figure 2.10 onto a remote server
machine (GASS server).

If the GASS server is not used (scenario 1), the sequence of actions performed
when multiple read or write operations are requested by a client applications is:

1. Open the remote file: a file descriptor is returned to the application;

40 Enabling Technologies and Dedicated Tools

Table 2.3 Most Common RSL Relations
RSL Relation Meaning Example

(directory=value) Specifies the directory the job manager
must use as the default directory for the
requested job

(directory=/tmp/bin/)

(executable=value) The name of the executable file to run
on the remote machine

(executable=a.out)

(stdin=value) The name of the file to be used as standard
input for the executable on the remote
machine

(stdin=myfile)

(maxCpuTime=value) The maximum CPU time for a single
execution of the executable

(maxCpuTime=60)

(jobType=single|multiple|mpi|condor) This specifies how the job manager should
start the job: “single” starts one process or
thread; “multiple” starts multiple processes
or threads; “mpi” uses the appropriate
method to start a program compiled with a
vendor-provided MPI library; “condor” starts
jobs in the “condor” universe

(jobtype=single)

Server

Client

Client api

1 fopen

3 fclose

GASS server

Client

GASS cache

Client api

3 fclose

Scenario 1 Scenario 2

2 fprintf

1 fopen1 return fd

1 return fd

2 fprintf

Figure 2.10 Comparing network bandwidth usage with and without the GASS server.

2. Write and/or read data onto the remote file;
3. Close the remote file.

Step two can be burdensome, as data must travel in the network.
Scenario 2 shows how GASS uses a file cache, a local storage area where copies

of remote files are stored. By default, data are moved into and out of this cache
when files are opened and closed. In this manner, programs perform their write and
read operations on the local copy of the remote file, thus minimizing the problems
related to the limited availability of network bandwidth. In scenario 2, the sequence
of actions becomes:

1. Open the remote file: the file is copied in the local cache and a file descriptor
is returned to the application;

2. Write and/or read data onto the local copy of the remote file;
3. Close the file: the local file is copied back to the remote location.

Step two is now totally performed on the client machine, without using network
bandwidth.

Instead of accessing the remote file every time a write/read operation is per-
formed, GASS uses a file cache. By default, data are moved into and out of this cache
when files are opened and closed.

When a remote file is opened by using the appropriate GASS API function, the
following actions are taken:

1. The file is looked up in the local cache;
2. If it does not exist, the file is copied from the remote server into the local

cache;
3. The local file is opened.

When the file is closed, the file is copied from the local cache onto the remote
server.

In this manner, programs perform their write and read operations on the local
copy of the remote file, thus minimizing the problems related to the limited avail-
ability of network bandwidth.

The GASS service is integrated with other GT components: GRAM uses GASS
mechanisms to allow both executables and standard input, output, and error to be
identified by using uniform resource locators (URLs) in RSL files. For example, if a
RSL script contains a relation like the following:

(executable=http://www.mickey.org/a.out)

then, before executing the job, the file named “a.out” is transferred from the
machine named “www.mickey.org” to the GASS cache of the remote machine
where the job must run. The copy of the executable file “a.out” is removed after the
job has terminated. This feature allows a user to ask that an application resident on
a remote machine can run on a different remote machine. The process is sketched in
Figure 2.11.

2.6 The Globus Toolkit: The Resource Management Pillar 41

2.7 The Globus Toolkit: The Information Services Pillar

The IS pillar provides information about the structure and state of resources (e.g.,
their current load and usage policy). It can answer questions about the system state
such as:

• What resources are available?
• What is the state of the computational grid?
• How can we optimize an application given the available resources and their

current state?

The metacomputing directory service (MDS) is the IS core. MDS has a distrib-
uted architecture. It is basically composed of grid resource information services
(GRIS) and grid index information systems (GIIS). Each MDS resource can run its
GRIS, which is able to respond to queries from other systems of the grid about the
status of the resource (e.g., amount of disk space, amount of memory, or number
and speed of processors). A GRIS can be configured to register itself to aggregate
directory services (such as a GIIS). GIIS gather data from the registered GRIS to pro-
vide aggregate reports about the status of portions of the grid (see Figure 2.12).

GRIS and GIIS share a common directory service (i.e., a common protocol to
store and retrieve resources in a distributed environment) and use the same informa-
tion model (i.e., they adopt the same structure to represent resource data). In the fol-
lowing subsections, the directory service and the information model are shortly
described.

42 Enabling Technologies and Dedicated Tools

Client

mozart.elemgrid.org

www.mickey.org

RSL script

&
(jobtype=single)
(executable=http://www.mickey.org/a.out)

a.out

Figure 2.11 The RSL syntax allows users to ask that the application resident on a remote machine is
executed on a third machine. In the example, the end user logs into the client machine, where he
writes an RSL script file asking that the application named “a.out”, resident on “www.mickey.org”, is
launched on the server machine named “mozart.elemgrid.org”.

2.7.1 MDS Directory Service: Lightweight Directory Access Protocol

The MDS directory service is the lightweight directory access protocol (LDAP)
[28, 29]. MDS components contact LDAP servers to create, retrieve, and modify
data about grid resources.

LDAP was designed to store small records of information in a hierarchical tree
structure. This structure resembles the tree of a file system, with nodes containing
attributes and connecting with subtrees. Starting at a root node, the LDAP tree of
information, known as the directory information tree (DIT), contains a hierarchical
view of all of its data and provides a tree-based search system for the data.

Objects are named by their position in the tree, just like directories are called in
a file-system tree. For computational grids, the root of the tree is usually named
“o=grid,” where “o” stays for organization. The DIT branches down this root,
adding organizations, domain components (“dc”), organization units (“ou”),
resources, and so on (see Figure 2.13). Every node in the DIT structure has a unique
path to the root. That path serves as an unambiguous name to the entry associated
with that node. This unambiguous name is the DN of the entry, which is used to
locate the resource data.

2.7.2 MDS Information Model

The MDS information model represents data through a hierarchical structure. In
this structure, each entity is given a name and a list of attributes. When a query is

2.7 The Globus Toolkit: The Information Services Pillar 43

GRIS GRIS GRIS

GRIS

GIIS

GIIS

GIIS

………
……….
.
………

……
……
……
…..

……
……
……
…..

GRIS

Figure 2.12 MDS distributed architecture. Each node hosting a GRIS provides data on local
resources, while machines hosting GIIS play the role of data collectors. Queries about the state of
resources can be addressed to single GRIS to obtain data related to a single host or to GIIS to obtain
aggregate data related to a group of machines.

performed, the object is located through the LDAP protocol and the attribute values
are returned.

Hosts are represented as a collection of hardware (e.g., CPU or memory) and
software (e.g., operating system) devices organized in a tree structure (see
Figure 2.14).

This structure groups similar devices (i.e., multiple processors or different mem-
ory devices, such as RAM and virtual memory) under the same node, which
branches down to the single devices. This allows making aggregate queries on
groups of devices.

The root of the structure is represented by the host, identified by its hostname,
while single devices are leaf nodes. Each device is associated with a list of attributes
(e.g., CPU model or RAM size and free space), whose values are returned when a
query arrives at MDS.

For example, the attribute identifying the name of a mode is:

• The hostname, if the node is a root node;
• The value of the attribute called device-group-name, if the node represents the

aggregation of devices;
• The value of the attribute called device-name, if the node represents a single

device.

44 Enabling Technologies and Dedicated Tools

dc = org dc = it

ou = elemgrid

hn = mozart.elemgrid.org

ou = datagrid

hn = kandisky.datagrid.org

o = grid

Figure 2.13 Tree structure of LDAP information. Starting from root (o=grid), the tree branches
down to leaf nodes. The unique path from the root to the leaf defines the globally unique name of
resources. Given the global name of a resource, a tree search algorithm is used to locate its data in the
grid environment. LDAP contains the tools to add branches to the tree, extending a grid to
organizations, organization units, and so on. In the example, two domain components (as defined in
the Internet naming conventions) are shown. The “org” domain component contains two
organization units, each pointing to a host resource. For example, the host named “mozart.elem-
grid.org” is identified by the DN “o=grid/dc=org/ou=elemgrid/hn=mozart.elemgrid.org.”

Other relevant attributes are:

• Mds-Cpu-speedMhz;
• Mds-Cpu-Model;
• Mds-Cpu-vendor.

These contain speed, model, and vendor of processors. Also:

• Mds-Memory-RAM-SizeMb;
• Mds-Memory-RAM-FreeMb.

These refer to RAM total and available space.
The tree structure of the MDS information model renders the use of filters

simpler. Queries may contain filters to select the attributes to be retrieved. If filters

2.7 The Globus Toolkit: The Information Services Pillar 45

hn = mozart.elemgrid.org

CPU RAM

CPU VM

Mds-Device-Groud Name = CPU

CPU CPU RAM VM

Mds-Device-Group-Name = memory

Mds-Device-Name = CPU 0 Mds-Device-Name = CPU 1

CPU CPU

Mds-Device-Name = RAM

RAM

Mds-Device-Name = VM

VM

Mds-Cpu-Model
Mds-Cpu-vendor
Mds-Cpu-speedMhz

….

Mds-Cpu-Model
Mds-Cpu-vendor
Mds-Cpu-speedMhz

….

Mds-Memory-RAM-
SizeMb
Mds-Memory-RAM-
FreeMb

Mds-Memory-VM-
SizeMb
Mds-Memory-VM-
FreeMb

Figure 2.14 GRIS information model: GRIS report data about hosts they are installed on. Data are
represented by a well-defined information model, which includes the most relevant devices a host
may contain. The information model represents host data through a hierarchical structure that
groups similar devices such as multiple processors or different memory resources such as random-
access memory (RAM) and virtual memory under the same device-group-name. At the root of the
structure, there is the host, identified by its hostname (“mozart.elemgrid.org” in the example), while
single devices are at the leaf nodes. Each device is associated with a list of attributes (e.g., CPU model
or RAM size and free space), whose values are returned when a query arrives at the GRIS. This tree
structure facilitates the use of filters. Queries may contain filters to select the attributes to be returned.
If filters are not used, a standard query returns all data related to the host; otherwise, the user can
request information on a single device (e.g., RAM), a specific attribute of a device (e.g., the model of
the CPU), or groups of devices (e.g., data on processors belonging to the host).

are not used, a standard query returns all data related to the host, otherwise the user
can request information on a single device (e.g., RAM memory), a specific attribute
of a device (e.g., the model of the CPU) or groups of devices (e.g., data on all the
processors belonging to the host).

The query composition can be greatly simplified by using an LDAP browser. A
number of LDAP browsers exist, most of them freely downloadable from the Inter-
net [30], making the navigation through MDS information structure easier.

2.8 The Globus Toolkit: The Data Management Pillar

The DM pillar performs two fundamental tasks.
The first (distributed data access and management) is mostly related to data

movement: in order to run a job, the end user should be able to access remote data,
transfer input data to the target machine, and copy back the resulting data sets. The
second (dataset replicas services) is related to the need to replicate huge datasets
among a number of connected storage systems. In the following subsections, these
tasks are briefly overviewed.

2.8.1 Distributed Data Access and Management

Distributed scientific and engineering applications often require access to huge
amounts of data (up to the terabyte or petabyte range). When large amounts of
remote data must be accessed, speed, security, and reliability become key factors. A
number of distributed storage systems have been developed to cope with these and
other related issues. Among them, it is worth mentioning HPSS [31] from IBM,
DPSS [32] from LBNL, and SRB [33] from San Diego Supercomputer Center
(SDSC). Each of them meets specific requirements related to the access and manage-
ment of distributed huge datasets. For instance, HPSS and DPSS focus on data trans-
fer performance by transferring parallel data streams, while SRB focuses on hiding
heterogeneity among different storage resources (such as file systems, DBMS
objects, and tape archives) by providing transparent access via a uniform API. These
systems are proprietary and mostly tied to specific client software. Because of this,
the Globus team developed a middleware software to promote interoperability
among existing and future storage systems. This software was designed with the
same philosophy as other GT components:

1. A bag of basic services satisfying all of the basic requirements emerged in
distributed communities;

2. A general API to promote interaction.

To achieve this ambitious goal, the Globus team implemented an extended ver-
sion of the ftp, GridFTP, which adds a series of features to ftp, customizing it to grid
environments. The main features are:

• Partial file access. This feature is very useful when dealing with huge files,
because in these cases bandwidth can be saved, provided that only the needed
portions of the files are moved.

46 Enabling Technologies and Dedicated Tools

• Secure transfer. With GSI and Kerberos [34] support, GridFPT provides
authentication, privacy, and integrity check services;

• Parallel transfers. The parallel movement of transfer control protocol (TCP)
streams facilitates high-speed transfers and permits a considerable bandwidth
saving.

• Third-party transfers. GridFTP includes an authenticated protocol to
permit third-party control of transfers between two remote dataset storage
systems.

• Reliable file transfer. GridFTP furnishes fault recovery methods to cope
with transient network failure and server outages and to restart failed
transfers.

2.8.2 Dataset Replicas Services

When optimization of data access times is the most critical issue, it can be useful to
create a number of dataset replicas (i.e., to generate identical copies of data
and store them in different sites). This can reduce data access latency. The
creation of data replicas can considerably improve the performance of data
access, but it adds a number of complications not existing when dealing with a
single instance of files. For example, replicas location must be tracked and associ-
ated with each other (replica management), and users should be enabled to
access replicas transparently, eventually by specifying a selection criterion (replica
selection).

Replica management tools allow the creation or deletion of replicas on storage
sites. They typically maintain a replica catalog containing information about stored
datasets and replica site addresses. Each dataset has a unique logical name that cor-
responds to a number of physical replicas, geographically distributed in the grid.
The catalog stores correspondences between logical names and physical locations.
GT offers both an API to manipulate data in replica catalogs and an API to perform
basic replica management tasks.

Replica selection is the process of choosing a replica among those spread across
the grid, based on some characteristics specified by the application. One common
selection criteria is access speed. This way, the introduction of distributed data
redundancy is adequately exploited. GT includes the basic services to perform
replica selection by associating a GRIS to each storage resource. In this way,
storage resources publish their attributes (such as storage capacity and seek time),
which can be queried and used by storage brokers (i.e., the tools dedicated to the
selection of the replica), given the application requirements.

Given the previously mentioned API, it is possible to develop an application per-
forming the following tasks:

• Query a local archive to choose the logical name of the dataset to access;
• Contact a storage broker and communicate the requirement;
• The storage broker matches application requirements against available stor-

age resource attributes and returns the address of the best dataset;
• The application accesses the stored data.

2.8 The Globus Toolkit: The Data Management Pillar 47

2.8.3 Conclusions

It is worth mentioning that Globus efforts in the fields of data management are cur-
rently appreciated in a number of outstanding projects.

One is the Teragrid project [35], launched by the National Science Foundation
[36] in August 2001 and joined by five groups, among which we remember the
National Center for Supercomputing Applications (NCSA) [37] and Argonne
National Laboratory [38]. Among other activities, Teragrid worked for the exten-
sion of SDCD’s SRB to GridFTP. The implementation of specific drivers to GridFTP
allowed SRB to expand the number of heterogeneous systems that users can connect
to by a SRB client.

It is also worth mentioning the European DataGrid project [39]. DataGrid was
funded by CERN [40] and includes leading European scientific partners such as
ESA/European Space Research Institute (ESRIN) [41] (Italy) and Centre National de
la Recherche Scientifique (CNRS) [42] (France). DataGrid joins groups involved in
data-intensive applications that are interested in sharing huge amounts of distrib-
uted data over the network infrastructure. The project experiments with current
middleware technologies and contributes to their improvement by working in strict
cooperation with the Globus Team.

2.9 The Globus Toolkit API

All of the Globus components offer an API accessible by both programs written in C
language and in Java language, thus allowing the use of Globus utilities in the
context of an application. APIs facilitate the development of programs by allowing
the use of functionalities embedded in software or hardware tools inside the same
programs. A tool contains an API when it defines a number of function calls (inter-
faces) to access its own facilities. Interfaces are characterized by rigorous and
permanent specifications and standards. The existence of interfaces, hiding all of
the implementation details to the software designer, allows the development of
programs without the need for intimate knowledge of the device or software with
which the application interacts.

Globus API provides libraries for embedding the three pillars and GSI facilities
inside applications, plus a number of utilities for:

• Communication. Communication facilities are supported by a dedicated
library, called Nexus. The Nexus library provides the communication facilities
required to implement compilers for advanced languages, libraries, and appli-
cations in heterogeneous parallel and distributed computing environments.
Systems that rely on Nexus mechanisms include compilers for the parallel lan-
guages CC++ and HPC++, as well as the MPICH implementation of the MPI
standard (see Section 2.10 for further details on MPICH).

• Coallocation. Globus contains facilities useful for distributing jobs among the
available resources, when several GRAMs are installed (see Figure 2.7). These
facilities are embedded in the Dynamically Updated Request Online Coalloca-
tor (DUROC). It offers an API to execute jobs to be distributed over resources
accessed through independent GRAMs. DUROC parses RSL requests to

48 Enabling Technologies and Dedicated Tools

determine how a job might be distributed across the resources of which it is
aware, then chooses the resources to allocate, and finally issues job requests to
each of the pertinent GRAMs to schedule the job.

• Fault detection. The Heartbeat Monitor (HBM) library allows users to moni-
tor remote processes and to intercept notification of exceptions. Through a
client interface, a process is allowed to register itself with the HBM service and
to send regular heartbeats to it. Moreover, a data collector API allows a
process to obtain information related to the status of other processes regis-
tered with the HBM service, thus supporting, for example, fault recovery
mechanisms.

Globus also provides Commodity grid (CoG) kits, which allow users to use
commodity (i.e., enabling) frameworks, technologies, and toolkits in cooperation
with grid technologies. CoG kits include, for instance, Java, Java servlets, CORBA,
and Matlab.

2.10 The MPI with Globus

As discussed in Chapter 1, message passing is a leading paradigm in distributed and
parallel computing, with MPI [43, 44] being the international standard specifica-
tion. It is progressively replacing the other parallel protocols, though in some cases
(for instance, when spawning tasks dynamically is required), it is not suitable and
alternative solutions, such as PVM [45], must be adopted.

The Message Passing Interface Forum (MPIF), with participation from over 40
organizations, has been meeting since November 1992 to discuss and define a set of
library interface standards for message passing. The result is MPI, a set of general
guidelines to support message passing on whatever platform is suited to parallel and
distributed computing.

MPI is well suited for SPMD parallel paradigms. According to this paradigm, all
of the processors execute the same program. Each processor may run more than one
process. The number of processes to be run is given by the user when launching the
executable. The executable must be installed and compiled on each platform before
executing. It is also worth mentioning that MPI is quite flexible and works well for
multiple program multiple data (MPMD) programming too.

MPI defines a number of procedures to implement parallel programs. In MPI,
the most attractive features of a number of existing message passing systems are
used:

• Point-to-point communication. MPI defines the basic operations to allow
processes to send and receive messages.

• Process groups. MPI contains the facilities to define groups of processes (i.e.,
processes sharing a common tag so that they can be addressed all together by a
set of operations, called collective operations, which are briefly introduced
later).

• Collective operations. MPI includes the functions to make processes belong-
ing to the same group communicate simultaneously. The most relevant

2.10 The MPI with Globus 49

functions are barrier synchronization, which is used to synchronize group
members; broadcast to send a message to all of the members of a group; and
gathering, which is used to gather data spread among members.

• Communication contexts. MPI provides the ability to have separate safe “uni-
verses” of message passing, so that communication internal to a library execu-
tion is prevented from external communication.

• Process topologies. The definition of virtual process topologies allows users
to assign names to the processes of a group that reflect the logical com-
munication pattern of the process (usually determined by the underlying
problem geometry and the numerical algorithm used). The virtual process
topology can be exploited by the system in the assignment of processes to
physical processors, if this helps in improving the communication
performance.

The suitability of MPI for developing parallel algorithms in EM has been dem-
onstrated in a recent paper [46].

If MPI is the reference standard for message passing, one dedicated tool for MPI
inside heterogeneous distributed systems is represented by MPICH [47].

MPICH is a portable implementation of the MPI specification. It is designed to
be ported and optimized for a variety of systems through implementations of an
abstract device interface (ADI). Each implementation of an ADI is called device
(example of devices are those developed for Beowulf clusters or shared memory
systems).

A derivation from MPICH suited to grid environments based on GT is
MPICH-G2 [47], which is our reference library for MPI in grid environments.
MPICH-G2 is the MPICH device developed to provide a grid-enabled implementa-
tion of MPI. That is, using Globus services (e.g., job startup, security), MPICH-G2
allows users to couple multiple machines belonging to a grid and run MPI
applications.

As suggested in [47], “One important class of problems where MPICH-G2 fits
well is composed of those that are distributed by nature (i.e., problems whose solu-
tions are inherently distributed). One example is remote visualization applications,
in which computationally intensive work producing visualization output is per-
formed at one location and the images are displayed on a remote high-end device.

A second class of problems consists of those that are distributed by design,
where there is access to multiple computers, perhaps at multiple sites connected
across a WAN, and a user may want to couple these computers in a computational
grid.

In another scenario, a user may have an MPI application that runs on a single
MPP but has problems that are too large in size for any single machine to which the
user has access. In this situation, a grid-enabled implementation of MPI like
MPICH-G2 may help by enabling the user to couple multiple MPPs in a single
execution.” After installing MPICH-G2 on grid nodes, the application can be ported
straightforwardly to run in the grid environment: the migration towards
MPICH-G2 of an MPI application does not require any changes to the code, as
described in detail in Chapter 3.

50 Enabling Technologies and Dedicated Tools

2.11 Dedicated Tools: Economy-Driven RM in Grids

Grids federate a multiplicity of resources distributed among diverse organizations.
Most existing grids gather resources belonging to scientific organizations, which
pool them into the grid without expecting any financial earning. By nature, they
obtain benefits from the scientific results of grid computing. The exploitation of grid
computing can be further enhanced if commercial organizations are encouraged to
get involved in grid communities. Commercial organizations would be surely inter-
ested in profiting from the rent of resources to grid communities.

The most widespread grid middleware technologies, such as Legion and
Globus, do not support any economy-based computing model. Thus, they must be
integrated with tools supporting computational economy. These tools are the
economy-driven resource managers (i.e., they are resource managers with the capa-
bility to select target resources based on price, objective, and constraints of users,
with time or budget being perhaps the most typical).

The most outstanding infrastructure for economy-driven grids is GRACE [48],
which finds in Nimrod-G [49] the reference tool for trading resources. The GRACE
infrastructure is a middleware component that coexists with middleware systems
(such as Globus) to support computational economy. GRACE employs a competi-
tive market, where the client tries to minimize the cost of computation for resource
users and the server tries to maximize the profit for resource owners. GRACE
includes a protocol to allow client and servers to negotiate the cost of resources until
one of them says that its offer is the last one. If the other party accepts the deal, then
both work together, on the basis of the agreement reached in the negotiation phase.

Nimrod-G [50] is an RM tool coordinating the access to grid resources in coop-
eration with local schedulers (e.g., Condor and LSF) via grid middleware services
(e.g., Globus). Nimrod-G can play the role of the coallocator drawn in Figure 2.8.
When the application is submitted to the tool for execution, the user can specify the
deadline that results are needed by and the maximum cost he can support. Grid
resources must be listed and communicated to the tool, specifying their attributes,
including the cost (which can be dynamic, if the GRACE infrastructure is imple-
mented). Based on such information, Nimrod-G allocates the resources with the
goal of optimizing the cost or the application performance, as selected by the user.
However, the grid resource availability and load vary over time, so Nimrod-G con-
tinuously monitors the state of resources, changing those dedicated to the submitted
experiment if it understands that the deadline cannot be met with the current
resource set.

2.12 Web-Based Technologies and Projects

As seen in Chapter 1, grids can be used for a variety of purposes, starting from coop-
eration in software development to exploitation of idle CPU cycles for HPC. A
number of projects, each focusing on a different role and context of application of
GC, have been developed and are still in progress. Most of them rely on middleware
software for the basic services, with GT being the most used, and use the Web inter-
face to communicate.

2.11 Dedicated Tools: Economy-Driven RM in Grids 51

WebFlow [51, 52] is a Web-based visual tool for development of grid-enabled
applications. It integrates OO technologies and Web tools to create high-level
programming environments and to support distance computing on heterogene-
ous distributed platforms. Webflow users connect to the grid via the uniform
Web client interface (i.e., the Web browser) and develop distributed applications
by assembling reusable components or by developing new components. They
define the dataflow between the application components by drawing tagged links
among the components. The components may be located and launched any-
where in the network. Webflow is a perfect example of integration between
different enabling technologies and middleware services: it talks to CORBA
when interfacing with Intranet components, uses Globus middleware services to
locate resources and launch jobs in the grid, and is based on Java technol-
ogy as it uses Java servlets to manage and coordinate the various system
components.

The Cactus Code [52, 53] provides a collaborative environment for the
development and running of scientific software. Cactus allows engineers, scientists,
and software developers to integrate their competences and plug their work into the
same application, even when located far from one another. Cactus is focused
on scientific software, being interfaced with the most used scientific numerical
libraries. In a number of scientific applications, the resources required are not
known a priori (think of the technique called adaptive mesh refinement, where the
resolution of a computational mesh can be increased while running). In these
cases, Cactus can be configured to automatically seek out additional resources
while running the application, eventually migrating the code or launching new
subtasks.

Web portals are another very popular technology used for GC. The first
examples of portals are represented by well-known applications, such as Yahoo,
Excite, and Google. They represent a useful, easy “entry point” for Web users to a
number of fundamental services, such as searching in the Web, e-commerce,
or Web marketing. As explained in Chapter 1, the Web is more and more
evolving towards interaction and programmatic computing. An example of this
ongoing trend is given by Google, one of the most used search engines. Goo-
gle offers an API to access its index programmatically. In this manner, Google
archives can be queried by software applications that can continuously access
Web data to perform market researches or get updated information on preferred
subjects.

In the case of distributed systems, portals are intended to package the sys-
tem components of a grid application under a single Web server, mediating
the scheduling and control of grid resources. The penetration of Web portals
leads to the definition of the Object Web [54], where Web technology integrates
with OO paradigms and GM tools to form grid-enabled applications exploit-
able by the uniform Web interface. NPACI Hot-Page [55] GC portal and the
Astrophysics Simulation Collaboratory [56] are the most well-known exam-
ples of this trend. The Astrophysics Simulation Collaboratory, for instance, inte-
grates Java technology, Globus middleware, and Cactus Code framework to
allow scientists develop and run simulations in grid environments via the Web
browser.

52 Enabling Technologies and Dedicated Tools

2.13 Grid-Enabled HTC: Condor-G

HTC environments are computing environments that deliver large amounts of com-
putational power over a long period of time. HTC environments try to optimize the
number of jobs they can complete over a long period of time.

A widespread tool to maximize the throughput in distributed environments is
Condor [26]. Condor works to exploit idle CPU cycles of connected machines. It
provides transparent checkpointing and restart facilities so that computations can
be migrated from overloaded or failed machines to lightly loaded ones. Condor’s
functionality, called DAGMan, manages the submission of a large number of jobs
with simple or complex dependencies on one another. Users may specify preprocess-
ing and post processing of jobs and represent dependencies by a direct acyclic graph
(DAG). In a DAG, the programs are represented by nodes in the graph, and the
edges identify the dependencies. For example, a DAGman file may contain the fol-
lowing lines:

PARENT A CHILD B C
PARENT B C CHILD D

They specify that:

• Jobs B and C depend on A (i.e., they must start when A has completed);
• Job D depends on jobs B and C (i.e., D can start only when both B and C have

been completed).

Current Condor limitations (such as its ability to migrate processes only within
its server pool) make it work well in single administrative domain systems.
Condor-G [57] extends Condor to grid environments by merging features of Con-
dor (i.e., its ability to harness distributed computational power to maximize
throughput) with GT characteristics (i.e., the openness and flexibility of its proto-
cols and services, particularly in the fields of security and resource management). By
submitting a DAG file to Condor-G, users can harness the computational power of
grid resources as if they belonged to a single domain network. Users can submit
many jobs at once and then monitor running jobs with a convenient interface,
receive notification when jobs complete or fail, and maintain Globus credentials if
they expire while a job is running.

References

[1] Baker, M., R. Buyya, and D. Laforenza, “The Grid: International Efforts in Global Com-
puting,” International Conference on Advances in Infrastructure for Electronic Business,
Science, and Education on the Internet, Italy, 2000.

[2] Khoshafian, S., and R. Abnous, Object-Orientation: Concepts, Languages, Databases,
User Interfaces, New York: John Wiley, 1995.

[3] Booch, G., Object-Oriented Analysis and Design (With Applications), Redwood, CA:
Benjamin-Cummings Publishing Co., Inc., 1994.

2.13 Grid-Enabled HTC: Condor-G 53

[4] Nicol, J. R., C. Thomas Wilkes, and F. A.Manola, “Object Orientation in Heterogeneous
Distributed Systems,” IEEE Computer, June 1993, pp. 57–67.

[5] DCE, http://www.opengroup.org/dce.
[6] Thai, T. L., A. Oram, Learning Dcom, Sebastopol, CA: O’Reilly & Associates, April 1999.
[7] http://www.omg.org.
[8] Monson-Haefel, R., Enterprise JavaBeans, Sebastopol, CA: O’Reilly & Associates, October

2001.
[9] Oaks, S., and H. Wong, Jini in a Nutshell, Sebastopol, CA: O’Reilly & Associates, 2000.

[10] Siniaris, C. G., et al., “Implementing Distributed FDTD Codes with Java Mobile Agents,”
IEEE Antennas and Propagation Magazine , Vol. 44, No. 6, December 2002, pp. 115–119.

[11] Kafura, D., Object-Oriented Software Design and Construction with Java, Englewood
Cliffs, NJ: Prentice-Hall, 2000.

[12] Liotta, G., M. Mongiardo, and L. Tarricone, “Introductory Review on Object Oriented
Paradigm for Full-Wave Microwave CAD,” International Journal on Radiofrequency and
MW CAE, Vol. 12, 2002, pp. 341–353.

[13] Felsen, L. B., M. Mongiardo, and P. Russer, “Electromagnetic Field Representations and
Computations in Complex Structures I: Complexity Architecture and Generalized Network
Formulation,” International Journal on Numerical Modelling, Vol. 15, 2002, pp. 93–107.

[14] Felsen, L. B., M. Mongiardo, and P. Russer, “Electromagnetic Field Representations and
Computations in Complex Structures II: Alternative Green’s Functions,” International
Journal on Numerical Modelling, Vol. 15, 2002, pp. 109–125.

[15] Felsen, L. B., M. Mongiardo, and P. Russer, “Electromagnetic Field Representations and
Computations in Complex Structures III: Network Representations of the Connection and
Subdomain Circuits,” International Journal on Numerical Modelling, Vol. 15, 2002,
pp. 127–145.

[16] Cristoffersen, C. E., U. A. Mughal, and M. B. Steer, “Object-Oriented Microwave Ciruict
Simulation,” International Journal on Radiofrequency and MW CAE, Vol. 10, 2000,
pp. 164–182.

[17] Olyslager, F., et al., “An Academic FDTD Simulator Using Object Orientation,” AP2000
Int. Conference, 2A1.2, Davos, Switzerland, April 9–14, 2000.

[18] IDS Technical Report Design Framework Builder V2.0, System Integrator’s Manual,
RT/97/030, Ingegneria dei Sistemi spa, Pisa, Italy.

[19] Titomanlio, S., “Antenna Design Framework for Large Array Design,” SAR CAD Rev.
Meeting 1, ESTEC, NL, September 1998.

[20] Legion, http://legion.virginia.edu.
[21] Globus, http://www.globus.org.
[22] Foster, I., and C. Kesselman (Eds.), The Grid: Blueprint for a New Computer Infrastructure,

San Francisco, CA: Morgan Kaufmann, 1999.
[23] Foster, I., C. Kesselman, and S. Tuecke, “The Anatomy of the Grid: Enabling Scalable Vir-

tual Organizations,” Int. Journal of High Performance Computing Applications, Vol. 15,
No. 3, 2001, pp. 200–222.

[24] http://www.openssl.org.
[25] Menezes, A., P. van Oorschot, and S. Vanstone, Handbook of Applied Cryptography, Boca

Raton, FL: CRC Press, 1996.
[26] Condor, http://www.cs.wisc.edu/condor.
[27] LSF, http://ww.platform.com.
[28] Howes, T., and M. Smith, LDAP: Programming Directory-Enabled Applications with

Lightweight Directory Access Protocol, New York: Macmillan Technical Publishing, 1997.
[29] http://www.openldap.org.
[30] LDAP, http://www-unix.mcs.anl.gov/~gawor/ldap.
[31] HPSS, http://www.sdsc.edu/hpss.

54 Enabling Technologies and Dedicated Tools

[32] DPSS, http://www-didc-lbl.gov/DPSS.
[33] SRB, www.sdsc.edu/DICE.
[34] Steiner, J., B. C. Neuman, and J. Schiller, “Kerberos: An Authentication System for Open

Network Systems,” Proc. Usenix Conference, Dallas, TX: 1988, pp. 191–202.
[35] TeraGrid, http://www.teragrid.org.
[36] NSF, http://www.nsf.gov.
[37] NCSA, http://www.ncsa.uiuc.edu.
[38] http://www.anl.gov.
[39] DataGrid, http://www.eu-datagrid.org.
[40] CERN, http://www.cern.ch.
[41] ESA/ESRIN, http://www.esa.int.
[42] CNRS, http://www.cnrs.fr.
[43] Pacheco, P. S., Parallel Programming with MPI, San Francisco, CA: Morgan Kaufman,

1997.
[44] http://www.mcs.anl.gov/mpi.
[45] Dongarra, J, et al., “Integrated PVM Framework Supports Heterogeneous Network Com-

puting,” Computers in Physics, April 1993.
[46] Guiffaut, C., and K. Mahdjoubi, “A Parallel FDTD Algorithm Using the MPI Library,”

IEEE Antennas and Propagation Magazine, Vol. 43, No. 2, April 2001, pp. 94–103.
[47] http://www.mcs.anl.gov/mpi/mpich/download.html.
[48] Buyya, R., D. Abramson, and J. Giddy, “An Economic Driven Resource Management

Architecture for Global Computational Power Grids,” Intl. Conference on Parallel and
Distributed Processing Techniques and Applications (PDPTA ‘2000), Las Vegas, NV, June
2000, pp. 26–29.

[49] Buyya, R., D. Abramson, and J. Giddy “Nimrod/G: An Architecture for a Resource Man-
agement and Scheduling in a Global Computational Grid,” 4th International Confer-
ence/Exhibition on High Performance Computing in the Asia-Pacific Region, Beijing,
China, IEEE Computer Society, Los Alamitos, CA, May 2000, pp. 283–289.

[50] http://www.csse.monash.edu.au.
[51] WebFlow, http://www.npac.syr.edu/users/haupt/WebFlow.
[52] Allen, G., E. Seidel and J. Shalf, “Scientific Computing on the Grid,” Byte, Spring 2002,

pp. 24–32.
[53] Cactus Code, http://www.cactuscode.org.
[54] Fox, G. C., “Portals and Frameworks for Web Based Education and Computational

Science,” http://www.new-npac.org/users/fox/documents/pajavaapril00.
[55] http://hotpage.npaci.edu.
[56] http://www.ascportal.org.
[57] Condor, http://www.cs.wisc.edu/condor/condorg.

2.13 Grid-Enabled HTC: Condor-G 55

.

C H A P T E R 3

Building Up a Grid

3.1 Introduction

In this chapter we give practical guidelines to building up a grid and to using its
facilities. For the sake of clarity, the chapter refers to a simple yet realistic grid, as
shown in Figure 3.1.

The grid represented in the figure is composed of four machines interconnected
by a transfer control protocol/Internet protocol (TCP/IP) network. Each machine is
identified by its FQDN (i.e., the combination of its hostname plus its domain
name). The four FQDNs are: “picasso.elemgrid.org,” “matisse.elemgrid.org,”
“mozart.unile.it,” and “bach.unile.it.” The commands and the installation process
are relative to the version 2.2 of the GT, and it is assumed that the machines are
equipped with the RedHat Linux version 7.2 operating system, so each command
is referred to this operating system. More on the Linux operating system and its
commands can be found in Appendix A.

Though the description of the GT installation procedure might be more or less
substantially adapted to different versions of the tool (and of the operating system),
we try here to evince the main conceptual steps of the procedure and their general
aspects, rather than proposing a simple “recipe” stuck to a specific code and system
version. Consequently, we hope that the conceptual relevance of the proposed dis-
cussion remains valid even when different versions of the toolkit or of the Linux
operating system are considered, thus offering the reader a useful and nonevanes-
cent guide to build up a grid.

57

bach.unile.it

mozart.unile.it

matisse.elemgrid.orgpicasso.elemgrid.org

Figure 3.1 A sample grid, made up of four client/server machines. Each machine is connected with
the network and identified by its unique fully qualified domain name (FQDN).

In a grid, the system administrator can freely assign the role (client, server, or
both) each machine can play. A server machine is a machine whose resources are
deployable by grid users, while client machines are those machines from which users
can launch Globus commands to access grid resources. On client machines, users
develop grid-enabled applications as well, making use of Globus software develop-
ment kit (SDK). In our example, we suppose for simplicity that each machine runs
both as server and as client platform. Consequently, users can develop grid-enabled
applications on any machine in the grid and launch the running of the application on
any machine in the grid as well.

GT should preferably be installed on a shared file system. In our book, we
assume that our machines do not share a file system; therefore, the installation steps
must be repeated for each machine.

3.2 Recalling Globus Basic Concepts

In order to make this chapter self contained, we now shortly recall the Globus main
components, with specific attention paid to the role played in our configuration. The
basic concepts on Globus are described in Chapter 2, and we refer the reader there
for further details.

GT is described by its authors as being made up of three pillars [1, 2]:

• The RM pillar is responsible for scheduling and allocating resources specify-
ing, for example, resource requirements and the operations to be performed,
such as process creation or data access.

Core RM services are managed by the GRAM. Each GRAM is responsible
for a set of resources operating under the same allocation policy, often imple-
mented by a local RM system. Thus, a computational grid built with Globus
typically contains many GRAMs, each responsible for a local set of resources.
For the sake of simplicity, in our example we just consider the UNIX fork sys-
tem call as a local RM (i.e., we do not suppose any aggregation of resources via
distributed management technologies other than Globus). In other terms, each
machine is equipped with its own GRAM talking directly with the local oper-
ating system.

GRAMs can interpret application requests via a standard API and a spe-
cific language (RSL). This language has a simple syntax that allows users to
specify job requests and their characteristics (e.g., number of processes to be
launched, working directory, and threading).

The user interface to GRAM is the gatekeeper. When a job is submitted, the
request is sent to the gatekeeper of the remote computer. The executable, the
standard input and output, as well as the name and port of the remote com-
puter, are specified as part of the job request (via RSL). The job request is han-
dled by the gatekeeper, which creates a job manager for the new job. The job
manager handles the execution of the job, as well as any communications with
the user. It starts and monitors the remote program, communicating changes of
status back to the user on the local machine. When the remote application ter-
minates, correctly or with a failure, the job manager terminates as well. A

58 Building Up a Grid

GRAM gatekeeper must be running on each server computer to run jobs
remotely.

Another relevant component of the RM pillar is the GASS component, a
service implementing a variety of automatic and programmer-managed data-
movement and data-access strategies, enabling programs running on remote
locations to read and write local data. In this example, our machines will act
also as GASS server.

• The IS pillar collects information about the structure and state of resources
(e.g., their current load and usage policy).

IS relies on the LDAP. LDAP is a directory service (i.e., it allows stor-
ing and retrieving resources via a network protocol, as domain naming
system (DNS) does for machines interfaced with the Internet). LDAP is a
platform independent open protocol. Via LDAP, the IS pillar permits an effec-
tive monitoring of distributed resources. Globus information management
infrastructure is built on the top of a widespread LDAP package, the open
source OpenLDAP package, which is included inside Globus software.

The MDS is the IS core. MDS has a distributed architecture. It is basically
composed of GRIS and GIIS. Each GRIS provides information about the
status of resources available in each node. Each GIIS gathers data from multi-
ple GRIS resources. In our example, we consider the default Globus installa-
tion, which installs a GRIS on each server machine (see Figure 3.2).

• The DM pillar contains an extended version of the ftp, GridFTP, including
features like partial file access and management of parallelism for high-speed
transfer.

3.2 Recalling Globus Basic Concepts 59

bach.unile.it

mozart.unile.it

matisse.elemgrid.orgpicasso.elemgrid.org

GRIS

GRIS

GRIS

GRIS

Figure 3.2 Client machines can query GRIS installed on each server machine.

• GSI ensures fundamental security services such as authentication, confidenti-
ality, and integrity. More specifically, it guarantees mutual authentication
among parties, relying on SSL protocol. SSL is based on public-key cryptogra-
phy and assumes that a trusted neutral entity, the CA, exists and guarantees
the authenticity of keys. Globus security infrastructure is built on the top of a
widespread SSL package, the open source Openssl package, which is included
into the Globus software.

Once the basic concepts of Globus have been recalled, we are ready to describe
the set up of a real grid.

3.3 Setting Up the Environment

3.3.1 Hardware Requirements

Globus supports platforms with all UNIX and Linux flavors. The toolkit is not CPU
intensive, nor is it memory intensive, so CPU and memory requirements will depend
on the role of hosts in the grid. Hosts acting as gateways to other resources can be
thin hosts, while hosts designed to provide computing services for grid jobs should
have enough computing power and memory to sustain the computational require-
ments of the jobs targeted to them.

In conclusion, there are no specific hardware requirements: each machine can be
a node in a grid, provided that it is assigned suitable roles and tasks.

3.3.2 Software Requirements

Of course, GT is required. It includes Globus Packaging Toolkit (GPT), which
allows a totally automatic installation of GT. Furthermore, grid machines should be
synchronized. Time synchronization is important for authentication. When users
attempt to authenticate, they must present a proxy that has a timestamp and dura-
tion associated with it. If this proxy is presented to a host that is not time synchro-
nized with the host on which the proxy was created, the users may not be able to
authenticate with GT services. The timestamp of the proxy may be later than the
current time on the host to which the proxy is being presented. A widespread time
synchronization toolkit is Network Time Protocol (NTP). NTP is freely download-
able from the site www.ntp.org.

In conclusion, two basic packages are needed:

1. GT;
2. NTP.

3.3.3 Setting Up the Network

The grid is designed to connect devices with the TCP/IP protocol stack. The
machines must be interfaced with each other via the TCP/IP network (it can be an
isolated LAN or WAN as well). An FQDN is needed for each machine. FQDN is the
address of a system, consisting of its hostname and its domain name (e.g., in our
grid, hostnames are “matisse,” “picasso,” “bach,” and “mozart,” while domains

60 Building Up a Grid

are “elemgrid.org” and “unile.it,” and the FQDNs are “matisse.elemgrid.org,”
“picasso.elemgrid.org,” “mozart.unile.it,” and “bach.unile.it”).

In conclusion, the standard procedures for creating a TCP/IP-based computer
network must be performed.

3.3.4 Before Installing Globus

The Globus team suggests creating a separate user identifier (userid), such as
“globus,” under which GT daemons will run (this simplifies debugging). As some
commands must be run by root, we assume that the whole installation will be per-
formed from the root userid.

Before starting the installation, two directories should be created:

• A directory on which all GT software is installed, in our example:

“/usr/local/globus”

• A directory on which GPT is installed, in our example:

“/usr/local/gpt”

To communicate these directories to the Globus installation software, two
environment variables (see Appendix A for details on environment variables)
should be set:

1. The environment variable named “GPT_LOCATION” must point to the
GPT installation directory.

2. The environment variable named “GLOBUS_LOCATION” must point to
the Globus installation directory.

The commands to set these variables depend on the used shell:

• In case of shell belonging to the C family, they are:

setenv GPT_LOCATION /usr/local/gpt

setenv GLOBUS_LOCATION /usr/local/globus

• In case of Bourne shell:

export GPT_LOCATION=/usr/local/gpt

export GLOBUS_LOCATION=/usr/local/globus

As also suggested in Appendix A, these commands should be inserted into the
profile script of the used userid (root in our example) and of each user of the grid (as
explained later).

From now on, we refer to values assumed by the two variables with the usual
form $GPT_LOCATION and $GLOBUS_LOCATION, in accordance with the
most common notation adopted by computational scientists.

3.3 Setting Up the Environment 61

3.4 Globus Installation

After setting up the environment, the next step is the installation of GT. Of course,
the first problem is finding the package. The full package is available in the attached
CD-ROM, but we now describe the standard procedure to download it via the
Internet.

3.4.1 Downloading the Package

GT services are given in a number of freely downloadable bundles [3]. A bundle is a
collection of packages that can be installed and built with the GPT, also freely down-
loadable from the Globus site. The bundles reflect the GT structure. Each pillar is
associated with three bundles: client, server, and SDK. Client bundles have to be
installed on client machines (i.e., the machines launching applications). Server bun-
dles refer to server machines (i.e., machines where applications run). SDK bundles
should be installed when the goal is to develop a grid-enabled application that makes
use of the Globus API.

There are source and binary bundles available. Installing precompiled binaries
helps save the storage space required by the code, and it skips the compilation phase
of the installation. The source distribution is preferred when the user intends to
make changes to the GT code or debug the GT code at the source level or if
she needs to install the GT on a system for which precompiled binaries are not
available.

Anyway, when possible, we suggest installing source bundles: in a good number
of cases (as further described in the book), they are strongly required. For this rea-
son, from now on we refer to the source distribution.

Before installing Globus software, the GPT should be downloaded and installed.
Suppose we download (via ftp or HTTP) the compressed archive named
“gpt-###.tar.gz” (where ### generally contains the version number).

To extract the GPT files from the archive:

gunzip -c gpt-###.tar.gz –dc | tar xf –

This command creates a directory named “gpt-###” with GPT files. Move to
that directory:

cd gpt-###

Build the package:

./build_gpt

If the environment variable GPT_LOCATION has been set, the GPT software is
now installed in $GPT_LOCATION directory.

Now the Globus bundles can be downloaded (possibly in a directory other than
the $GLOBUS_LOCATION) and installed.

62 Building Up a Grid

3.4.2 Installing the Toolkit

The bundles are distributed in a compressed archive form, and files must not be
extracted from it. The following command must be issued:

$GPT_LOCATION/sbin/gpt-build -verbose <bundle> <flavors>

Where <bundle> should be replaced with the bundle name and <flavors> with a
string expressing compile options. This lets the user select his favorite compiler,
architecture (32 or 64 bit), use of debugging, and use of thread. The Globus site con-
tains a table of how to build the different packages, as reported in Table 3.1. The
suggested flavors are for a 32-bit architecture with debugging turned on, always
using the gcc compiler, and using threads when threading is applicable.

So the system administrator should type the following commands:

$GPT_LOCATION/sbin/gpt-build -verbose globus-data-management-
server-###.tar.gz gcc32dbg
$GPT_LOCATION/sbin/gpt-build -verboseglobus-information-services-
-server.-###tar.gz gcc32dbgpthr
$GPT_LOCATION/sbin/gpt-build -verbose globus-resource-
management-server-###.tar.gz gcc32dbg
$GPT_LOCATION/sbin/gpt-build -verbose globus-data-management-
client-###.tar.gz gcc32dbg
$GPT_LOCATION/sbin/gpt-build -verbose globus-information-
services-client-###.tar.gz gcc32dbgpthr
$GPT_LOCATION/sbin/gpt-build -verbose globus-resource-
management-client-###.tar.gz gcc32dbg
$GPT_LOCATION/sbin/gpt-build -verbose globus-data-management-
sdk-###.tar.gz gcc32dbg
$GPT_LOCATION/sbin/gpt-build -verbose globus-information-
services-sdk-###.tar.gz gcc32dbgpthr
$GPT_LOCATION/sbin/gpt-build -verbose globus-resource-
management-sdk-###.tar.gz gcc32dbg

where ### contains the version number.
Once all of the bundles are installed, run the configuration scripts that will cus-

tomize the Toolkit installation to the current host, by launching the command:

$GPT_LOCATION/sbin/gpt-postinstall

Run the Globus script that installs GSI files into the “/etc/grid-security”
directory:

3.4 Globus Installation 63

Table 3.1 Flavor Names as
Suggested for the Standard Case

Bundle Flavors

DM gcc32dbg
IS gcc32dbgpthr
RM gcc32dbg

$GLOBUS_LOCATION/setup/globus/setup-gsi

There are two environment scripts called “$GLOBUS_LOCATION/etc/
globus-user-env.sh” and “$GLOBUS_LOCATION/etc/globus-user-env.csh.” You
should read in whichever one corresponds to the type of shell you are using.

For example, if you are using a shell belonging to the C family, you must run:

source $GLOBUS_LOCATION/etc/globus-user-env.csh

In case of the Bourne family, you must type:

.$GLOBUS_LOCATION/etc/globus-user-env.sh

At this point GT is installed in the $GLOBUS_LOCATION directory (see
Table 3.2. Rooting at this directory, a number of Globus folders have been auto-
matically created:

Another relevant folder is:

“/etc/grid-security”

This contains Globus information related to security, as explained in detail in
the following section.

