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Preface

Research areas such as Artificial Intelligence and Databases increasingly rely on prin-
cipled methods for representing and manipulating large amounts of uncertain infor-
mation. To meet this challenge, researchers in these fields are drawing from a wide range
of different methodologies and uncertainty models. While Bayesian methods remain the
default choice in most disciplines, sometimes there is a need for more cautious
approaches, relying for instance on imprecise probabilities, ordinal uncertainty repre-
sentations, or even purely qualitative models.

The International Conference on Scalable Uncertainty Management (SUM) aims to
provide a forum for researchers who are working on uncertainty management, in dif-
ferent communities and with different uncertainty models, to meet and exchange ideas.
Previous SUM conferences have been held in Washington DC (2007), Naples (2008),
Washington DC (2009), Toulouse (2010), Dayton (2011), Marburg (2012), Washington
DC (2013), Oxford (2014), and Québec City (2015).

This volume contains contributions from the 10th SUM conference, which was held
in Nice, France on September 21–23, 2016. The conference attracted 25 submissions of
long papers and 5 submissions of short papers, of which respectively 18 and 5 were
accepted for publication and presentation at the conference, based on three rigorous
reviews by members of the Program Committee or external reviewers. In addition, we
received 5 extended abstracts, which were accepted for presentation at the conference
but are not included in this volume.

An important aim of the SUM conference is to build bridges between different
communities. This aim is reflected in the choice of the three keynote speakers, who are
all active in more than one community, using a diverse set of approaches to uncertainty
management: Guy Van den Broeck, Jonathan Lawry, and Eyke Hüllermeier. To further
embrace the aim of facilitating interdisciplinary collaboration and cross-fertilization of
ideas, and building on the tradition of invited discussants at SUM, the conference
featured 11 tutorials, covering a broad set of topics related to uncertainty management.
A companion paper for 3 of these tutorials is present in this volume.

We would like to thank all authors and invited speakers for their valuable contri-
butions, and the members of the Program Committee and external reviewers for their
detailed and critical assessment of the submissions. We are also very grateful to Andrea
Tettamanzi and his team for hosting the conference in Nice.

July 2016 Pierre Senellart
Steven Schockaert
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Combinatorial Games: From Theoretical Solving
to AI Algorithms

Eric Duchêne(B)

Université de Lyon, CNRS Université Lyon 1, LIRIS, UMR5205, 69622 Lyon, France
eric.duchene@univ-lyon1.fr

Abstract. Combinatorial game solving is a research field that is fre-
quently highlighted each time a program defeats the best human player:
Deep Blue (IBM) vs Kasparov for Chess in 1997, and Alpha Go (Google)
vs Lee Sedol for the game of Go in 2016. But what is hidden behind these
success stories? First of all, I will consider combinatorial games from a
theoretical point of view. We will see how to proceed to properly define
and deal with the concepts of outcome, value, and winning strategy. Are
there some games for which an exact winning strategy can be expected?
Unfortunately, the answer is no in many cases (including some of the
most famous ones like Go, Othello, Chess or Checkers), as exact game
solving belongs to the problems of highest complexity. Therefore, finding
out an effective approximate strategy has highly motivated the commu-
nity of AI researchers. In the current survey, the basics of the best AI
programs will be presented, and in particular the well-known Minimax
and Monte-Carlo Tree Search approaches.

1 Combinatorial Games

1.1 Introduction

Playing combinatorial games is a common activity for the general public. Indeed,
the games of Go, Chess or Checkers are rather familiar to all of us. However, the
underlying mathematical theory that enables to compute the winner of a given
game, or more generally, to build a sequence of winning moves, is rather recent.
It was settled by Berlekamp, Conway and Guy only in the late 70s [2,8]. The
current section will present the highlights of this beautiful theory.

In order to avoid any confusion, first note that combinatorial game theory
(here shortened as CGT) is very different from the so-called “economic” game
theory introduced by Von Neumann and Morgenstern. I often consider that a
preliminary activity to tackle CGT issues is the reading of Siegel’s book [31]
which gives a strong and formal background on CGT. Strictly speaking, a com-
binatorial game must satisfy the following criteria:

Definition 1 (Combinatorial Game). In a combinatorial game, the following
constraints are satisfied:

Supported by the ANR-14-CE25-0006 project of the French National Research
Agency and the CNRS PICS-07315 project.

c© Springer International Publishing Switzerland 2016
S. Schockaert and P. Senellart (Eds.): SUM 2016, LNAI 9858, pp. 3–17, 2016.
DOI: 10.1007/978-3-319-45856-4 1



4 E. Duchêne

– There are exactly two players, called “Left” and “Right”, who alternate moves.
Nobody can miss his turn.

– There is no hidden information: all possible moves are known to both players.
– There are no chance moves such as rolling dice or shuffling cards.
– The rules are defined in such a way that play will always come to an end.
– The last move determines the winner: in the normal play convention, the first

player unable to move loses. In the misère play convention, the last player to
move loses.

Examples of such games are Nim [6] or Domineering [20]. In the first one,
game positions are tuples of non-negative integers (a1, . . . , an). A move consists
in strictly decreasing exactly one of the values ai for some 1 ≤ i ≤ n, provided
the resulting position remains valid. The first player unable to move loses. In
other words, reaching the position (0, . . . , 0) is a winning move. The game Dom-
ineering is played on a rectangular grid. The two players alternately place a
domino on the grid under the following condition: Left must place his dominoes
vertically and Right horizontally. Once again, the first player unable to place
a domino loses. Figure 1 illustrates a position for this game, where Left started
and wins, since Right cannot place any additional horizontal domino.

Fig. 1. Playing Domineering: right cannot play and loses

A useful property derived from Definition 1 is that any combinatorial game
can be played indifferently on a particular (finite) tree. This tree is built as
described in Definition 2.

Definition 2 (Game Tree). Given a game G with starting position S, the
game tree associated to (G, S) is a semi-ordered rooted tree defined as follows:

– The vertex root correspond to the starting position S.
– All the game positions reachable for Left (resp. Right) in a single move from

S are set as left (resp. right) children of the root.
– Apply the previous rule recursively for each child.

Figure 2 gives an example of such a game tree for Domineering with starting

position . For more convenience, note that only the top three levels of the
tree are depicted (there is one additional level when fully expanded).
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Fig. 2. Game tree of a Domineering position

Now, playing any game on its game tree consists is moving alternately a
token from the root to a leaf. Each player must follow an edge corresponding to
his direction (i.e., full edges for Left and dashed ones for Right). In the normal
play convention, the first player who moves the token on a leaf of the tree is the
winner. We will see later on that this tree representation is very useful, both to
compute exact and approximate strategies.

In view of Definition 1, one can remark that the specified conditions are
too strong to cover some of the well-known abstract 2-player games. For exam-
ple, Chess and Checkers may have draw outcomes, which is not allowed in a
combinatorial game. This is due to the fact that some game positions can be
visited several times during the play. Such games are called loopy. In games like
Go, Dots and Boxes or Othello, the winner is determined with a score and not
according to the player making the last move. However, such games remain very
close to combinatorial games. Some keys can be found in the literature to deal
with their resolution ([31], chap. 6 for loopy games, and [24] for an overview on
scoring game theory). In addition, first attempts to built an “absolute” theory
that would cover normal and misère play conventions, loopy and scoring games
have been recently made [23]. Note that the concepts and issues that will be
introduced in the current survey make also sense in this extended framework.

1.2 Main Issues in CGT

Given a game, researchers in CGT are generally concerned with the following
three issues:

– Who is the winner?
– What is the value of a game (in the sense of Conway)?
– Can one provide a winning strategy, i.e., a sequence of optimal moves for the

winner whatever his opponent’s moves are?

For each of the above questions, I will give some parts of answer relative to
the known theory.

The first problem is the determination of the winner of a given game, also
called outcome. In a strict combinatorial game (i.e., a game satisfying the con-
ditions of Definition 1), there are only four possible outcomes [31]:
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– L if Left has a winning strategy independently of who starts the game,
– R if Right has a winning strategy independently of who starts the game,
– N if the first player has a winning strategy,
– P if the second player has a winning strategy.

This property can be easily deduced from the game tree, by labeling the
vertices from the leaves to the root. Consequently, such an algorithm allows to
compute the outcome of a game in polynomial time in the size of the tree. Yet,
a game position has often a smaller input size than the size of its correspond-
ing game tree. For example, a position (a1, . . . , an) of Nim has an input size
O(

∑n
i=1 log2(ai)), which is far smaller than the number of positions in the game

tree. Hence, computing the whole game tree is generally not the good key to
determine effectively the answer to Problem 1 below.

Problem 1 (Outcome). Given a game G with a starting position S, compute the
complexity of deciding whether (G, S) is P, N , L or R?

Note that for loopy games, the outcome Draw is added to the list of the
possible outcomes.

Example 1. The game Domineering played on a 3 × 1 grid is clearly L since
there is no available (horizontal) move for Right. On a 3 × 2 and 3 × 3 grids,
one can quickly check that the first player has a winning strategy. Such positions
are thus N . When n > 3, it can also be easily proved that 3 × n grids are R,
since placing an horizontal domino in the middle row allows two free moves for
Right, whereas a vertical move do not constraint further moves of Left.

We now present a second major issue in CGT that can be considered as a
refinement of the previous one.

Problem 2 (Value). Given a game G with a starting position S, compute its
Conway’s value.

The concept of game value was first defined by Conway in [8]. In his theory,
each game position is assigned a numeric value among the set of surreal numbers.
Roughly speaking, it corresponds to the number of moves ahead that Left has
towards his opponent. For instance, position of Domineering has value
−2 since Right can place two more dominoes than Left before being blocked. A
more formal definition can be found in [31]. Just note that Conway’s values are
defined recursively and can also be computed from the game tree.

Knowing the value of a game allows to deduce its outcome. For example, all
games having a strictly positive value are L and all games having a zero value
are P. Moreover, its knowledge is even more paramount when the game splits
in sums: it means that a game G can be considered as a set of independent
smaller games whose values allows to compute the overall value of G. Consider
the example depicted by Fig. 3. This game position can be considered as a sum

of the three components , and of respective outcomes L, L and R,
and respective Conway’s values 1/2, 1/2 and −1. From this decomposition, there
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is no way to compute the outcome of the general position from the outcomes of
each component. Indeed, the sum of three components having outcomes L, L,
and Rcan either be L, R, P or N . However, the sum of the three values can be
easily computed and equals 0: we can conclude that the overall position of Fig. 3
is P.

Fig. 3. Sum of Domineering positions

Example 2. Computing Conway’s values of Domineering is not easy even for
small grids and there is no known formula to get them. On the other hand, the
case of the game of Nim is better known. Indeed, Conway’s value of any position
(a1, . . . , an) is an infinitesimal surreal number equal to a1 ⊕ . . .⊕ an, where ⊕ is
the bitwise XOR operator.

The last problem is generally considered once (at least) the first one is solved.

Problem 3 (Winning Strategy). Given a game G and a starting position S, give a
winning move from S for the player having a winning strategy. Do it recursively
whatever the answer of the other player is.

There are really few games for which this question can be solved with a
polynomial time algorithm. The game of Nim is one of them.

Example 3. A winning strategy is known for the game of Nim: from any posi-
tion (a1, . . . , an) of outcome N , there always exists a greedy algorithm that yields
to a position (a′

1, . . . , a
′
n) whose bitwise sum a′

1 ⊕ . . .⊕a′
n equals 0 (meaning that

it will be losing for the other player).

2 Complexity of Combinatorial Games

The complexity of combinatorial games is correlated to the computational com-
plexity of the above problems. First of all, one can notice that all these problems
are decidable, since it suffices to consider a simple algorithm on the game tree
to have an answer. Of course, the size of the game tree remains an obstacle
compared with the size of a game position. In [18], Fraenkel claims a game G is
polynomial if:
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– Problems 1 and 3 can be solved in polynomial time for any starting position
S of G.

– Winning strategies in G can be consumed in at most an exponential number
of moves.

– These two properties remain valid for any sum of two game positions of G.

If this definition is not always considered as a standard by the CGT com-
munity, there is a general agreement to say that the computational complexities
of Problems 1 and 3 are the main criteria to evaluate the overall complexity of
a game. Of course, this question makes sense only for games whose positions
depends on some parameters such as the size of a grid, the values in a tuple...
This explains why many famous games have been defined in the literature in a
generalized version (e.g. Chess, Go, Checkers on a n×n board...). For almost all
of them, even the computational complexity of Problem 1 is very high, as shown
by Table 1 (extracted from [5,21]). Note that the belonging to class PSPACE or
EXPTIME depends on the length of the play (exponential for EXPTIME and
polynomial for PSPACE).

Table 1. Complexity of well-known games in their generalized versions

Game Complexity

Tic Tac Toe PSPACE-complete

Othello PSPACE-complete

Hex PSPACE-complete

Amazons PSPACE-complete

Checkers EXPTIME-complete

Chess EXPTIME-complete

Go EXPTIME-complete

In addition to these well-known games, there are many other combinator-
ial games that have been proved to be at least PSPACE-hard: Node-Kayles
and Snort [28], many variations on Geography [25] or many other games on
graphs. In 2009, Demaine and Hearn wrote a rich book about the complexity
of many combinatorial games and puzzles [16]. If this list confirms that games
belong to decision problems of highest complexity, some of them admit a lower
one. The game of Nim is one of them and is luckily not the only one. For example,
many games played on tuples of integers admit a polynomial winning strategy
derived from tools arising from arithmetic, algebra or combinatorics on words.
See the recent survey [11] which summarizes some of these games. Moreover,
some games on graphs proved to be PSPACE-complete have a more afford-
able complexity on particular families of graphs. For example, Node Kayles
is proved to be polynomial on paths and cographs [4]. This is also the case for
Geography played on undirected graphs [19]. Finally, note that the complexity
of Domineering is still an open problem.
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If the computational complexity of many games is often very high, it makes
no sense to consider it when the game positions have a constant size. It is in
particular the case for well-known board games such as Chess on a 8 × 8 board,
the game of Go on a 19 × 19 board, or standard Hex. Solving them is often
a question a computational performance and algorithmic optimization on the
game tree. In this context, these games can be classified according to the status
of their resolution. For that purpose, Allis [1] defined three levels of resolution
for a game:

– ultra-weakly solved: the answer of Problem 1 is known, but Problem3 remains
open. This is for instance the case of Hex, that is winning for the first player,
but no winning strategy has been computed yet.

– weakly solved: Problems 1 and 3 are solved for the standard starting position
(e.g., standard initial position of Checkers, empty board of Tic Tac Toe). As
a consequence, the known winning strategy is not improved if the opponent
does not play optimally.

– strongly solved: Problems 1 and 3 are solved for any starting position.

According to this definition, Table 2 summarizes the current knowledge about
the resolution of some games.

Table 2. Status of the resolutions of several well-known games

Game Size of the board Resolution status

Tic Tac Toe 3 × 3 Strong

Connect Four 6 × 7 Strong

Checkers 8 × 8 Weak

Hex 11 × 11 Ultra-Weak

Go 19 × 19 Open

Chess 8 × 8 Open

Othello 8 × 8 Open

A natural question arises when reading the above table. What makes a game
harder than another one? If there is obviously no universal answer, Fraenkel
suggests several relevant criteria in [17].

– The average branching factor, i.e., the average number of available moves from
a position (around 35 for Chess and 250 for the game of Go).

– The total number of game positions (1018 for Checkers, 10171 for the game of
Go).

– The existence of cycles. In other words, loopy games are harder than non loopy
ones.
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– Impartial or Partizan. A game is said impartial if both players always have
the same available moves. It implies the game tree to be symmetric. Nim is
an example of an impartial game, whereas Domineering and all the games
mentioned in Table 2 are not. Such games are called partizan. Impartial games
are in general easier to solve since their Conway’s values are more “controlled”.

– The fact that the game can be decomposed into sums of smaller independent
games (as it is the case for Domineering).

– The number of final positions.

Based on these considerations, how to deal with games whose complexity
is too high - either theoretically, or simply in view of their empirical hardness?
Approximate resolutions (especially for Problem 3) must be considered and arti-
ficial intelligence algorithms were introduced to this end.

3 AI Algorithms to Deal with the Hardest Games

In the previous section, we have seen that Problem 1 remains unsolved for games
having a huge number of positions. If the recent work of Schaeffer et al. [29] on
Checkers was a real breakthrough (they found the exact outcome, which is a
Draw), getting a similar result for games like Chess, Othello or Go seems cur-
rently out of reach. Moreover, researchers generally feel more concerned by find-
ing a good way to play these games rather than computing the exact outcome.
In the 50s, this interest led to the beginnings of artificial intelligence [30] and the
construction of the first programs to play Chess [3]. For more information about
computer game history, see [27]. Before going into more details on AI programs
for games, note that in general, these algorithms work on a slight variation of
the game tree given in Definition 2, where Left is always supposed to be the
first player, and only the moves of one player are represented on a level of the
tree. For example, the children of the root correspond exclusively to the moves
available for Left, their children to the possible answers for Right...

3.1 MiniMax Algorithms

The first steps in combinatorial game programming were made for Chess. The
so-called MiniMax approach is due to Shannon and Turing in the 50 s and has
been widely considered in many other AI programs. Its main objective is to
minimize the maximum loss of each player. This algorithm requires some expert
knowledge of the game, as it uses an evaluation function of the values of game
positions.

Roughly speaking, in a MiniMax algorithm, the game tree is built up to a
certain depth. Then each leaf of this partial game tree is evaluated thanks to an
evaluation function. This function is the key of the algorithm and is based on
heuristic considerations. For example, the Chess computer Deep Blue (who first
defeated a human world champion in 1996) had an evaluation function based on
hundreds of parameters (e.g. compare the power of a non-blocked tower versus
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a protected king). These parameters were tuned after an fine analyze of 700,000
master games. Each parent node of a leaf is then assigned a value equals to the
minimum value of its children (wlog, we here assume that the depth is even -
then the last moves correspond to moves for Right, whose goal is to minimize
the game value). The next parent nodes are evaluated by taking the maximum
value among their children (it corresponds to moves for Left). Then recursively
each parent node is evaluate according to the values of its children, by taking
alternately the minimum or the maximum according to whether it is Left or
Right’s turn. Figure 4 illustrates this algorithm on a tree of depth 4. In this
example, assume an evaluation function provides the values located on the leaves
of the tree. Then MiniMax ensures that Left can force a win with a score equals
to 4. Red nodes are those for which the maximum of the children is taken, i.e.,
positions from which Left has to play.

4

34

7 4 12 3

7 -5 4 -2 12 3

10 7 -5 4 3 -2 12 3 8

Fig. 4. MinMax algorithm on a tree of depth 4

In addition to an expert tuning of the evaluation function, another significant
enhancement was made with the introduction of Alpha-Beta pruning [12]. It
consists in a very effective selective cut-off of the Minimax algorithm without loss
of information. Indeed, if after having computed the values of the first branches,
it turns out that the overall value of the root is at least v, then one can prune
all the unexplored branches whose values are guaranteed to be less than v. The
ordering of the branches in the game tree then turns out to be paramount,
as it can considerably increase the efficiency of the algorithm. In addition to
this technique, one can also mention the use of transposition tables (adjoined to
alpha-beta pruning) to speed up the search in the game tree.

Nowadays, the MiniMax algorithm (together with its improving techniques)
is still used by the best algorithms to solve games admitting a relevant evaluation
function. This is for example the case for Chess, Checkers, Connect Four or
Othello. Yet, we will see that for other games, some probabilistic approaches
turn out to be more efficient.
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3.2 Monte-Carlo Approaches

In 2006, Coulom [9] suggested to combine the principle of the MiniMax algorithm
with Monte Carlo methods. These methods were formalized in the 40 s to deal
with hard problems by taking a random sampling. For example, they can be used
to estimate the value of π. Of course, the quality of the approximated solution
partially depends on the size of the sample. In our case, their application will
consist in simulating many random games.

The combination of both MiniMax and Monte Carlo methods is called MCTS,
which stands for Monte Carlo Tree Search. Since its introduction, it has been
considered by much research on AI for games. This success is mainly explained
by the significant improvements made by computer Go programs that are using
this technique. Moreover, it has also shown very good performances for problems
for which other techniques had poor ones (e.g. some problems in combinator-
ial optimization, puzzles, multi-player games, scheduling, operation research...).
Another great advantage of MCTS is that there is no need of a strong expert
knowledge to implement a good algorithm. Hence it can be considered for prob-
lems for which humans do not have a strong background. In addition, MCTS
can be stopped at any time to provide the current best solution and the tree
built so far can be reused for the next step.

In what follows, we will give the necessary information to understand the
essence of MCTS applied to games. For additional material, the reader could
refer to the more exhaustive survey [7].

The basic MCTS algorithm consists in building progressively the game tree,
guided by the results of the previous explorations of it. Unlike the standard Min-
iMax algorithm, the tree is built in an asymmetric manner. The in-depth search
is considered only for the most promising branches that are chosen according
to a tuned selection policy. This policy relies on the values of each node of the
tree. Roughly speaking, the value of a node vi corresponds to the percentage
of winning random simulations when vi is played. Of course this value become
more and more accurate when the tree grows.

Description. As illustrated in Fig. 5, each iteration of MCTS is organized
around 4 steps called descent, growth, roll-out and update. Numbers in grey
correspond to the estimate values of each node (a function of the pourcentage
of win). Here are their main description:

– Descent: starting from the root of the game tree, a child is recursively selected
according to the selection policy. As seen on the figure, a MiniMax selection is
used to descend the tree, according to the values of each node (here, B1 is the
most promising move for Left, then E1 for Right). This descent stops when it
lands on a node that needs to be expanded (also given by the policy). In our
example, the node E1 is such a node.

– Growth: Add one or more children to this expandable node in the tree. On
Fig. 5, Node B4 is added to the tree.
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– Rollout: From an added node, make a simulation by playing random moves
until the end of the game. In our example, the random simulation from B4
leads to a loss for Left.

– Update: the result of the simulation is backpropagated to the moves of the
tree that have been selected. Their values are thus updated.

Fig. 5. The four stages of the MCTS algorithm

Improvements. In general, MCTS is not used in a raw version and is frequently
combined with additional features. As detailed in [36], there is a very rich liter-
ature on the improvements brought to MCTS. They can be organized according
to the stage they impact. Table 3 summarizes the most important enhancements
brought to MCTS.

One of the most important feature of the algorithm is the node selection
policy during the descent. At each step of this stage, MCTS chooses the node
that maximizes (or minimizes, according to whether it is Left or Right’s turn)
some quantity. A formula that is frequently used is called Upper Confidence
Bounds (UCB). It associates to each node vi of the tree the following value:

V (vi) + C ×
√

ln N

ni
,

where V (vi) is the percentage of winning simulations involving vi, ni is the total
number of simulations involving vi, N is the number of times its parent has
been visited, and C is a tunable parameter. This formula is well-known in the
context of bandit problems (choose sequentially amongst n actions the best one
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Table 3. Main improvements brought to MCTS

Stage Improvement

Descent UCT (2006) [22]

Descent RAVE (2007) [15]

Descent Criticality (2009) [10]

Growth FPU (2007) [35]

Rollout Pool-RAVE (2011), [26]

Rollout NST (2012) [33]

Rollout BHRF (2016) [14]

Update Fuego reward (2010) [13]

in order to maximize the cumulative reward). It allows in particular to deal with
the exploration-exploitation dilemma, i.e., to find a balance between exploring
unvisited nodes and reinforce the statistics of the best ones. The combination of
MCTS and UCB is called UCT [22].

A second common enhancement for MCTS during the descent is the RAVE
estimator (Rapide Action-Value Estimator [15]). It consists in considering each
move of the rollout as important as the first move. In other words, the moves
visited during the rollout stage will also affect the values of the same moves in
the tree. On Fig. 5, imagine the move E3 is played during the simulation depicted
with dashed line. Then RAVE will thus modify the UCB value of the node E3
of the tree (the RAVE formula will not be given here).

MCTS has also been widely studied in order to increase the quality of the
random simulations. A first way to mimic the strategy of a good player is to
consider evaluations functions based on expert knowledge. In [34], moves are
categorized according to several criteria: location on the board, capturing or
blocking potential and proximity to the last move. Then the approach is to
evaluate the probability that a move belonging to a category will be played by
a real player. This probability is determined by analyzing a huge sample of real
games played by either humans or computers. Of course this strategy is fully
specific to the game on which MCTS is applied. More generic approaches were
considered such as NST [33], BHRF [14] or Pool RAVE [26]. In the first two
ones, good sequences of moves are kept in memory. Indeed, it is rather frequent
that given successive attacking moves of a player, there is an usual sequence of
answers of the opponent to defend himself. In the second one, the random rollout
policy is biased by the values in the game tree, i.e., good moves visited in the
tree are likely to be played during a simulation.

In addition to the enhancements applied to the different stages of MCTS,
one can also mention several studies to parallelize the algorithm that perform
very good results [36].

We cannot conclude this survey without mentioning the outstanding perfor-
mances of Google’s program Alpha Go [32]. Like Deep Blue for Chess, Alpha
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Go is the first AI to defeat the best human player in Go. This program runs
an MCTS algorithm combined with two deep neural networks. The first one is
called the Policy network and is used during the descent phase to find out the
most promising moves. It was bootstrapped from many games of human experts
(around 30 million moves analyzed during three weeks on 50 GPU). The rein-
forcement learning was then enhanced by many games of self-play. The second
neural network is called Value network and can be considered as the first pow-
erful evaluation function for Go that is used to bias the rollout policy. If Alpha
Go’s performances show a real breakthrough in AI programs for games, the last
day of this research field has not yet come. In particular, the need of expert
knowledge to bootstrap the networks cannot be considered when dealing with
problems for which humans have a poor expertise.

4 Perspectives

Working on problems as hard as combinatorial games is a real challenge, both
for CGT and AI researchers. The major results obtained in the past years are
very stimulating and encourage many people to strengthen the overall effort on
the topic. Hence, from a theoretical point of view, the next step for CGT is the
construction of a general framework to cope with scoring games. In particular,
the question of the sum of two scoring games is paramount, as it is radically
different from the sum games in normal play convention (one cannot simply add
the values of each game). First attempts have been recently made in that sense
to consider Conway’s values as waiting moves in scoring games.

