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Preface

These proceedings contain the papers selected for presentation at the 12th International
Workshop on Security and Trust Management (STM 2016), held in Crete, Greece,
during September 26–27, 2016, in conjunction with the 21th European Symposium on
Research in Computer Security (ESORICS 2016).

In response to the call for papers, 34 papers were submitted to the workshop from 17
different countries. Each paper was reviewed by three members of the Program
Committee, who considered its significance, novelty, technical quality, and practical
impact in their evaluation. As in previous years, reviewing was double-blind. The
Program Committee’s work was carried out electronically, yielding intensive discus-
sions over a period of one week. Of the submitted papers, the Program Committee
accepted 13 full papers (resulting in an acceptance rate of 38 %) and two short papers
for presentation at the workshop. Besides the technical program including the papers
collated in these proceedings, the conference featured an invited talk by the winner
of the ERCIM STM WG 2016 Award for the best PhD thesis on security and trust
management and by Dr. Bogdan Warinschi.

The credit for the success of an event like STM 2016 belongs to a number of people,
who devoted their time and energy to put together the workshop and who deserve
acknowledgment. First of all, we wish to thank all the members of the Program
Committee and all the external reviewers, for all their hard work in evaluating the
papers in a short time window, and for their active participation in the discussion and
selection process. We would like to express our sincere gratitude to the ERCIM STM
Steering Committee, and its chair, Pierangela Samarati, in particular, for their guidance
and support in the organization of the workshop. Thanks to Panagiotis Papadopoulos,
for taking care of publicity. We would also like to thank Javier Lopez (ESORICS
workshop chair), Sotiris Ioannidis (ESORICS workshop chair and ESORICS general
chair), Ioannis Askoxylakis (ESORICS general chair), and Nikolaos Petroulakis,
Andreas Miaoudakis, and Panos Chatziadam (ESORICS local organizers) for their
support in the workshop organization and logistics.

Last but certainly not least, thanks to all the authors who submitted papers and to all
the workshop’s attendees. We hope you find the proceedings of STM 2016 interesting
and inspiring for your future research.

September 2016 Gilles Barthe
Evangelos Markatos
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Towards a Personal Security Device

Christof Rath(B), Thomas Niedermair, and Thomas Zefferer

Graz University of Technology, Institute of Applied Information Processing
and Communications, 8010 Graz, Austria

{christof.rath,thomas.zefferer}@iaik.tugraz.at,
niedermair@student.tugraz.at

Abstract. In Europe, eID and e-signature solutions are basic build-
ing blocks of many transactional e-government services, especially in
citizens-to-government communication. Many European countries issue
smart cards to provide eID and e-signature functionality on a high assur-
ance level. However, to access these tokens, security-critical code has to
be executed on the client platform of the user. If the client platform is
compromised, an attacker may gain access to credentials of the user and
subsequently be able to issue electronic signatures or access protected
resources. To address this problem, we present the concept of a personal
security device. It is an isolated, low-cost, single-purpose device to exe-
cute security-critical code of eID and e-signature tasks. We developed a
concrete implementation on a RaspberryPI and evaluated the solution
via an external application. Our solution increases the security of eID
and e-signature processes by mitigating the impact of a compromised
client platform.

Keywords: Electronic identity · Electronic signature · Signature
creation application · Trustworthy user device

1 Introduction

In the European Union (EU), electronic identity (eID) and electronic signa-
ture (e-signature) have gradually evolved to central building blocks of transac-
tional e-government services. This especially applies to citizens-to-government
services, where citizens use their eID to identify and authenticate, and rely on
e-signatures to provide written consent in electronic form. The relevance of eIDs
and e-signatures has also been backed by a strong legal foundation on European
level for many years. For instance, the EU Signature Directive [10] has provided
a basis for legally binding e-signatures in the EU early on. Only recently, the
EU eIDAS Regulation [11] has been enacted. This regulation repeals the EU
Signature Directive and represents the current legal foundation for legally bind-
ing e-signatures in Europe. Furthermore, the EU eIDAS Regulation defines a
framework for the application of eIDs in a pan-European context.

Representing the legal basis, the eIDAS Regulation defines relevant require-
ments for technical implementations of eID and e-signature solutions in Europe.
c© Springer International Publishing AG 2016
G. Barthe et al. (Eds.): STM 2016, LNCS 9871, pp. 1–16, 2016.
DOI: 10.1007/978-3-319-46598-2 1
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For instance, the regulation defines requirements for qualified electronic signa-
tures, which are legally equivalent to handwritten signatures. While pure soft-
ware solutions are unable to meet these requirements, smart cards have turned
out to be an appropriate technology for the creation of qualified electronic signa-
tures. Accordingly, various European countries have started to issue personalized
smart cards early, which can be used by citizens to authenticate at e-services and
to provide written consent in electronic form [14]. Examples are the roll-out of
the Citizen Card in Austria [17] or the eID card in Belgium [4]. Recently, mobile
eID and e-signature solutions that rely on mobile technologies as a replacement
for smart cards have also attracted attention [23]. Surveys on the European
governmental eID landscape show that 18 countries have implemented smart
card based eID and e-signature solutions and only 4 countries provide addition-
ally mobile solutions [5,12]. This is amplified by numerous private-sector smart
card based eIDs. Thus, smart cards are the predominating technology for the
realization of e-signature solutions that fulfil the requirements of the eIDAS Reg-
ulation. In most cases, the same smart cards are also used to provide citizens
with adequate eID functionality, i.e. citizens can use this token to authenticate
at e-services.

While smart cards have turned out to be an appropriate technology for the
realization of eID and e-signature solutions at a high assurance level, their
use raises various technical challenges. In this context, especially accessing
smart cards, connected to citizens’ client systems, turned out to be challeng-
ing. Although strategies to accomplish this task differ in technical details, all
smart card based eID and e-signature solutions basically require two compo-
nents: a smart card reading device to physically connect the client system with
the smart card and a component that runs on the client system and acts as mid-
dleware between the smart card and the software requiring smart card access.
In the CEN workshop agreement CWA 14170 this middleware is denoted as
Signature Creation Application (SCA) [3]. Nearly all current smart card based
eID and e-signature solutions implement the SCA in the form of a software run-
ning on the citizen’s client system. This software acts as intermediary between
the locally connected smart card and e-services requiring access to credentials
on it. Furthermore, the software interacts with the citizen by reading required
credentials such as smart card PINs and displaying relevant data.

The software-based nature of the SCA is a serious problem. Evidently, the
citizen’s client system must not be assumed secure. Recent statistics show that
more than 32 % of end-user devices are infected by malware [20]. If such mal-
ware targets software-based SCA implementations on the client system, it could
intercept entered credentials or modify the data-to-be-signed (DTBS) during
signature creation processes. Today, software-based SCA implementation repre-
sent a weak link in smart card based eID and e-signature solutions and, thus,
somewhat limit the security benefits gained by the use of secure hardware tokens.

In this paper we propose a solution to this emerging problem. We identify
the execution of software-based SCA implementations on the client platform
as root of the problem and propose a more secure, dedicated-hardware based
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alternative to it. For this purpose, we propose and introduce the concept of a
personal security device, which encapsulates critical SCA functionality in a secure
environment. We discuss relevant concepts behind our proposal and evaluate its
feasibility and applicability by means of a concrete implementation that relies
on state-of-the-art technology.

2 Related Work

The work presented in this paper targets weaknesses of current smart card based
eID and e-signature solutions. These weaknesses are caused by the software-
based realization of client components that are required for smart card access
and user interaction, discussed, e.g., by Langweg et al. [21]. Interestingly, most
existing smart card based eID and e-signature solutions that are deployed in
European countries rely on similar smart cards but differ in the realization of
required software components. In this section, a brief overview of current realiza-
tions is given. This way, the current state of the art is sketched and limitations
of existing solutions are identified.

2.1 The Classical Approach: Smart Card and Software

Belgium was one of the first European countries that deployed a smart card
based eID and e-signature solution on national scale. Details of the Belgian eID
have been introduced and discussed by De Cock et al. [4]. To use the Belgian eID,
citizens need to install a software, i.e. an implementation of SCA functionality,
on their client computer. The software is provided for all common operating
systems [13]. Once installed, the software acts as middleware between the web
browser and locally connected eID cards.

The Belgian eID implementation is a prime example of a typical smart card
based solution. It requires the citizen to possess a smart card reading device and
to install specific software. As this software is required to communicate with
the card, it is obviously an attractive target for attacks. By compromising this
software, the DTBS processed by the software could, for instance, be modified
before being sent to the card. In the worst case, even a secure PIN can get
disclosed, if it is entered at the client system and forwarded to the card by a
compromised SCA software.

Despite its disadvantages, the approach implemented by the Belgian eID is
also followed by smart card based eID solutions in other European countries. For
instance, also the Estonian eID card requires citizens to install client software
on their local system [15]. Similarly, also the Austrian eID card, which has been
introduced by Leitold et al. [17] in more detail, can be accessed using software
running on the citizen’s client system. Due to the open specifications, Austrian
citizens can choose between different software vendors [1].

The Belgium, Estonian, and Austrian solutions are just three out of many
comparable solutions that are in productive operation in Europe. This underpins
the fact that the combination of smart card technology and local software is still
predominating in European eID and e-signature solutions.
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2.2 Breaking New Ground: MOCCA

Limitations of smart card based solutions relying on client software have been
identified early. However, in most cases the main concerns were about usability
rather than about security. A prime example for that is the situation in Austria.
As mentioned above, Austria has supplied citizens with a combination of smart
cards and client software for accessing these smart cards from the beginning. As
user acceptance remained below expectations, more usable alternatives to locally
installed software have been investigated. The main outcome of these efforts was
MOCCA—the Modular Open Citizen Card Architecture [2].

In contrast to classical SCA implementations, MOCCA relies on a server
based architecture. Requests to access a locally connected smart card are not
directed to a locally installed software, but to a server component. This server
component then deploys a Java Applet in the citizens web browser. The Java
Applet uses Java’s Smart Card I/O library to access the smart card [22].

When MOCCA was introduced in 2010 [2], it showed several advantages
compared to classical solutions relying on local software. Most advantages con-
cerned usability aspects, as MOCCA rendered the installation and maintenance
of local middleware software by users unnecessary. In the meantime, however,
web-browser support for Java Applets has decreased for security reasons, ren-
dering the application of MOCCA increasingly difficult in practice.

2.3 Heading Towards the Future: The FutureID Client

The previously discussed implementations were tailored to the specific require-
ments of national eIDs. Each SCA implementation has, thus, supported only one,
or a very limited number of smart cards. A different approach has been taken
with the FutureID client. The FutureID client is a generic middleware solution.
Based on the Open eCard client [6] and extended as part of the EU project
FutureID, this client provides a standardized interface to access arbitrary secure
tokens. By implementing ISO 24727 [16], new smart cards can be integrated
by providing a so-called CardInfo file, a XML structure that describes the card
layout and supported functionality. Thus, this middleware not only supports a
single token, protocol, or use case, but provides an extensible framework, which
can integrate arbitrary credentials while offering a consistent look and feel. Dur-
ing FutureID, several European governmental and private-sector eIDs have been
integrated.

In addition, the FutureID client also provides electronic signature capabili-
ties. For that, the client can be accessed via the OASIS-DSS [18] protocol to issue
electronic signatures using the advanced electronic signature formats PAdES,
CAdES or XAdES [7–9]. A basic user interface was integrated into the client.
However, the full potential can be accessed by specifying OASIS-DSS signature-
creation requests, which can be done by arbitrary third-party applications. Due
to the flexible design, it was also possible to integrate eID solutions that are
based on remote signatures, like the Austrian Mobile Phone Signature [19].
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3 Problem Analysis

The overview of current middleware implementations in Europe has emphasized
the relevance of eID and e-signature for European e-government solutions. It has
also revealed that existing implementations suffer from several limitations that
threaten to compromise security. In this section, we analyze problems of existing
implementations. For this purpose, we first develop implementation-independent
models of middleware-based eID and e-signature solutions. From these models,
shortcomings are then identified on conceptual level. This way, findings of the
conducted problem analysis are universally valid and not restricted to certain
types of implementations.

Fig. 1. Block diagrams of the basic use cases

The first use case is the basic authentication scheme, shown in Fig. 1a. A user
wants to access some resource at the service provider (SP) that requires authenti-
cation (Step 1). In Step 2, the SP redirects the user to an identity provider (IdP).
In more elaborate schemes this might be an intermediary, sometimes called bro-
ker, which is capable to handle multiple IdPs or even additional intermediaries.
The IdP uses some form of middleware (MW) on the client platform to access a
credential, like a certificate and private-key pair stored on a smart card or soft-
ware key store (Step 3). At Step 4, the middleware either connects to a hardware
token or key store to perform the actual authentication. This is illustrated in
the graphic by the alternative, dashed paths of the Steps 4 and 5. At this step,
the user will also be required to enter some secret like a password or PIN. The
result of the authentication is returned to the IdP, via the Steps 5 and 6. The
IdP creates some form of assertion about the user and redirects back to the SP
(Step 7). Finally, the SP grants access to the requested resource, in Step 8, after
verifying this assertion.

The second use case is an electronic signature service, shown in Fig. 1b. In
this case, the middleware operates as local signature server. First, in Step 1, an
external application sends a signature creation request to the middleware, which
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corresponds to the Sig-Server component in Fig. 1b. Prior to issuing the signa-
ture, the user can inspect the DTBS (Viewer in Fig. 1b) and proceed with the
signature creation (Steps 2 and 3). The user has to be authenticated to authorize
the signature creation. In case of smart card credentials this is done by entering
the PIN, for software-based certificates by entering the key-store password. This
happens in Step 4, while accessing the hardware token or software key store. If
supported by the smart card reader, the PIN might be entered directly on the
reader, else a PIN/password-entry dialog has to be provided (Auth component)
by the SCA. If the user can be authenticated, the signature is issued using the
smart card or other signing credentials (Step 5) and returned to the request-
ing application (Step 6). The viewer of the DTBS and the user authentication
together with the core of the signature service are the main building blocks of
a SCA as defined by the CEN workshop agreement CWA14170 [3]. The SCA is
particularly important, alongside a secure signature creation device (SSCD), in
the context of qualified electronic signatures.

So far, we have presented the eID and e-signature functionality as two distinct
use cases. Sometimes, however, these two use cases overlap. The Austrian eID,
for example, uses a qualified signature as part of the authentication process. In
this case, the DTBS consists of a common template and the identifying attributes
(name, birthday, . . . ) of the user. The user consents to the authentication process
by signing this so-called auth block. If the SP can successfully verify the signed
auth block, the authentication succeeds.

From the generic, implementation independent models derived for the eID
and e-signature use cases, limitation of current middleware-based solutions can
be defined. In particular, current solutions show the following shortcomings that
we address in this work:

– The middleware and SCA do process security-critical data on the client plat-
form. If the client platform is compromised by malware, an attacker may
intercept the user authentication and learn the smart card PIN or key-store
password. Thus, an attacker might be able to issue legally binding signatures
or access protected resources. The attacker might, additionally, be able to
compromise the viewer component and present a document that differs from
the one that is actually going to be signed.

– Some eID systems rely on software-based credentials. A malicious software
might upload the key stores of these credentials into the domain of an attacker
to perform a brute-force attack. Once the password is known, either by com-
promising the user authentication module or by brute-force, unlimited signa-
tures or authentications can be performed, since there is obviously no equiv-
alent to simply removing a smart card from the reader.

– Smart card readers are very uncommon for mobile devices like smartphones
or tablet computers. Smart card access on mobile devices is also possible via
the NFC protocol. However, the NFC device is not accessible on all phones by
third-party software and the number of IdPs that issue NFC-enabled smart
cards is very limited. Consequently, many smart card based eID systems are
not available on these platforms.
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– Finally, many eID systems lack broad user acceptance and uptake. The rea-
son often lies in the complexity of these systems. Users need to install the
middleware, sometimes also a Java VM and the smart card reader drivers;
and they have to keep their systems up-to-date, which sometimes can break
one of the components. An example here is the Java Applet based solution
MOCCA, used in Austria. It was specifically developed to reduce the bur-
den on the citizens to install and maintain the middleware software. Yet, it
still suffers from the ceased support of Java Applets in general by modern
web browsers, which is a result of updated security policies by the browser
vendors.

4 Proposed Solution

To overcome the problems identified in the previous section, we propose a basic
personal security device, a low power, low cost, single purpose device that handles
security-critical code in the context of eID and e-signature tasks. Our solution,
splits the application that typically runs on the client platform. On the insecure
client system, only a thin proxy-layer remains. This proxy layer ensures that our
changes are transparent to external applications and IdPs.

The main part of the client software, however, is executed on a dedicated
security device. The benefit of a dedicated platform is its single purpose and
the general isolation from the rest of the world. At hardware level, this secure
platform consists, at least, of the main processing unit, a display, a basic input
device (touch screen) and the facilities to access secure tokens, that are required
for the different use cases. This minimal hardware configuration ensures that the
user can process the authentication or signature creation solely on the secure
device.

The secure platform, obviously, also needs a connection to the proxy layer.
This connection between the proxy and the secure part of the middleware is the
only interface that is provided by the personal security device. From an archi-
tectural perspective it is irrelevant how the low-level connection between secure
device and client platform is established. Examples are connections via a serial

Fig. 2. Authentication scheme using a secure platform
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cable or ethernet, or wireless connection, like Wi-Fi or Bluetooth. Regarding the
degree of isolation that can be achieved, point-to-point connections are preferable
to connections that are shared between multiple parties. However, the low-level
connection will in the end most likely be a compromise between security and
usability.

On the application layer, the connection must be further protected by an
encrypted channel. This ensures, on the one hand, confidentiality of the data
transmitted between the proxy and the secure platform; on the other hand, this
guarantees that only previously paired devices may interact with each other. The
key exchange to establish this channel must, therefore, be part of the pairing-
process between client platform and security device.

The resulting architecture of our two use cases is shown in Figs. 2 and 4.
Figure 2 shows the proxy layer that runs on the client platform. Towards the IdP,
the interfaces are unchanged, hence, our changes are completely transparent.

Fig. 3. Sequence diagram of a user-authentication process

A typical user-authentication process that relies on the proposed architec-
ture is illustrated in Figure 3 by means of a sequence diagram. The process flow
is similar to the one sketched in Sect. 3. The most important difference is the
fact that user-authentication data are directly exchanged between the user and
the secure middleware. Thus, these data cannot be compromised by a compro-
mised middleware on the user’s client system. Figure 3 also shows that additional
processing steps are required due to the distributed realization of the middle-
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ware. However, these processing steps are transparent to the user and hence do
not affect usability.

To realize the illustrated process flow, the middleware on the secure plat-
form does not need to be changed considerably compared to common middle-
ware implementations. Many middleware applications provide a so-called local-
host binding. That is, they provide an interface that arbitrary applications on
the same host can access. This interface must be changed to allow only connec-
tions from previously paired proxies. Finally, the user interface (UI) also requires
changes. In a traditional approach, the middleware is one of many processes on
the client system. It is therefore often implemented as a background process,
probably with a tiny icon, which appears in the foreground upon incoming
requests only. On the security device, however, the middleware is the primary
application. Consequently, it should provide a full-screen main window that is
visible per default. This window must provide access to all settings that are
available to the user. These settings should be extensive enough that the user
does not need access to the underlying operating system, and other tools and
applications on the secure platform. When considering small and portable secure
devices, constrained display resolutions and touch input devices may require fur-
ther changes to the UI.

Fig. 4. Electronic-signature scheme using a secure platform

For the adapted signature use case, shown in Fig. 4, basically the same rules
apply. The proxy layer on the client platform acts as signature server, which
provides identical interfaces to external applications. An encrypted channel pro-
tects the connection between proxy and secure signature server. The SCA on
the secure platform has to be adapted to accept connections only from previ-
ously paired proxies. Finally, the UI has to be aligned to meet the constraints of
the platform and fit the requirements of a single-purpose device. Based on the
proposed architecture shown in Fig. 4, a typical signature-creation process can
be sketched. This process flow is illustrated by the sequence diagram shown in
Fig. 5. From the sequence diagram it becomes apparent that, again, all security-
critical operations are performed within the secure domain. This distinguishes
the signature-creation process of the proposed solution from respective processes
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Fig. 5. Sequence diagram of an electronic signature creation process

of existing middleware implementations as shown in Sect. 3. The security-critical
operations during a signature-creation process are: display of the DTBS, user
authentication, calculation of the signature value, and assembly of the signed
document. By realizing all these operations in the secure domain, they remain
immune to compromised client systems. This is the main advantage of our pro-
posed solution compared to existing middleware implementations.

5 Implementation

The feasibility of the proposed solution has been demonstrated by means of a
concrete implementation. Our implementation is based on the FutureID client
as middleware and a RaspberryPI as dedicated platform. The RaspberryPI is an
ARM-based, smart card sized, single-board computer. It has been extended by
a four-inch touch screen, a Bluetooth adapter and a simple class 1 smart card
reader.

The FutureID client has been chosen for its generic approach. It is an open-
source project and the flexible architecture greatly supported our development.
For the low-level connection between the client platform and the secure device,
we have chosen Bluetooth. It offers a point-to-point connection and many users
should be familiar with the Bluetooth pairing process, which improves the usabil-
ity, acceptance and consequently uptake. Furthermore, Bluetooth is available
on mobile devices. Smart card based eID and e-signature solutions can, thus,
be easily made accessible on smartphones or tablet computers. We are aware



Towards a Personal Security Device 11

Fig. 6. FutureID-client proxy layer

that Bluetooth transmissions may be intercepted by so-called Bluetooth snif-
fers. If already the pairing process was captured, it is easy to break the low-level
encryption. To circumvent this problem, our solution requires an additional TLS
channel on the application layer.

The architecture of the proxy layer can be seen in Fig. 6. It consists only of
the bindings layer, i.e. the interfaces to external applications, and a Bluetooth
proxy. Additionally, the proxy layer has a user interface to start the pairing
process.

The FutureID client on the secure platform, shown in Fig. 7, is similar to
the original FutureID client. However, the only binding that is available is a
new Bluetooth binding, which connects only to a previously paired proxy. In
addition, also the GUI was modified to fit the small display of the device.

Fig. 7. FutureID client on the secure platform
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Note that our concept, with some limitations, also works for unmodified
middleware application, e.g. in closed-source domains. In this case, the proxy
has to be built with standard tools, like SSH port forwarding. This also requires
a different pairing process and setup procedure, which might not be suitable for
a broad user base. Additional shortcomings are to be expected with regards to
the UI in that case.

6 Evaluation

To evaluate its applicability, we have tested our solution in real-world scenarios
with existing governmental smart card based credentials. We have conducted
tests for both the user-authentication and the e-signature use case. In general,
the procedures of these use cases are very similar. Since the e-signature case also
includes the trusted viewer, and can hence be regarded more complex, we focus
on this use case here. We tested the e-signature use case using an e-sign demo
HTML/Javascript app, which has been developed during the FutureID project.
A screenshot of this app is presented in Fig. 8. On the first page the user has
to select the DTBS. The user can either select an existing file and choose the
signature format (XAdES, CAdES or, if applicable PAdES), or dynamically cre-
ate simple PDF documents. The corresponding OASIS-DSS sign request can be
inspected and, for debugging purposes, modified before it is sent to the localhost
binding of the FutureID proxy layer. The proxy layer forwards the request via
the established Bluetooth connection to the FutureID instance on the personal
security device.

Fig. 8. FutureID eSign demo application

The screenshots of the procedure on the security device can be seen in
Fig. 9. On the personal security device, the document is evaluated and pre-
sented (Fig. 9a). The user then must provide a signature token, like a smart
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Fig. 9. Screenshots of a signature creation process on the secure platform

card (Fig. 9b), and select a signing certificate (Fig. 9c). Finally, the user must
enter a PIN for authentication (Fig. 9d) and authorize the signature creation.

Apart from the successful functional test, we also evaluated the applicability
as portable device. For this, we used an external battery for smartphones. The
powerbank was rated at 5000 mAh and had approximately the size of a modern
smartphone. Since the RaspberryPI is very efficient and the load created by the
FutureID client is only little, the whole device, including display and smart card
reader, could be operated for several hours.

All conducted test have successfully evaluated our proposed solution and its
implementation. Concretely, it has been shown that our solution works with
existing eID-based and e-signature-based applications. Still, several lessons have
been learned during the implementation and evaluation process. These lessons,
which will serve as basis for future work, are discussed in the following section.

7 Lessons Learned

The primary goal of the conducted implementation was to demonstrate the fea-
sibility of our proposed solution. As a consequence, the present implementation
is rather a solid prototype than a production-ready solution. From the remain-
ing limitations of our implementation, and also from the evaluation conducted,
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several useful findings can however be derived. Most relevant findings can be
classified into three groups, which are detailed in the following subsections.

7.1 Preliminary Security Checks

Our solution mandates the execution of a proxy layer on the client platform.
In future work, we want to use this component to further protect our security
device. This might appear contradictory at a first glance, as the execution envi-
ronment of the proxy layer must not be assumed secure. Still, this component
can implement logic for preliminary security checks. If the client platform is not
compromised and the target of the attack is the SCA on the security device,
these checks provide an additional firewall.

For instance, the proxy layer could perform rigorous sanity checks on data
it has to relay between the secure platform and an external application. This
especially applies to the user-authentication use case, in which involved parties
and messages exchanged are known beforehand to a high degree. For instance,
the proxy layer can establish the identity of the communication endpoint by val-
idating the presented server certificate, validate potential authentication-request
signatures, or inspect the payloads to identify unexpected content. For the
e-signature use case, the situation is more complex, as neither the requesting
entities nor the DTBS are known beforehand. Additionally, the provided docu-
ments are supposed to be opened, processed and presented by the trusted viewer.
A maliciously crafted document, thus, could try to exploit known vulnerabilities
of the viewer component. Consequently, the checks on the client platform, in this
case, can only be of general nature.

In summary, capabilities of the proxy layer to improve security are limited.
Nevertheless, we believe that selected measures can be useful to improve the
overall security of the solution. We hence regard the realization of such measures
as future work.

7.2 Protection of DTBS

The proposed solution has shown to be advantageous in terms of protecting
authentication data entered by the user and DTBS presented to the user. As
all user interaction is implemented on the secure device, this information is not
prone to be disclosed via the potentially compromised client platform. Unfortu-
nately, this does not apply to the DTBS in the e-signature use case, as these
data have to be routed through the proxy layer. Hence, additional measures to
protect these data should be implemented. For instance, the external applica-
tion that defines the DTBS and the personal security device could establish a
secure channel before exchanging security-critical data. While this would pre-
serve the privacy of the DTBS, it increases complexity in terms of implementa-
tion and deployment. Nevertheless, investigating measures to adequately protect
the DTBS is also regarded as future work.

We are aware that the encryption of the DTBS contradicts the previous
subsection as we now cannot inspect incoming data before it is processed on
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the security device. However, the situation is still not worse than the current
state-of-the-art, plus we deem it more important to protect against a malicious
attacker on the client platform than a malicious SP.

7.3 Usability and Acceptance

Although smart card based solutions are wide spread, their usability and accep-
tance is often hampered by the need for additional hardware in the form of a
card-reading device and software maintenance. We are aware that our proposed
solution, which necessitates an additional device, does not obviously relieve this
situation. However, we believe that integrated hardware solutions and coordi-
nated deployment strategies can lead to efficient and usable roll-out scenarios.
By providing fully configured and maintained personal security devices that are
accessed via Bluetooth, a widespread, state-of-the-art and simple to use tech-
nology, our solution can increase the acceptance and uptake of strong authen-
tication and e-signature solutions for users of personal computers. Additionally,
we address also the large and ever growing number of users of smartphones
and tablet computers, which can now access their smart card credentials via
Bluetooth and a personal security device. We acknowledge that our solution will
impose additional costs on its users. However, we believe that the increased secu-
rity and additional functionalities will justify this investment. For instance, we
are currently working on a password store that is usable across multiple devices
without the need to share the container via the cloud.

8 Conclusion

In Europe, smart cards are still a popular enabling technology for implementa-
tions of eID and e-signature solutions. Although more usable mobile solutions are
slowly emerging, smart card based solutions are still most wide-spread in Euro-
pean countries. Security concepts of these solutions rely on the smart cards’
capabilities to securely store data and to carry out cryptographic operations.
Unfortunately, these concepts often neglect the fact that a smart card must be
connected to and accessed from a potentially insecure end-user device.

We have addressed this issue by proposing the concept of a personal security
device, to which security-critical tasks are outsourced. An implementation of the
proposed solution has shown its feasibility with state-of-the-art technology. Fur-
thermore, evaluation results obtained show that the proposed and implemented
solution works with existing eID and e-signature solutions.

Thus, we can conclude that our solution has the potential to enhance the secu-
rity of smart card based eID and e-signature solutions, which are central building
blocks of transactional e-government services. This way, the proposed solution
represents a considerable step towards secure smart card based e-government
solutions, which can gain broad acceptance by the citizens.
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Katsikas, S.K., Gritzalis, S., López, J. (eds.) EuroPKI 2004. LNCS, vol. 3093, pp.
1–13. Springer, Heidelberg (2004). doi:10.1007/978-3-540-25980-0 1

5. Ducastel, N.: International Comparison eID Means. Technical report PBLQ (2015)
6. ecsec: Open eCard App. https://www.openecard.org. Accessed 11 April 2016
7. ETSI: Electronic Signatures and Infrastructures (ESI); PDF Advanced Electronic

Signatures (PAdES); TS 102 778. Technical report, European Telecommunication
Standards Institute (2009)

8. ETSI: Electronic Signatures and Infrastructures (ESI); XML Advanced Electronic
Signatures (XAdES); TS 101 903. Technical report, European Telecommunication
Standards Institute (2010)

9. ETSI: Electronic Signatures and Infrastructures (ESI); CMS Advanced Electronic
Signatures (CAdES); TS 101 733. Technical report, European Telecommunication
Standards Institute (2013)

10. European Parliament: Directive 95/46/EC. In: Official Journal of the European
Communities, vol. 38, pp. 31–50. European Commision (1995)

11. European Parliament: eIDAS - Regulation (EU) No 910/2014. In: Official Journal
of the European Union, vol. 57, pp. 73–114. European Commision (2014)

12. Eurosmart: Landscape of eID in Europe in 2013. Technical report, Eurosmart
(2014)

13. FEDICT: eID Belgium
14. IDABC: Study on eID Interoperability for PEGS: Update of Country Profiles

(2009)
15. ID.ee: ID Card (2016)
16. ISO, IEC 24727: Identification cards - Integrated circuit card programming inter-

faces, Part 1–6
17. Leitold, H., Hollosi, A., Posch, R.: Security architecture of the Austrian citizen card

concept. In: 18th Annual Computer Security Applications Conference, Proceedings,
pp. 391–400 (2002)

18. OASIS: Digital signature services core protocols, elements, and bindings (2007)
19. Orthacker, C., Centner, M., Kittl, C.: Qualified mobile server signature. In: IFIP

Advances in Information and Communication Technology. vol. 330, pp. 103–111
(2010)

20. Panda Security: Pandalabs’ Annual Report 2015
21. Spalka, A., Cremers, A.B., Langweg, H.: Trojan horse attacks on software for

electronic signatures. Informatica (Slovenia) 26(2) (2002)
22. Sun Microsystems Inc.: JSR 268: Java Smart Card I/O API (2006)
23. Zefferer, T., Teufl, P.: Leveraging the adoption of mobile eID and e-Signature
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Abstract. As has been widely discussed, the GSM mobile telephony
system only offers unilateral authentication of the mobile phone to the
network; this limitation permits a range of attacks. While adding sup-
port for mutual authentication would be highly beneficial, changing the
way GSM serving networks operate is not practical. This paper proposes
a novel modification to the relationship between a Subscriber Identity
Module (SIM) and its home network which allows mutual authentication
without changing any of the existing mobile infrastructure, including the
phones; the only necessary changes are to the authentication centres and
the SIMs. This enhancement, which could be deployed piecemeal in a
completely transparent way, not only addresses a number of serious vul-
nerabilities in GSM but is also the first proposal explicitly designed to
enhance GSM authentication that could be deployed without modifying
any of the existing network infrastructure.

Keywords: GSM · Mutual authentication · SIM application toolkit ·
RAND

1 Introduction

This paper proposes a way of adding network-to-phone authentication to the
GSM mobile phone system, in a way that is completely transparent to the exist-
ing network infrastructure. Currently, GSM only supports authentication of the
phone to the network, leaving the system open to a wide range of threats (see,
for example, [21]). Despite the introduction and deployment of 3G (UMTS) and
4G (LTE) mobile phone systems, which rectify the GSM problem by providing
mutual authentication between phone and network, GSM remains of huge prac-
tical importance worldwide and is not likely to be replaced for many decades to
come. As a result, finding ways of improving the security offered by GSM, with-
out the need for changes to the deployed phones and access networks, is clearly
of great practical significance. This observation motivates the work described in
this paper.
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It is somewhat counterintuitive to propose that authentication of the network
to the phone can be achieved without modifying the way in which the existing
network and phones operate. This apparently paradoxical result is achieved by
using a technique we refer to as RAND hijacking. This involves using the RAND
value, which serves as a nonce in the existing unilateral authentication protocol
and is sent from the network to the phone, to contain data which enables the
recipient SIM to verify its origin and freshness. That is, the RAND is hijacked
to act as a communications channel between a home network and a SIM.

The remainder of the paper is structured as follows. Key facts about the GSM
network, including details of the operation of the GSM authentication and key
establishment (AKA) protocol, are given in Sect. 2. This is followed in Sect. 3 by
an introduction to the notion of RAND hijacking. In Sect. 4, the novel enhanced
version of the GSM authentication scheme is described, and Sect. 5 describes how
the SIM can use the results of the network authentication to affect UE behaviour.
An analysis of the novel system is provided in Sect. 6. The relationship of the
proposed scheme to the prior art is discussed in Sect. 7, and the paper concludes
in Sect. 8.

2 GSM

2.1 Terminology

We start by providing a brief overview of key terminology for mobile systems.
We focus in particular on the GSM network, but much of the description applies
in slightly modified form to 3G and 4G networks. A more detailed description
of GSM security features can, for example, be found in Pagliusi [22].

A complete mobile phone is referred to as a user equipment (UE), where the
term encapsulates not only the mobile equipment (ME), i.e. the phone, but also
the subscriber identity module (SIM) within it, where the SIM takes the form of
a cut-down smart card. The SIM embodies the relationship between the human
user and the issuing home network, including the International Mobile Subscriber
Identity (IMSI), the telephone number of the UE, and other user (subscriber)
data, together with a secret key shared with the issuing network which forms
the basis for all the air interface security features.

To attach to a mobile network, a UE connects via its radio interface to a
radio tower. Several radio towers are controlled by a single radio network con-
troller (RNC) which is connected to one mobile switching center/visitor location
register (MSC/VLR). The MSC/VLR is responsible for controlling call setup
and routing. Each MSC/VLR is also connected to the carrier network’s home
location register (HLR) where corresponding subscriber details can be found.
The HLR is associated with an authentication center (AuC) that stores crypto-
graphic credentials required for communicating with the SIM; specifically, the
AuC shares a unique secret key Ki with each SIM issued by the network to
which it belongs. The RNC and the MSC/VLR are part of the visiting/serving
network whereas the HLR and the AuC are the home network component.
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2.2 GSM Authentication Protocol

To prevent unauthorised mobile devices gaining access to network service, GSM
incorporates an authentication procedure which enables the network to verify
that the SIM in a UE is genuine. The authentication procedure operates as
follows. Further details can be found in technical specifications GSM 03.20 [10]
and GSM 04.08 [12].

1. The UE visits a network, and is initially identified using its IMSI.
2. The visited network identifies the UE’s home network from the supplied IMSI,

and contacts the home network for authentication information.
3. The home network’s AuC generates one or more authentication triples

(RAND, XRES, Kc), and sends them to the visited network, where RAND is
a 128-bit random ‘challenge’ value, XRES is the 64-bit ‘expected response’,
and Kc is a 64-bit short-term session key to be used to encrypt data sent
across the air interface between the UE and the network.

4. The visited network sends RAND to the UE as an authentication challenge.
5. The ME receives the RAND, and passes it to the SIM.
6. The SIM computes SRES = A3Ki

(RAND) and Kc = A8Ki
(RAND), where

A3 and A8 are network-specific cryptographic functions; A3 is a MAC func-
tion and A8 is a key derivation function. Note that precisely the same com-
putation was performed by the AuC in step 3 to generate XRES and Kc.

7. The SIM passes SRES and Kc to the ME.
8. The ME keeps the session key Kc for use in data encryption, and forwards

SRES to the serving network.
9. The serving network compares SRES with XRES ; if they are the same the

UE is deemed authenticated, and Kc can now be used for traffic encryption
using any of the standardised algorithms (i.e. one of A5/1, A5/2 and A5/3),
as selected by the serving network.

2.3 Vulnerabilities

The GSM AKA protocol clearly only provides one-way authentication. As widely
documented (see, for example, [21]), this permits a ‘false’ base station to imper-
sonate a genuine network and interact with a UE. This in turn gives rise to a
range of security weaknesses. We are particularly interested in attacks of the
following types.

– Because the network always decides whether or not to enable encryption, it is
possible for a malicious party to act as an intermediary between a UE and a
genuine network, impersonating the network to the UE and using a genuine
SIM of its own to talk to the network. All traffic sent via the man-in-the-
middle is simply relayed. The false network does not enable encryption on the
link to the UE, so the fact that it does not know the encryption key does not
matter. If the genuine network chooses to enable encryption, then the man-
in-the-middle can communicate with it successfully since it is using its own
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SIM for this leg of the communications. As a result, the man-in-the-middle
can seamlessly listen to all the voice traffic sent to and from the victim UE,
at the cost of paying for the call.

– The fact that the network decides whether or not to enable data encryption
also enables the well known Barkan-Biham-Keller attack, [2]. This attack is
designed to recover the encryption key Kc, and hence enable unlimited inter-
ception of phone calls. The attack takes advantage of three key facts: A5/2
is very weak, the network decides which algorithm to use, and the same key
Kc is used with all three encryption algorithms. One possible scenario for the
attack is as follows.

Suppose an eavesdropper intercepts the AKA exchange between the network
and a UE (notably including the RAND), and also some of the subsequent
encrypted voice exchanges involving that UE. Suppose also that the UE is
subsequently switched on within the range of a fake network operated by the
attacker. The fake network inaugurates the AKA protocol with the UE, and
sends the previously intercepted RAND, causing the SIM in the UE to generate
the same Kc as was used to encrypt the intercepted data. The UE responds
with SRES (which the fake network ignores) and the fake network now enables
encryption using A5/2. The UE will now send data to the network encrypted
using A5/2 with the key Kc; because of certain details of the GSM protocol,
the plaintext data will contain predictable redundancy. The fake network now
takes advantage of the weakness of A5/2 to recover Kc from the combination
of the ciphertext and known redundancy in the corresponding plaintext. The
key Kc can now be used to decrypt all the previously intercepted data, which
may have been encrypted using a strong algorithm such as A5/3.

The lack of mutual authentication has been addressed in 3G and later net-
works. As a result it is tempting to suggest that trying to fix GSM is no longer
of relevance. However, GSM continues to be very widely used worldwide and will
continue to be for many years to come; so finding ways of upgrading GSM post-
deployment appears to be worthwhile. However, any such solution must work
with the existing infrastructure, i.e. the existing serving network systems. We
are therefore interested in a solution which only requires SIMs and the home net-
work to be upgraded. Such a solution can be rolled out piecemeal with no impact
on the existing global infrastructure, and this is the focus of the remainder of
this paper.

2.4 Proactive SIM

Before proceeding we need to briefly review a key piece of GSM technology which
enables the SIM to send an instruction to the ME. Proactive SIM is a service
operating across the SIM-ME interface that provides a mechanism for a SIM to
initiate an action to be taken by the ME. It forms part of the SIM application
toolkit (STK), which was introduced in the GSM 11.14 technical specification
[11]. Communications between an ME and a SIM are command/response based,
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and STK provides a set of commands which allow the SIM to interact and
operate with any ME which supports them.

The GSM technical specification [13] states that the ME must communicate
with the SIM using either the T = 0 or T = 1 protocol, specified in ISO/IEC 7816-
3 [16]. In both cases the ME is always the master and thus initiates commands
to the SIM; as a result there is no mechanism for the SIM to initiate communi-
cations with the ME. This limits the possibility of introducing new SIM features
requiring the support of the ME, as the ME needs to know in advance what
actions it should take. The proactive SIM service provides a mechanism that
allows the SIM to indicate to the ME, using a response to an ME-issued com-
mand, that it has some information to send. The SIM achieves this by including
a special status byte (‘91’ followed by the length of the instruction to send) in
the response application protocol data unit. The ME is then required to issue
the FETCH command to find out what the information is [14]. The ME must
now execute the SIM-initiated command and return the result in the TERMI-
NAL RESPONSE command. To avoid cross-phase compatibility problems, this
service is only permitted to be used between a SIM and an ME that support
the STK commands. The fact that an ME supports specific STK commands
is revealed when it sends the TERMINAL PROFILE command during SIM
initialisation.

The SIM can make a variety of requests using the proactive SIM service.
Examples include: requesting the ME to display SIM-provided text, initiating
the establishment of on demand channels, and providing local information from
the ME to the SIM. The commands of interest here are GET CHANNEL STA-
TUS, which requests the ME to return the current status of all available data
channel(s), and CLOSE CHANNEL, which requests the ME to close the speci-
fied data channel. Both of these STK commands are marked as ‘class e’, which
means that an ME that supports ‘class e’ STK commands is capable of executing
both commands of interest [9]. Although support of STK is optional for an ME,
if an ME claims compliance with a specific GSM release then it is mandatory
for the ME to support all functions of that release. Since 1998 almost all of the
mobile phones produced have been STK enabled, and today every phone on the
market supports STK [1].

3 RAND Hijacking

We use the term RAND hijacking to refer to the idea of using the RAND, sent
from the network to the UE during AKA, as a way of conveying information
from the AuC to the SIM. That is, instead of generating the RAND at random,
it is generated to contain certain information; this information is typically sent in
encrypted form so that to an eavesdropper it is indistinguishable from a random
value.

This idea was apparently first described in a patent due to Dupré [6]. How-
ever, the use Dupré makes of the idea is rather different to that proposed here.
Later, Vodafone introduced the concept of a special RAND [23] in 3GPP TSG
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document S3-030463. As for Dupré, the purpose of the special RAND was com-
pletely different to that proposed here. The other published references to the
notion appear in papers [4,5,18] that independently propose the use of RAND
hijacking for improving the privacy properties of GSM, 3G and 4G networks.
As far as the authors are aware, no previous authors have proposed the use of
this technique with the explicit goal of providing mutual authentication in GSM
networks.

4 Server-to-SIM Authentication

We now propose a way of using RAND hijacking to enable authentication of
the network to the SIM. For this to operate the SIM must be programmed
to support the scheme, as well as possess certain (modest) additional data, as
detailed below. The AuC of the network issuing the ‘special’ SIM must also store
certain additional data items for each such SIM, and must generate its RAND
values in a special way for such SIMs. No other changes to existing systems are
required. It is important to note that the system could be deployed gradually,
e.g. by including the additional functionality in all newly issued SIMs, whilst
existing SIMs continue to function as at present.

4.1 Prerequisites

In addition to sharing Ki, A3 and A8 (as required for executing the standard
GSM AKA protocol), the SIM and AuC must both be equipped with the fol-
lowing information and functions:

– functions f1 and f5, where f1 is a MAC function and f5 is a cipher mask
generation function, both capable of generating a 64-bit output;

– a secret key Ka to be used with functions f1 and f5 which should be distinct
from Ki—to minimise memory requirements, Ka and Ki could, for example,
both be derived from a single SIM-specific master key;

– a 48-bit counter to be used to generate and verify sequence numbers1.

The functions could be precisely the same as their counterparts used in 3G
(UMTS). Indeed, the function names and string lengths have deliberately been
made identical to those used in 3G systems to make implementation and migra-
tion as simple as possible.

4.2 Protocol Operation

The novel AKA protocol only differs from the ‘standard’ GSM AKA protocol (as
described in Sect. 2.2 above) in steps 3 and 6. Thus, since these steps only involve
the AuC and SIM, it should be clear that the scheme is inherently transparent
to the serving network and the ME. We describe below how these steps are
changed.
1 As in 3G, an AuC might choose to manage a single counter shared by all user

accounts (see, for example, [20]).
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Fig. 1. Modifications at the AuC

4.3 Revised Steps

Step 3 is changed to the following step 3*. To generate a new authentication
triple, the AuC proceeds as follows (see Fig. 1, in which the dotted block repre-
sents the usual operation of the AuC).

3.1 The AuC uses its counter value to generate a 48-bit sequence number SQN,
which must be greater than any previously generated value for this user
account.

3.2 A 16-bit value AMF is also generated, which could be set to all zeros, or
could be used for purposes analogous to the AMF value for 3G networks.

3.3 A 64-bit tag value MAC is generated using function f1, where

MAC = f1Ka
(AMF||SQN),

and, as throughout, || denotes concatenation of data items.
3.4 A 64-bit encrypting mask AK is generated using function f5, where

AK = f5Ka
(MAC).

3.5 The 128-bit RAND is computed as

RAND = ((AMF||SQN) ⊕ AK)||MAC,

where, as throughout, ⊕ denotes the bitwise exclusive or operation.
3.6 The XRES and Kc values are computed in the standard way, that is XRES =

A3Ki
(RAND) and Kc = A8Ki

(RAND).

Step 6 is changed to step 6*, as follows (see Fig. 2, in which the dotted block
represents the usual operation of the SIM).
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Fig. 2. Modifications at the SIM

6.1 On receipt of the 128-bit RAND value, the SIM first splits it into two 64-bit
strings X and MAC*, where X||MAC* = RAND.

6.2 A 64-bit decrypting mask AK* is generated using function f5, where

AK* = f5Ka
(MAC*).

6.3 A 16-bit string AMF* and a 48-bit string SQN* are computed as:

AMF*||SQN* = X ⊕ AK*.

6.4 A 64-bit tag XMAC is computed as:

XMAC = f1Ka
(AMF*||SQN*).

6.5 The recovered sequence number SQN* is compared with the SIM’s stored
counter value and XMAC is compared with MAC*:
– if SQN* is greater than the current counter value and XMAC = MAC*,

then:
• the network is deemed to be successfully authenticated;
• the SIM’s counter value is updated to equal SQN*; and
• SRES and Kc are computed as specified in the current step 6;

– if either of the above checks fail then:
• network authentication is deemed to have failed;
• the SIM’s counter value is unchanged; and
• SRES and Kc are set to random values.

It should be clear that, in step 6*, AK*, AMF*, MAC* and SQN* should
respectively equal the AK, AMF, MAC and SQN values originally computed by
the AuC in step 3*.
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4.4 Design Rationale

The composition of the RAND value in the above scheme has been made as
similar as possible to the 128-bit value AUTN used to provide server-to-UE
authentication in the 3G AKA protocol. This is for two main reasons. Firstly,
as stated above, by adopting this approach it is hoped that implementation
of, and migration to, this new scheme will be made as simple as possible for
network operators. Secondly, the 3G AKA protocol is widely trusted to provide
authentication, and it is hoped that trust in the novel scheme will be maximised
by adopting the same approach.

The only differences between the 3G AUTN and the above construction of
RAND are relatively minor, and are as follows.

– In 3G, the AK value is computed as a function of the RAND, whereas here
it is necessarily only computed as a function of the last 64 bits of RAND.
However, these last 64 bits are computed as a function of data which changes
for every authentication triple, and hence the AK should still do an effective
job of concealing the content it is used to mask.

– In 3G the AK is only 48 bits long, and is only used to encrypt (mask) the SQN.
Here we use it to mask the SQN and the AMF, to ensure that a ‘new style’
RAND is indistinguishable from an ‘old style’ randomly generated RAND to
any party without the key Ka.

– In 3G, the MAC is computed as a function of the RAND, SQN and AMF,
whereas in the above scheme it is computed only as a function of SQN and
AMF, again for obvious reasons. This is the only significant difference from
the perspective of authenticating the network to a UE, but we argue below in
Sect. 6.2 that this change does not affect the security of the protocol.

The AUTN checking process proposed here and that used in 3G are essentially
the same.

One other issue that merits mention is the fact that it is proposed that the
SIM outputs random values if authentication fails. It is necessary for the SIM to
output values of some kind, since this is part of the existing SIM-ME protocol.
That is, placeholder values are required. It is important for reasons discussed
below that the SIM should not output the correct session key Kc. The only
other ‘obvious’ placeholder values would be to use fixed strings, but the use of
random values seems less likely to be obvious if these values are sent across the
network (in the case of the SRES value) or used for encryption purposes (for
Kc). There may be advantages in not revealing to a casual eavesdropper the fact
that authentication has failed.

5 Using the Authentication Results

In the previous section we showed how the SIM can authenticate the network;
that is, as a result of step 6*, the SIM will know whether or not the RAND
genuinely originates from the AuC and is fresh. However, we did not describe
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any way for the ME to know whether authentication has failed or succeeded—
indeed, the ME will not understand the concept, as we are assuming it is a
‘standard’ GSM device.

Fig. 3. SIM-ME interactions to drop the established connection

We propose that the proactive SIM feature described in Sect. 2.4 be used to
achieve the desired objective. That is, in the event of a network authentication
failure, when sending the SRES and Kc (in this case random) values back to
the ME, the SIM should signal to the phone that it has information to send.
When, as a result, the ME sends the FETCH command to the SIM, the SIM
should respond with the GET CHANNEL STATUS command to learn about
the established channels in the present connection. Upon receiving the chan-
nel information in the TERMINAL RESPONSE command, the SIM uses the
response status byte in its response to request the ME to send a further FETCH
command. Once it receives the FETCH command, the SIM responds with a
CLOSE CHANNEL command, specifying the channel information it received
from the ME in response to its previous CHANNEL STATUS command. The
interactions between a SIM and an ME are summarised in Fig. 3. The STK com-
mands issued by the SIM should cause the phone to drop the connection, and
(hopefully) prevent any attempted use of the SRES or key Kc. The values 90
and 91, shown in Fig. 3, represent the value of the status byte sent by the SIM
in response to the previous command, where the value 90 means OK, and the
value 91 instructs the ME to issue a FETCH command to retrieve data from
the SIM. The ‘length’ with the status byte 91 indicates the length of the data
in bytes which the SIM wants to send.
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6 Analysis

6.1 Deployment Issues

We next consider certain practical issues that may arise when using the scheme
proposed in Sect. 4.3.

It seems that at least some GSM networks issue authentication triples in
batches (see Sect. 3.3.1.1 of GSM 03.20 [10]), thereby reducing the inter-network
communications overhead. Currently, the order in which GSM authentication
triples are used does not matter. However, under the scheme described above,
triples must be used in ascending order of SQN. This may seem problematic;
however, since the requirement to use authentication datasets in the correct
order already applies to the corresponding 5-tuples used in 3G, serving networks
will almost certainly already be equipped to do this.

In existing GSM networks it is possible, although prohibited by the technical
specifications [10], for serving networks to ‘re-use’ authentication triples, i.e. to
send the same RAND value to a UE on multiple occasions. This will no longer
work with the new scheme, since the SIM will detect re-use of a RAND value.
Arguably this is good, since re-use of RAND values is highly insecure: such
behaviour would allow the interceptor of a RAND/SRES pair to impersonate a
valid UE and perhaps steal service at that UE’s expense, an attack that would
be particularly effective in networks not enabling encryption.

Finally note that, in order to fully implement the scheme as described in
Sect. 4, MEs need to support ‘class e’ STK commands, although, as discussed
above, this proportion seems likely to be very high. It is not clear what proportion
of mobile phones in current use support those STK commands.

6.2 Security

We divide our security discussion into three parts: confidentiality and privacy
issues, authentication of network to SIM, and authentication of SIM to network.

Confidentiality and Privacy Issues. In ‘standard’ GSM the RAND value
is randomly selected, and so does not reveal anything about the identity of the
phone to which it is sent. In the scheme proposed in Sect. 4.3, the RAND is a
function of a SIM-specific key as well as a potentially SIM-specific SQN value.
However, the SQN is sent encrypted, and, assuming the functions f1 and f5
are well-designed, an interceptor will not be able to distinguish an intercepted
RAND computed according to the new scheme from a random value. Thus the
scheme does not introduce a new threat to identity confidentiality.

The new scheme does not change the way the data confidentiality key Kc is
generated, so the strength of data confidentiality is not affected.

Network-to-SIM Authentication. The novel protocol for network-to-SIM
authentication bears strong similarities to the corresponding protocol for 3G.
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It also conforms to the one-pass unilateral authentication mechanism specified
in clause 5.1.1 of 9798-4 [15,17]. All the protocols in this standard have been
formally analysed (and shown to be secure) by Basin et al. [3]. Whilst these
arguments do not provide a completely watertight argument for the protocol’s
security, it is clearly a significant improvement over no authentication at all.

An interesting side observation deriving from the novel scheme is that the 3G
and 4G AKA protocols appear to be overly complex. The randomly generated
RAND value sent from the network to the SIM, which is used to authenticate the
response from the SIM to the network, is actually unnecessary, and the AUTN
value could be used in exactly the same way as the RAND is currently. Whilst
such a change is not possible in practice, it would have avoided the need for the
AuC to generate random values and saved the need to send 16 bytes in the AKA
protocol.

It is interesting to speculate why this design redundancy is present. It seems
possible that the network-to-SIM authentication was added as a completely
separate protocol to complement the GSM-type SIM-to-network authentication
mechanism, and no-one thought how the two mechanisms could be combined
and simplified (as in the mechanism we propose).

SIM-to-Network Authentication. The novel scheme does not affect how the
existing SIM-to-network authentication protocol operates, except that a random
RAND is replaced by one which is a cryptographic function of a sequence num-
ber. The new-style RAND remains unpredictable to anyone not equipped with
the key Ka, and is deterministically guaranteed to be non-repeating (a property
that only holds in a probabilistic way for a random RAND). To see why the
RAND is non-repeating, suppose two separate RAND values sent to the same
USIM incorporate the same MAC values (as necessary if they are to be the
same). It follows that the AK values used to mask the SQNs embedded in the
RAND values will also be the same and thus, since the SQN values themselves
will be different, the two RAND values will also differ. That is, it possesses pre-
cisely the qualities required by the existing protocol, and hence the security of
SIM-to-network authentication is unaffected.

6.3 Impact on Known Attacks

We conclude our analysis of the protocol by considering how it affects possible
attacks on GSM networks.

Fake Network Attacks. As discussed in Sect. 2.3, if a phone joins a fake GSM
serving network, then this fake network can send any RAND value it likes as
part of the AKA protocol, and the UE will complete the process successfully. If
the network does not enable encryption, then communications between the UE
and the network will work correctly, which could enable the network to act as an
eavesdropping man-in-the-middle by routing calls from the captured UE via a
genuine network. This will no longer be true if the new scheme is implemented,
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since the SIM will instruct the ME to drop the connection when supplied with
a non-genuine RAND value.

Of course, it may be possible for a fake network to avoid the AKA protocol
altogether, and simply start communication with a newly attached UE. Whether
MEs will accept unauthenticated communication is currently not clear to the
authors.

Barkan-Biham-Keller Attacks. We next consider a particular type of fake
network attack, namely the Barkan-Biham-Keller attack outlined in Sect. 2.3. As
described there, the attack requires the re-sending of an ‘old’ RAND to a UE.
The new scheme will clearly prevent such an attack, i.e. the Barkan-Biham-Keller
attack will be prevented, at least in most practical scenarios.

