
ptg

Understanding SCA 
(Service Component Architecture)

Jim Marino

Michael Rowley

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco

New York • Toronto • Montreal • London • Munich • Paris • Madrid

Cape Town • Sydney • Tokyo • Singapore • Mexico City

From the Library of Robert Ryan



ptg

Many of the designations used by manufacturers and sellers to distinguish their
products are claimed as trademarks. Where those designations appear in this
book, and the publisher was aware of a trademark claim, the designations have
been printed with initial capital letters or in all capitals.

The authors and publisher have taken care in the preparation of this book, 
but make no expressed or implied warranty of any kind and assume no 
responsibility for errors or omissions. No liability is assumed for incidental or
consequential damages in connection with or arising out of the use of the
information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity
for bulk purchases or special sales, which may include electronic versions
and/or custom covers and content particular to your business, training goals,
marketing focus, and branding interests. For more information, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States, please contact:

International Sales
international@pearson.com

Visit us on the Web: informit.com/aw

Library of Congress Cataloging-in-Publication Data:

Marino, Jim, 1969-
Understanding SCA (Service Component Architecture) / Jim Marino, Michael

Rowley.
p. cm.

Includes bibliographical references and index.
ISBN 978-0-321-51508-7 (pbk. : alk. paper)  1.  Application software—

Development. 2.  Web services. 3.  Computer software—Reusability. 4.  System
design.  I. Rowley, Michael. II. Title. 
QA76.76.A65M339 2009
005.3—dc22

2009021249
Copyright © 2010 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is
protected by copyright, and permission must be obtained from the publisher
prior to any prohibited reproduction, storage in a retrieval system, or transmis-
sion in any form or by any means, electronic, mechanical, photocopying,
recording, or likewise. For information regarding permissions, write to:

Pearson Education, Inc.
Rights and Contracts Department
501 Boylston Street, Suite 900
Boston, MA 02116
Fax (617) 671-3447

ISBN-13: 978-0-321-51508-7
ISBN-10: 0-321-51508-0
Text printed in the United States on recycled paper at R.R. Donnelley in
Crawfordsville, Indiana.
First printing July 2009

Editor-in-Chief
Karen Gettman
Executive Editor
Chris Guzikowski
Senior Development Editor
Chris Zahn
Development Editor
Susan Brown Zahn
Managing Editor
Kristy Hart
Project Editor
Jovana San Nicolas-Shirley
Copy Editor
Water Crest Publishing
Indexer
Erika Millen
Proofreaders
Seth Kerney 
Apostrophe Editing Services
Publishing Coordinator
Raina Chrobak
Cover Designer
Sandra Schroeder
Compositor
Gloria Schurick

From the Library of Robert Ryan



ptg

Contents

Preface xix

1 INTRODUCING SCA 1

SCA and Enterprise Architectures 5

The Essentials 8
Services 8
Components 11
Composites 12
The Domain 14

Implementing Components 21
The Component Implementation 22
Properties 22
References 24

Assembling Composites 26
Binding Services and References 27
Composites as a Unit of Deployment 29

Deploying to a Domain 30
The Deployment Process 32

Domain Constraints 34

SCA and Web Services 35

Summary 40

vii

From the Library of Robert Ryan



ptg

viii Contents

2 ASSEMBLING AND DEPLOYING A COMPOSITE 41

The LoanApplication Composite 42

Defining Service Interfaces 44
Using Web Services Description Language (WSDL) 45
Remotable Versus Local Services 49

Creating Component Implementations 51
Injection Styles 54
Defining Properties 58

Assembling the LoanApplication Composite 59

Binding a Web Service Endpoint 62

Packaging the LoanApplication Composite 63

Deploying the LoanApplication Composite 65

Using Fabric3 65
Download Fabric3 LoanApplication Sample 66
Verify the Installation 66
Build and Deploy the Application 66
Invoking the LoanApplication Service 67

Summary 67

3 SERVICE-BASED DEVELOPMENT USING JAVA 69

Service-Based Development 70
Protocol Abstraction and Location Transparency 71

Designing Remotable Services 73

Coarse-Grained Services 77
Using WSDL for Service Contracts 79
Service Contracts and Data Binding 81
Pass-By-Value Parameters 85
@AllowsPassByReference 87

From the Library of Robert Ryan



ptg

Contents ix

Asynchronous Interactions 88
Reliability 91
Exception Handling 91

Callbacks 91
Exception Handling, Non-Blocking Operations, 
and Callbacks 95

Designing Local Services 96

Component Scopes 98
Component Implementation Instances 99
Stateless-Scoped Components 100
Composite-Scoped Components 101
Conversation-Scoped Components 103
Initialization and Destruction Notifications 103
Eager Initialization 104

Testing Components 105

Summary 108

4 CONVERSATIONAL INTERACTIONS USING JAVA 109

Conversational Interactions 109
A Conversation 111
Conversational Services 114

Implementing Conversational Services 115
Conversation-Scoped Implementations 116
Custom State Management 118
Expiring Conversations 120

Conversational Services and Asynchronous 
Interactions 121

Non-Blocking Invocations 121
Callbacks 123
Callbacks to Conversational and Stateless Clients 124

Conversation Propagation 126

Summary 129

From the Library of Robert Ryan



ptg

x Contents

5 COMPOSITION 131

Composition 131

The Composite Implementation Type 134

Service Promotion 137
Service Bindings 141

Reference Promotion 143
Reference Bindings 147

Composite Properties 150
Configuring Composite Properties 153
Multivalued Properties 154
Using Complex Property Types 155
Referencing Complex Property Values 159

Overrides 160
Services and References 160
Properties 163

Inclusion 164

Summary 166

6 POLICY 167

Policy Examples 167

SCA Policy in Brief 168

Intents 169

PropagatesTransaction—An Example of a 
Required Intent 170

policySets 171
How @appliesTo Is Used 172
Finding the Right Policy Set 173

Wire Validity 175

WS-Policy 176

Policies for One-Way Messaging 179

Qualified Intents 181

Profile Intents 182

From the Library of Robert Ryan



ptg

Contents xi

Standard Intents 183
Security Intents 183
Delivery Intents 184

Transaction Intents 184

Miscellaneous Intents 185

Summary 187

7 WIRES 189

Wiring to Multiple Service Providers 189
The <wire> Element 192
Multiplicity and Callbacks 194

Automated Wiring: Autowire 196
Autowire and Composition 200

Wire Reinjection 202

Summary 202

8 BINDINGS 203

Interoperable Communications Outside the Domain: 
The Web Service Binding 204

Using WSDL as the Interface Definition Language 205
Non-Blocking Interactions Using Web Services 210
Callbacks and Conversations with Web Services 211

Accessing Messaging Infrastructure: The JMS Binding 212
One-Way Messaging with JMS 212
Operation Selection 217
Message Data Binding 218
Request-Response Messaging with JMS 219
Performing Callbacks with JMS 223
Using Publish-Subscribe Messaging Patterns 226
Conversational Interactions with JMS 227

Using Bindings for Communicating Within a Domain 227

Bindings Overrides 228

Summary 230

From the Library of Robert Ryan



ptg

xii Contents

9 THE DOMAIN 231

The Role of a Domain 231
Management 232
Artifact Sharing 233
Policy Administration 236
Communications 237

Types of Domains 238
Local Domains 239
Distributed Domains 240
Federated Domains 244

Contributions 245
The Contribution Archive 247
Artifact Sharing 248
Deployment Composites 253
Structuring Contributions 255

The Domain Composite 256
Add to Domain Composite 257
Remove from Domain Composite 265

Deploying Policies 265

Summary 266

10 SERVICE-BASED DEVELOPMENT USING BPEL 267

What Is BPEL? 267
History 267
A Language for Web Services 268
Using BPEL with SCA 270
BPEL Versus Java for Conversational Services 271

Using BPEL for the Loan Service 271

Partner Links Are Services and References 274
Symmetry of Partner Link Types 274
Static Control Flow Analysis with SCA BPEL 275
Partner Link Types as Interfaces 276

From the Library of Robert Ryan



ptg

Contents xiii

SCA Extensions to BPEL 278
SCA Properties 279
Customizing the Generated Services and 
References 280
References with Multiplicity 280

Summary 284

11 PERSISTENCE 285

Using JDBC 289
DataSources and Transaction Policy 290

Using JPA 298
The Basics: Object Lifecycles and the Persistence 
Context 299

Transaction-Scoped Persistence Contexts 301
JPA and Conversational Services 304
Accessing the EntityManagerFactory 308

Summary 309

12 THE PRESENTATION TIER 311

Web Components 311
Configuring a Web Component 313
Packaging and Deploying a Web Component 314
Properties 316

Java Server Pages and the SCA Tag Library 316

Asynchronous Interactions 318

Accessing Conversation Services 320

Defining a Component Type 323

Summary 324

INDEX 325

From the Library of Robert Ryan



ptg

This page intentionally left blank 

From the Library of Robert Ryan



ptg

Acknowledgments

We would like to thank the reviewers of our book who pro-
vided invaluable comments, feedback, and suggestions: 
Dr. Steffen Becker, Dave Hendricksen, Tim Holloway, and
Dave Ennis. We would also like to extend our appreciation to
Raina Chrobak, Susan Zahn, Jovana San Nicolas-Shirley, and
everyone at Addison-Wesley who guided us along the way. 

Service Component Architecture (SCA) was the outgrowth of a
truly collaborative effort. We send a special thanks to the origi-
nal SCA cohorts— Graham Barber, Michael Beisiegel, Dave
Booz, Mike Edwards, and Martin Nally.  

Special acknowledgment goes to two individuals who selflessly
gave their time, assistance, and encouragement throughout the
course of writing this book: David Chappell and Ed Cobb. We
are truly grateful for the extraordinary efforts they made on
numerous occasions.

Jim would like to express his personal thanks to Niccolò, Jim,
Kathy, Michelle, Paolo, Anna, and, in particular, Lia, whose
love and support made this book possible.

xv

From the Library of Robert Ryan



ptg

xvi Acknowledgments

Michael would like to thank Jim for the opportunity to work
with him on this project. Michael would also like to thank to
his wife Elise, for whose unfailing love, support, and encour-
agement he is eternally grateful.

From the Library of Robert Ryan



ptg

About the Authors

Jim Marino, Ph.D., is Principal at Metaform Systems, where he
provides strategic planning, architecture assistance, and train-
ing to clients worldwide. Jim is also one of the architects of the
Fabric3 SCA runtime. Prior to joining Metaform Systems, Jim
was Director of Technology at BEA Systems, where he was in-
volved with the development of Service Component
Architecture from its inception. 

Michael Rowley, Ph.D., is the CTO of Active Endpoints, Inc. He
has been involved in the development of SCA from early in its
development and has contributed to 12 of the 15 SCA specifi-
cations that were published as part of the Open Service-
Oriented Architecture (OSOA) collaboration. He was also an
original member of the Open Component Service Architecture
(OpenCSA) steering committee, which is the OASIS steering
committee that oversees the work of the various SCA technical
committees. Before joining Active Endpoints, he was a Director
of Technology at BEA Systems where, in addition to working on
SCA, he also helped develop the BPELJ extension to BPEL and
was involved in the early development of BEA’s event process-
ing and service bus products. Michael received his Ph.D. in
computer science from UCLA in 1994.

xvii

From the Library of Robert Ryan



ptg

This page intentionally left blank 

From the Library of Robert Ryan



ptg

Preface

What is Service Component Architecture (SCA)? What are the key
SCA concepts? How will SCA impact technology choices my orga-
nization will need to make in the near-term? How should SCA fit
into my enterprise architecture? How can I make the best use of
SCA in my projects?

Answering these questions is fundamental to understanding SCA.
The goal of this book is to help answer those questions by provid-
ing the background necessary to use SCA effectively.

Who Can Benefit from This Book
SCA is a technology for creating, assembling, and managing distrib-
uted applications. However, this book is not intended solely for
developers. Our aim is to benefit “technologists”—developers, but
also architects, analysts, managers, and anyone who has a stake
implementing information systems—by connecting SCA to broader
technology trends.

In this book, we attempt to strike a balance between the “big pic-
ture” and the detailed coverage essential to developers. We also
endeavor to achieve this balance in a way that is engaging, accu-
rate, and complete. 

Both of us have been involved with SCA since its inception, when it
started as an informal working group composed of individuals from
IBM and BEA (where both of us worked). We were directly involved
in shaping SCA as it went through various iterations and changes.

xix

From the Library of Robert Ryan



ptg

xx Preface

Rather than simply provide a tutorial, we have sought to explain the
history and reasoning behind important decisions made during the
development of SCA. 

Lest we be accused of operating in the “ivory tower” of technology
standards, we have also attempted to be informed by practical ex-
perience. We have been key contributors to the open source
Fabric3 SCA runtime. In addition, while at BEA and now in our
current positions, we have had the opportunity to be involved in
the development of several large-scale systems built with SCA. We
have tried to reflect this experience and lessons learned throughout
the book in the form of best practices and implementation advice.

Finally, while we strive for completeness and accuracy, there are
inevitably things a book must leave out. SCA is a vast technology
that spans multiple programming languages. We have chosen to
concentrate on those aspects of SCA that pertain to creating and
assembling applications using Java. Although we touch on BPEL,
our focus remains on Java, as the latter is a cornerstone of modern
enterprise development.

How to Read the Book
Reading a book is like listening to an album (or CD): Both are
highly personal experiences. Some prefer to read thoroughly or
listen from beginning to end. Others like to skip around, focusing
on specific parts.

Understanding SCA is designed to be read in parts but also has a
structure tying the various pieces together. The first chapter,
“Introducing SCA,” provides an overview of SCA and how it fits
into today’s technology landscape. The second chapter,
“Assembling and Deploying a Composite,” continues the overview
theme by walking through how to build an application using SCA. 

Chapter 3, “Service-Based Development Using Java,” and Chapter
4, “Conversational Interactions Using Java,” respectively, turn to
advanced SCA programming model topics. In these chapters, we
detail how to design loosely coupled services and asynchronous
interactions, manage stateful services, and provide best practices
for developing with SCA. 

From the Library of Robert Ryan



ptg

Preface xxi

Having explored the SCA programming model in depth, 
Chapters 5–9 cover the main SCA concepts: composition, policy,
wires, bindings, and the domain. In these chapters, we explain how
to develop modular applications, use transactions, configure cross-
application policies such as security and reliability, integrate with
external systems, deploy applications, and structure corporate ar-
chitectures using SCA.

Chapter 10, “Service-Based Development Using BPEL,” demon-
strates how to use BPEL with SCA to provide applications with
long-running process capabilities.

The final two chapters round out application development with
SCA by focusing on the data and presentation tiers. Chapter 11,
“Persistence,” details how to use Java Persistence API (JPA) with
SCA to read and write data from a database. Chapter 12, “The
Presentation Tier,” demonstrates how to integrate web applications,
in particular servlets and JSPs, with SCA services.

From the Library of Robert Ryan



ptg

This page intentionally left blank 

From the Library of Robert Ryan



ptg

1

Introducing SCA

Service Component Architecture, or SCA, is a technology for creat-
ing services and assembling them into composite applications. SCA
addresses the perennial question of how to build systems from a
series of interconnected parts. In SCA, these parts interact by pro-
viding services that perform a specific function. Services may be
implemented using different technologies and programming lan-
guages. For example, a service can be implemented in Java, C++,
or in a specialized language such as Business Process Execution
Language (BPEL). Services may also be collocated in the same op-
erating system process or distributed across multiple processes
running on different machines. SCA provides a framework for
building these services, describing how they communicate and
tying them together. 

We once heard a witty definition of a technology framework that is
appropriate to bring up in this context: A technology framework is
something everyone wants to write but no one wants to use.
Indeed, the industry is replete with frameworks and programming
models promising to solve problems posed by application develop-
ment in new and innovative ways. In the 1990s, the Distributed
Computing Environment (DCE) was superceded by Common
Object Request Broker Architecture (CORBA) and Distributed
Component Object Model (DCOM). Java Enterprise Edition (Java
EE) and .NET emerged as the two dominant frameworks in the early

1

From the Library of Robert Ryan



ptg

2 Introducing SCA

SCA addresses two
key issues with
existing
approaches: com-
plexity and reuse.

2000s, supplanting the latter two. Open source has also been a
center of innovation, with Spring and Ruby on Rails emerging as
two of the more popular frameworks. 

This raises the question of why SCA? What problems with existing
programming models is SCA trying to solve? The sheer scope of
SCA as a technology and the fact that it is supported by a diverse set
of vendors invariably has led to a degree of confusion in this re-
spect. SCA can be initially daunting to understand. 

SCA addresses two key issues with existing approaches: complexity
and reuse. First, SCA provides a simplified programming model for
building distributed systems. The dominant programming models
today have grown increasingly complex. For example, writing a
Java EE application that exposes web services, performs some pro-
cessing, and interfaces with a messaging system to integrate with
other applications requires knowledge of the JAX-WS, JMS, and EJB
APIs. This complexity has not been limited to Java EE: The .NET
framework has been subject to the same trend. Writing an identical
application using .NET 2.0 requires an understanding of the ASP
.NET Web Services, Enterprise Services, and .NET Messaging APIs.

In contrast, as illustrated in Figure 1.1, SCA provides a unified way
to build applications that communicate using a variety of protocols.

APIs

Protocols

Service Component
Architecture

Web 
Services

Remote
Binary

Other
BindingsMessaging

Applications

Services

Figure 1.1 SCA provides a unified way to build distributed applications.

From the Library of Robert Ryan



ptg

Introducing SCA 3

Perspective: SCA and .NET

In recent years, increasing complexity has not been limited to Java EE: The .NET
framework has been subject to the same trend. Writing an identical application us-
ing .NET 2.0 requires an understanding of ASP .NET Web Services, Enterprise
Services, and .NET Messaging APIs.

Microsoft has spent significant time addressing complexity in the .NET Framework.
Starting with version 3.0, .NET incorporates a programming model that unifies web
services, remote procedure calling, queued messaging, and transactions. SCA intro-
duces a uniform way to perform distributed interactions. In SCA and Windows
Communication Foundation (WCF), application logic is invoked the same way
whether web services, a binary, or a messaging protocol is used (see Figure 1.2).

Figure 1.2 SCA and .NET architectures

Adapted from David Chappell, www.davidchappell.com.

This unified approach simplifies development by eliminating the need for applica-
tion logic to resort to specialized, low-level APIs. 

Windows Communications
Foundation

Web 
Services

Remote
Binary MSMQ DCOM

Applications

Services

APIs

Protocols

Service Component
Architecture

Web 
Services

Remote
Binary

Other
Bindings

Messaging

Applications

Services

The second problem SCA addresses concerns reuse. There are two
basic types of code reuse: within the same process (intra-process
reuse) and across processes (inter-process reuse). Object-oriented
programming languages introduced innovative features, including
interfaces, classes, polymorphism, and inheritance that enabled
applications to be decomposed into smaller units within the same
process. By structuring applications in terms of classes, object-
oriented code could be more easily accessed, reused, and managed
than code written with procedural programming languages. 

From the Library of Robert Ryan

www.davidchappell.com


ptg

4 Introducing SCA

In the 1990s, distributed object technologies such as DCE, DCOM,
CORBA, and EJB attempted to apply these same principles of reuse
to applications spread across multiple processes. After numerous
iterations, the industry learned from distributed object technologies
that the principles of object-oriented design do not cleanly apply
across remote boundaries. Distributed object technologies often
resulted in application architectures that tightly coupled clients to
service providers. This coupling made systems extremely fragile.
Updating applications with a new version of a service provider
frequently resulted in client incompatibilities. Moreover, these tech-
nologies failed to adequately address key differences in remote
communications such as network latency, often leading to poor
system performance.

However, despite the shortcomings of distributed objects, the idea
behind inter-process reuse is still valid: There is far greater value in
code that is organized into reusable units and accessible to multiple
clients running in different processes. As we will explain in more
detail, SCA provides a foundation for application resources and
logic to be shared by multiple clients that builds on the lessons
learned from distributed objects. Similar to the way object-oriented
languages provide mechanisms for organizing and reusing in-
process application logic, SCA provides a way to assemble, man-
age, and control distributed systems. 

In order to achieve reuse, SCA defines services, components, and
composites. In SCA, applications are organized into components
that offer functionality to clients (typically other components)
through services. Services may be reused by multiple clients.
Components in turn may rely on other services. As we will see,
SCA provides a mechanism to connect or “wire” components to
these services. This is done through a composite, which is an XML
file. Figure 1.3 shows a typical SCA application.

SCA provides a way
to assemble, man-
age, and control
distributed systems.

In SCA, applica-
tions are organized
into components
that offer function-
ality to clients
through services.

Composite

Components

Service

Figure 1.3 An SCA application

From the Library of Robert Ryan



ptg

SCA and Enterprise Architectures 5

SCA and Enterprise Architectures 
Unlike Java EE and .NET, SCA is not intended to be an all-
encompassing technology platform. SCA does not specify mecha-
nisms to persist data or a presentation-tier technology for building
user interfaces. Rather, SCA integrates with other enterprise tech-
nologies such as JDBC and Java Persistence Architecture (JPA) for
storing data in a database and the myriad of web-based UI frame-
works that exist today (servlets and JSP, Struts, JavaServer Faces
[JSFs], and Spring WebFlow, to name a few). Figure 1.4 illustrates a
typical SCA architecture, which includes the use of presentation
and persistence technologies.

SCA does not spec-
ify mechanisms to
persist data or a
presentation-tier
technology for
building user 
interfaces.

SCA Services

Presentation
Tier

Persistence JDBC/JPA, etc.

Composite

Composite
Remote Service

Clients

Figure 1.4 Using persistence and presentation technologies with SCA

In Chapter 10, “Service-Based Development Using BPEL,” and
Chapter 11, “Persistence,” we take a closer look at using SCA
with some of the more popular persistence and presentation 
technologies.

From the Library of Robert Ryan



ptg

6 Introducing SCA

Perspective: A New Way to Standards?

Today, SCA is a set of OASIS standards according to the official processes and pro-
cedures laid out by that organization. Prior to OASIS, from November 2005 to
March 2007, SCA work was done as part of a collaboration of vendors, termed
“Open SOA” or OSOA (www.osoa.org). 

One of the primary reasons for doing this work outside of an official standards orga-
nization was the immaturity of SCA and time-to-market: Standards organizations are
bureaucratic and their processes slow things down. This is not necessarily a bad
thing, particularly for mature technologies on which many businesses must rely for
years. In these cases, stability is an overriding concern.

SCA, in contrast, was a new technology in a rapidly evolving market. Consequently,
the collaboration participants needed the ability to make changes relatively quickly,
changes that would at times break compatibility with previous versions of the speci-
fications. Even a cursory comparison of the 0.9 version of the specifications pub-
lished in November 2005 with the 1.0 version in March 2007 quickly reveals
significant new features and areas that underwent substantial modification. 

In hindsight, this was arguably the correct approach to take. One of the notable as-
pects of this process is that it diverged from the path taken by many previous specifi-
cations, in particular Java EE and CORBA, which were largely designed by official
standards committees. In this respect, SCA shares more in common with how web
services standards began: as informal vendor collaborations prior to being submitted
to an official standards organization.

Given that both web services and SCA efforts have taken the approach of using a
collaboration model prior to standardization, the industry may be witnessing a shift
in how technology specifications are developed. Although there are certainly up-
sides to this approach in terms of faster iteration, there are some potentially negative
consequences. One of those potential negative consequences is the “smoke-filled
room scenario,” where a few vendors conspire to create specifications that do not
take into account “real” user requirements. We will need to wait and see whether
this collaborative approach becomes the modus operandi for new technology de-
velopment and whether it represents an improvement over specifications developed
entirely within a standards body.

From the Library of Robert Ryan

www.osoa.org


ptg

SCA and Enterprise Architectures 7

The remainder of this chapter provides an overview of SCA, cover-
ing its key concepts. However, rather than stopping at the custom-
ary technical introduction, we attempt to shed light on the things
not easily gleaned from reading the SCA specifications themselves.
In particular, we consider how SCA relates to other technologies,
including web services and Java EE. We also highlight the design
principles and assumptions behind SCA, with particular attention to
how they affect enterprise architecture. 

As with any technology, SCA has benefits and trade-offs. It is an
appropriate technology in many scenarios but it certainly is not in
all cases. Our intention in this chapter, and ultimately with this
book, is to equip readers with the understanding necessary to make
intelligent choices about when and how to use SCA. 

Perspective: The History of SCA

An outgrowth of vendor collaboration, it is probably more accurate to say SCA has a
number of “histories” as opposed to just one. Prior to OASIS and OSOA, the various
specification participants worked on precursors to SCA, either as internal projects or
in informal cross-company working groups. BEA and IBM, for example, worked to-
gether for over a year on component model technologies, even jointly developing
code. Some of those technologies, including assembly, would later evolve into core
SCA concepts. 

What caused these various efforts among the different vendors to coalesce into SCA?
There are undoubtedly a number of reasons why this happened, but one common to
all the vendors was that each recognized that the Microsoft model of product devel-
opment was not viable in its market segment. Unlike Microsoft, which is big 
enough to unilaterally define its own future, none of the original “Big Four” SCA
participants—BEA, IBM, Oracle, and SAP—had enough market presence to dictate
future technology direction alone. Industry consensus was crucial to achieving indi-
vidual vendor goals.

In BEA’s case, where both of us were employed, this lesson was learned over time.
Prior to SCA, BEA developed a proprietary programming model called Workshop
aimed at simplifying Java EE. Workshop adopted the Microsoft tactic of eschewing
standards in favor of gaining adoption through the introduction of innovative fea-
tures users wanted. This was perhaps not surprising given that the people behind
Workshop came from Microsoft. 

From the Library of Robert Ryan



ptg

8 Introducing SCA

The Essentials
SCA is built on four key concepts: services, components, compos-
ites, and the domain. Understanding the role each plays is funda-
mental to understanding SCA. In this section, we provide an
overview of these concepts before proceeding to a more detailed
look at how applications are built using SCA.

Services
In SCA, applications are organized into a set of services that per-
form particular tasks such as accepting a loan application, perform-
ing a credit check, or executing an inventory lookup. The term
service has been used in the industry to denote a variety of things.
In SCA, a service has two primary attributes: a contract and an
address.

Service Contract
A service contract specifies the set of operations available to a
client, the requirements for the inputs, and the guarantees for the
outputs. Service contracts can be defined through several mecha-
nisms. In simple cases where a component is implemented using a
Java class, an interface may define the service contract. Listing 1.1
is an example of a service contract with two operations defined by
a Java interface. The only thing specific to SCA is the @Remotable
annotation, which indicates that the service can be made available
to remote clients (more on this later).

SCA is built on four
key concepts: serv-
ices, components,
composites, and the
domain.

A service contract
specifies the set of
operations avail-
able to a client, the
requirements for the
inputs, and the
guarantees for the
outputs.

Ultimately, the Workshop framework failed at its strategy to gain broader accept-
ance through innovation alone. BEA’s case is, however, not unique: The industry is
littered with unsuccessful attempts to push proprietary frameworks and program-
ming models. What happened with SCA was that the various independent initiatives
converged as vendors understood the importance of collaboration and consensus.

From the Library of Robert Ryan



ptg

The Essentials 9

Listing 1.1 A Java-Based Service Contract

@Remotable

public interface Calculator {

float add(float operand1, float operand2);

float subtract(float operand1, float operand2);

float multiply(float operand1, float operand2);

float divide(float operand1, float operand2);
}

Listing 1.2 A WSDL-Based Service Contract

<wsdl:definitions xmlns:clc="urn:com:bigbank:util:calculator" 
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns:xs=http://www.w3.org/2001/XMLSchema
targetNamespace="urn:com:bigbank:util:calculator">

<wsdl:types>
<xs:schema targetNamespace="urn:com:bigbank:util:calculator">

<xs:element name="operands">
<xs:complexType>

<xs:sequence>
<xs:element name="arg1" type="xs:float"/>
<xs:element name="arg2" type="xs:float"/>

</xs:sequence>
</xs:complexType>

</xs:element>
<xs:element name="answer" type="xs:float"/>

</wsdl:types>

In more complex cases, service contracts may be declared upfront
before code is written using a specialized interface description
language, such as WSDL or IDL. This “top-down” or “contract-first”
development provides a way for organizations to maintain tighter
control over the interfaces services provide to clients. 

The most common language for top-down development in SCA is
the XML-based Web Services Description Language (WSDL). As its
name indicates, WSDL is most commonly used to define web
service contracts. SCA also makes use of WSDL to specify service
contracts. Listing 1.2 presents the WSDL equivalent of the
Calculator service contract.

From the Library of Robert Ryan



ptg

Service addresses
are fundamental to
reuse: They provide
a way for clients to
uniquely identify
and connect to
application logic.

10 Introducing SCA

In top-down development, after the service contract is defined,
tooling is typically used to generate actual code artifacts. For
example, tooling will use the Calculator WSDL as input to generate
the previous Java interface shown in Listing 1.1. 

Service Address
Having seen that service contracts may be defined using Java inter-
faces, it may be tempting to think of services as simply analogous to
interfaces in object-oriented programming. This is true to the extent
that services define the set of operations available to a client for a
particular component. However, services also have addresses,
which distinguishes them from interfaces. Clients obtain a reference
to a particular service through a service address. Service addresses
operate much like network addresses, uniquely identifying a partic-
ular machine on a network. Later in the chapter, we cover the me-
chanics of specifying service addresses and how applications use
them. The important concept to bear in mind is that service ad-
dresses are fundamental to reuse: They provide a way for clients to
uniquely identify and connect to application logic, whether it is 

Listing 1.2 continued

<wsdl:message name="calculatorRequest">
<wsdl:part element="clc:operands" name="operands"/>

</wsdl:message>
<wsdl:message name="calculatorResponse">

<wsdl:part element="clc:answer" name="answer"/>
</wsdl:message>

<wsdl:portType name="Calculator">
<wsdl:operation name="add">

<wsdl:input message="clc:calculatorRequest"/>
<wsdl:output message="clc:calculatorResponse"/>

</wsdl:operation>
<wsdl:operation name="multiply">

<wsdl:input message="clc:calculatorRequest"/>
<wsdl:output message="clc:calculatorResponse"/>

</wsdl:operation>
<wsdl:operation name="subtract">

<wsdl:input message="clc:calculatorRequest"/>
<wsdl:output message="clc:calculatorResponse"/>

</wsdl:operation>
<wsdl:operation name="divide">

<wsdl:input message="clc:calculatorRequest"/>
<wsdl:output message="clc:calculatorResponse"/>

</wsdl:operation>
</wsdl:portType>

</wsdl:definitions>

From the Library of Robert Ryan



ptg

The Essentials 11

co-located in the same process or hosted on a machine at some
remote location.

Components
In SCA, a component is configured code that provides one or more
services. A client connects to a service via an address and invokes
operations on it. This concept is illustrated in Figure 1.5.

In SCA, a compo-
nent is configured
code that provides
one or more 
services.

Clients call
service
operations.

Service

Component

Figure 1.5 Components have one or more services.

Components may be written in a variety of programming languages,
including Java and C++, and special purpose languages such as the
BPEL.

Creating a component involves two things: writing an implementa-
tion and configuring it. Components written in Java are simple
classes. In other words, they do not have any special requirements
placed on them. Listing 1.3 demonstrates a simple calculator 
component.

Listing 1.3 A Java Component Implementation

public class CalculatorComponent implements Calculator {

public float add(float operand1, float operand2) {
return operand1+operand2;

}

public float subtract(float operand1, float operand2) {
return operand1-operand2;

}

public float multiply(float operand1, float operand2) {
return operand1*operand2;

}

public float divide(float operand1, float operand2) {
return operand1/operand2;

}
}

From the Library of Robert Ryan



ptg

A composite may
be used to config-
ure more than one
component.

12 Introducing SCA

When the preceding calculator component is deployed, it provides
a single service defined by the Calculator interface. Clients con-
nect to the Calculator service and invoke one or more of its oper-
ations.

Composites
The second step in creating a component is to configure it.
Components are configured using an XML configuration file called
a composite. This file can be created by hand or using graphical
tooling. The XML vocabulary used to create composites is Service
Component Definition Language (SCDL, pronounced “SKID-EL”).
Listing 1.3 shows a composite that configures the calculator com-
ponent using the implementation listed in Listing 1.4.

Components are
configured using an
XML configuration
file called a 
composite.

Listing 1.4 A Composite

<composite xmlns=http://www.osoa.org/xmlns/sca/1.0

name="CalculatorComposite">

<component name="Calculator">
<implementation.java class="com.bigbank.CalculatorComponent"/>

</component>
</composite>

In Listing 1.4, the <component> element is used to define the cal-
culator component. The <implementation.java> element identi-
fies the component as being written in Java and the implementation
class. The other important item to note is that both components and
composites are assigned names, which are used to identify them.
This makes it possible to have multiple components use the same
component implementation—in this case, CalculatorComponent.

All but the most trivial applications will be composed of multiple
components. A composite may be used to configure more than one
component. Typically, it will make sense to configure related com-
ponents together in a single composite (therefore the name compos-
ite, because it is used to “compose” components). Listing 1.5 lists a
composite that configures two components: one that processes loan
applications and another that performs credit scoring.

From the Library of Robert Ryan



ptg

The Essentials 13

Listing 1.5 A Composite That Configures Multiple Components

<composite xmlns=http://www.osoa.org/xmlns/sca/1.0

name="LoanComposite">

<component name ="LoanComponent">
<implementation.java class="com.bigbank.LoanComponent"/>

<component>

<component name =" CreditComponent">
<implementation.java class="com.bigbank.CreditComponent"/>

<component>
</composite>

As we will do frequently throughout the book, the preceding com-
posite can be represented visually, as shown in Figure 1.6.

Figure 1.6 A graphical representation of a composite

In the previous example, both LoanComponent and
CreditComponent were implemented in Java. It is also possible to
configure components written in different languages in the same
composite. For example, if the loan application process required
workflow, it may be more convenient to implement
LoanComponent using BPEL. In this case, the basic structure of the
composite remains the same, as shown in Listing 1.6.

Composite

Loan
Component

Credit
Component

Listing 1.6 A Composite with Components Implemented in BPEL and Java

<composite xmlns="http://www.osoa.org/xmlns/sca/1.0"

xmlns:bb="bigbank.com/xmlns/loanApplication/1.0"

name="LoanComposite">

<component name ="LoanComponent">

From the Library of Robert Ryan



ptg

Figure 1.7 SCA middleware: the domain, runtimes, and containers 

Figure 1.7 depicts a domain with multiple runtimes. In an enter-
prise environment, domains may span many runtimes across dis-
tributed data centers. But it is also possible for domains to be small.
A domain may consist of a single SCA runtime (sometimes referred
to as a “server”) or may even be confined to an embedded device.

A domain consists
of one or more
cooperating SCA
servers, or SCA
runtimes, that host
components in
containers.

In an enterprise
environment, do-
mains may span
many runtimes
across distributed
data centers.

14 Introducing SCA

In changing to BPEL, the only difference is the use of the 
<implementation.bpel> element in place of
<implementation.java> and pointing to the BPEL process as
opposed to the Java class name. 

The Domain
Composites are deployed into an environment running SCA mid-
dleware termed a domain. A domain consists of one or more coop-
erating SCA servers, or SCA runtimes, that host components in
containers. The relationship between a domain, its runtimes, and
component containers is shown in Figure 1.7.

Domain

SCA Runtime SCA Runtime

Component
Containers

Component
Containers

Listing 1.6 continued

<implementation.bpel process="bb:LoanProcess"/>
<component>

<component name =" CreditComponent">
<implementation.java class="com.bigbank.CreditComponent"/>

<component>
</composite>

From the Library of Robert Ryan



ptg

The Essentials 15

When a composite is deployed to a domain with more than one
runtime, its components may be hosted on different runtimes. For
example, when the previous loan application composite is
deployed, LoanComponent and CreditComponent may be hosted
in processes on different runtimes (see Figure 1.8).

The process of deploying a composite to one runtime or many is
vendor-specific. Some SCA runtimes may require additional config-
uration information identifying target machines. Other runtimes
may employ sophisticated provisioning algorithms that take into
account factors such as machine load. 

Composite

Deployment

Domain
Domain

Machine 2

Machine 1

Figure 1.8 A deployed composite

Although the capabilities offered by a domain will vary greatly by
SCA vendor (or open source implementation), all domains have
several common characteristics. Namely, domains provide man-
agement capabilities, policy framework, resource-sharing facilities,
and communications infrastructure. 

Management
Domains provide common management facilities for composites
deployed to them. A domain, for example, is responsible for acti-
vating and deactivating components on runtimes as composites are
deployed and removed. More sophisticated domain infrastructure
may provide additional management features, such as access con-
trol, monitoring, and troubleshooting.

Domains provide
management capa-
bilities, policy
framework,
resource-sharing
facilities, and 
communications
infrastructure.

From the Library of Robert Ryan



ptgA domain provides
facilities for the
global configura-
tion of policies,
which can then be
applied to individ-
ual components,
particular connec-
tions between
components, or
composites.

The domain serves
as a repository for
application artifacts.

16 Introducing SCA

Policy
In enterprise systems, basic management needs are often
augmented by the requirement to enforce various constraints on
how code is executed. In SCA, constraints on the way code is exe-
cuted may take a variety forms, such as security (“use encryption
for remote invocations”), reliability (“provide guaranteed delivery of
messages to a particular service”), or transactionality (“invoke this
service in a transaction”). SCA domains contain rules that map
these abstract constraints to concrete runtime behaviors. 

These rules are termed policy. Traditional distributed system tech-
nologies typically leave the task of configuring policy to individual
components or the application. In Java EE, for example, there is no
standard way to specify constraints or expectations across systems,
such as the type of security that must be enforced on services ex-
posed outside a corporate firewall. Web services define a way to
specify policy to external clients but require that each service be
configured individually. 

In contrast, a domain provides facilities for the global configuration
of policies, which can then be applied to individual components,
particular connections between components, or composites. In
addition to fostering consistency across applications, global policy
configuration simplifies component development. Policies are gen-
erally defined using complex specification languages such as WS-
SecurityPolicy and WS-Reliability. Global policy configuration
means this complex configuration can be done once by special-
ists—policy administrators—and reused across applications. 

Resource and Artifact Sharing
Without a mechanism for sharing resources and artifacts, any rea-
sonably sized distributed system would be unmanageable. A com-
mon type of shared resource in distributed systems is a service
contract. As we saw earlier, service contracts can be defined using
WSDLs or derived from language-specific means such as Java inter-
faces. In the case where one component is a client of another (the
“service provider”) and they are deployed to runtimes on different
machines, the service contract of the provider will typically need to
be accessible to the client. In practice, if both components are im-
plemented as Java classes, and the service contract is defined using
a Java interface, the interface must be available to the client

From the Library of Robert Ryan



ptg

The Essentials 17

process. Components may share additional artifacts, such as
schemas (XSDs) that define the structure of messages that are re-
ceived as inputs to an operation on a service contract. Components
may also rely on shared code, such as libraries. The domain serves
as a repository for these artifacts, which, as we will see in more
detail, are made accessible to components that require them.

Common Communication Infrastructure
Domains provide the communication infrastructure necessary for
connecting components and performing remote service invoca-
tions. When a composite is deployed, the domain is responsible for
provisioning its components to one or more runtimes and establish-
ing communication channels between them (see Figure 1.9). 

The domain establishes a
communications channel
between components.

Figure 1.9 The domain communication infrastructure

To support distribution, a domain includes a proprietary communi-
cation layer. This communication layer varies by vendor but may
be based on web services protocols, a binary protocol, or some
other protocol altogether. In this respect, a domain is akin to mes-
sage-oriented middleware (MOM) systems. Although MOM systems
may adopt a standard API such as JMS, their underlying communi-
cation protocol remains proprietary.

One advantage that SCA’s communications infrastructure has over
standardized protocols is that it is in control of both the client and
service provider. As a result, users can be general in the way they
specify requirements for a wire. This helps reduce complexity, as
application code is not required to use low-level APIs. 

For example, a user can specify that the wire should deliver mes-
sages reliably by marking the end of the wire as requiring reliability.

Domains provide
the communication
infrastructure nec-
essary for connect-
ing components
and performing
remote service
invocations.

From the Library of Robert Ryan



ptg

Like messaging
systems, domains
are largely single-
vendor.

18 Introducing SCA

As we will show in later chapters, this can be done via a Java anno-
tation or in XML configuration. It is incumbent on the infrastructure
to figure out how to do this. It could use a JMS queue or it could
use web services with WS-ReliableMessaging. If the message
sender and receiver are on the same machine and the receiver is
ready to receive the message, the message can be delivered to the
receiver in an optimized fashion.

Extensibility
SCA does not standardize a way to connect runtimes in a domain.
Consequently, like messaging systems, domains are largely single-
vendor. However, most SCA implementations define a proprietary
extensibility mechanism that enables third-party runtimes to partici-
pate in a domain. 

Is the single-vendor nature of a domain a bad thing? Perhaps, as it
creates a “closed” middleware environment. The single-vendor
nature of domains does, however, also have practical benefits.
Having control over all endpoints in a system allows for communi-
cation optimizations. Also, if SCA had standardized a domain ex-
tension mechanism, its capabilities would likely have been
significantly reduced due to the difficulty in achieving consensus
among the different vendors. 

Perspective: Is SCA a SOA Technology?

People often ask: Is SCA a technology for Service-Oriented Architecture (SOA)? The
answer is, it depends. The problem is that SOA has been hyped to such a degree and
means so many different things that it has become virtually useless as a way of char-
acterizing a technology. For some, SOA involves writing applications as discrete
units of functionality that interoperate regardless of the language they are imple-
mented in. In other words, SOA relies on interoperable web services that are highly
autonomous. For others, SOA is a design pattern for organizing an application as
units that interact via contracts. Contrary to the first view, these units may not be au-
tonomous.

SCA aligns more closely with the latter than the former. In other words, SCA is a
technology for assembling applications from services that are managed by a com-
mon infrastructure. To be sure, SCA services may use interoperable protocols and

From the Library of Robert Ryan



ptg

The Essentials 19

communicate with other services not managed by that common infrastructure, but
those are not requirements mandated by SCA. It’s likely that many, maybe even
most, SCA services will be accessible only by software running on infrastructure
provided by the same vendor.

Is this SOA? It depends on your perspective. What really matters is that the benefits
and trade-offs associated with SCA are clearly understood. To avoid becoming bogged
down in terminology, we consciously avoid the label SOA and simply describe SCA as
service-based. As we explain in this section, SCA has a very specific definition of a
service, so this will help avoid the confusion caused by the vagueness of SOA.

The Extent of a Domain 
Having covered the key characteristics of a domain and its role in
SCA, we return to the question of what determines its scope. The
number, shape, and size of domains may vary in an organization.
An organization could choose to have one domain or many. Two
key factors will inform this choice: how information technology (IT)
assets are organized and managed, and which SCA implementation
is used. 

Because a domain is used to manage composites and their compo-
nents, it is natural for the domain structure to reflect how an orga-
nization manages its technology assets. A small company may
have one technology department responsible for managing all of
its systems, in which case they would likely have a single domain.
A large multinational corporation, on the other hand, may have
multiple autonomous technology departments, each responsible
for their own systems. In this case, the multinational would proba-
bly elect to have multiple domains under the control of each 
department.

A second factor in determining the size of a domain is the SCA
implementation. SCA runtimes are not portable to any domain. That
is, there is no standard way to create a domain consisting of mul-
tiple vendor runtimes. If an organization uses more than one SCA
implementation because it has not standardized on one or it re-
quires proprietary features for certain components, it will need to
run multiple domains. 

Because a domain
is used to manage
composites and
their components, it
is natural for the
domain structure to
reflect how an
organization man-
ages its technology
assets.

From the Library of Robert Ryan



ptg

20 Introducing SCA

This is not to say that a component deployed to a domain will be
unable to invoke a service provided by a component in another. 
As we will see later, SCA provides mechanisms for communicating
across domains and with non-SCA services. It does mean, however,
that both components will be managed and administered 
independently.

Perspective: SCA and Java EE—Embrace and Extend,
Replace, or Just Confusion?

Various industry pundits have predicted the waning of Java EE as a dominant enter-
prise development platform, often due to its increasing complexity. Some point to
advances in Microsoft’s .NET Framework as the death-knell for Java EE. Others high-
light the mindshare Spring has gained among Java developers as evidence of Java
EE’s waning. Among Java EE’s more trendy detractors, it has become popular to list
Ruby on Rails and other dynamic language-based frameworks as likely successors,
which they claim are far more productive. Although it is easy to dismiss the more
extreme claims of Java EE’s demise (many enterprises have mission-critical Java EE
applications that will remain in production for years to come), it is also evident that
Java EE does not possess the allure it once did. 

Enter SCA into this picture. Is it intended to embrace and extend or replace Java EE?
SCA’s relationship to Java EE is multifaceted, which is to say there is no simple an-
swer. JPA, for example, provides a nice complement to SCA, which does not specify
a persistence technology. Likewise, servlets and JSPs can be used to build a presen-
tation tier for SCA components. However, when it comes to writing application
logic, SCA’s Java-based programming model offers a single alternative to EJB, JMS,
and JAX-WS. 

This story is, however, complicated by the fact that SCA also provides support for
implementing components using EJB. It may appear as if SCA is schizophrenic. On
the one hand, it offers a competing technology to EJB, but on the other, it extends it.

Part of the confusion undoubtedly is a result of SCA being the product of a collabo-
ration among a diverse set of industry vendors and organizations, each with their
own view and goals. Some collaborators felt that creating a replacement for EJB and
JAX-WS was technically unnecessary or too risky in that it would have difficulty
gaining market acceptance. Others, taking the opposite view, argued that a new
Java-based programming model was needed because existing technologies did not

From the Library of Robert Ryan



ptg

Implementing Components 21

adequately address the demands of distributed computing. In the end, a compro-
mise was reached where SCA would support a number of different implementation
technologies.

The focus of this book is on the SCA Java-based programming model, as opposed to
other alternatives such as EJB, JAX-WS, or Spring. Although we endeavor to present
an accurate view of SCA, a comprehensive overview of all technology options
would be impractical and likely incoherent. Therefore, in places we were left with
having to make choices. We chose to focus on the SCA Java-based programming
model because, in our opinion, it offers the best option for service-based develop-
ment using Java.

This view is likely to prove to be controversial, particularly among some of the SCA
collaboration participants. However, we consider this position to be pragmatic. Java
EE has a number of disparate component models and APIs (EJB, JMS, JAX-WS, and
even JSF!) that are not particularly easy to use or well-suited to service-based devel-
opment. The SCA Java-based programming model represents a unified approach
that was designed from the ground up to serve these purposes. It offers a far more
productive environment for developers who do not need (or want) to deal with the
complexity of Java EE’s lower-level programming model APIs. 

Moving forward, it is our opinion that Java EE will be viewed less as a platform than
as a collection of technologies. Developers will “Balkanize” Java EE by picking and
choosing specific technologies to complement SCA. Although developers have been
selectively using Java EE technologies since its inception (few use the entire set of
Java EE APIs), it will increasingly be the case that Java EE does not offer a complete
solution to mainstream development requirements. 

In other words, SCA will embrace some Java EE technologies and replace others.
SCA will likely coexist with technologies focused on the presentation and data tiers,
where it does not offer alternatives (in particular, servlets, JSPs, and JPA). In those ar-
eas where it overlaps with Java EE—notably EJB and JAX-WS—SCA will eventually
serve as a replacement.

Implementing Components
SCA applications are best characterized as interconnected compo-
nents assembled together in one or more composites, where the
components may be implemented in a variety of programming
languages. Clients, whether they are non-SCA code or other SCA
components, interact with components through the services they

Components may
be implemented in
a variety of pro-
gramming
languages.

From the Library of Robert Ryan



ptg

Properties define
the ways in which a
component can be
configured.

22 Introducing SCA

offer. The implementation details of a particular component—what
language it is written in, how it is configured, and what things it
depends on—are hidden from clients. Having covered the external
facts of a component, we now turn to its internal aspects using the
SCA Java programming model.

The Component Implementation
Writing components using the Java programming model is straight-
forward—SCA does not mandate any special requirements. As the
example in Listing 1.7 illustrates, components can be implemented
by ordinary Java classes with a few optional annotations.

Listing 1.7 The Component Implementation

public class LoanComponent implements LoanService {
private String currency;
private CreditService service;

@Property
public void setCurrency(String currency){

this.currency = currency;
}

@Reference
public void setCreditService(CreditService service){

this.service = service;
}
public void applyForLoan(LoanApplication application){

// ....
}

public int checkStatus(String applicationID){
// ....

}
}

Now, let’s examine what the annotations in Listing 1.7 mean.

Properties
Properties define the ways in which a component can be config-
ured (see Figure 1.10). As an example, a loan application compo-
nent may have a property to calculate values in euros, U.S. dollars,
pounds sterling, or yen. 

Properties are manifested differently depending on the implementa-
tion language used for components. In Java, a property is defined

From the Library of Robert Ryan



ptg

Implementing Components 23

by placing an @Property annotation on a method; as we will see
in following chapters, fields and constructor parameters may also
be properties (see Listing 1.8).

Figure 1.10 Properties are used to configure components.

Properties define the ways a
component can be configured.

Component

Listing 1.8 A Component Property

public class LoanComponent implements LoanService {
private String currency;

@Property
public void setCurrency(String currency){

this.currency = currency;
}

// …
}

The actual property values are specified in a composite file, typi-
cally as part of the component definition. When a component in-
stance is created, the runtime it is hosted on will set all properties
configured for it. For LoanComponent in Listing 1.8, the runtime
will set the currency to a string specified in the composite, such as
“USD” or “EUR.”

Properties assist with reuse but, more importantly, they allow cer-
tain decisions to be deferred from development to deployment. A
typical case is components that must be configured differently in
development, testing, staging, and production environments: For
example, a component that is configured to connect to a database
differently as it moves from development, testing, staging, and 
finally into production. 

Properties assist with
reuse but, more
importantly, they
allow certain deci-
sions to be deferred
from development to
deployment.

From the Library of Robert Ryan



ptg

Figure 1.11 A reference is a dependency on another service.

Similar to properties, references are manifested differently depend-
ing on the language in which the component is implemented. In
Java, a reference is defined by placing an @Reference annotation
on a method. (Fields and constructor parameters are also
supported.) The type of the method parameter corresponds to the
contract of the service requested, as shown in Listing 1.9. 

A reference is a
dependency on
another service,
which the compo-
nent connects to at
runtime.

24 Introducing SCA

References
Components also have references. A reference is a dependency on
another service, which the component connects to at runtime (see
Figure 1.11). The loan component may have a reference to a
service that returns a rate table stored in a database. The rate table
service could be offered by another component whose purpose is
to hide the intricacies of querying and updating the database. 

References define dependencies 
on other services that the component 
connects to at runtime.

Component

Listing 1.9 A Reference

public class LoanComponent implements LoanService {
private CreditService service;

//…

@Reference
public void setCreditService(CreditService service){

this.service = service;
}

// …
}

From the Library of Robert Ryan



ptg

Implementing Components 25

Unlike tradition programming models, SCA component implemen-
tations do not look up their service dependencies using an API such
as JNDI. The target of the reference—that is, which specific service
it points to—is configured as part of the component definition in a
composite file. References are made available to components the
same way properties are: When a component instance is created,
the SCA runtime will use dependency injection to set a proxy that is
connected to the appropriate target services. 

After the runtime has provided the component with a proxy to the
reference’s target service, it can be invoked like any other object.
The component can invoke one of its methods, passing in parame-
ters and receiving a result, as demonstrated in Listing 1.10.

Listing 1.10 Invoking a Service Through a Wire in Java

public class LoanComponent implements LoanService {
private CreditService service;

private String currency;

@Property
public void setCurrency(String currency){

this.currency = currency;
}

@Reference
public void setCreditService(CreditService service){

this.service = service;
}

public void applyForLoan(LoanApplication application) {
// invokes the service through a wire supplied by
// the SCA runtime
int result = service.checkCredit(customerID);

}
}

References provide a level of power and sophistication that is diffi-
cult to achieve with earlier component technologies. References
can be “rewired” to newer versions of a service at runtime.
References can also be used to track dependencies in a system. A
management tool that understands SCA metadata could analyze
component dependencies in a system to assess the impact of up-
grading a component that is used by many clients.

The SCA runtime
will use depend-
ency injection to
set a proxy that is
connected to the
appropriate target
services.

From the Library of Robert Ryan



ptg

A composite file
defines one or more
components, sets
their properties, and
configures their
references.

26 Introducing SCA

Assembling Composites
A composite file defines one or more components, sets their prop-
erties, and configures their references. Listing 1.11 provides the full
listing of LoanComposite used in previous examples. 

A wire is a commu-
nication channel
between the client
component and the
target service.

Listing 1.11 LoanComposite

<composite xmlns=http://www.osoa.org/xmlns/sca/1.0

name="LoanComposite">

<component name="LoanComponent">
<implementation.java class="com.bigbank.LoanComponent"/>
<property name="currency">USD</property>
<reference name="creditService" target="CreditComponent"/>

<component>

<component name="CreditComponent">
<implementation.java class="com.bigbank.CreditComponent"/>

<component>
</composite>

To recap, the meaning of the XML elements in the preceding com-
posite is fairly straightforward, as follows:

■ The <component> element defines a component and as-
signs it a name that is used to reference it at later points in
the composite.

■ The <implementation.java> element indicates that both
components are implemented using the SCA Java program-
ming model.

■ The <property> elements configures the value of a compo-
nent property.

The <reference> element warrants a more detailed explanation.
Reference elements are used to configure target services for compo-
nent references. In the preceding listing, LoanComponent has a
reference configured to use CreditService provided by
CreditComponent. When a component instance is created, the
SCA runtime connects its references to the appropriate target serv-
ices via proxies. In the listing, the runtime connects
LoanComponent to CreditService provided by

From the Library of Robert Ryan



ptg

Assembling Composites 27

CreditComponent. This connection is called a wire. A wire is a
communication channel between the client component and the
target service (see Figure 1.12). 

Figure 1.12 A wire is a communications channel.

Because components can be co-located (in the same process) or
hosted in separate runtimes, wires can be local or remote. From the
perspective of the client component, however, a wire does not ap-
pear any different. In Java, a proxy backed by a wire will look like
any other object.

In addition to configuring components and wiring them, composites
serve several other important purposes. Developing applications
routinely involves interfacing with external systems or services.
Similarly, applications must often expose services to external
clients. In many cases, these systems and clients will not be built
using SCA. Composites provide mechanisms for making SCA serv-
ices available to clients outside of a domain (for example, available
to non-SCA code) and for accessing services outside the domain (for
example, implemented by non-SCA code such as a .NET service).
Publishing a service or accessing an external service from a compo-
nent is done through configuration elements in the composite
(SCDL file). The process of applying this configuration is termed
“binding a service and reference.”

Binding Services and References
In SCA, bindings are used to configure communications into and
out of a domain. Bindings are assigned to the services and refer-
ences of a component in a composite file. For example, to expose a
service as a web service endpoint to external clients, the web
service binding is used. SCA defines bindings for web services, JMS,
and JCA. Some SCA implementations also support additional bind-
ings, including RMI, AMQP (a messaging protocol), and XML/HTTP. 

A wire connects a reference 
to a service.

Component Component

Because compo-
nents can be co-
located (in the
same process) or
hosted in separate
runtimes, wires can
be local or remote.

Composites provide
mechanisms for
making SCA serv-
ices available to
clients outside of a
domain and for
accessing services
outside the domain.

In SCA, bindings
are used to config-
ure communica-
tions into and out
of a domain.

From the Library of Robert Ryan



ptg

28 Introducing SCA

Listing 1.12 shows a service configured with the web service 
binding.

In the preceding composite, the <binding.ws> element instructs
the SCA runtime to expose LoanService as a web service endpoint
at the address specified by the uri attribute. When the composite is
deployed to a domain, the SCA runtime activates the web service
endpoint and forward incoming requests to LoanComponent.

Similarly, component references may be bound to communicate
with external services, such as a .NET web service. The code in
Listing 1.13 binds a reference to a web service.

Listing 1.12 Exposing a Service as a Web Service Endpoint

<component name ="LoanComponent">
<implementation.java class="com.bigbank.LoanComponent"/>
<service name="LoanService">

<binding.ws uri="http://www.bigbank.com/
➥loanApplicationService"/>

</service>
</component>

Listing 1.13 Binding a Reference to a Web Service Endpoint

<component name ="LoanComponent">
<implementation.java class="com.bigbank.LoanComponent"/>
<reference name="rateService">

<binding.ws uri="http://www.acme.com/rateService"/>
</reference>

</component>

In the previous listing, the SCA runtime will ensure that the bound
reference flows invocations using standard WS-* protocols to the
target web service. How this is done is transparent to the compo-
nent implementation. In Java, the component needs to invoke only
a method on an object; transport-specific API calls (such as JAX-
WS) are not needed (see Listing 1.14).

From the Library of Robert Ryan



ptg

Assembling Composites 29

The key point about bindings is that they are handled through con-
figuration in a composite file. This eliminates the need for compo-
nents to use protocol-specific APIs. Besides simplifying component
implementations, this has two important practical effects. First, it
allows the actual protocol used to be changed at a later date with-
out having to modify the component implementation. For example,
JMS, or a binary protocol such as RMI, could be substituted for web
services. Second, it allows services to be bound to multiple proto-
cols. A service could be configured with binding entries for both
web services and JMS, in which case it would be exposed to clients
using either of those protocols.

Composites as a Unit of Deployment 
Often, despite the fact that related components may be intended for
deployment to different runtimes, it makes sense to manage them
as a unit. Applications are typically subdivided into a set of compo-
nents that depend on one another and cannot operate in isolation.
In these cases, composites provide a means to group related com-
ponents so that they may be treated atomically. 

When a composite is deployed to a domain, its components will be
started. Similarly, when a composite is undeployed, its components
will be stopped. In distributed domains, components may be 
deployed to and undeployed from multiple runtimes. One way to
think of a composite, then, is as a counterpart to a Java EE
Enterprise Archive (EAR) or .NET Assembly. 

Listing 1.14 Invoking on a Bound Reference in Java

public class LoanComponent implements LoanService {
private RateService service;

@Reference
public void setRateService(RateService service){

this.service = service;
}

public void applyForLoan(LoanApplication application) {
// invokes the service through a wire supplied by the 
// SCA runtime
int result = service.checkCredit(customerID);

}
}

Bindings are 
specified in a 
composite file.

Composites provide
a means to group
related components
so that they may be
treated atomically.

From the Library of Robert Ryan



ptg

SCA applications
may consist of 
multiple composites,
thereby making 
their internal 
structure more
loosely coupled.

The standard con-
tribution format is a
ZIP archive, but an
SCA implementa-
tion may support
additional packag-
ing types, such as a
directory on a file
system.

30 Introducing SCA

A significant difference, however, between SCA and Java EE is that
SCA applications are generally more modular than their Java EE
counterparts. Experience with Java EE informed much of the design
of SCA in this regard. In Java EE, applications are deployed in self-
contained archives: EARs or Web Archives (WARs). Although this
deployment model works for many applications, for many others it
poses severe limitations, particularly when artifacts need to be
shared across applications. 

SCA applications may consist of multiple composites, thereby mak-
ing their internal structure more loosely coupled. Each composite
can be maintained and evolved independently, as opposed to being
part of a single deployment archive. This modularity and loose
coupling allow for greater flexibility in maintaining enterprise appli-
cations, which must stay in production for years. With SCA, it is
possible to upgrade some composites without having to redeploy
all the composites in an application. 

Deploying to a Domain
Components rarely exist in isolation. In all but the most trivial ap-
plications, components rely on supporting artifacts, other code
such as classes, and sometimes libraries. In SCA, composite files
and component artifacts—for example, implementation classes,
schemas, WSDLs, and libraries—are packaged as contributions.
The standard contribution format is a ZIP archive, but an SCA im-
plementation may support additional packaging types, such as a
directory on a file system. Although not strictly required, a contri-
bution archive may contain an sca-contribution.xml file in a META-
INF directory under the root. Similar to a JAR MANIFEST.MF file,
the purpose of the sca-contribution.xml is to provide the SCA im-
plementation with processing instructions, such as a list of the de-
ployable composites contained in the archive. 

Prior to deployment, composites must be installed in a domain as
part of a contribution. After a contribution has been installed, its
contained composites may be deployed. How installation and de-
ployment is done will depend on the environment. During devel-
opment, this may involve copying a contribution archive to a
deployment directory, where the SCA runtime will automatically
install it and deploy contained composites. In a data center, where

From the Library of Robert Ryan



ptg

Deploying to a Domain 31

more rigorous processes are likely to be in place, a command-line
tool or management console can be used to install the archive and
subsequently deploy its composite (or composites, because a con-
tribution may contain more than one). 

Unlike Java EE EARs and WARs, contributions are not required to
be self-contained. A contribution may refer to artifacts such as inter-
faces, classes, or WSDLs in other contributions by first exporting an
artifact in a containing contribution and then importing it in 
another. Imports and exports are done via entries in the sca-
contribution.xml manifest. For example, a manifest exports a WSDL
for use in other contributions by specifying its fully qualified name
or QName (see Listing 1.15).

Listing 1.15 A Contribution Export 

<?xml version="1.0" encoding="ASCII"?> 
<contribution xmlns=http://www.osoa.org/xmlns/sca/1.0> 
<!- .... -- >
<export namespace="http://acme.com/LoanService/> 

</contribution>

The WSDL is then imported in another contribution by referring to
its fully qualified name in an import entry, as shown in Listing 1.16. 

Listing 1.16 A Contribution Import 

<?xml version="1.0" encoding="ASCII"?> 
<contribution xmlns=http://www.osoa.org/xmlns/sca/1.0> 
<!- .... -- >
<import namespace="http://acme.com/LoanService/> 

</contribution>

When the composite in the second contribution is deployed, it is
the job of the runtime to ensure that the WSDL and all other im-
ported artifacts are available to its components. 