Concerning AI algorithms for games, as said in the above paragraph, Alpha
Go has been a breakthrough for the area but very exciting issues remain. More
precisely, the neural network approach proposed by Google requires a wide set
of expert knowledge and needs computer power for a long time. However, there
are some games for which both are not available. In particular, the example of
General Game Playing is a real challenge for AI algorithms, as the rules of the
game are given at the latest 20 minutes before running the program. Supervised
learning techniques like those of Alpha Go are thus almost impossible to set up,
and standard MCTS enhancements are currently the most effective ones for this
kind of problem. In addition, one can also look for adapting MCTS to problems
of higher uncertainty such as multi-player games or games having randomness
in their rules (use of dices for example). First results have already been made in
that direction [36].
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1 Introduction

AI is quickly developing. Every year, the boundaries of what is possible are being
pushed further and further. Since 2015, computers can play our video games
from the 80’s at a level comparable to that of an experienced gamer [20]. In
2016, they first beat the world champion of Go, the holy grail of board games,
pulling moves that are inhuman, but “so beautiful” (dixit Fan Hui, reigning
European champion). Fully self-driving cars have been around for at least a
couple of years [15], and in a few more years Amazon drones will be whizzing
around delivering packages to anybody and everybody [2].

One of the strengths of many of these systems is their ability to learn from
data. The rules they follow, the behaviour they exhibit, is not exclusively pro-
grammed by some smart engineer. Rather, the engineer implements a learning
algorithm, which is then fed data relevant for the task at hand. The learning
algorithm then finds patterns in the data, discovers what are ‘good’ decisions
for which situations, and an ‘intelligent’ system emerges.

This is Machine Learning.

2 Reinforcement Learning

Some of the examples cited above use a specific Machine Learning approach
called reinforcement learning. This approach to learning is inspired by behav-
iourist psychology, where human and animal behaviour is studied from a reward
and punishment perspective. A small illustrative example conveys the main prin-
ciple of this learning theory:

Example 1. Say you want to train your dog to sit.
You take your dog outside and shout ‘sit’.

c© Springer International Publishing Switzerland 2016
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The dog realizes it needs to do something (you shouting and pointing to the
ground is a definite clue), but it doesn’t know what to do.
It barks, but nothing happens...
It gives a paw (something it learned before), but nothing happens...
It sits on the ground, and lo and behold, a dog cookie appears!

If you repeat this process many times, your dog will probably learn to asso-
ciate the situation (you shouting ‘sit’) and its own action (sitting down), with
the positive stimulus (a tasty cookie) and will repeat this behaviour on future
occasions.

In essence, the learner is considered to crave ‘something’ that it receives
depending on its behaviour; it receives more of it when it exhibits desirable
behaviour, and less (or even something opposite) when it does not. Whether this
‘something’ be cookies for a dog, or dopamine in the human brain, or a simple
numerical value, an increase of it tells the learner that it has done something
right, and an intelligent learner will repeat that behaviour when it encounters a
similar situation in the future.

This same principle was successfully used in the examples cited above to
train AIs to play video games and play Go.1 The former using the score in the
game as reward, the latter the win or loss as reward or punishment.

3 The Reinforcement Learning Problem

In this section, we describe reinforcement learning (RL) more formally. We set
the stage with the classic RL diagram, displayed in Fig. 1. It shows how an RL
agent interacts with its environment. First, to say what an agent exactly is, is
surprisingly difficult; definitions abound in AI literature. In this article, we adopt
the following simple definition [25]:

Agent

Environment

action astate s
reward r

Fig. 1. The reinforcement learning agent-environment interaction loop.

1 Do not dismiss these results as only academically interesting due to the ‘game’
nature of the problems: the complexity of these problems approaches and surpasses
that of many more useful applications [28]. Furthermore, the past has shown that
breakthrough advances in games have lead to breakthroughs in other fields. Monte
Carlo Tree Search, initially developed for Go, is one example [8].
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Definition 1 (An Agent.) An agent is just something that perceives and acts.

What the agent perceives and acts upon, we call the environment. This envi-
ronment typically changes due to the agent’s actions and possibly other factors
outside the agent’s influence. The agent perceives the state (s) of the environ-
ment (a potentially incomplete observation), and must decide which action (a)
to take based on that information, such that the accumulation of rewards (r) it
receives from the environment is maximized.

This agent-environment interaction process is most commonly formulated as
a Markov Decision Process (MDP):

Definition 2 (Markov Decision Process). A Markov Decision Process is a
tuple 〈S,A, T, γ,R〉.
– S = {s1, s2, . . .} is the possibly infinite set of states the environment can be

in.
– A = {a1, a2, . . .} is the possibly infinite set of actions the agent can take.
– T (s′|s, a) defines the probability of ending up in environment state s′ after

taking action a in state s.
– γ ∈ [0, 1] is the discount factor, which defines how important future rewards

are.
– R(s, a, s′) is the possibly stochastic reward given for a state transition from s

to s′ through taking action a. It defines the goal of an agent interacting with
the MDP, as it indicates the immediate quality of what the agent is doing.

It is called a Markov Decision Process, since the state signal is assumed to
have the Markov property:

Definition 3 (Markov Property). A stochastic process has the Markov prop-
erty if the conditional probability distribution of future states of the process (con-
ditional on both past and present states) depends only upon the present state, not
on the sequence of events that preceded it [6].

In other words, the state signal should contain enough information to reliably
predict future states.

The way an agent acts based on its perceptions, i.e., its behaviour, is com-
monly referred to as a policy, denoted as π : S ×A → [0, 1]. It formally describes
how likely an agent is to do something (action) in a given situation (state), by
mapping state-action pairs to action selection probabilities. In this article, we use
this notation for policies interchangeably with the following notation π : S → A,
which is a reformulation where not the action selection probabilities are out-
put for a given state-action pair, but given a state and these probabilities, π(s)
outputs a probabilistically selected action.

The goal of an agent interacting with an MDP is to learn behaviour, a pol-
icy, that maximizes the discounted accumulation of rewards collected during its
lifetime in the environment. This accumulation of reward up to a given time
horizon or into infinity is called the return:
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Rt = R(st, at, st+1) + γR(st+1, at+1, st+2) + γ2R(st+2, at+2, st+3) + . . .

=
∞∑

k=0

γkR(st+k, at+k, st+k+1)

The discount factor γ determines the current value of future rewards. As γ → 1,
the agent becomes more farsighted, and will prefer large future rewards over
smaller short-term rewards.

Given a state s and a policy π, we can express the return an agent can expect
when starting from that state and following that policy as follows:

V π(s) = E

{ ∞∑

k=0

γkR(st+k, at+k, st+k+1)|st = s

}

This value function expresses the quality of being in state s when following policy
π, given the MDP to-be-solved that generates state transitions and rewards for
these transitions. The expectation E {} accounts for the stochasticity in these
transition and reward functions, as well as in the policy that generates the action
sequence.

Similarly, we can define the quality of being in state s, taking action a, and
subsequently following policy π. This is called the action-value function:

Qπ(s, a) = E

{ ∞∑

k=0

γkR(st+k, at+k, st+k+1)|st = s, at = a

}

The expected returns encoded in these value functions yield a way to evaluate
the quality of policies. A policy π is better than another policy π′ if it has higher
expected returns. A reinforcement learning agent needs to learn a policy that
maximizes the expected return ∀s ∈ S, a ∈ A:

π∗ = arg max
π

Qπ(s, a)

π∗ is called an optimal policy,2 as it represents the behaviour that gets the highest
return in expectation, thus solving the task encoded in the reward function.

4 Reinforcement Learning Algorithms

If the MDP’s transition and reward functions are known, Dynamic Programming
techniques can be used to optimally solve the problem [5]. Yet, it is uncommon
to have a full specification of a system’s dynamics or the reward function, and
thus the use of techniques that can work with only knowledge of state and
action spaces is necessary. These techniques must generate policies that max-
imize the expected return in environments with unknown dynamics and goals
through trial-and-error. Learning a model of the environment may be part of
2 There may be many, although their (action-)value functions will all be the same.
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this process, but it is not necessary and many techniques are successful without
this component.

As is the case in Dynamic Programming, there are basically two paradigms
for reinforcement learning: policy iteration and value iteration. Both methods
can be considered as on-line versions of their dynamic programming counter-
parts. In policy iteration, the learning agent contains two units, the evaluation
unit and the action unit. The former is the internal evaluator, while the latter is
responsible for determining the actions which look most promising according to
the internal evaluator [4]. Policy gradient (PG) methods [34] are closely related
to this policy iteration approach, with the internal evaluator usually replaced
by sampled returns. These methods assume a parametric representation of the
policy and the parameters are updated following a gradient in policy space. As
they make assumptions on smoothness, these reinforcement learning techniques
can naturally cope with continuous states and actions and uncertain state infor-
mation. Exploration is typically achieved the same way as in policy iteration,
i.e. by applying some noise on the action proposed by the current policy. Alter-
natively, exploration can also be realised by assuming a probability distribution
(typically a Gaussian distribution) over the parameters involved in the policy.
This approach is named Policy Gradients with Parameter-based Exploration
(PGPE) [27]. Each time an action needs to be sampled, the parameters of the
policy are drawn according to the distribution, resulting a policy instantiation
that prescribes the action. The parameters of the policy are then updated based
on the reward received using again a gradient approach. More advanced methods
allow this idea to be applied to non-differential policies and also reduce the risk
of getting stuck in a local optimum through a multi-modal approach [26].

In contrast, value iteration methods do not store a policy explicitly, but learn
a value function from which they derive a policy. In the remainder of this section,
we introduce and elaborate on temporal difference (TD) learning algorithms, a
popular type of value iteration algorithms.

Definition 4 (TD Learning). Temporal difference learning is an approach to
reinforcement learning that keeps estimates of expected return and updates these
estimates based on experiences and differences in estimates over successive time-
steps.

In other words, in TD learning, the agent incrementally updates estimates
of a value function, using observed rewards and the previous estimates of that
value function. One of the best known and simplest temporal difference learn-
ing algorithms is Q-learning [44]. It estimates the optimal Q-function Q∗ by
iteratively updating its estimates Q̂ after each state-action-reward-next state
(s, a, r, s′) interaction with the environment:

Q̂(s, a) ← Q̂(s, a) + αδ

0 ≤ α ≤ 1 is the stepsize, controlling how much the value function is updated in
the direction of the temporal difference error δ. The temporal difference error δ
is the difference between the previous estimate and the observed sample:
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δ = r + γ max
a′

Q̂(s′, a′) − Q̂(s, a)

Q-learning performs off-policy learning. This means that it learns about a
different policy than the one generating the interactions with the environment,
which is called the behaviour policy. In the case of Q-learning, the policy being
learned about is the optimal policy. The on-policy variant of Q-learning is called
SARSA. It modifies the temporal difference error in such a way that the algo-
rithm learns about the behaviour policy, using the action a′ actually executed in
next state s′, instead of using the action with the highest estimate in that state:

δ = r + γQ̂(s′, a′) − Q̂(s, a)

If all state-action pairs are visited infinitely often, given some boundary con-
ditions, Q-learning and SARSA are guaranteed to converge to the true Q-
values [29,37]. In practice, a finite number of experiences is usually sufficient
to generate near-optimal behaviour.

From an estimated Q-function, an agent can easily derive a greedy determin-
istic policy π:

π(s) = arg max
a

Q̂(s, a)

If the estimates have converged to the optimal Q-values Q∗, then this formula
generates an optimal policy.

Since an agent typically needs to sufficiently explore the state-action space in
order to find optimal behaviour (infinitely often in the case of Q-learning), it is
in most cases insufficient to just use the greedy policy derived from the agent’s
estimates to generate interactions with the environment. That is because initial
underestimation of the quality of actions might lead the agent to always select the
first action it tries, because it yielded a higher return than expected and than
estimated for the other actions. This results in the agent ceasing exploration
prematurely, and the value function converging to a local optimum. Instead of
always using the greedy policy with respect to the estimates to select actions,
it is therefore often advisable to inject stochasticity into the policy to generate
the necessary exploration. One way is to take a random action at every time-
step with probability ε. This ensures that every reachable state-action pair has
a non-zero visitation probability, irrespective of the estimated Q-values at that
time. Let ξ ∈ [0, 1] be a randomly drawn real number:

π(s) =
{

a random action if ξ < ε

arg maxa Q̂(s, a) otherwise

This is called ε-greedy action selection.
Another popular approach is softmax action selection, which determines the

probability of every action based on the relative magnitude of the actions’ esti-
mates:

π(s, a) =
e

Q(s,a)
τ

∑
a′ e

Q(s,a′)
τ
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The ‘temperature’ parameter τ determines how random (high τ) or greedy (low
τ) action selection is. Actions with higher estimated Q-values will have relatively
higher probabilities of being selected, and actions with lower estimated Q-values
will have proportionally lower probabilities.

Defining a reward function requires some experience, however coming up with
a reward function is often quite straightforward. Consider for example the case
where we want an RL agent to find its way in unknown maze. Then we can
give a reward of say +100 when it reaches its goal and 0 otherwise. Similarly,
it we want the agent to learn to play chess, then we reward it with, e.g. +100
when it enters a winning state, −100 when it losses and 0 for all other states.
Reward functions are not unique, consider for example the well known cart-pole
problem. We can give the agent a reward of +1 at each time step it keeps the
system under control, as such the agent will try to keep the system under control
as long as possible, in order to collect as many +1’s as possible. Another way to
express the same goals, is to reward the agent with a 0 and only when it fails,
punishing it with a −1, combined with a discount factor γ strictly smaller than
1, this results in a reward of −1 × γt, with t the time step of failure.

5 Function Approximation and Eligibility Traces

The basic versions of the algorithms described above are defined for discrete
state-action spaces. They use a simple table to store the Q estimates: one entry
for every possible state-action pair. Since many practical reinforcement learn-
ing problems have very large and/or continuous state spaces,3 basic tabular
learning methods are impractical, due to the sheer size of storage required, or
even unusable, due to a table’s inherent inability to faithfully represent continu-
ous spaces. Therefore, function approximation techniques are required to render
the learning problem tractable. Many different approximators exist, with deep
neural networks being currently very much in vogue [20,28]. We introduce here a
more basic and common function approximator, called tile-coding [1]. It is a lin-
ear approximator which overlays the state space with multiple randomly-offset,
axis-parallel tilings. See Fig. 2 for an illustration. This allows for a discretization
of the state-space, while the overlapping tilings guarantee a certain degree of
generalization. The Q-function can be approximated by learning weights that
map the tiles activated by the current state s and action a to an estimated
Q-value:

Q̂(s, a) = θT φ(s, a)

φ(s, a) is the feature vector representing state-action pair (s, a), i.e., a binary
vector indicating the tiles activated by this state and the action, and θ is the
parameter vector that needs to be learned to approximate the actual Q-function.
This weight vector is updated using an update-rule similar to the one used in
the tabular case:

θ ← θ + αδ

3 Not to speak of continuous action spaces. That is not considered in this paper.
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Fig. 2. An illustration of tile-coding function approximation on a two-dimensional state
space, with two tilings. Figure taken from [35].

Alternatively, instead of discrete tilings, concepts from fuzzy set theory can be
used, with fuzzy sets defined over the state space, and the membership operator
μ(s) used as follows [14,22]:

θ ← θ + αμ(s)δ

This update rule expresses that the more the state belongs to the fuzzy region
described the fuzzy set, the more that sample is relevant for updating the Q-
value associated to that region. Action selection techniques as described above
can still be applied by combining the selected actions for each of the regions by
weighting them according to the state membership.

A last commonly used mechanism in temporal difference reinforcement learn-
ing is called eligibility traces. Eligibility traces [17] are records of past occurrences
of state-action pairs. These give a sense of how ‘long ago’ a given action was
taken in a given state. They can be used to propagate reward further into the
past (n-step) than the algorithms discussed until now do (one step). Using eli-
gibility traces, not only the Q-value of the currently observed state-action pair
is updated, but also those of past state-action pairs, inversely proportional to
the time since they were experienced. Concretely, a (replacing) eligibility trace
e(s, a) for state s and action a is updated as follows [30]:

e(s, a) ←
{

1 s = st, a = at

γλe(s, a) otherwise

It is set to 1 if (s, a) is currently observed, and otherwise it is decayed by γλ, with
0 ≤ λ ≤ 1 the eligibility trace decay parameter. Higher λ results in rewards being
propagated further into the past. This eligibility trace update is performed at
every step, thus making traces decay over time. The eligibility traces are included
as a vector e in the Q update rule as follows:

θ ← θ + αeδ
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6 Sample Complexity

As in general machine learning, sample complexity is important in reinforcement
learning. Sample complexity represents the number of environment (s, a, s′, r)
samples an agent requires to perform a task well. Obtaining samples usually
carries a cost, often greater than just the computational cost associated with
processing the sample. Making a robot spend hours, days and weeks to learn a
task is very costly. It takes a lot of electricity, several engineers to attend to the
robot, and physical space for the robot to execute the task, none of which are
cheap to obtain.

Therefore, one of the primary goals of reinforcement learning algorithms,
besides convergence and (near-) optimality, is an efficient use of samples. The less
samples an algorithm requires to achieve some desirable level of behaviour, the
better. In general, there is an interplay between, setting of the learning rate, the
value of the discount factor, the exploration strategy and the initialisation of e.g.
the Q-values. Also the state description and the kind of function approximator
plays a role in the learning performance. While the theoretical frame work for
RL is the Markov decision processes, one can state that there is a graceful
degradation, meaning the less Markovian the problem is (as perceived by the
agent), the more carefully the exploration needs to be. This is especially the
case in Multi-agent settings see Sect. 9.

Broadly speaking, researchers take either one of two approaches to reduce
the number of samples an agent requires. They either build algorithms and
techniques that inherently require less samples (one of the first algorithms of
this kind was Dyna-Q [33]4, or they use some prior/external knowledge to bias
the agent. Some argue that the former is superior to the latter, as it is the more
general approach [32]. Yet, we believe that both will always be intertwined. One
can see this for example in the success of AlphaGo [28], which definitely is a
great example of new algorithms using their samples in a better way, yet still it
required a great deal of human demonstrations to work well. One of the popular
ways to include such external knowledge is through reward shaping.

7 Reward Shaping

The modern version of reward shaping, a technique with roots in behavioural
psychology [31], provides a learning agent with extra intermediate rewards, much
like a dog trainer would reward a dog for completing part of a task. This extra
reward can enrich a sparse base reward signal (for example a signal that only
gives a non-zero feedback when the agent reaches the goal), providing the agent
with useful gradient information. This shaping reward F is added to the envi-
ronment’s reward R to create a new composite reward signal that the agent uses
for learning:
4 Dyna-Q combines Q-learning with learning a transition model. This (approximate)

model is then used generated simulated samples for the Q-learner. Real life sample
and simulated samples can be arbitrarily inter-twined. This principled is also referred
to as planning in an RL context.
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RF (s, a, s′) = R(s, a, s′) + F (s, a, s′)

Of course, since the reward function defines the task, modifying the reward
function may modify the total order over policies, and make the agent converge
to suboptimal policies (with respect to the environment’s original reward).

If we define a potential function Φ : S → R over the state space, and take F
as the difference between the new and old states’ potential, Ng et al. proved that
the total order over policies remains unchanged, and convergence guarantees are
preserved [21]:

F (s, a, s′) = γΦ(s′) − Φ(s) (1)

Prior knowledge can be incorporated by defining the potential function Φ
accordingly.

The definition of F and Φ was extended by [11,16,46] to include actions and
timesteps, allowing for the incorporation of behavioural knowledge that reflects
the quality of actions as well as states, and allowing the shaping to change over
time:

F (s, a, t, s′, a′, t′) = γΦ(s′, a′, t′) − Φ(s, a, t)

This extension also preserves the total order over policies and therefore does
not change the task, given Ng’s original assumptions. Harutyunyan et al. [16]
use this result to show how any reward function R† can be transformed into
a potential-based shaping function, by learning a secondary Q-function Φ† in
parallel on the negation of R†, and using that to perform dynamic shaping on
the main reward R.

Many different types of knowledge can be used to bias a learning agent,
ranging from expert knowledge [12] and human demonstrations [9] to knowledge
transferred from a previous task [36] and on-line teacher advice [18].

How this different techniques relate to each other is discussed in the Ph.D.
of Tim Brys5

8 Multi-objective Reinforcement Learning

Multi-objective reinforcement learning [24] (MORL) is a generalization of stan-
dard single-objective reinforcement learning, with the environment formulated
as a multi-objective MDP, or MOMDP 〈S,A, T, γ,R〉. The difference with the
single-objective case is the reward function. Instead of returning a scalar value,
it returns a vector of scalars, one for each of the m objectives:

R(s, a, s′) = [R1(s, a, s′), . . . , Rm(s, a, s′)]

Policies are in this case evaluated by their expected vector returns Qπ:

Qπ(s, a) = [Qπ
1 (s, a), . . . , Qπ

m(s, a)]

=

[

E
{∑∞

k=0 γkR1(st+k, at+k, st+k+1)|st = s, at = a
}

, . . . ,

E
{∑∞

k=0 γkRm(st+k, at+k, st+k+1)|st = s, at = a
}

]

5 To appear, will be available online at ai.vub.ac.be.
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Since there are multiple (possibly conflicting) signals to optimize, there is typi-
cally no total order over policies. Policies may be incomparable, i.e., the first is
better on one objective while the second is better according to another objec-
tive, and thus the notion of optimality has to be redefined. A policy π1 is said
to strictly Pareto dominate another policy π2, i.e., π1 	 π2, if for each objective,
π1 performs at least as well as π2, and it performs strictly better on at least
one objective. The set of non-dominated policies is referred to as the Pareto
optimal set or Pareto front. The goal in multi-objective reinforcement learning,
and multi-objective optimization in general, is either to find a Pareto optimal
solution, or to approximate the whole set of Pareto optimal solutions.

With a multi-objective variant of Q-learning, Q-values for each objective can
be learned in parallel, stored as Q-vectors [13,41]:

Q̂(s, a) ← Q̂(s, a) + αδ

δi = Ri(s, a, s′) + γ max
a′

Q̂i(s′, a′) − Q̂i(s, a)

The most common approach to derive a policy from these estimates is to
calculate a linear scalarization, or weighted sum based on the estimated Q-
vectors and a weight vector w [24,38,41]:

π(s) = arg max
a

wT Q̂(s, a)

The weight vector determines which trade-off solutions are preferred, although
setting these weights a priori to achieve a particular trade-off is hard and non-
intuitive [10], often requiring significant amounts of parameter tuning. Further-
more, because linear scalarization is a convex combination method, only solutions
on convex parts of the Pareto-front can be found [39].

Algorithms that learn multiple trade-offs at the same time (multi-policy),
and use operators that ensure access to both convex and concave parts of the
Pareto-front are therefore very important. Only a restricted number of multi-
policy MORL algorithms have been proposed so far. For instance, Barrett and
Narayanan [3] propose the Convex Hull Value Iteration (CHVI) algorithm. From
batch data, CHVI extracts and computes every linear combination of the objec-
tives in order to obtain all deterministic optimal policies. As the algorithm relies
on linear combinations, only policies on the convex hull are learned. The most
computationally expensive operator is the procedure to compute and combine
the convex hulls in the convex-hull version of the Bellman equation. Lizotte et
al. [19] reduce the asymptotic space and time complexity of the bootstrapping
rule by learning several value functions corresponding to different weight vectors
using a piecewise linear spline representation. Wang and Sebag [43] propose a
multi-objective Monte Carlo Tree Search (MO-MCTS) method to learn a set of
solutions. The algorithm performs tree traversals by selecting the most promising
actions. The upper confidence bounds of these actions are scalarized by apply-
ing the hypervolume indicator on the combination of their estimates and the set
of Pareto optimal policies computed so far. Hence, a scalarized multi-objective
value function is constructed that eases the process of selecting an action with
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vectorial estimates. Finally, Pareto Q-Learning is to the best of our knowledge
the only temporal-difference based multi-policy MORL algorithm [42]. It uses the
Pareto dominance operator to selection actions, thus allowing for policies in con-
cave areas of the Pareto front, and learns sets of Q-values by separately learning
immediate rewards and expected future discounted rewards. It has been shown
to be more sample efficient compared to for example MO-MCTS on a typical
benchmark problem [40].

9 Multi-agent Reinforcement Learning

So far we have discussed approaches for single agent settings. However, when
multiple learners simultaneously apply reinforcement learning in a shared envi-
ronment, the traditional approaches often fail.

In a multi-agent setting, the assumptions that are needed to guarantee con-
vergence, are often violated. Already in the most basic case where agents share
a stationary environment and need to learn a strategy for a single interaction,
many new complexities arise. These are mainly due to the fact that the agents
are learning simultaneously and therefore the non-determinism in the reward
signal might not only be due to the stochasticity of the environment, but also
due to the actions taken by the other agents. Despite the added complexity, a
real need for multi-agent systems exists. Often systems are inherently decentral-
ized, and a central, single agent learning approach is not feasible because that
would require too many resources or communication overhead. Examples of such
systems are multi-robot set-ups, decentralized network routing, distributed load-
balancing, electronic auctions, smart grids and traffic control. Depending on the
characteristics of the system different multi-agent RL techniques might be more
appropriate. The settings characteristics are for instance, whether the agents
can observe each others actions or whether these actions are not observable by
the other agents or only partially, whether the agents take their actions synchro-
nously at fixed time steps or if they act asynchronously, whether the interactions
are frequent or sparse, whether the rewards follow the actions instantaneously or
are delayed (as for instance in queueing systems) and whether the agents have
common or conflicting interests. In general, one can state that in a multi-agent
setting, exploration is a very crucial aspect to make the reinforcement learning
approach perform well. More precisely, exploration should be limited to allow
the agent to differ some how between noise due to the environment and noise
due the presence of other agents. Because of this, policy iteration techniques are
interesting candidates in a Multi-agent Reinforcement Learning (MARL) set-
ting, however value-iteration methods with specific exploration strategies have
also been successfully applied. In case the agents have conflicting interests, the
additional problem of the solution concept arises. As the agents have conflicting
goals, it is no longer obvious what the solution of the system should be and
where Game Theory becomes relevant. We refer the reader to [23] for a more in
depth discussion on MARL. A recent paper by Bloembergen et al. [7], provides
an overview of the dynamics of MORL techniques based on evolutionary game
theory.
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10 Conclusion

This paper gave a brief introduction to reinforcement learning basics, and some
more recent extensions such as Multi-agent reinforcement learning and Multi-
criteria reinforcement learning. We also gave some pointers to approaches to
reduce the sample complexity, where reward shaping is a safe way to incorporated
domain knowledge which recently received quite a lot of attention. We refer the
reader to [33] for learning more about the basics of reinforcement learning and
to [45] for an overview of some more advanced reinforcement learning algorithms.
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Abstract. Belief graphical models, especially the probabilistic ones,
have now a long history and they are successfully used in a wide range of
tasks and applications. Thanks to independence relations, they allow a
compact representation of complex and uncertain information and they
greatly simplify the critical tasks of information elicitation, representa-
tion and inference. Many alternative belief graphical models have been
proposed to overcome the limits of probability theory and take advantage
of the decomposability property. This paper surveys most of the works
dealing with belief graphical models based on possibility theory, an alter-
native uncertainty theory particularly suited for dealing with incomplete
and qualitative uncertain knowledge.