7 Relationship to the Prior Art

This is by no means the first practical proposal for enhancing GSM to incorporate
mutual authentication. Indeed, the 3G AKA protocol, discussed widely in this
paper, can be regarded as doing exactly that. Although several 3GPP TSG
documents [7,8] proposed the introduction of network authentication into the
GSM network, none were adopted, presumably because of cost/feasibility issues.
The Ericsson proposal [8] suggested transferring authentication responsibility
to the terminal by implementing the core of the UMTS AKA protocol entirely
in software, which in turn raised other security threats. Other proposals have
been made, including by Kumar et al., [19]. However, all previous proposals
are completely impractical in that they would require replacing all the GSM
infrastructure. Such a major change to an existing very widely deployed scheme
is simply not going to happen.

The most similar proposals to that given here are some of the other schemes
usingRANDhijacking, summarised in Sect. 3. In particular, van denBroek et al. [4]
propose a similar structure for a hijacked GSM RAND, in their case including a
sequence number, a new temporary identity for the SIM, and a MAC, all encrypted
in an unspecified way. However, their objective is not to provide authentication of
the network to the SIM, but to provide a way to reliably transport new identities
from the AuC to the SIM.

8 Concluding Remarks

We have proposed a method for enhancing the GSM AKA protocol to provide
authentication of the network to the UE, complementing the UE-to-network
authentication already provided. This provides protection against some of the
most serious threats to the security of GSM networks. This is achieved in a way
which leaves the existing serving network infrastructure unchanged, and also
does not require any changes to existing MEs (mobile phones). That is, unlike
previous proposals of this general type, it is practically realisable.
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A number of practical questions remain to be answered, including the pro-
portion of MEs supporting ‘class e’ STK commands, the behaviour of MEs in
networks which never perform the AKA protocol, and whether serving networks
can be relied upon to use GSM authentication triples in the intended order.
Discovering answers to these questions remains as future work.
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9798–4: 1999, Information technology — Security techniques— Entity authentica-
tion — Part 4: Mechanisms using a cryptographiccheck function 2nd (edn.) (1999)

16. International Organization for Standardization: ISO/IEC 7816–3;
Identificationcards—Integrated circuit cards; Part 3: Cards with contacts—
Electricalinterface and transmission protocols, November 2006

17. International Organization for Standardization, Genève, Switzerland:ISO/IEC
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Abstract. When installing or executing an app on a smartphone, we
grant it access to part of our (possibly confidential) data stored in the
device. Traditional information-flow analyses aim to detect whether such
information is leaked by the app to the external (untrusted) environment.
The static analyser we present in this paper goes one step further. Its
aim is to trace not only if information is possibly leaked (as this is almost
always the case), but also how relevant such a leakage might become, as
an under- and over-approximation of the actual degree of values degra-
dation. The analysis captures both explicit dependences and implicit
dependences, in an integrated approach. The analyser is built within the
Abstract Interpretation framework on top of our previous work on data-
centric semantics for verification of privacy policy compliance by mobile
applications. Results of the experimental analysis on significant samples
of the DroidBench library are also discussed.

1 Introduction

Mobile applications have access to a large variety of confidential information like
geographical data, and user identifiers (e.g., IMEI and phone number). Often the
access to this sensitive data is essential for the functionality of the mobile app: a
navigation system needs access to the current position of the user, while a photo
editor accesses the picture gallery of the user. In addition, the business model
might exploit this confidential information for contextual advertisement. On the
other hand, a malicious app might exploit confidential information to capture
sensitive data. For instance, the user might be tracked by recording and leaking
the location and identifier of the mobile device.

The current Android model guards the access to sensitive data through per-
missions. For instance, an app should obtain the ACCESS FINE LOCATION permis-
sion in order to access precise geographical information. Therefore, each Android
app has to list the permissions it needs in the manifest. The user is then asked to
accept this list before installing the app or during the first execution of the app.
c© Springer International Publishing AG 2016
G. Barthe et al. (Eds.): STM 2016, LNCS 9871, pp. 32–46, 2016.
DOI: 10.1007/978-3-319-46598-2 3
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However, this model allows an app to get only full or no access to a resource,
and it does not take into account how the resource is accessed, and the infor-
mation manipulated. In particular, the application might degrade the confiden-
tial information before leaking it. For instance, an app performing contextual
advertisement exposing to the advertisement engine only the zip code of the
user (instead of the full location) together with the user identifier. Degradation-
unaware analysis would conservatively consider that the full location could be
leaked, and the user could be precisely tracked.

Therefore, degradation-awareness is crucial to precisely infer what kind of and
how much sensitive information is accessed, manipulated, and possibly leaked
in a mobile app. In this scenario, we introduce a novel degradation-aware static
analysis based on the abstract interpretation framework. Our approach tracks
both explicit and implicit flows of information as well as the degradation levels
of operators applied to the confidential data. We implemented our system in a
prototype and applied to some representative examples taken from the Droid-
Bench test suite [19]. Our experimental results show the practical interest of our
solution.

The rest of the paper is structured as follows. In the rest of this Section, we
introduce two motivating examples. Section 2 discusses the related work, while
Sect. 3 formalizes the language, and the concrete and abstract semantics of our
approach. The architecture of our tool is then described in Sects. 4 and 5 presents
the experimental results. Finally, Sect. 6 concludes.

1.1 Motivating Examples

Consider the motivating example in Fig. 1, a simplified version of the
ImplicitFlow1 test case from the DroidBench application set [19], an open
source standard benchmark suite for information flow analyses of Android apps.
This set has been created and maintained by the Secure Software Engineering
Group of the Technische Universität Darmstadt. This program reads the device
identifier (IMEI), and leaks it after some obfuscation steps. Obfuscation is per-
formed by applying functions obfuscateIMEI and copyIMEI. Both the functions
contain loops that are using the data derived from the IMEI as condition. This
generates implicit flows which partially reveal confidential information about
the original IMEI. Furthermore, it is interesting to notice that the functions and
operators applied to the IMEI in the two methods are obfuscating it in different
way, thus releasing implicitly different quantities of information.

In Fig. 2 another motivating example is shown. The program reads the IMEI
and a user password. Then it hashes the password and it uses it as key for the
encryption of the IMEI. Finally, the encrypted IMEI is explicitly released. In
this example we can notice that, even if the program is leaking the password
and the IMEI, it would not be possible to extract any sensitive information from
the released values. Indeed the obfuscation steps performed through the hash
and the encrypt operators make the reconstruction of the original values from
the leaked ones hardly feasible.
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Fig. 1. ImplicitFlow1

Fig. 2. ObfuscatedFlow
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Both examples show the need of a sound and precise analysis able to track
(i) implicit flows and (ii) how the confidential information is obfuscated, by
collecting the operators and functions that are applied to the confidential datum.

2 Related Works

Static [5,21] and dynamic [12] taint analyses have been deeply investigated to
enforce integrity and confidentiality properties. The main idea of this approach
is to check if information coming from a source (e.g., the input of the user or the
method providing the IMEI of the device) flows into a sink (e.g., the execution of
a SQL query or an internet connection) without being sanitized (e.g., removing
or modifying special characters or encrypting it). Taint analysis has been widely
applied to Android app as well. Flowdroid [1] models precisely the Android app
lifecycle, and it performs a precise static taint analysis to discover leakages of
information. Taintdroid [12] is instead a precise dynamic taint analysis with a low
overhead. Amandroid [24] builds up a precise interprocedural call graph and data
dependence graph, and it provides a framework to develop security analyses for
Android apps. However, it can detect only explicit flows, and therefore it is not
expressive enough to support our approach. Similarly, DroidSafe [14] proposes
an accurate static information flow analysis, and HornDroid [6] introduces a
fast and precise java bytecode analysis, but they do not track implicit flows.
Taint analysis can track both implicit and explicit information flows, but it
propagates only one bit of information (tainted or not). Instead, our approach
tracks semantic information on how confidential data is processed and degraded.
Implicit flows have been treated in [2,7,15,23], but all these works are related
to browsers vulnerabilities and focus on Java Script, while we apply the implicit
flow notion to the Android environment. Instead, [26] tracks implicit flows on
Java programs, but it does not consider degradation operators.

Various approaches have extended standard taint analysis to track more pre-
cise information for mobile software. MorphDroid [13] formalizes and implements
a precise semantic analysis that infers what specific parts of confidential informa-
tion are leaked (e.g., the zip code of the current location). However, it requires
to manually define the semantics of degradation methods as well as tailored rep-
resentation of each information of interest (e.g., IMEIs and locations), while our
approach is agnostic on the type of information we deal with. BayesDroid [22]
dynamically detects information leaks through Bayesian reasoning, that is, by
comparing confidential data with leaked values. If the similarity among these
values is above a given threshold, then BayesDroid infers that confidential data
is leaked. While this approach is quite more efficient than existing taint track-
ing, it does not track how confidential information is degraded. Another dynamic
approach is represented by AppIntent [25], a tool that records all GUI events
and asks a security analyst if the data computed through a sequence of GUI
events can be leaked.

A different approach was studied by Quantitative Information Flow [17].
Instead of tracking taints, this approach is aimed at inferring the quantity of
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information leaked by a program. On the one hand, we share with this field of
research the belief that is crucial, especially for mobile applications, to track
precisely the amount of information that is leaked. On the other hand, our
approach targets the sequence of degradation operations applied to confidential
data rather than an estimation of the quantity carried on by a value.

An orthogonal field of research has been the development of security oriented
specification languages [20] to cover a large variety of aspects (e.g., access con-
trol). Some of these languages like [11] were focused on confidentiality properties.
However, these languages do not take into account how values are transformed
and degraded, while this is the main focus of our work.

In our previous work [3], we introduced an information flow analysis that
tracked the bit (i.e., quantity) of confidential information contained by each
variable in a program. Instead, in this work we take a rather different approach
by collecting the degradation operators (rather than a precise quantity) applied
to the information stored in each variable. In this way, we overcome several
limits of our previous solution, and in particular we track the implicit flow of
strict equalities comparisons.

3 Concrete and Abstract Semantics

3.1 Syntax

As said in the Introduction, the target of our analyser are Android applica-
tions. For the sake of clarity, we will introduce our approach by restricting
the view on a basic imperative language, supporting arithmetic, boolean and
textual expressions, and arrays. Following [8], the formalization is focused on
three types of data: strings (s ∈ S), integers (n ∈ Z) and Booleans (b ∈ B).
String, integer, and Boolean expressions are respectively denoted by sexp, nexp,
and bexp. � is used to represent (possibly sensitive) data-store entries, and
lexp denotes label expressions. For instance, string expressions are defined by:
sexp ::=s | sexp1 ◦ sexp2 | enc(sexp, k) | pre(sexp, k) | hash(sexp) | read(lexp),
where ◦ represents concatenation, enc the encryption of a string with a key k, pre
the prefix substring of sexp of length k, hash the computation of the hash value,
and read the function that returns the value in the data-store that corresponds
to the given label.

3.2 Domain

By adexp we denote an atomic data expression that tracks the explicit and
implicit data sources of a specific expression. Formally, an atomic data expression
adexp is a set of elements 〈�, Ldir,Ddir, Limp,Dimp〉 where:

– Lab is the (finite) set of labels corresponding to possibly sensitive information
sources stored in the device;

– � ∈ Lab;
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– Ldir = {(opj , �′
j) : j ∈ J}, says that the datum corresponding to label � has

been combined with data corresponding to labels �′
j through operators opj to

get the actual value of the expression.
– Ddir = {(opj , vj) : j ∈ J} says that the actual value of the expression is

obtained from the datum corresponding to label � by applying the operator
opj with values belonging to the set vj .

– Limp = {(opj , �′
j) : j ∈ J}, says that the actual value of the expression

implicitly depends on the datum corresponding to label � combined with
data corresponding to labels �′

j through the operator opj .
– Dimp = {(opj , vj) : j ∈ J} says that the actual value of the expression

implicitly depends on the datum corresponding to label � by applying the
operator opj with values belonging to the set vj .

The set of atomic data expressions is defined by: D = {〈�i, Li
dir,D

i
dir,

Li
imp,D

i
imp〉 : i ∈ I ⊆ N, �i ∈ Lab, Li

k ⊆ ℘(Op × Lab),Di
k ⊆ ℘(Op × V)}, where

Lab is the set of labels, and Op is the set of operators, and V contains sets of
uniform values (integer intervals, sets of string, etc.). For � ∈ Lab, we denote by
�̂ the (constant) value stored in �.

An environment relates variables to their values as well as to the set of
atomic data expressions. Formally, Σ = Φ × Ψ , where (i) Φ : Var −→ (Z ∪ S ∪
{true, false}) is the usual environment that tracks value information, and (ii) Ψ :
Var −→ ℘(D) maps local variables in Var to a set {〈�i, Li

dir,D
i
dir, L

i
imp,D

i
imp〉 :

i ∈ I}. The special symbol � represents data coming from the user input and
from the constants of the program.

Observe that the definition above refines [3], by introducing the explicit and
implicit degradation sets that allow to keep track of the values the operators
combine with the labels in Lab.

3.3 Concrete Semantics

We denote by SN : Nexp × Σ → Z, SS : Sexp × Σ → S, and SB : Bexp ×
Σ → {true, false} the standard concrete evaluations of numerical, string, and
Boolean expressions. In addition, SL : Lexp × Σ → Lab returns a data label
given a label expression. An array c of length n is represented by n+1 variables:
clength, c[0], . . . c[n−1] where clength stores the value of the length of the array c.

The semantics of expressions on atomic data SA : sexp × Σ → S × ℘(D) is
described in Table 1, for some basic unary and binary operators (like array selec-
tion, encryption enc and string prefix pre operators). Similar rules for numerical
and boolean expressions are omitted here for the sake of space. Observe that the
only new implicit flow is introduced when evaluating an array element, as the
expression yielding the index may carry information that implicitly flows when
accessing the corresponding array element.

The operator 	 is defined on the degradation elements as follows: D1 	D2 =
{(op, S1 ∪ S2) : (op, S1) ∈ D1, (op, S2) ∈ D2}.

The operator 
 allows to inherit implicit dependences. Let A = (a,
{〈�1i , L1i

dir,D
1i
dir, L1i

imp,D
1i
imp : i ∈ I}〉) and B = (b, {〈�2j , L2j

dir,D
2j
dir, L

2j
imp,D

2j
imp〉 :
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j ∈ J}). A 
 B captures the fact that the expression represented by A implicitly
reveals data contained in the expression represented by B. Formally, A 
 B =
(a, {〈�1i , L1i

dir,D
1i
dir,

⋃
j∈J(L2j

dir∪L2j
imp)∪L1i

imp,
⊎

j∈J(D2j
dir	D2j

imp)	D1i
imp〉 : i ∈ I}.

Given a statement c, we denote by Def(c) the set of variable that are assigned
in the statement c.

The (concrete) semantics of statements is depicted in (Fig. 3). Observe that
implicit flows are introduced in correspondence of if and while statements and
arrays (Fig. 3).

Table 1. Semantics of textual expressions on atomic data

SA[[s]](v, a) = (SS[[s]](v), ∅, ∅, ∅, )
SA[[n]](v, a) = (SN [[n]](v), ∅, ∅, ∅, )
SA[[x]](v,a) = (v(x), a(x))

SA[[read(lexp)]](v, a) = let = SL[[lexp]](v, a) in (ˆ ∅, ∅, ∅, )
SA[[ c[nexp] ]](v, a) = let (n, d) = SA[[nexp]](v, a) in (v(c[n]), a(c[n]) d)

SA[[enc(sexp, n)]](v, a) = let (t, i, L
i
dir, D

i
dir , L

i
imp, D

i
imp : i ∈ I}) = SA[[sexp]](v, a) in

(enc(t, n),

i, L
i
dir ∪ {( i)}, Di

dir (enc, {n})}, Li
imp, D

i
imp : i ∈ I})

SA[[sexp1 ◦ sexp2 ]](v, a) = let (t1, 1
i , L

1i
dir, D

1i
dir, L

1i
imp, D

1i
imp ) : i ∈ I}) = SA[[sexp1]](v, a) and

let (t2, 2
j , L

2j
dir, D

2j
dir, L

2j
imp, D

2j
imp ) : j ∈ J}) = SA[[sexp2]](v, a) in

(t1 ◦ t2,

i∈I,j∈J ( 1
i , L

1i
dir ∪ {(◦ 2

j)}, D1i
dir (◦, {t2})}, L1i

imp, D
1i
imp)

2
j , L

2j
dir ∪ {(◦ 1

i )}, D2j
dir (◦, {t1})}, L2j

imp, D
2j
imp) )

SA[[pre(sexp, n)]](v, a) = let (t, i, L
i
dir, D

i
dir , L

i
imp, D

i
imp : i ∈ I}) = SA[[sexp]](v, a) in

(pre(t, n),

i, L
i
dir ∪ {( i)}, Di

dir (pre, {n})}, Li
imp, D

i
imp : i ∈ I})

Fig. 3. Concrete semantics of statements

Example 1. Consider the following program:

(1) x = read(�);
(2) input(y);
(3) if (x < y){
(4) x = x + y; }
(5) z = x + 1;
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By applying the rules above, assuming that �̂ = 3 and that the input value
assigned to y is 4, we get:

x(1) �→ (3, {〈�, ∅, ∅, ∅, ∅〉})
y(2) �→ (4, {〈�, ∅, ∅, ∅, ∅〉})

(x < y)(3) �→ (true, {〈�, {(<, �)}, {(<, {4})}, ∅, ∅)〉, 〈�, {(<, �)}, {(<, {3})}, ∅, ∅)〉}
(x + y)(4) �→ (7, {〈�, {(+, �)}, {(+, {4})}, ∅, ∅〉, {〈�, {(+, �)}, {(+, {3})}, ∅, ∅〉}

z(5) �→ (8, {〈�, {(+, �)}, {(+, {1, 4})}, {(<, �), (<, �)}, {(<, {3, 4})}〉,
〈�, {(+, �)}, {(+, {1, 3})}, {(<, �), (<, �)}, {(<, {3, 4})}〉}

3.4 Abstract Semantics

By following the Abstract Interpretation framework, in order to lift the concrete
semantics to an abstract semantics, suitable abstractions of the domains of con-
crete values should be given, as well as operators on such abstractions that safely
over-approximate the effects of the corresponding concrete ones. In our actual
implementation, numerical values are abstracted in the lattice of Intervals [18],
while textual values are abstracted by the Prefix domain [9,10]. The abstract
semantics of expressions and statements strictly follows the concrete one, with
the usual exceptions: (1) in the evaluation of the conditional and iterative state-
ments the least upper bound operator is applied when the truth value of the
conditional expression cannot be inferred, and (2) a threshold widening opera-
tor is applied on intervals when evaluating while loops to guarantee termination
of the analysis, as the domain of intervals does not satisfy the ascending chain
condition.

The least upper bound operator of abstract atomic data is  [8]. Abstraction
and concretization functions are inherited from [8]. The join operator is used to
define the least upper bound of abstract values (numerical, boolean and string).
The abstract semantics of statements are depicted in (Fig. 4). For simplicity,
the abstract semantics of expressions are not explicitly described, since they
corresponds to the concrete ones lifted to the abstract environment. Only the
abstract semantic for the array get is defined here:

Sa
A[[ c[nexp] ]](va, aa) = let (na, da) = SA[[nexp]](va, aa) in(⊔

i va(c[i]),
(⊔

i aa(c[i])
) � da

) | i ∈ γ(na) ∧ i ∈ [0, . . . , clength]

Given an abstract element (ã, {〈�i, L̃i
dir, D̃

i
dir, L̃i

imp, D̃
i
imp〉 : i ∈ I}), it repre-

sents concrete expressions whose value is represented by ã, and that may contain
fingerprints of values stored in �i. An over-approximation of the operations and
values under which such (direct or implicit) fingerprints may be hidden in that
value are collected in the last four components.

Example 2. Consider again the program of Example 1. Assume that the value
of � is bounded in the interval [2, 4], and that the input value assigned to y is
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Fig. 4. Abstract semantics of statements

bounded by the interval [3, 5]. By applying the abstract semantics rules we get:

x(1) �→ ([2, 4], {〈�, ∅, ∅, ∅, ∅〉})
y(2) �→ ([3, 5], {〈�, ∅, ∅, ∅, ∅〉})

(x < y)(3) �→ (
, {〈�, {(<, �)}, {(<, [3, 5])}, ∅, ∅)〉, 〈�, {(<, �)}, {(<, [2, 4])}, ∅, ∅)〉}
(x + y)(4) �→ ([5, 9], {〈�, {(+, �)}, {(+, [3, 5])}, ∅, ∅〉, {〈�, {(+, �)}, {(+, [2, 4])}, ∅, ∅〉}

z(5) �→ ([3, 10], {〈�, {(+, �)}, {+, [1, 5]})}, {(<, �), (<, �)}, {(<, [3, 5]})}〉,
〈�, {(+, �)}, {(+, [1, 4])}, {(<, �), (<, �)}, {(<, [3, 5])}〉}.

Observe that the value of the expression (x < y)(3) is the top element of
the boolean lattice {⊥, true, false,�} representing the fact that the abstraction
does not allow to predict the truth value of such expression. Therefore, while
computing z(5) both the branches of the conditional statement will be considered.

If we look at the abstract evaluation of z(5), we can say that under the
mentioned initial conditions:

– the value of z at point (5) will definitely belong to the interval [3, 10];
– the value of z may depend on either the value stored in �, or from program

constants, or from input values, but no other confidential information stored
in �j �= � may have affected the value of z, neither directly nor by implicit
information flow;

– the only operator that might have been used to get the value of z out of � is
the numerical addition, with arguments that were never out of the interval
[1, 5];

– the possible implicit information flow from � to the value of z can be only
due to a strict ordering comparison with values in the interval [3, 5].

4 The DAPA Tool

We developed DAPA, a static analysis tool based on the abstract interpretation
framework. We adopted the Scala language for the development of the tool. Our
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tool is able to analyse both explicit and implicit flows and obtain a set of Degra-
dation Elements from an Android app source code (translated in our language).
It also computes results of functions and expressions in the form of abstract val-
ues, in order to collect them through the Degradation Elements. One of the main
strength of the analyser is the capability to collect conditions of If and While
constructs as implicit statements. This allows to propagate the implicit informa-
tion flow throughout the analysis and to check whether confidential labels are
present in the form of implicit information in sink points.

The analyser is conceived in such a way to be modular and easily extensible
in case of future improvements. We adopted Scala traits to mask the underlying
implementation of the atomic data expression and lattices. This means that
it is possible to modify the used abstraction by just providing an alternative
implementation of the abstract types to the analyser, ensuring the modularity of
the whole project. Standard join, meet and widening methods from the abstract
interpretation framework are provided. In addition to these methods, a union
function for atomic data expression is introduced, which allows to collect different
behaviours for the over and under approximation. It performs the meet for the
under approximation and the join for the over approximation of the elements
of the atomic data expression. Operators present in statements are collected
through an update function, which ensures the insertion of the operator in the
atomic data expressions of all the involved labels. This method implements the
	 operator defined in Sect. 3. The 
 operator is also implemented in order to
produce implicit flows.

Three types of basic abstract values are implemented: boolean, numerical and
string, following the ones defined in the theory and adopting solutions described
in [4,16,18]. Also abstract values implementation is hidden through the use of
common interface, ensuring modularity.

The output of DAPA consists in a list of adexp as defined in Sect. 3. This
list of adexp highlights the degradation applied to every confidential label in the
analysed app, by listing all the functions and operators applied to it, along with
other labels involved as parameters. Specific information about the implicit flows
will also appear in the output. A detailed explanation of the output is provided
in Sect. 5.

Multiplicity of the Degradation Element. In the tool the Degradation
Element is extended with a multiplicity notion, in order to associate the times
it appears in a loop, allowing to track the number of repetitions of the element.
These ones are tracked through an abstract interval, allowing proper handling
during loop widening. This will contain the abstract number of times that such
operator has been evaluated, giving a useful information to be associated to the
degradation of the current label. This allows to abstract the operators present
inside the scope of the loop. We also introduce information regarding position
in the code of the statement in order to have an unambiguous element. The tool
is thus more precise with respect to the semantics.
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Widening of While Loops. While loops are analysed through the use of
widening from the abstract interpretation framework. A threshold (or guard)
can be modified by the user in order to stop loop iterations and start widening
of the remaining ones. The under approximation in the resulting expressions will
contain the smallest possible number of iterations (possibly, no iterations at all).
Instead, the over approximation will be the set of all the possible iterations (the
maximum possible number of iterations) of the loop.

5 Results

In this Section we present a qualitative analysis of the DAPA tool. Quantitative
evaluation has also been made, in order to evaluate performances.

5.1 Motivating Examples

Results of the analysis of the motivating example ImplicitFlow1, introduced in
Sect. 1, are here described. A special star label is used to collect every degrada-
tion that does not belong to any labels. The IMEI 0 label is the only confidential
label used in this example. It contains the IMEI value associated to a device.

Figure 5 contains the output of the analysis of ImplicitFlow1. The upper
part of the figure corresponds to the first release of the IMEI with method
writeToLog, while the lower one corresponds to the second release. The two
calls to this methods correspond to two different obfuscation methods usage,
the obfuscateIMEI and the copyIMEI respectively. These two methods have
different obfuscation powers. Our tool was able to track these differences by
reporting the usage of different operators.

Fig. 5. ImplicitFlow1 results
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Results are split into two sections, S and D, which in turn are divided into
two parts by a colon, for under and over approximation respectively. The S
part contains the atomic data expression composed by couples (operator, label),
as defined in [3]. This allows to know which are the label that were combined
through the related operator. The D part contains the degradation elements.
It shows the operator, the position in the code, the abstract content and the
number of iterations. Operators are annotated with an index. For instance, in
the line 56 of the motivating example, the condition

idx < len(imeiAsChar)

will degradate IMEI by < 1 of idx, that is in position 1 of the arguments of <.
While idx will be degradated by < 2 of imeiAsChar, but this is not listed in
Fig. 5 since it belongs to the star label. The same holds for the S part. This allows
to obtain an accurate explanation of the obfuscation. The position is composed
of the name of the file, the number of row and the column in the code. Abstract
values are related to the type of the label: numerical values are described through
intervals, contained in square brackets, while strings are contained in braces. In
this example, iterations are interval [1,1], because there were no loops, thus
no repeated elements. The user can in this way know which were the applied
methods and operators used to obfuscate the IMEI.

Please notice that the only existing explicit flow is related to the special
label star (not reported in the figure for the sake of space). This is because
the value returned by the obfuscating methods does not explicitly contains the
IMEI label. On the other hand, this value contains implicit information about
the IMEI label. This is correctly tracked by the DAPA analyser.

Fig. 6. ObfuscatedFlow results

In a similar way, in Fig. 6 the analysis results for the example in Fig. 2 are
presented. Since no implicit flow is produced, only the explicit one is reported.
The atomic data expression part S shows that an hash operator is applied to
the password label. Then this hashed password is used by the encrypt operator
as key to obfuscate the IMEI label.

These examples show that our analysis is able to track every degradation
operation applied to confidential data.
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5.2 Quantitative Evaluation: The DroidBench Test Set

The DAPA analyser has been tested using a set of simple Android-like apps from
the DroidBench application set [19]. Where needed, the original Java code has
been modified in order to be recognised by the analyser, since it still lacks support
for actual libraries and some typical Java elements. Similar considerations must
be taken into account for the Android libraries. The table in Fig. 7 describes
analyser results in terms of time performances and detected leakage (explicit
and implicit). The computer used for tests execution was equipped with an Intel
i5 450M processor and 8 GB of DDR2 RAM.

Fig. 7. DroidBench results

Even if the code in test cases contains some small differences with the original
ones (with the exceptions of ArrayCopy1 and ImplicitFLow2, that were heavily
modified), the DAPA tool was able to discover correctly explicit or implicit leaks
when present.

5.3 Results Discussion

A quantitative test comparison with other existing tools, such as FlowDroid,
DroidSafe, BayesDroid, was not possible. This is because the testing step has
been made on simple basic applications. Nevertheless, the results obtained by
DAPA are richer from a qualitative point of view when comparing to other tools.
This is because we are performing a privacy degradation aware analysis, while
common tools are more focused on pure taint analysis. This means that DAPA
collects all the operations applied to sensible data, when such data are released.
Moreover, when no degradations are applied to the confidential data, DAPA
returns in any case richer results, since it is also capable to track implicit flows.
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6 Conclusions

We introduced a new static analyser for information flow analysis of Android
apps, that captures both explicit and implicit leakage and support degrada-
tion awareness. Our preliminary experimental results show the effectiveness of
this approach, and the modularity of the analyser allows to tune the accuracy
and efficiency of the analysis by plugging in more or less sophisticated abstract
domains.

Future improvements will consist in implementing objects in our language.
A complete move to Java will be considered too, since it will introduce the pos-
sibility to analyse real Android app, without the need of conversions. Moreover,
the evaluation of policies based on confidentiality and obfuscation notions [8],
already captured by the current analyser, should be considered in the future.

Finally, we would also consider to reuse the bit quantity introduced in [3] in
order to define a function able to compute the final exported explicit and implicit
quantity as a result of the degradation. Since the definition of this function would
have required a considerable research effort about operators information release,
it was outside the scope of this work, and we planned it only as possible future
improvement.
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Abstract. The Semantic Web technologies enable Web-scaled data link-
ing between large RDF repositories. However, it happens that organiza-
tions cannot publish their whole datasets but only some subsets of them,
due to ethical, legal or confidentiality considerations. Different user pro-
files may have access to different authorized subsets. In this case, selective
disclosure appears as a promising incentive for linked data. In this paper,
we show that modular, fine-grained and efficient selective disclosure can
be achieved on top of existing RDF stores. We use a data-annotation
approach to enforce access control policies. Our results are grounded on
previously established formal results proposed in [14]. We present an
implementation of our ideas and we show that our solution for selective
disclosure scales, is independent of the user query language, and incurs
reasonable overhead at runtime.

Keywords: RDF · Authorization · Enforcement · Linked Data

1 Introduction

The Linked Data movement [5] (aka Web of Data) is about using the Web
to create typed links between data from different sources. Technically, Linked
Data refers to a set of best practices for publishing and connecting structured
data on the Web in such a way that it is machine-readable, its meaning is
explicitly defined, it is linked to other external data sets, and can in turn be
linked to from external data sets [4]. Linking data distributed across the Web
requires a standard mechanism for specifying the existence and meaning of con-
nections between items described in this data. This mechanism is provided by
the Resource Description Framework (RDF). Multiple datastores that belong to
different thematic domains (government, publications, life sciences, etc.) publish
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their RDF data on the web1. The size of the Web of Data is estimated to about
85 billions of RDF triples (statements) from more than 3400 open data sets2.
One of the challenges of the Linked Data is to encourage businesses and organi-
zations worldwide to publish their RDF data into the linked data global space.
Indeed, the published data may be sensitive, and consequently, data providers
may avoid to release their sensitive information, unless they are certain that the
desired access rights of different accessing entities are enforced properly. Hence
the issue of securing RDF content and ensuring the selective exposure of infor-
mation to different classes of users is becoming all the more important. Several
works have been proposed for controlling access to RDF data [1,6,7,9–11,13].
In [14], we proposed a fine-grained access control model with a declarative lan-
guage for defining authorization policies (we call this model AC4RDF in the rest
of this paper).

Our enforcement framework allows to define multi-subject policies with a
global set of authorizations A. A subset As ⊆ A of authorizations is associated
to each subject S who executes a (SPARQL) query. The subject’s policy is then
enforced by AC4RDF which computes the subgraph corresponding to the triples
accessible by the authenticated subject. We use an annotation based approach
to enforce multi-subject policies: the idea is to materialize every triple’s applica-
ble authorizations of the global policy, into a bitset which is used to annotate
the triple. The base graph G is transformed into a graph GA by annotating
every triple t ∈ G with a bitset representing its set of applicable authorizations
ar(G,A)(t) ⊆ A. The subjects are similarly assigned to a bitset which repre-
sents the set of authorizations assigned to them. When a subject sends a query,
the system evaluates it over the her/his positive subgraph. In Sect. 3 we give
an overview about RDF data model and SPARQL query language. In Sect. 4
we give the semantics of AC4RDF model which are defined using positive sub-
graph from the base graph. In Sect. 5 we propose an enforcement approach of
AC4RDF model in multiple-subject context. We present and prove the correctness
of our encoding approach. In Sect. 6 we give details about the implementation
and experimental results.

2 Related Work

The enforcement techniques can be categorized into three approaches: pre-
processing, post-processing and annotation based.

– The pre-processing approaches enforce the policy before evaluating the query.
For instance, the query rewriting technique consists of reformulating the user
query using the access control policy. The new reformulated query is then
evaluated over the original data source returning the accessible data only.
This technique was used by Costabello et al. [6] and Abel et al. [1].

1 http://lod-cloud.net/.
2 http://stats.lod2.eu.

http://lod-cloud.net/
http://stats.lod2.eu
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– In the post-processing approaches, the query is evaluated over the original
data source. The result of the query is then filtered using the access control
policy to return the accessible data. Reddivari et al. [13] use a post-processing
approach to enforce their models.

– In the annotation based approaches, every triple is annotated with the access
control information. During query evaluation, only the triples annotated
with a permit access are returned to the user. This technique is used by
Papakonstantinou et al. [11], Jain et al. [9], Lopes et al. [10] and Flouris et al. [7].

The advantage of the pre-processing approaches such as query rewriting, is that
the policy enforcer is independent from RDF data. In other words, any updates
on data would not affect the policy enforcement. On the other hand, this tech-
nique fully depends on the query language. Moreover, the query evaluation time
may depend on the policy. The experiments in [1] showed that the query evalua-
tion overhead grows when the number of authorizations grows, in contrast to our
solution which does not depend on the number of authorizations. In the post-
processing approaches, the query response time may be considerably longer since
policies are enforced after all data (allowed and not allowed) have been processed.
The data-annotation approach gives a fast query answering, since the triples are
already annotated with the access information and only the triples with a grant
access can be used to answer the query. On the other hand, any updates in the
data would require the re-computation of annotations.

Some works [11] support incremental re-computation of the annotated triples
after data updates. In this paper, we do not handle data updates and we leave
the incremental re-computation as future work.

In the data-annotation based approaches that hard-code the conflict resolu-
tion strategy [7], annotations are fully dependent on the used strategy so they
need to be recomputed in case of change of the strategy. Our encoding is inde-
pendent of the conflict resolution strategy function which is evaluated at query
time, which means that changing the strategy does not impact the annotations.

As the semantics of an RDF graph are given by its closure, it is important
for an access control model to take into account the implicit knowledge held by
this graph. In the Semantic Web context, the policy authorizations deny or allow
access to triples whether they are implicit or not. In [13] the implicit triples are
checked at query time. Inference is computed during every query evaluation, and
if one of the triples in the query result could be inferred from a denied triple,
then it is not added to the result. Hence the query evaluation may be costly
since there is a need to use the reasoner for every query to compute inferences.
To protect implicit triples, [9,10] and [11] proposed a propagation technique
where the implicit triples are automatically labeled on the basis of the labels
assigned to the triples used for inference. Hence if one of the triples used for
inference is denied, then the inferred triple is also denied. This introduces a new
form of inference anomalies where if a triple is explicit (stored) then it is allowed,
however, if the triple is inferred then it is denied. We illustrate with the following
example.
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Example 1. Let us consider the graph G0 of Fig. 1. Suppose we want to pro-
tect G0 by applying the policy P ={deny access to triples with type :Cancerous,
allow access to all resources which are instance of :Patient}. The triple t9 is
inferred from t2 and t7 using the RDFS subClassOf inheritance rule. With
the propagation approaches which consider inference [9–11], the triple t9 =
(:alice ; rdf : type ;:Patient)} will be denied since it is inferred from denied triples
(t7). Hence the fact that alice is a patient will not be returned in the result even
though the policy clearly allows access to it. Moreover, such a triple could also
have been part of the explicit triples and this could change its accessibility to
the subject even though the graph semantics do not change.

In our model, explicit and implicit triples are handled homogeneously to avoid
this kind of inference anomalies.

3 RDF Data Model

“Graph database models can be defined as those in which data structures for
the schema and instances are modeled as graphs or generalizations of them, and
data manipulation is expressed by graph-oriented operations and type construc-
tors” [2]. The graph data model used in the semantic web is RDF (Resource
Description Framework) [8]. RDF allows decomposition of knowledge in small
portions called triples. A triple has the form “(subject ; predicate ; object)” built
from pairwise disjoint countably infinite sets I, B, and L for IRIs (Internation-
alized Resource Identifiers), blank nodes, and literals respectively. The subject
represents the resource for which information is stored and is identified by an
IRI. The predicate is a property or a characteristic of the subject and is iden-
tified by an IRI. The object is the value of the property and is represented by
an IRI of another resource or a literal. In RDF, a resource which does not have
an IRI can be identified using a blank node. Blank nodes are used to represent
these unknown resources, and also used when the relationship between a subject
node and an object node is n-ary (as is the case with collections). For ease of
notation, in RDF, one may define a prefix to represent a namespace, such as
rdf : type where rdf represents the namespace http://www.w3.org/1999/02/
22-rdf-syntax-ns.

Note 1. In this paper, we explicitly write rdf and rdfs when the term is from
the RDF or the RDFS standard vocabulary. However, we do not prefix the other
terms for the sake of simplicity.

For instance the triple (:alice ;:hasTumor ;:breastTumor) states that alice has a
breast tumor. A collection of RDF triples is called an RDF Graph and can be
intuitively understood as a directed labeled graph where resources represent the
nodes and the predicates the arcs as shown by the example RDF graph G0 in
Fig. 1.

Definition 1 (RDF graph). An RDF graph (or simply “graph”, where unam-
biguous) is a finite set of RDF triples.

http://www.w3.org/1999/02/22-rdf-syntax-ns
http://www.w3.org/1999/02/22-rdf-syntax-ns
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Fig. 1. An example of an RDF graph G0

Example 2. Figure 1 depicts a graph G0 constituted by triples t1 to t9, both
pictorially and textually.

We reuse the formal definitions and notation used by Pérez et al. [12].
Throughout this paper, P(E) denotes the finite powerset of a set E and F ⊆ E
denotes a finite subset F of a set E.

3.1 SPARQL

An RDF query language is a formal language used for querying RDF triples
from an RDF store also called triple store. An RDF store is a database specially
designed for storing and retrieving RDF triples. SPARQL (SPARQL Protocol
and RDF Query Language) is a W3C recommendation which has established
itself as the de facto language for querying RDF data. SPARQL borrowed part
of its syntax from the popular and widely adopted SQL (Structured Query Lan-
guage). The main mechanism for computing query results in SPARQL is sub-
graph matching: RDF triples in both the queried RDF data and the query pat-
terns are interpreted as nodes and edges of directed graphs, and the resulting
query graph is matched to the data graph using variables.

Definition 2 (Triple Pattern, Graph Pattern). A term t is either an IRI, a
variable or a literal. Formally t ∈ T = I ∪ V ∪ L. A tuple t ∈ TP = T × T × T is
called a Triple Pattern (TP). A Basic Graph Pattern (BGP), or simply a graph,
is a finite set of triple patterns. Formally, the set of all BGPs is BGP = P(TP).

Given a triple pattern tp ∈ TP, var(tp) is the set of variables occurring in tp.
Similarly, given a basic graph pattern B ∈ BGP, var(B) is the set of variables
occurring in the BGP defined by var(B) = {v | ∃tp ∈ B ∧ v ∈ var(tp)}.
In this paper, we do not make any formal difference between a basic graph
pattern and a graph. When graph patterns are considered as instances stored in
an RDF store, we simply call them graphs.

The evaluation of a graph pattern B on another graph pattern G is given by
mapping the variables of B to the terms of G such that the structure of B is
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preserved. First, we define the substitution mappings as usual. Then, we define
the evaluation of B on G as the set of substitutions that embed B into G.

Definition 3 (Substitution Mappings). A substitution (mapping) η is a partial
function η : V → T. The domain of η, dom(η), is the subset of V where η is
defined. We overload notation and also write η for the partial function η� : T →
T that extends η with the identity on terms. Given two substitutions η1 and η2,
we write η = η1η2 for the substitution η : ?v �→ η2(η1(?v)) when defined.

Given a triple pattern tp = (s ; p ; o) ∈ TP and a substitution η such that
var(tp) ⊆ dom(η), (tp)η is defined as (η(s) ; η(p) ; η(o)). Similarly, given a graph
pattern B ∈ BGP and a substitution η such that var(B) ⊆ dom(η), we extend η
to graph pattern by defining (B)η = {(tp)η | tp ∈ B}.
Definition 4 (BGP Evaluation). Let G ∈ BGP be a graph, and B ∈ BGP a
graph pattern. The evaluation of B over G denoted by �B�G is defined as the
following set of substitution mappings:

�B�G = {η : V → T | dom(η) = var(B) ∧ (B)η ⊆ G}
Example 3. Let B be defined as B = {(?d ;:service ; ?s), (?d ;: treats ; ?p)}. B
returns the doctors, their services and the patients they treat. The evaluation
of B on the example graph G0 of Fig. 1 is �B�G0 = {η}, where η is defined as
η : ?d �→ :bob, ?s �→ :onc and ?p �→ :alice.

Formally, the definition of BGP evaluation captures the semantics of SPARQL
restricted to the conjunctive fragment of SELECT queries that do not use FILTER,
OPT and UNION operators (see [12] for further details).

Another key concept of the Semantic Web is named graphs in which a set of
RDF triples is identified using an IRI forming a quad. This allows to represent
meta-information about RDF data such as provenance information and context.
In order to handle named graphs, SPARQL defines the concept of dataset. A
dataset is a set composed of a distinguished graph called the default graph and
pairs comprising an IRI and an RDF graph constituting named graphs.

Definition 5 (RDF dataset). An RDF dataset is a set:

D = {G0, 〈u1, G1〉, . . . , 〈un, Gn〉}
where Gi ∈ BGP, ui ∈ I, and n ≥ 0. In the dataset, G0 is the default graph, and
the pairs 〈ui, Gi〉 are named graphs, with ui the name of Gi.

4 Access Control Semantics

AC4RDF semantics is defined using authorization policies. An authorization policy
P is defined as a pair P = (A, ch) where A is a set of authorizations and
ch : P(A) → A is a so called (abstract) conflict resolution function that picks
out a unique authorization when several ones are applicable. The semantics of the
access control model are given by means of the positive (authorized) subgraph
G+ obtained by evaluating P on a base RDF graph G.
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4.1 Authorization Semantics

Authorizations are defined using basic SPARQL constructions, namely basic
graph patterns, in order to facilitate the administration of access control and to
include homogeneously authorizations into concrete RDF stores without addi-
tional query mechanisms. In the following definition, effect + (resp. −) stands
for access to be granted (resp. denied).

Definition 6 (Authorization). Let Eff = {+,−} be the set of applicable effects.
Formally, an authorization a = (e, h, b) is a element of Auth = Eff × TP ×
BGP. The component e is called the effect of the authorization a, h and b are
called its head and body respectively. The function effect : Auth→ Eff (resp.,
head : Auth→ TP, body : Auth → BGP) is used to denote the first (resp., second,
third) projection function. The set hb(a) = {head(a)} ∪ body(a) is called the
underlying graph pattern of the authorization a.

The concrete syntax “GRANT/DENY h WHERE b” is used to represent an autho-
rization a = (e, h, b). The GRANT keyword is used when e = + and the DENY
keyword when e = −. Condition WHERE ∅ is elided when b is empty.

Example 4. Consider the set of authorizations shown in Table 1. Authorization
a1 grants access to triples with predicate : hasTumor. Authorization a2 states
that all triples of type :Cancerous are denied. Authorizations a3 and a4 state
that triples with predicate : service and : treats respectively are permitted. Autho-
rization a5 states that triples about admission to the oncology service are specif-
ically denied, whereas the authorization a6 states that such information are
allowed in the general case. a7 grants access to predicates’ domains and a8

denies access to any triple which object is :Cancerous. Finally, authorization a9

denies access to any triple, it is meant to be a default authorization.

Table 1. Example of authorizations

Given an authorization a ∈ Auth and a graph G, we say that a is applicable
to a triple t ∈ G if there exists a substitution θ such that the head of a is
mapped to t and all the conditions expressed in the body of a are satisfied
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as well. In other words, we evaluate the underlying graph pattern hb(a) =
{head(a)} ∪ body(a) against G and we apply all the answers of �hb(a)�G to
head(a) in order to know which t ∈ G the authorization a applies to. In the
concrete system we implemented, this evaluation step is computed using the
mechanisms used to evaluate SPARQL queries. In fact, given an authorization
a, the latter is translated to a SPARQL CONSTRUCT query which is evaluated
over G. The result represents the triples over which a is applicable.

Definition 7 (Applicable Authorizations). Given a finite set of authorizations
A ∈ P(Auth) and a graph G ∈ BGP, the function ar assigns to each triple t ∈ G,
the subset of applicable authorizations from A :

ar(G,A)(t) = {a ∈ A | ∃θ ∈ �hb(a)�G, t = (head(a))θ}
Example 5. Consider the graph G0 shown in Fig. 1 and the set of authorizations
A shown in Table 1. The applicable authorizations on triple t8 are computed to
ar(G0,A)(t8) = {a5,a6,a9}.

The set of triples in a given graph G to which an authorization a is applicable,
is called the scope of a in G.

Definition 8 (Authorization scope). Given a graph G ∈ BGP and an autho-
rization a ∈ Auth, the scope of a in G is defined by the following function
scope ∈ BGP × Auth → BGP:

scope(G)(a) = {t ∈ G | ∃θ ∈ �hb(a)�G, t = (head(a))θ}

Example 6. Consider authorization a8 in Table 1, and the graph G0 in Fig. 1.
The scope of a8 is computed as follows: scope(G0)(a8) = {t1, t7}.

4.2 Policy and Conflict Resolution Function

In the context of access control with both positive (grant) and negative (deny)
authorizations, policies must deal with two issues: inconsistency and incomplete-
ness. Inconsistency occurs when multiple authorizations with different effects
are applicable to the same triple. Incompleteness occurs when triples have no
applicable authorizations. Inconsistency is resolved using a conflict resolution
strategy which selects one authorizations when more than one applies. Incom-
pleteness is resolved using a default strategy which is an effect that is applied
to the triples with no applicable authorizations. In [14], we abstracted from
the details of the concrete resolution strategies by assuming that there exists
a choice function that, given a finite set of possibly conflicting authorizations,
picks a unique one out.

Definition 9 (Authorization Policy). An (authorization) policy P is a pair P =
(A, ch), where A is a finite set of authorizations and ch : P(A) → A is a conflict
resolution function.
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Example 7. An example policy is P = (A, ch) where A is the set of authoriza-
tions in Table 1 and ch is defined as follows. For all non-empty subset B of A,
ch(B) is the first authorization (using syntactical order of Table 1) of A that
appears in B. For B = ∅, ch(∅) = a9.

The semantics of policies are given by composing the functions ar, ch and then
effect in order to compute the authorized subgraph of a given graph.

Definition 10 (Policy Evaluation, Positive Subgraph). Given a policy P =
(A, ch) ∈ Pol and a graph G ∈ BGP, the set of authorized triples that con-
stitutes the positive subgraph of G according to P is defined as follows, writing
G+ when P is clear from the context:

G+
P = {t ∈ G | (effect ◦ ch)(ar(G,A)(t)) = +}

Example 8. Let us consider the policy P = (A, ch) defined in Example 7 and
the graph G0 of Fig. 1. Regarding the triple t8 = (:alice ;:admitted ;:onc),
ar(G0,A)(t8) = {a5,a6,a9}. Since a5 is the first among authorizations in
Table 1 and its effect is −, we deduce that t8 �∈ G0

+
P . By applying a similar

reasoning on all triples in G0, we obtain G0
+
P = {t1, t4, t5, t6}.

5 Policy Enforcement

To enforce AC4RDF model, we use an annotation approach which materializes the
applicable authorizations in an annotated graph denoted by GA. The latter is
computed once and for all at design time. The subjects’ queries are evaluated
over the annotated graph with respect to their assigned authorizations. In the
following, we show how the base graph triples are annotated and how the subjects
queries are evaluated.

5.1 Graph Annotation

From a conceptual point of view, an annotated triple can be represented by
adding a fourth component to a triple hence obtaining a so called quad. From
a physical point of view, the annotation can be stored in the graph name of
the SPARQL dataset (Definition 5). To annotate the base graph, we use the
graph name IRI of the dataset to store a bitset representing the applicable
authorizations of each triple. First we need a bijective function authToBs which
maps a set of authorizations to an IRI representing its bitset. Authorizations
are simply mapped to their position in the syntactical order of authorization
definitions. In other words, given an authorization ai and a set authorizations
AS to be mapped, the i-th bit is set to 1 in the generated bitset if ai ∈ AS .
authToBs−1 is the inverse function of authToBs.

Next we define a function graphOfAuth which takes a set of authorizations
A′ ⊆ A and a graph G as parameters, and returns the subgraph of G containing
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triples which have A′ as applicable authorizations. The function graphOfAuth is
formally defined as follows:

graphOfAuth(A′, G) = {t ∈ G | ar(G,A)(t) = A′}

Example 9. Consider the policy P = (A, ch) defined in Example 7 and the graph
G0 of Fig. 1. authToBs({a1,a9}) = 100000001, graphOfAuth({a1,a9}, G0) =
{t4}.

Now we are ready to define the dataset representing the annotated graph.

Definition 11 (Annotated graph). Given a set of authorizations A and a graph
G, the dataset that represents the annotated graph denoted by GA, is defined by:

GA =
{〈authToBs(A′), graphOfAuth(A′, G)〉 |
A′ ∈ P(A) ∧ graphOfAuth(A′, G) �= ∅}

Definition 11 defines how to annotate the base graph G given a set of autho-
rization. The following Lemma1 ensures that GA forms a partition of the base
graph G.

Lemma 1. Given an annotated graph GA = {〈u1, G1〉, . . . , 〈un, Gn〉}, the fol-
lowing properties hold:

– ∀i, j ∈ 1..n : i �= j =⇒ Gi ∩ Gj = ∅
–

⋃
i∈1..n Gi = G

5.2 Subject’s Query Evaluation

The subject is the entity requesting access to the triple store. The determination
of the objects accessible by the subject could be based on the subject identity,
role or attributes. Given a global set of authorizations A we suppose that the
subset As assigned to the subject is known in advance. The upstream authen-
tication and determination of the authorizations assigned to the subjects is out
of the scope of this paper.

Following Definition 10, given a global policy authorization set A, the posi-
tive subgraph of a subject having As ⊆ A as applicable authorizations, is given
by the following: G+

s = {t ∈ G | (effect ◦ ch)(ar(G,As)(t)) = +}. Since we mate-
rialized the set of applicable authorizations in GA, we need to define the subject’s
positive subgraph from the graph annotation, more precisely from ar(G,A). The
following lemma shows that ar(G,As) can be computed from As and ar(G,A).

Lemma 2. Given a graph G, a set of policy authorizations A and a subset of
subject’s authorizations As, the following holds for any t ∈ G:

As ∩ ar(G,A)(t) = ar(G,As)(t)
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Similarly to the triples, subjects are assigned to bitsets representing autho-
rizations applicable to them. If a subject authorization set is As, then she/he is
assigned a bitset ubs where the i-th bit is set to 1 if ai ∈ As.

Example 10. Given the set of authorizations A in Table 1. Eve is a nurse who
can see information about patients having tumors (a1) and which service they
are admitted to (a6). She is denied anything else (a9). Her assigned bitset is
the bitset 100001001 of Table 2. Dave belongs to the administrative staff, he can
access doctors services assignment (a3) and the patients they treat (a4). He is
denied anything else (a9). His assigned bitset is the bitset 001100001 of Table 2.

Once the graph is annotated, it is made available to the subjects with a filter
function which prunes out the inaccessible triples given the subjects’s autho-
rization set. In other words, the filter function returns the subjects’s positive
subgraph by applying the ch function on the subject’s assigned authorizations
ar(G,As)(t). We showed in Lemma 2 that this subset can be obtained from the
applicable authorizations in GA by computing a bitwise logical and (denoted by
&) between the subject’s and triples’ bitsets.

Definition 12 (Filter function). Given a subject’s bitset ubs and an annotated
graph GA, filter is defined as follows:

filter(GA)(ubs) =
⋃

{Gi | 〈ui, Gi〉 ∈ GA∧
(effect ◦ ch)(authToBs−1(ui & ubs)) = +}

Once the subject’s positive subgraph is computed with filter, the subject’s query
Q is then evaluated over it returning �Q�filter(GA)(ubs) to the subject. The follow-
ing theorem shows that filter function applied to the annotated graph returns
the subject’s positive subgraph3.

Theorem 1. Let A be a set of authorizations, P = (As, ch) be the policy of
subject s and ubs her/his associated bitset. If G is a graph and GA its annotated
version, then filter(GA)(ubs) = G+

s .

Example 11. Let us consider the policy P = (A, ch) of Example 7. Table 2 illus-
trates the annotated graph obtained from G0 shown in Fig. 1, as well as the
two users of Example 10 with their assigned authorizations. The filter function
will compute the positive subgraph of Eve as follows: filter(GA

0 )(100001001) =
{t4, t8}. Similarly, Dave’s positive subgraph equals {t5, t6}.

6 Implementation

Our system is implemented using the Jena Java API on top of the Jena TDB4

(quad) store. Apache Jena is an open source Java framework which provides
3 Proofs are provided at http://liris.cnrs.fr/∼tsayah/STM2016/.
4 https://jena.apache.org/documentation/tdb/.

http://liris.cnrs.fr/~tsayah/STM2016/
https://jena.apache.org/documentation/tdb/
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Table 2. Example of annotated graph and users bitsets

GA
0 ubs &u

u G Eve Dave

100001001 001100001

000000111 {t1} 000000001 000000001

000000001 {t2, t3, t9} 000000001 000000001

100000001 {t4} 100000001 000000001

001000001 {t5} 000000001 001000001

000100001 {t6} 000000001 000100001

010000011 {t7} 000000001 000000001

000011001 {t8} 000001001 000000001

an API to manage RDF data. ARQ5 is a SPARQL query engine for Jena which
allows querying and updating RDF models through the SPARQL standards.
ARQ supports custom aggregation and GROUP BY, FILTER functions and path
queries. Jena TDB is a native RDF store which allows to store and query RDF
quads.

To generate GA, the dataset of annotated triples, we use SPARQL CONSTRUCT
queries to obtain authorizations scopes (see Definition 8). An authorization a is
transformed into Qa = CONSTRUCT head(a) WHERE hb(a). We use an in-memory
hash map in which we store the ids of the triples and the correspondent bitset.
For every authorization ai, a CONSTRUCT query Qai

is run over the raw dataset,
and the result triples are added/updated to the hash map with the bit i set to
1. Once the hash map is computed, it is written into a dataset which represents
GA. Note that we could have used the dataset directly instead of a hash map,
but this would be time consuming due to the high number of disk accesses.
In case of a high number of triples that can’t hold in memory, we could use a
hybrid approach by loading the triples partially, but this extension is left for
future work.

During query evaluation, on the fly filtering is applied to the accessed triples.
Jena TDB provides a low level quad filter hook6 that we use for implementation.
For each accessed quad, let u be the quad’s graph IRI, t its triple and ubs
be the subject’s bitset. A bitwise logical and is performed between (the bitset
represented by) u and ubs. The ch function on the authorizations obtained by
authToBs−1 is then applied in order to allow or deny access to t. If t is allowed,
then it is transmitted to the ARQ engine to be used by query Q. Otherwise, it
will be hidden to the ARQ engine. An in-memory cache is used to map quad
graph IRIs to grant/deny decisions in order to speedup the filtering process.