3.5 Globus Configuration

Once the bundles have been installed, the configuration of the grid mostly focuses on
security aspects, with authorization and authenticity being the most critical ones.
Both services are managed through the univocal identification of entities in the grid
via the distinguished name and through the use of certificates [4], signed by a trusted
CA, to be exhibited upon request (see Figure 3.3).

With regard to authorization, GT leaves the system administrator the freedom
to select access to resources for users by creating user accounts on the server
machines. As already explained in Chapter 2, users are given a globally unique name
(a DN), which identifies them in the context of the grid. Then, the system

64 Building Up a Grid

Table 3.2 List of GT Directories

$GLOBUS_LOCATION/etc/ It contains some relevant configuration files. The most
relevant is globus-gatekeeper.conf, containing a number
of configuration information, such as the gatekeeper port
number and the location of the security data

$GLOBUS_LOCATION/bin/ With Globus commands inside

$GLOBUS_LOCATION/man/ With Globus man pages inside

$GLOBUS_LOCATION/lib/ With Globus libraries inside

$GLOBUS_LOCATION/include/ With Globus include files inside

$GLOBUS_LOCATION/var/ Where the GRAM gatekeeper logs its activity in a file
called globus-gatekeeper.log

administrator must define a match between users (identified by their DN) and
accounts on server machines. When a candidate user requests access to resources
located on a server machine, he exhibits his certificate, with his DN inside. GT reads
the DN and checks whether the user is permitted to use the requested resources.

With regard to the authentication service, GT adopts a mutual authentication,
where both parts aiming at communicating must prove to one another their iden-
tity. Because of this, every user and service must own a certificate. Users connect to
client machines where their certificate is installed and from those machines, they
contact remote server machines by entering Globus commands. The authentication
handshake completes successfully if:

1. Both user and server own a certificate;
2. Globus security procedures recognize each certificate as valid.

3.5.1 Authorization

A file named “grid-mapfile,” must be created in the “/etc/grid-security” folder of
server machines, to specify the list of authorized users of resources. This file contains
the information needed by the Globus gatekeeper to map a request for GT services
from a user with a particular global subject name (DN) to a local user login name on
that system. The file contains records consisting of user distinguished names and the
local login name or account that should be used on that system. If a match exists,
then the requested GT service is provided and will be invoked under the appropriate
user login name or account, as determined in “grid-mapfile.” Each entry of the
“grid-mapfile” is a couplet of quoted credential name (the subject of a certificate)
and an unquoted local user name. An example of “grid-mapfile” is the following:

3.5 Globus Configuration 65

Client

Server machine

“/C=IT/ST=Italy/L=Lecce/O=elemgrid/CN=Alessandra Esposito” alexa

“/C=IT/ST=Italy/L=Lecce/O=elemgrid/CN=Alessandra Esposito”

userkey.pem
usercert.pem

grid-mapfile

Figure 3.3 In order to allow users to access grid services, client and server machines must be
configured in a suitable fashion. On the client side, users should be given an account, a DN, and a
certificate associated with that DN. On the server side, the core configuration step is the generation
of the grid-mapfile file, where the global DN is mapped to a local userid.

“/C=IT/ST=Italy/L=Lecce/O=elemgrid/CN=AlessandraEsposito” alexa

“/C=IT/ST=Italy/L=Lecce/O=elemgrid/CN=LucianoTarricone” luciano

In this way, we ask to match two remote users, identified by their subject names,
respectively, with the local user name “alexa” and “luciano.”

3.5.2 Authentication

The authentication service is based on the SSL protocol. Each user and service in the
grid must be identified by a certificate containing the public cryptographic key and
the signature of the CA. In GT, certificates can be created only by the CA, who
reviews the certificate request submitted by the user and accepts or denies it accord-
ing to an established policy.

If you already have a CA in your network, you can use it for the certification in
the Globus context. Otherwise, there are two possibilities:

1. You can request certificates to the Globus CA. The Globus team, in fact,
offers the opportunity to contact its own CA via e-mail. The toolkit contains
a useful script to generate a certificate request to be sent to the Globus CA.

2. You can create your own CA. This possibility is very useful if you have an
isolated network that does not communicate with the outside world or if you
are just experimenting with a fictitious network. In these cases, you must first
create the CA certificate and then user and service certificates. The Openssl
package contains all of the commands necessary to achieve this goal, though
GT is equipped with a very useful script simplifying this task.

These two alternatives are described next. For each alternative, we explain how
to create:

1. User certificates. Each user of the grid must be authenticated. To do that, a
certificate must be created and distributed in the grid.

2. Gatekeeper certificates. When a job is submitted to the gatekeeper by the
client, a process of mutual authentication occurs. On one side it ensures that
the client has permission to execute jobs on the computer. On the other side,
it checks that the gatekeeper is the correct resource. For this reason, the
gatekeeper must own a certificate and key.

3.5.3 Using the Globus CA

3.5.3.1 User Certificate

GT includes a certificate request generation script to create keys and certificate
requests. The user must enter the command:

grid-cert-request

It is important that the user is running from its normal user account, not “root”
or “globus.” The CA will not sign certificates for the accounts “root” or “globus,”

66 Building Up a Grid

because they are local accounts, not necessarily affiliated with a real person. This
command asks for a password to protect the user’s private key. The command also
asks for a subject name, which should be something like

“/O=Grid/O=Globus/OU=elemgrid.org/CN=AlessandraEsposito”

where OU must match with the host DNS name and CN with the user name as
returned from the finger command.

When the user runs this command, it generates three files:

1. The first file is a certificate request named “usercert_request.pem.” The
user’s public key is inserted into the certificate request.

2. The second is the user’s private key, saved on a separate file named
“userkey.pem,” which is encrypted using the user’s password.

3. The third is a 0-byte file, named “usercert.pem.” It is merely a placeholder
that serves as a reminder where to put the certificate when the CA responds
to the request.

The request must be emailed to the CA (ca@globus.org for using Globus CA),
which, upon receiving the request, reviews it and signs it electronically.

When the response arrives, the user should create a directory inside his
home directory, name it “.globus,” and save there the e-mail onto a file named
“user cert.pem.” In the same directory the user should save the “userkey.pem” file,
too.

In the end, the user will have a “userkey.pem” and “usercert.pem” in its
“.globus” directory.

3.5.3.2 Host Certificate

Host certificate and key are requested and created in a similar manner by the system
administrator. The certificate and key of the gatekeeper, however, do not require a
password.

The following command should be run as root to get a gatekeeper certificate,
replacing the text <hostname> with the fully qualified hostname:

grid-cert-request -service host -host hostname

For example, if you are requesting a certificate for the gatekeeper running on
“matisse.elemgrid.org,” you should type:

grid-cert-request -service host -host matisse.elemgrid.org

This command generates the gatekeeper certificate request and the gatekeeper
private key. The certificate request should then be e-mailed to the CA. When the cer-
tificate arrives, the contents of the e-mail should be saved in:

/etc/grid-security/hostcert.pem

The private key should be saved in:

3.5 Globus Configuration 67

/etc/grid-security/hostkey.pem

These files should be owned by root with permissions 600 (i.e., they should be
readable and writeable only by root), so the following command should be run as
root:

chmod 600 /etc/grid-security/hostcert.pem

chmod 600 /etc/grid-security/hostkey.pem

3.5.4 Using a Local CA

To create a local autonomous CA, three steps must be performed:

• Generation of CA certificate;
• Installation of the CA certificate;
• CA configuration.

Generation To generate a CA certificate, a useful script named “CA.sh” located
in the directory named “$GLOBUS_LOCATION/bin” can be used. The “CA.sh”
script uses the configuration file named “openssl.cnf,” included in the GT software,
and expects it to be located in the installation directory of Globus, namely
$GLOBUS_LOCATION. In some GT versions, the file must be manually copied
into that folder; otherwise, the script returns an error:

cp /usr/share/ssl/openssl.cnf $GLOBUS_LOCATION

Then, the following command can be typed:

$GLOBUS_LOCATION/bin/CA.sh -newca

The command asks for the CA password to protect the CA private key. Then, it
asks for the CA DN, requesting the following fields, some of which are not
compulsory:

• Country code (C);
• State name (ST);
• Locality name (L);
• Organization name (O);
• Organization unit name (OU);
• Common name (CN);
• E-mail address (Email).

Once these fields have been inserted, the resulting sequence is the DN of the CA.
Suppose we input the strings, as listed here:

• Country code: IT;

68 Building Up a Grid

• State name: Italy;
• Locality name: Lecce;
• Organization name: elemgrid;
• Common name: CA

With these reported choices, the DN looks like:

“/C=IT/ST=Italy/L=Lecce/O=elemgrid/CN=CA”

As can be verified by issuing the command:

openssl x509 –in ./demoCA/cacert.pem –noout –issuer

Where “cacert.pem” is the name of the file containing the CA certificate, gener-
ated by the CA.sh script. Meanwhile the encrypted private key is saved in a file
named “cakey.pem.” The CA.sh script creates a directory named “demoCA,”
where the CA maintains a database of the certificates it manages. In this directory,
the script puts the file named “cacert.pem,” while the file named “cakey.pem” is put
into the “demoCA/private/” folder.

Installation Once the certificate and the key have been generated, CA’s certificate
needs to be distributed to all server and client machines. It must also be installed
there with the appropriate name and in the suitable directory.

GT requires that the certificate is named with the hash value of its subject name
(i.e., it must have a filename like “hash_value.0,” where hash_value is the hash
value of the subject name of the certificate). This is used in Openssl to form an index
to allow certificates in a directory to be looked up by subject name.

Suppose now that the current directory is that created by the “CA.sh” script and
named “demoCA.” To calculate the hash value, the following command should be
run:

openssl x509 –in cacert.pem –noout –hash

Suppose now that the command returns the hash value b37bb35. The following
command should be run in order to install the certificate in the final directory:

cp cacert.pem /etc/grid-security/certificates/b37bb35.0

If you prefer, you can rename it:

mv cacert.pem /etc/grid-security/certificates/b37bb35.0

or create a symbolic link:

ln –s cacert.pem /etc/grid-security/certificates/b37bb35.0

Configuration Once the CA certificate has been installed in the final directory, a
configuration file named “hash_value.signing_policy” (“b37bb35.signing_policy”
in the example) must be created and installed in the same directory as the certificate.

3.5 Globus Configuration 69

The file describes the security policy for the grid. The policy is described by the
extended access control lists (EACL). EACL enumerate CAs allowed access to grid
objects and the type of access they are granted. Their contents look like:

#token type | def.authority | value

EACL entry #1

access_id_CA x509 ‘/C=IT/ST=Italy/L=Lecce/O=elemgrid/CN=CA’

pos_rights globus sign

cond_subjects globus ‘”/C=IT/ST=Italy/*”’

#end of EACL

The character ‘#’ at the beginning of a line marks a comment line. In the line
beginning with the token type “access_id_CA,” the CA is identified (i.e., the DN of
the CA must be defined). In the line beginning with the token type “pos_rights,” it is
declared what the CA can do (i.e., sign certificates). In the line beginning with the
token type “cond_subjects,” we say whom the CA accepts.

In this example, the file says that:

1. Line with the access_id_CA token—the CA is identified by the x509 subject
name:

“C=IT/ST=Italy/L=Lecce/O=elemgrid/CN=CA”

2. Line with the pos_rights token—the CA can sign certificates for the globus
community.

3. Line with the cond_subjects token—the CA accepts only certificates with a
subject name having the fields C and ST equal to “IT” and “Italy,”
respectively.

3.5.4.1 User Certificate

Suppose now that the current directory is the parent directory of “demoCA.” To
create the certificate request and the private user key, the following command can be
used:

openssl req –new –keyout userkey.pem –out userreq.pem

This command will ask for a password to protect the user private key. The
command also will ask for a subject name, which should look something like

“/C=IT/ST=Italy/L=Lecce/O=elemgrid/CN=AlessandraEsposito”

where CN must match with the user name. This key generates the user private key
(“userkey.pem”) and the certificate request (“userreq.pem”).

To request the local CA to sign the certificate, the following command can be
used:

openssl ca –policy policy_anything –out usercert.pem –infiles
userreq.pem

70 Building Up a Grid

This command will ask for the CA password to decrypt its private key. This step
outputs the user signed certificate named “usercert.pem.”

To copy the certificate in the suitable directory, the following commands can be
used:

cp userkey.pem $HOME/.globus/
cp usercert.pem $HOME/.globus/

Where $HOME points to the user home directory.
To set the permissions:

chmod 600 $HOME/.globus/userkey.pem
chmod 600 $HOME/.globus/usercect.pem

To verify the subject name, the following command can be used:

openssl x509 –in usercert.pem –noout –subject

3.5.4.2 Host Certificate

To create the gatekeeper certificate request and the private key, the following com-
mand must be typed:

openssl req -nodes –new –keyout hostkey.pem –out hostreq.pem

where the option “–nodes” is needed to create a no-password private key.
The command asks for a subject name, which should look something like:

“/C=IT/ST=Italy/L=Lecce/O=elemgrid/CN=picasso.elemgrid.org"

where CN must match with the hostname. This key generates the host private key
(“hostkey.pem”) and the certificate request (“hostreq.pem”).

To request the certificate to the local CA the command is:

openssl ca –policy policy_anything –out hostcert.pem –infiles
hostreq.pem

This command asks for the CA password to decrypt its private key. This step
outputs the host signed certificate named “hostcert.pem.”

To copy the certificate in the suitable directory:

cp hostkey.pem /etc/grid-security/
cp hostcert.pem /etc/grid-security/

To set the permissions:

cd /etc/grid-security/
chmod 600 hostkey.pem
chmod 600 hostcert.pem

3.5 Globus Configuration 71

3.6 Services Start Up

From the grid user and administrator point of view, it is extremely useful that all of
the services are automatically started during the bootstrap of each machine in the
grid. This requires some configuration steps, which are schematically described in
this section. What follows can be dependent on the operating system and might need
some small customizations.

3.6.1 Resource Management

A server machine must have a GRAM gatekeeper active. Red Hat Linux includes the
eXtended InterNET services daemon (called “xinetd”), responsible for starting pro-
grams that provide Internet services. The xinetd configuration file (“/etc/services”)
lists services to be started by xinetd. In order to include the GRAM gatekeeper in this
list, edit this file by adding the line:

gsigatekeeper 2119/tcp

This line asks the Linux xinetd daemon to start at port 2119 a service employing
the tcp protocol and named gsigatekeeper.

Next, create a file in the “/etc/xinetd.d/” folder, name it “globus-gatekeeper”
and add the following:

service gsigatekeeper

{

socket_type = stream

protocol = tcp

wait = no

user = root

env = LD_LIBRARY_PATH=GLOBUS_LOCATION/lib

server = GLOBUS_LOCATION/sbin/globus-gatekeeper

server_args = -conf GLOBUS_LOCATION/etc/globus-gatekeeper.conf

disable = no

} =

where GLOBUS_LOCATION must be replaced with the globus installation folder
(“/usr/local/globus” in our example).

This file lists the characteristics of the service to be started by xinetd. Details on
the single commands in the file can be found in Linux manuals.

Once the configuration files have been updated, restart xinetd:

/etc/rc.d/init.d/xinetd restart

3.6.2 Information Services

As discussed in Chapter 2 and shortly resumed at the beginning of the present chap-
ter, MDS is the core of the processes collecting information from grid nodes.

72 Building Up a Grid

During the installation phase, a script named “SXXgris” is automatically
installed in the directory named $GLOBUS_LOCATION/sbin. This script must be
used both to start MDS manually:

$GLOBUS_LOCATION/sbin/SXXgris start

and to stop it

$GLOBUS_LOCATION/sbin/SXXgris stop

To start MDS automatically, add the following line to the file named
“/etc/rc.local”:

$GLOBUS_LOCATION/sbin/SXXgris start

where GLOBUS_LOCATION must be replaced with the globus installation folder
(“/usr/local/globus” in our example).

3.6.3 Data Management

Data transfer in Globus is performed by using GridFTP (see Chapter 2 and the
beginning of the current chapter).

To start automatically the GridFTP service, add the following line to the file
named “/etc/services”:

gsiftp 2811/tcp

This line asks the Linux xinetd daemon to start a service named “gsiftp” at port
2811. Then, create the file named “grid-ftp" in the “/etc/xinetd.d/” folder with the
following contents:

service gsiftp

{

socket_type = stream

protocol = tcp

wait = no

user = root

env = LD_LIBRARY_PATH=GLOBUS_LOCATION/lib

server = GLOBUS_LOCATION/sbin/in.ftpd

server_args = -l -a

disable no

}

where GLOBUS_LOCATION must be replaced with the Globus installation folder
(“/usr/local/globus” in our example).

Details on the commands contained in the file can be found in Linux manuals.

3.6 Services Start Up 73

Finally, xinetd must be restarted by issuing the command:

/etc/rc.d/init.d/xinetd restart

3.7 Introducing a New User to the Grid

Once the basic infrastructure of the grid has been activated, users must be registered
in accordance with the security issues reported in Section 3.5. This requires some
operations both on the server and on the client side.

3.7.1 Client Side

On the client side, the following procedure is suggested:

1. Create an account on a Globus-enabled client machine (i.e., a machine where
client bundles have been installed).

2. Login to that machine with the account created in step 1.
3. Set up your environment and path; if you are using a C shell, you must add

the following lines to your profile:

setenv GLOBUS_LOCATION /usr/local/globus

source $GLOBUS_LOCATION/etc/globus-user-env.csh

In the case of the Bourne shell, you must insert the following lines in your
profile:

export GLOBUS_LOCATION=/usr/local/globus

. $GLOBUS_LOCATION/etc/globus-user-env.sh

4. Create a user certificate, as reported in Section 3.5.1.

3.7.2 Server Side

On the server side, the following procedure is suggested:

1. Create an account on a server machine.
2. Install the user certificate generated on the client side.
3. Change the “grid-mapfile” file, as reported in Section 3.5.1.

3.8 Globus-Relevant Commands to Use the Grid

We are now ready to let users access all of the grid facilities and serv-
ices. In this section, the main commands to use the grid and its resources are
reported.

74 Building Up a Grid

3.8.1 Authentication

Globus authentication requires the use of proxies, a convenient mechanism for
reducing the number of times users must enter their password. If many jobs are to be
submitted in a few hours, the tedium of reentering the password can be avoided by
creating a proxy. The proxy is a certificate and a key, signed by the user, created
using the grid-proxy-init program. The number of hours for which it will be valid,
as well as the number of bits in the key, can be set by the user. The intention is that
these proxies be used for short-term rather than long-term authentication. To create
a proxy enter:

grid-proxy-init

The command requests the user password for decrypting its private key and
outputs the proxy expiration date. By typing grid-proxy-init, the user obtains single
sign-on capability for 12 hours (the default). To get rid of your proxy, enter:

grid-proxy-destroy

The proxy will self destruct after 12 hours (or whatever duration you set), but it
is more secure to destroy it by yourself when your job is completed.

It is worth mentioning that authentication is needed in order to access every
service in a grid. Therefore, the “grid-proxy-init” command must be typed before
accessing any resources, as will probably be apparent after reading the beginning of
the next subsection.

3.8.2 Resource Management

Running an executable on a remote machine is probably one of the most frequent
needs in a grid. The executable to be launched can be resident on the targeted
machine or not. Both cases can be managed. The suitable command for such task is:

globus-job-run

We recall that this command must be forwarded by the “grid-proxy-init”
command.

When the executable to run is resident on the remote machine, the complete
syntax of the command becomes:

globus-job-run host <executable> <arguments>

An example can be useful to explain it (see Figure 3.4).
Suppose we launch the following command from the machine named

“bach.unile.it”:

globus-job-run picasso.elemgrid.org /bin/ls /usr/local/bin

This command returns the list of files contained in the “/usr/local/bin/” folder of
the machine called “picasso.elemgrid.org.”

3.8 Globus-Relevant Commands to Use the Grid 75

Suppose now that you have developed an application, named “myapp,” on the
machine called “bach.unile.it.” Suppose also that this application requires resources
not available on machine “bach.unile.it” but available on other machines belonging
to the grid (“picasso,” for instance). The right thing to do is to run the application on
the “picasso” machine. This can be done by simply using the “–stage” option of the
globus-job-run command (see Figure 3.5).

76 Building Up a Grid

globus gpt ntp

globus-job-runbach.unile.it

globus gpt ntp

% globus-job-run picasso.elemgrid.org /bin/ls /usr/local/bin

picasso.elemgrid.org

/bin/ls

Figure 3.4 With the “globus-job-run” command, it is possibile to execute a remote program, resi-
dent on a server machine. On the client machine, “bach.unile.it”, the user asks to execute the “ls”
command resident on the server machine, namely “picasso.elemgrid.org”. The command standard
output is redirected to the client console.

bach.unile.it

picasso.elemgrid.org

myapp

% globus-job-run picasso.elemgrid.it –stage /home/mickey/bin/myapp

Figure 3.5 By giving the option “–stage” to the “globus-job-run” command, an executable
resident on the local machine can be run in a remote fashion. The application is resident on the client
machine, namely “bach.unile.it”, and runs on the server machine, namely “picasso.elemgrid.org”.

When this option is given, the command first stages the executable over the
remote machine, then executes it, and finally removes the staged copy when the
executable has finished.

In this case, the complete syntax becomes:

globus-job-run <hostname> –stage <executable> <arguments>

Returning to our example, in order to run the application named “myapp”
remotely, the following command should be entered from the client machine (where
the application resides):

globus-job-run picasso.elemgrid.org –stage /home/mickey/bin/myapp

If the application requires any input argument (e.g., an integer), it can be given
with the same command:

globus-job-run picasso.elemgrid.org –stage
/home/mickey/bin/myapp 10

Consider now a more complex scenario (see Figure 3.6): suppose that the appli-
cation “myapp” reads its input from a file named “myapp.in” (possibly generated
by another application that has been launched from another client machine) and
resident on the targeted machine, namely “picasso.elemgrid.org.”

This case can be addressed by generating an RSL script file (RSL was introduced
in Chapter 2):

3.8 Globus-Relevant Commands to Use the Grid 77

picasso.elemgrid.org

bach.unile.it

myapp
myapp.dat

&
(count=1)
(jobtype=single)
(directory=/tmp/bin)
(executable=gsiftp://bach.unile.it/home/mickey/bin
/myapp)

% globusrun –s –r picasso.elemgrid.org -f myapp.dat

myapp.in

Figure 3.6 By writing RSL files, it is possibile to express the characteristics of the job to be launched.
For example, it is possibile to ask that the application reads the input from a file located in the server
machine. The application, namely myapp, and the RSL file, namely myapp.dat are resident on the
client machine, namely “bach.unile.it,” while the input file is located on the server machine. On the
client machine, the command globusrun must be entered, passing to it the FQDN of the server
machine and the filename of the RSL file.

&

(count=1)

(jobtype=single)

(directory=/tmp/bin)

(executable=gsiftp://bach.unile.it/home/mickey/bin/myapp)

(stdin=myapp.in)

This file says that the executable named:

“/home/mickey/bin/myapp”

and located in the directory named “/home/mickey/bin” of “bach.unile.it” machine
(i.e., the client machine), should run in a not-threaded way (jobtype=single), with
one active process (count=1), in the active directory called “/tmp/bin,” and its input
should be read from a file called “myapp.in.”

This file is created on the machine where the application resides and is named
“myapp.dat.” You can then issue the command:

globusrun –s –r picasso.elemgrid.org –f myapp.dat

This command interprets the contents of the RSL file named “myapp.dat.” So,
in accordance with the directives contained in that file, it executes the program
named “/home/mickey/bin/myapp” on the server machine named “picasso.elem-
grid.org.” The executable is launched in the “/tmp/bin” directory of the server
machine and reads the input from a file named “myapp.in” and located in that
directory.

If the application generates any output, it could be useful to save it into a file,
named “myapp.out.” To achieve this, it is sufficient to add the following line to the
RSL “myapp.dat” file:

(stdout=myapp.out)

In this case, if the globusrun command is launched, at the end of the execution,
the user can read the standard output by accessing the file “myapp.out” located in
the “/tmp/bin” folder of the server machine. This can be done by using traditional
ftp or by using Globus data-management programs, which will be discussed later.
By the way, we suggest fully exploiting the potential of RSL, which allows users to
recall files for standard input or standard output via an URL, as shown in Figure 3.7.

3.8.3 Information Services

Monitoring the status of facilities in the grid is extremely useful and important for
end users. For instance, the identification of where a certain job is running can be
better performed once the CPU occupation is checked for all of the nodes in the grid.
The GRIS resources of Globus are extremely useful for such goals. An example is
represented by the following command typed on a client machine (e.g., the
“bach.unile.it” machine, as shown in Figure 3.8):

78 Building Up a Grid

grid-info-search –x -h picasso.elemgrid.org –b ‘Mds-vo-
-name=local,o=grid’

With this command, you ask information about all resources available on
“picasso” (“-h” option) by querying the “picasso” local GRIS (“-b” option). The

3.8 Globus-Relevant Commands to Use the Grid 79

bach.unile.it

picasso.elemgrid.org

mozart.unile.it
matisse.elemgrid.org

myapp
myapp.dat

% globusrun –s -r picasso.elemgrid.org -f
myapp.dat

&
(count=1)
(jobtype=single)
(directory=/tmp/bin)
(executable=gsiftp://bach.unile.it/home/mickey/
bin/myapp)
(stdin=gsiftp://matisse.elemgrid.org/myapp.in)
(stdout=gsiftp://mozart.unile.it/myapp.out)

myapp.in myapp.out

Figure 3.7 The RSL syntax allows users to ask that the application reads the input from or writes the
output on a machine different from both the client machine and the hosting machine. In the exam-
ple, the application, resident on “bach.unile.it” is launched on “picasso.elemgrid.org,” reads the
input from the file “myapp.in” located in the “matisse.elemgrid.org” machine, and produces its
output by generating the file “myapp.out“ in the “mozart.unile.it” machine.

bach.unile.it

picasso.elemgrid.org

% grid-info-search -x -h picasso.elemgrid.org -b ‘Mds-vo-name=local,o=grid’

Figure 3.8 From a client machine, it is possibile to query remote GRIS about the status of resources
located on remote machines. In the example, from “bach.unile.it,” the user requests data with
respect to all of the resources available on the remote machine named “picasso.elemgrid.org.”

option named “-x” is used to make an anonymous query (otherwise, an LDAP cer-
tificate must be generated and installed in a similar fashion as described for user and
host certificates in Section 3.5.2)

Segments of the output returned by the above command are as follows:.

#

filter: (objectclass=*)

requesting ALL

#

picasso.elemgrid.it,local,grid

dn:Mds-host-dn=picasso.elemgrid.org , Mds-vo-name=local,o=grid

objectClass=MdsComputer

objectClass=MdsComputerTotal

objectClass=MdsCpu

objectClass=MdsCpuCache

objectClass=MdsCpuFree

….

Mds-Computer-platform=I686

Mds-Computer-Total-nodecount=1

Mds-Cpu-Cache-12kb=512

…

The command returns the list of all resources available on the machine
“picasso” (lines beginning with the token “objectClass”) and, for each resource,
gives their characteristics (lines beginning with the token Mds-).

3.8.4 DM

You can use GT to easily transfer files between machines. Ftp or secure copy (scp)
are well-known protocols for such purposes. Unfortunately, many sites have deacti-
vated ftp for security reasons, while scp is sometimes very slow because it has to
encrypt all of the data to be transferred. With the Globus command “globus-url-
copy,” you have an easy alternative.

Suppose you need to transfer the file named “myfile,” located in the direc-
tory named “/home/alexa/” from machine “bach.unile.it” to “matisse.elem-
grid.org”. Login into the machine “bach.unile.it” and issue the following
command:

globus-url-copy file:///home/alexa/myfile
gsiftp://matisse.elemgrid.org/home/alexa/myfile

Another way to transfer files, whose appeal will be evident when dealing with
the GT API, in Section 3.9, is the use of a GASS server. Just look at the following
example where we transfer a file from machine “bach.unile.it” to “matisse.elem-
grid.org” (see Figure 3.9).

80 Building Up a Grid

First, a GASS server must be started on the targeted machine. To do this, on
“matisse.elemgrid.org,” issue the globus-gass-server command:

globus-gass-server -r -w -p 3000 &

The command is started in background (by typing the “&” character at the end
of the command), and the following options have been adopted:

• -r to enable read access to the local file system;
• -w to enable write access to the local file system;
• -p port to set the port number at which the GASS server listens.

The command returns the following line:

https://matisse.elemgrid.org:3000

As noticeable, the command returns an address, called base URL, which identi-
fies the targeted machine. By default, this is an HTTP over SSL (HTTPS) URL, using
the user’s credentials. If the –i (insecure) option is set, the protocol used is HTTP
(without security).

Next, on the bach.unile.it machine, authenticate yourself by launching the
command:

grid-proxy-init

3.8 Globus-Relevant Commands to Use the Grid 81

bach.unile.it

matisse.elemgrid.org

origfile

% globus-url-copy file://origfile https://matisse.elemgrid.org:3000/destfile

destfile

% globus-gass-server –r –w –p 3000 &

Figure 3.9 Globus procedure to transfer a file from a local machine to a remote machine. Before
transferring the file with the globus-url-copy program, a GASS server must be active on the
destination machine and the client has to be authenticated.

Finally, you can initiate the transfer. On “bach,” launch:

globus-url-copy file://origfile https://matisse.elem-
grid.org:3000/home/mickey/destfile

This command copies the file “origfile” from the current directory of “bach”
onto the file “/home/mickey/destfile” of “matisse.” If simple customizations to the
procedure described earlier are performed, it is even possible to request the transfer
between a couple of remote machines, as shown in Figure 3.10.

3.9 Developing Grid-Enabled Applications

In the previous section, we described how a user can access grid facilities and serv-
ices. Now, we focus on how a programmer can develop applications ready to run in
a grid environment. To this purpose, a fundamental role is played by the Globus API
(already described in Chapter 2). All of the Globus components offer an API written
in language C, which allows calling Globus utilities in the context of an application.
In this section, we introduce a very useful API, the GASS file access API. It allows
reading or writing files on a remote machine.

Once a remote file is opened with the Globus calls, it can be read and written
with ordinary UNIX I/O and C calls. Hence, a program can be modified to operate
in a grid environment by simply using the Globus calls in place of open(), close(),
fopen(), and fclose(), typical of C and UNIX.

82 Building Up a Grid

bach.unile.it

% globus-url-copy https://matisse.elemgrid.org:3000/origfile
https://matisse.elemgrid.org:3000/destfile

% globus-gass-server –r –w –p 3000 & % globus-gass-server –r –w –p 3000 &

origfile destfile

matisse.elemgrid.org picasso.elemgrid.org

Figure 3.10 By typing the “globus-url-copy” command, it is possibile to ask the transfer of a file
from a remote machine to another remote machine. In the figure, from “bach.unile.it”, the user asks
to transfer the file named “origfile” from the “matisse.elemgrid.org” machine to the “picasso.elem-
grid.org” machine. The procedure completes successfully if the GASS server has been previously
activated on both the machines involved in the transfer (namely matisse and picasso) and if the user
has been authenticated.

Suppose, for instance, that you have a code written in C language containing
such lines:

fd = fopen("filename", ...);

fprintf(fd, ...);

fclose(fd);

You can migrate it towards a grid environment by changing it to:

fd = globus_gass_fopen("http://hostname:port/filename", ...);

fprintf(fd, ...);

globus_gass_fclose(fd);

The “globus_gass_fopen” function stages the file into the GASS cache, opens it
locally, and returns the variable named “fd.” Then all of your I/O operations
against that file are local. The “globus_gass_fclose()” function finally stages the file
back to the URL.

Note that, before these functions are called, the following function must be
called:

globus_module_activate(GLOBUS_GASS_FILE_MODULE);

This function returns GLOBUS_SUCCESS if GASS is successfully initialized,
and you are therefore allowed to subsequently call GASS functions. Otherwise, an
error code is returned, and GASS functions should not be subsequently called.

To deactivate GASS, the following function must be called:

globus_module_deactivate(GLOBUS_GASS_FILE_MODULE);

This function must be called once for each time GASS is activated.

3.9.1 An Example with Globus API

Suppose that you are implementing a routine on the “bach.unile.it” machine that
needs to write on a remote file (see Figure 3.11).

Suppose that the file is located on the “picasso.elemgrid.org” machine, in the
directory named “/home/alexa/” and that it is named “myfile.”

On “bach,” write down the following code:

#include <stdio.h>
#include "globus_common.h"
#include "globus_gass_file.h"
#include "globus_error.h"
main()
{

FILE *fp;
int rc=0;

3.9 Developing Grid-Enabled Applications 83

if((rc=globus_module_activate(GLOBUS_GASS_FILE_MODULE))
!=GLOBUS_SUCCESS)

{
printf("gass activation failed\n"); exit(-1);

}

fp=globus_gass_fopen("https://picasso.elemgrid.it:3003/
home/alexa/myfile,"w");

fprintf(fp,"Hello remote file ");

globus_gass_fclose(fp);
globus_module_deactivate(GLOBUS_GASS_FILE_MODULE);

}

Note that the name of the file has been replaced by:

https://picasso.elemgrid.it:3003/home/alexa/myfile

which contains the protocol (HTTPS), the FQDN of the remote machine
(“picasso.elemgrid.it”), the port of the remote GASS server (3003), the path to the
remote file (“/home/alexa”), and its name (“myfile”).

In your makefile, perform the following actions:

1. Insert the library location with the loader –L option:

-L$(GLOBUS_LOCATION)/lib

84 Building Up a Grid

bach.unile.it

myfile

picasso.elemgrid.org

Main()
{
…
if((rc=globus_module_activate(GLOBUS_GASS_FILE_MODULE))
!=GLOBUS_SUCCESS)
{
…
}
fp=globus_gass_fopen("https://picasso.elemgrid.it:3003/
home/alexa/myfile,"w");
fprintf(fp,"Hello remote file ");
globus_gass_fclose(fp);
globus_module_deactivate(GLOBUS_GASS_FILE_MODULE);
}

myprog.c

Hello remote file

% globus-gass-server –r –w –p 3003 &

Figure 3.11 Thanks to the Globus file access API, a program can be developed that reads and writes
on remote files. The program “myprog.c” is resident on the machine “bach.unile.it” and writes the
string “Hello remote file” on the file “myfile” located in the machine “picasso.elemgrid.org”.

Where GLOBUS_LOCATION is the Globus installation directory
(“/usr/local/globus/” in our configuration)

2. Ask to link globus GASS library with the –l option:
-lglobus_gass_file_$(GLOBUS_FLAVOR) -lglobus_common_$(GLOBUS_
FLAVOR)
Where GLOBUS_FLAVOR is the flavor chosen during the installation of
Globus (“gcc32dbg” in our installation, see also Table 3.1).

3. Express the location of the file to be included with the –I option:

-I$(GLOBUS_LOCATION)/include/$(GLOBUS_FLAVOR)

Now you can compile your application, with your favorite C compiler. After
that, to complete the procedure, on picasso, start the GASS server:

globus-gass-server -r -w -p3003 &

and on “bach,” perform the authentication step:

grid-proxy-init

The application can be launched.

3.10 Message Passing in a Grid Framework

As discussed in Chapter 1, message passing is a leading paradigm in distributed and
parallel computing, with MPI the de facto standard. MPICH-G2 [5] is a grid-
enabled implementation of MPI. It is implemented as one of the devices of the
MPICH library, a freely available implementation of MPI.

MPICH-G2 requires the prior installation of source bundles of the Globus
RM pillar. Then, the MPICH library must be configured specifying the globus2
device. The application must be compiled on each machine it is intended to run
on. MPICH includes a number of compile commands (mpicc, mpiCC, mpif90,
mpif77) related to the most frequently used languages. To launch an applica-
tion, the command “mpirun” must be used. Every mpirun command under the
globus2 device submits an RSL script to Globus. The user can follow two
pathways:

1. Supply its RSL script;
2. Ask mpirun to construct it, based on the arguments passed to mpirun and on

a file called “machines,” containing the list of the machines composing the
grid.

An example is now proposed, following the latter approach.
Suppose that we want now to run the application called “mympiappl” on a grid

made up of two machines. First, one must write the “machines” file:

“matisse.elemgrid.org” 4

3.10 Message Passing in a Grid Framework 85

“picasso.elemgrid.org” 5

In such a case, we have indicated that machine “matisse.elemgrid.org” can host
at most four processes, while machine “picasso.elemgrid.org” can host five
processes in the meantime.

Now, the following sequence of operations must be repeated on each machine of
the grid.

1. Create the installation directory for MPICH; for example, name it
“/usr/local/mpich”:

mkdir /usr/local/mpich

2. Download MPICH (eventually in a directory other than the installation one).
Extract the files from the compressed archive:

gunzip -c mpich.tar.gz | tar xvf -

This step creates the directory called “mpich,” where the configuration
scripts are located.

3. Go to the “mpich” directory created in the step 1:

cd mpich

4. Configure MPICH specifying the “globus2” device. When configuring with
the “globus2” device, you must specify one of the Globus flavors
(“gcc32dbg” in our configuration). Also specify the chosen installation
directory with the “–prefix” option.

./configure -device=globus2:-flavor=gcc32dbg –pre-
fix=/usr/local/mpich

This configuration script searches a file named “globus-makefile-header” in
the directory named $GLOBUS_LOCATION/sbin. Some versions of GT put
this file in the directory named $GLOBUS_LOCATION/bin. So, before
launching the “configure” script, you should copy it into the sbin folder:

cp $GLOBUS_LOCATION/bin/globus-makefile-header
$GLOBUS_LOCATION/sbin/

5. Compile MPICH:

make

6. Install MPICH in the directory specified by the “–prefix” option in the
configuration step:

make install

86 Building Up a Grid

Now MPICH has been installed, and you can compile the application. Use the
appropriate MPICH compile command, which depends on the language used for
the application. For example, if your application has been written in the C language:

$MPICH_INSTALLATION_PATH/bin/mpicc –o myappl mympiappl.c

Where MPICH_INSTALLATION_PATH must be replaced by the directory where
MPICH has been installed (“/usr/local/mpich” in our case).

Now, the application can be launched with the following command:

$MPICH_INSTALLATION_PATH/bin/mpirun –np
<num_processes> <name_of_application>

where the option “-np” specifies the number of instances of the application to be
launched.

For example, consider the command:

/usr/local/mpich/bin/mpirun –np 7 myapp

In this case, seven instances of a single SPMD program named “myapp” will be
created. MPICH is in charge of allocating these processes among the machines listed
in the “machines” file (“picasso.elemgrid.org” and “matisse.elemgrid.org”), so that
a load-balancing policy can be pursued.

3.11 Summary and Conclusions

In this chapter the main steps to building up a grid from scratch have been
described, both from the system administrator and from the end user and applica-
tion developer point of view. Though GT and the related software is in continuous
progress, we propose to the reader a detailed guide as referred to GT version 2.2;
some details could be more or less adapted to future versions. Nonetheless, the pri-
mary goal of this chapter is to guide the reader through the main practical problems
to be attacked and solved when building up a grid on a Linux system, and this
description and its conceptual relevance should remain valid even when different
versions of the toolkit or of the Linux operating system are considered.

In summary, in this chapter, first the basic concepts on GT have been recalled.
Then, the minimum requirements for hardware, software, and network are resumed
to set up an effective grid. No specific requirements exist for hardware, while GT
and NTP are minimum requirements for software. TCP/IP and a FQDN for each
node are minimum requirements for the network. All the needed software is free-
ware and is both available from the Internet and from the annexed CD-ROM.

Later on, some operations on the file system and on environment variables are
described, to be performed before GT installation.

Then, the installation procedure is schematized: from download, through GT
installation, up to its configuration, with its security issues (authorization, authenti-
cation, and certification authority).

3.11 Summary and Conclusions 87

Service start up is the consequent step. After this, the relevant task of new user
creation is described in detail, as well as a review of the most used and useful GT
commands.

The development of applications, with examples related to Globus API, is then
addressed, and finally how to support the message-passing paradigm in a grid is
discussed.

All of the addressed subjects are approached with a practitioner-oriented
method, and at the end of the chapter, the reader is assumed to be able to create a
grid from scratch, first by using the software version attached in the CD-ROM, and
later on with different versions of the same systems and tools.

References

[1] Foster, I., and C. Kesselman (Eds.), The Grid: Blueprint for a New Computer Infrastructure,
San Francisco, CA: Morgan Kaufmann, 1999.

[2] Foster, I., C. Kesselman, and S. Tuecke, “The Anatomy of the Grid,” Int. Journal of Super-
computer Applications, 2001.

[3] http://www.globus.org.
[4] Menezes, A., P. van Oorschot, and S. Vanstone, Handbook of Applied Cryptography, Boca

Raton, FL: CRC Press, 1996.
[5] http://www.mcs.anl.gov/mpi/mpich/download.html.

88 Building Up a Grid

C H A P T E R 4

Applications: FDTD with MPI in Grid
Environments

4.1 Introduction

The FDTD method is one of the most frequently used numerical approaches in the
EM community. Being a full-wave solver, it very often requires huge amounts of
computational power, thus rendering the solution of large problems unaffordable
with traditional workstations. Moreover, because of its algorithmic properties, the
FDTD method is highly amenable for an implementation on HPC platforms. Conse-
quently, it is an effective benchmark for a migration toward computational grids.

In this chapter, we shortly resume the method, proposing the most basic con-
cepts and equations. Afterwards, a general discussion is proposed on the problems
opened by an FDTD parallelization. A flexible parallel algorithm is proposed, and
its attractive features for multiprocessor computers are discussed. The FDTD paral-
lel implementation, based on MPI library, paves the way to a straight migration
towards GC, thanks to MPICH-G2. Practical guidelines are given in order to
accomplish this migration. Results are given in order to allow the reader to estimate
the attainable performance, for a certain bandwidth, platform, and protocols in the
GC. A benchmark on a relevant human-antenna interaction problem is proposed,
for an interdepartmental computational grid. Some remarkable achievements are
also focused, demonstrating that investing in GC promises wider results than the
“simple” increase in CPU power or memory availability.

4.2 The FDTD Approach: Theoretical Background

4.2.1 Yee’s Algorithm

The FDTD approach was introduced in a pioneering paper by Yee in 1966 [1]. Since
that time, it has experienced great success, basically due to its simplicity and versa-
tility. It was developed to solve Maxwell’s curl equations in the time domain (see
Appendix C), and is today one of the most used approaches for attacking partial dif-
ferential equations.

Unlike several wave equation–based methods, Yee’s algorithm contemporarily
deals with both electric and magnetic fields, rather than solving for electric or mag-
netic fields alone. This allows a very easy modeling of both electric and magnetic
local properties of materials and domains, exalting the flexibility of the approach.

89

Yee partitioned space into elementary cells. Assuming, for example, rectangular
coordinates (different systems can be adopted when needed), the coordinate axes
can be discretized with steps ∆x, ∆y, ∆z. Time step is usually indicated with ∆t. The
generic space point P can be identified with notation (i∆x, j∆y, k∆z), or, more
synthetically, (i, j, k), and any space and time function F with notation F

i j k

n

, ,
, this

meaning that function F is computed at time n∆t, in point (i, j, k). Yee’s cell is then
obtained, as reported in Figure 4.1.

In such a cell, each H-field is surrounded by four E-field components (for

instance, H z i j k

n

+ + +1
2

1
2

1, ,
is surrounded by

E E E Ex i j k

n
y i j k

n
x i j k

n
y i+ + + + + + + +1

2
1
2

1
2

1 1 1 1 1, , , , , , ,
, , ,

j k

n

+ +1
2

1,
).

This interconnected E and H-field lattice, in conjunction with a central finite-
difference discretization of Maxwell’s curl equation, with second-order accuracy,
leads to a set of relations with interesting properties [2]:

• The location of E and H fields in the Yee mesh implicitly enforces the Max-
well’s divergence equations.

• The time-stepping process is fully explicit, and the algorithm is nondissipative:
numerical wave modes propagating in the mesh do not decay because of non-
physical effects due to the time-stepping algorithm (though some discussions
must be performed on numerical dispersion, as reported in Section 4.2.3).

90 Applications: FDTD with MPI in Grid Environments

z

y
x

Ey

Ey

Ey

Ex

Ex

Ex

Hy

EzEz

Ez

Hz

Hx

(i,j,k)

(i+1/2,j+1/2,k+1)

Figure 4.1 Yee’s cell. Each H field component is surrounded by four E components.

The temporal and 3D spatial discretizations adopted in the FDTD algorithm are
implemented at their best by using a leapfrog integration scheme to solve Maxwell’s
equations. In the leapfrog scheme, at time step t = n + 1/2, in each mesh point (i, j, k),
each Hn+1/2 component is computed as a function of the previous value Hn-1/2 in the
same point, plus a function of E components at time t = n in the mesh points belong-
ing to the neighborhood of (i, j, k). In a similar way, each E component is computed,
at time step t = n + 1, in each mesh point (i, j, k), as a function of the same component
at previous time step (En) plus a function of the H components at time t = n + 1/2 in
the mesh points belonging to the neighborhood of (i, j, k). The exact expressions for
the computation are similar to the following, which is used to compute the Hx

component:

H D H D

E

x i j k

n

a i j k x i j k

n

b i j k

y i j k

, , , , , , , ,
*

, ,

+ −

+

= ⋅ =

∗

1
2

1
2

1 2 1 2 1 2 1 2
n

y i j k
n

z i j k
n

z i j k
nE

z

E E

y

−
−

−










− + −, , , , , ,

∆ ∆ 

(4.1)

being Da i j k, , and Db i j k, , , some constants that take into account the conductivity

and permittivity of the material in each mesh point:

D

t

ta i j k

i j k

i j k

i j k

i j k

, ,

, ,

, ,

, ,

, ,

=

−

+

1
2

1
2

ρ

µ

ρ

µ

∆

∆
(4.2a)

D

t

tb i j k

i j k

i j k

i j k

, ,

, ,

, ,

, ,

=

+

∆

∆

µ

ρ

µ
1

2

(4.2b)

Similar expressions can be derived for the remaining five components of E and
H fields.

A quick glance at (4.1) explains why Yee’s cell is conceived in such a fashion.
With this artifact, combined with the leapfrog scheme, the new value for each vector
component at any lattice point can be computed so that it only depends on previous
values of the same component and its four adjacent components in Yee’s cell. Any
need for equation systems, or matrix formulations, is passed by, with a consequent
relevant improvement in simplicity, efficiency, and memory requirements. The solu-
tion scheme is fully explicit; no matrix inversions must be performed.

It is also worth mentioning that the reported algorithm (differential approach)
is not the unique pathway to implement an FDTD solver. An alternative, typically
adopted when complex topologies must be included in the solution domain (e.g.,
wires or slots), is represented by the so-called integral approach, based on an inte-
gral formulation of Ampere’s and Faraday’s law. The elementary cell is still a

4.2 The FDTD Approach: Theoretical Background 91

combined E-H field lattice, though in this case the major role is played by rectangu-
lar contours associated to each field component. We do not go into detail for such
alternative formulation. We just recall that suitable stability conditions are needed
[3] and address the reader to several papers for its implementation and application
to slot modeling [4–6] or to thin wires [7, 8], just to mention some interesting contri-
butions out of a wide variety of relevant studies.

4.2.2 Stability of the Algorithm

When a numerical approach based on a spatial mesh and a time discretization is
used, a stability analysis is needed, and FDTD methods make no exceptions. The
first, and still useful, studies on such a fundamental issue were performed by Taflove
in 1975 [9]. The strategy was the classical Von Neumann approach, resulting in a
very compact stability condition, called Courant condition. In accordance with such
condition, the time step ∆t must be chosen so that:

() () ()

∆

∆ ∆ ∆

t

c
x y z

≤

+ +

1

1 1 1
2 2 2

sec (4.3)

Alternative studies have been performed (e.g., with functional analysis) leading
to more general approaches. Mrozowski’s contribution [10] is a reference paper for
the interested reader.

4.2.3 Numerical Dispersion

As previously mentioned, a dedicated discussion must be performed on the numeri-
cal dispersion of FDTD algorithms. In fact, the phase velocity of numerical plane
waves in the lattice composed of Yee’s cells can depend on the wavelength, the direc-
tion of propagation, and the mesh discretization. In other words, waves propagating
in the lattice can accumulate phase errors, depending on the observer’s direction.
This can cause relevant and nonphysical distortions in the propagation, and gener-
ally affect the accuracy of the simulation. These kinds of errors, well known and
deterministic, are analyzed in detail in [2].

The error equations easily prove that numerical dispersion is theoretically more
and more reduced by using a space step as small as possible. Of course, this is not
compatible with actual CPU power availability. Nonetheless, starting from the dis-
persion equation (see Appendix C), writing it in discretized form in a 3D FDTD
mesh and imposing the Courant condition (4.3) for the time step, it can be con-
cluded that waves propagating along the mesh diagonals have no dispersions, while
dispersion increases upon moving away from such directions, with a maximum for
waves propagating along the axes. It is generally concluded that, when using a mesh
with at least 10 cells per wavelength, the dispersion error is smaller than 1%, with
values around 0.2% when 20 cells are used per wavelength. These values hold no
matter what the propagation angle is and for a time step close to the limitation indi-
cated by Courant condition. Smaller time steps can result in worse dispersion errors.

In conclusion, the choice of a space step so that at least 10 (up to 20) cells per
wavelength are used, combined with a time step close to the threshold evaluated

92 Applications: FDTD with MPI in Grid Environments

from (4.3), is generally adopted. Anyway, this issue is still open, and several authors
have proposed interesting strategies to cope with the problem of numerical disper-
sion, including even the use of wavelet functions in the so-called multiresolution
time-domain technique [11]. A review of the dispersion of several FDTD implemen-
tations is proposed in [12].