The mechanics of how a domain resolves imports to actual contri-
butions is (thankfully) transparent to developers and administrators:
Contribution manifest entries are the only thing required. Typically,
under the covers, an SCA implementation will use a repository to
index, store, and resolve contribution artifacts, as pictured in 
Figure 1.13.

Unlike Java EE
EARs and WARs,
contributions are
not required to be
self-contained.

From the Library of Robert Ryan



ptg

32 Introducing SCA

Figure 1.13 Storing a contribution in a domain repository

When a contribution is installed that imports an artifact, the SCA
implementation will resolve it against the repository and make it
available to the contribution.

The Deployment Process
What happens when a composite is deployed to a domain? A num-
ber of steps must take place prior to the point when its components
become active. Although various SCA implementations will vary in
specifics, we enumerate the general steps involved in deployment
here.

Allocation
The loosely coupled nature of composites allows them to be dis-
tributed, possibly spanning geographic regions. A composite may
contain components deployed in different data centers. When a
composite is deployed, its components are allocated to a set of
runtimes. In the case where there is only one runtime in the do-
main, this is straightforward: Components are always allocated to
the same runtime. In the scenarios depicted previously, where there
are multiple runtimes potentially spread across data centers, alloca-
tion will be more involved. A number of factors need to be taken
into account by the domain. For example, is a particular runtime
capable of hosting a component written in Java, C++, or BPEL?
Other factors may come into play as well, such as co-locating two
wired components in cases where performance is critical.

Contribution Archive

SCA Domain

Archive is contributed 
to a domain.

Artifacts are provisioned
to runtimes.

SCA Runtimes

Contribution
Repository

XSDWSDL

From the Library of Robert Ryan



ptg

Deploying to a Domain 33

Wiring
As components are allocated, the domain must connect wires be-
tween them. When two components are allocated to different run-
times, the domain must establish a communication channel
between the two. When no protocol is chosen by the user, it is up
to the SCA implementation to decide how remote communication
should be handled. Depending on the implementation, the actual
protocol used could be web services (WS-*), RMI, JMS, or a propri-
etary technology. One important factor any implementation must
account for when selecting a protocol is the policies associated
with the wire. If transactions are specified on the wire, for example,
the protocol must support transaction propagation. The domain
may also select a communication protocol based on the require-
ments of the client component and target service. For example,
when wiring two Java component implementations, the domain
may choose RMI as the transport protocol. Or if the target were
implemented in C++ as opposed to Java, web services may be se-
lected based on interoperability requirements.

Exposing Bound Services as Endpoints
When the domain has allocated a composite to a runtime or set of
runtimes, bound services must be made available as endpoints. For
example, a service bound as a web service must be exposed as a
web service endpoint. If a service is bound to JMS, the domain will
attach the service as a listener to the appropriate message topic or
queue (see Figure 1.14).

It is also possible to bind a service multiple times to different proto-
cols. A service could be exposed as both a web service endpoint
and JMS listener. The mechanics of how the domain performs the
actual endpoint binding are transparent to the developer and
deployer.

JMS Topic or Queue

Component

The SCA runtime binds the service to a JMS listener.

Figure 1.14 Binding a service as a message endpoint

From the Library of Robert Ryan



ptg

A domain cannot
be created from
multiple vendor (or
open source) SCA
runtimes in any
standard way.

34 Introducing SCA

Domain Constraints
Domains are designed to simplify the tasks of establishing remote
communications, endpoint setup, and resource sharing that are left
to developers and deployers in traditional programming models.
However, with any technology, there are benefits and trade-offs.
SCA is no different. Although domains provide a number of bene-
fits, they also impose certain constraints. 

The fact that domain infrastructure is single-vendor means that
there is no interoperable way of constructing cross-implementation
domains. In other words, a domain cannot be created from mul-
tiple vendor (or open source) SCA runtimes in any standard way (of
course, vendors could agree to support interoperability in some
nonstandard way). This imposes two important practical
constraints. First, composites cannot be deployed across multiple-
vendor SCA runtimes. The absence of domain interoperability also
limits the size of a domain to the component types a particular
vendor supports, either natively or through container extensions. If
an alternative container is required to host a particular component
implementation type, it must be deployed to a different domain
capable of running it. 

Contrast this lack of domain interoperability to a web services envi-
ronment where each service is independent and is potentially
hosted on entirely different vendor platforms. In this respect, SCA is
closer to MOM; there is a one common infrastructure environment,
as opposed to many autonomous, but interoperable, islands. 

Are the trade-offs between simplicity and common management
versus vendor lock-in worth it? There is no way to answer that
question in general. However, individual projects can make an
informed decision by understanding when SCA may be used effec-
tively and when other technologies are more appropriate. Given
the importance of web services, architects and developers will
likely be confronted with designing systems using SCA or web serv-
ices technologies directly.

From the Library of Robert Ryan



ptg

SCA and Web Services 35

SCA and Web Services
Both SCA and web services claim to be technologies for building mul-
tilanguage, loosely coupled services in a distributed environment.
Why not just use web services exclusively to build applications?
Recalling that SCA domains are built on single-vendor infrastructure,
web services offer a key advantage. They limit vendor lock-in to indi-
vidual service deployments, as opposed to wider subsystems.

To understand how SCA relates to web services, it is useful to divide
web service technologies into a set of interoperable communication
protocols (the WS-* specifications) and programming models for us-
ing those protocols (for example, in Java, JAX-RPC, and JAX-WS). 

At the most basic level, web services deal with protocol-level inter-
operability. They define how application code communicates with
other code in a language-neutral, interoperable manner. Web serv-
ices make it possible for Java code to communicate with C#, PHP, or
Ruby code. Web services achieve interoperability by specifying how
service contracts are defined (WSDL) and how data is encoded over
particular communications transports (for example, SOAP over
HTTP, WS-ReliableMessaging, WS-Security, and so on). 

Web services programming models such as JAX-WS define APIs and
Java annotations for accessing other web services and making code
available as an endpoint. These programming models are specific to
web services; their goal is not to provide a communications API that
abstracts the underlying transport.

Perspective: Interoperability and Portability 

Standards such as SCA, web services, and Java EE often have quite different goals.
The WS-* specifications are about interoperability; that is, providing protocols that
different vendor runtimes can use so that software hosted on those platforms can
work together.

In contrast, Java EE and SCA are not concerned with interoperability. Java EE does
not specify, for example, a protocol for clustering different vendor application

Web services pro-
gramming models
such as JAX-WS define
APIs and Java annota-
tions for accessing
other web services
and making code
available as an end-
point.

From the Library of Robert Ryan



ptg

36 Introducing SCA

servers or a common messaging protocol. Similarly, SCA does not specify a way for
different vendor runtimes to operate as part of a single domain.

Rather, the goal of both Java EE and SCA is portability. For Java EE, portability means
application portability—that is, the ability to run an application on multiple vendor
runtimes without modification. Java EE has been criticized for not living up to this
goal. Critics have pointed out that application server vendors often interpret the Java
EE specifications differently, resulting in runtime-specific behavior. Also, as Java EE
critics argue, the specifications don’t address many application requirements, forc-
ing users to rely on nonportable, proprietary features of a vendor runtime.

In comparison to Java EE, SCA has adopted more modest portability goals. Much of
the initial focus of the specification working groups has been on skills portability, as
opposed to application portability. Specifically, the specification authors have con-
centrated more on creating a common programming and assembly model than on
defining strict runtime behavior. Absent the loftier goal of application portability, the
thinking went, skills portability would at least shorten the learning curve for devel-
opers moving between different vendor runtimes. 

This is not to say that SCA is unconcerned with application portability. As the speci-
fications have matured, the working groups have focused more on obtaining this
higher degree of portability. For example, when the specifications are finalized in
OASIS, conformance test suites that verify common runtime behaviors will be made
available.

Taking a slightly cynical view, one could claim that the SCA vendors have purposely
downplayed application portability as a way to lock users into their proprietary run-
times. Obviously, vendors have very little interest in complete runtime standardiza-
tion. If this were to happen, all runtimes would essentially be the same, except
perhaps for slight performance differences. There would be no way for vendors to
differentiate their implementations by offering unique features.

However, life is more complicated in the standards world. A better argument for
why SCA has adopted modest portability goals would account for a number of fac-
tors. Certainly there is vendor interest in maintaining proprietary features. Another
factor was a practical consideration. Realizing how difficult it is to obtain consensus
on new technologies when usage patterns are not clear-cut, and having learned
from Java EE’s failure to achieve practical application portability, the specification
authors adopted less ambitious, but arguably more realistic, portability goals. 

That said, as SCA matures and experience using it increases, expect application
portability to become an increasingly important goal. 

From the Library of Robert Ryan



ptg

SCA and Web Services 37

Both at the protocol and programming model level, web services
make an important assumption: They were designed for communi-
cating between software that has nothing in common. Web service-
based architectures consist of “islands of functionality” that interact
with one another (see Figure 1.15). 

Figure 1.15 Web service versus SCA architecture

This is not surprising given the array of vendors backing web serv-
ices standards and their opposed worldviews. However, several
consequences follow from this.

First, developing web services can be a complex, labor-intensive
process. Sometimes this is necessary. In order to avoid problems
with interoperability, top-down development is generally recom-
mended where service contracts are designed upfront in WSDL.
Dealing with WSDL is not trivial, notwithstanding tooling designed
to alleviate many of the repetitive and error-prone tasks. 

A second consequence of web services architecture is that any
given service can only make minimal assumptions about the serv-
ices it interacts with. This limits the degree of management and
coordination that can effectively be done across services. It also
limits any optimizations that may be done to increase communica-
tions performance.

Web service architectures certainly have their place when commu-
nicating with services from different companies or between auto-
nomous divisions within a company. However, not every
component has to integrate with other components as if another

Web Services

SCA components are managed by a common
infrastructure:  the Domain.

SCA Domain

Web services are autonomous “islands” of
functionality.

Both at the protocol
and programming
model level, web
services make an
important assump-
tion: They were
designed for com-
municating be-
tween software that
has nothing in
common.

A consequence of
web services archi-
tecture is that any
given service can
only make minimal
assumptions about
the services it inter-
acts with.

From the Library of Robert Ryan



ptg

What SCA offers in
relation to web
services is simplic-
ity, flexibility, and
the ability to man-
age related software
components.

SCA greatly simpli-
fies the task of
writing distributed
code by removing
the need for devel-
opers to use low-
level APIs to invoke
services.

SCA frees develop-
ers from having to
configure policy
(for example, 
security, transac-
tions) and transport
protocols for every
service or 
component.

38 Introducing SCA

company hosted them. Often, components are not independent.
They may share common resources, require common policies such
as transactionality, or may be capable of using more efficient com-
munications protocols than web services. In these cases, it is useful
to have infrastructure that can provide these features and simplify
the task of assembling components into applications. What SCA
offers in relation to web services is simplicity, flexibility, and the
ability to manage related software components.

Unlike many web services APIs, such as JAX-WS, the SCA program-
ming model does not expose the transport binding used to commu-
nicate into or out of a component. As we show in ensuing chapters,
SCA greatly simplifies the task of writing distributed code by remov-
ing the need for developers to use low-level APIs to invoke services.
For those accustomed to low-level access, this may seem like a
burdensome restriction, but for most developers, it frees them from
having to pollute application code with potentially complex APIs.

Equally important to simplifying application code, SCA frees devel-
opers from having to configure policy (for example, security, trans-
actions) and transport protocols for every service or component.
Policies can be configured once and reused by multiple compo-
nents with simple one-word declarations, such as require “confi-
dentiality” on this wire. The intricate details of WSDL, WS-Policy,
and the other WS-* technologies (if they are used at all) can be
safely avoided by most SCA application code.

Using SCA has another important advantage: It is designed to be
dynamic and handle change. Suppose a new security protocol
needs to be introduced between two components. Or consider the
case where a new version of a web services standard is introduced.
If the components were written against lower-level web services
APIs, such changes will likely involve code migration. With SCA,
an administrator can adapt the components through configuration
changes without affecting code. 

A further advantage to using SCA is that it allows protocol swapping
without requiring code changes. For example, RMI could be substi-
tuted for web services where communication performance between
two Java-based components is the most important concern. If a
component implementation were coded to a particular API such 
as JAX-WS, this may entail a near-complete rewrite. With SCA,

Using SCA has
another important
advantage: It is
designed to be
dynamic and
handle change.

A further advantage
to using SCA is that
it allows protocol
swapping without
requiring code
changes.

From the Library of Robert Ryan



ptg

SCA and Web Services 39

protocol swapping amounts to a configuration change. In this
sense, SCA is protocol-agnostic; it enables users to select the one
most appropriate to the task at hand, be it web services, XML/HTTP,
RMI, JMS, or some other technology.

Spring and SCA: Wiring in the Small Versus Large 

One question that is inevitably raised when explaining SCA to Java developers is
how it differs from Spring. Both have a Java programming model and share similar
design principles, such as dependency injection. The short answer is that they over-
lap somewhat (parts of the programming model) but address different problem
spaces. Spring, for example, includes presentation- and data-tier technologies,
whereas SCA does not. More fundamentally, though, whereas Spring focuses on
“wiring-in-the-small” in traditional applications, SCA addresses both that case and
“wiring-in-the-large” across loosely coupled, distributed components.

By “wiring-in-the-small,” we mean the assembly of components (or “beans” in
Spring terminology) in a single address space. In contrast, “wiring-in-the-large” en-
tails component assembly across remote boundaries. To be sure, Spring does have
facilities for handling remote invocations and messaging (via message-driven
POJOs). However, these are quite different than wiring-in-the-large, which brings to
the forefront additional considerations: deployment, resource sharing, policy en-
forcement, and lifecycle management in a distributed environment, to name a few
of the most important. 

Wiring-in-the-large introduces a new class of middleware designed to coordinate
and run loosely coupled components across multiple hosts. This is a departure from
the traditional Java EE two- and three-tier architectures Spring grew out of, which
exhibit an essentially silo design.

With this concern on wiring-in-the-large, even in areas where SCA and Spring over-
lap, there is significantly different focus. In particular, the SCA Java programming
model places particular emphasis on designing component implementations using
asynchrony and loosely coupled contracts, as opposed to the mostly synchronous
interactions of Spring beans. 

From the Library of Robert Ryan



ptg

40 Introducing SCA

Summary
Service Component Architecture (SCA) is quickly emerging as a
foundation for building distributed systems with significant industry
support. Although far-ranging in scope, SCA can be summarized by
four core benefits, as follows:

■ A simplified programming model for service development

■ More efficient and flexible service reuse 

■ Better management and control of distributed systems

■ Simplified policy configuration and enforcement across
applications

Having covered how SCA fits into modern application architec-
tures, including its relationship to web services and Java EE tech-
nologies, we begin a series of more detailed discussions of its core
concepts supplemented with practical examples. Our goal is to
provide solid grounding for making intelligent choices about
where, when, and how best to employ SCA when building enter-
prise systems.

From the Library of Robert Ryan



ptg

2

Assembling and 
Deploying a Composite

The previous chapter introduced the four core SCA concepts: serv-
ices, components, composites, and the domain. In this chapter, we
explore these in practice by providing a walkthrough of creating a
composite and deploying it to a domain. For those wanting to do
hands-on development, this chapter also covers using the open
source SCA runtime, Fabric3, to deploy and run the composite.

This chapter teaches you the basics of building an SCA application,
including the following:

� How to create components that offer services

� How to configure those components and wire them
together as part of a composite

� How to expose a service as a web service

� How to package and deploy the composite to a domain 

During this exercise, we touch on key SCA design principles and
introduce recommended development practices. Subsequent chap-
ters will build on the examples presented here, including designing
loosely coupled services, asynchronous communications, and con-
versational interactions. In these later chapters, we will also cover
how to integrate SCA with presentation- and data-tier frameworks.

41

From the Library of Robert Ryan



ptg

42 Assembling and Deploying a Composite

The LoanApplication Composite
Throughout the book, we use a fictitious bank—BigBank Lending—
to construct an enterprise-class SCA application. The SCA applica-
tion we ultimately will build is designed to process loan
applications from customers submitted via a web front-end and by
independent mortgage brokers via a web service. The high-level
application architecture is illustrated in Figure 2.1. 

Presentation
Tier

Web Services 
To Brokers

Direct
Web Site

Messaging
Infrastructure

Legacy
Systems

Back Office Work Flow

P
er

si
st

en
ce

 T
ie

r

+

SCA Services Tier

Loan Composite

BackOffice Composite

Integration Composite

Figure 2.1 The BigBank loan application architecture

The LoanApplication composite is the core of BigBank’s loan-
processing system. It is responsible for receiving loan applications
and coordinating with other services to process them. In this chap-
ter, we will start simply by focusing on two Java-based components
contained in the composite. LoanComponent receives and
processes loan application requests from remote clients using web
services. It in turn uses the CreditService interface implemented
by CreditComponent to perform a credit check on the applicant
(see Figure 2.2).

From the Library of Robert Ryan



ptg

The LoanApplication Composite 43

Figure 2.2 The LoanApplication composite

The other components—web-front end, data-tier, and integration
with external systems—will be covered in later chapters.

SCA Services Tier

Composite

Loan
Component

Credit
Component

■ Open Source SCA Implementations: Fabric3

Although SCA is an emerging technology, there are already several open source im-
plementations available. Two of the most well known are Fabric3 (http://www.
fabric3.org) and Apache Tuscany (http://tuscany.apache.org/). Throughout the book,
we use the Fabric3 SCA runtime for hands-on development. Because we (the au-
thors of this book) are involved in the development of Fabric3, you will notice a
strong affinity between its capabilities and the topics covered in the book. In addi-
tion to support for a majority of the core SCA specifications, Fabric3 provides a
number of extensions for popular technologies, including Java Persistence
Architecture (JPA) and Hibernate. 

Fabric3’s design is similar to Eclipse in that it consists of a small core that can be ex-
tended through plug-ins. Bindings such as web services, JMS, and RMI are installed
as extensions into the Fabric3 core in much the same way that JSP and XML editing

From the Library of Robert Ryan

http://www.fabric3.org
http://www.fabric3.org
http://tuscany.apache.org/


ptg

44 Assembling and Deploying a Composite

support are added to Eclipse. This gives users the flexibility of choosing just what
they need and avoids having to deal with the complexity associated with one-size-
fits-all approaches. 

This design follows a general trend in software modularity popularized by Eclipse.
As development environments increased in complexity in the early 2000s, Eclipse
introduced an elegant plug-in mechanism based on OSGi that enabled users to con-
figure their IDE with the specific tools they needed to develop their applications.
This greatly reduced software bloat and introduced a new level of flexibility for
users. This philosophy has now been extended to runtime architectures as well with
the introduction of Profiles in Java EE. Ultimately, modularity benefits users by pro-
viding a much more streamlined development, deployment, and management
cycle.

Later in the chapter, we provide specific instructions for downloading and getting
started with Fabric3. If you want to get a head start, you can download the distribu-
tion from http://www.fabric3.org/downloads.html. Be sure to also check out the
project mailing lists—they are the best way of getting help should you encounter a
problem.

Defining Service Interfaces 
Recalling from the previous chapter that components interact
through services, we start by defining the service interfaces for the
LoanComponent and CreditComponent components. Because
both components are implemented in Java, we use Java to define
their service interfaces. The LoanService interface is shown in
Listing 2.1.

Listing 2.1 The LoanService Interface

@Remotable

public interface LoanService  {

LoanResult apply(LoanRequest request);

}

From the Library of Robert Ryan

http://www.fabric3.org/downloads.html


ptg

Defining Service Interfaces 45

The CreditService interface is presented in Listing 2.2.

WSDL serves as the
lingua franca for
code written in one
language to invoke
code written in
another language.

Listing 2.2 The CreditService Interface

@Remotable

public interface CreditService {

int checkCredit(String id);
}

LoanService defines one operation, apply(..), which takes a
loan application as a parameter. CreditService defines one oper-
ation, checkCredit(..), which takes a customer ID and returns a
numerical credit score. Both interfaces are marked with an SCA
annotation, @Remotable, which specifies that both services may be
invoked by remote clients (as opposed to clients in the same
process). Other than the @Remotable annotations, the two service
contracts adhere to basic Java. 

Using Web Services Description Language (WSDL)
In the previous example, we chose Java to define the service con-
tracts for LoanService and CreditService because it is easy to
develop in, particularly when an application is mostly implemented
in Java. There are other times, however, when it is more appropri-
ate to use a language-neutral mechanism for defining service con-
tracts. There are a number of interface definition languages, or
IDLs, for doing so, but Web Services Description Language (WSDL)
is the most accepted for writing new distributed applications.
Although labeled as a “web services” technology, WSDL is in fact
an XML-based way of describing any service—whether it is ex-
posed to clients as web services—that can be used by most modern
programming languages. To understand why WSDL would be used
with SCA, we briefly touch on the role it plays in defining service
interfaces.

WSDL serves as the lingua franca for code written in one language
to invoke code written in another language. It does this by defining
a common way to represent operations (what can be invoked),
message types (the input and output to operations), and bindings to
a protocol or transport (how operations must be invoked). WSDL
uses other technologies such as XML Schema to define message

From the Library of Robert Ryan



ptg

46 Assembling and Deploying a Composite

types and SOAP for how invocations are sent over a transport layer
(for example, HTTP). Programming languages define mappings to
WSDL, making it possible for languages with little in common to
communicate, as represented in Figure 2.3.

Java Component C++ Component

Defines mapping
for operations and
data types

WSDL

Figure 2.3 WSDL is used to map operations and data types.

Writing WSDL by hand is generally not a pleasant experience; for
anything but trivial interfaces, it is a tedious process. Briefly com-
pare the LoanService interface previously defined using Java to its
WSDL counterpart (see Listing 2.3).

Listing 2.3 The LoanService WSDL

<?xml version="1.0" encoding="utf-8"?>
<wsdl:definitionsxmlns:ns1="http://loanservice.loanapp/"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"

name="LoanService" targetNamespace="http://loanser
➥vice.loanapp/">

<wsdl:message name="applyResponse">
<wsdl:part element="ns1:applyResponse" name="parameters">
</wsdl:part>

</wsdl:message>
<wsdl:message name="apply">

<wsdl:part element="ns1:apply" name=
➥"parameters">

</wsdl:part>
</wsdl:message>
<wsdl:portType name="LoanServicePortType">

<wsdl:operation name="apply">
<wsdl:input message="ns1:apply" name="apply">
</wsdl:input>

From the Library of Robert Ryan



ptg

Defining Service Interfaces 47

Fortunately, SCA does not require WSDL to define service inter-
faces. Why, then, would someone choose to use WSDL? One sce-
nario where WSDL is used is in top-down development. This style
of development entails starting by defining an overall system de-
sign, including subsystems and the services they offer, in a way that
is independent of the implementation technologies used. WSDL is a
natural fit for this approach as it defines service interfaces without
specifying how they are to be implemented. In this scenario, an
architect could define all service interfaces upfront and provide
developers with the WSDLs to implement them.

Few development organizations follow this top-down approach.
Typically, service development is iterative. A more practical reason
for starting with WSDL is to guarantee interoperability. If a service is
created using language-specific means such as a Java interface,
even if it is translated into WSDL by tooling, it may not be compati-
ble with a client written in a different language. Using carefully
hand-crafted WSDL can reduce this risk.

A third reason to use hand-crafted WSDL is to better accommodate
service versioning. Services exposed to remote clients should be
designed for loose-coupling. An important characteristic of loose-
coupling is that those services should work in a world of
mismatched versions where a new version of a service will be
backward compatible with old clients. Because WSDL uses XML
Schema to define operation parameters, maintaining backward
compatibility requires that the parameter-type schemas be designed
to handle versioning. This is difficult to do directly in schema but
even more difficult using Java classes. In cases where support for
versioning is paramount, working directly with WSDL may be the
least complex alternative.

One question people typically raise is if SCA does not mandate the
use of WSDL, how can it ensure that two components written in

SCA does not require
WSDL to define
service interfaces.

Defining service
contracts using
WSDL promotes
interoperability.

<wsdl:output message="ns1:applyResponse"
name="applyResponse">

</wsdl:output>
</wsdl:operation>

</wsdl:portType>
</wsdl:definitions>

From the Library of Robert Ryan



ptg

48 Assembling and Deploying a Composite

different languages are able to communicate? SCA solves this prob-
lem by requiring that all interfaces exposed to remote clients be
translatable into WSDL. For example, if a service interface is de-
fined using Java, it must be written in such a way that it is possible
to represent it in WSDL. This enables a runtime to match a client
and service provider by mapping each side to WSDL behind the
scenes, saving developers the task of doing this manually.

Given that SCA services available to remote clients must be trans-
latable into WSDL, it is important to note that the latter imposes
several restrictions on interface definitions. WSDL stipulates that
service interfaces must not make use of operator overloading; in
other words, they must not have multiple operations with the same
name but different message types. WSDL also requires operation
parameters to be expressible using XML Schema. The latter restric-
tion is, in practice, not overly burdensome. Although it might disal-
low certain data types (for example, Java’s InputStream), virtually
all data types suitable for loosely coupled service interactions can
be accommodated by XML Schema. The next chapter will discuss
service contract design in detail; for now, it is important to remem-
ber these two constraints for services exposed to remote clients.

■ Services Without WSDL?

Given SCA’s heavy reliance on services, it may be surprising that it does not have a
canonical interface language. The reasoning behind this decision centers on com-
plexity. Writing WSDL is notoriously difficult. Moreover, previous attempts at defin-
ing cross-language IDLs such as CORBA suffered from similar issues. The SCA
authors wanted to avoid imposing unnecessary steps in a typical development
process. For example, when not doing top-down design, where service interfaces
are first defined in a language-neutral format, requiring WSDL is an unnecessary
burden, even when tooling can automate some of the process. 

When services and service clients are written in the same language, there is no need
for a language-neutral representation. In fact, the translation to WSDL can be
avoided in some situations where the client and provider are implemented in differ-
ent languages. For example, languages such as Groovy, BPELJ, and JPython can con-
sume Java interfaces, making WSDL mapping unnecessary. Because distributed
applications usually have many components written in the same language, transla-
tion into WSDL can usually be avoided.

From the Library of Robert Ryan



ptg

Defining Service Interfaces 49

Remotable Versus Local Services
Returning to the LoanService and CreditService interfaces,
both are annotated with @Remotable, which indicates that a
service may, but need not be, accessed remotely. For contracts
defined using Java, SCA requires that any service exposed across a
process boundary be explicitly marked as remotable. Services not
marked as remotable—the default case—are local services: They
are callable only from clients hosted in the same process. In con-
trast, service interfaces defined by WSDL are remotable by default.
This makes sense given that most contracts defined by WSDL are
likely to be intended for remote access. 

Requiring service contracts to be explicitly marked as remotable
indicates which services are designed to be accessible across
process boundaries. The distinction is necessary because local and
remotable services have different behavior. The next chapter covers
these differences at length, which we briefly describe here.

Remotable Services Must Account for Network Latency
Clients of remotable services must accommodate network latency.
This means that remotable services should be coarse-grained—that
is, they should contain few operations that are passed larger data
sets, as opposed to a number of individual operations that take a
small number of parameters. This reduces the degree of network
traffic and latency experienced by clients. In addition, remotable
services often define asynchronous operations as a way to handle
network latency and service interruptions. Local services are not
subject to these demands as calls occur in the same process.
Therefore, they tend to be finer-grained and use synchronous 
operations.

For contracts de-
fined using Java,
SCA requires that
any service ex-
posed across a
process boundary
be explicitly
marked as
remotable.

Remotable services
should be coarse-
grained.

There are cases where a WSDL-first, top-down design should be used. Sometimes
the component implementation technology is not known at the time a system archi-
tecture is being designed, or the technology is known but there is a desire to hide it.
In those situations, defining interfaces directly in WSDL is appropriate. However, it
is a conscious design decision on the part of the SCA authors that a technology
should be used only when needed. In the case of WSDL, it is a pragmatic “opt-in”
approach to complexity.

From the Library of Robert Ryan



ptg

50 Assembling and Deploying a Composite

Clients of Remotable Services May Experience 
Communications Failures
Because invocations on remotable services generally travel over a
network, there is a possibility communications may be interrupted.
In SCA, the unchecked org.osoa.sca.ServiceUnavailable
Exception exception will be thrown if a communication error
occurs. Clients need to handle such exceptions, potentially by
retrying or reporting an error.

Remotable Services Parameters Are Passed by Value
Parameters associated with remotable service operations behave
differently than those of operations on local services. When
remotable invocations are made, parameters are marshaled to a
protocol format such as XML and passed over a network connec-
tion. This results in a copy of the parameters being made as the
invocation is received by the service provider. Consequently, modi-
fications made by the service provider will not be seen by the
client. This behavior is termed “pass-by-value.” In contrast, because
invocations on local services are made in the same process, opera-
tion parameters are not copied. Any changes made by the service
provider will be visible to the client. This behavior is known as
“pass-by-reference.” Marking a service as remotable signals to
clients whether pass-by-value or pass-by-reference semantics will
be in effect. 

Table 2.1 summarizes the differences between remotable and local
services.

Table 2.1 Remotable Versus Local Services

Remotable Services Local Services

Are invoked in-process Are always invoked in-process.
and remotely.

Parameters are pass-by-value. Parameters are pass-by-reference.

Are coarse-grained. Tend to be fine-grained.

Are loosely coupled and favor Commonly use synchronous 
asynchronous operations. operations.

Parameters associ-
ated with remotable
service operations
behave differently
than those of opera-
tions on local serv-
ices.

From the Library of Robert Ryan



ptg

Creating Component Implementations 51

■ Local Services and Distributed Systems

It may seem odd that a technology designed for building distributed applications
specifies local service contracts as the default when defined in Java. This was a con-
scious decision on the part of the SCA authors. Echoing Jim Waldo’s seminal essay,
“The Fallacies of Distributed Computing,” location transparency is a fallacy: Crossing
remote boundaries requires careful architectural consideration that has a direct im-
pact on application code. Issues such as network latency, service availability, and
loose coupling need to be accounted for in component implementations. This was
one of the lessons learned with EJB: Many early Java EE applications suffered from
crippling performance bottlenecks associated with making too many remote calls.

To minimize remote calls, distributed applications have a relatively small number of
services exposed to remote clients. Each of these services should in turn have a few
coarse-grained operations that perform a significant task, such as processing a loan
application or performing an inventory check. Moreover, these services should be
carefully constructed so that new versions can be deployed without breaking exist-
ing clients. Limiting the number of remotable services and operations helps avoid
performance issues and facilitates versioning by restricting change to a few areas in
an application.

Given the lessons learned from previous distributed system technologies, the de-
signers of SCA were faced with a dilemma: how to support applications built using
coarse-grained services that did not repeat the problems of the past. The answer
was, ironically, to provide good support for fine-grained, local services. If the only
way to get the benefits of SCA such as programming model simplicity were to use
remotable services, developers would be pushed into making all code remotable,
even if it should not be. By providing a model for local services, remote boundaries
can be chosen carefully, exposing only those parts of an application that should be
accessible to clients hosted in different processes.

Creating Component Implementations
Well-designed service-based architectures typically have a limited
number of coarse-grained services that coordinate other services to
perform specific tasks. The heart of the LoanApplication compos-
ite is LoanComponent, which is responsible for receiving loan ap-
plication data through its LoanService interface and delegating to
other services for processing. The implementation is a basic Java
class that takes a reference proxy to a CreditService interface as

Well-designed
service-based archi-
tectures typically
have a limited num-
ber of coarse-grained
services that coordi-
nate other services to
perform specific
tasks.

From the Library of Robert Ryan



ptg

52 Assembling and Deploying a Composite

part of its constructor signature. The LoanComponent component
uses the service to provide a credit score for the applicant. When
reviewing the implementation, take note of the @Reference anno-
tation in the constructor (see Listing 2.4).

Listing 2.4 The LoanComponent Implementation

public class LoanComponent  implements LoanService {
private CreditService service;

public void LoanComponent   (@Reference CreditService service){
this.service = service;

}

public LoanResult apply(LoanRequest request) {
// ....

}

public int checkStatus(String applicationID){
// ....

}
}

In Listing 2.4, the @Reference annotation instructs the SCA runtime
that LoanComponent requires a reference to CreditService. An
implementation of CreditService is provided by
CreditComponent, shown in Listing 2.5.

Listing 2.5 The CreditComponent Implementation

public class CreditComponent implements CreditService {

public int checkCredit(String id){
// ....

}
}

Although the code has been simplified from what would be typi-
cally encountered in a real-world scenario, the implementation—
like LoanComponent—is straight Java. Even though both
components may be hosted on different machines, the only thing
required to facilitate remote communication is the presence of
@Remotable on the CreditService interface.

From the Library of Robert Ryan



ptg

Creating Component Implementations 53

SCA leaves the heavy lifting associated with establishing remote
communications to the runtime, as opposed to application code
and API calls. As we saw in the introductory chapter, SCA does this
through wires. Conceptually, a wire is a connection provided by
the runtime to another service. A wire is specified—in this case, the
wire between LoanComponent and CreditComponent—in the
composite file, which we show in the next section. For now, we
will assume a wire has been specified and describe how an SCA
runtime goes about connecting LoanComponent to the
CreditService interface of CreditComponent.

In Java, the runtime provides a wire by doing one of the following:
calling a setter method annotated with @Reference and passing in
a reference to the service; setting a field marked with @Reference;
or passing a reference to the service as a constructor parameter
annotated with @Reference, as in the example given previously in
Figure 2.3.

In actuality, when the SCA runtime injects the CreditService, it is
likely not a “direct” reference to CreditComponent but instead a
generated “proxy” that implements the CreditService interface
(see Figure 2.4).

The proxy is responsible for taking an invocation and flowing it to
the target service, whether it is co-located or hosted in a remote
JVM. From the perspective of LoanComponent, however,
CreditService behaves as a typical Java reference. 

SCA leaves the
heavy lifting associ-
ated with establish-
ing remote
communications to
the runtime, as
opposed to applica-
tion code and API
calls.

■ A Note on OASIS and OSOA Java APIs and Annotations

As mentioned previously, prior to moving to OASIS, SCA was part of the Open SOA
(OSOA) collaboration effort. While at OSOA, the Java APIs and annotations used
throughout this book are published under the org.osoa.sca package. As part of the
move to OASIS, the Java APIs and annotations will also be published under the org.
oasisopen.sca package. We have decided to continue to use the OSOA package ver-
sion because, at the time of this writing, the OSOA annotations are more prevalent.

From the Library of Robert Ryan



ptg

54 Assembling and Deploying a Composite

Figure 2.4 Reference proxy injection 

An important characteristic of wires is that their details are hidden
from the client implementation. In our example, LoanComponent
does not have knowledge of the wire communication protocol or the
address of CreditService. This approach will be familiar to Spring
developers. SCA is based on Inversion of Control (IoC), also known
as dependency injection, popularized by the Spring framework.
Instead of requiring a component to find its dependent services
through a service locator API and invoke them using transport-
specific APIs, the runtime provides service references when an 
instance is created. In this case, CreditService is injected as a
constructor parameter when LoanComponent is instantiated.

There are a number of advantages to IoC. Because the endpoint ad-
dress of CreditService is not present in application code, it is pos-
sible for a system administrator or runtime to make the decision at
deployment whether to co-locate the components (possibly for per-
formance reasons) or host them in separate processes. Further, it is
possible to “rewire” LoanComponent to another implementation of
CreditService without having to change the LoanComponent code
itself. And, because the client does not make use of any protocol-
specific APIs, the actual selection of a communication protocol can
be deferred until deployment or changed at a later time.

Injection Styles
In the current version of LoanComponent, we elected to define the
reference to CreditService as a constructor parameter. This is
commonly referred to as constructor-based injection. Some devel-
opers prefer to inject dependencies through setter methods or 

SCA is based on
Inversion of Control
(IoC), also known
as dependency
injection.

Loan Component

Runtime injects a proxy
that implements the
CreditService interface.

Wire

Code invokes
the proxy.

From the Library of Robert Ryan



ptg

Creating Component Implementations 55

directly on fields. The SCA Java programming model accommo-
dates these alternative approaches as well by supporting injecting
references on methods and fields. We will take a closer look at
each injection style in turn.

Constructor-Based Injection 
Constructor-based injection has the advantage of making depend-
encies explicit at compile time. In our example, LoanComponent
cannot be instantiated without CreditService. This is particularly
useful for testing, where component implementations are instanti-
ated directly in test cases. Constructor-based injection also enables
fields to be marked as final so that they cannot be inadvertently
changed later on. When other forms of injection are used, final
fields can’t be used. The primary drawback of constructor-based
injection is that the constructor parameter list can become
unwieldy for components that depend on a number of services. 

In some cases, component implementations may have more than
one constructor. The SCA Java programming model defines a rule
for selecting the appropriate constructor in cases where there is
more than one. If one constructor has parameters marked with
@Reference or @Property, it will be used. Otherwise, a developer
can explicitly mark a constructor with the SCA @Constructor
annotation, as shown in Listing 2.6.

Constructor-based
injection has the
advantage of mak-
ing dependencies
explicit at compile
time.

The primary draw-
back of constructor-
based injection is
that the constructor
parameter list can
become unwieldy
for components that
depend on a num-
ber of services.

SCA supports method-
based reference injec-
tion as an alternative
to constructor-based
injection.

Listing 2.6 The @Constructor Annotation

@Constructor
public CreditComponent  (double min, double max) {

// …
}

Setter-Based Injection 
SCA supports method-based reference injection as an alternative to
constructor-based injection. For example, LoanComponent could
have been written as shown in Listing 2.7.

Listing 2.7 Setter-Based Injection 

public class LoanComponent{

public LoanComponent () {}

From the Library of Robert Ryan



ptg

56 Assembling and Deploying a Composite

When LoanComponent is instantiated, the SCA runtime will invoke
the setCreditService method, passing a reference proxy to
CreditService. An important restriction SCA places on this style
of injection is that setter methods must be either public or
protected; private setter methods are not allowed because it vio-
lates the object-oriented principle of encapsulation. (That is, private
methods and fields should not be visible outside a class.)

The main benefit of setter-based injection is that it allows for rein-
jection of wires dynamically at runtime. We cover wire reinjection
in Chapter 7, “Wires.”

There are two major downsides to setter injection. Component
dependencies are dispersed across a number of setter methods,
making them less obvious and increasing the verbosity of the code
because a method needs to be created for every reference. In addi-
tion, setter methods make references that potentially should be
immutable subject to change, because the fields they are assigned
to cannot be declared final.

The main benefit of
setter-based injec-
tion is that it allows
for reinjection of
wires dynamically
at runtime.

■ Setter Injection Best Practices

There are a couple of best practices to keep in mind when using setter-based injec-
tion. First, setter methods should not be part of the service interface because 
they are implementation details. For example, LoanService does not define 
the method setCreditService(CreditService creditService)—the fact that
LoanComponent uses CreditService is an implementation detail clients should
not be aware of.

Second, avoid making setter methods protected, even though SCA allows this.
Doing so makes unit testing difficult because unit tests would need to either subclass
the component implementation to override the setters and make them public or use
reflection to set them directly. If setter methods are not part of a service contract,
there is no risk a client will inadvertently invoke them if they are made public.

@Reference
public setCreditService(CreditService creditService) {

// …
}

}

From the Library of Robert Ryan



ptg

Creating Component Implementations 57

Field-Based Injection 
The final form of injection supported by SCA is field-based. This
style enables fields to be directly injected with reference proxies
(see Listing 2.8).

A major advantage
of field-based injec-
tion is that it is
concise.

The main disadvan-
tage of field-based
injection is it is
difficult to unit test.

■ Perspective: What’s the Best Injection Style?

Several years ago, setter- versus constructor-based injection was an area of con-
tention among advocates of various Java-based IoC frameworks, notably Spring and
PicoContainer. Most modern IoC frameworks now support both approaches, as does
SCA.

In the process of writing this book, we debated between ourselves about the best in-
jection style. Jim favors constructor injection because it makes service dependencies
explicit. Mike prefers field-based injection because it limits verbosity. In the end,
like the debates among the various IoC frameworks a few years back, we went

Listing 2.8 Field-Based Injection 

public class LoanComponent   {

@Reference
protected CreditService CreditService;

//....
}

Field-injection follows the basic pattern set by method-injection
except that they may be private and public or protected. In the
absence of a name attribute declared on @Reference, the field
name is used as the name of the reference. Again, the preceding
example would be configured using the same composite syntax as
the previous examples.

A major advantage of field-based injection is that it is concise.
(Methods do not need to be created for each reference.) It also
avoids long constructor parameter lists. The main disadvantage of
field-based injection is it is difficult to unit test; component classes
must either be subclassed to expose reference fields or those fields
must be set through Java reflection. 

From the Library of Robert Ryan



ptg

58 Assembling and Deploying a Composite

Defining Properties
Consider the case where we want to add the capability to set con-
figuration parameters on the CreditComponent component, such
as minimum and maximum scores. SCA supports configuration
through component properties, which in Java are specified using
the @Property annotation. CreditComponent is modified to take
maximum and minimum scores in Listing 2.9.

around in circles and were unable to convince one another. This led us to agree on
an important point: Choosing an injection style is largely a matter of personal prefer-
ence. Pick the one that best suits the project requirements or the one project devel-
opers are used to and stay consistent. 

That said, there is one important difference between field and setter versus construc-
tor injection in SCA. Namely, field and setter injection can be dynamic. As we will
cover in Chapter 7, field- and setter-based references may be reinjected if a refer-
ence changes after a component has been instantiated. In contrast, constructor-
based references cannot be changed. If a reference may change, you need to use
field- or setter-based injection. On the other hand, if a reference must be immutable,
use constructor injection. 

Listing 2.9 Defining Component Properties

public void CreditComponent implements CreditService {

private int min;
private int max;

public CreditComponent (@Property(name="min") int min,
@Property(name="max") int max) {

this.min = min;
this.max = max;

}
// ....

}

Like a reference, a property name is specified using the “name”
attribute, whereas the “required” attribute determines whether a
property value must be provided in the composite file (that is, when
it is set to true) or it is optional (that is, it is set to false, the default).

From the Library of Robert Ryan



ptg

Assembling the LoanApplication Composite 59

In addition, properties follow the same injection guidelines as refer-
ences: constructor-, method-, and field-based injection are sup-
ported.

Given that most IoC frameworks do not distinguish between proper-
ties and references, why does SCA? The short answer is they are
different. References provide access to services, whereas properties
provide configuration data. Differentiating properties and references
makes it clear to someone configuring a component whether a
property value needs to be supplied or a reference wired to a
service. Further, as we will see in later chapters, references may
have various qualities of service applied to them, such as reliability,
transactions, and security. The benefits of distinguishing properties
and references also extends to tooling: Knowing if a particular value
is a property or reference makes for better validation and visual
feedback, such as displaying specific icons in graphical tooling.

Assembling the LoanApplication Composite
Listing 2.10 provides a complete version of the LoanApplication
composite we first introduced in the last chapter. Let’s examine it in
the context of the LoanComponent and CreditComponent imple-
mentations we have just discussed.

References provide
access to services,
whereas properties
provide configura-
tion data.

Listing 2.10 The LoanApplication Composite

<composite xmlns=http://www.osoa.org/xmlns/sca/1.0

targetNamespace="
http://www.bigbank.com/xmlns/loanApplication/1.0"

name="LoanApplication">

<component name ="LoanComponent">
<implementation.java class="com.acme.LoanComponent  "/>
<property name="currency">USD</property>
<reference name="creditService" target="CreditComponent "/>

<component>

<component name = "CreditComponent">
<implementation.java class="com.acme.CreditComponent "/>

<component>
</composite>

From the Library of Robert Ryan



ptg

60 Assembling and Deploying a Composite

Composites include targetNamespace and name attributes, which
together form their qualified name, or QName. The QName of the
LoanApplication composite is http://www.bigbank.com/xmlns/
loanApplication/1.0:LoanApplication. QNames are similar to the
combination of package and class name in Java: They serve to
uniquely identify an XML artifact—in this case, a composite. The
targetNamespace portion of the QName can be used for version-
ing. In the example, the targetNamespace ends with 1.0, indicat-
ing the composite version. The version should be changed any time
a nonbackward-compatible change is made to the definition (and
should not be changed otherwise). 

Continuing with the composite listing in Listing 2.10,
LoanComponent and CreditComponent are defined by the 
<component> element. Both component definitions contain an
entry, <implementation.java>, which identifies the Java class for
the respective component implementations. If the components
were implemented in BPEL, the <implementation.bpel> element
would have been used, as follows:

Composites include
targetNamespace

and name attributes,
which together
form their qualified
name, or QName.

<implementation.bpel process="bb:LoanApplicationProcess">

The <reference> element in the LoanComponent definition con-
figures the reference to CreditService, as follows: 

<reference name="creditService" target="CreditService"/>

Recalling that the LoanComponent implementation declares a refer-
ence requiring a CreditService in its constructor, we get the 
following:

public LoanComponent  (@Reference (name="CreditService") CreditService
➥creditService) {
// …
}

The <reference> element configures the creditService refer-
ence by wiring it to the CreditService provided by
CreditComponent. When an instance of LoanComponent is cre-
ated by the SCA runtime, it will pass a proxy to CreditService as
part of the constructor invocation.

Properties are configured in a composite file using the <property>
element. In the LoanApplication composite, CreditComponent
is configured with min and max values (see Listing 2.11).

From the Library of Robert Ryan

http://www.bigbank.com/xmlns/loanApplication/1.0:LoanApplication
http://www.bigbank.com/xmlns/loanApplication/1.0:LoanApplication


ptg

Assembling the LoanApplication Composite 61

Listing 2.11  Configuring Property Values

<component name="CreditComponent">
<implementation.java class=".."/>
<property name="min">300</property>
<property name="max">850</property>

</component>

The property values will be injected into the component by the
runtime when a component instance is created.

It is important to note the naming convention used for configuring
references and properties defined on setter methods. In the absence
of an explicit name attribute on @Reference or @Property anno-
tation, the name of the reference is inferred from the method name
according to JavaBean semantics. In other words, for method
names of the form “setXXXX,” the set prefix is dropped and the
initial letter of the remaining part is made lowercase. Otherwise,
the value specified in the name attribute is used. 

An interesting characteristic of reference and property configuration
in a composite is that the format remains the same, regardless of the
style of injection used in the implementation. For example, the
following component entry 

<component name="LoanComponent">
<implementation.java class=".."/>
<reference name="creditScoreService" target="CreditComponent "/>

</component>

configures a reference specified on a constructor parameter,

public LoanComponent  (@Reference(name="creditScoreService" 
➥CreditService CreditService) {

// …
}
or a setter method,

@Reference

public void setCreditScoreService(CreditService creditScoreService){

//…
}

or a field:

@Reference

protected CreditService creditScoreService;

From the Library of Robert Ryan



ptg

62 Assembling and Deploying a Composite

Binding a Web Service Endpoint 
The LoanApplication composite would be more useful if its serv-
ices were made accessible to clients that are outside the SCA do-
main—for example, to independent mortgage broker systems. In
SCA, services are exposed to external clients over a binding.
Bindings are used to specify the communication protocol over
which a service is available, such as web services, RMI, or plain
XML over HTTP (without the SOAP envelope). A service may be
exposed over more than one binding, providing multiple ways for
external clients to invoke it. For example, the LoanService could
be bound to web services and a proprietary EDI protocol (see
Figure 2.5).

Bindings are used
to specify the com-
munication proto-
col a service is
available over, such
as web services,
RMI, or plain XML
over HTTP.

Bindings can be
added or removed
in runtimes that
support dynamic
updates.

Web Services
Binding

Proprietary EDI
Binding

Runtime binds the 
Loan Service to Web
Services and an EDI
transport.

Loan Service

Figure 2.5 Binding the LoanService

Moreover, bindings can be added or removed in runtimes that sup-
port dynamic updates. For example, after clients have transitioned
to using web services, the EDI binding for the LoanService inter-
face could be deprecated and eventually phased out. Alternatively,
a high-speed binary binding could be added for clients requiring
improved performance (such as a binding based on the new W3C
Efficient XML for Interchange format, EXI).

Service bindings are specified in the composite file using a combi-
nation of service and binding elements. Listing 2.12 binds the
LoanService interface to web services.

From the Library of Robert Ryan



ptg

Packaging the LoanApplication Composite 63

When LoanComponent is activated in the domain, the SCA infra-
structure is responsible for making LoanService available as a
web service. 

The exact mechanics of how this binding is achieved are runtime-
dependent. However, all SCA implementations must perform the
following steps (which will generally be transparent to the person
deploying a composite). First, if no WSDL is specified, the runtime
will need to generate it based on the LoanService Java interface.
This will entail creating a WSDL document similar to the one listed
at the beginning of the chapter, but also including WSDL binding
and WSDL service elements. (The algorithm for generating the
WSDL is standardized by SCA.) After the WSDL is generated, the
runtime will need to make the service and WSDL available to
clients as a web service at the endpoint address listed in the WSDL.
Depending on the runtime, this may involve deploying or dynami-
cally configuring middleware such as creating a HTTP listener for
the service on a particular machine. Fortunately, SCA hides the
complexities of this process, so people deploying composites need
not worry about how this is actually done.

Packaging the LoanApplication Composite
SCA specifies one interoperable packaging format for composite
files and associated artifacts such as Java classes, XSDs, and
WSDLs: the ZIP archive. However, to accommodate the diverse
range of packaging formats used by various programming
languages, SCA allows runtimes to support other formats in addi-
tion to the ZIP archive. A C++ runtime may accept DLLs; a runtime
may also support various specializations of the ZIP format. Fabric3
also supports JARs and Web Archives (WARs).

SCA ZIP archives include a metadata file, sca-contribution.xml, in
the META-INF directory. The sca-contribution.xml file provides
SCA-specific information about the contents of the archive, most
notably the composites available for deployment. In general, one

SCA specifies one
interoperable pack-
aging format for
composite files and
associated artifacts
such as Java classes,
XSDs, and WSDLs:
the ZIP archive.

Listing 2.12 Binding the LoanService Interface as a Web Service Endpoint

<service name="LoanService">
<binding.ws>

</service>

The sca-contribution.
xml file provides SCA-
specific information
about the contents of
the archive.

From the Library of Robert Ryan



ptg

64 Assembling and Deploying a Composite

deployable composite will be packaged in an archive, although in
some cases (which we discuss in later chapters), no deployable
composites or multiple deployable composites may be present.

The name sca-contribution.xml derives from SCA terminology: A
contribution is an application artifact that is “contributed” or made
available to a domain. A contribution can be a complete composite
and all the artifacts necessary to execute it, or it might just contain
artifacts to be used by composites from other contributions, such 
as a library, XSDs, or WSDLs. LoanApplication is packaged as 
a complete composite. Its sca-contribution.xml is shown in 
Listing 2.13.

A contribution is an
application artifact
that is “contributed”
or made available 
to a domain.

SCA does not spec-
ify a location for
composite files;
they can be in-
cluded in any
archive directory.

Listing 2.13 A Contribution Manifest

<contribution xmlns=http://www.osoa.org/xmlns/sca/1.0

xmlns:bb="http://www.bigbank.com/xmlns/lending/composites/1.0">

<deployable composite="bb:LoanApplication"/>

</contribution>

The <deployable> element identifies a composite available for
deployment contained in the archive. In this case, it points to the
name of the LoanApplication composite, as defined in the 
<composite> element of its .composite file:

<composite  xmlns="http://www.osoa.org/xmlns/sca/1.0"

targetNamespace="http://www.bigbank.com/xmlns/lending/composites/1.0"
name="LoanApplication"…>

Unlike sca-contribution.xml, SCA does not specify a location for
composite files; they can be included in any archive directory.
However, as a best practice, it is recommended that deployable
composite files be placed alongside sca-contribution.xml in the
META-INF directory so they can be easily found. 

From the Library of Robert Ryan



ptg

Using Fabric3 65

Deploying the LoanApplication Composite
Composites can be deployed to a domain using a variety of mecha-
nisms. In a test environment, deployment may involve placing the
contribution archive in a file system directory. In production envi-
ronments, where tighter controls are required, deployment would
typically be performed through a command-line tool or script.

Conceptually, deployment involves contributing a composite to a
domain and activating its components, as depicted in Figure 2.6.

Archive is contributed 
to a domain and the 
composite is activated.

WSDLSCDL

Contribution Archive

Loan Component Credit Component

SCA Runtime SCA Runtime

SCA Domain

Figure 2.6 Deploying and activating the LoanApplication composite

When the LoanApplication composite is deployed, the SCA run-
time instantiates LoanComponent and CreditComponent. During
this process, because LoanService is configured with the web
services binding, it is exposed as a web service endpoint. When the
LoanApplication composite is activated in the domain, its com-
ponents are available to process client requests.

Using Fabric3 
Having completed the walkthrough of assembling and packaging
the LoanApplication composite, we put this knowledge to prac-
tice by deploying a sample application to the Fabric3 SCA runtime. 

From the Library of Robert Ryan



ptg

66 Assembling and Deploying a Composite

Fabric3 is a full-featured, open source SCA implementation. It has a
highly modular design with preconfigured distributions for a num-
ber of environments. For example, Fabric3 has distributions that
can be embedded in a servlet container, such as Tomcat or Jetty,
and specific Java EE application servers, including JBoss, WebLogic,
and WebSphere. 

Fabric3 has a modular architecture similar to Eclipse. The core
distributions implement basic SCA functionality, whereas additional
features are added through extensions. This allows Fabric3 to re-
main lightweight and allows users to include only the features re-
quired by their applications. For example, support for bindings
such as web services is added as extensions to the core. 

To get started with deploying the loan application, you will need to
set up Fabric3 and your development environment. We assume that
you have JDK 5.0 installed on your machine. To configure your
machine, perform the steps outlined in the following sections. 

Download Fabric3 LoanApplication Sample
Fabric3 provides a LoanApplication sample that we use in this
hands-on exercise. The sample is a full-fledged version of the loan-
processing system covered in this chapter and includes integration
with JPA and a web application front-end. It can be downloaded
from the same place the Fabric3 distribution is located:
http://www.fabric3.org/downloads.html.

The sample contains a utility for downloading the Fabric3 runtime
and extensions. Follow the instructions to run the utility and install
the runtime.

Verify the Installation
To verify that the server has been successfully installed, go to the
bin directory where it has been installed and execute java –jar
server.jar. This will start the server.

Build and Deploy the Application
We are now ready to build and deploy the application. First, follow
the instructions for building the sample application. After this is
done, start the Fabric3 server by issuing the following command
from the bin directory where it is installed:

java –jar server.jar 

Fabric3 has a mod-
ular architecture
similar to Eclipse.

From the Library of Robert Ryan

http://www.fabric3.org/downloads.html


ptg

Summary 67

When the server starts, it activates an SCA domain that is contained
in a single process. In a distributed environment, multiple Fabric3
servers participate in a single domain that spans processes.

After the server has booted, copy the loan application JAR that was
built in the previous step from the target directory to the deploy
directory of the Fabric3 server installation. The server will then
deploy the application to the domain.

Invoking the LoanApplication Service 
After the application has been deployed, we can invoke the
LoanService interface. The sample application contains a JAX-WS
client that can be used to test-drive the service. Follow the instruc-
tions for launching the test-client from the command line.

This completes the hands-on walkthrough of building and deploy-
ing an SCA application with Fabric3. At this point, it is worth
spending some time familiarizing yourself with the application
code. As you will see, most of the tedious tasks of generating
WSDLs and exposing web services are handled transparently by the
runtime. In the following chapters, we expand the loan application
by introducing additional SCA features and capabilities. However,
the basic structure and simplicity of the code will remain the same.

Summary
We have covered significant ground in this chapter, providing a
detailed discussion of key SCA concepts and design principles.
Specifically, we have accomplished the following:

� Defined service contracts

� Written component implementations using the SCA Java
programming model

� Configured components as part of a composite

� Exposed an SCA service using web services

� Deployed a composite to an SCA runtime

With this foundation in place, we turn our attention in the next
chapter to designing and building loosely coupled services using
Java.

From the Library of Robert Ryan



ptg

This page intentionally left blank 

From the Library of Robert Ryan



ptg

3

Service-Based
Development Using Java

SCA is designed to support applications assembled from services
written in multiple programming languages. This chapter provides
the background and understanding necessary to implement services
in arguably the most important of those languages for enterprise
development: Java. 

SCA includes a full-featured programming model for implementing
services in Java. The primary goal of this programming model is to
provide the capabilities necessary in Java to build loosely coupled
services. Moreover, it attempts to do so in a way that is simpler to
use than existing Java-based alternatives, including EJB and Spring.

This chapter focuses on the basics of loosely coupled services, in-
cluding service contract design, asynchronous communications, and
component life cycle. Specifically, this chapter covers the following:

� Designing service contracts

■ Implementing asynchronous interactions and callback pat-
terns

■ Managing component life cycle, state, and concurrency 

After completing this chapter, you will have a solid grounding in
implementing Java-based services and an understanding of best
practices to apply when designing those services. 69

SCA includes a full-
featured program-
ming model for
implementing
services in Java.

From the Library of Robert Ryan



ptg

70 Service-Based Development Using Java

One of the key
lessons learned
from distributed
objects is that ap-
plications must be
carefully designed
not to introduce
bottlenecks by
making too many
remote calls or by
placing unneces-
sary requirements
on them such as
transactionality.

Service-Based Development
As we discussed in the first chapter, a key goal of SCA is reuse:
Application functionality and code that can be shared by multiple
clients is more valuable than functionality and code that cannot. 

This goal is far from novel. Many technologies claim to promote
code reuse. Arguably, the most successful technologies in this re-
spect have been object-oriented languages, which did much to pro-
mote intra-process reuse, or calls between code hosted in the same
process. By organizing code into classes and interfaces, object-
oriented languages allowed complex applications to be assembled
from smaller, reusable units that are easier to maintain and evolve.

Yet code would be even more valuable if reuse were not limited to
a process or application. In other words, if clients could connect
remotely with existing or separately deployed code, the code would
be even more valuable. In the 1990s and early 2000s, DCE,
CORBA, DCOM, and Java EE attempted to replicate the success of
object-oriented technology in distributed applications by applying
many of the same principles to remote communications. In particu-
lar, these technologies were built around the concept of “distributed
objects”: units of code that could be invoked remotely to perform a
task. The goal of these frameworks was to enable objects to be in-
voked across process boundaries similar to the way that object-
oriented enabled objects could be invoked locally. 

Unfortunately, practical experience highlighted a number of prob-
lems with this approach. The most important of these was that local
and remote invocations are different and those differences cannot
be managed away by middleware. Remote communication intro-
duces latency that affects application performance. This is com-
pounded when additional qualities of service are required, such as
transactions and security. One of the key lessons learned from dis-
tributed objects is that applications must be carefully designed not
to introduce bottlenecks by making too many remote calls or by
placing unnecessary requirements on them, such as transactionality.

SCA rejects the notion that object-oriented principles are to be em-
ployed at all levels of application design. A core tenet of SCA is that

From the Library of Robert Ryan



ptg

Service-Based Development 71

development of remote services is unique. For remote communica-
tions, developers rely on the techniques of loose coupling that we
describe in this chapter. 

Most applications, however, cannot be restricted to remote invoca-
tions. In order to achieve scalability, performance, and avoid un-
necessary complexity, application code will need to make many
more local calls than remote ones. In these cases, SCA stipulates
that developers apply principles of good object-oriented design. In
addition to loosely coupled remote services, we also detail the
facilities provided by the SCA Java programming model for creating
services intended for use in a single process, which follow tradi-
tional object-oriented patterns. 

Protocol Abstraction and Location Transparency
Protocol abstraction and location transparency are commonly con-
fused. Understanding the distinction between the two is fundamen-
tal to understanding the SCA programming model. SCA simplifies
development by handling the intricacies of remote communica-
tions. What it doesn’t do is oversimplify the nature of those com-
munications and the impact they have on application code.

Protocol abstraction involves separating the specifics of how re-
mote invocations are performed from application code by requiring
the hosting container to manage communications. For example, the
following service invocation could be made using web services or
an alternative protocol such as RMI—the host container handles
the specifics of flowing calls while the code remains unchanged
(see Listing 3.1).

Protocol abstraction
involves separating
the specifics of how
remote invocations
are performed from
application code by
requiring the hosting
container to manage
communications.

Listing 3.1 Invoking a Remote Service

public class LoanComponent implements LoanService {
// ….
public LoanResult apply(LoanRequest request) {
//… process the request and invoke the credit service 
CustomerInfo info = request.getCustomerInfo();
CreditService.checkCredit(info);
//.. continue processing
}

From the Library of Robert Ryan



ptg

72 Service-Based Development Using Java

In contrast, location transparency allows code to treat local and
remote invocations as if they were the same. Protocol abstraction
does not mean that client code can be written in the same way
irrespective of whether it is making a local or remote call. Consider
the example in Figure 3.1 again where the LoanComponent invokes
the remote CreditService. Because the invocation is remote, the
client—in this case, the LoanComponent—will need to account for
a number of additional factors. Perhaps the most important is net-
work latency, which may result in the call not completing immedi-
ately. Second, network interruptions may result in the
CreditService being temporarily unavailable. In these cases,
the SCA runtime may throw an unchecked org.osoa.sca.
ServiceUnavailableException, and the client must decide
whether to retry, ignore the exception and let it propagate up the
call stack, or perform some other action. In the example, the client
allows the exception to propagate (it’s unchecked, so it does not
need to be declared in a throws clause) and be handled by its
caller. If the operation had required a degree of reliability, the
LoanComponent could have caught the exception and attempted to
retry the call.

So, protocol abstraction does not imply location transparency. It’s
also important to note that the converse is also true: Location trans-
parency does not imply protocol abstraction. Programming models
that provide location transparency do not necessarily allow com-
munications protocols to be changed. CORBA and DCOM serve as
good examples. Both attempt to treat remote and in-process com-
munications in the same manner but support only a single remote
protocol. CORBA remains tied to the IIOP protocol. Similarly,
DCOM is dependent on its own proprietary binary protocol. 