Keywords: Belief graphical models · Possibility theory · Modeling and
reasoning under uncertainty

1 Introduction

Since the classical probability theory, many uncertainty frameworks have been
developed, essentially since the sixties. Such alternative uncertainty theories,
often generalizing probability theory, allow to model and reason with different
forms of uncertain information such as qualitative information, imprecise knowl-
edge and so on. However, in order to use such settings in real world applications,
many issues have to be solved such as the compactness of the representation, the
easiness of elicitation from an expert, learning from empirical data, the computa-
tional efficiency of the reasoning tasks, etc. Among the compact representations
of uncertain information, we mention in particular two categories. The first one
is the family of weighted logics such as possibilistic logic [35,49] and probabilis-
tic logic [53] where formulas (sets of interpretations) are attached with weights
assessing their certainty/priority. The other popular category of compact repre-
sentations of uncertain information is belief graphical models. These latter are
widely used in practice and popularized especially in academia with the devel-
opment of several software platforms dedicated to modeling and reasoning with
Bayesian networks and influence diagrams.

The key idea of belief graphical models is to rely on the concept of indepen-
dence to factorize a large joint uncertain representation over a set of variables in
c© Springer International Publishing Switzerland 2016
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the form of a combination of smaller size local representations. Such a factoriza-
tion brings many advantages in terms of compactness, elicitation and inference.
A graphical model is first of all a graph displaying the independence relations
existing among the variables. It is also a modular representation making it eas-
ier to elicit and draw inferences. Possibilistic networks attempt to combine the
advantages of graphical representations and possibility theory, better suited for
modeling qualitative and partial knowledge.

This paper surveys the main works on possibilistic networks since their begin-
ning. It focuses on the main contributions and attempts to highlight the sim-
ilarities but also and especially the main differences between possibilistic net-
works and probabilistic models from which they are mainly inspired. The paper
presents in Sect. 2 the fundamental concept of independence which is tightly
linked with the notion of conditioning. The paper then presents the syntax and
semantics of possibilistic networks in Sect. 3. Section 4 is devoted to reasoning
tasks and inference issues. Learning and elicitation of possibilistic networks are
reviewed in Sect. 5. The main extensions of possibilistic networks are presented
in Sect. 6 while Sect. 7 presents few applications based on possibilistic networks.

2 Independence Relations and Conditioning

Independence relations are fundamental as they allow to factorize joint uncer-
tainty distributions. Such relations are also heavily exploited by inference algo-
rithms to efficiently answer queries. As stressed in the following, the concept of
event and variable independence is closely related to the one of conditioning.

2.1 Conditioning in a Possibilistic Setting

By conditioning, it is meant updating the current knowledge encoded by a possi-
bility distribution π over a universe of discourse Ω when a completely sure event
φ ⊆ Ω (evidence or observation for instance) is obtained. In the possibilistic
setting, there are several definitions of conditioning [32,38,45,51]. This is due
to the different views of the possibilistic scale [0, 1] used to asses the uncer-
tainty. Hence, different interpretations result in different conjunction operators
that are used to perform the conditioning task (eg. product, min, �Lukasiewicz
t-norm). Two major definitions of possibilistic conditioning are however used in
the literature. The first one is called product-based conditioning (also known as
possibilistic Dempster rule of conditioning [57]) stems from a quantitative view of
the possibilistic scale. This semantics views a possibility distribution as a special
plausibility function in the context of Dempster-Shafer theory. More precisely,
a possibility distribution π corresponds to a consonant (nested) belief function.
Hence, the underlying conditioning meets Dempster rule of conditioning [57] and
it is formally defined as follows (it is assumed that Π(φ) >0):

π(w|pφ) =

{
π(w)
Π(φ)

if w ∈ φ;

0 otherwise.
(1)
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In the qualitative setting, the possibilistic scale is ordinal and only the relative
order of events matters. Hisdal [45] argued that a conditioning operator in such
a qualitative setting should satisfy the condition:

∀ω ∈ φ, π(ω) = min(π(ω|φ),Π(φ)).

In [33], the authors proposed to select the least specific conditional possibil-
ity distribution satisfying this condition, leading to the well-known min-based
conditioning operator, defined as follows:

π(w|mφ) =

⎧⎨
⎩

1 if π(w) = Π(φ) and w ∈ φ;
π(w) if π(w) < Π(φ) and w ∈ φ;
0 otherwise.

(2)

While there are many similarities between the quantitative possibilistic and the
probabilistic frameworks, the qualitative one is significantly different. Note that
the two above definitions of conditioning satisfy the condition: ∀ω ∈ φ, π(ω) =
π(ω|φ) ⊗ Π(φ) where ⊗ is the used conjunction operator and can be either the
product or min-based operator.

2.2 Independence in a Possibilistic Setting

Intuitively, an event φ ⊆ Ω is said to be independent of the event ψ ⊆ Ω in the
context of ϕ ⊆ Ω if given ϕ, knowing ψ is irrelevant and does not provide any
extra information about φ (namely, if we know ϕ, further learning ψ does not
change what we think about φ). Let us denote in the rest of this paper such a
relation by φ ⊥ ψ|ϕ. This definition can be straightforwardly extended to finite
sets of variables as follows: Let X, Y and Z be three disjoint sets of variables and
having the finite domains DX , DY and DZ respectively. X is said to be inde-
pendent of Y conditionally to Z denoted X⊥Y |Z iff ∀xi∈DX , ∀yj∈DY , ∀zk∈DZ

the statement xi⊥yj |zk holds. The main properties of conditional independence
relations are (here X, Y , Z and W are disjoints sets of variables):

– Symmetry: X⊥Y |Z iff Y ⊥X|Z.
– Decomposition: X⊥Y ∪W |Z if X⊥Y |Z and X⊥W |Z.
– Weak union: X⊥Y ∪W |Z if X⊥W |Z∪Y .
– Contraction: X⊥Y |Z and X⊥W |Z∪Y if X ⊥ W∪Y |Z.
– Intersection: X⊥Y |Z∪W and X⊥W |Z∪Y if X⊥W∪Y |Z.

Independence relations fulfilling Symmetry, Decomposition, Weak union and
Contraction properties are called semi-graphoids. If in addition the independence
relation satisfies the Intersection property, then it is said graphoid. Note that
probabilistic independence relationships are graphoids and they can be encoded
by means of directed acyclic graphs [55]. Of course, the notions of independence,
stochastic correlation and causality are strongly related. For instance, indepen-
dence relations imply lack of causality but lack of independence does not mean
causality. The independence notion along with conditioning in the possibilistic
setting have been addressed in many works [2,3,22,33,37,38,45,51]. The main
definitions of possibilistic independence are:
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– No-interactivity: This concept proposed by Zadeh [59] can be stated as
follows:

Definition 1. Let X,Y and Z be three disjoint sets of variables and having
the domains DX ,DY and DZ respectively. X is said to not interact with Y
conditionally to Z and denoted X ⊥ Y |Z iff ∀xi∈DX , yj∈DY , zk∈DZ ,

Π(X = xi, Y = yj |Z = zk) = min(Π(X = xi|Z = zk),Π(Y = yj |Z = zk)).

– Conditional independence: Proposed in [38], this definition of indepen-
dence can be stated as follows:

Definition 2. Let X, Y and Z be three disjoint sets of variables and having
the domains DX , DY and DZ respectively. X is said to be independent of Y
conditionally to Z iff ∀xi∈DX , yj∈DY , zk∈DZ ,

Π(X = xi|Y = yj , Z = zk) = Π(X = xi|Z = zk) and

Π(Y = yj |X = xi, Z = zk) = Π(Y = yj |Z = zk)

Note that in Definition 2, the statement Π(X = xi|Y = yj , Z = zk) = Π(X =
xi|Z = zk) does not imply Π(Y = yj |X = xi, Z = zk) = Π(Y = yj |Z = zk)
in a min-based possibilistic setting. The conditional independence relations of
Definition 2 are graphoids [37,38]. Note also that conditional independence rela-
tions of Definition 2 are stronger than no-interactivity relations of Definition 1,
namely conditional independence implies no-interactivity but the converse is not
guaranteed.

3 Possibilistic Networks: Syntax and Semantics

From a representation point of view, possibilistic graphical models share most
of their concepts with probabilistic graphical models and differ only regarding
the assessment of uncertainty which is based on possibility theory instead of
probability theory.

Definition 3. A possibilistic network PN =< G,Θ > is specified by:

(i) A graphical component G =< V,E > consisting of a directed acyclic graph
(DAG) where vertices V represent the variables and edges E encode con-
ditional independence relationships between variables. Each variable Ai∈V
is associated with a finite domain DAi

containing the values ai taken by a
variable Ai.

(ii) A numerical component Θ = {θ1, . . . , θn} consisting in a set of local pos-
sibility tables θi = π(Ai|par(Ai)) for each variable Ai in the context of its
parents par(Ai).

Note that all the local possibility distributions must be normalized, namely ∀i =
1 . . . n, for each parent context par(ai), maxai∈DAi

(π(ai | par(ai)) = 1.
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A B

C D

A π(A)
T 1
F .4

B π(B)
T .1
F 1

C A π(C|A)
T T .3
F T 1
T F .2
F F 1

D B A π(D|AB)
T T T .4
F T T 1
T T F .2
F T F 1
T F T 1
F F T 1
T F F 1
F F F .1

Fig. 1. Example of a possibilistic network

Example 1. Figure 1 gives an example of a possibilistic network over four
Boolean variables A, B, C and D. The structure of G encodes a set of inde-
pendence relationships. For example, variable C is independent of B and D in
the context of A.

In the possibilistic setting, the joint possibility distribution is factorized using
the following possibilistic counterpart of the chain rule:

π(a1, a2, . . . , an) = ⊗n
i=1(π(ai|par(ai))). (3)

where ⊗ denotes the product or the min-based operator depending on the quan-
titative or the qualitative interpretation of the possibilistic scale.

Example 2 (Example 1 cont’d). In the network of Fig. 1, the joint possibility
distribution factorizes as follows:

π(A,B,C,D) = ⊗(π(A), π(B), π(C|A), π(D|AB)).

While the size of a joint possibility distribution is exponential in the number of
variables, the size of a possibilistic network is exponential in its treewidth which
denotes the largest number of parents of the variables in the network. Indeed, the
size of the network depends on the size of local distributions which is exponential
in the treewidth. According to the topology of the DAG, we distinguish three
main possibilistic networks:

– Trees: In a tree, (i) there is at most one (undirected) path between each pair
of nodes and (ii) a node can have at most one parent.

– Polytrees: In a polytree, (i) there is at most one (undirected) path between
each pair of nodes and (ii) a node can have more than one parent.

– Multiply Connected: Many paths are allowed between pairs of variables as
long as the structured remains a DAG (Fig. 2).

As mentioned in the following sections, the topology of a network (which
encodes the independence relations) is fundamental for the propagation process
in inference algorithms.
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Fig. 2. Main topologies of belief graphical models

4 Possibilistic Networks: Reasoning and Inference

A possibilistic network models the available information regarding the problem
under study. Once the model built, it can be used for answering queries and
performing different types of reasoning tasks.

4.1 Main Reasoning Tasks

A belief graphical model, be it possibilistic or not, provides two kinds of informa-
tion: (i) graphical qualitative information allowing to answer any query regarding
the independence of a set of variables X⊆V with Y ⊆V conditionally to Z⊆V . In
order to answer such queries, a generalized notion of conditional independence,
called d-separation allows to determine for each subset of variables X the subset
of variables Z which renders it independent of all the remaining variables. This
notion of d-separation is dealt with in a possibilistic setting for instance in [16].
Regarding the numerical information encoded by a possibilistic network, there
are three main query types:

– Compute the possibility/necessity degree of an event q of interest given an
evidence o (o is an instance of observation variables O⊆V while q is an instance
of query variables Q⊆V ).

– Compute the most plausible explanation (MPE). Given an observation o of
a subset of variables O⊆V , the objective is to compute the most plausible
instantiation q of all the remaining (unobserved) query variables Q⊆V . Note
that here O∪Q = V and Q∩O = ∅.

– Compute the maximum a posteriori (MAP ). Given some observations o of the
values of some variables O ⊆ V , the objective is to compute the most plausible
instantiation q of the query variables Q ⊆ V . In MAP queries, Q ∩ O = ∅.
Note that MPE queries are a special case of MAP ones.

It is important to note that while the complexity results regarding inference in
probabilistic networks are well-established [27], there is to the best of our knowl-
edge no systematic study of such issues for possibilistic networks (except a study
of complexity in possibilistic influence diagrams [39]). Indeed, there is a kind of
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tacit assumption that the same complexity results hold in the possibilistic set-
ting but there this is not yet formally demonstrated. Actually, some probabilistic
network inference algorithms have been adapted from the probabilistic setting
and seem to show the same complexity.

4.2 Inference Algorithms

Inference in probabilistic models is a hard task in the general case. For instance,
in multiply connected networks, the problem of computing the probability of an
event is PP -Complete, computing MPE queries is NP -complete while comput-
ing MAP queries is NPPP -Complete [27]. Among the first works on inference in
possibilistic graphical models we mention [34] dealing with inference in hyper-
graphs. Most of the works are more or less direct adaptations of probabilistic
networks inference algorithms.

– Variable elimination: This category of algorithms are direct adaptations of
the probabilistic versions. Given a query, the general approach is to eliminate
variables through marginalization and combination operations until reaching
the query variables, then answer the query. Examples of possibilistic elimina-
tion variable algorithms can be found in [16] in the context of possibilistic net-
work classifiers. Such algorithms are efficient only on networks with bounded
treewidth like trees.

– Message passing-like algorithms: Such algorithms, also called sum-product
algorithms are developed for tree-like networks and proceed by a series of
message passing procedures to compute the probability degree of interest [54].
In [19], a possibilistic counterpart of this algorithm is presented.

– Junction tree algorithm: The junction tree algorithm is a well-known and
widely used inference algorithm in Bayesian networks with general structures
[50]. The main idea of the algorithm is to decompose the joint belief distri-
bution into a combination of local potentials (local joint distributions). The
algorithm consists in (i) A set of graphical transformations (moralization and
triangulation) transforming the initial DAG into an undirected graph (tree)
composed of cliques and clusters and (ii) numerical operations (initialization
and stabilization) allowing to integrate the initial local distributions into the
new structure then perform stabilization operation consisting in propagating
marginals in order to guarantee that the marginal distribution relative to a
given variable appearing in two adjacent clusters are the same. A direct adap-
tation of this algorithm in the possibilistic setting can be found in [18]. In [11],
an extension of the junction tree algorithm to the interval-based possibilistic
setting and to three-valued possibilistic setting [8] are proposed.

– Compilation-based algorithms: Inference based on compilation-based
algorithms consists in first encoding the uncertain information represented
by the graphical model into a target language then perform inference in the
target language. For inference with Bayesian networks, the graphical model
is first encoded in the form of a logical knowledge base, then this latter is
encoded in an appropriate encoding accepting the requests that are made for
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the initial probabilistic model. Probabilistic compilation-based methods are
proposed in [26] and some possibilistic counterparts are studied in [5].

In addition to the above works, an anytime algorithm for inference in min-
based possibilistic networks is proposed in [7]. Unlike the junction tree app-
roach which transforms the initial graph, the proposed algorithm in [7] only
propagates the information present in each node to ensure that the informa-
tion present in each local table is coherent with the information at the parents
of that node. An approximate inference algorithm for qualitative possibilistic
networks in proposed in [1]. This algorithm is based on a possibilistic adapta-
tion of the probabilistic loopy belief propagation algorithm. In [9], possibilistic
networks are encoded in the form of possibilistic logics bases (the two represen-
tations are semantically equivalent and encode a possibility distribution) and
inferences could be achieved using possibilistic logic inference rules and mecha-
nisms. Possibilistic networks could be seen as approximate models of some impre-
cise probabilistic models. In [13], an approach based on probability-possibility
transformations is proposed to perform approximate MAP inference in credal
networks where MAP inference is very hard [27]. Reasoning under uncertain
inputs in possibilistic networks is dealt with in [17] where possibilistic counter-
parts of Pearl’s methods of virtual evidence are discussed. In [15], the authors
dealt with handling interventions in causal possibilistic networks.

5 Possibilistic Networks: Learning and Elicitation

As probabilistic graphical models, possibilistic ones either model the subjective
knowledge of an agent or represent the knowledge learnt from empirical data or
a combination of subjective beliefs and empirical data.

5.1 Elicitation of Possibilistic Networks

When modeling the epistemic uncertainty of an agent about a given problem,
the process starts with defining the variables of interest. Then the second step
consists in eliciting the graphical structure of the model. This is usually dealt
with as eliciting direct cause-effect relationships or simply eliciting possibilistic
independence relations. More generally, this task requires to list the conditional
independence relationships then to encode them by a directed acyclic graph as
in probabilistic models. The approaches developed in the probabilistic setting
[29] can as well suit the possibilistic one.

Once the graph fixed, there comes the tricky and sometimes tedious step of
filling local tables. In fact, there is need to assign for each value of each variable in
every context of its parents a possibility degree in agreement with the quantita-
tive or qualitative semantics of the possibilistic scale. In the literature, different
methods for building possibility distributions can be used [36]. In an ordinal
setting, the expert could only provide an ordering of the values of the variables
to be elicited in each context of its parents. Then such an ordering is encoded
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numerically using values within the scale [0,1]. Note that encoding numerically
ordinal information can yield different encodings hence different joint distrib-
utions especially if the variables have different domain sizes. This problem is
due to the fact that when modeling with qualitative possibilistic networks, the
information elicitation process proceeds locally (for each variable conditionally
to its parents) but the use of the same unit scale implies some commensurability.
Approaches based on symbolic uncertainty weights could help solving this issue
[25]. For eliciting causal possibilistic networks, an elicitation approach is pro-
posed in [31]. This approach offers noisy gates that better capture the insights
and intuitions of the expert. Indeed, an expert is often more comfortable when
specifying a relative order on the possible causes that when he has to precisely
quantify the causal strength of cause-effect relationships.

5.2 Learning Possibilistic Networks from Data

As for learning Bayesian networks from data, learning possibilistic ones comes
down to derive the structure and the local possibility tables of each variable
from a dataset. Learning possibilistic networks makes sense within quantitative
interpretations of possibility distributions and it is suitable especially in case of
learning with imprecise data, scarce datasets and learning from datasets with
missing values.

Structure Learning. Structure learning aims to infer from the data the best
DAG encoding the conditional independences. Similar to learning the structure
of Bayesian networks, two main approaches are used for possibilistic networks
structure learning:

– Constraint-based methods: The principle of this approach is to detect condi-
tional independence relations I by performing a set of tests on the training
dataset then try to find a DAG that satisfies I seen as a set of constraints.
A constraint-based possibilistic network structure learning algorithm called
POSSCAUSE is proposed in [56]. This algorithm is based on a similarity mea-
sure between possibility distributions to check conditional independences. The
main disadvantage of constraint-based methods is that the search space is very
large even for a small number of variables.

– Score-based methods: Such methods don’t explore the whole search space to
find the best structure fitting the data. They are based on heuristics that
start with a completely disconnected (or completely connected) DAG. At each
iteration, the heuristic adds (or removes) an arc and evaluates the quality
of the new DAGs with respect to the training dataset. The best DAG at
each iteration is selected using a score function. The key issues of score-based
methods are the scoring functions and the heuristics used to search the DAG
space. For the heuristics, one can make use of the ones defined for Bayesian
networks (eg. K2 algorithm, simulated annealing, etc.). However, for the score
functions, they are assumed to assess how much a given structure captures
the independence relations in the training sample. Examples of possibility
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theory-based scoring functions are possibilistic network non-specificity [20] and
specificity gain [56].

Some structure learning approaches [40], called hybrid, attempt to combine the
constraint-based and the score-based approaches for instance to make use of the
conditional independence tests in the heuristics used in score-based approaches.

Parameter Learning. Parameter learning is needed to fill the local tables
once the structure is learnt from data or elicited by an expert. For possibilistic
networks, parameter learning from data consists basically in deriving conditional
local possibility distributions from data. There are two main approaches for
learning the parameters [43]:

(i) Transformation-based approach: It consists in first learning probability
distributions from data then transforming them into possibilistic ones
[12,43,58]. Many probability-possibility transformations exist [30,48,59].
Among these transformations, the optimal transformation [30] transforms
a probability distribution p into a possibilistic one π and guarantees that
π is the most specific one that is consistent and preserving the order of
interpretations in p. In case of imprecise probability distributions (generally
learnt from imprecise data or datasets with missing data), one can also use
probability - possibility transformations turning for instance an interval-
based probability distribution into a possibilistic one. The transformation
proposed in [52] allows to find a possibility distribution dominating all the
probability measures defined by probability intervals. In [28], the authors
show that any upper generalized cumulative distribution built from one
linear extension is a possibility distribution dominating all the probability
distributions that are compatible with the interval-based probability distri-
bution.

(ii) Possibilistic-based approach: Such approaches stem from some quantitative
interpretations of possibility distributions. For instance, a possibility distri-
bution is viewed as a contour function of a consonant belief function [57].
In [41], possibility distributions are derived from data samples using the
non-specificity concept. In [47], the author propose a method for computing
possibility distributions from imprecise datasets (namely datasets contain-
ing some set-valued outcomes) based on the frequencies of the values. For
a recent survey on possibilistic network parameter learning, please refer
to [43].

It is clear that learning a possibilistic network by first learning a Bayesian net-
work then turning it into a possibilistic network by transforming the local prob-
ability tables into possibilistic ones (as done in [12,13,58]) may be questionable
regarding the fact that possibilistic independence and probabilistic one do not
capture exactly the same information. A software for inducing possibilistic net-
works called INeS is available at http://www.borgelt.net/ines.html.

http://www.borgelt.net/ines.html
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6 Possibilistic Networks: Main Extensions

In this section, we briefly present the main extensions of possibilistic graphical
models.

– Possibilistic Influence diagrams: Influence diagrams [46] are probabilistic
models for modeling and decision making under uncertainty. They have three
kinds of nodes: chance nodes (corresponding to the variables as in Bayesian
networks), decision nodes (representing the decisions and actions that can
be chosen) and utility nodes (assessing the gain or satisfaction provided by
each taken decision). Possibilistic influence diagrams are proposed [39,42].
They depart from the probabilistic models regarding the ordinal uncertain
information and ordinal preferences instead of additive utilities.

– Hybrid possibilistic networks: The main difference of this formalism [14]
with standard possibilistic networks relies on the use of possibilistic logic to
compactly encode local possibility distributions. In addition to a more compact
representation, an inference algorithm adapting the junction tree approach is
proposed for hybrid networks and it is shown to be more efficient than standard
propagation algorithms.

– Interval-based possibilistic networks: Possibilistic networks have been
extended to the interval-based setting in [11] in order to associate intervals of
possible values instead of single values to assess uncertainty. This allows to
compactly encode and reason with epistemic uncertainty and imprecise beliefs
as well as with multiple expert knowledge. Interestingly enough, computing
the uncertainty bounds of any event can be computed without extra compu-
tational cost with respect to standard possibilistic networks.

– Three-valued possibilistic networks: This extension [8] uses only three
possibility levels to encode uncertain information: 1 for fully possible events,
0 for impossible events while a third value is used to encode imprecise or
conflicting information. A direct adaptation of the junction tree algorithm for
such networks is also proposed.

– Possibilistic preference networks: Encoding preferences with graphical
formalisms is very popular both in quantitative and qualitative settings. In
[4], a new setting based on possibilistic networks for modeling and reason-
ing with conditional preference statements is introduced. While allowing to
encode and reason with conditional preferences, this setting overcomes some
of the limitations of the CP-net formalism. An approach combining prefer-
ential possibilistic networks and ontological knowledge for preference-based
query answering is proposed in [21].

Other extensions and variants of possibilistic networks are developed for mod-
eling some specific kinds of information such as dynamic possibilistic networks
[44], negated possibilistic networks [10], etc.

7 Possibilistic Networks: Applications

In this section, we briefly describe two applications based on possibilistic
networks.
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– Classification: It is one of the early applications of possibilistic networks.
Classification consists in predicting the value of a (discrete) variable on the
basis of some observations. In terms of inference queries, it is a special case
of MAP queries consisting in computing the most plausible value of the class
variable given the observations. This task has been dealt with in many works
(see for instance [16] for inference issues and [24] for learning possibilistic net-
work classifiers from data). Possibilistic network-based classifiers could pro-
vide an efficient alternative for problems with imprecise and scarce datasets
and datasets with missing values [24]. A software based on naive possibilistic
classifiers in available at http://www.borgelt.net/nposs.html.

– Information retrieval: In [23], an application of possibilistic networks in
an information retrieval application is presented. The particularity of this
approach compared with those based on Bayesian networks for instance, is
the use of two measures (possibility and necessity) to model the relations
documents-terms and query-terms. Using these two measures, the approach
aims to distinguish between informative and non-informative terms in a doc-
ument. Given a query, a given document is considered relevant with respect to
its plausibility (assessed by a conditional possibility degree) and the certainty
(assessed by a conditional necessity degree) that the document is relevant for
the query. The authors provide experimental results carried out on the TREC
benchmarks showing the effectiveness of their approach. A similar approach
in language processing based on possibilistic networks in proposed in [6].