4.2.4 Excitation and Absorbing Boundary Conditions

The excitation of sources in an FDTD code, as well as the insertion of suitable
boundary conditions, is now discussed. Both themes are extremely wide, complex,
and under continuous investigation. We propose a very short summarization here.

4.2.4.1 Excitations in FDTD approach

Excitations are basically partitioned into two subcases—sources outside the simula-
tion domain and sources inside the simulation domain. The former case is quite
useful when simulating the effect of a certain field impinging on the simulated
region. The incident field can be modeled with the so-called total-field/scattered-
field formalism: the simulation domain is divided into a total field region (inner part
of the domain, including the scatterer) and an outer region (scattered field). The
incident field is superimposed on the scattered field in the inner region, while it is
not considered in the outer region. Details can be found in [2, 13].

As for the latter case, we put forth that the FDTD implementation we describe
in this chapter deals only with this kind of excitations. Sources inside the simulation
domain can be modeled with at least three different strategies—hard sources, soft
sources, and current sources. In the hard sources approach, a source is impressed in
the FDTD code by specifying the E or H field value at a specific location by a time
driving function (the hard source). This is the most intuitive and trivial source
excitation. The soft sources approach, on the contrary, adds the driving function to
the field computed by using (4.1) and its companions (thus using the linearity of
Maxwell’s equations). This is physically similar to a current that is locally injected.
Indeed, the application of Ampere’s law to the driving function allows the
derivation of an equivalent current source from the additional field term, thus
leading to the current source method.

In the FDTD implementation proposed here, the hard source is used. Details on
hard, soft, and current sources are available in [2].

4.2.4.2 Absorbing Boundary Conditions

A typical situation casting the problem of absorbing boundary conditions (ABC) is
the case of an open region, when the simulation domain is theoretically infinite
along one or more axes. The extension to infinity must be simulated somehow, as it
cannot be afforded from a numerical point of view. A boundary condition is there-
fore needed, so that all outwards propagating waves experience no reflections when
impinging on the domain’s boundary. The FDTD algorithm previously described,
applied to (4.1) and its companions, is not suitable to derive ABC, as it uses central
differences and cannot be applied on the boundary of the mesh. A dedicated effort is
therefore needed to attain suitable ABC.

4.2 The FDTD Approach: Theoretical Background 93

ABC is probably the hottest theme in current FDTD research. Nonetheless, in
accordance with the main goal of this chapter (i.e., proposing a very simple version
of an FDTD code, with an MPI implementation amenable for GC), we focus now on
one of the most well-known ABC, based on Enquist and Majda theory [14]: Mur’s
ABC. The preference for Mur’s ABC is due to:

1. Their simplicity;
2. Their smaller computational demand with respect to more recent ABC, such

as Berenger’s ones;
3. Their amenability to parallel/distributed implementation.

Mur’s ABC The starting point for Mur’s ABC is the one-way wave equation [14],
describing the forced propagation of a wave only along fixed directions. By using the
theory of partial differential operators, as applied to Helmholtz time-domain wave
equation (see Appendix C), Enquist and Majda derived two equations representing a
suitable ABC. The following is the suitable case for Cartesian coordinates, for the
x = 0 case, with a so-called first-order approximation:

∂

∂

∂

∂

F
x

F
c t

− =0 (4.4)

Where F is the E or H field, while the second-order approximation is:

∂

∂ ∂

∂

∂

∂

∂

∂

∂

2 2

2

2

2

2

22 2
0

F
x t

F

c t

c F

y

c F

z
− + + = (4.5)

The discretization of (4.4) and (4.5) leads to Mur’s first- and second-order ABC
and is performed by introducing an auxiliary mesh, which is positioned one half-
step inside the original mesh. The complete discrete equations are reported in the
well-known paper by Mur [15].

Mur’s original ABC have some limitations. Due to the existence of partial
derivatives along the y and z axis, (4.5) cannot be applied on the mesh corners.
Though this problem is solved by Rahhal-Arabi [16], we implement here a first-
order approximation on the corners, while second-order (4.5) is considered in the
remaining parts of the mesh.

It is also worth mentioning that many other authors have proposed improved
versions of Mur’s ABC, such as [17, 18]. Nonetheless, the current trend is oriented
toward different approaches, such as perfectly matched layer (PML), by Berenger
[19]. This technique imitates numerically the physical behavior of anechoic cham-
ber’s walls, where several layers of absorbing materials avoid the phenomenon of
spurious reflections. Transmitted waves do not experience discontinuities in the
propagation velocity, nor in the wave impedance, with respect to the impinging
ones. The amount of research on PML ABC is impressive in the last years, and some
papers can give an idea [20, 21].

Anyway, as previously stated, we refer here to the most basic and original Mur’s
ABC, appropriate for our goals of simplicity, low computational demand, and
amenability to parallel migration.

94 Applications: FDTD with MPI in Grid Environments

4.2.5 CPU Time and Memory Requirements

The several advantages of FDTD (i.e., simplicity and versatility) are also accompa-
nied, of course, by some drawbacks. One of the most relevant is its high computa-
tional effort, both in CPU time and memory requirements.

A very trivial analysis of the numerical complexity of a simple FDTD
implementation allows us to conclude that an FDTD simulation of a domain with
size  L L L mx y z× × 3 requires a number of floating point operations

NFlop L L L
N

x y z= × × × ×








36

3

λ
, with N the number of samples considered for

each wavelength and λ the wavelength of the EM component with highest
frequency. In order to give an idea of the number of computations involved on a
typical FDTD simulation, the integration of Maxwell equations on a
[100×100×3]m3 domain (a medium-sized apartment) at a frequency f = 900 MHz
(GSM frequency) with 12 samples for wavelength and for 104 time steps requires
nearly 14×1013 floating point operations. Such a large number of floating point
operations clearly demonstrates that the use of FDTD methods for large EM prob-
lems compels us to adopt parallel computing techniques, with promising perspec-
tives of significant speed ups. The exploration of supercomputing techniques and
technologies is, in several cases, an effective must.

This conclusion is even strengthened when considering the issue of memory
requirements. We suppose again that the spatial domain has dimensions (Lx × Ly ×
Lz) m3, and we take N≥10 samples for wavelength.

Let M be the number of scalar variables to store at each mesh point. Using a
material reference table with an indirect addressing scheme, seven values for each
mesh point have to be kept in memory: the three electric field components Ex, Ey, Ez,
the three magnetic field components Hx, Hy, Hz, and the integer value used to
address the material matrix whose ith entry gives the tuple <εr µr σ> characterizing
the ith type of material. Adopting a single precision real arithmetic (we assume this
to be the best-case hypothesis, considering this sufficient for the numerical stability
of the FDTD method), four bytes are required to represent a real/integer variable; 28
bytes have so to be stored at each mesh point, and the amount of memory needed to
contain the whole integration domain is

MemReq = × × × ×






28

3

L L L
N

x y z λ
Bytes

Let us now consider, for instance, the simulation of the near-field zone of a
radiobase antenna (RBA) for wireless communications with leading dimension D,
and recall that the classical distance giving the lower limit for the far field zone [22]

is D
D

F =
2 2

λ
. In the case of an actual RBA with height 0.96m and working fre-

quency 902 MHz, which is widely spread in Europe for the Global System for
Mobile Communications (GSM) wireless system, the near-field zone reaches a
distance DF = 5.76m. In order to simulate the RBA in the whole near-field zone, the
integration has to be performed on a volume of about 6 × 6 × 6 m3 which, at a
discretization step set to λ/18 (for adequate accuracy), corresponds to a memory

4.2 The FDTD Approach: Theoretical Background 95

requirement of MemReq GByte= ×








 ≈28 6

18
0 316

1 2
3

.
. , thus confirming the

strong need for supercomputing resources and strategies.

4.3 Parallel FDTD

The FDTD algorithm, as evinced from Section 4.2, is intrinsically amenable to
deliver very high performance on parallel platforms. Its numerical characteristics
allow very trivial parallelization strategies (e.g., by partitioning the simulation
domain into subdomains to be independently solved by different processors or
processes). This elementary form of parallelism can naturally be combined with
more sophisticated and ingenious parallel strategies, thus leading to high levels of
speed up.

The literature on parallel FDTD is rather rich and composite [23–26], with lots
of solutions following different programming paradigms, adopting different com-
puting platforms, and applied to different applications. This is itself a demonstration
of the high flexibility and adaptability of FDTD to parallelization. Therefore, in the
current section, we describe a parallel FDTD algorithm, suitable to a large variety of
platforms, and demonstrate its suitability to SIMD and MIMD platforms. The same
algorithm is finally migrated in Section 4.4 toward computational grids.

4.3.1 A Simple and Portable Parallel Algorithm

We propose now, in a metalanguage form, a very simple and natural parallel algo-
rithm for FDTD. The same algorithm is then implemented with two different targets
(SIMD and MIMD platforms, respectively).

On a machine with n processors, the whole computation domain is divided into
n subdomains (with equal volume and shape); each subdomain is assigned to a proc-
essor and adjacent subdomains are assigned to adjacent processors. The EM field
components are meanwhile updated in each processor through (4.1) and its com-
panions (for the remaining scalar Ex,y,z and Hy,z components). When the computation
updates a field component on the border of the domain, some values belonging to
the border of the adjacent domain are required: in order to avoid communications
during the computations, each subdomain is surrounded by the border cells of the
other domain (as depicted in Figure 4.2 for the 2D case). These border values are
communicated after the updating phase.

The scheme of the parallel algorithm is given in the following FDTD parallel
algorithm:

96 Applications: FDTD with MPI in Grid Environments

D4D3D2D1

Figure 4.2 Each process is assigned data related to a subdomain, plus the borders with the adjacent
subdomain, so that data communication is reduced.

Begin FDTD algorithm.
Choose a spatial discretization of the domain (∆x, ∆y, ∆z); if the domain has

dimensions (Lx × Ly × Lz), the mesh has Ni × Nj × Nk points, being

N
L

i j k

x y z

x y z
, ,

, ,

, ,

= ≥
∆

10.

Determine the time step ∆t (eq. 4.3);.
Partition the whole rectangular domain D=[Ni × Nj × Nk] into P= Pi × Pj × Pk

rectangular subdomains D′= [N′i × N′j × N′k], with Pi, Pj, and Pk the number of

processors along dimension i, j, and k, and ′ = ′ = ′ =N
N

P
N

N

P
N

N

Pi
i

i
j

j

j
k

k

k

, and the

dimension (expressed as number of mesh points) of the generic subdomain D’.
for (t = 0 ; t < Tend ; t = t + ∆t)

in all the processors do
compute the new values of H
communicate the H values on the boundary of each subdo-

main to its neighbor
compute the new values of E

enddo in all
put the correct value in the feed point in the processors containing the source;
in the boundary processors do compute the absorbing boundary conditions;
in all the processors communicate the E values on the boundary of each
subdomain to its neighbor;
endfor

end FDTD algorithm.

4.3.1.1 Implementation on SIMD Platforms

An interesting example of the suitability of the FDTD algorithm for SIMD architec-
tures is its implementation on the APE/Quadrics massively parallel system, pur-
posely designed by Italian physicists from the National Institute for Nuclear Physics
(INFN) to solve problems arising in Lattice Gauge Theory.

The APE100/Quadrics systems are characterized by 3D toroidal topology. Each
node is connected to a local data memory of 4 MB (thus, the 512-node machine, the
one we refer to, has 2 GB of memory).

Communications with other adjacent nodes, connected in the north, south,
east, west, up, and down directions are synchronous and memory mapped; inter-
processor communication bandwidth is 12.5 MBps, so the machine with 512 proc-
essor has an aggregate bandwidth of 6.4 GBbs and a peak speed of 25.6 Gflops.

The FDTD implementation on APE platform requires the use of an ad hoc pro-
gramming environment (called TAO) and the related API, with a consequent lack of
standardization and portability. Though this limitation is a severe drawback, the
intrinsic amenability of the FDTD algorithm to accommodate itself to a SIMD phi-
losophy allows the achievement of effective performance, as evinced from Table
4.1, where data for the efficiency E [see (1.2) in Chapter 1] are reported.

The values are referred to systems with 128 and 512 processors.

4.3 Parallel FDTD 97

As we can see, decreasing the domain size causes the efficiency to reduce,
because the granularity of the problem becomes smaller and the overhead terms
(interprocessor communications) and the less parallel parts of the code (Mur ABC)
become more relevant in the global execution time.

The very attractive efficiency achieved for large problems is the clear demonstra-
tion of SIMD platforms’ amenability for parallel FDTD. As a practical application,
we also propose a test, concerned with the simulation of a large RBA with 12 emit-
ting dipoles. More specifically, the antenna is produced by Kathrein and identified
by the code 730691. It is shown, along with the results of the simulation, in Figure
4.3. As seen in the figure, the antenna is rather large, and it is worth noting that even
larger antennas are easily encountered in European GSM network. The near-field
characterization of this source requires a full-wave analysis, and this is a heavy

problem for parallel FDTD. In fact, the far-field distance D
D
lF =

2 2

is about 20m.

Consequently, the size of the near-field sphere, as well as the required spatial and
time resolution, makes the task a challenging computational effort. We simulated a
domain with dimensions (20 × 2.5 × 10) m3 at f = 915 MHz, with N =14 samples
for wavelength, for 100 periods (this simulation requires 3,330 GFlop) in nearly 18
minutes. Simulated data are in good accordance with experimental data, as shown
in Figure 4.3.

4.3.1.2 FDTD Implementation with MPI

As discussed in Chapter 1, MIMD architectures are naturally open to a message-
passing programming paradigm, as SPMD is the current trend in programming
style. A standard for the message-passing paradigm is MPI. An MPI-based
implementation of an FDTD parallel code is highly portable. The basic requirement
for supporting MPI consists of a network of heterogeneous, UNIX-based platforms.
Consequently, MPI appears as the most appropriate pathway to march from the
very “special purpose” world of SIMD platforms to the extremely flexible direction
of GC.

Indeed, as more extensively discussed in the following section, the development
of an MPI implementation of the FDTD approach is the crucial step on our way to
GC. Once the MPI version is ready, a very simple procedure using MPICH allows
the migration to a grid.

Code Structure The proposed MPI FDTD version is based on an SPMD paradigm
(i.e., a single job is composed of several instances, or processes, of the same

98 Applications: FDTD with MPI in Grid Environments

Table 4.1 Efficiency (E) on APE Platform

Domain
(Cells)

E
128 Processors

E
512 Processors

262144 0,433 0,329
524288 0,459 0,365
2097152 0,586 0,477
4194304 0,614 0,519
10240000 0,694 0,598
26214400 0,762 0,668

program). The number of processes is indicated by the user when launching the
application. As each processor may run several processes, suitable domain
partitioning and load-balancing policies must be adopted when the number of
processes is larger than the number of processors. For the sake of simplicity, we
assume we deal with Ncpu processors and Np processes, with Ncpu = Np = N.

Conditional branches inside the code allow us to run different fragments of the
program, depending on the process to which they belong. This is done via an identi-
fication number assigned by MPI to each process and returned by a useful function
available in MPI (namely MPI_Comm_rank).

Processes run autonomously. This requires some synchronization to be per-
formed. Two main pathways can be pursued to achieve the goal:

1. Use of blocking messages: the process sending data stops until the receiving
process has completely gathered all communicated data.

2. Use of barriers: in MPI the function MPI_Barrier blocks the caller until all
members of a certain group have called it (see Figure 4.4).

The former synchronization is adopted for point-to-point communications; the
latter relates to collective communications. Our code recurs to barriers wherever it
is necessary to synchronize the operation of processes (see the following description
of step 7).

For further details regarding MPI, we refer the interested reader to [27].

4.3 Parallel FDTD 99

Figure 4.3 A radiobase station antenna (Kathrein 730691) used for the GSM wireless system
(bottom left corner) and its radiation patters (both simulated and available from the vendor) in the
E and H planes. A 3D visualization of the E-field distribution is also shown (bottom right corner).

The MPI FDTD implementation (proposed in C language and reported in its
most important parts in the attached CD-ROM) can be partitioned into 13 steps:

1. Definition of the simulation domain;
2. Domain partitioning into N subdomains;
3. Variable initialization;
4. Dynamic allocation of data structures;
5. MPI library initialization;
6. Evaluation of constant parameters for EM simulation and ABC calculations;
7. H-field evaluation in every cell of every subdomain;
8. Communication of H-field values, calculated along the subdomain bound,

among adjacent processors;
9. E-field evaluation in every cell of every subdomain;
10.Communication of E-field values, calculated along the subdomain bound,

among adjacent processors;
11.Update of excitations;
12.Mur’s second-order ABC (first order on the corners) with different

approaches for inner subdomains with respect to subdomains along the
domain’s bound;

13.Loop from step 7 up to step 12 until simulation is completed.

In Figure 4.5 a schematic diagram of the program is proposed.

Step 1 and 2 It is assumed that the end user uses his/her own preferred software
tool so that the domain size and structure is defined, as well as the appropriate mesh
(step 1). Once this is done, domain partitioning is performed. The whole domain is
divided into N subdomains, with similar shapes and dimensions, with each
subdomain associated to a processor. Though in general 3D problems and
partitioning must be considered, simplified partitioning policies can be adopted,

100 Applications: FDTD with MPI in Grid Environments

Time

Barrier

P0 P1 P2 PN 1−

Active

Waiting

Figure 4.4 MPI barriers. Barriers synchronize process operations. When multiple processes (P0, P1, ..,
PN−1 in the figure) call the MPI function named “MPI_Barrier,” they block until all of them have
called it.

with a 2D or 1D Cartesian topology (see Figure 4.6), where no divisions are
performed, respectively, along one or two axes.

In the proposed simple implementation, a 1D Cartesian topology is adopted
(see Figure 4.7), thus reducing to two the maximum number of cell faces involved in
data communication. IM, JMM, and KMM are the linear dimensions (in cells) of
subdomains. Each domain is addressable with its own Cartesian coordinate or
equivalent, thanks to the associated process identification number (see step 5).

4.3 Parallel FDTD 101

1-2-3-4-5)
Initializations

6) Evaluation of constants

7) H-field evaluation

8) H-field communication

9) E-field evaluation

10) E-field communication

11) Update of excitations

12) Mur’s second-order ABC

End of
simulation?

No Exit

Yes

1-2-3-4-5)
Initializations

6) Evaluation of constants

7) H-field evaluation

8) H-field communication

9) E-field evaluation

10)E-field communication

11) Update of excitations

12) Mur’s nd-order ABCseco

End of
simulation?

No

Exit

Yes

Barrier

Barrier

Barrier

Barrier

Figure 4.5 Flow diagram of the FDTD MPI code showing the steps performed by the processes.
Synchronization among the processes is shown at the four barrier points. The processes cycle from
step 7 to step 12 until the simulation is completed.

Step 3 and 4 Variables must always be explicitly initialized in a suitable way,
even when their initial value must be equal to zero. This is especially true in C
language, as this compiler generally assigns random values to variables that are not
explicitly initialized. Some relevant data structures needing such operations are the
EX, EY, EZ, HX, HY, and HZ matrices. For instance, EX[I][J][K] contains the value
of the x component of the E field in point (I, J, K).

They must be initialized in the following manner:

for (I=0;I<IM;I++)
for (J=0;J<JM;J++)

for (K=0;K<KMM;K++)
{
EX[I][J][K]=0.0;
EY[I][J][K]=0.0;

102 Applications: FDTD with MPI in Grid Environments

2D Cartesian topology

1D Cartesian topology

Figure 4.6 Examples of 1D and 2D Cartesian topology.

y (J)

x (I)

z (K)

DZ

DY

DX DXIM

Left face Right face

Faces involved in data communication

Figure 4.7 The 1D Cartesian topology, adopted to describe the code implementation. Indexes I, J,
and K are respectively used in the code for the x, y, and z axes. Space steps (DX, DY, and DZ variables)
are indicated, as well as faces involved in data communication.

EZ[I][J][K]=0.0;
}

Similar lines must be taken into account for matrices EXYN, EXYN1, EXZN,
EXZN1, EYXN, EYXN1, EYZN, EYZN1, EZXN, EZXN1, EZYN, and EZYN1.
These matrices contain data used when applying Mur’s ABC. For instance, EXYN
and EXYN1 contain the x E-field components in the two xz planes at the
boundary of the simulation domain. EXYN is related to time step n, while
EXYN1 is related to time step n–1. Similar considerations hold for the companion
matrices.

Other relevant data structures are C1 and C2 matrices, hosting information
related to the value of dielectric permittivity and conductivity in each mesh point.

It is worth mentioning that C compilers allocate matrix entries by rows (differ-
ently from Fortran, which order entries by columns).

It is extremely important, in order to save memory, that every memory alloca-
tion for program variables be performed in a dynamic fashion. In C language, this
can be performed with the function alloca_float reported in the attached code,
which returns a float*** variable, and, using the malloc and memsize C instruc-
tions, dynamically allocates an A × B × C matrix:

float*** alloca_float(int A,int B,int C)
{ float*** a;
int i,j,k;
memsize=0;
a=(float***)malloc(A*sizeof(float**));if (a==NULL) {printf("err 1\n");exit(0);}
memsize+=A*sizeof(float**);
for (i=0;i<A;I++)
{
a[i]=(float**)malloc(B*sizeof(float*));
if (a[i]==NULL) {printf("err 2 %d\n",i);exit(0);}
memsize+=B*sizeof(float*);

for (j=0;j<B;j++)
{
a[i][j]=(float*)malloc(C*sizeof(float));
if (a[i][j]==NULL) {printf("err 3 %d %d \n",i,j);exit(0);}
memsize+=C*sizeof(float);

}
}
return a;

}

Step 5 It basically consists of three lines:

rc = MPI_Init(&argc,&argv);
rc = MPI_Comm_rank (MPI_COMM_WORLD,&myrank);
rc = MPI_Comm_size(MPI_COMM_WORLD,&num_tasks);

MPI_Init returns a return code (rc variable) and starts the MPI environment.
MPI_Comm_rank defines the communication context (MPI_COMM_WORLD is
the default communicator), returns the process identification number (myrank),
and an error code.

4.3 Parallel FDTD 103

MPI_Comm_size returns also the number of enrolled processes (variable
num_tasks).

Step 6 Once the dimensions (DX, DY, and DZ) of the elementary cell are known,
the time step DT is fixed according to the Courant condition (4.3).

Variables (C0X,..,C0Z), useful in the following part of the algorithm, as well as
(A1,..., A4), used in the ABC application, are calculated once, as they do not depend
on time:

DT=(0.999/(3E8*(pow(((1.0/DX)*(1.0/DX)+(1.0/DY)*(1.0/DY)+(1.0/DZ)*(1.0/DZ)),
0.5))));
COX=DT/(MU*DX);
COY=DT/(MU*DY);
COZ=DT/(MU*DZ);
A1=((3E8)*DT-DX)/((3E8)*DT+DX);
A2=(2*DX)/((3E8)*DT+DX);
A3=((3E8)*(3E8)*DT*DT*DX)/(2*DY*DY*((3E8)*DT+DX));
A4=((3E8)*(3E8)*DT*DT*DX)/(2*DZ*DZ*((3E8)*DT+DX));

Step 7 The evaluation of the H field, as required by the FDTD, is performed in
the meanwhile in all processors, in every single cell of each subdomain. This (and
several other issues when implementing an MPI application) casts the problem of
synchronization among processes.

The code lines in charge of H computation are the following:

for (I=Iminb;I<Imax;I++)
for (J=0;J<JM−1;J++)

for (K=0;K<KM−1;K++)
HX[I][J][K]=HX[I][J][K]+COZ*(EY[I][J][K+1]-EY[I][J][K])+COY*

(EZ[I][J][K]-EZ[I][J+1][K]);

for (I=Imina;I<Imax;I++)
for (J=1;J<JM−1;J++)

for (K=0;K<KM−1;K++)
HY[I][J][K]=HY[I][J][K]+COX*(EZ[I+1][J][K]-EZ[I][J][K])+COZ*

(EX[I][J][K]-EX[I][J][K+1]);

for (I=Imina;I<Imax;I++)
for (J=0;J<JM−1;J++)

for (K=1;K<KM−1;K++)
HZ[I][J][K]=HZ[I][J][K]+COY*(EX[I][J+1][K]-EX[I][J][K])+COX*

(EY[I][J][K]-EY[I+1][J][K]);

These lines should be encapsulated between barriers, so that all the processors
complete the H field evaluation at the same time.

Step 8 Data communication plays a major role in the achievement of good
performance in the algorithm. As a consequence of the described structure of the
FDTD algorithm, in order to update E and H fields in a generic cell (i, j, k), E and H
fields in cells (i, j, k) and (I ± 1, j ± 1, k ± 1) are needed in the worst case. Therefore,
the update of fields inside a certain subdomain does not differ from the serial case,

104 Applications: FDTD with MPI in Grid Environments

while data communication between adjacent processors is needed before updating
cells on the boundary of subdomains. As already suggested in Section 4.3.1, the
most efficient solution to reduce data communication costs is the oversizing of
subdomains, as depicted in Figure 4.2. The redundancy introduced is a small
memory effort but guarantees relevant speed ups.

Once H values are computed, boundary cells are communicated among adja-
cent processors (see Figure 4.7), so that they are ready for the evaluation of E com-
ponents (step 9).

The code implementing H data communication is now proposed. In the part of
code here reported, only the boundaries that face orthogonal to the x axis (whose
coordinate along the x axis is identified by the IM variable in the code) are commu-
nicated. Indeed, these components are enough to fully calculate the EM field. It is
also worth noting that, to improve efficiency, it is effective to divide proces-
sors/processes into even and odd groups. Even and odd processors perform their
tasks separately (as evinced from the way MPI_send and MPI_receive are ordered in
the even and odd case). This trick brings more or less improvement depending on
the characteristics of the platform, with a reduction of communication times of
about 20% in the most favorable cases.

if (myrank%2==0) /*even processor*/
{
if (myrank != (num_tasks-1))

for (J=0; J<JMM;J++) /* HX,HY, and HZ values to be communicated are copied
onto suitable memory locations */
{
memcpy (&HXap[(3*J)*(KMM)], HX[IM][J],(KM)*4);
memcpy (&HXap[(3*J+1)*(KMM)], HY[IM][J],(KM)*4);
memcpy (&HXap[(3*J+2)*(KMM)], HZ[IM][J],(KM)*4);
}

if (myrank != (num_tasks-1)) /*all even processors but the last one send data to their
neighbor */
{ MPI_Send (HXap, (JM*KM*3), MPI_FLOAT, myrank+1, tag,
MPI_COMM_WORLD);}
if (myrank!=0) /*all even processors but the first one receive from their previous

(odd) processor */
{MPI_Recv(HYap,(JM*KM*3),MPI_FLOAT,myrank-1, tag

,MPI_COMM_WORLD,&status);}
if (myrank != 0) /*all processors that have received data copy them onto suitable
memory locations */

for (J=0; J<JMM;J++)
{
memcpy (HX[0][J], &HYap[(3*J)*(KMM)],(KMM)*4);
memcpy (HY[0][J], &HYap[(3*J+1)*(KMM)],(KMM)*4);
memcpy (HZ[0][J], &HYap[(3*J+2)*(KMM)],(KMM)*4);
}

}
else /*for all odd processors*/
{
– Data gathering from even processors and data copy onto memory locations;

4.3 Parallel FDTD 105

– Data received and relative to “right” boundary faces in even processors, are stored
as "left" boundary faces;
– Data copied onto memory are sent to even processors;
}

Step 9 As noted for the H field, the high locality of data allows the contemporary
updating of E fields in each processor. When using hard sources (see Section
4.2.4.1), it can be useful to impress them by enforcing a fixed time behavior of the
electric field in some parts of the domain mesh (this is, just as an example, quite
typical when modeling antennas or equivalent sources). In such cases, the evaluation
of E fields must take into account hard sources with point, contour, or surface
dedicated treatments, depending on how the excitation is expressed.

For the sake of brevity, we report now only part of the code lines for the evalua-
tion of the E field, where the dependency of E(i, j, k) on H(i–1, j–1, k–1) can be noted
(we recall that the very simple case of 1D Cartesian topology is addressed). Values of
H(i–1, j–1, k–1) are known, as they have been received from other processors in the
previous step. A quick glance at (4.1) confirms that E(i, j, k) does not depend on
H(i+1, j+1, k+1), thus justifying the way data have been exchanged:

for (I=1; I<Imax;I++)
for (J=1; J<JM−1; J++)

for (K=1; K<KM−1; K++)
{
EX[I][J][K] = EX[I][J][K]*C1[I][J][K] + (HZ[I][J][K]-HZ[I][J-1][K])* \

C2[I][J][K] + (HY[I][J][K-1]-HY[I][J][K])*C2[I][J][K];
EY[I][J][K] = EY[I][J][K]*C1[I][J][K] + (HX[I][J][K]-HX[I][J][K-1])* \

C2[I][J][K] + (HZ[I-1][J][K]-HZ[I][J][K])*C2[I][J][K];
EZ[I][J][K] = EZ[I][J][K]*C1[I][J][K] + (HY[I][J][K]-HY[I-1][J][K])* \

C2[I][J][K] + (HX[I][J-1][K]-HX[I][J][K])*C2[I][J][K];
}

Step 10 Similar observations hold as for the case of step 8. In the current case, the
values to be communicated are related to the “right” face of each subdomain.
Therefore, each processor sends to the preceding one data related to E fields
evaluated over its “left” boundary face. Even in this case, a suitable synchronization
between even and odd processors is fundamental to achieve good performance.

Steps 11 and 12 As already mentioned, step 11 (excitation updating) can be
efficiently implemented in conjunction with the E-field (or H-field, depending on the
source to be simulated) evaluation. This is why we assume that this step, though
conceptually separated from E-field evaluation, has already been addressed.

Step 12 (ABC implementation) deserves a more careful description. Mur’s ABC
implementation requires the memorization of E-field values along the boundary in
the two time steps preceding the current step, on the two faces nearest to the bound-
ary. Thus, code implementing ABC consists of a former step of field evaluation over
the boundary, and a latter phase of field updating for the successive evaluation. Even
when performing ABC, processors work independently with one another and mutu-
ally interact to communicate data relative to the cell’s boundaries. For the sake of
simplicity, we depict the domain partition and data communication for ABC in the

106 Applications: FDTD with MPI in Grid Environments

simple case of four processors and 1D topology (see Figure 4.8). Outer processors
(P1 and P4) must perform ABC even on yz faces, while P2 and P3 must deal only
with xy and xz faces. Some communications between adjacent subdomains are also
needed, as shown in the picture.

We now report the code executed in a parallel fashion by all intermediate proc-
essors (P2 and P3 in the picture). This part of the code evaluates the Ez component
over xz faces in each subdomain. In the former part of the code, Mur’s first-order
conditions are applied on the edges and corners, while the latter part is relative to
inner values (second-order conditions).

for (I=1; I<IM−1; I++)
{

EZ[I][0][0] = EZYN[I][1][0] + A1*(EZ[I][1][0] - EZYN[I][0][0]);
EZ[I][JM-1][0] = EZYN[I][2][0] + A1*(EZ[I][JM-2][0] - EZYN[I][3][0]);
EZ[I][0][KM-2] = EZYN[I][1][KM-2] + A1*(EZ[I][1][KM-2] - EZYN[I][0]

[KM-2]);
EZ[I][JM-1][KM-2] = EZYN[I][2][KM-2] + A1*(EZ[I][JM-2][KM-2]

- EZYN[I][3][KM-2]);
}

for (I=1; I<IM+1; I++)
for (K=1; K<KM−2; K++)
{

EZ[I][0][K]= -EZYN1[I][1][K] + A1*(EZ[I][1][K] + EZYN1[I][0][K])\
+ A2*(EZYN[I][0][K] + EZYN[I][1][K])\
+ A3*(EZYN[I+1][0][K] - 2*EZYN[I][0][K]+\
EZYN[I-1][0][K] + EZYN[I+1][1][K] - 2*EZYN[I][1][K]\
+ EZYN[I-1][1][K]) + A4*(EZYN[I][0][K+1] - 2*EZYN[I][0][K]+\
EZYN[I][0][K-1] + EZYN[I][1][K+1] - 2*EZYN[I][1][K] + EZYN[I][1][K-1]);
EZ[I][JM-1][K] = -EZYN1[I][2][K] + A1*(EZ[I][JM-2][K] + EZYN1[I][3][K])\
+ A2*(EZYN[I][3][K] + EZYN[I][2][K])\
+ A3*(EZYN[I+1][3][K] - 2*EZYN[I][3][K]+\
EZYN[I-1][3][K] + EZYN[I+1][2][K] - 2*EZYN[I][2][K]\
+EZYN[I-1][2][K]) + A4*(EZYN[I][3][K+1] - 2*EZYN[I][3][K]+\

4.3 Parallel FDTD 107

y

x

z

P1 P2 P3 P4

Data communication

Figure 4.8 A 1D topology in the case of four subdomains. Processors P1 and P4 must deal with ABC
on three faces, while P2 and P3 apply ABC on the two xy faces. Data communication is needed
between adjacent processors (P1 with P2, P2 with P3, and P3 with P4).

EZYN[I][3][K-1] + EZYN[I][2][K+1] - 2*EZYN[I][2][K] + EZYN[I][2][K-1]);
}

Once the calculation of fields on outer faces is performed, the communication of
data takes place. In the specific case of z E-field components, the processor receives
variable EZ(1,0, K) from its successive processor, and sends EZ(IM,0, K) to its pre-
ceding one:

MPI_Send (EZ[1][0], KM+1,MPI_FLOAT, myrank-1, tag, MPI_COMM_WORLD);
MPI_Send (EZ[1][JM-1], KM+1, MPI_FLOAT, myrank-1, tag,

MPI_COMM_WORLD);
MPI_Send (EZ[IM][0], KM+1, MPI_FLOAT, myrank+1, tag,

MPI_COMM_WORLD);
MPI_Send (EZ[IM][JM-1], KM+1, MPI_FLOAT, myrank+1, tag,

MPI_COMM_WORLD);
MPI_Recv (EZ[IM+1][0], KM+1, MPI_FLOAT, myrank+1, tag ,

MPI_COMM_WORLD, &status);
MPI_Recv (EZ[IM+1][JM-1], KM+1, MPI_FLOAT, myrank+1, tag ,

MPI_COMM_WORLD, &status);
MPI_Recv (EZ[0][0], KM+1, MPI_FLOAT, myrank-1, tag ,

MPI_COMM_WORLD, &status);
MPI_Recv (EZ[0][JM-1], KM+1, MPI_FLOAT, myrank-1, tag ,

MPI_COMM_WORLD, &status);

Finally, E-field components on outer faces, evaluated at the current and preced-
ing time step, are updated to be used in the following of the algorithm:

for (I=1; I<IM; I++)
for (K=0; K<KM−1; K++)

{
EZYN1[I][0][K] = EZYN[I][0][K];
EZYN1[I][1][K] = EZYN[I][1][K];
EZYN1[I][2][K] = EZYN[I][2][K];
EZYN1[I][3][K] = EZYN[I][3][K];
EZYN[I][0][K] = EZ[I][0][K];
EZYN[I][1][K] = EZ[I][1][K];
EZYN[I][2][K] = EZ[I][JM-2][K];
EZYN[I][3][K] = EZ[I][JM-1][K];
}

4.4 Migration Toward Computational Grids

4.4.1 Introduction

As seen in the previous sections, FDTD is amenable to parallel implementations,
requiring simple domain-decomposition policies. We described in detail the specific
FDTD algorithm we adopted in our experimentation, as well as a parallel implemen-
tation on SIMD and MIMD architectures. We discuss now how our FDTD imple-
mentation, parallelized using the MPI standard routines, can fruitfully and simply be
migrated onto a grid environment. The result is an application that can exploit all of

108 Applications: FDTD with MPI in Grid Environments

the low-cost high-performance characteristics of distributed systems, as well as the
flexibility of a dynamic load balancing in grids.

4.4.2 Practical Guidelines

Once the MPI version of the FDTD code has been implemented and tested, the
migration toward a grid is straightforward. The code is not modified at all; the steps
to perform are:

• Installation of the MPICH-G2 library at each node of the grid;
• Installation of the application source code at each node;
• Compilation of the application at each node.

MPICH-G2 is a public-domain grid-enabled implementation of the MPI stan-
dard. It is implemented as one of the devices (the “globus2” device) of the MPICH
[28] library. It requires the prior installation of source bundles of the Globus RM
pillar (see Chapter 3 for an explanation of how to install Globus bundles). Then, the
MPICH library must be configured specifying the “globus2” device. The applica-
tion must be compiled on each machine on which it is intended to run. MPICH
includes a number of compile commands (“mpicc,” “mpiCC,” “mpif90,” and
“mpif77”), related to the most frequently used languages. The command “mpirun”
launches an application. Every “mpirun” command under the “globus2” device
submits an RSL script to Globus (see Chapters 2 and 3 for an introduction to RSL).
Indeed, the Globus RM pillar is in charge of launching the jobs onto the machines
and of allocating all of the resources required. The user can supply its RSL script or
may ask “mpirun” to construct it, based on the arguments passed to “mpirun” and
on a file called “machines,” containing the list of the machines composing the grid.

Let us now introduce an example for further detailing the previously enumer-
ated steps.

Suppose that we want to run the application called “fdtdmpi” on a grid made
up of two machines, running the Linux operating system. First, we must create the
“machines” file. If, for instance, the two machines’ FQDN are “mozart.unile.it”
and “picasso.elemgrid.org,” the file appears as follows:

“mozart.unile.it” 4

“picasso.elemgrid.org” 5

In such a case, we have indicated that machine “mozart.unile.it” can host at
most four processes, while machine “picasso.elemgrid.org” can host five processes
in the meantime.

The installation procedure of MPICH is described in detail in Chapter 3 (Sec-
tion 3.10), and is shorly resumed now. Download MPICH and repeat the following
sequence of operations on each machine of the grid:

1. Extract MPICH files by issuing the following command:

gunzip –c mpich.tar.gz | tar xvf –

4.4 Migration Toward Computational Grids 109

2. Configure MPICH by specifying the “globus2” device and the Globus flavor
chosen during the Globus RM installation phase (see Chapter 3 for the
definition of Globus flavors):

./configure –device=globus:-flavor=gcc32dbg

3. Use the makefile included with the MPICH software to compile MPICH:

make

Now that MPICH-G2 is ready, the executable “fdtdmpi” must be copied onto
every node in the grid and there recompiled.

Finally, the application can be launched with the following command:

mpirun –np 7 fdtdmpi

The option “-np 7” specifies the number of instances to be launched.
MPICH-G2, together with GT, is in charge of allocating these processes among the
machines listed in this file, so that a load-balancing policy can be pursued.

4.4.3 Pthread Libraries and MPICH-G2

These days, the diffusion of multiprocessor architectures is more and more
extended. Even entry-level platforms, such as home computers, are quite often
equipped with more than one processor. This implies a high probability that the grid
contains similar nodes in some of the possible dynamic configurations it might
assume. When the grid contains multiprocessor nodes, the concurrency at single
nodes can be exploited by demanding the computation to multiple threads. As
explained in Chapter 1, programming threads is like calling procedures that run
independently on the calling program. In the C language, this means that procedures
are called via a specific function, normally adhering to some API specifications. To
write portable applications, it is preferable to use APIs conforming to the standard
specifications defined by the Institute of Electrical and Electronic Engineers (IEEE)
committee. The IEEE committee defined in 1995 standard specifications for threads
programming interfaces, included in the Portable Operating System for Computing
Environments (POSIX) family of standards. Implementations compliant with this
standard are referred to as POSIX threads, or Pthreads [29]. Most hardware ven-
dors and operating systems offer their implementation of Pthreads.

Pthreads are a set of C language programming types and procedure calls, imple-
mented with a “pthread.h” header/include file and a thread library—which may be
part of another library, such as libc. The subroutines that comprise the Pthreads API
can be informally grouped into two major classes: thread management and synchro-
nization. Thread management works directly on threads—it includes functions for
creating or terminating threads. Synchronization is needed to protect programs
from errors due to concurrent access to shared data. In fact, threads share critical
resources, such as files and memory data, with the calling program and with any
other threads created by it. Consequently, some functions are available to prevent
the risk of conflicting accesses to the same resource.

110 Applications: FDTD with MPI in Grid Environments

Functions implementing the appropriate synchronization mechanisms when
accessing data are said to be thread safe. It means that they can be safely called by
multiple threads: data are not corrupted when these functions are concurrently
invoked.

MPICH-G2 is not thread safe. This means that “MPICH-G2 applications may
create multiple threads but still have the restriction that at most one thread per
process may call MPI functions” [28]. So, when implementing such an application,
the developer must design with care the points where calls to MPI functions are
placed.

In conclusion, we observe that the combination of GC with threads may lead to
the design of dynamic applications, able to explore the grid environment in order to
tailor the spawning of threads based on the availability of resources. More specifi-
cally, in the FDTD case, threads can be easily and immediately useful. A simple, yet
effective, example is the following. Consider a grid made of N nodes, including one
multiprocessor node (for instance, a workstation with NP processors). The policy of
domain partitioning, at a former level, divides the original problem into N subprob-
lems. By suitably using environment variables (such as variable $ARCH in UNIX-
based systems), the code can identify the type of platform it is running on. The
worker process running on the multiprocessor node can therefore introduce a latter
level of domain partitioning, dividing the subdomain it has been assigned into NP
subsubdomains, so that each subsubdomain is solved concurrently. Such a simple
strategy can induce interesting speeding effects.

4.5 Numerical Performance

Proposing data of general relevance to the performance of FDTD applications in a
grid is not trivial. Indeed, grids have no static topologies, and their behavior
strongly depends on contingent factors, such as bandwidth availability and failures
and computing loads. On the other hand, it makes sense to provide the possibility of
evaluating what performance can be expected for a given grid and a certain FDTD
application.

The aspects to be addressed are two:

1. How FDTD performs in a distributed environment;
2. How the MPICH-G2 framework affects performance (essentially with

respect to times for message delivery).

In the following subsections, the two items are discussed, and a viable strategy is
given to benchmark the performance of message passing inside the grid. Finally,
data are reported related to a real grid for a specific problem.

4.5.1 Performance Evaluation of Parallel Distributed FDTD

As shown in Chapter 2, the performance of a parallel algorithm is commonly evalu-
ated by calculating the speed-up factor, as well as the efficiency. The speed up is the
ratio between the execution time on one processor and the execution time on N
processors. In an ideal world, the speed-up factor increases linearly with N. In real
cases, it saturates when increasing N. This happens due to two reasons:

4.5 Numerical Performance 111

• The program is only partially parallelizable;
• In message-passing systems, when N is too large with respect to the size of the

problem, the communication time exceeds the computational time.

The former item scores a point for FDTD. The fraction of parallelizable algo-
rithms is typically an attractive feature of FDTD applications. The latter item is
more critical. In the wide literature available for distributed implementations of
FDTD, it is shown that an adequate tradeoff must be found between the number of
processors and the problem dimensions. This is especially apparent when communi-
cation times are not negligible, such as when using a network of computers rather
than specialized MPPs (this being frequently the case of GC as well). Just to mention
one case among the many reported in the literature, in [30] the performance of a par-
allel, message-passing implementation of FDTD on a supercomputer (ALEX AVX2)
is compared with a network of PCs connected by a 10-Mbps Ethernet. When using
the supercomputer, a speed up of 5.17 is obtained with seven processors. When
using the network of PCs, the results are absolutely not satisfying because of the
huge communication times, thus proving the criticality of an appropriate choice of
the architecture, its size, and the available bandwidth.

In such cases, it can be important to exploit the characteristics of the platforms
at their best. One of the possible suited examples is reported in [31], where a Beo-
wulf cluster (i.e., a cluster of workstations running the Linux operating system) is
used. The workstations are connected by a fast Ethernet with a maximum band-
width of 100 Mbps. The cluster is made up of 17 nodes, each consisting of two
processors. MPICH is used for message passing between nodes, while shared-
memory processing within each node is enabled using the Pthreads library. The
speed up saturates when more than eight processors are used, but multithreading
increases the speed up by almost a factor of two when the problem size is suffi-
ciently large.

More generally, it is demonstrated that when an appropriate balance is found
between the number of nodes and the problem dimension, nearly all of the tested
cases of EM FDTD applications report an efficiency not far from one [25].

4.5.2 MPICH-G2 Performance Evaluation

As discussed before, we consider the MPI standard for the development of the FDTD
distributed application. The same code, containing MPI calls, can be supported by
different MPI implementations, depending on the environment in which it is run-
ning. The most used MPI implementations are:

1. Native MPI;
2. Public-domain MPICH;
3. MPICH-G2.

In case 1, a version of the library dedicated to a specific platform is used, typi-
cally sold by a platform vendor along with the hardware. This guarantees high per-
formance for the specific architecture. In case 2, we refer to a more general version of
the library, not specifically tuned for any platform. Case 3 is encountered when

112 Applications: FDTD with MPI in Grid Environments

dealing with message passing inside the framework of grids (using GT), with
MPICH-G2 the Globus-compliant MPICH implementation.

It is intuitively perceived that MPICH-G2 is exposed to the risk of degrading
performance. Indeed, it is not specifically customized for any architecture. Further-
more, it must interface with GT, with a consequent additional computational effort.
We report now some results quantifying the effective performance degradation. We
also give a simple procedure to accomplish the same evaluation on a generic grid.

The official performance evaluation of MPICH-G2 (accomplished by MPICH-
G2’s developers) is available [32]. Benchmarking was done by running the perform-
ance tool named “mpptest” and distributed with MPICH in the directory named
“examples/perftest. ”This tool performs a classical ping-pong test (i.e., for each
message size, a message is sent forwards and backwards between two nodes many
times). The tool records the time spent for the message round trips. The program
accepts as input the number of repeats for each message size, the range of the mes-
sage size, and the size increment. For example, the command:

mpptest –size 50 500 10 –reps 100

asks to repeat 100 times (with the option “-reps”), the sequence of message round
trips from 50 up to 500 bytes, with an increment of 10 bytes (with the option
“-size”).

For each set of experiments, the results are represented in graphs, with the mes-
sage size on the x axis and the time on the y axis. Each graph reports three curves, as
it compares the performances of MPICH-G2 with respect to MPICH-G (an old ver-
sion of MPICH-G2) and to native MPI or MPICH, depending on the platform
where the experiment was carried out. The evaluation consists of three groups of
tests, each performed on a different platform. The first group was performed on an
SGI Origin 2000 with native MPI implementation. The second group was per-
formed on an IBM SP2 with native MPI implementation. The third was performed
on a LAN connecting two SUN machines with the public domain MPICH library. In
Figures 4.9, 4.10, and 4.11, we report the results available at the time of the writing
of this book. They show that a limited delay is introduced by MPICH-G2 with
respect to the IBM native MPI implementation and SGI native implementation,
while for large message sizes MPICH-G2 overperforms MPICH in LAN
environments.

It can be concluded that when referring to MPP platforms, the degradation
induced by MPICH-G2 is negligible, while in the case of network environments,
performance could even improve. While open to large and simple-access computa-
tional resources, GC does not substantially affect the performance of an FDTD
application with respect to traditional distributed environments, and the available
bandwidth remains the main bottleneck.

4.5.3 Benchmarking Parallel FDTD on a Grid

In order to benchmark the effectiveness of GC on parallel FDTD applications, we
propose now some results related to the analysis of a problem relevant for human-
antenna interaction studies. Results are attained using an interdepartmental grid.

4.5 Numerical Performance 113

114 Applications: FDTD with MPI in Grid Environments

SGI blocking specified source

0

50

100

150

200

250

300

350

400

450

500

0 2,500 5,000 7,500 10 000, 12,500 15,000 17,500 20,000 22,500 25,000 27,500

Msg length (bytes)

Ti
m

e
(

s)
µ

SGI MPI

MPICH G2

MPICH G

Figure 4.9 MPICH-G2 performance evaluation with respect to MPICH-G and MPI native
implementation on a SGI Origin 2000 platform.

Ti
m

e
(

s)
µ

IBM blocking specified source

0

100

200

300

400

500

600

700

800

900

0 2,500 5,000 7,500 10,000 12,500 15,000 17,500 20,000 22,500 25,000 27,500

Msg length (bytes)
IBM MPI

MPICH G2

Figure 4.10 MPICH-G2 performance evaluation with respect to MPICH-G and MPI native
implementation on an IBM SP2 platform.

More specifically, the grid is composed of several nodes, belonging to different
departments, interconnected by Giga-Ethernet, with a low-load operating condi-
tion. The nodes in the grid selected for the benchmark are heterogeneous comput-
ers, spanning from 256-MHz up to 3-GHz processors.

The addressed problem is the analysis of a half-wave dipole radiating in the
vicinity of a homogeneous dielectric sphere (see Figure 4.12), at 900 MHz. The
dipole can be noted on the left of the figure, and the field distribution is evinced
from gray levels.

Two cases are analyzed, with different domain sizes and the same space step,
evaluated in accordance with the λ/10 principle described in Section 4.2.3. The

4.5 Numerical Performance 115

SUN Solaris blocking specified source

0

500

1,000

1,500

2,000

2,500

3,000

3,500

4,000

Msg. length (bytes)

0 2,500 5,000 7,500 10 000, 12,50015,00017,50020,00022,50025,000 27,500 30,000

Ti
m

e
(

s)µ

MPICH G

MPICH G2

MPICH G4

Figure 4.11 MPICH-G2 performance evaluation with respect to MPICH-G and MPICH on a LAN
connecting two SUN machines.