Location trans-
parency allows
code to treat local
and remote invoca-
tions as if they were
the same.

Protocol abstraction
does not imply
location
transparency.

Perspective: EJB and the Myth of Location Transparency

Contrary to conventional wisdom, Enterprise Java Beans (EJB) did not make the mis-
take of assuming location transparency. In fact, it has long been known that remote
objects must be treated differently from local objects. RMI specifically addressed the
fallacy that networks are always up by requiring that remotable methods throw
java.rmi.RemoteException. RemoteException was also defined to be a

From the Library of Robert Ryan



ptg

Designing Remotable Services 73

checked exception, requiring clients to handle the exception or rethrow it. In this
way, developers were forced to think about the fact that a remote operation is being
called. Java EE took this a step further by integrating transaction management,
thereby providing more assistance in recovering from the failures that are inherent
in distributed systems. 

Unfortunately, one fallacy that early versions of EJB did not address was the myth
that the performance overhead of remote calls is negligible. The result was that de-
velopers found themselves creating remote EJBs with fine-grained interfaces.
Applications developed in this manner had so many calls through remotable inter-
faces that performance was degraded. Performance even suffered in cases where the
invoked EJB was co-located with its client, because the EJB specification required
invocation parameters to be copied in order to simulate remoteness.

EJB also had a complexity penalty. Because remote operations were required to
throw RemoteException, developers were forced to deal with handling these ex-
ceptions even when, in practice, the called object would never be remote. EJB was
later revised to include local session beans, which introduced the ability to perform
in-process invocations. This concession, however, proved to be insufficient, as EJB
never achieved the widespread adoption it was expected to garner.

Having established that the SCA programming model is based on
the goal of protocol abstraction rather than location transparency,
let’s look more closely at what is involved in building remotable
services.

Designing Remotable Services
In SCA, remotable services are made available to multiple clients
across process boundaries. These clients may be components in the
same domain or, if the service is exposed over a binding, another
system altogether. 

Although the specific qualities of well-architected SCA applications
will vary, a common indicator of good design is that an application
will have only a few remotable services that expose a set of general
operations. Examples of general operations include “apply for
loan,” “get credit rating,” “inventory check,” and “place back-
order.” Think of remotable services as an API. As with a good API,

The SCA program-
ming model is
based on the goal
of protocol abstrac-
tion rather than
location
transparency.

From the Library of Robert Ryan



ptg

74 Service-Based Development Using Java

remotable services should be concise, easy to understand, and
limited. Moreover, they should have the following attributes:

■ Remotable services account for the network—Remotable
services should account for the realities of the physical
network they are called over, particularly latency and con-
nectivity interruptions. In particular, they should limit the
number of exchanges required between a client and service
provider.

■ Remotable service contracts take versioning into
account—Remotable service contracts should be evolvable.
Rarely do APIs “get it right” in the first iteration. Further-
more, new requirements often arise after an application has
gone into production. Barring fundamental changes, it
should be possible to version services without breaking
compatibility with existing clients.

■ Remotable services limit the assumptions made about
clients—Remotable services should limit the assumptions
they make about clients. Most important, they should not
assume that clients will be written in the same language
they are written in.

To achieve these qualities, SCA relies on techniques of loose cou-
pling developed by integration technologies—in particular, 
message-oriented middleware (MOM). Loose coupling can take a
variety of forms. The two most important forms of loose coupling in
SCA are coarse-grained services and asynchronous communica-
tions. We deal with designing coarse-grained service contracts in
the next section, followed by a detailed discussion of how SCA
allows for asynchronous communications via non-blocking opera-
tions and callbacks in subsequent sections.

SCA relies on tech-
niques of loose
coupling developed
by integration tech-
nologies—in
particular, message-
oriented middle-
ware (MOM).

Perspective: How Loosely Coupled Should Services Be?

A common question that arises when designing service-based applications is how
loosely coupled remote communications should be. One school of thought says that
services should be as loosely coupled as possible and, in order to achieve this, an

From the Library of Robert Ryan



ptg

Designing Remotable Services 75

Enterprise Service Bus (ESB) should be used to route messages between all clients
and providers. 

ESBs offer the following forms of loose coupling:

� Target abstraction—The capability to dynamically route service requests to
service providers based on message content or type.

� Protocol translation—The capability to transform a service request from a
client over one protocol into the protocol supported by the service provider.

These capabilities are provided through a “service bus” that is placed between the
client and service provider (see Figure 3.1). 

Figure 3.1 A service bus mediates the communications between a client and service
provider.

When clients are targeted at the bus instead of the actual service provider, it is pos-
sible to change the provider by simply changing the bus configuration. This can usu-
ally be done without any programming, typically through an administration
console. This gives the added flexibility of allowing the bus to use a different proto-
col to call the service provider than is used to communicate with the client.

SCA takes a different approach to loose coupling by asserting that services should be
no more loosely coupled than necessary. Loosely coupled systems are generally
more difficult to write and complex to manage. Moreover, introducing mediation
can result in an unnecessary and potentially expensive invocation hop. As shown in
Figure 3.2, in an ESB, a message is sent from the client to an intermediary and on to
the target service, creating three hops.

Client Service Provider

Service Proxy

ESB

From the Library of Robert Ryan



ptg

76 Service-Based Development Using Java

Figure 3.2 ESBs introduce an additional hop.

In contrast, with SCA, the decision to introduce mediation can be deferred until after
an application has gone into production (see Figure 3.3). This avoids introducing the
performance penalty associated with an extra hop until mediation is needed. If a
service contract changes, an SCA runtime can introduce an intermediary in the wire
between the client and service provider dynamically that transforms the request to
the new format.

Figure 3.3 SCA and late mediation 

Because SCA abstracts the mechanics of remote calls from application code, media-
tion can be introduced in much later stages of an application life cycle without forc-
ing code modifications. 

Client Service Provider

ESB

1

2

3

Mediation
Component

From the Library of Robert Ryan



ptg

Coarse-Grained Services 77

Coarse-Grained Services
In SCA, remotable service contracts should have coarse-grained
operations that take document-centric parameters. Let’s examine
what this means. Coarse-grained operations combine a number of
steps that might otherwise be divided into separate methods. To
better understand how coarse granularity is achieved in practice,
we start with a counter-example. Listing 3.2 shows a version of the
LoanService using fine-grained operations.

Remotable service
contracts should
have coarse-grained
operations that take
document-centric
parameters. Coarse-
grained operations
combine a number
of steps that might
otherwise be di-
vided into separate
methods.

One area where an ESB has an advantage over an SCA runtime is in target abstrac-
tion. SCA provides no mechanism for performing content-based routing where 
a service provider is selected dynamically based on parameter values. To effect 
content-based routing in SCA, a client would need to be wired to a component that
made routing decisions and forwarded the request to the appropriate service
provider.

Listing 3.2 An Example of a Fine-Grained Service Contract

@Remotable
public interface LoanService {

String apply(float amount, float down);

void supplyCreditInfo(String loanId, String ssn);

LoanResult getResult(String loanId);
}

In the preceding fine-grained version, applying for a loan is done
through a series of requests to the LoanService.

Although a fine-grained design seemingly allows for more flexibility
(clients can supply the required information in stages), it can poten-
tially introduce serious performance bottlenecks. Back to Figure 3.2,
each invocation of the LoanService—apply, supplyCreditInfo,
and getResult—entails a separate network roundtrip. This can be
extremely expensive, as parameter data needs to be marshaled and
unmarshaled when the invocation travels across the network. 

From the Library of Robert Ryan



ptg

78 Service-Based Development Using Java

In contrast, the LoanService version used in the last chapter
processes a request using one operation by requiring that all re-
quired data be provided upfront (see Listing 3.3). 

Coarse-grained
operations are
usually document-
centric, which
means they take
one parameter that
encapsulates re-
lated data.

Document-centric
contracts are rec-
ommended for
remotable services
because they are
easier to evolve
while maintaining
compatibility with
existing clients.

Listing 3.3 An Example of a Coarse-Grained Service Contract

@Remotable
public interface LoanService {

LoanResult apply(LoanRequest request);
}

The most important characteristic of the coarse-grained version in
Figure 3.6 is that it optimizes network roundtrips, eliminating a
potentially costly bottleneck. Instead of the three roundtrips
required by the fine-grained version, the coarse-grained
LoanService requires only one.

Another important difference between fine- and coarse-grained
interfaces is the number of parameters operations take. With fine-
grained interfaces, operations commonly take multiple parameters.
In contrast, coarse-grained operations are usually document-
centric, which means they take one parameter that encapsulates
related data. The LoanResult.apply(LoanRequest request)
operation shown previously in Listing 3.3 is document-centric 
because it takes a single parameter of type LoanRequest.

Document-centric contracts are recommended for remotable serv-
ices because they are easier to evolve while maintaining compati-
bility with existing clients. For example, if BigBank decided to
collect additional optional loan information that would be used to
offer interest rate discounts, it could do so by adding additional
fields to the LoanRequest type. Existing clients would continue to
function because the additional fields would simply be ignored. In
contrast, the fine-grained contract would more likely require modi-
fications to the operation signature, breaking existing clients.

Using coarse-grained operations that take document-centric param-
eters decreases the amount of inter-process communication in an
application. This not only improves performance by limiting net-
work traffic, it also makes writing robust applications easier
because developers are required to handle issues related to service
unavailability and versioning at fewer places in the application.

From the Library of Robert Ryan



ptg

Coarse-Grained Services 79

However, there is also a disadvantage to the coarse-grained ap-
proach—error handling can be much more difficult. In the coarse-
grained version of the LoanService, applicant-related data is
contained in the LoanApplication class, which is passed to the
former as one parameter. This makes the source of errors in part of
the data more difficult to identify and respond to. For example, an
invalid ZIP code (postal code) may occur in the applicant’s or prop-
erty address. This requires a mechanism for reporting the source of
errors. In addition, the application could have a number of prob-
lems with it, requiring a way to aggregate and report them in an
exception or result data. Handling errors in this way is more com-
plicated than it is with the fine-grained contracts, but the advan-
tages of loose coupling outweigh the added complexity.

Using WSDL for Service Contracts
Remotable services should be loosely coupled with their clients by
making limited assumptions about them. This entails not assuming
clients will be written in Java. When defining remotable service
contracts, it is therefore good practice to design for language inter-
operability. One of the key pitfalls in doing so is the translation of
data types across languages. In particular, operation parameter
types may not map cleanly or at all in different languages. Simple
types such as strings and numerics generally do not present difficul-
ties. However, user defined-types, especially complex types such as
classes, often pose challenges. To achieve interoperability, it may
be necessary to create a language-neutral representation of the
service contract that also defines operation parameter types. 

As we have seen in Chapter 2, “Assembling and Deploying a
Composite,” the most common way to do this today is through
WSDL. A WSDL document describes a service or set of services
and their operations. SCA runtimes and IDEs typically provide tool-
ing that makes it easier to work with WSDL. For example, some
tools allow the service contract to be written in Java first as an inter-
face and a WSDL generated from it. This is usually the easiest ap-
proach, at least for Java developers. However, some organizations
prefer a top-down approach where service contracts are crafted
directly in WSDL. This approach, although more time-consuming
and potentially difficult, has the advantage of better accommodat-
ing interoperability because the contract is defined in a language-
neutral way. When starting top-down, Java interfaces that

A WSDL document
describes a service 
or set of services and
their operations.

From the Library of Robert Ryan



ptg

80 Service-Based Development Using Java

application code uses are created based on the WSDL contract.
Fortunately, many tools automate this process by generating the
interfaces from WSDL.

WSDL Basics

In this book, we don’t explain the details of WSDL. At some point, it is worth be-
coming more familiar with the technology. The WSDL 1.1 (http://www.w3.
org/TR/wsdl) and WSDL 2.0 (http://www.w3.org/TR/ wsdl20-primer, http://www.w3.
org/TR/wsdl20, http://www.w3.org/TR/ wsdl20-adjuncts, and http://www.w3.org/TR/
wsdl20-bindings) specifications are options, although they can be tedious reading.
For a concise introduction, we recommend Understanding Web Services by Eric
Newcomer (Addison-Wesley, 2002), which is in the same series as this book. In the
meantime, we will briefly summarize the main WSDL concepts that relate to SCA.

In WSLD 1.1, a port is some unit of code that is reachable at a given network ad-
dress over a particular protocol. This unit of code is often referred to as an endpoint.
For example, an endpoint may be located at http://bigbank.com/ creditService us-
ing the HTTP protocol. A port contains a set of operations that process messages in a
given format. The CreditService endpoint has a #rate operation that takes a cus-
tomer ID to return a credit rating for. When the endpoint is invoked, it receives a
message containing this data via HTTP encoded in a specified format—for example,
SOAP 1.1. 

Ports are broken down into a number of separate elements. A portType defines the
set of operations for an endpoint. It is roughly analogous to an interface in Java. A
binding defines the message format (for example, SOAP 1.1) and protocol details for
a portType (for example, HTTP). Finally, a port specifies an address where the end-
point can be contacted. WSDL separates out these elements so that they can be
reused. Two ports can use the same portType but different bindings. Two different
endpoints would be created that perhaps were available over different protocols but
offered the same set of operations to clients.

WSDL 1.1 somewhat confusingly (at least from the perspective of SCA) also defines
the concept of a “service,” which is different than an SCA service. In WSDL 1.1, a
service is a collection of related ports. 

In response to limitations and complaints about the complexity of WSDL 1.1, WSDL
2.0 introduced several important changes. Although we will not document the
changes here, there are two that you need to be aware of. First, WSDL 2.0 has 

From the Library of Robert Ryan

http://www.w3.org/TR/wsdl
http://www.w3.org/TR/wsdl
http://www.w3.org/TR/wsdl20-primer
http://www.w3.org/TR/wsdl20
http://www.w3.org/TR/wsdl20
http://www.w3.org/TR/wsdl20-adjuncts
http://www.w3.org/TR/wsdl20-bindings
http://www.w3.org/TR/wsdl20-bindings
http://bigbank.com/


ptg

Coarse-Grained Services 81

Service Contracts and Data Binding
All SCA runtimes must support a mechanism for serializing parame-
ter types remotely. This mechanism is commonly referred to as
“data binding.” An SCA runtime may support one or several data-
binding technologies, depending on the remote communication
protocol used. For example, an SCA runtime may support one data-
binding technology for serializing parameter values as XML and
another for binary protocols. Some data-binding technologies place
special requirements on parameter types that you may need to take
into account when designing service contracts. Again, because
data-binding technologies are vendor-specific, different SCA run-
times may vary in their approach. Books have been written on the
subject of data binding, and we will not cover it in depth here other
than to discuss where it fits into remotable service design.

The most prevalent data-binding technologies when working with
XML today are XML Schema-based, including JAXB (part of JDK
since version 6), Service Data Objects (SDO), and XmlBeans.
Despite their differences, JAXB, SDO, and XmlBeans (and most
other data-binding technologies) use XML Schema as the way of
defining types for XML in order to map from Java types (for
example, classes and primitives) to XML and vice versa (see 
Figure 3.4).

All SCA runtimes
must support a
mechanism for
serializing parame-
ter types remotely.
This mechanism is
commonly referred
to as “data 
binding.”

renamed portType to interface and port to endpoint. Second, a service is now 
restricted to one interface (as opposed to WSDL 1.1, which allowed multiple
portTypes).

Starting from Java or WSDL largely comes down to weighing the pros and cons of
each approach and personal preference. Whether you choose WSDL first or code
first, you will also need to account for operation parameter serialization. As we dis-
cussed in Chapter 2, remote calls must serialize parameter values over a communi-
cation transport. WSDL defines the format for flowing parameter values using XML
Schema. If a service provider is implemented in Java, there must be a way of deseri-
alizing parameter values into Java objects. How parameter values are deserialized
depends on the data-binding technology used by the SCA runtime.

From the Library of Robert Ryan



ptg

82 Service-Based Development Using Java

An SCA runtime
uses a data-binding
technology to trans-
late data sent as
XML from a client
to a service.

Java Types

XMLXML
Schema

Figure 3.4 JAXB, SDO, and XmlBeans use XML Schema to map be-
tween Java and XML.

JAXB, SDO, and XmlBeans specify rules for mapping from schema
to Java types and vice versa. These type mappings are used to con-
vert data between XML and Java—for example, mapping
java.lang.String to the schema type xs:string.

An SCA runtime uses a data-binding technology to translate data
sent as XML from a client (often written in a language other than
Java) to a service. To do so, it uses its schema-based mapping 
rules to translate the XML data into its Java representation (see
Figure 3.5).

Parameter objects are
serialized according to data
binding type mappings. Parameter objects are

deserialized according to 
data binding type mappings.

Non-Java
Client

<xml/>

Figure 3.5 Marshaling to XML 

Similarly, an SCA runtime uses a data-binding technology to serial-
ize data to XML when a call is made to a remote service. 

Fortunately, although data-binding discussions can become com-
plex and esoteric, XML data-binding technologies are relatively
easy to use. JAXB, SDO, and XmlBeans all support the “start-from-
schema” approach where a combination of WSDL and XML

From the Library of Robert Ryan



ptg

Coarse-Grained Services 83

Schema are used to define the service contract and its operation
parameters. In this approach, Java classes are derived from WSDL
and XML Schema. An SCA runtime or an IDE may provide tooling
that automates this process by generating Java classes.

Some data-binding technologies also support “start-with-Java.” In
this approach, rather than having to deal with the complexity of
XML, developers can define their interfaces in Java and have WSDL
and XML Schema generated. An SCA runtime may use one of these
data-binding technologies to enable developers to write service
contracts entirely in Java. Fabric3, for example, uses JAXB.

JAXB is arguably one of the easiest “start-from-Java” data-binding
technologies. Being part of the JDK since version 6, it certainly is
the most prevalent. JAXB does a good job of specifying default
mappings so developers don’t have to. JAXB makes heavy use of
annotations to map from Java to XML. For example, to bind the
LoanApplication type to XML using JAXB, @XmlRootElement is
added as an annotation to the class (see Listing 3.4).

Perspective: Which Data Binding Should You Choose?

A common misperception is that SCA requires or mandates SDO as its data-binding
technology. In fact, SCA is data binding-agnostic and is intended to work equally
well with JAXB, XmlBeans, and other like technologies. Selecting a data-binding so-
lution will often be constrained by the runtime, which may support only one or a
limited number. In cases where there is a choice, selection should be based on the
requirements of an application. 

JAXB is particularly well-suited for interacting with data in a strongly typed fashion,
namely as Java types. This is perhaps the most common development scenario, as

Listing 3.4 A JAXB Complex Type 

package com.bigbank.message; 

import javax.xml.bind.annotation.XmlRootElement;

@XmlRootElement
public class LoanApplication {

//....
}

From the Library of Robert Ryan



ptg

84 Service-Based Development Using Java

component implementations are generally aware of the data types they will be ma-
nipulating in advance. Other major advantages of JAXB are its relative simplicity
and its capability to use plain Java Objects (POJOs) without the need to generate
special marshaling classes. When combined with SCA, JAXB provides a fairly trans-
parent solution for marshaling data to and from XML. For example, in the following
extract, the JAXB LoanRequest and LoanResult objects can be unmarshaled and
marshaled transparently by the SCA runtime:
public class LoanComponent implements LoanService {
// ….
public LoanResult apply(LoanRequest request) {
//… process the request and invoke the credit
service
CustomerInfo info = request.getCustomerInfo();
CreditService.checkCredit(info);
//.. continue processing to receive a result code
LoanResult result = new LoanResult();
result.setCode(code)
return result;

}
A major disadvantage of JAXB is that although it provides strong support for “start-
from-Java” and “start-from-schema” development scenarios (that is, generating a
schema for existing Java classes and generating Java classes from an existing
schema, respectively), it does not handle “meet-in-the-middle” well. The latter is
important in situations where existing schemas must be reconciled with existing
Java types. 

Another feature lacking in JAXB is support for an API to dynamically access XML
data. In situations where a component may not statically know about the data types
it will manipulate, SDO and XMLBeans provide a dynamic API for introspecting and
accessing data.

A significant downside of SDO and XmlBeans is their current lack of support for
starting with Java. Both data-binding technologies require Java types to be generated
from pre-existing schemas. This introduces another step in the development process
(generating the Java types) and slightly complicates application code as SDO and
XmlBeans require generated types to be instantiated via factories. 

In many cases, JAXB is a reasonable choice given its simplicity and reliance on
POJOs. However, application requirements may vary where SDO, XmlBeans, or an
alternative technology are more appropriate. Fortunately, SCA is not tied to a partic-
ular data-binding solution and can accommodate a number of different approaches
to working with XML.

From the Library of Robert Ryan



ptg

Coarse-Grained Services 85

Pass-By-Value Parameters
An important characteristic of remotable services is that operation
parameters are pass-by-value, as opposed to pass-by-reference.
The main difference between the two types concerns visibility of
operation parameters. When pass-by-value parameters are modi-
fied by the component providing a service, they are not visible to
the client. When pass-by-reference parameters are modified by a
component providing a service, they are visible to the client. In
Java, pass-by-reference means a reference to the same parameter
object is shared by the client and service provider. Pass-by-value
generally entails copying parameters or enforcing a copy-on-write
scheme—that is, lazily copying when data is modified. For
example, the following example demonstrates the difference be-
tween pass-by-value and pass-by-reference:

When pass-by-
value parameters
are modified by the
component provid-
ing a service, they
are not visible to
the client. When
pass-by-reference
parameters are
modified by a com-
ponent providing a
service, they are
visible to the client.

public class ClientImpl implements Client {
public void execute() {

Message message = new Message();
message.setBody(“hello”);
service.invoke(message);
System.out.println(message.getBody());

}
}
public class ServiceImpl implements Service {

public void invoke(Message message) {
message.setBody(“goodbye”);

}
}

In the preceding example, assume ServiceImpl takes enough time
processing the message that the call to Message.setBody(..) in
Client is made before the call to System.out.println(..) in
ServiceImpl. If the Service interface is marked with
@Remotable, ServiceImpl will output: Message is hello.
However, if the Service interface is not marked with @Remotable,
ServiceImpl will output: Message is goodbye.

In the case where ClientImpl and ServiceImpl are located in
processes on different machines, pass-by-value is enforced as the
parameters are marshaled from one process to the other (see 
Figure 3.6).

From the Library of Robert Ryan



ptg

86 Service-Based Development Using Java

When a client and
provider are co-
located in the same
process, parameter
copying may intro-
duce significant
overhead.

Parameter objects 
are deserialized
resulting in new
objects.

Parameter
objects are
serialized.

Remote Transport

<xml/>

Figure 3.6 A pass-by-value invocation 

When both the client and provider are in the same address space,
an SCA runtime must also ensure these same semantics. Otherwise,
the interaction between two components can drastically change
based on how they are deployed, leading to unpredictable results.
In order to ensure consistency and pass-by-value, an SCA runtime
will typically copy parameters as a remotable service is invoked
(see Figure 3.7). This ensures that neither the client nor the service
provider is accidentally depending on by-reference semantics. 

SCA Runtime

Parameter objects are
copied by the runtime.

Figure 3.7 A pass-by-value invocation between co-located components

When a client and provider are co-located in the same process,
parameter copying may introduce significant overhead. If parame-
ters are immutable types—for example, Java strings or primitives—
the SCA runtime may perform an optimization by avoiding copying
because the parameters cannot be modified. However, because
parameters are often mutable, it is important to think carefully

From the Library of Robert Ryan



ptg

Coarse-Grained Services 87

SCA provides a
mechanism, the
@AllowsPassBy
Reference anno-
tation, which al-
lows runtimes to
avoid unnecessary 
parameter.

about the performance impact of defining a service as remotable.
Because the LoanService must be accessible to remote clients, we
are willing to accept the performance penalty associated with pass-
by-value parameters.

@AllowsPassByReference
When the client and remote service are co-located, the SCA run-
time typically ensures pass-by-value semantics by making a copy of
the parameter data prior to invoking the service. If the service im-
plementation does not modify parameters, this can result in signifi-
cant and unnecessary overhead.

SCA provides a mechanism, the @AllowsPassByReference anno-
tation, which allows runtimes to avoid unnecessary parameter
copying when an invocation is made between two co-located com-
ponents. This annotation is specified on a component implementa-
tion class or operation to indicate that parameters will not modified
by application code. The implementation in Listing 3.5 uses the
annotation on the interface, allowing the runtime to optimize all
operations when the component is co-located with a client:

Listing 3.5 Using @AllowsPassByReference

import org.osoa.sca.annotations.AllowsPassByReference;

@AllowsPassByReference
public class LoanComponent implements LoanService {

LoanResult apply(LoanRequest request) {
…

}

}

Generally, @AllowsPassByReference is used on an interface.
However, if a service contains multiple operations, some of which
modify parameters, the annotation may be used on a per-operation
basis.

From the Library of Robert Ryan



ptg

88 Service-Based Development Using Java

Asynchronous Interactions
Calls to remotable services that take place over a network are typi-
cally orders of magnitude slower than in-process invocations. In
addition, a particular service invocation may take a significant
amount of time to complete; perhaps hours, days, or even months.
This makes it impractical for clients to wait on a response or to hold
a network connection open for an extended period of time. In these
cases, SCA provides the ability to specify non-blocking operations.
When a client makes a non-blocking invocation, the SCA runtime
returns control immediately to it and performs the call on another
thread. This allows clients to continue performing work without
waiting on a call to complete.

Asynchronous communications have a long history in MOM tech-
nologies and differ substantially from the synchronous communica-
tion styles adopted by technologies including RMI, EJB, DCOM,
and .NET Remoting. A downside to asynchronous interactions is
that they tend to be more complex to code than synchronous invo-
cations. However, asynchronous communications are more loosely
coupled then synchronous variants and provide a number of bene-
fits that outweigh the additional complexity in many situations.
Because a client does not wait on a non-blocking call, the SCA
runtime can perform multiple retries if a target service is not avail-
able without blocking the client. This is particularly important for
remote communications where service providers may be rendered
temporarily unavailable due to network interruptions. 

Asynchronous interactions have an additional advantage in that
they generally improve application scalability. They do this by en-
abling clients to perform other tasks while a call is outstanding.
Non-blocking operations also let clients make a series of parallel
invocations, potentially reducing the amount of time required to
complete a request as operations do not need to be performed seri-
ally. In addition, particularly in cases where an operation may take
a long time to complete, non-blocking operations allow runtimes to
hold network resources for shorter periods of time and not have to
wait on a response. 

To summarize, the advantages of asynchronous interactions include
the following:

When a client makes
a non-blocking
invocation, the SCA
runtime returns
control immediately
to it and performs
the call on another
thread.

Asynchronous
communications
are more loosely
coupled than syn-
chronous variants
and provide a num-
ber of benefits that
outweigh the addi-
tional complexity in
many situations.

From the Library of Robert Ryan



ptg

Asynchronous Interactions 89

■ They are more loosely coupled.

■ They tend to be more scalable.

■ Fewer network resources are held for long periods of time.

Although there is no hard-and-fast-rule, non-blocking operations
should be used for remotable services when possible. To see how
this is done, we will modify the CreditService.checkCredit()
operation to be non-blocking. Calculating a credit rating may be
time-consuming, and by performing this operation asynchronously,
the LoanComponent component can continue with other tasks. In
addition, BigBank may decide in the future to use multiple
CreditService implementations that rely on different credit bu-
reaus. Making the service asynchronous will allow the
LoanComponent to issue multiple calls in succession without hav-
ing to wait for each to complete. 

Specifying a non-blocking operation using Java is straightforward:
Mark a method on an interface with the @OneWay annotation.
Listing 3.6 demonstrates a service contract with a non-blocking
operation:

Listing 3.6 Defining a Non-Blocking Operation

import org.osoa.sca.annotations.OneWay;
@Remotable
public interface CreditService {

@OneWay
void checkCredit(String id);

}

It is important to note that SCA places two restrictions on non-
blocking operations. First, they must have a void return type. (We
cover how to return responses using callbacks in the next section.)
Non-blocking operations must also not throw exceptions.

Listing 3.7 shows how the CreditService is called from a client: 

Although there is
no hard-and-fast-
rule, non-blocking
operations should
be used for
remotable services
when possible.

Specifying a non-
blocking operation
using Java is straight-
forward: Mark a
method on an inter-
face with the
@OneWay annotation.

SCA places two re-
strictions on non-
blocking operations:
They must have a
void return type, and
they must not throw
exceptions.

Listing 3.7 Calling a Non-Blocking Operation

public class LoanComponent implements LoanService {
private CreditService creditService;

From the Library of Robert Ryan



ptg

90 Service-Based Development Using Java

public void LoanComponent (@Reference CreditService service){
this.service = service;

}

public LoanResult apply(LoanRequest request) {
creditService.checkCredit(request.getId());
// continue without waiting for the call to complete 
…

}

}

Why @OneWay Instead of @NonBlocking?

You may wonder why the SCA authors chose to name the annotation that defines
non-blocking operations @OneWay instead of @NonBlocking. The reason has to do
with the vocabulary used in the world of protocol standards. Message exchange pat-
terns, or MEPs, define the interaction pattern a protocol uses to communicate be-
tween two participants. There are two basic MEP types: request-response and
one-way. TCP, for example, uses the former, whereas UDP uses the latter. Because
remote service calls are ultimately sent via a protocol, the SCA authors wanted to be
precise in their terminology.

How does an SCA runtime implement non-blocking behavior? This
depends in part on whether the client and service provider are co-
located or hosted in different processes. For a local call (that is,
between a co-located client and provider), the runtime will execute
the invocation on a different thread. If the call is remote, the run-
time will ensure that the underlying communications infrastructure
uses asynchronous (one-way) delivery. This can be trivial with some
communications mechanisms such as JMS, which are inherently
asynchronous. However, it may be more involved with others that

In the previous example, when the call to CreditService.
checkCredit() is made, the runtime will return control immedi-
ately to the LoanComponent without waiting for the call to the
CreditService to complete.

From the Library of Robert Ryan



ptg

Callbacks 91

are synchronous, such as RMI/IIOP. In these cases, the runtime may
need to take extra steps (such as using a different thread) to ensure
that the calls are sent in a non-blocking manner. 

Reliability
One issue that often comes up with non-blocking invocations is
reliability. Namely, given that the invocation is performed asyn-
chronously and there is no return value, how does a client know if
the target service successfully received the invocation? Reliable
delivery is often achieved via the underlying communications
channel. For example, an SCA runtime could use JMS or messaging
middleware to send an invocation to a target service. As we cover
at length in Chapter 7, “Wires,” a client can place requirements
such as reliable delivery on its communications with other services
through the use of policy.

Exception Handling
Because one-way invocations return immediately without waiting
for the service provider to complete processing an invocation, ex-
ceptions cannot be thrown and returned to the client. Instead, ex-
ceptions should be passed back to a client via a callback, the
subject of the next section. After we have covered callbacks, we
will return to a discussion on how to use them for error handling
with non-blocking invocations. 

Callbacks
In the previous example, we modified the CreditService.
checkCredit() to be non-blocking. This poses a seeming prob-
lem: Because SCA requires non-blocking operations to have a
void return type, how does the checkCredit operation return the
credit score to a client? After all, the CreditService would be
fairly useless if it did not return a credit rating. 

SCA allows services with non-blocking operations to return
responses to clients through a callback. A callback is essentially a
proxy to the client given to the service provider when an invocation
is made. This proxy can be used to invoke operations on the
client—for example, to provide status updates or return a result. In

SCA allows services
with non-blocking
operations to return
responses to clients
through a callback.

From the Library of Robert Ryan



ptg

92 Service-Based Development Using Java

SCA, service providers that callback their clients are said to offer
bidirectional services. That’s because the service provider commu-
nicates with its client through a callback service. Callback services
are just like regular service contracts. The only restriction SCA
places on bidirectional services is that both the forward and call-
back service must either be remotable or local; it is not possible to
mix service types.

When a client component wired to a component offering a bidirec-
tional service is deployed, the runtime establishes two communica-
tions channels: one for the forward service and one for the callback
(see Figure 3.8).

Service providers
that callback their
clients are said to
offer bidirectional
services.

Callbacks are useful
for implementing
potentially long-
running interactions
in an efficient and
scalable manner.

Callback Service Callback
Proxy

Figure 3.8 Two communication channels are established for the for-
ward service and a callback.

A callback is initiated by the service provider when it has finished
processing a request or wants to update the client at a certain point
in time. Callbacks are useful for implementing potentially long-
running interactions in an efficient and scalable manner. A callback
can be made in response to an invocation after a period of months.
When used in conjunction with non-blocking operations, this al-
lows a runtime to hold a network connection only for the time it
takes to marshal the forward and callback invocations as opposed
to the time spent processing. 

To use a callback in Java, the service contract declares a callback
interface that must be provided by the client. This is done via the
@Callback annotation. Listing 3.8 lists the CreditService modi-
fied to specify a callback interface, CreditCallback.

From the Library of Robert Ryan



ptg

Callbacks 93

Listing 3.8 Specifying a Callback Interface

import org.osoa.sca.annotations.OneWay;
import org.osoa.sca.annotations.Callback;

@Remotable
@Callback(CreditCallback.class)
public interface CreditService {

@OneWay
void checkCredit(String id);

}

The CreditCallback interface is defined in Listing 3.9.

Listing 3.9 The Callback Interface

@Remotable
public interface CreditCallback {

@OneWay
void onCreditResult(CreditScore score);

}

Using a callback in a component implementation is straightfor-
ward. The component uses the @Callback annotation to instruct
the runtime to inject a proxy to the callback service. This is shown
in Listing 3.10.

Listing 3.10 Injecting and Invoking a Callback Proxy

public class CreditComponent implements CreditService {

private CreditCallback callback;

@Callback
public void setCallback(CreditCallback callback){

this.callback = callback;
}

public void checkCredit(String id){
// calculate credit rating and invoke the callback
CreditResult result = //..
callback.onCreditResult(result);

}
}

From the Library of Robert Ryan



ptg

94 Service-Based Development Using Java

Callback injection follows the same rules as reference and property
injection: Public setter methods and fields, protected fields, and
constructor parameters may be marked with the @Callback
annotation.

In the composite, the LoanComponent and CreditComponent are
wired as before. In other words, there is no special wiring informa-
tion required for the callback. Listing 3.11 lists the composite.

Listing 3.11 No Special Wiring Information Is Needed in a Composite for Bidirectional

Services

<composite …>
<component name =”LoanComponent  “>

<implementation.java class=”com.bigbank.LoanComponent  “/>
<reference name=”creditService” target=”CreditComponent “/>

<component>

<component name =” CreditComponent “>
<implementation.java class=”com.bigbank.CreditComponent “/>

<component>
</composite>

The SCA runtime will be able to figure out from the annotations on
the interface contracts that forward and callback communications
channels need to be established between the LoanComponent and
CreditComponent.

In the previous example, the callback interface specified only one
operation, which returned the credit rating result. In many cases, a
client and service provider will have a series of interactions. For
example, a service provider may want to provide status updates to a
client. Or the service provider may notify a client of different results
for different forward operations. To do so, the callback interface
may define multiple operations. For example, the CreditCallback
could define a callback operation for status updates. As with regular
services, callback services can be invoked multiple times. 

From the Library of Robert Ryan



ptg

Callbacks 95

Exception Handling, Non-Blocking Operations, and Callbacks
When we discussed non-blocking operations, we mentioned that
exceptions encountered by a service provider cannot be thrown
back to the client because the original invocation will likely have
returned prior to processing. Instead, callbacks should be used to
report error conditions back to the client. This can be done by
adding operations to the callback interface, as shown in Listing
3.12.

When to Use @AllowsPassByReference

Previously, we introduced the @AllowsByReference annotation, which is used to
have the runtime avoid copying parameters for co-located service calls. As a rule of
thumb when implementing remotable services, @AllowsByReference should be used
if parameters do not need to be modified. This will generally result in performance
gains when the client and service implementation are co-located.

However, you should not use @AllowsPassByReference on one-way methods
(that is, those marked with @OneWay), because the client might modify the input ob-
jects before the service has begun processing at them. This is because control is 
returned immediately to the client after it has invoked a one-way operation, 
regardless of whether the service provider has begun to process the request.
@AllowsByReference should also not be used with callbacks, because the client
may modify input objects when the callback is made.

Listing 3.12 Reporting Service Provider Errors Using a Callback

@Remotable
public interface CreditCallback {

@OneWay
void onCreditResult(CreditScore score);

@OneWay
void onError(CreditScoreError error);

}

From the Library of Robert Ryan



ptg

96 Service-Based Development Using Java

Instead of throwing an error, the service provider invokes the call-
back, passing an error object containing information detailing the
nature of the exception.

Designing Local Services
Simple SCA applications may have just a few remotable services
implemented by isolated classes. However, applications of any
complexity will have remotable services implemented by compo-
nents that rely on multiple classes to perform their task. One imple-
mentation strategy is for a component to directly instantiate the
classes it needs. With this approach, each component is respon-
sible for configuring the classes it needs.

The SCA authors believed that requiring individual components to
manually assemble local objects would lead to brittle, difficult-to-
maintain applications. As an application increases in complexity,
having components instantiate classes directly makes configuration
more difficult and inhibits sharing between components. Why not
apply the same assembly techniques to local objects, making them
components as well?

Local services are used to assemble finer-grained components
hosted in the same process. These components interact to process a
request made via a remotable service, as displayed in Figure 3.9.

Local services are
used to assemble
finer-grained com-
ponents hosted in
the same process.

Remotable Service

Composite

Data Access
Component

Database

Messaging
Component

Figure 3.9 Local service assembly

From the Library of Robert Ryan



ptg

Designing Local Services 97

Why are local services important in distributed applications? The
simple answer is they enable developers to avoid having to make
all services in an application remotable if they want to use the as-
sembly capabilities of SCA. 

Local services are much more performant than remotable services
because they avoid network calls and having to pass parameters by
value, which involves the expense of copying. (We explained pass-
by-value in Chapter 2.) Local services also reduce application com-
plexity, as clients do not need to account for service interruptions
and latency when they are invoked. Perhaps most important, local
services provide application-level encapsulation by enabling devel-
opers to restrict access to services that should not be exposed re-
mote clients. Returning to our API analogy for remotable services,
local services enable developers to provide cleaner interfaces by
restricting access to parts of an application.

Local services should be designed using object-oriented principals
instead of service-based principals. Because local services are co-
located, they do not need to account for network latency or unreli-
ability. Further, because all calls to local services are in-process,
parameters are passed by-reference as opposed to by-value. (That
is, no copy is made.) By dispensing with the degree of loose-
coupling demanded by remotable services, application code can
be greatly simplified. At the outset of the chapter, we stated SCA
rejected the notion that object-oriented techniques should be ap-
plied to distributed components. In this context, it is also true that
SCA rejects the notion that service-based techniques should be
applied to local components.

In contrast to remotable services, local service contracts should be
fine-grained and perform very specific tasks. Finer-grained opera-
tions are generally easier for clients to use and provide more flexi-
bility because processing can be broken down into a series of
invocations. Finer-grained service contracts also tend to make ap-
plications more maintainable because components that implement
them perform specific tasks. This allows applications to be orga-
nized better as discrete units. This has the added benefit of making
testing easier.

Local services
should be designed
using object-
oriented principals
instead of service-
based principals.

In contrast to re-
motable services,
local service con-
tracts should be
fine-grained and
perform very spe-
cific tasks.

From the Library of Robert Ryan



ptg

98 Service-Based Development Using Java

Implementing a component that offers a local service is straightfor-
ward. The implementation can be a plain Java class with no other
requirements. It may have properties and references like any other
component. Although not strictly required, the class should imple-
ment an interface that defines the service contract. Listing 3.13
illustrates a basic component implementation with one local
service.

Listing 3.13 A Local Service Implementation 

public class DataAccessComponent implements LocalDataService {

public LoanRecord find(String id) throws DataAccessException {
LoanRecord record = // find the record in the database
return record;

}

public void save(LoanRecord record) throws DataAccessException {
// save the LoanRecord to the database
…

}

public void delete(LoanRecord record) throws DataAccessException {
// remove the LoanRecord from the database
…

}

}

In a complete implementation, the class in Listing 3.13 would use a
persistence technology such as JDBC or Java Persistence Architec-
ture (JPA) to access the database. Chapter 11, “Persistence,” covers
persistence in detail, in particular using JDBC and JPA with SCA.

Component Scopes 
Up to this point, we have discussed component life cycle only
briefly. Although some applications may be composed entirely of
stateless components, it is often the case that components need 
to preserve state across a number of requests. Components can

From the Library of Robert Ryan



ptg

Component Scopes 99

maintain state manually—for example, by persisting it to a data-
base. However, using a database is a fairly heavyweight solution.
There are also cases where component initialization is expensive
and it is appropriate to have one instance of a component handle
multiple requests. To accommodate these cases, the SCA program-
ming model allows component implementations to specify their life
cycle, or scope. A scope defines the life cycle contract a compo-
nent implementation has with the SCA runtime. 

Component Implementation Instances
In order to understand scopes, it is necessary to briefly explain how
an SCA runtime dispatches a request to a component implemented
in Java. Figure 3.10 illustrates how an SCA runtime forwards a re-
quest to a component.

A scope defines the
lifecycle contract a
component imple-
mentation has with
the SCA runtime.

Because an SCA
runtime commonly
handles multiple si-
multaneous requests,
many instances of the
component implemen-
tation class may be
active at any given
time.

Client Java
Class

Service request
received by the
SCA runtime.

Request forwarded
to and instance of the
implementation class.

SCA Runtime

1

2

Figure 3.10 Dispatching to a component implementation instance

When a request is received, the runtime forwards the request to an
instance of the component implementation.

Because an SCA runtime commonly handles multiple simultaneous
requests, many instances of the component implementation class
may be active at any given time. The SCA runtime is responsible for
dispatching those requests to individual instances, as depicted in
Figure 3.11.

From the Library of Robert Ryan



ptg

100 Service-Based Development Using Java

Figure 3.11 Dispatching to multiple component implementation 
instances

Scopes are used by component implementations to instruct the SCA
runtime how to dispatch requests to implementation instances.
Scopes are specified using the @Scope annotation on the imple-
mentation class. Because scopes determine how requests are dis-
patched, they control the visibility of an implementation instance to
clients. SCA defines three scopes: stateless, composite, and conver-
sation. In this chapter, we cover the first two; conversation scope is
the subject of Chapter 4, “Conversational Interactions Using Java.”

Stateless-Scoped Components
By default, components are stateless. For stateless components, the
SCA runtime guarantees that requests are not dispatched simultane-
ously to the same implementation instance. This means that an
instance will process only one request at a time. To handle simulta-
neous requests, an SCA runtime will instantiate a number of in-
stances to process the requests concurrently. Further, if a client
makes a series of requests to a stateless implementation, there is no
guarantee that the requests will be dispatched to the same instance.
(They likely will not.) Typically, a runtime will either create a new
instance for every request or pull an instance from a pool.

Note that a component with a stateless scope is not necessarily
devoid of state. The stateless scope means that only the SCA infra-
structure will not maintain any state on the component’s behalf.

SCA defines three
scopes: stateless,
composite, and
conversation.

For stateless com-
ponents, the SCA
runtime guarantees
that requests are
not dispatched
simultaneously to
the same imple-
mentation instance.

Client

Client
Java
Class

Java
Class

Service requests
received by the
SCA runtime. 

Request forwarded
to and instance of the
implementation class.

Loan Component

SCA Runtime

1

2

From the Library of Robert Ryan



ptg

Component Scopes 101

The component may manage state manually through a database or
some other storage mechanism, such as a cache.

Composite-Scoped Components
For components that are thread-safe and take a long time to initial-
ize, having multiple implementation instances may result in unnec-
essary overhead. Sometimes only one implementation instance for
a component should be active in a domain. In these cases, SCA
allows implementations to be declared as composite-scoped by
using the @Scope(“COMPOSITE”) annotation, as demonstrated in
Listing 3.14. 

Composite-scoped
implementations
are similar to
servlets: One in-
stance in a domain
concurrently
handles all
requests.

Listing 3.14 A Composite-Scoped Component Implementation

import org.osoa.sca.annotations.Scope;

@Scope(“COMPOSITE”)
public class LoanComponent implements LoanService {

// ....
public LoanResult apply(LoanRequest request) {

//…
}

}

Composite-scoped implementations are similar to servlets: One
instance in a domain concurrently handles all requests.
Consequently, like servlets, composite-scoped implementations
must be thread-safe. However, unlike servlets, the component im-
plementation may store state in its fields and expect that every use
of the component will have access to that state.

Officially, the lifetime of a composite-scoped instance is defined as
extending from the time of its first use (that is, when the first request
arrives or the component is initialized—more on this later) to the
time its parent composite expires. During this period, the SCA run-
time will create only one instance and route all requests to it. Note
that some SCA runtimes may provide fault tolerance for composite-
scoped components. In these cases, if the process hosting a com-
posite-scoped component crashes, the runtime will guarantee that
failover occurs to another process without losing data associated
with the component. 

From the Library of Robert Ryan



ptg

102 Service-Based Development Using Java

Using Stateless Components

By default, components are stateless. Every invocation to a service offered by a
stateless component may be dispatched by the SCA runtime to a different instance of
the implementation class. In a distributed environment, stateless instances afford the
domain flexibility in scaling an application. This is because state does not need to
be maintained by the runtime between requests. Consequently, when a stateless
component is deployed, it can be hosted in multiple runtime instances.

To understand how a component’s scope affects scaling, consider the case where
two components are clients to a service offered by a third component. If the two
clients are deployed to separate processes, copies of the stateless service provider
component may be co-located with the clients (see Figure 3.12).

Figure 3.12 Co-locating three stateless components

Co-locating copies of the service provider component can be done because state is
not managed by the runtime, allowing it to be replicated throughout the domain.
This has the effect of improving application performance because requests from the
two clients are not sent over the network. It also provides better fault tolerance be-
cause a failure affecting one runtime will affect only a single client. 

Runtime 1 Runtime 2

From the Library of Robert Ryan



ptg

Component Scopes 103

Conversation-Scoped Components
SCA provides the ability to have the runtime manage state between
a client and a component over a series of interactions known as a
“conversation” by using conversation-scoped implementations. We
provide an in-depth discussion of conversational services and con-
versation-scoped components in Chapter 4. 

Initialization and Destruction Notifications
Component implementations can receive life cycle notifications by
annotating public, zero-argument methods with the @Init and
@Destroy annotations. A method annotated with @Init will be
called by the SCA runtime when the implementation instance is
created. Similarly, a method annotated with @Destroy will be
called as the implementation scope expires and the component
instance is released. Initialization and destruction callbacks can be
used by implementations to set up and clean up resources. The
following demonstrates initialization and destruction methods on a
composite-scoped implementation. The initializer method will be
called when the implementation instance is first created and all of
its dependencies have been injected. If the class uses any setter-
based or field-based injection, the constructor of the class isn’t a
very useful place to put initialization logic, so a method that is
marked with @Init should be used. If only constructor injection is
used, the constructor may also be used as the initializer.

The component’s destructor will be invoked when the parent com-
posite is removed from the runtime, causing the component to
expire (see Listing 3.15).

Component imple-
mentations can
receive lifecycle
notifications by
annotating public,
zero-argument
methods with the
@Init and
@Destroy
annotations.

Listing 3.15 Using @Init and @Destroy

import org.osoa.sca.annotations.Scope;
import org.osoa.sca.annotations.Init;
import org.osoa.sca.annotations.Destroy;

@Scope(“COMPOSITE”)
public class CreditComponent implements CreditService {

@Init
public void init(){

// perform initialization
}

From the Library of Robert Ryan



ptg

104 Service-Based Development Using Java

Eager Initialization
By default, composite-scoped implementations are lazily instanti-
ated by the SCA runtime—that is, they are instantiated as the first
service request is received. In some cases, particularly when initial-
ization is time-consuming, it is useful to perform instantiation
upfront as the composite is activated in the domain. Composite-
scoped implementations can be set to eagerly initialize through use
of the @EagerInit annotation, as shown in Listing 3.16.

Composite-scoped
implementations
can be set to ea-
gerly initialize
through use of the
@EagerInit
annotation.

@Destroy
public void destroy(){

// perform cleanup
}

// …
}

Listing 3.16 An Implementation Marked to Eagerly Initialize

import org.osoa.sca.annotations.Scope;
import org.osoa.sca.annotations.EagerInit;
import org.osoa.sca.annotations.Init;
import org.osoa.sca.annotations.Destroy;

@Scope(“COMPOSITE”)
@EagerInit
public class CreditComponent implements CreditService {

@Init
public void init(){

// perform initialization
}

@Destroy
public void destroy(){

// perform cleanup
}

// …
}

The preceding implementation will be instantiated as soon as the
component is activated in the domain, prior to receiving requests.
As part of the instantiation process, the init method will also be

From the Library of Robert Ryan



ptg

Testing Components 105

invoked by the SCA runtime. (The implementation could have
omitted an initializer if it were not required.) 

Testing Components
We conclude this chapter with a note on testing. A common ques-
tion that arises when writing SCA components is how best to test
them. In recent years, a wide range of testing methodologies has
emerged, some of which have engendered a great deal of contro-
versy. Choosing the right methodology, whether it is Test Driven
Development (TDD) or a more traditional code-first approach, is a
personal choice and depends on the requirements of a particular
project. However, whatever approach to testing is adopted, SCA’s
reliance on inversion of control makes this process much easier. 

How a programming model facilitates testing is of critical impor-
tance given the impact it has on project costs. As was learned with
EJB, programming models that require complex test setup can be
one of the primary impediments to developer productivity. Tests
that are unnecessarily time-consuming to set up take away from
development time and hinder the code-test-refactor process that is
key to producing good software. 

Moreover, complex setup often leads to poor test coverage, result-
ing in higher costs later in a project’s life cycle. If tests are too com-
plex to write and set up, developers will either avoid doing so or
not be able to create ones that are fine-grained enough to exercise
all parts of an application. Poor test coverage will inevitably result
in more expensive bug fixing after an application has gone into
production.

As an application enters maintenance mode, poor tests will con-
tinue to incur significant costs. Changes and upgrades will be diffi-
cult to verify and take longer to verify—all of which is to say that
contrary to being relegated to an afterthought, testing strategy
should be at the forefront of project planning. Further, the extent to
which a programming model facilitates or hinders testing will have
a direct impact on how successful it is in fostering productivity and
cost savings.

A comprehensive and cost-effective testing strategy will include
unit, integration, and functional testing. To broadly categorize, unit

From the Library of Robert Ryan



ptg

106 Service-Based Development Using Java

testing involves verifying small “units” of code, in isolation or with
a few collaborating objects. In object-oriented languages, a unit of
code is commonly a class, which may rely on a few other classes
(collaborating objects). Unit tests are run on a developer’s machine
and periodically on dedicated testing servers. Integration testing
involves verifying the interaction of various application “subsys-
tems” and is therefore conducted at a coarser-grained level.
Integration tests are typically run on dedicated testing servers and
not part of the developer build. Functional testing entails an even
broader scope, verifying application behavior based on end-user
scenarios. Like integration tests, functional tests are typically run on
separate testing servers. 

In the days of CORBA and EJB 2.0, even unit testing typically re-
quired deploying and running the components in a container, often
with complex harnesses for setting up required infrastructure. This
quickly proved to be unwieldy as time-consuming testing hindered
fast, iterative development. The difficulty of conducting efficient
testing became one of the major drags on developer productivity
with these earlier frameworks and a hidden source of significant
project cost.

Having learned from this, SCA follows in the footsteps of other IoC
frameworks, most notably Spring, in its approach to unit testing. By
avoiding the use of APIs in all but exceptional circumstances, unit
testing SCA components is trivial: Pick your favorite test harness,
such as JUnit or TestNG, and instantiate them. In other words, veri-
fying behavior is as simple as:

1  CreditService creditService = new 
CreditComponent();
2  int result = creditService.scoreApplicant(applicantID); 
3  // verify the result… 

Unit testing becomes slightly more involved when collaborating
objects are required. Take the LoanComponent from the example
presented in this chapter: It requires a CreditService. One solu-
tion would be to simply instantiate a CreditComponent, as shown
previously, and pass it to the LoanComponent. This, however, can
quickly become unmanageable if the CreditComponent requires
other services, which themselves depend on additional services,
and so on.

From the Library of Robert Ryan



ptg

Testing Components 107

A better solution is to introduce a “mock” for the CreditService.
Mock objects, as they are referred to, mimic specific behavior of
real objects and generally have trivial implementations. A mock
CreditService implementation, for example, would always re-
turn a good or bad score. Mocks are manually set on component
implementations by the unit test. Components then call mocks as if
they were reference proxies to real service providers.

Mock Objects and EasyMock

Writing mock objects by hand can be tedious, particularly if only one method is re-
quired for a particular test case. Several mock object generation frameworks have
emerged that automate much of this process. We recommend EasyMock
(http://www.easymock.org) for testing SCA components. The following example
demonstrates testing the LoanComponent using a mock CreditService:

1  CreditScoreService creditService =
EasyMock.createMock(CreditService.class);

2  EasyMock.expect(creditService.scoreApplicant
(EasyMock.isA(String.class))).andReturn(700);

3  EasyMock.replay(creditService);
4  LoanService loanService = new LoanComponent(creditService);
5  // test the loanService…

EasyMock works by first creating a mock, recording behavior (that is, the methods
that will be called on it, including parameter and return values), and setting the
mock into replay state before using it. In the previous example:

CreditService creditService = EasyMock.createMock 
➥(CreditService.class);

creates the mock service. The expected behavior, a call to the CreditService.
scoreApplicant() with a return value of 700, is then recorded:

EasyMock.expect(creditService.scoreApplicant
➥(EasyMock.isA(String.class))).andReturn(700);

Finally, the mock service is placed in replay state:

EasyMock.replay(creditService);

after which it can be passed to the LoanComponent and invoked like the actual
CreditService implementation. At the end of the test run, the unit test can verify
that the mock service has been properly called by through the verify operation:

EasyMock.verify(creditService);

From the Library of Robert Ryan

http://www.easymock.org


ptg

108 Service-Based Development Using Java

The efficiencies of using mocks with SCA are most evident when
dealing with remotable services. When deployed to production, the
LoanComponent and CreditComponent could be hosted on sepa-
rate JVMs, where the SCA runtime would handle setting up the
appropriate remote communications infrastructure (for example,
web services). In a unit test environment, on a developer machine,
deploying these components to separate containers and setting up
remote communications is cumbersome. It is also unnecessary: The
goal of unit testing the LoanComponent should be to ensure that it
functions properly according to business requirements, not that it
can communicate over a remote protocol to the CreditService.
(The latter would be a goal of integration testing, which verifies that
parts of a system work together.) 

Investing upfront in a good testing strategy reduces overall project
costs. Building on the lessons learned with CORBA and EJB, SCA
was designed to facilitate efficient testing, particularly at the unit
test level. When unit testing SCA components, keep three things in
mind. First, don’t use a container; instantiate component imple-
mentation directly in the test case. Second, use mocks to test com-
ponent implementations in isolation. And if you cannot do one and
two easily, refactor your component implementation because it is
generally a sign of bad design.

Summary
This chapter covered the basics of developing loosely coupled
services using the SCA Java programming model. These included
service contract design, asynchronous communications, and com-
ponent life cycle. Many of these features—particularly asynchro-
nous communications—have their antecedents in integration and
messaging software. The SCA Java programming model provides an
arguably more unified and simpler approach to distributed applica-
tions than its predecessors. In the next chapter, we extend this dis-
cussion to creating conversational services using the Java
programming model.

From the Library of Robert Ryan



ptg

4

Conversational Interactions
Using Java

The last two chapters covered service-based development using 
the SCA Java programming model. Putting this into practice in
Chapter 3, “Service-Based Development Using Java,” we refactored
the BigBank loan application to reflect SCA best practices by taking
advantage of loose coupling and asynchronous interactions. In this
chapter, we continue our coverage of the Java programming model,
focusing on building conversational services. 

Conversational Interactions
Services in distributed applications are often designed to be state-
less. In stateless architectures, the runtime does not maintain state
on behalf of a client between operations. Rather, contextual infor-
mation needed by the service to process a request is passed as part
of the invocation parameters. This information may be used by the
service to access additional information required to process a re-
quest in a database or backend system. In the previous chapters,
the BigBank application was designed with stateless services:
LoanService or CreditService use a loan ID as a key to manu-
ally store and retrieve loan application data for processing. 

109

From the Library of Robert Ryan



ptg

110 Conversational Interactions Using Java

SCA provides a
number of facilities
for creating stateful
application archi-
tectures.

There are, however, many distributed applications that are designed
around stateful services or could benefit from stateful services, as
they are easier to write and require less code than stateless designs.
Perhaps the most common example of such a distributed stateful
application is a Java EE-based web application that enables users to
log in and perform operations. The operations—such as filling a
shopping cart and making a purchase—involve a client and server
code (typically servlets and JSPs) sharing contextual information via
an HTTP session. If a web application had to manage state manu-
ally, as opposed to relying on the session facilities provided by the
servlet container, the amount of code and associated complexity
would increase.

SCA provides a number of facilities for creating stateful application
architectures. In this chapter, we explore how the SCA Java program-
ming model can be used to have the runtime manage and correlate
state so that service implementations do not need to do so in code.
Chapter 10, “Service-Based Development Using BPEL” covers how
to write conversational services using BPEL. 

■ Perspective: Conversations and OASIS

The conversational capabilities discussed in this chapter and throughout the book
were defined when SCA was part of the OSOA collaboration and incorporated in
the OASIS 1.0 SCA specifications. While working on the OASIS 1.1 SCA specifica-
tions, several vendors objected to conversations, claiming they were overly com-
plex and difficult to implement. We, and others, countered on grounds that
conversational capabilities were a powerful feature and being used extensively in a
number of large-scale systems.

Unfortunately, these arguments failed to persuade the vendors who objected. As a
result, conversational capabilities were deferred from the 1.1 OASIS version of the
SCA specifications to a subsequent version.

Fabric3, and possibly other runtimes, will continue to support conversations.
However, as they are not yet part of the latest OASIS standard, there is a risk that
conversations will remain a proprietary feature of specific SCA runtimes. 

Hopefully, popular support will influence a future version of the OASIS SCA specifi-
cations to accept conversations as an official feature. Until that time, as with all
such proprietary features, there is a trade-off that must be assessed between ease-of-
use and power versus potentially being locked into a specific runtime.

From the Library of Robert Ryan



ptg

Conversational Interactions 111

A Conversation
In SCA, a conversation is defined as a shared context between a
client and service. For example, the interactions between
LoanComponent and CreditService could be modeled as con-
versational, as shown in Figure 4.1.

In SCA, a conversa-
tion is defined as a
shared context
between a client
and service.

Loan Application Component Credit Score Component

Start conversation

apply(..)

Continue

getStatus()

Continue

moreInformation()

End conversation

cancel()

End conversation

result()

Conversation

Figure 4.1 A conversational interaction

The conversation shown in Figure 4.1 has a start operation
(LoanComponent requests a credit check), a series of continuing
operations (get status and request for more information), and two
end operations (cancel or result). 

Conversations in SCA have a number of unique characteristics.
First, in line with loosely coupled interactions, conversations may
last for a brief period of time (for example, milliseconds) or for a
long duration (for example, months). A second characteristic is that
conversations involve shared state between two parties: a client and
a service. In the previous example, the shared context is the loan
applicant information.

The main difference between conversational and stateless interac-
tions is that the latter automatically generate and pass contextual
information for the conversation as part of the messages sent be-
tween the client and service (typically as message headers). With

From the Library of Robert Ryan



ptg

112 Conversational Interactions Using Java

conversational interactions, the client does not need to generate the
context information, and neither the client nor the service needs to
“remember” or track this information and send it with each opera-
tion invocation. Runtimes support this by passing a conversation
ID, which is used to correlate contextual information such as the
loan applicant information. This is similar to a session ID in Java EE
web applications, which is passed between a browser and a servlet
container to correlate session information. 

An application may be composed of multiple conversational serv-
ices. How is conversational context shared between clients and
service providers? Before delving into the details of implementing
conversational services, we first need to consider how conversa-
tional contexts are created and propagated among multiple services.

In Figure 4.2, Component A acts as a client to the conversational
service offered by Component B, creating a shared conversation
context. As long as the conversation is active, for each invocation A
makes to the service offered by B, a single conversational context is
in effect.

Composite

Component A Component B

Conversation Context

Figure 4.2 A conversation visualized

Because a conversation is between a client and a single service, if
Component A invokes a conversational service offered by a third
component, C, a separate conversational context is created, as
shown in Figure 4.3.

From the Library of Robert Ryan



ptg

Conversational Interactions 113

Figure 4.3 Multiple conversations

It is important to note that conversational context is not propagated
across multiple invocations. If Component A invoked a conversa-
tional service on B, which in turn invoked another conversational
service on C, two conversations would be created, as shown in
Figure 4.4.

Composite

Component A

Conversation Context

Conversation Context

Component C

Component B

Composite

Component A

Conversation Context Conversation Context

Component CComponent B

Figure 4.4 Conversations are not propagated across multiple 
invocations.

From the Library of Robert Ryan



ptg

114 Conversational Interactions Using Java

In this situation, although SCA considers there to be two different
conversations, it is likely that the two conversations will have
closely coupled lifetimes. When the conversation between Compo-
nents B and C is complete, Component B will probably also com-
plete its conversation with A. However, this is not always the case,
and there are situations where multiple conversations between B
and C will start and stop during a single conversation between A
and B.

The preceding discussion of conversations may seem somewhat
complex on first read. A simple way to grasp conversations is to
remember that a conversation in SCA is always between two parties
(a client and service). If the client or service interacts with another
service, a second conversation is created. 

Conversational Services
In Java, conversational services are declared using the
@Conversational on an interface, as shown in Listing 4.1.

A simple way to
grasp conversations
is to remember that
a conversation in
SCA is always be-
tween two parties
(a client and
service).