5 https://jena.apache.org/documentation/query/.
6 http://jena.apache.org/documentation/tdb/quadfilter.html.

https://jena.apache.org/documentation/query/
http://jena.apache.org/documentation/tdb/quadfilter.html
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6.1 Experiments

The key input factors for the benchmarking of our solution are the sizes of
the base graphs, the sizes of the access control policies, the sizes of positive
subgraphs, the sizes of subjects’ policies and the subjects’ queries. The factors
are reported in Table 3. The base graphs are synthetic graphs generated by the
Lehigh University Benchmark (LUBM)7. Their sizes (|G|) vary from 126 k to
1,591 k triples. The access control policies are randomly generated using the
LUBM vocabulary (about universities and people therein), with three control
parameters. The first control parameter is the number of authorizations (|A|)
and varies from 50 to 200 authorizations. The second control parameter is the
scope average of the policy with respect to the G. In other words, the percentage
of triples in G which are under the influence of the policy authorizations. The last
control parameter is the size of the body of each (atomic) authorization a ∈ A.
For the sake of brevity, the results we report here are for fixed scope (about 4%
by authorization) and fixed sizes of bodies (set to 2 for each authorization). The
size of positive subgraph parameter |G+||G| varies from 10 to 100% of |G| and the
number of subject’s authorizations |As| from 50 to 200. Regarding the subject
query parameter Qs, we used a subset of LUBM test queries. We analyzed both
the static (creation time) and the dynamic (evaluation time) performance of our
solution. Each experiment is run 6 times on 2 cores and 4 GB RAM virtual
machines running on OpenStack.

Table 3. Summary of notations

in |G| Size of the LUBM dataset

in |A| Number of authorizations

in |G+||G| Positive subgraph size w.r.t. raw dataset size

in |As| Number of authorizations assigned to the subject

in Qs LUBM test Query

out tA Time to build GA in memory

out tW Time to write GA to disk

out tG+ Time to evaluate Q on materialized G+

out tGA Time to evaluate Q on GA

out tG Time to evaluate Q on (raw) G

Static Performance. We distinguish the time needed to compute GA between
the time required for its building and the time required for its writing. The time
to build the authorization bitset ar(G, t) associated with each triple t ∈ G in
memory is referred to as tA in Table 3. The time to write the annotated graph
7 http://swat.cse.lehigh.edu/projects/lubm/.

http://swat.cse.lehigh.edu/projects/lubm/
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Fig. 2. Annotation and writing times
with |A| = 100

Fig. 3. Annotation and writing times
with |G| = 1,591 k

GA from the memory to the quad store is referred to as tW in Table 3. Figure 2
shows tA and tW with |A| being set to 100 authorizations. Figure 3 shows tA
and tW with |G| being set to 1,591 k triples. As each a ∈ A is mapped to a
SPARQL CONSTRUCT query, the results show that tA grows linearly when |G|
or |A| gets bigger. The annotation time is not negligible but we argue that it
is not an issue: GA is computed once, as long as A is not modified. The ratio
tA/tW is about 3.4 on average for fixed value of G in Fig. 2. In other words,
for 100 authorizations, our method is amortized if the sum of triples in the
positive subgraph for each subject is approximatively 5 times greater then the
number of triples in base graph. Figure 3 shows that tA grows linearly when
|A| grows. However, as expected the results show that tW is independent of
|A|: the overhead incurred by the growing size of the bitsets is negligible for
|A| ∈ {50, 100, 150, 200}. On average, the annotated graph GA requires 50 %
more disk space than G.

Dynamic Performance. To evaluate the performance of our solution at run-
time, we compare our approach to two extreme methods. Each method computes
the positive subgraph G+ obtained by filtering the result of query Q on a base
graph G according to a set A of authorizations.

The first extreme (naive) method gives an upper bound on the overhead
incurred by the filtering process. Indeed, in the post-processing approaches, the
access control consists in two steps: (1) compute the full answer Q(G) and (2)
filter out the denied triples from Q(G) as a post-processing step. This method
avoids duplication of the base graph G at the price of high overhead at runtime.
In our experiments, we considered the step (1) only, by computing the full answer
Q(G). We refer to this method as tG in Table 3. The second extreme method
gives a lower bound on the overhead incurred by the filtering process. The idea
is to materialize G+ for each user profile and then compute Q(G+). We refer to
this method as tG+ in Table 3. This method avoids the filtering post-process at
the price of massive duplication and storage overhead. In contrast, our approach,
namely tGA in Table 3, is a trade-off between the extreme ones: it needs some
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Fig. 4. Query evaluation time with |A|
= 100

Fig. 5. Query evaluation time with |G|
= 1,591 k

Fig. 6. Query evaluation time with |A|
= 100 and |G| = 1,591 k

Fig. 7. Query evaluation time with |A|
= 100 and |G| = 1,591 k

static computation while offering competitive runtime performance. Our results
are shown in Fig. 4 for varying sizes of |G| with |A| and |As| set to 100, and
|G+||G| set to 40 %. The subject query Qs is set to the worst case which is the
select all query. The key insight from these experiments is that the overhead is
independent from |G| and is about 50 %.

Another advantage of our approach is its independence from the number of
authorizations of both the policy and those assigned to the subject. In Fig. 5
we vary the number of policy authorizations (|A|) with |G| set to 1,591 k triples
and Qs to the select all query. The experiments show a constant overhead while
changing |A|.

Regarding |G+||G|, the size of the positive subgraph with respect to the size
of the annotated graph, the experiments in Fig. 6 show that the query answer
time tGA grows linearly when |G+||G| grows, with |G| fixed to 1,591 k and |A|
and |As| fixed to 100. Qs being the select all query. This shows that the overhead
w.r.t. a materialized Q(G+) does not depend on the size of the positive subgraph.
Note that tG does not vary since we did not consider the filtering step of post-
processing approaches, otherwise it would grow linearly when |G+||G| grows.
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In Fig. 7 we run experiments on our system with a subset of LUBM test
queries used by [3] with |A| and |As| set to 100, and |G+||G| set to 40 %. We
computed the LUBM queries evaluation times and repeated the experiments
100 times. Q1 and Q3 are more complex queries having a high number of initial
triples associated with the triple patterns, but the final number of results is quite
small (28 and 0 respectively). Figure 7 shows that the time to evaluate query Q3
in presence of the filter tGA is smaller than the evaluation time over materialized
positive subgraph tG+ . The reasons could be the empty result of Q3 or different
execution plans. In the rest of the queries, the overhead was between 6 and 40 %.

7 Conclusion

In this paper, we proposed an enforcement framework to the access control model
for RDF we defined in [14]. We used an annotation approach where the base
graph is annotated at the policy design time. Each triple is annotated with a
bitset representing its applicable authorizations. The subjects’ queries are evalu-
ated over their positive subgraph constructed using her/his bitset and the triples’
bitset. The experiments showed that the annotation time is not negligible, but
we argue that it is not an issue since this operation is done once and for all
during policy design time. We showed that the overhead of the subject query
evaluation is independent from size of the base graph, and it is about 50 %.
Moreover, we showed that our approach is independent from the number of pol-
icy authorizations as well as the used query language in contrast to the query
rewriting techniques.

Ongoing work on this platform includes the design of an algorithm for the
incremental update of GA when G is modified, high-level optimizations for the
construction of GA using the partial order between authorizations induced by
basic graph pattern containment and new empirical evaluations on both syn-
thetic and real-life data.
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Abstract. Usage Control policies have been introduced to overcome
issues related to the usage of resources. Indeed, a Usage Control pol-
icy takes into account attributes of subjects and resources which change
over time. Hence, the policy is continuously enforced while an action is
performed on a resource, and it is re-evaluated at every context change.
This permits to revoke the access to a resource as soon as the new con-
text violates the policy. The Usage Control model is very flexible, and
mutable attributes can be exploited also to make a decision based on
the actions that have been previously authorized and executed. This
paper presents a history-based variant of U-XACML policies composed
via process algebra-like operators in order to take trace of past actions
made on resources by the subjects. In particular, we present a formal-
ization of our idea through a process algebra and the enhanced logical
architecture to enforce such policies.

1 Introduction

Modern IT systems can be very complex, implementing a large set of function-
alities, and being composed by several components, which interact each other.
Consequently, their security requirements could be complex as well, especially in
case the resources to be protected are critical and/or valuable ones. This leads
to the adoption of proper authorization systems to regulate the access to these
resources and their usage. Through access control it is verified if the subject
who wants to access a specific resource (perform an operation on such resource),
holds such a right at request time, according to a specific policy. However, in
environments where the context dynamically changes overtime, the access con-
trol does not re-evaluate the policy when the context changes. Such a necessity
brought the adoption of the more flexible Usage Control (UCON) model. The
UCON model has been defined in [9,13] to extend the capability of traditional
access control by introducing the continuous enforcement of the security policy
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Compliant Clouds, Coco Cloud [GA #610853], the H2020 EU-funded project Euro-
pean Network for Cyber Security, NeCS, [GA #675320], the EIT-Digital MCloud-
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while the access is in progress and interrupting this access as soon as the policy
is not satisfied any more.

To meet the security needs of complex systems, the approach we propose
in this paper exploits the capabilities of the Usage Control model by allowing
policy makers to define History-based Usage Control policies, i.e., Usage Control
policies, which define the allowed behaviour of subjects as a trace of actions which
can be executed under some conditions. In fact, the Usage Control model allows
policy makers to define policies where the rules that must be enforced change
over-time depending on the current system state, and it also allows to define the
rules to move from one state to the other. History-based Usage Control policies
are necessary in those scenarios where the right of executing an action does not
depend on that action only, but also on (a proper subset of) all the actions that
have been previously executed on the system. For instance, the Chinese Wall
policy [4] grants the right to access an object depending on the access operations
previously performed by the same subject on the objects of the system.

Starting from the work in [5], where the authors proposed U-XACML, a new
policy language which enhances the original XACML with the UCON novelties,
we propose to combine the U-XACML language with a process algebra language
suitable for writing policies, such as the POLPA language [2]. In this way, we
are able to express U-XACML policies defining the trace of actions that can be
executed by subjects on objects, and to enforce them. The main advantage of
adopting the POLPA language to combine U-XACML policies is that POLPA
enables policy makers to define the user’s behaviour they want to permit in a
very simple way. In fact, POLPA operators are used by a policy maker to define
in which order U-XACML polices must be enforced. Actually, this could be even
done in U-XACML by properly exploiting mutable attributes, conditions, and
obligations, but it would require an additional and not negligible effort from the
policy makers. Hence, the main aim of our proposal is to allow policy makers to
easily write History-based Usage Control policies relieving them from the burden
of: (i) explicitly defining the required set of states; (ii) expressing in U-XACML
the obligations, which define the transitions from each of the previously defined
states to another, and insert such obligations in the existing U-XACML policies;
(iii) expressing in U-XACML the conditions defining which of the U-XACML
policies must be enforced in each of the states defined in (i), and insert such con-
ditions in the existing U-XACML policies. This machinery will be helpful in sev-
eral scenarios. A particular field of growing interest matching this description are
the Cyber-Physical Systems (CPS), where IT is used to control and to interact
with a physical system in different settings and environments, which might also
include critical infrastructures. Misuse of the resources governing these systems
might cause serious consequences. Hence, to exemplify the proposed approach,
we consider an hydroelectric dam, as a critical infrastructure that needs to be
protected against both insider and outsider attackers. In particular we consider a
dam where allowed actions for subjects (policies), dynamically change according
to the current hazard level (state) reported for the system. In these systems, the
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transitions between different hazard levels are regulated by specific rules, which
are reported in the policies as well.

The paper is structured as follows: next section recalls some basic information
about the Usage Control Model and the U-XACML policies. Section 3 presents
our approach to enhance U-XACML policies with the possibility of managing
execution traces. In particular, we present a formalization of history based policy
through process algebra like operators and transition systems. We also present
an enriched architecture in which we introduce the possibility of managing the
change of state occurring after the execution of each action described into the
History-based policy. Section 5 exemplifies our approach on a real scenario of a
critical infrastructure: an Hydroelectric dam. Section 6 compares our approach
with existing works and Sect. 7 draws the conclusion of the paper and lists some
ongoing and future works.

2 Usage Control Model and U-XACML

This section recalls some notions about the Usage Control model (UCON) and
the extension of the XACML language able to manage usage control policies,
U-XACML.

2.1 Usage Control Model

The Usage Control model (UCON), defined in [9,13], encompasses and extends
the existing access control models, by introducing new features in the decision
process with respect to traditional Access Control models, such as the mutability
of attributes and the continuity of policy enforcement. These features are meant
to guarantee that the right of a subject to use a resource holds not only at access
request time, but also while the access is in progress. UCON policies consist of
the following core components:

Subjects and Objects. The subjects are the entities who exercise their rights
on the objects (resources) by performing actions on them.

Actions. The actions represent the operations performed by the subjects on the
objects.

Attributes. Attributes are paired to subjects, objects, actions, and environment
to describe their features. An attribute is immutable when its value does not
change frequently, and can be updated only through an administrative action,
e.g., the role of the subject. Instead, an attribute is mutable when its value
changes over time because of the normal operation of the system. Mutable
attributes change their values as consequence of the policy enforcement. In
fact, a Usage Control policy includes attribute update statements, i.e., pol-
icy rules that include assignments of values to attributes, and it specifies
whether this attribute updates must be executed before (pre-update), during
(on-update), or after (post-update) the execution of the access action. As an
example, let us consider the mutable attribute, which represents the number
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of concurrent accesses to a resource R. The value of this attribute is incre-
mented by a pre-update statement in the policy when a subject is authorized
to initiate an access to R, and it is decremented by a post-update statement
in the policy when a subject terminates an existing access to R. The value
of a mutable attribute can change also as a consequence of the execution of
actions not regulated by the usage control policy. For instance, the attribute
that describes the physical location of a subject changes when the subject
moves from one place to another. Finally, other attributes change their value
independently of the user behaviour, e.g., the CPU load.

A UCON policy can describe one of the following:

Authorizations are predicates that evaluate subject and object attributes and
the requested right to decide whether the subject may access the object or not.
The evaluation of the authorization predicates can be performed before exe-
cuting the access (pre-authorizations), or continuously while the access is in
progress (on-authorizations) to promptly react to mutable attribute changes.

Conditions are environmental or system-oriented decision factors, i.e., dynamic
factors that do not depend on subjects or objects. Hence, the evaluation of
conditions involves attributes of the environment and of the action, and it can
be executed before (pre-conditions) or during (on-conditions) the execution
of the action.

Obligations are decision factors which verify whether a subject has satisfied
some mandatory requirements before performing an action (pre-obligations),
or whether a subject continuously satisfies these requirements while perform-
ing the access (on-obligations). Obligations can be enforced after the execu-
tion of an action as well (post-obligations). In this case, they cannot affect
the execution of the action, but they can be used, for instance, for auditing
or notification purposes.

The continuous evaluation of on-authorizations, on-conditions, and on-
obligations could result in a policy violation while an access is in progress. In
this case, the action is properly interrupted, and the result of the Usage Control
policy enforcement is set to revokeAccess. Instead, if the Usage Control policy
is always satisfied while the action is executed, and the action finishes normally,
the result of the policy enforcement is set to endAccess.

2.2 U-XACML

U-XACML [5] is an extension of the XACML language that has been defined
to express Usage Control policies. In fact, XACML [1] is a standard developed
by the OASIS consortium to express and manage access control policies in a
distributed environment, but it does not have specific constructs to express the
continuity of policy enforcement.

To represent the continuity of policy enforcement, the U-XACML language
allows the policy maker to specify when the evaluation of a condition must be
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executed by adding a clause, DecisionTime, in the <Condition> clause. The con-
ditions whose decision time is set to pre are usual XACML conditions, which are
evaluated at access request time, while the conditions whose decision time is set
to on must be continuously evaluated while the access is in progress. U-XACML
extends <ObligationExpression> in the same way. In fact, the DecisionTime
clause determines when the obligation must be executed. The admitted values
for the DecisionTime clause are: pre (pre-obligations, i.e., usual XACML oblig-
ations), on (on-obligations), and post (post-obligations).

Finally, U-XACML introduces a new element, <AttrUpdates>, to define
attribute updates. This element includes a number of <AttrUpdate> elements to
specify each update action. Each <AttrUpdate> element also specifies when the
update must be performed through the clause UpdateTime which can have one
of the following values: pre (pre-update), on (on-update), and post (post-update).

3 History-Based Usage Control

This paper proposes History-based Usage Control policies, i.e., it combines
Usage Control policies by using process-algebra like operators to obtain a pol-
icy on execution trace of actions. The resulting policy is named History-based
U-XACML policy.

As previously explained, Usage Control policies extend access control ones
because they take into account the duration of the actions. In fact, a Usage
Control policy defines predicates, which must be satisfied while the action is in
progress, i.e., from the beginning to the end of the action. As soon as one of
these ongoing predicates is violated, the Usage Control policy evaluation returns
a revokeAccess, and the execution of the related action is properly interrupted.
On the other hand, endAccess is the result of the policy enforcement when the
action terminates normally.

Enhancing Usage Control policies with History-based capabilities is meant to
enable the policy maker to describe the allowed behaviour of the subjects on the
system by defining which is the Usage Control policy that must be enforced in a
specific moment. In other words, the policy maker exploits process-algebra like
operators to define the set of states of the system, which Usage Control policy
must be enforced in each of these states, and which new states result from the
enforcement of these Usage Control policies. Each History-based Usage Control
policy specifies its scope, which defines to which entity the state refers to. In
particular, we define three distinct scopes: SUBJECT, OBJECT, or GLOBAL.
If the scope is SUBJECT, each subject of the scenario has his own state, and
distinct subjects are paired to distinct states. Hence, when a subject s tries to
perform an action, the system takes into account the state paired with s to
select the set of Usage Control policies to be enforced, and updates this state
as a consequence of the action. Hence, the current state paired to subject s
depends on the actions that s performed on the objects of the system. Instead,
if the policy scope is OBJECT, each object of the scenario has its own state. In
this case, when a subject wants to access an object o, is the state paired with o
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which determines the set of Usage Control policies that must be enforced. The
action performed by any subject on the object o results in an update of the state
paired to o. Finally, if the scope is GLOBAL the state is shared, i.e., the actions
performed by all the subjects on all the objects affect the same state.

Example 1. Let us suppose that a History-based Usage Control policy HUPABC

with scope SUBJECT states that a subject can execute action C only after
actions A and B, executed in any order. Moreover, the policy requires that A is
entirely executed, i.e., it is not interrupted before its natural end because of a
policy violation, and if A is interrupted no more actions can be executed by that
subject. The initial state S0 enforces the Usage Control policies UPA and UPB,
thus, allowing to perform (under some authorizations conditions and obligations
that are immaterial here) respectively, actions A or B. When the subject s tries
to perform action A, the policy UPA allows the execution of A and, if A is not
interrupted because of a policy violation, the current state of s is changed to
S1, otherwise the current state is changed in a fail state Sfail. The new state S1

enforces a Usage Control policy UPB which allows the execution of the action
B. Hence, if s tries to perform the action B, the Usage Control policy UPB

allows the action. UPB changes the current state of s to S3 regardless from the
result returned by the policy. S3 enforces a further Usage Control policy, UPC ,
which allows s to execute action C. We remark that since UPA, UPB, and UPC

are Usage Control policies, the actions A, B, and C could be interrupted by the
Usage Control system during their execution because of a policy violation. In
our example, the policy HUPABC does not allow to change the state from S0

to S1 if the action A is interrupted. In this case, the action A is revoked and S0

changes in Sfail.

3.1 Formal Specification of a Hystory-Based U-XACML Policy

History-based U-XACML policies are the composition of U-XACML policies
through (some of) the behavioural operators of the POlicy Language based on
Process Algebra (POLPA [2]). We chose the U-XACML language to express
Usage Control policies because it directly supports all the features of the Usage
Control model. The POLPA language is instead a policy language able to
describe the behaviour of an entity in terms of allowed sequences of security
relevant actions. The idea is to use process algebra operators to combine UCON-
specific policies instead of processes. Let us assume that each Usage Control
policy UP is paired with one action only, αUP , that can be differently executed
according to the state in which it starts (similarly to what we said for subject
and object above), and may also differently end, according to the result of the
enforcement of the usage control policy. Indeed, UP terminates with endAc-
cess if the execution of αUP terminates normally, or with revokeAccess, if some
changes occur in the context and the execution of αUP is revoked by the sys-
tem. We model these conditions with the predicate exit(UP, r), that holds if the
policy UP has been enforced with result r (r ∈ {endAccess, revokeAccess}).
Hence:

α ::=ε ‖ αUP ‖ αea
UP ‖ αra

UP
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Table 1. Semantics rules for inferring the admissible behaviour of HUP.

Basic Case.

UP
αUP−→ 0

endAccess.

δ(UP ) = endAccess

UP.exit(UP, endAccess)
αea
UP−→ 0

δ(UP ) = revokeAccess

UP.exit(UP, endAccess)
ε−→ UP.exit(UP, endAccess)

revokeAccess.

δ(UP ) = endAccess

UP.exit(UP, revokeAccess)
ε−→ UP.exit(UP, revokeAccess)

δ(UP ) = revokeAccess

UP.exit(UP, revokeAccess)
αra
UP−→ 0

Prefix.
HUP1

α−→ HUP ′
1

HUP1;HUP2
α−→ HUP ′

1;HUP2

HUP2
α−→ HUP ′

2

0;HUP2
α−→ HUP ′

2

Choice.
HUP1

α−→ HUP ′
1

HUP1orHUP2
α−→ HUP ′

1

HUP2
α−→ HUP ′

2

HUP1orHUP2
α−→ HUP ′

2

where ε denotes no actions, αUP denotes the action α associated to the policy
UP , αea

UP is αUP that correctly ends, i.e., no policy violations occur during the
αUP execution, and αra

UP denotes what happens when the execution of αUP is
interrupted by the system (revoked).

A History-based U-XACML policy, hereafter denoted by HUP , results from
the composition of U-XACML policies, shortly UPi, according to the following
grammar:

HUP ::=0 ‖ UP ‖ UP.exit(UP, r) ‖ HUP1;HUP2 ‖ HUP1orHUP2

Remark 1. We assume that each UP1, UP2, . . . , UPn refers to a single action
αUP1 , αUP2 , . . . , αUPn

respectively. Furthermore, we also assume to compose a
finite number of UPi that are processed one by one. Consequently, we do not
consider the interleaving operator (par) in the provided syntax. It is worth noting
that we are currently working in order to consider also parallelism and message
exchange to be able to express both policies referred to more than one action
and possible interleaving policies, e.g., multi-session ones.

The informal semantics is the following:

– 0 denotes that there are no more policies to enforce;
– UP denotes the basic U-XACML policy;
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– UP.exit(UP, r) is the basic policy followed by the predicate exit stat-
ing the result of the enforcement of UP (specified by r, where r ∈
{endAccess, revokeAccess}). The evaluation of exit(UP, r) depends on the
function δ that works as follows: If UP permits the execution of an action,
and this action normally terminates (αea

UP ), then δ(UP ) = endAccess
Instead, if this action is interrupted because of a policy violation (αra

UP ), then
δ(UP ) = revokeAccess. Note that, when the evaluation UP by δ does not
match the policy requirement, e.g., δ(UP ) = revokeAccess and the policy
is UP.exit(UP, endAccess), no action is performed (ε) and the policy to be
enforced does not change.

– HUP1;HUP2 is the sequential operator. It represents the possibility of behav-
ing as HUP1 and then as HUP2. Note that, both HUP1 and HUP2 are com-
posed by a finite number of UP 1

i and UP 2
j , where i, j ∈ I is a finite set of

indexes.
– HUP1orHUP2 is the choice operator. It represents the non deterministic

choice between HUP1 and HUP2. Hence, HUP1orHUP2 choices to behave
either as HUP1 or HUP2 in a non deterministic way.

Formally, the behaviour of a History-Based Usage Control policy HUP can
be modelled by Labelled Transition System, LTS, parametrized by a labelling
function δ, named δ−LTS. Such a function permits to evaluate the exit predicate
of each UPi composing HUP in each state of the δ − LTS.

Hence, let HUP be associated to a set of states S, which is composed by an
initial state, s0, and all the sets of states SHUPi

of each of HUPi, with i ∈ I and
I finite, composing HUP .

Definition 1 (δ − LTS for a HUP). Let HUP composed by a finite number
of HUPi. M = (S,Act, T , δ) is a δ − LTS modelling a HUP , where

– S = {s|s0 ∪ ⋃
i∈I SHUPi

}, s0 is the initial state;
– Act is the set of security relevant actions α of the HUP . We consider for each

action α, four labels: ε, denoting no action, αUPi
managed by each UPi, αea

UPi

denotes that the action has been correctly terminated, while αra
UPi

denotes that
the action has been revoked;

– T ⊆ S × Act × S is the transition relation, driven by the rules in Table 1.
– δ : S → {endAccess, revokeAccess} is a labelling function that associates the

value of the exit condition to the UPi enforced in that state. In practice, it
is the enforcement decision function that, by evaluation of the access request,
enforces the usage policy UPi during the execution of the action in order to
evaluate if it terminates correctly or it is revoked.

Remark 2. As usual for (process) description languages, other derived opera-
tors may be defined. By using the constant definition, the sequence and the
derived parallel (see Remark 1) operators, the iteration and replication opera-
tors, it(HUP) and rec(HUP) resp., can be derived. Informally, it(HUP)
behaves as the iteration of HUP zero or more times, while rec(HUP) is the
parallel composition of the same process an unbounded number of times.
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Fig. 1. δ − LTS of the History-based Usage control Policy in Example 1.

Fig. 2. Logical architecture of the History-based Usage Control framework.

With reference to Example 1, the History-based Usage Control policy
HUPABC (graphically represented in Fig. 1) can be expressed exploiting the
POLPA operators previously described as follows:

((UPA.exit(UPA, endAccess));UPB ;UPC) or (UPA.exit(UPA, revokeAccess)) or
(UPB ; (((UPA.exit(UPA, endAccess));UPC) or (UPA.exit(UPA, revokeAccess))))

(1)

The exit(UPA, revokeAccess) condition launches the Ara action. This spec-
ifies the state reached by the system once the A action is revoked. The
exit(UPA, endAccess) condition requires that the enforcement of the policy
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UPA returns endAccess, i.e., that A regularly terminates and it is labelled with
Aea. Note that, in this example we associate an enforcement result to both the
revokeAccess and endAccess conditions. If it is not the case, according to Table 1
the system does not terminate and the policy may be enforced again. On the
other hand, because of the absence of the exit condition after UPB, the policy
HUPABC allows the action B to either terminate normally or to be revoked.
After each sequence in which A correctly terminated, the policy UPC is taken
into account.

4 Logical Architecture

The UCON model fosters the concept of Continuity of Policy Enforcement. In
fact, the attribute mutability introduces the necessity to perform the Usage
Control policy evaluation process continuously while an access is in progress.
This is because the values of the attributes that previously authorized the access
could change in such a way that the access right does not hold any longer. In
this case, the access is revoked as soon as the policy violation is detected.

The logical architecture of the proposed History-based Usage Control frame-
work is depicted in Fig. 2, and it is an extension of the one defined in [6] which, in
turn, is an extension of the XACML reference architecture [1] to enable the pol-
icy enforcement continuity. The extension to the UCON architecture proposed in
this paper concerns the management of the state of the system, which is required
to enable the history-based capability. In Fig. 2, this extension is represented by
the components State Handler (SH), State PIP (PIPs), and Transition Man-
ager (TM), which are described in details in Subsects. 4.1 and 4.2. The following
of this section, instead, gives a very brief description of the components of the
UCON service defined in [6].

Attribute Managers (AMs) manage the attributes of subjects, resources, and
environment. An AM could run as a component of the Usage Control service
(such as the state one), or could be an external service. Policy Information
Points (PIPs) are the components implementing the interaction with AMs to
retrieve and update attributes. PIPs are required because the attributes for
the evaluation of a Usage Control policy could be managed by distinct AMs
providing different protocols for interacting with them. Hence, PIPs provide
the same interface to the Context Handler, while they implement the specific
protocols to interact with the AMs they are paired to. A special AM is the
State Handler (SH), which has been introduced to manage the system state and
will be described in the next subsections. The Policy Decision Point (PDP) is
a XACML evaluation engine that takes a policy and an access request as input,
evaluates the policy for that request, and returns the decision. The Session
Manager (SM) is an additional component with respect to the XACML reference
architecture, meant to support the continuous enforcement of Usage Control
policies while the accesses are in progress. In fact, the SM keeps trace of the
current usage sessions (through a Data Base), and determines for which of these
sessions the Usage Control policy must be re-evaluated when one attribute (or
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more) changes its value. The Context Handler (CH) is the front-end of the Usage
Control service. Its role is to coordinate the other components of the UCON
service to (continuously) evaluate the policy. Hence, the CH implements the
evaluation of the policy by interacting with the PIPs to collect the updated
value of the attributes, with the PDP to request the evaluation of the policy
exploiting the collected attribute values, and with the SM to update the status of
the usage session. The policy evaluation is triggered by the Policy Enforcement
Point (PEP) when a new access request is performed by a user. Moreover, a
policy re-evaluation for the ongoing accesses is performed by the CH every time
an attribute update notification is received from a PIP. If, for a given ongoing
access, the policy re-evaluation results in a violation, this access is revoked by
the UCON service. To this aim, the CH sends a revoke message to the PEP,
which is in charge to properly implement the access revocation. Finally, the
Policy Administration Point (PAP) stores the Usage Control policies through
the Policy Storage (PS) component, and includes the Transition Manager (TM),
which is required for the system state management, as described in the following.

4.1 State Management

The core of the proposed History-based Usage Control systems is represented
by the function defining the state transitions. Each specific History-based Usage
Control Policy P defines a different state transition function, called nextStateP ,
because the state transitions are determined by the POLPA operators used to
combine the Usage Control Policies, which build P. This function determines the
next state of the History-based Usage Control systems, according to the policy
scope, by taking as input: (i) the current state of the History-based Usage Con-
trol systems; (ii) the Usage Control policy that has been enforced in that state;
and (iii) the result of the policy enforcement (endAccess or revokeAccess). In the
proposed model, the current state of the History-based Usage Control systems is
represented as a mutable attribute. This attribute is paired to the environment,
to the subject or to the object if, respectively, the scope of the History-based
Usage Control policy is “GLOBAL”, “SUBJECT”, or “OBJECT”. Hence, when
the policy scope is “GLOBAL”, one instance only of the state attribute exists,
and the actions performed by every subject on every object of the scenario affect
this instance. Instead, when the policy scope is “SUBJECT”, each subject of the
scenario is paired with his own instance of the state attribute. In this case, when
a subject performs an action, only his instance of the state attribute is updated
by the policy.

In the History-based Usage Control system architecture, the state attribute
is managed by a proper Attribute Manager, called State Handler (SH), which
is deployed within the Usage Control system itself. The State Handler interacts
with the rest of the system through its PIP, called PIPs, as shown in Fig. 2. As
the other PIPs of the system, PIPs provides an interface which allows to retrieve
the value of the current state and to update such value with a new one.



Enforcement of U-XACML History-Based Usage Control Policy 75

With reference to Example 1, the function nextStateHUPABC
applied to the

initial state S0 and to the Usage Control policy UPA, returns S1 as new current
state for s when the access terminates normally (endAccess), while it returns the
state Sfail when the access is interrupted because of a policy violation (revokeAc-
cess). Instead, the new state resulting from nextStateHUPABC

applied to the
initial state S0 and to the Usage Control policy UPB, would be S2, regardless
from the result of the policy enforcement. The state S1 enforces a Usage Con-
trol policy UPB and, when the action B has been executed, the current state
is changed to S3. Again, the policy of Example 1 states that the new state is
the same (S3) both in case the result of the enforcement of UPB is endAccess
or revokeAccess. Summarizing, the output of the function nextStateHUPABC

for
Example 1 is the following:

nextStateHUPABC (S0, UPA, endAccess) = S1

nextStateHUPABC (S0, UPA, revokeAccess) = Sfail

nextStateHUPABC (S0, UPB , endAccess) = S2

nextStateHUPABC (S0, UPB , revokeAccess) = S2

nextStateHUPABC (S1, UPB , endAccess) = S3

nextStateHUPABC (S1, UPB , revokeAccess) = S3

nextStateHUPABC (S2, UPA, endAccess) = S3

nextStateHUPABC (S2, UPA, revokeAccess) = Sfail

nextStateHUPABC (S3, UPC , endAccess) = S4

nextStateHUPABC (S3, UPC , revokeAccess) = S4

4.2 Implementation

The History Based Usage Control Framework comes as a flexible, adaptable, and
portable software designed to be easily integrated in any setting and application
environment. To this end, the Java programming language has been chosen to
implement it as an application which can run in desktops or servers, being exe-
cuted as a remote (web)service and easily ported on Android mobile devices. In
fact, the framework is also available as an Android app to enforce history based
usage control directly on mobile devices. As discussed, the core components of
the framework are designed to be application independent, except for PIPs and
PEPs, which are implemented for each specific use case, by extending provided
interfaces.

The proposed system shows several similarities with a standard usage control
framework, like the one described in [6]. The main difference lies in the presence
of the State Handler (SH) and of the State PIP (PIPs), and on a revised ver-
sion of the Policy Administration Point (PAP), which includes the Transition
Manager (TM). The SH and the PIPs are used to keep the current system
state, and to update or query it when needed to handle history-based policies.
The PAP, instead, consists of two main components (Fig. 2): the Policy Stor-
age (PS), which stores the U-XACML UPs and the POLPA HUP, and the TM,
which translates the HUP and the UPs in a single History-based U-XACML
policy, i.e., a U-XACML policy including the constructs required for managing
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the state. The PS stores all the U-XACML policies (UP) defined for any action
which can be performed in the system, independently from the current state.
Moreover, the PS stores in a separate file the HUP expressed in POLPA, which
connects the UPs, defining the relation between states and allowed actions. The
TM merges the POLPA policy and the various UPs in a unique U-XACML
policy. The resulting policy is an U-XACML policy set, composed by the var-
ious UPs, relating them through the usage of the <Target> tag to specify the
state in which each policy should be considered, and the <AttrUpdate> to model
the state transition. To this end, the <UpdateTime> tag of the <AttrUpdate> is
exploited to specify in the policy a different value for the next state depending
on the reult of the policy enforcement. In particular, we define two different
update times: post-update-endAccess, and post-update-revokeAccess. In the first
case, the attribute update is executed if the action controlled by the policy is ter-
minated by the user through an endAccess, while in the second case the attribute
update is executed if the action is interrupted by our system while in progress.
The new state value is determined through the nextState function previously
defined. A schematic representation of this process is depicted in Fig. 3.

Fig. 3. Generation of U-XACML history-based policy.

As for the example represented in Fig. 1, the TM produces a policy set of
three policies. Let us suppose the system to be in the starting state, S0 for the
user s. In this state, only the policies UPA and UPB can be enforced. Hence, the
TM adds the following clause to UPA and UPB in order to make them applicable
only when the state of the requesting user is S0.
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......

<Target>

......

<AnyOf>

<AllOf>

<Match MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal">

<AttributeValue DataType="http://www.w3.org/2001/XMLSchema\#string">S0</AttributeValue>

<AttributeDesignator AttributeId="urn:oasis:names:tc:xacml:3.0:subject:subject-state"

Category="urn:oasis:names:tc:xacml:1.0:resource-category:access-subject"

DataType="http://www.w3.org/2001/XMLSchema\#string" MustBePresent="true"></AttributeDesignator>

</Match>

</AllOf>

</AnyOf>

......

</Target>

......

Let us focus on UPA. According to the nextState function, if the action A
terminates naturally, i.e., the result of the policy enforcement is endAccess, the
<AttrUpdate> tag of UPA will specify as next state S1 for the requesting user.
This transition will be specified using the <UpdateTime> tag, with a post-update-
endAccess value. The TM adds the following clause to UPA to implement this
transition.

<AttrUpdates>

.......

<AttrUpdate UpdateTime="post-update-endAccess">

<AttributeAssignmentExpression AttributeId="urn:oasis:names:tc:xacml:3.0:subject:subject-state"

Category="urn:oasis:names:tc:xacml:1.0:resource-category:access-subject">

<AttributeValue DataType="http://www.w3.org/2001/XMLSchema\#string">S1</AttributeValue>

</AttributeAssignmentExpression>

</AttrUpdate>

.......

<AttrUpdates>

For what concerns the management of the current state attribute, it is just
another mutable attribute whose value is considered by the PDP to verify request
compliance with the policy. Hence, whenever a usage request is issued, the PIPs

enriches the access request by adding the value of the current state and sends the
enriched request for evaluation to the PDP. As discussed, the framework exploits
the <AttrUpdates> U-XACML construct to express the state transition, which
will be practically enforced by the PIPs by sending the update request with the
new value to the SH.

5 An Example: Hydroelectric Dam

An example of critical infrastructure reflecting the aforementioned model can
be represented by an automated Hydroelectric Dam, which faces, among the
others, the security risks reported in [11]. The automated dam control system
considers four hazard levels, namely (i) normal, (ii) alert, (iii) critical and (iv)
emergency. The condition to transit from one level to the other is determined
by the amount of water passing through the sluices, the number of workers in
the structure and the possible presence of mechanical malfunctions. We consider
two different set of users: administrators and operators. The considered actions,
which should be controlled though usage control, include dangerous operations
which might physically endanger the system, or violate privacy constraints of
the workers. A list of operations are the following:

– Open Sluice: can be performed only when the hazard level is normal.
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– Stream low-res video: can be performed by administrators at any hazard level
and by operators only at alert or higher level. If the video shows the presence
of people in dangerous areas, the hazard level is increased by one.

– Stream high-res video: can be performed by operators or administrators at
critical level, to verify if endangered subjects may need assistance. The hazard
level is brought back to alert when the endangered subjects are brought to
safety.

– Verify Sluice: verifies if the mechanism of a sluice works correctly. It moves
the hazard level to alert if the system is not working and to critical if the
water flux is above a specific threshold.

– Close Sluice: blocks the water flux. The operation requires time and stops the
productivity of the hydroelectric system. For this reason this operation can
only be triggered by administrators, or by operators only at critical hazard
level. If the operation fails and the system is in critical status, the hazard level
is moved to emergency. The hazard level transits to normal if the operation
is successful.

– Force Evacuation: this operation can be triggered by administrators at critical
hazard level and also by operators at emergency level.

Let us consider an emergency situation in which an accident has occurred in
the dam. Initially the hazard level is set to “normal”, thus the sluice is open.
When the accident occurs, it is important to verify if there is someone who
needs assistance in the dam. Both the administrator and the operator should
check this by viewing the stream video of the surveillance cams, in such a way
to possibly force the evacuation in order to both manage the alert situation and
set again the status to “normal”. The idea, is that, whenever a stream video
access is performed, the hazard level increases by one. On the other hand, for
each recovery action the hazard level decreases by one. To depict this situation
through Usage Control Policies, we consider the following policies:

– UPAdm
SHV is the policy regulating the possibility of the administrator to view a

high resolution video stream, i.e., the action Stream high-res video, SHV for
short, described above. As a result effect of the application of this policy the
hazard level is increased by one.

– UPOp
SLV is the policy that regulates the possibility of the operator to view a

low resolution video stream, i.e., the action Stream low-res video, SLV for
short, described above. As a result effect of the application of this policy the
hazard level is increased by one.

– UPAdm,Op
FE is the policy that allows the Administrator to issue an evacuation

alert.
– UPAdm,Op

V S is the policy that manages the verification of the sluice conditions.
– UPAdm

CS is the policy that manages the closure of the sluice by the Adminis-
trator.

– UPAdm,Op
OS is the policy that manages the opening of the sluice.

Using our approach, these six policies can be combined in such a way that both
the operator and the administrator can: (i) verify if someone endangered is in
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the building, (ii) call for the rescue team and (iii) try to recover the normal
hazard level by forcing the evacuation and closing the sluice. The History-based
Usage Control Policy HUPEm has a GLOBAL scope because the state is unique
for all the subjects (administrator and operator) and objects (cameras, sluice,
and evacuation procedure) involved in the scenario. The History-based Usage
Control Policy HUPEm is defined as follows:

HUPEm = (UPAdm
SHV .exit(UPAdm

SHV , revokeAccess))

or ((UPAdm
SHV .exit(UPAdm

SHV , endAccess));UPOp
SLV ;HUPRD)

or (UPOp
SLV ; (UPAdm

SHV .exit(UPAdm
SHV , endAccess));HUPRD)

or (UPOp
SLV ; (UPAdm

SHV .exit(UPAdm
SHV , revokeAccess)))

(2)

where
HUPRD = (UPAdm,Op

FE ; (UPAdm,Op
V S ;UPAdm

CS )

or (UPAdm,Op
V S ;UPAdm

CS );UPAdm,Op
FE );UPAdm,Op

OS

(3)

HUPRD regulates the “force evacuation” actions as well as the actions
related to the sluice. In particular, the policy UPAdm,Op

FE and the sequence
(UPAdm,Op

V S ;UPAdm
CS ) may be executed in both the possible orders. Note that,

executing one of these actions, the hazard level decreases by one. If, after the
recovery actions, the hazard level goes back to “normal” and the sluice can be
opened again.

6 Related Work

The usage control is a well known paradigm used to enforce security policies
in several setting and environments. The improvement proposed in this work
should bring a stronger expressiveness, allowing the definition of more complex
policies for different environments. The usage control model has been first define
by Sandhu et al. in [10]. The work in [12] proposes the adoption of the UCON
in collaborative computing systems, such as the GRID environment based on a
centralized Attribute repository (AR) for attribute management. They use the
eXtensible Access Control Markup Language (XACML) [1] to specify several
aspects of the Usage Control model, exploiting more than one XACML policy
for the different policies necessary in the Usage Control model. A first implemen-
tation of usage control in GRID systems which does not exploit XACML in [7].
This system uses in fact the POLPA language, to define history-based usage
control policies. However, policies in POLPA, though expressive, are difficult to
write and do not respect standards. The introduction of history-based policies in
XACML proposed in the present work, allows to write expressive policies which
can be mapped in the POLPA language, still using an easy, enforceable and
standardized language. In [3] Pretschner shows an application of the Usage Con-
trol model to preserve people privacy in video surveillance systems. This work
is mainly focused on the description of the video surveillance infrastructure and
on how policies can be used to preserve user privacy, not allowing camera mon-
itoring when some conditions are not met. Some ideas from this work could be
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applied to implement some of the security policies described in the dam setting
proposed in the current work. However, the work in [3] envisions a system which
does not allow the definition of history-based policies, which enables the enforce-
ment of different security policies for different hazard-levels. Another language
for security policy specifications is ConSpec, presented in [8]. The ConSpec lan-
guage can be expressed either as a labeled transition system or in a text form to
represent process algebra models, being thus able to define history-based poli-
cies. However, the ConSpec language is not compliant with standards, sharing
thus the same strength and weaknesses of the POLPA language.

7 Conclusion and Future Work

This paper presents a formal approach to combine Usage Control policy to obtain
an History based U-XACML policy that is enforceable at run time. The contribu-
tion of the paper is twofold: (i) the definition of the formal model that underpins
the specification of History-based Usage Control policy and (ii) the enhancement
of U-XACML policy with the definition of the nextState function to update the
(attribute’s) state according to the transition function defined into the formal
model. As future work, we plan to test the integration of the nextState function
implementation on real use cases to evaluate its impact in the enforcement phase.
We also aim to enhance the formal model with parallel operator to consider more
policies in a concurrent way.
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Abstract. Access control is an important aspect of information sys-
tems. It manages and enforces the rules that govern the access of users
and applications to the data. In general, both data objects and access
rules are subject to change over time, e.g., one might withdraw the right
of a user to access a certain data object.

In this paper, we present a new access control model for weakly con-
sistent replicated information systems. Such systems are engineered to
be partition-tolerant and higher available than strongly consistent sys-
tems – an important aspect in a networked world with mobile devices.
In particular, they allow concurrent updates to different replicas and do
not enforce serializability of operations. However, this relaxation of con-
sistency threatens access control. If we withdraw the right of a user to
access data object o at one replica and then modify o, the user should
not be able to see this modification by accessing o on a second replica
(information leakage).

Our access control model targets eventually consistent data stores.
It avoids information leakage and unauthorized modifications. Further-
more, it guarantees that modifications to the access rules initiated on
different replicas eventually converge. Our model allows in particular
to implement access-matrix based models such as the read-write-own
model employed in file systems. In this paper, we define the model in
an abstract way, explain its correctness properties, and describe how it
can be efficiently implemented in state-of-the-art weakly consistent data
stores.

1 Introduction

Information systems often store sensitive information of customers, clients, and
users. To protect the information from unauthorized access, detailed rules are
needed that determine who may read and/or modify which data objects. The
rules together with the assignment of rights to users are called a security policy.
An access control system enforces that all executed operations satisfy the current
policy. In most systems, the security policy is subject to change. New users or
information is entered into the system, users change their roles, and access rights
of users have to be modified. Typically, the policy change should be effective
instantaneously, that is, for all operations happening afterwards. Since restarting
the system for each policy change is often not feasible because of availability
c© Springer International Publishing AG 2016
G. Barthe et al. (Eds.): STM 2016, LNCS 9871, pp. 82–97, 2016.
DOI: 10.1007/978-3-319-46598-2 6
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Fig. 1. System setting: Each node has a replica of the data store and the access control
system.

requirements, the access control system should support dynamic changes of the
policy at runtime.

Figure 1 illustrates our targeted system environment. On each server, a
replica of the access control system as well as the data store is hosted. Both
the access control system and the data store receive operations from authen-
ticated subjects and exchange these operations asynchronously with the other
replicas. The replicas communicate in a peer-to-peer fashion.

For strongly consistent systems, the topic of dynamically adaptable access
control is well understood. Several access control models have been proposed
[8,12,13,16,17] which implicitly rely on a total ordering of the operations that
strongly consistent systems induce on all operations. However, Brewer’s conjec-
ture [5,9], also known as the CAP theorem, states that in a network without clock
synchronization and with possible message loss, no service can implement strong
consistency, high availability and partition tolerance. As partitioning cannot be
prevented in computer networks due to network hardware and replicas failing,
implementors of data stores have to make some trade-off between high avail-
ability and strong consistency. In many systems [1–3,7], consistency is traded
for high availability. In such weakly consistent systems, updates are accepted at
any replica and propagated asynchronously to the other replicas. These synchro-
nization messages originating from different replicas can arrive in an arbitrary
order on a node. To achieve higher throughput, often a connectionless transmis-
sion protocol such as UDP is employed, which can even lead to reordering of
messages from the same replica during transmission. Though there is usually a
well-defined order in which the operations happen on a replica, there is no total
global order of all issued operations.

For the access control system, concurrently issued operations can lead to
modifications of the same policy in different ways on different replicas. These
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Fig. 2. Cooperation in the context of isolated partners

concurrent modifications have to be merged into a consistent policy. This can
lead to problems because the merged policy might not protect the subsequent
data operations as the original policies intended.

Consider two organizations A and B with an isolation policy : Employees of
A are not allowed to access data of B and vice versa. Let us consider a data set
D that might include data from A and/or B. If company A should be allowed
to work with D, we first have to exclude B’s data from D before granting A
exclusive access to D. To grant exclusive access for A, we have to explicitly
revoke access for B and afterwards grant access for A. We sketch our example in
Fig. 2. Independently, company A is given exclusive access to D on replica R1 and
B on replica R2. Afterwards, the companies update the data in D. When using
last-writer-wins [19] as conflict resolution strategy, we end up with a situation
that violates the isolation policy by granting access to A and B and possibly
having both data visible. As the deletion and updating happen concurrently,
the last operation, that is the update, will take precedence, and the data will be
present in D. The same is true for the policy modifications. The grant operations
win over the revoke operations because the grant operations happen after the
revoke operations.

Contributions

We present a model for access control in weakly consistent replicated information
systems. Our contributions are as follows:

– We give an abstract model for weakly consistent replicated information sys-
tems with access control systems (Sect. 2).

– We provide a notion of correctness for access control in weakly consistent
replicated information systems (Sect. 3).

– We discuss the properties of an access control system for the presented setting
(Sect. 4) and highlight its applicability and flexibility by instantiating it for
a typical application scenario (Sect. 5).

– Finally, we show how to efficiently implementation the access control model
using state-of-the-art replicated data stores (Sect. 6).
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2 Formal System Model

In this section, we describe a formal system model as a precise foundation for
correctness properties of access control systems in weakly consistent replicated
information systems.

Abstract executions

As model we take a slight adaptation of the model by Burckhardt et al. [6]:
An abstract execution of a weakly consistent data store is defined as a tuple
AD = (E, repl, obj, oper, ro, vis), where

– E ⊆ EventD is a set of events from a countable universe EventD;
– an event e ∈ E captures the execution of an operation oper(e) ∈ Optype(obj(e))

on an object obj(e) ∈ Obj at a replica repl(e) ∈ ReplicaID
– ro ⊆ E × E is a replica order, which is a union of irreflexive and total orders

on events at each replica;
– vis ⊆ E × E is an acyclic visibility relation such that ∀e, f ∈ E.e

vis−→ f =⇒
obj(e) = obj(f);

We use the notation e
r−→ f for (e, f) ∈ r. The relation ro gives the order

in which the events happened on the replica where the corresponding operation
has been issued. The relation vis reflects which events can influence the result of
other events; e vis−→ f means that f is aware of e and thus e can influence f .

We define the abstract execution of an access control system using a data
store by a tuple AAC = (AD, E, repl, obj, subj, oper, tsubj, ro, vis), where

– AD is an abstract execution of the underlying data store;
– AD.E ⊂ E ⊆ EventAC is a set of events from a countable universe EventAC

with EventD ⊆ EventAC ;
– each event e ∈ E executed by subject subj(e) ∈ Subj either describes a

data store event e ∈ AD.E on the underlying data store or an access
control event with replica repl(e) ∈ ReplicaID performing an operation
oper(e) ∈ Oppolicy(obj(e),tsubj(e)) with target object obj(e) ∈ Obj and target
subject tsubj(e) ∈ Subj ;

– ro ⊆ E × E is an extension of the data store’s replica order A.ro to the
operations on the access control system;

– vis ⊆ E × E is an extension of the visibility relation of the data store.

We consider a concrete execution to be correct if it can be justified by an
abstract execution with the same operations. A detailed explanation of abstract
executions and how to map them to concrete executions of a given system is
omitted owing to space constraints but can be found in [6].
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Policies and trust

The operator of an information system needs to define rules which restrict the
operations that may be performed on the objects by the individual subjects. In a
concrete system, the subjects can be users, processes, or applications executing
operations on the data store. A security policy assigns to each subject-object
pair a specific right r ∈ Right . We require Right to form a lattice, since we need
a minimum function for later constructions. The interpretation of the right is
given by a function decide : Right ×Event → {Grant ,Deny}. We model a policy
as a replicated data type with an operation asgn. The asgn operation allows to
modify the policy at runtime by assigning a new right for a subject-object-pair.

An abstract execution of an access control system is valid if all events e ∈ E
are valid with respect to the policy visible at repl(e) when e happened. The visible
policy can only be defined based on the execution of the system. An operation
context for an event is a tuple LAC = (o,E, oper, vis) where o ∈ Oppolicy(o,s) ∪
Optype(o), E is a finite subset of EventAC , oper : E → Oppolicy(o,s) ∪Optype(o) and
vis ⊆ E × E is acyclic. We can extract the context of an event e ∈ A.E in an
abstract execution of the system by the construction given in [6] based on the
visibility relation:

ctxt(A, e) = (A.oper(e), G, (A.oper)|G, (A.vis)|G),

where G = (A.vis)−1(e) are the events that have been visible when event e
happened, and ·|G is the restriction to events in G. The visible policy for an
event e can be given as a function Fpolicy(s,o)(LAC) based on an operation context
LAC , which returns the current right of subject s = subj(e) on object o = obj(e).
An event e is valid if decide(Fpolicy(s,o)(ctxt(A, e)), e) = Grant

For brevity, we use some short notations: We write decide(A, e) for short to
mean the access control decision of event e in the abstract execution A. We write
oper(e) = asgns,o(r) to mean oper(e) = asgn(r) ∧ obj(e) = o ∧ tsubj(e) = s. A
superscript on an event denotes the subject that executed the operation oper(e),
such that fs

1 is equivalent with f1 and subj(f1) = s.

3 Correctness of Access Control in Weakly Consistent
Systems

Informally, an access control system is correct if it enforces the security policy on
all replicas. To check whether a given abstract execution is valid, it is sufficient
to take for each event e ∈ EventAC the events that happened before e and
compute possible current policies when e happened. The policies for e denoted by
Fpolicy(s,o)(ctxt(A, e)) are based on the right assignments that happened before
e on the same object obj(e). Event e is valid according to the security policy if
decide(Fpolicy(s,o)(ctxt(A, e)), e) = Grant .

For strongly consistent systems, it is possible to talk about the current secu-
rity policy. Strong consistency induces a global order of all operations that occur
in the system. To find the current policy that applies to an operation op, we
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take the initial policy and apply all policy modifications that happened before
op. According to the global order, this means that in this case ro = vis for all
replicas.

For weakly consistent systems, there is not such a total order between all
operations. At each replica, there is a total order in which operations are applied,
but this order can vary for different replicas. We might have different vis-relations
describing different orders in which events of remote replicas get visible on other
replicas restricted by additional correctness conditions for abstract executions.
Depending on the vis-relation, we might get different possible policies for an event
leading to different decisions about the validity of the same event. We need to
disambiguate the policy for events thereby preserving the protective properties
of a policy modification.

We want to preserve two properties of the access control system: (1) All
policy changes need to be applied on all replicas before applying the subsequent
data events and (2) conflicts of concurrent policy modifications are handled
conservatively.

3.1 Protection Relation

For an access control system for distributed weakly consistent systems to be
correct, operations that depend on policy changes globally must be applied after
the policy modifications that possibly restrict the access to the object.

The per-object causality order hbo is defined in [6] as

sameobj(e, f) ⇐⇒ obj(e) = obj(f)

hbo = ((ro ∩ sameobj) ∪ vis)+

We extend the hbo order to the protection relation. For an abstract execution
AAC the protection relation prot is defined as

guarding(e, f) ⇐⇒ oper(e) ∈ Oppolicy(obj(e),tsubj(e)) ∧ oper(f) ∈ Optype(obj(f))

prot = hbo ∩ guarding

Two events e and f are in protection relation if e happened before f , both
concern the same object and e is a policy modification and f is a data operation.

3.2 Conservative Conflict Resolution

The data type to store the policy for a subject-object-pair is the policy type with
the operation asgn. For an event e with o = oper(e) and s = subj(e), the specifi-
cation of the current policy when e happens is specified by Fpolicy(s,o)(ctxt(A, e))
as:

Fpolicy(s,o)(op,E, oper, vis, ar) = min{r | ∃e ∈ E. oper(e) = asgns,o(r)∧
¬∃f ∈ E. oper(f) = asgns,o(r

′) ∧ e
vis−→ f}



88 M. Weber et al.

Set E is the set of events on o that are visible when e happens. Informally,
we take the set of all rights assigned to the subject-object-pair which have not
been overwritten by subsequent assignments to the policy. The result is a set of
concurrently assigned rights rs ⊆ Right , for which we required to form a lattice.
From rs we take the minimum element with respect to this rights-lattice.

3.3 Correctness Criterion

An access control for weakly consistent systems is correct if it retains the pro-
tection relation on all replicas and it conservatively resolves conflicts for policy
modifications.