Figure 4.12 E-field levels for a homogeneous sphere exposure to the field emitted by a half-wave
dipole.

former case corresponds to a cubic domain with a 256-cell edge. The latter case is a
larger cubic domain with a 400-cell edge. Results are reported in Table 4.2.

As noticeable from the reported results, the speed ups look rather promising,
thus confirming that GC is a cost-effective approach to improving the performance
of a computationally intensive application. This is accompanied by the several
advantages, peculiar to GC, described in the previous chapters and resumed in the
next section.

4.6 Remarkable Achievements

On the basis of what has been observed until now, GC allows a low-cost access to a
potentially unlimited set of computational resources, retaining all of the features
peculiar to a parallel-distributed system. Thanks to the tools and technologies
discussed in the previous sections, any applications developed using a programming
paradigm based on message-passing standard MPI can be straightforwardly
migrated, with no limitations with respect to the programming language used. An
EM research team, with a focus on parallel FDTD methods and very basic knowl-
edge on MPI, can afford effective parallel computing. It is not required to arrange its
own supercomputing platform, nor to set up dedicated connectivity. The proposed
alternative strategy is to invest in GC know-how.

Furthermore, the migration of parallel FDTD toward GC brings out as
a side effect another interesting result, represented by the identification of a
complementary pathway for distributed applications with respect to the one
represented by object orientation and API for mobile agents. As seen in Chapter 2, a
number of technologies are now mature for implementing distributed applications.
Among them, the technology of JMA has recently demonstrated its amenabil-
ity for an efficient FDTD implementation [33]. JMA requires that the applica-
tion is written in Java, provided that suitable API allowing the use of mobile
agents be available. Besides, each “admissible” node must host a Java virtual
machine.

JMA has some drawbacks. The Java language still suffers from performance
limitations with respect to the C and Fortran languages, even if it is improving con-
tinuously. Besides, the language constraint obliges users to entirely rewrite existing
applications developed in languages other than Java—parallel applications cannot
be migrated onto the JMA environment without a substantial rewriting in the Java
language. The drawbacks put forwards now can be overcome by using GC. Indeed,
GC allows users to achieve the same goals of flexibility and reconfigurability of the

116 Applications: FDTD with MPI in Grid Environments

Table 4.2 Speed-Ups for FDTD on a Grid

Number of Nodes Speed-up on a
256x256x256 Case

Speed-up on a
400x400x400 Case

1 1 1
2 1.3 1.6
4 2.7 2.8
8 4.1 4.6

applications without paying a severe cost of computational performance and
rewriting applications.

4.7 Conclusions

In this chapter, the general characteristics of the FDTD approach have been
resumed and a general algorithm for parallel FDTD proposed. The intrinsically par-
allel nature of the approach renders it amenable for a large variety of parallel plat-
forms, including both SIMD and MIMD environments. This is extremely appealing
when considering a heterogeneous environment, as a grid potentially is. A meta-
application should be considered, in charge of launching the appropriate parallel
implementation on each node of the grid, including the possibility of threads where
useful. The ability of GC to define a dedicated policy for load balancing and task
distribution, joined with the ability to manage executables distributed in the grid (as
shown in Chapter 3), demonstrates that GC fulfills all of the requirements of distrib-
uted and cooperative computing.

Moreover, the low cost required for a migration of FDTD applications towards
GC makes HPC much more affordable than before, provided that suitable band-
width is available. The use of MPICH-G2 in the framework of GT, in fact, induces a
small degradation of performance with respect to traditional solutions of distrib-
uted computing. This, in conjunction with the large granularity of the algorithm, is
a highly attractive feature, encouraging an investment on GC know-how, rather
than on very expensive computing platforms.

Furthermore, GC is proposing itself as a complementary strategy for enabling
technologies, thus opening interesting perspectives for cooperative engineering.

Acknowledgments

The authors want to express their sincere and deep gratitude to Paolo Palazzari and
Luca Catarinucci. Paolo and Luca gave a fundamental contribution to the progress
of the FDTD project.

References

[1] Yee, K. S., “Numerical Solution of Initial Boundary Value Problems Involving Maxwell’s
Equation in Isotropic Media,” IEEE Trans. Antennas and Prop., AP-14, May 1966,
pp. 302–307.

[2] Taflove, A. Computational Electrodynamics: the Finite-Difference Time-Domain Method,
Norwood, MA: Artech House, 1995.

[3] Railton, C. J., I. J. Craddock, and J. B. Schneider, “The Analysis of General 2D PEC Struc-
tures Using a Modified CPFDTD Algorithm,” IEEE Trans. Microwave Theory Techn.,
Vol. 44, No. 10, 1996, pp. 1728–1733.

[4] Gilbert, J., and R. Holland, “Implementation of the Thin Slot Formalism in the FD EMP
Code,” IEEE Trans. Nuclear Sc., 28, 1981, pp. 4269–4274.

[5] Riley, D. J., and C. D. Turner, “Hybrid Thin-Slot Algorithm for the Analysis of Narrow
Apertures in FDTD Calculations,” IEEE Antennas Prop. Symp., Vol. 38, No. 12, 1990,
pp. 1943–1950.

4.7 Conclusions 117

[6] Taflove, A., et al., “Detailed FDTD Analysis of EM Fields Penetrating Narrow Slots and
Lapped Joints in Thick Conducting Screens,” IEEE Antennas Prop. Symp., Vol. 36, No. 2,
1988, pp. 247–257.

[7] Holland, R., and L. Sympson, “FD Analysis EMP Coupling to Thin Struts and Wires,”
IEEE Trans. EM Comp., Vol. 23, No. 2, 1981, pp. 88–97.

[8] Umashankar, K. R., A. Taflove, andB. Beker, “Calculation and Experimental Validation of
Induced Current on Coupled Wires in an Arbitrary Shaped Cavity,” IEEE Antennas Prop.
Symp., Vol. 35, No. 11, 1987, pp. 1248–1257.

[9] Taflove, A., and M. E. Brodwin, “Numerical Solution of Steady-State EM Scattering Prob-
lems Using the Time-Dependent Maxwell’s Equations,” IEEE Microwave Theory Techn.,
Vol. 23, No. 8, 1975, pp. 623–630.

[10] Mrozowski, M., “Stability Condition for the Explicit Algorithm of the Time-Domain
Analysis of Maxwell’s Equations,” IEEE Microwave and Guided Wave Lett., Vol. 4, No. 8,
1994, pp. 279–281.

[11] Krumpholz, M., and L. Katehi, “MRTD: New Time Domain Schemes Based on Multireso-
lution Analysis,” IEEE Trans Microwave Theory Techn., Vol. 44, No. 4, 1996,
pp. 555–571.

[12] Slager, K. L., et al., “Relative Accuracy of Several FDTD Methods in 2 and 3D,” IEEE
Antennas Prop. Symp., Vol. 41, No. 12, 1993, pp. 1732–1737.

[13] Kunz, K. S., and R. J. Luebbers, The FDTD Method for Electromagnetics, Boca Raton, FL:
CRC Press Inc., 1993.

[14] Enquist, B., and A. Majda, “ABC for the Numerical Simulation of Waves,” Math. Of Com-
putation, Vol. 31, 1977, pp. 629–651.

[15] Mur, G., “ABC for the FD Approximation of the Time-Domain EM Field Equations,”
IEEE Trans. EM Comp., Vol. 23, No. 4, 1981, pp. 377–382.

[16] Rahal-Arabi, A., and R. Mittra, “An Alternative Form for the Mur 2nd-Order ABC,” Micr.
Opt. Techn. Lett., Vol. 9, No. 6, 1995, pp. 336–338.

[17] Higdon, R. L., “ABC for Difference Approximations to the Multidimensional Wave Equa-
tion,” Mathematics of Computation, Vol. 47, 1986, pp. 437–459.

[18] Mei, K. K., and J. Fang, “Superabsorption—A Method to Improve ABC,” IEEE Ant. Prop.
Symp, Vol. 40, No. 9, 1992, pp. 1001–1010.

[19] Berenger, J. P., “A Perfectly Matched Layer for the Absorption of EM Waves,” Journ.
Comp. Phys., Vol. 114, 1994, pp. 185–200.

[20] Teixeira, F. L., and W. C. Chew, “PML-FDTD in Cylindrical and Spherical Coordinates,”
IEEE Mirc. And Guided Wave Lett., Vol. 7, No. 9, 1997, pp. 285–287.

[21] Gedney, S. D., “An Anisotropic PML Absorbing Medium for the FDTD Simulation of
Fields in Lossy and Dispersive Media,” Electromagnetics, Vol. 16, No. 4, 1996,
pp. 399–415.

[22] Kraus, J. D., Antennas, New York: McGraw Hill, 1988.
[23] Chew, K. C., and V. Fusco, “A Parallel Implementation of the FDTD Algorithm,” Int.

Journ. Num. Modeling, Vol. 8, 1995, pp. 293–299.
[24] Gedney, S. D., “FDTD Analysis of MW Circuit Devices in High Performance Vector/Paral-

lel Computers,” IEEE Trans. Microwave Theory Techn., Vol. 43, No. 10, 1995,
pp. 2510–2514.

[25] Guiffaut, C., and K. Mahdjoubi, “A Parallel FDTD Algorithm Using the MPI Library,”
IEEE Ant. Prop. Mag., Vol. 43, No. 2, 2001, pp. 94–103.

[26] Catarinucci, L., P. Palazzari, and L. Tarricone, “Human Exposure to the Near-Field of
Radiobase Antennas: A Full-Wave Solution Using Parallel FDTD,” IEEE Trans. Micr. The-
ory Techn., Vol. 51, No. 3, 2003, pp. 935–941.

[27] Pacheco, Peter S., Parallel Programming with MPI, San Francisco, CA: Morgan Kaufman,
1997.

[28] http://www.mcs.anl.gov/mpi/mpich/download.html.

118 Applications: FDTD with MPI in Grid Environments

[29] Butenhof, D. R., Programming with POSIX Threads, Reading, MA: Addison-Wesley,
1997, pp.1–12

[30] Forenc, J., and A. Skorek, “Analysis of High-Frequency Electromagnetic Wave Propaga-
tion Using Parallel MIMD Computer and Cluster System,” Proc. International Conference
PARELEC 2000, 2000, pp. 176–180.

[31] Schiavone, G., et al., “FDTD Speedups Obtained in Distributed Computing on a Linux
Workstation Cluster,” Proc. IEEE Antennas and Propagation Society International Sym-
posium, 2000, pp. 1336–1339.

[32] Http://www3.niu.edu/mpi.
[33] Siniaris, C. G., et al., “Implementing Distributed FDTD Codes with Java Mobile Agents,”

IEEE Antennas and Propagation Magazine, Vol. 44, No. 6, December 2002, pp. 115 –119.

4.7 Conclusions 119

.

C H A P T E R 5

CAE of Aperture-Antenna Arrays

5.1 Introduction

As thoroughly discussed in the previous chapters, computational grids have a
number of attractive features: they support low-cost, scalable, and flexible HPC
environments; guarantee high security standards; offer full opening to Web applica-
tions; and boast an intrinsic alignment with new emerging software engineering
methodologies. This paves the way to a wide range of possible applications of GC to
the world of computational EM.

In Chapter 4, we discussed the use of GC as an innovative solution to EM prob-
lems with relevant computational weight. The FDTD simulation of human-antenna
interaction problems has been considered as a reference benchmark, and the suit-
ability of GC to support the huge computational effort has been discussed.

In this chapter, we identify another area of application, switching toward differ-
ent numerical techniques (mainly in the family of method-of-moments approaches)
and industrial processes. The addressed application is the CAE of arrays of aperture
antennas.

This application represents a more difficult test with respect to the FDTD one in
Chapter 4. CAE of aperture antennas, in fact, joins together severe requirements of
HPC, with a strong demand for cooperative engineering. GC is asked to satisfy both
requests, and in this chapter we explain why it represents an adequate answer.

As Chapter 4 is fully devoted to discussing the viability of HPC with GC, in the
present chapter the main emphasis is on cooperative engineering and how to sup-
port it in a GC framework.

Coming to CAE of aperture antennas, the analysis and design of large antenna
arrays typically belong to the class of problems of relevant complexity. The use of
very large flange-mounted arrays of apertures, with even more than 100 apertures,
and complicated feeding apparatuses, is routinely encountered in many telecommu-
nication applications. It can easily happen that stringent requirements on the electri-
cal properties of the feeding sections must be harmonized with rigid manufacturing
specifications, as well as mechanical properties of the radiating apparatuses. Last,
but not least, suitable yields are expected when migrating the project from a proto-
typing phase to production.

In such a scenario, the analysis, design, and testing steps of the array must be
accompanied by suitable optimization procedures and accomplished in an inte-
grated manner, inside the framework of a CAE tool. This is the only effective way to
render times and costs suitable and guarantee a high standard of quality.

121

As usually happens when attacking complex processes, it is nearly compulsory
to introduce some forms of schematization and simplification, so that the problem
can be more easily formulated and divided into simpler subproblems. In such a per-
spective, the problem of CAE of devices, such as the array of rectangular flange-
mounted apertures reported in Figure 5.1, can be considered as composed of four
main tasks:

1. Analysis and design of the feeding waveguide section;
2. Analysis and design of the apertures over the flange;
3. Analysis of the overall behavior of the system, including mutual coupling

among apertures;
4. Analysis of the consequent radiating properties of the system.

Of course, these four procedures must tightly interact and can be considered
part of an iterative optimization procedure.

These four steps typically deserve different methodologies of analysis and solu-
tion, thus leading to a first reason of complexity: the high degree of heterogeneity of
numerical techniques and methodologies to be harmonized. It can easily happen that
these tasks can be attacked separately, by different research groups, thus joining the
heterogeneity of strategies with another potential source of complexity: the geo-
graphical distribution of skills and resources that must interact and cooperate in a
concurrent fashion. Furthermore, as clarified in the chapter, we deal with numerical
problems implying a strong computational effort, with a consequent demand of
huge computational power. Finally, as a direct implication of the necessity to inte-
grate distributed expertise and tools, a severe problem of security must be faced, in
order to guarantee to all of the subjects involved in the cooperation the ability to
share their operative capacities while retaining all of the intellectual and material
properties in which they are interested. This can even cast the demand for a sort of
brokering entity, able also to deal with possible economical transactions among the
subjects involved in the cooperation.

In other words, as anticipated before, CAE applications need HPC and would
benefit by effective cooperative engineering tools. GC is an appropriate approach to
fulfill both of these requirements, and this chapter explains why and how. In order
to do this, it is structured as follows.

122 CAE of Aperture-Antenna Arrays

Figure 5.1 A typical array of rectangular apertures. The metallic flange is not shown, for graphical
reasons. The feeding apparatus is composed of stepped rectangular waveguides.

First, Section 5.2 is focused on giving an introduction to what can be considered
the theoretical core of the EM problem (i.e., the study of radiation from apertures,
starting from the single-aperture case and arriving at the mutual coupling among
multiple apertures). The case of infinite metal flange and rectangular apertures is
considered. Later on, in Section 5.3, an integrated framework for CAE of aperture
arrays is described, as composed of several (potentially independent) modules. In
Section 5.4, the environment for CAE of arrays is migrated towards parallel MIMD
platforms. A detailed preliminary analysis is proposed, needed to design the parallel
algorithm. Later on, sophisticated parallel strategies are discussed, based on Petri
nets and load-balancing policies. Some results demonstrate the attractive perform-
ance attained with an MPICH implementation. On such bases, Section 5.5 proposes
the migration of the environment towards GC, describing the practical aspects and
discussing the relevant implications. The reader is suggested to recall the previously
enumerated issues of heterogeneity, geographical distribution, huge computational
power, security, and brokering, so that a critical evaluation of the suitability of GC
to such goals can be formulated when concluding the chapter. In other words,
rather than proposing a guide to CAE of aperture-antenna arrays, we would like to
give an idea of GC amenability to manage with complex and integrated environ-
ments, more and more frequently encountered in computational EM. CAE tools are
a very well-suited example.

5.2 Numerical Techniques for the Analysis of Flange-Mounted
Rectangular Apertures

5.2.1 Theoretical Background

Rectangular aperture antennas are routinely used for several applications, and
the analysis of the basic radiating system has received considerable attention so
far. Typically, for computational purposes, the presence of an infinite metallic
flange has been considered because this hypothesis permits the use of free-space
Green’s functions, thus considerably alleviating the numerical effort. Moreover, the
hypothesis is quite adherent to physical reality: in the majority of cases, the metallic
flange’s size fully justifies such an approximation.

A wide research effort has been produced on the subject. After the first pioneer-
ing works of [1–5], where only the contribution of the dominant mode in the aper-
ture field was considered, several other works have been published, taking into
account higher order modes or cross polarization [6–8]. A considerable variety of
different numerical techniques has also been experienced (from integral equation to
transverse operator techniques [9, 10]) and the relevance of the choice of different
field expansions on the aperture has been studied [11].

The basic theory used to model the rectangular waveguide aperture, as well as
aperture arrays, is illustrated in [12–15]. The field inside a rectangular waveguide is
expressed as the sum of the modes of the waveguide (though, as extensively dis-
cussed later, this issue is open to alternative choices). Referring to transverse electric
(TE) and transverse magnetic (TM) modes reported in Appendix C, and by impos-
ing a correspondence between the variable p (or q) and the couples of indexes (m, n)
typically adopted to identify modes, we can write the following:

5.2 Numerical Techniques for the Analysis of Flange-Mounted Rectangular Apertures 123

()

() []
()

()r

r
E

H

e

h









 = ±







−

=

∑
t

i

p
i j z

p
i j z

p i

M i

x y z a e b ep p, ,
γ γ

1

()
±

p

px y Y,
1

2 (5.1)

In this formula, the E and H transversal components over the ith aperture are
expressed as the summation of M(i) modes, with e and h representing their depend-
ence on transversal coordinates (x, y). In the same formula, if we indicate with k the
free space wave number, the characteristic admittance of the mode is Y Y kp o p= γ
or Y Y kp o p= γ , respectively, for the pth TE or TM mode, and γ p is the propagation
constant for the pth mode.

Once the field has been decomposed into TE and TM modes, the elements of the
aperture’s generalized admittance matrix, representing the interaction between p
and q modes over i and j apertures, respectively, are the following [12–14]:

() () ()y p q
jkY

Y Y
dS x y dS x y G x x yi j

o

p q

p
D

q
Di j

, | , , ,= ′ ′ ′ − ′∫∫ ∫∫
2π

Ψ Ψ ()− ′y (5.2)

where ()G x x y y e r rjk r r− ′ − ′ = − ′− − ′, | | is the free space Green’s function,

()Ψp p p zp oh k= +
r r
h zγ —see (C.17–C.20) in Appendix C—and Di and Dj are the ith

and jth apertures (see Figure 5.2).
Equation (5.2), which holds for a generic geometry of apertures, specializes to

the case of a rectangular aperture as follows:

()y m n m n
jkY

Y Y
N N c I c Ii j

o

m n m n
C C x x ym n m n,

, ,

, | ,
, ,

′ ′ = +
′ ′

′ ′2π
()y z zc I− (5.3)

In the previous equation, ci (with I = x, y, z) are evaluated as reported in [12–15],
while the main computational effort is generally required by the evaluation of inte-
grals Ii (with I = x, y, z), which assume the following form:

124 CAE of Aperture-Antenna Arrays

ai

bi

Z
X

Y

aj

bj

x

y
x'

y'

Di

Dj

(x',y')

(x,y)

(x ,y)j j

(x ,y)i i

Figure 5.2 The coordinate system for a multiaperture case. Di and Dj are the ith and jth apertures
(with dimensions ai × bi and aj × bj), respectively, with a relative coordinate system xy and x’y’.

()
I

I

I

dS dS G x x y y
m x

a

x

y

z
D D ii j

= ′ − ′ − ′








∫∫ ∫∫ ,

sin

cos

cos

π 










′ ′

′











cos

sin

cos

sin

cos

cos

c
n y

b
m x

ai i

π π
os

sin

cos

′ ′

′











n y

bi

π
(5.4)

The integrations reported in (5.4) are difficult, both when a theoretical analyti-
cal solution is pursued and when approaching them with numerical techniques. It is
quite apparent that a four-fold integration is not friendly, and the first step is the use
of suitable transformations to reduce the order of integration.

Two main pathways will be discussed to achieve the goal: the first is based on
the use of Fourier transformations (and is therefore referred to as spectral); the sec-
ond is based on Lewin transformation (discussed later). Both cases are, in turn, ame-
nable to two kinds of formulations. The former adopts waveguide modes to expand
fields over the apertures; the latter, on the contrary, expands fields by means of dif-
ferent basis functions (e.g., Gegenbauer’s polynomials [11, 16]). As a consequence,
four approaches are possible (as depicted in Figure 5.3): two spectral methods (the
former using waveguide mode expansion, the latter using Gegenbauer expansion)
and two Lewin-transformed methods (even in this case differing with the adopted
expanding functions). The methods are very shortly described later.

The efficiency in the numerical analysis of the single aperture is fundamental,
especially when large arrays must be studied. In fact, the goal of an efficient analysis
of multiple aperture systems cannot be even tackled without ensuring a high per-
formance to the analysis of the single aperture. This issue is critical to setting up
effective CAE environments. Consequently, this theme is specifically addressed in
Section 5.3.2, when the most promising approach is identified after a rigorous
analysis.

5.2.2 Approaches Based on Waveguide Modes

The two approaches are based on a field expansion over the apertures using rectan-
gular waveguide modes. One method uses a Fourier transformation and is

5.2 Numerical Techniques for the Analysis of Flange-Mounted Rectangular Apertures 125

Waveguide
mode expansion

Spectral
transformation

Lewin
transformation

SP-WG
method

LW-WG
method

Gegenbauer’s
polynomial
expansion

Spectral
transformation

Lewin
transformation

SP-GE
method

LW-GE
method

Figure 5.3 A possible schematic representation of the four formulations for the analysis of aperture
arrays. The classification is performed by considering the functions adopted for the field expansion as
well as the use of coordinate transformations.

addressed as spectral/waveguide (SP-WG)in the following . The other method uses a
Lewin transformation, and is addressed as Lewin/waveguide (LW-WG).

5.2.2.1 Spectral Approach with Waveguide Modes (SP-WG)

The method is based on the Fourier transformation of the half-space Green’s func-
tion, by using (C.23) reported in Appendix C. Thanks to suitable manipulations,
(5.4) can be reduced to double integrals, as described in [17]. Such double integra-
tions can be solved numerically, and the critical issue for an effective and accurate
solution is the choice of the integration path. The use of the Fourier transformation
leads to the introduction of a factor:

() ()

1

12 2
2

f fx y
o

+ −








λ

(5.5)

This renders extremely useful the following change of variables, inspired by sim-
ple trigonometric rules:

() ()()
() ()()

f f

f f

x o

y o

=

=

sin cos

sin sin

η ξ

η ξ
(5.6)

The transformation (5.6) simplifies the integration, especially when an appro-
priate integration path is selected for the complex η plane [18]. The considered path
is reported in Figure 5.4, with the real part ranging in the interval [0; π/2], and the
imaginary part in the range [j0, j∞].

This casts a rather complex problem (i.e., the identification of where to truncate
the integration along the imaginary axes without affecting the accuracy of the inte-
gration). The point, related to the integration method adopted (in our case, a stan-
dard three-point Simpson method), must be empirically studied, identifying the
appropriate compromise between performance and accuracy.

126 CAE of Aperture-Antenna Arrays

Re()η

Im()η

(o,o) (/2,jo)π

(/2,j)π ∞

Figure 5.4 The suggested integration path in the complex η plane. A truncation is needed along the
imaginary axis and represents a relevant problem to achieving a good compromise between
accuracy and performance.

5.2.2.2 Lewin Approach with Waveguide Modes (LW-WG)

This method is based on the fundamental observation that (5.4) are easily reduced
to the following form for the (x, x’) domain (similar considerations hold for (y, y’)):

()dx F x x
m x

a
m x

a

aa

i J

ji ′ − ′










′ ′


∫∫

cos

sin

cos

sin00

π π







 (5.7)

where F is a generic function with integrable singularities. As discussed by
[1, 13, 14], it is possible to reduce the order of integration by the following Lewin
transformation:

σ

λ

ν

µ

= − ′

= − ′

= + ′−

= − ′−

x x

y y

x x a

y y b
i

i

(5.8)

A double integral in the σ and λ variables is then attained, easily and efficiently
solved with a Simpson rule.

5.2.3 Approaches Based on Gegenbauer’s Polynomials

The two approaches are based on a field expansion over the apertures using Gegen-
bauer’s polynomials Cm

v as expanding functions. The x and y-polarization of the E
field are expanded as weighted sums of terms:

() ()C x C y m n zm n
1 6 7 6 1 2 1with , , ...,= +

for the x polarization and:

() ()C x C y i j zi j
7 6 1 6 0 2with , , ...,=

for the y polarization.
This idea, proposed and discussed in [11], is based on the basic observation that

these functions intrinsically satisfy the field singular behavior nearby an edge.
Moreover, these orthonormal functions, though not a solution to the wave equa-
tion, generate very attractive integration kernels that are very amenable to analyti-
cal manipulation, when multiplied by the Green’s half-space function. As in the case
of Section 5.2.2, two methods are proposed in this section: the first uses a Fourier
transform and is addressed as spectral/Gegenbauer (SP-GE) in the following. The
other method uses a Lewin transformation and is addressed as Lewin/Gegenbauer
(LW-GE).

5.2.3.1 Spectral Approach with Gegenbauer’s Polynomials (SP-GE)

The method is based on the Fourier transformation of the half-space Green’s func-
tion, as indicated in Section 5.2.2. According to [11], for the admittance matrices
describing the half-space and the waveguide regions, the use of Gegenbauer’s

5.2 Numerical Techniques for the Analysis of Flange-Mounted Rectangular Apertures 127

polynomials and a coordinate transformation similar to (5.6) allow the derivation of
formulas with interesting properties. The entries of the admittance matrices are com-
plex and reduced to double integrals. The real and imaginary part of the matrix
entries are attained by integrating a kernel including sinusoidal, cosinusoidal, and
first-kind Bessel’s functions. Such functions, coming out as a consequence of heavy
and time-consuming analytical manipulations of the terms (including Gegenbauer’s
polynomials, which produce the attractive result of reducing the order of integra-
tion), have the drawback of introducing an oscillating behavior into the integration
kernels. The real part of the admittance matrix is attained by performing the double
integration over a finite domain, while the imaginary part deserves a 2D integration
over an infinite domain for one out of the two dimensions. The solving formulas,
allowing the evaluation of the entries of the admittance matrix (the consequent deri-
vation of the scattering matrix is straightforward) are rather heavy and entirely
reported in [17].

5.2.3.2 Lewin Approach with Gegenbauer’s Polynomials (LW-GE)

The method extends to the case introduced in Section 5.2.2.2. Consequently, a
Lewin-like transformation is introduced, such as the following:

x
a a

y
b b

= +

= +

2 2

2 2

θ

ϕ

(5.9)

The transformation, combined with suitable analytical developments, reduces
the calculation of the coupling integrals expressing the interaction between source
and test fields over the apertures to double integrals, as now reported:

()() () ()E V W F C Cyy k l

NY

K

NX

i= ′ − ′ − − ′∫∫∑∑
==

− −
θ θ θ θ θ

µ µ µ

1 10

2 1 2 2 1 2
1 1 ()

()() ()

m

k l

NY

K

NX

d d

V W F

µ

ν ν

θ θ θ

ϕ ϕ ϕ ϕ

′ ′

+ ′′ − ′ − − ′∫∫∑∑
==

− −

1 10

2 1 2 21 1 () ()
1 2

C C d dj n
ν νϕ ϕ ϕ ϕ′ ′

(5.10)

where NX and NY are, respectively, the number of expanding polynomials along
the x and y axes. In (5.10), the coupling between y-polarized sources and tests is
evaluated. Similar equations are attained for the xx, xy, and yx cases. According to
Lewin’s theory, ′F and ′′F must fulfill the requirements of being two generic functions
with integrable singularities. Though it could be assumed that these requirements
are loose enough to allow the identification of two functions so that the integra-
tions are substantially simplified, this is not the case, and the derivation of an effec-
tive LW-GE method is still an open issue.

5.3 A Tool for the CAE of Rectangular Aperture Antenna Arrays

In the previous section, we proposed a general background to the problem of the
effective and efficient numerical analysis of aperture arrays. We saw that at least

128 CAE of Aperture-Antenna Arrays

four different approaches can be pursued to study the radiating properties, taking
into account the relevance of mutual coupling among apertures, and we still have to
identify the most suitable for our purposes.

Truly, the development of a CAE tool for such devices is a wider and more com-
plex effort, as mutual coupling is just one of the difficulties to be faced. In this sec-
tion, we propose a possible way to schematize the structure of a candidate CAE
environment, by partitioning the whole task into four main subtasks and describing
them separately. The following sections will focus on how to integrate them in the
framework of a parallel, grid-amenable tool.

Let us assume that a system must be analyzed. It is composed of a certain
number of feeders (typically horns) and the relative flange-mounted rectangular
apertures. A real system was proposed in Figure 5.1, reporting a seven-aperture
array for satellite applications at 3.7 GHz. The challenges of CAE of such rectangu-
lar aperture antenna arrays can be partitioned into several subproblems, namely:

1. Evaluation of the horns’ scattering matrices;
2. Evaluation of the aperture array’s scattering matrix;
3. Evaluation of the scattering matrix at external physical or electrical ports;
4. Evaluation of the radiation pattern.

Each subproblem can be solved by adopting different strategies and techniques,
which can also be implemented by using methodologies, tools, and programming
languages that can differ deeply. In other words, each subproblem can in principle
be solved independently of the others by a single autonomous research group, pro-
vided that suitable communication strategies are adopted to make the different
modules communicate one another (the most trivial way is communication via
files). In such a way, items 1–4 can be performed sequentially, so that the radiation
pattern of a given system is attained for a certain geometry, excitation, and operat-
ing conditions. The whole system, therefore, can be conceived as a single executable
as well as a collection of several modules.

Some details are now given for each of the modules.

5.3.1 Evaluation of the Horns’ Scattering Matrix

The analysis of the horn behavior is performed by using the mode-matching (MM)
approach. Some basic guidelines for the application of the MM method are reported
in the following, though we refer the interested reader to [19] for a complete
description of the adopted MM formulation.

A preliminary step is the segmentation of each horn feeder into a cascade of
steps in the E or H plane. This is generally needed when a tapered horn is analyzed in
order to apply the basic MM assumptions. The field inside each feeder is expanded
into a sum of TE and TM modes, as suggested in (5.1), and each discontinuity (step
in the E or H plane) is studied by evaluating its coupling matrix W, whose entries are
calculated with the following formula:

w dSij ia
S

a

a

= ∗∫ E E jb (5.11)

5.3 A Tool for the CAE of Rectangular Aperture Antenna Arrays 129

Where Eia is the E field of the ith mode at a side of the discontinuity, Ejb is the E field of
the jth mode at b side of the discontinuity, and Sa is the discontinuity section (see Fig-
ure 5.5). Now, letting Ya and Yb, the diagonal matrices of the characteristic modal
admittances in each waveguide (i.e., each diagonal element in Ya is equivalent to the
admittance of the corresponding mode in the waveguide at a side), the generalized
scattering matrix for the most general case of double step can be computed accord-
ing to the following formulas:

S
S S

S S
=











11 12

21 22

with

[] []S Y Y Y Ya c a c11

1
= + −

−
(5.12)

[]S 21 11= +W I S (5.13)

[]S Y Y W Ya c
T

b12

1
2= +

−
(5.14)

S WS I22 12= − (5.15)

In (5.12–5.15), Y W Y Wc
T

a= . The whole waveguide structure for the horn is
simulated by cascading the generalized scattering matrices of the singular step dis-
continuities, with the formulas reported in [20]:

()S S I S S S Sa a b a a11 12 22 22

1

22 21 11= − +
−

S b (5.16)

()S S I S S Sa b a b13 12 22 22

1

23= −
−

(5.17)

()S S I S S Sb a b a31 32 22 22

1

21= −
−

(5.18)

()S S I S S S S Sb a b a b b33 32 22 22

1

22 23 33= − +
−

(5.19)

where number 1 and 3 identify the outer physical ports at the discontinuity, while
number 2 identifies the connected (inner) sections (see Figure 5.5).

5.3.2 Evaluation of the Aperture Array’s Scattering Matrix

The efficiency and accuracy of the numerical approach adopted to analyze the
behavior of the field over the aperture, as well as the mutual coupling among aper-
tures, is crucial for the development of effective and viable CAD/CAE tools for
antenna arrays. This compels us to make a rigorous comparison of performance and
general properties of the four reviewed methods (SP-WG, SP-GE, LW-WG, and
LW-GE) in order to identify the most adequate candidate to be implemented.

Due to the difficult identification of the ′F and ′′F functions needed to easily
implement the LW-GE approach, this method is considered a future challenge and

130 CAE of Aperture-Antenna Arrays

not included in the present analysis. The remaining three approaches are now
addressed, and some global conclusions proposed.

Out of many relevant parameters, two important factors affect the accuracy and
the numerical effort required by the three approaches:

1. The number of expanding functions for an accurate description of the field;
2. The number of integration points to achieve convergence in (5.4) and its

derivations.

The two parameters should be discussed jointly, and some considerations can
be derived on each specific issue.

As for the dependence on the modal/polynomial set cardinality, all three meth-
ods have a quadratic complexity on the number of expanding functions. Nonethe-
less, this is not enough to conclude that they all have the same behavior when
enlarging the number of terms in the field expansion. In fact, when keeping fixed the
number of integration points, the SP-GE method is slowed less than the others by an
increase in the cardinality of the modal set. This could be an advantage when many
expansion terms are needed to reach convergence, such as in the case of very low
aspect ratios for the apertures (squared apertures being the limit case).

As for the dependence on the number of integration points, as predictable when
using Simpson integration rule, the computing time is generally proportional to the
total number of integration points. Nonetheless, as in the case of the modal set car-
dinality, this does not mean that the three methods have the same complexity. In

5.3 A Tool for the CAE of Rectangular Aperture Antenna Arrays 131

a b 1 2 3

[S1] [S2]

S1=
S22aS21a

S12aS11a
S2=

S33bS32b

S23bS22b

[W]

Figure 5.5 The computation of the coupling matrix W for a discontinuity, as referred to section a
and b (left). Once the coupling matrix W has been determined, and the scattering matrix of the
discontinuity is available, multiple discontinuities can be studied by cascading their scattering
matrices. An example is reported on the right, where port 2 is a connected one, and (5.16–5.19)
allow the derivation of the scattering matrix at external ports 1 and 3, provided that the scattering
matrices at ports (1,2) and (2,3) have been previously computed.

this case, the LW-WG method suffers more than the others when increasing the
number of points.

Finally, when performing a joint analysis, with an optimum choice of modal set
cardinality and integration points so that a required accuracy is achieved, the results
in Table 5.1, where the computation times are reported for the case of a squared
(edge of 22.96-mm) aperture, can be reached. It is globally concluded that the SP-GE
approach has a relevant drawback—the high number of integration points needed to
achieve good accuracy (thus negating the advantage of a small number of expanding
terms). LW-WG is generally lower performing, while the SP-WG approach is quite
efficient and viable, thanks to the superior stability of its numerical kernels. The
SP-WG method is then assumed to be the reference approach to be embedded in a
CAE framework.

5.3.3 Evaluation of the Scattering Matrix at External Ports

Once the S matrix of each horn and of the aperture array have been computed (as
described in Sections 5.3.1 and 5.3.2, respectively), the use of circuit theory is
extremely fruitful. The situation is depicted in Figure 5.6, where an electric

132 CAE of Aperture-Antenna Arrays

Table 5.1 Computing Times for a Squared Aperture

Approach Comp. Time (s)

LW-WG 1,920
SP-WG 103
SP-GE 461

Half space

A B C

Ap. 1
S1

Ap. 2
S2

Half space
Shs

1

2

3

4

5

6

Ap. 1

Ap. 2

Figure 5.6 A simple two-aperture example. The scattering matrixes S1 for horn 1 and S2 for horn 2
are calculated by referring to section A and B, while the scattering matrix of the aperture array Shs is
computed by referring to section C. Physical ports are numbered in the figure. For each physical port,
the same number of electrical ports must be considered as the number of modes in that section.

equivalent circuit is shown for a simple case of a two-aperture array with flared
horns. The two horns are represented by the scattering matrices S1 and S2, evalu-
ated with respect to section A and section B. Physical ports are numbered as
reported in the figure, while electrical ports are derived in accordance with the
number of modes used over physical ports to expand the fields. The aperture array’s
scattering matrix Shs is evaluated in section C. Consequently, the continuity condi-
tions for tangential E and H components over section B and C, in terms of circuit
theory, correspond to connecting physical ports 3 and 4 with, respectively, ports 5
and 6. Of course, similar considerations can be derived when referring to electrical
ports.

The previous observations can be immediately translated into simple matrix
algebra considerations. In fact, matrixes S1 and S2 generally have a blocked struc-
ture, in accordance with Figure 5.7, where the four blocks A, B, C, and D are indi-
cated. The A and D blocks are squared submatrices, whose dimensions depend on
the number of modes over ports 1, 2, 3, and 4. For instance, if we suppose that n1

modes are used over port 1 and n2 modes are used over port 3, matrix S1 will have
the A block with dimension n1xn1, and D block with dimension n2xn2. Accordingly,
the dimension of matrix Shs depends on the modal expansions over the apertures
adopted in section C. Now we can partition all of the physical ports into two
groups: external ports (1 and 2) and internal ports (3, 4, 5, and 6). By using circuit
theory and following the approach described in [20], the general scattering matrix
SG of the whole circuit can be derived. If we suppose that matrices S1 and S2 are
identical, the pattern of SG can be predicted and is reported in Figure 5.7. Now, four
submatrices can be identified in SG, namely: See (the scattering matrix related to
external ports), Sii (the scattering matrix related to internal ports), Sie, and Sei (the
rectangular scattering matrices related to the coupling between internal and exter-
nal ports). If we suppose that the total number of modes over ports 5 and 6 is nhs, See

is squared and has dimension 2n1, Sii is squared and has dimension (nhs+2n2), Sie has

5.3 A Tool for the CAE of Rectangular Aperture Antenna Arrays 133

A B

C D
S1=S2=

A

D

B

C

A B

C D

Shs

−1 values
along these
lines

See

Sie
Sii

Figure 5.7 The scattering matrix of the whole device (including the feeding sections and the half
space) at external ports. Once the pattern of the horn scattering matrices is known (in this case, they
are supposed to be identical), the pattern of the overall SG matrix can be predicted by using circuit
theory. A connection matrix is used to attain the overall matrix, remembering the connection among
internal ports.

dimension (nhs+2n2) × 2n1, and Sei has dimension 2n1 × (nhs+2n2). The “–1” values
are attained because of the interconnection among internal ports.

The same formulation based on circuit theory allows the achievement of our
main goal (i.e., the derivation of the scattering matrix at external ports, which we
indicate with Se). Indeed, if we introduce the connection matrix Γ, (i.e., a 0–1 sym-
metric matrix, whose generic entry Γij is 1 if and only if ports i and j are connected
each other), the following formula can be derived

()S S S S Se ee ei ii ie= + −
−

Γi

1
(5.20)

Γi is the connection matrix for internal ports. The evaluation of the general
matrix SG is an important achievement. In addition to the evaluation of Se, it allows
the evaluation of voltages and currents related to the modal sets used over the aper-
tures (internal ports). In fact, if we indicate with ai and bi the forward and backward
waves at port i, respectively, the following equations can be derived:

()a S S ai i ii ie e= −
−

Γ
1

(5.21)

b S ai ii i= (5.22)

Consequently, voltages Vi can be calculated as Vi = ai + bi, and currents as
Ii = ai− bi.

In other words, the method discussed in this section allows the derivation of a
scattering matrix related to a multiport circuit whose ports are the feeding sections
of the horns (external ports), as well as the consequent evaluation of voltages and
currents at internal ports. This guarantees the complete characterization of the cir-
cuit, both at external and at internal ports. While the characterization at external
ports is fundamental for system engineering and design, the ability to model the
behavior at internal ports is a key factor when investigating the radiating properties
(as discussed in the next section) and when performing optimization tasks. Indeed,
the application of very efficient methods, such as the Adjoint Network Method
[21, 22], is strictly correlated with such capability and represents a formidable
improvement in optimization times when compared with the large majority of alter-
native optimization policies.

5.3.4 Evaluation of the Radiation Pattern

The evaluation of the radiation pattern is rather straightforward, thanks to the
accomplishment of the operations described in the previous sections. Indeed, refer-
ring to the reference system of Figure 5.8 and adopting the classical formulation
reported in [23], the electric field in a generic point is:

() ()E r Ea= − +∫
jk

r
e e dxdo jk r j k x k yo o o

cos sin cos sin sinθ

π
θ ϕ θ ϕ

2
y∫ (5.23)

where Ea is the electric field over the metallic flange. Ea is easily evaluated as an
expansion of modes over each aperture, as the voltages Vi evaluated with the method

134 CAE of Aperture-Antenna Arrays

of (5.21) are exactly the weighting factors for all of the modes. Therefore, the kernel
of the previous integral is composed of linear combinations of TE and TM modes of
rectangular waveguides and can be considered as a Fourier transformation of
cosinusoidal and sinusoidal functions.

The generic form of the integration to be performed is:

sin sin cosn x
a

e dx
n

jk x

x

x a

o

cn

cn n π θ ϕ










+

∫ (5.24)

where n is a modal index, an is the nth aperture’s horizontal dimension, and xcn is the
nth aperture’s center x coordinate, with respect to a common coordinate system.

Of course, the solution of (5.24) and the appropriate projection of E-field com-
ponents along the radial direction allows, in the far-field approximation, the deriva-
tion of copolar and cross-polar radiation patterns, according to the most typical and
well-known definition by Ludwig [24]:

E E E

E E E
copol

cross

= +

= −

θ ϕ

θ ϕ

ϕ ϕ

ϕ ϕ

sin cos

cos sin
(5.25)

5.4 Parallel CAE of Aperture Arrays

In the previous section, we described the nature of the four main building blocks of
an environment suitable for CAE of aperture arrays. From now on, we refer to the
four building blocks by introducing the following acronyms:

• Evaluation of the horns’ scattering matrices: analysis of the feeding system
(AFS);

• Evaluation of the aperture array’s scattering matrix: analysis of mutual
coupling (AMC);

5.4 Parallel CAE of Aperture Arrays 135

x

y

z

P

φ

θ

Figure 5.8 The coordinate system adopted when evaluating the radiation pattern. The third
definition by Ludwig is assumed when defining the radiation pattern.

• Evaluation of the scattering matrix at external physical or electrical ports:
evaluation of the scattering matrix (ESM);

• Evaluation of the radiation pattern (ERP).

As discussed earlier, some of the numerical tasks are extremely heavy from a
computational point of view. Both the mutual coupling of apertures and the evalua-
tion of the generalized scattering matrix of the whole circuit are complex. The
former is due to integration problems; the latter is due to the implied matrix algebra,
with several large matrix inversions—see (5.20). Moreover, the four building blocks
are based on rather different formulations and approaches and can often be devel-
oped in the framework of large projects by different research groups with different
software methodologies. Consequently, the effective implementation of an environ-
ment for CAE of aperture horn arrays must basically face two problems: the need to
sustain high computing performance and the need to allow cooperative engineering.
In this section we demonstrate how parallel computing can solve the first problem.
In the remaining part of the chapter, it is demonstrated that GC, while supporting
cost-effective parallel computing, allows a complete and secure solution to the sec-
ond problem as well.

5.4.1 Preliminary Analysis

Once the most efficient formulations and numerical techniques are used for the
analysis of each of the four main blocks (MBs), it is a matter of fact that the analysis
of arrays with several apertures (tens or more, as often encountered in real applica-
tions) is still unaffordable with ordinary computing strategies. This is especially true
when optimization strategies must be adopted, thus requiring iterative analysis.

The development of parallel solutions for method of moments/mode match-
ing–based approaches is not trivial and must be forwarded, as is useful in the major-
ity of cases, by a rigorous profiling of the serial version of the code in order to
arrange an efficient parallel algorithm. This allows the identification of all of the
possible levels of concurrency among several parts of the code, as well as of the most
CPU-demanding tasks.

The first step of this preliminary analysis is the fragmentation of each of the four
MBs into what we call atomic subtasks (ASs). For instance, the module AFS can be
partitioned into seven ASs, as reported in the following Table 5.2.

Once the ASs have been identified, a time profiling is performed, and freeware
software, such as gprof GNU profiler [25], can be used for this goal. The profiling

136 CAE of Aperture-Antenna Arrays

Table 5.2 Atomic Subtasks in AFS

Acronym for the AS Description

AFS1 Data input processing
AFS2 Mode evaluation and ordering in accordance with cut-off frequencies
AFS3 Evaluation of mode numbers over apertures
AFS4 Generation of output files
AFS5 Evaluation of coupling matrixes for all of the sections
AFS6 Analysis of E/H plane steps and the relative S matrices
AFS7 Evaluation of the scattering matrix for the whole horn (for each horn)

shows that the computation of the scattering matrix that describes the interaction of
modes over apertures dominates all the other subtasks (as is easily predictable), and
other challenging tasks are both the computation of the S matrix of the single feed
intended as a cascade of discontinuities (5.16–5.19) and the evaluation of the
inward and outward waves at internal electrical ports (5.21–5.22).

The profiling is a fundamental step to address the parallelization effort toward
the most challenging ASs and to identify data dependencies among ASs and concur-
rencies. Indeed, apart from more immediate levels of parallelism, such as the analy-
sis of all of the horns, which can be performed in parallel, the profiling demonstrates
that several ASs belonging to different MBs can run concurrently. Last, but not
least, it generates a hierarchical tree of dependencies among ASs: each node is a sub-
task, and edges connecting ASs are related to data exchange among subtasks. This
hierarchical tree can be fruitfully represented by adopting the schematism of Petri
nets [26], which is a powerful way to map such dependencies when large numbers of
ASs must be addressed.

This is not the appropriate context for a detailed discussion on Petri nets. How-
ever, they can quickly be described by referring to a set of places, a set of transitions,
a set of input functions, and a set of output functions. Figure 5.9 shows a four-place
net. Places correspond to nodes. Transitions correspond to connecting points
among places (bars T1 and T2 in the figure). An input function describes the places
from which a single transition can be reached, and an output function describes the
places reached from a certain transition. In this figure, places are nodes 1, 2, 3, and
4; transitions are the bars T1 and T2; the input function relative to T1 is represented
by nodes 2 and 4; and the output function for T1 coincides with node 1. Arrows
originating from a place can be marked by a token (the black dot in the figure).
When each arrow reaching a transition is marked by a token, the transition is
“ready to fire.” When the transition “fires,” all of the arrows reaching that transi-
tion are removed from the token, while all of the nodes belonging to the output
function of the transition are marked with a token. For instance, in Figure 5.9, T1 is
ready to fire. When it fires, the net of Figure 5.10 is attained.

5.4 Parallel CAE of Aperture Arrays 137

1

2

4

3

P1

P4

P3

P2

T1
T2

Figure 5.9 A Petri net composed of four places. Bars T1 and T2 represent transitions. Transition T1 is
ready to fire, as each arrow reaching it is marked by a token.

Now, if we assimilate each AS to a node, data flow among ASs can be mapped
by means of transitions and tokens, with transitions representing synchronization
points. Petri net methodology is easily implemented in a software program, which
allows the dynamical monitoring of data dependencies. The result of such an analy-
sis is the identification of a complete net of dependencies and concurrencies among
all of the ASs. This allows the identification of several levels of parallelism and has
been a key factor in the design of the parallel algorithm.

The most general and simple level of parallelism is represented by the perform-
ance of the same task at different working frequencies (a typical situation can
require the analysis in a bandwidth of several gigahertz, with a frequency step of tens
or hundreds of megahertz). A second level of parallelism is at a geometric level—par-
titioning the whole circuit into subregions to be processed in parallel:

• Feeds;
• Domain of the radiation pattern (radiating half space);
• The flange and the mutual coupling among apertures.

A third level of parallelism (nested inside the former two levels) is inside heavy
and crucial ASs: subtasks deserving high computational effort (especially when
matrix inversion or matrix-matrix algebra is needed) can themselves be parallelized.

In several cases, the three levels can be implemented together. For instance, the
AFS MB can be performed in parallel for different frequency points by partitioning
frequencies through the available processors. Meanwhile, at each frequency, differ-
ent sections of the feed are analyzed by different processors. When worthwhile,
some specific ASs (e.g., AS AFS7 of Table 5.1, in the current example) can in turn be
implemented in a parallel fashion. Anyway, it is extremely important to evaluate all
of the expected benefits of a multilevel parallelism due to its nontrivial design and
implementation.

The most basic evaluation to be performed is the overall numerical complexity
of the aperture array analysis. The theoretical outline reported in Section 5.3 for all
four MBs and the profiling described in the current section have allowed the estima-
tion of the numerical complexity with respect to some relevant parameters, namely:

138 CAE of Aperture-Antenna Arrays

1

2

4

3

P1

P4

P3

P2

T1

T2

Figure 5.10 The Petri net derived by the one in Figure 5.9, after that transition T1 has fired.