Listing 4.1 A Conversational Service

import org.osoa.sca.annotations.Remotable;
import org.osoa.sca.annotations.EndsConversation;
import org.osoa.sca.annotations.Conversational;

@Remotable
@Conversational
public interface CreditService  {

void apply(LoanApplicant applicant);

int getStatus();

@EndsConversation
void cancel();

}

The preceding interface also makes use of the @EndsConversation
annotation. This annotation is used to indicate which service opera-
tion or operations (@EndsConversation may be used on multiple
operations) end a conversation. It is not necessary to use an annota-
tion to mark operations that may start or continue a conversation,
because any operation on a conversational interface will continue

From the Library of Robert Ryan



ptg

Implementing Conversational Services 115

an existing conversation, if one is underway, or start a conversation
if one is not.

In the previous listing, CreditService.apply(..) is intended to
be used for initiating a conversation, whereas
CreditService.getStatus() and CreditService.cancel()
are intended to be used for already existing conversations (applica-
tions in process). The cancel() will also end the conversation.
After an operation marked with @EndsConversation is invoked
and completes processing, conversational resources such as the
shared context may be cleaned up and removed. A subsequent
invocation of another operation will result in a new conversation
being started.

The fact that the getStatus() and cancel() operations have to
be used only for existing conversations is not captured by an anno-
tation, so it should be noted in the documentation on those meth-
ods. It is up to the application code for those operations to generate
an exception if they are used to start a conversation.

SCA doesn’t define annotations for starting or continuing conversa-
tions because they are really just a special case for more complex
rules regarding which operations should be called before which
other operations. For example, if the loan application service were
more complicated and it included an operation for locking in an
interest rate, that operation would only be legal during certain
phases of the application process. This kind of error needs to be
checked by the application code. SCA only includes the
@EndsConversation annotation because the infrastructure itself
needs to know when the conversation has ended, so that it can free
up the resources that were associated with the conversation.

Implementing Conversational Services
Having covered the key aspects of defining a conversational
service, we now turn to implementing one. When writing a conver-
sational service implementation, the first decision that needs to be
made is how conversational state is maintained. In SCA, developers
have two options: They can use the state management features
provided as part of SCA, or they can write custom code as part of
the implementation. 

From the Library of Robert Ryan



ptg

116 Conversational Interactions Using Java

Conversation-Scoped Implementations
Developers can have the SCA runtime manage conversational state
by declaring an implementation as conversation-scoped. This
works the same way as other scopes—that is, via the use of the
@Scope("CONVERSATION") annotation, as in the extract shown in
Listing 4.2.

Because conversa-
tions exist over
multiple service
invocations, the
runtime will dis-
patch to the same
instance as long as
the conversation
remains active.

Conversation 2

CreditComponent

Credit Component

Client  2

Client 1

3

4

1

2

Instance
1

Instance
2

Instance
1

Request forwarded
to an instance

Request forwarded
to an instanceCreditScoreService.apply(..)

Start conversation

CreditScoreService.getStatus()
Continue conversation

CreditScoreService.apply(..)
Start conversation

CreditScoreService.getStatus()
Continue conversation

Conversation 1

CreditComponent

Figure 4.5 Runtime dispatching to conversation-scoped instances 

Listing 4.2 A Conversation-Scoped Implementation

import org.osoa.sca.annotations.Scope;
@Scope("CONVERSATION")
public class CreditComponent implements CreditService {

//…
}

Conversation-scoped implementations work just like other scopes.
As discussed in Chapter 3, the SCA runtime is responsible for dis-
patching to the correct instance based on the client making the
request. Because conversations exist over multiple service invoca-
tions, the runtime will dispatch to the same instance as long as the
conversation remains active. If multiple clients invoke a conversa-
tional service, the requests will be dispatched to multiple imple-
mentation instances, as illustrated in Figure 4.5.

From the Library of Robert Ryan



ptg

Implementing Conversational Services 117

Note that by default, a component implementation is considered
conversation-scoped if it implements a conversational interface.
That is, if a service contract is annotated with @Conversational,
the component implementation class does not need to specify
@Scope("CONVERSATION").

Because the runtime handles dispatching to the correct implemen-
tation instance are based on the current conversation, conversation
state can be stored in member variables on the component imple-
mentation. This allows service contracts to avoid having to pass
contextual data as part of the operation parameters. A modified
version of CreditComponent demonstrates the use of conversa-
tional state (see Listing 4.3).

Listing 4.3 Storing Conversational State in Instance Variables 

import org.osoa.sca.annotations.Scope;
@Scope("CONVERSATION")
public class CreditComponent implements CreditService {

private LoanApplicant applicant;
private int status;

public void apply(LoanApplicant applicant){
this.applicant = applicant;

}

int getStatus() {
return status;

}

void cancel() {
String id = applicant.getId();
// cancel the request based on the applicant id for the

➥conversation ….
}

}

In this implementation of CreditComponent, the applicant and
status variables are associated with the current conversation and
will be available as long as the conversation remains active. 

From the Library of Robert Ryan



ptg

118 Conversational Interactions Using Java

In loosely coupled systems, interactions between clients and conver-
sational services may occur over longer periods of time, perhaps
months. Although SCA says nothing about how conversational in-
stances are maintained, some SCA runtimes may choose to persist
instances to disk or some other form of storage (for example, a data-
base). Persistence may be done to free memory and, more impor-
tantly, provide reliability for conversational services; information
stored in memory may be lost if a hardware failure occurs. Some
runtimes may also allow conversational persistence to be config-
ured—for example, disabling it when reliability is not required. As
demonstrated in the previous example, however, how conversational
state is stored is transparent from the perspective of application code.
The developer needs to be aware that only Java serialization and
deserialization may occur between operations of the component.

In loosely coupled
systems, interac-
tions between
clients and conver-
sational services
may occur over
longer periods of
time, perhaps
months.

■ Practical Considerations for Conversation-Scoped
Components

When planning to use conversational services, be sure to give special consideration
to the performance and application migration implications these services entail.
Reliable persistence of conversational state may introduce a significant performance
penalty, as state changes must be recorded—for example, to the file system or a
database. Does a particular conversational service really need to be reliable? Is the
potential for occasional data loss tolerable? If so, you might be able to configure
your SCA runtime to use less reliable—and more performant—means for storing
conversational state (for example, in memory).

A second factor to consider is migration. Storing state means that you will need to
handle migration issues in future versions of an application. If the type of state
changes, existing stored state will need to be converted. Otherwise, a strategy for
maintaining two versions of a service until the older state expires will need to be de-
vised. Maintaining coexisting services is not a trivial task. Therefore, it is wise to
plan for future migration and versioning upfront when using conversational services.

Custom State Management
In some situations, implementations may elect to manage state as
opposed to relying on the SCA runtime. This is often done for 
performance reasons or because the conversational state must be

From the Library of Robert Ryan



ptg

Implementing Conversational Services 119

persisted in a particular way. Implementations that manage their
own state must correlate the current conversation ID with any con-
versation state. This will usually involve obtaining the conversation 
ID and performing a lookup of the conversational state based on
that ID.

In this scenario, the conversation ID is still system-generated, and it
is passed in a message header rather than as a parameter (using
whatever approach to headers is appropriate for the binding being
used). Because of this, the interface is still considered to be conver-
sational. The fact that the conversational state is explicitly retrieved
through application logic, rather than automatically maintained by
the infrastructure, is an implementation detail that does not need to
be visible to the client of the service. The fact that it is conversa-
tional, however, is still visible, because the client needs to know
that a sequence of operations will be correlated to each other with-
out being based on any information from the messages.

The current conversation ID can be obtained through injection via
the @ConversationID annotation. The following version of the
CreditComponent uses the conversation ID to manually store state
using a special ConversationalStorageService. The latter
could store the information in memory using a simple map or per-
sistently using a database (see Listing 4.4).

Listing 4.4 Manually Maintaining Conversational State 

import org.osoa.sca.annotations.Scope;
public class CreditComponent implements CreditService {

private ConversationalStorageService storageService;
private String conversationID;

public CreditComponent(@Reference (name="storageService")
service){

this.storageService = storageService;
}

@ConversationID
public void setConversationID(String id){

this.conversationID = id;
}

public void apply(LoanApplicant applicant){
storageService.storeApplicant(conversationID, applicant);
}

int getStatus() {

From the Library of Robert Ryan



ptg

120 Conversational Interactions Using Java

Similar to other injectable SCA-related information, the
@ConversationID annotation may be used on public and pro-
tected fields or setter methods. 

Expiring Conversations
In loosely coupled systems, conversational services cannot rely on
clients to be well behaved and call an operation marked with
@EndsConversation to signal that conversational resources can be
released. Clients can fail or a network interruption could block an
invocation from reaching its target service. To handle these scenar-
ios, SCA provides mechanisms for expiring a conversation using
the @ConversationAttributes annotation. @Conversation
Attributes is placed on a Java class and can be used to specify a
maximum idle time and maximum age of a conversation. The
maxIdleTime of a conversation defines the maximum time that can
pass between operation invocations within a single conversation.
The maxAge of a conversation denotes the maximum time a con-
versation can remain active. If the container is managing conversa-
tional state, it may free resources, including removing
implementation instances, associated with an expired conversation.
In the example shown in Listing 4.5, the maxIdleTime between
invocations in the same conversation is set to 30 days. 

return storageService.getStatus(conversationID);
}

void cancel() {
storageService.removeApplicant(conversationID);
}

}

Listing 4.5 Setting Conversation Expiration Based on Idle Time

import org.osoa.sca.annotations.ConversationAttributes;

@ConversationAttributes(maxIdleTime="30 days")

public class CreditComponent implements CreditService {
//....

}

From the Library of Robert Ryan



ptg

Conversational Services and Asynchronous Interactions 121

Similarly, the example in Listing 4.6 demonstrates setting the
maxAge of a conversation to 30 days.

Conversational serv-
ices can be used in
conjunction with
non-blocking opera-
tions and callbacks 
to create loosely 
coupled interactions
that share state be-
tween the client and
service provider.

Listing 4.6 Setting Conversation Expiration Based on Duration

import org.osoa.sca.annotations.ConversationAttributes;

@ConversationAttributes(maxAge="30 days")

public class CreditComponent implements CreditService {
//....

}

The @ConversationAttributes annotation allows maxAge and
maxIdleTime to be specified in seconds, minutes, hours, days, or
years. The value of the attribute is an integer followed by the scale,
as in “15 minutes.”

Conversational Services and Asynchronous
Interactions
Conversational services can be used in conjunction with non-
blocking operations and callbacks to create loosely coupled inter-
actions that share state between the client and service provider. 

Non-Blocking Invocations
Operations can be made non-blocking on a conversational
service using the @OneWay annotation discussed in Chapter 3
(see Listing 4.7). 

Listing 4.7 Using Conversations with Non-Blocking Operations 

import org.osoa.sca.annotations.Remotable;
import org.osoa.sca.annotations.EndsConversation;
import org.osoa.sca.annotations.Conversational;
import org.osoa.sca.annotations.OneWay;

@Remotable
@Conversational
public interface CreditService  {

@OneWay
void apply(LoanApplicant applicant);

From the Library of Robert Ryan



ptg

122 Conversational Interactions Using Java

The preceding example makes the CreditService.apply(..)
and CreditService.cancel() operations non-blocking, where
control is returned immediately to the client, even before the opera-
tion request has been sent to the service provider. This is different
from just having the operation return void without having been
marked with the @OneWay annotation. Without the @OneWay
annotation, the client doesn’t regain control until the operation
completes, so the client developer knows that if the operation re-
turns without throwing an exception, the operation has successfully
completed.

By contrast, a @OneWay operation may not be started until well after
the client program has moved well beyond the place where the
operation had been called. This means that the client cannot as-
sume that the operation has successfully completed, or even that
the operation request has been able to reach the service provider.
Often, in this scenario, it will be advisable to require reliable deliv-
ery of the message so that the request is not lost merely because the
client or the service provider crashes at an inopportune time.
Reliable delivery can be guaranteed by using SCA’s policy intent
mechanism. In this case, the annotation would be @Requires
("ExactlyOnce"). This will constrain the deployer to configure
the runtime to use some form of reliable delivery. Policy intents are
described in more detail in Chapter 6, “Policy.”

Using reliable delivery will not, however, help with the fact that the
client code can’t see exceptions that are raised by the @OneWay
operation. When developing these operations, if an error is discov-
ered in the way the client has invoked the service (an invalid 
parameter, for example), the error must be sent back to the client
through the callback interface, which is described in the next 
section.

Without the
@OneWay annota-
tion, the client
developer knows 
if the operation
returns without
throwing an 
exception.

int getStatus();

@OneWay
@EndsConversation
void cancel();

}

From the Library of Robert Ryan



ptg

Conversational Services and Asynchronous Interactions 123

Note that the CreditComponent implementation does not need to
change; if the implementation is conversation-scoped, the SCA
runtime will continue to manage state, even if the invocation is
made in an asynchronous manner.

Callbacks
In addition to non-blocking operations, conversational services
may also be used in conjunction with callbacks. Like operations on
CreditService, callback operations can be annotated with
@EndsConversation. Invoking a callback method marked with
@EndsConversation will end the current conversation started by
the client. Listing 4.8 shows the CreditServiceCallback inter-
face.

In addition to 
non-blocking oper-
ations, conversa-
tional services may
also be used in
conjunction with
callbacks.

Listing 4.8 Using Conversations with Callbacks 

import org.osoa.sca.annotations.Remotable;
import org.osoa.sca.annotations.EndsConversation;
import org.osoa.sca.annotations.Conversational;
import org.osoa.sca.annotations.OneWay;

@Remotable
@Conversational
public interface CreditServiceCallback  {

EmploymentHistory requestMoreInformation();

@OneWay
@EndsConversation
void creditResult(CreditResult result);

}

Accessing the callback from the CreditComponent is no different
than accessing it from a stateless implementation (see Listing 4.9).

Listing 4.9 Accessing a Callback During a Conversation 

import org.osoa.sca.annotations.Scope;
@Scope("CONVERSATION")
public class CreditComponent implements CreditService {

//…
private CreditServiceCallback callback;

@Callback

From the Library of Robert Ryan



ptg

The advantage to
using stateless
clients is that the
runtime can per-
form a callback
optimization.

124 Conversational Interactions Using Java

Callbacks to Conversational and Stateless Clients
Perhaps the most common conversational interaction pattern in-
volving callbacks is when both the client and service provider are
conversation-scoped. In this case, callbacks from the service
provider will be dispatched to the originating client instance. This
allows clients and service providers to avoid passing context infor-
mation as service parameters. The CreditComponent in the previ-
ous listing was written with the assumption that the client is
conversational. When CreditServiceCallback is called, only the
credit score result is passed back and not the entire loan applica-
tion. Because the LoanComponent is conversation-scoped, it can
maintain a pointer to the loan application in an instance variable
prior to making the original credit score request and access it when
the callback is received.

Although conversation-scoped clients and service providers are
likely to be the norm when callbacks are used in conversational
interactions, it is possible to have a stateless client and conversa-
tional service provider. We conclude this section with a brief dis-
cussion of this scenario. 

In Figure 4.6, if the original LoanComponent client were stateless,
the callback invocation would most likely be dispatched by the
runtime to a different instance. Figure 4.6 illustrates how callbacks
are dispatched when the client is stateless.

The advantage to using stateless clients is that the runtime can per-
form a callback optimization. Because a callback to a stateless
client does not have to be dispatched to the same client instance
that originated the forward invocation, the runtime can route the
callback to an instance co-located with the service provider. 
Figure 4.7 depicts how this optimization is performed.

Perhaps the most
common conversa-
tional interaction
pattern involving
callbacks is when
both the client and
service provider are
conversation-
scoped.

It is possible to
have a stateless
client and conver-
sational service
provider.

public setCallback(CreditServiceCallback callback) {
this.callback = callback;

}

void apply(LoanApplicant applicant) {
// do some processing…
CreditResult result = //....
callback.creditResult(result);

}

}

From the Library of Robert Ryan



ptg

Conversational Services and Asynchronous Interactions 125

3

1

2

Instance
1

Instance

Credit Score Callback
.credit Score Result()

Credit Score Service.getStatus()
Continue conversation

Credit Score Service.getStatus()
Start conversation

Callback

Forward Invocation

Instance
2

Instance
1

Loan Component

Loan Component Credit Component

Credit Component

Instance

Request
forwarded

Figure 4.6 Callback dispatching to a stateless client 

Runtime 1

Runtime 1

Runtime 2

Runtime 2

Callback

Forward Invocation

Figure 4.7 Routing a callback to a co-located stateless client 

From the Library of Robert Ryan



ptg

126 Conversational Interactions Using Java

Conversation Propagation
In SCA, conversations are between two parties: a client and service
provider. However, there are situations where it is useful to allow
other services to participate in a conversation. Fabric3 provides the
capability to propagate transactions to other services. 

Fabric3 provides
the capability to
propagate transac-
tions to other 
services.

■ Conversation Propagation and SCA

Although not officially standardized as part of the SCA specifications, the Fabric3
developers felt it important to add conversation propagation as a proprietary feature.
The feature was originally based on a user requirement to share context information
across multiple services. With the standard SCA conversation mechanisms, the only
way to share context information was either to pass it explicitly to other services or
have a single service that performed multiple tasks. The first option was ruled out
due to the complexity placed on application code. The second would violate the
principle of separation of concerns, where services should be designed to perform a
single, specific task.

Conversation propagation provided a solution to this problem and was raised as an
enhancement request to the SCA specification working group. Unfortunately, it was
rejected as “too complicated.” Whether the feature is too complicated for end users
or vendors to implement in their runtimes, we will leave open for judgment. The up-
shot is that if you plan on using conversation propagation in your application, be
aware that it is specific to Fabric3.

Figure 4.8 shows a conversation initiated by an interaction between
Components A and B propagated to C.

When the conversation is propagated, all requests from A to B and
B to C will be dispatched to the same component instances.
Conversational propagation can be enabled on individual compo-
nents (for example, on Components A and B in the preceding
example) or on an entire composite. For simplicity, it is
recommended that conversation propagation be enabled on a per-
composite basis. This is done using the requires attribute in a
composite file (see Listing 4.10).

From the Library of Robert Ryan



ptg

Conversation Propagation 127

Composite

Component A Component B Component C

Conversation context is propagated
from B to C.

Listing 4.10 Setting Conversation Propagation for a Composite 

<composite xmlns="http://www.osoa.org/xmlns/sca/1.0"
xmlns:f3="http://fabric3.org/xmlns/

sca/1.0"
name="ConversationPropagationComposite"
requires="f3:propagatesConversation">

<component name="A">
<!-- … -->

</component>

<component name="B">
<!-- … -->

</component>

<component name="C">
<!-- … -->

</component>

</composite>

Figure 4.8 Conversation propagation

We haven’t yet discussed what the requires attribute is, and it
may seem a bit strange that it is used instead of setting an attribute
named propagatesConversation to true. In SCA, the requires
attribute is the way to declare a policy—in this case, for a compos-
ite. We will cover policy in Chapter 6, but for now think of the
requires tag as a way to declare that for all components in the
composite, conversation propagation is required to be in effect.

From the Library of Robert Ryan



ptg

128 Conversational Interactions Using Java

The other thing to note is the use of the Fabric3 namespace,
http://fabric3.org/xmlns/sca/1.0. Because conversation
propagation is a proprietary Fabric3 feature (we could say “pol-
icy”), it is specified using the Fabric3 namespace.

The lifecycle of a conversation that is propagated to multiple partic-
ipant services is handled in the same way as a two-party conversa-
tion. That is, it can be expired using the @Conversation
Attributes annotation or by calling a method annotated with
@EndsConversation. There are two caveats to note, however,
with multiparty conversations. If using the @Conversation
Attributes, the expiration time is determined by the values set 
on the first component starting the conversation. Second,
@EndsConversation should generally be used only on 
services initiating a conversation. In our A-B-C example,
@EndsConversation should be specified on the service contract
for A, or a callback interface implemented by A. Otherwise, if a
conversation is ended on B or C and there is a callback to A, a
conversation expiration error will be raised.

To conclude our discussion of conversation propagation, it is worth
briefly taking into account the diamond problem. The diamond
problem is when interactions among four or more components
form a “diamond.” For example, Figure 4.9 illustrates A invoking B
and C, which in turn invoke D. 

@EndsConversation

should generally 
only be used on
services initiating
a conversation.

Composite

Component A Component D

Component C

Component B

Figure 4.9 The diamond problem 

From the Library of Robert Ryan



ptg

Summary 129

As shown in Figure 4.9, if conversation propagation is enabled for
the composite, when B and C invoke D, they will dispatch to the
same instance of D. Similarly, if D invoked callbacks to B and C,
which in turn invoked a callback to A, the same instance of A
would be called. Finally, if the callback from C to A ended the con-
versation, conversational resources held by the runtime for A, B, C,
and D would be cleaned up. 

Summary
In this chapter, we covered designing and implementing conversa-
tional services. The conversational capabilities provided by SCA
simplify application code by removing the need to pass context
information as service operation parameters and manually manage
state in component implementations. Having concluded the major-
ity of our discussion of the SCA Java programming model, in
Chapter 5, “Composition,” we return to assembling composites and
in particular deal with how to architect application modularity
through the SCA concept of “composition.”

From the Library of Robert Ryan



ptg

This page intentionally left blank 

From the Library of Robert Ryan



ptg

5

Composition

The last two chapters focused on the SCA programming model; in
this chapter, we take a closer look at how applications are assem-
bled using composites. Here we introduce another key concept,
composition. In short, composition is the capability to build larger
components and services from a series of smaller ones. The power
of composition is that it provides a mechanism for more easily
maintaining and evolving applications over time by making them
more modular. With composition, sets of services encompassing
various functional areas of an application can be more easily
reused, upgraded, replaced, and changed. After working through
this chapter, you will have a solid foundation in how composites
are used to achieve a modular application design. 

Composition
Most modern programming languages and models support some
form of encapsulation. That is, they have constructs for breaking
down parts and isolating them from one another. Modern program-
ming languages and models also have mechanisms for reuse.
Object-oriented languages are often designed around interfaces
and classes, which serve both functions. SCA has services and 
components.

131

Composition is the
capability to build
larger components
and services from a
series of smaller
ones.

From the Library of Robert Ryan



ptg

132 Composition

Up to this point, we have discussed how services and components
provide reuse and encapsulation in several ways. First, services
provide a way for multiple clients to address and invoke a unit of
code contained in a component. Services also provide encapsula-
tion as they hide implementation details from clients. Component
implementations may be reused multiple times, potentially with
different property values and wiring. 

For many applications, this level of reuse and encapsulation is suffi-
cient. However, as an application becomes more complex and the
number of components grows, the need may arise to encapsulate
sets of components that expose a few services. A credit appraisal
process may be composed of multiple components but needs to
expose only one service to its clients. Here, the fact that the credit
appraisal process is handled by multiple components is an imple-
mentation detail; in the future, these “internal” components and
their wiring may change. 

In addition, as system complexity grows, the need may arise to
reuse not just single components, but sets of components. Perhaps a
group of components together perform an operation such as vali-
dating and persisting an employee record to a database. It would be
beneficial to reuse this set of components as a single unit across a
number of disparate applications, hiding the details of the compo-
nents from clients. It would also be useful if there were facilities for
making slight configuration changes to the components as a whole,
rather than modifying the individual components. 

To handle these cases—encapsulation and reuse of multiple, related
components—SCA supports composition, or the capability to 
assemble larger components from smaller ones. SCA does this in 
a very simple but powerful way. Consider the visual representation
of encapsulation shown in Figure 5.1.

The composite contains four components, three of which interact to
provide a service to the fourth. A component that performs credit
scoring may use data validation and auditing components. These
details should be hidden from clients using the credit-scoring
service. A solution to this problem would be to allow components
to be composed from other components like building blocks. We
can modify the previous diagram to include this “composite”
component, as illustrated in Figure 5.2. 

From the Library of Robert Ryan



ptg

Composition 133

Figure 5.1 Encapsulating three components

Encapsulate three
components

Composite

Composite

Figure 5.2  A composite component

The composite component encapsulates the three components and
their wires by exposing a single service to clients. SCA takes this a
step further and makes the composite itself a type of component. In
other words, composites are a component implementation type just
like Java, BPEL, or C++. Our earlier diagram can now be
represented as a series of nested components (see Figure 5.3).

From the Library of Robert Ryan



ptg

134 Composition

Figure 5.3  Nested composite components

Because composites are just a particular type of component, they
can also be reused like other components. As we explain in the
next sections, composites can have services, references, and prop-
erties that are configured in their parent composite. We now look at
how to use a composite as a component implementation. 

The Composite Implementation Type
Suppose the previous credit-scoring function performed by the loan
application involved a multistep process consisting of data valida-
tion, score calculation, and producing an audit record for legal
compliance. This may best be architected using four components:
one that functions as a central coordinator (the CreditComponent)
and delegates to the other services; one that performs data valida-
tion (the ValidationComponent); one that serves as a scoring
engine (the ScoringComponent); and one that writes audit
messages to a log (the AuditingComponent). CreditService
Composite, shown in Listing 5.1, assembles these four
components.

Composite

Composite

Because compos-
ites are just a partic-
ular type of
component, they
can also be reused
like other compo-
nents. Composites
can have services,
references, and
properties that are
configured in their
parent composite.

From the Library of Robert Ryan



ptg

The Composite Implementation Type 135

Listing 5.1 The Credit Service Composite

<composite xmlns="http://www.osoa.org/xmlns/sca/1.0"
targetNamespace="http://www.bigbank.com/xmlns/ loanApplication/1.0"
name=" CreditServiceComposite">

<component name ="CreditComponent">
<implementation.java class="com.bigbank.CreditComponent"/>
<reference name="validationService"

target="ValidationComponent"/>
<reference name="scoringService" target="ScoringComponent"/>

<reference name="auditService" target="AuditingComponent"/>
<component>

<component name ="ValidationComponent">
<implementation.java class="com.bigbank.ValidationComponent"/>

<component>

<component name ="ScoringComponent">
<implementation.java class="com.bigbank.ScoringComponent"/>

<component>

<component name ="AuditingComponent">
<implementation.java class="com.bigbank.AuditingComponent"/>

<component>

</composite>

We could have chosen to include these four components in the
original LoanApplication composite. However, as the applica-
tion grows, that strategy will likely result in a brittle and difficult-to-
maintain system. In the future, all or part of the credit-scoring
components may need to be changed. In addition, configuring all
components in one composite is likely to result in a very unstruc-
tured application that is difficult to decipher (not to mention devel-
opers stepping on one another as they modify parts of the single
composite).

Instead, good design suggests that we encapsulate the credit-
scoring function in a composite, which is then used as a compo-
nent by the LoanApplication composite. Figure 5.4 depicts this
visually.

From the Library of Robert Ryan



ptg

136 Composition

Figure 5.4 Encapsulating the credit-scoring process

The SCDL in Listing 5.2 configures LoanComponent and
CreditComponent.

LoanApplicationComposite

LoanApplication
Component

CreditScoreComponent

Listing 5.2 The Credit Score Composite SCDL

<composite … name="LoanApplication">
<component name ="LoanComponent">

<implementation.java class="com.bigbank.LoanComponent"/>
<component>

<component name ="CreditComponent">
<implementation.composite name="loan:CreditServiceComposite"/>

<component>

</composite>

The key part of the preceding SCDL is the use of the
<implementation.composite> element. This instructs the
SCA runtime to use a composite as the component implementation,
just as if we had specified <implementation.java> or
<implementation.bpel>. However, instead of referencing the
class name, we refer to the fully qualified name of the composite
using the “name” attribute. The fully qualified name, or QName,
consists of the target namespace and name of the composite. This
is equivalent to specifying the package and class name for Java
implementation types. 

From the Library of Robert Ryan



ptg

Service Promotion 137

Service Promotion
The next step in encapsulating the credit-scoring process is to ex-
pose the CreditService from the CreditComposite. Exposing—
or as SCA terms it, promoting—a service in a composite serves two
purposes. It allows other references from outside the composite to
be wired to it. It also provides a mechanism for the service to be
configured by the composite using it as an implementation. We
discuss each of these in turn.

Services are promoted using the <service> element in the com-
posite, as demonstrated in the SCDL fragment in Listing 5.3.

Exposing—or as
SCA terms it, pro-
moting—a service
in a composite
serves two pur-
poses. It allows
other references
from outside the
composite to be
wired to it. It also
provides a mecha-
nism for the service
to be configured 
by the composite
using it as an 
implementation.

Composite Qualified Names

It is worth highlighting one of the subtleties associated with using composite qualified
names for <implementation.composite>. Namely, the QName does not need to
correspond to a particular file location or composite filename. The QName is only a
logical name. The CreditComposite could be defined in a file named
CreditComposite.composite located in the META-INF directory of a jar contribu-
tion. (Recalling from Chapter 2, “Assembling and Deploying a Composite,” compos-
ites are packaged into contribution archives for deployment.) Or the composite could
be located in some other directory or defined in a file named credit.composite.

Regardless of the filename or location, the SCA runtime is responsible for mapping
the QName specified in <implementation.composite> to the actual composite
SCDL. This makes assembly less susceptible to breaking during refactoring. The file-
name or location could change, and the assembly would continue to work. All that
is required is that the QName must uniquely identify one composite within the con-
tribution.

In addition, as we mentioned in Chapter 2 and will discuss in more detail in Chapter 9,
“The Domain,” composites may be reused from other contributions. By referring to
composites using their QName, the client or importing contribution need not be aware
of the internal structure of the contribution providing or exporting the composite.

From the Library of Robert Ryan



ptg

138 Composition

The <service> element configures a composite service by setting
its name and identifying a service to promote via the promote at-
tribute. In the example, the CreditService provided by the
CreditComponent is promoted. Because the CreditComponent
implements only one service, we could have omitted explicitly
identifying the CreditService and written
promote="CreditComponent".

Wiring to the CreditService provided by the composite is done
like wiring to any other service (see Figure 5.5). 

LoanApplicationComposite

LoanApplication
Component

CreditScoreComponent

Wire

CreditScoreService

Figure 5.5 Wiring to a promoted service

Listing 5.3 Service Promotion 

<composite … name=" CreditServiceComposite">

<service name="CreditService"
promote="CreditComponent/CreditService">

</service>

<component name ="CreditComponent">
…

<component>

…

</composite>

From the Library of Robert Ryan



ptg

Service Promotion 139

In SCDL, wiring is done as shown in Listing 5.4.

Listing 5.4 The SCDL for Wiring a Promoted Reference 

<composite … name="LoanApplication">

<component name ="LoanComponent">
<implementation.java class="com.bigbank.LoanComponent"/>
<reference name="creditService" target="CreditComponent"/>

<component>

<component name ="CreditComponent">
<implementation.composite name="loan:CreditServiceComposite"/>

<component>

</composite>

The Performance Implications of Composition

In the primary example for this chapter, we have been demonstrating how to encap-
sulate the credit-scoring function of the BigBank loan application as a composite. By
creating a separate credit-scoring composite and using it as a component, we are
better able to hide the implementation details of the credit-scoring service.
Composition—the process of creating components from composites that in turn as-
semble smaller components—leads to more robust application architectures and
makes applications easier to maintain.

You may be wondering about the runtime performance implications of composition.
Specifically, does wiring to a composite service, which promotes a service on a con-
tained component, introduce an extra invocation hop when servicing a request? For
example, when the LoanComponent invokes the CreditService, does the call flow
first to the promoted service on the composite and then to the service on the con-
tained component (as depicted in Figure 5.6)?

The wire defined in the previous SCDL connects the
creditService reference of LoanComponent just like any other
component, thereby hiding internal implementation details.

From the Library of Robert Ryan



ptg

140 Composition

Figure 5.6 Do promoted services require two hops?

The short answer is that, in a good runtime implementation, there should be ab-
solutely no negative performance impact. This is because the runtime can optimize
away the composite service and connect the two components directly. For example,
Fabric3 will flow a call directly to the target service, as shown in Figure 5.7.

Figure 5.7 Optimizing the promoted service hop away

Because composite services are optimized away by the SCA runtime, composition
can be used without fear of negatively impacting runtime performance with extra
invocation hops. 

LoanApplicationComposite

LoanApplication
Component

CreditScoreComponent

2

CreditScoreService

1

LoanApplicationComposite

LoanApplication
Component

CreditScoreComponent

CreditScoreService

1

LoanApplicationComposite

From the Library of Robert Ryan



ptg

Service Promotion 141

Service Bindings
Composite services have all the characteristics of a component
service, including the capability to be bound to a particular remote
communications transport. In Chapter 2, we described how to ex-
pose the LoanService as a web service via the SCA web services
binding (see Listing 5.5).

Composite services
have all the character-
istics of a component
service, including the
ability to be bound to
a particular remote
communications
transport.

Listing 5.5 Binding a Service as a Web Service Endpoint

<component name="LoanComponent">
<implementation.java class="com.bigbank.LoanComponent"/>
<service name="LoanService ">

<binding.ws/>
</service>

</component>

Binding the LoanService using <binding.ws> instructs the run-
time to make the service available as a web service endpoint for
external clients. 

If BigBank also wanted to expose the CreditService as a web
service endpoint, the corresponding SCDL for the composite com-
ponent would look the same (see Listing 5.6).

Listing 5.6 Binding a Composite Service as a Web Service Endpoint

<component name="CreditComponent">
<implementation.composite name="loan:CreditServiceComposite"/>

<service name="CreditService">
<binding.ws/>

</service>
</component>

Recalling that the CreditComposite promoted the
CreditService from the CreditComponent, look at Listing 5.7.

Listing 5.7 The Promoted Service

<composite … name=" CreditServiceComposite">

<service name="CreditService"
promote="CreditComponent/CreditService">

</service>

<component name ="CreditComponent">

From the Library of Robert Ryan



ptg

142 Composition

The SCDL in Listing 5.8 instructs the SCA runtime to bind the
CreditService provided by the CreditComponent as a web
services endpoint. 

SCA also allows bindings to be specified on a promoted service
inside a composite. Instead of specifying <binding.ws> on the
composite component, the prior example could be recast as that
shown in Listing 5.8.

SCA also allows
bindings to be
specified on a
promoted service
inside a composite.

…
<component>

…

</composite>

Listing 5.8 Specifying a Binding on a Promoted Service Inside a Composite

<composite … name="CreditServiceComposite"
targetNamespace="http://www.bigbank.com/xmlns/loanApplication/1.0">

<service name="CreditService"
promote="CreditComponent/CreditService">

<binding.ws/>
</service>

<component name ="CreditComponent">
…

<component>
…

</composite>

The component that uses the composite could be recast, as shown
in Listing 5.9.

Listing 5.9 The Binding Information Is Not Set When Using the Composite from Listing 5.8 

<component name="CreditComponent"    xmlns:loan="
http://www.bigbank.com/xmlns/loanApplication/1.0">

<implementation.composite name="loan:CreditServiceComposite"/> 
</component>

From the Library of Robert Ryan



ptg

Reference Promotion 143

The SCDL in Listing 5.8 also instructs the SCA runtime to make the
CreditService available as a web service endpoint. However, it
is subtly different than the previous example. Specifying the binding
on a composite service will apply to all uses of the composite. In
contrast, specifying the binding in the component configuration
will only apply to the specific component. For example, if the
CreditComposite were reused several times, multiple
CreditService endpoints would be activated.

Reference Promotion
Components implemented by composites can also have references
that are wired to services. Similar to a composite service, a com-
posite reference is created by promoting the reference of a con-
tained component. The earlier version of the credit score
component contained an auditing component. It is likely that this
auditing capability will be needed by other components and is
therefore a good candidate to be refactored into a generalized
service used by the various loan application composites.
Refactoring the auditing component can be done by moving it to
the parent LoanApplication composite, as shown in Figure 5.8.

Specifying the
binding on a com-
posite service will
apply to all uses of
the composite. In
contrast, specifying
the binding in the
component config-
uration will only
apply to the spe-
cific component.

Components imple-
mented by compos-
ites can also have
references that are
wired to services.

Figure 5.8 A wired composite reference

Figure 5.8 also demonstrates how reference promotion is used to
wire from a component contained in the credit score component to
the auditing service. In SCDL, reference promotion is done using
the <reference> element (see Listing 5.10).

LoanApplicationComposite

Promoted
Reference

CreditScoreComponent

Audit
Component

From the Library of Robert Ryan



ptg

144 Composition

The <reference> entry creates a composite reference that pro-
motes the auditService reference on the CreditComponent.
When the CreditComposite is used as a component implementa-
tion, this reference must be wired to a service as done in the SCDL
in Listing 5.11.

Listing 5.10 Reference Promotion

<composite … name="CreditServiceComposite" 
targetNamespace="http://www.bigbank.com/xmlns/loanApplication/1.0">

<component name ="CreditComponent">
<implementation.java class="com.bigbank.CreditComponent"/>
<reference name="validationService"

target="ValidationComponent"/>
<reference name="scoringService" target="ScoringComponent"/>

<component>

…
<reference name="auditService"

promote="CreditComponent/auditService"/>

</composite>

Listing 5.11 Wiring a Promoted Reference

<composite … name="LoanApplication">

…

<component name ="CreditComponent">
<implementation.composite name="loan:CreditServiceComposite"/>
<reference name="auditService" target="AuditComponent"/>

<component>

<component name ="AuditComponent">
<implementation.java class="com.bigbank.AuditComponent"/>

<component>

</composite>

In a slightly more complex scenario, a promoted reference may be
wired to a promoted service. This is shown in Figure 5.9, which
changes the AuditComponent to be implemented by a composite
containing two components.

From the Library of Robert Ryan



ptg

Reference Promotion 145

LoanApplicationComposite

CreditScoreComponent

AuditComponent

Listing 5.12 The AuditComposite

<composite … name="AuditComposite">

<service name="AuditService"
promote="AuditComponent/AuditService"/>

<component name ="AuditComponent">
<implementation.java class="com.bigbank.AuditComponent"/>
<reference name="logComponent" target="LogComponent"/>

<component>

<component name ="LogComponent">
<implementation.java class="com.bigbank.LogComponent"/>

<component>

</composite>

Figure 5.9 Wiring from a promoted reference to a promoted service

Take the audit composite SCDL shown in Listing 5.12.

The wiring to the audit service would remain the same as in 
Listing 5.11. The only difference would be the substitution of 
<implementation.composite> for <implementation.java>
(see Listing 5.13).

From the Library of Robert Ryan



ptg

146 Composition

More on Runtime Performance Optimizations

We have already mentioned that wiring to a promoted service should not result in a
negative impact on performance. This is because runtimes can optimize composite
services away and connect references directly to services provided by components
contained in the composite. 

The same optimization can be performed when wiring a promoted reference to a
promoted service. The current example where we wire from the promoted
auditService reference to the promoted AuditService service can be reduced to
a single connection by an SCA runtime. Fabric3, for instance, will create the con-
nection shown in Figure 5.10.

Figure 5.10 Optimizing the wire from a promoted reference to a promoted service

Audit Component

LoanApplicationComposite

CreditScoreComponent

1

Listing 5.13 The Revised LoanApplication Composite

<composite … name="LoanApplication">
…
<component name ="CreditComponent">

<implementation.composite name=" loan:CreditServiceComposite"/>
<reference name="auditService"

target="AuditComponent/AuditService"/>
<component>

<component name ="AuditComponent">
<implementation.composite name=" loan:AuditComposite"/>

<component>

</composite>

From the Library of Robert Ryan



ptg

Reference Promotion 147

Reference Bindings
In Chapter 1, “Introducing SCA,” we discussed how references can
be bound to a particular communication protocol. This is typically
done when a component requires a service that is external to the
SCA domain. (Perhaps it is a web service not written using SCA.)
For example, a component may be dependent on an external web
service that provides interest rates, as shown in Listing 5.14. 

As we see in the diagram, an efficient SCA runtime replaces the series of wires de-
fined in SCDL with a single wire that flows a call directly to the service provider.

Listing 5.14 Binding a Reference

<component name="RateComponent">
<implementation.java class="com.bigbank.RateComponent"/>
<reference name="rateService">

<binding.ws uri="http://www.bigbank.com/rateService"/>
</reference>

</component>

The <binding.ws> element configures the reference to connect to
the web service endpoint located at http://www.bigbank.com/
rateService. Invocations from the component will be dispatched via
web services to the endpoint by the SCA runtime.

Because composite references are like any other component refer-
ence, they may also be bound. And, as with composite services, the
binding may be configured either in the composite SCDL or as part
of the composite component configuration. We look at both exam-
ples in turn.

Listing 5.15 demonstrates binding the rateService reference
using promotion—it is almost identical to the previous example.

Because composite
references are like
any other compo-
nent reference, they
may also be bound.

From the Library of Robert Ryan

http://www.bigbank.com/rateService
http://www.bigbank.com/rateService


ptg

148 Composition

Alternatively, if we wanted to configure the binding as part of the
composite component configuration, we would first remove the
binding from the promoted the reference, as shown in Listing 5.16. 

Listing 5.15 Binding a Promoted Reference

<composite … name="RateComposite">
<component name="RateComponent">

<implementation.java class="com.bigbank.RateComponent"/>
</component>
<reference name="rateService" promote="RateComponent/rateService">

<binding.ws uri="http://www.bigbank.com/rateService"/>
</reference>

</composite>

Listing 5.16 The Promoted Reference

<composite … name="RateComposite">
<component name="RateComponent">

<implementation.java class="com.bigbank.RateComponent"/>
</component>
<reference name="rateService" promote="RateComponent/rateService">
</reference>

</composite>

Then we’d configure the composite component reference, as shown
in Listing 5.17.

Listing 5.17 Binding a Composite Reference as Part of the Composite Component

Configuration

<composite … name="LoanApplication">
<component name="RateComponent">
<implementation.composite name=" loan:RateComposite"/>

<reference name="rateService">
<binding.ws uri="http://www.bigbank.com/rateService"/>

</reference>
</component>

</composite>

From the Library of Robert Ryan



ptg

Reference Promotion 149

It is important to bear in mind that binding a promoted reference
(as represented by Listing 5.15) and binding the reference as part of
the composite component configuration (Listing 5.16 and Listing
5.17) are not the same. The SCDL in Listing 5.15 will bind the refer-
ence for every use of the composite as a component implementa-
tion. In contrast, the SCDL in Listing 5.16 leaves the binding open.
In other words, the binding may be changed each time the com-
posite is used as a component.

It is important to bear
in mind that binding
a promoted reference
and binding the
reference as part of
the composite com-
ponent configuration
are not the same.

Perspective: Use Bindings Only at the Domain Level

SCA provides several ways to configure bindings. At times, it may not always be ap-
parent which alternative is best. In most cases, a simple rule can be applied: Even
though bindings may be specified on references of encapsulated components—
don’t do it. Specify bindings only on references of the components in the top-level
composite (that is, the composite being deployed into the SCA domain) and avoid
doing so on components of nested composites.

It is okay to specify bindings on the composite-level references of nested compos-
ites, but they should be considered to be just hints, because they can be overridden.

Specifying component reference bindings only at the top-level composite brings
several advantages. First, it allows bindings to be changed as late as deployment.
Second, it places all endpoints provided by the SCA domain and dependencies on
services outside the SCA domain at the same level, so they are easier to visualize
and manage. 

Figure 5.11 demonstrates using promotion to bind two services and two references
in top-level composites.

From the Library of Robert Ryan



ptg

150 Composition

Figure 5.11 Binding two services and references in the top-level composite

A complaint that could be raised against this approach is that promotion is more
verbose than simply inlining the binding configuration directly in the component
definition. In this case, it is important to remember that binding a service or refer-
ence without promoting it is essentially “hardcoding” an endpoint. As with code,
hardcoding can save time initially but be costly when a change is needed after an
application has gone into production.

Consider the preceding example. If the services or references were directly bound in
the two inner components and they were not promoted, there would be no way to
change them without changing the two composite SCDLs. This would involve a
modification to the application and redeployment.

In contrast, if the bindings are set in the top-level composites, they can be modified
without altering the inner composite SCDLs. In fact, some SCA runtimes may allow
these modifications to be done without requiring a redeployment. 

Domain

Composite Component

Composite Component

Composite Properties
Given that composite components may have services and refer-
ences, it should come as no surprise that they may also have prop-
erties. The composite in Listing 5.18 declares two integer type
properties.

Composite compo-
nents may also
have properties.

From the Library of Robert Ryan



ptg

Composite Properties 151

Listing 5.18 Composite Property Declarations

<composite … name="CreditServiceComposite"
xmlns:xs="http://www.w3.org/2001/XMLSchema">

<property name="min" type="xs:integer">200</property> 

<property name="max" type="xs:integer">700</property> 

<component name ="CreditComponent">
…

<component>

…
</composite>

The example provides default values of 200 and 700, respectively. 

The properties can be set when the composite is used as a compo-
nent implementation, as shown in Listing 5.19. 

Listing 5.19 Composite Property Configuration

<component name="CreditServiceComponent">
<implementation.composite name=" loan:CreditServiceComposite"/>

<property name="min">100</property> 

<property name="max">800</property> 

</component>

The preceding example sets the min and max properties to 100 and
800, respectively, overriding the default values. 

Note that in Listing 5.18, we declared the property type to be 
integer as defined by XML Schema (the use of the “xs” prefix).
SCA defines the range of valid property types to include those de-
fined by XML Schema—for example, string, integer—and
user-defined complex types (more on that later). 

From the Library of Robert Ryan



ptg

152 Composition

Composite properties are optional by default—that is, they do not
need to be configured when the composite is used as a component
implementation. If a property is not configured and a default value
is provided, the property will be set to that value. If the Credit
Component in Listing 5.19 had not specified min and max property
values, the SCA runtime would have substituted the default values
of 200 and 700.

A property configuration can be made mandatory by setting the
mustSupply attribute on the property declaration in the composite
to true (by default, it is set to false). This is shown in Listing 5.20.

A property configura-
tion can be made
mandatory by setting
the mustSupply
attribute on the prop-
erty declaration in the
composite to true.

More on XML Schema

A lot has been written on XML Schema. To learn more, you can consult the specifi-
cations at http://www.w3.org/XML/Schema. As the specifications are quite dense,
we recommend XML Schema by Eric van der Vlist (O’Reilly, 2002), which provides
a thorough overview of the technology.

Listing 5.20 Optional Composite Property Declarations

<composite … name="CreditServiceComposite"
xmlns:xs="http://www.w3.org/2001/XMLSchema">

<property name="min" mustSupply="true" type="xs:integer"/> 

<property name="max" mustSupply="true" type="xs:integer"/>

<component name ="CreditComponent">
…

<component>

…
</composite>

When @mustSupply is set to true, a property must be configured
when the composite is used as a component implementation.

From the Library of Robert Ryan

http://www.w3.org/XML/Schema


ptg

Composite Properties 153

Configuring Composite Properties
Composite properties would not be very useful unless they could
be accessed by contained components. The SCDL in Listing 5.21
demonstrates how to do this.

Listing 5.21 Referencing a Composite Property

<composite … name="CreditServiceComposite"
xmlns:xs="http://www.w3.org/2001/XMLSchema">

<property name="min" type="xs:integer">200</property> 

<property name="max" type="xs:integer">700</property> 

<component name ="CreditComponent">
…
<property name="min" source="$min"/> 
<property name="max" source="$max"/> 

<component>

…
</composite>

The @source attribute of the <property> element instructs the
SCA runtime to set the value of the property to the given composite
property value. The source attribute value is an XPath expression.
We discuss XPath in more detail later in the chapter, but if you are
not familiar with it, XPath is essentially a technology for addressing
parts of an XML document. Because SCDL is XML, SCA uses XPath
to refer to XML values. In the example, the $ character is an XPath
operator that instructs the SCA runtime to select the min and max
properties.

Why did the SCA authors choose XPath as the expression language
for referencing composite properties as opposed to something
simpler, such as just referring to the property name? As we show in
the next sidebar, basic XPath is relatively easy to write. Also, there
are times when only part of a composite property or subelement
needs to be selected, such as when the property is a complex type
containing several data parts. (We cover complex types in a later
section.) XPath is a widely accepted standard for doing this, and
inventing a technology would likely lead to more complexity as
people would need to master a new approach. 

From the Library of Robert Ryan



ptg

154 Composition

Fortunately, most applications are likely to make much more use of
simple property types, such as string and integer, than complex
ones. In the cases where simple types are used, the only XPath you
need to remember is the $ character preceding the composite prop-
erty name being referenced. 

Multivalued Properties
Property values may contain multiple values, such as a collection
of strings or integers. Multivalued properties are declared by setting
the @many attribute to true (the default is false), as shown in
Listing 5.22.

Property values
may contain mul-
tiple values, such as
a collection of
strings or integers.

Listing 5.22 Declaring a Multivalued Property

<composite … name="CreditServiceComposite"
xmlns:xs="http://www.w3.org/2001/XMLSchema">

<property name="validStates" many="true" type="xs:NMToken">
CA
MA
NY
..

</property>

<component name ="CreditComponent">
…

<component>

…
</composite>

The property declaration in Listing 5.22 provides multiple default
values. When the composite is used as a component, values can 
be set for property by creating multiple <property> entries (see
Listing 5.23).

Listing 5.23 Configuring a Composite Property Using a Complex Type

<composite name="CreditComposite"
xmlns:bb="http://bigbank.com">

<component name="CreditServiceComponent">
<implementation.composite name=" loan:CreditServiceComposite"/>

<property name="validStates">CA</property> 
<property name="validStates">MA</property> 

From the Library of Robert Ryan



ptg

Composite Properties 155

At runtime, any component that accesses the validStates com-
posite property will be given a collection containing the strings CA
and MA. If no value were set for the property, the default values as
defined in Listing 5.23 would be provided: namely CA, MA, and NY.

Using Complex Property Types
Sometimes configuration consists of information that is best repre-
sented using a data structure as opposed to a simple type. Consider
the case where the BigBank loan application contains a number of
components that validate data at various stages in the approval
process. The credit data validator ensures that all required informa-
tion is present and in the correct format. The validation rules are
name-value pairs, where the name corresponds to a data element
name and the value is a regular expression defining the formatting
rules for the field. 

Instead of hardcoding the formatting rules in the component imple-
mentation, BigBank has decided to use a composite property.
BigBank could have used a database to store this configuration but
opted not to do so for two reasons. First, validation information is
static and does not change. Requiring an additional database table
will make the application more difficult to configure than is neces-
sary. Second, more practically, storing the configuration informa-
tion in a database table would require changes to the corporate
database, which is often subject to a lengthy review processes.

Listing 5.24 is the property declaration for the validation rules using
a complex type, validationRules.

</component>

</composite>

Listing 5.24 Declaring a Property Using a Complex Type

<composite … name="CreditServiceComposite"
xmlns:bb="http://bigbank.com"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<property name="validationRules" type="bb:validationRules"/>

…
</composite>

From the Library of Robert Ryan



ptg

156 Composition

As shown in this example, where the @type attribute is set to
bb:validationRules, complex property types are defined in SCA
using XML Schema. 

XML Schema can be somewhat complex and verbose, but it is the
most widely accepted way to specify the set of rules to which an
XML document must conform (also known as a “schema
language”). Other alternative schema languages exist, such as
DTDs, RELAX NG, and Schematron, but SCA chose XML Schema
largely due to its ubiquity and existing software support. The XML
Schema for validationRules is listed in Listing 5.25.

Listing 5.25 The validationRules XML Schema

<xs:schema xmlns="http://www.w3.org/2001/XMLSchema"
targetNamespace="http://bigbank.com/">

<xs:element name="validationRules">
<xs:complexType>
<xs:sequence>
<xs:element name="rule" minOccurs="0"

maxOccurs="unbounded">
<xs:complexType>
<xs:sequence>
<xs:element name="name" minOccurs="0"

type="xs:string"/>
<xs:element name="format" minOccurs="0"

type="xs:string"/>
</xs:sequence>

</xs:complexType>
<xs:attribute name="name" type="xs:string" use="required"/>
</xs:element>

</xs:sequence>
</xs:complexType>

</xs:element>
</xs:schema>

When the loan application is deployed, the XML Schema file would
typically be packaged as part of the contribution containing the
CreditComposite.

The SCDL in Listing 5.26 sets the validationRules property on
the CreditComponent.

From the Library of Robert Ryan



ptg

Composite Properties 157

Listing 5.26 Configuring a Composite Property Using a Complex Type

<composite name="CreditComposite"
xmlns:bb="http://bigbank.com">

<component name=" CreditServiceComponent">
<implementation.composite name=" loan:CreditServiceComposite"/>

<property name="validationRules">
<bb:validationRules>

<bb:rule name="ssn">
<bb:field>ssn</b:field>
<bb:format>^\d{3}-\d{2}-\d{4}$</bb:format>

</bb:rule>
<bb:rule name="zip">

<bb:field>zipCode</bb:field>
<bb:format>^\d{5}$|^\d{5}-\d{4}$</bb:format>

</bb:rule>
…

</bb:validationRules>
</property>

</component>

</composite>

It is possible to
specify the value of
any property by
referring to the
contents of a sepa-
rate file. The file is
specified using a
relative URI—in
this case, relative to
the location of the
composite file.

This approach of including the value of a complex property within
a composite file is awkward, because the application developer is
likely going to want to manage the contents of this configuration as
part of a separate file. In this example, it would be most natural to
have a validationRules.xml configuration file. That way, the
configuration rules can be modified without modifying the compos-
ite that uses it.

It is possible to specify the value of any property by referring to the
contents of a separate file. The file is specified using a relative
URI—in this case, relative to the location of the composite file. So,
if the validationRules.xml file is kept in the same directory as
the composite, the new composite would look like Listing 5.27.

From the Library of Robert Ryan



ptg

158 Composition

The validationRules.xml document contents can then be a little
simpler, because it can use the bigbank.com namespace as the
default namespace (see Listing 5.28). It also is easier for tools to
validate it against its schema.

Listing 5.27 Configuring a Composite Property Using a File

<composite name="CreditComposite"
xmlns:bb="http://bigbank.com">

<component name=" CreditServiceComponent">
<implementation.composite name=" loan:CreditServiceComposite"/>

<property name="validationRules" file="validationRules.xml"/>

</component>

</composite>

Listing 5.28 File Contents Used for the Composite Property

<validationRules xmlns="http://bigbank.com">
<rule name="ssn">

<field>ssn</b:field>
<format>^\d{3}-\d{2}-\d{4}$</format>

</rule>
<rule name="zip">

<field>zipCode</field>
<format>^\d{5}$|^\d{5}-\d{4}$</format>

</rule>
…

</validationRules>

Having walked through the configuration of complex property
types, is the complexity and time required to define an XML
Schema worth it? Most applications can likely make do with simple
types. However, considering that an XML Schema only needs to be
written once, the benefits it affords (most notably validation of
property values) are well worth it.

Binding XML Schema Types

In our property examples, we did not discuss how property values are set on com-
ponent instances. This will vary by implementation type and runtime. For example,

From the Library of Robert Ryan



ptg

Composite Properties 159

Referencing Complex Property Values
Previously, we mentioned that it is possible for a component prop-
erty to reference part of a composite property via an XPath expres-
sion. Suppose a component needs access to only one validation
rule, such as the correct format for Social Security numbers. This
can be referenced using the “source” attribute with the XPath
shown in Listing 5.29.

a BPEL component gets an infoset representation of the XML value used for the
property.

In contrast, a Java implementation must have XML used for property types translated
into Java types (that is, primitives or types defined by the JDK, such as
java.util.Integer or java.util.List) or user-defined classes. How the prop-
erty type is mapped to Java types will vary by runtime. Some SCA runtimes may sup-
port a data-binding technology such as JAXB, which defines standard mappings
from XML to Java. In a JAXB-enabled runtime, the validation rules example would
bind to a java.util.Map.

At the time of this writing, Fabric3 supports binding XML Schema built-in types to
their Java type equivalent as defined by the JAXB specification. However, Fabric3
does not currently support binding complex or user-defined data types. 

Given these differences, it is wise to check the particular runtime documentation
before using complex property types.

Listing 5.29 Using XPath to Access Parts of a Complex Property

<composite name="CreditComposite"
xmlns:bb="http://bigbank.com">

…

<property name="validationRules" type="bb:validationRules"/> 

<component name="ValidationComponent">
…

<property name="ssnPattern"
source="$validationRules//rule[@name=’ssn’]"/>

</component>

</composite>

From the Library of Robert Ryan



ptg

Overriding a binding
is done by promoting
the service or 
reference.

160 Composition

The XPath expression, $validationRules//rule
[@name='ssn'], instructs the SCA runtime to select the rule whose
name is ssn (remember that the actual rule values are set when the
composite is used as a component; refer to Listing 5.25). As you
can see, even nontrivial XPath expressions are easy to read. At the
same time, they are a powerful tool, as evidenced by our example
of selecting a specific validation rule. 

More on XPath 

In addition to properties, SCA uses XPath to configure policy. We briefly touched
upon policies in the first chapter and will provide in-depth coverage in Chapter 6,
“Policy.”

For the majority of application use cases, simple XPath expressions are likely to suf-
fice. However, for more advanced scenarios, a deeper understanding will be re-
quired. As XPath is beyond the scope of this book, we recommend the following
sources for more information: 

� XPath and XPointer by John E. Simpson (O’Reilly, 2002)

� The XPath Specification at http://www.w3.org/TR/xpath 

Overrides
In some situations, it is necessary to override a service, reference, or
property configuration at a higher level of composition. In this sec-
tion, we look at several of the more common override scenarios.

Services and References
One of the most common cases where a service or reference con-
figuration needs to be overridden involves changing a binding.
Overriding a binding is done by promoting the service or reference.
Suppose the RateComposite bound the rateService using the
web services binding in the following manner:

From the Library of Robert Ryan

http://www.w3.org/TR/xpath


ptg

Overrides 161

Now suppose that after the rate composite has been packaged,
installed, and activated in a domain, BigBank offers a new loan
type to small businesses, which requires a different rating service
from its consumer division. Fortunately, the rate composite can be
reused by having the rateService reference use a different
service. To do this, the reference binding can be overridden when
the composite is used as a component implementation. The SCDL
in Listing 5.30 shows how to do this. 

<composite … name="RateComposite">
<component name="RateComponent">

<implementation.java class="com.bigbank.RateComponent"/>
</component>
<reference name="rateService" promote="RateComponent/rateService">

<binding.ws uri="http://www.bigbank.com/rateService"/>
</reference>

</composite>

Listing 5.30 Overriding a Reference Binding

<composite … name="LoanApplication">
<component name="RateComponent">
<implementation.composite name=" loan:RateComposite"/>

<reference name="rateService">
<binding.ws

uri="http://www.bigbank.com/smallBusiness/rateService"/>
</reference>

</component>
</composite>

In the preceding SCDL, reconfiguring the binding in the component
definition overrides the binding information in the composite im-
plementation. In addition to overriding binding settings, reference
and service bindings can be changed entirely at outer levels of a
composition. When overriding the rate service binding, JMS could
have been substituted for web services. The basic rule for bindings
is that the outer level always replaces inner levels of composition.
(For other service and reference configuration, such as policies, the
rules are different—we deal with these in later chapters.)

From the Library of Robert Ryan



ptg

SCA defines a binding
called the “SCA bind-
ing,” or binding.sca.
This binding can be
used to override a
binding set in a com-
posite and instruct the
SCA runtime to create
a wire to a target
service.

162 Composition

When Are Binding Overrides Useful?

The previous rate service example demonstrates another reason why it is best prac-
tice to avoid specifying bindings except in top-level composites that are deployed to
a domain (see the earlier sidebar entitled “Perspective: Use Bindings Only at the
Domain Level”). Binding overrides tend to make reading and understanding SCDL
difficult.

However, binding overrides are useful for integration and predeployment testing. In
the rate service example, BigBank may have a QA and staging environment for test-
ing applications prior to placing them in production. This environment may have
slightly different configurations, such as a specific rate service for testing located at a
different endpoint address. Overrides provide a mechanism to accommodate envi-
ronmental differences as an application is tested before it is moved into production. 

The SCA Binding
Sometimes it is necessary to “unbind” a reference. Again, take the example we used previ-
ously where the reference to the rate service was bound to a web service endpoint:

<composite … name="RateComposite">
<component name="RateComponent">

<implementation.java class="com.bigbank.RateComponent"/>
</component>
<reference name="rateService" promote="RateComponent/rateService">

<binding.ws uri="http://www.bigbank.com/rateService"/>
</reference>

</composite>

Suppose the new rate service for commercial loans was not a web
service but rather provided by another SCA component deployed in
the domain. The reference binding needs to be overridden and the
reference wired to the target service instead.

In order to accomplish this, SCA defines a binding called the “SCA
binding,” or binding.sca. This binding can be used to override a
binding set in a composite and instruct the SCA runtime to create a
wire to a target service. Listing 5.31 details how the SCA binding is
used.

From the Library of Robert Ryan



ptg

Overrides 163

Listing 5.31 The SCA Binding

<composite … name="LoanApplication">
<component name="RateComponent">

<implementation.composite name="loan:RateComposite"/>
<reference name="rateService" target="RateService">

<binding.sca/>
</reference>

</component>
</composite>

The configuration overrides the web services binding set in the
composite SCDL and replaces it with a wire to a target service pro-
vided by another component in the domain.

Properties
In SCA, properties are not, strictly speaking, overridden. Rather, a
combination of using the default value and the @source attribute
on the <property> element can be used to expose a property for
configuration higher up in the composition hierarchy. Taking the
earlier min and max properties:

<composite … name="CreditServiceComposite" ..>

<property name="min" type="xs:integer">200</property> 

<property name="max" type="xs:integer">700</property> 

…
</composite>

To make the min and max properties optionally configurable when
the loan application composite is used, declare the
RateComponent properties to be set by two properties in the
LoanApplication composite using the @source attribute (see
Listing 5.32).