8 Concluding Remarks

This survey attempted to highlight the most important aspects of possibilistic
networks: representation, reasoning and applications. Despite the obvious simi-
larities and the many direct adaptations of probabilistic approaches, it is clear
that possibilistic graphical models offer some advantages over the probabilistic
models especially for modeling and reasoning with qualitative and incomplete
uncertainty. Extensions have been proposed for some types of information such
as conditional preference statements. Some possibility theory particularities may
offer interesting gains in inference algorithms. For example, in the ordinal possi-
bilistic setting, there may be meaningful differences as stressed in [34] where the
idempotence property of min and max operators benefit to inference algorithms.
To promote the use of possibilistic graphical models, there is a clear need to
develop software tools for modeling and reasoning that can be used by the scien-
tific community and beyond. Moreover, many competitions and challenges have
been organized last years to assess the efficiency of learning and inference algo-
rithms in probabilistic graphical models. Similar events devoted to possibilistic
approaches may help promoting possibilistic graphical models. Other issues need
to be addressed to provide evidence showing that possibilistic networks could be
successfully used in real applications. For instance, a systematic study of com-
plexity issues in possibilistic networks needs to be done. Dealing with continuous
variables which are common in real problems is another issue requiring effective
solutions [24].

http://www.borgelt.net/nposs.html


Possibilistic Graphical Models for Uncertainty Modeling 45

References

1. Ajroud, A., Benferhat, S.: An approximate algorithm for min-based possibilistic
networks. Int. J. Intell. Syst. 29, 615–633 (2014)

2. Amor, N.B., Benferhat, S.: Graphoid properties of qualitative possibilistic inde-
pendence relations. Int. J. Uncertain. Fuzziness Knowl.-Based Syst. 13(1), 59–96
(2005)

3. Amor, N.B., Benferhat, S., Dubois, D., Geffner, H., Prade, H.: Independence in
qualitative uncertainty frameworks. In: KR 2000, Principles of Knowledge Rep-
resentation and Reasoning Proceedings of the Seventh International Conference,
Breckenridge, Colorado, USA, 11–15 April 2000, pp. 235–246 (2000)

4. Amor, N.B., Dubois, D., Gouider, H., Prade, H.: Possibilistic conditional preference
networks. In: Destercke, S., Denoeux, T. (eds.) ECSQARU 2015. LNCS, vol. 9161,
pp. 36–46. Springer, Heidelberg (2015)

5. Ayachi, R., Amor, N.B., Benferhat, S.: Inference using compiled min-based pos-
sibilistic causal networks in the presence of interventions. Fuzzy Sets Syst. 239,
104–136 (2014)

6. Ayed, R., Bounhas, I., Elayeb, B., Evrard, F., Bellamine-Bensaoud, N.: A possibilis-
tic approach for the automatic morphological disambiguation of Arabic texts. In:
International Conference on Software Engineering, Artificial Intelligence, Network-
ing and Parallel/Distributed Computing, Kyoto, Japan. IEEE Computer Society
(2012)

7. Ben Amor, N., Benferhat, S., Mellouli, K.: Anytime propagation algorithm for
min-based possibilistic graphs. Soft Comput. 8, 150–161 (2003)

8. Benferhat, S., Delobelle, J., Tabia, K.: Three-valued possibilistic networks: seman-
tics & inference. In: 2013 IEEE 25th International Conference on Tools with Arti-
ficial Intelligence, Herndon, VA, USA, 4–6 November 2013, pp. 38–45 (2013)

9. Benferhat, S., Dubois, D., Garcia, L., Prade, H.: On the transformation between
possibilistic logic bases and possibilistic causal networks. Int. J. Approximate Rea-
soning 29(2), 135–173 (2002)

10. Benferhat, S., Khellaf, F., Zeddigha, I.: Negated min-based possibilistic networks.
In: Florida Artificial Intelligence Research Society Conference (2016)

11. Benferhat, S., Lagrue, S., Tabia, K.: Interval-based possibilistic networks. In:
Straccia, U., Cal̀ı, A. (eds.) SUM 2014. LNCS, vol. 8720, pp. 37–50. Springer,
Heidelberg (2014)

12. Benferhat, S., Levray, A., Tabia, K.: On the analysis of probability-possibility
transformations: changing operations and graphical models. In: Destercke, S.,
Denoeux, T. (eds.) ECSQARU 2015. LNCS, vol. 9161, pp. 279–289. Springer,
Heidelberg (2015)

13. Benferhat, S., Levray, A., Tabia, K.: Probability-possibility transformations: appli-
cation to credal networks. In: Beierle, C., Dekhtyar, A. (eds.) SUM 2015. LNCS,
vol. 9310, pp. 203–219. Springer, Heidelberg (2015)

14. Benferhat, S., Smaoui, S.: Hybrid possibilistic networks. Int. J. Approx. Reasoning
44(3), 224–243 (2007)

15. Benferhat, S., Smaoui, S.: Inferring interventions in product-based possibilistic
causal networks. Fuzzy Sets Syst. 169(1), 26–50 (2011)

16. Benferhat, S., Tabia, K.: Inference in possibilistic network classifiers under uncer-
tain observations. Ann. Math. Artif. Intell. 64(2–3), 269–309 (2012)

17. Benferhat, S., Tabia, K.: Reasoning with uncertain inputs in possibilistic networks.
In: Principles of Knowledge Representation, Reasoning: Proceedings of the Four-
teenth International Conference, KR 2014, Vienna, Austria, 20–24 July 2014 (2014)



46 K. Tabia

18. Borgelt, C., Gebhardt, J., Kruse, R.: Graphical models. In: Proceedings of Interna-
tional School for the Synthesis of Expert Knowledge (ISSEK 98), pp. 51–68. Wiley
(2002)

19. Borgelt, C., Kruse, R.: Graphical Models - Methods for Data Analysis and Mining.
Wiley, New York (2002)

20. Borgelt, C., Kruse, R.: Learning possibilistic graphical models from data. IEEE
Trans. Fuzzy Syst. 11(2), 159–172 (2003)

21. Borgwardt, S., Fazzinga, B., Lukasiewicz, T., Shrivastava, A., Tifrea-Marciuska, O.:
Preferential query answering over the semantic web with possibilistic networks. In:
Kambhampati, S. (ed.) Proceedings of the 25th International Joint Conference on
Artificial Intelligence, IJCAI 2016, New York, NY, USA, 9–15 July 2016. AAAI
Press (2016)

22. Bouchon-Meunier, B., Coletti, G., Marsala, C.: Independence and possibilistic con-
ditioning. Ann. Math. Artif. Intell. 35(1–4), 107–123 (2002)

23. Boughanem, M., Brini, A., Dubois, D.: Possibilistic networks for information
retrieval. Int. J. Approx. Reasoning 50(7), 957–968 (2009)

24. Bounhas, M., Hamed, M.G., Prade, H., Serrurier, M., Mellouli, K.: Naive possi-
bilistic classifiers for imprecise or uncertain numerical data. Fuzzy Sets Syst. 239,
137–156 (2014)

25. Cayrol, C., Dubois, D., Touazi, F.: Symbolic possibilistic logic: completeness and
inference methods. In: Destercke, S., Denoeux, T. (eds.) ECSQARU 2015. LNCS,
vol. 9161, pp. 485–495. Springer, Berlin (2015)

26. Chavira, M., Darwiche, A.: Compiling bayesian networks with local structure. In:
Proceedings of the 19th International Joint Conference on Artificial Intelligence
(IJCAI), pp. 1306–1312 (2005)

27. De Campos, C.P.: New complexity results for map in bayesian networks. In: Pro-
ceedings of the Twenty-Second International Joint Conference on Artificial Intel-
ligence, IJCAI 2011, vol. 3, pp. 2100–2106. AAAI Press (2011)

28. Destercke, S., Dubois, D., Chojnacki, E.: Transforming probability intervals into
other uncertainty models. In: EUSFLAT 2007 Proceedings, vol. 2, pp. 367–373.
Universitas Ostraviensis, Ostrava (2007)

29. Druzdzel, M.J., Van Der Gaag, L.C.: Elicitation of probabilities for belief net-
works: combining qualitative and quantitative information. In: Proceedings of the
Eleventh Conference on Uncertainty in Artificial Intelligence, UAI 1995, pp. 141–
148. Morgan Kaufmann Publishers Inc., San Francisco (1995)

30. Dubois, D., Foulloy, L., Mauris, G., Prade, H.: Probability-possibility transforma-
tions, triangular fuzzy sets, and probabilistic inequalities. Reliable Comput. 10(4),
273–297 (2004)

31. Dubois, D., Fusco, G., Prade, H., Tettamanzi, A.: Uncertain logical gates in pos-
sibilistic networks. An application to human geography. In: Beierle, C., Dekhtyar,
A. (eds.) SUM 2015. LNCS, vol. 9310, pp. 249–263. Springer, Heidelberg (2015)

32. Dubois, D., Prade, H., Theory, P.: An Approach to Computerized Processing of
Uncertainty. Plenum Press, New York (1988)

33. Dubois, D., Prade, H.: The logical view of conditioning and its application to
possibility and evidence theories. Int. J. Approx. Reasoning 4(1), 23–46 (1990)

34. Dubois, D., Prade, H.: Inference in possibilistic hypergraphs. In: Bouchon-Meunier,
B., Zadeh, L.A., Yager, R.R. (eds.) IPMU 1990. LNCS, vol. 521, pp. 250–259.
Springer, Heidelberg (1991)

35. Dubois, D., Prade, H.: Possibilistic logic: a retrospective and prospective view.
Fuzzy Sets Syst. 144(1), 3–23 (2004)



Possibilistic Graphical Models for Uncertainty Modeling 47

36. Dubois, D., Prade, H.: Practical methods for constructing possibility distributions.
Int. J. Intell. Syst. 31(3), 215–239 (2016)

37. Fonck, P.: Conditional independence in possibility theory. In: Proceedings of the
Tenth International Conference on Uncertainty in Artificial Intelligence, UAI 1994,
pp. 221–226. Morgan Kaufmann Publishers Inc., San Francisco (1994)

38. Fonck, P.: A comparative study of possibilistic conditional independence and lack
of interaction. Int. J. Approximate Reasoning 16(2), 149–171 (1997)

39. Garcia, L., Sabbadin, R.: Complexity results and algorithms for possibilistic influ-
ence diagrams. Artif. Intell. 172(8), 1018–1044 (2008)

40. Gasse, M., Aussem, A., Elghazel, H.: A hybrid algorithm for bayesian network
structure learning with application to multi-label learning. Expert Syst. Appl.
41(15), 6755–6772 (2014)

41. Gebhardt, J., Kruse, R.: Learning possibilistic networks from data. In: Proceedings
5th International Workshop on Artificial Intelligence and Statistics, Fort Laud-
erdale, pp. 233–244 (1996)

42. Guezguez, W., Amor, N.B., Mellouli, K.: Qualitative possibilistic influence dia-
grams based on qualitative possibilistic utilities. Eur. J. Oper. Res. 195(1), 223–
238 (2009)

43. Haddad, M., Leray, P., Amor, N.B.: Learning possibilistic networks from data: a
survey. In: 2015 Conference of the International Fuzzy Systems Association and the
European Society for Fuzzy Logic and Technology (IFSA-EUSFLAT-15), Gijón,
Spain, 30 June 2015 (2015)

44. Heni, A., Amor, N.B., Benferhat, S., Alimi, A.: Dynamic possibilistic networks:
representation and exact inference. In: 2007 IEEE International Conference on
Computational Intelligence for Measurement Systems and Applications, pp. 1–8,
June 2007

45. Hisdal, E.: Conditional possibilities independence and non interaction. Fuzzy Sets
Syst. 1(4), 283–297 (1978)

46. Howard, R.A., Matheson, J.E.: Influence diagrams. Principles Appl. Decis. Anal.
2, 720–761 (1984)

47. Joslyn, C.: Towards an empirical semantics of possibility through maximum uncer-
tainty. In: Fourth World Congress of the International Fuzzy Systems Association:
Artificial Intelligence, pp. 86–89 (1991)

48. Klir, G.J., Geer, J.F.: Information-preserving probability-possibility transforma-
tions: recent developments. In: Lowen, R., Roubens, M. (eds.) Fuzzy Logic, pp.
417–428. Kluwer Academic Publishers, Dordrecht (1993)

49. Lang, J.: Possibilistic logic: complexity and algorithms. In: Kohlas, J., Moral, S.
(eds.) Algorithms for Uncertainty and Defeasible Reasoning, vol. 5, pp. 179–220.
Kluwer Academic Publishers (2001)

50. Lauritzen, S.L., Spiegelhalter, D.J.: Local computations with probabilities on
graphical structures and their application to expert systems. In: Readings in Uncer-
tain Reasoning, pp. 415–448. Morgan Kaufmann Publishers Inc., San Francisco
(1990)

51. De Campos, L.M., Huete, J.F., Moral, S.: Possibilistic independence. In: Proceed-
ings of EUFIT 1995, vol. 1, pp. 69–73 (1995)

52. Masson, M.-H., Denoeux, T.: Inferring a possibility distribution from empirical
data. Fuzzy Sets Syst. 157(3), 319–340 (2006)

53. Nilsson, N.J.: Probabilistic logic. Artif. Intell. 28(1), 71–88 (1986)
54. Pearl, J.: Reverend bayes on inference engines: a distributed hierarchical approach.

In: Proceedings of the American Association of Artificial Intelligence National Con-
ference on AI, Pittsburgh, PA, pp. 133–136 (1982)



48 K. Tabia

55. Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible
Inference. Morgan Kaufmann Publishers Inc., San Francisco (1988)

56. Sangesa, R., Cabs, J., Corts, U.: Possibilistic conditional independence: a
similarity-based measure and its application to causal network learning. Int. J.
Approximate Reasoning 18(1), 145–167 (1998)

57. Shafer, G.: A Mathematical Theory of Evidence. Princeton University Press,
Princeton (1976)

58. Slimen, Y.B., Ayachi, R., Amor, N.B.: Probability-possibility transformation:
application to Bayesian and possibilistic networks. In: Masulli, F. (ed.) WILF 2013.
LNCS, vol. 8256, pp. 122–130. Springer, Heidelberg (2013)

59. Zadeh, L.A.: Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets Syst. 100,
9–34 (1999)



Regular Papers



On the Explanation of SameAs Statements
Using Argumentation

Abdallah Arioua1, Madalina Croitoru2(B), Laura Papaleo4,5,
Nathalie Pernelle3, and Swan Rocher2

1 GraphIK, INRA, Montpellier, France
2 GraphIK, University of Montpellier, Montpellier, France

croitoru@lirmm.fr
3 LaHDAK, LRI, University of Paris Sud, Orsay, France
4 ICT Department, Metropolitan City of Genoa, Italy

5 Tetherless World Constellation, Rensselaer Polytechnic Institute, Troy, USA

Abstract. Due to the impressive growing of the LOD graph in the last
years, assuring the quality of its content is becoming a very important
issue. Thus, it is crucial to design techniques for supporting experts in
validating facts and links in complex data sources. Here, we focus on
identity links (sameAs) and apply argumentation semantics to (i) detect
inconsistencies in sameAs statements and to (ii) explain them to the
experts using dialogues. We formalize the framework, explaining its pur-
poses. Finally we provide a promising preliminary evaluation and discuss
on some interesting future directions we foresee.

1 Introduction

Today, we are experiencing an unprecedented production of resources, published
as Linked Open Data (LOD). This is leading to the creation of a global data
space with billions of assertions [9]. RDF [24] provides formal ways to build
these assertions. Most of the RDF links, connecting resources coming from dif-
ferent data sources, are identity links, also called sameAs statements. They are
defined using the owl:sameAs property, expressing that two URIs actually refer
to the same thing [1]. Unfortunately, many existing identity links do not reflect
genuine real identity [15,16] and therefore might lead to inconsistencies. Over the
years, inconsistency-tolerant semantics (e.g. [7,8,26,27]) have been proposed for
query answering over potentially inconsistent existing data (and thus overcoming
inconsistencies within the data).

In this work, we formalize explanation dialogues that use argument-based
explanation based on inconsistency tolerant semantics. Our explanation dialogue
supports a domain expert in discovering inconsistencies as in (eventually) per-
forming corrections on erroneous data, or in revising the logical rules used for
the invalidation or even in deciding the (potential) redesign of the initial linking
strategy.

c© Springer International Publishing Switzerland 2016
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The explanation dialogue relies on a method for invalidating the sameAs that
computes repairs so that, when a sameAs is not entailed by the defined semantics,
an explanation of the reasons against this entailment is provided.

This is the first work that uses argumentation for sameAs links invalidation
together with a formalization of a general explanation framework supporting the
dialogue between user and reasoner. The salient point of this paper is to show
how inconsistency-tolerant semantics can represent a first step in the direction
of the design of new interactive paradigms for assessing the quality of sameAs
statements.

The paper is organized as follows. Section 2 argues on related works while
in Sect. 3 we provide background notions for argumentation theory. Section 4 is
devoted to the presentation of our argumentation problem for sameAs invalida-
tion. Section 5 formally introduces the novel Explanation Dialogue and Sect. 6
provides an example of the overall strategy implemented in a prototype. Finally,
Sect. 7 draws some concluding remarks and possible future directions.

2 Related Work

To the extent of our knowledge the work presented here is the first attempt to
combine argumentation theory, identity links evaluation and explanation dia-
logues, however, related works can be found in the context of sameAs evaluation
and in general approaches which use argumentation in the Semantic Web.

For what concern the sameAs validation problem, it is very recent and few
methods exist. In [17] an approach is presented where the structural properties
of large graphs of sameAs links are analyzed, without analyzing the quality. In
[22] a framework dedicated to the assessment of sameAs using network metrics
is described, while in [23] the authors reported on the quality of sameAs links
in the LOD using a manual method. In [15], the author illustrates how to assess
the quality of sameAs, using a constraint-based method which, in the end, con-
sider only one property (name of the entity), while in [29] an ontology-based
logical invalidation method is presented which discovers invalid sameAs by the
use of contextual graphs build around the resources, thus using more properties.
Finally, the recent work presented in [14] evaluate a sameAs by using position
and relevance of each resource involved with regards to the associated DBpedia
categories, modeled through two probabilistic category distribution and selec-
tion functions. We need to recall that there exist a lot of linking methods (see
[21] as survey) that, during their process of sameAs discovery, include a strategy
for evaluating the reliability of the sameAs just computed.

Regarding argumentation in the Semantic Web, several works exist that
mainly address ontologies alignment agreement based on argumentation the-
ory (e.g. [18,19,25]). Basically, all of them use argumentation to provide a final
agreement (or a final answer), and do not exploit the argumentation as a form
of explanation of the answer to a query. Recently, in [10] the problem of data
fusion in Linked Data is addressed, by adopting a bipolar argumentation theory
(with fuzzy labeling) to reason over inconsistent information sets, and to provide
a unique answer.
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This last method has common points with our line of work, namely the use of
argumentation theory to detect inconsistencies, but the scenarios in which the
approach is exploited are different as its general aim is. This obviously leads to
different addressed issues and proposed solutions.

3 Background Notions

There exist two major approaches for representing an ontology for the OBDA
(Ontology-Based Data Access) problem: (i) Description Logics (DL) (such
as EL [4] and DLLite [12] families) and (ii) Rule-based Languages (such as
Datalog+/− [11] language). Despite its undecidability when answering conjunc-
tive queries, different decidable fragments of Datalog+/− have been studied in
the literature [6]. They overcome their limitations allowing n-arity for predicates
and cyclic structures. We consider the positive existential conjunctive fragment
of first-order logic, denoted by FOL(∧,∃), which is composed of formulas built
with the connectors (∧,→) and the quantifiers (∃,∀).

We consider first-order vocabularies with constants but no other function
symbol. A term t is a constant or a variable. Different constants represent differ-
ent values (unique name assumption), an atomic formula (or atom) is of the form
p(t1, . . . , tn) where p is an n-ary predicate, and t1, . . . , tn are terms. A ground
atom is an atom with no variables. A variable in a formula is free if it is not in
the scope of a quantifier. A formula is closed if it has not free variable. We denote
by X (bold font) sequences of variables X1, . . . , Xk with k ≥ 1. A conjunct C[X]
is a finite conjunction of atoms, where X is the sequence of variables occurring
in C. Given an atom or a set of atoms A, vars(A), consts(A) and terms(A)
denote its set of variables, constants and terms, respectively.

An existential rule is a first-order formula of the form R =
∀X∀Y(H[X,Y]) → ∃ZC[Z,Y], with vars(H) = X ∪ Y, and vars(C) = Z ∪ Y
where H and C are conjuncts (hypothesis and conclusion of R), respectively.
R = (H,C) is a contracted form for R. An existential rule with an empty
hypothesis is called a fact. A fact is an existentially closed (with no free vari-
able) conjunct. A rule r = (H,C) is applicable to a set of facts F iff there exists
F ′ ⊆ F such that there is a homomorphism π from H to the conjunction of
elements of F ′. If a rule r is applicable to a set F , its application according to
π produces a set F ∪ {π(C)}. The new set F ∪ {π(C)}, denoted also by r(F ), is
called immediate derivation of F by r. Finally, we say that a set of facts F ⊆ F
and a set of rules R entail a fact f (and we write F,R |= f) iff the closure
of F by all the rules entails f (i.e. ClR(F ) |= f). A negative constraint is a
first-order formula n = ∀X H[X] →⊥ where H[X] is a conjunct called hypothe-
sis of n and X sequence of variables appearing in the hypothesis. A knowledge
base K = (F ,R,N ) is composed of, a finite set of facts F , a finite set of exis-
tential rules R and a finite set of negative constraints N . Given a knowledge
base K = (F ,R,N ), a set F ⊆ F is said to be inconsistent iff there exists
a constraint n ∈ N such that F |= Hn, where Hn is the hypothesis of the
constraint n. A set of facts is consistent iff it is not inconsistent. A conjunctive
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query (CQ) has the form Q(X) = ∃YΦ[X,Y] where Φ[X,Y] is a conjunct such
that X and Y are variables in Φ. A Boolean CQ (BCQ) is a CQ with yes or no
as answer.

Inconsistency Handling. If a knowledge base K = (F ,R,N ) is inconsis-
tent, then everything is entailed from it. A common way to face inconsistency
[7,26] is to construct maximal (with respect to set inclusion) consistent subsets
of F , called repairs, denoted by Repair(K ). In this paper, we consider a frag-
ment of our language where the deduction method (the chase) halts, thus the
closure ClR(F ) of any set of facts F is finite. Once the repairs are computed,
different semantics can be used for query answering over the knowledge base.
Here we focus on brave-semantics [26] and ICR-semantics [7].

The brave-semantics accepts a query if it is entailed from at least one
repair. This kind of semantics has been criticized because it allows conflict-
ing answers. Let K = (F ,R,N ) be a knowledge base and let Q be a
query. Q is brave-entailed from K , written K |= braveQ if and only if:
∃A ∈ Repair(K )such that ClR(A ) |= Q. A prudent and more preservative
semantics has been proposed in [7]. Let K = (F ,R,N ) be a knowledge base
and let Q be a query. Q is ICR-entailed from K , written K |= ICRQ if:⋂

A ∈Repair(K ) ClR(A ) |= Q.
An alternative method for handling inconsistency is the use of argumenta-

tion. Given a knowledge base K = (F ,R,N ), the corresponding argumenta-
tion framework AFK is a pair (Arg, Att) where Arg is the set of arguments
that can be constructed from F and Att is an asymmetric binary relation
called attack defined over Arg × Arg (as defined in [13]). Given a knowledge
base K = (F ,R,N ), an argument a is a tuple a = (F0, F1, . . . , Fn, C) where:
(F0, . . . , Fn) is an R-derivation of F0 in K , such that (i) F0 is R-consistent and
(ii) C is an atom, a conjunction of atoms, the existential closure of an atom or
the existential closure of a conjunction of atoms such that Fn |= C. F0 is the
support of the argument a (Supp(a)) and C is its conclusion (Conc(a)).

An argument a supports a query Q if Conc(a) entails Q and a is against Q if it
attacks at least one argument that supports Q. An attack between two arguments
a and b expresses the conflict between their conclusions and supports. Thus, a
attacks b iff there exists f ∈ Supp(a) (f is a fact) such that the set {Conc(b), f}
is R-inconsistent.

Let K = (F ,R,N ) be a knowledge base and AFK be its corresponding
argumentation framework. Let E ⊆ Arg be a set of arguments. We say that E
is conflict free iff there exist no arguments a, b ∈ E such that (a, b) ∈ Att. E
defends an argument a iff for every argument b ∈ Arg, if we have (b, a) ∈ Att
then there exists c ∈ E such that (c, b) ∈ Att. E is admissible iff it is conflict
free and defends all its arguments. E is a preferred extension iff it is maximal
(with respect to set inclusion) admissible set (please see [20] for other types of
semantics). We denote by Ext(AFK ) the set of all extensions of AFK . a is
sceptically accepted if it is in all extensions, credulously accepted if it is in at
least one extension and not accepted if not in any extension.
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In [13] has been proved the equivalence between skeptical acceptance under
preferred semantics and ICR-entailment. This allows us to use the argumentation
approach in our explanation dialogue (Sect. 5) as to ensure its correctness and
completeness w.r.t. ICR query explanation and failure.

Given a knowledge base K and a query Q, the general problem is to explain
if Q is entailed by K or not. Let K be an inconsistent knowledge base, Q a
Boolean conjunctive query. Π = 〈K , Q〉 is a query result explanation problem
(QREP) iff (i) K is inconsistent, and (ii) K |= braveQ. [3]. Using ICR semantics
we distinguish:

1. The Query Failure Explanation Problem (QFEP). In the ICR setting, a QREP
Π is defined to be a QFEP iff K  |= ICRQ.

2. The Query Acceptance Explanation Problem (QAEP): In the ICR setting, a
QREP Π is a QAEP iff K |= ICRQ.

The first one refers to the case when the query fails (no answer) due to con-
tradictions; the second refers to the case when the query is accepted, so a yes
answer is obtained.

4 QFEP for SameAs Invalidation

Let K = (F ,R,N ) be a knowledge base and AFK its corresponding argu-
mentation framework. We define now the main components of K for a QFEP
in case of a sameAs invalidation.

Defining the Facts, the Rules and the Negative Constraints. F is a set
of facts including (i) RDF triples, coming from RDF graphs representing the
knowledge described in (possibly) different inter-connected datasets, and (ii)
facts asserting similarity values between specific literals. These second type of
facts are in the form of

is[prop]Diff [SimFunction](x, y, σ)

where (i) [prop] is the name of a datatype (inverse-functional) functional prop-
erty, (ii) [SimFunction] is a similarity measure (e.g. Jaccard, Levenshtein, ...),
(iii) x, y are literals and (iv) σ is a similarity value between x and y. These facts
are considered when σ is less than a given threshold ε, defined for the similarity
measure [SimFunction] of a given property [prop].

There are several kind of logical rules that we consider. There are rules defined
by the W3C standards: for instance, we exploit the OWL2 RL rules which define
the owl : sameAs predicate as being reflexive, symmetric, and transitive, and
the rules that axiomatize the standard replacement properties. We also use rules
declared or discovered using mining techniques on RDF triples. For these kind of
rules, here, we consider two types of properties: functional and inverse-functional
properties [1].

When a property p is a datatype functional property, it can be expressed
via the following logical rule: p(r, v) ∧ p(r, v

′
) → isEquiv(v, v

′
), where isEquiv
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expresses equivalence of two literals. If the property p is an object func-
tional property, the following logical rule can be used: p(r, v) ∧ p(r, v

′
) →

sameAs(v, v
′
). Instead, when p is an inverse-functional property, the logical

rule is p(w1, x) ∧ p(w2, x) → sameAs(w1, w2).
We also add the set of rules which have all the following form:

is[prop]Diff [SimFunction](x, y, σ) → isDiff(x, y)

A rule like this basically asserts that, when two literals x and y have a low
similarity value σ for a specific property [prop], they are declared as different
(thus the fact isDiff(x, y) is added to F ).