1. Nipr . This is the number of integration points along the real axis in the
complex η plane mentioned in the solution of (5.4) after (5.6).

2. Nipi. This is the number of integration points along the imaginary axis in the
complex η plane mentioned in the solution of (5.4) after (5.6).

3. NF. This is the number of frequency points.
4. Nmap. This is the total number of modes adopted over all the apertures.

The result of the complexity analysis is the following number F of floating point
operations per second (FLOPS):

F F N N N Nipr ipi F map= 0
2

where F0 is a constant in the order of thousands. In the case of 10 apertures, with 20
modes over each aperture, the only evaluation of the mutual coupling among aper-
tures for four frequency points directly leads to the realm of teraFLOPS! This is a
convincing argument to attack the challenge of parallelization.

5.4.2 Parallelization

5.4.2.1 Load-Balancing Issues

A multilevel parallelism requires sophisticated software engineering and, above all,
a suitable strategy to control load-balancing among processors and an appropriate
policy for scheduling of ASs on the different processors. This is extremely impor-
tant, especially in the perspective of parallelization in distributed and heterogeneous
environments.

The key point in solving these problems is represented by the algorithm of
recursive bisection, which is a domain-decomposition policy based on the recur-
sive partitioning of a single domain into a couple of smaller subdomains. When
the two subdomains imply identical computational effort to be analyzed, we have
a balanced bisection; otherwise, it is unbalanced. The preference for balanced
or unbalanced bisections depends on the platforms and their working conditions
as well as on the amount of data communication implied by the domain partition-
ing. In fact, in several cases, the most obvious choice for a balanced policy
is not advantageous, because of the induced need for communication among
subdomains.

The application of the bisection algorithm is intrinsically based on the profiling
action previously described. In fact, each potential domain partition is assigned a
certain computational weight wi, which can be estimated due to the Petri nets
method.

The issue of optimizing the level of recursion and the scheduling policy is
equivalent to the identification of an optimum assignment of one or more subdo-
mains to the available processors, taking into account the current load and perform-
ance of each processor. Suppose that np processors are available, with different
performance and load. The status of each processor can be described by a certain
weight hj estimated for each processor, so that hj indicates the expectable perform-
ance, at that moment, by the jth processor. We also assume that the whole domain is
partitioned into ns subdomains a1, a2,…., ans.

5.4 Parallel CAE of Aperture Arrays 139

The problem can now be formulated for the identification of np groups of subdo-
mains ai, so that the total computational weight for each processor is well suited to its
available computational power, and meanwhile guarantees an optimum balancing.
From an analytical point of view, this can be summarized in a couple of formulas. If
we indicate as Sj the set of subdomains assigned to processor j and indicate with

W Sj∑ the total computational weight attained by summing the weights of subdo-

mains belonging to Sj, we can introduce, for each processor j, the value δj, defined as

δ j

Sj

j

W

h
=

∑
(5.26)

and the final goal is to render all δj values nearly equal for all processors. In analyti-
cal terms, if δmax and δmin are, respectively, the maximum and minimum value over all
processors, the function

δ δ

δ
max min

min

−
(5.27)

must be minimized.
The description is probably clearer if we refer to the example of Figure 5.11,

where a generic domain is decomposed with several possible levels of recursion. We
assume that the number of processors np is four. Both the levels of recursion and
the consequent assignment of the attained ns subdomains to the processors should be
optimized. If the four processors were perfectly identical (hj equal for all j), a possible
optimum choice in a balanced bisection could be, for instance, a three-level recur-
sion with two subdomains assigned to each processor (therefore, each set Sj would
consists of two elements). In real cases, hj are rarely identical (even identical proces-
sors have, at run time, different load conditions) and the minimization of (5.27) can

140 CAE of Aperture-Antenna Arrays

Level 1

Level 2

Level 3

Level 4
a16

a1

Level 0

S1 S2 S3 S4

Figure 5.11 The problem of suitable domain partitioning can be solved with a bisection assignment
policy. The whole domain can be partitioned into two subdomains and the same operation
recursively repeated (balanced or unbalanced partitions can be performed). The example in the
figure refers to the case of four processors, with a balanced four-level recursion. It is assumed that
each processor has a different weight hj, so that the attained subsets Sj assigned to each processor
have different dimensions: S1 = {a1,a2,a3,a4}, S2 = {a5,a6,a7}, S3 = {a8,a9,....,a14}, and S4 = {a15,a16}.

lead, for instance, to the choice of a four-level recursion (consequently ns = 16), with
different numbers of subdomains assigned to each processor.

In some cases, the number of recursions can be kept fixed (static decomposi-
tion), and the only parameter to be optimized is the partitioning into subsets Sj. Gen-
erally, decomposition is dynamic, and the level of recursion can be rearranged at run
time. This is the case for our implementation.

5.4.2.2 Implementation Issues

The preliminary analysis (profiling and data flow via Petri nets) allows the exploita-
tion of the previously cited different levels of parallelism. This has three main
advantages, each requiring consequent implementation tricks:

1. It allows the achievement of high performance inside each module and AS.
This guarantees a high flexibility in the use of the package: one can decide to
run in parallel only portions of the package without losing the speed ups
achieved for those parts. This compels us to maintain in the parallel
implementation a separated structure for each module implementing a MB
and the ability to run each MB autonomously (e.g., one can run directly the
ERP MB, provided that suitable input data are available via file).

2. The level of parallelism can be tailored for the specific available platform (or
platforms). This capability is intrinsically embedded in the load-balancing
and scheduling policy described in Section 5.4.2.1 and can also be more
explicitly pursued by introducing, during the code implementation, suitable
environment variables that allow the dynamic selection of the desired level
of parallelism.

3. The approach, as clarified in the previous section, is based on a data-flow
philosophy, where software is engineered starting from the analysis of data
structures and their evolution from input steps to output processes. This is in
accordance with what required by an OO vision of problems (see Chapter 2
for details) and is quite an interesting characteristic in the perspective of a
migration towards grid environments. This is a good reason to adopt, as an
implementation language, solutions such as Fortran 90, which is open to
High-Performance Fortran and is a substantial step towards an OO
approach.

As a programming paradigm, message passing is adopted, due to the higher
flexibility it guarantees from the algorithmic point of view. The portability is safe-
guarded by using the MPI standard and running the MPICH implementation, with
a look-ahead policy toward GC.

The message-passing paradigm is implemented with the SPMD approach. The
choice of SPMD is due to its natural portability toward standard last generation
compilers such as the High-Performance Fortran family. Another even more impor-
tant reason is that the SPMD style is in accordance with the data-flow concept (just
as an example, a typical way of conceiving applications with the SPMD approach
assumes that input data are scattered among processors before running the
application, which implies a dedicated analysis of data demand from each part of
the application).

5.4 Parallel CAE of Aperture Arrays 141

Another crucial implementation issue is the solution adopted for the problem of
task composition [27]. Though we have already described how tasks are assigned to
processors, we have not clearly defined when they are assigned. To make it simple,
the most trivial example of task composition is represented by the serial case (one
processor is used). In such a case, a sequential composition is adopted: the unit seri-
ally composes (processes) tasks. This philosophy can be extended to simple parallel
cases, where each processing unit executes serially a certain sequence of tasks, and
data differs from unit to unit. This approach is typical for data parallel applications
(one extreme example being represented by vector operations) and is naturally ame-
nable for SIMD platforms and applications intrinsically conceivable in such a fash-
ion. Unfortunately, sequential composition is not suited to the CAE of aperture
arrays. For instance, the analysis with Petri nets demonstrates a potential concur-
rency among heterogeneous tasks, such as ASs AFS2-AFS7 in Table 5.1 and ASs
related to the AMC module (thus with relevant differences both for the nature of the
data processed and for the algorithm to be executed). Consequently, the optimum
solution is concurrent composition of ASs, where different operations can be per-
formed in the same time on different processors. This algorithmic strategy automati-
cally paves the way for the identification of MIMD platforms as the natural
environment suitable for the addressed application.

In conclusion, the package is developed with a SPMD programming paradigm,
is assumed to run on MIMD platforms, is developed in Fortran 90 and uses MPICH
libraries, and adopts a concurrent composition of tasks to support a multilevel
parallelism.

5.4.3 Results on MIMD Supercomputing Platforms

The accuracy of the methods proposed in this chapter can be proven with the analy-
sis of an aperture array used in satellite communication. The results, reported in
Figure 5.12, demonstrate that the approximation of infinite metallic flange is not a
decisive limitation and the accuracy is extremely satisfactory.

142 CAE of Aperture-Antenna Arrays

−80 −60 −40 −20 0 20 40 60 80
−30

−25

−20

−15

−10

−5

0

Measured
Theory

Theta angle (deg.)

E-
p

la
ne

−80 −60 −40 −20 0 20 40 60 80
−35

−30

−25

−20

−15

−10

−5

0

Measured
Theory

Figure 5.12 Results validating the accuracy of the proposed approach and referring to the array
reported in Figure 5.1. We show the copolar radiation patterns in accordance with Ludwig’s third
definition. Data are referred to the excitation of the central horn, as all other horns are turned off. The
working frequency is 3.7 GHz.

Similar conclusions can be drawn referring to other cases simulated by the
authors. The only additional observation is that, when higher frequencies are stud-
ied (for instance at millimeter-wave frequencies), the finite flange of real systems
induces a rippling in the return loss and mutual coupling of apertures, which cannot
be numerically simulated with adequate accuracy.

As for the efficiency of the parallel implementation, we report now some results
attained on a distributed-memory system, the IBM Scalable Power 2, whose nodes
have peak performance of 266 MFLOPS, and an interconnecting device called a
high-performance switch (HPS). First, we report in Table 5.3 some speed ups and
show the weight of the different MBs of the package. Data refer to a 10-aperture
case, analyzed with a 5 × 5–mm spatial resolution and with each horn partitioned
into 100 sections. Speed ups are evaluated (as usual) with respect to serial times on
the same processor.

Total times in Table 5.3 include some data-scattering and gathering phases for
pre- and postprocessing. The reported data refer to the analysis of a single frequency
point. The impact of a parallelization on the proposed package is much more inter-
esting if a multifrequency analysis must be performed. Indeed, in such a case, the
large majority of the work performed in the first frequency analysis must not be
repeated at each iteration (just as an example, consider the evaluation of coupling
matrices for each section of each horn or of some integrations in the mutual cou-
pling among apertures). Consequently, the percentage of parallel computation in
the successive frequency points substantially increases. To demonstrate this, we
propose now some results related to a six-aperture array, with the following charac-
teristics. All horns are identical. Apertures over the flange have the standard dimen-
sions of a WR90 rectangular waveguide (22.86 × 10.16 mm), the sections at the
feeding ports of the horns have dimensions 8.5 × 6.1 mm. Horns are 0.6m long and
have a flare of 6.02°. Twenty modes are used to expand fields over apertures, and
20 frequency points are studied. Results are reported in Table 5.4.

5.4 Parallel CAE of Aperture Arrays 143

Table 5.3 Speed-ups for the MBs

Number of
Nodes

Time (s) for
MB 1 (AFS)

Time (s) for
MB 2 (AMC)

Time (s) for (MB 3+
MB4) (ESM+ERP)

Total
Time

Speed
Up

2 20.5 375.7 12.9 414 1.85
4 21.3 204.7 12.8 243 3.14
6 21 140 11.6 176 4.35
8 24.4 126.9 11.9 159 4.81

Table 5.4 Speed-ups for a 20-Frequency Case

Number of Nodes Total Time (In Seconds) Speed Up

1 6,547 –
2 3,310 1.97
4 1,706 3.84
6 1,163 5.63
8 872 7.51

As evinced from the reported results, the initial effort to set up all of the data
structures and the environment of the parallel implementation is highly advanta-
geous. Data of Table 5.4 refer to the whole package, but similar improvements are
observed in each MB, when increasing the number of frequency points.

It is worth observing a couple of things. The first is that the mapping of the MBs
and their ASs onto the nodes is adaptive, as it depends on the status of the nodes, in
accordance with the domain-decomposition policy described in Section 5.4.2.1.
This improves load balancing and maximizes performance.

The second, very relevant, thing is that data reported in Table 5.4 allow us to
understand the huge computational effort required by the addressed application,
when referred to real industrial cases. When CAE tools are used in the synthesis of
aperture arrays, they are very often used in conjunction with optimization tools (as
mentioned in Section 5.3.3). In the case of Table 5.4, for instance, the six-aperture
array was optimized by using an iterative (genetic) algorithm, which usually needs
hundreds of iterations to converge. It is easily noticed from the table that 100 itera-
tions are equivalent to more than 18 hours of computation on a single node. If we
recall that we are dealing with only six apertures (a very tiny case!), the criticality of
a substantial reduction of computing times for industrial processes is evident. The
speed ups attained in Table 5.4 correspond to several working days saved.

5.5 Migration Toward Grid Environments

It is useful, at this point of our analysis, to make a short summary of what we have
discussed up to now. As seen in the previous sections, the CAE of rectangular-
aperture arrays can be fruitfully partitioned into four main subproblems, namely:

1. AFS;
2. AMC;
3. ESM;
4. ERP.

Each subproblem can correspond to a single, independent module. Each module
can in principle be executed independently from the others, provided that suitable
input data are available.

Each item needs specific numerical approaches and has peculiar properties and
difficulties. Each item requires more or less relative computational effort. Points 2
and 3 are particularly CPU-intensive applications and can take advantage of the use
of HPC platforms. It has been demonstrated that the use of a multilevel parallelism,
implemented in SPMD programs with MPICH, is a viable pathway to achieve very
effective performance on MIMD platforms. In order to maintain the maximum
flexibility of the package, a modular structure is still adopted in the parallel imple-
mentation, with four independent building blocks.

In accordance with what we’ve now recalled, the problem of migrating a CAE
framework for aperture arrays toward GC is a little more complicated with respect
to the case of parallel FDTD (see Chapter 4). In fact, we still need to support an HPC
demand, but must fulfill this requirement with an additional and relevant demand

144 CAE of Aperture-Antenna Arrays

for interoperability among several (namely, four) independent, heterogeneous, and
geographically distributed modules.

In Chapter 4, we described how a generic parallel application, developed using
MPICH, can be adapted to run on a grid environment. We also showed that compu-
tational grids are a very cost-effective way to support HPC. Therefore, in this chap-
ter, we concentrate on the other issues related to cooperative engineering. Before
discussing this theme, we want to show the performance attained by migrating the
MPICH-based CAE software toward GC. We report now (in Table 5.5) the speed
up reached when using Giga-Ethernet in low traffic conditions. We remark that the
achieved speed ups are in the worst case 20% smaller than the ones reported in
Table 5.4, and attained on a rather costly parallel architecture.

5.5.1 Supporting Cooperative Engineering with GC

Let us assume that the four modules previously enumerated (AFS, AMC, ESM, and
ERP) have each been developed by separate and independent working groups,
adopting different software and hardware technologies. Let us also suppose that the
only constraint for each team is represented by fixed standards for data input and
output, so that the four modules can cooperate together via files or via equivalent
data communication (e.g., sockets or ftp). We assume that the groups are interested
in sharing their applications so that the global task can be performed (CAE of the
whole array) but require that their own module remains a proprietary application,
resident on their own platforms, with all of the guarantees of security of data and
applications. We finally suppose that every team can in principle be interested in
“offering” its module for external use at a certain cost.

In conclusion, we have four different modules, distributed geographically
throughout the Web, and must guarantee an efficient cooperation among them,
with high reliability and security requirements. An environment supporting HPC is
also needed, as well as the ability to act as a broker, regulating even aspects such as
CPU or application costs and commercial transactions. In the next sections, we
describe how GC can comply with these requirements. First, in the next section, we
assume that every application accessible through the grid is available for no cost.
Later, we shall discuss the problem of adding an economic model in order to allow
commercial transactions (e.g., allowing an application’s owner to sell its application
to a grid member).

Implementation with GC When no economic models are needed, the standard
tools inside GT are sufficient. As discussed in Chapters 2 and 3, the GT implements
all of the basic services needed to perform the following tasks:

5.5 Migration Toward Grid Environments 145

Table 5.5 Speed-ups on a Grid

Number of Nodes Speed Up

1 –
2 1.65
4 3.02
6 4.72
8 6.11

• Security. When some groups decide to offer executables for cooperating with
other groups, they are free to establish with whom they want to cooperate,
when, and how. This requires just some adjustments to GT configuration.

• RM. Resources (i.e., executables in our case) can be allocated to each node of
the grid, given that permissions are granted.

• IS. GT allows a continuous monitoring of the state of resources (CPU, mem-
ory, running jobs, and so on) so that load-balancing policies can be pursued.

• DM. Data can be moved efficiently in the grid, so that communication among
executables can take place.

To describe in more detail how the cooperation can be supported, we consider
the grid made up of four nodes and described in Chapter 3. Suppose that each node
of the grid hosts a different CAE executable. Suppose also that the executables can
communicate with each other via files (i.e., each executable produces a file with data
feeding the next executable to run). Then, the GT services allow every user of the
grid to perform any of the following operations:

• Choose an executable to run among those dispersed in the grid;
• Select the platform where to run it;
• Install the input file where needed;
• Analyze the output produced by the executable.

Simple scripts containing the needed GT commands can generate the overall
CAE simulation by running in sequence the executables and properly moving the
input files on the target platforms. In the attached CD-ROM, we provide a script
and some C programs simulating this situation. The C programs simulate the dis-
persed executables and should be installed on different server nodes of the grid. The
script simulates the application governing the CAE simulation and should be
installed on a client machine of the grid (i.e., on the machine or machines from
which users are supposed to launch the simulation).

To recall how this may happen, we resume now the basic commands to be used
in a simple, exemplificative case (see Figure 5.13).

Suppose that the executable named “afs” (performing the analysis of the feeding
section of the aperture array) is resident on the machine “bach.unile.it” in the direc-
tory named “/home/alexa/bin.” Suppose also that a user needs to launch the “afs”
application from the machine named “picasso.elemgrid.org,” where the input file
resides. The application “afs” can be launched by creating the following file named
“afs.rsl” containing the RSL instructions:

&
(count=1)
(jobtype=single)
(directory=/home/alexa/bin)
(executable=gsiftp://bach.unile.it/home/alexa/bin/afs)

Count=1 and jobtype=single indicate that the executable must be executed once
in a single-threaded fashion, and “/home/alexa/bin” is the path of the directory
where the executable must run.

146 CAE of Aperture-Antenna Arrays

The line

executable=gsiftp://bach.unile.it/home/alexa/bin/afs

transfers the executable named “afs” from machine “bach.unile.it” onto machine
“picasso.elemgrid.org” for a while, so that it can be executed.

The instructions contained in the file named “asf.rsl” can be executed by sub-
mitting the following command:

globusrun –s –r localhost –f afs.rsl

which asks (with the option “–r localhost”) to run the executable on the local
machine (i.e., the machine named “picasso.elemgrid.org”). Suppose that the execu-
table produces a file, named “afs.dat,” whose content feeds the executable named
“amc” (performing the analysis of the mutual coupling among apertures). At the
end of the execution, the file is located in the execution directory (namely,
“/home/alexa/bin/”) of the target machine (namely, “picasso.elemgrid.org”). Note
that in case of overloading of the target machine, the executable can be launched on
any machine in the grid by simply indicating in the command “globusrun” the name
of a different host and moving the input file onto the same machine, with a proce-
dure similar to that described in the following example.

5.5 Migration Toward Grid Environments 147

mozart.unile.it

picasso.elemgrid.org matisse.elemgrid.org

afs
amc

afs.rsl

amc.rsl

afs.dat

bach.unile.it

Figure 5.13 GT services allow users to select an application from those available in a grid, choose
the platform where to run it, and transfer the input file onto the target machine. The combination of
these services allows the integration of application components, thus supporting the cooperation
among dispersed research groups. In the figure, a grid made up of four nodes is shown. The user logs
into the machine named “picasso.elemgrid.org” and, from there, launches the CAE simulation. He
first requests running the executable named “afs” resident on the machine named “bach.unile.it.”
The application is run via the “globusrun” command, which parses the RSL file named “afs.rsl.” In the
example, the “afs” executable is asked to run on the local machine, where the output file named
“afs.dat” is generated. Then, the user asks to run the executable named “amc” located in the
machine named “mozart.unile.it.” In case the current less-loaded machine is “picasso.elemgrid.org,”
the user must first move the input file (gray arrow) there via the “globus-url-copy” command and
then run the executable on the target machine.

Suppose now that the user needs to run the executable named “amc” and that
the executable named “amc” is located in the machine named “mozart.unile.it.”
Suppose also that the currently unloaded machine is “matisse.elemgrid.org.” The
user must first transfer the input file named “afs.dat” from machine “picasso.elem-
grid.org” to the target machine with the command:

globus-url-copy file://home/alexa/bin/afs.dat
gsiftp://matisse.elemgrid.org/home/alexa/bin/afs.dat

Then, he must write a RSL file that contains the following lines:

&
(count=1)
(jobtype=single)
(directory=/home/alexa/bin)
(executable=gsiftp://mozart.unile.it/home/alexa/bin/amc)

and launch the command:

globusrun –s –r matisse.elemgrid.org –f amc.rsl

where “amc.rsl” is the name of the RSL file.
The description proposed so far has demonstrated that GT allows all of the

operations needed to support cooperation among dispersed applications, so that a
CAE tool can be conceived as the integration of heterogeneous simulators, dynami-
cally embedded inside a unique framework, depending on the peculiar requirements
of the design process. Nonetheless, the pathway for a capillary diffusion of such
strategies is not complete until the potential user is given a way to simply interact
with the enabling technologies. As a matter of fact, this is one of the main focuses of
current research in the area of GC. More specifically, a considerable effort is now
being addressed on the development of graphic user-friendly Web applications that,
making use of Globus IS services, allow the control of grid resources (hardware and
software) via simple point and click actions. In other words, in a reasonable scenario
for the immediate future, the user can monitor and interact in real time with grid
resources via grid-enabled Web browsers. For instance, the choice of a target node
will be guided by the graphical interfaces showing the current computational load of
each device in the grid and the simple click over an icon will allow the selection of the
node. Furthermore, other operations such as file transfer or similar processes will be
accomplished as equivalent actions are now performed in graphical user inter-
face–based operating systems.

Nimrod-G We consider now the case when an economic model must be added to
the system (i.e., resource owners request the payment of some fee for the usage of
their resources). As GT does not support any economy-based computing model, it
must be integrated with tools supporting computational economy. These tools have
the ability to select target resources based on price, objective, and constraints of
users (time or budget being perhaps the most typical).

As seen in Chapter 2, Nimrod-G [28] is a resource-management and scheduling
system built on Globus services and freely available on the Internet [29]. It

148 CAE of Aperture-Antenna Arrays

coordinates access to grid resources via grid middleware services (e.g., Globus).
When the application is submitted to the tool for execution, the user can specify the
deadline results are needed by and the maximum cost he can support. Grid
resources must be listed and communicated to the tool, specifying their attributes,
including the cost. Based on such information, Nimrod-G allocates the resources
with the goal of optimizing the cost or the application performance, as selected by
the user. However, the grid resource availability and load vary over time, so
Nimrod-G continuously monitors the state of resources, changing those dedicated
to the submitted experiment if it understands that the deadline cannot be met with
the current resource set.

Let’s go back to our exemplificative grid made up of four nodes. Suppose that
CPU usage on grid machines has some cost. Suppose also that the executable “afs”
is assumed to be on the local machine and is supposed to run on a remote host. The
remote host is automatically chosen by Nimrod-G among a set of machines, which
can be indicated by the user in a file called “gatekeeper.” In our example, the gate-
keeper file may look like:

fork localhost 0.00
globus matisse.elemgrid.org 0.03
globus mozart.unile.it 0.04
globus bach.unile.it 0.02

The available machines are the local one (localhost, “picasso.elemgrid.org” in
our example) and three remote machines whose FQDNs are “matisse.elemgrid.it,”
“mozart.elemgrid.it,” and “bach.elemgrid.it.” Values associated to each machine
indicate the cost for a CPU-time unit. This means, for example, that each unit of
time on “matisse.elemgrid.org” costs 0.03, while each unit of time on
“mozart.elemgrid.it” costs 0.03. The first word of each line expresses the name of
the resource manager to be used (the “fork” system calls for the local machine and
the “globus” gatekeeper on remote machines).

Once grid resources are listed in the gatekeeper file, the user must describe the
application (the input, output, number of iterations, and so on). Nimrod-G allows
us to describe the application as being made up of a sequence of steps, each being
performed on grid resources. This can be done by preparing a plan file. A sample
plan file is now reported (and is contained in the attached CD-ROM).

node initialization
parameter frequency label “afs” float range from 4 to 10 step 0.5;
task nodestart

copy executable from the root directory to remote node,
copy afs node:.
copy data from the root directory to remote node,
copy afs.dat node:.

endtask
individual jobs
task main

execute the simulation with corresponding parameter values
node:execute ./afs afs.out
copy the remote output file to a unique file on the root host

5.5 Migration Toward Grid Environments 149

copy node:afs.out output.$jobname
endtask

Comments begin with the “#” character. In this plan file, the first line:

parameter frequency label “afs” float range from 4 to 10 step 0.5;

asks that executable afs is launched several times. More specifically, it asks the afs to
run for several frequency values, ranging from 4 to 10 GHz, with a step of 0.5 GHz.

The lines included between the “task nodestart” and “endtask” keywords
describe operations that must be performed once, before running the executable.

In the example, they are:

copy afs node:.

which asks to copy the executable named “afs” from the original node to a target
node; the keyword “node” stands for “remote node chosen by Nimrod-G among the
hosts listed in the gatekeeper file,” and

copy afs.dat node:.

which asks to copy the file named “afs.dat” from the original node to the remote
node.

The lines included between the “task main” and “endtask” keywords describe
the operations that must be performed iteratively, for each new value of the parame-
ter, as expressed in the first line of the plan file.

They are:

node:execute ./afs afs.out

which asks to execute the program named “afs” on the remote node (as expressed by
the keyword “node”) and to redirect the standard output on the file named
“afs.out” and the line:

copy node:afs.out output.$jobname

which asks to copy the output file to a local file, whose name is automatically
assigned for each job iteration. In this manner, the user will find, at the end of the
job, several files named output.$jobname, one for each value of the input parameter.

Once the user has written the gatekeeper file and the plan file, she must launch
the job by using the Nimrod-G user interface. Then, Nimrod-G performs the
required steps scheduling the resources with the goal of optimizing the cost or the
application performance, as selected by the user. At the end of the execution, Nim-
rod prints out a report specifying total costs.

5.6 Conclusions

In this chapter, we discussed the suitability of GC to support effective cooperative
engineering when dealing with the problem of CAE of rectangular-aperture antenna

150 CAE of Aperture-Antenna Arrays

arrays. The problem, known to be very computationally intensive, requires the use
of a multiplicity of numerical techniques to be solved. This can often imply that a
CAE tool must integrate heterogeneous software, possibly with a geographical dis-
tribution over the Internet, inside a unique framework. The efficient and effective
cooperation of the codes must be supported, along with a rigorous respect for secu-
rity issues and managing with the capability of brokering economical transactions
when needed.

It has been proven that GC fulfills these requirements, as well as cost-effective
HPC (as already proven in Chapter 4 and confirmed in this chapter). It can be con-
cluded that the migration of complex computational EM applications towards GC
can be fruitful in a wide variety of cases, when cooperative engineering, along with
parallel computing, can be a candidate pathway to reduce design time and costs and
improve the quality of devices.

Acknowledgments

The authors are grateful to Mauro Mongiardo and Cristiano Tomassoni for having
substantially contributed to the themes addressed in this chapter.

References

[1] Lewin, L., Advanced Theory of Waveguides, London: Iliffe, 1951.
[2] Galejs, J., “Admittance of a Waveguide Radiating into a Stratified Plasma,” IEEE Trans.

Antennas Propagat., Vol. AP-13, January 1965, pp. 64–70.
[3] Bodnar, D. G. and D. T. Paris, “New Variational Principle in Electromagnetics,” IEEE

Trans. Antennas Propagat., Vol. AP-18, March 1970, pp. 216–223.
[4] Croswell, W. F., R. C. Ruddock, and D. M. Hatcher, “The Admittance of a Rectangular

Waveveguide Radiating into a Dielectric Slab,” IEEE Trans. Antennas Propagat., Vol.
AP-15, September 1967, pp. 627–633.

[5] Croswell, W. F., et al., “The Input Admittance of a Rectangular Waveveguide-Fed Aperture
Under an Inhomogeneous Plasma: Theory and Experiment,” IEEE Trans. Antennas Propa-
gat., Vol. AP-16, July 1968, pp. 475–487.

[6] Mailloux, R. J., “Radiation and Near Field Coupling Between Two Collinear Open Ended
Waveguides,” IEEE Trans. Antennas Propagat., Vol. AP-17, January 1969, pp. 49–55.

[7] Mailloux, R. J., “First Order Solution for Mutual Coupling Between Waveguides Which
Propagate Two Orthogonal Modes,” IEEE Trans. Antennas Propagat., Vol. AP-17,
November 1969, pp. 740–746.

[8] Jamieson, A. R., and T. E. Rozzi, “Rigorous Analysis of Cross Polarization in Flange-
Mounted Rectangular Waveguide Radiators,” Electron. Lett., Vol. 13, November 24,
1977, pp. 742–744.

[9] Teodoridis, V., T. Sphicopoulos, and F. E. Gardiol, “The Reflection from an Open-Ended
Rectangular Waveguide Terminated by a Layered Dielectric Medium,” IEEE Trans.
Microwave Theory Tech., Vol MTT-36, May 1985, pp. 359–366.

[10] Baudrand, H., J. Tao, and J. Atechian, “Study of Radiating Properties of Open-Ended Rec-
tangular Waveguides,” IEEE Trans. Antennas Propagat., Vol. AP-17, August 1988,
pp. 1071–1077.

[11] Mongiardo, M., T. Rozzi, “Singular Integral Equation Analysis of Flange-Mounted Rec-
tangular Waveguide Radiators,” IEEE Trans. on Ant. and Prop., Vol. 41, May 1993,
pp. 556–565.

Acknowledgments 151

[12] Bird, T. S., “Mutual Coupling in Finite Coplanar Rectangular Waveguides Arrays,” Elec-
tron. Lett., Vol. 23, October 1987, pp. 1199–1201.

[13] Bird, T. S., “Analysis of Mutual Coupling in Finite Arrays of Different Sized Rectangular
Waveguides,” IEEE Trans. Antennas Propagat., Vol. AP-38, February 1990, pp. 166–172.

[14] Bird, T. S., and D. G. Bateman, “Mutual Coupling Between Rotated Horns in a Ground
Plane,” IEEE Trans. Antennas Propagat., Vol. AP-42, July 1994, pp. 1000–1006.

[15] Kitchener, D., K. Raghavan, and C. G. Parini, “Mutual Coupling in a Finite Planar Array of
Rectangular Apertures,” Electronic Letters, Vol. 23, October 21, 1987, pp. 1169–1170.

[16] Abramowitz, M., and I. Stegun, Handbook of Mathematical Functions, New York: Dover
Publications, 1974.

[17] Mongiardo, M., L. Tarricone, and C. Tomassoni, “A Comparison of Numerical Methods
for the Full-Wave Analysis of Flange Mounted Rectangular Apertures,” Int. Journal
Numerical Modelling, Vol. 13, No. 1, 2000, pp. 21–35.

[18] Collin, R., Field Theory of Guided Waves, New York: IEEE Press, 1991.
[19] Conciauro, G., M. Guglielmi, and R. Sorrentino, Advanced Modal Analysis, London:

Wiley, 1999.
[20] Dobrowolski, J. A., Introduction to Computational Methods for Microwave Circuit Analy-

sis, Norwood, MA: Artech House, 1991.
[21] Alessandri F., M. Mongiardo, and R. Sorrentino, “New Efficient Full Wave Optimization of

Microwave Circuits by the Adjoint Network Method,” IEEE Microwave Guided Wave
Lett., Vol. 3, No. 11, November 1993, pp. 414–416.

[22] Mongiardo, M., and R. Ravanelli, “Automated Design of Corrugated Feeds by the Adjoint
Network Method,” IEEE Trans. Microwave Theory Tech., Vol. 45, May 1997,
pp. 787–793.

[23] Collin, R., Antennas and Radiowave Propagation, Singapore: Mc Graw-Hill Int. Ed., 1985.
[24] Ludwig, A. C., “The Definition of Cross Polarization,” IEEE Trans. on Ant. and Prop.,

January 1973, pp. 116–118.
[25] http://www.gnu.org.
[26] Petri, C. A., Kommunikation mit Automaten, Ph.D. Thesis, University of Bonn, Germany,

1962.
[27] Foster, J., Designing and Building Parallel Programs, http://www.netlib.org.
[28] Buyya, R., D. Abramson, and J. Giddy, “Nimrod/G: An Architecture for a Resource Man-

agement and Scheduling in a Global Computational Grid,” 4th Int. Conf. on High Perf.
Comp. in the Asia-Pacific Region, IEEE Comp. Soc., 2000, pp. 283–289.

[29] http://www.csse.monash.edu.au.

152 CAE of Aperture-Antenna Arrays

C H A P T E R 6

Wireless Radio Base Station Networks

6.1 Introduction

In Chapter 4, we discussed the viability of GC as a low-cost, high-performance com-
puting strategy. An FDTD analysis of human-antenna interaction problems was the
field trial. In Chapter 5, we moved towards a more complex and challenging goal,
the CAE of aperture-antenna arrays. The development of such an environment casts
problems of supercomputing as well as cooperative engineering. It has been demon-
strated that GC is an answer suited to both requirements.

In the current chapter, we move toward a third area of application—the design,
management, and planning of wireless radio base station (BS) networks. Indeed, the
impressive progress in wireless systems and services is compelling operators to
reduce the time needed to design the network, improve the quality of service, and
better control human exposure to EM fields. This implies a strong demand for auto-
matic tools that optimize the critical parameters (e.g., base station locations, BS
power levels, and antenna tilting), allow a rigorous prediction of the fields radiated
by base station antennas, and provide an easy interaction with the end user. These
goals require a multidisciplinary approach involving the use of radio propagation
(RP) models, optimization methods, and sophisticated software technologies. Once
again, several needs arise: supercomputing strategies, cooperative engineering
(already addressed in Chapter 4 and 5, respectively), and real-time data communi-
cation and management in a geographical distributed system.

In this chapter it is shown that GC is the suitable answer to these three needs. As
supercomputing and cooperative engineering with GC have already been discussed
in other parts of the book, in this chapter the focus is on data communication and
management.

The chapter is structured as follows. First, some basic concepts on cellular sys-
tems are given. In Section 6.3, we concentrate on some relevant issues for modern
wireless systems, which represent a substantial momentum toward automatic tools
for network optimum planning. Section 6.4 introduces such tools, and a candidate
structure and architecture for a planning tool are proposed in Sections 6.5 and 6.6.
The role of GC in this application is described in Section 6.7, while the effective
implementation of an optimum planning system with GC is described in Section
6.8, with practical examples focused on data management. Finally, some conclu-
sions are drawn.

153

6.2 Foundations of Cellular Systems

In this section we propose some very basic principles for the organization of a cellu-
lar network, describing its most important characteristics with respect to the power
rightsizing of antennas, the traffic management, and coverage. The rapid and con-
tinuous evolution of the addressed themes, and above all the spirit of this book, sug-
gest treating them in a very general fashion, focusing on the most fundamental
issues, which are probably destined to retain their current arrangement in a rather
long-term scenario. Consequently, in this section, we first introduce some general
considerations for cellular systems. Later, frequency reuse is described, as well as the
relevant concepts of capacity and traffic management. Then, a simple and schematic
description of how a wireless system connects users is given, as well as a quick over-
view on radio-base antennas. More detailed descriptions for all of these subjects,
with dedicated analyses for the different generations of systems (second generation
GSM networks, third generation UMTS, and so on) can easily be found in the spe-
cialized literature [1–3].

6.2.1 General Considerations

A cellular system operates by partitioning the covered area into cells, with a rather
small radius (macrocells rarely exceed 20 km, with 1–5 km being a much more com-
mon distance). The coverage is guaranteed by a network of transmitting and receiv-
ing low-power antennas (100W being a rather high reference level), dispersed so
that each cell is covered by one installation. The philosophy of a cellular system
marks an apparent change with respect to radio-television broadcasting systems,
which has a small number of transmitting stations, each covering a very large area.
In cellular systems, the capacity to support a large number of users and to increase
the coverage is guaranteed by a large number of transmitters with a pervasive
spreading. The connection between a wireless cellular network and the traditional
wired telephone network is provided by a switching station, or hub, which is also in
charge of managing several mobile-mobile communication operations. A schemati-
zation is proposed in Figure 6.1.

Each cell is assigned a frequency range, and adjacent cells use different frequen-
cies, so that interferences are minimized. The cell size and shape are relevant
parameters and are strictly connected with the policy of traffic management. They
also influence capacity (i.e., the number of sustained users) and coverage. The cell
size determines the BS power level. In fact, each BS can be designed with a maximum
emitted power level: the available power classes for BSs in the GSM system are
reported in Table 6.1.

In principle, the shape of a cell is a free parameter. As a matter of fact, some geo-
metrical forms are more appropriate than others. Indeed, each mobile entity must be
assigned to one single cell in each moment, with an easy and unquestionable algo-
rithm. A very simple idea is to assign each mobile to the nearest BS, so that the path
loss (power loss due to the BS-mobile distance) is minimized. The application of such
a principle induces us to consider a hexagonal shape, with the BS positioned in the
center. In such a case, all of the adjacent BSs are at the same distance from a refer-
ence BS (see Figure 6.2), so that the assignment of a mobile to one BS is simpler.

154 Wireless Radio Base Station Networks

Moreover, in order to improve capacity, sectorization is a common praxis (i.e.,
the splitting of channels available in a cell into three subgroups, each covering one-
third of the cell area). This implies the use of directional antennas, such as the one
we will discuss in Section 6.2.5.

6.2.2 Frequency Reuse

As already mentioned, the allocation of frequencies and channels inside cells must
be performed in accordance with the minimization of interference among multiple
users and adjacent cells. For instance, the power level of BS antennas, as well as

6.2 Foundations of Cellular Systems 155

Switching
station

Wired or
wireless
connection

50 calls

Base station

Wired
network

Cell

100 base
stations

BS2

M1
M2

BS1

Figure 6.1 The structure of a cellular system. The connection with the wired network is ensured by a
hub. A BS typically supports about 50 calls, and the hub can manage about 100 BSs. The hub is also in
charge of connecting mobiles belonging to different cells (such as mobiles M1 and M2).

Table 6.1 Available Power
Classes for BSs in the GSM System

Power Class BS Power (W)

1 320
2 160
3 80
4 40
5 20
6 10
7 5
8 2.5

their height, must be tuned so that the field emitted has adequate intensity to cover
the pertinent cell. Meanwhile, the field intensity should be as low as possible out-
side the cell. Of course, this is physically impossible, thus suggesting the use of dif-
ferent frequencies for each cell. Unfortunately, the available frequency band for a
system, and the consequent number of channels, is limited. A clever policy of fre-
quency reuse is compulsory. This is attained by introducing the concept of cluster-
ing. A cluster is a set of cells, each operating on a different frequency and group of
channels. In Figure 6.3, some examples of clusters are reported. The cluster dimen-
sion N (i.e., the number of cells forming a cluster) is a relevant parameter, which is
related to:

• The distance D between the center of two cells using the same frequency;
• The radius r of each cell.

It can be demonstrated that the following relationship holds [2]:

D
R

N= 3 (6.1)

For a given number F of frequencies available in the wireless system, the number
of channels per cell is F/N. Not all values of N can be adopted, for geometrical rea-
sons. Some feasible N values, frequently encountered, are: 3, 4, 7, 19, and 27. In
principle, smaller clusters should guarantee higher spectral efficiency. Unfortu-
nately, low values of N imply higher risks of interferences between cochannel cells
(i.e., cells belonging to adjacent clusters and using the same frequency band). This
kind of interference is called first-tier interference. Consequently, the choice of an
appropriate N is critical and complex. Anyway, N = 7 is one of the most typical.

156 Wireless Radio Base Station Networks

1

2

3

4

5

6

7

2

7

3

2

4

3

5

4

6
5

7

6

R

Cell
sectorization

Figure 6.2 Hexagonal cells allow an easy assignment of users to BSs: when BSs are in the cell center,
adjacent BSs are at the same distance R from a reference BS. Cells are typically sectorized, so that each
sector is assigned a fraction of all of the available channels.

6.2.3 Capacity and Traffic

Frequency reuse, in many practical cases, is not sufficient to provide an adequate
number of channels in a cell. The system, indeed, is designed to sustain an average
traffic demand, which is easily exceeded (e.g., in peak hours in urban areas). Specific
strategies are introduced to cope with such problems, which can have a severe
impact on the quality of service, such as the blocking of a call (i.e., its rejection due
to the unavailability of channels).

An important strategy (static, involving the permanent reconfiguration of the
network) is the introduction of new cells, which can also be attained by partitioning
existing cells. For instance, a macrocell (radius up to 20 km) can be partitioned into
microcells (radius up to 1 km) or picocells (radius of hundreds of meters). This
strategy can also be accompanied by a robust sectorization of cells. All of these
artifacts deserve an adequate planning and optimization step, so that the appropri-
ate antennas, with suitable locations, power levels, tilting, and radiation patterns,
are selected.

A different and dynamic planning policy is the frequency reassignment (i.e., a
real-time reconfiguration of channels, so that overloaded cells subtract free chan-
nels from idle adjacent cells). This is a complex, yet effective, approach and needs a
continuous monitoring of traffic conditions and a proactive management of service
requests.

It is worth putting forth that both the static and dynamic policies described here
can take substantial advantage of the availability of real-time data on traffic and field

6.2 Foundations of Cellular Systems 157

1

2
3 4

1

2
3 4

1

2
3 4

1

2
3 4

1

2
3 4

1

2
3 4

1

2
3 4

1

2
3

4
5

6

7

1

2
3

4
5

6

7

1

2
3

4
5

6

71

2
3

4
5

6

7

1

2
3

4
5

6

7

1

2
3

4
5

6

7

1

2
3

4
5

6

7

D

r

r

Figure 6.3 Two different cluster topologies with N = 4 and N = 7.

levels at the geographical level [4]. It is also apparent that the reduction of cell size (as
well as the dynamic reassignment of channels to cells) renders handover critical (han-
dover occurs when a mobile crosses the cell boundary and must change channels).

6.2.4 How a Cellular System Connects Users

In Figure 6.1, we have depicted a schematic representation of how a wireless system
is connected with the wired network. Now we describe the generic connection
between two users in the wireless network.

As stated earlier, the core of the system is the BS, composed of a receiving and
transmitting antenna and a control unit. The control unit connects the BS with the
switch. This connection is typically wired; less frequently, it is wireless. The switch is
in charge of assigning channels to cells and users, and it manages with handovers.

The mobile unit (e.g., a handheld phone), when working, permanently scans sig-
nals emitted by the control unit of each BS. Such signals are needed in order to allow
each mobile to identify the nearest BS, so that it connects it. This allows handshak-
ing (i.e., the continuous monitoring of the mobile movements inside a cell) or its pos-
sible handover. It also worth mentioning that, in some cases, a mobile is assigned to
a distant BS due to overloading of the nearest BS.

Thanks to handshaking, every mobile “belongs” to one BS. The mobile is
connected with the BS using both a control channel and a traffic channel. When the
mobile M1 wants to make a call, it sends a message to its BS (namely, BS1 in
Figure 6.1), containing the number of the targeted unit M2. BS1 forwards the
request to the switch. The switch broadcasts the request to all of the BSs that can
host the target unit M2, and all of the BSs transmit the request to all mobiles in their
respective cells (this process is called paging). When the target mobile M2 identifies
its number in the message received, it sends a reply to its BS (BS2 in Figure 6.1),
which notifies this to the switch. The switch assigns a channel to the caller mobile
M1 (the assigned channel is one of the available channels in the pertinent BS, namely
BS1) and does the same with M2. Meanwhile, it notifies this to the control units of
both of the involved BSs, BS1 and BS2. This way, both mobiles M1 and M2 select
the assigned channels, and the call is activated. The channels assigned to M1 and M2
are freed when the call is concluded. The call can be broken (dropped) when the
signal-to-noise ratio is lower than a fixed threshold.

6.2.5 BS Antennas

A typical antenna for a BS is reported in Figure 4.3, along with its radiation pattern
in the E and H planes and a representation of the E-field levels in its proximity, cal-
culated with the FDTD code discussed in Chapter 4. Similar antennas are usually
adopted for macrocells, which still remain the most common. A more complete
review of micro and picocell antennas is found in [2]. As seen in Figure 4.3, the typi-
cal BS antenna is made of several half-wave dipoles. This is what we call an array: we
recall that an array is an interconnection of radiating elements (we assume them all
identical) so that a directional pattern is attained [5].

Arrays are linear when the elements are along one line or planar when the ele-
ments are in one plane. In BS antennas, the elements can be distributed along one or
more columns. Thus, in general we deal with linear or planar arrays. In Figure 4.3, a

158 Wireless Radio Base Station Networks

metal case, which prevents backlobes, can also be observed. Nonetheless, very small
backlobes are usually present. The metal case renders the near-field behavior of the
array rather too complex to be studied, though the far-field behavior is adherent to
the basic theory we are going to recall shortly (we give a very quick refresher to
near/far field concept in Appendix C). The use of antenna arrays in BSs helps
achieve a strongly directional behavior in the E-plane (this, combined with a suit-
able mechanical tilting, allows a better exploitation of the available power) and a
less marked directivity in the H-plane, so that approximately one-third of a cell is
covered, in accordance with the concept of cell sectorization.

6.2.5.1 Antenna Arrays

The behavior of an antenna such as the one reported in Figure 4.3 is easily under-
stood when recalling how an array works. A trivial example can be useful. We con-
sider two isotropic point sources, at a λ/2 distance (see Figure 6.4). When they have
the same phase, they interfere so that the directivity is increased along the symmetry
axis. When they are fed in counterphase, directivity is increased along the line pass-
ing through the sources.

In the trivial example of Figure 6.4, we see that by using two isotropic elements,
a directional pattern is attained. This behavior is what we call the array factor (i.e.,
the parameter that takes into account the interference between radiators).

In order to generalize the concept to more complex arrays of isotropic sources,
first we identify a reference element in the array, with current density JO(r), where r
identifies the position with respect to the system origin. We also assume that all of
the elements of the array are similar sources. That is, a generic element has current
density:

()J J r rn o n= −Cn (6.2)

with Cn complex. If we indicate with EO(r) the field radiated by a single element, the
generalization of the empirical discussion previously performed referring to
Figure 6.4 is equivalent to affirming that the overall radiated field is:

6.2 Foundations of Cellular Systems 159

Broadside Endfire

∆ϕ = 0° ∆ϕ = 180°

λ/2
λ/2

Figure 6.4 An array of two isotropic point sources. The broadside and endfire cases are shown,
depending on the phase of radiators.

E Eo= F (6.3)

where F is the array factor.
The evaluation of F is what we need to predict the radiating behavior of a BS

antenna array. In fact, the radiating properties of half-wave dipoles are quite well
known, and the following principle of pattern multiplication can be applied [6]:

The pattern of an array of similar sources is the product of the pattern of the
individual source (the dipole, in our case) and the pattern of an array of isotropic
point sources that have the same locations, amplitudes, and phase as the noni-
sotropic point sources (this is the array factor).

In other words, the radiation pattern of a linear array of dipoles can be attained
by first evaluating its F (estimated by considering the dipoles as isotropic point
sources) and then multiplying F by the radiation pattern of a half-wave dipole. The
recursive application of such principle is also suited to the case of planar arrays.

BS array antennas are usually fed with the same signal, though the suitable use
of phase difference among radiating elements can be considered to achieve electrical
tilting, or, when useful, to dynamically reconfigure the radiation pattern. In such
cases, we consider phased arrays. These solutions are probably going to become the
future standard, as will become clear when we discuss adaptive antennas.

6.3 Key Factors for Current and Future Wireless Communications

The astonishing diffusion of wireless communications, and the consequent increase
in traffic demand, available services, and coverage render this market one of the
most challenging fields for the immediate and medium-term future. Research is con-
tinuously looking ahead for new generations of protocols and services, enhancing
related radio-frequency technology. We now put forward some issues, though this is
not an exhaustive list, but a subjectively chosen selection of key factors for an effec-
tive development of wireless networks.

6.3.1 Power Control

Dynamic control of the power emitted by radiating sources in a system is an effective
“must.” It is highly desirable to receive the signal emitted by the BS at the mobile end
(downlink connection) with an adequate power level, so that the signal-to-noise
ratio at the mobile guarantees a satisfactory quality of communication. On the other
hand, the proximity of handheld phones to the user (see Section 6.3.4), together with
the limitations of battery charge duration, compel minimization of the mobile emit-
ted power (uplink connection), depending on the distance from the BS. This minimi-
zation is also useful to reduce the risks of interference among mobiles working with
the same frequency (cochannel interference).