Listing 5.32 Configuring Properties 

<composite … name="LoanApplication">

<property name="min"/> 
<property name="max"/> 

<component name="RateComponent">

From the Library of Robert Ryan



ptg

In cases where
encapsulation is not
required but it is
helpful to separate
a composite into
multiple files, SCA
supports the ability
to include a com-
posite in another.

164 Composition

The SCDL in Listing 5.32 effectively allows the default property
values defined in the CreditServiceComposite to be overridden
outside the loan application composite.

Inclusion
Often, different developers may be responsible for component im-
plementations that reside within a composite. This can create diffi-
culties, as multiple people need to modify a composite file during
development. One solution to this problem is to use composition to
break the composite into multiple composites, which are then con-
tained in a common parent composite. 

Using composition in this manner can be somewhat tedious, partic-
ularly if components in different composites need to be wired to-
gether. Because composites provide encapsulation, components in
different composites cannot be wired directly. Instead, the source
reference and target service would each need to be promoted in
their respective composites. Then, the promoted reference would
need to be wired to the promoted service in the parent composite.
With multiple wires, this can result in a lot of extra configuration
that will be difficult to maintain.

In cases where encapsulation is not required but it is helpful to
separate a composite into multiple files, SCA supports the ability to
include a composite in another. Specifically, inclusion inlines a
composite in another. For those familiar with C, inclusion is similar
to #include: including a composite within another merges its con-
tents. Inclusion is done using the <include> element and setting
the @name attribute to the qualified name of the included compos-
ite. Unlike C’s #include, composite inclusion is not a textual in-
clude, because XML concepts like namespace prefix declarations
don’t apply across an include (see Listing 5.33).

<implementation.composite name="loan:RateComposite"/>
<property name="min" source="$min"/>
<property name="max" source="$max"/>

</component>
</composite>

From the Library of Robert Ryan



ptg

Inclusion 165

Listing 5.33 Two Included Composites

<composite … name="ParentComposite" 
xmlns:bb="loan:CreditServiceComposite ">

<include name="bb:CompositeA"/> 

<include name="bb:CompositeB"/> 

…
</composite>

In the preceding, two composites are inlined into the
ParentComposite. When inlining a composite, its contained com-
ponents become children of the parent composite. This means that
encapsulation is not enforced between two composites included in
a common parent. Consequently, it is possible to wire between
them without requiring promotion. For example, given
CompositeB:

<composite … name="CompositeB"
targetNamespace="http://www.bigbank.com/xmlns/ loanApplication/1.0">

<component name="ComponentB">
…

</component>
…

</composite>

It is possible to wire to ComponentB directly from a component
contained in CompositeA:

<composite … name="CompositeA"
targetNamespace="http://www.bigbank.com/xmlns/ loanApplication/1.0">

<component name="ComponentA">
...
<reference name="serviceB" target="ComponentB"/>

</component>
…

</composite>

From the Library of Robert Ryan



ptg

166 Composition

Inclusion Versus Composition

A common question people raise is when to use inclusion versus when to instead use
composition. One way of answering this is to say that composition should be used as
part of the architectural design, whereas inclusion should be done for expediency. In
other words, when you want to make a set of components within a composite re-
placeable as a unit or hide their wiring details, use composition. When you need an
easy way to allow more than one person to work on a composite without clashing,
break out the contained components into multiple included composites.

Summary
This chapter illustrated how composition is used to achieve applica-
tion modularity in SCA. Composition allows services to be built
from composites that contain more fine-grained components.
Composition fosters modularity in two ways. First, it provides en-
capsulation by allowing composites to be treated as single compo-
nents that provide services to clients. Additionally, composition
fosters reuse by allowing composites to be configured as compo-
nent implementations multiple times, potentially using different
property values or wiring. With composition in hand, you will be
able to create applications that are easier to manage, maintain, and
evolve.

It is important to note that because inclusion inlines components
directly in the parent, the same rules and conventions apply as if
the components were all defined in a single composite. In particu-
lar, care should be taken to avoid component name clashes. 

Because inclusion
inlines components
directly in the parent,
the same rules and
conventions apply as
if the components
were all defined in a
single composite.

From the Library of Robert Ryan



ptg

6

Policy

The term ”policy” can mean many things. When some people talk
about policy, they are referring to governance rules that mandate
steps and procedures that must be followed in order to develop,
deploy, or modify an application. This is not what is meant by “pol-
icy” in SCA. 

In SCA, a policy is a statement that controls or constrains some
capability that is provided by the infrastructure.

Policy Examples
Examples of infrastructure capabilities that can be managed using
SCA’s policy framework include the following:

� Authentication

� Confidentiality (encryption)

� Integrity (signing)

� One-way message reliability

� Transaction propagation 

These are not just arbitrary examples. They are the set of policies
that were in the minds of the designers of SCA’s policy mechanism,
so they should work fairly well. For other things that might be 
described as policies, the more they differ from the preceding 

167

In SCA, a policy is
a statement that
controls or con-
strains some ca-
pability that is
provided by the
infrastructure.

From the Library of Robert Ryan



ptg

168 Policy

examples, the less likely they are to be well-suited to SCA’s policy
framework. Service level agreements (SLAs), such as promises about
the average latency that will be provided by a service, are near the
edge of this distinction. We do not know of any reason why they
should not be well-suited to SCA’s policy framework, but there is
also very little experience with the framework.

When we say that policies are capabilities provided by the infra-
structure, we are differentiating them from the capabilities that are
part of the code of components. Application code should not deal
with the numerous transport and protocol issues that surround the
sending and receiving of messages. Developers should be able to
just concentrate on the application logic. 

Nonetheless, it is sometimes necessary for someone to provide de-
tails about how certain infrastructure capabilities will be provided.
For example, what encryption standard will be used to achieve con-
fidentiality? In SCA, the person who makes those decisions and 
configures the associated details is the policy administrator.

SCA Policy in Brief
Before going into more detail on features of the policy framework, it
is useful to get an overview of the policy mechanism by looking at
how encryption would be specified by the various roles involved in
application development.

The developer specifies an @Confidentiality annotation next to
the @Reference annotation that designates a reference. This turns
into a reference declaration in the component type that includes the
following:

<reference requires="sca:confidentiality" …>

That @requires attribute holds a list of intents. This means that the
developer requires that some mechanism must be used to ensure
confidentiality on calls through this reference.

It is the job of the policy administrator to make sure that the “confi-
dentiality” intent lines up with a policySet. The policy set defini-
tion contains policy assertions (usually in the form of WS-Policy),
the intent that is guaranteed by that policy set, and the

From the Library of Robert Ryan



ptg

Intents 169

circumstances in which it applies. The circumstances are in the
form of an XPath expression run on the binding where the policy
will be used, although in many cases, the XPath expression can just
be the name of the binding type (for example,
@appliesTo="binding.ws").

Policy administrators install these policies by including them in
definitions.xml files that are installed into the domain using the
contribution mechanism, which will be described in Chapter 9,
“The Domain.”

Intents
An intent specifies a capability without identifying how it will be
provided. The definition of an intent is specified in a definition.xml
file that may be installed into a domain using a contribution.
However, runtimes usually have a number of intents preinstalled,
such as the intents that are specified by the SCA standard itself.

Listing 6.1 provides the definition of SCA’s confidentiality intent.

Listing 6.1 Confidentiality Intent Definition 

<intent name="confidentiality" constrains="sca:binding">
<description>

Communication through this binding must prevent
unauthorized users from reading the messages.

</description>
</intent>

The intent can be specified in implementation files, interface files,
component types, and composites. In component types and com-
posites, the intents are specified as a space-separated list in an
@requires attribute. The attribute can be put on any element. For
binding and implementation elements, the attribute directly affects
the element. 

For any other element, the effect is indirect. The required intents
are added to any binding or implementation element that is a de-
scendent of the element that defines it (using the XML hierarchy).
This enables you to specify confidentiality on every binding within

From the Library of Robert Ryan



ptg

170 Policy

a composite by specifying @requires="sca:confidentiality"
on the composite element itself. In some cases, compositewide
intents might be overridden by intents on lower-level elements. 

PropagatesTransaction—An Example of a
Required Intent
Transaction policy is an example of a situation where the compo-
nent developer needs to be able to declare that it needs something
from the infrastructure. Only the developer of a component knows
if an atomicity guarantee is required for a component. If atomicity
is required, the component must be developed in a way that guar-
antees any operation will either complete in its entirety, or the sys-
tem will be put back into the same state it was in before the
operation began.

One way to achieve this guarantee is for both client and service
providers to create appropriate compensation logic, which undoes
any completed steps if there is a failure before the entire logical
transaction completes. Creating such compensation logic is a pain
but is necessary if transactions can’t be used. This can happen if a
component has references to services that can’t enlist in the same
transaction as the component. 

If transactions can be used, guaranteeing atomicity is much simpler.
In order to include a service call in the transaction of the caller,
SCA defines an intent called propagatesTransaction. If this
intent is present on a reference, the reference must be wired to a
service that can enlist in the transaction. This frees the developer
from creating compensation logic. However, it also constrains the
deployer, because the reference can only be wired to services that
can join the transaction. The propagatesTransaction intent
places this constraint.

In the example from the previous chapter, the credit component
might mark its references to the scoring system and the audit system
as needing to enlist in the transaction, so the scoring result is
recorded in the audit log, no matter what. Figure 6.1 shows the
references that require propagatesTransaction in white.

From the Library of Robert Ryan



ptg

policySets 171

Figure 6.1 Credit components require some references to propagate
transactions.

policySets
policySets are defined by policy administrators, and they state 
the details of how a particular intent should be accomplished under
various circumstances. policySet definitions are found in 
definition.xml files, which can be installed in a domain via a 
contribution.

policySet definitions hold collections of policy assertions that
accomplish some intent (or set of intents) under curtain circum-
stances. The policy assertions are typically WS-Policy expressions,
although other policy languages are allowed. The intents that the
policySet accomplishes are listed in the definition of the policy
set in a @provides attribute. The circumstances where the
policySet applies are represented as an XPath expression inside
an @appliesTo attribute.

For example, the propagatesTransaction intent listed previously
would be provided by the following policySet (see Listing 6.2).

policySets are
defined by policy
administrators, and
they state the de-
tails of how a par-
ticular intent should
be accomplished
under various cir-
cumstances.

Validate

Scoring

Audit

Credit

Composite

From the Library of Robert Ryan



ptg

172 Policy

The contents of this policySet is a WS-Policy assertion that was
defined in the WS-AtomicTransaction specification. The
@provides attribute lists the sca:propagatesTransaction intent
as the only intent that is provided by the policySet.

The @appliesTo attribute is actually a relative XPath expression,
although in this case, as in many cases, it is simply a QName.

How @appliesTo Is Used
The processing rule for the @appliesTo XPath expression is that it
runs against the parent element of every binding or implementation
element in the document. If the relative XPath expression returns
the binding or implementation element that you are checking, this
policySet applies to this binding; if not, it doesn’t.

The result of this processing rule is that the most common thing that
determines the applicability of a policySet, the binding type, is
specified with an XPath expression that is just the QName of the
binding, such as "sca:binding.ws". That XPath expression run
on the parent element of some binding.ws element will return all
bindings with a QName of sca:binding.ws. Because the binding
being checked is in this set, the policySet applies.

If you only wanted a policySet to apply if the @uri attribute on
the binding starts with the “https” scheme, you would write the
appliesTo attribute as follows:

Listing 6.2 A Composite Scoped Component Implementation 

<policySet provides="sca:propagatesTransaction" 
appliesTo="sca:binding.ws">

<wsat:ATAssertion/>
</policySet>

appliesTo="sca:binding.ws[starts-with(@uri, "https:")]"

You can also apply bindings only when they are used in specific
contexts. For example, you could write a policySet that is used
on services or references that use the CreditService WSDL inter-
face, by using an appliesTo of the following:

sca:binding.ws[../interface.wsdl/@interface="bb:CreditService"]

From the Library of Robert Ryan



ptg

policySets 173

The conditional part traverses to the parent element (the “..”),
which will be either a service or a reference element. Either of
these can specify their interface using interface.wsdl, so this finds
the ones whose interface.wsdl has a @name attribute with the
QName of "bb:CreditService".

Finding the Right Policy Set
The SCA Policy Framework specification has a detailed algorithm
that describes how to propagate intents down the XML hierarchy
and how to find a matching policy set. The algorithm works on a
composite, and the result of the algorithm should be that all intents
are discovered to be satisfied in some way—either by finding an
appropriate policy set or because of the built-in capabilities of
bindings or implementations.

Some of the basic steps in the algorithm are the following:

1. Copy intents from each component type (that is, from the
implementation) into the components that use those com-
ponent types.

2. Copy in the intents from the interfaces used by any service
or reference.

3. Propagate intents down the XML tree.

4. For each binding or implementation in the composite, find
the smallest set of policy sets that provide all the intents
listed for that binding or implementation and where the
@appliesTo matches.

If there are any bindings or implementations where no set of
policySets can be found that achieve that set of intents, there is
an error. If more than one set can be found that achieve it, the de-
ployer has to choose.

■ Perspective: Declarative Policy Versus API

SCA’s separation of policy details from application logic is not new. Transaction
monitors, database systems, message-oriented middleware (MOM), and other infra-
structure software products have always made it possible to offload the implementa-
tion of these capabilities from the average developer. However, in the past, these

From the Library of Robert Ryan



ptg

174 Policy

systems have been made available through APIs. This means that calls to control
these infrastructure capabilities have been intermixed with application logic. Often
it is the case that the amount of code devoted to calling infrastructure APIs dwarfs
application logic. For example, the following is an example of reliably sending a
message to a JMS queue:
Context ctx = new InitialContext();
QueueConnectionFactory qconFactory = 
(QueueConnectionFactory) ctx.lookup(JMS_FACTORY);

QueueConnection qcon =
qconFactory.createQueueConnection();

QueueSession qsession = 
qcon.createQueueSession(false,
Session.AUTO_ACKNOWLEDGE);

Queue queue = (Queue) ctx.lookup("myQueue");
QueueSender qsender = qsession.createSender(queue);
TextMessage msg = qsession.createTextMessage();

qcon.start();
qsender.send(msg, DeliveryMode.PERSISTENT, 0, 0);
qsender.close();
qsession.close();
qcon.close();
The concepts of the queue connection, queue session, and queue sender are all
needed so that there are places to put the APIs for configuring the numerous capa-
bilities of JMS.

This approach has the following disadvantages:

� The application logic is hard to follow by looking at the code. If application
conditions change, it is hard to find the corresponding logic that needs to
change.

� Organizations have to hire developers who know both the subtleties of the
options available through the infrastructure APIs, as well as the potentially
complex control flows and business rules that are critical to the business.

� If, after deployment, it is discovered that some different infrastructure option
would be better-suited for some component or some communication path,
the code has to be rewritten.

SCA does not assume that all the complexities associated with the myriad of capa-
bilities provided by infrastructure software will suddenly disappear. Rather, it as-
sumes that those complexities will continue to exist but they will be separated from
application code. The component developer will specify as little as possible in order

From the Library of Robert Ryan



ptg

Wire Validity 175

Wire Validity
When policy sets are found for each binding, SCA has to make sure
the resulting wires are valid from a policy perspective. SCA does
not define how it accomplishes this for anything other than WS-
Policy. 

For WS-Policy, SCA uses the policy intersection algorithm that was
defined in WS-Policy. The policy expressions on the bindings on
each side of a wire have to line up (intersect) in order for the wire
to be valid.

to guarantee the correct execution of the component. The infrastructure choices will
then be specified declaratively, using either binding configuration or through policy.

The “little as possible” mentioned previously has to do with the fact that sometimes
the writer of the business logic knows that certain capabilities from the container
must be provided in order for the component to operate correctly.

Now consider what it looks like in SCA to send the previous JMS message 
persistently:

@Requires(EXACTLY_ONCE)
protected GreetingReceiver target;
...

void f()
{

target.sendGreeting("hi");
}

Some of the differences have nothing to do with policy. JMS is loosely typed, so it
uses a general-purpose send() method. SCA requires a more specific operation sig-
nature for each asynchronous method.

The policy aspect of this is the top line, which requires the exactlyOnce intent.
This is saying that the one-way method invocation should be delivered using what-
ever infrastructure configuration is necessary in order to get the message there ex-
actly one time (no duplicates and no dropped messages). The details of how the
system is going to achieve this, including the timeout values that should be used, the
persistent mechanism to be used, and other such details, are left to the policy ad-
ministrator.

From the Library of Robert Ryan



ptg

176 Policy

With our PropagatesTransaction example, the WS-Policy asser-
tion is <wsat:ATAssertion>. In order for there to be a match,
both sides of the wire need to have that assertion. If both sides
don’t specify it, there is no match and the wire is invalid.

The fact that the WS-Policy matching algorithm would fail when
the reference has the ATAssertion and the service does not is
appropriate in this scenario. In essence, the reference is saying: “I
must be wired to a service that knows how to undo its work if I ever
roll back, because I don’t have any compensation handling logic.”
If the service doesn’t declare that it can join the transaction, as far
as SCA can tell, it will not be able to, and the requirement made by
the reference is not met.

WS-Policy
The preceding scenario used a trivial WS-Policy expression. It had
a single policy assertion, <wsat:ATAssertion>, which had to exist
on both sides of the wire. In general, WS-Policy matching is a bit
more complicated than this, because each side of the wire can
include arbitrarily complex expressions that involve optional policy
assertions or alternative assertions. WS-Policy does not define any
specific policies; it just describes an expression language for com-
bining them. The concepts defined by WS-Policy are the following:

� Policy assertion—Policy assertions are the atoms from
which larger policy expressions can be built. A policy asser-
tion is simply an XML element. It can come from any name-
space. Two policy assertions definitely match if they have
the same element QName, the same attribute values, and
the same subelements (if any). If they differ, the policy as-
sertions may or may not match—it depends on the defini-
tion of the policy assertion (what a pain!).

� ExactlyOne E1, E2, …—This says that E1, E2, and so on are
policy choices. Exactly one of those policy expressions
must be used when using the service.

� All E1, E2, …—This says that expressions E1, E2, and so on
are policy expressions that must be enforced together.

From the Library of Robert Ryan



ptg

WS-Policy 177

� Optional policy assertions—A policy assertion may be
marked with an attribute of wsp:optional="true". This
means that the policy is available if the other side of the
wire asks for it, but it isn’t required by this side. It is defined
as a macro expansion of an ExactlyOne with two subex-
pressions—one with the assertion, and one without it.

� Ignorable policy assertions—A policy assertion may be
marked with an attribute of wsp:ignorable="true". This
is used to declare characteristics of a service that don’t
require cooperation from both sides—such as audit logging.
One side of the wire is declaring that it is going to do some-
thing (for example, log messages). This way, if the other
side of the wire requires that it should only be wired to
services that do such logging, the assertion is there to cover
it. If the other side doesn’t care, the wire will work anyway
(and the logging will happen anyway).

Looking at the preceding concepts, you can see that they are basi-
cally the XOR and AND operators from predicate logic. It is notable
that they do not have the inclusive OR operator or the NOT opera-
tor. The lack of a NOT operator means that it is not possible for a
reference, for example, to say that it must not be wired to a service
that does audit logging.

The lack of an inclusive OR means that if a service can do A, B, or
A and B, instead of just being able to say:

</Or><A/><B/></Or>

it must say:

<ExactlyOne>
<A/>
<B/>
<All><A/><B/></All>

</ExactlyOne>

So, inclusive OR is possible; it is just ugly.

Because WS-Policy doesn’t define any policy assertions, it must
leave those to other specifications. Some of the specifications
that define standard policy assertions include WS-AT, WS-
SecurityPolicy, or WS-ReliabilityPolicy.

From the Library of Robert Ryan



ptg

178 Policy

There is one final important concept that WS-Policy defines, as
follows:

� Policy intersection—This is used for determining if two
policies are “compatible.” The two policies are set side-by-
side, and any place one side has an exactlyOne, the other
side has to have a policy expression that matches one of the
alternatives (possibly also within an exactlyOne). The
intersection continues in a predictable manner given the
concepts defined previously. One thing that is noteworthy
about WS-Policy intersection is that it is symmetric. The
service provider and the service client both specify policy
expressions, and the two sides are treated the same. This
may seem odd at first, because service providers seem like
the more natural place to declare requirements on any
client of that service. (After all, WSDL is only defined for
the provider side, not for clients.) But, in fact, clients may
sometimes have requirements of their own, which need to
be communicated to whatever human or system is going to
be finding a matching service.

Returning to our example, consider the one wire between the
Credit and the Scoring components (see Figure 6.2).

ScoringCredit

Requires
PropagatesTxn

Requires
PropagatesTxn

Credit

Figure 6.2 Required intents on the two ends of a wire

Each of these intents will resolve to the same policySet—namely,
the policySet mentioned previously:

<policySet provides="propagatesTransaction" appliesTo="binding.ws">
<wsat:ATAssertion/>

</policySet>

The policy infrastructure requires the intersection of the policies on
each end of the wire in order to determine the policy actually used.

From the Library of Robert Ryan



ptg

Policies for One-Way Messaging 179

In this case, this becomes the intersection of a policySet with
itself, so the intersection is the same as the original policySet.

Because the <wsat:ATAssertion/> policy assertion is present on
the wire, the transaction will be propagated.

Policies for One-Way Messaging
SCA also defines a few intents related to the reliability of one-way
messaging.

Let’s return to the application presented in Chapter 5,
“Composition,” but this time after it ended up looking like what is
shown in Figure 6.3.

LoanApplicationComposite

Promoted
reference

CreditScoreComponent

Audit
Component

Figure 6.3 Big Bank’s top-level composite

The outermost composite in this picture is shown in Listing 6.3.

Listing 6.3 Wiring to the Audit Component

<composite … name="LoanApplicationComposite">

…

<component name ="CreditComponent">
<implementation.composite name="loan: CreditServiceComposite"/>
<reference name="auditService" target="AuditComponent"/>

From the Library of Robert Ryan



ptg

180 Policy

We haven’t previously looked at the interface for the
AuditComponent, so let’s do that now. AuditComponent will have
a single @OneWay operation called auditEntry, which takes as a
parameter a string representation of the auditable step that needs to
be recorded (see Listing 6.4).

<component>

<component name ="AuditComponent">
<implementation.java class="com.bigbank.AuditComponent"/>

<component>

</composite>

Listing 6.4 Interface for the AuditComponent

import org.osoa.sca.annotations.OneWay;
@Remotable
public interface AuditComponent {

@OneWay
void auditEntry(String entry);

}

The operation is a one-way operation, because it does not want to
slow down the normal flow of the business logic. However, it is
also important that the audit entries not get lost! This is where pol-
icy can help. We should add the following requirements to this
wire:

� exactlyOnce—So that we don’t lose any audit entries, and
none get entered multiple times

� authentication—So that no one forges an audit entry

� integrity—So that the entries are signed, preventing
third-party modification of the audit entry

To add these requirements to LoanApplicationComposite, all
that is necessary is to add an entry for each of these requirements
into a @requires attribute of the reference (see Listing 6.5).

From the Library of Robert Ryan



ptg

Qualified Intents 181

Qualified Intents
There are times when a developer might want to specify more
about how a generic capability is going to be provided than is pos-
sible with simple intents. Qualified intents are intents that provide
this additional detail beyond some existing simple intent.

Consider the confidentiality intent that was introduced at the begin-
ning of this chapter. Confidentiality is typically accomplished
through encryption, although different mechanisms exist. Some
handle encryption on a point-to-point basis. This is typically called
transport-level encryption. Other techniques exist to encrypt a
message in such a way that intermediaries can process and route
the message without decrypting the body of the message. This is
called message-level encryption.

If a developer specifies that she requires sca:Confidentiality on
a reference, this does not constrain the kind of encryption tech-
nique that is used. However, some developers may know enough
about the data and the way it is supposed to be protected to know
that message-level encryption is required. In this case, it should be
possible to require message-level encryption, but still to do it at the
level of intents, rather than having to dive down into the details of a
specific binding.

Qualified intents
are intents that
provide this addi-
tional detail beyond
some existing
simple intent.

Listing 6.5 Wiring to the AuditComponent

<composite … name="LoanApplicationComposite">

…

<component name ="CreditComponent">
<implementation.composite name="loan:CreditServiceComposite"/>
<reference name="auditService" target="AuditComponent"
requires="exactlyOnce authentication integrity"/>

<component>

<component name ="AuditComponent">
<implementation.java class="com.bigbank.AuditComponent"/>

<component>

</composite>

From the Library of Robert Ryan



ptg

182 Policy

In SCA, an intent may be qualified by extending it with a “.” and
the name of some valid qualifier for that intent. In the case of
confidentiality, there are two qualifiers, which are written as
sca:Confidentiality.Message and sca:Confidentiality.
Transport.

Qualified intents are not independent intents from intents that they
qualify. The most important relationship between them is the fact
that anything that satisfies a qualified intent also implicitly satisfies
the intent that it qualifies. This is especially useful between the
various roles involved in application development. If a developer
requires a specific intent, an assembler or deployer may further
refine that requirement by requiring a qualified version of the in-
tent.

Even within a single role, it is sometimes valuable to specify a more
general intent that applies broadly, perhaps to everything within a
composite, and then to refine that general intent down to a specific
intent for some specific service. For example, the confidentiality
intent might be specified on the composite, but some of its services
might specify Confidentiality.Message.

Profile Intents
There are times when a collection of intents are so frequently used
together that it makes sense to have a single intent that expands
into other intents. A profile intent is such an intent. The definition
of a profile intent includes a @requires attribute that lists the in-
tents that it should expand into. 

Among the set of standard SCA intents, the reliability intent of
sca:ExactlyOnce is a profile intent that expands to
sca:AtLeastOnce and sca:AtMostOnce. As is always the case
with an @requires attribute, the semantics of the list is AND—all
the intents must be satisfied.

Listing 6.6 presents the definition of the sca:ExactlyOnce profile
intent.

In SCA, an intent
may be qualified by
extending it with a
“.” and the name of
some valid qualifier
for that intent.

A profile intent is a
single intent that
expands into other
intents.

From the Library of Robert Ryan



ptg

Standard Intents 183

Standard Intents
A variety of the standardized intents have been referenced in the
previous section. The following is an exhaustive list of the intents
that have been standardized as of SCA 1.0. All these intents are in
the SCA namespace.

Security Intents
The security intents include the following:

� Authentication—The identity of the requestor of the
service must be verified.

� Confidentiality—Some mechanism (such as encryption)
must be used to prevent a message from being read by any-
one other than the intended recipient of the message.

� Integrity—A message must be protected from being sur-
reptitiously modified after it has been created (such as by
attaching an electronic signature).

Each of the three preceding intents have the following two qualifiers:

� Transport—The guarantee need only be guaranteed at the
transport level (that is, for a single hop).

� Message—The guarantee should be at the message level. It
should provide an end-to-end guarantee.

Listing 6.6 ExactlyOnce Intent Definition

<intent name="ExactlyOnce" constrains="sca:binding"
requires="sca:AtLeastOnce sca:AtMostOnce">

<description>
The binding implementation guarantees that a 
message sent by a service consumer is delivered 
to the service implementation. Also, the binding 
implementation guarantees that the message is not
delivered more than once to the service 
implementation.
</description>

</intent>

From the Library of Robert Ryan



ptg

184 Policy

Delivery Intents
The delivery intents include the following:

� AtLeastOnce—At least one copy of the message must be
delivered (duplicates allowed).

� AtMostOnce—At most, one copy of the message must be
delivered (no duplicates; dropped messages allowed).

� ExactlyOnce—The message must be delivered once and
only once.

� Ordered—Messages from the same client must be deliv-
ered in the same order that they were sent.

Transaction Intents
Transaction intents include the following:

� PropagatesTransaction—The intent requires that the
other side of the wire must be able to be in the same trans-
action. If the intent is on a reference, it means that the
service provider must be able to join the transaction. If it is
on a service, it means that the client must be able to pro-
vide a transaction to join. This must be used with
ManagedTransaction.global on the implementation.

� SuspendTransaction—This intent goes on service and
references and prevents any transaction that might be active
from being shared across that wire.

� ManagedTransaction—This intent goes on implementa-
tions and means that the components must be run within
some kind of transactional environment, although it may
not be global. Usually this means that it has to be able to
use a database to do the work of a method as one atomic
unit (without having to specify explicitly transaction bound-
aries), but doesn’t need to share its transaction with its
clients or its downstream services.

� ManagedTransaction.Global—This is a qualified intent
that extends ManagedTransaction to say that the transac-
tion must be one that can enlist upstream or downstream
components.

From the Library of Robert Ryan



ptg

Miscellaneous Intents 185

� ManagedTransaction.Local—This qualifier clarifies that
a local transaction, rather than a global transaction, should
be used. This provides better performance, but introduces
the possibility that a system crash could cause the changes
to one resource to be lost even while changes made from
the same transaction to a different resource are committed. 

� NoManagedTransaction—No managed transaction should
be used.

Miscellaneous Intents
Miscellaneous intents include the following:

� SOAP—The SOAP messaging model should be used. Note
that this does not constrain the transport that might be used
to send the SOAP message. If it is unqualified, any version
of the SOAP standard may be used.

� SOAP.1_1—The SOAP v.1.1 standard message model must
be used.

� SOAP.1_2—The SOAP v.1.2 standard message model must
be used.

� JMS—This application uses the JMS API, so the binding
must support this API.

� NoListener—The binding must be able to handle any
incoming traffic through the back channel of an outbound
request. There is no listener for inbound traffic. For asyn-
chronous responses, the binding may need to use polling.

■ Differences from Java EE Transactions

Java EE also provides transactional component behavior through declarative config-
uration. In Java EE, this capability is called container-managed transactions. In J2EE
version 2.1 and earlier, the deployment descriptor would mark the session beans
with a <transaction-type> element with a value of Container. There is then a
separate section that describes which Java EE transaction mode each of these beans
requires. A small example in SCA would be represented as the following:

From the Library of Robert Ryan



ptg

186 Policy

<component name="myAppBean" 
requires="ManagedTransaction">

<implementation.java
class="examples.MyAppImpl"/>
</component>

The same component might be represented in a deployment descriptor, as follows: 

<ejb-jar>
<enterprise-beans>
<session>

<ejb-name>myAppBean</ejb-name>
<home>examples.MyAppHome</home>
<remote>examples.MyApp</remote>
<ejb-class>examples.MayAppImpl</ejb-class>
<session-type>Stateful</session-type>
<transaction-type>Container</transaction-type>

</session>
<assembly-descriptor>

<container-transaction>
<method>
<ejb-name>MyAppBean</ejb-name>
<method-intf>Remote</method-intf>
<method-name>*</method-name>

</method>
<trans-attribute>Required</trans-attribute>

</container-transaction>
</assembly-descriptor>

</ejb-jar>

This declares that the MyAppBean will require the existence of a transaction, which
should be guaranteed by the container. In this case, the ManagedTransaction intent
basically maps to the Required Java EE transaction attribute. The values for that attribute
are: NotSupported, Supports, Required, RequiresNew, Mandatory, and Never.

One of the problems with the Java EE transaction attributes is that they confuse two
concepts, as follows:

� Should the component be run in a transaction?

� Should the transaction be the one propagated from the client?

For example, the “Mandatory” Java EE attribute says that the component should run
in a transaction, and the client must propagate a transaction for it to join.

In SCA, the preceding two questions are represented by separate intents. The
ManagedTransaction intent says that the component should be run in a transac-
tion. This is an implementation intent, so it is not seen by clients. However, clients

From the Library of Robert Ryan



ptg

Summary 187

Summary
This chapter has covered using SCA policy to declaratively config-
ure such things as transactions, security, and reliability. One of the
key goals of SCA policy is to abstract the complexity associated
with specifying security, reliability, and other qualities of service
from application code. SCA achieves this policy abstraction by
providing policy intents that are used by developers to signal the
need for an abstract quality of service, and then are turned into
concrete policies by policy administrators.

can see a separate interaction intent called PropagatesTransaction. This intent
says that the clients must send a transaction that the component can join. If the in-
teraction intent had been SuspendsTransaction, the client could know that any
transaction associated with the client would not be used by the component.

In general, it is not really part of the component contract if the component uses a
transaction but does join in the transaction of the client. The client doesn’t need to
know whether it uses transactions in that case.

From the Library of Robert Ryan



ptg

This page intentionally left blank 

From the Library of Robert Ryan



ptg

7

Wires

This chapter picks up more advanced topics associated with wiring
components. In particular, it covers wiring to multiple providers of
a service, autowire, and wire reinjection after a component has
been deployed to a domain.

Wiring to Multiple Service Providers
In distributed systems, there is often a need for clients to make the
same request to a number of services. A common scenario where
this arises is when a request-for-quote is issued: A client will make
the same request to multiple service providers, as illustrated in
Figure 7.1.

189

Figure 7.1 Wiring to multiple service providers

From the Library of Robert Ryan



ptg

190 Wires

In Figure 7.1, the client contains a collection of references that it
iterates through and invokes with the same request. If BigBank
wanted to expand its credit check procedures, it could use multiple
credit score components that produced ratings based on different
criteria. Let’s see how this is done.

A reference can be wired to multiple targets by specifying more
than one component name in the @target attribute of the 
<reference> element. Component names are separated 
by a space. Listing 7.1 shows the same composite with the
LoanComponent reference wired to multiple CreditComponents.

A reference can be
wired to multiple
targets by specifying
more than one com-
ponent name in the
@target attribute of
the <reference>

element.

A reference with
multiple wires is
injected into a
component imple-
mentation instance
as a collection.

Listing 7.1 Wiring to Multiple Targets

<composite xmlns="http://www.osoa.org/xmlns/sca/1.0"
targetNamespace="http://www.bigbank.com/xmlns/loanApplication/

name="LoanApplicationComposite">
<component name ="LoanComponent">

<implementation.java class="com.acme.LoanComponent"/>
<reference name="creditService"
target=”CreditComponent1 CreditComponent2"/>

<component>

<component name ="CreditComponent1">
<implementation.java class="com.acme.CreditComponent1"/>

<component>

<component name ="CreditComponent2">
<implementation.java class="com.acme.CreditComponent2"/>

<component>
</composite>

A reference with multiple wires is injected into a component imple-
mentation instance as a collection. In Java, the component imple-
mentation could choose to have the reference injected as a
java.util.List, as shown in Listing 7.2.

From the Library of Robert Ryan



ptg

Wiring to Multiple Service Providers 191

Listing 7.2 Multiple Wire Injection

public class LoanComponent implements LoanService {
private List<CreditService> services;

public void LoanComponent (@Reference List<CreditService> services){
this.services = services;

}

//…
}

When handling a request, the component iterates and invokes the
various services individually, as shown in the excerpt in Listing 7.3.

Listing 7.3 Invoking Multiple Wires

public class LoanComponent implements LoanService {
private List<CreditService> services;

public void LoanComponent (@Reference List<CreditService> 
➥services){

this.services = services;
}

public LoanResult apply(LoanRequest request) {
String id = request.getCustomerId();
List<CreditScore> scores = new ArrayList<CreditScore>();

for(CreditService service : services) {
CreditScore score = service.checkCredit(id);
Scores.add(score);

}
// process the credit scores …

}

}

When a reference is configured with multiple wires, it is said to
have a multiplicity greater than one. Multiplicity defines the num-
ber of wires a reference may have. Recalling that references may be
required or optional (in Java, setting the “required” attribute on the
@Reference annotation to true or false), references may have the
following multiplicities:

From the Library of Robert Ryan



ptg

192 Wires

� 0..1—Denotes an optional reference. In Java, the reference
is specified using @Reference(required = false).

� 1..1—Denotes a required reference. In Java, the reference is
specified using @Reference(required = true) or simply
@Reference.

� 0..n—Denotes an optional reference that may be config-
ured with multiple wires. In Java, the reference type must
be a java.util.Collection and is specified using
@Reference(required = false).

� 1..n—Denotes a required reference that may be configured
with multiple wires. In Java, the reference type must be a
java.util.Collection and is specified using
@Reference(required = true) or @Reference.

Those familiar with modeling languages may recognize that the
0..1, 1..1, 0..n, and 1..n notation used by SCA to express multiplic-
ity derives from Unified Modeling Language (UML).

Perspective: Why SCA Did Not Use UML

With its concepts of services, components, and wires, SCA lends itself naturally to
modeling an application and representing it visually. Unified Modeling Language
(UML) is the industry-recognized standard for modeling applications. Given this,
why did SCA not adopt UML as its starting point?

Although UML is a powerful modeling tool, the SCA authors didn’t want its com-
plexity. A key goal of SCA is to create a simplified programming model. At the same
time, SCA’s modeling requirements were modest in comparison to UML’s scope. It
was felt that requiring people to learn UML would have resulted in the need to mas-
ter more concepts than strictly required. 

The <wire> Element
Having to specify target names using a space-delimited list in the
@target attribute of the <reference> element can be difficult to
read by humans. Going back to the multiplicity example we used
previously, it may not be immediately apparent that the
LoanComponent.creditService reference is wired to multiple
services (see Listing 7.4).

From the Library of Robert Ryan



ptg

Wiring to Multiple Service Providers 193

To make configuration more readable (and for those who prefer to
separate wiring from component definitions), SCDL also supports a
<wire> element, which may be used to define multiple wires for a
reference (see Listing 7.5).

SCDL provides the
<wire> element as
a way to specify
multiple wires for a
reference.

Listing 7.4 Wiring Multiple Targets for the LoanComponent

<composite …>
<component name ="LoanComponent">

<implementation.java class="com.acme.LoanComponent"/>
<reference name="creditService" 
target=”CreditComponent1 CreditComponent2"/>

<component>

</composite>

Listing 7.5 Using the <wire> Element

<composite …>
<component name ="LoanComponent">

<implementation.java class="com.acme.LoanComponent"/>

<component>

<!--define wires separately -->

<wire source="LoanComponent/creditService"
target=" CreditComponent1"/>
<wire source="LoanComponent/creditService"
target=" CreditComponent2"/>

</composite>

The <wire> element has source and target attributes. The source
attribute identifies the reference the wire configures and is speci-
fied using the component and reference names separated by a /.
The target attribute identifies the target service the reference is
wired to, which is done using the name of the component provid-
ing the service and the service name separated by a /. The 
preceding example omitted the service name because both
CreditComponents have only one service (recalling from 
Chapter 2, “Assembling and Deploying a Composite,” that if a
component implements more than one service, the service name

From the Library of Robert Ryan



ptg

194 Wires

would have to be specified using the “component name/service
name” SCDL syntax). Similarly, if the source component had only
one reference, it does not need to be specified. If LoanComponent
only had the “creditService" reference, the preceding SCDL
could have specified the source as source="LoanComponent".

Multiplicity and Callbacks
In the previous example, the interaction pattern used when wiring
to multiple providers was blocking request-response—that is, the
LoanComponent iterated through the collection of wires and waited
for a response after each CreditService invocation. In situations
where there are many providers or where a response may take
some time, a callback may be more appropriate. 

Using non-blocking operations and callbacks with references hav-
ing multiple wires is not really different from references having a
single wire. Recalling that the CreditService is defined using a
Java interface, annotating the checkCredit operation with
@OneWay will make it non-blocking. As the LoanComponent iterates
through the collection of credit service wires, it will be able to in-
voke each without blocking, resulting in the client issuing multiple
invocations without waiting for others to complete. This can greatly
improve the overall performance of an application because a num-
ber of tasks can be processed at the same time.

To return a result from a non-blocking operation, a service provider
uses a callback, which we discussed in Chapter 3, “Service-Based
Development Using Java.” To enable callbacks, the Loan
Component implements the CreditScoreCallback interface, as
shown in Listing 7.6.

Listing 7.6 The CreditScoreCallback Interface

@Remotable
public interface CreditScoreCallback {

void onResult(CreditScore score);
}

When a credit CreditComponent is invoked (also written in Java),
it is injected with a callback proxy, which it uses to return the credit
score response. As each CreditComponent finishes processing the
request, it invokes the onResult operation on the callback proxy.

From the Library of Robert Ryan



ptg

Wiring to Multiple Service Providers 195

What’s Behind a Wire?

How are wires manifested in an SCA runtime? Although SCA runtimes may imple-
ment wires differently, the principles remain the same. A wire is a proxy that imple-
ments the service contract required by a reference and is responsible for flowing an
invocation to a target, potentially a remote web service or service offered by another
SCA component (see Figure 7.2).

Figure 7.2 A wire is a proxy that dispatches an invocation to a target service.

A wire may be responsible for dispatching an invocation over a remote binding,
such as web services or RMI. In this case, it would be responsible for serializing the
invocation parameters, possibly in a SOAP message, and invoking a transport-
specific API. In the case of synchronous invocations (that is, ones expecting a direct
response), the wire would also deserialize the return value to the client or throw an
exception if one occurred. 

Wires may perform additional tasks related to an invocation, such as flowing trans-
actional or security context. One common way of implementing this is through an
interceptor. Interceptors are linked units of code that perform a specific action and
pass on processing to the next interceptor in a chain. In Java, servlet filters are a
common type of interceptor. Common tasks include passing (or “propagating”)
security credentials or transaction context. 

When an invocation is made on the proxy, the wire is responsible for dispatching it
down the appropriate interceptor chain. After the interceptor chain has finished pro-
cessing, the invocation is then dispatched through a communications layer to the
target service (see Figure 7.3).

Code
invokes the
proxy.

Target ServiceWire

This results in the LoanComponent receiving multiple callbacks. In this case, it is likely
that the LoanComponent will want to correlate the credit score with the service provider
that made the callback. This can be done by adding additional information to the
CreditScore data, such as a provider ID.

From the Library of Robert Ryan



ptg

196 Wires

Automated Wiring: Autowire
XML-based configuration can become verbose and fragile, particu-
larly as the number of components and wires in an application
increases. To help reduce excessive XML and make wiring easier,
SCA allows references to be automatically wired, or “autowired,”
by the runtime. When a reference is autowired, the runtime selects
a suitable target service, as opposed to having it explicitly specified
in the target attribute of a <reference> or <wire> element. When
autowiring a reference, the runtime will attempt to select a match-
ing service from all services provided by components in the same
composite. The runtime will perform the selection by comparing
the required service contract of the reference with the service con-
tract of the target service to see if they are compatible (for more
information on compatibility, see the following sidebar). If more
than one suitable target is found, the runtime will select one in an

Figure 7.3 A wire interceptor chain

In Java-based runtimes, wires can be implemented using JDK proxies or through
more exotic (and potentially more performant) means, such as bytecode generation.
Fortunately, these details remain hidden from components, which interact with
wires as if they were normal Java objects. From application code, dispatching over a
wire appears as a standard method invocation. 

Wire Interceptor Chain

To help reduce
excessive XML and
make wiring easier,
SCA allows refer-
ences to be auto-
matically wired, or
“autowired,” by the
runtime.

From the Library of Robert Ryan



ptg

Automated Wiring: Autowire 197

implementation-specific manner. This may be as simple as selecting
one at random, or more complex, such as preferring a collocated
service for performance reasons.

Service Compatibility

When wiring references to services, SCA requires their service contracts to be com-
patible. Be careful not to confuse this with equality. In other words, the service con-
tract required by a reference does not have to be the same as the target service. For
example, the required contract for a client component written in Java may be deter-
mined by the Java interface used by the reference. When autowiring, a target service
could be selected that is provided by a BPEL-based component, whose interface
would be defined by WSDL. In this case, the runtime would check compatibility be-
tween the Java interface and WSDL definition.

What constitutes compatibility? SCA defines a series of rules for determining com-
patibility, as follows:

� The operations defined by the target service contract must be the same or be
a superset of those defined by the source.

� Operation matching is determined by the following criteria. The operation
name, parameter types, and return types must be the same. The order of
operation parameters and return values (for languages that support multiple
return values) must be the same. Finally, the set of faults and exceptions
declared by the source and target contracts must be the same.

� Callback service contracts, if present, must match.

� The source and target contracts must either both be local or remotable.

� Other specified attributes must also be the same. For example, if a source
service contract is conversational, the target contract must be as well.

For cases where both source and target contracts are the same (that is, Java-to-Java
or WSDL-to-WSDL), matching is straightforward. Where things get interesting is
when the contracts are not the same. For example, it is possible in SCA to wire a ref-
erence to a service that uses different Java interfaces to define their service contracts.
As long as they are compatible, the runtime is responsible for establishing the con-
nection. This may involve some form of mediation as a request is flowed from the
source to the target service.

Fortunately, the complexity associated with matching source and target service con-
tracts is hidden from applications. However, it is useful to understand how matching
is performed and to not assume that it rests on both sides of a wire being the same. 

From the Library of Robert Ryan



ptg

198 Wires

Listing 7.7 A Composite Using Autowire 

<composite xmlns="http://www.osoa.org/xmlns/sca/1.0"
targetNamespace="

http://www.bigbank.com/xmlns/loanApplication/1.0:LoanApplicationComposite"
name="LoanApplicationComposite"
autowire=”true”>

<component name ="LoanComponent">
<implementation.java class="com.acme.LoanComponent"/>

<component>

<component name ="CreditComponent">
<implementation.java class="com.acme.CreditComponent"/>

<component>

</composite>

The composite shown in Listing 7.7 demonstrates the use of 
autowire.

By default, autowire is disabled. Unless explicitly enabled, the run-
time will not attempt to wire unconfigured references. The SCDL in
Listing 7.7 enables autowire for the entire composite by setting the
“autowire” attribute on the composite definition to true. As a result,
component references not explicitly wired to a target will be wired
by the runtime. Because LoanComponent#creditService is not
configured (that is, there is no corresponding <reference> entry in
the SCDL), the runtime will automatically wire it to a suitable
matching target—in this case, the CreditService provided by the
CreditComponent.

SCA allows autowire to be enabled for a composite, a component,
or a reference. If we had wanted to autowire just the
LoanComponent references, we would have set the autowire at-
tribute to true on its <component> element (see Listing 7.8).

Listing 7.8 Using the Autowire Attribute on a Component

<component name ="LoanComponent" autowire="true">
<implementation.java class="com.acme.LoanComponent"/>

</component>

Similarly, we could have restricted autowire to the individual refer-
ence (see Listing 7.9). 

From the Library of Robert Ryan



ptg

Automated Wiring: Autowire 199

Autowire can also be disabled for specific components or refer-
ences. For example, if autowire is enabled for a composite, it may
be turned off for specific components and references by setting
their autowire attribute to false.

Autowire can also be used to wire references with a multiplicity
greater than one. In these situations, the runtime will inject wires
for all matching services in the composite. So, if the
LoanComponent was a multiplicity, as shown in Listing 7.10, and
autowire was enabled as in the previous SCDL examples, the com-
ponent implementation would be injected with all matching
CreditServices.

Perspective: When to Use Autowire

Autowire is a somewhat controversial feature. We prefer autowire because it re-
duces the amount of “manual” assembly required for applications. Moreover, it
makes the resulting composite configuration less susceptible to breaking during
refactoring. If a component name changes, or a service is moved to a different com-
ponent, autowired references will automatically be adjusted by the runtime.
Explicitly targeted references will need to be manually updated.

Listing 7.9 Using the Autowire Attribute on a Reference

<component name ="LoanComponent>
<implementation.java class="com.acme.LoanComponent"/>
<reference name="creditService" autowire="true"/>

</component>

Listing 7.10 Autowire and Multiplicity References

public class LoanComponent implements LoanService {
private List<CreditService> services;

public void LoanComponent (@Reference List<CreditService> 
➥services){

this.services = services;
}

//…
}

From the Library of Robert Ryan



ptg

200 Wires

Autowire and Composition
Autowire has specific rules for composition—namely, if not speci-
fied for a composite, the autowire setting is inherited from the com-
position hierarchy. To understand how this works, consider the case
where the LoanApplicationComposite contains a component
whose implementation is provided by the CreditScore
Composite. If the CreditScoreComposite does not specify an
autowire value and the LoanApplicationComposite does,
autowire will be inherited from the latter, as shown in Figure 7.4.

Some (rightfully) point out that autowire makes wiring less apparent when looking at
the composite XML. Although graphical tooling can help visualize how references
will be autowired, it can’t help with avoiding unintended consequences, such as the
runtime selecting the “wrong” service. This can happen if two services implement
the same interface contract and the runtime is unable to select among them. In these
cases, the best option is explicit wiring because it will guarantee that the correct tar-
get service is chosen. 

CreditScoreComposite

Autowire
inherited as true

CreditScoreComposite

Autowire
inherited as false

LoanApplicationComposite

CreditScoreComponent

Autowire = true

LoanApplicationComposite

CreditScoreComponent

Autowire = false

Figure 7.4 Inheriting autowire settings

In contrast, when autowire is explicitly set in the CreditScore
Composite, this value takes precedence over settings in the
LoanApplicationComposite (see Figure 7.5).

From the Library of Robert Ryan



ptg

Automated Wiring: Autowire 201

Figure 7.5 Explicitly setting autowire in the
CreditScoreComposite

Now consider a slightly different case where the CreditScore
Composite inherits its autowire setting (that is, it does not specify
autowire), but the CreditComponent, which uses the composite
as its implementation, explicitly declares an autowire setting. In
this case, the inherited value will be determined from the
CreditComponent setting (see Figure 7.6).

CreditScoreComposite

Autowire is
overrident to be true.

Autowire = true

CreditScoreComposite

Autowire is
overiddent to be false.

Autowire = false

LoanApplicationComposite

CreditScoreComponent

Autowire = true

LoanApplicationComposite

CreditScoreComponent

Autowire = false

CreditScoreComposite

Autowire is
is inherited as true.

CreditScoreComposite

Autowire is
inherited as false.

LoanApplicationComposite

CreditScoreComponent

Autowire = true

Autowire = false

LoanApplicationComposite

CreditScoreComponent

Autowire = false

Autowire = true

Figure 7.6 Explicitly setting autowire in the CreditComponent

From the Library of Robert Ryan



ptg

202 Wires

If autowire values are not set, inheritance will be calculated by
examining the composition hierarchy for an autowire declaration
until the top-level domain composite is reached. If no setting is
found, autowire will be false, because it is the default.

Wire Reinjection
SCA is often misinterpreted as being based on a static wiring
model—that is, once a component is deployed, the services to
which its references are wired cannot be changed. In fact, SCA
allows for wires to be changed dynamically at runtime in certain
circumstances. How rewiring is done (for example, through a 
management tool, command-line utility, or other means) is 
runtime-specific. SCA defines the following rules for how 
reinjection occurs:

� The component must be composite or conversation scoped.
Rewiring stateless components would not make much sense
and could have potentially damaging results as the target of
a reference could change in the middle of a request being
processed. For conversation-scoped components, a wire
can only be changed if a conversation is not active. (If the
change occurred during a conversation, the runtime would
apply the change after the conversation has ended.)

� When a reference is rewired, the runtime injects a new
service proxy or collection containing service proxies in the
case of a multiplicity reference. Reinjection will be done for
field- and setter-based references. Note that if a component
uses constructor injection, it will not be injected with a new
service proxy (or proxies).

Summary
This chapter has covered some of the more advanced wiring capa-
bilities provided by SCA. The next chapter turns to a discussion of
deployment and runtime management, and specifically in-depth
coverage of SCA domains.

From the Library of Robert Ryan



ptg

8

Bindings

Applications rarely exist in isolation. External clients inside or be-
yond an organization’s firewall may require access to services of-
fered by an application. Likewise, an application may need to
access services hosted by other applications. 

Within an SCA domain, wires are used to integrate services that
may be co-located or hosted on different machines. However, it is
often the case that a service may need access to another service
that is not hosted in the same domain or is not an SCA service at
all. In SCA, bindings provide the means to communicate outside
the domain. Bindings are used to expose services to external clients
via a network protocol such as web services. In addition, bindings
connect references to external services hosted outside the domain
using a network protocol.

In previous chapters, we introduced the basics of using bindings to
expose SCA services as web service endpoints. In this chapter, we
cover the web service binding in more detail and connecting serv-
ices to enterprise message buses. By the end of this chapter, you
will have a thorough understanding of how to use bindings to inte-
grate SCA services with applications and services hosted outside a
domain, whether they are web services or message-based.

203

In SCA, bindings
provide the means
to communicate
outside the domain.

From the Library of Robert Ryan



ptg

204 Bindings

Interoperable Communications Outside the Domain:
The Web Service Binding
In SCA, bindings establish communications outside the domain.
Bindings are used to expose a service as an endpoint over a remote
transport. Bindings also are used to connect references to an exter-
nal service via a remote transport.

When SCA was created, it was envisaged that there would be many
different types of bindings corresponding to the range of remote
protocols used by distributed applications today. When
performance is a concern, a binary-based binding such as RMI/IIOP
could be used. In cases where interoperability is required—for
example, when a service needs to be available to clients written in
other languages, such as one of the .NET languages—the web
service binding is the logical choice. In this section, we look at the
details of working with the web service binding.

Making a service available as a web service endpoint or accessing a
web service using SCA is fairly simple. The composite presented in
Listing 8.1 promotes a service and reference using the web service
binding.

In this example, the LoanService is made available as a web
service endpoint at the following address: http://bigbank.com/
services/LoanService. The LoanComponent#rateService
reference is bound to the web service endpoint located at
http://somecompany.com/rateService.

Listing 8.1 Using the Web Service Binding 

<composite ….> 
<service name="LoanService" promote=" LoanComponent">

<binding.ws uri="http://bigbank.com/services/LoanService">
</service>

<component name="LoanComponent">
…
</composite>

<reference name="rateService" promote="LoanComponent/rateService">
<binding.ws uri="http://somecompany.com/rateService"/>

<reference>
</component>

From the Library of Robert Ryan

http://bigbank.com/services/LoanService
http://bigbank.com/services/LoanService
http://somecompany.com/rateService


ptg

Interoperable Communications Outside the Domain: The Web Service Binding 205

It’s valuable to briefly describe the steps performed by the runtime
to make this happen. First, when activating the LoanService end-
point, the runtime needs to generate a WSDL document for the
service (remember from Chapter 2, “Assembling and Deploying a
Composite,” WSDL is the language used by web services for de-
scribing services and their operations). Because the service is imple-
mented using Java, the WSDL will be generated from a Java
interface. After the WSDL is generated, the runtime needs to provi-
sion the endpoint at the address specified in the @uri attribute of
the <binding.ws> element. At this point, the service will be ready
to accept and process incoming requests. 

On the reference side, the runtime needs to create a remote com-
munications channel from the component to the remote endpoint.
In the case of Java, this channel will be similar to one created for a
wire (see the “What’s Behind a Wire” sidebar in Chapter 7,
“Wires”). If the component is implemented in Java, a proxy will be
created that dispatches an invocation on the reference over web
services. In order to dispatch an invocation correctly, the proxy
needs to map from the invoked Java method to a web service oper-
ation. After it has mapped the invocation, it needs to encode the
request as a SOAP message and dispatch it over the network to the
address specified by the @uri attribute on the <binding.ws>
element.

Having dealt with the basics of the web service binding (they are
fairly trivial), we turn to some of the more common configuration
options that may be needed by applications.

Using WSDL as the Interface Definition Language
In top-down development, service contracts are defined before
implementations are written. This is often done to facilitate interop-
erability across different technology platforms. By defining services,
operations, and their messages using a language-neutral format
such as WSDL, top-down development can avoid using features
specific to a particular platform. 

WSDL is also essential when connecting systems managed by inde-
pendent organizations. Because it is difficult for an organization to
control or mandate the technology clients use to connect to a

From the Library of Robert Ryan



ptg

206 Bindings

service, a language-independent mechanism for describing services
such as WSDL is the best way to facilitate integration. 

Given these scenarios, it may be necessary to use a predefined
WSDL as opposed to having the runtime generate one when using
the web service binding. To understand how this is done, we need
to briefly review some key WSDL concepts.

In WSLD 1.1, a port is some unit of code that is reachable at a
given network address over a particular protocol. This unit of code
is often referred to as an endpoint. For example, an endpoint may
be located at http://somecompany.com/rateService or at
www.somecompany.com/rateService using the HTTP protocol. A
port contains a set of operations that process messages in a given
format. The RateService endpoint has a #getRates operation
that takes several data, including the date to return rates for. When
the endpoint is invoked, it receives a message containing this data
via HTTP encoded in a specified format—for example, SOAP 1.1. 

Ports are broken down into a number of separate elements. A
portType defines the set of operations for an endpoint. It is roughly
analogous to an interface in Java. A binding defines the message
format (for example, SOAP 1.1) and protocol details for a
portType (for example, HTTP). Finally, a port specifies an address
where the endpoint can be contacted. WSDL separates out these
elements so that they can be reused. Two ports may use the same
portType but different bindings. Two different endpoints would be
created that perhaps were available over different protocols but
offered the same set of operations to clients.

WSDL 1.1 somewhat confusingly (at least from the perspective of
SCA) also defines the concept of a “service,” which is different than
an SCA service. In WSDL 1.1, a service is a collection of related
ports.

In response to limitations and complaints about the complexity of
WSDL 1.1, WSDL 2.0 introduced several important changes.
Although we will not document the changes here, there are two
that you need to be aware of. First, WSDL 2.0 has renamed
portType to interface and port to endpoint. Second, a
service is now restricted to one interface (as opposed to WSDL
1.1, which allowed multiple portTypes).

From the Library of Robert Ryan



ptg

Interoperable Communications Outside the Domain: The Web Service Binding 207

Having reviewed some of the key WSDL concepts, we now exam-
ine how to use WSDL with the web service binding. As Listing 8.2
illustrates, an existing WSDL document can be specified for the
service and reference interface contracts using the
<interface.wsdl> element.

More on WSDL

In this book, we don’t explain the details of WSDL. At some point, it is worth be-
coming more familiar with the technology. The WSDL 1.1 (http://www.w3.org/
TR/wsdl) and WSDL 2.0 (http://www.w3.org/TR/wsdl20-primer, http://www.w3.org/
TR/wsdl20, http://www.w3.org/TR/wsdl20-adjuncts, and http://www.w3.org/TR/
wsdl20-bindings) specifications are options, although they can be tedious reading. 

Listing 8.2 Using WSDL 1.1 to Define Service and Reference Contracts

<composite ….> 
<service name="LoanService" promote=" LoanComponent">

<interface.wsdl wsdlElement="http://www.bigbank.com/
➥loanapplication#wsdl.port(LoanService/LoanApplicationPort)
"/>

<binding.ws/>
</service>

<component name="LoanComponent">
…
</composite>

<reference name="rateService" promote="LoanComponent/rateService">
<interface.wsdl wsdlElement="http://www.somecompany.com/rates#

➥wsdl.port(RateService/RatePort)
"/>

<binding.ws/>
<reference>

</component>

Listing 8.2 uses WSDL 1.1 to specify interface contracts via the
@wsdlElement attribute. When using WSDL 1.1, the format for the
@wsdlElement attribute is as follows:

<WSDL-namespace-URI>#wsdl.port(<service-name>/<port-name>)

From the Library of Robert Ryan

http://www.w3.org/TR/wsdl
http://www.w3.org/TR/wsdl
http://www.w3.org/TR/wsdl20-primer
http://www.w3.org/TR/wsdl20
http://www.w3.org/TR/wsdl20
http://www.w3.org/TR/wsdl20-adjuncts
http://www.w3.org/TR/wsdl20-bindings
http://www.w3.org/TR/wsdl20-bindings


ptg

208 Bindings

In Listing 8.2, the service and reference interfaces are configured to
use the portTypes defined by the LoanApplicationPort and
RatePort, respectively. When this is done, the runtime will do two
things. First, it will introspect the WSDL identified by the
<service> entry to find the portType and map the portType
operations to the promoted SCA service, LoanService, which is
promoted from LoanComponent. The runtime will also introspect
the WSDL specified by the <reference> configuration to find the
portType so that it can map invocations to the correct endpoint
operation.

The web service binding configuration in Listing 8.2 did not in-
clude an @uri attribute as it had when <interface.java> was
used. This is because WSDL ports (or endpoints in WSDL 2.0) 
include an address. When <interface.wsdl> is used, the SCA
runtime uses the address provided in WSDL.

Note that both the <service> and <reference> declarations in
Listing 8.2 do not specify the physical location from which to re-
trieve the WSDL. How does the runtime know where to get the
WSDL? If the WSDL is bundled as part of the same contribution
archive as the composite file, the runtime will have access to it. If
the WSDL is located elsewhere (for example, in another contribu-
tion archive), the WSDL will need to be imported. We briefly dis-
cussed contribution imports in Chapter 2 and provide a more
detailed account in Chapter 9, “The Domain.” Until then, we can
assume the WSDL is packaged in the same contribution as the
composite file.

Using WSDL 2.0 is slightly different from WSDL 1.1, and specifying
interface contracts is one of those areas that involves those slight
differences. Listing 8.3 modifies the previous example (refer to
Listing 8.2) to show how this is done.

Listing 8.3 Using WSDL 2.0 to Define Service and Reference Contracts 

<composite ….> 
<service name="LoanService" promote=" LoanComponent">

<interface.wsdl wsdlElement="http://www.bigbank.com/
➥loanapplication# wsdl.endpoint(LoanService/LoanApplicationEndpoint) 
"/>

<binding.ws/>
</service>

From the Library of Robert Ryan



ptg

Interoperable Communications Outside the Domain: The Web Service Binding 209

<component name="LoanComponent">
…
</composite>

<reference name="rateService" promote="LoanComponent/rateService">
<interface.wsdl wsdlElement="http://www.somecompany.com/rates#

➥wsdl.endpoint(RateService/RateEndpoint)
"/>

<binding.ws/>
<reference>

</composite>

Perspective: Should WSDL Be Used When Specifying
Service Contracts?