In our setting, the negative constraints are very simple. The only necessary
negative constraints are in the following form: isEquiv(x, y)∧ isDiff(x, y) →⊥,
where isEquiv(x, y) are predicates coming from the rules defined for the
datatype functional properties and isDiff(x, y) comes from the similarity value
between the literals. Note that all the other negative constraints, meaningful for
discovering inconsistencies for a given sameAs, can be logically derived from the
rules defined before. In case of a datatype functional property title the following
leads to an inconsistency:

sameAs(s, o) ∧ title(s, w) ∧ title(o, w1) ∧ isDiff(w,w1) →⊥
This can be derived from one rule and a negative constraint, namely:

1. sameAs(s, o) ∧ title(s, w) ∧ title(o, w1) → isEquiv(w,w1)
2. isEquiv(w,w1) ∧ isDiff(w,w1) →⊥

The problem QFEP . For completing the components and thus the instantia-
tion of the QFEP, using ICR semantics, in the setting of sameAs invalidation,
we need to define the query Q which is basically a sameAs(x, y). The problem
becomes:

Query Failure Explanation Problem (QFEPsameAs). Given a knowledge
base K = (F ,R,N ) with F , R, N defined above and the query Q as a
sameAs(x, y) statement. The QFEPsameAs, in the ICR setting (which is equiv-
alent to AFK as argumentation framework) is a QREP where K  |= ICRQ.

At this point, we formally instantiated a QFEP as a sameAs invalidation
problem. Given a sameAs statement (as query), by the use of facts, rules and
negative constraints as described above, we are able to discover if the sameAs
is not entailed with respect to the given knowledge base (in ICR semantics).
This proves that a sameAs invalidation method can be seen as a instantiation of
QFEP in ICR. By itself, this represents an interesting result when searching for
effective methods for evaluating the quality of sameAs statements. But, we also
need interactions with the domain experts to explain the problems encountered
and to support the corrective actions. In the following, we define our explanation
framework (and dialogues) which provides these interactive functionalities.
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5 The Explanation Framework

It is clear that if a sameAs has problems, it makes sense to show to the experts
what kind of actions and negative conditions lead to this answer. Here we intro-
duce our explanation framework that is custom-tailored for the problem of Query
Failure Explanation Problem under ICR-semantics in inconsistent knowledge
bases.

Example 1 (Motivating Example). Let us consider the case of a QFEP Π =
〈K , Q〉 with a query as Q = worksIn(Linda, Statistics). The dialogue we would
like is similar to the following:

Actor Dialogue expression

User Why not worksIn(Linda, Statistics)?

Reasoner Because Linda works in Accounting.

User Clarify?

Reasoner Because Linda uses office o1 and o1 is located in Accounting, so Linda
works in Accounting.

User How’s that a problem?

Reasoner The following negative constraint is violated
∀x∀y∀z (worksIn(x, y) ∧ worksIn(x, z) ∧ y �= z) → ⊥.

User Understood.

This simple example (not explicitly related to SameAs) is only to clarify
that, in our ideal explanation framework, each iteration need to respect certain
rules and some predefined locutions must be used (like understood, clarify, why,
etc.). In addition, all the information must be represented as arguments and/or
elaboration of arguments. Finally, our dialogue will use a turn taking mechanism
where the User and the Reasoner switch turn at each stage.

In the following, we formalize the dialogue system and a legal dialogue for our
explanation framework and, for doing this, we define the necessary syntax and
semantics. The formalization is based on a very preliminary work [3], where the
idea of dialogue was firstly introduced. The novelty here is the full formalization
of the dialogue with specific references and custom definitions to the problem at
hand.

5.1 Syntax

Definition 1 (Dialogue System). Given a QFEP Π = 〈K , Q〉. A dialogue
system for Π is a tuple D = (Π,Pr,U ,R), where Π is the topic, Pr is the set
of participants, U is a finite set of the allowed utterances, R is an irreflexive
binary relation defined over U called the reply relation.
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The definition above is intentionally general, the reader should note that,
in the case of this work, the topic of the dialogue is a discussion that aims
to get the User understand the refusal of a query Q (sameAs(x, y)) in the
K = (F ,R,N ) with F ,R,N defined in the previous section. The partic-
ipants Pr = {Reasoner, User} are (i) the User, namely the domain expert
who is analysing the quality of a set of sameAs, (ii) and the Reasoner, who
represents an agent providing explanations in case of refusal.

The set of allowed utterances U and the reply relation R for our dialogue
system D is given in Table 1. Note that a, a′, t, t′ and Q in the table rep-
resent metavariables of arbitrary well-formed syntactical objects (e.g. queries,
arguments, integers, etc.) of an arbitrary formal language.

Table 1. The set of allowed utterances U . In the table U is User and R is Reasoner.

A dialogue D has a potential infinite sequence of legal utterances. An utter-
ance is considered a legal reply for another utterance iff it is a correct reply
with respect to the reply relation R and it is the turn of the participant x to
talk. We provide here a simple explanatory example.

Example 2 (Legal/Illegal Reply). Consider the dialogue: 〈explain(1, User, Q),

attempt(2, Reasoner, a),clarify(3, User, a),negative(4, User, a′)〉 As one may
notice, the reply negative to clarify is illegal because it is not in R. A legal
reply would be clarification(4, Reasoner, a′).

At this point, it is necessary to define the protocol which will decide if a dia-
logue is legal or not. We introduce the following definition for a Legal Dialogue.

Definition 2 (Legal Dialogues). Given a dialogue Dn at stage n, n ≥ 0.
The dialogue Dn is legal iff:

Empty dialogue rule: if n = 0 then D0 is legal.
Commencement rule: if n = 1 then D1 = 〈u1〉 is legal iff u1 =

explain(1, User, Q).
Dialogue rules: if n > 1 then Dn is legal iff Dn−1 is legal and un is a legal

reply to un−1 and there is no ui ∈ Dn−1, i < n and un equals ui.

Our definition indicates that an empty dialogue is legal. Furthermore, a legal
dialogue always starts with an explanation request made by the User. Also, the
protocol defines a legal dialogue as a sequence of utterances which legally replies
to each other and no utterance is repeated twice.
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5.2 Semantics

Now we shift to the semantic aspect of the dialogue where we deal with the con-
tent of the utterances. For instance, the utterance explain(2, User, Q) is legal
(syntactically correct) but it will not be semantically legal if Π = 〈K , Q〉 is not
a query result explanation problem (or, in our more specific case a QFEP). The
same applies to the utterance attempt(2, Reasoner, a) if a is not an argument
or a combination of arguments in our argumentation framework.

In Table 2 we put the conditions under which a given utterance or a reply is
considered semantically legal in our setting. Here a deepening of an argument
a explains the conflict between a and another argument b by showing the set
of violated constraints. A clarification, instead, intends to unfold the knowledge
(rules) used in the argument a to exhibit the line of reasoning that drives the
conclusion.

Table 2. The utterances and their semantical conditions. K is an inconsistent knowl-
edge base defined as in Sect. 4 and AFK is the corresponding argumentation frame-
work.

The semantical legality must also be considered within a context where
replies are taken into account. Table 3 indicates the conditions under which
a reply is semantically legal. For instance, a reply by the utterance
attempt(2, Reasoner, a) to the utterance explain(1, User, Q) is legal but it
will not be semantically legal if a is not a proponent (opponent) argument of the
query Q.

Table 3. The replies and their semantical conditions. Here U is for User and R is for
Reasoner.

The dialogue is defined as a finite set of semantically legal moves. An expla-
nation dialogues is typed, depending on its topic. Here, the topic is a QFEP,
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thus our explanation dialogue Dn is called a Query Failure Explanation Dia-
logue QFED: the Reasoner will show, by presenting opponent arguments, why
a query Q has failed.

6 First Results and Discussion

To verify our strategy, we have implemented a prototype of the explanation
dialogue that communicates with a Datalog+/− rule-based reasoner called Graal
[5]. For the knowledge base, we considered facts from the CORA dataset [28]
and sameAs computed using the SILK framework [2]. We provide an example of
sameAs invalidation explaining what has been obtained while running dialogues
and we discuss over these results. Due to space limitations, here we present a
single example and we provide only a meaningful portion of the set of facts, rules
and negative constraints (only those related to the sameAs used in the query or
in the dialogue).

Let us consider a query Q as sameAs(r1, r2), where r1, r2 are URIs describing
two resources in CORA. We show our explanation framework in the form of a
QFED, where the User and the Reasoner interact in order to explain why Q
is invalid. In Table 4 we report a subset of the knowledge base K = (F ,R,N )
we used. This subset provides sufficient details to discuss over the results.

Table 4. A portion of the facts F , rules R and negative constraints N used to build
our knowledge base K = (F ,R,N ).
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To be more clear, the query Q = sameAs(r1, r2) involves two resources which
describe two ‘conferences’ with title (confName) ‘proceedings aaai-98’ and ‘in
proceedings of aaai’, respectively. The query Q is not entailed, according to the
inconsistency-tolerant semantics AFK : the two conferences are not the same.
In Table 5 we show our explanation dialogue providing details on the reasons
why Q is not entailed.

Table 5. A query failure explanation dialogue for a sameAs query involving the
resources r1 and r2. For each dialogue we outline the formalism and the utterances
involved.

As mentioned in the formal specification of the dialogue in Sect. 5, utter-
ances succession respects certain constraints: in step 1. the User is the one who
is allowed to make the opening move (explain), not the Reasoner. At step 2.
the Reasoner responds providing an argument against the query (attempt) and
the request for clarification (clarify) at step 3. made by the User is followed
by a response made by the Reasoner (clarification). Note that, after this
clarification, the possible utterances can be: (i) a deepening request (deepen),
followed immediately by a deepening response (deepening) or (ii) a negative
(understanding dis-acknowledgment) since, according to the semantical condi-
tions we provided in Table 3, another deepening request is prohibited.

Another interesting property of our explanation dialogue is that it provides
to the domain expert (User) the possibility to ask additional follow-ups. In the
portion of dialogue described in Table 6, we report an extension of the previous
dialogue (Table 5), where the User inputs additional arguments supporting her
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Table 6. A new portion of the failure explanation dialogue for an invalid sameAs
involving the resources r1 and r2. In this case, the user asks for further explanations
by providing an argument against the reasoner conclusion.

query Q and thus she asks for further explanations. We continue from step 7
of Table 5 and, instead of declaring ’understood’ (positive), we disacknowledge
the dialogue by providing a feedback in form of an argument.

Finally, to better illustrate the explanation dialogue, we present here the
sequence of utterances, in terms of the formal model we formalized before. The
dialogue Di (i = 7) depicted in Table 5 is the following, where a is an argument
and Ca,Da are clarification and deepening of a, respectively.

〈explain(1, User, Q),attempt(2, Reasoner, a),clarify(3, User, a),

clarification(4, User, Ca),deepen(5, User, a),deepening(6, User, Da),

positive(7, User, Q)〉
The second dialogue (Table 6) is composed by 9 steps. Its formal representa-

tion as sequence of utterances is:

〈explain(1, User, Q),attempt(2, Reasoner, a),clarify(3, User, a),

clarification(4, User, Ca),deepen(5, User, a),deepening(6, User, Da),

negative(7, User, a′),attempt(8, Reasoner, a′′), positive(9, User, Q)〉

It is worthy to make a consideration on the semantics of the utterance
negative, which has two goals. First, it declares that the User has not under-
stood the last explanation; second, it provides to the Reasoner a feedback. This
feedback is in form of an argument a′. Thus, if the User has an expectation
about a query and her expectation is endorsed by an argument then, she can
present this argument in this utterance. Henceforth, negative(7, User, a′) can
be read as “I do not understand why Q is not entailed given that the argument
a′ supports it”. When a′ is empty, the user has no argument to propose.

6.1 Discussion

Our tests on the prototype have shown that, running dialogues on var-
ious sameAs statements (computed externally and considered potentially
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problematic1) was a support for different corrective actions. In some cases, errors
in the data have been found (e.g. resource 100001135 has confY ear property
value 0, while its correct sameAs resources are conferences of the year 1995, or
resource 100000021 has pageFrom to 24.1 which is again an error since it should
be 24). Thanks to the dialogues with the reasoner, the expert has easily located
these problems. In some other tests, the explanation dialogue supported the
expert to understand that an update of some similarity functions used in specific
properties was necessary (e.g. Levensthein instead of Jaccard for confName),
or that the threshold ε to determine “dissimilar literals” had to be lowered for
some properties (e.g. title). Finally, at the very first running, we used a set of
sameAs links computed loosely (full of erroneous links). Thanks to the explana-
tion dialogue it was clear that every sameAs query had strong inconsistencies
over fundamental properties and values, thus this supported the idea to redo the
linking process with a different strategy (in our case using composite keys in the
linkage phase).

An important question may occur at this point, “what happens if the
Reasoner has multiple explanations (several potential arguments against/for the
query)?”.

In this case, we adapt a selection strategy: we choose each time which argu-
ment must be presented. In this work we aim at providing a general account
for such process, thus we use the concept of a selection function S over a set of
arguments. Note that S can be instantiated to express preferences with respect
to some criteria that can possibly be defined by the expert User, such as “the
property confName is very important (high weight wconfName)” or “the prop-
erty year may contain errors, thus it has lower importance (low weight wyear)”.
To order the sameAs presented to the expert, we used Graal to compute all
the conflicts in the knowledge base. Then, we highlighted those sameAs state-
ments that were more involved in conflicts (and sub-sequentially more present
in attacks in the corresponding argumentation framework). These sameAs have
been compared with the gold standard of the CORA dataset, and they have been
used to define the order by which the dialogue should propose the sameAs links
to the User. The sameAs links with most attacks, thus the most debatable ones,
were showed first. The procedure we used to compute the conflicts is expensive
from a computational point of view2. Such approach can be further improved in
future work, by suitably adapting the conflict computation in order to obtain an
incremental any-time algorithm with better computational properties.

7 Concluding Remarks

In this paper we presented an explanation dialogue based on argumentation
theory where a domain expert can interact with the reasoner regarding a prob-
lematic sameAs statement.

1 Experiment, at this moment, with one domain expert.
2 Exponential in the size of the facts in the knowledge base.
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The paper demonstrates the significance of the explanation framework by
the use of a real world example. All the dialogue moves are detailed, so that
the reader can comprehend the types of interactions allowed. To the extent of
our knowledge, the work presented in this paper, is the first attempt to use
argumentation for sameAs links invalidation and for providing an explanation
framework.

The results we obtained with the first prototype are very promising, motivat-
ing us in the continuation of the research activity. In these days, we are working
on conducting tests using different (in size and quality) synthetic datasets (e.g.
OAEI) and, in the immediate future, we are planning to analyze and evaluate
sameAs coming directly from the LOD. In parallel, we are studying suitable
improvements and strategies in order to ensure scalability of the approach when
dealing with big datasets.

Different interesting long-term research directions can be exploited. For
example, it could be interesting to study how to design innovative methods for
modeling and combining contextual weights associated to each property used in
the QFEP. Such weights could depend on different factors such as the reliability
(automatically acquired or computed) of each property in the initial dataset.
In addition, these weights could include suggestions (or restrictions) provided
directly from the expert/user (something like ‘I trust this data, please consider
it true over all the other computations’), and so on.

Another interesting future research direction could be also to study suitable
user interfaces (by the use of innovative interactive systems) in the explanation of
the inconsistencies and the properties involved, such that the type of interactions
as the way in which the arguments are presented could be more ‘user-friendly’
and supported by graphical representations.
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Abstract. In multiple-agent logic, a formula is in the form of (a, A)
where a is a propositional formula and A is a subset of agents. It states
that at least all agents in A believe that a is true. This paper presents a
method of refutation for this logic, based on a general resolution principle
and using a linear strategy, which is sound and complete. This strategy is
then extended so as to deal with certainty levels. It manipulates formulas
in the form (a, α/A) expressing that all agents in set A believe at least
at some level α that a is true. Finally, an experimental study is provided
with the aim to estimate the performance of the proposed algorithms.

Keywords: Possibilistic logic · Multiple-agent logic · Multiple-agent
possibilistic logic · Possibility theory · Refutation · Uncertainty

1 Introduction

A piece of information can be generally associated with a source or an agent.
In multiple-agent logic, a logical formula is associated with a group of agents
that hold it for true. Then one can reason both on the information contents of a
multiple-agent logic base and on the attitudes of groups of agents with respect to
different sets of beliefs, and consider queries of the type “who believes what?”.

A multiple-agent logic was initially proposed in [10,11] and developed in [1].
In this logic, formulas are pairs of the form of (a,A), made of a proposition a
and a subset of agents A. The formula (a,A) is intended to mean “at least all
agents in A believe that a is true”. The semantics of the set of multiple-agent
logic formulas is expressed by a mapping which associates a subset of agents with
each interpretation. In the graded extension of multiple-agent logic, propositions
are associated with both a set of agents and a certainty level. A formula (a, α/A)
expresses that “at least all agents in set A believe at least at some level α (in
the sense of a necessity measure) that a is true”. The semantics is given in terms
of fuzzy sets of agents. When all the logical formulas are associated with the
same set of agents (e.g., a singleton), one retrieves possibilistic logic [9]. The
c© Springer International Publishing Switzerland 2016
S. Schockaert and P. Senellart (Eds.): SUM 2016, LNAI 9858, pp. 67–80, 2016.
DOI: 10.1007/978-3-319-45856-4 5
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paper investigates the reasoning mechanism of the proposed logic based on the
refutation method using a linear strategy. Namely, we propose an extension of
the classical refutation method adapting the search algorithm A*.

The paper is organized in the following way. The next section provides a
refresher on multiple-agent logic and its possibilistic extension. It also establishes
soundness and completeness of the multiple-agent possibilistic logic. Section 3
presents the refutation method, based on a generalized resolution principle using
a linear strategy, and then its generalization to multiple-agent possibilistic logic.
Section 4 discusses the experimental study pertaining to the refutation method
applied to both investigated logics. The concluding section briefly mentions
potential applications. Preliminary versions of Sect. 3 appeared in French [3,4],
while Sect. 4 is brand new.

2 Multiple-Agent Logic and Its Possibilistic Extension

We present a background on multiple-agent logic by describing its syntax and its
semantics in terms of generalized possibility distributions and then the syntax
and the semantics of its extension with graded certainty levels.

2.1 A Multiple-Agent Logic

Let L denote a propositional logical language. The set of all agents is denoted by
All. A subset of agents is denoted by capital letters A, B, or by indexed letters
Ai. The set of subsets of agents is equipped with the usual set operations, i.e.,
(2All,∩,∪, ,⊆) is a Boolean algebra. Thus, only a partial order exists between
subsets of agents.

Syntax. A multiple agent propositional formula is a pair (a,A), where a is a
classical propositional formula of L and A is a non empty subset of All, i.e.,
A ⊆ All. (a,A) represents the piece of information: at least all agents in A
believe that a is true. The subset A may be given in extension or in intension.

A multiple-agent knowledge base is a finite set Γ = {(ai, Ai), i = 1, . . . , n},
viewed as the conjunction of multiple agent propositional formulas. Multiple
agent logic has two inference rules:

– if B ⊆ A then (a,A) � (a,B) (subset weakening)
– (¬a ∨ b, A), (a,A) � (b, A), ∀A ∈ 2All \ ∅ (subset modus ponens)

The axioms of multiple-agent logic [1] are those of propositional logic where each
axiom schema is associated with subset All.

Using subset weakening, the following inference rule is valid:

(¬a ∨ b, A), (a ∨ c,B) � (b ∨ c,A ∩ B) (A-B-resolution)

The subset of inconsistent agents for Γ can be defined as:

inc-s(Γ ) =
⋃

{A ⊆ All | Γ � (⊥, A)} and inc-s(Γ ) = ∅ if � ∃A s.t. Γ � (⊥, A).
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Let Γ ◦ denote the set of classical formulas obtained from Γ by ignoring the sets
of agents: Γ ◦ = {ai | (ai, Ai) ∈ Γ, i = 1, . . . , n}. The consistency of Γ does
not necessarily imply that Γ ◦ is consistent too. Indeed, if we take for example
Γ = {(a,A), (¬a,A)}, then inc-s(Γ ) = A ∩ A = ∅ whereas Γ ◦ is inconsistent.
This is because there is nothing anomalous with agents that contradict each
other.

Semantics. A multiple-agent possibility distribution is a function π from a
set of interpretations Ω to 2All. π(ω) represents the subset of agents in All
who find ω possible. A multiple-agent possibility distribution is said multiple-
agent-normalized if ∃ω ∈ Ω, π(ω) = All. This means that there is at least one
interpretation that all agents find possible.

From π, a function from L to 2All called multiple-agent possibility measure
is defined:

Π(a) =
⋃

ω∈Ω

{π(ω), ω |= a}

It is the set of agents for whom a is possibly true.
By duality, a multiple-agent necessity measure N, from L to 2All is defined:

N(a) = Π(¬a) =
⋂

ω∈Ω

{π(ω), ω |= ¬a}

N(a) represents the subset of agents who are sure that a is true (it is the com-
plement of the subset of agents who find ¬a possible).

Since the multiple agent propositional formula (a,A) represents the piece
of information “at least all agents in A believe a”, the agents in A find all
interpretations of ¬a impossible. This means that the maximal set of agents
who think that ¬a is possible is A. Besides, the agents in A remain free to find
the interpretations of a possible or not. Thus the maximal set of agents who
may think that the interpretations that make a true are possible is All itself.
This leads to the following semantical representation of formula (a,A) by the
multiple-agent possibility distribution π{(a,A)}:

∀ω ∈ Ω, π{(a,A)}(ω) =
{

All if ω |= a
A if ω |= ¬a

where Ω is the set of interpretations associated with L.
More generally, the multiple-agent possibility distribution πΓ semantically

associated with a set of multiple agent formulas Γ = {(ai, Ai), i = 1, . . . , n} is
given by:

πΓ (ω) =
{

All if ∀(ai, Ai) ∈ Γ, ω |= ai⋂{Ai : (ai, Ai) ∈ Γ, ω |= ¬ai} otherwise

Thus, the “value” πΓ (ω) of the multiple agent possibility distribution for ω is
obtained as the intersection of the different subsets Ai of agents that still find ω
possible according to the different formulas (ai, Ai) violated by this interpretation.
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2.2 A Multiple-Agent Possibilistic Logic

A natural generalization of multiple-agent logic stems from extending multiple-
agent possibility distributions from 2All to [0, 1]All.

Syntax. In the following, the distributive lattice L = [0, 1]All is considered.
This lattice is equipped with fuzzy set intersection ∩, fuzzy set union ∪ and
fuzzy set complementation defined by means of operators: min, max, and
1− (.) respectively. Then, the order becomes a fuzzy set inclusion defined by the
inequality between membership functions.

A multiple-agent possibilistic formula (a, F ) is built by attaching to a classical
propositional formula a a nonempty fuzzy set of agents F belonging to All.
The membership grade μF (k) is understood as a lower bound on the degree of
certainty (in the sense of a necessity measure) of a for agent k. In the following,
the fuzzy set F = α/A is defined by: μα/A(k) = α if k ∈ A, and μα/A(k) = 0
if k ∈ A. Given that any fuzzy set F of agents can be written as a disjunction⋃�

i=1 αi/Ai where Ai is the αi-cut of F , the formula (a, F ) can be assumed to
encode the set of formulas {(a, αi/Ai) | i = 1, · · · , �}.

Henceforth, the language is limited to formulas of the form (α/A) that
expresses the information that at least all agents in A believe at least at level
α that a is true. Indeed, the possibilistic multiple agent formula (a, α/A) is the
syntactic expression of the semantic constraint N(a) ⊇ α/A where N is a graded
multiple-agent necessity measure, defined later on. Formulas of the form (a, 0/A)
or (a, α/∅) are trivial since they do not provide any information, and thus they
do not belong to the syntax (as ∀a, N(a) ⊇ 0/A with A �= ∅, and N(a) ⊇ α/∅).
A multiple-agent possibilistic knowledge base may be viewed as the conjunction
of multiple-agent possibilistic formulas.

Let Σ = {(a1, α1/A1), ..., (an, αn/An)} be a multiple-agent possibilistic
knowledge base. It can be viewed as a stratified set of multiple-agent knowl-
edge bases:

Σα = {(ai, Ai)|(ai, αi/Ai) ∈ Σ and αi ≥ α}
In the same way, a possibilistic knowledge base ΣA can be defined for every non
empty set A ⊆ All of agents:

ΣA = {(ai, αi)|(ai, αi/Ai) ∈ Σ and Ai ⊇ A}
and if the Ai’s are given in extension, the projection of Σ on each agent k of All
is defined by:

Σk = {(ai, αi)|(ai, αi/Ai) ∈ Σ and k ∈ Ai}
Furthermore, if subsets of agents in Σ are ignored, the possibilistic knowledge
base ΣAll = {(ai, αi), i = 1, ..., n} is obtained. This possibilistic knowledge base
represents beliefs of agents in All. Symmetrically, Σ(0,1] = {(ai, Ai), i = 1, ..., n}
is the multiple agent knowledge base where groups of agents are somewhat cer-
tain of propositions in Σ (since for all i such that (ai, αi/Ai) ∈ Σ, αi > 0).
Finally by ignoring fuzzy sets of agents associated with formulas of Σ, a propo-
sitional knowledge base Σ◦ is obtained: Σ◦ = {ai, i = 1, ..., n}. It expresses the
set of all beliefs ai possessed by some groups of agents in All at some degree.
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Fuzzy sets of agents are only partially ordered. Thus, a restriction of Σ by a
fuzzy subset of agents α/A can be defined as:

Σα/A = {(ai, αi/Ai)|Ai ∩ A �= ∅ and αi ≥ α and (ai, αi/Ai) ∈ Σ}
Σα/A contain all formulas believed at least at level α by some agents in A.

Multiple agent possibilistic logic has the following inference rules:

– If A∩B �= ∅ then (c, α/A), (c′, β/B) � (c′′,min(α, β)/(A∩B)) (gradual subset
resolution), where c′′ is the resolvent of c, c′.

– If β/B ⊆ α/A then (c, α/A) � (c, β/B) (gradual subset weakening),
– (c, α/A), (c, β/B) � (c, α/A ∪ β/B) (fusion).

Moreover, the axioms of multiple-agent possibilistic logic are those of proposi-
tional logic weighted by (1/All).

The fuzzy subset of individually inconsistent agents of Σ is defined by:

inc-Σ =
⋃

{α/A|Σ � (⊥, α/A)}

It should be noted that the consistency of the multiple-agent possibilistic knowl-
edge base Σ does not entail necessarily the consistency of its classical projection
Σ◦. Again, agents may contradict each other.