Power control is implemented with two main techniques, often coexisting in the
same system. The first is the so-called open-cycle control; the second is the closed-
cycle one [7]. In the open case, the mobile is in charge of evaluating the BS distance
(thanks to a probing signal received from the BS) and automatically regulating its
emission (the lower the power received in downlink, the higher the power emitted in

160 Wireless Radio Base Station Networks

uplink). In the closed case, the BS control unit is in charge of estimating the power
level received from a mobile and regulating both the uplink and the downlink power
levels.

Power control is also going to become more and more critical in new genera-
tions of wireless systems. In fact, a relevant current trend is the diffusion of wireless
systems based on spread-spectrum code division multiple access (CDMA), where
the transmission is dispersed through a wider bandwidth. In such systems, for rea-
sons of signal-to-noise ratios, it is extremely important that all of the channels work
with the same power level, thus avoiding the existence of “dominant” signals,
which could cancel weaker channels. In CDMA systems, where all users adopt the
same frequency allocation, this is quite critical, thus compelling implementation of a
rigorous power control regime.

6.3.2 Managing with More and More Users

Another crucial point is the capability of reconfiguring, statically or dynamically, a
system to manage the continuous increase of users and the consequent demands for
capacity. One of the most severe limitations is represented by cochannel interference
with mobiles using the same frequencies. An emerging technology is represented by
adaptive antennas. Such devices exploit the basic principles of phased arrays (see
Section 6.2.5). In a phased array, the Cn complex factor of (6.2) is used to introduce
a phase difference among radiators, so that the resulting behavior of the whole array
changes, depending on the selection of Cn factor for each element. The development
of digital signal processors driving the array elements allows a real-time reconfigu-
ration of Cn parameters. In this way, a BS can direct its radiation (downlink) mainly
toward the targeted mobile. This, for reciprocity, also guarantees a high reduction
of cochannel interference in the receiving (uplink) connection. Incidentally, both
effects also allow a reduction of power in both directions.

The use of such devices can be considered an extreme sectorization of the BS
antenna pattern, dedicated to each mobile. The important concomitant effects of
interference reduction, with consequent potential decrease of cell size and increased
capacity, have a high cost in terms of communication management, BS and mobile
design, and network planning. Above all, very deep knowledge on the behavior of
the propagation phenomena between mobile and BSs is needed.

6.3.3 System Standardization and Interoperability

The wide variety of cellular systems and providers, the development of new genera-
tions of mobiles and protocols, and the proliferation of wireless local area networks
(WLANs) with the 802.11 family [1], cast another open problem for the immediate
future: the harmonization and interoperability of systems. Roaming among net-
works (the possibility of working with one carrier/provider even in zones covered by
different providers) is still a problem in some geographical systems and an open
issue when speaking about WLANs, such as Wi-Fi [8, 9]. Concerted actions are
needed among providers and companies involved in the business, both in the design
and in the planning and implementation phase.

6.3 Key Factors for Current and Future Wireless Communications 161

6.3.4 Concerns in the Public Opinion

The boom in wireless technologies has implied an impressive growth in numbers of
mobiles and sprouting of BSs. Meanwhile, in a kind of self-feeding cycle, the atten-
tion to and knowledge of potential hazards from human exposure to EM fields have
substantially grown. One of the most evident effects is the strong influence public
opinion has on any new installation of BS masts. This is not the appropriate place to
discuss the details of such an important problem. It is more appropriate to focus on
some relevant consequences. First, in several countries, network planning must be
performed in accordance with very severe standards and laws limiting the maximum
field levels in the environment. Second, it can be extremely important for providers
and companies involved in wireless communications to demonstrate concrete inten-
tions and understanding on the subject of exposure control. Third, installing new
masts can be difficult. Fourth, as a partial consequence of the previous point, con-
certed actions could be helpful among providers, so that cositing policies, roaming
agreements, and other actions can reduce the impact of networks in a wide sense
(e.g., visually and architecturally). Finally, in some countries, local and national
authorities have invested relevant amounts of money to set up a network of sensors
(typically wideband sensors) dispersed in geographical areas to monitor the level of
EM fields, thus collecting data that can be extremely useful when used in an aggre-
gated manner [4].

All five issues confirm the demand for planning policies for wireless network
design and management.

6.4 Planning Wireless Networks

The general description proposed in Section 6.2, and the issues addressed in Section
6.3, put forth the growing complexity of cellular network design. The increasing
number of users and of available and requested services, the fierce competition
among providers for high quality and full coverage, along with more stringent
requirements of safety standards for EM human exposure, render the phases of net-
work design and planning of short-, medium-, and long-term development the criti-
cal factors for success. Providers and companies involved in such phases have always
adopted dedicated and sophisticated software tools for network planning. Their use
was often confined to very specific actions, such as the identification of electrical
parameters for BS antennas (e.g., mechanical and electrical tilting or direction of the
radiation pattern).

It is more and more apparent that the use of such tools is destined to be much
more capillary. It is also becoming crucial for network optimization, monitoring,
and real-time reconfiguration, thus leading to their substantial rethinking [10]. To
be schematic, modern tools for wireless network optimum planning:

• Must be able to manage with the requirement of a very homogeneous cover-
age, ensuring uniform field levels as needed by the emerging CDMA-based sys-
tems (a uniform coverage, in an open-cycle power-control, guarantees that the
mobile is always working with a minimum emitted power and reduces cochan-
nel interference both at the mobile and at the BS end);

162 Wireless Radio Base Station Networks

• Must be open to forthcoming adaptive antenna technology, thus embedding
sophisticated RP models (i.e., models that, given the basic antenna parameters
and a detailed knowledge of the topographic properties of the environment,
predict the field distribution);

• Should take into account the possibility of concerting the design of parts of the
network among more subjects, to manage with roaming problems or to
handle possible cositing conditions for BS antennas belonging to different
providers;

• Must take into account the existence of safety standards, which in some coun-
tries fix a severe limitation to EM field levels in the environment;

• Must be able to monitor data on EM emissions, so that traffic demand, cover-
age, and compliance with safety standards are permanently controlled in
real-time [4, 10]. This can be performed by communicating with a network of
EM sensors with a pervasive distribution, such as the infrastructure already
under construction in Italy.

The discussion proposed up to now drives us to two different planning steps.
The first is a static phase, aiming at optimizing some design parameters that can
hardly be changed in the future. The most immediate example is the optimum loca-
tion of BSs. This procedure, which is also subject to restrictions due to visual impact
or architectural constraints, can play a major role both in the immediate efficiency
and effectiveness of the network and in its long-term evolution.

The second planning step is dynamic, and deals with the wide variety of
parameters amenable to a dynamic (in some cases in real-time) reconfiguration.
Some examples are the maximum available power in a BS, mechanical and electrical
tilting, frequency allocation when needed, and a BS antenna’s radiation pattern
reconfiguration.

In both steps, and above all in the dynamic one, of paramount importance is the
availability of real data on EM emissions over a geographical scale, in order to drive
the optimization of all of the mentioned parameters [4, 10]. An effective communi-
cation between the network planning and control system and the previously cited
sensor network is highly desirable.

6.5 An Integrated System for Optimum Wireless Network Planning

On the basis of what we discussed in the preceding sections, it can be concluded that
a system for the optimum planning of wireless networks must embed some essential
features:

• Appropriate models for field prediction;
• Efficient optimization tools for the identification of BS locations, power right-

sizing, and tuning of electrical and mechanical parameters;
• Adequate graphical environments for user-friendly interfaces;
• Real-time interconnection with an EM sensor network with geographical

distribution.

6.5 An Integrated System for Optimum Wireless Network Planning 163

These basic characteristics imply several additional requirements, the most
important of which is probably an adequate support for geographical informa-
tion (topographical references are needed by RP models) as well as the full interac-
tion with a database management system (DBMS) containing all of the information
about available BS antennas and other data useful when tuning the network design.

In this framework, we describe now in a very schematic manner a possible archi-
tecture of an integrated system for network optimum planning (ISNOP). For the
sake of brevity, we omit details on the single components, referring to the reported
bibliography for further information.

6.5.1 Overview of the System

A possible schematic representation of an ISNOP is reported in Figure 6.5. The RP
module envelops several RP models, supporting field prediction inside a domain
whose geographical (topographical) characteristics are fully described—see Geo-
graphic Information System (GIS) module—once the characteristics of EM sources
(essentially BS antennas) are completely known (see DBMS module). The optimiza-
tion (OPT) module is a black box, which is in charge of receiving the problem
requirements (variables to be optimized, optimization policy) and outputting the
optimum choice of the variables. The geographical support is guaranteed by the GIS
module. GIS systems are commercial packages storing and retrieving geographical
and topographical information, thus allowing a full georeferencing for all of the
entities mapped onto a geographical map (in other words, they support digital car-
tography and relative database actions). Data related to EM sources are filed inside a
dedicated DBMS. The DBMS module, therefore, is an archive containing all of the
information about the existing EM sources. The DBMS module, supported by the
GIS module, stores geographical and EM characteristics of installed BSs, as well as
the EM characteristics of all of the candidate sources for new potential installations.

164 Wireless Radio Base Station Networks

RP OPT

DBMS GIS

ENC
TP network

Figure 6.5 A schematic representation of an ISNOP. It consists of four core modules, the RP, OPT,
DBMS, and GIS module. The GIS and DBMS modules are in charge of archiving geographical and EM
data to form an EM cadastral map. The RP module envelopes different RP models for field prediction,
while the OPT module implements one or more optimization algorithms to identify the most suitable
value for system parameters. A TPN includes BS antennas and wideband and narrowband field
sensors to feed the modules with data. A fifth module, the ENC module, integrates the operation of
the core modules together with the TPN.

It is also in charge of filing data related to EM field levels or other relevant informa-
tion suitable for an EM cadastral map.

The enumerated modules can be distributed over the Internet and interact with
one another, as well as with a pervasive infrastructure (i.e., the network of EM sen-
sors distributed over the area covered by the wireless system, or at least over some
critical parts). It must be observed that in the framework of an ISNOP, the concept
of sensors can be generalized. Each point where a sensor is located is intended to be
a test point (TP). A TP is a point where propagation and service information is avail-
able. Consequently, what we have called up to now a “sensor network” must be
intended, more generally, as a TP network (TPN). In the TPN, TPs can be both the
same BSs and EM wideband or narrowband field sensors.

Finally, the encapsulation (ENC) module is essentially a software entity in
charge of supporting the integration of the several modules, their effective interac-
tion with the TPN, and their interoperability.

6.5.1.1 The RP Module

As well described in [2, 11], a wide range of RP models exist. They basically differ
from one another by the peculiar application they are customized for, the trade-off
between accuracy and computational weight, and the applicability to several classes
of problems. As a matter of fact, the ideal model, suitable and preferable for all of
the applications, is still a dream. Consequently, the RP module must include a panel
of RP models, so that the user can select the most suited model for the specific case.

The most trivial model, yet useful in several situations, is the free-space approxi-
mation, based on Friis’ formula:

[]
()

E V m
P G

reff
T T=

30 ϑ ϕ,
(6.4)

where PT is the emitted power, ()G T θ ϕ, is the antenna gain in the considered direc-
tion, and r is the distance from the antenna electrical center. It is assumed that no
obstacles exist between emitter and receiver. This is a very rough prediction, which
can strongly overestimate E levels.

When more accurate (though computationally complex) models are needed,
candidate alternatives are represented by revisited Okumura-Hata (OH) models
[12–16], which are useful when multipath effects can be relevant and line-of-sight
(LOS) models such as the free-space approximation are not tolerable. OH models
are empirical approaches, which evaluate the effect of the topographical conditions
by perturbing the attenuation free-space value with terms that assume different val-
ues depending on the height of the BS and of the receiver, on the working frequency,
and on the density of buildings.

Another approach is represented by the Walfisch-Ikegami (WI) one [17, 18],
revisited by the COST 231 project [19]. In such a model, three attenuation factors
are considered: the free-space factor LF, a factor due to the guiding action of streets
(LRT), and a factor due to the diffraction from edges (LMS). Consequently, in the WI
model the following formulas are adopted for the attenuation factor LP in the LOS
and nonline-of-sight (NLOS) cases:

6.5 An Integrated System for Optimum Wireless Network Planning 165

LOS: []L Log
r

Log
f

P dB
Km MHz

= +








+









426 26 20. (6.5)

NLOS: [] [] [] []L L L LP F RT MSdB dB dB dB= + + (6.6)

where LRT and LMS are estimated with empirical equations.
Finally, in the RP module, fully deterministic approaches should be considered

for very critical cases (with small geographical extension). This is the case of ray
tracing [2].

6.5.1.2 The OPT Module

Once an RP model is available, and all the characteristics of the BS antennas known,
as well as the topography of the domain under investigation, the use of an optimizer
is needed in order to identify the best choice for the tunable parameters. This basi-
cally implies that:

• An optimization policy is identified, thus leading to an appropriate cost or
error function (i.e., a function whose minimization is the final goal);

• An appropriate set of unknowns is identified, whose optimum choice allows
the cost minimization.

The definition of both suitable cost functions and optimization unknowns are
themselves relevant steps of an optimization procedure.

As quite well known, a generic optimization problem can be solved with a wide
variety of approaches, which can be constructive (starting from a set of input data,
they converge to a solution with a one-shot algorithm) or iterative (the convergence
is the final result of several iterations, each proposing a candidate intermediate
solution). Referring to specialized literature for details [20], we just report here the
result of a wide experience on the optimization on BS location, power rightsizing,
and mechanical and electrical tilting. For such problems, Genetic Algorithms [21]
and Tabu Search [22] are combinatorial iterative approaches that seem extremely
appealing.

These methods, at each iteration, suggest a candidate solution (e.g., the power
levels for the BS antennas, their tilting, and their location when new installations
must be planned). On such bases, the RP module estimates the field distribution,
thus allowing the evaluation of a cost function that includes coverage, field uniform-
ity, compliance with safety standards, and other possible relevant parameters.
Depending on the attained cost, a new iteration is started; otherwise, the optimiza-
tion is halted.

These methods have a high computational cost and must often deal with prob-
lems of huge numbers of unknowns. This turns the problem into a computationally
intensive one, thus paving the way to the identification of suitable HPC strategies
(which are even more necessary when OPT modules are used in conjunction with
deterministic approaches in the RP module).

166 Wireless Radio Base Station Networks

6.5.1.3 The GIS and DBMS Modules

The GIS module essentially consists of an environment with graphical-interface
tools supporting digital cartography. An example is shown in Figure 6.6, where
field isocurves are reported onto a digitalized map, where every entity corresponds
to an addressable element in a database.

The possibility of geo-referring to entities in a GIS allows, for instance, graphi-
cal access to the information in the DBMS module. For instance, by clicking onto
the dot representing the BS in Figure 6.6, the interface can automatically display all

6.5 An Integrated System for Optimum Wireless Network Planning 167

SRB0159

SRB0075

SRB0160

O

S

E

N

1.2 km0.600.6

1.2-1.3
1.1-1.2
1-1.1
0.8-1
0.6-0.8
0.5-0.6
0.4-0.5
0.2-0.4
0.1-0.2
0-0.1

Electric Field (V/m)

SRB0159
SRB0160
SRB0075

Figure 6.6 Digital map with E-field isocurves. BS antennas are easily identified.

of the relevant data for the BS, as reported in Figure 6.7. The harmonized use of the
GIS and DBMS module is a key factor for the effective usability of an ISNOP.

6.5.1.4 The TPN

The TPN plays a major role in an ISNOP. It allows the real-time monitoring of the
network behavior, as well as of the service demand over the territory and of compli-
ance with safety standards. As stated before, the same BS antennas are part of this
network, as they can provide information both on field levels and on many other key
data, such as traffic and service requests. Also wideband or frequency-selective sen-
sors, able to monitor in real-time the electric field, or EM power levels, can belong to
the TPN.

In such a framework, TPs produce data with a certain data rate (with data being,
for instance, the E field or power level samples). TPs can also receive data. For
instance, when a TP corresponds to a BS antenna, it can receive data from the other
components of the ISNOP in order to reconfigure itself and improve the wireless net-
work performance.

6.5.1.5 The ENC module

It is apparent that a core position in the ISNOP is occupied by the ENC module,
which is involved in guaranteeing the interaction among the dispersed components
of the system. It is a sort of universal glue, sticking together the several modules and

168 Wireless Radio Base Station Networks

Figure 6.7 The DBMS module represents an EM cadastral archive. In the figure, data about a BS
installation are reported, as displayed when accessing the DBMS module. The picture is a snapshot
from the original ISNOP interface (in Italian). Labels in the upper mask have the following English
translation: “station id,” “station class,” “Gauss-Boaga coordinates,” “height above sea level,” “city,”
and “city district.” The push-button from which the arrow starts has the following label: “Open radio
base station masks.” Labels in the lower masks have the following English translation (from top left to
bottom right): “provider,” “station,” “antenna type,” “working frequency,” “maximum gain
direction,” “height from ground,” “mechanical tilting,” “gain,” “antenna height,” “maximum
number of channels,” “number of activated channels,” “date of last activation,” and “maximum
power for channel.”

smoothing the technological discrepancies among components, thus driving toward
interoperability and compatibility.

6.6 A Candidate Architecture for an Effective ISNOP

In Section 6.5 we have proposed a schematization of the ISNOP structure. Now, we
identify a possible architecture supporting it. First of all, it is worth noting that:

1. An ISNOP is intrinsically a wide area distributed system. Indeed, TPs are
geographically distributed and the several modules could be dispersed: they
could be developed by different producers and could be resident on their
own platforms.

2. The several modules can be developed with heterogeneous technologies and
methodologies.

3. It is recommended that different implementations are available for the same
module. For instance, it could be extremely important to select among
different RP modules, resident on different platforms (part of the distributed
system), implementing different RP models.

4. Data security is a key factor, especially considering the mission criticality of
the system and the stringent security requirements for data concerning
traffic and coverage.

5. The system has a high demand for computational power: some RP models
and the OPT module require huge computational efforts.

6. Data communication and management among TPs and the remaining
components of the ISNOP is critical.

How can these requirements be satisfied? A distributed, Internet-based system
is the first, immediate framework inside which a low-cost and simple answer is ten-
tatively found. This distributed environment:

a. Glues TPs to one another and interfaces them with all other components of
the ISNOP, so that data produced by TPs can feed the overall computing
steps and data returned by the ISNOP can suitably drive the wireless
network;

b. Selects, at each moment, which module must be activated, where it is, and
where it must run (a brokering function);

c. Provides all of the computational power needed, gathering it together
dynamically depending on the current availability and demand.

From a hardware point of view, TPs in an ISNOP must be interfaced via a serial
port (or equivalent interfaces) with a local node (typically a low-/medium-level PC).
The distributed environment can include other nodes (i.e., computers not interfaced
with sensors or BS antennas), which can provide, for instance, more intensive com-
putational capabilities, or can “simply” host the ISNOP modules (e.g., RP or OPT).
In the distributed system now proposed, the existence of one or more nodes dele-
gated to govern local node activity and interactions must be scheduled and assumes
a paramount importance. Such “governing” nodes are called brokering nodes.

6.6 A Candidate Architecture for an Effective ISNOP 169

Brokering nodes must manage with data provided by TPs, thus coordinating the
action of the dispersed single modules. They must also communicate to BSs (via local
nodes) the result of the computation. For instance, when an optimization of the
power levels of BS antennas is performed, they reconfigure BSs in accordance with
what is suggested by the OPT module.

6.7 GC and Its Role in the ISNOP

Now, recalling the description of computational grids in Chapter 2, it can be
observed that all of the characteristics summarized in Section 6.6 are fully satisfied
by GC. More specifically, Chapter 4 has already demonstrated that HPC is afforda-
bly sustained and that dynamic HPC architectures can be arranged, as required in
points 5 and c of the previous section. On the other hand, in Chapter 5 it was proven
that the brokering functions can be easily embedded, thus answering questions
arisen in points 3 and b.

Furthermore, points 1 and 2 are intrinsically satisfied, as GC is a more general
view of distributed systems with a special focus on security issues, thus fulfilling
point 4 as well.

With respect to the lists of points reported in Section 6.6, it can be noted that
issues 6 and a are still pending. They are related to data communication and man-
agement, and it is demonstrated in the following paragraphs that GC is the appro-
priate answer to these questions as well.

Now, it can be useful to propose a synthetic scheme representing a possible
architecture of an ISNOP implemented on a grid-based distributed system. In
Figure 6.8 a schematic representation is reported, as well as an exemplification of
the dispersion of components among the ISNOP. It is observed that TPs are con-
nected to local nodes (PCs), and modules are resident on local nodes or on the bro-
kering node. All of the nodes host the grid middleware software (in our case, GT)
and are Internet connected. It must be put forth that a special role is played by the
ENC module, which is in charge of integrating all of the software components of the
ISNOP, dynamically embedding the parts needed in each moment, and freeing mod-
ules not needed any longer. Due to its nature and goal, the ENC module, which basi-
cally has brokering functions, is assumed to be resident only on brokering nodes. In
conclusion, the ENC module can be viewed as a shell application, which invokes the
main GT commands (i.e., commands described in Chapter 4 and 5) plus the ones we
are going to describe in the following.

6.8 Wireless Network Planning with GC

In Section 6.7 we have described a complex infrastructure, based on GC, supporting
an ISNOP and all its functions. As is apparent from Figure 6.8, we deal with a large
architecture, whose design, development, and management cast difficult and multi-
disciplinary problems, some of which have already been addressed in Chapters 4
and 5. In this chapter, we want to focus on those problems related to data communi-
cation and management, addressing Chapters 4 and 5 for solutions to the remaining
ones.

170 Wireless Radio Base Station Networks

In order to isolate the discussion on data communication in an ISNOP and to
facilitate the description of the viable solutions via GC, we consider in the following
a simplified version of the ISNOP, as reported in Figure 6.9 (a detailed description
of the “simplified” ISNOP follows in a while).

The simplified ISNOP can be introduced if we suppose that, for instance, all of
the executables (one instance for each module) are resident on the same node and
that the node resources satisfy all current computing demands. This is not a strong
limitation: we saw in the previous chapters that grid technology allows both the
parallelization of code and the cooperation of applications, and in both cases it
gives to the user the perception of interacting with a single high performing
machine/application.

We introduce another little simplification: to focus on the movement of single
data, we suppose that each TP (i.e., a BS antenna or an EM sensor) is interfaced with
its own local node (this means that each TP is connected with a PC; for instance, via
a serial port).

Furthermore, we assume that a TP has a different behavior, depending on
whether it is an EM sensor or a BS antenna. In fact, though BS antennas and EM
sensors are both in charge of measuring EM field/power levels and traffic and of

6.8 Wireless Network Planning with GC 171

Brokering
node

Local node

Local node

Internet

DBMS module

DBMS
module

OPT module

ENC module

RP module

RP module

Local node

Local node

GIS module

Local node

Local node

TPs
(BS antennas)

TPs
(wide or narrowband
EM sensors)

Figure 6.8 The TPN and the dispersion of components through the ISNOP. Local nodes are
interfaced with TPs (BS antennas and EM sensors) and host an ISNOP module. Special nodes, called
brokering nodes, govern local node activity and interaction. The ENC module resides on brokering
nodes.

sending them to the suitable ISNOP modules, BS antennas can also receive data from
the rest of the ISNOP (e.g., when their configuration must be modified). This is not
true for EM sensors, which only transmit data. Now, if we call “data provider” an
entity in charge of feeding parts of the ISNOP with data, and “data consumer” an
entity that receives data from parts of the ISNOP, BS antennas are both data provid-
ers and consumers, while sensors can be considered only data providers. BS anten-
nas provide data related to EM fields and traffic. They also receive data (e.g., those
needed to modify their power levels and tilting and attained by the OPT module of
the ISNOP).

Coherently with the sketched situation, in the simplified ISNOP we have pro-
vider TPs (PTPs) and consumer TPs (CTPs).

In summary, we have:

• A network of PTPs, each interfaced with a local node;
• A network of CTPs, each interfaced with a local node;
• A brokering node hosting both the ENC module and the ISNOP remaining

modules (i.e., GIS, DBMS, RP, and OPT).

A double flux of data is present: from the PTPs toward the brokering node (see
Figure 6.10) and from the brokering node toward the CTPs (see Figure 6.11). The
ENC module is responsible for invoking the proper module to work out input data
and to return output data to BSs.

172 Wireless Radio Base Station Networks

Brokering node

Local node

Local node
Local node

Local node

ENC module

RP module

OPT module

GIS module

DBMS module

Provider TP
(EM sensor)Provider and consumer TP

(BS antenna)

grid

Figure 6.9 The simplified ISNOP is based on a number of assumptions: each module contains only
one application; the five modules (executables) are resident on the same node (the brokering node);
and each TP is interfaced with a different local node. Moreover, the model distinguishes between
provider TPs (i.e., TPs outputting data) and consumer TPs (i.e., TPs accepting data as input).

In the following subsections, the code to simulate such a system is described. In
the attached CD-ROM, we included the C code and the shell scripts needed to
implement it.

6.8.1 Data Communication with GC in a Simplified ISNOP

Before going on, it is worth putting forth that the following discussion deals
with real-time data communication and management. While a plethora of alterna-
tive techniques could have been adopted for off-line data management (e.g., ftp),
GC is the solution for an effective real-time approach.

Coming to the implementation of data communication with GC, we introduce a
further simplification: we suppose that data produced by the PTPs are written onto
files. Moreover, as data must be elaborated by modules resident on the brokering
node, the most pertinent location for files produced by the PTPs is the brokering
node itself. We can then sketch the following scenario:

6.8 Wireless Network Planning with GC 173

Brokering nodeCTP

CTP
CTP

Local node

Local node

Local node

Figure 6.11 Applications resident on the brokering node work out data produced by the PTPs. The
results are then scattered to the CTPs.

Brokering node

PTP

PTP

PTP

Local node

Local node

Local node

Figure 6.10 A grid of PTPs feeds the brokering node with data.

• Each PTP updates regularly its own file resident on the brokering machine.
• A simple application resident on the brokering machine extracts data coming

from different PTPs relative to the same instant.
• An ISNOP module elaborates data extracted at the previous step and gener-

ates control parameters.
• Control parameters are scattered to the CTPs.

We explain now how to develop an application that is resident on each local
node interfaced with a PTP and can update files resident in the brokering machine.
Each PTP updates its own file. The section explains the following core issues:

• How PTPs can update remote files;
• How files must be named so that they are uniquely identifiable in the network;
• Which contents the files must include.

6.8.1.1 Remote File Access

The GT GASS file access API (see Chapter 3, Section 3.9) allows applications to
write, read, or modify remote files. This is very useful for our purpose: thanks to the
GT GASS file access API, the PTPs can update the brokering archive in real time.

As explained in Chapter 3, GT GASS API allows users to read and write onto
remote files with ordinary UNIX I/O and C calls, given that the Globus calls are used
in place of open(), close(), fopen(), and fclose(), typical of C and UNIX. More in
detail, to elaborate on what already explained in Chapter 3, we recall that in order to
update a remote file, a C application must include the following code:

• Activation of the Globus GASS File API module:

globus_module_activate(GLOBUS_GASS_FILE_MODULE);

• File open via the Globus call:

fd = globus_gass_fopen(“http://hostname:port/filename”, ...);

• Ordinary C and UNIX read and write functions:

fprintf(fd,…)

• File close via the Globus call:

globus_gass_fclose(fd);

• GASS deactivation via the GASS function:

globus_module_deactivate(GLOBUS_GASS_FILE_MODULE);

How these calls are used in the context of our application is explained shortly,
after discussing how to name the remote files and which data must be written onto.

174 Wireless Radio Base Station Networks

6.8.1.2 Remote File Naming

We give now some details about the way remote files are named. The
“globus_gass_fopen” function addresses a remote file by specifying the protocol,
address, and port of the remote server application. These are returned by the GASS
server application when it is started on the server machine. Suppose that the broker
node is named “picasso.elemgrid.org” and that the GASS server is started via the
command:

globus-gass-server -r -w -p3003 &

The command returns the string “https://picasso.elemgrid.org:3003,” which
identifies the server GASS server application. This string must be completed with
the name of the remote file.

To distinguish between files produced by different PTPs, we use the FQDN
associated with the local nodes with which they are interfaced, as a unique identifier
allows us to distinguish between nodes in a network. This means that we assume
that each file is named with the FQDN of the machine that produces it. To do this, a
couple of useful C functions are adopted. The following code calls the C functions
gethostname() and getdomainname() to get information about the machine identifi-
cation and builds the name of the file using these data (variable named “url”):

char name[50],domain[50],url[250];
gethostname(name,50);
getdomainname(domain,50);
sprintf(url,"https://picasso.elemgrid.org:3003/home/alexa/ISNOP/data/%s.%s",name,
domain);

This is a portable code that can be installed without any modification on each
new node added to the TPN. It queries the FQDN of the machine where it runs by
calling the functions gethostname() and getdomainname() so that the file can be
named with the strings returned by these functions (variables “name” and
“domain”) (see Figure 6.12). The code stores in the variable named “url” the string
needed to access the remote file and contains the protocol (“https”), the address of
the target machine (“picasso.elemgrid.org”), the port (“3003”), the path
(“/home/alexa/ISNOP/data”) where the file is located, and the filename (contents of
the variable “name.domain”) needed to access the remote file.

For example, if the client machine has the FQDN “mozart.unile.it,” the variable
“url” contains the string:

https://picasso.elemgrid.org:3003/home/alexa/ISNOP/data/mozart.unile.it

6.8.1.3 File Contents

Each PTP feeds its own file with data and timestamps. It is important that each
datum is accompanied with the timestamp of the time when it was produced, in
order to cope with network delays, which provoke a discrepancy between the time
that data are generated and the time that data are effectively written onto the file.
Timestamps must be congruent (i.e., they must refer to a common clock); otherwise,

6.8 Wireless Network Planning with GC 175

the server cannot work on data truly referring to the same instant. The NTP is the
Internet standard to synchronize dispersed machines with a common reference
clock. An implementation of the NTP protocol is the ntp distribution [23], freely dis-
tributed in Internet. Each machine involved in the grid must host the ntp distribution
and ntp must be configured so that the machines share the same time clock. This is
done by electing one or more time servers and requesting that ntp synchronizes the
time of the machine to the common time servers. The synchronization is performed
by means of message exchanges with the correct timestamps and the calculation of
errors due to network delay times.

Now we give some details on how to install and configure ntp.
Login as root and create the directory where you want to install the package

(e.g., “/usr/local/ntp”):

mkdir /usr/local/ntp

Once the package has been downloaded, extract the files from it:

176 Wireless Radio Base Station Networks

4 1071563112
6 1071563113
81 1071563114

brokering node
picasso.elemgrid.it

bach.unile.it

mozart.unile.it

matisse.elemgrid.org

matisse.elemgrid.org

33 1071563115
2 1071563116
71 1071563117
11 1071563118

mozart.unile.it

bach.unile.it

PTP

PTP PTP

10 1071563114
20 1071563115
6 1071563116
1 1071563117

/home/alexa/ISNOP/data/

Figure 6.12 A common directory located in the brokering node (namely
“/home/alexa/ISNOP/data/”) is populated with files updated by the PTPs. Files are unambiguously
distinguishable as they are named with the FQDN of the machine they are produced by and contain
data and timestamps.

gzip ntp-4.1.1btar.gz –dc | tar xf –

This command creates a directory named ntp-4.1.1b. Move to that directory:

cd ntp-4.1.1b

Update the configuration data:

./configure

Compile:

make

Install the executables at the default directory (named “/usr/local/ntp/”):

make install

Once ntp has been installed, a simple ASCII configuration file must be created.
It is named “/etc/ntp.conf” and includes the name of the clock server with which to
synchronize. The ntp server must then be started:

ntpd &

Once the machines are synchronized, the simulation code can run on each PTP
machine. In the following, the overall code for the simulation of the PTP grid is
included. A simple loop simulates the continuous generation of data, while the call
to the C function “sleep” is used to simulate the delay between different data gen-
eration (the time step is supposed to be 1s). The C function named “time” returns
the time since the “Epoch” (00:00:00, January 1, 1970), expressed in seconds.

#include <stdio.h>
#include <unistd.h>
#include <time.h>
#include "globus_common.h"
#include "globus_gass_file.h"
#include "globus_error.h"
main()
{

FILE *fp;
int rc=0;
int i=0;
char name[50], domain[50], url[250];
time_t t;
if((rc=globus_module_activate(GLOBUS_GASS_FILE_MODULE))

!=GLOBUS_SUCCESS)
{

printf("gass activation failed\n"); exit(-1);
}

gethostname(name,50);
getdomainname(domain,50);

6.8 Wireless Network Planning with GC 177

sprintf(url,"https://picasso.elem
grid.org:3003/home/alexa/ISNOP/data/%s.%s",name,domain);

for(;;)
{

fp=globus_gass_fopen(url,"a");
time(&t);
rc=fprintf(fp,"%d\t %d\n",t,i);
sleep(1);
globus_gass_fclose(fp);
i++;

}
globus_module_deactivate(GLOBUS_GASS_FILE_MODULE);

}

6.8.2 ENC Module Simulation

The brokering machine hosts, in the same directory, a number of files (as many as
the PTPs), each named with the FQDN of the feeding local node and containing data
and timestamps. A simple shell script can extract data relative to the same timestamp
so that they can be worked out (typically by the OPT and RP modules) (see
Figure 6.13).

In Figure 6.14, we show the flow chart of the shell script, whose code is included
in the attached CD-ROM.

Substantially, the script performs the following tasks:

178 Wireless Radio Base Station Networks

matisse.elemgrid.org

mozart.unile.it

4 1071563112
6 1071563113
81 1071563114
31 1071563115
1 1071563116

bach.unile.it

TIME 1071563115
31
33
20
TIME 1071563116
1
2
6

33 1071563115
2 1071563116
71 1071563117
11 1071563118

10 1071563114
20 1071563115
6 1071563116
1 1071563117

/home/alexa/ISNOP/data/

output_file

Brokering node

Figure 6.13 Data written by the dispersed PTPs must be gathered so that values relative to the same
timestamp can be worked out together. This can be done by a simple application that scans the
contents of the directory hosting the data files and produces a new file with grouped data (namely
“output_file”).

• It scans the directory hosting the data files of the PTPs.
• It scans the lines contained in each file looking for the timestamp matching the

current time.
• It produces a file containing the timestamps, each followed by the list of data

related to it.

To further clarify, we include below the commented code written in the UNIX
bash shell language (see Appendix A).

/*query the current time and store it in the variable named “curtime”*/
curtime=$(date +%s)
/*subtract some seconds to the current data to take into account the delay due to data
transfer*/
let curtime=$curtime-5
/* forever do*/
while true do
/* write the current time onto the output file */
echo “TIME $curtime” > output_file;
/* for each file included in the data directory*/
for i in * do

6.8 Wireless Network Planning with GC 179

Get current data

Subtract estimated network delay

For each file in the directory

For each line in the file

Compare the timestamp
found in the line with the current time

<

Write current data onto the output file

Until next time found

Write data onto the output file

Increment current time

Do forever

=

Figure 6.14 Flow chart of the application in charge of rearranging data stored in multiple files by
the dispersed PTPs. The application produces a single file where data are grouped based on the
timestamps.

/* for each line of the file */
while read line do

/* parse the current line and put the first field (datum) in the first positional variable
($1) and the second field (timestamp) in the second positional variable ($2) */

set – $(echo $line);
/* compare the timestamp ($2) with the current time ($curtime)*/
if($2==$curtime) then

/*write the datum onto the output file*/
echo $1 > output_file;
fi

done $i /*end of while loop */
done /* endfor*/
/*increment the current time*/

let curtime=$curtime+1;
done /*end of forever loop */

The output is a file containing, for each timestamp, the list of data related to it.
This file can be the input of an ISNOP module (e.g., the OPT module). Once the
module produces its output, the output data must be scattered to the dispersed BS
antennas (CTPs). This can be done with an application using the GASS file access
API, in a fashion similar to that described in Section 6.8.1.1. Separate from the
application therein described, where we have a many-to-one communication (from
the PTPs toward the brokering node), now we deal with a simpler case: one-to-many
communication (from the brokering node to the CTPs). The application can scatter
data to the PTPs’ antennas once it has a list of the target PTPs. Such a list can be
dynamically updated and queried by introducing a subscription mechanism, so that
each PTP, when added to the grid, can notify its existence to the system by directly
accessing a shared archive and by communicating to it its identity and the parame-
ters it is interested in. This can be implemented by using GT services, which include
the GASS file access API.

6.9 Conclusions

The area of wireless communications, and more specifically the optimum planning
of wireless networks, is one of the most promising for the immediate and
medium-term future. The problems related to the development of integrated
systems for automatic optimum network planning are multifolded, multidisci-
plinary, and complex. They gather HPC requirements, system integration, and
cooperative engineering issues, as well as effective real-time data communication
and management.

We have demonstrated that all of these areas are covered with the same strategy:
GC. On the top of the discussions performed in Chapter 4—GC to support
HPC—and in Chapter 5—GC for cooperative engineering (CE)—we have here
described how to use GC to support data communication and management along
with both HPC and CE. In other words, it has been demonstrated that GC is, in one
shot, the answer to all three (complex) demands, thus opening interesting perspec-
tives for many other possible applications.

180 Wireless Radio Base Station Networks

Acknowledgments

The authors are grateful to Maila Strappini, who provided impressive momentum
to the beginning of the ISNOP project and still is a pillar for the team working on the
project. Many thanks to Federico Malucelli and Maddalena Nonato for stimulating
discussions and to Beatrice Di Chiara for her contribution to the development of
research.

References

[1] Stalling, W., Wireless Communications and Networks, Englewood Cliffs, NJ: Prentice
Hall, 2002.

[2] Saunders, S. R., Antennas and Propagation for Wireless Communication Systems, London:
Wiley, 1999.

[3] Siziak, K., Radiowave Propagation and Antennas for Personal Communications, Nor-
wood, MA: Artech House, 1998.

[4] Collmann, R. R., “Evaluation of Methods for Determining the Mobile Traffic Distribution
in Cellular Radio Networks,” IEEE Transactions on Vehicular Technology, November
2001, Vol. 50, No. 6, pp. 1629–1635.

[5] Stutzman, W. L., and G. A. Thiele, Antenna Theory and Design, New York: Wiley, 1981.
[6] Kraus, J. D., and R. J. Marefka, Antennas for all Applications, New York: McGraw Hill,

2002.
[7] Gibson, J., The Communication Handbook, Boca Raton, FL: CRC Press, 1997.
[8] Vaughan-Nichols, S. J., “The Challenge of Wi-Fi Roaming,” Computer, July 2003,

pp. 17–19.
[9] Blau, J., “Wi-Fi Hotspot Networks Sprout like Mushrooms,” IEEE Spectrum, September

2002, pp. 18–20.
[10] Hurley, S., “Planning Effective Cellular Mobile Radio Networks,” IEEE Transactions on

Vehicular Technology, Vol. 51, No. 2, 2002, pp. 243–253.
[11] Bertoni, H., Radio Propagation for Modern Wireless Systems, Englewood Cliffs, NJ: Pren-

tice Hall, 2000.
[12] Okumura,Y., et al., “Field Strength and its Variability in VHF and UHF Land Mobile Serv-

ice,” in Review of the Electrical Communication Laboratory, Vol. 16, No. 9–10, Septem-
ber–October 1968.

[13] Hata, M., “Empirical Formula for Propagation Loss in Land Mobile Radio Services,” IEEE
Transactions on Vehicular Technology, Vol. VT-29, No. 3, August 1980.

[14] Damosso, E., “Digital Mobile Radio: COST 231 View on the Evolution Towards 3rd Gen-
eration Systems,” Final Report of the COST 231 Project, European Commission, Brussels,
1998.

[15] http://www.lx.it.pt/cost231.
[16] Kürner, T. (E-Plus Mobilfunk GmbH, Germany), “Propagation Models for Macro-Cells,”

in Final Report of the COST 231 Project, Cap. 4.4, European Commission, Brussels, 1998.
[17] Walfisch, J., and H. L. Bertoni, “ A Theoretical Model of UHF Propagation in Urban Envi-

ronments,” IEEE Transaction on Antennas and Propagation, Vol. 36, No. 12, December
1988.

[18] Igekami, F., et al., “Propagation Factors Controlling Mean Field Strength on Urban
Streets,” IEEE Transaction on Antennas and Propagation, Vol. AP-26, No. 8, August
1984.

[19] Lähteenmäki, J. (VTT Information Technology, Finland), “Indoor Propagation Models,”
in Final Report of the COST 231 Project, Cap. 4.7, European Commission, Brussels, 1998.

6.9 Conclusions 181

[20] Reeves, C. R. (Ed.), Modern Heuristic Techniques for Combinatorial Problems, Oxford,
UK: Blackwell Scientific Press, 1992.

[21] Goldberg, D. E., Genetic Algorithm in Search, Optimization and Machine-Learning, Read-
ing, MA: Addison Wesley, 1992.

[22] Glover, F., and M. Laguna, Tabu Search, Norwell, MA: Kluwer, 1997.
[23] http://www.ntp.org.

182 Wireless Radio Base Station Networks

C H A P T E R 7

Conclusions and Future Trends

7.1 GC: Benefits and Limitations

In this book we have introduced the use of GC to solve EM problems. After recalling
basic concepts on parallel and distributed computing, as well as on Web technolo-
gies, in Chapter 1 foundations for GC are proposed. Chapter 2 describes the candi-
date technologies to support GC, electing GT as the reference tool for the remainder
of the book. On such a basis, Chapter 3 is a practical guide to build up a grid.

Chapters 4, 5, and 6 are oriented towards specific applications of GC to EM. In
Chapter 4, the attention is focused on the numerical solution of human-antenna
interaction problems, using parallel FDTD codes. This is a classical example of
applications with a strong HPC demand. The GC solution to the addressed problem
demonstrates one of its immediate benefits: the suitability to achieve substantial
speed ups with very low costs. This is especially due to the potentially infinite avail-
ability of computational nodes to be enrolled in the grid. Most of the time, this
implies that the grid operates in a wide area environment, where dedicated connec-
tivity is not necessarily available. This can be critical when referring to parallel
applications with an intensive demand on data communication. In such a case,
bandwidth is a critical factor for success. Consequently, a capillary penetration of
broadband connectivity is definitely a key point for future improvement of HPC
grid EM applications.

In Chapter 5, the CAE of aperture-array antennas is addressed in a GC frame-
work. The high suitability of GC to fulfill the joint requirements of HPC and coop-
erative engineering is demonstrated here. The integration of diverse skills and
know-how is here exemplified in the interaction among several applications, even-
tually distributed in a geographical area and heterogeneous both from an architec-
tural and from a system and software point of view. Computational grids, with their
amenability to meta applications, represent an ideal environment to promote col-
laborative design, taking full advantage from Web technologies and integrating
them with supercomputing facilities. These appealing tools can be effectively
exploited and can achieve an adequate diffusion only when they can easily be
adopted by a “standard” user, with no specific skills in the area of GC. This identi-
fies another critical factor for further success—the simplicity of management and
use of grid resources.

Finally, Chapter 6 focuses on the optimum planning and management of wire-
less networks. In this case, it has been demonstrated that one more relevant benefit
can be added to the two previously described achievements (HPC and cooperative
engineering). Namely, we refer to the possibility of a real-time management of data

183

produced by a heterogeneous and dispersed network of sources (in the discussed
example, a network of sensors and antennas with a geographical distribution). The
achieved result, of paramount importance for the effective design of current and
next generation wireless networks, leads to the definition of a multifolded system,
integrating meta applications and distributed data repositories, in an HPC frame-
work. Once again, this relevant result, and the consequent exciting perspective of
future developments, goes along with the complexity and multiplicity of the
involved technologies. The previously mentioned simplicity of management and use
of grid resources is even more urgent (resources in this case being data, computers,
and application components).

7.2 GC Trends

The two issues on which we focused in the previous sections (bandwidth and sim-
plicity of management and use of grid resources) effectively reflect the current trends
in GC research. Indeed, concerning bandwidth, several large research efforts are
being performed to extend the availability of broadband connectivity. It is worth
mentioning the Teragrid project in the United States [1], working at a very large grid
supported by optical-fiber technology. In Europe, one leading project is Delivery of
Advanced Network Technology to Europe (DANTE) [2], aiming at delivering
GEANT, a broadband network connecting a huge number of leading research sites.
In Asia, an outstanding activity is promoted by Asia-Pacific Advanced Network
(APAN) [3]. The enumerated efforts, the several other similar projects running in the
world, and the recent and constant trends in the evolution of telecommunication
technologies encourage a substantial confidence on a more and more successful and
fruitful exploitation of GC with all its multiple facets.

As for the simplicity of management and use of grid resources, it seems useful to
identify four main directions:

1. Grid services;
2. Automation;
3. Portals;
4. Grid database access and management (GDAM).

Grid services [4, 5] come from the integration of grid concepts and technologies
with Web services. Web services [6] represent the natural answer to several ques-
tions put forth by the applications proposed in Chapter 5 and 6. Indeed, Web serv-
ices allow the standardized description of the properties of an application as well as
its publication in a Web environment. Once the publication is performed, the pub-
lished application can be searched for by another application, which automatically
can identify and evoke it. In other words, instead of writing a certain part of an
application by yourself, you can synthetically describe your specifications and auto-
matically query the Web so that the suitable published application is launched on
demand. Consequently, in some cases, the developer’s goal is not the solution of a
problem, it is the rigorous definition of the problem.

184 Conclusions and Future Trends

Automation faces a problem common to grid administrators (i.e., the complex
management of grid resources). Grids, for their nature, are intrinsically prone to the
drawback of unpredictable modifications of their configuration. Managing such a
problem with standard tools for system administrations can be heavy, and the sim-
plification of such procedures is a definite priority. Automation aims at charging
grids even with the task of a continuous self reorganization. The interested reader is
addressed to [7] for an introductive discussion.

Portals are Web applications allowing a user to connect with a grid, monitor
resource status, launch applications, and generally perform all of the grid opera-
tions with a point-and-click philosophy. In other words, they are user-friendly inter-
faces with grid middleware. We suggest the interested reader see [8] for an overview
on such a subject.

Finally, GDAM [9] is a forthcoming research area, aiming at integrating data
repositories distributed inside a grid so that they are accessed and managed as if they
were a unique DBMS. Of course, this is a charming area for the application
described in Chapter 6, as well as all data-oriented applications.

Of course, the enumerated four areas are far from representing all of the areas
grid research is covering now. The impressive and continuous progress in GC is the
best witness of the liveliness of this technology, and one more reason for the EM
community to keep a careful eye on the exciting current and future challenges GC
offers.

References

[1] http://www.teragrid.org.
[2] http://www.dante.net.
[3] http://www.apan.net.
[4] Foster, I., et al., “Grid Services for Distributed System Integration,” IEEE Computer, June

2002, pp. 37–45.
[5] http://www.globus.org/ogsa.
[6] Chappel, D., “Examining .NET My Services,” Byte Spring 2002, pp. 33–40.
[7] Decusatis, C., “Grid Computing: The Next (Really, Really) Big Thing,” Byte, Spring 2002,

pp. 6–13.
[8] http://www.gridcomputing.com.
[9] Paton, N., et al., “Database Access and Integration Services on the Grid,” UK e-Science

Programme Technical Report Series Number UKeS-2002-03, National e-Science Centre,
http://www.cs.man.ac.uk/grid-db/papers/dbtf.pdf.

7.2 GC Trends 185

.

A P P E N D I X A

Useful UNIX/Linux Hints

A.1 UNIX/Linux Operating System: An Overview

The UNIX operating system [1, 2] was designed in the 1970s with the goal of
providing:

• Simultaneous computer access to a multiplicity of users;
• Easy sharing of information.

The operating system soon became popular among universities and research
groups, as it provided a good environment for program development, network
transactions, and information sharing. Another remarkable reason for UNIX’s
immediate success was that it is written in the C high-level language. This makes the
operating system highly portable. The other operating systems, in fact, are typically
implemented in low-level languages, thus they are strictly tied to the specific plat-
form for which they were developed.

The simplicity and clarity of UNIX programs and the widespread knowledge of
the C language tempted many developers to enhance UNIX in their own way. This
generated both the enhancement of the operating system with a lot of utilities and
services oriented to the end user and the birth of a number of UNIX different dia-
lects, running on a variety of platforms, from microprocessors to mainframes. To
make order in the myriad of UNIX versions and dialects, the IEEE formed a com-
mittee to define standard specifications on operating systems. This work produced a
well-known family of standards, called POSIX [3], which still contains the guide-
lines governing new generation UNIX systems. POSIX documents are not available
online but can be purchased in printed form from the IEEE Computer Society [2].

Linux is a completely free reimplementation of UNIX, following most of the
POSIX specifications. Its copyright is owned by its designer, Linus Torvalds, and
other contributors, and is freely redistributable under the terms of the GNU General
Public License (GPL) [4]. GPL classifies it as “free” software, commonly called free-
ware or open source software [5] (i.e., anybody may distribute any modifications,
provided that the source for those modifications is distributed as well).

Linux, per se, is only the kernel of the operating system (i.e., the part that
directly controls hardware, hiding hardware complexity to users). There are several
combinations of Linux with sets of utilities and applications to form a complete
operating system. Each of these combinations is called a distribution of Linux. Red-
Hat Linux [2, 6] is one of the most used Linux distributions.

187

In the following sections, the most relevant features and commands of the UNIX
operating system are overviewed. First, the architecture is sketched in Section A.2.
Then, the way UNIX organizes files is overviewed in Section A.3. The multipro-
gramming environment offered by UNIX systems is well evident when dealing with
UNIX processes (i.e., instances of programs in execution), which are treated in Sec-
tion A.4. A few concepts related to UNIX administration are introduced in Section
A.5, and finally the program for user interaction, the so called shell, is overviewed in
Section A.6.