Although we have discussed <interface.wsdl> in conjunction with the web
service binding, it can also be used in other contexts. Specifically, WSDL can be
used as the interface definition language for any service or reference, whether it is
explicitly bound or wired. WSDL can also be used to define the interface contracts
on both sides of a wire, as the following illustrates:
<composite name="LoanApplicationComposite">

<component name ="LoanComponent">
…

<component>

<reference promote="LoanComponent/creditScoreService">
<interface.wsdl wsdlElement=" wsdlElement="http://

➥www.bigbank.com/loanapplication#wsdl.port(CreditScore/Credit
➥ScorePort)
"/>

</reference>

The difference between the WSDL 1.1 and WSDL 2.0 examples is
the use of wsdl.endpoint in place of wsdl.port. The format for
the @wsdlElement attribute when using WSDL 2.0 is as follows: 

<WSDL-namespace-URI>#wsdl.port(<service-name>/<endpoint-name>)

Also note that we changed the name of LoanApplicationPort to
LoanApplicationEndpoint and RatePort to RateEndpoint to
reflect the new WSDL 2.0 terminology.

From the Library of Robert Ryan



ptg

After a non-blocking
operation is invoked,
control is returned
immediately to the
client so that it can
continue processing.

210 Bindings

</composite>

<composite name="CreditScoreComposite">
<service promote="CreditScoreComponent/CreditScoreService">

<interface.wsdl wsdlElement=" wsdlElement=
➥"http://www.bigbank.com/loanapplication#wsdl.port(CreditScore/
➥CreditScorePort)
"/>

</service>

<component name ="CreditScoreComponent">
…

<component>

</composite>

Most applications probably don’t need the added complexity of explicitly specifying
WSDL except in special circumstances. For example, when wiring references to
services, the runtime will establish a remote communications channel without re-
quiring WSDL to be specified. 

One case where the added complexity of using WSDL directly may be beneficial is
binding a service or reference. In these situations, the WSDL may be created prior to
the service implementation to facilitate interoperability between service clients and
providers written in different languages. Using explicitly defined WSDL avoids the
possibility that WSDL generated by the SCA runtime when a service or reference is
bound will contain subtle differences.

Specifying WSDL may also beneficial when applications are assembled from com-
ponents written in multiple languages. For these types of applications, it may be eas-
ier to write WSDL upfront and generate interfaces for clients in their respective
languages. Similar to the previous case, explicitly declaring WSDL avoids the possi-
bility that runtime-generated WSDL will contain subtle differences from that used
during development. 

Non-Blocking Interactions Using Web Services
The web service binding examples so far have used synchronous
operations. When a client invokes a synchronous operation, it waits
until a response is received. As we explained in Chapter 3,
“Service-Based Development Using Java,” in loosely coupled sys-
tems where network connections introduce latency, it is often better
to use non-blocking operations. After a non-blocking operation is

From the Library of Robert Ryan



ptg

Interoperable Communications Outside the Domain: The Web Service Binding 211

invoked, control is returned immediately to the client so that it can
continue processing. Non-blocking operations do not return a re-
sponse. Instead, if a response is needed, the service provider must
make a callback.

Using non-blocking operations with the web service binding is
straightforward. When creating the service interface, define its op-
erations as one-way. In Java, recall that this is done using the
@OneWay annotation for a service that records a loan approval
event (see Listing 8.4).

Listing 8.4 Non-Blocking Operations and Web Services

public interface ApprovalService {

@OneWay
void approved(LoanApplication application);

}

Because the approved operation is marked as one-way, when a
reference to the ApprovalService is bound using web services,
the SCA runtime returns control immediately to the client compo-
nent when the operation is invoked. The client will not block while
the invocation is sent to the ApprovalService.

Callbacks and Conversations with Web Services
In theory, using callbacks and conversations with the web service
binding is straightforward. For example, a service bound using web
services and requiring a callback must simply annotate its Java
interface with @Callback, specifying the callback interface.
Similarly, a conversational service needs to mark only its Java inter-
face with @Conversational. In both cases, when an invocation is
made, the runtime needs to add additional information to the mes-
sage it sends out over the network to the target service. In the case
of callbacks, the runtime must send some form of endpoint address
the target service can use to make a callback. Similarly, for conver-
sations, an ID must be sent with the message so the target service
can correlate multiple requests. Otherwise, the target service will
not know which conversational a particular request is part of.

From the Library of Robert Ryan



ptg

212 Bindings

In practice, at least at the present time, things are not likely to work
as simply as this. If both a client and service provider communicat-
ing via web services are hosted by the same SCA runtime imple-
mentation, problems are not likely to occur. Rather, issues are likely
to arise when the client and service provider are hosted either by
different SCA vendor runtimes or one is not built using SCA at all
(for example, it is a .NET service). Because SCA does not specify
the format for propagating callback and conversational information,
vendors will likely implement such features using proprietary ap-
proaches, making interoperability more difficult. At some point,
SCA may standardize how callback and conversational information
is propagated. However, until that happens, it is best to avoid using
these features unless a client and service provider are deployed to
the same SCA vendor implementation.

Accessing Messaging Infrastructure: 
The JMS Binding
Message-oriented middleware (MOM) is often a key part of enter-
prise architectures. MOM products typically function as a messag-
ing backbone that integrates disparate corporate systems. SCA
standardizes connecting to messaging infrastructure via the Java
Message Service (JMS) binding. The JMS binding allows references
to flow invocations to a target service using JMS topics and queues.
The binding also allows services to receive incoming requests from
topics and queues. In this section, we look at the details of working
with the JMS binding.

One-Way Messaging with JMS
JMS is an asynchronous messaging API—that is, messages may be
sent to a destination after control has returned to the client. Due to
its asynchronous nature, JMS is a natural transport to use with non-
blocking service operations. 

Suppose BigBank already has a legacy auditing system in place.
This system is used by all corporate applications to record credit
rating results, lending statistics, and other information mandated by
law. Further, the system is accessed through JMS. 

Because SCA does
not specify the
format for propagat-
ing callback and
conversational
information, ven-
dors will likely
implement such
features using 
proprietary ap-
proaches, making
interoperability
more difficult.

The JMS binding
allows references to
flow invocations to
a target service
using JMS topics
and queues. The
binding also allows
services to receive
incoming requests
from topics and
queues.

From the Library of Robert Ryan



ptg

Accessing Messaging Infrastructure: The JMS Binding 213

BigBank has plans to convert the system to SCA as part of the sec-
ond phase of their loan application build-out. To minimize the
amount of work for the first phase, BigBank has decided to have the
SCA loan application components access the legacy auditing sys-
tem via JMS. In the second phase, the legacy system will be
replaced by an SCA-based implementation similar to the auditing
composite we introduced in Chapter 6, “Policy.” Because existing,
non-SCA systems will still require access to auditing via JMS, the
replacement composite will expose the auditing service as a JMS
endpoint.

Binding References to JMS
The first step in accessing the legacy auditing system from an SCA
component is to define a service interface for auditing operations.
Because the system was built using JMS, it has a message-based
API, as opposed to a service-based API. An example of using the
original message-based API is given in Listing 8.5.

Listing 8.5 Accessing the Auditing System Using JMS

//…
String auditData = … // the audit information to record
Connection connection = // obtain a JMS connection;
Destination destination = // obtain the audit destination
Session session = connection.createSession(true,
Session.AUTO_ACKNOWLEDGE);
MessageProducer producer = session.createProducer(destination);
TextMessage message = session.createTextMessage();
message.setText(auditData);
producer.send(message);

//… cleanup resources

In contrast, the service-based API is defined by the AuditService
interface listed in Listing 8.6. 

Listing 8.6 The Service-Based API for the Auditing System

public interface AuditService {

@OneWay
void record(String data);

}

From the Library of Robert Ryan



ptg

214 Bindings

Because the auditing operation will be performed asynchronously,
we declare the record operation to be non-blocking by using the
@OneWay annotation. Listing 8.7 illustrates how the service-based
API is used instead of the message-based API shown previously in
Listing 8.5.

Listing 8.7 Using the Service-Based API 

public class CreditServiceComponent implements CreditScoreService {
private AuditService auditService;

@Reference
void setAuditService(AuditService auditService) {

this.auditService = auditService;
}

public void checkCredit(String id) {
// …
String data = //..
auditService.record(data);

}

}

In the preceding example, when the audit service reference is con-
figured to use the JMS binding, the SCA runtime will flow service
requests—calls to CreditScoreService.checkCredit(..)—as
JMS messages. Let’s see how that is done. 

As Listing 8.8 demonstrates, binding a reference using JMS is
simple.

Listing 8.8 Using the JMS Binding 

<composite ….> 
<component name=" CreditScoreService">
…
</composite>

<reference name="auditService" promote="CreditScoreService
/auditService">

<binding.jms>
<destination name="AuditQueue"/>

</binding.jms>
<reference>

</composite>

From the Library of Robert Ryan



ptg

Accessing Messaging Infrastructure: The JMS Binding 215

In the preceding example, the JMS binding configuration specifies
the AuditQueue for flowing invocations to the AuditService, as
depicted in Figure 8.1.

Figure 8.1 Enqueuing a reference invocation 

When the audit service reference is invoked, the reference proxy
converts the invocation to a JMS message and enqueue. At that
point, the JMS provider delivers the message to its intended destina-
tion—in this case, a consumer attached to the AuditQueue.

Message is
enqueued by the
reference proxy.

AuditQueue

auditService

Perspective: Why Not Use JMS Directly?

Would it be better to have a component implementation use the JMS API directly as
opposed to binding a reference? This question could be raised about bindings in
general: Wouldn’t it be easier to use transport APIs directly? An argument can be
made that dealing with an API is easier than having to create and maintain XML
configuration.

Although it is hard to make sweeping generalizations and claim that using bindings
for external communications is always the better approach, it does provide a couple
of key advantages.

First, bindings decouple component implementations from the transports used to in-
voke dependent services. If BigBank decided to rewrite its audit service to use some-
thing other than JMS, client code would not have to be modified. 

The second advantage bindings bring is that they externalize communications con-
figuration. Some may say placing configuration in XML makes applications more
difficult to maintain. However, the advantage in doing so is that it allows remote
communications to be reconfigured without modifying code. For example, an SCA
runtime could change the JMS queue used by a bound reference without requiring a
code change. If the configuration is buried away in code, runtimes can’t provide this
type of dynamic behavior.

From the Library of Robert Ryan



ptg

216 Bindings

As the composite is deployed, the SCA runtime registers a listener
on the AuditQueue. When an incoming message arrives on the
queue, the listener dispatches the message to the service for pro-
cessing, as depicted in Figure 8.2. 

Existing clients can continue to send messages to the AuditQueue.
The SCA runtime will be notified by the JMS provider when mes-
sages arrive and will forward them to the AuditService.

Message is dequeued by 
the runtime and
dispatched to the service.

LoanApplicationQueue

LoanApplicationQueue

Binding Services with JMS
For the second phase of refactoring the auditing system, BigBank
has decided to re-implement it as an SCA composite. Because exist-
ing non-SCA clients will still access auditing via JMS, the new com-
posite must maintain backward compatibility with the old system
by binding a service to the AuditQueue. This can be done using
the configuration shown in Listing 8.9.

Listing 8.9 Using the JMS Binding 

<composite ….> 
<service name="AuditService" promote="AuditComponent">

<binding.jms>
<destination name="AuditQueue"/>

</binding.jms>
</service>

<component name="AuditComponent">
…
</composite>

</composite>

Figure 8.2 Dequeuing a message and dispatching it to a service 

From the Library of Robert Ryan



ptg

Accessing Messaging Infrastructure: The JMS Binding 217

Operation Selection
The JMS messaging model differs from the SCA programming
model in that it deals with messages and destinations (that is,
queues and topics), as opposed to service operations and
endpoints. This requires the JMS binding to perform two types of
mapping. Incoming JMS messages must be mapped to service oper-
ations, and outgoing invocations must encode service operation
information in the JMS message. In addition, input and output data
for service invocations (that is, the operation parameters and return
values) must be mapped to and from the JMS message. We refer to
these processes of mapping operations and data as operation selec-
tion and message data binding, respectively. SCA defines default
behavior and provides the ability for applications to specify custom
behavior for operation selection and message data binding. We
now look at how this is done. In the next section, we discuss mes-
sage data binding in more detail.

The JMS binding was designed to map a single service to a destina-
tion (topic or queue). In other words, a JMS destination is always
associated with one service. Although it is possible to bind a
service multiple times to different destinations (using multiple
<binding.jms> configurations), different services should be bound
to individual destinations. 

When dispatching to a target service for a destination, the SCA
runtime must select the correct operation. To do this, SCA defines a
set of rules for encoding operation information in a JMS message.
These rules are straightforward. If the target service has only one
operation, it is automatically selected. If the target service has more
than one operation, the runtime looks for a user property on the
JMS named "scaOperationName" and uses its value to map to the
appropriate operation. If the user property is not found and the
service has more than one operation, the runtime looks for an oper-
ation named "onMessage".

When non-SCA external clients invoke a service bound to JMS,
they may have to encode the operation information manually (as-
suming the service contains more than one operation and no
"onMessage" operation). Going back to the AuditService
example, because the service has only one operation—record—
no encoding needs to be done because the SCA runtime will 

From the Library of Robert Ryan



ptg

218 Bindings

automatically map incoming messages to it. However, if
AuditService had multiple operations, clients would need to
specify the operation in the JMS message. The example in Listing
8.10 modifies the code originally listed in Listing 8.5 to include the
addition of the operation information as a message property.

Listing 8.10 Flowing Operation Information Manually Using the JMS API 

//…
String auditData = … // the audit information to record
Connection connection = // obtain a JMS connection;
Destination destination = // obtain the audit destination
Session session = connection.createSession(true,
Session.AUTO_ACKNOWLEDGE);
MessageProducer producer = session.createProducer(destination);
TextMessage message = session.createTextMessage();
message.setStringProperty("scaOperationName", "record");
message.setText(auditData);
producer.send(message);

//… cleanup resources

When the message is dequeued on the receiving end, the SCA run-
time will dispatch to the record operation by reading the value of
the "scaOperationName" set on the JMS message. 

Message Data Binding
In addition to encoding and decoding operations, the JMS binding
must also map parameter data to and from messages. If the invoked
service operation has one parameter, the data is serialized and sent
as XML. How the data is serialized to XML is determined in one of
two ways. If WSDL is used to specify the service interface (that is,
<interface.wsdl>), the SCA runtime will use it to determine how
to serialize the parameter data. For example, in Listing 8.11, the
interface for the AuditService is configured using WSDL.

Listing 8.11 Using interface.wsdl with the JMS Binding 

<composite name="LoanApplicationComposite" ….> 
<service name="LoanService" promote=" LoanComponent">

<interface.wsdl wsdlElement="http://www.bigbank.com/audit# 
➥wsdl.port(AuditService/AuditPort)
"/>

<binding.jms>
<destination name="AuditQueue"/>

From the Library of Robert Ryan



ptg

Accessing Messaging Infrastructure: The JMS Binding 219

</binding.jms>
</service>

…
</composite>

The WSDL for the AuditService will contain definitions for its
operations and the messages they receive and return. A message
definition in WSDL is specified using XML Schema.

When a message is enqueued, the SCA runtime will serialize pa-
rameters as part of the JMS message. SCA mandates parameters be
sent using JMS text messages. The format for parameter serialization
is, however, left unspecified. The Fabric3 SCA runtime uses JAXB
for complex types, and it is likely that other vendor implementa-
tions will support the data-binding technology. In addition, Fabric3
also supports sending JMS object messages (when parameter types
implement java.lang.Serializable), JMS stream messages, and
JMS bytes messages for primitive types (for example, int or long).

Request-Response Messaging with JMS
Message-based communication is often one-way. However, there
are times when a response is needed. In SCA, there are two ways to
propagate responses, either as a return value to an operation or
through a callback. In this section, we discuss request-response
operations using the JMS binding. In the next section, we cover
callbacks.

One of the loan application requirements is that new mortgage
applications be appraised for their value on the secondary market.
After a loan is made, BigBank often sells the right to collect interest
and principal payments to a third party. The appraisal is handled by
a legacy system accessible via BigBank’s JMS provider. 

Like the auditing function, BigBank defines a service interface to
the legacy appraisal system, which is listed in Listing 8.12.

Listing 8.12 The Secondary Market Appraisal Legacy System

public interface SecondaryAppraisalService {

AppraisalResult appraise(LoanApplication application);
}

From the Library of Robert Ryan



ptg

220 Bindings

The SecondaryAppraisalService uses request-response style
messaging: After the service has been invoked, the client blocks
waiting for a response. 

How does this interface map to JMS, given that messages are sent
in a one-way, asynchronous fashion? Request-response messaging
is commonly implemented in JMS using separate request and reply
queues (see Figure 8.3). 

Client sends
a request.

Client
receives the
response.

Endpoint
processes
the request.

Endpoint
sends the
response.

Request Queue

ReplyTo Queue

Figure 8.3 Request-response messaging with JMS

JMS has built-in support for request-response messaging with the
replyTo message header. Using the JMS API directly, a client sets
the replyTo header to the queue on which it receives responses.
The message endpoint in turn uses the replyTo header for the
queue to return a response. An example of setting the replyTo
queue is given in Listing 8.13.

Listing 8.13 Setting the JMS replyTo Header 

//…
String loanApplication = … // the loan information in XML form
Connection connection = // obtain a JMS connection;
Destination destination = // obtain the audit destination
Session session = connection.createSession(true,
Session.AUTO_ACKNOWLEDGE);
MessageProducer producer = session.createProducer(destination);
Message message = session.createMessage();
message.setJMSReplyTo(replyDestination);
message.setText(loanApplication);
producer.send(message);

//… cleanup resources

From the Library of Robert Ryan



ptg

Accessing Messaging Infrastructure: The JMS Binding 221

Similarly, the message endpoint accesses the replyTo queue by
calling Message.getJMSReplyTo() on the received message.

One missing piece we have not yet discussed is how a client asso-
ciates a response with the original request. Because JMS is asyn-
chronous, a client may send multiple requests before it receives any
responses. Consequently, it needs a way to correlate response mes-
sages with its original request. JMS provides built-in support for
message correlation via the correlationId message header. The
correlation ID is most commonly set to the message ID of the origi-
nal request by the message endpoint. Listing 8.14 shows how an
endpoint sets the correlation ID.

Listing 8.14 Setting the JMS Correlation ID Header 

//…
Message requestMessage = // the request message

//… process the message and then send the reply

Connection connection = // obtain a JMS connection;
Destination destination = message.getJMSReplyTo()
Session session = connection.createSession(true,
Session.AUTO_ACKNOWLEDGE);
MessageProducer producer = session.createProducer(destination);
Message message = session.createMessage();
message.setJMSCorrelationID(requestMessage.getJMSNMessageID());
producer.send(message);

//… cleanup resources

When the client receives the response, it can use the correlation ID
to match the message to the original request.

Setting up request and response queues and managing correlation
can be tedious. An SCA runtime will handle this so that request-
response invocations can be made without having to perform these
tasks in application code. Listing 8.15 shows how to invoke the
SecondaryAppraisalService and receive a response over JMS—
it’s no different than invoking any other reference.

Listing 8.15 Invoking the LoanAppraisalService 

public interface LoanComponent implements LoanService {

private SecondaryAppraisalService appraisalService;

From the Library of Robert Ryan



ptg

222 Bindings

Notice that in the example, the client invokes the service and waits
for a response. When the invocation is made, the SCA runtime is
responsible for enqueuing the message and having the client block
until a response is received. This requires the runtime to manage
message correlation transparent to the component implementation.
When using the JMS binding, components don’t need to deal with
request and response queues or correlation IDs. Handling these
transport specifics is the job of the SCA runtime.

Configuring a service or reference to use request-response style
messaging with the JMS binding is only slightly more involved than
one-way messaging. Listing 8.16 provides an example of how to
bind a reference. 

@Reference
public void setAppraisalService(SecondaryAppraisalService service) {

appraisalService = service; 
}

public LoanResult apply(LoanRequest request) {
//…
LoanApplication application = //…
// invoke the service and wait for a response
AppraisalResult result = appraisalService.appraise(application);
//…

}
}

Listing 8.16 Configuring Request-Response Messaging with the JMS Binding 

<composite name="LoanApplicationComposite" ….> 
<component name="LoanComponent">

…
</component>
<reference name="SecondaryAppraisalService" promote="

LoanComponent/appraisalService">
<binding.jms>

<destination name="AppraisalQueue" />
<response>

<destination name="AppraisalResponseQueue" />
</response>

</binding.jms>
</reference>
…

</composite>

From the Library of Robert Ryan



ptg

Accessing Messaging Infrastructure: The JMS Binding 223

The preceding example configures the reference to send requests to
the AppraisalQueue and receive responses from the
AppraisalResponseQueue. Setting up the required message con-
sumer and correlation infrastructure will be automatically done by
the SCA runtime when the composite is deployed.

How Are Destinations Created?

The JMS binding supports a number of options for creating destinations (topics and
queues). The default—which we have been using in the examples—is to have the
SCA runtime create the destination if it does not exist. The options for creating desti-
nations are specified using the @create attribute on the destination element:

<binding.jms>
<destination create="ifnotexist"
name="AppraisalQueue" />

</binding.jms>

Valid values are "ifnotexist" (the default), "always", and "never". If "always"
is used and a destination already exists, the runtime will raise an error. 

Performing Callbacks with JMS
In request-response messaging, clients block waiting for a response.
In loosely coupled applications, this synchronous communication
style may not be appropriate. For example, the secondary loan
appraisal system may take some time to deliver a response. Or it
may be down for maintenance during certain times of the day, in
which case message delivery must be temporarily halted and done
at a later time. Having component instances block in these situa-
tions will be inefficient and likely introduce bottlenecks. 

As with wires, asynchronous two-way invocations over JMS are
done using callbacks. Instead of blocking, clients make a service
request and return immediately. After a period of time, they will be
called back with a response. The SecondaryAppraisalService is
modified in Listing 8.17 to use a callback.

Asynchronous two-
way invocations
over JMS are done
using callbacks.

From the Library of Robert Ryan



ptg

224 Bindings

The callback interface is listed in Listing 8.18.

Loan application

Message is
enqueued and
client returns.

Message is
processed by the
appraisal system.

LoanApplicationComponent

LoanApplicationComponent

Runtime invokes
the callback service
with the response.

Response
message

3

45

1 2

Listing 8.17 Using Callbacks with the Secondary Appraisal Service

@Callback(SecondaryAppraisalCallback.class)
public interface SecondaryAppraisalService {

@OneWay
void appraise(LoanApplication application);

}

Listing 8.18 Using Callbacks with the Secondary Appraisal Service

public interface SecondaryAppraisalCallback {

appraisalResponse(AppraisalResult result);
}

When the SecondaryAppraisalService is invoked and a call-
back made, the SCA runtime performs the sequence of steps de-
picted in Figure 8.4.

Figure 8.4 The callback sequence over JMS

In the preceding sequence, the LoanComponent invokes the ap-
praisal service and returns immediately, enabling it to perform addi-
tional processing prior to the arrival of the response. At some later
point in time, the component will be called back on its
SecondaryAppraisalCallback interface. The LoanComponent
implementation is presented in Listing 8.19.

From the Library of Robert Ryan



ptg

Accessing Messaging Infrastructure: The JMS Binding 225

Listing 8.19 The LoanComponent Using a Callback

public class LoanComponent implements LoanService,
SecondaryAppraisalCallback {

private SecondaryAppraisalService appraisalService;

@Reference
public void setAppraisalService(SecondaryAppraisalService service) {

appraisalService = service; 
}

// ….
public LoanResult apply(LoanRequest request) {

LoanApplication application = //…
// invoke the service and return immediately
appraisalService.appraise(application);

//… continue processing
}

public void appraisalResponse(AppraisalResult result) {
// … process the result from the previous appraise operation      

}

}

Configuring the appraisal service reference to use a callback is done
in exactly the same way as setting up a request-response interac-
tion. We relist the composite used in the previous section in 
Listing 8.20.

Listing 8.20 Configuring Callback Messaging with the JMS Binding 

<composite name="LoanApplicationComposite" ….> 
<component name="LoanComponent">

…
</component>
<reference name="SecondaryAppraisalService" promote="

LoanComponent/appraisalService">
<binding.jms>

<destination name="AppraisalQueue" />
<response>

<destination name="AppraisalResponseQueue" />
</response>

</binding.jms>
</reference>
…

</composite>

From the Library of Robert Ryan



ptg

226 Bindings

The same binding configuration can be used because the SCA run-
time knows from the reference service contract that a callback is
required (remember, SecondaryAppraisalService was anno-
tated with @Callback in Listing 8.17). Again, as with request-
response operations, the SCA runtime will set up the appropriate
JMS infrastructure—queues and message consumers—to flow 
request and callback invocations.

When a request is initiated, the SCA runtime will include the 
callback queue as part of the JMS message header in the
"scaCallbackQueue" property. Message receivers that use the
JMS API directly can use this information to return a response.
When a response is sent to the callback queue, the SCA runtime
will dequeue it and invoke the corresponding callback operation. 

Optional JMS Binding Configuration

In our coverage of the JMS binding, we don’t discuss all the possible configuration
options. The JMS binding specification includes a variety of additional options, in-
cluding setting alternative correlation schemes, message delivery modes, and mes-
sage headers.

Most of these options will need to be used only for specific binding scenarios. For a
listing and explanation, see the JMS Binding Specification, available from
http://www.osoa.org. 

Using Publish-Subscribe Messaging Patterns
So far, the JMS binding examples we have presented make use of
queues. The JMS binding also supports publish-subscribe style mes-
saging using topics. When binding a reference to a topic, from the
component implementation perspective, things remain the same:
The reference proxy is invoked like any other service. 

There is, however, one important restriction when binding to a
topic. Namely, service operations must be one-way—that is, they
cannot be request-response operations. If a response is needed, a
callback can be used.

To configure a topic, the binding makes use of the @type attribute
on the destination element (see Listing 8.21).

From the Library of Robert Ryan

http://www.osoa.org


ptg

Using Bindings for Communicating Within a Domain 227

Listing 8.21 Publish-Subscribe Messaging with the JMS Binding 

<composite ….> 
<component name=" CreditScoreService">
…
</composite>

<reference name="auditService" promote="CreditScoreService
/auditService">

<binding.jms>
<destination type="topic" name="AuditTopic"/>

</binding.jms>
<reference>

</composite>

In Listing 8.21, the binding configuration sets the audit service ref-
erence to publish to the AuditTopic. This results in the audit mes-
sage being broadcast to topic subscribers instead of being delivered
to a single receiver.

Conversational Interactions with JMS
If a JMS binding is used with a conversational interface, it is up to
the provider of the JMS binding to make sure that a conversation ID
is assigned to each conversation and passed in each message in the
scaConversationID user property. The developer of the imple-
mentation does not create any code specific to JMS. 

Proprietary Bindings 

SCA runtimes are not restricted to the JMS and web service bindings. In fact, it was
the intention of the SCA authors to enable runtimes to support a host of proprietary
communications mechanisms. One of the advantages of SCA is that components
can use these bindings without tying application code to proprietary APIs.

Using Bindings for Communicating Within a Domain
SCA allows bindings to be specified on services and references that
are not promoted. In other words, SCA allows bindings to be speci-
fied on wires for services that will never be exposed outside the
domain. This is a capability that we recommend that users not take

From the Library of Robert Ryan



ptg

228 Bindings

advantage of. There really is no reason to specify a binding for serv-
ices that are not exposed outside of the domain. If there are aspects
of the implementation that imply that something about a binding is
required, that requirement can be specified with an intent.

For example, if there is a strict requirement that the SOAP is used, it
can be accomplished by requiring the “SOAP” intent. If there is a
strict requirement that the binding be accessible through the JMS API,
the “JMS” intent can be required. By using intents, it frees the runtime
to pick any binding that can provide whatever guarantee is required
by the intent, rather than being limited to using one specific intent.

Bindings Overrides
Having covered the web service and JMS bindings in detail, we
now turn to the subject of binding overrides. Sometimes it is neces-
sary to override a binding configuration in a higher-level composite.
This may be for a variety of reasons. Perhaps the most common
case where this comes up is when there is a need to deploy a com-
posite in a testing and production domain. In the testing domain,
bound references need to be configured to point to mock
endpoints, whereas in the production domain, they need to point to
the “live” services. 

These two variations could be accommodated by not binding the
references until deployment. This would require the deployer to
specify the binding configuration when the composite is activated
in the domain. Another, less error-prone option is to have the bind-
ings for the production domain configured in the composite. This
will avoid the need to specify bindings when the composite is de-
ployed in production. When the composite is deployed to the test
domain, the production configuration can be overridden.

Overriding a binding on a promoted reference is straightforward. To
do so, add a new binding configuration to the component that uses
the composite. Listing 8.22 shows how this is done. 

Listing 8.22 Overriding a Binding on a Promoted Reference 

<component name ="CreditScoreComponent"> 
<implementation.composite name="bigbank:CreditScoreComposite"/>
<reference name="auditService" target="AuditService">

From the Library of Robert Ryan



ptg

Bindings Overrides 229

<binding.jms>
<destination name="TestAuditQueue"/>

</binding.jms>
<reference>

</component>

The preceding example overrides binding configuration in the
CreditScoreComposite and replaces it with the JMS binding set to
use the TestAuditQueue. One additional thing to keep in mind is
that binding overrides are complete—that is, they completely re-
place any binding settings made at lower levels in the composition. 

The SCA Binding

In addition to the web services and JMS bindings, the SCA specifications talk about
the “SCA binding.” This binding is not a transport protocol invented specifically for
use with SCA applications. Rather, it refers to the remote communications protocol
selected by the runtime to establish a wire. Because a runtime may select different
protocols for different wires, the SCA binding may vary. In other words, a runtime
may use more than one protocol for the SCA binding.

Calling the transport protocol assigned to a wire the “SCA binding” is confusing, and
an argument can be made that the SCA authors should have named it something
else. In fact, the SCA binding is different than other bindings. When a service or ref-
erence is bound, the binding fixes the communications channel. That is, the remote
communications protocol cannot be changed by the runtime at some later point.
The SCA binding, on the other hand, does not fix the remote protocol; it is just a
placeholder for one selected by the runtime when it creates a wire.

Why did the SCA authors even bother to mention the SCA binding? The answer is
that there is one case where it is needed. When a reference is explicitly bound, there
must be a mechanism for overriding the binding in a higher-level composite and re-
placing it with a wire. This is done by using binding.sca on a promoted reference.
For example, the following overrides a binding set on a reference in a composite
and replaces it with a wire:

<component name ="CreditScoreComponent">
<implementation.composite name="…"/>
<reference name="auditService"
target="AuditService">

<binding.sca/>
<reference>

<component>

From the Library of Robert Ryan



ptg

Summary
This chapter has covered integrating SCA services with clients and
services hosted outside a particular domain using bindings. In par-
ticular, we covered interoperable communications using web serv-
ices and connecting services in a domain to a message bus via JMS.

Having now covered the core SCA concepts, including services,
components, composites, policy, wires, and bindings, in the next
chapter, we turn to an in-depth discussion of the role the domain
plays in SCA.

230 Bindings

Because this is a corner case, it is likely that most applications will never need to
make use of the SCA binding directly. However, it is important to be aware of the
differences between it and other bindings. 

From the Library of Robert Ryan



ptg

9

The Domain

Composites are deployed to a domain, which contains one or more
runtimes that host components. The domain, however, plays a
much bigger role in SCA than simply defining a set of cooperating
runtimes composites are deployed to. The domain is the foundation
of SCA and provides management facilities, resource sharing, pol-
icy administration, and the communications infrastructure for
wiring services.

This chapter explores the role of the domain. It accounts for differ-
ent types of domains, how to deploy to a domain, how to structure
and manage a domain, and how to reuse and enforce policy in a
domain.

The Role of a Domain
In the first chapter, “Introducing SCA,” we introduced the concept
of the domain and outlined its basic role. That role can be broken
down into four functions: management, artifact sharing, policy
administration, and communications. Table 9.1 provides a sum-
mary of these functions. Let’s review each of those in detail.

231

The domain is the
foundation of SCA.
It provides manage-
ment facilities,
resource sharing,
policy administra-
tion, and the com-
munications
infrastructure for
wiring services.

From the Library of Robert Ryan



ptg

232 The Domain

Table 9.1 The Functions of the Domain

Function Description

Management � Deploy and undeploy components
� Change component wiring
� Monitor, trace, and troubleshooting

Artifact sharing � Manage a repository of artifacts
� Distribute artifacts to runtimes

Policy administration � Centralize policy definitions
� Application of policy to services

Communications � Establish wires
� Flow service invocations 
� Ensure reliability, security, 

and other qualities of service

Management
Most modern runtime environments allow some degree of dynamic
modification. Java EE application servers, .NET service hosts, and
web servers provide management interfaces to deploy and unde-
ploy applications. It is not uncommon for advanced runtimes to
support greater dynamicity, such as upgrading applications without
disrupting service to end users. 

Similarly, the creators of SCA envisioned domains to be potentially
very dynamic. Although some domains may be fairly static, most en-
terprise domains will need to evolve significantly over time as require-
ments change. Composites may need to be added, updated, or
removed. To affect these changes, the domain has a set of operations
for adding and removing composites. Because domains may vary, SCA
doesn’t define how those operations are manifested. Instead, SCA
defines the behavior associated with these operations and leaves it to
runtime vendors to decide how best to implement them. Domains
may use command-line tooling, a management console, file system
directory, or some other means to add and remove composites. 

Although not required by the SCA, advanced domains may have
the capability to change wires after components have been
deployed. Figure 9.1 depicts how a component reference may be
rewired to a new service after it has been deployed.

The creators of SCA
envisioned domains
to be potentially
very dynamic.

Although not re-
quired by the SCA,
advanced domains
may have the capa-
bility to change
wires after compo-
nents have been
deployed.

From the Library of Robert Ryan



ptg

The Role of a Domain 233

Figure 9.1 A composite is updated and the domain applies the changes.

Similarly, vendors may include additional management features,
such as monitoring, tracing, and troubleshooting. 

Artifact Sharing
Sharing artifacts such as Java classes or definitions found in XML
files is a common requirement for applications. If different applica-
tions use the same library, referencing a single copy may be easier
to manage than bundling separate copies with each application.
Many technologies have been developed over the years to assist
with artifact sharing in single-machine environments. Windows
introduced DLLs. OSGi has the notion of bundles. Java has class-
paths and, more recently, has embarked upon the specification of a
module system.

In distributed environments, artifact sharing is more complicated
because it potentially involves making artifacts available to a num-
ber of runtimes on different machines via a deployment infrastruc-
ture. Java EE application server clusters are a classic example.
When an application archive (a WAR or EAR) is deployed to a 
Java EE application server cluster, it is replicated to all nodes in the
cluster. Each node receives a copy of the archive and runs its con-
tents. A common Java EE application server architecture is to have a
central administration server responsible for managing the nodes in
a cluster and distributing artifacts to them. This cluster architecture
is illustrated in Figure 9.2. 

SCA Domain (Old) SCA Domain (New)

The domain
applies the
updates.

From the Library of Robert Ryan



ptg

234 The Domain

Figure 9.2 A Java EE cluster and deployment architecture 

With the move to service-based applications, requirements for arti-
fact sharing have evolved beyond the Java EE distribution model.
Services are built around contracts, which often reference addi-
tional artifacts such as WSDL documents and XML schemas. These
artifacts must be shared between clients and service providers that
are potentially hosted on different machines. One solution to this
problem is an enterprise repository. Enterprise repositories store and
manage artifacts and make them available to multiple clients.
Figure 9.3 provides a sketch of how this works.

Depending on the vendor, an enterprise repository might include
features such as workflow and versioning.

Enterprise reposito-
ries store and man-
age artifacts and
make them available
to multiple clients.

Managed
Server

Managed
Server

Managed
Server

Managed
Server

Administration
Server

From the Library of Robert Ryan



ptg

The Role of a Domain 235

Figure 9.3 Repositories store artifacts such as WSDLs and XSDs, which
can be accessed by clients.

Registry/Repository

Service
Provider

Publish ArtifactsConsume Artifacts

Client

XSD

WSDL

Enterprise Repositories and Registries

An enterprise repository is responsible for managing application artifacts such as
WSDL documents, XML schemas, and sometimes code. It is also common to use the
term “enterprise registry” to refer to software that performs the same function.
Unfortunately, the industry hasn’t settled on the distinction between the two terms.
To avoid confusion, we chose to stick with one term: enterprise repository.

The domain fills the role of an enterprise repository and deployment
infrastructure: It stores and manages artifacts, as well as distributes
them to runtimes. To accomplish this task, the domain uses some
form of repository. Let’s see how this works. 

As we covered in the first chapter, artifacts are made available to
the domain as contributions. Depending on the SCA implementa-
tion, contributions are installed in the domain using a command-
line deployment tool or via more sophisticated graphical tooling,
such as an IDE or management console. Figure 9.4 illustrates this
process.

The domain fills the
role of an enterprise
repository and
deployment infra-
structure: It stores
and manages arti-
facts, as well as
distributes them to
runtimes.

From the Library of Robert Ryan



ptg

236 The Domain

Figure 9.4 The domain stores contributions in a repository where they
can be accessed.

When a contribution is installed, it is stored in a repository. As we
see later, when the contribution has been installed, it can be refer-
enced by other contributions. This enables a contribution to use
artifacts in another installed contribution. After a contribution is
installed, composites contained in it may be deployed. As part of
this process, the domain may distribute artifacts required by com-
ponents to runtime nodes where those components are hosted.

Policy Administration
Most enterprise architectures use some form of policy. In Chapter 6,
“Policy,” we explained that policy is a requirement placed on how
a runtime must execute code. Common types of policy include
security (“use encryption for remote invocations”), reliability (“pro-
vide guaranteed delivery of messages to a particular service”), and
transactionality (“invoke this service in a transaction”).

Both Java EE and web services provide mechanisms for declarative
or configuration-based policy. Java EE allows transactional and
security behavior to be declared in EJB configuration. Web services
has WS-Policy and an assortment of specifications for security and
reliability based on it. However, what Java EE and web services
lack is a standard way to specify policy once and reuse it across
applications—for example, requiring that all remotable services use
a certain type of message-level encryption. 

SCA Domain

Artifacts are 
provisioned to 
runtimes.

Artifacts are
contributed
to a domain.

SCA Runtimes

Contribution
Repository

From the Library of Robert Ryan



ptg

The Role of a Domain 237

The domain is designed to address the problem of policy reuse by
providing a way to uniformly apply policy across all deployed
composites. The domain does this by treating policies as contribu-
tions that are installed and activated. When a policy configuration
is installed as a contribution, it can be applied to services in the
domain (see Figure 9.5). 

The domain is
designed to address
the problem of
policy reuse by
providing a way to
uniformly apply
policy across all
deployed compos-
ites. The domain
does this by treating
policies as contri-
butions that are
installed and 
activated.

SCA Domain

Contribution
Repository

Policy
Definitions

Policies are applied. 

Figure 9.5 Policies are contributed to the domain and applied across
runtimes.

The domain allows policy configurations to be selectively applied
to services, references, bindings, and component implementations.
It’s the job of the domain to ensure that these policies are applied
wherever they are required. 

Communications
Establishing remote communications is fundamental to the domain.
Because we have already spent substantial time on how a domain
instantiates wires and implements bindings in previous chapters, we
will not spend much time on the role of the domain as a remote
communications infrastructure.

From the Library of Robert Ryan



ptg

238 The Domain

Types of Domains
To use a cliché, domains come in a number of shapes and sizes.
Most of the examples we have used throughout the book show
distributed domains with multiple runtimes. This can lead to the
impression that a domain’s complex infrastructure is ill-suited for
more basic needs. On the contrary, although domains can scale up,
they are also capable of scaling down. A domain can be contained
within a single server environment or even in an embedded device.

Broadly speaking,
domains fit into one
of three categories:
local, distributed,
or federated.

Perspective: Wiring-in-the-Really-Large

When we compared Spring with SCA in the first chapter, we made the distinction
between “wiring-in-the-small” versus “wiring-in-the-large.” The former involves the
assembly of components in a single address space. In contrast, “wiring-in-the-large”
entails component assembly across remote boundaries. Spring is about “wiring-in-
the small”; SCA deals with both. 

Throughout the book, we have also discussed how wiring is done only within a do-
main. In other words, wires exist only between two components deployed to the
same domain. This is because SCA does not define interoperable wiring between
domains. There is no guarantee the two domains will support the same wire com-
munications protocol. To communicate outside a domain—either to a non-SCA
service or a service provided by a component in another domain—bindings are
used.

Wouldn’t it be useful if SCA enabled wiring between domains where two domains
could negotiate a communications protocol and enforce policy such as security?
This type of “wiring-in-the-really-large” would simplify cross-domain communica-
tion, as bindings would not have to be configured on references. 

To achieve this, SCA would need to standardize an interoperable way to obtain de-
tails about the contents of a domain, and in particular, its services. Domains would
advertise a set of available services and their endpoint addresses much like a com-
ponent. It would then be possible to wire across domains in much the same way
that wiring is done today within a domain.

Currently, the SCA specification committees have not indicated whether this is a fu-
ture area of development. However, it’s useful and fun (at least for people who like
technology) to think about how SCA may evolve in the future.

From the Library of Robert Ryan



ptg

Types of Domains 239

Broadly speaking, domains fit into one of three categories: local,
distributed, or federated. Different vendors may support one or
more of these domain types. Table 9.2 summarizes the different
types of domains, which we explain further in this section.

Table 9.2 Domain Types

Type Description

Local � Contained in a single process or server partition
� Examples include web applications and 

embedded devices
� Are not fault tolerant 

Distributed � Spread across multiple runtimes, likely running 
on different machines

� Tend to support high-end features such as fault 
tolerance and reliability 

Federated � Spread across multiple different types of runtimes
� Provide support for creating composite applications 

developed using multiple technologies 
� Tend to support high-end features such as fault 

tolerance and reliability

Local Domains
A local domain is one where the domain is contained within a
single process or partition on a machine. For example, a local do-
main may be hosted within a single server instance. Or in server
environments that support segregating code, the domain may be
contained within a partition. Local domains are commonly used for
embedded devices and server installations where scalability de-
mands are limited and high availability is not needed. 

An example of a local domain is one embedded in a web applica-
tion, as illustrated in Figure 9.6.

A local domain is
one where the do-
main is contained
within a single
process or partition
on a machine.

From the Library of Robert Ryan



ptg

240 The Domain

Figure 9.6 Domains embedded in web applications

This diagram illustrates how local domains can be embedded in
web applications where the browser-based UI tier interacts with
services and has the services exposed to nonbrowser clients via an
HTTP-based binding such as web services. 

Distributed Domains
A distributed domain is one where the domain is spread across
multiple processes. Typically, these processes will be individual
runtimes running on different machines. Distributed domains are
most commonly used when services need to be hosted in multiple
runtimes for scalability (spread processing load), availability (pro-
vide redundancy), or security (segregate code) reasons.

An example of a distributed domain is one that is spread across an
application server cluster. As we mentioned earlier, application
server clusters are often managed by a specific server, sometimes
referred to as the administration server. When a domain is mapped
to this type of cluster architecture, the administration server is
responsible for interfacing with the contribution repository and

A distributed do-
main is one where
the domain is
spread across mul-
tiple processes.

Browser clients

HTTP service clients

SCA Domain 

Servlet Container

SCA Domain
UI

Tier

UI
Tier

Web Application

Web Application

From the Library of Robert Ryan



ptg

Types of Domains 241

provisioning components to the cluster nodes. Figure 9.7 illustrates
an application server-based distributed domain. 

Figure 9.7 Mapping a domain to an application server environment

As shown in Figure 9.7, the administration server is responsible for
deploying composites to an application server instance. If these
application server instances are clustered (as seen in the figure), a
composite will be deployed to all application servers in the cluster.
This will enable the application server-based domain to provide
service failover and load-balancing.

In some situations, an application server cluster may be overkill. In
these cases, a distributed domain could be composed of small pro-
file servers such as web servers, servlet containers, or OSGi run-
times. In this type of “lightweight” distributed domain, components
are deployed to individual servers as opposed to all runtimes in a
cluster. Although advanced capabilities such as failover and load-
balancing may not be available, these types of distributed domains
are generally more straightforward to configure and maintain.

SCA Domain

Contribution
Repository

Admin
Server

App Server
Cluster

From the Library of Robert Ryan



ptg

242 The Domain

Distributed Domain Architectures

In Chapter 5, “Composition,” we described how SCA was designed to enable opti-
mized communications in a domain. Because target services are specified in a com-
posite, domain infrastructure can attach wires directly to endpoints without having
to route through an intermediary message broker or bus. 

There are two basic approaches to implementing this kind of point-to-point commu-
nication in a domain. We term these decentralized and controller-based architec-
tures, respectively. 

In a decentralized domain, each runtime node maintains a copy of the domain con-
figuration and is responsible for making connections to other nodes. Nodes function
autonomously, exchanging information about the components they are hosting so
that other nodes can connect to them, as shown in Figure 9.8. 

Figure 9.8 Each node in a decentralized domain maintains a copy of the domain 
configuration.

An advantage of the decentralized model is that it can be made very resilient. 
There is no single point of failure in the domain because all runtimes operate 
independently. 

A disadvantage of the decentralized approach is handling change. If a component is
undeployed or a service address is changed, all runtimes most be notified. As a 
domain grows, keeping the information in sync in an efficient way becomes a 
challenge.

SCA Domain

Runtimes

From the Library of Robert Ryan



ptg

Types of Domains 243

In contrast, controller-based architectures centralize all domain information in an
administrative server, called a controller, which is responsible for managing runtime
nodes. The open source Fabric3 implementation adopts this architecture. In this
model, the controller instructs each runtime regarding what components to run and
how to wire them. This architecture is depicted in Figure 9.9. 

Figure 9.9 In controller-based domains, the controller maintains a central copy of the
domain configuration.

The main benefit of the controller model is that each runtime need only know about
a specific set of endpoints. This makes handling changes easier and scalable, as a
limited number of runtimes are notified. 

Another advantage of controller-based architectures is that by centralizing domain
management, the controller is potentially able to make intelligent decisions about
where to provision components. Because it sees the “big picture” (that is, all compo-
nents in the domain and how they are wired), a sophisticated controller could decide
to provision components to specific runtimes based on load or other requirements.

A disadvantage of the controller model is that it introduces a potential single point of
failure. If the controller does not have a backup, the entire domain may be affected
by a crash.

In the end, there is no right way to implement a domain. Each architecture has its
benefits and drawbacks. In choosing among SCA implementations, it is necessary to
understand the implications of decentralized and controller-based architectures and
to select the one that best fits your organization’s technical requirements. 

SCA Domain

Runtimes

Controller

From the Library of Robert Ryan



ptg

244 The Domain

Federated Domains
Federated domains are the largest-scale domains. A federated do-
main is distributed and contains different types of runtimes. For
example, it may include Java EE application servers, BPEL servers,
servlet containers, and C++ runtimes. Federated domains are used
when an organization needs to deploy composite applications that
make use of many implementation technologies. An example of a
federated domain is shown in Figure 9.10. 

A federated domain
is distributed and
contains different
types of runtimes.

SCA Domain

Contribution
Repository

App Server
Cluster

BPEL Container

C++ Runtime

Figure 9.10 A federated domain 

Federated domains are capable of wiring different implementation
technologies together. Although they may be more complex to con-
figure and maintain (for example, they require different types of
runtimes to be managed), federated domains have the advantage
that they provide a way to integrate services written using different
technologies and manage them as a whole. 

Coordinating Distributed Domains

Regardless of whether it is decentralized or controller-based, a distributed domain
requires a protocol for coordinating with its runtimes. Coordination can be subdi-
vided into two basic phases: startup and messaging. Startup is the process by which

From the Library of Robert Ryan



ptg

Contributions 245

Contributions
Getting components to run in a domain is a two-step process: in-
stallation and deployment. Components must first be installed in
the domain as part of a contribution. The contribution may contain
supporting artifacts such as implementation classes, schemas,
WSDL documents, and libraries or depend on other contributions
containing those artifacts. 

SCA specifies one contribution format that all implementations
must support: the ZIP archive (which includes JAR, WAR, or EAR
files, which are all based on ZIP). However, because a domain may
make use of a wide variety of artifacts, an SCA implementation may
allow additional contribution formats. For example, an SCA imple-
mentation can also support TAR files, RPMs, or even DLLs.
Furthermore, contributions need not be archives. Nonarchive con-
tributions such as file system directories can also be supported as
contributions.

The process of installing a contribution in a domain is vendor-
specific. Installation may be done using a command-line tool, man-
agement console, or by copying a contribution archive to a file
system directory. After the contribution containing the components
has been installed, the latter are activated by deploying a compos-
ite. This composite may also be bundled in the contribution. 

Getting components
to run in a domain 
is a two-step process:
installation and 
deployment.

runtimes join a domain. Messaging is used to update runtimes with domain
changes, such as a component deployment, undeployment, or rewiring.

A range of approaches can be used for startup and messaging. Startup can be imple-
mented manually where runtimes are explicitly booted based on some configura-
tion. Alternatively, runtimes may use a dynamic protocol where they start
independently and then join a domain using a peer-to-peer protocol such as JXTA or
UPnP. Peer-to-peer protocols may also be used to send domain change messages to
runtimes. Or more traditional messaging technologies such as JMS or application
server clustering may be employed.

Fabric3 can use configuration-based startup and peer-to-peer protocols such as JXTA
for startup. A benefit of a dynamic, peer-to-peer technology such as JXTA is that
manual setup is kept to a minimum, which can be an advantage in environments
where a large number of runtimes are present.

From the Library of Robert Ryan



ptg

246 The Domain

In some environments, installation and deployment may be com-
bined in a single step. For example, during development, a local
domain may be configured to scan a file system directory and auto-
matically install contributions and deploy their composites. In pro-
duction environments, these steps are likely to be separate as
contributions are first installed and verified and additional configu-
ration applied prior to deployment. 

The next several sections describe how to structure contribution
archives and reference artifacts in other contributions. We then turn
to the specifics of how composites are deployed in a domain.

Different Ways to Install and Deploy a Contribution

As domains vary significantly, the SCA authors did specify concrete ways to perform
deployment. What are some of the concrete ways deployment is performed in ac-
tual SCA implementations? In practice, SCA deployment tools are likely to be similar
to existing server technologies for the near future. We describe some of the more
common ones here. 

In a production environment, deploying to a domain is likely to be done via a man-
agement console, command-line tool, or script. These mechanisms use a propri-
etary vendor API to connect to the domain and make changes. Implementations
built on an application server may use existing deployment tools. SCA support in
WebLogic Server, for example, works in this manner. Contributions are installed and
deployed using the existing WebLogic management console or command-line ad-
ministration tool.

In a development environment, using the same server deployment tools would be
cumbersome because they require contributions to be repackaged after every
change. Fabric3 avoids this through support for “exploded” contributions. Similar to
web servers, servlet containers, and application servers, Fabric3 has a file system di-
rectory where composites and their associated artifacts can be placed. Adding a
composite file to the directory triggers a deployment to the domain, whereas delet-
ing the file results in the composite being removed from the domain.

In an IDE, adding and removing files in a file system can also be awkward.
Moreover, running an application in a separate server process and performing re-
mote debugging can be slow. To address this, Fabric3 has plugins for IntelliJ and
Eclipse that run an embedded domain inside the development environment. This is

From the Library of Robert Ryan



ptg

Contributions 247

The Contribution Archive
SCA ZIP archives should include a special manifest file, sca-
contribution.xml, identifying it as a contribution. This file is located
in the META-INF directory under the archive root directory. It is
used to identify composites available for deployment, declare im-
ports, and export contained artifacts so that they are available to
other contributions.

Back in Chapter 1, we listed the contents of a simplified version of
the LoanApplication contribution manifest, which we repeat
here in Listing 9.1.

A deployable com-
posite is one that is
intended to be
deployed directly in
the domain.

similar to the way current IDEs run embedded servlet containers, such as Tomcat
and Jetty for testing.

It was envisioned that in the future, SCA would enable a series of new graphical
tooling. These tools will automate the creation of SCDL and allow changes to the
domain, such as rewiring through visual interfaces. However, given the conservative
nature of many datacenters and the traditional lag between runtimes and new tool-
ing, SCA implementations will most likely use existing deployment technologies for
the near-term.

Listing 9.1 A Simple sca-contribution.xml Manifest 

<contribution xmlns="http://www.osoa.org/xmlns/sca/1.0"
xmlns:bb="http://www.bigbank.com/xmlns/lending/composites/1.0">

<deployable composite="bb:LoanApplicationComposite"/>

</contribution>

Contributions may contain zero or more deployable composites. A
deployable composite is one that is intended to be deployed di-
rectly in the domain, as opposed to used as a component imple-
mentation in another composite. As seen in Listing 9.1, the
deployable composites in a contribution are identified using the
<deployable> element. In the example, the contribution has one
deployable composite, LoanApplicationComposite. Note that
when using the deployable element, the @composite attribute

From the Library of Robert Ryan



ptg

248 The Domain

refers to the fully qualified composite name, including its name-
space. The actual LoanApplicationComposite file can be placed
anywhere in the contribution. The only requirement is that the
filename ends in .composite. Generally, it’s good practice, though,
to place deployable composites in the META-INF directory so that
they may be easily identified.

Artifact Sharing
Service-based applications typically must share artifacts. At a mini-
mum, services must make their contract definitions available to
clients. Moreover, component implementations may use common
artifacts such as libraries, XSDs, and classes. Sharing can be accom-
modated by manually copying the artifacts to different contribu-
tions. However, as the number of clients and artifacts increase, this
approach tends to become unmanageable. To avoid this, SCA al-
lows contributions to reference artifacts in other contributions. This
is done via export and import entries in the sca-contribution.xml
manifest. SCA defines an import/export mechanism for XML-based
documents (for example, WSDLs and XSDs) and allows implemen-
tations to add additional support for other artifact types, such as
Java packages. We look at each of these in turn.

Perspective: SCA and OSGi

Until recently, OSGi has received significant adoption in the Java market without
much fanfare, including Eclipse (the basis of its plug-in system), embedded devices,
and, more recently, in server-side runtimes. Two of the most popular OSGi imple-
mentations are Eclipse Equinox (http://www.eclipse.org/equinox) and Apache Felix
(http://felix.apache.org/site/index.html).

For those unfamiliar with OSGi, it is a standard that specifies (among other things)
how application modules, or “bundles,” can be installed, started, stopped, unin-
stalled, and shared in a Java-based runtime. OSGi also specifies a component model
(it calls components “services”), a service registry, and a set of standard services ap-
plications can access.

There are a number of ways SCA and OSGi can integrate. An OSGi runtime can par-
ticipate as an SCA runtime in a domain. OSGi services can be accessed and used by
SCA components. Further, OSGi bundles can be supported as a packaging format
for contributions.

From the Library of Robert Ryan

http://www.eclipse.org/equinox
http://felix.apache.org/site/index.html


ptg

Contributions 249

Exporting and Importing XML Artifacts
Sharing XML documents between contributions is done using 
the standard <import> and <export> elements in the sca-
contribution.xml manifest. Listing 9.2 shows the manifest export
entry for the contribution containing the WSDL documents for serv-
ices belonging to the BigBank loan application. 

Early on when the contribution mechanism was being designed in the SCA specifi-
cation working groups, OSGi (www.osgi.org) was considered for use as its packag-
ing model. This would have entailed using OSGi’s import and export mechanism
directly instead of defining a new one. Given these similarities and its popularity,
why was OSGi not adopted by SCA?

The primary reason OSGi was not adopted by SCA was that it is purely Java-based.
Specifically, its import and export mechanism did not provide a way to reference
non-Java artifacts such as XML documents. What SCA needed was a mechanism for
sharing artifacts of many different kinds. 

What the specification working groups came up with was a sharing mechanism that
was not restricted to Java artifacts and could be extended by vendor implementa-
tions. With this approach, SCA runtimes could choose to support OSGi’s sharing ca-
pabilities in addition to the standard SCA ones.

Listing 9.2 Exporting a Namespace 

<contribution xmlns=http://www.osoa.org/xmlns/sca/1.0>
<export namespace="
http://www.bigbank.com/xmlns/lending/lending/1.0"/>

</contribution>

Because the contribution contains only WSDL documents and no
composites, there are no <deployable> entries in the manifest.
Instead, it lists a single export for the http://www.bigbank.com/
xmlns/lending/lending/1.0 namespace. This will make all
definitions in that namespace available to other contributions. For
example, all portType definitions in WSDL documents contained
in the contribution will be exported.

From the Library of Robert Ryan

www.osgi.org
http://www.bigbank.com/xmlns/lending/lending/1.0
http://www.bigbank.com/xmlns/lending/lending/1.0


ptg

250 The Domain

To use a WSDL portType definition, a contribution must import
the http://www.bigbank.com/xmlns/lending/lending/1.0
namespace. Listing 9.3 demonstrates how this is done using the
<import> manifest element.

Contribution
Repository

SCA Domain

Contribution Contribution

http://www.bigbank.com/xminslending/1.0

Exp
ort

Import

Figure 9.11 Importing a namespace 

It is important to note that the actual exporting contribution is never
referenced directly by the importing contribution. Providing this
level of indirection enables artifacts to be repackaged without
breaking importing clients. 

Listing 9.3 Importing a Namespace 

<contribution xmlns=http://www.osoa.org/xmlns/sca/1.0>
<import namespace="

http://www.bigbank.com/xmlns/lending/lending/1.0"/>
</contribution>

The <import> element is primarily a statement that some defini-
tions for the specified namespace will not be found in this contribu-
tion. If a namespace is not imported, it is an error if some definition
isn’t found for that namespace. However, when such an import
statement exists, then when the contribution is installed into a do-
main, that domain is responsible for matching the import to a con-
tribution that exports that namespace (see Figure 9.11).

From the Library of Robert Ryan

http://www.bigbank.com/xmlns/lending/lending/1.0
http://www.bigbank.com/xminslending/1.0


ptg

Contributions 251

After the domain has matched an import to the exporting contribu-
tion, specific definitions can be referred to by their qualified name
as if they were contained in the importing contribution. For
example, the LoanServicePort defined in a WSDL document
contained in the exporting contribution can be referenced in a
composite file contained in the importing contribution, as shown in
Listing 9.4.

Listing 9.4 Referencing a Definition in an Imported Namespace 

<composite ….> 
<service name="LoanApplicationService" promote="

LoanApplicationComponent">
<interface.wsdl wsdlElement="http://www.bigbank.com/lending/1.0#

wsdl.port(LoanService/LoanServicePort)
“/>

<binding.ws/>
</service>

…
</component>

It is also worth noting that the import/export mechanism requires
developers to be disciplined about naming XML definitions.
Because exports are global to the domain, names must be unique
according to the rules of XML across all contributions in order for
import statements to be so unspecific. However, unfortunately, the
world of XML definitions is not always as simple as we would like,
and we have to accommodate reality. If a domain needs to be able
to contain two different contributions that each exports definitions
from the same namespace, import statements from the contribu-
tions that use them will need to have an explicit @location at-
tribute in their import statement that identifies which of the
contributions to use. However, even in this case, the location at-
tribute is merely used to identify a contribution. It is not necessary
to identify specific definition documents within domains. This is
because one contribution cannot export multiple conflicting XML
definitions, even when the domain itself might contain conflicting
definitions.

From the Library of Robert Ryan



ptg

252 The Domain

Other Artifact Types 
In addition to namespaces, SCA enables vendors to extend the
import/export mechanism to other artifact types. The sidebar,
“Fabric3 Packaging Extensions,” describes how Fabric3 has done
exactly this. 

Unique Names in XML 

People sometimes mistakenly assume that names must be unique within an XML
namespace. Technically, speaking, this is not the case. XML namespaces are actually
divided into symbol spaces, also known as namespace partitions. A name must be
unique within a symbol space, not a namespace. For example, the same name can
appear in both an XML Schema type definition and an element declaration. Another
example is WSDL 1.1, which defines four symbol spaces where names must be
unique: message, port type, binding, and service. 

Symbol spaces make ensuring uniqueness in a domain less of a burden. Clashes are
most likely to occur when namespaces are used incorrectly, such as when two doc-
uments inadvertently use the same namespace. In these cases, requiring proper
naming practices is arguably a good thing because it forces issues to be corrected
prior to an application being put into production.

Fabric3 Packaging Extensions 

Fabric3 introduces a number of useful packaging extensions not covered in SCA. The
first is the capability to bundle third-party archives in JAR-based contributions. Often,
a contribution will want to make use of third-party libraries that are distributed as one
or more JARs. If those JARs are not packaged as SCA contributions (that is, they have
an sca-contribution.xml manifest that exports their contained Java artifacts), there is
no standard way for the contribution to access the third-party library.

Java EE web applications solve this problem by enabling third-party libraries to be
included in the WEB-INF/lib directory of a WAR. All JARs bundled in the directory
will be placed on the web application classpath. Fabric3 adopts a similar approach:
Any JARs placed in the META-INF/lib directory of a JAR-based contribution will be
placed on the contribution classpath at runtime. This provides a simple solution for
bundling additional JARs with a contribution.

From the Library of Robert Ryan



ptg

Contributions 253

Deployment Composites
Applications often require environment-specific configuration infor-
mation when they are deployed. This is particularly the case when
applications need to be first verified in a staging environment prior
to being deployed in production. In SCA-based applications, for
example, as an application moves into production, wires to test
services may need to be retargeted to live endpoints. 

One way to accommodate configuration changes is to place two or
more deployable composites in the contribution archive correspon-
ding to each deployment environment. This approach is, however,
fragile and subject to error. First, there is the possibility that a de-
ployer could select the wrong composite to deploy. In addition, if
one of the deployment environments changes after a contribution
archive is produced, it may require the archive to be modified so
the deployable composite can be updated.

In SCA, deployers apply final configuration using external deploy-
ment composites. An external deployment composite is identical to
other deployable composites except that it is not contained in a
contribution archive. Rather, it is added to a contribution after it has
been installed in the domain. External deployment composites

Fabric3 also extends the SCA contribution import/export to support OSGi classload-
ing and bundles. Using <export.java> and <import.java>, a contribution can
share classes contained in a set of packages between bundles. The following
example demonstrates exporting and importing a set of packages between two con-
tributions:
<contribution xmlns=http://www.osoa.org/xmlns/sca/1.0>

<export.java package="com.bigbank.loan"/>
<export.java package="com.bigbank.credit"/>

</contribution>

<contribution xmlns=http://www.osoa.org/xmlns/sca/1.0>
<import.java package="com.bigbank.loan"/>
<import.java package="com.bigbank.credit"/>

</contribution>

When a package is imported, the SCA runtime places Java classes contained in it on
the classpath of the importing contribution.