Semantics. A graded multiple-agent possibility distribution is a function π
from a set of interpretations Ω to [0, 1]All, the set of all fuzzy subsets of agents.
The fuzzy subset π(ω) collects agents k in All who find ω possible at degree
μπ(ω)(k). In the following, (α/A) will be the fuzzy subset of agents k ∈ All
such that μα/A(k) = α if k ∈ A and 0 otherwise. By convention, π(ω) = 1/All
means that all agents find ω completely possible, while π(ω) = 0/All means that
all agents find ω impossible. If ∃ ω such that π(ω) = 1/All then the graded
multiple-agent possibility distribution π is again said to be multiple-agent nor-
malized. This property reflects collective consistency since there exists at least
one interpretation that all agents find completely possible. Associated with the
graded multiple-agent possibility distribution π, a function, from L to [0, 1]All

called graded multiple-agent possibility measure is defined:

Π(a) =
⋃

ω|=a

π(ω)

Π(a) is the fuzzy set of agents who think that it is possible to some extent that
a is true.

In a dual manner, N(a) is the fuzzy set of agents who are certain to some
extent that a is true. It defines the graded multiple-agent necessity measure N :

N(a) = Π(¬a) =
⋂

ω|=¬a

π(ω)

In multiple-agent possibilistic logic, the satisfiability of a formula is defined
in terms of graded multiple-agent possibility distributions. The formula (a, α/A)
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expresses the piece of information: “at least all agents in A believe at least at level
α that a is true”. So agents in A find any interpretation of a completely possible.
Furthermore, other agents in A are free to find the interpretation of a completely
possible or not. So, the maximal set of agents who find any interpretation of a
completely possible is again A∪A = All. Besides, the maximal set of agents who
find all interpretations of ¬a possible at least at level 1 − α are agents in A, and
agents in A find ¬a possible at least at level 1. So, the semantics representation
of the formula (a, α/A) is as follows:

π{(a,α/A)}(ω) =
{

1/All if ω |= a
{(1 − α)/A ∪ 1/A} if ω |= ¬a

More generally, the graded multiple-agent possibility distribution π semantically
associated with the set Σ = {(a1, α1/A1, ..., an, αn/An)} of multiple agents pos-
sibilistic formulas is defined by:

πΣ(ω) =
{

1/All if ∀(ai,αi/Ai)∈Σ,ω |=ai⋂
(ai,αi/Ai)∈Σ,ω|=¬ai

(1 − αi)/Ai ∪ 1/Ai otherwise.

Since N(a∧b) = N(a)∩N(b), {(a∧b, α/A)} is equivalent to {(a, α/A), (b, α/A)},
and a possibilistic multiple-agent formula can always be put under a clausal form.
The knowledge base Σ can be interpreted as a set of constraints of the form:

NΣ(ai) ⊇ αi/Ai for i = 1, ..., n.

For any graded multiple-agent possibility distribution π, π satisfies Σ (denoted
by π |= Σ) if and only if π ⊆ πΣ (namely ∀ω, π(ω) ⊆ πΣ(ω)). Thus, (b, β/B)
is a logical consequence of Σ if and only if πΣ(ω) is included into π{(b,β/B)}(ω).
Formally:

Σ |= (b, β/B) ⇔ ∀ω, πΣ(ω) ⊆ π{(b,β/B)}(ω).

2.3 Soundness/Completeness of Multiple-Agent Possibilistic Logic

In [8], soundness and completeness of possibilistic logic have been established in
the following way:

Σ = {(ai, αi)|i = 1, ..., n} � (a, α) ⇔ Σ |= (a, α) ⇔ ∀ω, πΣ(ω) ≤ π(a,α)(ω).

In a similar manner, authors in [1], have proved the soundness and complete-
ness of multiple-agent logic as follows:

Σ = {(ai, Ai)|i = 1, ..., n} � (a,A) ⇔ Σ |= (a,A) ⇔ ∀ω, πΣ(ω) ⊆ π(a,A)(ω)

The multiple-agent possibilistic logic is also sound and complete. Indeed, using
previous results and with notations Σk and Σα/A introduced in Sect. 2, we have:

Σ � (a, α/A) ⇔ ∀k ∈ A, Σk � (a, α) (by definition)
⇔ ∀k ∈ A, Σk |= (a, α) (completeness of possibilistic logic)

⇔ Σα/A |= (a, α/A) (by definition, keeping only formulas in Σ
which may play a role in the inference of (a, α/A))

⇔ Σ |= (a, α/A) (inference monotony)
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3 A Refutation Method by Linear Multiple Agent
Resolution

In possibilistic logic, the linear resolution strategy for the procedure of refutation
by resolution, defined in [7], works in the same way as in classical logic, and
thanks to an A∗-like search method (changing the sum of the costs into their
minimum), one can obtain the refutation having the strongest weight first, this
weight being the one of the formula we want to prove. Here, the (fuzzy) subsets
of agents play the role of weights, but they are not totally ordered, while the
weights in possibilistic logic are; this makes the problem more tricky (since the
costs in the A∗-like algorithm will be computed from these weights). However,
the procedure can be adapted to multiple-agent logic.

3.1 Refutation by Linear Multiple Agent Resolution

Let Γ be a knowledge base composed of multiple agent formulas. Proving (a,A)
from Γ comes down to adding (¬a,All), in clausal form, to Γ and applying
the resolution rule repeatedly until producing (⊥, A). Clearly, it comes down to
getting the empty clause with the greatest subset of agents set(a, Γ ). Formally:

set(a, Γ ) = ∪{A|Γ |= (a,A)}

Refutation by resolution using a linear strategy can be expressed in terms of
tree search in a state space. A state (C0C1, ..., Ci) is defined by a central clause
Ci and the sequence (C0C1, ..., Ci−1) of central clauses ancestors of Ci. For each
state of the search tree, a subset of agents is associated, playing the role of a
cost. It corresponds to the subset of agents of the latest generated central clause
s.t. set(Ci) (short for set(Ci, Γ )) is associated with state (C0C1, ..., Ci). The goal
is to find the states ending with the empty clause with the greatest subsets of
agents. An analogy with the search in the state space with costs is established
in the following way:

– The initial state S0 is defined by the initial central clause C0 with a cost equal
to set(C0),

– The cost associated with the arc (C0C1, ..., Ci) → (C0C1, ..., CiCi+1) is the set
associated with Ci+1,

– The global cost of the path C0 → C1 → ... → Ci is the intersection of (set-
valued) costs of the elementary arcs,

– The objective states are states (C0C1, ..., Ci) such that Ci = (⊥, Ai) with
Ai �= ∅,

– The state (C0C1, ..., Cn) is expanded by generating all resolvents of Cn autho-
rized by the linear strategy.

Searching for a refutation with the greatest subsets of agents is then equivalent
to searching for a path with maximal cost from the initial state to the objective
states. However, many differences exist:
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– costs here are to be maximized not to be minimized. Indeed, the goal is to
find the greatest subset of agents who believe a formula.

– costs are not additive but they are combined using the intersection operator.
– since only partial order can be defined between subsets, several objective states

exist. The latter are then combined by the union operator.
– if an order exists between subsets, the greatest subset is considered and the

other path is never explored, unlike search in space states.

As for heuristic search in space states, the ordered search is guided by an eval-
uation function f calculated as follows: for each state S of the search tree,
f(S) = g(S) ∩ h(S) where g(S) is the path cost from the initial state to S, and
h(S) a cost estimation from S to an objective state.

The different steps of the refutation by resolution using a linear strategy,
presented by Algorithm 1, can be summarized in the following way:

Let R(Γ ) be the set of clauses that has been produced (using resolution)
from Γ . For each refutation using the clause C, for each literal l of C and in
order to obtain ⊥, the use of a clause C ′ containing the literal ¬l is required. A
refutation expanded from C will have a cost less than or equal to:

H(l) =
⋃

{set(C ′), C ′ ∈ R(Γ ),¬l ∈ C ′}

The cost of the path until the contradiction developed from the clause C is
then:

h1(C) =
⋂

{H(l), l ∈ C} =
⋂

l∈C

⋃
{set(C ′), C ′ ∈ R(Γ ),¬l ∈ C ′}

with S = (C0, ..., C). An admissible evaluation function is obtained f1(S) =
set(C) ∩ h1(S). h1(S) depends only on C. A sequence of evaluation functions
can be defined as follows:

h0(C) = All;

fp(C) = set(C) ∩ hp(C); p ≥ 0

hp+1(C) =
⋂

l∈C

⋃
{fp(C ′), C ′ ∈ R(Γ ),¬l ∈ C ′}; p ≥ 0

Example 1. Let Γ be a multiple-agent clausal knowledge base:
C1 : (¬a ∨ b, All); C2 : (a ∨ d,All);
C3 : (a ∨ ¬c,A); C4 : (¬d,A);
C5 : (¬d,B).
Let us to consider the search of the greatest subset of agents who believe b.

Let then Γ ′ be the set of clauses equivalent to Γ ′ = Γ∪{(¬b, All)}. C0 = (¬b, All)
as Γ ′ − {C0} is coherent. The only clause which contains the literal b is C1 (see
Fig. 1). The next state is then S1 = (C0C6) with C6 : (¬a,All) and cost equal
to set(C0)∩ set(C1) = set(C6) = All. Different paths with C2 and C3 exist from
this state. The evaluation function then will be calculated. The greatest set that
maximizes the evaluation function is All, because A ⊂ All. Effectively, taking
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Fig. 1. Refutation tree of Example 1

into account this inclusion order, the path with the clause C3 is not explored. The
next state is then S2 = (C0C6C7) and has a cost set(C6) ∩ set(C2) = set(C7) =
All, with C7 : (d,All).

Several paths exist from this state. Those paths will be all explored because
they have incomparable evaluation functions, due to the partial order of subsets.
Let S3 = (C0C6C7C8) be the next state. Its associated cost is set(C7)∩set(C4) =
set(C8) = A. The clause C8 is a contradiction. So, the first objective state is
reached.

When dealing with the clause C5, the next state is then S4 = (C0C6C7C9)
having the cost set(C7) ∩ set(C5) = set(C9) = B. The clause C9 is a contradic-
tion. The last objective state is then reached. Thus Γ |= (b, A ∪ B).

3.2 Refutation by Linear Possibilistic Multiple Agent Resolution

In multiple-agent possibilistic logic, the gradual subset weakening states that if
β/B ⊆ α/A then (c, α/A) � (c, β/B). The inclusion F ⊆ G between two fuzzy
subsets F and G of a referential U is classically defined by ∀u ∈ U,F (u) ≤ G(u).
In particular, if U = All, then α/A ⊇ β/B if and only if A ⊇ B and α ≥ β.

The goal is then to find a given formula with the greatest subset of agents
with the greatest certainty degree. Obviously, the union of two partial results
(⊥, α/A) and (⊥, β/B) should be taken if α > β and A ⊂ B. These observations
are used to directly extend the procedure of the previous section.

Example 2. Let Σ be a multiple-agent possibilistic knowledge base composed by
the following clauses:

C1 : (¬a ∨ b, 0.8/All)
C2 : (a ∨ d, 0.7/All)
C3 : (a ∨ ¬c, 0.9/A)
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Algorithm 1. Multiple agent refutation by resolution using linear strategy
begin
Open ← {S0}; Closed ← {S0}; bset = ∅
while Open �= ∅ do

Select a state Sn in Open maximizing f
if Sn is an objective state then

bset = bset ∪ Sn

else
Explore the node Sn by creating the set E′

n of produced states.
if In the set E′

n there are subsets included in other then
remove them from E′

n

end if
En ← E′

n \ Closed
Open ← (Open − {Sn}) ∪ En

Closed ← Closed ∪ {Sn}
calculate f for each new state of Open

end if
end while
if Open = ∅ then

failure
else

display bset
end if
End.

C4 : (¬d, 0.4/A)
C5 : (¬d, 0.3/B)

Note that the propositional knowledge base Σ◦ coincides with Γ ◦ in the
example of Sect. 3. The problem is to find the greatest subset of agents who
believe b with the greatest certainty degree.

Let then Σ′ be the set of clauses equivalent to Σ′ = Σ ∪ {(¬b, 1/All)}. As
depicted in Fig. 2, let us take C0 = (¬b, 1/All) because Σ′ −{C0} is coherent. As
the classical projection of Σ is the same as Γ , the next state is then S1 = (C0C6)
and the associated cost is fset(C0) ∩ fset(C1) = fset(C6) = 0.8/All. Different
paths starting with C2 and C3 exist from this state. However, unlike in the
previous example, both paths will be explored because the fuzzy set 0.9/A is not
included in the fuzzy set 0.7/All. Using C2, let S2 = (C0C6C7) be the next state
with cost fset(C6) ∩ fset(C2) = fset(C7) = 0.7/All.

Several paths exist from this state using C4 or C5. Let S3 = (C0C6C7C8) be
the next state using C4. Its associated cost is fset(C7)∩ fset(C4) = fset(C8) =
0.4/A. The clause C8 is a contradiction. The first objective state is then reached.
With the path using the clause C5, the next state is then S4 = (C0C6C7C9)
with the cost fset(C7) ∩ fset(C5) = fset(C9) = 0.3/B. The clause C9 is a
contradiction. An objective state is then reached.

The development of the path with the clause C3 induces the next state S5 =
(C0C6C10) with the cost fset(C6) ∩ fset(C3) = fset(C10) = 0.8/A. The clause
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Fig. 2. Refutation tree of Example 2

C10 is not a contradiction and there is no clause containing a literal c so no
objective state is reached here. Thus Σ |= (b, 0.4/A ∪ 0.3/B).

4 Experimental Study

In order to analyse the behaviour of the proposed approach, the proposed algo-
rithms were implemented with Java and intensive experiments have been per-
formed. For this purpose, several consistent knowledge bases, including multiple-
agent knowledge bases and possibilistic multiple-agent knowledge bases, have
been generated by varying the number of clauses. For each case of the following
experiments, the execution time of the algorithm is evaluated in seconds. The
number of Booleanvariables is set to 30 and the number of groups of agents is
set respectively to 5, 10 and 15 by setting to 20 the number of agents.

1. Results with multiple-agent knowledge bases:
Figure 3 shows the behaviour of refutation algorithm by varying the number
of clauses from 5000 to 50000. According to the obtained results, we notice
that the execution time increase proportionally to the number of clauses.

2. Results with multiple-agent possibilistic knowledge bases:
Figure 4 shows the behaviour of refutation algorithm by varying the number
of clauses from 5000 to 50000. According to Fig. 4, we notice also that the
execution time is increased by rising the number of clauses.

3. Comparison between refutations by linear multiple agent resolution
and by linear possibilistic multiple agent resolution:
In order to compare both approaches, other experiments have been carried
out, using large bases containing 50000 clauses, 30 variables and 15 groups
of agents. By varying the number of agents from 25 to 200, Fig. 4 reveals
us that the execution time of refutation by linear possibilistic multiple agent
resolution is only slightly greater than the execution time of refutation by
linear multiple agent resolution.
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Fig. 3. Execution time of the refutation algorithm for large multiple agent bases.

Fig. 4. Execution time of the algorithm for large possibilistic multiple-agent bases

Discussion. The obtained results allow us to estimate the performance of the
proposed approach, which depends on the number of agent groups. Indeed, the
execution time linearly increases with the number of clauses, but it increases
exponentially with the number of variables. Whereas, when the number of group
of agents increases, the execution time increases exponentially (but it linearly
increases with the number of agents if their subsets are given in extension)1. This
can be explained by the way of the refutation tree is constructed, which is based
on the suitable clauses. Moreover, each branch of the tree represents one suitable
clause for the literal to be deduced. The results also confirm that the execution
time of the refutation algorithm for possibilistic multiple-agent knowledge bases

1 It should be noticed that a base Σ = {(a1, α1/A1), ..., (an, αn/An)} can be equiva-
lently rewritten as a collection of at most 2n possibilistic logic bases, each of them
associated with an element of the partition of All induced by the Ai’s. However, it is
in generally computationally better to handle the initial base in a global way using
the procedure described in this paper.
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Fig. 5. Comparison between multiple-agent logic and possibilistic multiple-agent logic
in terms of computational time

is slightly greater than the one obtained for multiple-agent knowledge bases.
This is due to the fact that the construction of the refutation tree with fuzzy
sets of agents consumes more time than the construction of refutation trees with
crisp groups of agents.

5 Conclusion

This paper has investigated a multiple-agent logic. From a representation point
of view, this multiple-agent logic allows us to represent beliefs of groups of agents
and its possibilistic extension handles fuzzy subsets of agents, thus integrating
certainty levels associated with agent beliefs. From a reasoning point of view, we
proposed a refutation resolution based on linear strategy for the multiple logic
and its possibilistic extension. An experimental study was conducted to evaluate
the proposed algorithms. It shows the tractability of the approach.

One may think of several extensions. On the one hand, the multiple agent
extension of the Boolean generalized possibilistic logic [5] would allow us to
consider the disjunction and the negation of formulas like (p,A), and to express
quantifiers in propositions such as “at most the agents in subset A believe p”. On
the other hand, one might also take into account trust data about information
transmitted between agents [6,12]. For instance, assume agent a trusts agent
b at level θ, which might be written (b, θ/a), assimilating a, b to propositions.
Then together with (p, α/b) (agent b is certain at level α that p is true), it would
enable us to infer (p,min(α, θ)/a) [2].
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Abstract. In this paper, we propose an interactive version of the Borda
method for collective decision-making (social choice) when the alterna-
tives are described with respect to multiple attributes and the individual
preferences are unknown. More precisely, assuming that individual pref-
erences are representable by linear multi-attribute utility functions, we
propose an incremental elicitation method aiming to determine the Borda
winner while minimizing the communication effort with the agents. This
approach follows the recent work of Lu and Boutilier [8] relying on the
minimax regret as a criterion for dealing with uncertainty in the prefer-
ences. We show that, when preferences are expressed on a multi-attribute
domain and are additively separable over attributes, regret-based incre-
mental elicitation methods can be made more efficient to determine or
approximate the Borda winner. Our approach relies on the representation
of incomplete preferences using convex polyhedra of possible utilities and
is based on linear programming both for minimizing regrets and select-
ing informative preference queries. It enables to incrementally collect
preference judgements from the agents until the Borda winner can be
identified. Moreover, we provide an incremental technique for eliciting a
collective ranking instead of a single winner.

1 Introduction

Voting is an effective method for collective decision-making, used in political
elections, technical committees, academic institutions. Recently, interest in vot-
ing has increased in computer science, given the possibility offered by online web
systems to support voting protocols, or protocols inspired by voting, for group
decision-making (for example, for scheduling a meeting). In many real situations,
however, it may be necessary to reason with partial preferences, as some prefer-
ences are not available and too expensive to obtain (with respect to a cognitive
or economic cost). This observation has motivated a number of recent works on
c© Springer International Publishing Switzerland 2016
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social choice with partial preferences, e.g., [2–6,8,9,12]. In this research stream,
typical questions concern the determination of possible and necessary winners,
the selection of preference queries to ask to the agents for further eliciting pref-
erences, the approximation of optimal solutions or the determination of robust
recommendations based on the available preference information.

Acquiring agents’ preferences is expensive (with respect to time and cogni-
tive cost). It is therefore essential to provide techniques that allow to reason
with partial preference information, and that can effectively elicit the most rele-
vant part of preferences to make a decision. Adaptive utility elicitation [1,10,11]
tackles the challenges posed by preference elicitation by representing the sys-
tem knowledge about the agents’ preferences in the form of a set of admissible
utility functions. This set includes all functions compatible with the preferences
collected so far, and is updated following agents’ responses. In this way, one can
often make good (or even optimal) recommendations with sparse knowledge of
the users’ utility functions.

The aim of this paper is to introduce an adaptive utility elicitation proce-
dure in the context of voting, for the fast determination of a Borda winner or a
social ranking based on the Borda score, and to test the practical efficiency of
this procedure. In particular, we extend the work of [8] to the multi-attribute
case. Multiple attributes may appear in well-known collective decision prob-
lems such as committee elections or voting in multi-issue domains [7]. In these
cases, attributes are boolean and represent elementary decisions on candidates
or issues. More generally, the multi-attribute case occurs when the alternatives of
a collective decision problem are described by different features, non-necessarily
boolean. Individual preferences are assumed here to be representable by a linear
function of the attribute values. Since utilities are decomposable over attributes,
a set of preference statements formulated by an agent on some pairs of alter-
natives will possibly allow to infer other preference statements with respect to
other pairs, without asking them explicitly. We show in the paper how this type
of inference mechanism can be implemented using mathematical programming
to reduce the number of queries and speed-up the determination of a necessary
Borda winner.

The paper is organized as follows: in Sect. 2, we introduce the basic frame-
work for voting on multi-attribute domains. Then, we present the minimax regret
decision criterion as a useful tool for decision under uncertainty and prefer-
ence elicitation. In Sect. 3, we introduce a new method based on mathematical
programming to minimize regrets based on the Borda count. Section 4 deals
with preference elicitation for the Borda count; we introduce different strategies
for generating preference queries and compare them experimentally. Finally, in
Sect. 5, we extend the approach to ranking problems based on the Borda score
and provide additional numerical tests to evaluate the efficiency of our approach
in ranking.
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2 Social Choice in Multi-attribute Domains
with Incomplete Preferences

We consider a set of n voters or agents and a set X of m alternatives (candi-
dates, options, items), characterized by a finite set of q attributes or criteria; an
alternative is associated to a vector x = (x1, . . . , xq) where each xk represents
the value of an attribute k or a performance with respect to a given point of
view.

Individual preferences are assumed here to be represented by linear utilities
of the form ui(x) =

∑q
k=1 ωi

kxk, where ωi = (ωi
1, . . . , ω

i
q) is a vector of weights

characterizing the preferences of agent i. Hence, an alternative x is as least as
good as y for agent i whenever

∑q
k=1 ωi

kxk ≥ ∑q
k=1 ωi

kyk. Our framework can be
used to address two different cases: a multi-criteria decision setting or a multi-
attribute utility where the utility is defined as the weighted sum of attribute
values. Formally, these preferences are defined by the following relation �i:

x �i y iff
q∑

k=1

ωi
k(xk − yk) ≥ 0

A preference profile 〈�1, . . . ,�n〉 of an election is therefore completely charac-
terized by the weight vectors ω1, . . . , ωn (each associated with an agent). We can
now define the Borda score in our multi-attribute settings, where preferences are
defined by the utility weights. Given ω = 〈ω1, . . . , ωn〉, the Borda score s(x, ω)
of an alternative x is

s(x, ω) =
n∑

i=1

si(x, ωi)

where si(x, ωi) = |{y ∈ X |x �i y}| counts the number of alternatives that are
strictly beaten by x according to the preference relation induced from ωi, where
�i is the asymmetric part of �i: x �i y iff �i and ¬(y �i x). Our definition
allows for ties in each ranking. When using only linear orders (i.e. the ωis are
such that there are no ties) we get the usual Borda count.

When the weights of the agents are not known to the system with certainty,
we need to reason about partially specified preferences. This is done by assuming
a vector Ω = 〈Ω1, . . . , Ωn〉 where each Ωi is the set of feasible ωi that are
consistent with the available preference information on agent i. Later, we will
use Ω (that represents our uncertainty about the weights associated with the
agents) in order to provide a recommendation based on minimax regret. At the
level of a single agent i, we can check whether pairs of alternatives are in a
necessary preference relation given Ωi.

Definition 1. Alternative x is necessarily weakly preferred to y for agent i,
written x �N

i y, iff ∀ωi ∈ Ωi,
∑q

k=1 ωi
k(xk − yk) ≥ 0. Similarly, x is necessarily

strictly preferred to y for agent i, written x �N
i y, iff ∀ωi ∈ Ωi,

∑q
k=1 ωi

k(xk −
yk) > 0.
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The necessarily strictly preferred relation �N
i should not be confused with the

asymmetric part1 of the necessarily weakly preferred relation �N
i .

At the level of the community of the agents, a possible Borda winner is an
alternative such that there exists a feasible instantiation of the weights that
makes it a Borda winner; a necessary Borda winner is a Borda winner for all
feasible instantiations of the weights.

In general the sets Ω1, . . . , Ωn are not given directly but are inferred by
available preference statements. Any preference statement of type x �i y for
agent i is indeed interpreted as a linear constraint ωi · (x − y) ≥ 0. Therefore,
after collecting several preferences of this type, Ωi is a convex polyhedron in the
space of weights.

When the utility weights are known and characterized by ω = 〈ω1, . . . , ωn〉,
the actual loss or real regret of an alternative x is the shortfall in Borda score
that occurs by choosing x instead of the optimal choice x∗

ω; more formally:

Regret(x, ω) = max
y∈X

{s(y, ω)} − s(x, ω) = s(x∗
ω, ω) − s(x, ω).

Instead, when the actual weights ω = 〈ω1, . . . , ωn〉 are not known, but some
preferences are available, we are interested in quantifying how “bad” a choice
can be with respect to the current uncertainty about the weights, encoded by
Ω = 〈Ω1, . . . , Ωn〉. To this end, we first define pairwise max regret, then max
regret and finally minimax regret as proposed in [8,10]. The pairwise max regret
PMR(x, y,Ω) of alternative x relative to y under Ω is the worst-case loss, in
terms of Borda score, of selecting the alternative x instead of y. The max regret
MR(x,Ω) is the worst-case loss of choosing x: this can be viewed as an adversarial
selection of the instantiation of the weights ω to maximize the loss between x
and the true winner under ω. We want to choose the alternative x minimizing
max regret: the minimax regret MMR(Ω) represents the smallest max regret
under Ω. These concepts are formalized below:

PMR(x, y,Ω) = max
ω∈Ω

[
s(y, ω) − s(x, ω)

]
,

MR(x,Ω) = max
y∈X

PMR(x, y,Ω), (1)

MMR(Ω) = min
x∈X

MR(x,Ω). (2)

Finally the minimax optimal alternative x∗
Ω is any alternative x minimizing

regret MR over Ω (i.e. x∗
Ω ∈ arg minx∈X MR(x,Ω)). Solution x∗

Ω is an approx-
imate winner of the current election according to the minimax regret criterion;
it gives us the safest choice with respect to the uncertainty on the preference
weights attached to the agents; this will be suggested as a recommendation for
the social choice problem given the available preference information. We recall
from [8] the observation that the regret-minimizing alternative may not be a
possible winner. Another important property is that, if MMR(Ω) = 0, then x∗

Ω

is a necessary winner.
1 The asymmetric part �N

i of �N
i is defined as x �N

i y iff (x �N
i y) ∧ ¬(y �N

i x).
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3 Minimax Regret Computation for Borda

We are now interested in the computation of minimax regret, given the uncer-
tainty sets 〈Ω1, . . . , Ωn〉, when using Borda count as voting rule on a multi-
attribute domain. Note that the computation of the pairwise max-regret values
PMR is the cornerstone of the problem: once we have computed PMR(x, y,Ω) for
all x, y ∈ X, max regret MR(x,Ω) for all x and then minimax regret MMR(Ω)
can be computed directly from the definitions (Eqs. 1 and 2).