A.2 UNIX/Linux: The Architecture

UNIX systems have a layered structure, as depicted in Figure A.1.
In such a schematic description, the hardware is in the center. It includes all of

the resources commonly belonging to computing machines (e.g., memory, proces-
sor, and devices). The layer surrounding the hardware level represents the UNIX
core: the kernel. It directly interacts with hardware resources. The kernel provides
basic services to users and insulates them and their programs from hardware details.
Programs in the outer layers interact with the kernel by invoking a well-defined set
of system calls. As programs are independent on the underlying hardware, it is easy
to move them among UNIX systems running on different hardware platforms, thus
guaranteeing what we mean for portability. Besides, any user can enhance UNIX
systems by adding and distributing programs that provide services oriented to the
user community and belonging to the higher level layer.

A.3 The File System

A.3.1 Introduction

As every operating system does, UNIX masks hardware devices for storing data to
users. Information stored on disks and commonly distributed in a number of files is

188 Useful UNIX/Linux Hints

Applications

Kernel

vi

who
wc

diff

grepdate

sh

hw

Figure A.1 UNIX layered structure. The hardware at the center includes all of the resources com-
monly belonging to computing machines (e.g., memory, processor, and devices). UNIX core is the
kernel, which is the layer directly interacting with hardware resources. The kernel provides basic serv-
ices to users and insulates them and their programs from hardware details. Programs shown in the
outer layers interact with the kernel by invoking a well-defined set of system calls.

accessed by interacting with the file system. A file system provides a logical view of
file data with the scope of hiding the file internal format and hardware operations to
end users.

The UNIX file system is characterized by a hierarchical structure (see Figure
A.2) with a root node commonly named with the “/” character. Every nonleaf node
is a directory of files (i.e., a logical file container), while leaf nodes may be either files
or directories. The name of a file is given by the path name that describes how to
locate the file in the file system hierarchy together with the name of the file. In
Section A.3.2, we recall the most used commands to move inside file systems and to
manage files and directories. In Section A.3.3, we explain how to build pathnames.
Then we overview the most used system calls for managing files from inside pro-
grams (Section A.3.4) and the mechanism used to restrict access on files (Section
A.3.5).

A.3.2 File System Relevant Commands

To move inside the file system, the user can type:

cd pathname

where “pathname” is the name of the target directory.
To create a new directory:

mkdir pathname

To remove an empty directory (of course, should the directory contain some
files, you must remove them first) type:

rmdir pathname

A.3 The File System 189

sh

etc

passwd

usr

local

man

whatis

bin

zip

dev

tty0 tty1

/

bin

date

Figure A.2 UNIX file system tree structure. The root node is named with the “/” character. Every
nonleaf node is a directory of files, and leaf nodes are either files or directories. The name of a file is
given by the path name that describes how to locate the file in the file system hierarchy. For example,
the file named “passwd” is located by specifying the path name “/etc/” and concatenating it with the
file name, thus obtaining the full file name “/etc/passwd.”

To remove a file, type:

rm pathname/file

To move a file, type:

mv pathname1/file1 pathname2/file2

This command moves the file named “file1” located in the directory called
“pathname1” into the file “file2” in the directory named “pathname2.” The result is
the deletion of the file named file1 and its copy moved onto the file named file2.
When the pathname of the original file and the pathname of the target file are the
same, the command just renames the file.

To copy a file, type:

cp pathname1/file1 pathname2/file2

This command copies the file named “file1” located in the directory called
“pathname1” onto the file “file2” in the directory named “pathname2.” The result
is a couple of identical files: the file named file1 and its copy named file2.

To make a symbolic link (i.e., a pointer to the name of a file), type:

ln –s pathname1/file1 pathname2/file2

This command links the file named “file1” located in the directory called
“pathname1” with the file “file2” in the directory named “pathname2.” The result
is a single file stored in the disk accessible from two locations: the pathname named
pathname1 and the pathname named pathname2 (where it is called file2).

To compress a file, type:

gzip pathname/myfile

This command produces the file named “myfile.gz,” containing the same infor-
mation as the original file in a reduced space.

To decompress a file, enter:

gzip –d pathname/myfile.gz

or

gunzip pathname/myfile.gz

These commands return the original file and assign it the name “myfile.” To
have these commands addressing their output on standard output, without generat-
ing any new files, the command to enter is:

gzip –dc pathname/myfile.gz

or

190 Useful UNIX/Linux Hints

gunzip –c pathname/myfile.gz

To aggregate a multiplicity of files in an archive, the tar command must be used.
For example, if you need to store all of the files contained in the current directory in
an archive called “archive.tar,” type:

tar –cvf archive.tar *

This command produces the file called “archive.tar,” which aggregates the
inputted files. To extract files from it, enter:

tar –xvf archive.tar

A.3.3 Pathnames

Pathnames can be absolute or relative.
A full (absolute) pathname is given by the sequence of the names of the nodes

traversed when navigating in the tree from the root up to the leaf representing the
targeted file. A full pathname always begins with the “/” character, which identifies
the file system root.

For example:

cd /usr/local

asks to move to the directory named “local” and located under the directory named
“usr” in the file system hierarchy.

A relative path name is a path name obtained considering the subtree rooted at
the current directory. For example, suppose that the current directory is /usr/local,
then by typing

cd bin

we move to the /usr/local/bin folder.
A special meaning is associated to the symbols “.” and “..”—the dot means the

current directory. For example, the command:

./a.out

requests the launching of the application named a.out, located in the current
directory.

The double dot symbol represents the directory immediately above the current
one in the file system tree. For example, if the current directory is
“/home/alexa/src,” the command

cd ..

moves to the “/home/alexa/” folder.

A.3 The File System 191

A.3.4 System Calls for File Management

The kernel exhibits file data to users as unformatted streams of bytes. Note that in
UNIX, systems directories and I/O devices are represented with unformatted
streams of data as well, thus providing a uniform way to access data.

A number of system calls allow programmers to access these streams and inter-
pret them as they wish. The open, read, write, and close system calls, for example,
are the basic system calls to access and modify file data. They resemble the fopen,
fread, fwrite, and fclose operations available in C libraries. The open system call
must be invoked each time a program needs to access a file. It returns an integer, the
file descriptor, which must be used for subsequent references to the file. The close
system call must be invoked to release the resource. For example, a typical code to
access a file in read mode may contain the following lines:

fd=open(“/home/alexa/myfile,””r”);
read(fd,data);
close(fd);

where fd is the file descriptor.

A.3.5 Permissions

In UNIX, every user is a member of a group. Each file in the directory structure is
owned by a user and is associated to the group to which the user belongs. Permis-
sions define what users are allowed to do with the file. There are three basic things
users might do with a file: read from it, write onto it, and execute it (when executa-
ble, of course). Permissions are based on this concept, combined with users and
groups definitions.

Permissions are set by using the chmod command, with the basic format:

chmod xyz file

Where x, y, and z may each assume an integer value between 0 and 7 and repre-
sent each the permissions granted to a different group of users:

• x is for the user that owns the file.
• y is for the group that owns the file (normally the user’s group).
• z is for everybody else.

The values x, y, and z can assume are listed in Table A.1, together with their
meaning:

For example, the command:

chmod 600 myfile

says that the file named “myfile” has the following access restrictions:

• x = 6 means that the user can read and write on it, without being allowed to
execute it.

192 Useful UNIX/Linux Hints

• y = 0 means that members of the user group can do nothing with the file.
• z = 0 means that other users can do nothing with the file.

In conclusion, “myfile” is not an executable and can be read and written by the
user and by nobody else.

A.4 Processes

A program is an executable file, while a process is an instance of the program in
execution. Many processes can execute simultaneously on UNIX systems (the mul-
tiprogramming or multitasking feature), whether they are instances of the same
program or of different programs. Processes are active entities with their own life
cycle and capability to interact with one another, to create other processes, or to
change their behavior, depending on the occurrence of specific events. UNIX con-
tains all of the system calls needed to develop programs giving place to such active
processes. The most relevant are fork and exec. The fork system call allows a
process to create a new process, while the exec system call allows a process to exe-
cute a program inside its own environment.

A process environment is the ensemble of files, variables, and data that govern
the execution of the related program. For example, each process is associated with
an execution directory and with three files.

The execution directory is the directory where the process is launched and
where the files it creates are located. The three files that processes are associated
with are the standard input, standard output, and standard error. Processes read
from their standard input, write to their standard output, and address their error
messages to their standard error. Processes typically associate these three files to
hardware devices such as video display and keyboard: they give output on the screen
and take input from the keyboard. Users can change the standard input, output, or
error by redirecting them on another file, as described in Section A.6. The files
where standard input, output, and error are redirected are created in the execution
directory of the process, if no absolute path is used to name these files.

Special UNIX processes are daemon processes. Daemons are processes that are
not normally associated with a user, but rather with the operating system, as they
support system general functions, such as administration, control of networks, and

A.4 Processes 193

Table A.1 Access Permissions

Permissions

Value Read Write Execute

0 N N N
1 N N Y
2 N Y N
3 N Y N
4 Y N N
5 Y N Y
6 Y Y N
7 Y Y Y

line printer spooling. Most daemons are automatically launched at the system boot
and run in the background (i.e., as later explained in Section A.6, they are not associ-
ated with any terminal, and their running is unrelated to user interaction), waiting
for a request of service coming from the kernel.

A.5 Administration

Administration consists of making a number of functions for the general welfare of
the user community, such as network configuration, disk formatting, and creation
of file systems. UNIX administration is performed by a specific user account that has
special privileges. This special account is normally called root [2] and is recognized
by UNIX as having the right to access and manipulate a number of files and pro-
grams otherwise off limits to general users.

The administrator can add users to the system by issuing the following
command:

adduser username

where username is the login name the administrator associates to the new user.
With this command, each user is given an account (i.e., a working environment

where he can access by entering the username and a secret password). By default,
when a user logs into a machine, he accesses his own portion of the file system,
which is rooted at a directory specifically created for him, called home directory.

The administrator can also define startup services (i.e., services running at boot
time). They may be daemon programs running in the background or one-time-only
programs running during the bootstrap to provide functions to the system. Startup
services can be defined by updating some initialization scripts that automatically run
at startup. A relevant service, installed on several Linux distributions, is the
eXtended InterNET services daemon (xinetd) [7], responsible for starting programs
that provide Internet services. To communicate to this daemon the services to be
started, the xinetd configuration file (/etc/services) has to be updated.

A.6 The Shell

A.6.1 Introduction

The shell is a program managing user interaction with the operating system. Differ-
ent shell programs are available. They are commonly grouped into two families,
each including shells with similar features. The Bourne shell family includes the sh,
bash, and ksh shell. The C shell family includes the tcsh and the csh shell, which is
very similar to the C programming language.

The shell is a command language interpreter that executes commands read from
the standard input device (keyboard) or from a file. Shells interpret and understand
both UNIX commands and internal keywords. The keywords make the shell a true
programming language. The shell, in fact, interprets the most typical language struc-
tures, such as variable declaration, loops (e.g., for and while), and conditional

194 Useful UNIX/Linux Hints

execution (e.g., if then). This allows users to write shell scripts (i.e., plain text execu-
table files containing shell commands and keywords), which manipulate programs
and commands, adding flexibility to the system.

For example, the following shell script:

#!/bin/sh
FILES=`find / -name "*.tmp" -print`

for i in $FILES; do
rm $i

done

deletes all files whose name terminates with the “.tmp” string.
The first line (beginning with the “#” symbol) specifies the shell to use. The sec-

ond line assigns to the local variable named “FILE” the result of the UNIX
command:

find / -name "*.tmp" –print

This command searches the entire file system for files having a filename termi-
nating with the “.tmp” string. The standard output of this command (i.e., the list of
the files) is assigned to the FILE variable.

The loop (beginning with the “for” keyword and terminated by the “done” key-
word) cycles on all values contained in the FILE variable and executes the
command:

rm $i

This command removes a file at each iteration, as the variable named i contains
a different file name at each loop cycle.

In addition to the common language structures, such as the already mentioned
looping and conditional structures, shells offer a number of special keywords for
exploiting several interesting features that make the UNIX systems particularly
powerful and effective for application developers:

• Background command execution. Shells allow asynchronous execution of
commands (i.e., when the user types the command, the shell launches the
requested job, reads the next command line, and executes it without having to
wait for the prior command to terminate).

• Redirection. Shells allow the user to change the standard input, output, and
error of processes.

• Pipes. Piping is a mechanism that allows the output of one process to be the
input to another process.

• Environment variable. Shells allow users to define variables and to export
their value to the whole operating system.

In the following sections, these relevant shell features are briefly described.

A.6 The Shell 195

A.6.2 Background Command Execution

The shell usually executes a command synchronously (i.e., it waits for the command
to terminate before reading the next command line, which means that the user has to
wait, too, before typing the next command). In other words, the shell gives control
to the user until the user enters a command. When a command is entered, the shell
takes back control and gives it to the command/process that the user specified. When
the process/command completes, control returns to the user.

Commands executed this way are said to execute in foreground. The shell also
allows asynchronous execution (i.e., control stays with the user, even while the com-
mand/process is executing). In this case, commands are said to run in the back-
ground. This is very useful when launching time-consuming programs: the user can
go on working while the program executes.

Running a command in background is simple: the user has to concatenate the
“&” symbol to the command name. For example, by typing:

a.out &

the shell executes the program named “a.out” in the background.
By typing the command:

ps

the user is informed about current running processes.

A.6.3 Redirection

The shell allows users to define the file on which to store standard input, output, and
error data. As default, they are the terminal. If the user types:

a.out > myfile

the program named “a.out” writes its standard output on the file named “myfile.”
If the user types:

a.out < myfile

the program named “a.out” reads its standard input from the file named “myfile.”
In the Bourne shell family, if the user types:

a.out 2> myfile

the program named “a.out” writes its standard error on the file named “myfile.”
Redirections can be combined:

a.out < inputfile > outputfile 2> errorfile

A.6.4 Pipes

Pipes allow processes to redirect their standard output to a system buffer, called a
pipe. Other processes can redirect their standard input to come from the pipe. In this

196 Useful UNIX/Linux Hints

manner, data are passed among processes through the pipe. The symbol used for
piping data is “|”. For example, by typing:

gzip archive.tar.gz –dc | tar xf –

the standard output of the command gzip is the standard input to the command tar.
So if gzip outputs the file named “archive.tar,” the command tar extracts files from
it. In this manner, by issuing a single-line command, the user decompresses the
archive and extracts files from it.

A.6.5 Environment Variables

Shells allow users to define the environment variables (i.e., variables whose value is
known by the operating system and the execution environment). A number of them
(called system variables) are set by the operating system. In Table A.2, you can find
a list of the most meaningful.

The full list can be retrieved by issuing the env command, which prints all of the
system variables with their current value.

To define your own environmental variables, the command to be issued
depends on the shell being installed. In Table A.3, the commands for the most used
shells are listed.

To access the value of a variable, the “$” character must be used. A common use
of environment variables is for the pathname of widely used tools. For example,
after having installed a tool in the directory named “/usr/local/tool,” the tool can be
invoked without entering the full pathname by defining an environment variable. In
case of a Bash shell enter:

export $TOOLDIR=/usr/local/tool

From now on, the tool can run by typing:

$TOOLDIR/tool_name

A.6 The Shell 197

Table A.3 Commands for the Most Used Shells

Shell Command

C shell setenv VARIABLE_NAME value
Bourne shell export VARIABLE_NAME=value

Table A.2 List of Meaningful Environmental Variables

System Variable Example Meaning

HOME /home/alexa Home directory
OSTYPE Linux Operating System type
PWD /home/alexa/programs Current working directory
SHELL /bin/bash Shell name
USERNAME alexa User name who is currently

logged

where tool_name is name of the executable.
When the user logs into her account, the system runs a shell script located in her

home directory, usually referred as login, start-up, or profile script. The user can
customize her working environment by editing this script, where she can add envi-
ronment variables, run her own scripts, launch commands, and so on.

References

[1] Bach, M. J., The Design of the Unix Operating System, Englewood Cliffs, NJ: Prentice-Hall.
1987.

[2] Nemeth, E., et al., Unix System Administration Handbook, Englewood Cliffs, NJ:
Prentice Hall PTR, 1999.

[3] Lewine, D., POSIX Programmer’s Guide, Sebsastopol, CA: O’Reilly & Associates.
[4] ftp://prep.ai.mit.edu/pub/gnu/COPYING.
[5] http://www.opensource.org.
[6] http://www.redhat.com.
[7] http://www.xinetd.org.

198 Useful UNIX/Linux Hints

A P P E N D I X B

Foundations of Cryptography and
Security

B.1 Introduction

When exchanging data through a network, a number of entities are involved:

• The sender (i.e., the party who sends the message);
• The receiver (i.e., the party to whom the message is addressed);
• The channel (i.e., the medium transporting messages from the sender to the

destination).

The Internet is an example of a channel. It is an open and public channel (i.e., its
technology is adherent to well-known international standards, and anybody can use
it). Internet openness is one of the main causes of its strength and wide penetration,
even though this implies some drawbacks as well. The most critical is security: when
a message travels through Internet nodes and cables, anybody may intercept it and
eventually modify its contents (Figure B.1). A number of freely downloadable tools
exist that allow anybody to “sniff” packets traveling in the network and eventually
alter their data.

Cryptography, a very old science dating back to Egyptian pharaohs age, pro-
vides algorithms and techniques to hide information and to tunnel it straight to the
legitimate receiver. Cryptography algorithms are nowadays used to manage the

199

Sender Channel

Attacker

Receiver

Figure B.1 Information flow in a conventional insecure communication system. There are two
legitimate parties: a sender and a receiver. The sender generates a message to be communicated over
an insecure channel to the receiver. A third party, the eavesdropper, may read the message or modify
its contents while it is traveling through the channel.

most common security requirements: confidentiality, authentication, and data
integrity. Confidentiality is achieved when sender and receiver are sure that
exchanged messages are read by nobody except themselves. Authentication deals
with verification of authenticity of communicating parties and is performed by
apposing a digital signature to messages (i.e., binding messages to a specific user).
Data integrity ensures that data are not modified during their travel from the sender
to the destination.

This appendix does not explore all of the basic concepts related to security;
rather, it focuses on explaining concepts useful for understanding principles
expressed in the previous chapters. In order to have a more exhaustive view of secu-
rity and cryptography, we refer the reader to [1]. This appendix overviews the
most-used technologies to achieve confidentiality (in the following section) and the
techniques used for digital signature of documents (Section B.3). As any modern
security tool strongly relies on the use of certificates, their meaning is explained in
Section B.4.

B.2 Confidentiality and Cryptography

To achieve a confidential exchange of information, cryptographic techniques are
commonly used. Cryptography [1] is the science of encrypting and decrypting infor-
mation. Encryption means scrambling the text in a complex manner, so that its con-
tents cannot be understood when reading it. Encryption translates the input text,
commonly called plain text, into an unreadable sequence of characters, called cipher
text. Only by applying the reverse function to the cipher text (i.e., decrypting it) can
the original text be obtained.

The first encryption/decryption algorithms were based on the symmetric key
encryption, which made it virtually impossible to decrypt an encrypted text into
plaintext without the use of a secret key (see Figure B.2). The secret key must be
known to both the sender and the receiver for encryption and decryption, and must

200 Foundations of Cryptography and Security

Sender Channel

Attacker

ReceiverEncryption Decryption

Dear
friend,

@#]^?=)

Dear
friend,@#]^?=)

Plain text

Cipher text

Figure B.2 Symmetric (private) key technique. The sender encrypts the original (plain) text by
using a private key. The same key must be used on the receiver end to decrypt the cipher text.

be kept private (this is why this type of algorithms are also called private key
algorithms).

Symmetric key algorithms are still widely used, even if they have a key distribu-
tion problem. This problem derives from the fact that both sender and receiver share
the same key, which must be kept private. The difficulty is that if communication is
to occur, the sender has to tell the receiver what secret key they are going to use
without compromising the key's privacy. In order to do this, the sender has to com-
municate the key to the receiver through a secure channel (i.e., a channel that surely
cannot be penetrated by anybody). A secure channel may be a courier or direct
meeting. The establishment of a secure communication through a secure channel
looks like an annoying trouble in the Internet era.

Recently, techniques involving both public and private keys have emerged [2],
which solve the key distribution problem. They are the asymmetric (or public) key
encryption techniques. Under such schemes, each user owns a couple of related
keys, a private one and a public one. Information encrypted by a public key can only
be decrypted with the corresponding private key (and vice versa). To start a confi-
dential communication among party A and party B, the following procedure must
be followed (see Figure B.3):

1. A asks B to have her public key;
2. B sends A her public key;
3. A encrypts information by using B’s public key;
4. B and only B can decrypt cipher text, as B and only B owns the private key

associated with the public key used for encryption.

Confidentiality lies in the fact that the decrypting key (i.e. the receiver’s private
key) is known only by the legitimate receiver.

B.2 Confidentiality and Cryptography 201

B’s public key

Encryption Channel Decryption

Dear
friend,

Plain text

@#]^?=)

Cipher text

@#]^?=)

Dear
friend,

B’s private key

Figure B.3 Asymmetric (public) key technique. Each user owns a couple of keys: a private and a
public one. To initiate a private communication, the receiver has to tell the sender his public key. The
sender encrypts the text by using the receiver’s public key. The receiver and only him can decrypt the
text by using his own private key.

This scheme solves the key distribution problem: in fact, the key to be distrib-
uted (i.e., the key needed to encrypt text before sending it) is a public one (i.e., every-
body can freely access it), while the private key must be held by its owner.

B.3 Digital Signature

Digital signatures substitute handwritten signatures in digital environments. In
order to do this, they must follow the following requirements:

• They must be univocally associated to the owner;
• They must be unable to be forged;
• It must be impossible to cut or substitute them;
• They must be verifiable by a third party at each moment.

This is achieved by following the scheme depicted in Figure B.4.
There, the signatory encrypts the document with his or her own private key and

joins the plain text of the document with its cipher text. Note that in this manner, the
earlier listed requirements are satisfied:

• The signature is univocally associated to the owner, as the private key is such.
• The signature is unable to be forged, as nobody can imitate the private key (if

we assume that the owner has taken enough care to keep it safe).
• It is impossible to cut or substitute a signature. In order to substitute a signa-

ture, somebody should associate a plain (cipher) text with a different cipher
(plain) text with respect to the original one. Well, this is impossible because
cryptographic techniques are all designed so that even a single-bit change in a
plain (cipher) text implies huge changes in the corresponding cipher (plain)
text [1].

202 Foundations of Cryptography and Security

Signer’s
private
key

Encryption

Dear
friend,

Plain text

Signed document

@#]^?=)

Dear
friend,

@#]^?=)

Figure B.4 Digital signature. Public key techniques allow users to perform legally valid digital signa-
tures. To sign a document, it must be encrypted with the signer’s private key. The cipher text is then
concatenated with the plain text.

• The signature must be verifiable by a third party at each moment. This can be
done by following the scheme depicted in Figure B.5. The third party can
extract the cipher text and decrypt it with the signatory public key. The result
is then compared with the plain text. If the decrypted text matches the plain
text, the signature is reputed valid.

B.4 Certificates and Certification Authorities

As explained in Section B.2, public key algorithms solve the key distribution prob-
lem. Unfortunately, they are exposed to the “man in the middle” attack.

Suppose that a third party, named C, is able to intercept data traveling in the
channel. Suppose also that C is able to substitute B’s public key with his own public
key. Imagine now that party A wants to initiate a private communication with party
B. The following actions may take place:

1. A asks B to have his public key;
2. B sends A his public key;
3. C substitutes B’s public key with his own public key;
4. A encrypts information by using C’s public key (while believing it is B’s one);
5. C decrypts the cipher text sent by A, by using his own private key.

Therefore, A exchanges private information with C (see Figure B.6), while
believing he is talking confidentially with B.

To cope with this risk, the parties involved in the communication elect a trusted
party, the CA, with the role of certifying the authenticity of the association between
owners and public keys (see Figure B.7).

CAs deliver digital documents, called certificates, containing data about the
owner and its public key, such as:

• Owner data;

B.4 Certificates and Certification Authorities 203

Signer’s public key

Decryption

Dear
friend,Signed document

Dear
friend,

@#]^?=)

@#]^?=)

Dear
friend,

Compare

Signature is valid

Figure B.5 Digital signature verification. To verify the validity of a signature, the cipher text is
extracted and decrypted. The result of the decryption is then compared with the plain text contained
in the signature. If they match, signature is reputed valid.

• Public key;
• Expiration date of the public key.

A certificate is issued by the CA only after having verified the trustworthy of the
owner (i.e., after verifying he is who he claims to be). In order to express their trust,
CAs digitally sign each certificate they deliver.

When the sender asks for the receiver’s public key, in order to initiate a confi-
dential exchange of information, the receiver responds with his signed certificate.
The verification of the CA signature assures the sender that the binding between
owner and public key contained in the certificate is true.

A number of internationally recognized CAs exist [3, 4], which deliver certifi-
cates after making a number of controls on the authenticity of requesters. In
e-business applications, where information is exchanged with unknown people, it is
worthwhile to appeal to well-known and worldwide recognized CAs. In environ-
ments where the participants are more restricted, a more suitable choice may be to
define an autonomous CA that everybody in the community trusts.

204 Foundations of Cryptography and Security

ChannelA B

C

Attacker’s public key

B’s public key

1

2

3

4

Figure B.6 “Man in the middle” attack. Before sending messages to B, A asks B to send his public
key. B sends its own key (arrow 1). An attacker intercepts B’s key (arrow 2) and substitutes it with his
own (arrow 3). Party A receives the attacker’s public key (arrow 4). From now on, A will encrypt data
with the attacker’s public key (while believing it is B’s key). This permits the attacker to read the con-
tents of enciphered text sent by A and eventually to substitute it with other text (encrypted by the
attacker with B’s public key).

A B

CA

Trust Trust

Figure B.7 To cope with the man-in-the-middle attack, a third party is involved. Receiver and
sender (A and B in the figure) choose a CA that both trust. The CA will guarantee the validity of asso-
ciations between public keys and owners by signing documents (certificates) expressing the associa-

References

[1] Menezes, A., P. van Oorschot, and S. Vanstone, Handbook of Applied Cryptography, Boca
Raton, FL: CRC Press, 1996.

[2] Diffie, W., and M. E. Hellman, “New Directions in Cryptography,” IEEE Transactions on
Information Theory, Vol. IT-22, No. 6, November 1976.

[3] http://www.verysign.com.
[4] http://www.thawte.com.

B.4 Certificates and Certification Authorities 205

.

A P P E N D I X C

Foundations for Electromagnetic Theory

C.1 Maxwell’s Equations in the Time Domain

The differential forms of Maxwell’s equations in time domain are quite well known
to everyone involved in EM research. Nonetheless, it is worth recalling them, as well
as their main derivations.

We assume that:

()E E r= ,t is the electric field, expressed in V/m.

()H H r= ,t is the magnetic field, expressed in A/m.

()D D r= ,t is the electric flux density vector, expressed in C/m2.

()B B r= ,t is the magnetic induction, expressed in Wb/m2.

()J J r= ,t is the electric current density, expressed in A/m2.

()ρ ρ= r,t is the electric charge density, expressed in C/m3.

()J J rm m= ,t is the magnetic current density, expressed in V/m2.

One of Maxwell’s equations is strictly connected with Faraday’s law and has
the following form:

∇ =− −x
t mE
B

J
∂

∂
(C.1)

The second Maxwell’s equation is strictly connected with Ampere’s law and has
the following form:

∇ = +x
t

H
D

J
∂

∂
(C.2)

From Gauss’s Law, we can derive that:

∇⋅ =D ρ (C.3)

with its dual equation:

∇⋅ =B 0 (C.4)

207

It is worth recalling that the magnetic current density is not a physical entity
(equivalently, we assume that no magnetic charges can exist).

When dealing with linear, isotropic, and nondispersive (in time and space) mate-
rials, the previously mentioned equations are accompanied by the following consti-
tutive equations:

D E= ε (C.5)

B H= µ (C.6)

where ε and µ are, respectively, the electric and magnetic permeability. In vacuum,
they assume the following values:

()ε πo F m≈ ⋅ −1 36 10 9 (C.7)

µ πo H m≈ ⋅ −4 10 7 (C.8)

The following constitutive equation holds as well (local Ohm’s law):

J E= σ (C.9)

where σ is the electric conductivity (S/m). Joining Maxwell’s equations with the con-
stitutive equations, the following system of six scalar equations is derived, referred
to a 3D rectangular coordinate system:

∂

∂ µ

∂

∂

∂

∂

∂

∂ µ

∂

∂

∂

∂

H

t

E

z

E

y

H

t

E

x

E

z

x y z

y z x

= −












= −





1

1 




= −












= −

∂

∂ µ

∂

∂

∂

∂

∂

∂ ε

∂

∂

∂

∂

H

t

E

y

E

x

E

t

H

y

H

z

z x y

x z y

1

1
−













= − −










=

σ

∂

∂ ε

∂

∂

∂

∂
σ

∂

∂

E

E

t

H

z

H

x
E

E

t

x

y x z
y

z

1

1
ε

∂

∂

∂

∂
σ

H

x

H

y
E

y x
z− −













(C.10)

The discretization with a time step ∆t, and a space step ∆x, ∆y, and ∆z along the
x, y, and z axis, respectively, leads to equations such as the one reported in (4.1).

C.2 Helmholtz and Dispersion Equations

When impressed electric currents J i and magnetic currents J mi must be taken into
account, the introduction of a vector magnetic potential A so that H A= ∇x and a

208 Foundations for Electromagnetic Theory

vector electric potential F so that E F= ∇x are useful, so that the introduction of
suitable gauge terms leads to the inhomogeneous Helmholtz equation:

∇ − =−2
2

2A
A

Jµε
∂

∂t i (C.11)

or its dual form.
This equation allows the solution of radiation problems, as well as the introduc-

tion of the concept of plane wave and its phase velocity, with respect to a certain
direction a, indicated with va. Recalling that the velocity of light

c m s
o o

= ≈ ⋅
1

3 108

µ ε
in vacuum, along the direction of propagation β, we have:

v cβ

ω

β
= = (C.12)

where ω=2πf, and f is the working frequency. The homogeneous Helmholtz equa-
tion, derived from (C.11) by assuming that no impressed currents exist, and the
method of variable separation lead to the introduction of three variables kx, ky, and
kz, so that the following dispersion relation must hold for a plane wave in a homoge-
neous lossless medium:

k k k
cx y z

2 2 2
2

2+ + =
ω

(C.13)

Equation (C.13) can easily be customized for the discretized three dimensional
case suited to FDTD modeling. Indeed, after introducing a time step ∆t, and a space
step ∆x, ∆y, and ∆z along the x, y, and z axis, respectively, for a plane wave propa-
gating inside the FDTD mesh, the following discrete equation holds:

()

1
2

1
2

1

2
2

2
2

2
2

c t

t

x

k x

y

k

x

y

∆

∆

∆

∆

∆

sin sin

sin

ω







=











+
∆

∆

∆y

z

k zz

2
1

22
2











+









sin

(C.14)

Equation (C.14) degenerates into (C.13) when space and time steps go to zero.

C.3 TE and TM Modes

Waves inside a guiding structure can be studied by adding suitable boundary condi-
tions to Helmholtz equation. In the case of rectangular waveguides, a generic
field can be intended as a linear combination of waveguide modes, such as TE
and TM modes. Assuming that the x axis of a rectangular system is along
the main edge of the waveguide section (with dimensions a×b), for TE modes we
have:

C.3 TE and TM Modes 209

e x ymn C o oN
n
b

m x
a

n y

b
m
a

m x
a

n y

b
= −









π π π π π π

cos sin sin cos 

= +






h x ymn C o oN

m
a

m x
a

n y

b
n
b

m x
a

n y

b
π π π π π π

sin cos cos sin



(C.15)

with NC a normalizing constant and with m n, ≥ 0 (provided that they are not con-
temporarily equal to zero). For TM modes we have:

e x ymn C o oN
m
a

m x
a

n y

b
n
b

m x
a

n y

b
= +









π π π π π π

cos sin sin cos 

= −






h x ymn C o oN

n
b

m x
a

n y

b
m
a

m x
a

n y

b
π π π π π π

sin cos cos sin



(C.16)

with m n, ≥1.
For TE modes, the axial component is:

h N
k m x

a

n y

bzmn C
cmn=













2

γ

π π
cos cos (C.17)

and for TM modes we have:

e N
k m x

a

n y

bzmn C
cmn=













2

γ

π π
sin sin (C.18)

In (C.17) and (C.18):

k
m
a

n
bcmn

2
2 2

=








 +









π π

(C.19)

so that the constant γ p in (5.1) and (5.2) can be expressed as:

γ p cmnk k= −2 2 (C.20)

C.4 Fourier Representation of Green’s Functions

As is quite well known, the solution of inhomogeneous Helmholtz equations takes
substantial advantages from its representation through Fourier integrals. Consider-
ing a scalar problem:

∇ + =−2 2Φ Φk w (C.21)

with ()Φ = Φ , ,x y z and w = w(x, y, z) complex functions, and k complex constant,
using Fourier representation we have:

210 Foundations for Electromagnetic Theory

()
()

() ()Φ Φx y z e d d dj x y z, ,
~

, ,= + +

−∞

+∞

∫∫∫1

2
3

2π
ξ ψ ζ ξ ψ ζξ ψ ζ (C.22)

where
~
Φ is the three-dimensional Fourier transformation of Φ. In several cases (as,

for instance, when studying an aperture in an infinite metal flange), it is a useful 2D
transformation. This way, the Green’s function for the half space can be written as:

()

() ()

G x x y y

df df

f f

e
x y

x y

j f xx

− ′ − ′

=

+ −










−∞

+∞
− − ′∫∫

,

2 2
2

2

1
λ

π () ()x j f y yy− − ′2 π (C.23)

where fx =
1
λ

θ ϕsin cos , and fy =
1
λ

θ ϕsin sin , referring to the spherical coordinate

system, as in Figure C.1.
The use of such transformations is a powerful approach, adopted when study-

ing diffraction from apertures and highly attractive when studying the problem in
the vicinity of apertures and flanges. In such cases, the formulation leads to the
well-known plane-wave representation, where the radiated field is considered the
summation of elementary contributions. Such contributions are uniform plane
waves in the visible region (see Figure C.2) or evanescent plane waves elsewhere.

This is expressed by the following formula:

() () ()
E r e

k r
= ∫∫ − ⋅

−∞

+∞
f f e df dfx y

j f f

x y
x y,

,
(C.24)

where the elementary contributions e k re df dfj
x y

− ⋅ apparently assume the form of
plane waves. Uniform plane waves propagate in all directions in the half-plane
z > 0. Evanescent waves propagate in all directions parallel to the aperture plane.
They must be carefully taken into account in the proximity of the aperture, while
they can be omitted far away from the aperture.

C.4 Fourier Representation of Green’s Functions 211

x

y

z

P

θ

ϕ

0

Figure C.1 The spherical coordinate system for the case of aperture antennas.

C.5 The Far-Field Approximation

As concluded in the previous section, in several cases the behavior of EM sources is
rather different, depending on the observation distance. The study in the proximity
of an antenna is typically more complex, with respect to the analysis at a large dis-
tance. This is basically due to the importance that the antenna dimension assumes
when reducing the observation distance. Indeed, referring to Figure C.3, this com-
pels us to take into account the different phase of the contributions arriving in P
from different regions (identified by ′r) of the antenna (represented by the gray area).

Referring to [1] for an analytical demonstration, it can be concluded that for dis-

tances from the antenna greater than D
D

FF =
2 2

λ
, where D is the leading dimension

of the antenna, some relevant simplifications can be assumed, namely:

1. The antenna can be assumed to be a point source.

212 Foundations for Electromagnetic Theory

fx

fy

z

Visibile circle

)21
(− −(f) (f)x

2
y

2

λ

(f ,f)x y

Figure C.2 The visible and evanescent regions.

r
r’

R

χ

O
D

x

z

P

Figure C.3 The importance of the observation distance with respect to the antenna dimensions.

2. The radiated field is a locally TEM wave (i.e., a TEM wave in a small volume
around the observation point).

3. The radiation vector depends on the direction of the observation point and
does not depend on its distance from the source.

DFF represents a threshold distance. Shorter distances fall inside the so-called
Fresnel (or near-field) zone; larger distances fall inside the Fraunhofer (or radiation,
or far-field) zone. Near-field problems typically deserve accurate and complex solu-
tions, mostly based on full-wave numerical methods.

Reference

[1] Stutzman W. L., and G. A. Thiele, Antenna Theory and Design, New York: John Wiley and
Sons, 1981.

C.5 The Far-Field Approximation 213

.

A P P E N D I X D

List of Useful Web Sites

Access Grid Project http://www.accessgrid.org

ASC Portal http://www.acsportal.org

Asia Pacific Grid http://www.apgrid.org

Cactus Code http://www.cactuscode.org

Condor http://www.cs.wisc.edu/condor

DataGrid Project http://www.eu-datagrid.org

Global Grid Forum (GGF) http://www.gridforum.org

Globus http://www.globus.org

Gridbus http://www.gridbus.org

Grid Computing Info Center http://www.gridcomputing.com

Grid Today http://www.gridtoday.com
http://www.csse.monash.edu.au
http://hotpage.npaci.edu

Gridlab http://www.gridlab.org

Grid Physics Network (GriPhyN) http://griphyn.org

IBM Grid http://www.ibm.com/grid

JXTA http://www.jxta.org

Legion http://legion.virginia.edu

The Message Passing Interface Standard (MPI) http://www-unix.mcs.anl.gov/mpi

NCSA http://www.ncsa.uiuc.edu

NSF http://www.nsf.gov

OMG http://www.omg.org

Peer-to-Peer Working Group http://www.peer-to-peerwg.org

SRB http://www.npaci.edu/dice/srb

Teragrid http://www.teragrid.org

W3C http://www.w3.org

WebFlow http://www.npac.syr.edu/users/haupt/WebFlow

215

.

Glossary

Abstraction Feature of the object-oriented programming model, according to
which entities (objects) having common properties can be grouped.

Abstract device interface (ADI) Code that must be implemented to specialize
MPICH for a specific computing platform.

Arithmetic and logic unit (ALU) According to the Von Neumann model, the
ALU is a component of the CPU and is responsible for executing the instructions.

Application programming interface (API) APIs facilitate the development of
programs using functionalities embedded in software or hardware tools. A tool con-
tains an API when it defines a number of function calls (interfaces) to access its own
facilities.

Asymmetric key A separate but integrated key pair, comprised of one public key
and one private key. Each key is one way, meaning that a key used to encrypt infor-
mation cannot be used to decrypt the same data.

Asynchronous Asynchronous tasks execute independently of each other, and
their timing is not synchronized. For example, when you start up three asynchro-
nous tasks, even when each does about the same amount of work, you can’t predict
in which order they will finish.

Authentication Verification of authenticity of communicating parties.

Authorization The procedure for granting access to resources.

Autonomic computing Self-managing computing model named after the human
body’s autonomic nervous system. An autonomic computing system controls the
functioning of computer applications and systems without input from the user, in
the same way that the nervous system regulates the body system without conscious
input from the individual.

Bandwidth Bandwidth is the total available bit rate of a digital network channel.
Bandwidth is determined by the speed of the network, which is determined by its
technology, but it is also affected by the overhead of the control data added by the
communications protocol.

Barrier Process synchronization mechanism used in collective communications.
Processes calling a barrier function block until all the members of the same group
have called it.

217

Beowulf cluster A cluster of Linux based personal computers using commodity
hardware and open-source software.

Browser An application program that provides a way to look at and interact with
all of the information on the World Wide Web.

Bundle Collection of packages that can be installed together by using a packaging
toolkit.

Certification authority (CA) A trusted third party who creates certificates to bind
an entity to its public key.

Code division multiple access (CDMA) A spread-spectrum communication tech-
nique. Spread-spectrum techniques are based on the signal dispersion over a wider
band to reduce sniffing and disturbs. CDMA is a multiplexing technique: several
users can adopt the same bandwidth with minimum reciprocal interference. Users
are associated to orthogonal codes (Baum-Walsh codes).

Certificate An electronic document attached to a public key by a trusted third
party (CA), which provides proof that the public key belongs to a legitimate owner
and has not been compromised.

Cipher text Text converted into an unreadable format through the use of an
encryption algorithm.

Class Group of objects having common properties and behavior.

Client The requesting program or user in a client/server relationship.

Cluster Group of machines that are networked together and used as a single sys-
tem.

Commodity Grid (CoG) Set of facilities employed in the Globus Toolkit for inte-
grating Globus with the most common commodity technologies.

Commodity technologies See enabling technologies.

Component Object located on a node of a heterogeneous network, able to
interoperate with other components, located anywhere on the network, as a unified
whole.

Computational speed up See speed-up ratio.

Condor Tool supporting high-throughput computing on collections of distrib-
uted computing resources.

Confidentiality A service that assures that exchanged messages are known only to
the communicating parties.

Common Object Request Broker Architecture (CORBA) Object-oriented dis-
tributed computing specification developed by OMG, based on the development of
object request brokers able to mediate between clients and server components.

Control processing unit (CPU) According to the Von Neumann model, the CPU
is the component of computer machines responsible for fetching instructions from
memory and executing them sequentially.

218 Glossary

Cryptography The science of creating messages that can be read only by a desig-
nated receiver.

Control unit (CU) According to the Von Neumann model, the CU is a compo-
nent of the central processing unit and is responsible for decoding instructions
fetched from memory.

Daemon A program that runs continuously and exists for the purpose of han-
dling periodic service requests that a computer system expects to receive. The dae-
mon program forwards the requests to other programs (or processes) as
appropriate.

Data decomposition The division of a global data set into smaller subdomains,
typically for distribution over some form of parallel computer.

Distributed computing environment (DCE) Object-oriented distributed com-
puting specification developed by OSF, based on traditional remote procedure calls
for the communication between client and server.

DCOM Platform for object-oriented distributed computing developed by Micro-
soft.

Decryption A method of unscrambling encrypted information so that it becomes
legible again.

Delegation The process of accepting some entity acting on behalf of someone
else.

Directory Directories are used to store and retrieve information. Thus, directo-
ries are similar to databases. Special characteristics of directories include the follow-
ing: directories are designed for reading more than for writing, directories offer a
static view of the data, and updates in directories are simple without transactions.

Directory service A directory service provides a directory that can be accessed via
a network protocol. An example of a directory service is domain name system,
which resolves the names of computers to appropriate addresses.

Distributed memory system In a distributed-memory system, each processor
node has immediate access only to its local memory, so if a processor needs data
from another node’s memory, it must issue special instructions to fetch these items
from that node over the interconnecting network.

Directory information tree (DIT) Hierarchical tree structure used by LDAP con-
taining a hierarchical view of data that makes it amenable for an easy and fast tree-
based search system for the data.

Data management (DM) Pillar of the Globus Toolkit dealing with access and
management of data in a grid (for instance, it provides a more robust and high-
performance file transfer protocol, customized to grid needs).

Distinguished name (DN) Unambiguous name to identify entities in a distributed
environment.

Domain name system (DNS) Directory service used to locate computers in the
Internet.

Glossary 219

Extended access control list (EACL) List defining policies for security.

Efficiency Ratio between the computational speed up and the number of
processors operating in parallel.

Enabling technology Basic technology that enables the specification of a higher
level technology.

Encapsulation Feature of object-oriented programming paradigm according to
which objects hide data and expose a well-defined interface allowing users to oper-
ate on hidden data.

Encryption A method of scrambling information to render it unreadable to any-
one except the intended recipient

Floating-point operations per second (FLOPS) Measure of computer perform-
ance.

Freeware Software freely redistributable under the terms of the GNU General
Public License.

Flynn’s taxonomy A classification system for computer architectures.

Fully qualified domain name (FQDN) The combination of hostname and
domain name of a computer.

File transfer protocol (ftp) Standard protocol for transferring files via a network.

Globus Access to Secondary Storage (GASS) Service of Globus implementing a
variety of automatic and programmer-managed data-movement and data-access
strategies, enabling programs to read and write remote data.

Gatekeeper User interface to the Globus component called GRAM. When a job is
submitted, the gatekeeper authenticates the request and creates a job manager to
handle it.

Grid index information system (GIIS) Aggregate directory service of Globus that
is able to gather data from multiple nodes of a grid and to respond to aggregate
queries.

Globus Toolkit Open-source middleware set of grid services addressing funda-
mental issues, such as security, information discovery, resource management, data
management, and communication.

Grid middleware (GM) Layer of software mediating between resource and high-
level application to enable grid computing.

General Public License (GPL) Guidelines to distribute freeware software, accord-
ing to which freeware software can be modified and redistributed provided that the
source for those modifications are distributed as well.

Globus Packaging Toolkit (GPT) Package for a totally automatic installation of
the Globus Toolkit.

Grid architecture for computational economy (GRACE) Middleware infrastruc-
ture coexisting with grid middleware systems to support computational economy.

220 Glossary

Globus Resource Allocation Manager (GRAM) Component of the resource
management pillar of the Globus Toolkit responsible for sets of resources operating
under the same allocation policy.

GridFTP Extended version of the file transfer protocol (ftp), included in the
Globus Toolkit, which adds a series of features to ftp that customizes it to grid
environments.

Grid resource information service (GRIS) Globus component responsible for
providing information about the status of resources available in each grid node.

Globus Security Infrastructure (GSI) Globus Toolkit component ensuring fun-
damental security services, such as authentication, confidentiality, and integrity.

Global System for Mobile Communications (GSM) A second-generation cellu-
lar system introduced to standardize wireless communications throughout Europe
in 1990. The mobile entity communicates with the base station of the cell to which it
belongs. The base station connects the mobile with the other mobiles or with the
wired network, thanks to a switching center. Each mobile is equipped with a SIM
card, with the user id number and all of the information about the user.

GT See Globus Toolkit.

Hash One-way hash function has the following features: it is easy to generate an
output from it, and it is very difficult to generate the original input from the pro-
duced output. Examples would be a sine to inverse sine function or square to square
root.

Hypertext transfer protocol (http) Standard protocol for transferring files via
the Web.

HTTP over SSL (HTTPS) HTTP protocol enriched with security services pro-
vided by secure sockets layer.

Interface definition language (IDL) Language to implement CORBA-compliant
components.

Inheritance Form of polymorphism that allows users to define groups of classes
specializing operations and attributes owned by other classes.

Interface Function call with a very rigorous and permanent specification, defined
to hide implementation details of objects, devices, and tools.

Internet Engineer Task Force (IETF) International community of network
designers, operators, vendors, and researchers concerned with the evolution of the
Internet architecture and the smooth operation of the Internet.

Integrity Service of assuring and verifying that a message arrives at a destination
without any corruption.

Intranet Network of computers belonging to a single organization and adopting
Internet standards and protocols.

Glossary 221

Information services (IS) Pillar of the Globus Toolkit, responsible for collecting
and returning information about the structure and state of resources (e.g., their cur-
rent load and usage policy).

Java Interpreted object-oriented language widely deployed in the Internet.

JavaBeans Object-oriented distributed computing framework based on the Java
language.

Jini Object-oriented distributed computing framework based on the Java lan-
guage and services.

Job manager Process created by the GT gatekeeper to handle jobs running on
server machines.

Kernel Core of the UNIX operating system. It hides hardware complexity from
users.

Key A digital code used to encrypt, sign, decrypt, and verify messages and files.

Local area network (LAN) Network connecting computers belonging to a single
organization and not distant from each other.

Latency The time taken to start up an operation. Typically message latency is the
time delay incurred between one processor starting a message send operation and
the recipient processor completing the receive operation. Startup latency is the con-
stant communication overhead incurred in sending a zero-length message.

Legion Object-oriented middleware framework for grids.

Lightweight directory access protocol (LDAP) Software protocol for enabling
anyone to locate organizations, individuals, and other resources, such as files and
devices, in a network.

Library A collection of precompiled routines that can be linked to a program.

Linux Free reimplementation of the POSIX UNIX specification.

Load balance A measure of how evenly work is distributed among a set of
parallel processors. Parallel programs are most efficient when the load is perfectly
balanced.

Makefile UNIX utility for compiling applications.

Master-worker Programming paradigm where a root process (master) is respon-
sible for distributing problem data among the remaining processes (workers) and
collecting results at the end of the executions.

Metacomputing directory service (MDS) Core of the IS pillar of Globus. MDS
has a distributed architecture. It is basically composed of grid resource information
services (GRIS) and grid index information systems (GIIS). Each GRIS provides
information about the status of resources available in each node. Each GIIS gathers
data from multiple GRIS resources.

Message passing Programming paradigm for developing parallel applications. It
is the explicit exchange of messages between processes.

222 Glossary

Middleware Software acting as intermediate between higher and lower layers in
a hierarchical architecture.

Multiple instruction multiple data (MIMD) Parallel architecture containing a
number of CPUs interconnected by a high-speed network. The different CPUs exe-
cute in parallel different instructions and operate on different data.

Mobile agent Program with the ability to transfer itself from host to host within
a network and to interact with other agents in order to perform its task.

Message passing interface (MPI) A standard application programming interface
that can be used to create parallel applications.

MPICH Public domain implementation of MPI.