Definition 1. An abstract execution A of a distributed access control system is
correct if

A.prot ⊆ A.vis and ∀e ∈ A.E. decide(Fpolicy(s,o)(ctxt(A, e)), e) = Grant

In a correct access control system, all policy modifications are visible for
subsequent data operations, thus can restrict access to the effect of subsequent
events. For conflicting updates of the same policy, the system needs to inte-
grate the updates in a way, that preserves the protective property of all policy
modifications. This property is guaranteed by preserving the information about
events that happened concurrently (neither e vis−→ f nor f vis−→ e) and taking the
minimum over these concurrently assigned rights.

4 Protection-Preserving Access Control

In this section we discuss why the two properties of a correct access control
system for weakly consistent systems stated in Sect. 3 are needed.

We assume that there is an initial access control policy, which grants only
specific events. A sensible default might be to have an administrative user that
has the rights to assign new rights to other subjects.

A data operation f may depend on a policy modification e in two different
ways:

1. f is valid because e is a change in the policy that permits it:

e
ro−→ fs ∧ oper(e) = asgns,o(r) ∧ decide(r, f) = Grant

2. e protects the modification of the state of an object resulting from f by
revoking access for a specific subject:

e
ro−→ f1 ∧ oper(e) = asgns,o(r)∧ decide(r, f2) = Deny ∧ obj(f1) = obj(f2) = o
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The first case only concerns the consistency between the local security pol-
icy and the data state. Wobber et al. [21] have discovered this relation in the
implementation of their access control system for weakly consistent replication.
Their implementation blocks a data operation on a replica until the respective
policy update arrives. In contrast, our system model requires consistency of the
access control decisions, thus we require that e

vis−→ f on all replicas.
The second case is more interesting since it can lead to leakage of information.

Event e is a right assignment which protects the effect of f1 by denying access in
form of f2 by s to o. When transferred to other replicas, this relation between e

and f1 should not get lost, since ¬(e vis−→ f2) means that f2 and thereby access
for s is allowed on the remote replica. If f1 is storing confidential information
and f2 accesses this information, e not being visible leads to information leakage
on the remote replica. Please note that e

prot−→ f1, thus by retaining the protection
relation in the visibility relation we effectively prevent this leak.

Fig. 3. Concurrent right assignment violating the protection relation.

The protective property of a right assignment could be violated by syn-
chronizing a concurrent policy modification. The situation is sketched in Fig. 3.
We assume that e1

prot−→ f1 with oper(e1) = asgns,o(r), oper(e2) = asgns,o(r
′),

obj(f2) = obj(f1), decide(r, f2) = Deny and decide(r′, f2) = Grant . The rights
assignments e1 and e2 happen concurrently on replicas R1 and R3. In a strongly
consistent system, the order in which the operations happen would globally be
fixed. This implies that e1

ro−→ e2 meaning r′ explicitly overrules r thereby explic-
itly permitting f2 or e2

ro−→ e1 explicitly denying f2 executed by s. In weakly
consistent systems, both right modifications happen without knowledge of one
another, so both semantics could be intended. To be conservative, we have to
assume the more restrictive semantics, meaning the goal is to deny f2 if executed
by s.

The order in which these two policy modifications are applied on R2 is arbi-
trary, which means that e1

vis−→ e2 and e2
vis−→ f2 is also possible. In this case, inte-

grating the concurrent policy modifications in a last-writer-wins fashion would
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violate the protective property of e1 to restrict access to the effect of f1. The
problem in this case is the concurrent modification of the policy.

Our model avoids the problem. Instead of last-writer-wins, we take an app-
roach where all concurrent assignments are retained and the minimum of the
assigned rights is taken as the result of the read operation on a policy. This
integrates the concurrent policies in a way that makes sure, that the commonly
agreed rights cannot be extended by policy modifications invisible to the other
replicas.

5 Example

To illustrate the formal model, we will discuss now how to instantiate ProPreAC
for a typical system with hierarchical read-write-own policies.

Consider a system with three subjects: Alice, Bob and Eve. In this example,
the subjects are actual users which interact with the system. Alice and Bob are
admin users with the special right to modify the security policy. The data store
maintains maps as stored objects which associate keys with values. Maps can be
modified by assigning a value v to a key k in map m (operation put(m, k, v)).
Operation get(m) returns all key-value assignments of map m. Deleting a map
from the data store is supported by the del(m) operation, which removes all
assignments from map m. The target object is for each operation, respectively,
defined as:

obj(get(m)) = m

obj(put(m, k, v)) = m

obj(del(m)) = m

Further, we assume that the data store ensures eventual consistency of the map
objects under concurrent modification (e.g., by implementing Map CRDTs [3]).
For the sake of the example, we assume that when issuing two put operations
on distinct keys k1 and k2 concurrently, both assignments are retained.

A classical policy model in access control systems is the read-write-own hier-
archy. A user which has read access to an object can read the object. The write
access also grants the permission to read the object, and in addition the user
can also modify the object. The own access grants the same rights as the write
access and in addition allows to delete the object. This system is based on a total
order of the different access rights, that is Right = {none, read, write, own}
where none < read < write < own.

The decide function is defined as follows regarding operations on a map m:

decide(read, get(m)) = Grant

decide(write, get(m)) = decide(write, put(m, k, v)) = Grant

decide(own, get(m)) = decide(own, put(m, k, v)) = decide(own, del(m)) = Grant

All other combinations are denied.
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Let us assume that users Alice and Bob have write access to a map m,
whereas Eve has only read access to m. In addition, Alice and Bob have the
permission to assign new permissions for m, and may thus modify the security
policy. Consider now two replicas R1 and R2, both having converged to the same
state with an identical security policy:

P |oldAlice,m = {write}
P |oldBob,m = {write}
P |oldEve,m = {read}

Now, the system state evolves as follows: On R1, Alice first sets the permission
of Eve for m to none, because she thinks that Eve is not trustworthy, and
afterwards writes a value v1 to key k1 in map m which Eve should not read. In
parallel, Bob first sets the permission of Eve for m to write, because he thinks
that Eve is trustworthy, and shares a value v2 with Eve by writing it to key k2
in m. Figure 4 illustrates the situation.

Fig. 4. Concurrent modification of Read-Write-Own policy.

After forwarding the data state and the policy modifications to the respec-
tive other replica, the common converged state looks like this: The data state for
map m is extended by the two write operations put(m, k1, v1) and put(m, k2, v2).
When reading from m, both the assignment to k1 and to k2 are visible. The pol-
icy state is updated by both rights assignments, from R1 and from R2, thereby
overwriting previous rights assignments. Since these right assignments happened
concurrently, both assignments are taken into account when determining the
actual rights. When asked for the current policy for Eve, the system computes
the minimum of rights assigned to Eve, which in this case is the right none. In
this state, the operation get(m) is not allowed to be performed by Eve since
decide(none, get(m)) = Deny . This is consistent with the fact that the assign-
ment (k1, v1) should not be readable by Eve because of the protection relation
between the event asgnEve, m(none) and the event put(m, k1, v1)Alice.
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6 Implementation

In this section, we sketch how our model ProPreAC can be efficiently imple-
mented in state-of-the-art weakly consistent storage systems. We call our imple-
mentation ACGreGate and base it on an eventually consistent data store.

To implement the model discussed in Sect. 4, we require tracking of the
causality regarding policy modifications and data operations. Causality tracking
using vector clocks as implemented in Amazon Dynamo [7] is known to not scale
very well. The problem is that the corresponding meta data grows either lin-
early with the number of clients, or it grows linearly with the number of servers
but is then less accurate. Tracking the information per server does not allow
to express concurrent operations on the same server which under-approximates
the actual system concurrency. Almeida et al. [4] propose a more efficient and
accurate solution using dotted version vectors. This technology allows to track
causality of operations accurately by combining server-based version vectors with
more detailed tracking of individual operations. Gonçalves et al. [10] presents an
implementation of this technology which features additionally low overhead in
the distribution of the causality information.

6.1 Application Operation Mapping to the Database Level

ACGreGate acts as a library for implementing systems based on Antidote as a
weakly consistent data store. Access policies are saved in the same data store
as the application data in order to retain the causal relations between data
operations and policy modifications. A policy modification is implemented as
a setRight operation on a policy CRDT. A rights assignment asgn(r)s,o boils
down to a data-store operation setRight(r) on the policy object indexed by key
(s, o). The key in this case is a tuple of a value representing the subject s, for
example, a user name, and a value representing the object o.

In real applications, the security policies are usually not defined on the level
of database operations, but on the level of the application’s functions. A right
in this case is therefore the permission to perform a specific operation of the
application. ProPreAC, on the other hand, is based on operations of the data
store and their relation to right assignments allowing these operations. This gap
between application and database level can be closed by the implementation in
two ways:

1. using the information about valid database operations for each application
function and checking whether the current subject is authorized to execute
the database operation for some application level function, or

2. authorizing access to the application level operation and logging database
level operations for auditing purposes.

The first approach requires additional information about the database oper-
ations each application function is allowed to trigger. This information initially
has to be given by the developer of the application. Depending on the appli-
cation, programming language, and tool support it might be viable to extract
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the executed database operations from the source code of the application. The
implementation of this approach can be done without further interaction with
the application just by intercepting database operations sent by the application
to the data store.

The second approach relies only on the information available from the secu-
rity policies on the application level. ACGreGate has to be notified by the appli-
cation about the operation to be executed. The access control system then checks
the access of users to application level functions based on the application poli-
cies. The access control system intercepts all database operations. If the user
has the required capabilities, the database operations are logged and relayed to
the data store. This creates an auditing log of all operations that have been exe-
cuted by each user under some permission. If the authorization procedure has
not been successful, the user does not have the required capabilities and all corre-
sponding database operations are discarded. After the application level function
finished executing, ACGreGate is notified, blocks the database operations again
and waits for the next authorization request.

6.2 Alternative Approach for Unknown Operation Mapping

In general, we want to restrict the waiting time to a minimum when apply-
ing operations. The knowledge about the database operations executed by an
application operation helps to do that. But the correctness of the access control
system can be guaranteed by using a causal+ capable data store [14]. This can
be useful in case we do not have the relation between the application level opera-
tions and the executed database operations. In Sect. 3 we defined the protection
relation as an extension of the per-object causality relation:

prot = hbo ∩ guarding

From this, we can deduce that the protection relation is a subset of the causal-
ity relation. This means that a system that preserves the causality relation auto-
matically also preserves the protection relation. If the relation between applica-
tion operations and database operations is not available, we can still implement
a correct access control system by implementing causal consistency. causal+
consistency differs from causal consistency in that it requires the convergence of
all replicas to the same state. In this sense, we rely on causal+ consistency in
order to implement ProPreAC correctly in absence of the application-database-
operation relation.

6.3 Convergence of the Policy State

We are currently implementing ACGreGate based on Antidote [20]. Anti-
dote already has support for causal+ consistency, meaning the implementation
already takes care of retaining the protection relation. The remaining problem
is to conservatively integrate concurrent policy changes, as described in Sect. 3.
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To implement this, we take research on convergent replicated data types
(CRDTs; [18]) as enabler. The policies are implemented as a CRDT which
supports the following operations: get() and setRight(R) with R ∈ Right . The
setRight operation allows to modify the policy by setting a new rights assign-
ment. Rights assignments that happened before are overwritten by this opera-
tion. Remote updates are incorporated into the local policy similar to the seman-
tics defined in Sect. 3. All rights assignments which are causally related with the
remote operation to incorporate are removed while concurrent assignments are
retained before adding the new assignment to the policy. This possibly results
in multiple concurrent right assignments. The get operations yields the current
right assignment by taking the minimum over all concurrent rights assignments.

7 Related Work

In the area of access control for weakly consistent systems, there are two major
tracks of related work: weakly consistent data stores and collaborative editors.

Eventually Consistent Data Stores. With the implementation of cloud sys-
tems, weakly consistent data stores have moved into the focus of distributed
systems research. Though many protocols and implementation schemes have
been proposed and implemented, the topic of access control for these systems has
received surprisingly little attention. The original version of Amazon Dynamo [7]
did not offer authentication and authorization capabilities. Several other related
eventually consistent data stores offer meanwhile techniques to implement access
control, but the granularity is not fine enough to provide access control on the
application level. Riak KV [3], MongoDB [2] and Couchbase [1] all support the
management of users, roles and permissions. But the smallest granularity is on
the level of buckets or collections, comparable with tables in relational data bases.
Typical permissions on this level allow to read, write, modify, or delete any value
of the bucket or collection. A more fine-grained permission level relating to the
operations on the application level is not supported.

Regarding eventually consistent data stores, Samarati et al. [15] describe a
high-level approach to authorization. The general idea is to optimistically accept
all operations and compensate the operations which were executed despite the
security policy by performing rollbacks. While this approach guarantees conver-
gence of the security policy, it is not clear for each operation how to undo the
effect of this operation after it has been executed. One of the problems is the
potential binding between operations and effects in the data store and changes
of the real world. For example, a banking system allows to withdraw money from
an account and the ATM outputs the money. In this case, it is hard to undo
the withdrawal because the person with the money has already walked away.
In addition, the guarantees given by such an optimistic system remain unclear.
Effects of operations can be perceived by a user of the data store before the
rollback, thereby possibly leaking sensible information.
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Wobber et al. [21] present an access control model for weakly consistent
mutually distrustful replicated systems. Their focus work is on partial replication
with different access policies per replica. While we consider a different setting
of fully replicated systems, similar problems can be identified. The causality
between a policy and the subsequent operation that are permitted by the policy
is captured by their model by waiting for the required policy change to arrive.
However, the causality between a policy change that restricts the visibility of
the effect of an operation and the subsequent execution of this operation is not
captured. As such, the model still allows leaking sensitive information because
of the possible violation of the protection relation between a policy change and
a subsequent data operation.

Collaborative Editors. Imine et al. [11] present an access control model for
distributed collaborative editors. The similarities to data stores lies in the fact
that the modifications of the document in the editor can be seen as data opera-
tions and the document needs to be eventually consistent on all distributed editor
instances. As such, the editors can be seen as replicas managing the document as
the data state. In this setting, the policy modifications consider objects such as
a character or section of text. To prevent divergence, all operations on an object
are ordered by the authoring editor instance. This implies a one-to-one relation
between parts of the text and the responsible editor instance, which again leads
to a single point of failure. A addition, the model only considers modifying oper-
ations; all users are allowed to read the complete document. The implementation
by Imine et al. [11] is very similar to an implementation of causality tracking for
a data store. In contrast, our model considers read operations, which allows us to
talk about leakage of information because the policy can restrict the read access,
thereby protecting data modifications. Further, we introduce neither bottlenecks
nor single-points-of-failure by building on the causality relation.

8 Conclusion and Future Work

We introduced ProPreAC, an access control system for weakly consistent repli-
cated information systems. To the best of our knowledge, it is the first system
that considers a causal relation between policy modifications and subsequent
data operations to prevent information leakage and unauthorized data modifi-
cation.

We presented a formal model of access control in weakly consistent replicated
systems and formulated a definition of the correctness for access control in such
a system. The definition is strongly based on the protection relation between a
policy modification which restricts access to an object and a subsequent data
operation modifying the object. ProPreAC preserves the protective properties
of such policy modifications, thereby guaranteeing correct enforcement of the
security policy. We showed how to instantiate our system with different policy
schemes such as hierarchical read-write-own policy schema, thus illustrating that
the model is flexible and applicable for different schemes. Finally, we gave a
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sketch of how an efficient implementation of the access control model for state-
of-the-art replicated data stores like Riak [3] can be achieved. In contrast to
currently employed access control systems, ProPreAC supports high availability,
does not hinder scalability and allows to implement fine-granular and flexible
security policies as required by modern information systems.

In future work, we will show that our model can be implemented such that
it scales well in distributed environments with massive interaction. Additionally,
the model can be extended to support additional security properties. Malicious
operations can, for example, be undone if the data store offers a log of previous
values for each object. Stronger properties like the global invariant that there is
at least one user with administrative rights need additional synchronization.
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Abstract. Software engineering and information security have tradi-
tionally followed divergent paths but lately some efforts have been made
to consider security from the early phases of the Software Development
Life Cycle (SDLC). This paper follows this line and concentrates on the
incorporation of trust negotiations during the requirements engineering
phase. More precisely, we provide an extension to the SI* modelling
language, which is further formalised using Answer Set Programming
specifications to support the automatic verification of the model and the
detection of privacy conflicts caused by trust negotiations.

Keywords: Secure software engineering · Requirements engineering ·
Goal-oriented modelling · Privacy · Trust

1 Introduction

In recent years, the number of vulnerabilities and attacks present in software
systems have led to a growing interest in incorporating security from the early
phases of the SDLC. Also, the notions of trust and privacy are gaining momen-
tum due to the proliferation of new computing paradigms where devices from
different security domains interact with each other and exchange valuable infor-
mation. Our work deals with the confluence between secure software engineering,
privacy and trust.

This paper presents a framework for identifying privacy threats caused by the
uncontrolled disclosure of information during a trust negotiation. Trust nego-
tiation systems [15] model how the exchange of information between entities,
wishing to establish a relationship, is done. Our framework is capable of mod-
elling such systems and detecting potential threats automatically early in the
specification and design of the system. Thus, it facilitates the incorporation of
privacy-aware trust negotiations in the development of socio-technical systems.
To that end, we build our framework as an extension of SI* [6], which is designed
to capture the objectives and relationships between various entities within an
organisational setting and already supports the definition of some security con-
cepts, such as delegation and trust.

The proposed framework models trust negotiations as a relationship between
two entities that pursue a common goal1. To that end, they need to exchange
1 N.B. That we assume that the goal is always common. The consideration of different

goals is out of the scope of the paper.
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information that may be sensitive and thus impact their privacy. Therefore,
informational resources are labelled with a particular sensitivity level that defines
how important it is to keep control of this information. The framework detects
inconsistencies with the privacy policy by comparing it with the sensitivity level
of the resources being exchanged during a trust negotiation.

The rest of this paper is organised as follows. Section 2 introduces the related
work in the area whereas Sect. 3 deeps into SI*, which is the basis of our work.
Our proposal for a privacy-aware trust negotiation methodology is presented in
Sect. 4 and its formalisation in Sect. 5. Section 6 concludes the paper and outlines
the future work.

2 Related Work

A common approach to requirements engineering is to follow a goal-oriented
methodology based on concepts such as actors and goals rather than on pro-
gramming concepts. The KAOS framework [14] is based on temporal logics and
Tropos [3] is founded on the i* organisational modelling framework [16]. These
frameworks have been extended to deal with security requirements. The notions
of obstacle [13] and anti-goal [12] have been introduced to KAOS. Secure Tro-
pos [7] extends Tropos by making explicit ownership relationships and actor
entitlements. The modelling language used by Secure Tropos is SI* [6], which
incorporates a number of security concepts. New goal-oriented methodologies
have recently been proposed, such as STS [10], which puts more emphasis on
authorisation and the notion of document.

Although research on security engineering is extensive, privacy has tradi-
tionally been left out. The only support to privacy in most of these frameworks,
including SI* and STS, is considering it as data confidentiality. Notwithstand-
ing, several privacy engineering methods exist. Authors in [8] tackle privacy
issues by defining a set of best practices in the different stages of the devel-
opment process. LINDDUN [4] defines a mapping among privacy threats and
the software components in order to elicit privacy requirements. Pris [5] models
privacy requirements as organisational goals and later privacy patterns are used
for identifying architectures.

The closest approach to ours is the one followed by PP-Trust-X [11]. The
main difference with our proposal is that our framework detects privacy conflicts
during the requirements engineering phase rather than at runtime. To the best
of our knowledge no other works address this problem early in the SDLC.

3 The SI* Modelling Language

We provide next an overview of the SI* modelling language [6], that is, a descrip-
tion of core elements and some extensions, which are relevant to our work.
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3.1 SI* Core Elements

SI* defines a set of concepts, which are necessary to identify the actors2 involved
in the system, their goals, entitlements and the relationships between them. An
agent is an active entity of the system, which plays a particular role. This is
represented by means of the play relationship. The notion of service is used to
refer to either a goal, a task or a resource. A goal is a desirable situation or
interest expressed by an entity, a task is a set of actions that can be executed
to fulfil a goal, and a resource is an artefact produced or used by a goal or task.
The connection between services and actors are expressed by means of three
relationships: own denotes the authority of entities over resources and goals;
provide represents the ability of an actor to accomplish a goal or to provide a
resource; and request denotes the interest of an entity over a goal or resource.

There are some additional predicates to denote that a goal can be attained
by fulfilling a set of subgoals, and predicates to deal with social relationships
such as delegation and trust. The formalisation of the aforementioned elements
is done using answer set programming (ASP) syntax [2], as shown on the left
side of Table 1. Note that only the most relevant predicates are provided here.

Table 1. Relevant SI* predicates

Goal model

actor(Actor: a)
agent(Agent: a)
role(Role: r)
service(Service: s)
goal(Goal: g)
task(Task: t)
resource(Resource: r)

Actor properties

play(Agent: a, Role: r)
own(Actor: a, Service: s)
request(Actor: a, Service: s)
provide(Actor: a, Service: s)

Goal refinement

subgoal(Service: s1, Service: s2)
AND decomp(Service: s, Service: s1, Service: s2)
OR decomp(Service: s, Service: s1, Service: s2)
means end(Service: s1, Service: s2)

Social relations

del perm(Actor: a1, Actor: a2, Service: s)
del exec(Actor: a1, Actor: a2, Service: s)
trust perm(Actor: a1, Actor: a2, Service: s)
trust exec(Actor: a1, Actor: a2, Service: s)

Resource model

stored in(Resource: r, Resource: r1)
part of(Resource: r, Resource: r1)
require(Resource: r, Resource: r1)

Permission model

permission(Actor: a, Resource: r, PType: pt)
del perm(Actor: a, Actor: a1, Resource: r, PType: pt)
trust perm(Actor: a, Actor: a1, Resource: r)

Security and Threat model

secure req(Resource: r, SProperty: sp)
secure req(Goal: g, SProperty: sp, Resource: r)
threat(Actor: a, Resource: r, SProperty: sp)
threat(Actor: a, Goal: g, SProperty: sp, Resource: r)

Asset model

asset(Service: s, Actor: a)
sensitivity(Service: s, SLevel: sl, Actor: a)
secure req(Service: s, SProperty: sp, Actor: a)

Trust model

trust perm(Actor: a, Actor: a1, Service: s, PType: pt)

2 The notion of actor is inherited from i* and is used only when it is not necessary to
distinguish between the concepts of agent and role.
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3.2 SI* Extensions

Although SI* is a very powerful language, some extensions have been proposed
to support the modelling of new scenarios.

Asnar et al. [1] introduced different levels of permissions on resources and
relationships between them. The stored in relationship indicates the physical
location of an informational resource, part of denotes that a resource is com-
posed of other resources, and require denotes that a resource needs another
resource to function. Moreover, resources are marked with a security require-
ment label that indicates the security property (confidentiality, integrity and
availability) that must hold for it. Actors can be provided with three different
types of permissions: access, modify or manage permission. Finally, the threat
predicate holds if an actor violates the security property on a resource. Paci
et al. [9] introduce two additional extensions to detect insider threats in organ-
isations. The first one is based on the notion of asset, which is a service for
which the owner specifies the sensitivity level as well as a security property that
denotes the level of protection demanded by the actor for protecting the service.
The second extension is a trust model that enables to specify the trust level
that an actor places on another actor with respect to a given permission on a
particular asset. A summary of the aforementioned predicates is presented on
the right side of Table 1.

4 Trust Negotiation Extension

We present here our privacy-aware extension of SI* for trust negotiations.

4.1 Overview

A trust negotiation [15] is a dual relationship in which the participants exchange
(accredited) information in order to establish trust as a means to achieve a goal.

Based on the above definition, we propose to model trust negotiations based
on existing features of the SI* modelling language, as shown in Fig. 1. In this
figure we can distinguish two main components that play a fundamental role in
the modelling of trust negotiations. First, the trust relationship in which data
is demanded by each of the actors and the goal to be accomplished. Second, the
informational resources owned by the actors, which need to be under control. For
that reason, these are marked with a privacy requirement label and a sensitivity
level to indicate the risk of sharing these data.

4.2 Trust Negotiaton Relationship

Trust negotiations pose a natural tension due to the conflicting objectives of
privacy and trust. On the one hand, trust is founded on the availability of infor-
mation about other actors. On the other hand, privacy refers to the ability to
keep control of sensitive information. As a result, trust negotiations are ruled
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by the amount of information that each participant demands and the amount of
data that is willing to offer.

This type of relationship can be represented with a notation that is consistent
with SI*. Actors can be represented as circles, the goal as a squared oval. These
elements are connected by a labelled arc. The arc is further parameterised with
the information being requested. Since a trust negotiation is a dual relationship
it would be necessary to have one arc in each direction. However, for the sake of
clarity and simplicity, we propose an alternative notation with a single arc, as
depicted in Fig. 13.

4.3 Privacy-Aware Data Disclosure

The modelling of trust negotiation must also take into consideration the own-
ership of data and whether there are any privacy requirements for these data.
Similar to previous extensions that incorporate security requirement labels, we
propose the use of a privacy requirement label to indicate that a particular
resource must maintain a specific level of privacy.

Privacy violations are usually associated with a loss of control over data. To
this end, we adopt the part of relationship to represent the composition of data
resources. Data resources may be additionally labelled with a sensitivity level to
indicate how valuable this information is. Moreover, the sensitivity is related to
the level of detail of data offered. For the sake of simplicity, we consider only 3
sensitivity levels: Low, Medium, and High; and, consequently, we also deal with
3 levels of granularity for each data type. This depends on the data type being
considered. Note that the requirements engineer can easily extend this feature
to incorporate as many sensitivity and granularity levels as desired.

Fig. 1. Trust negotiation representation in SI*

3 Note that pentagons point to the party whose information is being demanded.



Privacy-Aware Trust Negotiation 103

5 Reasoning Support

We present in this section how verification of the model can be done.

5.1 Predicates

First, a predicate for representing the trust negotiation relationship itself is
needed. The predicate trust neg indicates that actors4 a1 and a2 can initiate
a negotiation to achieve a common goal g. Note that it is not reasonable to have
a trust negotiation where the two actors are the same. This will be reflected later
in the rules presented in Sect. 5.2.

The predicate offers denotes that actor a is willing to offer resource r up to
a given granularity level l ∈ {Low,Medium,High}. The granularity level is
inversely proportional to the sensitivity of a resource. Similarly, the predicate
demands indicates that an actor a requests a resource r with at least a given
granularity l. This predicate indicates to which actor the resource is demanded
since an actor can be involved in several trust negotiations. However, the pred-
icate offers does not consider this as it expresses the level of detail that the
agent will release regardless of who is involved in the negotiation. Finally, the
predicate privacy req denotes the level of privacy that needs to be satisfied for
a particular resource. These are predicates P1 to P5.

P1: trust neg(Actor: a1, Actor: a2, Goal: g)
P2: offers(Actor: a, Resource: r, Level: l)
P3: demands(Actor: a1, Actor: a2, Resource: r, Level: l)
P4: sensitivity(Resource: r, Level: l)
P5: privacy req(Resource: r, Level: l)
P6: satisfy(Actor: a1, Actor: a2)
P7: data exposure(Actor: a, Resource: r, Level: l)
P8: establish trust(Actor: a1, Actor: a2, Goal: g)
P9: privacy threat(Actor: a, Resource: r, Level: l)

Besides the aforementioned predicates, other intermediate predicates are
needed. The predicate satisfy denotes that an actor satisfies the demands of
another actor. The predicate data exposure indicates that the resource r belong-
ing to an actor a is exposed to a certain degree l. Two additional predicates
indicate whether the trust negotiation process can be fulfilled (establish trust)
and whether there is a privacy breach (privacy threat) with respect to the estab-
lished privacy policy. These are predicates P6 to P9.

5.2 Rules

The first set of rules, from R1 to R3, express that the sensitivity of a resource
is inversely proportional to its granularity level. Rule R4 denotes that one actor
4 Actors are used for simplicity but the actual predicates and rules should consider

roles and agents as arguments.
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satisfies the demands of another actor if the resource is offered with at least as
much granularity as desired5. The actors that demand and offer resources cannot
be the same.

R1: offers(A, R, High) ← owns(A, R) ∧ sensitivity(R, Low)
R2: offers(A, R, Medium) ← owns(A, R) ∧ sensitivity(R, Medium)
R3: offers(A, R, Low) ← owns(A, R) ∧ sensitivity(R, High)
R4: satisfy(A1, A2) ← offers(A1, R, GL1) ∧ demands(A2, A1, R, GL2)

∧ (GL1 � GL2) ∧ (A1 �= A2)
R5: establish trust(A1, A2, G) ← trust neg(A1, A2, G) ∧ satisfy(A1, A2)
R6: data exposure(A1, R, EL) ← offers(A1, R, EL) ∧ satisfy(A1, A2)
R7: data exposure(A1, R, EL) ← offers(A1, R1, EL) ∧ satisfy(A1, A2)

∧ part of(R1, R)
R8: sensitivity(R, Low) ← not sensitivity(R, ) ∧ resource(R)
R9: sensitivity(R1, SL) ← not sensitivity(R1, ) ∧ resource(R1)

∧ sensitivity(R, SL) ∧ part of(R1, R)
R10: privacy threat(A, R, EL) ← privacy req(R, PL) ∧ data exposure(A, R, EL)

∧ (EL � PL)

R5 states that it is possible to establish a trust relationship whenever the
trust negotiation has been satisfied. Rules R6 and R7 express the amount of
information being exposed due to the fulfilment of a trust negotiation.

Rules R8 and R9 consider the case of having resources without a prede-
fined sensitivity level. The former assigns a Low sensitivity level while the latter
impose the same sensitivity level as the one defined for the parent resource. Note
that the ‘ ’ symbol represents that this argument is irrelevant for the rule to be
triggered. Finally, rule R10 states that the privacy policy is violated when the
level of exposure of a resource exceeds its desired privacy level.

6 Conclusion

This paper presents a framework to include trust negotiation models in the
early phases of the SDLC. The framework is based on the SI* modelling lan-
guage and enables the automatic detection of privacy threats due to disclosure
of data beyond a sensitivity level. The detection of privacy threats can aid in
the refinement of privacy policies in the system.

We are currently working on extending the features of our framework to cap-
ture more complex scenarios. A future research line will be to consider multiple
data exchanges when an actor is engaged in multiple trust negotiations.

Acknowledgements. This work has been partially funded by the European Com-
mission through the Marie Curie Training Network NeCS (H2020-MSCA-ITN-2015-
675320), the Spanish Ministry of Economy and Competitiveness through PERSIST
(TIN2013-41739-R) and PRECISE (TIN2014-54427-JIN), which is co-financed by
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5 We use the � symbol to compare ordinal values: High � Medium � Low.
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Abstract. In the last decade traditional identity documents have been
equipped with an embedded NFC-chip to enable wireless access to the
relevant data. This applies in particular to passports, following the ICAO
standard, but increasingly also to other identification documents, such
as driver’s licenses. Such electronic identity (eID) documents can now be
used as “mother cards” by the users to remotely enrol and obtain derived
credentials which can in turn be used for identification and authenti-
cation, notably on smart phones. These self-enrolment possibilities are
becoming popular, because they are easier and cheaper than traditional,
face-to-face enrolments.

This paper first describes a protocol for obtaining credentials on
smart phones from an eID document, that has been implemented using
the “IRMA” attribute-based credential technology. This basic protocol
cannot exclude that someone enrols with another person’s eID document.
Subsequently several mechanisms are discussed for securing a proper
binding between the user and the eID document used for enrolment.

1 Introduction

User authentication is a process that confirms the binding between a user and his
presented identity to an authenticating entity, for instance, to a service provider.
Typically, a service provider authenticates a user by verifying the presented
credentials, e.g., a password or a proof of knowledge which are considered as
evidences for the user’s claimed identity. To ensure that the service providers are
guaranteed of the credentials’ authenticity during authentication, the credentials
have to be issued to the user (i.e., to the user’s authenticating device) in a
secure manner after verifying the user’s identity during an enrolment phase.
Thus, secure and trustworthy enrolment plays a very important role in any
authentication ecosystem.

Secure enrolment consists of verifying the real-world identity of a user (also
called identity-proofing) and registering the user before issuing an identity cre-
dential. Traditionally, face-to-face enrolments are required whenever important
(physical) identity documents or credentials are issued to users. For example, a
passport is issued after the user has applied for it and a government authority has
verified the user’s identity during a face-to-face meeting at the authority’s office.
c© Springer International Publishing AG 2016
G. Barthe et al. (Eds.): STM 2016, LNCS 9871, pp. 106–121, 2016.
DOI: 10.1007/978-3-319-46598-2 8
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Such an enrolment gives strong trust assurance to an authenticating entity about
the passport holder’s claimed identity and about the link between the user and
the passport. However face-to-face enrolments are not user-friendly and more
importantly, they are very expensive in terms of time, costs and resources. So
in recent years there is a push towards remote self-enrolment of users where, of
course, security requirements remain strong, but are harder to guarantee.

This paper investigates secure self-enrolment of users in which users can
derive their identity credentials from their ICAO1 standard electronic identifi-
cation (eID) documents (e.g. e-passports), onto their authenticating devices. In
this paper, we follow the definition of ‘derived credential’ found in NIST Special
Publication 800-63-1 [1]:

“A credential issued based on proof of possession and control of a token
associated with a previously issued credential, so as not to duplicate the
identity proofing process”.

The trust for the new credential on an authenticating device is derived from the
strong identity binding associated with the authenticated eID document during
enrolment. For this paper we consider smart phones as authenticating devices,
because they can directly connect with enrolment services and can contain capa-
bilities to communicate with eID documents. This paper abstracts from the spe-
cific credentials obtained through self-enrolment and its results can be applicable
to different types of credentials. However, the motivation for this topic comes
from our earlier work in the field of Attribute Based Credentials (ABCs) [2]
within an ongoing research project called IRMA2 (I Reveal My Attributes).
ABCs have many nice properties, but for this paper it is important to know
that these credentials are authentic and non-transferable. But, of course the cre-
dentials are only as trustworthy as their issuance process, which is why we are
interested in secure self-enrolment.

Self-enrolment via eIDs is convenient for a user as it can be done from any
location and is very inexpensive, both time- and cost-wise. It is also secure, in
principle, as one builds self-enrolment on top of an earlier face-to-face enrolment
that was carried out for eID issuance.

A high level picture of our approach to eID-based self-enrolment is given in
Fig. 1. The first three steps constitute the enrolment phase, which the user goes
through only once for obtaining his credentials. The last ‘showing’ steps on the
right suggest how the issued credentials can be used, selectively, to authenticate
to multiple service providers. This paper focuses on these first three enrolment
steps, and will especially elaborate the user’s interaction with the Enroller and
the Issuer. Details will be given in Sect. 3.

1 International Civil Aviation Organization standard document 9303 (http://www.
icao.int/publications/Documents/9303 p3 v2 cons en.pdf).

2 See https://www.irmacard.org/ for more information.

http://www.icao.int/publications/Documents/9303_p3_v2_cons_en.pdf
http://www.icao.int/publications/Documents/9303_p3_v2_cons_en.pdf
https://www.irmacard.org/
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Fig. 1. Self-enrolment using a standard eID document and a smart phone with NFC
capability to get derived credentials on the phone.

1.1 Our Contribution

Taking our implementations of several experimental forms of self-enrolment
within the IRMA context as a starting point, we explore how to guarantee a
higher level of trust by combining several options that are available, in principle,
to a wider audience. The conclusion that emerges is:

1. attribute-based authentication technology provides a natural setting (ecosys-
tem) for self-enrolment, providing different attributes for different authenti-
cation scenarios;

2. several methods exist or are appearing (such as, eID documents with PIN,
biometric checks, existing logins) that make trusted self-enrolment a viable
new approach in identity management;

3. trusted self-enrolment requires more than a single protocol, and can be
realised by combining several self-enrolment protocols, involving possibly
overlapping attributes; they lead to higher levels of trust if they yield consis-
tent outcomes; in this way the separate protocols reinforce each other.

2 Background

Attribute-based credentials (ABCs). ABCs can be considered a privacy-
enhancing technology (PET). An attribute is a characteristic or a qualification
of a person. Attributes can either be identifying (e.g., ‘full name’, ‘address’) or
non-identifying (e.g., ‘student’, ‘age over 18’). Collectively, these attributes can
constitute the identity of a person. An attribute-based credential is a crypto-
graphic container of a few attributes that is signed by an authoritative party.
The creation of an attribute-based credential is called issuing. This is an inter-
active cryptographic protocol in which an issuer authority digitally signs the
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user’s credentials with his private key. The credentials are issued in such a way
that they are associated to the user’s secret key that is securely stored on the
user’s authentication device. Thus, ABCs are authentic and non-transferable.
One special thing about an ABC is that the attributes can be selectively dis-
closed; thus, the ABCs achieve data minimization and privacy protection via
contextual authentication.

ICAO standard. The International Civil Aviation Organization (ICAO) runs a
‘machine readable travel documents’ programme. Its main purpose is to develop
and maintain open specifications for automated access to data in passports.
This includes embedded chips that can be accessed wirelessly, via Near Field
Communication (NFC).

These chips contain the information that is printed on the main page of the
passport, such as name, date of birth, picture, date of issuance etc., but possibly
more, like fingerprints. Access to these fingerprints is restricted, but the other
data can be accessed without prior authorisation. The data in the passport are
digitally signed, so that their integrity can be checked. In the current context
two protocols are of special importance. For more information, see [3].

– Basic Access Control (BAC). The user data in the embedded chip in a pass-
port are cryptographically protected. The required cryptographic keys can
be derived from the combination of: document number, date of birth, expiry
number. These can be obtained by scanning the machine readable zone at the
bottom of the main passport page. They can also be provided manually, like
in the screenshot on the left in Fig. 3. The protocol that derives the relevant
keys and uses them for data transfer is called Basic Access Control (BAC).
It is implemented in any device that reads e-passport (including the IRMA
app).

– Active Authentication (AA). The data that are read via BAC includes a
document-specific public key. The associated private key is securely stored
inside the chip in the passport. The so-called Active Authentication protocol
uses this key pair to verify the authenticity of the passport via a standard
challenge-response check3 to ensure that the passport is not a clone.

3 Basic Self-enrolment with eID Documents

Our self-enrolment protocol allows the user to enrol remotely (from any loca-
tion) through his smart phone using his eID document to get authentic, derived
credentials on his smart phone. The entities that are involved in this protocol
are:

– User - Entity who initiates self-enrolment with his eID document and his
smart phone in order to get authentic derived credentials on his phone;

– Enroller - Entity who verifies the user’s identity (i.e. eID document), carries
out enrolment for the user before the credentials can be issued to him;

3 See also https://www.commoncriteriaportal.org/files/ppfiles/c0247 epp.pdf.

https://www.commoncriteriaportal.org/files/ppfiles/c0247_epp.pdf
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– Issuer - Entity who issues derived credentials to the user upon getting an
enrolment confirmation message from the Enroller.

Note that in specific scenarios the Enroller and Issuer can be the same entity.
In our basic self-enrolment protocol, we assume that the user’s eID document

has an NFC chip and that the user’s smart phone supports NFC, so that the
eID document can be read by/via the phone. Below we describe the protocol
that summarizes the communication between the user’s phone, Enroller and an
Issuer during self-enrolment. See also Fig. 2.

1. A user connects to the Enroller securely (e.g. via TLS) through his phone,
requests for derived credentials using his eID document, enters the BAC (see
Sect. 2) data present in the eID: document number, date of birth and doc-
ument expiry date on his phone, and holds his eID document against (the
NFC reader of) his phone.

2. The Enroller reads the user’s eID via the user’s phone’s NFC interface and
performs the following checks on the eID:
– a check for data integrity: by verifying the digital signature on the (hashes

of the) data groups, the Enroller verifies if the eID data are not altered;
– a check for authenticity: using the ICAO-defined active authentication (see

Sect. 2), the Enroller verifies if the eID is not cloned;
– a check of the user’s eID against a database of revoked (e.g. lost/stolen)

eID documents. This check is possible only if the Enroller has access to
such a database, which is typically maintained by public authorities.

3. If the above eID checks are successful, then the Enroller sends a digitally
signed user-identity confirmation message to the Issuer. This message contains
the user’s eID data that the Issuer can sign and issue to the user as derived
credentials.

4. The Issuer verifies the Enroller’s signature on the confirmation message, con-
nects to the user’s phone and issues signed eID credentials to the user’s phone
— so that the phone is ready to be used as an authentication device.

The above protocol considers the user’s eID document as a mother card from
which an Issuer derives user’s identity credentials and issues them securely to
the user’s phone. After this issuance, the user can use his phone as his authen-
ticating device and authenticate to any entity with the issued credentials. The
self-enrolment protocol, although remotely done, ensures that the user is in pos-
session of a valid eID and that the identity credentials are derived onto his phone
from that authentic source.

The above approach may give clearly separated roles between public and
private parties. Public authorities are the traditional trusted root for identity
information about citizens. They remain so in our basic enrolment protocol, via
the eID documents that they issue. Private parties may develop smart phone
apps for derived identity credentials and play the roles of Enroller and Issuer,
and thus build innovative identity management systems on top of the publicly
issued e-documents.
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Fig. 2. Basic self-enrolment protocol using a standard eID document. The dashed
arrows in the figure indicate the phone as a NFC reader and the solid arrows indicate
the phone as the currently enrolling user-device (potential credential carrier).

3.1 Implementation of Basic Self-enrolment Protocol

We have implemented the basic self-enrolment protocol in an attribute-based cre-
dential (ABC) [2] framework based on a technology called IRMA that has been
developed at Radboud University, Nijmegen, Netherlands. IRMA has created
an efficient and simple smart card and smart phone implementation of ABCs,
based on Idemix from IBM [4–6]. The fundamental idea of credential design and
a broader non-technical description of the IRMA technology is given in Alpar
et al. [7]. Our implementation4 uses:

– eID documents such as passports, identity cards or driver’s licenses as the
standard identity documents;

– Android-based smart phones enabled with NFC as the user-devices;
– an IRMA (Android) app;
– an Enroller server;
– an Issuer server.

In our implementation, the user chooses to enrol with his eID document via his
smartphone’s IRMA app5 and enters the BAC data manually or by scanning
a QR code that is printed on the latest version of Dutch driver’s license. The
4 IRMA self-enrolment implementation details can be found at https://github.com/

credentials/irma mno server/blob/master/README.md.
5 More details on IRMA smartphone app can be found at https://www.irmacard.org/

irmaphone/.

https://github.com/credentials/irma_mno_server/blob/master/README.md
https://github.com/credentials/irma_mno_server/blob/master/README.md
https://www.irmacard.org/irmaphone/
https://www.irmacard.org/irmaphone/
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Fig. 3. Screenshots from an IRMA self-enrolment session

IRMA app essentially functions as a remote card reader for the enroller, reading
some data from the eID document and sending it to the Enroller server. This
server then verifies the validity of the document, extracts some user’s personal
data from it, and requests the Issuer server to issue some credentials containing
the extracted data to the smart phone6. Some of the screenshots of the IRMA
app handling self-enrolment are provided in Fig. 3 below.

3.2 Weakness of Basic Self-enrolment

Although the basic self-enrolment protocol is user-friendly, inexpensive for both
user and the Enroller, and results in authentic credentials on the user’s smart
phone, it has an important weakness: a malicious user might use someone else’s
eID document (stolen, lost or borrowed) and carry out the protocol. This would
lead to the malicious user wrongfully getting the eID owner’s credentials issued
to his phone as his identity credentials. From then onward, the user can imper-
sonate the eID-owner during online authentications with his phone. This attack
is possible because there is little binding between the user and the identity doc-
ument (or the mother card) that is used for the enrolment. We will address this
weakness by considering several user-binding solutions described in Sect. 4.

3.3 Deriving Credentials from Common Access Card (CAC)

On a conceptual level, our self-enrolment approach has some overlap with meth-
ods developed for deriving credentials from special US-identity cards such as
Common Access Card (CAC), but it also differs in several essential aspects.
6 How IRMA enrolment works can be seen in action in the Youtube video https://

www.youtube.com/watch?v=q6IihEQFPys, see especially from 1:24 to 1:52.

https://www.youtube.com/watch?v=q6IihEQFPys
https://www.youtube.com/watch?v=q6IihEQFPys
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A CAC is a Personal Identity Verification (PIV) card issued by the U.S.
Department of Defense that is meant for closed user groups (e.g. employees of
government agencies). An application that uses CAC as the mother card to
derive PIV credentials on mobile devices is Entrust Mobile Derived Credential
solution7. It requires the user to undergo a derived credential enrolment process
which involves his PC (desktop or laptop) that is connected to a CAC via the
card reader, his mobile device and Entrust’s Self Service Module (SSM). The
enrolment takes place as follows.

1. The user navigates to the SSM’s web page through the web browser on his
PC and authenticates to the SSM using his PIV/CAC smartcard. The CAC
gets activated by the user-specific PIN.

2. The SSM validates PIV credential on the card and lets the user select the
link to request a derived PIV credential.

3. To ensure a secure user-device binding, the SSM uses ‘Email with password
via encrypted email’ activation method in which two emails are sent to the
user’s pre-registered email address:
– the first email is unencrypted and contains an encrypted link back to

the SSM’s web page for issuance of the derived credential, that can be
decrypted using the password in the second email;

– the second email is encrypted and contains a one-time password. This
email can be decrypted only with the PIV credentials found on the user’s
CAC smartcard.

4. On entering the correct password on the mobile device, the user obtains the
derived PIV credential from the SSM.

Entrust’s enrolment is available only to a closed group of government agency’s
employees who already have a CAC smartcard and a government-issued secure
email account. This type of enrolment achieves user and device binding by send-
ing one-time password to the pre-registered email address of the user.

In comparison with the enrolment process described above, our self-enrolment
implementation:

– is not restricted to a closed group with separate channels — via pre-issued
email address;

– uses the phone’s NFC capability to read out the ICAO standard eID document
(e-passport or a driver’s license) that are in principle available for everyone;

– supports eID documents without the PIN code activation — although eIDs
with PIN are emerging, see Subsect. 4.1;

– works in the context of attribute-based credentials (ABCs) instead of PKI
certificates.

– does not achieve user-binding in its current form.

7 https://www.entrust.com/wp-content/uploads/2014/10/Mobile-Derived-
Credential-WEB2-Nov15.pdf.

https://www.entrust.com/wp-content/uploads/2014/10/Mobile-Derived-Credential-WEB2-Nov15.pdf
https://www.entrust.com/wp-content/uploads/2014/10/Mobile-Derived-Credential-WEB2-Nov15.pdf
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4 User-Binding Solutions

In this section, we describe several solutions that can achieve the much needed
user-eID binding during self-enrolment.

4.1 PIN Code Check During Self-enrolment

Probably the simplest solution for achieving user-binding is to equip an ICAO
standard identity document with a PIN that is only known to the owner of the
document — like for Common Access Cards (CACs). In the Netherlands, elec-
tronic driver’s licenses with an experimental PIN are currently being tested for
strong online authentication. Such a PIN is typically delivered to the user via
a separate channel, like a (secure) PIN mailer. While using the eID document
during enrolment, the user will have to enter the PIN to unlock either some of its
data fields (other than mandatory data fields required for a passport function-
ality) or some specific functionality such as signing. For instance, the electronic
identification card (nPA) in Germany requires the user to enter a correct PIN to
unlock its signature function8. This aspect can be added to basic self-enrolment,
whereby the user signs a fresh consent statement, in order to ensure the Enroller
that the user is the legitimate owner of the eID document. In essence, this adds
user-binding by having the user prove knowledge of the PIN. We can include
such a PIN verification in the basic self-enrolment protocol in addition to the
authenticity and integrity checks on the eID document.

4.2 Biometric Check During Self-enrolment

A second option is to extend our basic self-enrolment protocol with biometric
checks in order to achieve user binding. ICAO documents digitally store a photo
of the user and optionally fingerprints as well. Since fingerprints can usually only
be read from the eID by authorised states, we focus on biometric face verification.
We describe a possible scenario in several steps.

1. As in the basic self enrolment protocol, a user initiates enrolment via his
phone, upon which the Enroller remotely accesses the user’s eID via the
phone’s NFC interface and performs the eID checks.

2. If the eID checks are successful, the Enroller reads and stores the eID data
that includes the user’s identity data and his photo.

3. Next, the Enroller requests the user to present a biometric evidence in the
form of a live video or some other form of face recognition.

4. Then the Enroller matches the user’s photo from the eID to the user’s bio-
metric evidence from the video.

8 http://www.die-eid-funktion.de/unterscheidung der eid funktion und der qes.php.

http://www.die-eid-funktion.de/unterscheidung_der_eid_funktion_und_der_qes.php
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5. If there is a match, then the Enroller proceeds to issue a signed confirmation,
which guarantees the Issuer that the eID document is bound to the user and
that his identity has been checked by the Enroller.

6. Finally, the Issuer signs the user’s identity data (attributes) and issues them
as credentials to the user’s phone.

We briefly consider two methods, namely WebID video legitimation technol-
ogy9 and iProov10, that could be used for performing the biometric check during
self-enrolment.

WebID solution. WebID’s video legitimation procedure involves a human verifier
(e.g., an employee of the Enroller’s organization) who does the task of identifying
users over video calls. Regardless of the physical separation, sensory perception
of the users is possible, since the user who is to be identified and the employee
sit opposite one another “face-to-face” through this video transmission and com-
municate with one another. The user is asked to hold both the front and rear
sides of a valid official identity card or passport in front of the webcam. To allow
this to be both automatically and manually verified the ID must be tilted sev-
eral times and moved so that the hologram and further security features can be
checked. The identity number is also recorded and photos are made to secure
the evidence. Finally a unique transaction number (TAN) is sent to the user
by e-mail or text message, with which the legitimation can be confirmed online.
The video-legitimation procedure provided by WebID Solutions has been exam-
ined and approved by BMF (German Federal Ministry of Finance) and BaFin
(German Federal Financial Supervisory Authority). The basis for this type of
legitimation is the new interpretation of Sect. 611 of the Anti-Money-Laundering
Act by the BMF dating from March 2014. A major bank ING-DiBa in Germany
has chosen to adopt WebID’s solution12 with which, on opening a new account,
customers of ING-DiBa can verify their identity directly online with video trans-
mission from home via their own computer, tablet or smart phone.

Due to its real-time biometric checking capability involving the user and
the employee, WebID’s video legitimation could be added to our self-enrolment
protocol.

iProov Verifier. iProov13 is a biometric-based authentication solution that
checks if the user’s face corresponds to the face that was originally enrolled.
The user can use any of his personal devices that has front-facing camera to use
iProov where he just has to click and stare at the device to authenticate him-
self. iProov uses Flashmark technology that enables the user’s screen flashing a

9 https://www.webid-solutions.de/en/.
10 https://www.iproov.com/.
11 III. Interpretation of Sect. 6 (2) no. 2 of the GwG (“not personally present”)

(https://www.bafin.de/SharedDocs/Veroeffentlichungen/EN/Rundschreiben/
rs 1401 gw verwaltungspraxis vm en.html).

12 https://www.webid-solutions.de/en/assets/site/files/presse/140908 pm ing e.pdf.
13 https://www.iproov.com/what-we-do.

https://www.webid-solutions.de/en/
https://www.iproov.com/
https://www.bafin.de/SharedDocs/Veroeffentlichungen/EN/Rundschreiben/rs_1401_gw_verwaltungspraxis_vm_en.html
https://www.bafin.de/SharedDocs/Veroeffentlichungen/EN/Rundschreiben/rs_1401_gw_verwaltungspraxis_vm_en.html
https://www.webid-solutions.de/en/assets/site/files/presse/140908_pm_ing_e.pdf
https://www.iproov.com/what-we-do
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sequence of colours on the user’s face and during flashing, the video is streamed
to the iProov servers. The iProov server:

– matches the user’s face against the enrolment image;
– analyses the reflection of the display light on the user’s face;
– examines the pattern of reflection to check it comes from a real face;
– checks the one-time sequence of colours to ensure it is the same as the session

Flashmark.

If all the above checks are successful, iProov servers mark the user authentication
successful.

A technology such as iProov can also be added to our basic self-enrolment
protocol at the Enroller, where the user’s real time image from the video is then
compared against the user’s photo read from the eID document. iProov is an
experimental technology that is still being evaluated.

4.3 Data Consistency Checks During Self-enrolment

Another solution to bind the eID document, the user and his device i.e. smart
phone is to compare a part of the data from the eID document — say, name
or date of birth — to some other reliable data source. If the data match, the
enrolment succeeds; else it fails. The data source could come from the phone
itself, if it has reliable, i.e. authentic and non-transferable, data of the user. We
will explore this direction further in Sect. 6. The current section focuses on using
an outside data-source to verify the enrolment data against. We will first sketch
the general idea and then shortly discuss two possible enrollers in this scenario,
namely mobile network operators (MNOs) and banks.

We assume the Enroller has access to an external data-source which contains
authentic data of the enrolling user that can be matched against his eID data.
In this scenario the Enroller also requires an additional way of authenticating
the user. Possible enrollers could be institutions such as universities or the gov-
ernment, or companies such as MNOs or banks. We now generically describe the
self enrolment protocol with such an Enroller.

1. A user requests the Enroller to carry out self-enrolment through his phone;
the Enroller remotely accesses the user’s eID via the user’s phone’s NFC
interface and performs the eID checks as before, in Sect. 3.

2. Additionally, the Enroller requires the user authenticate. A successful authen-
tication results in retrieving the user data from the Enroller’s records. This
data is then matched against the data read from the user’s eID. If matched
correctly, it goes to step 3. Otherwise, the Enroller aborts the process with a
suitable error message to the user.

3. The Enroller digitally signs a user-identity confirmation message that consists
of the user’s eID data and sends it to the Issuer.

4. The Issuer verifies the Enroller’s signature on the confirmation message, con-
nects to the user’s phone and issues the eID credentials.
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Naturally, the reliability of such a scheme is dependent on the reliability
of the external data-source and the additional authentication step mentioned
above. In the following two paragraphs we look at two parties that, under some
assumptions, could fulfil the role of an Enroller.

MNO-mediated self-enrolment. Mobile providers, also called Mobile Network
Operators (MNOs), could function as the Enroller. Major MNOs in countries
like the Netherlands, carry out face-to-face identity proofing for personal sub-
scriptions. This is done at an MNO office or at the user’s home, when the SIM
(Subscriber Identity Module) card is delivered. Thus we assume that MNOs have
authentic identity data and authentic SIM identities of the subscribers in their
databases, obtained via a separate channel involving face-to-face authentication.
During an enhanced self-enrolment, the enrolling user’s eID data could be ver-
ified against the MNO’s subscriber data in addition to the usual eID checks
described in Sect. 3.

This approach has been discussed and evaluated in detail with a major MNO
in the Netherlands. In the end the MNO decided not to implement this enhanced
enrolment protocol because its database of subscriber data is well-protected and
could not be used for experiments.

Bank-mediated self-enrolment. Banks could also fill the role of the Enroller.
In many countries, opening a first bank account with a bank requires a face-
to-face identity proofing session. Additionally, many banks have strong online
authentication methods, such as authenticator tokens (e.g. ABN AMRO bank’s
e-identifier14), for authenticating online banking transactions. So, during self-
enrolment, a bank could use the eID data to look up the user data in its customers
database and then require the user to perform an additional authentication step
towards the bank. Depending on the authentication process of a particular bank,
this could provide strong user-binding. Within the Netherlands, the main banks
have started an experimental joint authentication service called iDIN15, where
the different banks authenticate their clients with their existing e-banking tokens,
but the result is a uniform identity message. This makes the development of a
bank-mediated self-enrolment much simpler. It is experimentally supported in
the IRMA ecosystem.