The main intuition for computing minimax regrets comes from [8]; however,
in our multi-attribute settings, computing PMR is more involved as we need to
deal with the multi-attribute structure of the domain. The key idea is to exploit
the decomposition of PMR with respect to the different agents:

PMR(x, y,Ω) =
n∑

i=1

max
ωi∈Ωi

[
si(y, ωi)−si(x, ωi)

]

This decomposition allows to decompose the PMR maximization problem into
a series of simpler maximization problems. For each agent i, we maximise the
contribution to PMR separately, which is defined as follows:

PMRi(x, y,Ωi) = max
ωi∈Ωi

[
si(y, ωi) − si(x, ωi)

]

This optimization problem gives the maximal difference between the number of
alternatives strictly less preferred than y and the number of alternatives strictly
less preferred than x (according to the ith-agent’s preferences); note that, if there
is no tie, this corresponds to maximizing the difference between their rank. Let ωi

be the weighted vector maximizing this value and �i be the preference relation
induced by ωi. From the definition of the scores, we have:

si(y, ωi) − si(x, ωi) =
{− |{z ∈ X, x �i z �i y}| if x �i y

|{z ∈ X, y �i z �i x}| otherwise

However, since we do not know in which case we are (ωi is not known), we make
use of the necessarily preferred relation �N

i in order to check whether some
conclusions can be drawn from the available information about the preference
between x and y. More precisely, we distinguish whether it is known that x is
necessarily weakly preferred to y or not. Then, we deduce the weighting vector
that maximizes the contribution to regret of agent i. Note that checking whether
x �N

i y can be simply performed using a linear program, by testing the condition
minωi∈Ωi{(x− y) ·ωi} ≥ 0}. We now express two mutually exclusive cases using
the necessary preference relation.

(1) case x �N
i y: in that case, we have si(y, ωi) − si(x, ωi) ≤ 0 for all ωi ∈ Ωi

by definition of �N
i . This induces that the contribution to PMR(x, y,Ω) is non-

positive and more precisely, we have PMRi(x, y,Ωi) = −minωi∈Ωi |{z ∈ X, x �i

z �i y}|. Hence, to maximize the pairwise max regret PMR(x, y,Ω), we need to
minimize over Ωi the cardinality of the set {z ∈ X, x �i z �i y} as much as
possible.
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(2) case ¬(x �N
i y): there exists ωi ∈ Ωi such that si(y, ωi) − si(x, ωi) ≥ 0 by

definition of �N
i . Therefore, we know that the contribution to PMR(x, y,Ω) is

non-negative here. More precisely, we have PMRi(x, y,Ωi) = maxωi∈Ωi |{z ∈
X, y �i z �i x}|. Hence, we need to maximize the cardinality of the set {z ∈
X, y �i z �i x} to maximize the pairwise max regret PMR(x, y,Ω).

In the following, we consider the problem of computing PMRi(x, y,Ωi) for
any x, y and i. First of all, we need to define the following sets for any a ∈ {x, y}:

Ua ={z∈X \ {a}, z�N
i a}, La ={z∈X, a�N

i z}, V a =X \ ({a} ∪ Ua ∪ La)

and for any pair of alternatives (a, b) ∈ {(x, y), (y, x)}:

Ma,b = La ∩ U b, Za,b
1 = La ∩ V b, Zb,a

2 = U b ∩ V a, Za,b
3 = V a ∩ V b

These sets are computed for each user i using linear programming (repeatedly
testing �N

i or �N
i on pairs of alternatives) and allow us to partition the set

X for the computation of PMRi(x, y,Ωi). We refer the reader to Fig. 1 where
the different cases are visualized; for simplicity, we only show the transitive
reduction of the preference relation and we distinguish whether it is known that
y is necessarily weakly preferred to x or not (if not, set My,x is empty). Note
that, in the following, we may write Z1, Z2 and Z3 (dropping the superscripts)
when the case considered is clear from the context.

Fig. 1. Partition of set X with respect to the value of �N
i with x and y for agent i.

The solid (resp. dashed) arcs represent necessary strict (resp. weak) preferences.

(1) case x �N
i y (Fig. 1a): We want to compute PMRi(x, y,Ωi). Recall that, in

this case, PMRi(x, y,Ωi) = −minωi∈Ωi |{z ∈ X, x �i z �i y}|. Hence, we want
to find a feasible ωi ∈ Ωi such that as few of the alternatives z ∈ X are such
that x �i z �i y. First, let us note that none of the alternatives z in Ux ∪ Ly

verify x �i z �i y for some ωi ∈ Ωi (by definition of Ux and Ly). Moreover,
x �i z �i y for all alternatives z ∈ Mx,y and all ωi ∈ Ωi (by definition of Mx,y).
Therefore, we have:
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PMRi(x, y,Ωi) = −|Mx,y| − min
ωi∈Ωi

|{z ∈ Z1 ∪ Z2 ∪ Z3 ∪ {y}, x �i z �i y}|

Thus, we need to compute minωi∈Ωi |{z ∈ Z1 ∪ Z2 ∪ Z3 ∪ {y}, x �i z �i y}|
to determine PMRi(x, y,Ωi). We propose now a mixed-integer programming
formulation (named MIPx,y) to solve the latter optimization problem:

(MIPx,y): min b0 +
∑

z∈Z1

bz
1 +

∑

z∈Z2

bz
2 +

∑

z∈Z3

bz
3

s.t.
q∑

j=1

ωi
j = 1 (3)

ωi · (a − b) ≥ 0, ∀(a, b) ∈ Pi
≥ (4)

ωi · (a − b) ≥ ε, ∀(a, b) ∈ Pi
> (5)

ωi · (y − x) + Cb0 ≥ 0 (6)

ωi · (y − z) + Cbz
1 ≥ ε, ∀z ∈ Z1 ∪ Z3 (7)

ωi · (z − x) + Cbz
2 ≥ 0, ∀z ∈ Z2 ∪ Z3 (8)

bz
3 ≥ bz

1 + bz
2 − 1, ∀z ∈ Z3 (9)

ωi
j ≥ 0, ∀j ∈{1, . . . , q}; b0∈{0, 1}; bz

3 ∈{0, 1}, ∀z∈Z3

bz
1 ∈ {0, 1}, ∀z ∈ Z1 ∪ Z3; bz

2 ∈ {0, 1}, ∀z ∈ Z2 ∪ Z3

In this program, the variables are ωi = (ωi
1, . . . , ω

i
q), a vector of q positive real

numbers, binary variable b0 and binary variables bz
1 for each z ∈ Z1 ∪ Z3, bz

2 for
each z ∈ Z2∪Z3, and bz

3 for each z ∈ Z3 (we therefore have q+|Z1|+|Z2|+3|Z3|+1
variables). C is an arbitrary large constant value and ε is an arbitrary small and
positive constant modelling strict inequalities. Constraint 3 simply states that
the weights should be normalized to add up to 1. Constraints 4 and 5 model the
fact that weight ωi should satisfy both the weak preference statements in Pi

≥
and the strict preference statements in Pi

> obtained from agent i; indeed, set Ωi

is defined by these preference statements.

Proposition 1. If x �N
i y, then PMRi(x, y,Ωi) = −|Mx,y|−OPT , where OPT

is the optimum of mixed-integer program MIPx,y.

Proof. We want to prove that minωi∈Ωi |{z ∈ Z1∪Z2∪Z3∪{y}, x �i z �i y}| is
the optimum of MIPx,y, i.e. we want to show that the objective function counts
the cardinality of {z ∈ Z1 ∪ Z2 ∪ Z3 ∪ {y}, x �i z �i y}. In this program, we
use a set of binary variables bz

1, bz
2 and bz

3 to represent the condition x �i z �i y
for alternatives z in Z1, Z2 and Z3 respectively. Binary variable b0 represents
whether x is strictly preferred to y (otherwise the contribution to PMR is null).
The objective function sums up over all variables b0, bz

1, bz
2 and bz

3, so that we
count the cardinality of {z ∈ Z1∪Z2∪Z3∪{y}, x �i z �i y}. We now prove that
each binary variable is equal to one iff the corresponding constraint is satisfied.
Since the objective is a minimization, the values of the binary variables b0, bz

1,
bz
2 and bz

3 (that appear in the objective function), will be 0 unless forced to 1.
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The binary variable bz
1, for z ∈ Z1, represents whether alternative z verifies

x �i z �i y. Equation 7 indeed enforces bz
1 = 1 when ωi · (z − y) ≥ 0, i.e.

when z �i y; otherwise, variable bz
1 is set to zero since we are minimizing the

objective function. Then, since x �i z (by definition of Z1), we have that bz
1 = 1

iff x �i z �i y.
For all alternatives z ∈ Z2, we know that z �i y by definition. Therefore, z

will be such that x �i z �i y iff x �i z. The binary variable bz
2 will take value

1 in this case. This is indeed guaranteed by Constraint 8 enforcing bz
2 = 1 when

ωi · (z − x) < 0, i.e. if x is strictly preferred to z. If instead z is preferred to x,
then the value ωi · (z − x) is positive and Constraint 8 is vacuous; in this case,
bz
2 will take value 0, as desired, because we are minimizing.

For all alternatives z ∈ Z3, the two previous conditions need to be satisfied
in order for z to contribute to the score difference. Constraint 9 implements an
and between these two conditions (bz

3 = 1 iff x �i z and z �i y).
Finally, while we know that y cannot be strictly preferred to x (since x �N

i

y), it might be the case that they are equally preferred. The binary variable
b0 represents whether x is strictly preferred to y; more precisely, Constraint 6
enforces that b0 = 1 whenever ωi · (y − x) < 0. �
(2) case ¬(x �N

i y) (Figs. 1b and c): Recall that, in this case, PMRi(x, y,Ωi) =
maxωi∈Ωi |{z ∈ X, y �i z �i x}|. Therefore, we aim to find a feasible ωi ∈ Ωi

so that as many of the alternatives z ∈ X are such that y �i z �i x. Since we
are maximizing, the optimal ωi ∈ Ωi will be such that y �i x; thus, the case
represented in Fig. 1c reduces to the one depicted in Fig. 1b. We now focus on
the optimization of PMRi(x, y,Ωi) for Fig. 1b. Similarly to the first case, note
that none of the alternatives z in Uy ∪ Lx verifies y �i z �i x for some ωi ∈ Ωi.
Moreover, all alternatives z ∈ My,x are such that y �i z �i x for all ωi ∈ Ωi.
Therefore:

PMRi(x, y,Ωi) = |My,x| + max
ωi∈Ωi

|{z ∈ Z1 ∪ Z2 ∪ Z3 ∪ {x}, y �i z �i x}|

Thus, we need to compute maxωi∈Ωi |{z ∈ Z1∪Z2∪Z3∪{x}, y �i z �i x}|. This
can be performed by solving the following program (named MIPy,x hereafter):

(MIPy,x): max b0 +
∑

z∈Z1

bz
1 +

∑

z∈Z2

bz
2 +

∑

z∈Z3

bz
3

s.t.
q∑

j=1

ωi
j = 1

ωi · (a − b) ≥ 0, ∀(a, b) ∈ Pi
≥

ωi · (a − b) ≥ ε, ∀(a, b) ∈ Pi
>

ωi · (y − x) + (1 − b0)C ≥ ε (10)

ωi · (z − x) + (1 − bz
1)C ≥ 0, ∀z ∈ Z1 ∪ Z3 (11)

ωi · (y − z) + (1 − bz
2)C ≥ ε, ∀z ∈ Z2 ∪ Z3 (12)
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bz
3 ≤ bz

1, ∀z ∈ Z3 (13)
bz
3 ≤ bz

2, ∀z ∈ Z3 (14)

ωi
j ≥ 0, ∀j ∈{1, . . . , q}; b0∈{0, 1}; bz

3 ∈{0, 1}, ∀z∈Z3

bz
1 ∈ {0, 1}, ∀z ∈ Z1 ∪ Z3; bz

2 ∈ {0, 1}, ∀z ∈ Z2 ∪ Z3

Proposition 2. If ¬(x �N
i y), then PMRi(x, y,Ωi) = |My,x| + OPT , where

OPT is the optimum of mixed-integer program MIPy,x.

The proof is similar to that of the previous condition, however since the objective
is a maximization, the values of the binary variables b0, bz

1 (for z ∈ Z1), bz
2 (for

z ∈ Z2) and bz
3 (for z ∈ Z3) will be 1 unless forced to be 0. Constraints 10–14

formalize the required behaviour: the value of each binary variable, relative to a
specific z, will be set to 1 unless ωi is chosen in a way such that y �i z �i x.

Note that the MIP formulations might be too computationally demanding for
problems involving a large number of alternatives (since there are one or more
integer variables per alternative). For this reason, we will consider the linear
programming relaxation of these programs, i.e., the linear programs obtained by
replacing boolean variables b0, bz

1, bz
2, bz

3 by continuous variables belonging to
the unit interval. The resulting optimization problems are solvable in polynomial
time using linear programming; however the solution gives an upper bound on
pairwise max regret values (instead of the exact value). The relaxed values for
PMR are then aggregated giving a relaxed MMR value. Note that, since opti-
mizing the relaxed problem gives an upper bound, the result can still be used in
order to provide a robust recommendation with worst-case guarantees; the guar-
antee is less strong than if pairwise max regret values were computed exactly,
but computation times are significantly improved as shown in Subsect. 4.2.

4 Incremental Elicitation

Given the available preference information, the worst-case loss ensured by the
minimax regret might be at unacceptable level. In order to approximate the
Borda winner with the desired guarantee (expressed by the minimax regret
value), we may ask additional preference information to the agents. By incorpo-
rating the responses to additional questions, we can indeed refine the uncertainty
sets and therefore reduce this loss.

4.1 Elicitation Strategies

We adopt an incremental setting where preference queries are selected incremen-
tally according to the current available information until the minimax regret is
zero; at that point, we know that alternative x∗

Ω is a necessary Borda winner. We
allow asking queries that may induce either weak or strict preference statements.
In order to limit the cognitive effort of the agents, it is important to ask queries
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that are informative (roughly, a query is informative if it significantly reduces
regrets whatever the answer); in particular, the computation of minimax regret
can suggest queries that may be able to impose a significant reduction of regrets.
One common technique, also known as the Current Solution Strategy (CSS), is
to consider one of the current “best challenger” y∗

Ω of the approximate winner:
y∗

Ω ∈ arg maxy∈X PMR(x∗
Ω , y, Ω). New preference information involving the pair

(x∗
Ω , y∗

Ω) is indeed often useful to reduce the minimax regret efficiently, which is
equal to PMR(x∗

Ω , y∗
Ω , Ω). We propose now two elicitation strategies of different

complexity, that are aimed to reduce PMR(x∗
Ω , y∗

Ω , Ω).

Multi-attribute-CSS0 (MA-CSS0). This strategy selects a pair (agent, query)
such that the answer may reduce the agent’s contribution to PMR(x∗

Ω , y∗
Ω , Ω).

More precisely, an agent i is selected at random and the strategy proceeds as
follows:

(1) case x∗
Ω �N

i y∗
Ω: recall that, in this case, PMRi(x∗

Ω , y∗
Ω , Ωi) = −|Mx∗

Ω ,y∗
Ω | −

minωi∈Ωi |{z ∈ Z1 ∪ Z2 ∪ Z3 ∪ {y}, x∗
Ω �i z �i y∗

Ω}|. We distinguish two cases:

– case Z1 ∪ Z2 ∪ Z3 = ∅: if ¬(x∗
Ω �N

i y∗
Ω), then we ask the agent whether

x∗
Ω is strictly preferred to y∗

Ω . If, instead, x∗
Ω �N

i y∗
Ω , we know precisely the

difference of scores between x∗
Ω and y∗

Ω for agent i, that is −|Mx∗
Ω ,y∗

Ω | − 1.
In this case, asking a query to agent i is useless (since his/her contribution
to PMR(x∗

Ω , y∗
Ω , Ω) cannot be decreased) and so the strategy selects another

agent at random.
– case ¬(Z1 ∪ Z2 ∪ Z3 = ∅): an alternative z in Z1 ∪ Z2 ∪ Z3 is selected at

random. For each z ∈ Z1 ∪ Z2 ∪ Z3, our current knowledge about the agent’s
preferences is not sufficient to conclude on whether x∗

Ω �i z �i y∗
Ω is satisfied

or not. More precisely, if z ∈ Z1, then we know that x∗
Ω is strictly preferred

to z by definition, but there exists ωi ∈ Ωi such that ¬(z �i y∗
Ω). Therefore,

we ask the agent whether z is (weakly) preferred to y∗
Ω so as to obtain the

missing information. Similarly, if z ∈ Z2, then we know that z is preferred to
y∗

Ω , and so the agent is asked whether x∗
Ω is strictly preferred to z. Finally, if

z ∈ Z3, then we ask one of the two previous questions, the choice between the
two questions being randomly made.

(2) case ¬(x∗
Ω �N

i y∗
Ω): recall that, in this case, PMRi(x∗

Ω , y∗
Ω , Ωi) = |My∗

Ω ,x∗
Ω |+

maxωi∈Ωi |{z ∈ Z1 ∪Z2 ∪Z3 ∪{x}, y∗
Ω �i z �i x∗

Ω}|. We distinguish three cases:

– case ¬(y∗
Ω �N

i x∗
Ω): in this case, x∗

Ω and y∗
Ω are incomparable for the system,

and so we ask the agent to compare them directly.
– case (y∗

Ω �N
i x∗

Ω) ∧ (Z1 ∪ Z2 ∪ Z3 = ∅): if ¬(y∗
Ω �N

i x∗
Ω), then the agent is

asked whether y∗
Ω is strictly preferred to x∗

Ω. If, instead, y∗
Ω �N

i x∗
Ω , then the

difference of scores between x∗
Ω and y∗

Ω for this agent is equal to |My∗
Ω ,x∗

Ω |+1.
In this case, asking a query to agent i is useless and another agent is selected
at random.

– case (y∗
Ω �N

i x∗
Ω) ∧ ¬(Z1 ∪ Z2 ∪ Z3 = ∅): an alternative z in Z1 ∪ Z2 ∪ Z3

is selected at random and we want to know whether y∗
Ω �i z �i x∗

Ω . More
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precisely, if z ∈ Z1, then we ask the agent whether z is (weakly) preferred to
x∗

Ω. Instead, if z ∈ Z2, then we ask the agent if y∗
Ω is strictly preferred to z.

Finally, if z ∈ Z3, then we ask one of the two previous questions.

Multi-attribute-CSS1 (MA-CSS1). This strategy is based on the heuristics
proposed by Lu and Boutilier [8] but adapted to our multi-attribute setting. The
aim is to choose the query with the highest potential of reducing PMR(x∗, y∗, Ω).
More precisely, instead of choosing the agent and the alternative z ∈ Z1∪Z2∪Z3

at random (as in MA-CSS0), strategy MA-CSS1 selects the pair (agent, query)
that maximizes the minimax regret reduction in the most optimistic scenario; it
therefore requires the computation of the resulting minimax regret for each pair
(agent, query).

4.2 Numerical Tests

We performed a number of numerical experiments in order to evaluate the pro-
posed elicitation procedures for determining the Borda winner in an incremental
process. In these experiments, the attribute values for each alternative are ran-
domly sampled in [0, 1]q. Starting from an empty set of preference statements,
we repeatedly compute minimax regret and we ask a new question to one of
the agent according to an elicitation strategy. We simulate answers to queries
according to randomly generated vectors ω1, . . . , ωn (one vector per agent). Opti-
mizations are performed using the Gurobi solver; the simulation environment is
implemented in Java.

In the first experiment, we evaluate the impact of exploiting the fact that the
domain is multi-attribute. We implemented the elicitation procedure proposed
in [8] (named CSS1 hereafter) where no assumption is made about the “struc-
ture” of the agents preferences, and compare it with our strategies MA-CSS0 and
MA-CSS1.2 In Fig. 2a, we report the minimax regret, computed at each step of
the incremental elicitation procedure. Regret values are expressed on a normal-
ized scale, with 1 corresponding to the initial MMR (computed before acquiring
any preference information). Note that a value of 0 for MMR implies identifica-
tion of a Borda winner. We observe that the MMR reduces much more slowly
with CSS1 than with its multi-attribute version MA-CSS1; after 20 queries, the
MMR is still above 40 % of the initial value with CSS1, while it is under 10 %
with MA-CSS1. Moreover, after 30 queries per agent on average, the MMR is
still around 40 % of the initial regret with CSS1 while MA-CSS1 has identified
the Borda winner. Then, we observe (somewhat surprisingly) that the heuristics
used by MA-CSS1 is less effective than MA-CSS0. Since MA-CSS1 is much more
computational demanding than MA-CSS0, in the following experiments, we use
MA-CSS0.

2 Note that CSS1 and MA-CSS1 adopt the same heuristics for choosing the pair (agent,
query); the difference is that MA-CSS1 makes use of the multi-attribute structure
(using linear programming) for identifying the sets Z1, Z2, etc., and computing
regrets, while CSS1 does not.
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(a) (b)

Fig. 2. Evaluation of the elicitation strategies; regret reduction is plotted as a function
of the average number of queries per agent (30 alternatives, 5 criteria and 10 agents;
results averaged over 30 runs). In (a) we plot the reduction of minimax regret obtained
by different elicitation strategies; in (b) we compare the upper bound of MMR obtained
with the relaxed optimization, the exact computation of MMR and the real regret.

The second experiment evaluates the quality of the upper bound obtained
when using the linear programming relaxation of the MMR optimization.
Figure 2b shows the minimax regret, the upper bound obtained by linear pro-
gramming relaxation and the real regret (the actual loss in terms of Borda score)
at each iteration step of the elicitation procedure. We can see that the linear
programming relaxation gives us a relatively tight upper bound on the mini-
max regret and its quality improves with the number of preference statements.
Recall that the relaxed version is significantly faster than the exact version, as
the former solves linear programming problems instead of mixed integer linear
problems. For instance, when no preferences are given, the relaxed optimization
takes about 1s on average while the exact method needs 30s to compute the value
of initial minimax regret. The determination of the next query is also faster
when using the relaxed optimization (2s againts 12s). Even if, by optimizing
the relaxed problem, we are potentially ignoring some valuable information, the
experiment shows that the elicitation performs well. The recommended choice is
the alternative whose “relaxed” MMR is lowest; the real regret associated to this
choice is small and quickly decreases to zero. Note that the fact that real regret
is much smaller than minimax regret in practice has already been observed [10].

The third experiment aims to evaluate the performance of MA-CSS0, using
the relaxed optimization of regrets, when increasing the size of the problem
(number of agents, number of alternatives and number of criteria). Figure 3
shows that, with 5 attributes, our incremental elicitation procedure determines
a necessary Borda winner in about 30–35 queries asked to each agent; however,
with 7 attributes, slightly more than 50 queries are needed. In all cases, the real
regret is low even after a few queries.
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(a) 10 agents, 50 alt. and 5 attributes. (b) 50 agents, 50 alt. and 5 attributes.

(c) 10 agents, 100 alt. and 5 attributes. (d) 10 agents, 50 alt. and 7 attributes.

Fig. 3. Performance of MA-CSS0 with the relaxed version of minimax regret (30 runs).

5 Determination of the Social Ranking Induced by Borda
Scores

There are many decision situations where knowing the top-k alternatives is the
desirable output. When the preference profile is fully known, ranking alternatives
with a scoring rule is straightforward. However, when preferences are incomplete,
incremental elicitation methods need to be adapted to efficiently focus the elic-
itation effort on the determination of the top-k alternatives. We address here
the problem of ranking as one of repeated choices, assuming that we want to
incrementally rank alternatives from best to worst; we can generate preference
queries until the minimax regret drops to 0, meaning that the Borda winner has
been identified. Then, this alternative is put aside3 and the selection process
is iterated on the remaining set of alternatives. The alternative selected in the
second stage will be the second best alternative in the ranking induced by Borda
scores and so forth.

Numerical Tests. We perform an experiment that evaluates the performance
of our incremental assessment of ranking (when used with MA-CSS0) in com-
parison to approaches that are more systematic. We consider the following two

3 It may still be associated with a binary variable bz in the optimization problems for
computing regrets (as it can impact the Borda score of other alternatives).



94 N. Benabbou et al.

elicitation procedures: strategy S1 determines the preference order of each agent
by adapting a standard sorting algorithm (it requires O(m log2(m)) comparison
queries per agent); the ranking is then obtained by straightforward computa-
tion of the Borda scores. Instead, strategy S2 iteratively applies a regret-based
incremental elicitation procedure for the determination of the best alternative
in terms of a linear utility model for a single agent. The procedure is repeated
in order to find the second item, the third, and so on; this is done for all agents
and finally Borda scores are computed. In Table 1, we report the average num-
ber of comparison queries per agent required to identify the top-10 alternatives,
varying n the number of agents, m the number of alternatives and q the number
of criteria. Our incremental ranking procedure based on Borda scores is referred
to as Incremental Ranking Elicitation (IRE); overall, IRE outperforms both S1
and S2.

Table 1. Average number of queries per agent for determining the top-10 (30 runs)

n m q IRE S1 S2

10 30 5 43.3 147.2 58.7

10 50 5 43.7 282.2 67.4

100 30 5 51.1 147.2 87.2

10 30 10 93.3 147.2 178.2

We now present some experimental results about our incremental ranking
method (when used with MA-CSS0). Figure 4 shows the average number of
queries needed to determine the top-k alternatives in domains with 20 agents
and 5 criteria. We observe that the marginal amount of queries needed to deter-
mine the next best alternative decreases as the rank of the alternatives increases.
Actually, most of the elicitation “cost” in terms of queries occurs when deter-
mining the top alternative.

Fig. 4. Performance of top-k elicitation with MA-CSS0 (30 runs).
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6 Conclusions

This paper dealt with social choice in a context where preferences are dictated
by a latent (linear) utility function. We provided algorithms for the compu-
tation of an approximate winner and elicitation strategies based on minimax
regret, extending previous work [8] to multi-attribute domains. We also pro-
vided an iterative procedure for top-k ranking and compared our results with
full elicitation procedures. Possible directions for future research include: dealing
with other voting rules in multi-attribute domains, considering different kinds
of queries, and addressing combinatorial domains.