From the Library of Robert Ryan



ptg

254 The Domain

enable deployers to make final changes without having to modify
the original contribution archive. When it is added to a contribu-
tion, it becomes one of the contribution’s deployable composites.
This means it may be activated in the domain like any other de-
ployable composite.

Let’s examine how external deployment composites work by re-
turning to the BigBank credit composite. In the current version,
assume that BigBank’s scoring algorithm uses a third-party credit
bureau. The bureau provides two web service endpoints: one for
testing and another for accessing live credit histories. As part of its
testing infrastructure, BigBank has mimicked its production systems
in a staging environment. The key difference between the two envi-
ronments is that the staging environment only has access to a test
database and third-party test services, the credit bureau’s test end-
point for retrieving credit histories. 

BigBank has decided to accommodate the different web service
endpoints by applying the binding configuration in two deployment
composites designed for each environment. This is done by first
promoting the reference to the credit bureau’s web service, as
shown in Listing 9.5. 

Listing 9.5 The Credit Composite with a Reference to Be Configured by a Deployment
Composite

<composite … name="CreditComposite">

<component name ="CreditComponent">
<implementation.java class="com.bigbank.CreditComponent"/>

<component>

…
<reference name=”creditBureauService”

promote=”CreditScoreComponent/ creditBureauService”/>

</composite>

Next, the composite and its associated artifacts are bundled in a
contribution archive. When the contribution is installed in the test
domain, the external deployment composite shown in Listing 9.6 is
added to the contribution.

From the Library of Robert Ryan



ptg

Contributions 255

Listing 9.6 The Test Deployment Composite

<composite … name="TestCreditDeploymentComposite">

<component name ="CreditComponent">
<implementation.composite name="

http://www.bigbank.com/xmlns/loanApplication/1.0:CreditComposite"/>
<component>
<reference name="creditBureauService">

<binding.ws
uri="www.creditBureau.com/services/test/CreditHistory"/>

</reference>

</composite>

The deployment composite defines a CreditComponent, which
uses the CreditComposite as its implementation. The
CreditComponent#creditServiceBureau reference is config-
ured with the web service binding and points to the credit bureau’s
test endpoint. In the deployment composite intended for produc-
tion, the reference would be configured with the web service bind-
ing pointing to the live endpoint. 

Thus far, we have not said how external deployment composites
are added to a contribution. Like the other contribution
operations—install, update, and remove—SCA leaves it up to do-
main implementations to provide proprietary mechanisms. The
specification describes an abstract operation called add deploy-
ment composite, but there is no requirement that this correspond
to a specific deployed service on the domain. The domain just
needs to provide some mechanism for the user to access this func-
tionality. Typically, vendors will provide some form of command-
line tool and possibly an API for script-based deployment or a
management console where the deployment composite is graphi-
cally created.

Structuring Contributions
Contributions may be structured in a variety of ways. All services
for a single application can be packaged in a single contribution
archive or divided by subsystem. Unlike Java EE, which mandates
applications be packaged in a single archive (EAR or WAR), SCA

From the Library of Robert Ryan



ptg

256 The Domain

provides the option of decomposing applications into finer-grained
contributions. Whether this is appropriate or a single-archive ap-
proach is better is largely a function of the application architecture
and preference. 

We do, however, offer one important piece of advice: Place binding
configuration in top-level composites and use deployment compos-
ites to override information. This avoids “hard-coding” endpoint
addresses and environment-specific information such as JMS queues
several layers deep in a composite hierarchy. It also has the effect of
making external dependencies more evident in an application. 

The Domain Composite
Once a contribution is installed in a domain, it may be activated or
deployed. When the composite is deployed, the domain provisions
its components to a runtime or set of runtimes. As part of this
process, the domain will also provision required artifacts in the
contribution and its imported contributions to the target runtimes.
Similarly, components may be undeployed or updated. In a do-
main, components may come and go, wires may be added or
changed, and services may be exposed at new endpoint addresses.
How is change—deployment, undeployment, and updates—
introduced in a domain?

Given that SCA is a component-based technology and supports the
notion of composition where components are built from other com-
ponents (see Chapter 5), it may come as no surprise that there is a
root-level composite in a domain. This composite is called the
domain composite. A domain composite contains all the compo-
nents deployed in the domain, just as any other composite may
contain child components. Change is introduced in the domain by
modifying the domain composite.

Although the domain composite is like any other composite in that
it has components, wires, and properties, it also has some special
characteristics. One of the most important is that the domain com-
posite is virtual. That is, the domain composite is not defined using
an XML document. Rather, it is derived or “synthesized” from all
the composites deployed to the domain. Also, unlike any other
composite, it does not live within a single contribution. Its compo-
nents come from all the installed contributions in the domain.

Although the domain
composite is like any
other composite in
that it has compo-
nents, wires, and
properties, it also 
has some special
characteristics.

From the Library of Robert Ryan



ptg

The Domain Composite 257

Another feature of the domain composite is that it can be modified
through a set of operations. Because domains may vary widely,
SCA does not specify an API for doing this. Rather it defines a set of
abstract operations for doing so. Each vendor implementation is
free to define specific mechanisms for invoking these operations—
for example, via a command-line tool, API, service endpoint, or
management console. We discuss the principle domain operations
in the sections that follow: adding and removing from the domain
composite. Later, we provide examples of how these concrete oper-
ations are performed using the Fabric3 runtime.

Add to Domain Composite
SCA’s concept of adding a composite to the domain corresponds to
most people’s concept of deployment. (Although, unfortunately,
“deployment” does not have the exact same meaning throughout
the software industry.) It results in activating all of its contained
components. In a local domain, the activated components will be
provisioned to the same runtime. In a distributed domain, the acti-
vated components may be deployed to different runtimes. 

It is important to note that when a composite is added to the do-
main, it is included in the domain composite. In Chapter 5, we
detailed how inclusion works. When a composite is included in
another composite, its components are inlined. This means that the
included composite is discarded and its contained components
become direct children of the domain composite. Figure 9.12 illus-
trates this process.

Add to domain

SCA Domain

Composite

Figure 9.12 The add to domain operation includes a composite in the
domain composite.

From the Library of Robert Ryan



ptg

258 The Domain

An effect of inclusion is that child components of composites de-
ployed to the domain composite become peers. This enables com-
ponents contained in separate deployed composites to be wired
directly. It also provides for some interesting dynamic behavior, the
most common of which we outline later in the chapter.

In addition to the fairly syntactic concept of inclusion into the do-
main composite, this step in the deployment process also prepares
the application to be run. One of the most important parts of this
preparation is assignment of URIs to services.

URI Assignment
A Uniform Resource Identifier, or URI, is defined by the IETF—one
of the principle Internet standards bodies—as a way to uniquely
identify a resource. A resource can be virtually anything from a web
page, image, or video clip, to a file or program. Even if you have
only heard the term in passing, you are already familiar with URIs.
A URL, for example, is a specific type of URI. Although there are
specific rules for how URIs are constructed (for example, legal
characters, the meaning of various segments of the URI, and so on),
the key things to remember are that URIs are a way to identify a
resource and that they may be hierarchical. In other words, URIs
may refer to resources contained within other resources. For
example, the URI http://www.bigbank.com/loanapp/
intro.html#getting_started refers to the “getting_started"
fragment contained in the page intro.html. 

What do URIs have to do with SCA? In short, SCA uses URIs as a
way to identify resources in a domain. In the context of our current
discussion, URIs are used to identify deployed components and the
services they provide. When a component is deployed to the do-
main, it is assigned a URI. This URI is calculated from the compo-
nent name. Recalling that composites are a type of component, it
follows that the domain composite is a deployed component and
that all domain composites have a URI. How URIs are assigned to
the domain composite is implementation-specific, but it is usually
done via some configuration mechanism. An example of a domain
URI would be bigbank.com or loans.bigbank.com.

Because components added to the domain composite become its
children, they are assigned a hierarchical URI. URIs use the / char-
acter for hierarchical parts. Consequently, the URI for a deployed

SCA uses URIs as a
way to identify
resources in a
domain.

From the Library of Robert Ryan



ptg

The Domain Composite 259

component is calculated by combining the domain URI and com-
ponent name, separated by a /. For example, if a component
named CreditComponent is added to the domain composite, its
URI will be loans.bigbank.com/CreditComponent. This holds for
the entire composition hierarchy. For example, in Chapter 5, we
showed the example where the BigBank credit scoring function
was provided by a series of components contained within a com-
posite named CreditComposite. If CreditComposite was con-
tained in LoanApplicationComposite, which was added to the
domain composite, the URI assigned to CreditComponent would
be loans.bigbank.com/CreditComposite/CreditComponent. Note
that because the LoanApplicationComposite was added to the
domain, it was discarded and not used in determining the URI.

Wouldn’t it be simpler if SCA had just used the component name? If
that were the case, there would be no way to uniquely identify a
component unless SCA required that all component names had to
be unique. In large systems with several levels of composition, this
would be unmanageable. Imagine if operating system file systems
had not introduced the concept of subdirectories: maintaining
unique names for all files with current disk storage capacities
would be impractical. Similarly, guaranteeing that all component
names in all composites across a domain are unique would impose
an unrealistic burden. By using hierarchical URIs, name clashes
can more easily be avoided and deployed components can be
identified at any level in the composition structure.

Wiring at the Domain Level
Having discussed the URI-based naming conventions used by SCA
during deployment, we now turn to a more detailed discussion of
ways the domain composite can be modified via the add to domain
composite operation.

Through the add to domain composite operation, new applications
can reuse existing services that were deployed as part of another
composite or set of composites. To demonstrate how this is done,
we return to the BigBank application. Assume the Credit
Composite listed in Listing 9.7 is added to the domain composite. 

From the Library of Robert Ryan



ptg

260 The Domain

Listing 9.7 The CreditComposite Is Added to the Domain Composite

<composite … name="CreditComposite">

<component name ="CreditComponent">
…

<component>

…

</composite>

Add to domain

CreditScoreComposite

SCA Domain

CreditComponent

Figure 9.13 Adding the CreditComposite 

Clients in other deployed composites will now have access to 
the CreditService interface, which is provided by
CreditComponent. For example, if BigBank needed to roll out an
application for a new loan offering, it could reuse the existing
CreditService interface by wiring to it in the composite that will
be added to the domain. This composite is listed in Listing 9.8. 

Listing 9.8 The NewLoanApplicationComposite

<composite … name="NewLoanApplicationComposite">

<component name ="NewLoanApplicationComponent">
<implementation.java

class="com.bigbank.LoanApplicationComponent"/>
<reference name="creditService” target="CreditComponent"/>

When the operation completes, CreditComposite will be
discarded, and CreditComponent will become a child of the do-
main composite, as shown in Figure 9.13.

From the Library of Robert Ryan



ptg

The Domain Composite 261

In the preceding composite, the
NewLoanApplicationComponent#creditService reference is
wired to the default service provided by CreditComponent, specif-
ically the CreditService service. Notice that CreditComponent
is not defined in NewLoanApplicationComposite. When
NewLoanApplicationComposite is included in the domain 
composite, it is discarded and NewLoanApplicationComponent
becomes a child of the domain composite. The target
“CreditComponent" configured on the
NewLoanApplicationComponent#creditService reference will
then resolve to the previously deployed CreditComponent. Figure
9.14 illustrates the end result. 

Add to domain

NewLoanApplicationComponent

SCA Domain

CreditComponentNewLoanApplicationComponent

Figure 9.14 Adding the NewLoanApplicationComposite 

It is also worth noting that autowire could have been used in the
preceding example instead of the explicit wire to
CreditComponent. If autowire had been enabled on
NewLoanApplicationComposite or on the domain composite
(how this is done is implementation-dependent), the
NewLoanApplicationComponent#creditService reference
would have been targeted to CreditComponent/CreditService
automatically by the domain, without the need for the
<reference> configuration.

<component>

…

</composite>

From the Library of Robert Ryan



ptg

262 The Domain

Adding a Wire
Another common change at the domain level is adding a wire dy-
namically. To understand how this works, consider the following.
BigBank has just signed an agreement to use an additional third-
party credit bureau and needs to update the loan application to use
the new credit service in addition to the existing ones. 

In the original LoanApplicationComposite, the
LoanApplicationComponent#creditService reference is wired
to two CreditService providers, as shown in the following listing:

<composite .. name="LoanApplicationComposite">
<component name ="LoanApplicationComponent">

<implementation.java class="com.acme.LoanApplicationComponent"/>
<reference name="creditService" target="CreditScoreComponent1

➥CreditScoreComponent2"/>
<component>
…

</composite>

When LoanApplicationComposite was added to the domain,
LoanApplicationComponent was included as a child of the do-
main composite. BigBank has a couple of options to update the
original wiring. LoanApplicationComposite could be modified
and redeployed. Or another composite containing only a <wire>
element can be created and added to the domain composite. The
composite containing the wire is listed in the following: 

<composite .. name="WireComposite">
<wire source="LoanApplicationComponent/creditService" target="

NewCreditScoreComponent"/>

</composite>

The sequence of steps BigBank takes in updating
LoanApplicationComponent is illustrated in Figure 9.15. After the
composite containing the new CreditService provider is added
to the domain, the wire composite is added.

From the Library of Robert Ryan



ptg

The Domain Composite 263

Figure 9.15 Adding a composite containing a wire

When WireComposite is added, the domain establishes an addi-
tional communication channel between LoanApplication
Component and the new CreditServiceComponent. Assuming
LoanApplicationComponent was implemented in Java, imple-
mentation instances would be injected with a list containing three
CreditService interface proxies.

Adding a Bound Service
Sometimes it is desirable to expose a service at an endpoint for
external clients after its component has been deployed. This can
be done by creating a composite with a promoted service and
adding it to the domain. The following listing shows

SCA Domain

Add to domain

NewLoanApplicationComponent

SCA Domain

Add to domain

WireComposite

SCA Domain

Credit Components

<wire/>

From the Library of Robert Ryan



ptg

264 The Domain

LoanApplicationServiceComposite, which promotes
LoanApplicationComponent/LandApplicationService and
binds it to web services:

SCA Domain

Add to domain

LoanApplicationServiceComposite

SCA Domain

LoanApplicationComponent

LoanApplicationComponent

Figure 9.16 Adding a promoted service

Similarly, additional promoted services could be added that create
endpoints over additional bindings.

<composite .. name="LoanApplicationServiceComposite">
<service name ="LoanApplicationService"

promote="LoanApplicationComponent/LandApplicationService">
<binding.ws/>

<service>
…

</composite>

When the composite is added to the domain, the promoted service
is included in the domain composite. This has the effect of exposing
the existing LoanApplicationService as a web service endpoint.
Figure 9.16 depicts this process.

From the Library of Robert Ryan



ptg

Deploying Policies 265

Remove from Domain Composite
In addition to the add operation, SCA implementations are required
to provide a mechanism for removing, or undeploying, a compos-
ite. How the removal operation is performed is runtime-specific.

Deploying Policies
SCA’s approach to policy depends on a separation of roles.
Developers and assemblers specify minimum policy requirements
through intents but don’t specify the details of how those require-
ments will be met; policy administrators and deployers specify this.
Policy administrators specify the policy sets that can be used to
satisfy a policy intent under various conditions as stated in the
XPath expressions in their @appliesTo attributes. The deployer
then has the final call and can explicitly pick policies for specific
services, rather than relying on the policy sets that would be chosen
by the rules.

Although the @appliesTo attribute of policySet specifies the
conditions under when the policy should apply, the domain pro-
vides the scope over which it applies. In other words, policySet
applies to service and reference bindings that meet that
@appliesTo condition throughout the domain.

New policy sets are added to the domain in the same way that
other definitions are added to domains. The policy sets are defined
within documents with a <definitions> root element. These defi-
nitions documents are packaged in contributions and installed into
domains in the same way as other artifacts. One difference from
other artifacts, however, is that all the policy sets (and other defini-
tions) within a definitions document are automatically visible to all
other contributions, without having to export them from the contri-
bution in which they are written or import them into the contribu-
tion in which they are used.

From the Library of Robert Ryan



ptg

266 The Domain

Summary
This chapter has covered the main functions of the domain: man-
agement, artifact sharing, policy, administration, and remote com-
munications. Recalling that a domain may consist of heterogeneous
services—that is, services written in different programming lan-
guages—the next chapter provides an overview of using BPEL as
alternative component implementation technologies.

From the Library of Robert Ryan



ptg

10

Service-Based
Development Using BPEL

Up until now, we have only seen services implemented in Java. In
this chapter, we describe how components can be developed using
BPEL. BPEL is very well-suited to SCA component development,
because it was explicitly designed for handling long-running con-
versations and bidirectional interfaces.

What Is BPEL?
The first release of BPEL was called Business Process Execution
Language for Web Services, with an acronym of BPEL4WS. It has
since been changed to WS-BPEL, although people usually just call
it BPEL (pronounced beep’uhl).

History
In December of 2000, Microsoft published its proposal for a busi-
ness process language called XLANG. Four months later, IBM pub-
lished its proposal, which was called WSFL. The two companies
then collaborated to merge the ideas of the two languages into
BPEL4People 1.0, which was published in July 2002, as a proposal
from IBM, Microsoft, and BEA.

267

BPEL is very well-
suited to SCA
component devel-
opment, because it
was explicitly de-
signed for handling
long-running
conversations and
bidirectional
interfaces.

From the Library of Robert Ryan



ptg

268 Service-Based Development Using BPEL

In May 2003, some minor cleanups were done, and version 1.1
was published and submitted for standardization to OASIS. OASIS
then worked for the next four years on WS-BPEL 2.0, which was
published in April 2007. 

The 2.0 version of the specification included improvements to the
extensibility of the language, and added some important new fea-
tures, but most important, it improved the description of the seman-
tics of the language, which is critical to achieving the portability
goal of the language. Any significant new projects built with BPEL
should be based on version 2.0 of the specification. 

A Language for Web Services
Ignore, for the time being, the concept of business processes. If you
were going to design a language from scratch that was designed for
use with asynchronous web services, there is a good chance you
would design something very similar to BPEL. The asynchronous
qualifier in that statement is critical, but before dealing with that,
the features that make it a language for web services include the
following:

� Variables and parameters typed by XML Schema

� Operation signatures specified by WSDL

� Expressions and conditionals specified using XPath

� An XML syntax for the language itself

Nonetheless, if it weren’t for asynchrony, the language would likely
look very different. Two of the asynchronous patterns that BPEL
adopts as central patterns are exactly the patterns that SCA has de-
fined for asynchrony, as follows: 

� Bidirectional interfaces, which BPEL calls partner link types

� Conversations that are embedded in BPEL’s concept of a
correlation set

Each of these topics, and how they are used within an SCA environ-
ment, will be dealt with in more detail later in the chapter.

Finally, there is the concept of the business process. Actually, the
concept supported by BPEL is more precisely described by the term
orchestration. It is a much more flexible form of control flow than
exists in imperative languages, where the language primitives only

If you were going to
design a language
from scratch that
was designed for
use with asynchro-
nous web services,
there is a good
chance you would
design something
very similar to
BPEL.

From the Library of Robert Ryan



ptg

What Is BPEL? 269

support a single thread of control, and calls to special-purpose li-
braries are needed in order to introduce concurrency (such as tasks
in Java). In BPEL (as in any language designed to support workflow
patterns), the language supports static and dynamic forking and
various thread-joining patterns. Static forking is where the number
of new threads is known at compilation time and can be
represented by transitions in a graph. Dynamic forking is where the
number of threads is determined only at runtime, usually based on
the data being handled by a business process (such as a list of part
vendors). By “thread” here, we do not necessarily mean operating
system thread, but rather the more general concept of a thread of
control. The control flow is best understood and is typically viewed
as a graphical representation, such as that shown in Figure 10.1.

Check Credit
History

Appraise Loan
Collateral

Figure 10.1 Parallel tasks

From the Library of Robert Ryan



ptg

270 Service-Based Development Using BPEL

This representation of control flow is often used to represent busi-
ness processes, because formal procedures that have been followed
by businesses (or any organization) can be easily represented by
such graphs. Think of the planning that goes on for building con-
struction. The steps involved in construction are not typically
tracked by computers, but if they were, you would need control
flow constructs to support various complex forking and joining
scenarios in order to accurately represent the work on the ground. 

As businesses do more and more of their work as tasks on a com-
puter, keeping track and controlling the flow of work in the busi-
ness can be handled by a computer. This also has the advantage
that tasks can change over time from being manual tasks to auto-
mated tasks (or vice versa) without having to change the fundamen-
tal business process that is controlling everything. Ultimately, this
kind of workflow representation remains the best representation,
even when all the tasks have been automated—especially when the
work lasts long enough to require asynchrony (conversations and
callbacks).

Using BPEL with SCA
BPEL fits very well into the world of SCA. A BPEL process definition
can be used as the implementation of an SCA component. The
BPEL partner links become services and references (more on this
later), and the interfaces of those services and references are speci-
fied using the WSDL port types that make up the BPEL partner link
types. SCA’s conversational interfaces provide what BPEL refers to
as engine-managed correlation, which removes the need for devel-
opers to specify correlating information explicitly.

What the BPEL specification lacks is exactly where the SCA assem-
bly specification steps in. BPEL provides no mechanism for specify-
ing what will provide the services at the other end of the partner
links. SCA’s wiring fills this need. BPEL also has no way of specify-
ing bindings or policies for the partner links. The SCA binding spec-
ifications and policy specification provide for this. Together, the
SCA specifications and the BPEL specification provide a complete
answer. And because not all services make sense to be developed
in BPEL, the SCA Java specifications round out a complete
programming model for SOA development.

A BPEL process
definition can be
used as the imple-
mentation of an
SCA component.

From the Library of Robert Ryan



ptg

Using BPEL for the Loan Service 271

BPEL Versus Java for Conversational Services
When a Java class is used to implement a conversational service,
every operation in the interface is always active. In the conversa-
tional loan service introduced in Chapter 4, “Conversational
Interactions Using Java,” the interface had operations for apply(),
getStatus(), and cancel(). There is nothing in that interface or
in the code that allows the system to automatically handle situa-
tions where messages arrive in an order that makes no sense, such
as a getStatus() or cancel() request that arrives before
apply(). The developer has to have code that explicitly checks
that the operation has been invoked at an appropriate time for the
conversation. For more complex conversations, the check is hard to
do, and the result is hard to understand, because there is no single
place you can go to see a representation of the acceptable
sequence. By contrast, take the case in BPEL, where you have the
following activities connected in a sequence:

1. Receive X from client.

2. Reply to X.

3. Receive Y from client.

4. Reply to Y.

5. Receive Z from client.

6. Reply to Z.

The acceptable order for requests from the client is clear, and an
attempt to send requests in any unexpected order will generate a
fault without any code on the part of the service.

Using BPEL for the Loan Service
To get a sense for using BPEL to implement a component, we will
replace the Java implementation of the loan service from the appli-
cation introduced in Chapter 4 with a BPEL implementation of that
service.

BPEL does not define a graphical representation for processes, al-
though the expectation has always been that a graphical representa-
tion would be the most common way for developers to work with
these processes. However, the OASIS technical committee that
standardized BPEL was not chartered to standardize such a repre-
sentation. One common notation for business processes is the

From the Library of Robert Ryan



ptg

272 Service-Based Development Using BPEL

Business Process Modeling Notation (BPMN). Its concepts don’t
align perfectly with BPEL, because it has a number of constructs
with no equivalent in BPEL, and BPEL has constructs without a
representation in BPMN. Nonetheless, it is close enough to repre-
sent the basic control flow of the process.

For the sake of this example, imagine that the process for handling
new loan applications is a little bit more complicated than it was in
Chapter 4; let’s create a loan-approval process based on the loan-
application process used as an example at the end of the BPEL
specification. In this process, if the loan amount is less than some
designated amount (say $10,000), a call is made to a risk assess-
ment service, which tries to determine whether the risk is low
enough to immediately approve it, or high enough to immediately
deny it. If, however, the amount is larger than $10,000 or if the
automatic risk assessment service can’t make a clean determina-
tion, the full loan review is initiated. The process might look like
that shown in Figure 10.2. 

Unfortunately, BPMN has no representation of the partner links
behind the communication activities. Listing 10.1 is some of the
partner link declaration section of that process.

Listing 10.1 Partner Links for the Loan Application Process 

<partnerLinks>
<partnerLink name="customer" 

partnerLinkType="lns:loanPartnerLT"
myRole="loanService" />

<partnerLink name="approver"
partnerLinkType="lns:loanApprovalLT"
partnerRole="approver" />

<partnerLink name="assessor"
partnerLinkType="lns:riskAssessmentLT"
partnerRole="assessor" />

</partnerLinks>

All the partner links in this process have only a single role. The
partner link with myRole="loanService" is the only service 
offered by the process. The other two (named “approver" and
“assessor") are references. The algorithm for the mapping of part-
ner links to services and references is described in the next section. 

From the Library of Robert Ryan



ptg

Using BPEL for the Loan Service 273

Figure 10.2 The loan application process 

Because this implementation makes use of an approver and an
assessor, our assembly needs a couple of additional components
that existed in the composite described in Chapter 4. The new
composite would look like what is shown in Figure 10.3.

Initiate Full
Review

Start

Risk?

Receive Loan
Application

Large Amount?

no

yes

Needs Review hi

low

Assign
Denial

Response

End

Invoke Risk
Assessment

Service

Assign
Approval
Response

Reply

From the Library of Robert Ryan



ptg

274 Service-Based Development Using BPEL

Figure 10.3 Loan application components 

Partner Links Are Services and References
BPEL identifies the external services that it communicates with
through partner links, and like SCA services and references, they
can be bidirectional. The client may need to provide services that
can be used by the process for callbacks. A partner link’s type is
specified by a partner link type, which consists of either one or
two port types (two if it is bidirectional).

Symmetry of Partner Link Types
There is one difference between SCA’s concept of bidirectional
interfaces and BPEL’s partner link types, which is that partner link
types are symmetric. An SCA bidirectional interface is made of an
interface and a callback interface. There is an implication that the
service provider is providing the interface and the client is provid-
ing the callback interface. However, BPEL makes no such distinc-
tion. In fact, BPEL does not refer to the two roles as “service
provider” and “client.” The roles can have any name, and there is
nothing else to distinguish one role as more important than the
other.

Risk 
Assessor 

Full-Scale 
Approval 

Loan 
Approval 
Process 

BPEL identifies the
external services
that it communi-
cates with through
partner links, and
like SCA services
and references,
they can be 
bidirectional.

From the Library of Robert Ryan



ptg

Partner Links Are Services and References 275

So, what is the difference between a “client” and a “service
provider?” With bidirectional interfaces, both roles provide services
that can be used by the other role. The only difference is that the
“client” sends the first message of the conversation. The direction of
that first message provides the asymmetry, and then after that, there
are no constraints on the messages that might be sent between the
two roles.

In BPEL, even that distinction is not made. It is theoretically pos-
sible that a partner link type could be created where either role
could initiate the conversation. In that case, there would be no
asymmetry at all. However, although that may make the model
more elegant and theoretically more powerful, in fact, almost every
conversational service is designed where it is known in advance
which role will send the first message. The distinction between a
client and a service provider exists in the mind of the developer, so
it makes sense to recognize it in the programming model.

Static Control Flow Analysis with SCA BPEL
When you use a BPEL process definition as the implementation of a
component, SCA needs to be able to tell which of the partner links
should be represented as services and which should be represented
as references. If the partner link type has only one role, the choice
is easy: The partner links with the one role as “myRole” are 
services and the partner links with the one role as “partnerRole” are
references.

When the partner link type has two roles (that is, it is bidirec-
tional), SCA determines which are services and which are refer-
ences by depending on the fundamental asymmetry between
clients and service providers described previously—figure out
which role will send the first message of the conversation. The SCA
BPEL specification says that this is accomplished by static control
flow analysis of the BPEL process.

Partner links are used for either inbound or outbound communica-
tion. Inbound communication occurs as either a receive,
onMessage, or pick activity. Outbound communication is done
with either an invoke or a reply activity. The order in which the
activities can occur is constrained by the sequence of activities they

SCA determines
which are services
and which are
references by de-
pending on the
fundamental asym-
metry between
clients and service
providers.

From the Library of Robert Ryan



ptg

276 Service-Based Development Using BPEL

are in and by any links present in the process. The SCA processor
can analyze each use of a partner link and determine whether the
first activity for the partner link is inbound or outbound communi-
cation. If it is inbound (for example, receive), the partner link is
turned into a service. If it is outbound (for example, invoke), it is
turned into a reference. 

According to SCA, the static analysis is not allowed to try to guess
the path taken through any condition. (Although in most cases, it
would be impossible anyway, but the specification disallows it so
that different processors don’t come up with different answers.)

In the rare case that it can’t be determined which will occur first,
the partner link is turned into a reference. This can happen when a
receive and an invoke activity for the same partner link are in the
same flow, and there is no link that causes one of the two to occur
before the other. 

Usually, the programmer does not need to think about any of this.
The partner links that the developer thinks of as services become
services, and the partner links that the developer thinks of as refer-
ences become references. 

Partner Link Types as Interfaces
In SCA, a bidirectional interface is defined in Java with an
@Callback annotation, as we saw back in Chapter 3, “Service-
Based Development Using Java” (see Listing 10.2).

Listing 10.2 Bidirectional Interface in Java 

@Callback(CreditCallback.class)
public interface CreditService { ...  }

To expose the service using WSDL, port types that correspond to
the Java interfaces would be created (by hand or using JAX-WS 
to generate them), and the component type would identify the 
bidirectional interface of the service by specifying both the service
provider interface and the callback interface. The component type
would look like Listing 10.3.

From the Library of Robert Ryan



ptg

Partner Links Are Services and References 277

BPEL requires that the pairing of an interface and its corresponding
callback interface be specified in a partner link type. The partner
link type name is then used as the interface name. This is appropri-
ate because the two interfaces are not really independent. They
were designed to be used together, so it is appropriate that there be
a name for the combination.

In BPEL, the partner link type for this bidirectional interface would
be in the WSDL file (usually with the corresponding port types) and
would look like Listing 10.4.

The partner link
type can be used in
the component type
as an alternative to
the typical way of
specifying bidirec-
tional interfaces.

Listing 10.3 Bidirectional Interface Using WSDL 

<componentType xmlns="http://www.osoa.org/xmlns/sca/1.0"
<service name="CreditService">
<interface.wsdl

interface="http://www.bigbank.com/loanapplication#wsdl.interface(Credit
➥Service)"
callbackInterface="http://www.bigbank.com/loanapplication#wsdl.
➥interface(CreditCallback)"/>

Listing 10.4 Bidirectional Partner Link Type Definition 

<partnerLinkType name="CreditServicePLT">
<role name="creditBureau">
<portType="bb:CreditService">

</role>
<role name="creditRequestor">
<portType="bb:CreditCallback">

</role>
</partnerLinkType>

The SCA BPEL specification then states that the partner link type
can be used in the component type as an alternative to the typical
way of specifying bidirectional interfaces. This is done by using
<interface.partnerLinkType> instead of <interface.wsdl>.
Because the partner link type is symmetric, you must also specify
the name of the role that is provided by the service, as shown in
Listing 10.5.

From the Library of Robert Ryan



ptg

278 Service-Based Development Using BPEL

SCA Extensions to BPEL
Up until now, we have seen that standard BPEL processes may be
used without using any extensions, APIs, or standardized services
from SCA. The business process does not need to have any refer-
ence to SCA in it at all.

However, there are a few capabilities that SCA provides for BPEL
processes that are available only by using the SCA extension to
BPEL. Any BPEL engine that is working within an SCA domain
should understand these extensions, although careful thought
should be given before they are used, because they will cause the
process to be unable to run in a BPEL engine that is not running in
an SCA domain.

Nonetheless, BPEL does provide a mechanism for adding exten-
sions. SCA’s extension is declared at the beginning of any process
that uses it (see Listing 10.6).

There are a few
capabilities that
SCA provides for
BPEL processes that
are only available
by using the SCA
extension to BPEL.

Listing 10.5 Bidirectional Interface Using a Partner Link Type 

<componentType xmlns="http://www.osoa.org/xmlns/sca/1.0"
<service name="CreditService">
<interface.partnerLinkType type="bb:CreditServicePLT"
serviceRole="creditBureau"/>

</service>
...

Listing 10.6 The SCA Extension Declaration for BPEL 

<extensions>
<extension
namespace="http://docs.oasis-open.org/ns/opencsa/sca-bpel/200801"
mustUnderstand="yes" />

</extensions>

The extension is marked with mustUnderstand="yes" because
most of the extensions affect the semantics of the process, and an
engine that did not understand the extensions would generate re-
sults different from what would have been desired by the
developer.

From the Library of Robert Ryan



ptg

SCA Extensions to BPEL 279

SCA Properties
BPEL has no capability to provide data that can be set by a
deployer and used by the process. In other words, there is no
equivalent to SCA’s concept of properties. Nonetheless, properties
are at least as valuable for BPEL processes as they are for any other
implementation type.

Consider the loan application process again. In that process,
$10,000 was hard coded into the process in the condition for the
branch that determined whether to attempt automatic loan
approval based on risk assessment rules. Rather than have that
number hard coded into the process, the value should be repre-
sented as a property that can be set at the place where the process
is used.

SCA’s extension for declaring properties provides an attribute that
can be added to a variable declaration to also designate the vari-
able as a property. If the cutoff amount for automatic processing
were a property, it would be defined as shown in Listing 10.7.

Properties are at
least as valuable for
BPEL processes as
they are for any
other implementa-
tion type.

Listing 10.7 An SCA Property as a BPEL Variable 

<variable name="cutoffAmount" type="xsd:integer" 
sca-bpel:property="yes">

<from>
<literal>10000</literal>

</from>
</variable>

The variable’s initialization value will be used as the value of the
variable if the property is not set in the composite file that instanti-
ates this process. If the property is set, the process uses that prop-
erty value rather than the value in the initialization expression. Just
in case the initialization expression has some side effects (which
would be bad practice), the SCA BPEL specification requires that
the expression be evaluated before its result is ignored and the SCA
property value is used instead. Any subsequent property initializa-
tion expressions that access the variable should see the SCA prop-
erty value, so the replacement can’t wait until after all the
initialization expressions have been evaluated.

From the Library of Robert Ryan



ptg

280 Service-Based Development Using BPEL

Customizing the Generated Services and References
The developer may not like the way that SCA generates service and
reference definitions for a BPEL process. The automatically gener-
ated component type uses the partner link names as the names of
the services and references. Because these names are not guaran-
teed to be unique for the process (they are only unique within a
single scope), the automatically generated name might need to
include a disambiguation digit at the end of the name. For
example, it might have to generate “myService1” and “myService2”
as service names for two partner links named “myService.” If this
happens, the developer may want to choose better names. The
developer may also want different names if there is a convention,
such as ending partner links with “PL,” which he does not want to
have exposed in the service or reference names.

To customize the generated name, the developer can include an
attribute from the SCA BPEL extension that explicitly specifies the
name. This looks like Listing 10.8.

Listing 10.8 Partner Link with Customized SCA Service Name

<partnerLink name="CreditServicePL"
partnerLinkType="bb:CreditServicePLT" myRole="creditBureau"
sca:service="CreditService"/>

Because it is theoretically possible for the static analysis to come up
with the wrong choice, when determining whether a partner link
should be a service or a reference, this mechanism can also be used
to force a partner link that would otherwise have been turned into a
service into a reference, and vice versa.

References with Multiplicity
A partner link is used to communicate with a single service. There
is nothing in BPEL that corresponds to SCA’s concept of a reference
that has a multiplicity of “0..n” (which we will refer to as a multi-
reference). Nonetheless, as with properties, this is a useful concept
that should be made available to developers. Also, SCA should be
able to be used with a top-down development style, where an ar-
chitect designs the components and the wires without knowing
what implementation language will be used for each of the compo-
nents. If such an architect included any multivalued references, it
should still be possible to implement that component using BPEL.

From the Library of Robert Ryan



ptg

SCA Extensions to BPEL 281

Recall that in SCA, a multireference does not mean that outbound
messages on the reference are automatically broadcast to all the
targets. Instead, it just means that all the targets are somehow pre-
sented to the component developer to do with as she wants. She
may send requests to every target in parallel, to every target
sequentially, to a subset of the targets, or to just one of the targets.
How the list of targets is presented to the component developer is
up to the programming language.

In BPEL, most references are represented as partner links. However,
there is no obvious way for SCA to extend BPEL links so that they
instead represent a list of targets, instead of only one. Instead, SCA
has to represent the list of targets as the contents of a variable and
depend on the developer using BPEL’s capability to set partner link
targets at runtime.

Multiplicity Example with Credit Bureaus 
To see the value of multiplicity in the context of our example, imag-
ine that the process is modified so that a credit check is made with
a list of credit bureaus before the rest of the loan approval process
is done by the bank. We would want the list of credit bureaus to be
expandable, rather than hardcoded into the process.

We will modify our process by adding a new activity immediately
after the initial receive activity for getting credit scores from credit
bureaus. The fact that it is done for multiple credit bureaus is repre-
sented in BPMN by the parallel bars at the bottom of the new activ-
ity (see Figure 10.4).

The BPEL representation of this is significantly more complicated.
First, we need the variable that will hold the list of targets for the
multi-reference that will represent the credit bureaus. At assembly
time, the reference will be wired to services for each of the credit
bureaus to be used. The variable that holds these targets looks like
Listing 10.9.

Listing 10.9 Partner Link with Customized SCA Service Name

<variable name="bureaus" element="sca-bpel:serviceReferenceList">
<sca-bpel:multiReference partnerLinkType="pos:CreditBureauPT"
partnerRole="bureau" />

</variable>

From the Library of Robert Ryan



ptg

282 Service-Based Development Using BPEL

Figure 10.4 The new credit check activity 

This causes the “bureaus" variable to hold endpoint references for
each service that the multireference is wired to within the compos-
ite file. The child element of the variable declaration is used to
specify the type of the reference, which may be either a single-
direction interface or a bidirectional interface, specified using a
partnerLinkType and a partnerRole; this is analogous to the
way single-valued references are typed.

At runtime, the contents of the “bureaus" variable will be a docu-
ment that looks like Listing 10.10.

Start

Receive Loan
Application

Credit Check

Listing 10.10 A ServiceReferenceList with Two Endpoints

<<sr:serviceReferenceList
xmlns:sr="http://docs.oasis-open.org/wsbpel/2.0/serviceref"
xmlns:wsa="http://schemas.xmlsoap.org/ws/2003/03/addressing">
<sr:serviceRef>
<wsa:EndpointReference>
<wsa:Address>http://creditBureau1.com/svc</wsa:Address>

From the Library of Robert Ryan



ptg

SCA Extensions to BPEL 283

Next is the BPEL representation of a parallel call to each credit
bureau. We take advantage of BPEL’s parallel “for-each” activity to
accomplish this. It looks like Listing 10.11.

</wsa:EndpointReference>
</sr:serviceRef>
<sr:serviceRef>
<wsa:EndpointReference>
<wsa:Address>http://creditBureau2.com/svc</wsa:Address>

</wsa:EndpointReference>
</sr:serviceRef>

</sr:serviceReferenceList>

Listing 10.11 Accessing All (0..n) Reference Targets in Parallel

<forEach counterName="idx">
<startCounterValue>1</startCounterValue>
<finalCounterValue>

count($bureaus/sref:service-ref)
</finalCounterValue>
<scope>

<partnerLinks>
<partnerLink name="bureauLink" 

partnerLinkType="pos:CreditBureauPT"
partnerRole="bureau"
sca-bpel:multiRefFrom="bureaus" />

</partnerLinks>
<sequence>
<assign>

<copy>
<from>$bureaus/sref:service-ref[$idx]</from>
<to partnerLink="bureauLink"/>

</copy>
</assign>
<invoke partnerLink="bureauLink"

operation="getCreditReport"
inputVariable="applicantSSN"
outputVariable="creditReport">

</invoke>
... do something with the credit report

</sequence>
</scope>

</forEach>

In this code sample, you can see that the forEach loop variable
only maintains the variable for the index. If there are three credit
bureaus in our list (that is, there were three wires), the forEach will
initiate three parallel branches of control flow. Within each scope,
a local partner link is defined, and that partner link is assigned one

From the Library of Robert Ryan



ptg

284 Service-Based Development Using BPEL

of the targets (the bold part of the preceding code). This means that
in this example, three scopes will be simultaneously started, each
scope will have its own partner link, and each partner link will be
assigned to one of the three reference targets.

When each invoke completes, it now has the credit report for the
applicant from one of the three credit bureaus. The next thing to do
would be to add that credit report to a list of credit reports that will
be given to the reviewers that come later in the process. (This part
of the code was not shown in the preceding sample.)

The entire forEach will complete when the scope of all three of
the initiated scopes have been completed. The rest of the process
can then run.

Summary
BPEL is a language that was designed for orchestrating web serv-
ices. It is easy to use standard BPEL process definitions as the im-
plementation of components within SCA. It is also possible to use
SCA extensions to standard BPEL to take advantage of SCA-specific
features, such as properties and multireferences, or to customize
things like the names of the service and references that are gener-
ated for a process definition.

From the Library of Robert Ryan



ptg

11

Persistence

SCA is not intended to be a platform technology. By “platform tech-
nology,” we mean a technology such as Java EE and .NET designed
to cover all application development needs, from the user interface
(or interfaces) to long-term data storage. Rather, SCA is concerned
with what is typically referred to as the “middle-tier”: the code that
comprises the bulk of an application’s processing logic. 

All but the most trivial applications require some form of persist-
ence, most commonly to a relational database; many applications
also require some form of user interface. SCA does not offer its own
set of solutions for the presentation and persistence tiers. Instead,
the goal of the SCA authors was to make it easy to integrate with
existing and emerging technologies in these areas.

Seen in this light, although covering significant ground, SCA is less
ambitious than Java EE and .NET. A benefit of this approach is that
developers don’t need to learn a completely new set of technolo-
gies when working with SCA. However, a major downside is that
with SCA, there is no clear consensus or one way to handle presen-
tation and persistence needs.

Indeed, a number of approaches have been taken by vendors and
open source SCA implementations. In the next chapter, we take a
look at how Java EE web applications can front-end SCA services.
In this chapter, we focus on persistence, and in particular, how

285

From the Library of Robert Ryan



ptg

286 Persistence

components can use JDBC and the Java Persistence API (JPA) to
transactionally write data to a relational database.

Of the various ways to persist data in Java, we chose JDBC because
it is ubiquitous. Our choice of JPA, however, is based on slightly
different reasons. First, JPA is emerging as the primary way Java-
based enterprise applications access data in a relational database.
Enterprise application developers are likely to already be familiar
with JPA. In addition, it is our conviction that JPA is one of the best
persistence solutions available to Java developers. JPA is a standard
and, more important, is widely viewed as providing an efficient and
flexible approach to persistence.

Given that SCA does not provide its own persistence API, various
SCA runtimes may adopt different approaches. In this chapter, we
cover how to use JDBC and JPA with Fabric3. You should be aware
that some SCA runtimes might not support JDBC or JPA or do so in a
slightly different way. Consequently, if application portability to
different runtimes is a requirement, you will need to plan carefully.
To assist with this, we note throughout the chapter when a propri-
etary Fabric3 feature is being used. We also begin the chapter with
architectural suggestions for increasing portability in the sidebar,
“Architecting for Portability.”

Architecting for Portability

One of the major selling points of Java EE is application portability: Assuming a Java
EE application did not use vendor-proprietary APIs, it could be deployed to any Java
EE-compliant application server. 

Despite the claims of avoiding “vendor lock-in,” the reality has been that Java EE
has had mixed success with application portability. Vendors have often interpreted
the Java EE specifications differently, resulting in different runtime behaviors. Also,
despite its mandate as an enterprise technology platform, long features such as clus-
tering are not covered by Java EE. This has resulted in vendors introducing propri-
etary extensions in their runtimes that hinder application portability.

To be sure, over the years Java EE has improved with respect to application portabil-
ity. More features are covered and the specifications have been made clearer,
thereby reducing the possibility of different interpretations. However, despite these
advances, Java EE application portability still requires significant effort.

From the Library of Robert Ryan



ptg

Persistence 287

In previous chapters, we mentioned that SCA goals for portability were less ambi-
tious. Specifically, a pragmatic decision was made to focus on skills, as opposed to
application portability. SCA would initially provide a reduced level of application
portability but would standardize enough so that developers would be on familiar
ground when working with different SCA runtimes.

Because SCA does not standardize a persistence API, persistence is an area that
presents one of the biggest challenges with respect to application portability. One
strategy for dealing with this is to not use runtime-provided persistence facilities at
all. In this approach, the application manages its persistence needs, perhaps by us-
ing a third-party library directly such as Hibernate or the basic JDBC facilities bun-
dled in the JDK. The major drawback to this approach is that in enterprise scenarios,
the application must handle a number of complex infrastructure concerns: for
example, bootstrapping the persistence technology, connection pooling, and trans-
actional behavior.

As an alternative, we recommend isolating the use of persistence APIs with a combi-
nation of SCA composition and the Data Access Object (DAO) pattern. When an ap-
plication is ported to a different SCA runtime, these isolated areas can be replaced
with another runtime-specific implementation.

A Data Access Object hides persistence details from clients and presents an inter-
face to clients consisting of operations for querying, saving, modifying, and deleting
application data. As is evident from the “object” reference in its name, the DAO pat-
tern has been a widely used pattern in object-oriented languages. In SCA, a DAO
would most likely be implemented as a local service because operations are typi-
cally fine-grained. The following example illustrates a local service that persists
LoanApplication data:

public interface LoanApplicationDao {

void save(LoanApplication application);

LoanApplication update(LoanApplication application);

void remove(LoanApplication application);

LoanApplication findById(Long id);
}

The component implementation for the LoanApplicationDao could use JPA,
JDBC, or some other means to persist a LoanApplication instance. A portable
application would potentially have multiple implementations that were used in
different SCA runtimes.

From the Library of Robert Ryan



ptg

288 Persistence

Often, applications will include multiple DAOs to handle persistence for the various
data types an application may use. These DAOs can be organized into a composite
or set of composites that provide persistence services to various parts of an applica-
tion. The following demonstrates a composite that promotes a LoanApplicationDao
and a ApplicantDao:

<composite … name="JPAPersistenceComposite">

<service name="LoanApplicationDaoService"
promote="LoanApplicationDao"/>

<service name="ApplicantDaoService" promote="ApplicantDao"/> 

<component name ="LoanApplicationDao">
<implementation.java

class="com.bigbank.persistence.jpa.LoanApplicationJPADao"/>
…

<component>

<component name ="ApplicantDao">
<implementation.java class="com.bigbank.

persistence.jpa.ApplicantJPADao"/>
…

<component>

…

</composite>

The previous composite configures two JPA DAOs and can be used by
LoanComposite:

<composite … name="LoanComposite">

…

<component name ="LoanPersistenceComposite">
<implementation.composite

name="loan:JPAPersistenceComposite"/>
<component>

</composite>

Besides providing a way to clean separate persistence concerns from other compo-
nent configurations in the LoanComposite, creating a separate persistence compos-
ite enables the JPA-based implementation to be easily replaced if the loan
application needs to be ported to an SCA runtime that does not support JPA.

From the Library of Robert Ryan



ptg

Using JDBC 289

Using JDBC
In this section, we cover using JDBC to access relational data. The
javax.sql.DataSource API is the primary way to obtain a data-
base connection and perform SQL operations using JDBC. In SCA
runtimes such as Fabric3 that provide JDBC support, a DataSource
is obtained through injection. However, instead of annotating a
setter method or field with @Reference or @Property, @Resource
is used. The @Resource annotation belongs to the javax.
annotation package and is defined as part of the JSR-250 specifi-
cation, “Common Annotations for the Java Platform.” The
@Resource annotation is used by SCA to declare a reference to a
resource provided by the runtime—in this case, a DataSource.
Listing 11.1 shows how to inject a DataSource on a component
setter method.

In SCA runtimes
such as Fabric3 that
provide JDBC sup-
port, a DataSource
is obtained through
injection.

DataSource Configuration

In this chapter, we do not cover how to configure a DataSource because it is 
vendor-specific. Typically, a DataSource is configured via a management console
or through a configuration file. You will need to consult the SCA runtime documen-
tation to determine how this is done.

Listing 11.1 Injecting a DataSource Using @Resource

import javax.annotation.Resource;
import javax.sql.DataSource;

public class LoanApplicationJDBCDao implements LoanApplicationDao {
private DataSource loanDS;

@Resource (name = "loanDB")
public void setDataSource(DataSource dataSource) {

loanDS = dataSource;
}

}

In the preceding example, the name attribute specified on the
@Resource annotation instructs the SCA runtime to inject the
DataSource named "loanDB". This DataSource is configured in
a runtime-specific manner. 

From the Library of Robert Ryan



ptg

290 Persistence

If the name attribute is not specified, the DataSource name will be
inferred from the field or setter method according to the same rules
that apply for properties and references. For example, if the name
attribute were not specified in Listing 11.1, the inferred name
would be "dataSource".

The Fabric3 @Resource Annotation

Unfortunately, the javax.annotation.Resource annotation defined by the JSR-
250 specification, “Common Annotations for the Java Platform,” does not support
annotating constructor parameters; that is, it does not support ElementType.
PARAMETER. This means it is not possible to use the annotation to inject resources in
a constructor similar to the way component properties and references can be. For
those wanting to use constructor injection, Fabric3 provides the proprietary
org.fabric3.api.annotation.Resource annotation, which is identical to the
javax.annotation.Resource variant.

DataSources and Transaction Policy 
Before obtaining and using a database connection object from an
injected DataSource, it is necessary to take into account the trans-
action policy in effect for a given component. If you have used
JDBC with a Java EE application server, this will be familiar. Recall
in Chapter 6, “Policy,” we covered the different transaction policies
that can be applied to a component implementation:

� Global managed transaction—This is the most common
transaction policy associated with a component implemen-
tation. When applied to a component implementation, the
SCA runtime will ensure that a global transaction is present
before dispatching to a method on the component. In doing
so, the SCA runtime will use a transaction propagated from
the invoking client or begin a new transaction depending
on whether the service implemented by the component
propagates or suspends transactions. If multiple resources
such as DataSources associated with different databases
are used during an invocation, they will be coordinated as
part of a single transaction. Consequently, all work done
will either be atomically committed or rolled back as part of
the transaction. This process is often referred to as a two-
phase commit, or 2PC, transaction.

From the Library of Robert Ryan



ptg

Using JDBC 291

� Local managed transaction—When a component is config-
ured to run with this policy, the SCA runtime will suspend
any active transaction context and execute the component
within its own local transaction context. Upon completion
of an operation, the SCA runtime will coordinate with re-
sources used by the component to individually commit or
roll back work. This means that work involving different
resources will either fail or complete independently. For
example, updates to two DataSources will be performed
individually: They may fail or succeed independent of one
another.

� No managed transaction—Components that use this trans-
action policy are responsible for managing transactions. In
this case, the component implementation uses the JDBC
APIs to manually control when a transaction commits or
rolls back. This is done using the Connection.
setAutoCommit(boolean), Connection.commit(), and
Connecton.rollback() methods.

Global and Local Managed Transactions
Let’s return to the DAO that persists loan application data from
previous examples. In Listing 11.2, if the DAO is configured to run
as part of a global managed transaction or local managed transac-
tion, the SCA runtime will either commit or roll back changes when
the update operation completes.

Listing 11.2 Using a DataSource in the Context of a Global Transaction

import javax.annotation.Resource;
import javax.sql.DataSource;

import org.osoa.annotations.GlobalManagedTransaction;

@GlobalManagedTransaction
public class LoanApplicationJDBCDao implements LoanApplicationDao {

private DataSource loanDS;

@Resource (name = "loanDB")
public void setDataSource(DataSource dataSource) {

loanDS = dataSource;
}

public void update(LoanApplication application){

From the Library of Robert Ryan



ptg

292 Persistence

Because the DAO runs as part of a global transaction, it must not
call Connection.commit() or Connection.rollback() be-
cause the runtime will handle that when the update operation com-
pletes successfully or throws an exception. Before returning, the
only thing the DAO must do is ensure that connections are prop-
erly closed using a try...finally block.

The main differences between using DataSources in the context of
local and global transactions become apparent in two cases: when
multiple DataSources are used by the same component and when
multiple DAOs are used by a client. We examine both cases in
turn.

Consider the code in Listing 11.3, where two DataSources are
accessed by the LoanApplicationJDBCDao.

Connection conn = null;
try {

conn = loanDS.getConnection();
// … update the application 

} catch (SQLException e) {
// … rollback

} finally {
if (conn != null) {
try {

conn.close();
} catch (SQLException e) {

// …
}

}
}

}
// …

}

Listing 11.3 Using Multiple DataSources in the Context of a Global Transaction

import javax.annotation.Resource;
import javax.sql.DataSource;

import org.osoa.annotations.GlobalManagedTransaction;

@GlobalManagedTransaction
public class LoanApplicationJDBCDao implements LoanApplicationDao {

private DataSource loanDS;
private DataSource auditDS;

@Resource (name = "loanDB")

From the Library of Robert Ryan



ptg

Using JDBC 293

Because the implementation in Listing 11.3 is configured to use a
global transaction, the update to the loan database done using the
loanConn connection will be performed in the same transaction as
the audit record insert done with the auditConn connection.
Consequently, the update and insert will succeed together or be
rolled back. On the other hand, if the LoanApplicationJDBCDao
were annotated with @LocalManagedTransaction, the update
and insert would be performed individually. In other words, they
would succeed or fail independently. In this case, it would be pos-
sible for the loan application update to commit while the audit
record insert is rolled back by the runtime due to an exception.

Another case where the differences between global and local man-
aged transactions become apparent is when a client accesses two
DAOs that use the same DataSource. Suppose the BigBank appli-
cation has two DAOs: a LoanApplicationJDBCDao to persist loan

public void setLoanDataSource(DataSource dataSource) {
loanDS = dataSource;

}

@Resource (name = "auditDB")
public void setAuditDataSource(DataSource dataSource) {

auditDS = dataSource;
}

public void update(LoanApplication application){

Connection loanConn = null;
Connection auditConn = null;
try {

loanConn = loanDS.getConnection();
auditConn = auditDS.getConnection();
// … update the application using loanConn
// … insert an audit record using auditConn 

} catch (SQLException e) {
// … rollback

} finally {
//… close connections

}
}

}
// …

}

From the Library of Robert Ryan



ptg

294 Persistence

application data and an ApplicantJDBCDao responsible for persist-
ing applicant information. Both DAOs use the same DataSource
and are invoked by LoanComponent, which is configured to use a
global managed transaction, as shown in Listing 11.4.

Listing 11.4 Invoking Multiple DAOs in the Context of a Global Managed Transaction

import org.osoa.annotations.GlobalManagedTransaction;
import org.osoa.annotations.Reference;

@GlobalManagedTransaction
public class LoanComponent implements LoanService {

private LoanApplicationDao loanApplicationDao;
private ApplicantDao applicantDao;

public LoanComponent(@Reference LoanApplicationDao
loanApplicationDao, @Reference ApplicantDao applicantDao) {

this.applicantDao = applicantDao;
this.loanApplicationDao = loanApplicationDao;

}

public LoanResult apply(LoanRequest request) {
LoanApplication application = //… create the application

from the request
LoanApplicant applicant = //.. create the applicant from

the request
loanApplicationDao.save(application);
applicantDao.save(applicant);

}

// …
}

If the LoanApplicationJDBCDao and ApplicantJDBCDao imple-
mentations are configured to use a global managed transaction, the
calls to loanApplicationDao.save(..) and applicantDao.
save(..) in Listing 11.4 will be performed in the same transaction
context. That is, they will succeed or fail together. If, however, the
DAO implementations are configured to use local managed trans-
actions, each call will be performed independently. Figure 11.1
illustrates the difference.

From the Library of Robert Ryan



ptg

Using JDBC 295

DAOs using Local
Managed Transactions

LoanApplicationDao

ApplicantDao

LoanComponent

LoanComponent

LoanApplicationDao

ApplicantDao

 Global Transaction
Context

DAOs using a Global
Managed Transaction

Figure 11.1 Global versus local managed transactions

How does an SCA runtime guarantee “atomicity” across
DataSources and components when a global managed transaction
is in effect? In other words, how does it ensure that persistence
operations are handled as a single unit? An SCA runtime enforces
atomicity by associating a database connection object with the
transaction context through the use of a transaction manager. If a
global transaction is in effect, the SCA runtime will associate the
JDBC Connection object returned from the first call to
DataSource.getConnection() with the active transaction.
Subsequent calls to DataSource.getConnection()—whether
from the same component instance or other components—will
return the same Connection object as long as the transaction is
active. In addition, when the Connection object is returned, the
runtime will enlist it with a transaction manager. If multiple
DataSources are used during a transaction, their Connection

From the Library of Robert Ryan



ptg

296 Persistence

objects will be enlisted with the transaction manager. Upon com-
pletion of the transaction, the transaction manager will coordinate
commits across all enlisted connections, known more generally as
“resources.” If an exception is encountered, the transaction man-
ager will coordinate rollbacks across the enlisted resources.
Fortunately, this work is handled transparently by the runtime.
Application code does not need to worry about connection man-
agement, resource enlistment, or performing coordination.

No Managed Transaction
Component implementations may also be configured to run with-
out a managed transaction. In this case, the implementation is
responsible for managing its own transaction demarcations bound-
aries. This involves either setting Connection.setAutoCommit
(boolean) to true, which results in all SQL statements being exe-
cuted and committed as individual transactions. Otherwise, appli-
cation code must explicitly call Connection.setAutoCommit
(false) followed by Connection.commit() or Connection.
rollback(), as shown in Listing 11.5.

Listing 11.5 Manually Managing Transaction Boundaries with a DataSource

import javax.annotation.Resource;
import javax.sql.DataSource;

import org.osoa.annotations.NoManagedTransaction;

@NoManagedTransaction
public class LoanApplicationJDBCDao implements LoanApplicationDao {

private DataSource loanDS;

@Resource (name = "loanDB")
public void setLoanDataSource(DataSource dataSource) {

loanDS = dataSource;
}

public void update(LoanApplication application){
Connection conn = null;
try {

conn.setAutoCommit(false);
//… update the application
conn.commit();

} catch (SQLException e) {
try {

From the Library of Robert Ryan



ptg

Using JDBC 297

As seen in Listing 11.5, given the added complexity associated with
application managed transaction boundaries, it is generally advis-
able to use either globally or locally managed transactions.

Perspective: When to Use Different Transaction Policies

Global transactions involving two-phase commit (2PC)—for example, when mul-
tiple DataSources are used in a transaction—will entail a performance penalty. This
is because the runtime transaction manager must coordinate commits across mul-
tiple resources. 

As a way to avoid this performance penalty, it is often suggested to use local man-
aged or no managed transactions. Using local managed transactions will result in
persistence operations being performed independently, thereby saving the overhead
of 2PC resource coordination. The drawback of this approach is that atomicity is lost
as the persistence operations may fail independently. 

Using no managed transactions places the burden of committing or rolling back
work for a particular database Connection on the application. As with local man-
aged transactions, this approach avoids the overhead of 2PC. However, it is gener-
ally not recommended, as managing connections directly greatly complicates
application code. 

Fortunately, most modern transaction managers perform optimizations that make us-
ing global transactions generally the best option. A common optimization is to avoid
2PC coordination if only one resource is enlisted in a transaction. For example, if a
component (or set of components) uses a single DataSource for a given transaction,
the runtime transaction manager can dispense with 2PC coordination. Some trans-
action managers also implement more sophisticated optimizations (such as the “last

conn.rollback();
} catch (SQLException e2) {

//… log the exception
}

} finally {
// … close connection

}

}
// …

}

From the Library of Robert Ryan



ptg

298 Persistence

Using JPA
Having covered the lower-level JDBC API, we now turn to how to
use JPA with SCA components. Even though JPA was developed in
response to the deficiencies of EJB Entity Beans, its object/relational
mapping (O/R) approach to persistence is particularly effective in
building loosely coupled, service-based architectures. Instead of
JDBC’s result set model where data is presented in rows and
columns, JPA deals directly with Java objects and provides facilities
for mapping them to relational database tables. Although we as-
sume some familiarity with JPA, we list its main benefits here:

� Less code—By working with objects and automating much
of the mapping process to relational tables, JPA results in
less application code than JDBC.

� Less complexity—JPA handles tasks such as unique ID gen-
eration, versioning (that is, guarding against overlapping
updates of the same data by different clients), and entity
relationships that typically require complex application
code with JDBC.

� Portability—Most JPA implementations have built-in fea-
tures for handling the idiosyncrasies of various databases,
making code more portable.

� Performance gains—Despite the “mapping overhead,” JPA
implementations can actually improve performance by
supporting advanced optimizations, such as delayed flush-
ing and operation batching, that would require complex
manual coding if done using JDBC.

Instead of JDBC’s
result set model
where data is pre-
sented in rows and
columns, JPA deals
directly with Java
objects and pro-
vides facilities for
mapping them to
relational database
tables.

agent” optimization, or WebLogic Server’s “last logging resource” optimization) that
circumvent part of the 2PC process.

Given the capability of modern transaction managers to perform these optimiza-
tions, managed global transactions are generally the best choice. In cases where an
optimization cannot be performed and where atomicity is not a strict requirement,
local managed transactions may result in performance improvements. However, as
with all performance tuning, it is best to quantify performance requirements upfront
and tune based on actual measurements. 

From the Library of Robert Ryan



ptg

Using JPA 299

In this section, we will not delve into the intricacies of working
with JPA. Rather, we concentrate on the specifics of using JPA with
SCA, and in particular stateless services, transaction policy, and
conversational interactions.