5 Evaluation of the User-Binding Solutions

In this section, we briefly evaluate the user-binding solutions described in the
previous section, based on their security, trustworthiness, ease of deployment
and use.

14 https://www.abnamro.nl/nl/prive/betalen/edentifier/index.html.
15 http://www.connective.eu/financial/idin/.

https://www.abnamro.nl/nl/prive/betalen/edentifier/index.html
http://www.connective.eu/financial/idin/
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PIN Check. Assuming that there are (or will be) eID documents that support
PINs, with a restricted number of PIN entry attempts, PIN checks can provide
a secure and simple way to achieve user-binding in our self-enrolment scenario.
The trust assurance provided by the user PINs depends on how reliably and
confidentially they have been generated in the first place and transported to the
users. Further, it also depends on how securely the users store and maintain
their PINs.

The downside of PINs is that users often forget them. If the PIN was delivered
through a PIN mailer, this mail might have been lost at the time of enrolment,
hence, making it impossible for the user to carry out self-enrolment. This requires
(expensive) help center contacts and re-issuing.

Biometric Check. In the biometric checks that we have considered in this
paper, the Enroller compares the photo that is digitally read from the eID docu-
ment to the person’s face that appears in a real time video session during enrol-
ment. The trust assurance level of this biometrically enhanced protocol depends
on the quality of the biometric comparison mechanisms. In any case, we would
either need a human verifier or a server at the Enroller’s end to perform the bio-
metric comparison, communicate with the user and make sure that the owner of
the eID document and the communicating user are the same person.

In the case of a human verifier, the result of the biometric check is reliable
and convincing but the video addition will be costly, since it requires additional
personnel, and will increase the length (in time) of each enrolment, especially
when it leads to queues for the video procedure. An automated biometric check
using a server is relatively cheap and fast but it has a greater chance of producing
unreliable result due to false positives/negatives.

Data Consistency Check. In general an additional data-consistency check
seems a cheap way to strengthen self-enrolment. However, it requires at least
(1) trustworthy, authentic user data and (2) an additional authentication of the
user to the Enroller. MNOs and banks seem natural fits for these roles, which
we separately discuss and evaluate below. Entrust’s CAC-based self-enrolment
that is described in Sect. 3.3, which uses a one-time password transmitted to a
pre-issued e-mail address of the user, essentially also falls in this category.

MNO-mediated self-enrolment. Assigning an MNO as the Enroller can be seen as
an advantage in terms of security as the MNO can additionally verify whether
a user’s eID data matches the user data in his SIM subscription. This check
ensures that the phone (SIM card) that will eventually store the issued derived
credentials belongs to the enrolling user. Thus, an MNO-mediated self-enrolment
gives additional guarantees about the link between the user, his identity doc-
ument and his SIM card i.e. it provides not only user binding but also device
binding.

Moreover, we assume that the user has undergone a prior face-to-face enrol-
ment at the MNO when he bought the SIM card and signed the subscription
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contract. This assumption results in self-enrolment being more secure and trust-
worthy as it is now built upon two previous face-to-face enrolments, one for
the eID document and one for the SIM subscription. The downsides of MNO-
mediated user-binding are: (1) it is limited only to the MNOs which carry out
face-to-face enrolments of its subscribers for obtaining SIM subscription; (2) it
is not applicable to users who own prepaid/anonymous SIM cards: they can be
obtained without the user having to go through an enrolment at the MNO.

Bank-mediated self-enrolment. With a bank in the position of the Enroller,
we also assume a prior face-to-face enrolment of the user during the opening
of the bank account. The bank-mediated self-enrolment can potentially offer
the strongest user-binding, based on an out-of-band authentication using a
secure authentication token, a bank card and a PIN. Alternatively, it could
offer authentication based on username/password. This difference in security
level of the authentication methods makes evaluation hard. Still, even in a user-
name/password scenario, it is an additional authentication of a separate fac-
tor (something you know), in addition to the possession of the passport. The
downside of such a system is the plurality of authentication mechanisms offered
by banks. This means development of such a system can be costly, because
the authentication mechanisms of all participating banks need to be supported.
Additionally, this means all these authentication mechanisms will need to be
evaluated separately and the resulting process may not provide a uniform user
experience. To be viable, a uniform system of an authenticating service combin-
ing several banks, such as the Dutch iDIN, seems necessary.

6 Combining Several Self-enrolment Approaches

Since none of the above presented enhancements for self-enrolment is clearly “the
best” it is worthwhile to look into ways to combine these approaches. Since we are
working within an ABC framework, we also have the ability to use prior issued
credentials during a self-enrolment in order to strengthen the confidence in the
user’s identity that is presented to a service provider during an authentication.

The enrolment procedure now involves several steps — which is typical for
attribute-based systems: the user first obtains credentials from some online iden-
tity provider. Next, in an enhanced version of our self-enrolment, these existing
credentials are read by the Enroller and compared to the ones from the eID
document. In this way several enrolment steps can be built upon each other, to
create a reliable and consistent set of attributes.

In IRMA ecosystem, we have an implementation where we use a (federated)
identity provider (or the Issuer) such as SURFconext16, where the user has a
login and the Issuer already has some of the user’s data that he can issue to the
user’s IRMA app as authentic credentials. These credentials can then be used
within a self-enrolment session to compare with the eID data. Essentially this

16 https://www.surf.nl/en/services-and-products/surfconext/index.html.

https://www.surf.nl/en/services-and-products/surfconext/index.html
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comes down to an additional data-consistency check (as described in Sect. 4.3)
with the data provided by the phone.

Within such a multi-step enrolment system one can support credentials of
varied trust assurance levels, corresponding to the number (and nature) of the
self-enrolment steps that the user performed. The credentials obtained from an
online identity provider (e.g. SURFconext) has low assurance but they can be
used within an eID-based self-enrolment as mentioned above to obtain higher
assurance credentials. Optionally, these credentials could then be used within yet
another self-enrolment session, for instance involving a biometric verification to
obtain even higher assurance credentials. It would then be up to service providers
to decide which assurance level they accept for their service. For instance, an
online ticket service would likely accept lower assurance level credentials whereas
a higher assurance level credential would be required to review your own patient
data at a hospital portal.

7 Conclusion

In this paper, we start from a basic self-enrolment scheme which allows a user
with an eID document and an NFC-enabled smart phone to enrol himself from
any location (e.g. sitting at home) by connecting to an Enroller entity online.
Subsequently, he can get derived credentials issued by an Issuer entity to his
smart phone. This type of enrolment is user-friendly, cheap and commercially
viable when compared to traditional face-to-face enrolments. Based on the expe-
riences with our smartphone implementation of this basic self-enrolment protocol
in an attribute-based credential (ABC) framework, we can claim that it is also
practical and efficient. Furthermore, the paper discusses several enhancements
of the basic self-enrolment involving different user-eID document binding solu-
tions — which should prevent a malicious user from using someone else’s eID
document for enrolment.

Which solution works best in which situation depends on various factors,
such as availability of a PIN on eID documents, costs, effort, and willingness of
different parties to cooperate. Since no solution offers a panacea, the solution that
best fits the existing IRMA self-enrolment implementation is the one from Sect. 6,
where eID data is compared to the credentials from a previous self enrolment,
to achieve higher assurance levels for user credentials.
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Abstract. Several applications require robust and tamper-proof logging
systems, e.g. electronic voting or bank information systems. At Scytl we
use a technology, called immutable logs, that we deploy in our electronic
voting solutions. This technology ensures the integrity, authenticity and
non-repudiation of the generated logs, thus in case of any event the audi-
tors can use them to investigate the issue. As a security recommenda-
tion it is advisable to store and/or replicate the information logged in
a location where the logger has no writing or modification permissions.
Otherwise, if the logger gets compromised, the data previously generated
could be truncated or altered using the same private keys. This approach
is costly and does not protect against collusion between the logger and
the entities that hold the replicated data. In order to tackle these issues,
in this article we present a proposal and implementation to immutabilize
integrity proofs of the secure logs within the Bitcoin’s blockchain. Due
to the properties of the proposal, the integrity of the immutabilized logs
is guaranteed without performing log data replication and even in case
the logger gets latterly compromised.

Keywords: Secure logging · Blockchain · Distributed immutabiliza-
tion · Integrity · Trust

1 Introduction

There are several applications that require a robust and tamper-proof logging
system, e.g. electronic voting systems [15] or bank information systems. At Scytl
we have applied a logging solution, the immutable logs [4], in our electronic voting
systems [7] that ensures the integrity, authenticity and non-repudiation of the
generated logs.

In the event the logger or its private key gets compromised, the data logged
before this point could be truncated or altered without being detected if no
additional measures are applied. The most common solutions to this problem
are (1) storage and/or replication of the information in a location where the
logger only has write-only permissions [1], (2) implementation of third party
notary services [16] or (3) usage of advanced cryptographic mechanisms based
on aggregated signatures that are implemented as one-way functions [10]. The
first solution guarantees that a manipulation of the log is not possible, due to
c© Springer International Publishing AG 2016
G. Barthe et al. (Eds.): STM 2016, LNCS 9871, pp. 122–137, 2016.
DOI: 10.1007/978-3-319-46598-2 9
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the medium used to store the logs, or that it will be detected, due to their repli-
cation. However, the log replication requires the deployment and management
of a specific infrastructure, composed of one or more servers, for this purpose.
This solution does not protect against colluding entities with the logger. Thus,
if a large enough distributed infrastructure needs to be deployed to prevent
that a sufficient number of malicious nodes collude, this infrastructure can be
expensive and difficult to maintain. The second solution relies on the usage of
a trusted service which stores integrity proofs. This service could also collude
with the attacker to manipulate the logs. And the third solution ensures that a
log truncation will be detected because it is not possible to restore an existing
aggregated signature at the point at which the log is truncated (see the reference
for more details). This is presented as a two-options solution, one more efficient
and dependent on a trusted party based on the usage of Message Authentication
Codes (MACs), and one more computationally expensive based on public key
signature and a PKI. However, in this article we explore an alternative solution
based on the use of an existing efficient secure logging technology, which com-
bines MACs and Digital Signatures (DAs), and the Bitcoin blockchain, which
provides off-the-shelf distributed immutabilization. The solution consists of pub-
lishing log integrity proofs within the blockchain. Thus any manipulation of the
logs is detected and collusion is not possible due to the distributed nature of the
mechanism.

The blockchain is the underlying technology used by the crypto-currency
Bitcoin [11] as a public ledger of all the economic transactions performed. The
transactions are immutabilized, within a sequence of blocks, in a distributed
manner by a set of nodes, called miners. The miners compete to perform this
operation and obtain rewards and fees for each block generated. The main advan-
tage of the blockchain is that it guarantees the integrity and non-repudiability
of all the transactions registered without the need of a trusted entity.

In this article we take advantage of both technologies, the secure logs and
the blockchain, to make a proposal and implementation to immutabilize integrity
proofs of the secure logs within the blockchain. This guarantees the integrity of
the immutabilized logs, when no replication is enabled, even in case the logger
gets latterly compromised. There are other proposals that also take advantage
of the off-the-shelf immutabilization capacity provided by the blockchain. For
example, Zyskind et al. [18] propose a system to protect personal data, using
Distributed Hash Tables (DHTs) to store the data and the blockchain to keep
the access rights to it. There is also a specification, the Colored Coins [3], that
extends the Bitcoin by the possibility of tagging coins and associate metadata
to the transactions which may include a link to a digital asset in the BitTorrent
network. There are simple services, such as Proof of existence1, that provide
immutabilization of single documents in the blockchain for a fee. And there are
more complex services, such as Factom [17], which provides immutabilization
and chaining of any type of data for a certain amount of fees. In this case the
service is implemented as a permissioned blockchain [8] with public access, that

1 https://proofofexistence.com.

https://proofofexistence.com
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contains references to external documents. This blockchain is connected to the
main Bitcoin blockchain for enhanced verifiability. However, the work we have
performed, which also uses the blockchain to immutabilize data, is different from
the previous ones since: (1) it is specifically devoted to immutabilize logs, thus it
presents several challenges: (a) the information must be kept chained in the same
order as it is generated and (b) the system must support the speed at which the
logs are generated given the speed constraints of the Bitcoin blockchain. And
(2) our proposal does not require additional infrastructure, such as intermediate
databases or private and/or permissioned blockchains.

The article is structured in six sections: Sect. 2 explains the immutable logs
and the blockchain; Sect. 3 explains the proposal; Sect. 4 presents the implemen-
tation and tests performed; Sect. 5 discusses some issues dealt with during the
definition of the proposal and its implementation; and, finally, Sect. 6 concludes
the article with the conclusions and future work.

2 Background

This section presents the two technologies used throughout the proposal of dis-
tributed logs immutabilization.

2.1 Secure Logs

The secure logs are an event logging technology called immutable logs [4]. This
technology implements cryptographic measures to preserve the integrity and
authenticity of logs, without compromising the performance of the system. The
system is based on chaining the log entries using a combination of Message
Authentication Codes (MACs) and Digital Signatures (DAs). Each logger has a
pair of signing keys, thus the log authenticity and non-repudiation is guaranteed.

The logging process comprises two types of log entries, the regular ones (see
Eq. 1) and the checkpoints (see Eq. 2). Each log entry (Li) is chained with the
previous one using a MAC cryptographic function (specifically a HMAC [12] in
the implementation used). The input of the MAC is the log entry text (LogInfoi)
concatenated with the integrity proof of the previous entry (hi−1). A different
random session key (Kj) is used for a number of consecutive entries. This scheme
prevents any modification, deletion or addition of intermediate entries.

Li = (LogInfoi, hi) where hi = HMAC(Kj , (hi−1|LogInfoi)) (1)

The checkpoints are a special type of entry that are used to guarantee the
authenticity and non-repudiation of the last block (j) of entries. A checkpoint
(Chkj) is issued every a certain number of lines or given time, depending of
the logger configuration. In each checkpoint the MAC session key used to chain
the last block of entries is disclosed and a new one, kept secret by public key
encryption (Penc), is generated. Finally, a digital signature of the entry is also
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created with the signing key (Ssig). Thus, any log entry manipulation or deletion
is detected during the verification process.

Chkj = Li = (LogInfoi,Kj−1, E(Penc,Kj), Sigj , hi−1, hi) where

hi = HMAC(Kb, (hi−1|Kj−1|LogInfoi))
Sigj = S(Ssig, (hi−1|Kj−1|E(Penc,Kj)|hi|Loginfoi))

(2)

The main advantage of the secure logs, compared with only digitally signed
logs, is that they allow to detect the exact location of any manipulation attempt
and isolate it, from the rest of the log entries that remain intact, while keeping a
good performance. These logs can also be replicated by sending them to a central
log server which centralizes all the log information, to ensure logs availability and
provide log monitoring. The log replication also ensures that a compromised
logger cannot modify former entries, e.g. by truncating and regenerating the
chain of log entries.

2.2 Bitcoin Blockchain

Bitcoin [11] is a well-known decentralized cryptocurrency system. The scheme
is based on a consensus network where all the nodes agree on the state of the
system according to a certain set of rules. No central authority operates it neither
has control of the money. A set of nodes called miners are in charge of the system
operation and, to be more specific, to the generation of the blockchain that is
used as a public ledger.

The operation of the system, at a high level, consists of users generating
transactions that represent cryptocurrency transfers, and miners that validate
and immutabilize them. Each transaction (see Fig. 1) contains a reference to one
or more former transactions, the inputs (Ik), which prove the user has the money
he/she is spending, and the quantity and receivers of the money to spend, the
outputs (Ol). The inputs are a list of tuples that include a transaction identifier
(Txid) and the index of an output (φp) in that transaction. Several types of
transaction outputs exist, but the most common (Pay-to-PubkeyHash) refers to a
Bitcoin address (@l), which is the hash of a public key, and the amount of money
(θl) to give to that address. This type of output can only be spent by the entity
that has the matching private key. Thus, each transaction contains the public key
and signatures required to redeem the money of the former transactions referred.
The ECDSA signing algorithm [14] with the secp256k1 curve is used. The amount
of money transferred by a transaction is the sum of all its inputs. However, a
small quantity of it, the difference between inputs and outputs, is taken as a
publishing fee by the miners. The transactions are sent and validated by the
miners through a distributed network that supports the system. After this, they
remain publicly available thus all the money exchanges are publicly auditable.
Despite the initial functionality of the blockchain is to be a Bitcoin ledger, it is
also possible to publish a small quantity of information within each transaction



126 J. Cucurull and J. Puiggaĺı

Fig. 1. Transaction detail

output. This is used in the proposal presented in the following section and it is
possible by creating a special type of output, called non-spendable output, by
using the op-code OP RETURN. After this op-code they can be included up to
75 bytes of information that are published within the transaction.

The Bitcoin transactions are registered and immutabilized within the
blockchain, which provides integrity, public auditability and non-repudiation.
The blockchain is a sequence of blocks that are chained by cryptographic means
and that contain transactions. The blocks are generated by the miners in a
competitive process that requires to solve a Proof of Work (PoW). Each block
contains a set of transactions and a header with a reference to the previous
block, a nonce used by the PoW and a hash that is the root of a Merkle tree
that groups all the transactions to be immutabilized by the block. The transac-
tions are immutabilized in a certain order as leaves of the Merkle tree, however
this order depends of the miners and is not chosen by their issuers. The gen-
erated PoW consists of finding a cryptographic hash of the block, by trying
different nonces, that starts with a certain number of zeroes. The complexity to
solve the PoW is adjusted every two weeks in order to produce one block every
ten minutes on average. When a miner solves a PoW and publishes a block, it
receives a certain amount of Bitcoins both as a reward and from the fees of each
transaction included in the block. The PoW, assuming that no entity has more
than 51 % of the mining power, is used as a mechanism to (1) prevent that a
deliberately chosen entity can publish a certain block in the blockchain, and (2)
prevent that formerly published blocks can be modified. Other mechanisms that
are not based on the computational performance are also available [2], but they
are implemented in alternative coins.

3 Distributed Logs Immutabilization

As explained in Sect. 2.1, the secure logs provide integrity and authenticity to
the logs generated. In addition, the logs can be sent to a central server in order
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to ensure their availability and provide monitoring. But the replication of logs is
also a desirable security feature. It ensures that, in the event of a logger compro-
mise, a logger signing key compromise or a log truncation, the manipulation of
previously logged entries could be detected by comparing them with the repli-
cated information. However, this solution requires an infrastructure of servers
where the information will be replicated, a mechanism to export the logs and a
protocol to determine which information is valid when discrepancies are observed
among the different copies.

In this section we propose a distributed log immutabilization solution that
combines the use of the secure logs [4] with the blockchain. The solution does not
require log replication to detect the mentioned manipulations (despite it still sup-
ports it if needed for durability and fault tolerance). The proposal takes advan-
tage of the blockchain to distributedly publish and immutabilize log integrity
proofs.

3.1 Distributed Immutabilization Proposal

The secure logs periodically issue a special type of log entry called checkpoint.
The information included in this entry allows the verification of the block of
entries present between the current and the previous checkpoint. Thus our pro-
posal for distributed log immutabilization consists of publishing an integrity
proof, i.e. a hash, into the blockchain for every issued checkpoint. These integrity
proofs can later be validated with the actual log files in order to see that they
were not manipulated. Each log that is immutabilized in the blockchain will
have a log identifier to distinguish it from other logs immutabilized by the same
entity, thus it is not globally unique.

The integrity proofs registered to the blockchain are SHA256 hashes [13] of
the checkpoints (Chkj) present in the log (see Eq. 2 in Sect. 2.1):

Hj = SHA256(Chkj) (3)

One or more checkpoint hashes can be included within a single transaction
(Txid). This accommodates the solution to the blockchain scalability constrains
(see Sect. 5) and can reduce the total amount of transaction fees. Each hash is
included within a non-spendable output entry (Ol where l > 0) of the transac-
tion. The following information is published (see Table 1 for description of the
fields):

Ol = (prefix, version, logId,Hj) (4)

In order to properly validate the logs against the checkpoint hashes published
in the blockchain, it is needed to maintain, and enforce, the order of them. Since
several checkpoint hashes can be included into a single transaction, the order has
to be guaranteed at the level of transaction outputs. The order has also to be kept
when multiple transactions are present. Thus, for the first case, the hashes are just
included in the transaction as outputs (Ol) in the same order as they appear in
the log file, as the order is kept by design of the Bitcoin. And, for the second case,
each transaction is linked to the previous one using the transaction input (Ik).
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Table 1. Data immutabilized within the transaction output

Name Bytes Content Description

prefix 2 “SL” OP RETURN prefix

version 1 1 Version of the data structure

logId 16 - Unique log identifier

Hj 32 - Hash of the checkpoint

Hence, the transactions generated by the application are linked forming a chain of
transactions (see Fig. 2). As it can be seen, each transaction contains one or more
inputs from transactions with spendable outputs used to pay current and future
transaction fees, as well as a single output with spendable outputs that will be
linked with the next transaction used to register checkpoint hashes. In addition,
the transaction contains all the non-spendable outputs required in order to register
the checkpoint hashes. It is important to clarify that, the transaction issued, is not
directly linked to the next one via its spendable output. This output points to an
address, which is different for each transaction issued2, that belongs to the logger
or registrar application. However, the transaction can only be spent by the logger
application, thus only the logger can actually link it with the input of the next
transaction with checkpoint hashes.

Fig. 2. Transaction link

In order to go through the generated chain of transactions and retrieve the
integrity proofs of a given log, it is required to make public the first transaction
of the chain and the log identifier, e.g. in a newspaper or by a trusted entity in
the blockchain.

2 Although it is not enforced by the implementation of Bitcoin, it is recommended by
the community not to reuse Bitcoin addresses. Thus, we decided to regenerate the
reception address for each transaction generated.
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3.2 Validation Proposal

The validation of the information published consists of retrieving all the pub-
lished checkpoint hashes, recompute them using the log files and compare they
match in content and order. We assume that the content of the logs files and the
content of the blockchain is validated following the regular logger and blockchain
validation mechanisms. The first transaction issued by the logger and the log
identifier must be publicly well-known.

The algorithm used to perform the validation is depicted in Algorithm 1. The
algorithm starts by going through all the transactions issued and registered in the
blockchain by the logger (the first while in the algorithm). The first transaction
(firstTransaction) is taken as a trusted beginning of the chain and the log iden-
tifier (logId) is used to select the appropriate entries (in case checkpoint hashes
of different logs were included in the same transaction). The checkpoint hashes
are temporally stored (WriteHashes), for later comparison, in a file (fileHash-
esBC ). The next transaction is searched and processed (GetNextTransaction).
As it can be appreciated in Algorithm 2, finding the next transaction requires
to go through the current and following blocks of the blockchain (outer while of
the algorithm) until a transaction that has the current one as its input is found
(inner while of the algorithm). After the checkpoint hashes are collected from
the blockchain (again in Algorithm 1), the checkpoint hashes are recalculated
(ComputeHash) from the actual log to validate (second while in the algorithm)
and they are temporally stored (WriteHashes) in a file (fileHashesSL). Finally
the files with the two lists of checkpoint hashes (fileHashesBC and fileHashesSL)
are checked to be identical (CompareFiles). If this is the case the validation is
passed.

Data: firstTransaction, logId, logs, blockchain, fileHashesBC, fileHashesSL
Result: boolean result
transaction = firstTransaction;
while there is transaction do

hashes = GetHashes(transaction, logId, blockchain);
WriteHashes(hashes, fileHashesBC);
transaction = GetNextTransaction(transaction, blockchain);

end
while There is a log file do

logFile = GetNextLogFile();
while There is a log line to read do

line = ReadLine(logFile);
if line is a checkpoint then

hash = ComputeHash(line);
WriteHashes(hash, fileHashesSL);

end

end

end
CompareFiles(fileHashesBC, fileHashesSL);

Algorithm 1. Validation algorithm



130 J. Cucurull and J. Puiggaĺı

Data: blockchain, currentTransaction
Result: nextTransaction
blockHash = GetBlockTransaction(currentTransaction);
while there is a blockHash do

block = GetBlock(blockHash);
while there are pending transactions in block and transaction not found do

nextTransaction = GetTransaction(block);
inputs = GetTransactionInputs(nextTransaction);
if ListContains(inputs, currentTransaction) then

return nextTransaction;
end

end
blockHash = GetNextBlock(block);

end
Algorithm 2. GetNextTransaction algorithm

If the registration of the checkpoint hashes in the blockchain is performed
within a certain timeframe after the secure log checkpoints are generated, then it
is also possible to validate the timing is correct. In this case, during validation it is
required to gather and compare the timestamp of the log checkpoints, this is part
of the log basic information, and the timestamp of the blockchain blocks at which
each checkpoint hashes are linked (via a transaction). The timestamps, given a
certain margin defined by the validator, must match. The margin depends on
the delay between the checkpoint hashes generation and their immutabilization
in the blockchain.

4 Implementation and Test

The proposal described in the previous section has been implemented as two
real Java applications: an immutabilizer and a validator. These two applications
interact with the logs generated by a secure logger and with the Bitcoin Core
software.

4.1 Distributed Immutabilizer Application

The immutabilizer application has been built as a standalone Java application
that periodically reads the secure log files in order to register integrity proofs of
the new checkpoints to the blockchain. The application takes advantage of the
btcd-cli4j library3 as a Java wrapper of the RPC-JSON calls provided by the
Bitcoin Core version 0.12.14 in order to access and operate the blockchain.

When the application is started, if it is the first time, it generates a new
random log identifier and reads all the available log files. Then it calculates the
hashes of the checkpoints, creates a transaction that includes them and signs it.
3 https://github.com/priiduneemre/btcd-cli4j.
4 https://bitcoin.org/en/bitcoin-core/.

https://github.com/priiduneemre/btcd-cli4j
https://bitcoin.org/en/bitcoin-core/
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From this point, the application periodically reads the log files to detect new lines
to register. The period to register checkpoint hashes is configurable, but it should
not be higher than the time required for the transaction to get immutabilized and
confirmed (usually a transaction is considered confirmed after the sixth block of
its inclusion in the blockchain, although it is a configurable parameter too). This
means that in production the period should be at least one hour. Each time a
transaction is published the state is stored, thus if the application is stopped it
can be resumed from the same point and with the same identifier.

The transactions created by the application have as many outputs as hashes
plus an additional one that is used as a change address. The fees to pay for the
transaction are calculated using the RPC-JSON EstimateFee call that estimates
the relative fees to publish a transaction within a certain number of blocks
(set to one in our application). If the estimation is not available, a hard-coded
value of 0.0002 BTC/kB is selected. The size considered to calculate the fee
is 200 bytes for the basic transaction and 60 additional bytes for each output.
The idea behind this calculation is to get the transaction included in a block
in a timeliness manner without spending too much fees on it. When the fee is
calculated the transaction is linked with the previous one, and with additional
spendable transactions if not enough Bitcoins where available to pay the fees.

It is also worth commenting that the Bitcoin Core does not provide RPC-
JSON calls to use transactions to immutabilize other data than Bitcoin pay-
ments. However, there are a set of calls that permit to operate with transac-
tions at binary level. Thus, the approach followed has consisted of creating a
transaction dummy output for each data entry to register using the CreateRaw-
Transaction RPC-JSON primitive. The transaction, encoded in hexadecimal, is
returned and each dummy output is replaced with the manually tailored output
that contains the OP RETURN code and the hash to register.

4.2 Validator Application

The validator application has also been built as an standalone Java application
that takes advantage of the btcd-cli4j library as a Java wrapper of the RPC-
JSON calls of Bitcoin Core 0.12.1. In this case the application downloads all
the checkpoint hashes published to the blockchain, starting from a given initial
transaction and for a particular log identifier, creates the checkpoint hashes from
the log files and compares them. No timing checks have been implemented.

The application requires the identifier of the first well-known transaction
registered by the immutabilizer and the assigned log identifier. Then it follows
the algorithm described in Algorithm 1 in order to perform the validation.

4.3 Testing

The testing of the immutabilizer and the validator has been performed with a
generator of secure logs and the Bitcoin Core 0.12.1 running as a full node in
the Bitcoin testnet.
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The generator has been enabled together with the immutabilizer in order to
generate logs. The log generator has been set to generate one log every 5 s, one
checkpoint every 5 min and to rotate the log files every hour. The log immutabi-
lizer has been setup to generate one transaction every hour linked to confirmed
transactions for at least 3 blocks. The log checkpoints integrity were successfully
validated against the information published in the blockchain when the validator
was executed (currently it is not implemented as a periodic mechanism).

One of the tests we performed comprised the immutabilization of 101 check-
points generated during around 8 h. The log identifier was:

8e4b943f45506c876a93ff4b113da68f

and the first transaction generated was:

59f5167416ecf96c8101d1cafce92075f4504b37548b92b6157ac966fee102d9

which can be seen with a blockchain viewer such as Block Trail5. From this
transaction the trace of the logs can be followed during 9 transactions, containing
the 101 checkpoints generated.

5 Discussion

In this section we discuss the design decisions taken during the design and imple-
mentation of the solution, the scalability and costs of the proposal and the secu-
rity of it.

5.1 Design Decisions

As explained in Sect. 2.2, the blockchain is a continuously-growing distributed
database composed of blocks and transactions. The blocks are organized as a
sequence, each of them linked with the previous one through a hash. The trans-
actions are linked to a block using their identifier, which is a hash computed
from its elements. This organization is appropriate to keep the integrity of the
information as well as the order of it. However, it has the disadvantage that
finding a specific transaction requires to download and index all the data, that
currently accounts around 64 GBs, unless we know in which block is contained.

Thus, one of the first questions we had was about which was the most appro-
priate manner to organize the integrity proofs, i.e. checkpoint hashes, of our log
immutabilizer while keeping their order. The approach chosen was to include
the integrity proofs in its natural order within the transactions and to link these
transactions as a sequence using the input transaction field. Another option con-
sidered was to enforce the order at application level, i.e. including in each entry
the current and previous checkpoint hash. However, this was discarded for two
reasons: (1) it required to read, process and sort the data included within all the
transaction outputs from the first block containing one of our transactions, (2)
5 https://www.blocktrail.com/.

https://www.blocktrail.com/


Distributed Immutabilization of Secure Logs 133

it was oblivious to the Bitcoin mechanisms to keep the order of the data, and
(3) it complicated the protection of the data authenticity when different pairs
of keys were used for each transaction (see next paragraphs).

Another question was how the authenticity of the integrity proofs could be
kept. This can be done by cryptographically signing the transactions issued. In
Bitcoin the addresses where a transaction is sent are associated to a pair of cryp-
tographic keys. However, the standard behavior is to automatically generate a
new address for each transaction received. Thus a certain entity, e.g. the logger,
will have multiple addresses as new transactions are sent to it. The transactions
issued are signed with the keys required by the transactions being spent, which
belong to the owner of them. This renders the possibility to use a single well-
known address for the immutabilizer not advisable. Another possibility, would be
to publish all the pairs of keys generated and associated to the logger. However,
this does not guarantee the non-repudiability property. Given a certain transac-
tion, the immutabilizer could claim the pair of keys are not their ones, as there
is no PKI infrastructure. Hence, the approach taken was the following: (1) the
first transaction with log integrity proof entries is made public in a trusted place,
and (2) the immutabilizer will only generate transactions with a unique spend-
able output sent to an address controlled by itself (it is the only one that can
spend it). Thus if the first transaction, with the associated address, is trusted,
the rest of the transactions ahead can also be trusted. This approach does not
allow to return the change of the last transaction when the immutabilization is
finished to another entity. Otherwise, the other entity could continue the chain
and create additional fake entries. However, we assume the immutabilizer can
continue its task with other logs or just manage small quantities of money just
to pay a few fees ahead. If this was required it is possible to add a field with op-
codes that indicate the beginning and end of the log immutabilization. Another
possibility could be to create a transaction to give away the remaining funds
without any checkpoint hash published, considering this as a signal that the log
immutabilization activity is finished.

Another question was how we could facilitate the visibility of the published
data. The chosen solution, as already mentioned, was to make public the very
first transaction ID of the integrity proofs published. Hence, the rest of the
entries can be found following the mentioned chain. A log identifier was also
included in order to discriminate the integrity proofs from the ones of other logs
immutabilized. However, the log identifier cannot be solely used since any entity
is free to register transactions in the blockchain with any log identifier. Another
option was to use a single well-known address as the change address of all the
issued transactions. However, due to the regeneration of addresses explained
before this option was discarded.

5.2 Scalability and Costs

Another important aspect of the solution is its scalability. The blockchain of
Bitcoin is currently setup to support up to 7 transactions per second in total [5].
There is a lot of discussion on how to increase this value, since it is very small for
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a globally used system. Considering this limitation, we decided to register the log
integrity proofs in a periodic manner, at the level of log checkpoint, and including
one or more entries per transaction. The logs must also be adjusted to generate
a number of checkpoints that do not end up in too large transactions. The larger
a transaction is, the more expensive are the fees and the less probability to be
included in a block. Thus, this approach allows to adjust the system to have a
trade-off between its scalability, security and transaction fees. As example, in
our tests we created one transaction every hour of 1 KB on average. Considering
the mentioned size and the current 1 MB block size limit, a maximum of 6000
simultaneous logs could be immutabilized at a global scale. This is not a large
value, specially considering that the current blocks are already used at almost
its maximum capacity.

Another aspect to consider is the operational cost of the solution. Bitcoin
has an associated cost related to the publication of transactions. The average
fees have a high variance, but if no delays are desired in the confirmation of
transactions a rate of 0.0006 BTC/KB has to be paid6 (checked at 5th of August
of 2016). As an example, if we setup our logger to generate 12 checkpoints/hour,
1 Bitcoin transaction/hour, during a period of one month, the cost is around
203 e/month. In the example each transaction has a size of almost 1 KB with
a cost of 0.0006 BTC that is approximately 0.31 e. This is an approximated
cost, which depends on the system setup, that is obtained from the cost model
we detail in Eq. 5. The model considers the number of checkpoints per unit
of time (c), number of transactions per unit of time (tx), transaction fees (f)
given a maximum publication delay accepted, and time of operation (t). The
model considers each transaction with a base size of 0.2 KBs plus 0.06 KBs for
each checkpoint included. The selected unit of time is the hour. The final cost
obtained may increase due to the foreseeable increase of the transaction fees (f).
Currently most of the miners profits come from the reward when a block PoW
is solved, but this reward is halved every 210.000 blocks (approximately every 4
years). Thus in the future the reward will be lower and the transaction fees are
likely to increase.

cost = ((tx ∗ 0.2) + (c ∗ 0.06)) ∗ t ∗ f (5)

5.3 Security

The solution proposed enhances the data integrity, stream integrity (order of
the data), forward integrity (ensures pre-compromised data cannot be manipu-
lated), and non-repudiation properties provided by the secure logs for the case
of insider attacks. Thus, the threat model addressed is focused on attackers that
compromise the logger or with access to the logs and/or private key of it. The
threats in this case are: (1) forging the full log, (2) truncation of the log, and
(3) forging past log entries.

6 https://bitcoinfees.21.co/.

https://bitcoinfees.21.co/
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The forge or replacement of all the logs, as described in threat 1, is not possi-
ble since it would require the replacement or modification of the first transaction
to refer to an alternative handcrafted chain of immutabilized logs. The first trans-
action cannot be replaced if its identifier has been conveniently made public and
broadcasted at the beginning of the system operation (e.g. the identifier could
be published to newspapers, etc.). Even in case this first transaction identifier is
replaced, the timestamps of the blocks will not match the expected times, unless
the genuine and replaced logs are created and registered to the blockchain at
the same time. Furthermore, if the first transaction identifier is not replaced,
the modification of this transaction is not an option. The data published in the
blockchain is almost impossible to modify after it has been confirmed (usually
when six blocks are chained after the one considered confirmed).

Any manipulation of the logs, as mentioned in threats 2 and 3, would be
detected as long as it affected the log blocks commited in the blockchain. The
reason is that the hashes of the log checkpoints, which cover the integrity of each
block of the log, would not match the ones published. It is worth to note that if
the manipulation affected the current block or an unpublished block, the attacker
still would have the chance to manipulate it. Thus, the more frequently the
checkpoint hashes are published in the blockchain, the smaller is the opportunity
window to manipulate the data from unpublished blocks of the log.

For more security, it is also possible to publish the identifier of the first
transaction in one of the first entries of the logs, thus creating a commitment of
the logs with the information published in the blockchain.

Other possible attacks could be tried at the level of Bitcoin. Common attacks,
such as the double spending attacks [9] do not apply in this case since the logger
issues the transactions against itself, thus there is no threat model that fits with
this attack. Another possibility would be the logger to collude with a miner to
perform selfish mining [6]. In this case the logger would try to fork and construct
a parallel chain of transactions to be immutabilized in a parallel branch of the
blockchain. However, this would be too difficult to sustain during the whole live
of the logs, since it requires to own at least 1/4th of the total mining power.

6 Conclusions

In this article we have presented a proposal, implemented on top of the Bitcoin’s
blockchain, that enhances the security of the immutable logs [4]. It provides addi-
tional integrity and non-repudiation security properties resilient to log truncation
and log re-generation in cases in which the logger or its signing key gets compro-
mised. The proposal is based on publishing log integrity proofs in the blockchain.
This protection can also be given by creating a mechanism of log replication at
different selected servers operated by independent entities or within a distrib-
uted network. However with the blockchain the mentioned security properties
can be given off-the-shelf without log replication and scaling up the immutabi-
lization at a global level. In this case the immutabilizers are the Bitcoin miners,
entities that are not globally susceptible to respond at the particular interests of
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a potential compromised logger or attacker. Due to the blockchain design, the
information immutabilized cannot be modified by anybody unless it has more
than 50 % of the system’s mining capacity.

With the proposal and implementation presented it is shown that the
blockchain can be used for the purpose described. However, we have also dis-
cussed the limitations that currently exist. If the number of transactions and
block size supported by the blockchain do not increase, the number of immutabi-
lized logs at a global scale cannot be large and the frequency of immutabilization
and number of checkpoints of the log must be kept very low. As a side effect
of the limited capacity, the transaction fees are also high in order to guarantee
there are no delays in the publication of transactions. Thus, in order to com-
mercially use this solution, the blockchain should offer more capacity than the
current one or the user must be willing to pay high operational costs.

Further work can be done in order to improve our specification, for example
to support the finalization of logs. Currently, our specification does not comprise
the transfer of accumulated funds from one of the transactions used for register-
ing assets to an address non controlled by the logger. Otherwise, the owner of
this address could continue the chain with fake integrity proofs for a given log
identifier. If a transaction included a signal to indicate the finalization of a log
immutabilization, any other integrity proof in the following transactions could
be ignored. In addition it would be more efficient by the validator to validate the
logs, since it could stop when this sign was found. Regarding the implementa-
tion, further work can be done in order to support distributed immutabilization
of multiple logs, since currently only a single node is supported. Finally, the
validator can be extended to check the timing of the integrity proofs published
in the blockchain match the secure log entries within a given time frame.
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Abstract. Cyber attacks are becoming increasingly complex, practi-
cally sophisticated and organized. Losses due to such attacks are impor-
tant, varying from the loss of money to business reputation spoilage.
Therefore, there is a great need for potential victims of cyber attacks
to deploy security solutions that allow the identification and/or predic-
tion of potential cyber attacks, and deploy defenses to face them. In this
paper, we propose a framework that incorporates Attack-Defense trees
(ADTrees) and Continuous Time Markov Chains (CTMCs) to system-
atically represent attacks, defenses, and their interaction. This solution
allows to perform quantitative security assessment, with an aim to pre-
dict and/or identify attacks and find the best and appropriate defenses
to reduce the impact of attacks.

Keywords: Attack-Defense Trees · Markov chains · Security modeling ·
Quantitative analysis

1 Introduction

Cyber attacks are becoming more and more technically sophisticated, and well
organized. Losses due to such attacks are important, varying from the loss of
money to business reputation spoilage. On the other side of the coin, in order
to fend and stop this destructive cyber attacks wave, research efforts on cyber
attacks and security have considerably risen, trying to come with the best solu-
tions that allow security engineers to predict cyber attacks, estimate their like-
lihood, and find the most feasible defenses to prevent or reduce the negative
impact of these cyber attacks. As a consequence of these research efforts, a great
number of graphical models have been proposed in the last two decades (e.g.,
attack trees [14], attack graphs [7], attack-countermeasure trees [17], and attack-
defense trees [10]) and have been widely used for cyber security modeling and
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assessment. In spite of their similarities, these models differ on how to model
attacks and defenses, and how to integrate aspects like time, and dependencies
between actions within the model. The perfect model should be easy to use, and
practically implementable. It should provide a user-friendly and comprehensive
representation of real-life security scenarios, and should integrate aspects like
time and dependencies as well as security assessment functions. These require-
ments are well defined by the ADTrees model [10], which extends attack trees [14]
with refinable defenses, and allows the representation of sequential dependencies
between actions. It also supports security assessments of attributes such as the
likelihood, the cost, and/or the efficiency of attacks/defenses.

ADTrees are defined as a graphical methodology used to represent security
scenarios by systematically representing the different actions that an attacker
may undertake to realize a security goal, and the different actions that a defender
may apply to stop the attacker’s actions from being realized. It comes with a
strong formal framework for reasoning about security scenarios through different
types of semantics (propositional, multiset, De Morgan lattice, and equational),
and has proven to be simple, easy to use, and yet powerful in its modeling
capability. It has been validated in a large industrial case study [4].

To perform quantitative security assessment for evaluating attributes like
cost, efficiency, time, and probabilities, ADTrees apply a bottom-up proce-
dure [14]. Unfortunately this procedure can only be used for attribute evaluation
under the assumption that all considered actions (attacks/defenses) are inde-
pendent. This is a very strong assumption which is unrealistic in practice, since
actions are usually dependent, or in the simplest case sequentially dependent.
To overcome this limitation, we propose a new approach for security assess-
ment of ADTrees involving dependencies between actions. This approach relies
on Continuous Time Markov Chains. Being a powerful model, provided with a
useful quantitative analysis approach, CTMCs tend to be the perfect candidate
to assess ADTrees involving dependencies. Inspired by authors of [1–3,12,15], we
model atomic attacks/defenses using an exponential distribution. In fact, expo-
nential distribution seems to be a suitable distribution to model a great number
of attacks/defenses like brute force attacks, adaptive defense mechanisms (e.g.,
moving target defenses), or countermeasures with delayed impacts like policies
execution. In this paper, we propose a framework that combines the graphi-
cal and formal methodology of ADTrees with CTMCs, and allows performing
a system’s security assessment. The framework takes as an input an ADTree
representing a security scenario, and transforms it into a CTMC. This CTMC is
then used to perform the security assessment through the evaluation of security
attributes such as likelihood, the mean time required by an attack scenario, and
other attributes that security engineers may define. To achieve this, we define a
new semantics for ADTrees in terms of CTMCs. These semantics express how
to translate attacks/defenses into individual CTMCs and how to combine these
individual CTMCs into one final CTMC representing the entire ADTree.

Related work. Over the last two decades, a number of graphical security models
(e.g., attack trees [14], attack graphs [7], and attack-countermeasure trees [17])
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have been proposed in the literature and have been widely used for cyber security
modeling and assessment. Moreover, due to the development of cyber attacks in
terms of techniques, dependencies, and organization, these models have been
enriched and elevated in order to correctly model and assess sophisticated cyber
attacks. For instance, attack trees have been enriched and augmented with adapt-
able countermeasures to become ADTrees [10]. Performing quantitative analysis
on these models usually goes through applying an analytic approach such as
Markov chains [1–3,12,15], Petri-Nets [5,16], or Bayesian networks [11].

The choice of the analytical approach depends mainly on the model itself, the
aspects (time, dependencies) that it considers, and the user preference toward
the approach. We find that the Markov chains approach has mostly been chosen
for assessing these models. For instance, they have been applied in [2,3,15] on
attack trees, and in [1,12] on attack graphs to perform quantitative analysis,
and have shown their easy and useful applicability. Inspired by the previous
works, we have chosen to apply the Markov chains approach on ADTrees for the
following reasons: Models used in the previously cited works like attack trees [2,
3,5,15,16], and attack graphs [1,12] do not define the modeling of defenses in
their specification.

Although defense specification is not present in those models, some
authors [1–3,5,12,15,16] tried to incorporate defenses to model security sce-
narios. Unfortunately, they have assumed that the defenses can totally, with no
delay, mitigate a given attack. In other words, an attack node is simply deleted
from the attack model when it is counter-defended. This assumption is too strong
since it is not always the case for a defense to immediately stop an attack once
the defense is set up. In fact, there exist defenses whose impact comes after a
certain delay like a password changing policy. The ADTree model overcomes
the limitation of modeling defense by nature, as it allows to model and represent
defenses of different types independent of their impact delay. Secondly, compared
to attack-countermeasure trees model, an ADTree model allows the refinement
of defenses, which is more realistic. Kordy el al. [11] adopted ADTrees model and
used Bayesian networks approach to assess the likelihood of security scenarios.
This approach requires for each instant of time the construction of a conditional
probability table for each action because of the stochastic dependency between
actions. This requirement can be time consuming, error prone, and not prac-
tical when a large ADTree is evaluated. Thanks to CTMCs, we can represent
the same information (conditional probability tables) using a temporal probabil-
ity function known as CDF (Cumulative Distribution Function). This function
is associated to each action, and provides for each given instant of time t the
probability of occurrence of the action with respect to its dependencies.

Contributions. To summarize, the contributions of this paper are threefold.

– We define a new semantics of ADTree model in terms of CTMCs. The seman-
tics express the way attacks/defense action must be represented as a CTMC,
and how different CTMCs can be composed to represent the entire attack-
defense tree.
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– We use the composed CTMC that represents the attack-defense scenario to
perform quantitative analysis. Given that attack trees are formally a sub-class
of attack-defense trees, our analysis technique also applies to attack trees.

– We demonstrate the applicability of our solution using a simple but realistic
example study.

Organization. Section 2 presents the basics of the attack-defense tree model and
CTMC model. Section 3 defines our semantics for attack-defense trees in terms
of CTMCs. Section 4 discusses the analytical approach of CTMCs to perform
quantitative security assessment. Section 5 performs quantitative analysis on an
example study. Finally, Sect. 6 provides conclusions and perspectives.

2 ADTrees and CTMCs

2.1 ADTrees

ADTrees are a graphical methodology used to represent security scenarios. They
can be seen as a two-player game. The first player is qualified by proponent
‘p’, and the second by opponent ‘o’ [9]. Depending on the root of the attack-
defense tree, if the root is an attack, then the proponent is the attacker, else
it is the defender. Graphically, each performed action or accomplished sub-goal
is represented by a node depicted by a red circle (©) if it refers to an attack
action/subgoal, or by a green square (�) if it refers to a defense action/subgoal.
Any node of either type in an ADTree can be refined (either disjunctively, con-
junctively, or sequentially conjunctive), or countered by another node of the
opposite type. Nodes that cannot be refined any further are qualified by basic
actions. When a node is disjunctively refined, its accomplishment requires at
least one of its refinement nodes to be accomplished. A conjunctively refined
node requires all its refinement nodes to be realized without any prefixed order.
The sequential conjunctive refinement is similar to the latter but requires a pre-
defined accomplishment order for its refinement nodes. We depict a conjunctive
refinement of a node by an arc over all edges connecting the node and its refine-
ment nodes, and the sequentially conjunctive refinement with a directed arc.
When a node is countered with another node of opposite type, they are linked
together using a dashed line.

Figure 1 illustrates an ADTree for a simple networked system where the
attacker wants to compromise a server host by executing malicious scripts.
To achieve his goal, the attacker must first perform reconnaissance in order to
gain knowledge about the network’s assets (e.g., topology, protocols, addresses,
open ports) using some tools like Nmap. On the other side, to prevent the
attacker from gaining knowledge on the network, the defender can apply one
of the two adaptive defenses. The first defense regularly changes IP addresses
of network hosts and the second defense ‘Mutable network’ dynamically shuffles
IP addresses, routing tables and topology of the network. In the second step,
the attacker looks for any vulnerabilities using Nesus for instance. Then, using
Metasploit for example, he exploits the discovered vulnerability, and executes a
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Fig. 1. An example ADTree representing the security scenario

specific designed payload to gain high privileges on the target host. To fend this,
the defender frequently performs penetration tests to discover vulnerabilities and
develop appropriate patches. As an alternative to target exploitation through
vulnerabilities, the attack can brute force the root’s password to gain the priv-
ilege. The defender implements in this case a policy to periodically change the
passwords. This will delay the attacker from succeeding his goal. Finally, if the
attacker manage to escalate the privileges, he can execute malicious command
and cause harm to the server.

Given that this multi-step attack must be performed in a particular order,
we use a sequential conjunction refinement. To realize the ‘Escalate Privilege’
attack, the attacker must either successfully brute force the root password or (dis-
junction refinement) exploit a discovered vulnerability and (conjunction refine-
ment) running its dedicated Exploit and payload program.

2.2 Formal Definition of ADTrees

Formally, ADTrees are defined by means of an abstract syntax called
ADTerms [10]. The ADTerms in this paper are typed over the signature Σ =
(S,F), where:

– S = {p, o} is the set of types (proponent p and opponent o)
– F = {(∨p

k)k∈N, (∧p
k)k∈N, (−→∧ p

k)k∈N, (∨o
k)k∈N, (∧o

k)k∈N, (−→∧ o
k)k∈N, cp, co} ∪ B

p ∪ B
o

is a set of function symbols.

The unranked functions (∨s
k)k∈N, (∧s

k)k∈N and (−→∧ s
k)k∈N, where s ∈ S, represent

the disjunctive (∨), conjunctive (∧), and sequential conjunction (−→∧ ) refinement
operators for the proponent and the opponent, respectively. The binary functions
cs connect an action of a given type s ∈ Swith an action of the opposite type s ∈ S.
If we model the proponent as the attacker, then the set Bp (and respectively B

o)
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consists of atomic attacks (and atomic countermeasures). Conventionally p = o
and o = p.

Definition 1. ADTrees are closed terms over the signature Σ = (S,F), gener-
ated by the following BNF-grammar, where bs ∈ B

p ∪ B
o, and s ∈ S is the type

of players.

t :≡ bs | ∨s(t, . . . , t) | ∧s(t, . . . , t) | −→∧ (t, ..., t) | cs(t, t) (1)

Example 1. If we label the basic events of the ADTree in Fig. 1 by
bp0, b

p
1, b

p
2, b

p
3, b

p
4, b

o
0, b

o
1, b

o
2, and bo3, respectively for Network scanning, Vulnerabil-

ity scanning, Use vulnerability Exploit, Password brute forcing, Execute danger-
ous commands, IP randomization, Mutable network, patches development, and
finally password policy, then the resulting ADTerm of the ADTree is:

t = −→∧ p

(

co
(

bp0,∨o
(
bo0, b

o
1

))

,∨p

(

∧p
(
co(bp1, b

o
2), b

p
2

)
, co(bp3, b

3
0)

)

, bp4

)

(2)

2.3 Continuous Time Markov Chains

Markov chains [13] are stochastic processes used to model system behavior where
probabilistic events are considered. They are called Markovian since the predic-
tions are made based only on the current state of the system, and not on any
previous state. A Markov process that transits from one state to another via an
exponential rate is called Continuous Time Markov Chain or CTMC.

Definition 2. A continuous time Markov chain is a tuple (S,G, π), where:

– S is a finite disjoint set of states,
– G : S × S → R is the infinitesimal generator matrix which gives the rate of

transition between two states s ∈ S and s′ ∈ S,
– π : S → [0, 1] is the initial probability distribution on S.

The proposed semantics for ADTree requires to differentiate between the initial
state, intermediate states, and the final states. Therefore, we slightly modify
Definition 2 and adapt it to our needs. The new explicit notation (Definition 3)
will help us to easily formalize and define our semantics. Moreover, the initial
distribution π is usually devoted to the initial state of the system. Therefore,
we omit the variable π from the definition, since we arbitrary devote the entire
initial distribution to the initial state.

Definition 3. An enumerated continuous time Markov chain M is a tuple
(S, S0, S∗, G), where:

– S is a finite disjoint set of states,
– S0 ⊂ S is a finite set of initial states,
– S∗ ⊂ S is a finite set of final states,
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– G : S × S → R is the infinitesimal generator matrix which gives the rate of
transition between two states s ∈ S and s′ ∈ S.

We note that there exists a set of intermediate states that we denote by
Smid ⊂ S, where S = S0 ∪ Smid ∪ S∗, and S0 ∩ Smid ∩ S∗ = ∅.

The infinitesimal generator matrix G defines the exponential rates gs,s′ of the
transitions that go from one state s ∈ S to an other state s′ ∈ S. The element
gs,s of the infinitesimal generator matrix G are chosen such that each row of the
matrix sums to zero. Therefore, the generator matrix G is built as follows:

G =

{
−∑

s �=s′ gs,s′ if s = s′,
gs,s′ otherwise.

(3)

Here, each gs,s′ ≥ 0 represents the exponential rate of transition from state s ∈ S
to state s′ ∈ S. The inverse 1/gs,s′ represents the average time needed to transit
from s ∈ S to s′ ∈ S and |1/gs,s| is the average amount of time (sojourn time)
spent in state s ∈ S. Furthermore, for a given state s ∈ S, if ∀s′ ∈ S, s′ �= s,
G(s, s′) = 0, then state s ∈ S is called an absorbing state and M a continuous
time absorbing Markov chain.

3 Markov Chain Semantics for Attack-Defense Trees

We now define the semantics for ADTrees in terms of CTMC. In particular,
we first define the semantics for basic events bs ∈ B

p ∪ B
o, followed by the

semantics for the three refinement operators (∨s
k)k∈N, (∧s

k)k∈N and (−→∧ s
k)k∈N,

where s ∈ S, and finally the semantics for counteractions cs (see Sect. 2.2). We
then use the semantics of these ADTree components to compose a single CTMC
that represents the semantics of the complete ADTree.

Semantics for basic events. Consider a set M of all possible CTMCs. We
can then define a function Ψ : B → M that associates, for each basic event
bs ∈ B

p ∪ B
o, a CTMC defined as ({s0, s∗}, {s0}, {s∗}, Gbs), where s0 and s∗

are the initial and final states, respectively. The element Gbs represents the
infinitesimal generator to the CTMC. It is computed using Eq. 3, and hence
given by Eq. 4:

Gbs =
[−λbs λbs

0 0

]

(4)

Figures 2-a and b, illustrate the CTMC corresponding to basic events bp ∈ B
p

and bo ∈ B
o, respectively. The rates λbp and μbo represent the exponential rates

of an atomic attack and an atomic countermeasure, respectively.

Semantics for conjunctive refinements. We define an unranked function
∧k∈N : Mk → M which takes k Markov chains and composes them in a way
that all k Markov chains should be executed in an irrelevant execution order.
Therefore, the composed Markov chain is (

∏k
i=1 Sbi ,

∏k
i=1 Sbi

0 ,
∏k

i=1 Sbi∗ , G∧s
k∈N).

The set S∧s
k∈N contains all possible combinations of the states of the k involved
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Fig. 2. CTMC-Semantics of basic events, refinements, and countermeasures.

Markov chains. The initial state is equal to (sb10 , sb20 , ..., sbk0 ), and similarly, the
final state is (sb1∗ , sb2∗ , ..., sbk∗ ). The remaining states refer to intermediate (tran-
sitive) states.