MPICH-G2 Grid-enabled implementation of MPICH.

Massively parallel processor (MPP) Computers containing hundreds or thou-
sands of processors interconnected by a fast local interconnection network.

Multithreaded application Application in which a number of tasks are carried
out in parallel by simultaneously running threads.

Mutual authentication The process of authenticating both parties involved in a
communication.

Nimrod-G Resource management and scheduling system built on Globus serv-
ices and freely available on the Internet.

Network time protocol (NTP) Internet standard to synchronize dispersed
machines with a common reference clock.

OpenLDAP Freeware LDAP library.

OpenMP A standard API for distributing work across threads of a shared mem-
ory computer.

OpenSSL Freeware SSL library.

Object request broker (ORB) Entity responsible for locating components in a
distributed object-oriented environment.

Peer to peer Network of computers where each machine can act both as client
and as server.

Plain text Text in a human-readable form or bits in a machine-readable form.

Polymorphism Feature of the object-oriented programming model, according to
which classes can overlap and intersect (i.e., they can include a common set of
operations, eventually assuming different meanings depending on the class to which
they are applied).

Portal A term for a World Wide Web site that is or proposes to be a major start-
ing site for users when they get connected to the Web or that users tend to visit as an
anchor site.

Glossary 223

Portable Operating Systems for Computing Environments (POSIX) Standard
containing the guidelines that govern the new generation of operating systems.

Private key Key used to encrypt or decrypt text, associated with a public key.

Process Instance of a program in execution.

Protocol Set of rules that end points use when they communicate.

Proxy Entity acting on behalf of someone else.

Pthreads Threads programming interfaces compliant with the standard specifica-
tions included in the Portable Operating System for Computing Environments fam-
ily of standards.

Public key Key used to encrypt or decrypt text, associated with a private key.

Parallel virtual machine (PVM) A subroutine library from Oak Ridge National
Laboratory. PVM includes libraries of subroutines callable from C and Fortran pro-
grams, plus system support processes for distributed memory parallelism. PVM’s
goal is to allow the user to create a parallel virtual machine from any heterogeneous
collection of machines and networks.

Resource management (RM) Pillar of the Globus Toolkit, responsible for sched-
uling and allocating resources specifying, for example, resource requirements and
the operations to be performed, such as process creation or data access.

Root account UNIX account normally used to perform administration tasks.

Resource specification language (RSL) Language interpreted by Globus compo-
nents, having a simple syntax that allows specifying job requests and their character-
istics.

Scheduler A program that controls which batch job runs next, when resources are
available.

Shared memory architecture MIMD architecture where the processors can
address a global, shared memory.

Shell Command interpreter program provided for user interaction with UNIX
systems.

Servlet Java pieces of code that cooperate with Java-compliant Web servers to
provide services to Web clients. A Java servlet can interface Web servers with data-
bases and other back-end services and elaborate data to give back the results to the
Web.

Simple instruction multiple data (SIMD) Parallel architecture where a single CU
controls a number of ALUs. ALUs execute in parallel the same instruction on differ-
ent local data.

Single sign on The procedure of authentication via a single insertion of a secret
password.

Speed-up ratio Speed gain obtained from the operation of N processors in
parallel.

224 Glossary

Single program multiple data (SPMD) Parallel programming paradigm, where
all tasks execute the same program but on different sets of data. All the nodes
receive identical copies of the program to be executed.

Secure sockets layer (SSL) Protocol developed by Netscape to provide security
over the Internet. Supports client and server authentication.

Standard error File where a process writes its error messages; by default it is the
screen.

Standard input File where a process reads its input; by default it is the keyboard.

Standard output File where a process writes its output; by default it is the screen.

Symmetric key algorithm Algorithm where the encryption and decryption key
are the same.

System call Well-defined interface allowing users to interact with the UNIX ker-
nel.

Task Unit of computation, analogous to a UNIX process.

Transfer control protocol/Internet protocol (TCP/IP) The basic communication
language or protocol of the Internet.

Time division multiple access (TDMA) A multiplexing technique based on time
division. Each user is assigned a certain time slot. The information about the time
slot assigned to a single user is crucial both when transmitting and when receiving.

Thread Stream of instructions that can be scheduled to run as if it were a process
with an autonomous identity with respect to the program of which it is part of.

Thread safe Functions are said to be thread safe when they can be safely called by
multiple threads—data are not corrupted when these functions are concurrently
invoked.

Topology Describes the way nodes are interconnected in a parallel architecture.

Universal Mobile Telecommunication System (UMTS) A standard for the third
generation of mobile systems. It is based on two standards. The former is the wide-
band CDMA (W-CDMA, see CDMA). The latter is called TD-CDMA, and is a
combination of W-CDMA and TDMA, see TDMA). The basic goal of the third gen-
eration of mobile systems (a digital technology) is the full support of multimedia
Web services in a mobile context.

UNIX Multiprogramming and multiuser operating system written in the C
language.

Uniform resource locator (URL) The unique address for a file that is accessible
on the Internet.

Von Neumann model Model describing the functioning of computer machines
where a central processing unit sequentially processes instructions stored in
memory.

Glossary 225

Vector processor A powerful computer processor designed to perform arithmetic
to long vectors rather than single numbers.

Wide area network (WAN) Network connecting geographically dispersed
computers.

Webflow Web-based visual tool for the development of grid-enabled
applications.

Web server Program that, using the World Wide Web’s hypertext transfer proto-
col, serves the files that form Web pages to Web users.

Web services Services (usually including some combination of programming and
data) that are made available from Web servers for Web users or other Web-
connected programs.

Extended Internet services daemon (Xinetd) Daemon included in a number of
Linux distributions that is responsible for starting programs that provide Internet
services.

226 Glossary

List of Acronyms

ABC Absorbing boundary conditions

ADI Abstract device interface

AFS Analysis of the feeding system

ALU Arithmetic logical unit

AMC Analysis of mutual coupling

APAN Asia-Pacific Advanced Network

API Application programming interface

AS Atomic subtask

BS Base station

CA Certification authority

CAD Computer-aided design

CAE Computer-aided engineering

CDMA Code division multiple access

CE Cooperative engineering

CEM Computational electromagnetics

CGI Common gateway interface

CORBA Common Object Request Broker Architecture

CPU Central processing unit

CTP Consumer TP

CU Control unit

DAG Direct acyclic graph

DANTE Delivery of Advanced Network Technology to Europe

DBMS Database management system

DCE Distributed Computing Environment

DCOM Distributed Component Object Model

DIT Directory information tree

227

DM Data management

DN Distinguished name

DNS Domain name system

DPSS Distributed Parallel Storage System

DR Data register

DTF Distributed Terascale Facility

DUROC Dynamically Updated Request Online Coallocator

EACL Extended access control list

EM Electromagnetics

ENC encapsulator

ERP Evaluation of the radiation pattern

ESM Evaluation of the scattering matrix

FDTD finite difference time domain

FLOPS Floating-point operations per second

FQDN Fully qualified domain name

ftp File transfer protocol

GASS Globus Access to Secondary Storage

GC Grid computing

GDAM Grid database access and management

GGF Global Grid Forum

GIIS Grid index information system

GIS Geographic Information System

GM Grid middleware

GPL General Public License

GPT Globus Packaging Toolkit

GRACE Grid architecture for computational economy

GRAM Globus Resource Allocation Manager

GRIS Grid resource information service

GSI Globus Security Infrastructure

GSM Global System for Mobile Communications

GT Globus Toolkit

HBM Heartbeat Monitor

228 List of Acronyms

HPC High-performance computing

HPS High-performance switch

HPSS High Performance Storage System

HTC High-throughput computing

HTML Hypertext markup language

HTTP Hypertext transfer protocol

HTTPS HTTP over SSL

IDL Interface definition language

IEEE Institute of Electrical and Electronic Engineers

IETF Internet Engineer Task Force

IM Information management

INFN National Institute for Nuclear Physics

IR Instruction register

IS Information services

ISNOP Integrated system for network optimum planning

IT Information technology

I/O Input/output

JMA Java mobile agents

LAN Local area network

LDAP Lightweight directory access protocol

LOS Line of sight

LSF Load Sharing Facility

LW-GE Lewin/Gegenbauer

LW-WG Lewin/waveguide

MB Main block

MDS Metacomputing directory service

MIMD Multiple instruction multiple data

MM Mode matching

MPI Message passing interface

MPIF Message Passing Interface Forum

MPMD Multiple program multiple data

MPP Massively parallel processor

List of Acronyms 229

MW Microwave

NCSA National Center for Supercomputing Applications

NLOS Nonline of sight

NTP Network Time Protocol

OH Okumura-Hata

OO Object oriented

OPT Optimization

ORB Object request broker

PML Perfectly matched layer

POSIX Portable Operating Systems for Computing Environments

PTP Provider TP

PVM Parallel virtual machine

RAM Random-access memory

RBA Radio base antenna

RM Resource management

RP Radio propagation

RSL Resource specification language

SDK Software development kit

SDSC San Diego Supercomputer Center

SIMD Simple instruction multiple data

SPMD Single program multiple data

SP-GE spectral/Gegenbauer

SP-WG spectral/waveguide

SRB Storage Resource Broker

SSL Secure sockets layer

TCP Transfer control protocol

TCP/IP Transfer control protocol/Internet protocol

TE Transverse electric

TLS Transport layer security

TM Transverse magnetic

TP Test point

TPN Test point network

230 List of Acronyms

URL Uniform resource locator

WAN Wide area network

WI Walfisch-Ikegami

WLAN Wireless local area network

Xinetd eXtended InterNET services daemon

List of Acronyms 231

.

Selected Bibliography

Abramowitz, M., I. Stegun, Handbook of Mathematical Functions, New York:
Dover Publications, 1974.

Alessandri, F., M. Mongiardo, and R. Sorrentino, “New Efficient Full Wave
Optimization of Microwave Circuits by the Adjoint Network Method,”
IEEE Microwave Guided Wave Lett., Vol. 3, No. 11, November 1993,
pp. 414–416.

Allen, G., E. Seidel, and J. Shalf, “Scientific Computing on the Grid,” Byte, Spring
2002.

Baker, M., R. Buyya, and D. Laforenza, “The Grid: International Efforts in Global
Computing,” International Conference on Advances in Infrastructure for Elec-
tronic Business, Science, and Education on the Internet, Italy, 2000.

Berenger, J. P., “A Perfectly Matched Layer for the Absorption of EM Waves,”
Journ. Comp. Phys., Vol. 114, 1994, pp. 185–200.

Bertoni, H., Radio Propagation for Modern Wireless Systems, Englewood Cliffs,
NJ: Prentice Hall, 2000.

Bird, T. S., “Mutual Coupling in Finite Coplanar Rectangular Waveguides Arrays,”
Electron. Lett., Vol. 23, Oct. 1987, pp. 1199–1201.

Bird, T. S., “Analysis of Mutual Coupling in Finite Arrays of Different Sized Rectan-
gular Waveguides,” IEEE Trans. Antennas Propagat., Vol. AP-38, February 1990,
pp. 166–172.

Bird, T. S., and D.G. Bateman, “Mutual Coupling Between Rotated Horns in a
Ground Plane,” IEEE Trans. Antennas Propagat., Vol. AP-42, July 1994,
pp. 1000–1006.

Booch, G., Object-Oriented Analysis and Design (With Applications), Redwood,
CA: Benjamin-Cummings Publishing Co. Inc., 1994.

Butenhof, D. R., Programming with POSIX Threads, Reading, MA: Addison-
Wesley, 1997.

Buyya, R., D. Abramson, and J. Giddy, “An Economic Driven Resource Manage-
ment Architecture for Global Computational Power Grids,” Intl. Conference on
Parallel and Distributed Processing Techniques and Applications (PDPTA’2000),
Las Vegas, NV, June 2000.

233

Buyya, R., D.Abramson, and J. Giddy “Nimrod/G: An Architecture for a Resource
Management and Scheduling in a Global Computational Grid,” 4th Interna-
tional Conference/Exhibition on High Performance Computing in the Asia-Pacific
Region, Beijing, China, IEEE Computer Society, Los Alamitos, CA, May 2000.

Catarinucci, L., P. Palazzari, and L. Tarricone, “Human Exposure to the Near-Field
of Radiobase Antennas: A Full-Wave Solution Using Parallel FDTD,” IEEE Trans.
Micr. Theory Techn., Vol. 51, No. 3, 2003, pp. 935–941.

Chappel, D., “Examining .NET My Services,” Byte, Spring 2002.

Chew, K.C., and V. Fusco, “A Parallel Implementation of the FDTD Algorithm,”
Int. Journ. Num. Modelling, Vol. 8, 1995, pp. 293–299.

Collin, R., Antennas and Radiowave Propagation, Singapore: McGraw-Hill Int.
Ed., 1985.

Collin, R., Field Theory of Guided Waves, New York: IEEE Press, 1991.

Collmann, R. R., “Evaluation of Methods for Determining the Mobile Traffic Dis-
tribution in Cellular Radio Networks,” IEEE Transactions on Vehicular Technol-
ogy, Vol. 50, No. 6, November 2001, pp. 1629–1635.

Conciauro, G., M. Guglielmi, and R. Sorrentino, Advanced Modal Analysis,
London: Wiley, 1999.

Decusatis, C., “Grid Computing: The Next (Really, Really) Big Thing,” Byte, Spring
2002.

Dobrowolski, J. A., Introduction to Computational Methods for Microwave Circuit
Analysis, Norwood, MA: Artech House, 1991.

Dongarra, J., et al., “Integrated PVM Framework Supports Heterogeneous Net-
work Computing,” Computers in Physics, April 1993.

Duncan, R., “A Survey of Parallel Computer Architectures,” IEEE Computer, Vol.
23, No. 2, February 1990.

Enquist, B., and A. Majda, “ABC for the Numerical Simulation of Waves,” Math.
Of Computation, Vol. 31, 1977, pp. 629–651.

Foster, I., and C. Kesselman (Eds.), The Grid: Blueprint for a New Computer Infra-
structure, San Francisco, CA: Morgan Kaufmann, 1999.

Foster, I., C. Kesselman, and S. Tuecke, “The Anatomy of the Grid: Enabling Scal-
able Virtual Organizations,” Int. Journal of High Performance Computing Applica-
tions, Vol. 15, No. 3, 2001.

Foster, I., et al., “Grid Services for Distributed System Integration,” IEEE Com-
puter, June 2002.

Gedney, S. D., “FDTD Analysis of MW Circuit Devices in High Performance Vec-
tor/Parallel Computers,” IEEE Trans. Microwave Theory Techn., Vol. 43, No. 10,
1995, pp. 2510–2514.

234 Selected Bibliography

Gibson, J., The Communication Handbook, Boca Raton, FL: CRC Press, 1997.

Goldberg, D. E., Genetic Algorithm in Search, Optimization and Machine-
Learning, Reading, MA: Addison Wesley, 1992.

Guiffaut, C., and K. Mahdjoubi, “A Parallel FDTD Algorithm Using the MPI
Library,” IEEE Ant. Prop. Mag., Vol. 43, No. 2, 2001, pp. 94–103.

Hennessy, J., and D. Patterson, Computer Organization & Design, San Francisco:
Morgan Kaufmann Publishers, 1998.

Higdon, R. L., “ABC for Difference Approximations to the Multidimensional Wave
Equation,” Mathematics of Computation, Vol. 47, 1986, pp. 437–459.

Howes, T., and M. Smith, LDAP: Programming Directory-Enabled Applications
with Lightweight Directory Access Protocol, Macmillan Technical Publishing,
1997.

Hurley, S., “Planning Effective Cellular Mobile Radio Networks,” IEEE Transac-
tions on Vehicular Technology, Vol. 51, No. 2, 2002, pp. 243–253.

Jamieson, A. R., and T. E. Rozzi, “Rigorous Analysis of Cross Polarization in
Flange-Mounted Rectangular Waveguide Radiators,” Electron. Lett., Vol. 13,
November 24, 1977, pp. 742–744.

Khoshafian, S., and R. Abnous, Object-Orientation: Concepts, Languages, Data-
bases, User Interfaces, New York: John Wiley & Sons, 1995.

Kitchener, D., K. Raghavan, and C. G. Parini, “Mutual Coupling in a Finite Planar
Array of Rectangular Apertures,” Electronic Letters, Vol. 23, October 21,1987,
pp. 1169–1170.

Kraus, J. D., Antennas, New York: McGraw Hill, 1988.

Kraus, J. D., and R. J. Marefka, Antennas for all Applications, New York: McGraw
Hill, 2002.

Kunz, K. S., and R. J. Luebbers, The FDTD Method for Electromagnetics, Boca
Raton, FL: CRC Press Inc., 1993.

Lewin, L., Advanced Theory of Waveguides, London, UK: Iliffe, 1951.

Lewis, Ted G., and Hesham El-Rewini, Introduction to Parallel Computing, Engle-
wood Cliffs, NJ: Prentice-Hall, Inc., 1992.

Mailloux, R. J., “Radiation and Near Field Coupling Between Two Collinear Open
Ended Waveguides,” IEEE Trans. Antennas Propagat., Vol. AP-17, January 1969,
pp. 49–55.

Mailloux, R. J., “First Order Solution for Mutual Coupling Between Waveguides
Which Propagate Two Orthogonal Modes,” IEEE Trans. Antennas Propagat., Vol.
AP-17, November 1969, pp. 740–746.

Menezes, A., P. van Oorschot, and S. Vanstone, Handbook of Applied Cryptogra-
phy, Boca Raton, FL: CRC Press, 1996.

Selected Bibliography 235

Mongiardo, M., and R. Ravanelli, “Automated Design of Corrugated Feeds by the
Adjoint Network Method,” IEEE Trans. Microwave Theory Tech., Vol. 45, May
1997, pp. 787–793.

Mongiardo, M., and T. Rozzi, “Singular Integral Equation Analysis of Flange-
Mounted Rectangular Waveguide Radiators,” IEEE Trans. on Ant. and Prop., Vol.
41, May 1993, pp. 556–565.

Mongiardo, M., L. Tarricone, and C. Tomassoni, “A Comparison of Numerical
Methods for the Full-Wave Analysis of Flange Mounted Rectangular Apertures,”
Int. Journal Numerical Modelling, Vol. 13, No. 1, 2000, pp. 21–35.

Mur, G., “ABC for the FD Approximation of the Time-Domain EM Field Equa-
tions,” IEEE Trans. EM Comp., Vol. 23, No. 4, 1981, pp. 377–382.

Nicol, J. R., C. Thomas Wilkes, and F. A. Manola, “Object Orientation in Heteroge-
neous Distributed Systems,” IEEE Computer, June 1993.

Pacheco, P. S., Parallel Programming with MPI, San Francisco, CA: Morgan Kauf-
man, 1997.

Paton, N., et al., “Database Access and Integration Services on the Grid,” UK
e-Science Programme Technical Report Series Number UKeS-2002-03, National
e-Science Centre, www.cs.man.ac.uk/grid-db/papers/dbtf.pdf.

Petri, C. A., Kommunikation mit Automaten, Ph.D. Thesis, University of Bonn, Ger-
many, 1962.

Reeves, C. R. (Ed.), Modern Heuristic Techniques for Combinatorial Problems,
Blackwell Scientific Press, 1992.

Saunders, S. R., Antennas and Propagation for Wireless Communication Systems,
London: John Wiley & Sons, 1999.

Siziak, K., Radiowave Propagation and Antennas for Personal Communications,
Norwood, MA: Artech House, 1998.

Schendel, U. “Introduction to Numerical Methods for Parallel Computers,” Chich-
ester, UK: Ellis Horwood Lim. Publishers, 1984.

Siniaris, C. G., et al., “Implementing Distributed FDTD Codes with Java Mobile
Agents,” IEEE Antennas and Propagation Magazine,Vol. 44, No. 6, December
2002, pp. 115–119.

Stalling, W., Wireless Communications and Networks, Englewood Cliffs, NJ: Pren-
tice Hall, 2002.

Stutzman, W. L., and G. A. Thiele, Antenna Theory and Design, New York: John
Wiley & Sons, 1981.

Taflove, A., Computational Electrodynamics: The Finite-Difference Time-Domain
Method, Norwood, MA: Artech House, 1995.

236 Selected Bibliography

Yee, K. S., “Numerical Solution of Initial Boundary Value Problems Involving Max-
well’s Equation in Isotropic Media,” IEEE Trans. Antennas and Prop., AP-14, May
1966, pp. 302–307.

Selected Bibliography 237

.

About the Authors

Luciano Tarricone is an associate professor of electromagnetic fields at the Univer-
sity of Lecce, Italy. He received his laurea degree (with honors) from the University
of Rome, La Sapienza, Italy, and his Ph.D. from the same university, both in elec-
tronic engineering. He was a researcher at the Italian National Institute of Health in
1990 and at the IBM European Center for Scientific and Engineering Computing
between 1990 and 1994. Between 1994 and 2001, he was at the University of Peru-
gia, Italy. Since 2001, he has been with the University of Lecce.

His main research areas are supercomputing for electromagnetics, environ-
mental electromagnetic compatibility, and CAD of microwave circuits and antennas.
He authored about 160 papers in international conferences and journals and edited
three volumes in the area of high-performance computing for electromagnetics.

Alessandra Esposito is a freelance consultant in the area of computer science and
information technologies, with a focus on networking, Web applications, and grid
applications for research in universities and small, medium, and large companies.

She received her laurea degree (with honors) in electronic engineering from the
University of Naples. Between 1990 and 1994, she was with IBM Scientific Center
in Rome, Italy. In 1994 and 1995 she was a system engineer for Sodalia, Trento,
Italy, involved in research and development in the area of distributed systems. Since
1995, she has cooperated with several research institutions, universities, and
business companies, in the framework of educational, research, and industrial
projects. She authored approximately 40 papers in international conferences and
journals.

239

.

Index

A
Abstract device interface (ADI), 50
Absorbing boundary conditions (ABC),

93–94, 98, 100–101, 103–104,
106–107

Adaptive mesh refinement, 7, 52
Admittance matrix, 124, 127, 128
Amdahl’s law, 11
Antenna

adaptive, 160, 161, 163
aperture, 121, 123, 128, 129, 150, 153, 211
array of, 121–123, 125, 128–130, 132, 133,

135–136, 138, 142–146, 151, 153,
158–161, 183

backlobe, 159
base station (BS), 153–173, 180
power level, 153–155, 160, 161, 166, 168,

170–172
radiation pattern, 129, 134–136, 142, 157,

158, 160, 162, 163
radiobase (RBA), 95, 98
tilting, 153, 157, 159–160, 162, 163, 166,

167, 172
APE platform, 97
Application programming interface (API),

17–18, 30, 38–39, 41, 46–49, 52, 58,
62, 80, 82–84, 88, 97–98, 109–110,
116, 174, 180

Architecture
client-server, 12, 13
three-tier, 13
two-tier, 12

Arithmetic and logic unit (ALU), 2–3
Array factor, 159, 160
Array

linear, 160
phased, 160, 161
planar, 158, 160

Asymmetric key encryption, 201
Asynchronous, 4, 8, 195–196
Atomic subtask (AS), 136–139, 141, 142, 144

Authentication, 20, 30, 32–33, 35–37, 47, 60,
65–66, 75, 85, 87, 200

Authorization, 20, 32–34, 37, 64–65, 87
Automation, 184–185

B
Back-end, 13–14, 27
Background, 81, 194–196
Bandwidth, 4, 11, 19, 40–41, 46–47, 89, 97,

111–114, 117, 138, 161, 183–184
Barrier, 50, 99–101, 104
Beowulf cluster, 50, 112
Berenger’s ABC, 94
Bessel’s function, 128
Bisection assignment policy, 140
Blocking message, 99
Blocking of a call, 157
Broadcast, 50
Brokering node, 169–173, 176, 178, 180
Browser, 12–14, 17, 27–28, 46, 52, 148

C
Cache, 40–41, 83
Cactus Code, 52
Capacity, 47, 154–155, 157, 161
Cellular system, 153–155, 158, 161

capacity, 154, 155, 157, 161
coverage, 154, 160, 162, 163, 166, 169
power control, 160–162
quality of service, 153, 157
switching station, 154
traffic management, 154

Certificate 34-37, 64–71, 74–75, 80, 200,
203–204

Certification authority (CA), 34–37, 60, 64,
66–71, 203–204

Characteristic admittance, 124
Cipher text, 200–203
Circuit theory, 132–134
Closed-cycle control, 160

241

Cluster
of computers, 4, 14–15, 18, 50, 112
of cells, 156–157

Clustering, 156
Coallocator, 38, 48, 51
Cochannel interference, 160–162
Code division multiple access (CDMA),

161–162
Collaborative engineering, 20–21

see also cooperative engineering
Collective operation, 49
Commodity Grid (CoG), 49
Commodity technologies – see enabling

technologies
Common Gateway Interface (CGI), 12
Common Object Request Broker Architecture

(CORBA), 26–27, 49, 52
Communication

diameter, 5, 6
context, 50, 103

Computational economy, 19, 51, 148
Computer aided design (CAD), 29, 130
Computer-aided engineering (CAE), 121–123,

125, 128–130, 132, 135–136, 142,
144–148, 150–153, 183

Concurrency, 8, 110, 136, 142
Concurrent composition, 142
Condor, 11, 16, 18, 38–40, 51, 53
Condor-G, 53
Confidentiality, 20, 30, 37, 60, 200–201
Connection matrix, 133, 134
Constitutive equations, 208
Consumer test point (CTP), 172–174, 180
Control processing Unit (CPU), 1–3, 8, 18–19,

21, 39–40, 44–46, 51, 53, 60, 78, 89,
92, 95, 136, 144, 146, 149

Control unit (CU), 2–3
Cooperative engineering, 117, 121–122, 136,

145, 150–151, 153, 180, 183
see also collaborative engineering

COST 231 project, 165
Cost function, 166
Coupling matrix, 129, 131, 136, 143
Courant condition, 92, 104
Cryptography, 199-200

public-key, 34, 60
Curl equation, 89–90

D
DAGman, 53
Daemon, 61, 72–73, 193–194
Data

exploration, 20–21
management, 20, 30, 48, 78, 153, 173

Database Management System (DBMS), 46,
164, 167–168, 171, 185

Data management (DM), 30, 46, 59, 63, 73,
80, 146

Decryption, 37, 200–201, 203
Delegation, 32, 35
Dielectric sphere, 115
Digital signature, 35, 200, 202–203
Directory information tree (DIT), 43
Directory service, 42–43, 59
Discovery, 19, 26, 30
Discretization

spatial, 91, 97
temporal, 92

Dispersion
equation, 92, 208
error, 92
numerical, 90, 92–93

Distinguished name (DN), 32–34, 43–44,
64–65, 68–70

Distributed
memory architecture, 4–5, 7, 11
programming, 7

Distributed Component Object Model
(DCOM), 26

Distributed Computing Environment (DCE),
26

Distributed Parallel Storage System (DPSS),
20, 46

Domain
decomposition, 108, 139, 144
partitioning, 99–100, 111, 139-140

Domain name system, (DNS), 59, 67
Downlink connection, 160–161
Dynamically Updated Request Online

Coallocator (DUROC), 48

E
Efficiency, 10–11, 97–98, 111–112, 143
Encapsulation, 25–26, 29–30
Encapsulation module (ENC), 165, 168,

170–172, 178
Encryption, 36–37, 200–201
Enquist and Majda theory, 94
Environment variable, 10, 61–62, 87, 111,

141, 196–198
Exec, 193
Expanding function, 125, 127, 131
Extended Access Control List (EACL), 70

242 Index

EXtended InterNET services daemon
(xinetd), 72–74, 194

F
Far-field approximation, 135, 212
Fault tolerance, 16
Feeder, 129
File system, 19, 44, 46, 58, 81, 87, 188–189,

191, 194–195
File transfer protocol (ftp), 19, 30, 46, 59, 62,

78, 80, 145, 173
First tier interference, 156
Finite difference time domain (FDTD),

differential approach, 91
excitations in, 93
integral approach, 91
mesh , 92, 209
parallel, 96, 98, 113, 116–117, 144, 183

Flynn’s taxonomy, 3
Fork, 39, 58, 149, 193
Fourier transformation, 125–127, 135, 211
Frii’s formula, 165
Frequency reassignment, 157
Frequency reuse, 154–157
Frontend tier, 13
Fully qualified domain name (FQDN), 57,

60–61, 77, 84, 87, 109, 175–176, 178

G
Gatekeeper , 38–39, 58–59, 64–67, 71–72,

149–150
Gegenbauer polynomial, 125, 127–128
Genetic algorithm, 144, 166
Geographical Information System (GIS), 164,

167–168, 171–172
Global System for Mobile Communications

(GSM), 95, 98–99, 154–155
Globus Access to Secondary Storage (GASS),

40–41, 59, 80–85, 174–175, 177, 180
functions:
globus_gass_fclose, 83–84, 174, 178
globus_gass_fopen, 83–84, 174, 178
globus_module_activate, 83–84, 174, 178
globus_module_deactivate, 83–84, 174, 178

Globus Packaging Toolkit (GPT), 60–62
Globus Resource Allocation Manager

(GRAM), 38–39, 41, 48–49, 58–59,
64, 72

Globus Security Infrastructure (GSI), 30–33,
35–39, 47–48, 60, 63

Globus Toolkit (GT)

commands
globus-gass-server, 81, 82, 84–85, 175
globus-job-run, 75–77
globusrun, 77–79, 147–148
globus-url-copy, 80–82, 147–148
grid-info-search, 79
grid-proxy-destroy, 75
grid-proxy-init, 75, 81, 85
flavor, 63, 85, 110

Google, 52
Green’s function, 123, 124, 126, 127, 210,

211
Grid

architecture, 17,19
services, 184

Grid architecture for computational economy
(GRACE), 19, 51

Grid database access and management
(GDAM), 184–185

GridFTP, 42–43, 59
Grid index information system (GIIS),

42–43, 59
Grid middleware (GM), 17–20, 23–24, 27,

30, 52
Grid Resource Information Service (GRIS),

42–43, 45, 48, 59, 78–79

H
Half-wave dipole, 115, 116, 158, 160
Handover, 158
Handshaking, 158
Helmholtz equation, 94, 208–210
High-performance computing (HPC), 1, 4,

14–15, 20–21, 51, 89, 117, 121–122,
144–145, 151, 166, 170, 180,
183–184

High throughput Ccomputing (HTC),
20–21, 53

Home directory, 67, 71, 194, 197–198
Horn, 129–130, 132–134, 136, 137, 142, 143
Host-node model, 9
Hub, 154–155
Human-antenna interaction, 89, 121, 153, 183
Hypertext mark-up language (HTML), 11–14
Hypertext transfer protocol (HTTP), 12–13,

19, 62, 81
Hypertext transfer protocol over SSL (HTTPS),

81, 84

I
Information management (IM), 18, 72, 78

see also information services

Index 243

Information services (IS), 30, 42, 59, 63,
146, 148

see also information management
Information model, 42–43, 45
Inheritance, 25
Integration

path, 126
point, 131, 132, 139

Integrity, 7, 30, 37, 47, 60, 200
Interface definition language (IDL), 27

J
Java

Language, 12-13, 22, 26–28, 49, 52, 116
Virtual machine, 27–28, 116
Servlet, 27

JavaBeans, 13, 26
Jini, 26–28
Java mobile agents (JMA), 13, 26–29, 116
Job

manager, 38–41, 58
scheduling, 11

K
Kerberos, 18, 20, 47

L
Latency, 10, 47
Layer

fabric, 17–18, 23
middleware, 17–18, 23
application, 17–18, 23

Leap-frog scheme, 91
Legion, 30
Level, see layer
Lewin-transformation, 125–128
Lightweight directory access protocol (LDAP),

43–44, 46, 59, 80
Linux

account, 34, 64–67, 74, 194, 198
Linux commands

adduser, 194
cd, 62, 71, 86, 177, 189, 191
chmod, 68, 71, 192
cp, 68, 69, 71, 86, 177, 190
gunzip, 62, 86, 109, 190–191
gzip, 177, 190, 197
ln, 69, 190
make, 86, 177
mkdir, 86, 176, 189
mv, 69, 190

rm, 190, 195
rmdir, 189
tar, 62, 86, 109, 177, 191, 197

Linux
kernel, 187–188, 192, 194
shell, 61, 64, 74, 170, 173, 178, 179, 188,

194-198
Load balancing, 11, 19, 87, 99, 109–110, 117,

123, 139, 141, 144, 146
Loading Sharing Facility (LSF), 11, 18, 38–39,

51
Loadleveler, 21
Local area network (LAN), 5, 14–16, 60, 113,

115
Ludwig third definition, 135, 142

M
Main block (MB), 136–138, 141, 143–144
Man-in-the-middle attack, 34, 203–204
Massively parallel processor (MPP), 4–5, 14,

50, 112–113
Master-worker, 9
Maxwell equations, 24, 89–91, 93, 95,

207–208
Meta-application, 20–21, 183–184
Metacomputer, 23, 30
Metacomputing directory service (MDS),

42–46, 59, 72–73
Message passing, 4, 7–8, 10, 49–50, 85, 88,

98, 111–113, 116, 141
Metallic flange, 122–123, 134, 142,
Method of moments (MOM), 121, 136
Middle tier, 13–14
Mobile Agent, 26, 116
Message-passing interface (MPI), 8–91, 49–50,

85, 89, 98–103, 108–116, 141
Message-passing interface (MPI) functions:
MPI_Barrier, 99–100
MPI_Comm_rank , 99, 103
MPI_Comm_size, 103–104
MPI_Init, 103
MPI_Recv, 105, 108
MPI_Send, 105, 108
Mode

dominant, 123
higher order, 123

TE, 123, 124, 129, 135, 209, 210
TM, 123, 124, 129, 135, 209, 210
Mode-matching (MM), 129, 136
MPICH, 9, 38, 50, 85–87, 109–115, 123,

141–142, 144–145
MPICH-G2, 9, 50, 85, 89, 109–115, 117

244 Index

Multilevel parallelism, 138, 139, 142, 144
Multiprocessor, 7–10, 15, 89, 110, 111
Multiple instruction multiple data (MIMD),

3–4, 96, 98, 108, 117, 123, 142, 144
Multithreading, 112
Multithreaded application, 8
Multitier, 13
Mur’s ABC, 94, 98, 100–101, 103, 106–107
Mutual authentication, 32–33, 35–37, 60,

65–66
Mutual coupling, 122, 123, 129, 130, 135,

136, 138, 139, 143, 147

N
Near field, 95, 98, 159, 213
Network Time Protocol (NTP), 60, 87,

176–177
Nimrod-G, 51, 148–150

O
Object Management group (OMG), 26–27
Object-oriented (OO), 4, 23–30, 53, 141

abstraction, 25, 30
class, 25
component, 13–14, 25–27
container, 26

Object request broker (ORB), 27
Object Web, 52
Okumura-Hata model (OH), 165
Open-cycle control, 160
OpenLDAP, 59
OpenMP, 9–10
OpenSSL, 59–60, 66, 69–71
Optimization, 47, 121, 122, 134, 136, 144,

153, 157, 158, 163, 164, 166, 170

P
Paging, 158
Parallel

architecture, 3–4, 10, 145
programming, 7

Parallel virtual machine (PVM), 8–9, 49
Path loss, 154
Peer-to-peer, 14
Perfectly matched layer (PML), 94
Petri net, 123, 137–139, 141–142
Phase velocity, 92, 209
Pipe, 195–197
Plane-wave representation, 211
Plain text, 195, 200–203
Plan file, 149–150

PML ABC, 94
See also Berenger’s ABC

Point-to-point communication, 49, 99
Polarization

cross, 123
x, 127
y, 127

Polymorphism, 25, 30
Port

number, 58, 64, 72, 73, 81, 83, 85, 175
physical, 132
serial, 169, 171

Portable Batch System (PBS), 18
Portable Operating Systems for Computing
Environments (POSIX), 110, 187
Private key, 34–37, 67–71, 75, 200-203
Process

parent, 8
group, 49
topology, 50

Profile script, 61, 74, 198
Profiling, 136–139, 141
Propagation constant, 124
Provider test point (PTP), 172–180
Proxy, 36–37, 60, 75
Pthreads, 110, 112
Public-key, 33–37, 60, 67, 201–204

R
Radiopropagation model (RP), 153, 163–166,

169, 171, 172, 178
Rectangular

aperture, 123, 124, 128, 129, 150
waveguide, 122, 123, 135, 143, 209

Recursive bisection, 139
Registration, 19
Relation, 38, 40, 41
Replica, 20, 46, 47
Resource management (RM), 30, 38, 51,

58–59, 63, 72, 75, 85, 109–110, 146
Resource specification language (RSL), 38–42,

59, 77–79, 85, 109, 146–148
Roaming, 161–163
Root account, 61, 66–68, 176, 194

S
San Diego Supercomputer Center (SDSC), 56
Scattering matrix, 128–134, 136–137
Sectorization, 155–157, 159–160
Secure copy (SCP), 80
Secure sockets layer (SSL), 33–36, 60, 66, 81

Index 245

Security, 16, 20, 31-37, 81, 87, 121-123, 135,
151, 169–170, 199–200

Sensor network, 163, 165
SETI@home, 14
Sequential composition, 142
Shared memory

architecture, 4, 7, 50
programming, 8–10

Signal-to-noise ratio, 158, 160, 161
Simple instruction multiple data (SIMD), 3,

96–98, 108, 117, 142
Single program multiple data (SPMD), 9, 98,

141–142, 144
Single sign-on, 32, 35–37, 75
Socket, 145
Software development kit (SDK), 58, 62
Software engineering, 24, 29, 121, 139
Sources in FDTD

current, 93
hard, 93, 106
soft, 93

Speed-up, 10-11, 95–96, 105, 111–112, 116,
141, 143–145, 183

Standard error, 193, 195–196
Standard input, 193, 195–196
Standard output, 193, 195–196
Storage Resource Broker (SRB), 20, 46, 48
Symmetric key algorithm, 200–201
System call, 39, 58, 149, 188–189, 192–193

T
Tabu search, 166
TAO, 97
Transfer Control Protocol/Internet Protocol

(TCP/IP), 57, 60–61, 87
Thread, 8, 40, 58, 63, 110–111, 117
Thread-safe, 111
Three-tier, 13
Topology, 5, 101–102, 107

Cartesian, 101–102, 106–107
logical, 6–7
mesh, 5–7
ring , 5
toroidal, 97

tree, 6–7
virtual process, 50

Test point (TP), 164–165, 168, 171–172
Test point network (TPN), 164–165, 168,

171, 175
Two tier, 12

U
Universal Mobile Telecommunication System

(UMTS), 154
Uniform resource locator (URL), 41, 78, 81,

83
Uplink connection, 160–161

V
Vector potential
electric F, 209
magnetic A, 208
Visual KAP, 10
Von Neumann
approach, 92
model , 2–3

W
Walfisch-Ikegami model (WA), 165,
Wave number, 124
Web

computing, 11–14
architecture, 11–14
projects, 51–52
portal, 52, 184–185

Webflow, 52
Wide area network (WAN), 16, 50, 60
Wi-Fi, 161
Wireless local area network (WLAN), 161
Wireless network planning, 162, 163, 170,

182, 183

Y
Yee’s
algorithm, 89–90
cell, 90–92

246 Index

Recent Titles in the Artech House
Electromagnetic Analysis Series

Tapan K. Sarkar, Series Editor

Advances in Computational Electrodynamics: The Finite-Difference Time-Domain
Method, Allen Taflove, editor

Analysis Methods for Electromagnetic Wave Problems, Volume 2,
Eikichi Yamashita, editor

Analytical Modeling in Applied Electromagnetics, Sergei Tretyakov

Applications of Neural Networks in Electromagnetics, Christos Christodoulou and
Michael Georgiopoulos

CFDTD: Conformal Finite-Difference Time-Domain Maxwell’s Equations Solver,
Software and User’s Guide, Wenhua Yu and Raj Mittra

The CG-FFT Method: Application of Signal Processing Techniques to
Electromagnetics, Manuel F. Cátedra, et al.

Computational Electrodynamics: The Finite-Difference Time-Domain Method,
Second Edition, Allen Taflove and
Susan C. Hagness

Electromagnetic Waves in Chiral and Bi-Isotropic Media, I. V. Lindell, et al.

Engineering Applications of the Modulated Scatterer Technique, Jean-Charles
Bolomey and Fred E. Gardiol

Fast and Efficient Algorithms in Computational Electromagnetics, Weng Cho
Chew, et al., editors

Fresnel Zones in Wireless Links, Zone Plate Lenses and Antennas, Hristo D. Hristov

Grid Computing for Electromagnetics, Luciano Tarricone and Alessandra Esposito

Iterative and Self-Adaptive Finite-Elements in Electromagnetic Modeling,
Magdalena Salazar-Palma, et al.

Quick Finite Elements for Electromagnetic Waves, Giuseppe Pelosi,
Roberto Coccioli, and Stefano Selleri

Understanding Electromagnetic Scattering Using the Moment Method: A Practical
Approach, Randy Bancroft

Wavelet Applications in Engineering Electromagnetics, Tapan K. Sarkar,
Magdalena Salazar-Palma, and Michael C. Wicks

For further information on these and other Artech House titles,

including previously considered out-of-print books now available through our

In-Print-Forever® (IPF®) program, contact:

Artech House Artech House

685 Canton Street 46 Gillingham Street

Norwood, MA 02062 London SW1V 1AH UK

Phone: 781-769-9750 Phone: +44 (0)20 7596-8750

Fax: 781-769-6334 Fax: +44 (0)20 7630 0166

e-mail: artech@artechhouse.com e-mail: artech-uk@artechhouse.com

Find us on the World Wide Web at:
www.artechhouse.com

	Grid Computing For Electromagnetics
	Cover

	Contents
	Acknowledgments
	Introduction
	Grid Computing: What Is It?
	Grid Computing: Who Is Who?
	Grid Computing: An Opportunity for Electromagnetics Research
	How to Read This Book
	A Final Note
	References

	CHAPTER 1 General Concepts on Grids
	1.1 Introduction
	1.2 Parallel and Distributed Architectures
	1.3 Parallel and Distributed Topologies
	1.4 Parallel and Distributed Programming
	1.4.1 Message Passing
	1.4.2 Shared-Memory Programming
	1.4.3 Concluding Remarks: Programming Paradigms and Parallel Architectures

	1.5 Performance Assessment
	1.6 Web Computing
	1.7 Computational Grids
	1.7.1 Introduction
	1.7.2 What Is a Grid?
	1.7.3 Grid Architecture
	1.7.4 Grid Middleware
	1.7.5 Applications

	1.8 Conclusions
	References

	CHAPTER 2 Enabling Technologies and Dedicated Tools
	2.1 Introduction
	2.2 Enabling Technologies: Object Orientation
	2.2.1 Object Orientation for Software Engineering
	2.2.2 Object Orientation for Enabling Technologies
	2.2.3 CORBA
	2.2.4 Java
	2.2.5 Object Orientation and Electromagnetic Simulators
	2.2.6 Conclusions

	2.3 Dedicated Tools: Grid Middleware
	2.4 The Globus Toolkit: An Overview
	2.5 The Globus Toolkit: The Globus Security Infrastructure
	2.5.1 Authorization
	2.5.2 Mutual Authentication
	2.5.3 Single Sign On and Delegation
	2.5.4 Other Services

	2.6 The Globus Toolkit: The Resource Management Pillar
	2.7 The Globus Toolkit: The Information Services Pillar
	2.7.1 MDS Directory Service: Lightweight Directory Access Protocol
	2.7.2 MDS Information Model

	2.8 The Globus Toolkit: The Data Management Pillar
	2.8.1 Distributed Data Access and Management
	2.8.2 Dataset Replicas Services
	2.8.3 Conclusions

	2.9 The Globus Tools API
	2.10 The MPI with Globus
	2.11 Dedicated Tools: Economy-Driven RM in Grids
	2.12 Web-Based Technologies and Projects
	2.13 Grid-Enabled HTC: Condor-G
	References

	CHAPTER 3 Building Up a Grid
	3.1 Introduction
	3.2 Recalling Globus Basic Concepts
	3.3 Setting Up the Environment
	3.3.1 Hardware Requirements
	3.3.2 Software Requirements
	3.3.3 Setting Up the Network
	3.3.4 Before Installing Globus

	3.4 Globus Installation
	3.4.1 Downloading the Package
	3.4.2 Installing the Toolkit

	3.5 Globus Configuration
	3.5.1 Authorization
	3.5.2 Authentication
	3.5.3 Using the Globus CA
	3.5.4 Using a Local CA

	3.6 Services Start Up
	3.6.1 Resource Management
	3.6.2 Information Services
	3.6.3 Data Management

	3.7 Introducing a New User to the Grid
	3.7.1 Client Side
	3.7.2 Server Side

	3.8 Globus-Relevant Commands to Use the Grid
	3.8.1 Authentication
	3.8.2 Resource Management
	3.8.3 Information Services
	3.8.4 Data Management

	3.9 Developing Grid-Enabled Applications
	3.9.1 An Example with Globus API

	3.10 Message Passing in a Grid Framework
	3.11 Summary and Conclusions
	References

	CHAPTER 4 Applications: FDTD with MPI in Grid Environments
	4.1 Introduction
	4.2 The FDTD Approach: Theoretical Background
	4.2.1 Yee's Algorithm
	4.2.2 Stability of the Algorithm
	4.2.3 Numerical Dispersion
	4.2.4 Excitation and Absorbing Boundary Conditions
	4.2.5 CPU Time and Memory Requirements

	4.3 Parallel FDTD
	4.3.1 A Simple and Portable Parallel Algorithm

	4.4 Migration Toward Computational Grids
	4.4.1 Introduction
	4.4.2 Practical Guidelines
	4.4.3 Pthread Libraries and MPICH-G2

	4.5 Numerical Performance
	4.5.1 Performance Evaluation of Parallel Distributed FDTD
	4.5.2 MPICH-G2 Performance Evaluation
	4.5.3 Benchmarking Parallel FDTD on a Grid

	4.6 Remarkable Achievements
	4.7 Conclusions
	Acknowledgments
	References

	CHAPTER 5 CAE of Aperture-Antenna Arrays
	5.1 Introduction
	5.2 Numerical Techniques for the Analysis of Flange-Mounted Rectangular Apertures
	5.2.1 Theoretical Background
	5.2.2 Approaches Based on Waveguide Modes
	5.2.3 Approaches Based on Gegenbauer's Polynomials

	5.3 A Tool for the CAE of Rectangular Aperture Antenna Arrays
	5.3.1 Evaluation of the Horns' Scattering Matrix
	5.3.2 Evaluation of the Aperture Array's Scattering Matrix
	5.3.3 Evaluation of the Scattering Matrix at External Ports
	5.3.4 Evaluation of the Radiation Pattern

	5.4 Parallel CAE of Aperture Arrays
	5.4.1 Preliminary Analysis
	5.4.2 Parallelization
	5.4.3 Results on MIMD Supercomputing Platforms

	5.5 Migration Toward Grid Environments
	5.5.1 Supporting Cooperative Engineering with GC

	5.6 Conclusions
	Acknowledgments
	References

	CHAPTER 6 Wireless Radio Base Station Networks
	6.1 Introduction
	6.2 Foundations of Cellular Systems
	6.2.1 General Considerations
	6.2.2 Frequency Reuse
	6.2.3 Capacity and Traffic
	6.2.4 How a Cellular System Connects Users
	6.2.5 BS Antennas

	6.3 Key Factors for Current and Future Wireless Communications
	6.3.1 Power Control
	6.3.2 Managing with More and More Users
	6.3.3 System Standardization and Interoperability
	6.3.4 Concerns in the Public Opinion

	6.4 Planning Wireless Networks
	6.5 An Integrated System for Optimum Wireless Network Planning
	6.5.1 Overview of the System

	6.6 A Candidate Architecture for an Effective ISNOP
	6.7 GC and Its Role in the ISNOP
	6.8 Wireless Network Planning with GC
	6.8.1 Data Communication with GC in a Simplified ISNOP
	6.8.2 ENC Module Simulation

	6.9 Conclusions
	Acknowledgments
	References

	CHAPTER 7 Conclusions and Future Trends
	7.1 GC: Benefits and Limitations
	7.2 GC Trends
	References

	APPENDIX A Useful UNIX/Linux Hints
	A.1 UNIX/Linux Operating System: An Overview
	A.2 UNIX/Linux: The Architecture
	A.3 The File System
	A.3.1 Introduction
	A.3.2 File System Relevant Commands
	A.3.3 Pathnames
	A.3.4 System Calls for File Management
	A.3.5 Permissions

	A.4 Processes
	A.5 Administration
	A.6 The Shell
	A.6.1 Introduction
	A.6.2 Background Command Execution
	A.6.3 Redirection
	A.6.4 Pipes
	A.6.5 Environment Variables

	References

	APPENDIX B Foundations of Cryptography and Security
	B.1 Introduction
	B.2 Confidentiality and Cryptography
	B.3 Digital Signature
	B.4 Certificates and Certification Authorities
	References

	APPENDIX C Foundations for Electromagnetic Theory
	C.1 Maxwell's Equations in the Time Domain
	C.2 Helmholtz and Dispersion Equations
	C.3 TE and TM Modes
	C.4 Fourier Representation of Green's Functions
	C.5 The Far-Field Approximation
	Reference

	APPENDIX D List of Useful Web Sites
	Glossary
	List of Acronyms
	Selected Bibliography
	About the Authors
	Index
	Team DDU