More on JPA

This chapter assumes basic familiarity with JPA or an Object/Relational Mapping
(O/R) tool such as Hibernate (www.hibernate.org). If you are not familiar with JPA or
want to learn more, we highly recommend the very thorough book by Christian
Bauer and Gavin King, Java Persistence with Hibernate (Manning, 2006). 

The Basics: Object Lifecycles and the Persistence Context
In JPA, an object that is persisted to a database such as a Loan
Application is referred to as an “entity.” The EntityManager API
provides operations for querying, saving, updating, and deleting
entities. Similar to a DataSource, an EntityManager is injected
on a component instance. However, instead of using the
@Resource annotation, the @PersistenceContext annotation
from the javax.persistence package is used. (Why it is called
“PersistenceContext” will become apparent later.)

Listing 11.6 demonstrates how the LoanComponent uses an
EntityManager to persist a new LoanApplication, resulting in a
database insert.

Listing 11.6 Using the EntityManager API to Persist a LoanApplication

import javax.persistence.PersistenceContext;

public class LoanComponent implements LoanService {

private EntityManager entityManager;

@PersistenceContext
public void setEntityManager(EntityManager entityManager) {

this.entityManager = entityManager;
}
// …

From the Library of Robert Ryan

www.hibernate.org


ptg

300 Persistence

EntityManager instances are associated with a persistence con-
text, which is essentially an in-memory cache of changes before
they are written to the database. When a component adds, modi-
fies, or removes an entity, the entity is tracked as part of a persist-
ence context before the changes are written to the database. 

Entities can be in one of four states: new, managed, removed, or
detached. A new entity is an object that has been instantiated (using
the Java new operator) but has not been persisted; in other words, it
exists only in memory and has not been inserted into the database.
A managed entity is one that has been associated with a persistence
context, typically by invoking EntityManager.persist() or
retrieving it into memory via a query. A removed entity is one that
is scheduled for deletion in the database. Finally, a detached entity
is one that is disassociated from a persistence context.

How does an entity become detached? Consider the case of
LoanComponent. When a LoanRequest is received, the compo-
nent instantiates a new LoanApplication and populates its fields
with values from LoanRequest. At this point, LoanApplication is
considered to be in the new state. After the component invokes
EntityManager.persist(), LoanApplication is associated
with a persistence context and placed in the managed state. After
the component has finished operating on LoanApplication and
the unit of work has completed, the persistence context is closed
and LoanApplication is placed in the detached state. The com-
ponent may still access and manipulate the LoanApplication
object, but its data is not guaranteed to be synchronized with the
database. Later, the LoanApplication object may become associ-
ated with a new persistence context using the EntityManager.
merge() operation. When changes tracked by the new persistence
context are sent to the database, updates made to the

public LoanResult apply(LoanRequest request) {
LoanApplication application = new LoanApplication();
// … populate the application with data from the request
entityManager.persist(application);

}

}

From the Library of Robert Ryan



ptg

Using JPA 301

LoanApplication object while in the detached state will be writ-
ten as well.

Entity detachment and reattachment are illustrated in Figure 11.2.

When injecting
EntityManager,
the default behavior 
of an SCA runtime
is to associate it
with a persistence
context for the
current transaction,
commonly referred
to as a “transaction-
scoped” persistence
context.

Managed Entities Detached Entities Reattached Entities

Close Merge

Figure 11.2 Detachment and merging 

Detachment occurs when either EntityManager.close() is ex-
plicitly called or a transaction completes. In JPA, this is referred to
as a “transaction-scoped” persistence context. Fabric3 also supports
extended persistence contexts that remain active for the duration of
a conversation.

Transaction-Scoped Persistence Contexts
When injecting EntityManager, the default behavior of an SCA
runtime is to associate it with a persistence context for the current
transaction, commonly referred to as a “transaction-scoped” persist-
ence context. This has two main effects. First, in the case where a
client invokes local services in the context of a global transaction
that is propagated, the local service providers will share a persist-
ence context. Second, the persistence context will be flushed (that
is, changes written to the database) and closed when the transaction
completes. At that point, entities will be detached.

To see how this works, let’s return to the LoanComponent example.
Suppose it uses two JPA-based DAOs to persist LoanApplication
and LoanApplicant information. Because the DAOs abstract
the use of JPA, the LoanComponent implementation remains un-
changed from Listing 11.4. It uses a global transaction and invokes
each DAO in turn. The implementation is listed again in Listing
11.7 for convenience.

From the Library of Robert Ryan



ptg

302 Persistence

Listing 11.7 The LoanComponent Remains Unchanged When Using JPA-Based DAOs

import org.osoa.annotations.GlobalManagedTransaction;
import org.osoa.annotations.Reference;

@GlobalManagedTransaction
public class LoanComponent implements LoanService {

private LoanApplicationDao loanApplicationDao;
private ApplicantDao applicantDao;

public LoanComponent(@Reference LoanApplicationDao
loanApplicationDao, @Reference ApplicantDao applicantDao) {

this.applicantDao = applicantDao;
this.loanApplicationDao = loanApplicationDao;

}

public LoanResult apply(LoanRequest request) {
LoanApplication application = //… create the application

from the request
LoanApplicant applicant = //.. create the applicant from

the request
loanApplicationDao.save(application);
applicantDao.save(applicant);

}

// …
}

The main change will be in the two DAOs, which use injected
EntityManagers (see Listing 11.8).

Listing 11.8 The Two JPA-Based DAOs

@GlobalManagedTransaction
public class LoanApplicationJPADao implements LoanApplicationDao {

private EntityManager entityManager;

@PersistenceContext
public void setEntityManager(EntityManager entityManager) {

this.entityManager = entityManager;
}

public void update(LoanApplication application){
entityManager.persist(application);

}
}

From the Library of Robert Ryan



ptg

Using JPA 303

Because a global transaction is propagated from LoanComponent to
the DAOs, the runtime will associate the same persistence context
with each injected EntityManager. Changes made by one DAO
will be visible to others sharing the same persistence context.
Assuming the global transaction begins when LoanComponent.
apply() is invoked and ends when the operation completes, the
persistence context will be flushed and changes written to the data-
base after the method returns. 

Another item to note is that because the SCA runtime manages
EntityManagers, application code must take care not to call JPA
APIs for transaction demarcation—in particular, EntityManager.
getTransaction() or any of the methods on javax.
persistence.EntityTransaction.

The Persistence Context and Remotable Services
The examples thus far have dealt with interactions between local
services. This is because persistence contexts are not propagated
across remotable service boundaries. Persistence contexts are only
shared between local services participating in the same global
transaction.

Although it is possible to marshal detached entities across remote
boundaries and merge them into another persistence context, this
often has the effect of introducing undesired coupling between
remotable services as it exposes the internal domain model (that is,
the set of entities). Moreover, entities are best designed as fine-
grained Java objects, which in many cases do not translate well into
interoperable data types, in particular XML schema. For example, it

@GlobalManagedTransaction
public class ApplicantJPADao implements ApplicantDao {

private EntityManager entityManager;

@PersistenceContext
public void setEntityManager(EntityManager entityManager) {

this.entityManager = entityManager;
}

public void update(Applicant applicant){
entityManager.persist(applicant);

}
}

From the Library of Robert Ryan



ptg

304 Persistence

is common to create entities that model one-to-many relationships
using Java generics, as shown in Listing 11.9.

Listing 11.9 An Entity

@Entity
public class LoanApplication {

@OneToMany
private Set<Options> options = new HashSet<Options>();

public Set<Options> getOptions() {
return options;

}

//…
}

Unfortunately, Java generics, as shown in Listing 11.9, do not map
well to XML schema types. This may lead to problems with interop-
erability if the LoanService provided by the LoanComponent is
exposed as a web service endpoint. To avoid these mapping and
coupling issues, entities should be translated into a format more
appropriate for remote marshalling—for example, JAXB types.

JPA and Conversational Services
Using JPA with conversational services is only slightly different than
with nonconversational ones. When doing so, it is important to
account for detached entities. Remember, as shown back in the first
listing in the sidebar “Architecting for Portability,” a persistence
context is closed and associated entities detached when a transac-
tion completes. Depending on how transaction boundaries are
defined, a conversation may start and end within the span of a
single transaction, or (the common case) it may be longer-lived and
exist over multiple transactions. Figure 11.3 and Figure 11.4 depict
short- and long-lived conversations.

From the Library of Robert Ryan



ptg

Using JPA 305

Figure 11.4 A long-lived conversation

In short-lived conversations that do not span a transaction, the per-
sistence context outlives the conversation lifetime. Consequently,
component implementations need to handle detached entities. 

However, with longer-lived conversations, component implementa-
tions have to take special care to reattach entities to a new persist-
ence context. Suppose LoanService was conversational, with
apply and updateContactInfo operations. Further, for illustration
purposes, assume LoanComponent implementing the service per-
sists LoanApplication entities using JPA directly instead of DAOs.
If each operation was called in the context of a different transac-
tion, LoanComponent must ensure that LoanApplication was
merged with the persistence context, as shown in Listing 11.10.

Conversation

Transaction

Persistence Context

Figure 11.3 A short-lived conversation 

Persistence Context Persistence Context

Close Merge

Detached Entities

Conversation

Transaction Transaction

From the Library of Robert Ryan



ptg

In conversational
interactions, it is
often desirable to
extend the scope of
the persistence and
have it remain active
for the duration of a
conversation.

306 Persistence

Listing 11.10 Merging Persistence Entities 

@Scope("CONVERSATION")

public class LoanComponent implements LoanService {
private EntityManager entityManager;
private LoanApplication application;

@PersistenceContext
public void setEntityManager(EntityManager entityManager) {

this.entityManager = entityManager;
}

public LoanResult apply(LoanRequest request) {
application = new LoanApplication();
// … populate the application with data from the request
entityManager.persist(application);

}

public updateContactInfo(Info info) {
// update the application
application = entityManager.merge(application);

}

public end() {
// perform some processing

}

//…

}

After apply is called, entityManager will be flushed and changes
(that is, the new loan application) applied to the database. In addi-
tion, the persistence context will be closed and the application
object detached. Subsequent calls to updateContact will there-
fore need to reattach the application object by calling
EntityManager.merge(). When updateContact returns, the
runtime will flush and close the persistence context.

Extended Persistence Contexts
In conversational interactions, it is often desirable to extend the
scope of the persistence and have it remain active for the duration
of a conversation, as opposed to the lifetime of a transaction.
Persistence contexts tied to the lifetime of a conversation are termed
“extended persistence contexts.” Figure 11.5 depicts an extended
persistence context. 

From the Library of Robert Ryan



ptg

Using JPA 307

Conversation

Transaction Transaction

Persistence Context

Figure 11.5 Merging persistence entities 

The main benefit of extended persistence contexts is that reattach-
ment does not need to be done. This simplifies code and saves the
expense of a merge operation. Extended persistence contexts are
specified by setting the type attribute of @PersistenceContext to
javax.persistence.PersistenceContextType.EXTENDED.
Listing 11.11 shows how this is done. Note also that the call to
EntityManager.merge() from Listing 11.10 has been removed
because it is no longer needed.

Listing 11.11 An Extended Persistence Context 

@Scope("CONVERSATION")

public class LoanComponent implements LoanService {
private EntityManager entityManager;
private LoanApplication application;

@PersistenceContext (type = PersistenceContextType.EXTENDED)
public void setEntityManager(EntityManager entityManager) {

this.entityManager = entityManager;
}

public LoanResult apply(LoanRequest request) {
application = new LoanApplication();
// … populate the application with data from the request
entityManager.persist(application);

}

public updateContactInfo(Info info) {

From the Library of Robert Ryan



ptg

308 Persistence

If each operation (for example, apply and updateContactInfo)
were invoked in different transaction contexts, the persistence
context would be flushed multiple times as each transaction com-
pleted. However, the persistence context would remain open.
Assuming the end operation was annotated with @Ends
Conversation, the extended persistence context would be closed
only when it was invoked.

Accessing the EntityManagerFactory
To access EntityManagerFactory instead of an EntityManager,
a component implementation can use the @PersistenceUnit
annotation. For example, the LoanApplicationJPADao can be
rewritten to use the EntityManagerFactory, as shown in 
Listing 11.12.

// update the application
}

public end() {
// perform some processing

}

//…

}

Listing 11.12 Injecting an EntityManagerFactory

import javax.persistence.PersistenceUnit;
import org.osoa.annotations.GlobalManagedTransaction;

public class LoanApplicationJPADao implements LoanApplicationDao {
private EntityManagerFactory emf;

@PersistenceUnit(unitName="loanApp")
public void setEntityManagerFactory(EntityManagerFactory emf) {

this.emf = emf;
}

public void update(LoanApplication application){
EntityManager entityManager = emf.createEntityManager();
entityManager.persist(application);

}
}

From the Library of Robert Ryan



ptg

Summary 309

Accessing the Hibernate API with Fabric3

At times, it is useful to be able to access the proprietary APIs of a JPA provider. As an
alternative to EntityManager, Fabric3 provides access to the Hibernate org.
hibernate.Session object. To utilize it, use the @PersistenceContext annota-
tion, substituting Session for EntityManager.getDelegate(), as shown in the
following excerpt:
import org.osoa.annotations.GlobalManagedTransaction;
import org.hibernate.Session;
import org.javax.persistence.EntityManaget;
import org.javax.persistence.PersistenceContext;

@GlobalManagedTransaction
public class LoanApplicationJPADao implements LoanApplicationDao {

private Session session;

@PersistenceContext
public void setSession(EntityManager em) {

this.session = (Session)em.getDelegate()
}

// …
}

Summary
This chapter has dealt with one of the most important aspects of
application development: persistence. In particular, we have cov-
ered how to effectively use JDBC and JPA with SCA. The next chap-
ter completes this application development picture by explaining
how SCA integrates with Java EE web technologies, specifically
servlets and JSPs.

From the Library of Robert Ryan



ptg

This page intentionally left blank 

From the Library of Robert Ryan



ptg

12

The Presentation Tier

SCA does not offer an alternative presentation-tier technology.
When it comes to user interfaces, SCA’s mantra is integration.
Service tiers built with SCA can be integrated with a variety of
client technologies, including Swing and rich-clients built using
Adobe Flex, AJAX, and web frameworks, such as Struts and Java
Server Faces (JSFs). 

Instead of a cursory overview of how SCA integrates with a wide
variety of presentation-tier technologies, this chapter focuses on
how Java EE web applications are used as front-ends to SCA serv-
ices. Specifically, we cover how servlets and Java Server Pages
(JSPs) access SCA services. With this knowledge, it is possible to
integrate SCA services with more sophisticated presentation-tier
technologies, including the myriad of web frameworks that exist
today.

Web Components
As a component-based technology, it may not be surprising that
SCA has the notion of a web component. Web components are Java
EE web applications configured as components. What does this
mean? In a nutshell, it is the way servlets and JSPs can be wired to
SCA services. This brings SCA protocol abstraction benefits to the

311

From the Library of Robert Ryan



ptg

312 The Presentation Tier

presentation tier; similar to Java-based components, servlets and
JSPs can invoke services without having to resort to low-level, trans-
port-specific APIs. 

Web components are like any other SCA component in that they
may have references wired to remotable services. Returning to the
BigBank loan application from previous chapters, BigBank may
decide to offer a consumer-facing web application that offers loans
directly to customers. In this case, a Java EE web application will
provide the user interface and interact with the LoanService for
processing. Listing 12.1 illustrates this scenario.

Web components
are like any other
SCA component in
that they may have
references wired to
remotable services.

Listing 12.1 A Web Component Wired to the LoanService

<composite ..>

<component name="lending">
<implementation.web/>
<reference name="loanService" target="LoanComponent"/>

</component>

<component name=" LoanComponent ">
<implementation.java ../>

</component>
</composite>

Using a web component, implementing a servlet that collects loan
application information and submits a request to the LoanService
is fairly straightforward. In fact, the servlet resembles a typical Java-
based component, as shown in Listing 12.2.

Listing 12.2 A Servlet That Accesses the LoanService 

public class BigBankLoanServlet extends HttpServlet{

@Reference
protected LoanService loanService;

protected void doPost(HttpServletRequest req, HttpServletResponse 
➥resp) throws ServletException, IOException {

// …
}

}

From the Library of Robert Ryan



ptg

Web Components 313

In Listing 12.2, take note of the @Reference annotation. As with
Java-based components, this instructs the SCA runtime to inject a
proxy to a service. When injected, the servlet can invoke the proxy,
which may forward the request to a component hosted on a remote
runtime. The specific transport used—for example, web services,
JMS, or RMI—is conveniently abstracted from the servlet code. 

Having seen the essentials of how a web component is
implemented, let’s now look in more detail at how one is config-
ured.

Configuring a Web Component
In the preceding example, we implemented a servlet with a single
reference to the LoanService. This reference is wired by configur-
ing a web component in a composite. Web components are desig-
nated using the implementation.web element. Listing 12.3
presents the BigBank web component.

Listing 12.3 Defining a Web Component 

<composite ..>

<component name="BigBank">
<implementation.web/>

</component>

</composite>

As with other component types, when the web component is de-
ployed to a domain, the SCA runtime is responsible for injecting
reference proxies—in this case, on the servlet. 

Often, more than one servlet in a web component may need to
access the same service. In this case, each servlet defines a refer-
ence (using the @Reference annotation) with the same name. In
the composite, the reference only needs to be configured once: The
SCA runtime will inject a reference proxy into each servlet with an
@Reference declaration. For example, if the BigBank web compo-
nent contained two servlets with references to LoanService, the
component definition would be the same as in Listing 12.3.

From the Library of Robert Ryan



ptg

314 The Presentation Tier

Packaging and Deploying a Web Component
Up to this point, we have not discussed how web components are
packaged and deployed to a domain. In Chapter 9, “The Domain,”
we detailed how SCA defines a portable packaging format for con-
tributions, namely a ZIP-based archive, but allows for alternative
packaging formats. In line with this, web components are packaged
as Java EE web archives (WARs). This has several advantages. Most
notably, WARs are familiar to most enterprise Java developers. In
addition, existing tooling may be used to package web
components.

When packaging a web component as a WAR, the composite file
that defines the web component must be located in the WEB-INF
directory and named web.composite. It is worth noting that in addi-
tion to the web component, the composite may define additional
components and include other composites. For example, web.
composite may configure several Java-based components used by
the web application. 

In addition to the web.composite file, a WAR-based contribution
also must contain an sca-contribution.xml manifest file located in
the META-INF directory. As with standard SCA contributions, this
manifest file may specify imported contributions, export artifacts,
and declare deployable composites. For example, a web compo-
nent may reference artifacts such as WSDLs or schemas contained
in another contribution, in which case it would import that contri-
bution. However, a WAR-based contribution would typically not
contain deployable composites other than the one defined in the
web.composite file. 

One important feature provided by WAR-based contributions is that
classes placed in the WEB-INF/classes and jars in the WEB-INF/lib
directories are accessible to servlets and JSPs contained in the
archive. This is a useful and necessary feature—because Java EE
defines this behavior, if SCA did not support it, many web applica-
tions would not work when deployed to an SCA runtime.

As we explained in Chapter 9, SCA does not define a standard way
to deploy contributions to a domain. A runtime may use a com-
mand-line tool, a file directory, a GUI environment, or some other
mechanism. However, SCA does define specific behavior for what

Web components
are packaged as
Java EE web
archives (WARs).

From the Library of Robert Ryan



ptg

Web Components 315

happens when a composite is deployed to the domain:
Components are included as top-level components in the domain
composite. Consequently, when web.composite is deployed to a
domain, its child components become domain-level components,
as illustrated in Figure 12.1. 

Figure 12.1 Deploying a web component to the domain

In the case of the BigBank web component, its reference is wired to
the LoanService offered by the domain-level LoanComponent.
This is shown in Figure 12.2.

Add to domain

SCA Domain

Web Composite

Figure 12.2 Deploying the BigBank web component

Add to domain

SCA Domain

Web Composite

LoanService

From the Library of Robert Ryan



ptg

316 The Presentation Tier

Properties
Web components may also have properties used for configuration.
To access a property, a servlet declares a field or setter with the
@Property annotation. When the web component is instantiated
by the SCA runtime, it injects the property values specified in the
web component entry. 

Java Server Pages and the SCA Tag Library
SCA defines a JSP tag library for accessing services from JSPs. Tag
libraries are the standard way defined by Java EE to add custom
behavior to JSPs. The SCA tag library contains the reference tag,
which is equivalent to the @Reference annotation for servlets: It
declares a reference, its service contract, and a name for the refer-
ence. The JSP fragment in Listing 12.4 demonstrates how this is
done.

Embedding an SCA Domain in a Web Application 

In enterprise architectures, SCA domains will commonly span multiple runtimes. For
more modest applications, some SCA runtimes such as Fabric3 support the capabil-
ity to embed a domain entirely within a web application deployed to a servlet con-
tainer. This enables web components to be conveniently packaged with other
services in a single WAR. For more information and examples of embedding an SCA
domain in a web application, see the Fabric3 site (www.fabric3.org).

Listing 12.4 Using the SCA JSP Reference Tag

<%@ page contentType="text/html;charset=UTF-8" language="java" %>
<!-- body of the JSP -->
<sca:reference name="loanService" type="bigbank.LoanService"/>

<!-- … -->

<%
LoanApplication application = …
loanService.apply(application)

%>

From the Library of Robert Ryan

www.fabric3.org


ptg

Java Server Pages and the SCA Tag Library 317

In the preceding JSP fragment, the <sca:reference> tag declares
the loanService reference, with a service contract as defined by
the bigbank.LoanService Java interface. Using the tag has two
effects. First, it declares a reference for the web component that is
wired in the web.composite file. Assuming this JSP and the servlet
from the earlier example both declared the loanService
reference, the web.composite file would remain the same as in
Listing 12.3. In other words, the web component definition would
contain only one <reference> entry. When the web component is
deployed to the domain, the SCA runtime will ensure that reference
proxies are available to all servlets and JSPs that declare it. The
second effect of the JSP <sca:reference> tag is that it makes the
reference proxy available in the JSP page context using
loanService as the variable name. As seen in Listing 12.4, the
reference proxy can be invoked using inline Java. 

Generally, using inline Java in JSPs is considered bad practice as it
mixes rendering logic (HTML and JavaScript) with application logic.
An example that would align more closely with JSP best practices
would use other tags to access the reference proxy. Because the
reference proxy is made available in the JSP page context, it can be
accessed using JSP expressions. For example, assume BigBank has
another JSP that displays current rates using RateService. The
current rates returned from the service can be iterated and
displayed using built-in JSP tags and the JSP expression language, as
shown in Listing 12.5. 

Listing 12.5 Accessing a Reference Proxy Using JSP Tags 

<%@ page contentType="text/html;charset=UTF-8" language="java" %>

<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core" %>
<%@ taglib prefix="sca" uri="http://www.osoa.org/sca/sca.tld" %>

<sca:reference name="rateService" type="bigbank.RateService"/>

<html>
<body>
<table>

<c:forEach items="${rateService.rates}" var="rate">
<tr>

<td${rate.type} at ${rate.percentage}% and ${rate.apr}
➥APR</td>

</tr>

From the Library of Robert Ryan



ptg

318 The Presentation Tier

To use the reference tag, you need to include the tag library jar in
the web component WAR under the WEB-INF/lib directory. SCA
runtimes that support web components (for example, Fabric3) 
make this tag library available as part of the runtime distribution or
development kit. After you have obtained the tag library, it must 
be declared in a JSP using the taglib directive, as shown in 
Listing 12.6.

</c:forEach>
</body>

</html>

Listing 12.6 Using the Taglib Directive with the SCA Tag Library

<%@ page contentType="text/html;charset=UTF-8" language="java" %>
<%@ taglib prefix="sca" uri="http://www.osoa.org/sca/sca.tld" %>
<!--jsp contents -->

Asynchronous Interactions
At times, it is useful to avoid blocking on a request before returning
a response to a browser client. In these situations, servlets can use
non-blocking operations on SCA services. Assuming the
LoanService.apply(..) operation is marked with the @OneWay
annotation and is long-running, the servlet in the example shown in
Listing 12.7 will return a response to the client before the service
provider has completed processing.

Listing 12.7 A Servlet Invoking a Non-Blocking Operation on an SCA Service

public class BigBankLoanServlet extends HttpServlet{

@Reference
protected LoanService loanService;

protected void doPost(HttpServletRequest req, HttpServletResponse
➥resp) throws ServletException, IOException {

LoanApplication application = // …
loanService.apply(application); // returns immediately as the

➥call is non-blocking
}

}

From the Library of Robert Ryan



ptg

Asynchronous Interactions 319

Asynchronous invocations can improve scalability because the
runtime does not need to hold open client connections while pro-
cessing is being done. This is particularly the case when operations
may require a significant amount of time to complete. The main
drawback to using asynchronous invocations in servlets is that error
handling becomes more difficult. For example, if an error occurs
while processing the loan, the user will not receive immediate feed-
back because the servlet will have already returned a response to
the client. Instead, error handling would need to be done by
LoanComponent (that is, the component providing LoanService),
with possibly a notification sent to the user via email or some other
communications channel.

Although servlets and JSPs may invoke non-blocking operations,
they cannot receive callbacks. If a service is bidirectional (that is, it
specifies a callback service), it must be accessed from an intermedi-
ary service that implements the required callback interface. To un-
derstand how this works, let’s return to the CreditService
callback example we introduced in Chapter 3, “Service-Based
Development Using Java.” The CreditService and
CreditServiceCallback interfaces are defined in Listing 12.8.

Listing 12.8 The CreditService and CreditServiceCallback Interfaces

import org.osoa.sca.annotations.OneWay;
import org.osoa.sca.annotations.Callback;

@Remotable
@Callback(CreditCallback.class)
public interface CreditService {

@OneWay
void checkCredit(String id);

}

@Remotable
public interface CreditCallback {

@OneWay
void onCreditResult(CreditScore score);

}

From the Library of Robert Ryan



ptg

320 The Presentation Tier

Because the CreditService requires the client to provide a call-
back service, it cannot be invoked from a servlet. Instead, an inter-
mediary service would need to be wired to the servlet, which in
turn would have the CreditService wired to it. The intermediary
would be responsible for handling the callback. The SCDL for set-
ting this up is provided in Listing 12.9.

Listing 12.9 Bidirectional Wiring with Web Components 

<composite ..>

<component name="lending">
<implementation.web/>
<reference name="creditServiceIntermediary" target="

CreditServiceIntermediary"/>
</component>

<component name="CreditServiceIntermediary">
<implementation.java ../>

<reference name="creditService" target="CreditService"/> 
</component>

</composite>

Accessing Conversation Services
Up to this point, we have discussed how to access non-
conversational services from servlets and JSPs. Doing so is fairly
straightforward, particularly because client servlets or JSPs do not
need to take threading issues into account, even though web com-
ponents are by nature multithreaded—that is, they may receive
more than one simultaneous request. If the SCA service accessed
by a servlet or JSP is implemented by a stateless component, the
SCA runtime will guarantee that only one web request will have
access to it at a time, as illustrated in Figure 12.3.

In this case, the servlet or JSP and component implementation does
not need to take any special care, such as synchronizing field ac-
cess. When a service is implemented by a composite-scoped com-
ponent, it is up to it to manage concurrent access (perhaps by not
using field variables or synchronizing access to them), as all
requests will be dispatched to the same instance (see Figure 12.4).

From the Library of Robert Ryan



ptg

Accessing Conversation Services 321

Figure 12.4 Dispatching multiple requests in a web component to a
composite-scoped component

When invoking a service provided by a composite-scoped compo-
nent, the servlet or JSP does not need to regulate concurrent access
because the service provider handles it internally in the component
implementation.

If a service is conversational, servlets and JSPs will need to take
special care with concurrent access. To guard against inadvertently
having two or more clients access the same conversational service
instance through a servlet or JSP, web components associate refer-
ences wired to conversational services with the HTTP session. This
means that conversational services cannot be injected on a servlet
field using the @Reference annotation. For example, assuming that
MyConversationalService is marked as @Conversational, the
code in Listing 12.10 will result in an error when the contribution
containing the web component is installed.

Web Request

Web Request

Java
Class

Java
Class

2

1

2
2

1

1

Request is forwarded
to an instance of the
implementation class.

Figure 12.3 Dispatching multiple requests in a web component to a
stateless component

Web Request

Web Request
2

1

2

1

Job
Class

2

1
Request is forwarded
to the same instance. 

Web Application

From the Library of Robert Ryan



ptg

322 The Presentation Tier

If the preceding code were legal, because servlets handle multiple
simultaneous requests, it would result in every client accessing the
same instance of the MyConversationalService instance—some-
thing that is most likely not intended.

There are two options for accessing conversational services from a
servlet. The first is to use the ComponentContext API, as shown in
Listing 12.11.

Listing 12.10 Attempting to Illegally Inject a Conversational Service

public class MyServlet extends HttpServlet{

// this reference will result in an error
@Reference
protected MyConversationalService myService;

}

Listing 12.11 Using the ComponentContext API

public class MyServlet extends HttpServlet{

@Context
protected ComponentContext context;

protected void doPost(HttpServletRequest req, HttpServletResponse
➥resp) throws ServletException, IOException {

MyConversationalService service =
➥context.getService(MyConversationalService.class, "myService");

// …
}

}

The ComponentContext instance—which is threadsafe—is injected
on the servlet using the @Context annotation. When the
ComponentContext.getService(..) API is called, passing the
expected interface type and reference name, a reference proxy is
returned. This proxy will always dispatch invocations to the same
instance for the current HTTP session. If two requests associated
with different HTTP sessions are received by the servlet, the code in
Listing 12.11 will dispatch to two different instances of the
MyConversationalService. If, however, two requests associated

From the Library of Robert Ryan



ptg

Defining a Component Type 323

with the same HTTP session arrive, they will be dispatched to the
same instance. Figure 12.5 illustrates this dispatching. 

Web Request

Web Request

2

1

2

1

Job
Class

2

1
Request is forwarded
to the same instance. 

Web Application

Figure 12.5 Dispatching to conversational services

The second option for accessing a conversational service is to use
the Servlet HttpSession API. Listing 12.12 shows how this is done.

Listing 12.12 Using the Servlet HttpSession API to Access a Conversational Service 

public class MyServlet extends HttpServlet{

protected void doPost(HttpServletRequest req, HttpServletResponse
➥resp) throws ServletException, IOException {

HttpSession session = request.getSession();
MyConversationalService service = (MyConversationalService) 

➥session.getAttribute("myService");
// …

}

}

As seen in Listing 12.12, the SCA runtime makes reference proxies
available from the HTTP session by reference name. Which way is
better: using ComponentContext or HttpSession API? Whatever
method is chosen is largely a matter of personal preference. The
important thing to remember is not to attempt to store reference
proxies in member variables, as doing so will expose a conversa-
tional instance to all web component clients.

Defining a Component Type
Previously, we mentioned that the SCA runtime will scan the con-
tents of a web component for @Reference annotations and 
reference JSP tags when it is installed to determine the set of
wireable references.

From the Library of Robert Ryan



ptg

324 The Presentation Tier

What happens when there are no @Reference annotations or 
reference tags used in a web component? This could happen if a
web component contains servlets that only use the
ComponentContext API. In this case, the runtime has no way to
determine the set of references for a web component by introspecting
its servlets and JSPs.

When this happens, a special file called a web.componentType file
must be created and placed in the WEB-INF directory of the WAR.
The componentType file is an XML file that defines services, refer-
ences, and properties for a component implementation. We haven’t
mentioned the componentType file previously because it is gener-
ally not needed—in Java, annotations can be used instead. 

An example of a web.componentType file that defines a single
reference is shown in Listing 12.13.

Listing 12.13 A web.componentType File

<componentType xmlns="http://www.osoa.org/xmlns/sca/1.0">

<reference name="loanService">
<interface.java interface="bigbank.LoanService"/>

</reference>

</componentType>

It is possible to use a combination of @Reference annotations,
reference JSP tags, and a web.ComponentType file. The SCA run-
time will combine all three sources when calculating the wireable
references for a web component.

Summary
This chapter has provided an introduction to integrating SCA serv-
ices with presentation tiers built using Java EE web applications. It
has covered using web components to wire from servlets and JSPs
to services. With this knowledge, you should have a thorough un-
derstanding of the basics to build user interfaces that front SCA
services.

From the Library of Robert Ryan



ptg

Index

325

A
addresses, service, 10-11
allocation, 32
@AllowsByReference

annotation, 95
@AllowsPassByReference

annotation, 87
annotations. See

specific annotations
Apache Felix, 248
Apache Tuscany, 43
APIs. See specific APIs
ApplicantDao, 288
application portability, 35-36,

286-288
@appliesTo attribute

(policySets), 172-173
archives, contribution archive,

247-248
artifact sharing, 233-236

via domains, 16-17
other artifact types, 252
overview, 248
XML artifacts, 249-251

assembling composites, 26-29,
59-61

assertions (policy), 176

asynchronous interactions, 90,
318-320

non-blocking operations, 
88-91

with conversational services
callbacks, 123-124
non-blocking

invocations, 121-123
AtLeastOnce intent, 184
AtMostOnce intent, 184
AuditComponent, 179-181
AuditService, 213-214
Authentication intent, 183
Autowire

and composition, 200-202
enabling for 

components, 198
enabling for composites, 198
multiplicity, 199
overview, 196-197
when to use, 199-200

B
bidirectional interface, 

276-278
bidirectional wiring, 320
bidirectional services, 92

BigBank Lending 
sample application. See
specific components

BigBankLoanServlet, 312
bindings

configuring, 149-150
definition of, 80
JMS (Java Message Service)

binding
advantages over using

JMS directly, 215
callbacks, 223-226
conversational

interactions, 227
message data binding,

218-219
one-way messaging,

212-216
operation selection,

217-218
publish-subscribe

messaging patterns,
226-227

request-response
messaging, 219-223

overrides, 228-229
overview, 203
proprietary bindings, 227

From the Library of Robert Ryan



ptg

326 Index

references, 27-29, 147-149,
213-215

SCA binding, 229-230
and service contracts, 81-84
web service binding, 27-29,

62-63, 141-143, 216
callbacks, 211-212
conversations, 211-212
example, 204-205
non-blocking

interactions, 210-211
WSDL as interface

definition language,
205-210

when to use, 227-228
bound services

adding, 263-264
exposing as endpoints, 33

BPEL (Business Process
Execution Language for
Web Services)

features of, 268-270
history of, 267-268
versus Java, 271
loan service implementation,

271-273
partner links

bidirectional interface,
276-277

for loan application
process, 272

partner link types, 
274-275

static control flow
analysis, 275-276

process definitions, 270
SCA extensions, 270

customized services and
references, 280

declaring, 278
references with

multiplicity, 280-284
SCA properties, 279

BPMN (Business Process
Modeling Notation), 272

Business Process Execution
Language for Web
Services. See BPEL

C
CalculatorComponent, 11-12
CalculatorComposite, 12
callbacks, 91-94

callback interfaces, 93
callback proxies, 93
with conversations, 123-124
exception handling, 95-96
with JMS (Java Message

Service), 223-226
multiplicity and, 194-195
specifying, 92
with web services, 211-212

cancel() method, 115
coarse-grained services, 77-79
communication

with domains, 17-18, 237
failures, 50

compatibility of services, 197
compensation logic, 170
complex property types, 

155-158
complex property values,

referencing, 159-160
ComponentContext API, 322
components. See also 

specific components
componentType files, 

323-324
creating, 51-52
definition of, 11
enabling Autowire for, 198
implementation, 22, 99-105
injection

choosing injection style,
57-58

constructor-based
injection, 55

field-based injection, 57
reference proxy

injection, 53-54
setter-based injection,

55-56
properties, 22-23, 58-59
references, 24-25
sample implementation, 

11-12
stateless components, 102

testing, 105-108
web components

configuring, 313
deploying, 314-315
implementing, 311-313
packaging, 314
properties, 316

componentType files, 323-324
composite-scoped

components, 101
composites. See also specific

composite components
assembling, 26-29, 59-61
binding as Web Service

endpoints, 62-63
definition of, 12, 132-134
deployment composites, 65,

253-255
domain compositesto, 

256-265
enabling Autowire for, 198
examples, 12-14
implementation, 134
inclusion, 164-166
overrides

of properties, 163-164
of references, 160-163
of services, 160-163

packaging, 63-64
properties

complex property types,
155-158

configuring, 151-154
declaring, 150-151
multivalued properties,

154-155
optional versus

mandatory, 152
referencing complex

property values, 
159-160

qualified names, 137
reference bindings, 147-149
reference promotion, 

143-146
service promotion, 137-143
as units of deployment, 

29-30

From the Library of Robert Ryan



ptg

Index 327

composition. See
also composites

and Autowire, 200-202
definition of, 131
overview, 131-134
performance implications of,

139-140
@Confidentiality

annotation, 168
confidentiality intent, 169, 183
constraints, domain, 34
@Constructor annotation, 55
constructor-based injection, 55
container-managed

transactions, 185-187
@Context annotation, 322
contracts. See service contracts
contributions

artifact sharing, 248-252
contribution archive, 

247-248
deploying, 246-247
deployment composites,

253-255
installing, 246-247
overview, 245-246
structuring, 255-256

control flow analysis, 275-276
controller-based domains, 243
conversation IDs, 112
conversation-scoped

components, 103, 
116-118

@Conversational annotation,
114, 321

conversational services
accessing, 320-323
BPEL versus Java, 271
callbacks, 123-124
characteristics of, 111
conversation propagation,

126-129
conversation-scoped

components, 103, 
116-118

custom state management,
118-120

declaring, 114-115
definition of, 111
expiring conversations, 

120-121
illegal injection, 322
illustration of, 112
with JMS (Java Message

Service), 227
JPA (Java Persistence API),

304-308
multiple conversations, 

112-114
non-blocking invocations,

121-123
and OASIS, 110
overview, 109-110
versus stateless 

interactions, 111
with web services, 211-212

@ConversationAttributes
annotation, 120-121, 128

@ConversationID
annotation, 119

coupling, loose, 74-77
credit check activity, 281-284
CreditCallback interface, 93
CreditComponent, 52, 58, 

190-191
CreditComposite, 260
CreditScoreCallback

interface, 194
CreditServiceCallback

interface, 319
CreditServiceComposite

code listing, 134-135
CreditServiceComposite

SCDL, 136
inclusion, 164-166
overrides

of properties, 163-164
of references, 160-163
of services, 160-163

properties
complex property types,

155-158
configuring, 151-154
declaring, 150-151

multivalued properties,
154-155

optional versus
mandatory, 152

referencing complex
property values, 
159-160

reference bindings, 147-149
reference promotion, 

143-146
service bindings, 141-143
service promotion, 137-139

custom state management,
118-120

D
DAOs (Data Access Objects),

287-288
JPA-Based DAOs, 301-303
LoanApplicationDao (JDBC)

global managed
transactions, 291-296

no managed
transactions, 296-297

DataSources (JDBC)
configuring, 289
global managed

transactions, 290-296
injecting with @Resource,

289-290
local managed transactions,

291-296
no managed transactions,

291, 296-297
decentralized domains, 242
declarative policy versus API,

173-175
delivery intents, 184
deployment

composites as units of
deployment, 29-30, 65

contributions, 246-247
deployment process, 32-33
domain deployment

policies, 265
LoanApplication sample

application, 66-67

From the Library of Robert Ryan



ptg

328 Index

overview, 30-32
web components, 314-315

deployment composites, 
253-255

designing services
coarse-grained services, 

77-79
local services, 96-98
loose coupling, 74-77
pass-by-reference

parameters, 85
pass-by-value parameters,

85-87
remotable services, 73-74

destinations, 223
directives, taglib, 318
distributed domains

controller-based
architecture, 243

coordinating, 244-245
decentralized

architecture, 242
description, 239-240
example, 241
local services, 51

domains
communication

infrastructure, 17-18
constraints, 34
contributions

artifact sharing, 
248-252

contribution archive,
247-248

deploying, 246-247
deployment

composites, 253-255
installing, 246-247
overview, 245-246
structuring, 255-256

definition of, 14
deploying to. See

deployment
distributed domains

controller-based
architecture, 243

coordinating, 244-245
decentralized

architecture, 242
description, 239-240
example, 241

domain composites
adding to, 257-264
overview, 256-257
removing from, 265

embedding in web
applications, 316

extensibility, 18
federated domains, 239, 244
local domains, 239-240
management, 15
overview, 14-15
policy, 16
resource and artifact 

sharing, 16-17
role of

artifact sharing, 
233-236

communications, 237
management, 232-233
overview, 231
policy administration,

236-237
size of, 19-20
wiring between, 238

duration, expiring
conversations based 
on, 121

dynamic forking, 269

E
eager initialization, 104-105
EasyMock, 107
Eclipse Equinox, 248
encryption, 181
endpoints

binding composites as, 
62-63

exposing bound services 
as, 33

@EndsConversation
annotation, 114-115, 
123, 128

engine-managed
correlation, 270

enterprise architectures, 5-7
enterprise repositories, 235
entities (JPA), 299-301
EntityManager API, 299-300
EntityManagerFactory, 308
Equinox, 248
ExactlyOnce intent, 182-184
exception handling, 91, 95-96
expiring conversations, 

120-121
exporting

namespaces, 249
XML artifacts, 249-251

extended persistence contexts
(JPA), 306-308

extensibility, 18
extensions (BPEL)

customized services and
references, 280

declaring, 278
references with multiplicity,

280-284
SCA properties, 279

F
Fabric3

accessing Hibernate API
with, 309

LoanApplication sample
application, 66-67

overview, 43-44, 65-66
packaging extensions, 

252-253
@Resource annotation, 290

“The Fallacies of Distributed
Computing” (Waldo), 51

federated domains, 239, 244
Felix (Apache), 248
field-based injection, 57
fine-grained service 

contract, 77
forking, 269

From the Library of Robert Ryan



ptg

Index 329

G
getDelegate() method, 309
getStatus() method, 115
global managed transactions,

290-296

H
Hiberate API, 309
history

of BPEL, 267-268
of SCA, 7-8

HttpSession API, 323

I
idle time, expiring

conversations based 
on, 120

implementation instances, 
99-100

inclusion, 164-166
initialization, eager, 104-105
injection

choosing injection style, 
57-58

constructor-based injection,
55

field-based injection, 57
illegal injection of

conversational
services, 322

JDBC DataSources, 289-290
multiple wire injection, 

190-191
reference proxy injection,

53-54
setter-based injection, 55-56
wire reinjection, 202

Integrity intent, 183
intents

confidentiality intent, 169
definition of, 169
delivery intents, 184
JMS intents, 185
NoListener intents, 185
profile intents, 182-183
propagatesTransaction

intent, 170
qualified intents, 181-182

security intents, 183
SOAP intents, 185
specifying, 169-170
transaction intents, 184-185

interactions
asynchronous, 318-320
conversational. See

conversational services
interceptors, 195-196
interfaces. See specific

interfaces
interoperability, 35-36
intersection (policy), 178

J-K
Java-based service contract, 9
Java Persistence with Hibernate

(Bauer and King), 299
Java programming model

conversational services
callbacks, 123-124
characteristics of, 111
conversation

propagation, 126-129
conversation-scoped

implementations,
116-118

custom state
management,
118-120

declaring, 114-115
definition of, 111
expiring conversations,

120-121
illustration of, 112
multiple conversations,

112-114
non-blocking

invocations, 121-123
and OASIS, 110
overview, 109-110
versus stateless

interactions, 111
services. See services
versus BPEL, 271

JavaEE (Java Enterprise Edition),
20-21

JAXB, 83-84

JDBC (Java Database
Connectivity) DataSources

configuring, 289
global managed

transactions, 290-296
injecting with @Resource,

289-290
local managed transactions,

291-296
no managed transactions,

291, 296-297
JMS (Java Message Service)

binding
callbacks, 223-226
conversational

interactions, 227
intents, 185
message data binding, 

218-219
one-way messaging, 

212-216
operation selection, 217-218
publish-subscribe messaging

patterns, 226-227
request-response messaging,

219-223
JPA (Java Persistence API)

additional resources, 299
benefits of, 298-299
conversational services, 

304-308
EntityManagerFactory, 308
extended persistence

contexts, 306-308
merging persistence entities,

306-307
object lifecycles, 299-301
persistence context and

remotable services, 
303-304

persistence context
definition, 300

transaction-scoped
persistence contexts, 
301-303

JSPs (Java Server Pages), 
316-318

From the Library of Robert Ryan



ptg

330 Index

L
libraries (tag), 316-318
lifecycles (JPA objects), 

299-301
loan application, 146. See also

CreditServiceComposite
ApplicantDao, 288
assembling, 59-61
binding as Web Service

endpoint, 62-63
conversations. See

conversational services
CreditComponent, 52, 58
CreditScoreCallback, 194
CreditServiceCallback, 319
deploying, 65
JPA-Based DAOs, 301-303
LoanApplication sample

application, 66-67
LoanApplicationDao, 288

EntityManager API, 299
global managed

transactions, 291-296
no managed

transactions, 296-297
LoanAppraisalService, 221
LoanComponent

binding as Web Service
endpoint, 63

callbacks, 225
field-based injection, 57
implementation, 22, 52
properties, 23-25
setter-based 

injection, 55
wiring to multiple

CreditComponents,
190-191

wiring to multiple
services, 192-194

LoanComposite, 26
LoanService, 44-46

BigBankLoanServlet,
312

BPEL implementation,
271-273

coarse-grained service
contract, 78

credit check activity,
281-284

fine-grained service
contract, 77

JAXB complex type, 83
JMS binding. See JMS

binding
web service binding,

204-205
wiring web component

to, 312
overview, 42-43
packaging, 63-64

LoanApplication sample
application, 66-67

LoanApplicationDao, 288
EntityManager API, 299
global managed

transactions, 291-296
no managed transactions,

296-297
LoanAppraisalService, 221
LoanComponent

binding as Web Service
endpoint, 63

callbacks, 225
CreditScoreCallback

interface, 194
EntityManager API, 299
field-based injection, 57
implementation, 22, 52
JPA-Based DAOs, 301-303
LoanApplicationDao

(JDBC), 288
EntityManager API, 299
global managed

transactions, 291-296
no managed

transactions, 296-297
properties, 23-25
setter-based injection, 55
wiring to multiple

CreditComponents,
190-191

wiring to multiple services,
192-194

LoanComposite, 13, 26
LoanService, 44-45

BigBankLoanServlet, 312
BPEL implementation, 

271-273
coarse-grained service

contract, 78
credit check activity, 

281-284
fine-grained service 

contract, 77
JAXB complex type, 83
JMS binding. See JMS

binding
LoanService WSDL, 46
web service binding, 

204-205
wiring web component 

to, 312
local domains, 239-240
local managed transactions,

291-296
local services, 49-51, 96-98
location transparency, 71-73
loose coupling, 74-77

M
ManagedTransaction intent,

184-186
ManagedTransaction.Global

intent, 184
ManagedTransaction.Local

intent, 185
management

artifact sharing, 233-236
of domains, 15, 232-233

mandatory composite
properties, 152

Message intent, 183
message-level encryption, 181
messaging

message data binding, 
218-219

one-way messaging, 
179-181, 212-216

From the Library of Robert Ryan



ptg

Index 331

publish-subscribe messaging
patterns, 226-227

request-response messaging,
219-223

methods. See specific methods
mock objects, 107
multireferences, 280
multivalued properties, 

154-155
multiple service providers,

wiring to
callbacks, 194-195
common scenarios, 189
invoking multiple wires, 191
multiple wire injection, 

190-191
multiplicity, 191-194
references, 190
wire element, 192-194

multiple wire injection, 
190-191

multiplicity, 191-192
and Autowire, 199
and callbacks, 194-195
references with, 280-284

N
names

composite qualified 
names, 137

of namepaces, 252
namespaces, 249-252
.NET framework, 3
network latency, 49
NewLoanApplication

Composite, 260
no managed transaction

(transaction policy), 291,
296-297

NoListener intents, 185
NoManagedTransaction 

intent, 185
non-blocking operations, 

88-91, 121-123, 210-211

O
OASIS

conversational
interactions, 110

Java APIs and 
annotations, 53

@OneWay annotation, 
121-122, 211, 318

one-way messaging
policy for, 179-181
with JMS (Java Message

Service), 212-216
Open SOA (OSOA), 6, 53
optional composite 

properties, 152
orchestration, 268
Ordered intent, 184
OSGi, 248-249
OSOA (Open SOA), 6, 53
overrides

bindings, 228-229
properties, 163-164
references, 160-163
services, 160-163

P
packaging

composites, 63-64
web components, 314

parameters of remote 
services, 50

partner links (BPEL)
birdirectional interface, 

276-278
for loan application 

process, 272
partner link types, 274-275
static control flow analysis,

275-276
pass-by-reference

parameters, 85
pass-by-value parameters, 

85-87
performance

and composition, 139-140

runtime performance
optimization, 146-147

persistence
JDBC DataSources

configuring, 289
global managed

transactions, 290-296
injecting with

@Resource, 289-290
local managed

transactions, 291-296
no managed

transactions, 291, 
296-297

JPA (Java Persistence API)
additional

resources, 299
benefits of, 298-299
conversational services,

304-308
entities, 299-301
EntityManagerFactory,

308
extended persistence

contexts, 306-308
merging persistence

entities, 306-307
object lifecycles, 

299-301
persistence context and

remotable services,
303-304

persistence context
definition, 300

transaction-scoped
persistence contexts,
301-303

overview, 285-286
persistence contexts (JPA)

definition of, 300
extended persistence

contexts, 306-308
and remotable services, 

303-304

From the Library of Robert Ryan



ptg

332 Index

transaction-scoped
persistence contexts, 
301-303

@PersistenceContext
annotation, 309

policy, 16
declarative policy versus

API, 173-175
definition of, 16, 167
domain deployment

policies, 265
examples, 167-168
for one-way messaging, 

179-181
intents

confidentiality
intent, 169

definition of, 169
delivery intents, 184
JMS intents, 185
NoListener intents, 185
profile intents, 182-183
propagatesTransaction

intent, 170
qualified intents, 

181-182
security intents, 183
SOAP intents, 185
specifying, 169-170
transaction intents, 

184-185
overview, 168-169
policy administration, 

236-237
policy assertions, 171, 

176-177
policy intersection, 178
policySets, 171-173
transaction policy

choosing, 297-298
global managed

transactions, 290-296
local managed

transactions, 291-296
no managed

transactions, 291,
296-297

wire validity, 175-176
WS-Policy, 175-179

policySets, 171-173
portability, 35-36, 286-288
ports, 80
presentation tier, integrating

SCA with
asynchronous interactions,

318-320
componentType files, 

323-324
conversation services, 

320-323
JSPs and SCA tag libraries,

316-318
overview, 311
web components, 313-316

process definitions (BPEL), 270
profile intents, 182-183
promoting

references, 143-146
services, 137-139

propagatesTransaction
attribute, 127

propagatesTransaction intent,
170, 184, 187

propagation, 126-129
properties

defining, 58-59
of components, 22-23
of composites

complex property types,
155-158

configuring, 151-154
declaring, 150-151
multivalued properties,

154-155
optional versus

mandatory, 152
referencing complex

property values, 
159-160

of CreditComponent, 58
of LoanComponent, 23-25
of web components, 316
overriding, 163-164

@Property annotation, 316

proprietary bindings, 227
protocol abstraction, 71-73
protocol translation, 75
publish-subscribe messaging

patterns, 226-227

Q
qualified intents, 181-182
qualified names for

composites, 137

R
@Reference annotation, 

168, 321
reference contracts, specifying

with WSDL 1.1, 207
with WSDL 2.0, 208

reference proxy, accessing with
JSP tags, 317

reference proxy injection, 
53-54

references
binding, 27-29, 147-149,

213-215
defining, 24-25
example, 25
with multiplicity, 280-284
overriding, 160-163
promoting, 143-146
wiring to multiple 

targets, 190
reinjection (wire), 202
remotable services, 73-74
remote services, 49-50, 

303-304
repositories, 235
request-response messaging,

219-223
required intents, 170
@Resource annotation, 

289-290
resource sharing, 16-17
runtime performance

optimization, 146-147

From the Library of Robert Ryan



ptg

Index 333

S
SCA binding, 229-230
sca-contribution.xml file, 247
SCA extensions (BPEL)

customized services and
references, 280

declaring, 278
references with multiplicity,

280-284
SCA properties, 279

sca:reference tag, 317
@Scope(“CONVERSATION”)

annotation, 116
scope (of components)

composite-scoped
components, 101

conversation-scoped
components, 103

definition of, 98
eager initialization, 104-105
stateless-scoped

components, 100-101
SecondaryAppraisalService

interface, 219, 224
security

encryption, 181
intents, 183

service-based development,
70-73

service contracts
and data binding, 81-84
definition of, 8
Java-based service 

contract, 9
specifying with 

WSDL 1.1, 207
specifying with 

WSDL 2.0, 208
WSDL-based service

contract, 9-10
WSDL for, 79-81

<service> element, 137
Service-Oriented Architecture

(SOA), 18-19

services
addresses, 10-11
asynchronous

interactions, 90
bidirectional services, 92
binding, 27-29, 

141-143, 216
bound services, 33, 263-264
callbacks, 91-96
coarse-grained services, 

77-79
compatibility, 197
contracts. See service

contracts
conversation. See

conversational services
definition of, 8
exposing as web service

endpoints, 28
local services, 96-98
loose coupling, 74-77
non-blocking operations, 

88-91
overriding, 160-163
overview, 69
pass-by-reference

parameters, 85
pass-by-value parameters,

85-87
promoted services, 

wiring, 139
promoting, 137-139
remotable services, 73-74
service addresses, 10-11
service-based development,

70-73
web services, 35-39
wiring LoanComponent to,

192-194
setCreditService method, 56
setter-based injection, 55-56
sharing

artifact sharing, 233-236,
248-252

via domains, 16-17

size of domains, 19-20
SOA (Service-Oriented

Architecture), 18-19
SOAP intents, 185
SOAP.1_1 intent, 185
SOAP.1_2 intent, 185
standards organizations, 6
state management, 118-120
stateless components, 102
stateless interactions, 111
stateless-scoped components,

100-101
static control flow analysis,

275-276
static forking, 269
SuspendsTransaction 

intent, 187
SuspendTransaction intent, 184
symmetry of partner links, 

274-275

T
tag libraries, 316-318
taglib directive, 318
target abstraction, 75
@target attribute (reference

element), 190
technology framework, 1
testing components, 105-108
transaction intents, 184-185
transaction-scoped persistence

contexts (JPA), 301-303
transactions

container-managed
transactions, 185, 187

global managed
transactions, 290-296

local managed transactions,
291-296

no managed transactions,
291, 296-297

when to use, 297-298
transparency, 72-73
Transport intent, 183
transport-level encryption, 181
Tuscany (Apache), 43

From the Library of Robert Ryan



ptg

334 Index

U-V
Understanding Web Services

(Newcomer), 80
URI assignment, 258-259

W
Waldo, Jim, 51
WARs (web archives), 314
web applications, embedding

domains in, 316
web archives (WARs), 314
web components, 311-316
web service binding

callbacks, 211-212
conversations, 211-212
example, 204-205
non-blocking interactions,

210-211
WSDL as interface definition

language, 205-210
web services

endpoints, binding
composites as, 62-63

overview, 35-39
web service binding

callbacks, 211-212
conversations, 211-212
example, 204-205
non-blocking

interactions, 210-211
WSDL as interface

definition language,
205-210

Web Services Description
Language. See WSDL

<wire> element, 192-194
wires

adding, 262-263
Autowire

and composition, 
200-202

enabling for
components, 198

enabling for
composites, 198

multiplicity, 199
overview, 196-197
when to use, 199-200

domain level wiring, 238,
259-261

implementation in SCA
runtime, 195-196

interceptors, 195-196
promoted references, 144
promoted services, 139
reinjection, 202
service compatibility, 197
validity, 175-176
wiring to multiple service

providers
callbacks, 194-195
common scenarios, 189
invoking multiple wires,

191
multiple wire injection,

190-191
multiplicity, 191-194
references, 190
wire element, 192-194

wiring-in-the-large, 39
wiring-in-the-small, 39

WS-BPEL. See BPEL
WS-Policy, 175-179
WSDL (Web Services

Description Language)
bidirectional interface, 277
as interface definition

language, 205-210
online resources, 207
overview, 45-49, 80-81
for service contracts, 79-81
WSDL-based service

contract, 9-10

X-Y-Z
XLANG, 267
XML artifacts,

importing/exporting,
249-251

XML Schema, 152
XML Schema (van der 

Vlist), 152
XPath, 160
XPath and XPointer

(Simpson), 160

From the Library of Robert Ryan


	Contents
	Preface
	1 INTRODUCING SCA
	SCA and Enterprise Architectures
	The Essentials
	Services
	Components
	Composites
	The Domain

	Implementing Components
	The Component Implementation
	Properties
	References

	Assembling Composites
	Binding Services and References
	Composites as a Unit of Deployment

	Deploying to a Domain
	The Deployment Process

	Domain Constraints
	SCA and Web Services
	Summary

	2 ASSEMBLING AND DEPLOYING A COMPOSITE
	The LoanApplication Composite
	Defining Service Interfaces
	Using Web Services Description Language (WSDL)
	Remotable Versus Local Services

	Creating Component Implementations
	Injection Styles
	Defining Properties

	Assembling the LoanApplication Composite
	Binding a Web Service Endpoint
	Packaging the LoanApplication Composite
	Deploying the LoanApplication Composite
	Using Fabric3
	Download Fabric3 LoanApplication Sample
	Verify the Installation
	Build and Deploy the Application
	Invoking the LoanApplication Service

	Summary

	3 SERVICE-BASED DEVELOPMENT USING JAVA
	Service-Based Development
	Protocol Abstraction and Location Transparency

	Designing Remotable Services
	Coarse-Grained Services
	Using WSDL for Service Contracts
	Service Contracts and Data Binding
	Pass-By-Value Parameters
	@AllowsPassByReference

	Asynchronous Interactions
	Reliability
	Exception Handling

	Callbacks
	Exception Handling, Non-Blocking Operations, and Callbacks

	Designing Local Services
	Component Scopes
	Component Implementation Instances
	Stateless-Scoped Components
	Composite-Scoped Components
	Conversation-Scoped Components
	Initialization and Destruction Notifications
	Eager Initialization

	Testing Components
	Summary

	4 CONVERSATIONAL INTERACTIONS USING JAVA
	Conversational Interactions
	A Conversation
	Conversational Services

	Implementing Conversational Services
	Conversation-Scoped Implementations
	Custom State Management
	Expiring Conversations

	Conversational Services and Asynchronous Interactions
	Non-Blocking Invocations
	Callbacks
	Callbacks to Conversational and Stateless Clients

	Conversation Propagation
	Summary

	5 COMPOSITION
	Composition
	The Composite Implementation Type
	Service Promotion
	Service Bindings

	Reference Promotion
	Reference Bindings

	Composite Properties
	Configuring Composite Properties
	Multivalued Properties
	Using Complex Property Types
	Referencing Complex Property Values

	Overrides
	Services and References
	Properties

	Inclusion
	Summary

	6 POLICY
	Policy Examples
	SCA Policy in Brief
	Intents
	PropagatesTransaction—An Example of a Required Intent
	policySets
	How @appliesTo Is Used
	Finding the Right Policy Set

	Wire Validity
	WS-Policy
	Policies for One-Way Messaging
	Qualified Intents
	Profile Intents
	Standard Intents
	Security Intents
	Delivery Intents

	Transaction Intents
	Miscellaneous Intents
	Summary

	7 WIRES
	Wiring to Multiple Service Providers
	The <wire> Element
	Multiplicity and Callbacks

	Automated Wiring: Autowire
	Autowire and Composition

	Wire Reinjection
	Summary

	8 BINDINGS
	Interoperable Communications Outside the Domain: The Web Service Binding
	Using WSDL as the Interface Definition Language
	Non-Blocking Interactions Using Web Services
	Callbacks and Conversations with Web Services

	Accessing Messaging Infrastructure: The JMS Binding
	One-Way Messaging with JMS
	Operation Selection
	Message Data Binding
	Request-Response Messaging with JMS
	Performing Callbacks with JMS
	Using Publish-Subscribe Messaging Patterns
	Conversational Interactions with JMS

	Using Bindings for Communicating Within a Domain
	Bindings Overrides
	Summary

	9 THE DOMAIN
	The Role of a Domain
	Management
	Artifact Sharing
	Policy Administration
	Communications

	Types of Domains
	Local Domains
	Distributed Domains
	Federated Domains

	Contributions
	The Contribution Archive
	Artifact Sharing
	Deployment Composites
	Structuring Contributions

	The Domain Composite
	Add to Domain Composite
	Remove from Domain Composite

	Deploying Policies
	Summary

	10 SERVICE-BASED DEVELOPMENT USING BPEL
	What Is BPEL?
	History
	A Language for Web Services
	Using BPEL with SCA
	BPEL Versus Java for Conversational Services

	Using BPEL for the Loan Service
	Partner Links Are Services and References
	Symmetry of Partner Link Types
	Static Control Flow Analysis with SCA BPEL
	Partner Link Types as Interfaces

	SCA Extensions to BPEL
	SCA Properties
	Customizing the Generated Services and References
	References with Multiplicity

	Summary

	11 PERSISTENCE
	Using JDBC
	DataSources and Transaction Policy

	Using JPA
	The Basics: Object Lifecycles and the Persistence Context
	Transaction-Scoped Persistence Contexts
	JPA and Conversational Services
	Accessing the EntityManagerFactory

	Summary

	12 THE PRESENTATION TIER
	Web Components
	Configuring a Web Component
	Packaging and Deploying a Web Component
	Properties

	Java Server Pages and the SCA Tag Library
	Asynchronous Interactions
	Accessing Conversation Services
	Defining a Component Type
	Summary

	INDEX
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J-K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U-V
	W
	X-Y-Z