Figure 2-c illustrates the CTMC obtained by applying the function ∧s
2 on

CTMC Ms
1 and Ms

2 , where Ms
1 and Ms

2 are two CTMCs corresponding to two
basic events bs1, b

s
2 ∈ B. The generator G∧s

k∈N is obtained by the following equa-
tion:

G
−→∧s

k∈N(si, sj) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−∑
i�=j G∧s

k∈N(si, sj) if i = j,

0 if i �= j ∧ |siΔsj | > 2,

0 if si ∈ Ω,

Gidf (Sidf ∩ si, S
idf ∩ sj) otherwise.

(5)

Where Δ is the symmetric difference between two sets, |S| is the cardinality of
a given set S, Ω is the set of absorbing states, and idf = ϑ(si ∩ sj) is a func-
tion which returns the identifier of the Markov chains from where the input sets
belong to. For example, ϑ(s10, s

2
5, s

2
8) returns {1, 2}. In summary, this formula-

tion consists in identifying which transition (tidfi ) is linking state si to state sj .
Note that this formulation is valid for sequential conjunction and disjunction
refinement as well.

Semantics for sequential conjunctive refinements. We define the sequen-
tial conjunction refinements using the function −→∧ k∈N : Mk → M which takes
k CTMCs as input and composes them sequentially. The final state of the nth

CTMC is merged with the initial state of the n + 1th CTMC. Figure 2-d illus-
trates how two CTMCs are composed by −→∧ s

2. The result of −→∧ k∈N composition

is a CTMC (S
−→∧s

k∈N , S
−→∧s

k∈N

0 , S
−→∧s

k∈N∗ , G
−→∧ss

k∈N) where:

– S
−→∧s

k∈N = S
−→∧s

k∈N

0

⋃
S

−→∧s
k∈N∗

⋃
S

−→∧s
k∈N

mid

– S
−→∧s

k∈N

0 =
∏k

i=1 Sbi
0
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– S
−→∧s

k∈N∗ =
∏k

i=1 Sbi∗
– S

−→∧s
k∈N

mid =
⋃k−1

i=1 Sbi∗ × S
bi+1
0

⋃
Sbi
mid × S

bi+1
0

⋃
Sbi∗ × S

bi+1
mid

The set S
−→∧s

k∈N is composed of the initial state S
−→∧s

k∈N

0 ={(sb10 , sb20 , ..., sbk0 )}, the
final state {(sb1∗ , sb2∗ , ..., sbk∗ )}, and the intermediate states of Smid, which is com-
posed of intermediate states of the k involved Markov chains plus the linking
states

⋃k−1
i=1 Sbi∗ × S

bi+1
0 (chains each CTMC with the next CTMC).

Semantics for disjunction refinement. We define a disjunctive refinement
using an unranked function ∨k∈N : Mk → M, which takes k CTMCs as input
and composes them in a way that each CTMC can evolve independently to the
other CTMCs. Therefore, there will be k final states (one from each k involved
CTMC). The result of composing k CTMCs by means of a disjunction refinement
is (S∨s

k∈N , S
∨s

k∈N

0 , S
∨s

k∈N∗ , G∨s
k∈N), where:

– S∨s
k∈N = S

∨s
k∈N

0 ∪ S
∨s

k∈N∗ ∪ S
∨s

k∈N

mid ,
– S

∨s
k∈N

0 =
∏k

i=1 Sbi
0 ,

– S
∨s

k∈N∗ =
n⋃

i=1

Sbi∗ × ∏
j �=i S

bj
0 ,

– S
∨s

k∈N

mid =
n⋃

i=1

Sbi
mid × ∏

j �=i S
bj
0 .

The set S∨s
k∈N is composed of the initial state (sb10 , sb20 , ..., sbk0 ), the intermediate

states of Smid, and the final states {(sb1∗ , sb20 , ..., sbk0 ), (sb10 , sb2∗ , ..., sbk0 ), ..., (sb10 , sb20 ,
..., sbk∗ )}. The set Smid is composed of intermediate states of the k involved
CTMCs. Figure 2-e illustrates how two CTMCs are disjunctively composed.

Semantics for countermeasures. We represent counter-measuring with an
unranked function cs(bp, bo), where s ∈ S, bp ∈ B

p and bo ∈ B
o. If we consider

the proponent to be the attacker and the opponent to be the defender, this
function will link the atomic attack bp ∈ B

p with an atomic defense bo ∈ B
o.

Note that besides taking as inputs atomic attacks/defenses, the function cs can
also take as inputs conjunctively, disjunctively or sequential conjunctive refined
inputs.

The CTMC-semantics for a countermeasure is characterized using a new
unranked function cs : M×M → M. This new function takes two CTMCs Ms and
Ms as inputs, one representing the proponent action, and the second representing
the opponent action. It links them such that they counter each other. In other
words, the final state of the proponent action will be the initial state of the
opponent action and vice-versa. Therefore, if the proponent starts his next step
before the opponent action is executed, the proponent would skip successfully
the countermeasure set by the opponent. However, if the countermeasures is
successfully executed (before the proponent manages to move to next step), the
proponent is brought to the initial state where he has to re-perform his action.
For example, in Fig. 1, if the password changing policy is executed the attacker
has to re-perform the brute force attack again.
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The constructed CTMC for counter-measuring is defined as follows:

– Sc(Ms,Ms) = S
c(Ms,Ms)
0 ∪ S

c(Ms,Ms)
mid ∪ S

c(Ms,Ms)
∗ ,

– S
c(Ms,Ms)
0 = SMs

0 × (sM
s

1 , sM
s

2 , ..., sM
s

|SMs
∗ |) where sM

s

i ∈ SMs

∗ and i ∈
{1, ..., |SMs

∗ |},
– S

c(Ms,Ms)
∗ = Ss

∗ × SMs

0 ,
– S

c(Ms,Ms)
mid = SMs

mid × SMs

0 ∪ SMs

mid.

Similarly to the other semantics, the set Sc(Ms,s) is composed of the initial state,
which contains the initial state of player (proponent/opponent) s and a tuple
of all final states of player (opponent/proponent) s. The final state consists
of the final states of the player (proponent/opponent) and the initial state of
player (opponent/proponent) s. It also contains intermediate states from each
player’s chain. Figure 2-f shows how counter-measuring of an atomic attack with
an exponential rate λ is performed against an atomic countermeasure with an
exponential rate μ.

We have formulated the generator matrix Gc(Ms,Ms) as follows:

Gc(Ms,Ms)(si, sj) =

{
−∑

i�=j Qc(Ms,Ms)(si, sj) if i = j,
∑

GMs

(si′ , sj′) +
∑

GMs

(si′′ , sj′′) otherwise.
(6)

Where (si′ , sj′), (si′′ , sj′′) ∈ si × sj and ϑ(si′) = ϑ(sj′) and ϑ(si′′) = ϑ(sj′′).
Overall, this formulation consists in summing the rates of all possible transi-

tions that go from state si to state sj . Since every transition tidfi belongs to only
one CTMC Midf , the execution of tidfi will only affect states of Midf . Therefore,
there will generally be only one transition (one rate), unless it regards a disjunc-
tion of countermeasures, where the rates of the involved countermeasures are
summed.

Fig. 3. CTMC obtained by composing individual CTMCs for the ADTree in Fig. 1
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Example 2. We use the ADTerm given by Eq. 2 (Sect. 2.2) and apply the new
semantics described above to obtain the entire CTMC (see Fig. 3) representing
the whole ADTree of Fig. 1. This is merely achieved by first building CTMCs
of basic events, then composing them according to the involved refinements
operators that links the basic events.

4 Quantitative Security Assessment

In this section, we show how to perform quantitative analysis using Markov
chains [18]. We show how to compute and extract matrices that are necessary
for the analysis. To achieve this, we consider an enumerated continuous time
Markov chain M = (S, S0, S∗, G), from which we can extract and compute the
following structures:

The first structure is called the instantaneous probability matrix P (t). It
gives the instantaneous probability to transit from a state si to state sj . In an
other words, for each state si ∈ S in a CTMC M , is associated a cumulative
distribution function 0 ≤ FX(t) ≤ 1 (where X is a random variable and t
is the time) that describes the probability of being in state si ∈ S, in time
interval [0−t), starting from state sj ∈ S. The instantaneous probability matrix
is computed using the infinitesimal generator matrix G as P (t) = eG.t.

Application. We exploit this matrix to draw the cumulative distribution func-
tion (CDF) of each final state (representing the final goal) starting from the
initial state. Therefore, we can compute at any time the probability of success
for each possible attack scenario leading to a final state (final goal).

The second structure is the mean probability transition matrix P , where
each element P i�=j

i,j is equal to |gij/gii| for i �= j, and gives the mean probability
to transit from state si to state sj . The elements Pi,i however, are null. In an
absorbing CTMC, this matrix particularly takes a canonical form defined as:

P =
[
Q R
0 Id

]

(7)

Here Id is the identity matrix, and 0 is the null matrix. We exploit the submatrix
Q to compute the fundamental matrix N , using: N = (1 − Q)−1, where each
element ni,j in the fundamental matrix N gives the expected number of steps
the process visited a state sj starting from state si. The sum of the ith row in
matrix N represents the expected number of steps performed to reach any of
the absorbing state starting from state si.

Application. Knowing for each scenario, the set of visited states, we can use
the fundamental matrix N , to compute the amount of steps performed in each
scenario and hence determine the most/less probable scenario, or exert a ranking
for the different possible scenarios.

The third component is the absorbency frequency matrix B = N ×R, where
each element bij of B gives the probability of getting absorbed by each absorbing
states.
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Application. This matrix will serve to identify the most probable goal if we have
many, or to confirm again the most probable scenario and with which steady state
probability.

Finally, using the fundamental Matrix N and the sojourn times |1/gii| of each
state, we can compute the mean time required to reach the final goal starting
from the initial state.

Application. In the context of security modeling, we compute the MTTSF
(Mean Time To Security Failure) also known as MTTB (Mean Time To Breach)
or MTTA (Mean Time To Attack). We can also compute the mean time for each
scenario. The MTTSF is given by:

MTTSF =
∑

i∈Xt

n0,i × 1
|gii| (8)

Where n0,i is the expected number of steps performed to go from the initial state
s0 to state si.

5 Security Assessment of the Networked System

We report on the analysis conducted to evaluate the security of the scenario dis-
cussed in Sect. 2.1. In particular, we consider the ADTree in Fig. 1 and its CTMC
representation in Fig. 3 to perform security assessment. To achieve this, we go
through three cases: one (case 1), where we don’t consider existence of coun-
termeasures (attack trees), the second (case 2) we add countermeasure ‘prevent
target identification’, and the last case (case 3), in addition to the previously
added countermeasure we add two more countermeasures respectively ‘Frequent
patches’ and ‘Passwords policy’. The results of our analysis can be used by secu-
rity engineers to choose appropriate defenses in order to harden the security of

Fig. 4. Cumulative Distribution Function of scenarios group
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the system. For the purpose of performing quantitative analysis, we have arbi-
trarily affected rational values for the different exponential rate of each basic
event. Therefore, by denoting atomic attack as bp0 . . . bp5 and countermeasures as
bo0 and bo3. We assign exponential rates λ as follows: λbp0

= 1 for bp0 = Network
scanning, λbp1

= 2 for bp1 = Vulnerability scanning, λbp2
= 1 for bp2 = Use vulner-

ability exploit, λbp5
= 5 for bp5 = Execute malicious scripts. The atomic attack

bp3=Password brute force attack use an Erlang distribution Erl(2, 3), which
corresponds to a sequence of two exponentials of rate λbp3

= 3. Therefore, we
model this attack with two atomic attacks bp3 and bp4 of the same rate equal to
3. The countermeasures bo0 = IP address randomization, bo1= Mutable network,
bo2= Updates, and bo3 = Password policy are modeled using exponential distrib-
utions μbo0

= 1, μbo1
= 2, μbo2

= 1, and μbo3
= 1, respectively. A point that we

should highlight, is that the fact of having sub-goals disjunctively refined, and
at least one of the refinements is conjunctively refined, induces the replication
of the final goal in the constructed Markov chain (see the two black states in
Fig. 3). Therefore, there will be more than one state referencing to the same final
goal but reached through different scenarios. As shown in Fig. 3, the first final
state is reached through [bp0; b

p
3; b

p
4; b

p
5]. However, the second final state is reached

through two different scenarios [bp0; b
p
2; b

p
1; b

p
5] or [bp0; b

p
1; b

p
2; b

p
5]. Therefore, we can

define for each final goal (final state) fi a group of scenarios Gi composed of the
same atomic attacks, but conducted in different order.

Probabilistic security attributes. We compute the probability of reaching
the final goal over time expressed in terms of CDF. We also try to determine the
probability of each group of scenarios, and draw the evolution of their probability
of success over time. We compute the most probable scenario and perform a
ranking for the possible scenarios. To achieve this, we first use the instantaneous
probability matrix to draw the CDF of each final goal fi. In our example of
study, we have determined two groups of scenarios G1 and G2.

From Fig. 4, in the two first cases, we see that the group of scenarios G1 is
instantaneously more probable than the group of scenarios G2. This means that
the scenarios of group G1 are more probable than scenarios of G2. However,
they both converge to the same steady state probability of 50 %. We explain this
from the fact that in case 2, the countermeasure ‘prevent target identification’
is applied to an atomic attack which is common to both groups G1 and G2. In
other words, defense contributes in reducing the total probability of the goal
over time (the sum of all groups CDFs) as we can see in Fig. 5. Nonetheless, in
case 3, we have put more countermeasures in a way to reduce the probability
of success for G1, and we can see that the instantaneous probability of reaching
the final goal through G1 has slightly reduced for t ≥ 3 time units to a point
where G2 becomes more probable.

In Fig. 5, we can see the impact of the countermeasures on the probability
of succeeding the final goal. For instance, for a working time of [0-5] time units,
the attacker has a probability to succeed of 97% in the first case, 91% in the
second case, and finally 86% in the last case, which is more secure. Note that
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Fig. 5. Cumulative Distribution Function of the final goal

the impact is slightly small since the rates that we have affected are too close to
the attacks rates.

Then we use the fundamental matrix N to compute the expected number
of steps realized in each scenario of each group, and therefore determine the
most probable scenario MPS (we can rank scenarios). The results are depicted
in Fig. 6, where we can see that the most probable scenario has the largest
amount of steps. In this case, scenario [bp0; b

p
3; b

p
4; b

p
5] is the most probable one.

Furthermore, the number of steps is increasing each time countermeasures are
added. We explain that from the fact that the attacker performs more steps since
the execution of a countermeasure forces the attacker to restart from his initial
state. Therefore, in each scenario, the number of expected steps is increased as
long as countermeasures are added. Moreover, we can rank the three scenarios
as follows: [bp0; b

p
3; b

p
4; b

p
5], then [bp0; b

p
1; b

p
2; b

p
5], and finally scenario [bp0; b

p
2; b

p
1; b

p
5].

Finally, we use the absorbency frequency matrix B to compute the percentage
in which the attacker succeed in reaching his final goal through a particular
scenario in the steady state, that is to say, when he is given enough time. This
will allow us to testify which group of scenarios is the most probable. The results
are shown in Fig. 7 (left side).

The steady state probability is 50% for the first two cases, where no coun-
termeasures are applied, then when a common countermeasures is applied. The
third case shows that it is more probable to perform attacks through G2 than
trough G1, since this last one contains more countermeasures.

Time based attributes. Finally, we evaluate the mean time to breach the sys-
tem in terms of MTTSF. Therefore, we make use of Eq. (5) and compute the
MTTSF for the three cases. The results are illustrated in Fig. 7 (right side). We
can see that the attacker is each time delayed as long as we add countermea-
sures. Indeed, the countermeasure ‘prevent target identification’ has delayed the
attacker to spend 25.64% more time units than usual (initial case). In the third
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Fig. 6. Expected number of steps for each scenario and for each case

Fig. 7. Absorbing probabilities (left), Mean Time To Security Failure (right)

case, the attacker has to spend 44.62% more time units compared to the initial
non-secure case.

6 Conclusions

We presented a stochastic framework to perform quantitative analysis of
ADTrees. We started by defining a new semantics for ADTrees in terms of
CTMCs, then showed how to construct a final CTMC representing the entire
ADTree. We then applied the analytical approach of CTMC to perform quanti-
tative analysis. We finally demonstrated the usefulness of our solution by means
of a simple but realistic example study.

As part of our future work, we will extend our framework to model and
quantitatively assess complex security scenarios like social attacks. We will also
extend our framework in order to embed it within the ADTool [6,8], which is a
free software tool for security modeling and quantitative analysis using ADTrees.
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Abstract. Security of information flow is commonly understood as pre-
venting any information leakage, regardless of how grave or harmless
consequences the leakage can have. In this work, we suggest that infor-
mation security is not a goal in itself, but rather a means of preventing
potential attackers from compromising the correct behavior of the sys-
tem. To formalize this, we first show how two information flows can
be compared by looking at the adversary’s ability to harm the system.
Then, we propose that the information flow in a system is effectively
information-secure if it does not allow for more harm than its idealized
variant based on the classical notion of noninterference.

1 Introduction

In most approaches to information flow security, information defines the ultimate
goal of the interaction between agents. Classical information security properties
specify what information must not leak, and how it could possibly leak (i.e., what
channels of information leakage are considered), but they do not give account of
why the information should not leak to the intruder. For example, the property of
noninterference [7] assumes that the “low clearance” users cannot learn anything
about the activities of the “high clearance” users. In order to violate this, the
“low” users can try to analyse their observations and/or execute a sequence of
explorative actions of their own. Nondeducibility on strategies [30] makes the
same assumption about what should not leak, but takes also into account covert
channels that some “high” users can use to send signals to the “low” agents
according to a previously agreed code. Anonymity in voting [2,5] captures that
an observer cannot learn what candidate a particular has voted for by looking
at the voter’s behavior, scanning the web bulletin board, coercing the voter to
hand in the vote receipt, etc.

As a consequence, the classical properties of information security can only
distinguish between relevant and irrelevant information leaks if the distinction is
given explicitly as a parameter, e.g., by classifying available actions into sensitive
and insensitive [7]. However, it is usually hard (if not impossible) to obtain such
a distinction based on the internal characteristics of the actions. We illustrate
the point below by means of a real-life example.
c© Springer International Publishing AG 2016
G. Barthe et al. (Eds.): STM 2016, LNCS 9871, pp. 154–169, 2016.
DOI: 10.1007/978-3-319-46598-2 11
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Example 1. In some phone banking services, the maiden name of the user’s
mother is used as a part of authentication.1 Consider now a user posting an
essay about some ancestor of hers on her blog, mentioning also the name of the
ancestor. If the essay is about the user’s mother, it reveals potentially danger-
ous information. On the other hand, if the post is about some other member of
the user’s family (father, grandmother, paternal grandfather, etc.) revealing the
name of the person is probably harmless. Note that it is impossible to distinguish
between the two pieces of information (say, the mother’s maiden name vs. the
grandmother’s maiden name) based on their internal features. The only differ-
ence lies in the context: the first kind of information is used in some important
social procedures, while the second one is not. ��

In this paper, we claim that a broader perspective is needed to appropriately
model and analyse such scenarios. Agents compete for information not for its own
sake, but for reasons that go beyond purely epistemic advantages. More precisely,
information is a commodity that the players compete for in an “information
security game” but the game is played in the context of a “real” game where
information is only a resource, enabling (some) players to achieve their non-
epistemic goals. As players obtain new information, their uncertainty is reduced,
and they increase their ability to choose a good strategy in the real game.

What would a significant information leak be in this view? To answer the
question, we draw inspiration from the concept of the value of information: a
piece of information is worth as much as it increases the expected payoff of the
player. Similarly, an information leak is significant if it increases the ability of
the attacker to construct a damaging attack strategy in the real game.

Contribution of the Paper. First, we use the concept of surely winning strate-
gies from game theory to analyze the adversary’s strategic ability to disrupt the
correct behavior of the system. We will see the effective security of the system
as the attacker’s inability to come up with such a strategy.

Secondly, we use the notion of effective security for comparing two systems
by looking at the strategic ability of an adversary to harm the goal of the system.

Thirdly, a successful attack strategy can exist due to flawed design of either
the control flow or the information flow in the system. Here, we are interested
in the latter. That is, we want to distinguish between vulnerabilities coming from
the control vs. the information flow, and single out systems where redesigning
the flow of information alone can make the system more secure. To this end,
we define the noninterferent idealized variant of the system, which has the same
control flow as the original system, but with the information reduced so that
the system satisfies noninterference. Then, we define the system to be effectively
information-secure if it is as good as its noninterfering idealized variant. As the
main technical result, we show that the concept is well defined, i.e., the maximal
noninterferent variant exists for every state-transition model.

1 This is a real-life example from the authors’ personal experience. For similar security
questions, used by various phone or web services, cf. e.g. [14].
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Due to lack of space, we include only proof sketches for most results. The
complete proofs, together with additional examples, can be found in the extended
version of the paper, available at http://arxiv.org/abs/1608.02247.

2 Related Work

Various formalizations of information flow security have been proposed and stud-
ied. The classical concept here is noninterference [7] and its variations: nonde-
ducibility [28], noninference [22], restrictiveness [18], nondeducibility on strate-
gies [30], and strategic noninterference [13]. Probabilistic noninterference and
quantitative noninterference have been investigated, e.g., in [9,16,19,23,27,30].
All the above concepts assume that the information flow in the system is secure
only when no information ever flows from High to Low players. In this paper, we
want to discard irrelevant information leaks, and only look at the significant ones
(in the sense that the leaking information can be used to construct an attack on
a higher-order correctness property).

The problem of how to weaken noninterference to successfully capture secu-
rity guarantees for real systems has been also extensively studied. Most notably,
postulates and policies for declassification (called also information release) were
studied, cf. [26] for an introduction. This submission can be viewed as an attempt
to determine what information is acceptable to declassify. In this sense, our
results can useful in proposing new declassification policies and evaluating exist-
ing ones. We note, however, that the existing work on declassification are mainly
concerned by the question what information can be released, when, where, and by
whom. In contrast, we propose an argument for why it can be released. Moreover,
declassification is typically about intentional release of information, whereas we
do not distinguish between intentional and accidental information flow. Finally,
the research on declassification assumes that security is defined by some given
“secrets” to be protected. In our approach, no information is intrinsically secret,
but the information flow is harmful if it enables the attacker to gain more strate-
gic ability against the goals of the system.

Parameterized noninterference [6] can be seen as a theoretical counterpart of
declassification, where security of information flow is parameterized by the ana-
lytic capabilities of the attacker. Again, that research does not answer why some
information must be kept secret while some other needs not, and in particular
it does not take strategic power of the attacker into account.

Economic and strategic analysis of security properties is a growing field in
general, cf. [21] for an introduction. A number of papers have applied game-
theoretic concepts to define the security of information flow [3,4,11–13,17]. How-
ever, most of those papers [3,11,12,17] use games only in a narrow mathematical
sense to provide a proof system (called the game semantics) for deciding security
properties. We are aware of only a handful of papers that investigate the impact
of participants’ incentives and available strategies on the security of informa-
tion flow. In [1,10], economic interpretations of privacy-preserving behavior are
proposed. [4] uses game-theoretic solution concepts (in particular, Nash equilib-
rium) to prescribe the optimal defense strategy against attacks on information

http://arxiv.org/abs/1608.02247
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security. In contrast, our approach is analytic rather than prescriptive, as we do
not propose how to manage information security. Moreover, in our view, privacy
is not the goal but rather the means to achieve some higher-level objectives.
Finally, [13] proposes a weaker variant of noninterference by allowing the High
players to select an appropriate strategy, while here we look at the potential
damage inflicted by adverse strategies of the Low users.

Our idea of looking at the unique most precise non-interfering variant of the
system is related on the technical level to [6]. There, attackers displaying dif-
ferent analytical capabilities are defined by abstract interpretation, which leads
to a lattice of noninterference variants with various strength. Attackers with
weakened observational powers were also studied in [31].

3 Preliminaries

3.1 Simple Models of Interaction

Since we build our proposal around the standard notion of noninterference by
Goguen and Meseguer [7], we will use similar models to represent interaction
between actions of different agents. The system is modeled by a multi-agent
asynchronous transition network M = 〈St, s0,U,A, Obs, obs, do〉 where: St is the
set of states, s0 is the initial state, U is the set of agents (or users), A is the set of
actions, Obs is the set of possible observations (or outputs); obs : St × U → Obs
is the observation function. do : St × U×A → St is the transition function that
specifies the (deterministic) outcome do(s, u, a) of action a executed by user u
in state s. We will sometimes write [s]u instead of obs(s, u). Also, we will call a
pair (user, action) a personalized action. We construct the multi-step transition
function exec : St × (U × A)∗ → St so that, for a finite string α ∈ (U × A)∗ of
personalized actions, exec(s, α) denotes the state resulting from execution of α

from s on. We may sometimes write s
α−→ t instead of exec(s, α) = t, and exec(α)

instead of exec(s0, α).
Three remarks are in order. First, Goguen and Meseguer’s models define

agents’ observations based on states only, whereas it is often convenient to also
model the information flow due to observing each others’ actions. Secondly, the
models are fully asynchronous in the sense that if each user “submits” a sequence
of actions to be executed then every interleaving of the submitted sequences can
occur as the resulting behavior of the system. No synchronization is possible.
Thirdly, the models are “total on input” (each action label is available to every
user at every state), and hence no synchronization mechanism can be encoded
via availability of actions. Especially the last two features imply that models of
Goguen and Meseguer allow for representation of a very limited class of systems.

We start by using the purely asynchronous models of Goguen and Meseguer.
Then, in Sect. 6, we extend our results to a broader class of models by allowing
partial transition functions.
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3.2 Noninterference

We now recall the standard notion of noninterference from [7]. Let U ⊆ U and α ∈
(U×A)∗. By PurgeU (α) we mean the subsequence of α obtained by eliminating
all the pairs (u, a) with u ∈ U .

Definition 1 (Noninterference [7]). Let M be a transition network with sets
of “high clearance” agents H and “low clearance” agents L, such that H ∩ L =
∅,H ∪ L = U. We say that H is non-interfering with L iff for all α ∈ (U × A)∗

and all ul ∈ L, [exec(α)]ul
= [exec(PurgeH(α))]ul

. We denote the property by
NIM (H,L).

Thus, NIM (H,L) expresses that L can neither observe nor deduce what
actions of H have been executed.

Fig. 1. Transition network Ma in which the High player publishes her grandmother’s
maiden name on her blog. Only the observations of L are shown

Example 2. Consider a simplified version of the phone banking scenario from
Example 1. There are two users: H who has an account in the bank, and L who
may try to impersonate H. H can access her account by correctly giving the
maiden name of her mother. Moreover, H runs a blog, and can publish some of
her personal information on it. We consider two alternative variants: one where
H publishes her grandmother’s maiden name on the blog (Fig. 1), and one where
she publishes her mother’s maiden name (Fig. 2). We assume that the possible
names are A and B in the former case, and C and D in the latter. Each model
begins by initialization of the relevant names. The observations of L are shown
beside each state. The observations for H are omitted, as they will be irrelevant
for our analysis.

Note that, for mathematical completeness, we must define the outcome of
every user-action pair in every state. We assume that there are two “error states”
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Fig. 2. Transition network Mb in which H publishes her mother’s maiden name

sHErr , sLErr in models Ma and Mb (not shown in the graphs). Any action of H
not depicted in the figure leads to sHErr , and any action of L not depicted in
the figure leads to sLErr . We will later use the error states in the definition of
the players’ goals, in such a way that L will always want to avoid sLErr and H
will want to avoid sHErr . This way we can (however imperfectly) simulate some
synchronization in the restricted framework of Goguen and Meseguer.

Neither Ma nor Mb satisfies noninterference from H to L. For instance,
in the model of Fig. 1, if α = 〈(H, setMNameA), (H, setGNameD), (H, publish),
(L, chkWeb)〉, the observation of L after sequence α is GNameD , but the
observation of L after PurgeH(α) = 〈(L, chkWeb)〉 is noObs, which is clearly
different. ��

3.3 Strategies and Their Outcomes

Strategy is a game-theoretic concept which captures behavioral policies that an
agent can consciously follow in order to realize some objective [15]. Let T (M)
be the tree unfolding of M . Also if U ⊆ U is a subset of agents, let T ′ be a
U -trimming of tree T iff T ′ is a subtree of T starting from the same root and
obtained by removing an arbitrary subset of transitions labeled by actions of
agents from U . For the moment, we assume that each subset of agents U ⊆ U is
assigned a set of available coalitional strategies ΣU . The most important feature
of a strategy σU ∈ ΣU is that it constrains the possible behaviors of the system.
We represent it formally by the outcome function outM (σU ) that removes the
executions of the system that strategy σU would never choose. Therefore, for
every σU ∈ ΣU , its outcome outM (σU ) is a U -trimming of T (M).

Let h be a node in tree T corresponding to a particular finite history of
interaction. We denote the sequence of personalized actions leading to h by
act∗(h). Furthermore, act∗(T ) = {act∗(h) | h ∈ nodes(T )} is the set of finite
sequences of personalized actions that can occur in T .
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Strategies are usually constructed as mappings from possible situations that
the player can recognize in the game, to actions of the player (or subsets of actions
if we allow for nondeterministic strategies). Formally, the set of perfect recall
strategies of agent u is ΣRec

u = {σu : nodes(T (M)) → P(A) \ {∅} | obsu(h) =
obsu(h′) ⇒ σu(h) = σu(h′)}, where obsu(h) denotes the accumulate observations
collected by agent u along history h. How to define obsu for sequences of states?
For asynchronous systems, this is typically defined as obsu(q) = [q]u, obsu(h◦q) =
obsu(h) if last(h) = q, and obsu(h◦q) = obsu(h)◦[q]u otherwise (where ◦ denotes
the concatenation operator). That is, what u has learned along h is equivalent
to the sequence of observations she has seen, modulo removal of “stuttering”
observations. Now, coalitional strategies of perfect recall for a group of agents
U ⊆ U are combinations of individual strategies, i.e., ΣRec

U = ×u∈U (ΣRec
u ).

The outcome of σU ∈ ΣRec
U in model M is the tree obtained from T (M) by

removing all the branches that begin from a node h with a personalized action
(u, a) ∈ U × A such that a /∈ σU (h).

3.4 Temporal Goals and Winning Strategies

A goal is a property that some agents may attempt to enforce by selecting their
behavior accordingly. We base our approach on the concepts of paths and path
properties, used in temporal specification and verification of systems [20]. Let
paths(M) denote the set of infinite sequences of states that can be obtained by
subsequent transitions in M . Additionally, we will use pathsM (σ) as a shorthand
for paths(outM (σ)).

Definition 2 (Temporal goal [20]). A goal in M is any Γ ⊆ paths(M). Note
that paths(M) = paths(T (M)), so a goal can be equivalently seen as a subset of
paths in the tree unfolding of M .

Most common examples of such goals are safety and reachability goals.

Definition 3 (Safety and reachability goals [20]). Given a set of safe states
S ⊆ St, the safety goal ΓS is defined as ΓS = {λ ∈ paths(M) | ∀i.λ[i] ∈ S}.
Moreover, given a set of target states T ⊆ St, the reachability goal ΓT can be
defined as ΓT = {λ ∈ paths(M) | ∃i.λ[i] ∈ T}.
Definition 4 (Winning strategies). Given a transition network M , a set of
agents U ⊆ U with goal ΓU , and a set of strategies ΣRec

U , we say that U have
a (surely winning) strategy to achieve ΓU iff there exists a strategy σU ∈ ΣRec

U

such that pathsM (σU ) ⊆ ΓU .

Example 3. Consider the models in Figs. 1 and 2, and suppose that L wants
to access H’s bank account. This can be expressed by the reachability goal ΓT

with T = {s15, s16} as the target states. In fact, L also wins if H executes an
out-of-place action (cf. Example 2 for detailed explanation). In consequence, the
winning states for L are T = {s15, s16, sHErr}. Note that L has no strategy that
guarantees ΓT in model Ma (although information is theoretically leaking to
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L as the model does not satisfy noninterference). Even performing the action
chkWeb does not help, because L cannot distinguish between states s11 and s13,
and there is no single action that succeeds for both s11, s13. Thus, L does not
know whether to use authA or authB to get access to H’s bank account.

On the other hand, L has a winning strategy for ΓT in model Mb. The
strategy is to execute chkWeb after H publishes her mother’s maiden name, and
afterwards do authA in states s11, s12 (after observing MNameA) or authB if
the system gets to s13, s14 (i.e., after observing MNameB). ��

4 Security as Strategic Property

The property of noninterference looks for any leakage of any information. If
one can possibly happen in the system, then the system is deemed insecure. In
many cases, this view is too strong. There are lots of information pieces that
can leak out without bothering any interested party. Revealing the password to
your web banking account can clearly have much more disastrous effects than
revealing the price that you paid for metro tickets on your latest trip to Paris.
Moreover, the relevance of an information leak cannot in general be determined
by the type of the information. Think, again, of revealing the maiden name
of your mother vs. the maiden name of your grandmother. The former case is
potentially dangerous since the maiden name of one’s mother is often used to
grant access to manage banking services by telephone. Revealing the latter is
quite harmless to most ends and purposes.

In this paper, we suggest that the relevance of information leakage should
be judged by the extent of damage that the leak allows the attackers to inflict
on the goal of the system. Thus, as the first step, we define the security of the
system in terms of damaging abilities of the Low players.

In order to assess the relevance of information flow from High to Low, we will
look at the resulting strategic abilities of Low. Moreover, we assume that the
goal of L is to violate a given goal of the system. The goal can be a functionality
or a security requirement, or a combination of both. Moreover, it can originate
from a private goal of the High players, an objective ascribed to the system by
its designer (e.g., the designer of a contract signing protocol), or a combina-
tion of requirements specified by the owner/main stakeholder in the system (for
instance, a bank in case of a web banking infrastructure).

Definition 5 (Effective security). Let M be a transition network with some
Low players L ⊆ U, and let Γ be the goal of the system. We say that M is
effectively secure for (L, Γ ) iff L does not have a strategy to enforce Γ , where
X denotes the complement of set X. That is, the system is effectively secure iff
the attackers do not have a strategy that ensures an execution violating the goal
of the system. We will use ES(M,L, Γ ) to refer to this property.

Besides judging the effective security of a system, we can also use the concept
to compare the security level of two models.
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Definition 6 (Comparative effective security). Let M,M ′ be two models,
and Γ be a goal in M,M ′ (i.e., Γ ⊆ paths(M) ∪ paths(M ′)). We say that:

– M has strictly less effective security than M ′ for (L, Γ ), denoted M ≺L,Γ M ′,
iff ES(M ′, L, Γ ) but not ES(M,L, Γ ).

– M ′ is at least as effectively secure as M for (L, Γ ), denoted M �L,Γ M ′, iff
ES(M,L, Γ ) implies ES(M ′, L, Γ );

– M is effectively equivalent to M ′ for (L, Γ ), denoted M �L,Γ M ′, iff either
both ES(M,L, Γ ) and ES(M ′, L, Γ ) hold, or both do not hold.

Thus, if in one of the models L can construct a more harmful strategy then
the model displays lower effective security than the other model. Conversely, if
both models allow only for the same extent of damage then they have the same
level of effective security. This way, we can order different alternative designs of
the system according to the strategic power they give away to the attacker.

Example 4. Consider models Ma,Mb from Figs. 1 and 2, and let the goal Γ be
to prevent L from accessing H’s bank account. Thus, Γ is the safety goal ΓS

with S = St \ {s15, s16, sHErr}, and therefore Γ = ΓT with T = {s15, s16, sHErr}.
As we saw in Example 3, L has no strategy to guarantee Γ in Ma, but she has a
surely winning strategy for Γ in Mb. Thus, Mb is strictly less effectively secure
than Ma, i.e., Mb ≺L,Γ Ma.

5 Effective Information Security

We will now propose a scheme that allows to determine whether a given model
of interaction leaks relevant information or not. We use the idea of refinement
checking from process algebras, where a process is assumed correct if and only if
it refines the ideal process [25]. A similar reasoning scheme is also used in analysis
of multi-party computation protocols (a protocol is correct iff it is equivalent to
the ideal model of the computation [8]).

5.1 Ability-Based Security of Information Flows

Definition 6 allows for comparing the effective security of two alternative infor-
mation flows. However, we usually do not want to compare several alternative
information flows. Rather, we want to determine if a single given model M reveals
relevant information or not. A natural idea is to compare the effective security
of M to an ideal model, i.e. a variant of M that leaks no relevant information by
construction. Then, a model is effectively information-secure if it has the same
level of effective security as its idealized variant:

Definition 7 (Effective information security). Let M be a transition net-
work with some Low players L ⊆ U, and let Γ be the goal of the system. More-
over, let Ideal(M) be the idealized variant of M . We say that M is effectively
information-secure for (L, Γ ) iff M �L,Γ Ideal(M).

How do we construct the idealized variant of M? The idea is to “blur” obser-
vations of Low so that we obtain a variant of the system where the observational
capabilities of the attackers are minimal.
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5.2 Idealized Models Based on Noninterference

We begin by recalling the notion of term unification which is a fundamental
concept in automated theorem proving and logic programming [24]. Given two
terms t1, t2, their unification (t1 ≡ t2) can be understood as a declaration that,
from now on, both terms refer to exactly the same underlying object. In our case
the terms are observation labels from the set Obs. A unification can be seen as
an equivalence relation on observation labels, or equivalently as a partitioning of
the labels into equivalence classes. The application of the unification to a model
yields a similar model where the equivalent observations are “blurred”.

Definition 8 (Unification of observations). Given a set of observation labels
Obs, a unification on Obs is any equivalence relation U ⊆ Obs × Obs.

Given a model M = 〈St, s0,U,A, do,Obs, obs〉 and a unification U ⊆ Obs ×
Obs, the application of U to M is the model U(M) = 〈St, s0,U,A, do,Obs′, obs′〉,
where: Obs′ = {[o]U | o ∈ Obs} replaces Obs by the set of equivalence classes
defined by U , and obs′(q, u) = [obs(q, u)]U replaces the original observation in q
with its equivalence class for any u ∈ U.

Our reference model for M will be the variant of M where noninterference
is obtained by the minimal necessary “blurring” of L’s observations.

Definition 9 (Noninterferent idealized model). Having a transition net-
work M and a set of “low” players L, we define the noninterfering idealized
variant of M as U(M) such that:

(i) NIU(M)(H,L), and
(ii) for every U ′

� U it is not the case that NIU ′(M)(H,L).

We need to show that the concept of noninterferent idealized model is well
defined. The proof is constructive, i.e., given a model M , we first show how one
can build its idealized variant, and then show that it is unique.2

Theorem 1. For every transition network M , there is always a unique unifica-
tion U satisfying properties (i) and (ii) from Definition 9.

The proof of Theorem 1 needs some preliminary steps. First, we recall the con-
cept of unwinding relations [29]. Unwinding relations are important because they
characterize noninterference in purely structural terms. Moreover, existence of
an unwinding relation is usually easier to verify than proving noninterference
directly. We then use the concept of unwinding relation to define relation R∗

M

on the states of a transition network M . We use this relation to construct and
prove the uniqueness of the idealized variant of M .

2 We will only sketch the proofs due to lack of space. The complete proofs can be
found in the extended version of the paper, available at http://arxiv.org/abs/1608.
02247.

http://arxiv.org/abs/1608.02247
http://arxiv.org/abs/1608.02247
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Definition 10 (Unwinding for Noninterference [29]). ∼NIL
⊆ St × St is

an unwinding relation iff it is an equivalence relation satisfying the conditions of
output consistency (OC), step consistency (SC), and local respect (LR). That
is, for all states s, t ∈ St:

(OC) If s ∼NIL
t then [s]L = [t]L;

(SC) If s ∼NIL
t, u ∈ L, and a ∈ A then do(s, u, a) ∼NIL

do(t, u, a);
(LR) If u ∈ H and a ∈ A then s ∼NIL

do(s, u, a).

Proposition 1 ([29]). NIM (H,L) iff there exist an unwinding relation ∼NIL

on the states of M that satisfies (OC), (SC) and (LR).

Next we define R∗
M on the states of a transition network M . The definition

goes as follows: first we relate any two states of M ′ if one of them can be reached
from the other one by a sequence of High personalized actions. Then in each step
we relate the pair of states that are reached by a similar Low personalized action
from any two states that are already related. Also, we enforce transitivity on the
set. We continue adding related states until the relation becomes stable. The
mathematical definition of R∗

M is as follows:

Definition 11 (Relation R∗
M for a transition network M). Given a model

M = 〈St, s0,U,A, do,Obs, obs〉 and sets of High players H and Low players L,
we define the relation R∗

M ⊆ St×St as the least fixpoint of the following function
F , transforming relations on St:

F (R) = R0 ∪
{(t1, t2) | ∃(s1, s2) ∈ R, l ∈ L, a ∈ A.do(s1, l, a) = t1, do(s2, l, a) = t2} ∪
{(t1, t2) | ∃s ∈ St.(t1, s) ∈ R&(s, t2) ∈ R},

where (s1, s2) ∈ R0 iff for some sequence of personalized actions of High players
α, either s1,

α−→ s2, or s2
α−→ s1.

It can be shown that it is sufficient to unify Low’s observations in states
connected by R∗

M in order to obtain a non-interferent model. In consequence,
R∗

M generates the minimal unification that achieves the task. Now, by using
relation R∗

M , we define the unification of observations U∗
M that will provide the

noninterferent idealized variant of M .

Definition 12 (Unification for noninterference U∗
M). We define the unifi-

cation of observations U∗
M ⊆ Obs × Obs as follows. For any o1, o2 ∈ Obs, we

have (o1, o2) ∈ U∗
M iff there exist s1, s2, t1, t2 ∈ St and l ∈ L such that:

(a) obs(s1, l) = o1, (b) obs(s2, l) = o2, (c) (s1, t1) ∈ R∗
M , (d) (s2, t2) ∈ R∗

M , and
(e) obs(t1, l) = obs(t2, l).

It then holds that U∗
M (M) satisfies the noninterference property

(Proposition 2) and no refinement of U∗
M achieves that (Proposition 3).
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Proposition 2. Given a model M , and U∗
M (M) = 〈St, s0,U,A, do,Obs∗, obs∗〉

defined as in Definition 12 on M , it holds that NIU∗
M (M)(H,L).

Proposition 3. Given a model M , and sets of players H and L, for any
unification of observations U where U(M) = 〈St, s0,U,A, do,Obs′, obs′〉, if
NIU(M)(H,L) then U∗

M ⊆ U .

We can now complete the proof of Theorem 1.

Proof (of Theorem 1). We want to prove that, given a model M , set of players
H and L, and any unification of observations U , if U(M) is a noninterfering
idealized variant of M , then U = U∗

M . Assume that U(M) is a noninterfering
idealized variant of M . By property (i) of Definition 9 and Proposition 3 we infer
that U∗

M ⊆ U . Also, by Proposition 2, we have that NIU∗
M (M)(H,L). Therefore

by property (ii) of Definition 9 it holds that U = U∗
M .

Example 5. Consider models Ma,Mb in Fig. 1. We recall that both models are
not noninterferent. In the noninterferent idealized variant of Ma, observations
noObs, MnameC , and MNameD of L are unified and replaced by the equivalence
class {noObs,MNameD ,MNameD}. The idealized variant of Mb is constructed
analogously by unification of noObs, MnameA, and MNameB . Clearly, L has no
surely winning strategy to guarantee Γ = ΓT for T = {s15, s16, sHErr} in both
Ideal(Ma) and Ideal(Mb).

Recall from Example 4 that L has no winning strategy for Γ in Ma, but she
has one in Mb. So, Ma �L,Γ Ideal(Ma), but Mb ��L,Γ Ideal(Mb). Thus, Ma is
effectively information-secure for (L, Γ ), but Mb is not. ��

It is important to notice that noninterferent variants are indeed idealizations:

Proposition 4. For every M , L, and Γ , we have that M �L,Γ Ideal(M).

Proof. Note that because M and Ideal(M) differ only in their observation func-
tions. Also we have that for any pair of states s1, s2 ∈ St, if [s1]ML = [s2]ML then
[s1]

Ideal(M)
L = [s2]

Ideal(M)
L . Therefore all the strategies of L in Ideal(M) are also

L’s strategies in M . Thus for any for any goal Γ ⊆ paths(M), if L have a surely
winning strategy to enforce Γ in Ideal(M) then they also have a surely winning
strategy for Γ in M . ��

6 Extending the Results to a Broader Class of Models

As mentioned before, the models of Goguen and Meseguer are “total on
input,” i.e., each action label is available to every user at every state. This
makes modeling actual systems very cumbersome. In this section, we con-
sider a broader class of models, and show how our results carry over to the
more expressive setting. That is, we consider partial transition networks (PTS)
M = 〈St, s0,U,A, Obs, obs, do〉 which are defined as in Sect. 3.1, except that
the transition function do : St × U × A ⇀ St can be a partial function. By
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do(s, u, a) = undef we denote that action a is unavailable to user u in state
s; additionally, we define act(s, u) = {a ∈ A | do(s, u, a) �= undef } as the set of
actions available to u in s. Moreover, we assume that players are aware of their
available actions, and hence can distinguish states with different repertoires of
choices – formally, for any u ∈ U, s1, s2 ∈ St, if obs(s1, u) = obs(s2, u) then
act(s1, u) = act(s2, u).

We begin by a suitable update of the definition of noninterference:

Definition 13 (Noninterference for partial transition networks). Given
a PTS M and sets of agents H,L, such that H ∪ L = U,H ∩ L = ∅, we say that
H is non-interfering with L iff for all α ∈ (U×A)∗ and all ul ∈ L, if exec(α) �=
undef then [exec(α)]ul

= [exec(PurgeH(α))]ul
. We denote the property also by

NIM (H,L), thus slightly overloading the notation.

Note that Definition 1 is a special case of Definition 13. We now define the
noninterferent idealized variant based on the total extension of a PTS.

Definition 14 (U-total extension). Given a PTS M =
〈St, s0,U,A, Obs, obs, do〉 and a subset of users U ⊆ U, we define the U -total vari-
ant of M as totalU (M) = 〈St, s0,U,A, Obs, obs, do′〉 where the transition function
do′(.) is defined as follows: for every s ∈ St, v ∈ U and a ∈ A, do′(s, v, a) = s if
for some u ∈ U we have v = u and do(s, u, a) = undef , otherwise do′(s, v, a) =
do(s, v, a).

Definition 15 (Noninterferent idealized model for PTN). Given a partial
transition network M and a set of “low” players L, we define the noninterferent
idealized variant of M as U(totalL(M)) such that:

(i) NIU(totalL(M))(H,L), and
(ii) for every U ′

� U it is not the case that NIU ′(totalL(M))(H,L).

Theorem 2. For every partial transition network M , there is always a unique
unification U satisfying properties (i) and (ii) from Definition 15.

The proof is similar to the proof of Theorem 1, with the difference that we
use R∗

totalL(M) instead of R∗
M for constructing the idealized variant. However, as

we use the concept of unwiding relation as the basis for using the R∗ relation
for constructing the idealized variant, we first need to modify the definition
of the unwinding relation in Definition 10 and its corresponding proposition,
Proposition 1 to adapt them to the new model:

Definition 16 (Unwinding for Noninterference in PTN). ∼NIL
⊆

St × St is an unwinding relation iff it is an equivalence relation satisfying the
conditions of output consistency (OC), step consistency (SC), and local respect
(LR). That is, for all states s, t ∈ St:

(OC) If s ∼NIL
t then [s]L = [t]L;

(SC) If s ∼NIL
t, u ∈ L, and a ∈ A then a ∈ act(s, u) implies

do(s, u, a) ∼NIL
do(t, u, a);
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(LR) If u ∈ H and a ∈ A then a ∈ act(s, u) implies s ∼NIL
do(s, u, a).

Proposition 5. NIM (H,L) iff there exist an unwinding relation ∼NIL
on the

states of M that satisfies (OC), (SC) and (LR).

The rest of the proof of Theorem 2 follows analogously.

Example 6. With PTS, the scenario from Example 2 can be modeled directly,
without spurious states that ruled out illegal transitions. Thus, our models
Ma,Mb for the two variants of the scenario are now exactly depicted in Figs. 1
and 2.

The noninterferent idealized variants of Ma (resp. Mb) is again obtained by
the unification of observations noObs, MnameC , and MNameD (resp. noObs,
MnameA, and MNameB). Clearly, L has no surely winning strategy to guarantee
Γ = ΓT for T = {s15, s16} in Ma, Ideal(Ma), and Ideal(Mb). Moreover, he has
a surely winning strategy in Mb. In consequence, Ma is effectively information-
secure for (L, Γ ), but Mb is not. ��

The noninterferent variant was indeed an idealization in simple transition net-
works of Goguen and Mesguer. Is it still the case in partial transition networks?
That is, is it always the case that L has no more abilities in Ideal(M) than in
M? In general, no. On one hand, L’s observational capabilities are more limited
in Ideal(M), and in consequence some strategies in M are no longer uniform
in Ideal(M). On the other hand, unification U∗ possibly adds new transitions
to M , that can be used by L in Ideal(M) to construct new strategies. How-
ever, under some reasonable assumptions, Ideal(M) does provide idealization,
as shown in the two propositions below. The proofs are relatively simple, and
we omit them due to lack of space.

Proposition 6. Let M be a PTN such that for every state s in M there is
at least one player u /∈ L with act(s, u) �= ∅. Then, for any Γ , we have that
M �L,Γ Ideal(M).

Proposition 7. For any PTN M and safety goal Γ , we have M �L,Γ Ideal(M).

7 Conclusions

In this paper, we introduce the novel concept of effective information security.
The idea is aimed at assessing the relevance of information leakage in a system,
based on how much the leakage enables an adversary to harm the correct behav-
ior of the system. This contrasts with the common approach to information flow
security where revealing any information is seen as being intrinsically harmful.
We say that two information flows are effectively equivalent if the strategic abil-
ity of the adversary is similar in both of them. Moreover, one of them is less
effectively secure than the other one if the amount of information leaked to the
adversary in it increases the damaging ability of the adversary.
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In order to determine how critical the information leakage is in a given sys-
tem, we compare the damaging ability of the adversary to his ability in the
idealized variant of the model. We define idealized models based on noninterfer-
ence, and show that the construction is well defined. We prove this first for the
deterministic, fully asynchronous transition networks of Goguen and Meseguer,
and then extend the results to structures that allow for a more flexible mod-
eling of interaction. The construction includes an algorithm that computes the
idealized variant of each model in polynomial time wrt the size of the model.

Note that the concept of effective security is orthogonal to noninterference.
The latter can be in principle replaced in our construction by an arbitrary prop-
erty of information flow. The same reasoning scheme could be applied to nonin-
ference, nondeducibility, strategic noninterference, and so on. The pattern does
not change: given a property P, we define the idealized variant of M through
the minimal unification U such that U(M) satisfies P. Then, M is effectively
information-secure in the context of property P iff it is strategically equivalent to
U(M). We leave the investigation of which information security properties have
unique minimal unifications for future work. Moreover, we are currently working
on a more refined version of effective information security based on coalitional
effectivity functions, in which the strategic ability of the adversary is not only
compared at the initial state of the system, but across the whole state space.
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Abstract. A crucial question for an ICT organization wishing to
improve its security is whether a security policy together with physi-
cal access controls protects from socio-technical threats. We study this
question formally. We model the information flow defined by what the
organization’s employees do (copy, move, and destroy information) and
propose an algorithm that enforces a policy on the model, before checking
against an adversary if a security requirement holds.

Keywords: Socio-Technical-Physical Systems · Modelling security and
policies

1 Introduction

The data-flow of an ICT organization is defined by what its employees do. They
access, copy, share, and move pieces of information and objects that carry infor-
mation, such as hard disks. In this flow, an organization must avoid to have critical
data stolen. To reduce this risk, organizations protect the access to files, or use
encryption. Paper documents or electronics are closed in drawers and offices are
locked.

They also adopt policies, such as a “clean desk” policy, campaign for best
practices, such as “always encrypt emails”. However, a critical question remains
whether a specific combination of policies and physical/digital controls is effec-
tive against certain threats. This question does not have an easy answer, but we
advocate that it can be explored by the use of formal methods.

Formal methods have been successfully applied in the analysis of security
protocols over the last decades (e.g., see [1]). Recently they have also been pro-
posed to model Socio-Technical Physical Systems (STPS) [2] —systems whose
operation is defined by the interactions between people, technology, and physical
elements— of which ICT organizations are examples. This new research (e.g., see
[3–7]) suggests that formal methods can be used in the analysis of the security
of STPS and of the processes that define an STPS’s daily work flow.

The idea of reasoning about a system’s security in combination with policies
has also been explored (see [8–12] and Sect. 3). Policies on accesses, on work
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flows, and on security properties have been formalized and verified over models
of STPS. One work in particular, that of Hartel et al. [12] considers policies and
requirements at the same time. Hartel et al. study four specific systems and
model check, in SPIN, whether the systems composed with the policies comply
with a given requirement.

Here, we aim to provide a formal framework to reason about the efficacy of a
policy and of security control mechanisms against an adversary model. Let S be
a model of an STPS, π be a model of a policy, p be a desirable security property,
and I be an adversary model. The high-level formalization of the proposition
whether S constrained by policy π is effective in realizing p can be expressed
symbolically as follows:

S|π |=I p. (1)

Appropriately instantiated, S|π represents the (executions of) S where π is
enforced, while |=I p is the relation “satisfies requirement p in the presence of
adversary I”. In absence of π, proposition (1) collapses into S |=I p, the classical
proposition about whether S satisfies p in the presence of I. We develop a
precise formal framework to express the abstract question in (1) and we develop
an algorithm to compute S|π.

Background. There are a few formal languages upon which we can build. Here,
we leverage on the one presented in [6]. There, the authors model an STPS’s
state as a labelled multi-graph. Nodes model offices, objects, or employees of the
STPS. Edges represent either doors between offices or a (direct) location relation
between nodes saying that “node x is contained/located in node y”.

Figure 1 exemplifies an STPS’s state and the graph representing it. Here
(please, ignore the labels between ‘[ ]’ for now) b is the building and l1 − l4 are
its four rooms. Node l0 models the outside. Node a1, in room l1, and node a2,
in room l2, are employees. a2 holds o2, supposedly a letter. Node o1, a printer,
is in room l3. I, the intruder, waits outside. Edges d04, d12, d13 and d24 are the
doors between the four rooms.

Fig. 1. (a) A simplified STPS’s state; (b) its formal representation.
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Fig. 2. How the STPS in Fig. 1 changes because of agent a2’s moving to l4.

Nodes and edges of the graph can be labelled to supply additional information.
A label on an edge “door” expresses whether the door is locked and what key can
lock/unlock it. A label on a node “object” tells us whether the object is movable
(m), destroyable (d), or a container (c); in this case, another label tells us whether
it is locked and what key can lock/unlock it. A label on a node “agent” tells us
what is the “protocol” that defines the agent’s behaviour. Agents can, for instance,
move, pick up an object, put an object down, or destroy an object and its contents,
or exchange an object with another agent. Figure 2 (left side) shows some of the
labels (not all of them, though). The door d24 is unlocked; o2 is a container and is
movable; agent a2 is about to move to room l4.

Formally, an STPS’s state is a tuple 〈Phy ,Obj ,Act , E〉. Phy is composed
of nodes representing the physical spaces (L ∪ {b}), door identifiers (D), and
two door labelling functions (lockedD, and keyD); Obj is the nodes that model
objects (O) and three object labelling functions (attrO, lockO, and keyO); Act
is the nodes that model the employees and the intruder (A ∪ {I}), and a set of
labelling functions that return the protocols/behaviour of each employee (bvA).
Item E are the edges of the graph: the edges that model the doors (L × L),
labelled with door identifiers, and the edges that model the location of employees
((A ∪ {I}) × L) and of objects (O × (L ∪ A ∪ {I} ∪ O)).

The authors of [6] also describe how an STPS’s state changes because of
what the employees or the intruder do. The effect of an action is defined by a
(conditional) graph-rewriting rule. A rule rewrites the formal graph representing
the STPS’s state by changing it as one intuitively expects: an agent’s moving
from one room to another, if the rooms are connected by an open door, has the
effect of changing the agent’s location to the new “room”. For reasons of space
we will not include the rewriting rules in this paper, but Fig. 2 gives a rough
idea of how the effect of the “move to” rule looks like. Note the transition (i.e.,
arrow ⇒) is labelled with the action that caused the transition.

Other rules define what the intruder I can do. He can be malicious, (e.g.,
pick locks, steal or slip objects from people’s pockets) but he cannot break the
laws of physics: he cannot traverse walls, nor perform teleportation. I does not
follow a protocol. All his actions are enabled, if they are possible.
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Starting from a specific initial configuration, by applying the rules that are
enabled one can generate executions of the STPS. The semantical model of these
executions for a specific STPS is a labelled transition system S = 〈S,Γ, S0,⇒〉
where S is the set of all possible STPS’s states, Γ is the set of action labels, S0 ∈ S
is the initial state, and ⇒ ⊆ (S × Γ × S) is the labelled transition relation
between states. It is the smallest relation that satisfies the graph rewriting rules.
It must be stressed that S includes also the transitions due to the intruder.

In [6], S is a probabilistic and weighted labelled transition system. The
agent’s behaviour is probabilistic i.e., specified by a stochastic process algebra.
Actions have a weight, i.e., cost. Costs are important in defining the intruder’s
strategy. For instance he can pick a lock, which may cost more (e.g., in time)
than opening the door with the key. He can also decide to use the key, but then
the key must be retrieved (e.g., stolen) first. All the details are in [6] but the
intuitive description we have just given here is sufficient for understanding what
we are proposing next.

2 Modelling Data and Data Flow

We extend [6] to be able to model data and the flow of data. For this purpose,
we introduce digital objects and digital object carriers. A digital object models
a piece of data, such as a file. Data cannot exist by their own: they need to
be stored/carried. Digital object carriers are carrying data objects. Hard disks,
USB pens, a book, (the mind of) an agent are data carriers. Formally, Obj is
extended with a new labelling function typeO: returns p if the object is physical,
d if the object is digital.

Digital objects can be cloned/copied, but they need a carrier that holds them
afterwards. Formally, this means to extend Act , the language of an employee’s
or the Intruder’s actions with two additional actions: Clone(o, o′) and Clone(o).
The former creates an identical copy of o into carrier o′; the latter “clones” o in the
mind of who executes the action. All the other actions onto objects (e.g., exchange
them, destroy them, et cetera) remain applicable with the only constraint that dig-
ital objects need a carrier. Due to space limitations, we will not describe the new
rules in this paper. The resulting formal semantics is a probabilistic and weighted
labelled transition systems extending the one given in [6].

In the setting of this paper, we do not need probabilities or costs. We see
little utility in policies that apply with certain probability/cost. Instead, in rela-
tion to (1), questioning whether a policy is effective to reduce the risk of a
specific attack within a certain probability/cost is a legitimate question. In this
paper we do not develop this probabilistic framework. We leave it for future
work. Instead, we interpret (1) as the question whether a certain policy, when
enforced, is effective in removing attacks (resp., ensuring security) altogether.
A non-probabilistic non-weighted labelled transition system (which we still write
S in the remainder of the paper) can be obtained from the model in [6] by sub-
stituting any probabilistic choice in all bvA with a non-deterministic choice and
by ignoring costs.
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3 Security Policies and Security Requirements

According to the Cambridge Dictionary, a security policy is “a plan, or a doc-
ument, specifying what to do in particular situations, and often how and when
to do it”. Policies, when enforced or followed, should have the effect of nudging
specific practices to become compliant with its provisions.

Policies can be modelled in several ways (e.g., as behavioural patterns [12], as
first-order logic assertions [10], as markov decision processes [11]); here we model
a policy focusing on the constraints it has on the executions of an STPS. We
consider a security policy as a statement on what may never happen in the STPS
execution. We abstract from the reasons why an STPS’s executions appear to be
constrained, disregarding how a policy is actually enforced (e.g., access control
systems, people having accepted the policy for ethical reasons or for fear of
punishment): we assume it is enforced somehow. A security requirement instead
is a desirable security property that we would like to be valid despite specific
threats coming from an adversary. We model a security requirement as a classic
security property [1].

We express policies and requirements using the language of security state-
ments. It corresponds to Linear Temporal Logic (LTL) with ‘Next’ and ‘Until’
operators.

Definition 1. A security statement is any expression in the language L(ϕ),
so defined:

ϕ : :=true | ϕSP | ϕ ∧ ϕ
′ | ¬ϕ | © ϕ | ϕ U ϕ

′

ϕSP : :=ϕSP ∧ ϕ
′
SP | ¬ϕSP | d ∈ conn(l, l

′
) | o ∈ keyD(d) |(x, a) ∈ HistD(d) | (x, a) ∈ HistO(o) |

z ∈ |typeO(o) | y ∈ attrO(o) | locO(o) = l | o ∈ keyO(o
′
) | o ∈ contO(o

′
) | locA(a) = l | o ∈ contA(a)

Operators ∧ and ¬ give the full power of propositional logic; operators © and U
are sufficient to derive the other LTL operators, ♦ and �. Note that, L(ϕSP ) is
the sub-language of propositional logic expressions over the STPS’s state. In the
remainder, we indicate with ϕ any formula in L(ϕ), and with ϕSP any formula
in L(ϕSP ).

The informal meaning of a state predicate in ϕSP can be guessed from the
name of the statement. So, for instance, o ∈ keyD(d) evaluates to true if and
only if o is the key that closes/opens door d. The formal semantics is defined in
term of [[·]]S , the function returning the truth value of a security statement in a
given state S ∈ S:

[[d ∈ conn(l, l′)]]S iff (l, d, l′) ∈ C

[[(x, a) ∈ HistD(o)]]S iff (x, a) ∈ HistD(o)

[[(x, a) ∈ HistO(o)]]S iff (x, a) ∈ HistO(o)

[[y ∈ attrO(o)]]S iff y ∈ attrO(o)

[[z ∈ typeO(o)]]S iff z ∈ typeO(o)

[[locO(o) = l]]S iff (l, o) ∈ (E)+

[[locA(a) = l]]S iff (l, a) ∈ E

[[o ∈ keyD(d)]]S iff o = keyD(d)

[[o ∈ keyO(o′)]]S iff o = keyO(o′)

[[o ∈ contO(o′)]]S iff (o′, o) ∈ (E)+

[[o ∈ contA(a)]]S iff (a, o) ∈ (E)+

HistD and HistO keep the history of who has locked/encrypted a door or an
object.



Analysing the Efficacy of Security Policies 175

The semantics of ϕ is the standard semantics of an LTL formula (e.g.,
see [13]). Assuming that Words(ϕ) = {ρ ∈ (2ϕSP )ω : ρ |=I ϕ} is the set of
all ω-words (i.e., possible infinite words) over the alphabet 2ϕSP that satisfy ϕ,
the satisfaction relation |=I ⊆ (2ϕSP )ω ×L(ϕ) is the smallest relation satisfying
the following properties:

– ρ |=I true

– ρ |=I ϕSP iff [[ϕSP ]]ρ[0]
– ρ |=I ¬ϕ iff ρ �|=I ϕ
– ρ |=I ϕ1 ∧ϕ2 iff ρ |=I ϕ1 and ρ |=I ϕ2

– ρ |= ©ϕ iff ρ[1 . . .] |=I ϕ
– ρ |=I ϕ1U ϕ2 iff ∃j ≥ 0 : ρ[j · · · ] |=I ϕ2

and ρ[i · · · ] |=I ϕ1, ∀0 ≤ i < j

Here, for ρ = S0S1 . . . ∈ (2ϕSP )ω, ρ[j · · · ] = SjSj+1 . . . is the suffix of ρ starting
in the (j + 1)st symbol Sj . Given S = 〈S,Γ, S0,⇒〉, we say that a security
statement ϕ is valid in S , written S |=I ϕ, when Traces(S ) ⊆ Words(ϕ),
where Traces(S ) is the set of all prefix closed traces of S [13].

From the language of security statements we derive the language of security
policies and of security requirements. Since we decided to model the effect of
policies as constraints on the execution of an STPS, a security policy is a safety
property or a negation of a liveness property. We may consider to extend this
language in the future. Instead, we do not impose any restrictions on the language
of security requirements.

Definition 2. A policy is a security statement of the form �¬ϕSP or
¬�(ϕSP → ♦ϕSP ).

Definition 3. A requirement is a security statement.

Example 1. The policy “o should be kept in l” is written as (�¬(∃a∈A.{o} ⊆
contA(a) ∧ locA(a) �= l); the requirement “no one brings o outside” as:
¬(♦locO(o) = l0).

4 Policy Constrained Semantics

According to Definition 2, when a policy is enforced, no execution of the system is
expected to violate the policy. This should hold only when we consider executions
that do not include actions of the intruder, because an intruder is, by definition,
someone who is freed from playing by the rules. Such reflections lead to the
following definitions:

Definition 4 (Honest Trace). An honest trace is a trace whose underlying
sequence of states, S0 · . . . · Si · Si+1 · . . . is such that (Si, Si+1) ∈⇒, for all i ≥ 0
and where the label of ⇒ is not the intruder’s ID.

We indicate the set of all honest traces of S as TracesH(S ). Here, H is the
set of honest agents. Another relevant set of traces for the framework is the set
of traces that satisfies a given security statement.
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Algorithm 1. Reduce (S , π) → S|π
Case 1: π = �¬ϕSP :
Forall Si ∈ S : ∃ρ ∈ TracesH(S ),
ρ = S0 · · · Si · · · and ρ[i · · · ] |= ϕSP Do
S′ := S\{S};

Forall (S′, Si) ∈⇒ Do ⇒′:= (⇒ \{(S′, S)}) ∪ {(S′, S′)};
Forall (Si, S′) ∈⇒ Do ⇒′:= (⇒ \{(S′, Si)})

Case 2: π = ¬�ϕSP → ♦ϕSP :
Forall Si, Sj ∈ S : ∃ρ ∈ TracesH(S )
ρ = S0 · · · Si · · · Sj · · · and ρ[i · · · ] |= π} Do

⇒′:= (⇒ \{(Sj−1, Sj)}) ∪ {(Sj−1, Sj−1)}.

Definition 5 (Trace satisfying ϕ). A trace satisfying ϕ is a trace in
Traces(S )∩Words(ϕ). An honest trace satisfying ϕ is a trace in TracesH(S )∩
Words(ϕ).

We denote the set of all traces satisfying ϕ by traces(S , ϕ), and the set of
all honest traces satisfying a ϕ by tracesH(S , ϕ).

We are now interested to distinguishing, in an execution without the intruder,
the requirements whose validity can be changed if the policy is enforced from
those whose validity is unchanged by it.

Definition 6 (Requirements/Policies Affectedness). Let ϕ be a require-
ment, π a policy, and S be a model of execution of an STPS. We say that
ϕ is affected by π in S , and we write it ϕ ↼ π, when tracesH(S , ϕ) ⊆
tracesH(S ,¬π) �= ∅.
Property 1. Relation ↼ is reflexive and commutative.

In a system where a policy is parsimoniously enforced, no requirement must
change their validity, except those that are affected by the enforcement of π.

Definition 7. Let S = 〈S, S0,⇒〉 be an STPS, π a policy. The system S
constrained by π, written S|π, is a new S ′ = 〈S′, S0,⇒′〉 that satisfies the
following conditions:

1. If S �|=H π then S ′ |=H π;
2. For all p such that p �↼ π, if S |=H p then S ′ |=H p.

Definition 7 makes it clear that in a system where the policy is enforced the
policy holds, and that the validity of properties that are not affected by the
policy does not change. The use of the |=H notation in Definition 7 stresses that
the policy is enforced on the system’s execution without the interference of the
intruder. The intruder can still find its way into breaching security even in the
constrained system. Actually, the constrained system will be secure only when
Traces(S|π) ⊆ Words(p). This is eventually the meaning we intended to give to
the proposition in (1).

From an operational point of view we are interested to obtain S|π from S .
Algorithm 1, inputs a S = 〈S, S0,⇒〉, a π and returns a labelled transition
system for S|π. The new transitions are labelled with ε, the null action.
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Proposition 1 (Soundness). S ′ = Reduce(S , π) is a system constrained by π.

Proof. (sketch) S satisfies the two conditions in Definition 7. A valid, in S ,
requirement p that is not affected by π, will not change its validity due to the
operations (removing states, and adding loops) that Algorithm1 implements
onto S .

Proposition 2. Reduce(S , π) can be implemented with worst-case time com-
plexity O(|S|2 · check(π)). Here, check(π) is the complexity of checking π.

Proof. (sketch) Algorithm 1 is inefficient: the Foralls browse far more states than
necessary. A more efficient way is to search for the Ss with minimal index in a
trace satisfying Foralls’ conditions. Each Forall’s has at most O(|S|2) iterations.

5 Conclusion

To reduce the risk that sensitive data are leaked, an ICT organization should
protect its files and any item that may contain those files, such as hard disk,
books, and USB pens. This can be done by restricting the digital and the physical
access to data but also by implementing security policies meant to be enforced
on the employees daily job. The research we presented in this paper sets the
foundations for reasoning about an organization’s security when it enforces its
policies. We propose a formal approach: we represent the data flow as it is defined
by the daily operation of the employees of an organization in a formal language.
Policies are simple formulas that we use to restrict the possible evolution of the
system and based on which we check the validity of a security property in the
presence of an adversary.

Our theoretical approach focussed on clearly defining the relevant concepts
while postponing the design of efficient algorithms. We believe that it is possible
to reduce the complexity of our algorithm and to optimize the generation of
our STPS models. It is worth to mention that, even using our non-optimized
algorithm, we managed to run proof-of-concept scenarios by using the PRISM
model checker. For reasons of space we could not report on this experience in
the current paper. In the future, we will report on our practical experiences
in full detail. Another future research question concerns our policy language.
We kept our policy language simple to be able to focus on the main concepts
in our framework. We will study the expressiveness of our language and study
extensions needed to manage real policies. We will also consider the introduction
of probabilities and costs in our framework.
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Abstract. We present a formal approach for the analysis of attacks that
exploit SQLi to violate security properties of web applications. We give a
formal representation of web applications and databases, and show that
our formalization effectively exploits SQLi attacks. We implemented our
approach in a prototype tool called SQLfast and we show its efficiency
on four real-world case studies, including the discovery of an attack on
Joomla! that no other tool can find.

1 Introduction

Motivations. According to OWASP (the Open Web Applications Security Pro-
ject [27]), SQL injection (SQLi) is the most critical threat for the security of
web applications (web apps, for short), and MITRE lists improper SQLi neu-
tralization as the most dangerous programming error [6]. SQLi was first defined
in [14] but, also due to the increasing complexity of web apps, SQLis can still be
very difficult to detect, especially by manual penetration testing (pentesting).

A number of SQLi scanners have thus been developed to search for injection
points and payloads, most notably sqlmap [33], which allows human pentesters
to find SQLi vulnerabilities by testing the web app with different payloads, and
sqlninja [34], which focuses on SQL server databases. The combination of the two
provides the pentester with a powerful tool suite for SQLi detection. However,
neither sqlmap nor sqlninjia (nor other state-of-the-art vulnerability scanners)
are able to detect vulnerabilities linked to logical flaws of web apps [12]. This
means that even if a scanner can concretely discover a SQLi, it can’t link SQLi
to logical flaws that lead to the violation of a generic security property, e.g., the
secrecy of data accessible only bypassing an authentication phase via a SQLi.

Moreover, determining that a web app is vulnerable to SQLi (and which pay-
load to exploit) might not be enough for the app’s overall security. Consider, for
instance, a web app that relies on legacy code (when an update is not feasible,
e.g., because the legacy code is a core part of the system). If a SQLi is found, an
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investigation should be performed to understand when the SQLi can be exploited
and whether this compromises security. This investigation is carried out manu-
ally by the pentester in charge of identifying attack scenarios, thus potentially
leading to additional omissions, errors and oversights in the security analysis.

A number of formal approaches for the security analysis of web apps, based
on the Dolev-Yao (DY) intruder model [11], have been implemented recently,
e.g., [1,3,4,31,36]. However, the DY model is typically used to reason about
security protocols and the cryptographic operators they employ (e.g., for asym-
metric or symmetric cryptography, modular exponentiation or exclusive-or) but
abstracting away the contents of the payloads of the messages. As a consequence,
these approaches cannot properly identify or exploit new SQLi payloads since
reasoning about the contents of the messages is crucial to that end.

Contributions. In this paper, we present a formal approach for the analysis of
attacks that exploit SQLi to violate security properties of web apps. We define
how to formally represent web apps that interact with a database and how the
DY intruder model can be extended to deal with SQLi.

In order to show that our formalization can effectively be used to detect
security vulnerabilities linked to SQLi attacks, we have developed a prototype
tool called SQLfast (SQL Formal AnalysiS Tool) and we show its efficiency by
discussing four real-world case studies. Most notably, we use SQLfast to detect an
attack on Joomla! which, to the best of our knowledge, no state-of-the-art SQLi
scanner (e.g., sqlmap or sqlninja) can detect since they do not automatically link
different attacks in one attack trace (i.e., they do not find logical flaws linked to
SQLi attacks). Another key novel aspect of SQLfast is that it can detect complex
attacks in which a first SQLi attack provides data for a second subsequent attack.
We show that SQLfast allows us to exploit SQLi combining it with logical flaws
of web apps to report sophisticated attack traces in a few seconds and can also
deal with Second-Order SQLis, which are notoriously difficult to spot.

Note that we do not search for new SQLi payloads but rather we exploit
attacks related to SQLi. This allows us to analyze how an intruder can violate
a security property by exploiting one or more attacks related to a SQLi, e.g.,
credential bypass. Nevertheless, we also (automatically) test our attacks against
the web app under analysis and then we use state-of-the-art tools (i.e., sqlmap
and curl) to detect the actual payload of all the SQLis exploited.

Organization. In Sect. 2, we discuss a concrete example that shows why we
can’t stop at the identification of a SQLi. In Sect. 3, we give a categorization of
SQLi vulnerabilities, based on which, in Sect. 4, we provide our formalization.
In Sect. 5, we discuss SQLfast and its application real-world case studies. In
Sect. 6, we sum up and discuss related and future work. The extended version [10]
contains full details on our specifications and case studies, and a proof that
the formalization of the database correctly handles all the SQLis categorized in
Sect. 3.
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2 Why Can’t We Stop at the Identification of a SQLi?
The Case of Joomla!

The identification of a SQLi entry point is generally considered as a satisfactory
finish line when dealing with SQLi in web apps. So, one could ask: why not
simply stop there (and why bother reading the rest of this paper)? The answer
is that a SQLi can be a serious threat only if it can be exploited and only if it
can be used for carrying out an attack. A full understanding of how a potential
SQLi vulnerability can afflict the security of a web app is essential in order to
implement proper countermeasures. For instance, consider Joomla! [22], a PHP-
based Content Management System that allows users to create web apps through
a web interface. Joomla! supports different databases, e.g., MySQL [26] and
PostgreSQL [30], and a recent assessment [19] has shown that versions ranging
from 3.2 to 3.4.4 suffer from a SQLi vulnerability [7].

The execution of a state-of-the-art scanner such as sqlmap on Joomla! can
correctly find the vulnerability. However, sqlmap (or any other scanner for SQLi)
cannot tell how that SQLi can be usefully exploited in order to carry out a con-
crete attack. A general description of the consequences of a SQLi attack is given
in [8,28] but, whenever a SQLi entry point is found, the penetration tester has to
manually investigate the kind of damages that SQLi might cause to the web app.
The researchers who discovered the vulnerability of Joomla! [19] also described
how it could be exploited in a real attack: it would allow an intruder to perform
a session hijack and thus steal someone’s session but would not allow him to
create his own account or modify arbitrary data on the database. The explo-
ration of different attack scenarios has been entirely performed manually since
no automatic tool shows the outcome of the exploitation of a SQLi vulnerability
on a specific web app. But who guarantees that a post-SQLi attack can actually
be performed and that all possible attacks based on the SQLi have been taken
into account by the penetration tester?

This is why we can’t stop at the identification of a SQLi and why we can’t
address the post-SQLi attacks with a manual analysis. Our approach addresses
this by automating the identification of attacks that exploit a SQLi.

3 SQL Injections

Some general classifications based on the payloads of the SQLi (and the exploita-
tion scenarios) have been put forth, e.g., [15,27]. Based on these, we can divide
SQLi techniques into 6 different categories: (i) Boolean-Based, (ii) Time-Based,
(iii) Error-Based, (iv) UNION Query, (v) Second-Order and (vi) Stacked Queries.

Given that our formalization strictly depends on the attack that the intruder
wants to perform by using a particular type of SQLi, we now define the two
attacks that we have considered:1

1 Other possible attacks (e.g., by exploiting a Cross-Site Scripting (XSS) inside the
payload of some SQLi) are outside the scope of our approach for now, cf. Sect. 6.
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– Authentication bypass attack: the intruder bypasses an authentication check
that a web app performs by querying a database.

– Data extraction attack: the intruder obtains data from the database that he
should not be able to obtain.

Based on these attack definitions, we will now describe the main details of
each category, emphasizing those aspects that are relevant for our formalization.
The following table summarizes which attacks can be exploited by a SQLi tech-
nique on a specific type of SQL query. Three remarks: (1) since all state-of-the-art
DBMS are vulnerable to SQLi, we won’t distinguish between different dialects
of SQL and simply write “SQL query”; (2) AB abbreviates authentication bypass
and DE data extraction; (3) a scenario in which the intruder extracts information
in order to bypass an authentication is considered to be a data extraction attack.

BB TB EB UQ SO SQ

AB DE AB DE AB DE AB DE AB DE AB DE

SELECT � � � � � � � � �
UPDATE � � � � � � � � �
DELETE � �
INSERT � � � �

In a Boolean-Based SQLi (BB), an intruder inserts into an HTTP para-
meter, which is used by a web app to write a SQL query, one or more valid SQL
statements that make the WHERE clause of the SQL query evaluate to true or false.
By interacting with the web app and comparing the responses, the intruder can
understand whether or not the injection was successful. In this way, an intruder
can perform both authentication bypass and data extraction attacks.

In an authentication bypass attack, the intruder injects a statement that
changes the truth value of a WHERE clause in a SQL SELECT query, creating a
tautology. If a web app performs an authentication check querying a database,
this attack will then trick the database into replying in an affirmative way even
when no (or wrong) authentication details have been presented by the intruder.

In a data extraction attack, the intruder obtains data from the database. The
term “extraction” is used in standard terminology but it can be misleading. With
a BB, an intruder exploits the “Boolean behavior” of a web app inferring whether
the original query returned some tuples or not. When the intruder understands
how the web app behaves when some tuples or no tuples are returned, he can start
the “extraction”. In this case, the intruder asks whether a certain information
is stored in the database and, based on the behavior of the web app, he knows
if the information is actually inside the database.

A Time-Based SQLi (TB) is quite similar to BB: the only difference is
that TB does not need the web app to have a Boolean behavior. The intruder
appends a timing function to the validity value of a Boolean clause. Thus, after
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the submission of the query by the web app, the database waits for a predefined
amount of time for a tuple as a response to the query; the intruder can then
infer whether the Boolean value of the query was true or false observing a delay
in the response. In real case scenarios, a BB is preferable as it is faster than a
TB. Timing is not part of our formalization (see Sect. 4), so the abstract attack
traces generated by our tool will not distinguish between BB and TB.

When error pages are exposed to the Internet, some error messages of the
database could be exposed, thus giving an intruder the possibility of exploiting
an Error-Based SQLi (EB). In this type of injection, the intruder tricks the
database into performing operations that result in an error and then he extracts
information from the error messages produced by the database. EB is generally
used to perform a data extraction attack by inducing the generation of an error
that contains some information stored in the database.

A UNION Query-Based SQLi (UQ) is a technique in which an intruder
injects a SQL UNION operator to join the original query with a malicious one.
The aim is to overwrite the values of the original query and thus, in order to
extract information, UQ requires the web app to print the result of the query
within the returned HTML page. This behavior allows the intruder to actually
extract information from the database by reading it within the web app itself.

Second-Order SQLi (SO) is an injection that has no direct effect when
submitted but that is exploited in a second stage of the attack. In some cases, a
web app may correctly handle and store a SQL statement whose value depends on
the user input. Afterwards, another part of the web app that doesn’t implement
a control against SQLi might use the previously stored SQL statement to execute
a different query and thus expose the web app to a SQLi. Automated scanners
generally fail to detect this type of SQLi (e.g., [33,34]) and may need to be
manually instructed to check for evidence that an injection has been attempted.

With a Stacked Queries SQLi (SQ), an intruder can execute an arbi-
trary query different from the original one. The semicolon character; enables
the intruder to concatenate a different SQL query to the original one. By doing
so, the intruder can perform data extraction attacks as well as execute whatever
operation is allowed by the database. With a SQ, an intruder can perform any
of the SQLis described above. Thus, whenever we refer to all the SQLis in our
categorization, we exclude SQ as it is already covered by the other ones.

Prevention techniques. Avoiding SQLi attacks is theoretically quite straight-
forward. In fact, developers can use sanitization functions or prepared state-
ments. Roughly speaking, the general idea is to not evaluate the injected string
as a SQL command.

A sanitization function takes the input provided by the user and removes
(i.e., escapes) all the special characters that could be used to perform a SQLi.
Sanitization functions are not the best option when dealing with SQLi because
they might not be properly implemented or do not consider some cases.

Prepared statements are the best option for preventing SQLis. They are
mainly used to execute the same query repeatedly maintaining efficiency. How-
ever, due to their inner execution principle (if properly implemented) they are
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immune to SQLi attacks. The execution of a prepared statement consists mainly
in two steps: preparation and execution. In the preparation step, the query is
evaluated and compiled, waiting for the parameters for the instantiation. During
the execution step, the parameters are submitted to the prepared statement and
handled as data and thus they cannot be interpreted as SQL commands.

4 A Formalization of SQLi

We will now describe how we formally represent a web app that interacts with
a database using insecure SQL queries and/or a sanitized (i.e., secure) query. In
Sect. 4.1, we propose an extension of the DY model that can deal with SQLi.2

We formalize the database in Sect. 4.2, the web app in Sect. 4.3, and the goals in
Sect. 4.4. For brevity and readability, we omit many details and only give pseudo-
code that should be quite intuitive. See [10] for full details and the ASLan++
code of our formalizations and case studies, along with a brief introduction to
ASLan++.

4.1 The DY Web Intruder

We extend the standard DY intruder model [11] for security protocol analysis.
Suppose that we want to search for an authentication bypass attack via BB
(Sect. 3), in which the intruder injects a statement that changes the truth value of
a WHERE clause in a SQL SELECT query, creating a tautology. To formalize this, we
need to extend the DY intruder by giving him the ability to send a concatenation
of Boolean formulas made of conjunctions and disjunctions. This characteristic
highlights an important difference between the classical DY intruder and the
enhanced version we are proposing: our web intruder works with abstract payloads
rather than messages. Due to technical details (e.g., implementation constraints
and non-termination problems), implementing such a modification is impractical.
We have thus allowed the intruder to concatenate the exact payload, or true,
and defined a Horn clause to model that whenever a formula has or true injected
by the intruder, it evaluates to true.

We can rephrase the same reasoning in the case of BB for data extraction
attacks, in which the intruder tricks the web app into asking to the database if a
particular information is present; for example, instead of or.true, the intruder
adds or username=admin. The DBMS will reply in an affirmative way only if
there is a tuple in the database with admin as username. To allow the intruder
to perform all the SQLis described in Sect. 3, we thus extend the DY intruder
with one constant sqli that represents any SQLi payload (e.g., or.true).

2 This formal representation is intended to work with tools that perform symbolic
analysis. We don’t formalize the honest client behavior and we assume the DY
intruder to be the only agent able to communicate with the web app. The DY
intruder will eventually perform honest interactions if needed to achieve a particular
configuration of the system. See [10] for more details.
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4.2 The Database

We give a general formalization of a database that can be used in any speci-
fication to exploit SQLi when searching for security flaws in a web app. Our
formalization aims to be both compact, to avoid state-space explosion prob-
lems, and general enough not to be tailored to a given technology (e.g., MySQL
or PostgreSQL). Hence, we don’t represent the database content, the database
structure, the SQL syntax nor access policies specified by the DBMS. Rather, we
formalize messages sent and received and queries, and a database can be seen as
a network node that interacts only with the web app through a secure channel.3

Definition 1. Messages consist of variables V , constants c (sqli, etc.), con-
catenation M.M , function application f(M) of uninterpreted function symbols
f to messages M (e.g., tuple(M)), and encryption {M}M of messages with
public, private or symmetric keys that are themselves messages. We define that
M1 is a submessage of M2 as is standard (e.g., M1 is a submessage of M1.M3,
of f(M1) and of {M1}M4) and, abusing notation, write M1 ∈ M2.

Definition 2. A query is valid (respectively, not valid) when, evaluated by a
database, it returns one or more (respectively, zero) tuples.

We formalize the validity of SQL queries by means of the Horn clause:
inDB(M.sqli) =⇒ true, where, in order to represent a SQLi attack, the pred-
icate inDB() holds for a message (which represents a SQL query) whenever it is
of the form M .sqli. This states that the intruder has injected a payload sqli
into the query parameters (expressed as a variable) M .

Incoming messages. We consider, as incoming messages, only SQL queries via
raw SQL and via sanitized queries. The parameters of queries are represented by
a generic variable SQLquery. In case of a raw SQL query, they are wrapped by an
uninterpreted function query(); if a sanitized query has been implemented then
we use another uninterpreted function sanitizedQuery(). These two uninter-
preted functions allow the modeler to “switch on/off” the possibility of a SQLi
in some point of the app.

Database responses. The tuple generated by the database as a response to a
raw SQL query is represented by an uninterpreted function tuple() over a
message representing a SQL query. Given that we do not model the content of
the database, this function represents any (and all) database data.

Whenever the database receives a SQL query query(SQLquery) from the web
app, the uninterpreted function tuple(SQLquery) is sent back to the web app to
express that a tuple, as a response to the query, has been found. This response is
returned only if inDB() holds; in all other cases, a constant no tuple is returned
to represent that no tuples are returned in the responses of the database.
3 Nothing prevents us from relaxing this assumption but this would give the DY

intruder the possibility of performing attacks (e.g., man-in-the-middle attacks) that
are rare in web app scenarios.
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If the database receives a sanitized query, no injection is possible. Hence,
the database does not return any useful information to the web app; instead,
a constant no tuple is returned. Since the intruder cannot perform a SQLi in
presence of a sanitized query, we also assume that a sanitized query can be
executed only with legitimate parameters, i.e., as a function of tuple() (this is
because we are interested in modeling only SQLi scenarios).

The pseudo-code representing the database behavior is given in Listing 1.1,
where, here and in the following, we write DB for the database. DB is a network
node and we assume it to be always actively listening for incoming messages. It is
defined by two main, mutually exclusive, branches of an if-elseif statement: one
guard is in line 1 in which DB is waiting (expressed in Alice-and-Bob notation) for
a sanitized query and the other in line 3 in which it is waiting for a raw SQL query.
If a sanitized query is received, then there is no SQLi. Given that we only consider
dishonest interactions, the data sent back to the intruder will not increase his
knowledge. In other words, no SQLis are permitted and any permitted query
will just give to the intruder the possibility of continuing his execution with the
web app but won’t add any extra information to his knowledge.

Listing 1.1. Pseudo-code of a DBMS.
1 if(WebApp -> DB: sanitizedQuery(SQLquery )){
2 if(SQLquery == tuple (*)) DB -> WebApp: no_tuple;
3 }elseif(WebApp -> DB: query(SQLquery )){
4 if(inDB(SQLquery )) DB -> WebApp: tuple(SQLquery );
5 if(!( inDB(SQLquery ))) DB -> WebApp: no_tuple ;}

One may argue that a valid query should indeed add extra information to
the intruder knowledge. However, we do not model the content of the database
and any information received by the intruder as a response to a sanitized query
is included in the action that the web app performs after this database response.
Thus, in our formalization, the query in SQLquery is not valid and then the
no tuple constant is sent back in line 2. We also add a constraint in line 2
that any query received (SQLquery) must be of the form tuple(*), i.e., as a
function of the content of the database where * acts as a wildcard character
that matches any possible parameter. This is because, in the case of a sanitized
query, the intruder cannot perform a SQLi and we exclude the case in which the
DY intruder sends a random query just to continue the execution with the web
app. Instead, he has to either know a tuple of the database or data as functions
of a tuple of the database. In the case the intruder knows tuple(Query), he will
just receive no tuple, i.e., correctly no data has been leaked to the intruder.

The second branch of the initial if-elseif statement (line 3) handles raw
queries. If a raw query is submitted, then there are two cases: the raw query
is not valid (line 5, where ! formalizes the negation) and then, as in the previous
case, no tuple is sent back (line 5); the raw query is valid (line 4) and a tuple is
sent back (line 4). Given that all these queries are sent from the intruder, we can
assume they have a malicious intent. One may argue that, in a real case scenario,
the database is not actually returning a tuple but, given that an intruder could
repeatedly send a SQLi exploiting that injection point, it is fair to assume that
the database is sending all the tuples it contains, i.e., tuple(SQLquery).
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4.3 The Web App

As for the database, the web app is a node of the network that can send and
receive messages. The web app communicates with a client or with the database
(it can, potentially, also communicate with other apps but we do not consider
that explicitly here). We assume only one database is present because adding
other databases would not add any further useful information for finding attacks
based on SQLi. The proof is straightforward. Since we do not consider database
contents and structures, if we wanted to have two database models, then we
would have two exact copies of the formalization given in Sect. 4.2. Since we have
assumed that there exists a long-lasting secure relation between the database and
the web app, no man-in-the-middle attacks are considered. Therefore, any attack
found that involves the communication with one of the two databases could be
found by considering the other database only.

A specification of a web app can be seen as a behavioral description of the
web app itself (along with its interaction with the database). A modeler can
define this specification from the design phase documentation of the engineering
process of the web app. A model can also be created in a black box way by just
looking at the HTTP messages exchanged from a client and the web app and
guessing the communication with the database.

We now consider the main aspects that allow for the modeling of a web app.

Sending and receiving messages. A web app can communicate with a client
and the database. We abstract away as many details as possible of the web
pages and thus any incoming message will only contain: (i) parameters of forms
expressed as variables, e.g., Client -> WebApp: Username.Password, and (ii)
the web page itself expressed as a constant, e.g., WebApp -> Client: dashboard
where dashboard represents a web page. Note that, in any response of the web
app, if the content of the response is linked to a response of the database,
i.e., tuple(Query) (where the query is either SELECT, UPDATE or DELETE), then
tuple(Query) must be included in the response. Otherwise, we would end up
representing a scenario in which no content of the tuple received by the database
is included in, or linked to, the web page and thus no SQLi would be present.

Queries. The web app creates either a sanitized query or a raw query. Then,
the web app wraps the variables representing the query parameters with either
sanitizedQuery() or query(), both uninterpreted functions, and afterwards
sends the SQL query to the database. Note that we only need to represent the
parameters of a SQL query since we do not distinguish between different queries
in the database formalization. If the query does not depend on parameters sent
from a client, the intruder cannot exploit it to perform a SQLi. The SQL query
used to query the database is represented as a constant, resulting in the database
always replying with no tuple (as inDB(), in this case, is never valid).

If statements. We use them mainly to decide, based on which kind of message
has been received, what the web app has to reply. For example, if the database
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replies with a tuple tuple(Query), then the web app might return a specific
page along with tuple(Query) or might return a different page.

Assignments. A constant or a message can be assigned to a variable: Variable
:= constant|message. Assignments are, e.g., useful to save incoming messages.

4.4 Goals

Finally, we define the security properties we want the model to satisfy. As we
discussed in Sect. 3, we consider two main attacks: authentication bypass and
data extraction. We give the formalization in Listing 1.2, where iknowledge is
a predicate that represents the knowledge of the intruder. By using the LTL
“globally” operator [], we can specify an authentication check by stating that
the intruder should not have access to a specific page (dashboard in Listing 1.2),
whereas data extraction is represented by specifying that the intruder should not
increase his knowledge with data from the database (i.e., as function of tuple()).

Listing 1.2. Authentication bypass and data extraction goals of the BB example.
[](!( iknowledge(dashboard ))); %authentication bypass
[](!( iknowledge(tuple (*)))); %data extraction

5 SQLfast, Case Studies and Results

To show that our formalization can be used effectively to detect security flaws
linked to SQLi attacks, we have developed SQLfast, a prototype SQL Formal
AnalysiS Tool [32]. In [32] we also provide a friendly web-based user interface
that helps the modeler in creating the web-app model. SQLfast takes in input a
specification written in ASLan++, the modeling language of the AVANTSSAR
Platform [3], and then calls CL-AtSe (one of the platform’s model checkers) and
generates an Abstract Attack Trace (AAT) as a Message Sequence Chart (MSC)
if an attack was found. SQLfast automatically detects which type of SQLi was
exploited and, in an interactive way, generates the curl or sqlmap commands to
concretize the attack.

As a concrete proof-of-concept, we have applied SQLfast to (i) WebGoat [29],
(ii) Damn Vulnerable Web Application (DVWA) [13], (iii) Joomla! 3.4.4, and (iv)
Yet Another Vulnerable Web Application (YAVWA), an ad-hoc testing environ-
ment that we have developed and that also includes a SO SQLi example. (Recall
that full details are given in [10].) The case studies provided by WebGoat and
DVWA might sound limited but capture all possible scenarios with respect to
SQLi attack combinations considered in this paper — recall that our formaliza-
tion for SQLi attacks does not find SQLi payloads, but focuses on vulnerabilities
based on SQLi. We tested SQLfast in order to show all the combinations that
could be represented by considering SQLi for (1) authentication bypass, (2) data
extraction and (3) data extraction with reuse of the extracted information. Our
case studies are quite heterogenous, so it should not be difficult to map other
case studies to one of these scenarios we have considered.



Formal Analysis of Vulnerabilities of Web Applications 189

We have implemented the case studies in ASLan++ to be able to apply
the model checkers of the AVANTSSAR Platform (in particular, CL-AtSe), but
other model checkers implementing the Dolev-Yao intruder model could be used
as well, provided that their input language is expressive enough. For the sake of
brevity, we discuss here only the case studies Joomla!, YAVWA and SO, which
show how our formalization can find attacks linked to the logic of a web app that
is vulnerable to SQLi attacks. The type of attacks that SQLfast can detect and
concretize cannot be detected by state-of-the-art tools for SQLi such as sqlmap.

5.1 Case Study: Authentication Bypass via Data Extraction

We now discuss two scenarios in which our approach detects attacks that state-
of-the-art tools, such as sqlmap, are not able to detect and exploit. In the first
scenario, the intruder exploits a recent SQLi vulnerability found (by manual
inspection only) in Joomla! [7]. The second scenario (YAVWA) is a variant of
the first and shows a concatenation of different attacks.

Joomla!. A recent assessment has shown that the Content History module
of Joomla! suffers from a SQLi vulnerability that allows a remote (non-
authenticated) user to execute arbitrary SQL commands [7]. The pseudo-code
in Listing 1.3 represents the following behavior: a remote user visits the Content
History component (line 1). The web app queries the database with the user
supplied data (2). If some tuples are generated (3), the web app sends to the
client the history page viewHistory along with the tuple() function (4). The
web app then has two possible ways of authenticating the user (5–9): by using
credentials or cookies. If username and password are provided (5), the web app
applies a non-invertible hash function hash() to the password, and queries the
database to verify the credentials (6).4 If the credentials are correct, the adminis-
tration panel is sent to the user (7). In case of a cookie session, the user provides
a cookie that the web app checks querying the database (8). If the cookie is
valid, the administration panel is sent back to the user (9).

Listing 1.3. Pseudo-code representing the Joomla! scenario.
1 User -> WebApp: com_contenthistory.history.Listselect;
2 WebApp ->DB: query(com_contenthistory.history.Listselect);
3 if(DB -> WebApp: tuple(SQLquery)){
4 WebApp -> User: viewHistory.tuple(SQLquery); }
5 if(User -> WebApp: Username.Password){
6 WebApp -> DB: sanitizedQuery(Username.hash(Password));
7 if(DB -> WebApp: no_tuple){ WebApp -> User: adminPanel; }}
8 if(User -> WebApp: Cookie){ WebApp -> DB: sanitizedQuery(Cookie);
9 if(DB -> WebApp: no_tuple){ WebApp -> User: adminPanel; }}

As goal, we check if there exists an execution in which the intruder can access
the administration panel represented by the constant adminPanel.

Listing 1.4. Authentication bypass for the Joomla! scenario.
[](!( iknowledge(adminPanel)));

4 The web app applies a hash function to the password before checking whether cre-
dentials are correct because Joomla! stores the passwords hashed into the database.
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SQLfast generates the AAT in Listing 1.5, which is an authentication bypass
attack where the intruder hijacks a user session by using a cookie instead of
login credentials. In fact, the web app applies a hash function to the password
before verifying the credentials submitted by the user. The hash function would
not allow an intruder to blindly submit a password extracted from the database,
the only possibility is using a valid cookie value.5 The intruder performs a data
extraction and retrieves the information to access the administration panel (1–4),
and uses it to hijack a user session by submitting a valid cookie value (5–8).

Listing 1.5. Abstract attack trace that extracts data with a SQLi in order to bypass
the authentication of the Joomla! scenario.
1 i -> WebApp : com_contenthistory.history.sqli
2 WebApp -> DB : query(com_contenthistory.history.sqli)
3 DB -> WebApp : tuple(com_contenthistory.history.sqli)
4 WebApp -> i : viewHistory.tuple(com_contenthistory.history.sqli)
5 i ->WebApp : cookie.tuple( com_contenthistory.history.sqli)
6 WebApp -> DB : sanitizedQuery(tuple(com_contenthistory.history.sqli))
7 DB -> WebApp : no_tuple
8 WebApp -> i : adminPanel

YAVWA. We have designed a variant of Joomla! to show that a SQLi can be
exploited to compromise a part of a web app that does not directly depend on
databases. YAVWA provides an HTTP form login and a login by HTTP basic
authentication [18] configured with the .htaccess [2] file. The credentials used
for the HTTP basic authentication, which are stored in the .htpasswd file, are
the same as the ones employed by the users to login into the web app (i.e., the
same as the ones stored in the database). The intruder’s goal is to access the area
protected by the HTTP basic authentication login. Obviously, he cannot perform
a SQLi to bypass HTTP basic authentication since the login procedure doesn’t
use SQL. Bypassing the login page, without knowing the correct credentials,
doesn’t allow the intruder to gain access to the secure folder.

We have defined this scenario in the pseudo-code in Listing 1.6. The client
sends his personal credentials (Username.Password) to the web app (1). The web
app creates a query that it sends to the database (2) for verifying the submitted
credentials. If tuples are generated from the database (3), a dashboard page is
returned to the client along with the function tuple() (4), otherwise, the web
app redirects the user to the login page (5). At this point, the web app waits to
receive correct credentials that will allow the client to access the secure folder
secureFolder (6). Given that the credentials are the same as the ones stored in
the database, and the database content is represented with the function tuple(),
we can also represent credentials here with the function tuple().6

5 We do not consider the possibility of brute forcing the hashed password, in accor-
dance with the perfect cryptography assumption of the DY model.

6 We recall from Sect. 4.2 that tuple() represents an abstraction of any data that can
be extracted from the database. This means that whenever a web app requires any
data in the domain of the database, we can write them as a function of tuple().
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Listing 1.6. Pseudo-code representing the YAVWA scenario.
1 User -> WebApp: Username.Password;
2 WebApp -> DB: query(Username.Password);
3 if(DB -> WebApp: tuple(SQLquery)){
4 WebApp -> User: dashboard.tuple(SQLquery);
5 }elseif(DB -> WebApp: no_tuple){ WebApp -> User: login; }
6 if(User -> WebApp: tuple (*)){ WebApp -> User: secureFolder; }

As goal, we check if the intruder can reach secureFolder. SQLfast generates
the AAT given in Listing 1.7, in which the intruder successfully retrieves infor-
mation from the database and uses such information to access a protected folder.
The intruder performs a data extraction attack using SQLi (1–4), which allows
him to retrieve information stored in the database, and then (5–6) submits the
extracted data and accesses the restricted folder secureFolder.

Listing 1.7. Abstract attack trace of the YAVWA case study.
1 User -> WebApp: Username (4).sqli
2 WebApp -> DB : query(Username (4).sqli)
3 DB -> WebApp : tuple(Username (4).sqli)
4 WebApp -> i : dashboard.tuple(Username (4).sqli)
5 i -> WebApp : tuple(Username (4).sqli)
6 WebApp -> i : secureFolder

5.2 Case Study: Second-Order SQLi (SO)

We now show that our formalization is flexible enough to represent SOs, which
are notoriously very difficult to detect and exploit.

This scenario is part of YAVWA and implements a web app that allows users
to register a new account. In the registration process, the web app executes
an (INSERT) SQL query that stores the user’s credentials into a database. The
intruder can create an account submitting malicious credentials that don’t result
in a SQLi but will trigger an injection later on in the web app. After the regis-
tration phase, the user submits a request for accessing an internal page. The web
app performs another SQL query using the same parameters previously used in
the registration process (i.e., the registration credentials). At this point, a page
is showed together with the injection and the intruder can exploit a SO.

We have formalized this scenario in Listing 1.8: a client sends a registration
request along with his personal credentials (Username and Password) to the web
app (1). The web app sends a query containing the client’s credentials to the
database (2). The web app checks if it receives a response from the database
containing the data resulting from the execution of the query tuple(SQLquery)
submitted by the web app (3). The web app sends back to the client the page
registered (4). Here, the web app does not forward tuple() because the reg-
istration query is an INSERT (see Sect. 4.2). The client asks for a page (5), which
makes the web app use previously submitted values of Username and Password
to execute a new SQL query (6). Here is where the SO takes place; the variables
embedded in the query in (6) will trigger a SO. The database executes the query
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and sends back the results to the web app (7). Finally (8), the web app sends
(by using a SELECT query) to the client the requested page and the tuple().7

Listing 1.8. Pseudo-code representing a web app vulnerable to a SO attack.
1 User -> WebApp: registrationRequest.Username.Password;
2 WebApp -> DB: query(Username.Password);
3 if(DB -> WebApp: tuple(SQLquery)){
4 WebApp -> User: registered;
5 User -> WebApp: requestPage;
6 WebApp -> DB: query(Username.Password);
7 DB -> WebApp: tuple(SQLquery);
8 WebApp -> User: page.tuple(SQLquery); }

As goal, we ask if the intruder can interact with the web app until he obtains
data from the database, i.e., with a data extraction attack, as in Listing 1.2. SQL-
fast generates the AAT in Listing 1.9, in which the intruder performs the registra-
tion process (1–4) by registering malicious credentials Username(4) and sqli.
At the end of the registration process (5), the intruder asks for requestPage
that makes the web app send to the database a SQL query with the same para-
meters the intruder used in the registration (6–7). In (8), the intruder receives
the requested page and the result of the execution of the injected SQL query
performing a SO.

Listing 1.9. Abstract attack trace for the SO case study.
1 User -> WebApp: registrationRequest.Username (4).sqli
2 WebApp -> DB : query(Username (4).sqli)
3 DB -> WebApp : tuple(Username (4).sqli)
4 WebApp -> i : registered
5 i -> WebApp : requestPage
6 WebApp -> DB : query(Username (4).sqli)
7 DB -> WebApp : tuple(Username (4).sqli)
8 WebApp -> i : page.tuple(Username (4).sqli)

5.3 Concretization Phase

We executed SQLfast on all our case studies using a standard laptop (Intel i7
with 8G RAM). The execution time of the model-checking phase of SQLfast
ranges from 35 to 45 ms. The overall process (from translation to concretization)
takes a few seconds. In all the cases, we generated AATs violating the security
property we defined over the model (authentication bypass or data extraction
attack). Once the AAT has been generated, SQLfast interactively asks the user
to provide information such as the URL of the web app. Finally, if we are con-
cretizing a SQLi that exploits an authentication bypass attack a curl command
is showed, whereas sqlmap is used for data extraction SQLi. By executing the
traces generated by SQLfast, we exploited all the AATs over the real web app.

6 Conclusions, Related Work, and Future Work

We have presented a formal approach for the representation of SQLi and attacks
that exploit SQLi in order to violate security properties of web apps. We have
7 Recall that we don’t represent SQL syntax in our models, so we don’t explicitly

represent the type of the SQL according to the modeling guidelines in Sect. 4.3.
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formally defined web apps that interact with a database (that properly replies
to queries containing SQLi) and an extended DY intruder able to deal with
authentication bypass and data extraction attacks related to SQLi. We have
shown the efficiency of our prototype tool SQLfast on four real-world case studies
(see also [10]). SQLfast handles SO and detects multi-stage attacks and logical
flaws that, to the best of our knowledge, no other tool can handle together, and
hardly ever even individually, including the discovery of an attack in Joomla!.

Many works have proposed new SQLi techniques and payloads (e.g., [9,21,
35]) or formal approaches to detect SQLi (e.g., [16,23–25]). However, to the best
of our knowledge, ours is the first attempt to search for vulnerabilities based on
SQLi rather than to detect SQLi. There are, however, a number of works that
are closely related to ours and that are thus worth discussing.

SPaCiTE is a model-based security testing tool for web apps that relies on
mutation testing [4]. SPaCiTE starts from a secure ASLan++ specification of
a web app and automatically introduces flaws by mutating the specification.
The strength of this approach is the concretization phase. Starting from an
AAT, generated from the mutated specification using a model-checking phase,
SPaCiTE concretizes and tests the attack trace on the real web app. The major
differences with respect to our approach reside in how we model web apps and in
particular those aspects that strictly characterize SQLi aspects. The main goal
of the approach in [4] is to find SQLi entry points and concretize them, our main
goal is to consider SQLi aspects that can be exploited to attack a web app.

Another formal approach that uses ASLan++ and the DY intruder model for
the security analysis of web apps is [31]. In this work, the authors model a web
app searching for CSRF and they do not consider databases or extensions to the
DY model. However, the idea and the representation of web apps is close to ours
and we envision some potentially useful interaction between the two approaches.

In [5], the authors describe the “Chained Attack” approach, which considers
multiple attacks to compromise a web app. The idea is close to ours, but: (i) they
consider a new kind of web intruder, whereas we stick with the DY intruder; (ii)
we analyzed the most common SQLi techniques and proposed a formalization of
a vulnerable database, they only consider the behavior of the web app.

In [1], the authors present a model-based method for the security verification
of web apps. They propose a methodology for modeling web apps and model 5
case studies in Alloy [20]. Even if the idea is similar to our approach, they have
defined three different intruder models that should find web attacks, whereas
we have used (and extended) the standard DY one. Their AATs are difficult to
interpret because no MSCs are given but state configurations. They have also
considered a number of HTTP details that we have instead abstracted away in
favor of an easier modeling phase. In contrast, we display AAT as MSCs and we
proposed a concretization phase to obtain the concrete payloads of SQLi.

As future work, we plan to extend the database formalization in order to
consider SQLi that would modify the database state leading to more complex
SQLi exploitations. We also plan to analyze other web app vulnerabilities such as
stored/reflected XSS and broken session management, and investigate synergies
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between our approach and the one of [31] on CSRF. We will extend our approach
to detect (i) complex concatenations of vulnerabilities (similar to, and more
complex than, [17]) that lead to concatenations of attacks, and (ii) articulated
paths to vulnerabilities that would hardly ever be discovered by manual analysis.
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Abstract. JavaScript execution and UI rendering are typically single-
threaded; thus, the execution of some scripts can block the display of
requested content to the browser screen. Web Workers is an API that
enables web applications to spawn background workers in parallel to the
main page. Despite the usefulness of concurrency, users are unaware of
worker execution, intent, and impact on system resources. We show that
workers can be used to abuse system resources by implementing a unique
denial-of-service attack and resource depletion attack. We also show that
workers can be used to perform stealthy computation and create covert
channels. We discuss potential mitigations and implement a preliminary
solution to increase user awareness of worker execution.

Keywords: Web security · Stealthy computation · Covert channel

1 Introduction

Adobe Flash is an example third-party plugin that extends functionality like
video streaming to web applications. HTML5 eliminates this necessity by pro-
viding new APIs that improve core functionality of the web browser (herein
browser). Web Workers is one such API specified by the World Wide Web Con-
sortium (W3C) [11] and Web Hypertext Application Technology Working Group
(WHATWG) [10]. Web Workers enable web applications to spawn background
workers (i.e., threads) in parallel to the main page. Workers are intended for
long-lived and computationally intensive operations that would otherwise block
the UI.

Encryption, motion detection, and simulated annealing are use cases for
workers. Any application that has to have its execution broken up to avoid
being prematurely terminated by the browser is a candidate for workers.

Despite the usefulness of concurrency in JavaScript, permissive execution of
workers enables stealthy computation. Workers are instantiated unbeknownst to
the user of a web application and can perform any number of computations. An
attacker can cause a user to perform work for her by exploiting a cross-site script-
ing (XSS) vulnerability on a legitimate website or by placing an advertisement
that hides the work in a worker.

c© Springer International Publishing AG 2016
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We demonstrate the feasibility of stealthy computation using workers by
implementing a distributed password cracker that uses the Web Workers API.
We can compute 500,000 MD5 hashes per second using the Chrome 50.0.2661.94
browser on a Mid-2013 MacBook Air. We also implement a denial-of-service
(DoS) attack that is unique to how OS X manages virtual memory. We define
wasteful stealthy computation that exploits garbage collection mechanisms in
Chrome, Firefox 46.0.1, and Safari 9.1. The execution of this computation results
in high CPU and memory utilization that eventually fills the swap partition and
causes a deadlock.

We target the Android browser and Android Chrome browser to perform
wasteful stealthy computation on a mobile platform. We find exploiting garbage
collection results in a resource depletion attack against the browsers. In fact,
55 % of CPU load, 45 % of memory usage, and an approximate 4◦F increase in
temperature was the direct result of five minutes of stealthy computation. We
did not attempt this on the mobile Safari browser for iOS but believe that it is
also susceptible because its operating system counterpart is. The mobile Safari
browser is not susceptible to the DoS attack because it manages virtual memory
differently than OS X.

A natural criticism to stealthy computation using workers is that a worker is
unnecessary to perform attacker-controlled computation such as the DoS attack
mentioned above. While the UI thread can carry out this type of computation, the
thread becomes unresponsive and is later terminated by the browser. JavaScript
Window Timers like setTimeOut avoid blocking the UI thread by executing code
at specified time intervals. However, we find that our stealthy computation still
results in unresponsiveness and later termination when using setTimeOut.

Lampson, when defining the confinement problem, first introduces covert
channels as information leakage between processes that facilitate communica-
tion [14]. Covert channels are difficult to identify because other processes often
obscure them. For example, CPU cycles can be used as a covert channel and it
is affected by every single process on a system. Further, application firewalls and
anti-virus software typically block non-whitelisted ports and anomalous behav-
ior, not profile software system resource utilization.

We describe and implement a covert channel that is not unique to workers
but is easily implemented using them. Our covert channel uses CPU and memory
throttling to transmit bits to an unauthorized application. We find that CPU
throttling is noisier than memory throttling because other processes can obscure
our covertly transmitted bits (i.e., a random peak can corrupt bits or semantic
structures such as a preamble). We throttle memory by exploiting garbage col-
lection to create a peak and then terminating the web worker to force garbage
collection.

This covert channel enables an attacker to transmit data from a website to an
application on the user’s system. This application may be untrusted or malicious.
The attacker can send command-and-control instructions, binary updates, and
sensitive data about the user’s browsing without detection as browsers typically
use a range of system resources depending on viewed content.
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We scanned 7000 websites from Alexa’s top sites to determine the preva-
lence of worker use. We found that 1.2 % of them use workers to perform some
computation. Websites such as yahoo.com, usbank.com, and mediafire.com use
workers for various reasons. For example, usbank.com uses a worker defined in
foresee-worker.js to compress session event logs.

In this paper, we are concerned with using the Web Workers API to create
workers that enable stealthy computation and covert channels. We demonstrate
the feasibility of these by implementing our own distributed password cracker
using workers, a DoS attack against OS X, a resource depletion attack against
Android, and a covert channel using memory throttling. We provide the neces-
sary background for JavaScript code execution and Web Workers, discuss related
work focused on HTML5 vulnerabilities, and we give the first mitigation strategy
for the misuse of workers.

2 Background

Browsers typically have one thread that JavaScript and the UI share. Therefore,
UI updates are blocked while the JavaScript interpreter executes code and vice
versa. A shared task queue enables asynchronous execution of JavaScript and UI
updates, allowing either to execute when the thread is available. Asynchronous
execution does not solve the problem of an arbitrary script taking unusually
long. The browser attempts to terminate any script that takes longer than some
threshold regardless of its purpose or importance. The user is aware of this when
the UI freezes. Not much later, the browser presents a status (i.e., terminate or
continue) or crash message.

The browser’s approach to ending long-running scripts is undesirable because
it provides no context per the scripts execution. The user is unaware of what
the script is meant to do and how long it has been running. Web application
developers approach this issue by leveraging asynchronous execution and divid-
ing their scripts into logical chunks that execute on some period. This method
does not benefit from parallel execution where a computation is uninterrupted
until it finishes.

HTML5 addresses these limitations with the Web Workers API. This API
enables web applications to spawn background workers in parallel to the main
page. Workers are unable to access the Dynamic Object Model (DOM) or the
callers (i.e., parent object) variables and functions. Workers are instantiated as
one of two types: shared or dedicated.

Shared workers can be accessed by multiple web applications but dedicated
workers cannot. Web applications instantiate both shared and dedicated workers
by providing a script object to the Worker constructor. The script object is either
an externally loaded file or defined inline as a string description of the worker.

The string description is provided as input to the blob constructor, a file-like
object, and is referenced by an output URL handle. This URL handle is provided
to the Worker constructor. Listing 1.1 is an example inline instantiation. We note
that inline instantiation is important to our threat model because attackers that
inject malicious scripts must be able to inject a worker.

https://www.yahoo.com
https://www.usbank.com
https://www.mediafire.com
https://www.usbank.com
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<script id="mw" type="javascript/worker">

self.onmessage = function(event) {

self.postMessage ({’msg’: ’hello.’ ,});

}

</script >

<script language="javascript">

var blob = new Blob([ document.querySelector(’#mw’).

textContext ]);

var m_worker = new Worker(window.URL.createObjectURL(

blob));

</script >

Listing 1.1. Instantiate worker using blob.

Workers support communication with each other and their parent object via
message passing. The onMessage method listens for messages and upon receiving
one it will call the postMessage method to send a message. Workers continue
to listen for messages until the user navigates away from the web application,
or the parent object calls the terminate method on the worker. Terminating a
web worker causes garbage collection on all allocated memory.

3 Threat Model

We use the definition of a web attacker and gadget attacker by Akhawe et al. [4]
to define an attacker that maliciously misuses workers. A web attacker operates
a malicious web application but has no visibility into the network beyond the
requests directed to her application. A gadget attacker can inject content into
otherwise legitimate web applications.

A web attacker that misuses workers hosts a web application with a mecha-
nism for generating traffic (e.g., misleading domain name or social engineering).
Every time a user visits the web application, stealthy computation is performed
via a worker or workers. A gadget attacker that misuses workers exploits web
vulnerabilities such as cross-site scripting to inject her workers. She may also
purchase a web advertisement and bundle her workers in the ad. A user that
visits a legitimate site will now perform some stealthy computation.

A web attacker is considered an insider threat; for example, a web applica-
tion administrator. A gadget attacker is an outside threat. She is simply a web
application user. We consider both attackers to be unsophisticated as neither
has visibility or control of the network. Also, both attackers rely on generally
accessible tools such as a laptop, internet access, and at most a web server.

The goals of both a web attacker and gadget attacker that misuse workers
include: performing stealthy computation, mounting a DoS or resource depletion
attack, and establishing a covert channel with an untrusted or malicious appli-
cation. While we do not describe how to install such an application, we consider
all typical malware delivery methods (e.g., flash drives, e-mail, etc.).
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4 Web Worker Primitives

While creating stealthy computation is as simple as writing function x, a waste-
ful computation needs to exploit garbage collection mechanisms for multiple
browsers. Covert channels also require a mechanism for throttling a system’s
CPU and Memory. We introduce three primitives to achieve wasteful stealthy
computation: infinite loop sequences, CPU throttling, and memory throttling.

var cpu_work = function () {

var scratch = [];

// Fill the ArrayBuffer with random values.

for(var j = 0; j < 1024; j++) {

scratch.push(Math.random ());

}

var firstArr = new Uint8Array(scratch);

var secondArr = new Uint8Array(scratch);

// ArrayBuffer concatenation.

var concatBuf = new Uint8Array(firstArr.byteLength +

secondArr.byteLength);

concatBuf.set(new Uint8Array(firstArr), 0);

concatBuf.set(new Uint8Array(secondArr), firstArr.length

);

}

Listing 1.2. Browser CPU throttling.

Infinite Loop Sequences. An infinite loop is a sequence of instructions which loops
endlessly because the boolean condition never changes (e.g., it always evaluates
true). If an infinite loop is executed by the JavaScript interpreter, the browser
UI will freeze due to blocking on the shared thread. However, blocking does not
occur if this loop is executed in a worker.

We use an infinite loop such as while(true){} to perform a wasteful stealthy
computation. This type of computation enables CPU and memory throttling.
Again, the execution of this loop is undetected by the user because it does not
block the UI thread.

CPU Throttling. Executing an empty infinite loop alone will throttle a modern
CPU. We achieve throttling by looping on intensive operations such as recursive
function calls and large data manipulation to quickly achieve maximum CPU
utilization. Listing 1.2 implements a data manipulation loop that randomly fills
two 1024-byte arrays and then concatenates them.

Memory Throttling. Throttling memory is browser specific as it exploits corner-
cases not yet handled by the browser’s garbage collection. We note that the
browser does, in fact, do garbage collection correctly; however, the process is
approximate as deciding whether memory can be freed is undecidable. We use
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this knowledge to our advantage to discover browser-specific memory leaks and
use them to throttle system memory.

In Listing 1.3 we use a technique outlined by Glasser [9] to demonstrate a
memory leak in Firefox. This technique relies on JavaScript closures. Specifically,
both unused and bucket are both defined inside of RD ATTACK FIREFOX SAFARI
scope, and if both functions access the variable leak it’s imperative that both
get the same object. So leak is never garbage collected.

In our experimentation with these primitives, we crashed Firefox and Chrome
when throttling CPU and memory. We mitigate this by using the worker method
terminate(). This method helps us avoid crashing the browser and completes
our throttling primitives by exposing a mechanism for quickly freeing system
resources.

var bucket = null;

var RD_ATTACK_FIREFOX_SAFARI = function () {

var leak = bucket;

var unused = function () {

if (leak) {

var hole_in_bucket = 1;

}

};

bucket = {

longStr: new Array (10000000).join(Math.random ()),

someMethod: function () {

var hole_in_bucket = 2;

}

};

// Placeholder for doing some repetitive operation.

cpu_work ();

};

Listing 1.3. Firefox memory throttling.

5 Stealthy Computation

We demonstrate the feasibility of stealthy computation using workers by imple-
menting a distributed password cracker that uses the Web Workers API. We
implement the main HTML page to define a target MD5 password hash, a
worker instantiation, and an event listener to receive the result of password
cracking (i.e., an MD5 collision was found).

The worker instantiation is on input md5cracker.js. This worker script
defines the MD5 hashing algorithm, a dictionary download method, and the
event listeners start and stop.

The start listener waits to receive the onMessage start string. When it
receives the string, it downloads an array of passwords using the method
importScripts(). This method synchronously imports a script into the worker’s
scope. We use it to import an array of passwords because we want the worker
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Fig. 1. OS X DoS attack.

to be self-contained. Specifically, if an attacker should inject a worker or upload
an advertisement with a worker, she can not rely on the calling parent object to
pass in any data such as an array of passwords.

After downloading the array, the worker selects a random index into the array
and begins to hash each password and compares it to the target hash. If it finds
a collision, it returns the result to the parent object, or it could use a web socket
to send it elsewhere (e.g., the attacker’s server).

The stop listener simply kills the worker once it is no longer useful.
We send 1 million passwords to the worker using importScripts which is

approximately 13 MB. This step adds approximately 50 % latency on the dataset
and takes 3 s to download. We can minimize this time by compressing the pass-
word array and partitioning it into multiple arrays. The password cracker per-
forms 500 K hashes per second on a Mid-2013 MacBook Air.

The average user visits a website for no longer than 15 s. Thus, one might
think that workers that perform stealthy computation do not have much time to
carry out any worthwhile computation. We find that media streaming sites such
as Youtube or SoundCloud are ideal web applications for stealthy computation
because users will remain on the page for a time much greater than 15 s. In
addition, this technique has been proven via projects that unintentionally do
stealthy computation using workers such as bitcoin mining [6]. We are the first,
that we know, to point out the scope (i.e., all modern browsers) and potential
of this type of computation.

5.1 Denial-of-Service

We use our loop and memory throttle primitives to mount a DoS attack against
any 64-bit OS X device. This DoS is unique to OS X because of how virtual
memory is handled. Specifically, OS X can grow its swap to the maximum avail-
able size of the backing store – the portion of hard disk responsible for storing
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virtual memory pages. On 32-bit systems the backing store is limited to 4 giga-
bytes, whereas 64-bit OS X systems can use up to 18 exabytes. Therefore, if we
exploit garbage collection for an extended period, OS X will continually write
out memory pages until deadlock. The period required for deadlock depends on
the amount of memory leaked and the available space on disk.

In one test on a Mid-2013 MacBook Air with 50 GB free, 10 MB was leaked
each loop iteration and deadlock occurred after 15 min. We can adjust the mem-
ory throttle primitive to allocate more memory each iteration and speed up
deadlock.

This attack is successfully executed on Firefox and Safari only (specifically,
versions Firefox 46.0.1 and Safari 9.1 (11601.5.17.1)). In Firefox, deadlock is
always achieved since the upper-bound on paged memory is the full 18 exabytes.
Deadlock is only achieved in Safari if the user has less than 32 GB available on
disk. Otherwise, the browser kills the process.

We note that running the attack in a worker results in no UI indication; the
user is unaware of the DoS attack. This is especially poignant in Firefox and
Chrome, where running the attack without a worker results in an ‘Unresponsive
Script’ notification. In Safari, no indication is given regardless of the payload’s
delivery (via UI thread or web worker). We therefore find that Safari and Fire-
fox are susceptible to this attack, with Firefox’s viability being dependent on
workers.

The steadily growing swap in Fig. 1 depicts our exploitation of garbage col-
lection in Firefox and Safari. In the upper-left we have a normal profile of the
browser’s swap and CPU loads. The low-CPU section corresponds to no browser
interaction on a static page. In the upper right and central figures, the scale for
swap usage is now 10 GB. In the upper-right, swap is filled until deadlock occurs
around 24 GB (the max available on the test system). In the central figure, swap
is filled until it hits the 32 GB threshold, at which point Safari kills the process.
In both cases, when deadlock occurs, OS X needs to be hard rebooted in order to
recover. Fortunately, disk space is recovered and the swap returns to its original
size.

5.2 Resource Depletion

The mobile Chrome browser also supports the Web Workers API. Figure 2
depicts user memory usage as it steadily increases from the stealthy compu-
tation. The over usage of memory results in I/O waiting toward the end of our
experiment. Stealthy computation can exacerbate resource depletion as it uses
system resources to perform wasteful work. Figure 3 illustrates resource depletion
in terms of its effects on the battery. When the attack is initiated, battery tem-
perature immediately spikes more than 8◦ F (in orange). Furthermore, projected
battery lifetime drops significantly.
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Fig. 2. Android Chrome resource depletion attack.

Fig. 3. Android Chrome resource depletion attack. (Color figure online)

6 Covert Channel

A covert channel is a communication mechanism for two processes that are not
supposed to be able or allowed to communicate. For example, Lampson first
described a covert channel based on a program’s effect on system resources [14].
The program attempting to transmit information can vary resources such as
I/O or memory, and the receiver will observe the change. While this is a noisy
channel, it can be corrected given a message encoding. Other covert channels
include cache-memory bus interactions [19], CPU scheduling [12], and network
packets and protocols [7,15]. These covert channels are timing channels because
they transmit information by modulating system resources. Storage channels
require access to storage locations whereby the transmission of information is
written and read from the filesystem.
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We use our CPU and memory throttling primitives to create a covert chan-
nel between a web application and some untrusted or malicious application on
the user’s system. The application is a desktop or mobile application that only
requires access to monitor system resources, which is an unprivileged operation.

Application firewalls and anti-virus software can block TCP connections to
non-whitelisted ports and anomalous behavior. Our covert channel circumvents
these technologies by not using a standard channel like TCP. Further, if the
covert channel could be identified, the result would be to block the entire browser.
An attacker can use this channel to deliver command-and-control instructions,
binary updates, and sensitive data about the user’s browsing.

The use of both CPU and memory throttling primitives and the unauthorized
application constitutes a timing channel. The web application, or injected script,
transmits information about the user’s browsing to the unauthorized application.
Like other timing-based covert channels, this is difficult to detect. However, the
covert channel cannot transmit information to other JavaScript scripts because
the browser isolates execution and disallows access to system resources with
sandboxing.

We first try CPU throttling to observe messages with a simple structure.
Specifically, we do not define a pre or postamble; rather, we define a period
in which to observe a bit based upon a CPU usage spike. We find that the
CPU channel is noisy, as seen in Fig. 4, and we can only achieve good accu-
racy by employing a high sampling rate. Unfortunately, we use PSUTIL to get
current CPU usage and it imposes a sampling rate with a minimum bound of
100 milliseconds. Also due to JavaScript runtime limitations, anything less than
one millisecond isn’t feasible.

We attempt to minimize CPU noise by increasing the length between CPU
spikes to 500 milliseconds and 1 s. We can obtain bits in the covert channel but
under ideal conditions. For example, if any other work is done in the browser it
significantly impacts our ability to discern relevant CPU spikes.

Next, we try our memory throttling primitive. Memory usage is a more deter-
ministic channel and thus less noisy than CPU usage. This makes it more viable
as a covert channel. We use our memory throttling primitive to fill a 40MB
array and then clear the memory with a terminate worker method call. We
can successfully send 1 bit per 5 s. We send the bits for “hello world” in Fig. 4.
Unlike the CPU covert channel, the memory covert channel is usable when the
user browses the internet or streams videos. This finding is a consequence of the
amount of memory used which far exceeds the memory needed to buffer a video
in our tests.

We note that our covert channel does not require a web worker. However,
when executing the covert channel in the UI thread, the browser is noticeably
less responsive due to the looping execution of the memory primitive. Moreover,
we find that, unlike workers, we do not have a mechanism to force garbage
collection and thus create a clean signal (i.e., discernible peaks in memory). We
also implement the covert channel with setTimeout and find it to be intractable.
Web workers are unaffected by these limitations. Our ability to force garbage
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Fig. 4. Memory covert channel sending hello world.

collection by terminating the worker allows for distinct, deterministic memory
peaks, as shown in Fig. 4.

We implement and test this covert channel on OS X 10.11.4 using the Fire-
fox 46.0.1 and Chrome 50.0.2661.94 browsers. The covert channel is inefficient
regarding channel bandwidth; we can send approximately 1 bit per 5 s. We can
speed this up by reducing the amount of memory throttled (e.g., less than 2 GB
peaks), by increasing the size of the leak to fill memory faster, and by using
multiple workers to concurrently fill swap.

7 Potential Mitigations

The challenge for the Web Workers API is how to inform users a worker is exe-
cuting, what the intent of the execution is, and how the execution is impacting
system resources. We assert that the most effective solution is to provide fine-
grained controls for workers similar to browser pop-up controls, and to restrict
the Web Workers API in the ECMAScript specification. We envision a system
administrator or user with an understanding of computer processes interacting
with a dialog box that lists the options: Do not allow any site to execute compu-
tationally intensive scripts, Inform me when any site executes computationally
intensive scripts (Recommended), Allow all sites to execute computationally
intensive scripts.

In the interim, we implement a browser extension to mitigate worker stealthy
computations partially. This mitigation is partial because the browser extension
only informs the user of when a worker has executed. If the worker is named
appropriately, the user is provided with some context of the workers intent, but
name mangling and poor coding practices will undo this. We call our browser
extension wAudit.
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wAudit is a Google Chrome content script. Content scripts use the Document
Object Model (DOM) to read and modify details of a visited web page. These
scripts, however, cannot use or modify variables or functions defined by the
visited web page. For wAudit to determine whether a worker exists it must be
able to the later.

We programatically inject wAudit as a script into visited web pages
using document.createElement. This function creates an HTML script ele-
ment that we append to the document object’s root element using the func-
tion document.documentElement.appendChild. The injected script recursively
searches all DOM objects and identifies object types of [object Worker].

The script alerts the user if it finds a worker or workers by drawing a banner
at the bottom of the browser window. This banner includes the name of the
worker and a UI button for terminating a selected worker. We implement the
terminate function by crafting the string "workers[i]+".terminate(). This
string contains the worker name and the method call to terminate. We call eval
on the string input to execute.

8 Related Work

Security researchers have found numerous vulnerabilities in the HTML5 APIs
that enable traditional web application attacks such as CSRF and clickjacking,
and HTML5-specific attacks such as cache poisoning and botnets.

Tian et al. [18] show that the HTML5 screen-sharing API can allow for cross-
site request forgery (CSRF) attacks, even if the target website utilizes CSRF
defenses such SSL and secure random tokens. The authors are also able to sniff
user account, autocomplete, and browsing history data because it can be viewed
directly on the user’s screen.

The HTML5 FullScreen API displays web content that fills the user’s entire
screen. Aboukhadijeh [3] describes how a malicious website can trick users into
clicking a link to a legitimate website (e.g., https://www.bankofamerica.com/),
and then display a malicious website in fullscreen.

Kuppan [13] overviews multiple HTML5-specific attacks. For example, an
attacker can use the HTML5 Drag and Drop API to trick users into setting target
form fields with attacker controlled data, a clickjacking attack. An attacker can
poison HTML5 caches designed to enable offline browsing with her own pages
that recover user supplied data. Specific to our work, workers enable HTML5
botnets. These botnets can mount distributed denial-of-service (DDoS) attacks
by sending cross-domain XMLHttpRequests.

Anibal Sacco et al. [16] use workers to optimize heap-spray attacks. By
employing multiple workers, the authors show that they can populate the tar-
get systems’ memory faster than conventional heap-spray attacks. They leverage
HTML5 canvas objects to obtain both full control over consecutive heap pages
and to provide byte-level access to pixel information. This gives four bytes per
pixel for use in spray contents – typically a use-after-free exploit, heap-based

https://www.bankofamerica.com/
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buffer overflow, or ROP chain. Also, due to the increasing prevalence of browser-
based devices with HTML5 support (smartphones, TVs, consoles, etc.) the use
of workers as an attack vector are largely platform and browser agnostic.

The Open Web Application Security Project (OWASP) blog [2] mentions the
use of workers to perform DoS attacks. The post gives a cursory treatment of
these vulnerabilities and does not provide any concrete details regarding imple-
mentation, measurement, or countermeasures.

In general, defenses for HTML5 API vulnerabilities include modifications to
the APIs. Son and Shmatikov [17] find that many web applications perform
origin checks incorrectly, if at all. The lack of stringent checking allows for cross-
site scripting (XSS) attacks, as well as data injection into local storage. The
authors propose accepting only messages from the origin of the page that loaded
a frame and the parent of that frame.

Akhawe et al. [5] find that HTML5 web applications need better privilege
separation. Rather than advocate for browser redesign or artificial limits on
partitions, the authors propose a way for HTML5 applications to create an
arbitrary number of unprivileged components. Each component executes with
its own temporary origin, isolated from the rest of the components.

9 Conclusions

We described how the Web Workers API can be used to create workers that
enable stealthy computation and covert channels. We demonstrated the feasi-
bility of stealthy computation by implementing a distributed password cracker
using workers, a DoS attack against OS X, and a resource depletion attack
against Android. We evaluated the feasibility of a covert channel using CPU
and memory throttling, and implemented the latter. Lastly, we gave the first
mitigation strategy for the misuse of workers.
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under award number CNS-1329737. The views and conclusions contained in this docu-
ment are those of the authors and should not be interpreted as necessarily representing
the official policies, either expressed or implied, of the sponsors.

Appendix: Health and Medical Systems

Health and medical systems are increasingly becoming networked. An industry
report by Parks Associates predicts that networked medical systems will exceed
14 million sales in 2018 [1]. These medical systems often employ commodity
operating systems such as Windows Embedded and can access and be accessed
over the internet.

We investigate the effects of running stealthy computation on Baxa Exac-
taMix. The Baxa ExactaMix is an embedded health and medical system that
mixes total parenteral nutrition and other multi-ingredient solutions. The com-
pounder runs Windows XP Embedded 2002 Service Pack 2 and has a 664 MHz
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VIA C5× 86 CPU with 496 MB of memory [8]. It also has Internet Explorer ver-
sion 6.0, which does not support HTML5 APIs. However, since the Baxa Exac-
taMix can access the internet, we can install a modern browser. We installed
Firefox 29 at the time of this experiment. We note that modern medical sys-
tems use more recent operating systems and thus support Web Workers without
installing a third-party browser.

In our experiment, we first start the Baxa ExactaMix and wait for it to run its
clinical software. We then begin measuring the CPU, memory, and swap usage
of the device to establish a baseline of activity. Next, we launch Firefox and
navigate to a website that we control. This website uses a worker to perform our
stealthy computation, specifically, the DoS attack we describe earlier in Sect. 5.
We continue our measurements for 3 min.

Results. We note a clear delineation between pre- and post-worker computation
in Fig. 5. Memory and swap usage are at 60 % and 20 %, respectively, when the
Baxa ExactaMix first starts. As this is a single-core device, the CPU utilization
remains high for the entire experiment because all processes are scheduled to
execute on the same core. We note linearly increasing memory usage and a
near-instantaneous spike in swap usage to 60 % when we visit our website that
performs the stealthy computation.

Fig. 5. Stealthy computation on Baxa ExactaMix.

Appendix: Linux Stealthy Computation

We experiment with stealthy computation on other operating systems. We
find that Chrome 48.0.2564.103 and Firefox 41.0.2 in Ubuntu 15.10 both allow
stealthy computation using web workers. Figure 6 illustrates CPU and memory
throttling in Chrome and Firefox. We can use these primitives to implement our
covert channel as described in Sect. 6.

We also test our DoS attack described in Sect. 5.1. This attack does not work
in Ubuntu, and Linux in general, because of how virtual memory and processes
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Fig. 6. Stealthy computation on Ubuntu 15.10 using Firefox and Chrome.

are managed. Specifically, virtual memory consists both of RAM and swap space.
Swap space is managed as a file or partition on the hard disk, and holds inactive
memory pages. We fill the swap to its maximum allowed space and note that
the system becomes unresponsive. However, modern Linux distributions will
terminate processes that consume resources, thus, we notice that free memory
decreases and then rapidly increases when the process is killed in Fig. 6.
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Abstract. Return-Oriented Programming (ROP) is the cornerstone of
today’s exploits. Yet, building ROP chains is predominantly a man-
ual task, enjoying limited tool support. Many of the available tools
contain bugs, are not tailored to the needs of exploit development in
the real world and do not offer practical support to analysts, which
is why they are seldom used for any tasks beyond gadget discovery.
We present PSHAPE (P ractical Support for Half-Automated P rogram
Exploitation), a tool which assists analysts in exploit development. It
discovers gadgets, chains gadgets together, and ensures that side effects
such as register dereferences do not crash the program. Furthermore,
we introduce the notion of gadget summaries, a compact representation
of the effects a gadget or a chain of gadgets has on memory and regis-
ters. These semantic summaries enable analysts to quickly determine the
usefulness of long, complex gadgets that use a lot of aliasing or involve
memory accesses. Case studies on nine real binaries representing 147 MiB
of code show PSHAPE’s usefulness: it automatically builds usable ROP
chains for nine out of eleven scenarios.

1 Introduction

Exploiting software vulnerabilities was simple and straightforward up until the
early 2000s, when mitigation techniques were scarce and seldom applied. In con-
trast, contemporary systems deploy a multitude of defense mechanisms such as
stack canaries [5], data execution prevention (DEP) [1], and address space layout
randomization (ASLR) [18], each of which presents an obstacle to exploitation
that needs to be bypassed. This has largely restricted exploit development to
manual effort with only basic tool support.

While the circumvention of mitigations has been studied in detail, there is
no comprehensive and automatic approach to bypassing all mitigations at once.
Different mitigations must be defeated using different attacks. For example, DEP
is bypassed using ROP or other code-reuse attacks [4,6,17,26,32]. Although
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DEP exploits may share some commonality amongst themselves, this does not
carry over to exploits targeting ASLR and stack canaries, which tend to be very
scenario-specific and often rely on another vulnerability in addition to the one
that allows a code pointer to be overwritten. In general, information leaks [2,7,
31] are the preferred way of learning a program’s memory layout and contents.
However, these often require either another vulnerability like a format string
vulnerability, or a scriptable environment under the analyst’s control such as
Javascript or Actionscript. More sophisticated attacks must operate with stricter
constraints or are limited to a specific use case [3,12,19,29,33].

Current exploits consist of three stages: (i) information collection to bypass
ASLR, (ii) ROP to bypass DEP, and (iii) executing the desired payload. The first
stage uses an information leak to discover all required information to get around
ASLR. The second stage uses ROP to initialize a memory area and remap it
as executable. Then, in the third stage, the exploit runs classic shellcode within
the newly mapped region. Exploits are split into three stages because (i) infor-
mation leaks are program specific and (ii) ROP programming is cumbersome,
complicated, and hard to control. Attackers prefer short ROP chains and inject
and execute binary code as soon as possible.

The plurality of mitigations complicates the automation of exploit genera-
tion, yet certain mundane tasks, particularly those in later stages of ROP chain
creation, are good targets for automation. These tasks include finding gadgets,
assessing gadgets’ usefulness, and combining gadgets to achieve useful behavior.
These tasks require the analyst to (i) decompose the code she wants to execute
into analogues of individual assembly instructions (e.g., write a certain value in
a register), then (ii) manually find individual gadgets whose semantics corre-
spond to all the individual assembly instructions, (iii) undo any unintended side
effects of executed gadgets, and (iv) ensure that preconditions, such as that a
register has to point to writeable memory, are satisfied. While many tools have
been proposed to automate these steps, every single one appears to show at least
some serious limitation when it comes to practical application scenarios.

This work presents and evaluates PSHAPE, a novel approach to automati-
cally perform steps (i) through (iv) through a semantic gadget search and gadget
summaries. We assume that the analyst wants to execute a function to make her
payload executable, following the idea of three-stage exploit development. First,
PSHAPE discovers all gadgets in a given binary and computes their pre- and
postconditions. Afterwards, PSHAPE selects the best suited gadgets for loading
or modifying values in registers used for passing arguments to functions. Second,
PSHAPE combines these gadgets into chains to create a chain of non-interfering
gadgets. Finally, in the third step, gadgets may be added to the chain to make
sure that the analyst can initialize all registers the chain dereferences, as its
execution may otherwise lead to a crash.

This work compares PSHAPE to twelve other tools. Since no other tool
offers gadget summaries, one can only compare the number of gadgets found
and how well the gadget chaining mechanisms work. For the latter, we use four
Linux and five Windows binaries, a total of 147 MiB of executable data. Then,
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we use the tools to create gadget chains that initialize between three and six
registers with analyst-controlled data, allowing the analyst to invoke functions
often used in ROP exploits, such as mprotect, mmap, or VirtualProtect. This
results in eleven scenarios, for which a gadget chain can be created.

To summarize, the work presents the following original contributions:

– gadget summaries, a compact view on a gadget’s semantics, greatly enhancing
the search for useful gadgets,

– a mechanism to automatically generate a gadget chain that initializes registers
used for passing parameters to execute an arbitrary method, making sure that
all preconditions are satisfied,

– PSHAPE, an open-source implementation of the approach, and an evalu-
ation of PSHAPE comparing it to other ROP tools. We show that it can
automatically produce chains for nine out of eleven scenarios (81 %), passing
up to six parameters to function calls, while other tools can create a chain
only in one scenario.

2 Motivating Example

In this section we show how PSHAPE helps building exploits for real-world
vulnerabilities. The example we use is CVE-2013-2028, a typical buffer overflow
vulnerability, which was found in the nginx web engine1.

For our running example, the goal is to inject arbitrary shellcode, make it
executable, and then overwrite the return address with the beginning of the
shellcode. To bypass DEP, mprotect needs to be called using a ROP chain to
make the shellcode page executable. This includes performing the following tasks:
(1) information leaking, to discover the address of mprotect and the stack frame
where the vulnerable buffer is allocated, (2) building the ROP payload for calling
mprotect, and (3) constructing the shell code.

Problem Definition. While all the tasks mentioned above are difficult, the second
task can become increasingly complex due to the huge number of gadgets and
constraints that need to be tracked along the gadget chain. Manually crafting
the payload is both time-consuming and tedious. To execute a system call or call
any other function, an attacker must (i) identify all the registers needed to be
initialized, e.g., setting up the syscall number in rax and preparing arguments
in other registers; (ii) for each register to be initialized, search all the relevant
gadgets in the binary using a gadget finding tool; (iii) analyze each gadget to find
out how it affects registers and memory; (iv) choose a subset of the identified
gadgets and chain them into a coherent exploit.

The task of finding appropriate gadgets for initializing a register in steps (ii)
and (iii) is complex and takes a very long time for the analyst. For example,
running ROPgadget [27] on nginx with a grep filter to identify gadgets for

1 http://www.vnsecurity.net/research/2013/05/21/analysis-of-nginx-cve-2013-2028.
html.

http://www.vnsecurity.net/research/2013/05/21/analysis-of-nginx-cve-2013-2028.html
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touching rax produces a list with thousands of candidates. Since ROP gadgets
often have unwanted side effects on other memory locations and/or registers
(e.g., writing to invalid addresses and causing a crash), only a few gadgets remain
viable. This makes the identification of usable gadgets a slow process, even for
an experienced analyst. Moreover, chaining gadgets in step (iv) is a repetitive
task whose complexity entails a lot of work. To execute a system call using
ROP, all arguments need to be passed beforehand, involving memory writes,
register initialization and typically cannot be done with only a single gadget.
Thus, finding gadgets for different operations is crucial for building the payload.
Since finding different gadgets requires iterating through the process of gathering
and filtering the viable gadgets, the more gadgets a ROP chain needs, the more
heavy manual workload is required.

Our Approach. The automation provided by PSHAPE can simplify the last
three steps significantly, saving the analyst from large volumes of repetitive work.
For steps (ii) and (iii), PSHAPE can assist in two ways. First, it reduces the
result set size of a gadget search by filtering out incompatible gadgets, such as
arithmetic gadgets. Second, it produces gadget summaries that speed up the
process of gadget analysis. PSHAPE greatly reduces the amount of manual
work required in step (iv) by chaining gadgets into an exploit completely auto-
matically, whilst also satisfying any preconditions of the constituent gadgets.

3 Automating Exploit Generation

PSHAPE assists an analyst during exploit development by offering two distinct
features which set it apart from existing tools that are publicly available, namely
it (i) provides summaries based on gadget semantics, making it straightforward
for an analyst to assess and select gadgets, and (ii) chains gadgets together
so that they load registers used to pass parameters to functions with analyst-
controlled data. This allows the invocation of arbitrary functions. PSHAPE also
ensures that any preconditions of a gadget (such as that a register has to point
to readable memory) are satisfied.

We first define what gadget summaries are and how they are computed in
Sect. 3.1 and then describe our approach to generate gadget chains in Sect. 3.2.

3.1 Gadget Summaries

Overview. ROP mitigations that (i) monitor program executions and detect
short code sequences [8,9,14,25] or (ii) require all return operations to return
to an instruction following a call instruction [25,39] force developers into using
long gadgets or even entire functions [29]. The increasing length of gadgets makes
manual analysis and reasoning increasingly difficult. We thus propose gadget
summaries, which reflect a gadget’s semantics in a compact specification that
allows analysts to understand a gadget’s behavior at a glance. Figure 1 shows
an example of a gadget summary, with the gadget on the left, and its summary
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Fig. 1. Despite this being a relatively short gadget in mshtml.dll which contains only
13 instructions (a), analyzing it manually is still a cumbersome and error-prone task.
PSHAPE automates this process by creating a simple summary (b). Note that by
default PSHAPE does not display memory write postconditions as they are seldom of
interest, and make the summary harder to read.

on the right. This gadget has two preconditions, because r9 and rsp are deref-
erenced. The actual effects on the program state are that rsp is increased by 8,
rax receives the value of 1 + [r9 + 4], and rcx is assigned the value of r9.

Method. First, gadgets are identified by finding return opcodes and backward
disassembly. These gadgets are then converted into an intermediate representa-
tion (IR) to simplify analysis. Our current prototype uses VEX IR, see Sect. 3.3.
Based on this IR, PSHAPE propagates all assignments, such as to temporary
or real registers, or memory locations forwards, resulting in a single statement
for each real register and memory location. This single statement (referred to as
postcondition) contains all operations on this register or location, i.e., an abstrac-
tion of the new value after a gadget has executed. Of course our analysis models
memory locations so it is able to correctly determine postconditions of gadgets
that use the stack to pass data. E.g., it detects that after a push rax ; pop
rbx ; ret gadget, rbx contains the value of rax. This analysis also allows us to
readily extract preconditions, such as register or memory dereferences. Post- and
preconditions combined result in a gadget summary, a compact representation of
the state of memory and registers after a gadget has executed along with a list
of dereferenced registers and offsets. Our syntax for pre- and postconditions is
similar to assembly syntax, and should be intuitive for binary analysts. The cur-
rent prototype excludes instructions such as jumps, loops, or bit manipulation
in the summaries to reduce the explosion in state and complexity, see Sect. 6.
We leave more involved search strategies for future work.

As memory is often accessed sequentially using offsets from a register, one can
compress summaries by merging such accesses into a range. For example, precon-
ditions [rax], [rax + 8], [rax + 0x10] and [rax + 0x20] can be compressed
to: [rax] <-> [rax + 0x20]. This denotes that all memory between [rax] and
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[rax + 0x20] has to be read/writeable. This heuristic sacrifices precision, as
not every single byte must be accessed, but makes summaries concise.

Gadget summaries aid the analyst in the process of understanding how a
gadget affects the state of registers and memory and are increasingly helpful,
the more instructions and aliasing a gadget contains. They also allow for a more
efficient gadget search, as expressing postconditions when searching for a gadget
is much more intuitive and flexible than specifying a certain instruction. Lastly,
gadget summaries are useful for selecting gadgets for automated gadget chain
generation, which we describe in the next section.

3.2 Gadget Chaining

Our approach aims at finding a valid and short gadget chain which loads analyst-
controlled data, i.e., relative to rsp, into registers. This allows invoking an arbi-
trary function with analyst-specified parameters. It consists of three steps, as
shown in Fig. 2. In the first step, the gadgets are extracted from the target
binary and summaries are computed. Then, based on the summaries, the list of
gadgets are filtered to keep only the ones related to initializing registers that are
used for passing function parameters. The second step combines these gadgets
into chains. For a chain, pre- and postconditions are computed, and if the chain
has the desired postconditions, the third step analyzes the validity of each chain
and adds gadgets to satisfy any preconditions.

Step 1: Gadget Extraction and Summary Computation. First, gadgets are
extracted from a given binary, delivering a list of gadgets for which we then
compute gadget summaries. The results are stored, making them available for
the analyst. Next, the gadgets are filtered to keep only the ones related to initial-
izing registers used for passing parameters to functions. On 64-bit Windows those
are rcx, rdx, r8, and r9, in that order. On 64-bit Linux the registers used for
parameter passing to functions are rdi, rsi, rdx, rcx, r8, and r9, in that order.
Additional parameters are passed on the stack in both cases. Our summaries
simplify filtering because gadgets that do not set the registers stated above to a
value that can be controlled by the analyst, are discarded automatically.

We divide these gadgets into two categories, load and mod. Gadgets in the
load category overwrite a given register, e.g., a pop instruction, while gadgets
in the mod category modify it, e.g., an add instruction. Gadgets in the load
category are favored, and within this category, gadgets that use rsp-relative
memory dereferences are preferred, as rsp needs to be under the control of the
analyst anyway when using ROP. For example, a pop rcx gadget is preferred
over a mov rcx, [rax] gadget. If no suitable load gadgets exist, mod gadgets
such as add rcx, rax are used. Based on this ranking and the number and
severity of pre-, and postconditions, the n most suitable gadgets for loading
each parameter register with arbitrary data are selected and passed to Step 2.
The step of assessing the severity of pre- and postconditions reuses some ideas
presented in GaLity [13].
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Step 2: Combining Gadgets into Chains. In the second step, the gadgets from
Step 1 are combined and all possible permutations of a chain are computed.
Remember that in Step 1, the n most suitable gadgets are selected for every
parameter register. E.g., invoking a function with four parameters results in n4×
4! possible chains. For each permutation of a chain, pre- and postconditions of the
whole chain are computed. If a chain’s postconditions are not the expected result,
i.e., the registers used to pass parameters do not contain analyst-controlled data,
it is discarded. Instead of exhausting the search space, we stop the exploration
after the first viable combination is found.

Step 3: Solving Pre-Conditions. It may happen that a chain generated in Step 2
contains preconditions such as register dereferences. The analyst needs to have
the possibility to initialize the dereferenced registers, so they contain the address
of a valid memory area. In Step 3, PSHAPE attempts to build a gadget chain
that allows loading analyst-controlled data into an arbitrary register. Once such
a gadget is found it is prepended to the incoming chain, forming a new chain. The
new chain is then checked for pre- and postconditions again to make sure it does
indeed initialize dereferenced registers and does not interfere with the original
chain. Note that the number of iterations is limited (four in our prototype), so
the chain does not grow forever.

Our gadget chaining fully automates the process of stitching gadgets together
to initialize registers used for passing parameters to functions with data the ana-
lyst controls. It also adds gadgets to the chain to ensure any dereferenced regis-
ters are also initialized with data the analyst controls. This approach simplifies
exploit development, especially if functions taking many parameters are called
or if the available gadgets consist of many instructions.

Fig. 2. Overview of our approach to generate gadget chains. In Step 1, we extract
gadgets up to a certain size and create summaries. In Step 2 we select a set of n
gadgets for the individual parameters to constrain the search space and then create
gadget chains. In Step 3 we analyze the chains and prepend gadgets to make any
dereferences analyst-controlled.

3.3 Implementation

PSHAPE uses a standard technique to discover gadgets: first, using pyelftools2

and pefile3, it finds executable sections in an input binary. Afterwards it scans
these sections forwards bytewise until a return opcode is found, storing these

2 https://github.com/eliben/pyelftools.
3 https://github.com/erocarrera/pefile.

https://github.com/eliben/pyelftools
https://github.com/erocarrera/pefile
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offsets in a list. Then, using several threads, it disassembles backwards from these
offsets using the Capstone framework [22]. To limit the number and complexity of
gadgets and speed up the discovery process, the analyst can specify the minimum
and maximum size, i.e., number of instructions, of a gadget.

If the disassembly yields only legal instructions, we convert this gadget to
Valgrind’s VEX IR [21] using PyVEX [34]. Lifting the original assembly code
to VEX has the advantage that it is much simpler to analyze because there are
fewer instructions and side effects are made explicit. After this conversion, VEX
assignments are propagated forward, resulting in a single statement for each real
register and memory location, which contains all operations on this register or
location, i.e., an abstraction of the new value after a gadget has executed.

4 Evaluation

We first compare PSHAPE with existing tools regarding their ability to extract
gadgets from binaries as well as their ability to construct gadget chains to ini-
tialize registers for function calls in Sect. 4.1. Then, in Sect. 4.2, we qualitatively
evaluate gadget chains that PSHAPE creates for various binaries, and discuss
optimizations.

4.1 Comparison with Existing Tools

In Table 1 we have listed the tools designed to help an analyst to create ROP
exploits. Generally, we have found that there is a big gap between the theoretical
state of the art and what actually exists and works well in practice. Many of
the tools we evaluate contain bugs and other quirks that limit their usefulness
in real scenarios, the main focus of PSHAPE.

OptiROP and Q are not publicly available and also were not made available to
us upon request. We also excluded nrop due to its scope (see Sect. 5). We managed
to compile ROPC although it has been unmaintained for years, and GitHub issue
reports are not answered. Unfortunately, it could not extract gadgets from any of
the binaries we use in the evaluation, which is why we exclude it.

For the evaluation we use five Windows binaries: firefox.exe, iexplore.exe,
chrome.exe, mshtml.dll, and jfxwebkit.dll, and four Linux binaries: chromium,
apache2, openssl, and nginx, representing a total of 147 MiB of executable data.
Detailed information about the binaries and PSHAPE are available on the com-
panion website: https://sites.google.com/site/exploitdevpshape/.

Gadget Discovery. In this section, we compare the different gadget discovery
routines. For a tool to be considered in these experiments, we require that it
can read ELF or PE binaries and find gadgets in 64-bit binaries. DEPlib, Agafi,
mona.py, Ropeme, and MSFrop do not fulfill these requirements and were there-
fore discarded, leaving us with the following tools to compare to: ROPgadget,
rp++ and ropper. We configured them to look for gadgets up to a maximum
length of 35 instructions. Table 2a summarizes the results.

https://sites.google.com/site/exploitdevpshape/
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Table 1. Summary of ROP tools. Note that many tools have limitations, bugs, or do
not work as expected, which we discuss in Sects. 4.1 and 5

Tool Syntactic Semantic Gadget Turing Open- Binary PE ELF 64-bit

Search search Chaining Complete Source available

PSHAPE � � � × � � � � �
OptiROP [23] � � � × × × � � �
nrop [38] � � × × × × � � �
Q [30] � � � × × × � � �
ROPC [24] � � � � � � � � �
DEPLib [35] � � � × � � � × ×
Agafi 1.1 [16] � × � × � � � × ×
mona.py 2.0

(rev566) [11]

� × � × � � � × ×

ROPgadget

5.4 [27]

� × � × � � � � �

rp++ 0.4 [36] � × × × � � � � �
Ropeme [10] � × × × � � × � ×
ropper

1.8.7 [28]

� × � × � � � � �

MSFrop [20] � × × × � � � � ×

ROPgadget lists duplicates, i.e., the same gadget at the same address is
listed more than once. We informed the developer about this bug. ROPgadget
does not have an option to define the maximum number of instructions in a
gadget. Only the maximum number of byte per gadget can be set. We ran our
experiments using 110 bytes for the maximum length, leading to an average
opcode size of about 3 bytes per instruction. Originally, we planned to use a
much larger number to make sure we do not miss any gadgets. However, even
with a depth of 110 bytes the evaluation of ROPgadget on Chromium took over
6 h, consuming 160 GB of RAM. Afterwards, we used a script to go through
the results and remove any gadgets that contained more than 35 instructions.
Therefore, we miss gadgets that contain 35 or fewer instructions but are longer
than 110 byte.

rp++ originally comes with a fixed maximum gadget length of 20 instruc-
tions. We modified the source code, changing this upper limit to 35 and recom-
piled it, so it correctly discovers longer gadgets, too.

ropper ropper does not find some simple and short gadgets and keeps gad-
gets that contain conditional jumps. Such gadgets are difficult to use, especially
since no information is given about which paths are taken under which circum-
stances.

Since all four tools use slightly different filters or sometimes contain bugs, it
is difficult to compare their results. For example, ROPgadget and rp++ keep
gadgets that contain privileged instructions (e.g., in, out, or hlt), which termi-
nate the process. ROPgadget’s output contains duplicate gadgets, and ropper
keeps gadgets that contain conditional jumps, which the other tools do not.
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Table 2. (a) Number of gadgets found by each tool on the given binaries, as determined
by our evaluation. (b) It is possible to build chains to mprotect for all four Linux
binaries, line mprotect shows how many of those chains each tool creates. For mmap,
only three of the Linux binaries have the necessary gadgets to build a chain and this
line shows how many of those each tool can create. Chains to VirtualProtect exist
in four out of the five Windows binaries, this line shows how many of them each tool
creates. A dash indicates that the tool does not support calling a function that requires
the tool to initialize the required number of arguments. In (a) and (b), L denotes Linux
and W , Windows.

Binary PSHAPE rp++ ropper ROPgadget
firefoxW 6,709 6,182 5,445 6,259
iexploreW 928 888 836 888
chromeW 64,372 58,890 52,991 59,969
mshtmlW 1,329,705 1,239,403 1,099,466 1,242,616
jfxwebkitW 1,172,718 1,076,350 960,091 1,086,061
chromiumL 5,358,283 5,159,712 4,579,388 5,130,856
apache2L 24,164 22,722 18,061 22,875
opensslL 6,978 6,829 5,377 6,845
nginxL 26,314 25,700 21,081 25,245

(a) Number of extracted gadgets

Function PSHAPE ropper ROPgadget
WV irtualProtect 2/4 - -
Lmprotect 4/4 1/4 1/4
Lmmap 3/3 - -

(b) Number of gadget chains

We filter and clean the output of all tools, removing any duplicates and privi-
leged instructions as well as jumps. As Table 2 shows, eventually all tools find a
similar number of gadgets.

Gadget Chaining. Here, we evaluate the tools in regards to their ability to
create gadget chains. The minimal requirement for a tool to be considered in the
experiments is that it can build ROP chains for 64-bit Windows or 64-bit Linux,
correctly initializing the registers used for passing parameters to functions. Since
most 32-bit calling conventions pass parameters on the stack, ROP chains have
to be constructed differently, making a comparison difficult. We use functions
that are regularly used in ROP exploits. For Linux, the goal is to create two
chains, one that loads registers with analyst-controlled data for invoking a func-
tion that takes three arguments (e.g., mprotect or execve) and one chain that
loads registers with analyst-controlled data for invoking a function that takes
six arguments (e.g., mmap). For Windows, the goal is to create a chain that loads
registers with user-controlled data for invoking a function that takes four argu-
ments (e.g., VirtualProtect or VirtualAlloc). From this point on, we refer to
these goals by the function’s names but keep in mind that any function using
the same number of parameters or fewer can be invoked, too.
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From the list of available tools, only ROPgadget and ropper satisfy our
requirements. The results of the experiments have been summarized in Table 2b.

ROPgadget cannot create chains for Windows, does not offer any targets
for a ROP chain and instead always tries to build a chain to create a shell using
execve. However, this function requires initializing three arguments, allowing us
to evaluate at least one goal for Linux. ROPgadget successfully created a chain
for chromium, but it did not succeed on any of the remaining binaries.

ropper cannot create chains for 64-bit Windows, but offers two targets for
ROP chain creation on 64-bit Linux, mprotect and execve, which both take
three arguments. Again, this allowed us to evaluate at least one of the goals we
specified previously. However, for openssl and nginx, ropper was able to initialize
only rdi, despite discovering several useful and simple gadgets that load the
other registers. For apache2, ropper successfully initialized rdi and rdx. Ropper
successfully created a ROP chain for chromium, initializing all three registers
used for passing parameters to mprotect or execve. All gadgets used in the
chains are without side-effects and without preconditions. Thus, no additional
work to satisfy preconditions is necessary.

PSHAPE successfully created fully functional chains for both mprotect and
mmap for the following Linux binaries: chromium, apache2, and nginx. We present
and discuss the chains for apache2 and nginx in Sect. 4.2. For openssl it was only
possible to create a chain to mprotect. This was due to the fact that no gadget
was found to initialize r9, which we confirmed manually using both PSHAPE
and ROPgadget. On Windows binaries, PSHAPE failed to build chains for
firefox.exe and iexplore.exe, and we confirmed, again using both PSHAPE and
ROPgadget, that, in fact, the necessary gadgets are not present in the respective
binaries. For mshtml.dll and jfxwebkit.dll, PSHAPE successfully built a chain.
It also created a chain for chrome.exe, however, it required another gadget to
be prepended manually. Hence, we did not count it towards successful chain
creations in Table 2b. We discuss this chain and its shortcomings in Sect. 4.2.

In cases where PSHAPE failed to build a chain, we evaluated whether a
human analyst could succeed. In other words, we assessed if it was in fact not
possible to build a chain, due to a lack of useful gadgets, or if our tool’s limitations
(see Sect. 6) were to blame. In the case of openssl and iexplore.exe, the former
is the case. While there are gadgets that initialize the registers, they are often
initialized to a constant value. Other times we found a gadget that does initialize
a register to an analyst-controlled value, however, unless that value is a specific
constant, a jump is taken in the same gadget, effectively forcing the analyst
to initialize the register with that specific value. For firefox.exe, an analyst can
create a ROP chain. The gadgets that have to be used are complex, requiring
initialization of several gadgets and memory locations to ensure that jumps are
not taken. Since PSHAPE is unable to utilize such gadgets, it was unable to
automatically generate a chain in this case.
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4.2 PSHAPE in Practice

Next we qualitatively evaluate three automatically created chains. Note that any
padding required between gadgets is added automatically but omitted here to
increase readability and due to size constraints.

Chain for apache2. The chain is presented in Fig. 3a. Gadgets 2 to 7 are used
to initialize the registers used for passing parameters. PSHAPE detects that
rax is dereferenced by gadget 6 and before that, aliased with ebp (gadget 4).
Therefore, another gadget is added that initializes rbp. An even shorter chain
could have been created by arranging the gadgets in such a way, that gadgets
7 and 4 execute before gadget 6. In this case, gadget 7 initializes rbp, gadget 4
copies it to rax, which is then dereferenced by gadget 6. This would make the
first gadget unnecessary. However, PSHAPE does not detect that, as it uses the
first permutation whose postconditions are correct (see Sect. 3.2).

Chain for nginx. The chain is presented in Fig. 3b. In the first iteration, the
chain consists of gadgets 3 to 8, which are used to initialize the registers used for
passing parameters. Gadget 6 dereferences rax and rbx, which is why PSHAPE
initializes these two registers by adding gadgets 1 and 2 to the chain. Gadget 8
dereferences rbx, which is initialized by gadget 6.

Chain for chrome.exe. The chain is presented in Fig. 3c. Gadgets 2 to 5 are
used to initialize the registers used for passing parameters. PSHAPE correctly
detected that there are no better-suited gadgets for initializing r9 and resorts to
using gadget 2, prepended by gadget 1 to make r15 analyst-controlled. Unfortu-
nately, PSHAPE cannot automatically satisfy the precondition of the cmovns
instruction, because this conditional mov instruction checks the sign flag, and
currently, PSHAPE ignores flags (see Sect. 6). Therefore, to make sure the
chain executes correctly, the analyst has to prepend, e.g., a simple xor rax,
rax instruction to the chain.

5 Related Work

Here we discuss related work that was not yet covered in Sect. 4.1.
Q [30] takes an existing exploit which does not bypass DEP or ASLR, and

attempts to harden it, i.e., rewrite it so it bypasses these mitigation techniques.
To bypass ASLR it relies on unrandomized code sections and then uses gad-
gets from those sections to construct a ROP payload to bypass DEP. The pay-
load is written by the attacker using QooL, Q’s own exploit language. In their
evaluation, the authors show how Q hardens nine simple stack buffer overflow
exploits for Windows and Linux, with a payload that invokes a linked function
or system/WinExec. Q cannot handle gadgets containing pointer dereferences,
which our approach not only handles, but also ensures they are safe to use.

ROPC [24] is based on Q, but publicly available. Its main feature is a gad-
get compiler which takes an input binary and a program written in their own
language called ROPL. Then, ROPC creates this program using only gadgets
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Fig. 3. Three chains created by PSHAPE

from the input binary. While it looks favourable to our tool on paper, because it
is Turing-complete, only a proof of concept prototype, dating back to June 2013,
is available. This prototype only works on one included, synthetic example, but
did not succeed on the real binaries we use in the evaluation.

BARFgadgets [37] is based on Q and its main focus is classifying and
verifying gadgets into various types such as load register or store memory. It
provides very basic summaries that only contain what the first instruction of a
gadget does, and which other registers are clobbered.

nrop [38] finds semantically equivalent gadgets to a given instruction. Our
tool could be used for a similar purpose, as semantically equivalent gadgets have
the same summary. Until early 2016, nrop’s website was online and stated that
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automatic gadget chaining would be coming soon, however, the tool has not
received any updates since then.

ROPER [15] is currently in the early stages of development and will use
a genetic component: after gadgets have been found, they will be put together
randomly. From this pool, four chains will be selected, executed, their fitness
assessed, the two least fit chains killed, the other two chains mated and their
children will be added back to the pool. This process will be repeated until it
converges on a set of viable chains.

6 Limitations and Future Work

Our prototype implementation currently cannot summarize gadgets that include
instructions that check CPU flags (e.g., cmov) and filters out gadgets that contain
instructions changing the program flow (e.g., jne). We plan do address this in
future work, as it will enable PSHAPE to successfully build chains for more
binaries. In our evaluation it was in all but one cases possible to build a ROP
chain without having to incorporate gadgets that contain jumps, however, with
mitigation techniques that drastically reduce the number of available gadgets
(e.g., Control-Flow Integrity), it will be important to utilize all available gadgets.

Further optimizations are possible, e.g., when combining gadgets we can con-
tinue to check for a permutation that has fewer preconditions instead of taking
the first permutation that has the correct postconditions.

We plan to add features which help the analyst to find gadgets that are useful
for bypassing certain mitigation techniques. E.g., we consider adding a filter to
use only call-preceded gadgets, which helps bypass some CFI solutions [25,39].

7 Conclusion

ROP is the cornerstone of today’s low-level exploits, yet tool-support is lacking.
Current ROP chain creation requires significant manual work. Here we present
PSHAPE, a tool that supports analysts during exploit development. It offers
gadget summaries, a compact representation of the effects a gadget has on regis-
ters and memory. Furthermore, it automates gadget chaining, loading registers
used for passing parameters with analyst-controlled data, and making sure that
any preconditions are satisfied.

We compare PSHAPE to twelve other tools in terms of their gadget finding
and autochaining abilities. Most of those tools, however, do not work properly in
realistic scenarios, contain bugs, or are not available. This left us with three tools
to compare to empirically. We applied these tools and PSHAPE to nine widely
used binaries, a total of 147 MiB of code, and eleven realistic exploit scenarios.
Our tool is the only one that successfully creates ROP chains fully-automated
and succeeds in nine out of eleven scenarios. Other tools only create a chain
for a single scenario, showing that there is a big gap between the theoretical
capabilities of current state of the art tools and their usefulness in practice.
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