Acknowledgements. This work is supported by the ANR project 14-CE24-0007-01-
Cocorico-CoDec.
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Abstract. Representing preferences into a compact structure has
become an important research topic. Graphical models are of special
interest. Indeed, they facilitate elicitation, exhibit some form of inde-
pendence, and serve as a basis for solving optimization and dominance
queries about choices. The expressiveness of the representation setting
and the complexity of answering queries are then central issues for each
approach. This paper proposes an extensive overview of the main graphi-
cal models for preference representation and provides a comparative sur-
vey by emphasizing their main characteristics. We also indicate possible
transformations between some of these models. We contrast qualitative
models such as CP-nets and TCP-nets with quantitative ones such as
GAI networks, UCP-nets, and Marginal utility nets, and advocate π-Pref
nets, recently introduced by the authors, as an interesting compromise
between the two types of models.

1 Introduction

Modeling preferences is essential in any decision analysis task. However, get-
ting these preferences becomes non trivial as soon as alternatives are described
by a Cartesian product of multiple features. Indeed, the direct assessment of
a preference relation between these alternatives is usually not feasible due to
its combinatorial nature. Fortunately, the decision maker can express contex-
tual preferences that exhibit some independence relations, which allows us to
be represent her/his preferences in a compact manner. Moreover, graphical rep-
resentations facilitate preference elicitation, as well as the construction of an
ordering from these contextual local preferences. This use of graphical prefer-
ence representations has been inspired by the success of Bayesian networks as a
computationally tractable uncertainty management device [23].

Various graphical models have been proposed in the literature in order to
capture preferences in an intuitive manner. We may roughly distinguish two
classes: (i) qualitative models where preferences are contextually expressed by
comparisons between attributes values. Within these models, CP-nets [6] are the
most popular and well-developed compact representation setting for preferences;
(ii) quantitative models, where a numerical value function can be computed for
c© Springer International Publishing Switzerland 2016
S. Schockaert and P. Senellart (Eds.): SUM 2016, LNAI 9858, pp. 96–111, 2016.
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comparing all possible choices, such as GAI networks [19], UCP-nets [4], or
marginal utility nets [9]. In general, these models are mostly motivated by the
easiness of elicitation. However, some of them still suffer from various limitations:
their expressive power may be somehow restricted, elicitation may be complex,
or answering queries may require costly reasoning algorithms.

This paper surveys most graphical models for preference representation. It
enlarges the only existing past overview [21]. For each model, we emphasize
the independence relation underlying it, study how it operates for defining an
order between the choices from the expressed preferences, and we recall the com-
putational complexity of dominance and optimization algorithms. The paper is
organized as follows. Sections 2 and 3 provide a presentation of the major qualita-
tive or quantitative graphical models respectively, allowing for a local processing
of elementary preferences by exploiting some structural independence relations
carried by their graphical components. Section 4 presents a symbolic graphical
model for preferences based on possibility theory and possibilistic networks. This
approach recently introduced by the authors, is halfway between qualitative and
quantitative models. Section 5 concludes with a summary and a thorough com-
parative discussion.

2 Graphical Preferential Qualitative Models

Let V = {A1, . . . AN} be a set of N variables. Each variable Ai has a domain
D(Ai); ai denotes any value of Ai. Ω = {ω1, . . . , ω|Ω|} denotes the universe of
discourse, which is the Cartesian product of domains all variables in V . Each
element ωi ∈ Ω is called a configuration. It corresponds to a complete instantia-
tion of the variables in V . If X ⊆ V , let D(X) refer to the Cartesian product of
the domains of variables in X and ω[X] denotes the restriction of variable ω to
variables in X.

Semantically, preferences are defined by an order between the configurations
(or choices). Let � be a binary relation on Ω such that x � y means that “x
is at least as preferred as y”. Other relations can be derived from � as usual:
ωi ∼ ωj iff ωi � ωj and ωj � ωi; ωi � ωj iff ωi � ωj but not ωj � ωi;
ωi ± ωj iff neither ωi � ωj nor ωj � ωi (non comparability). Ordering relations
may be complete (i.e. we can compare any two configurations) or partial, strict
(i.e. asymmetric) or weak. Preference relations between different configurations
ωi ∈ Ω can be expressed via some preference relations over subsets of variables,
taking advantage of (in)dependencies that exist between the variables or subsets
of variables. We denote by Pa(Ai) the set of parents of Ai, pi any instantiation
of Pa(Ai) and Y(Ai) = {Y1, . . . , Yn} the set of its children. Dn(Ai) denotes
its descendants and Co(Ai) = V \ (Dn(Ai) ∪ Pa(Ai) ∪ Ai) denotes the set of
non-descendants. We will use these notations for the rest of the paper.

In a preference model, two types of queries are commonly used: namely,
optimization queries for finding the optimal configuration(s) (i.e. those which are
not dominated by others) and dominance queries for comparing configurations.
Besides, another important task is the elicitation of the model which corresponds
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to constructing the graph and collecting the user preferences. Most of practically
used preferential graphical models are qualitative since they are easy to elicit.
In the sequel, we detail two of the most important ones, namely, Conditional
Preference networks (CP-nets) and their extension Tradeoffs-enhanced CP-nets.

2.1 Conditional Preference Networks (CP-Nets)

CP-nets, initially introduced in [6], are considered as an efficient model to man-
age qualitative preferences. They are based on a preferential independence prop-
erty often referred to as a Ceteris Paribus assumption such that a partial config-
uration is preferred to another everything else being equal. Formally, it is defined
as follows:

Definition 1 (Preferential Independence). Let V be a set of variables and
W be a subset of V . W is said to be preferentially independent from its comple-
ment Z = V \ W iff for any instantiations, z, z′, w, w′, (w, z) � (w′, z) ⇔
(w, z′) � (w′, z′).

Preferential independence is asymmetric. Indeed, it might happen, e.g., for dis-
joint sets X, Y and Z of variables that X is preferentially independent (Definition
1) from Y given Z without having Y preferentially independent from X. This
independence is at a work in the graphical structure underlying CP-nets.

Definition 2 (CP-Nets). A CP-net consists of a directed graph G = (V, E)
where V denotes the set of nodes and E denotes the set of edges. A node cor-
responds to a variable. Edges represent the preference dependencies between the
variables. To each variable Ai we associate a conditional preference table that
corresponds to a strict total order between the values of Ai, for all instantiations
pi of parent variables.

Here, preferences over values of a variable depend only on the parent(s) con-
text, and are preferentially independent from the rest of variables. In contrast
with Bayesian nets, CP-nets may be cyclic (without necessarily encoding incon-
sistent preferences). Using the information in the CP-Tables and applying the
Ceteris Paribus principle, when flipping one variable value in a configuration
one may obtain either an improved configuration, or a worsened one. These
swap pairs can be organized into a collection of worsening (directed) paths with
a unique root corresponding to the best configuration and where the other path
extremities are the worst ones. A CP-net is said to be satisfiable if there exists at
least one partial order of configurations that satisfies it. Note that every acyclic
CP-net is satisfiable.

Example 1. Let us consider the simple CP-Net of Fig. 1(a), with 3 variables. The
building of the worsening flips graph (Fig. 1(b)) leads to the partial ordering:
abc �CP ab¬c �CP ¬ab¬c �CP ¬abc �CP ¬a¬bc �CP ¬a¬b¬c, ab¬c �CP

a¬b¬c �CP ¬a¬b¬c, abc �CP a¬bc �CP ¬a¬bc. The best configuration is abc.
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Fig. 1. An example of a CP-net (a) and
its worsening flips graph (b)

Fig. 2. An example of a TCP-net (a)
and its worsening flips graph (b)

Acyclic CP-nets have a unique optimal configuration. Finding it amounts to
looking for a configuration where all the conditional preferences are best sat-
isfied. It can be done by a simple forward sweeping procedure where, for each
node, we assign the most preferred value according to the parents context. For
acyclic CP-nets, this procedure is linear w.r.t. the number of variables [6]. In
contrast, for cyclic ones answering this query needs an NP-hard algorithm and
may lead to more than one optimal configuration [17]. Dominance queries are
more complex. Using the information in the CP-Tables and applying the Ceteris
Paribus principle, when one flips one variable value in a configuration one may
obtain either an improved configuration, or a worsened one. These swap pairs
can be organized into a collection of worsening (directed) paths with a unique
root corresponding to the best configuration and where the other path extrem-
ities are the worst ones. Thus, a configuration is preferred to another if there
exists a chain (directed path) of worsening flips between them [5]. Note that if for
any variable Ai ∈ V , Ai is preferentially independent from V \ Ai, then the CP-
net graph is disconnected and many configurations cannot be compared. Testing
dominance is PSPACE-complete for unrestricted CP-nets, NP-hard for acyclic
ones, and quadratic for tree-structures [17]. In general, the ordering induced
by a CP-net is strict and partial, since several configurations may remain non
comparable (i.e. no worsening flips chain exists between them). Clearly, acyclic
CP-nets cannot exhibit any ties. Ceteris Paribus makes the preference elicitation
simple for CP-nets; the elicitation complexity is equal to O(Nk) such that N is
the number of nodes and k is the maximal number of parents [22].

However, in CP-nets, a parent preference tends to be more important than a
child one [5]. In other words, violating a preference associated with a father node
is more important than violating a preference associated with a child one; this
priority implicitly given by the application of Ceteris Paribus may be debatable.
For instance, in the previous example, configuration ab¬c is preferred to configu-
ration ¬abc. Moreover, this kind of priority is not transitive in the sense that CP-
nets cannot always decide whether violating preferences of two children nodes



100 N.B. Amor et al.

is preferred to violating preferences associated with one child and one grandson
node respectively (which might have been expected as being less damaging than
violating two children preferences) [13]. This limitation is problematic. Gener-
ally, there are partial preference orderings that CP-nets cannot express, see [3]
for counterexamples. However, extensions may somewhat enhance expressivity
(including Probabilistic CP-nets (PCP-nets) [12] and Multiple agents CP-nets
(mCP-nets) [24] not covered here since they enlarge the representation to other
features, namely uncertainty or multiple agents).

2.2 Tradeoffs-Enhanced CP-Nets (TCP-Nets)

As mentioned above, the expressive power of CP-nets is limited. In particular,
we are unable to specify importance relations between variables, beside those
implicitly imposed between parents and children. Tradeoffs-enhanced CP-nets
(TCP-nets) [7] are an extension of CP-nets that adds a notion of importance
between the variables by enriching the network with new arcs. These arcs express
importance relations for stating the priority of a node over another (i.e., “prefer-
ence about the values of X is more important than preference about the values
of Y ”). Such priority statements may be conditioned on the values of other vari-
ables, e.g., “if the variable Z has value z, the preference about values of X is
more important than the preference about the values of Y .” Formally, TCP-nets
are annotated graphs with three types of edges and are defined as below.

Definition 3 (TCP-Nets). A TCP-net G′ over a set V of variables is a CP-
net G = (V, E) augmented with two types of arcs:

1. A set of directed i-arcs (where i stands for importance). An i-arc〈−−−−→
Ai, Aj〉

belongs to G′ iff Ai is more important than Aj, which is denoted by Ai � Aj.
2. A set of undirected ci-arcs (where ci stands for conditional importance). A

ci-arc (Ai, Aj) belongs to G′ iff the relative importance of Ai and Aj is con-
ditioned on Z s.t. Z ⊆ V \{Ai, Aj}. Each ci-arc (Ai, Aj) is associated with a
mapping from a subset of D(Z) to strict total orders over the set {Ai, Aj}.
Let us turn to the expressive power of TCP-nets. TCP-nets obey the pref-

erence statements induced by Ceteris Paribus, since the ordering obtained is a
refinement of the CP-nets ordering. In fact, the refinement brought by TCP-nets
cannot override the implicit priority in favor of parents nodes. Indeed, in case one
would add a i−, or a ci− arc yielding a preference in favor of a son with respect
to a parent (at least in some context), one would face an inconsistency between
a worsening I-flip and a worsening CP-flip that act in opposite directions, thus
we would have inconsistent TCP-nets.

The main issue for TCP-nets is the challenge of performing queries with this
representation. Some first proposals are presented in [8]. For consistent TCP-
nets, the optimization procedure works like CP-nets. Indeed, the relative impor-
tance relations do not play a role in this case. The dominance problem can be
also be treated as a search for an improving flipping sequence, where the notion
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of flipping sequence is extended. In fact, a flip corresponds either to a CP-flip
like CP-nets or to an I-flip (“importance flip”). Let ω and ω′ be two configura-
tions, such that ω differs from ω′ in the value of exactly two variables Aj and
Ak, and such that ω[Aj ] � ω′[Aj ] and ω[Ak] ≺ ω′[Ak] (given the same values of
Pa(Aj) and Pa(Ak) in ω and ω′). Then, a worsening I-flip from ω to ω′ takes
place when there is a priority of Aj over Ak conditional (or not) on a subset of
variables Z such that Z takes the same values in ω and ω′. However, no general
algorithm is known for dominance query since results in the context of CP-nets
do not seem to be immediately adaptable to TCP-nets.

Example 2. Let us consider the TCP-net in Fig. 2(a). An unconditioned impor-
tance a � b is added. Indeed, a new arc i-arc〈−−→

A,B〉 is added with respect to
the CP-net in Fig. 1(a). The ordering given by the worsening flips graph in
Fig. 2(b) is refined, compared to the CP-net. Indeed, a¬b¬c �TCP−net ¬ab¬c
and a¬bc �TCP−net ¬abc, while these configurations comparable by I-flips, are
not comparable in the CP-net, see Fig. 1(b). In place of the previous uncon-
ditioned importance statement, one may exhibit an example of ci-arc (A,B)
by stating that A is more important than B if C = c, and B is more impor-
tant than A if C = ¬c. Then, we would have a¬b¬c ≺TCP−net ¬ab¬c and
a¬bc �TCP−net ¬abc.

TCP-nets also yield partial orderings that, from the same CP-net prefer-
ence statements, are refinements of the ordering induced by the corresponding
CP-nets.

Example 3. Let us consider the following preferences over variables A and B with
D(A) = {a,¬a} and D(B) = {b,¬b}: (i) In all cases a is preferred to ¬a; (ii) b
is preferred to ¬b. The CP-net view yields the order: ab �CP a¬b±CP ¬ab �CP

¬a¬b. No CP-net yields the refined order ab � a¬b � ¬ab � ¬a¬b, while it
can be represented with a TCP-net, with the additional information “A is more
important than B”.

3 Graphical Preferential Quantitative Models

It is often convenient to have preferences expressed in numerical terms, since
it enables an easy comparison of possible choices. It is therefore interesting to
consider quantitative graphical models for preferences. These latter are gener-
ally based on utility functions corresponding to a mapping from the Cartesian
product of variables domains to numerical values, namely u : Ω → R. These util-
ities correspond to a total ordering s.t., for two configurations ω and ω′, ω � ω′

(respectively ω ∼ ω′) if and only if u(ω) > u(ω′) (respectively u(ω) = u(ω′)). In
this section, we review the most important quantitative graphical models based
on these utilities.
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3.1 Generalized Additive Independence Networks (GAI-Nets)

GAI-networks [19] are one of the first graphical quantitative preference models.
They rely on generalized additive independence decomposition (GAI decompo-
sition, for short) [16]. This independence allows to represent the preferences by
a utility function separable into a sum of local functions. Each local function
pertains to a subset of variables and represents a total ordering between their
possible instantiations. Moreover, there may be some interactions between these
local utilities since the subsets of variables pertaining to them can be non dis-
joint. Thus, these GAI-decompositions can express some general interactions
between attributes while preserving some decomposability of the model.

Definition 4 (GAI Decomposition). Let C1, . . . , Ck be subsets of V s.t. V =
⋃k

j=1 Cj. A utility function u(·) representing � over Ω is GAI-decomposable
w.r.t. C1, . . . , Ck iff ∀ j ∈ [1, k], there exists a function uj : D(Cj) → R s.t.,
∀ ω ∈ Ω:

u(ω) =
k∑

j=1

uj(ω[Cj ]) (1)

These GAI decompositions can be represented by graphical structures called GAI
networks. They are undirected graphs where each clique consists of a subset of
variables. Between two cliques having some variables in common there exists
a path linking them. Each edge in the network is labeled by the intersection
between the nodes.

Definition 5 (GAI-Nets). A GAI network is an undirected graph G = (C, E)
where C denotes the set of cliques and E denotes the set of edges. G has two
components:

– Graphical component: Each clique Cj ∈ C, is a set of variables such that
Cj ⊆ V and

⋃k
i=1 Ci = V ; For each edge (Ci, Cj) ∈ E, Ci ∩Cj �= ∅. Each edge

is labeled by Ci ∩ Cj;
– Numerical component: To each clique Cj we associate a local utility function

uj that defines a complete preorder between the configurations in D(Cj).

The graphical structure of GAI-nets is similar to the notion of junction tree used
for Bayesian networks [20,23]. Indeed, even for a GAI-net with a more general
graph structure, we can always construct a tree-structured network based on the
triangulation of the Markov network corresponding to it [18] (This transforma-
tion is NP-complete [1]). Optimization queries look for the configurations having
the maximal global utility value. A standard algorithm for finding the optimal
configurations has been proposed for tree structured GAI networks. However, as
mentioned above, this is not restrictive. Optimization for GAI-nets corresponds
to an adaptation of the belief propagation algorithm used in Bayesian networks
and its complexity is exponential with the number of variables of the biggest
clique. To compare two configurations ω and ω′ by a GAI-net, we compute their
corresponding utilities and compare them. Thus, the dominance test for GAI is
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linear in the number of the cliques which is considered as an advantage compared
to the other models.

Example 4. Let ω1 = abcde and ω2 = a¬bc¬d¬e. From the GAI-network G
of Fig. 3, we can compute the utilities of the configurations: uG(ω1) = u1(ab) +
u3(ac)+u2(ade) = 0.7+1.5+0 = 2.2, uG(ω2) = u1(a¬b)+u3(ac)+u2(a¬d¬e) =
1.2 + 1.5 + 0 = 2.7. Thus uG(ω2) > uG(ω1), and ω2 �GAI ω1.

Fig. 3. An example of GAI network

GAI-nets rely on a weak form of symmetric independence which make the
model flexible enough to be applied to many situations. GAI-nets are not limited
to the expression of Ceteris Paribus preferences as CP-nets, TCP-nets, or their
numerical counterpart, UCP-nets. Still there are cases of numerical preferences
that are not representable by a GAI-net [15]. With regard to elicitation, there
is no method to construct the GAI decompositions. In practice it is always
assumed that an expert provided the GAI decomposition and only the utilities
are elicited. One may take advantage of the GAI structure for designing an
elicitation method based on “local” utility queries rather than global queries
over full configurations [11].

Another graphical model for numerical preferences, called CUI-nets, based
on conditional utility independence (CUI) was proposed in [15]. It is motivated
by the use of a weaker asymmetric independence relation. This independence is
not additive and may represent preferences that cannot be factored using strong
additive independence conditions [15]. However, this kind of independence does
not lead to decompositions that are as easy to handle as those given under
additive independence.

3.2 Utility CP-Nets (UCP-Nets)

Utility CP-nets (UCP-nets), introduced in [4], are an extension of CP-nets that
replaces the ordinal preference relations of CP-nets by utility factors. In fact,
UCP-nets combine the aspects of two preference models, namely, CP-nets and
GAI-nets. Like GAI-nets, utility is obtained from the sum of functions associated
to groups of variables, defined here by a variable and its parents. Similarly to CP-
nets, UCP-nets are directed and arcs reflect the Ceteris Paribus independence.

Definition 6 (UCP-Nets). A UCP-net is a directed graph G = (V, E), where
the graphical component is the same as for CP-nets and the conditional prefer-
ence tables are replaced by a set of numerical factors fi(ai, pi), for all ai ∈ D(Ai)
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and parents instantiations pi, such that the global utility of a configuration is
defined by:

uG(a1, ..., aN ) =
N∑

i=1

fi(ai, pi) (2)

Example 5. The UCP-net G presented in Fig. 4 has 3 variables V = {A,B,C}.
For instance, we can check that the configuration a¬b¬c is preferred to abc since
uG(abc) = 5 + 2 + 2 = 9 < uG(a¬b¬c) = 5 + 10 + 6 = 21.

The UCP-net formalism has a number of computational advantages. In par-
ticular, dominance queries can be answered trivially since they amount to com-
puting the global utilities and compare them, as in the above example. This
can be done in linear time in the number of variables (this contrasts with CP-
nets where dominance testing is computationally difficult). Optimization queries
can also be answered directly, taking linear time in the network size, where
each node is instantiated to its maximal value given the instantiation of it par-
ents. This procedure, inherited from CP-nets, exploits the considerable power of
Ceteris Paribus semantics. Thus, CP-nets are endowed with quantitative utility
information, and then the expressive power is enhanced and dominance queries
become computationally efficient. Moreover, when introducing directionality and
the Ceteris Paribus semantics to GAI relations, we allow utility functions to be
expressed more naturally and optimization queries to be answered more easily.

Fig. 4. An example of a UCP-net Fig. 5. An example of a marginal utility net

This model is intuitive to assess since, as CP-nets, it captures preference
statements that are naturally expressed by the user. However, in order to remain
consistent with CP-nets, utilities should be subject to constraints expressing the
priority of father nodes over child nodes. More precisely, let A be a variable
with parents Pa(A) and children Y(A) = {Y1, . . . , Yn} and let Zi be the subset
of parents of Yi excluding A and any of its parents in Pa(A). Let Z =

⋃ Zi

and Pi be the subset of variables in Pa(A) that are parents of Yi and where
pi is an instantiation of Pi. The fact that the node corresponding to variable A
dominates its children given any instantiation u of Pa(A) is expressed by the
requirement ∀ a1, a2 ∈ D(A) such that fA(a1, u) ≥ fA(a2, u), we should have ∀
z an instantiation of Z and ∀yi an instantiation of Y(A), fA(a1, u)−fA(a2, u) ≥
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∑
i fYi

(yi, (a2, pi, zi)) − fYi
(yi, (a1, pi, zi)). This expresses that for any variable

A, given an instantiation of its parents, the utility gain in choosing a1 rather
than a2 in this context, should be more important than the maximum value of
the sum of the possible utility loss for its children over all possible instantiations
of the other related variables.

This means that not every GAI decomposition can be represented by a UCP-
net. Thus, beside the difficulty encountered for learning utilities, added con-
straints should be taken into account in order to remain consistent with the
Ceteris Paribus principle.

3.3 Marginal Utility Networks

With the aim to define preference networks that resemble Bayesian networks,
Brafman and Engel [9,10] introduce a notion of conditional independence
(denoted CDIr) using an arbitrarily fixed reference instantiation ωr. Indeed util-
ity functions differ from probability distributions in the fact there is no obvious
analogue of marginalization for utility; to cope with this difficulty, the authors
propose to use reference instantiation for fixing the values of the independent
variables. Then, the utility satisfies additive analogues of the Bayes and chain
rules of Bayesian networks. Variables Ai and Aj are CDIr if any difference in
values among instantiations to Ai does not depend on the current instantiation
of Aj , for any possible instantiation to the rest of the variables.

Definition 7 (Reference Configuration and the Reference Utility). Let
ωr = ar

1, . . . , a
r
N ∈ Ω be a predetermined configuration and, X and Y be subsets

of V . The reference utility function ur is defined by ur(x) = u(xx̄r), s.t. X̄ =
V \X is fixed on the values of the reference configuration ωr. Its conditional form
is defined by ur(X|Y ) = ur(XY ) − ur(Y ).

Definition 8 (Difference Utility Independence). Let Z and W be two sub-
sets of V , s.t. Z ∩ W = ∅. Z and W are CDIr given X ⊆ V \ (Z ∪ W ),
denoted by CDIr(Z,W |X), if for all assignments x, z′, z′′, w′, w′′ we have:
ur(z′w′) − ur(z′′w′) = ur(z′w′′) − ur(z′′w′′).

This type of independence (CDIr) satisfies the properties of graphoids [10], that
is, each variable is independent from its non descendants in the context of its
parents as for Bayesian nets. This leads to a preference representation by directed
graphs.

Definition 9 (Marginal Utility Network). A marginal utility network is a
directed graph G = (V, E) where V is the set of nodes and E is the set of edges.
G has two components:

– Graphical component: A node for each variable and edges correspond to condi-
tional (in)dependencies between variables such that, given a fixed configuration
ωr ∈ Ω, for any Ai ∈ V , CDIr(Ai, Co(Ai)|Pa(Ai)).
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– Numerical component: Each node Ai is associated to a conditional utility table
(CUT) corresponding to the function ur(ai|pi) such that pi is an instantiation
of the parents Pa(Ai) of Ai. Containing ∀ai ∈ D(Ai), ∀pi, ur(ai | pi).

The utility of a configuration is then computed as uG(a1, ..., aN ) =
∑N

i=1 ur(ai|pi) where pi is an instantiation of P (Ai). This is now exemplified.

Example 6. Let us consider preferences over four binary variables A, B, C and
D represented by the marginal utility network of Fig. 5. Assume that ωr = abc¬d
is the reference configuration. Then, ur(abc)−ur(a¬bc) = ur(ab¬c)−ur(a¬b¬c).
In fact, (4 + 8 + 3 + 4) − (4 + 11 + 3 + 4) = (4 + 8 + 9 + 4) − (4 + 11 + 9 + 4).
Thus, CDIr(B,D|A). The utility of a configuration is the summation of all the
local utilities. For instance, uG(abcd) = ur(a) + ur(b|a) + ur(c|a) + ur(d|c) =
4 + 8 + 3 + 2 = 17 and uG(a¬b¬c¬d) = 4 + 11 + 9 + 2 = 26. Therefore, we have
abcd ≺MU a¬b¬c¬d since uG(abcd) < uG(a¬b¬c¬d).

Thanks to the strong similarity between Bayesian nets and marginal utility nets,
adaptations of algorithms are possible. The authors in [10] briefly mention two
of them. First, an optimization query for finding the optimal configuration is
like finding the most probable explanation. Second, finding the best configura-
tion when particular combinations between the variables are impossible is like
constraint belief propagation. No method to answer dominance queries has been
proposed, however the algorithm used in GAI nets seems to be applicable in this
case. Elicitation may be inspired from Bayesian nets [9].

Following also the idea of keeping close to Bayesian nets, it has been recently
proposed to use Ordinal Conditional Function networks (they are like Bayesian
nets with infinitesimal probabilities: the value n of the OCF is like the proba-
bility 10−n) for describing preferences [14]. OCF-nets satisfy the local directed
independence property of Markov networks. By enforcing the priority of father
nodes over child nodes by suitable constraints, it is possible to build an OCF-net
that induces a total order compatible with the partial order of a given CP-net
[14]. Besides, note that UCP-nets can be viewed as particular cases of marginal
utility nets where constraints should be added in order to make them consistent
with Ceteris Paribus.

4 Conditional Preference Possibilistic Networks

Marginal networks are inspired from Bayesian networks. Similarly, one may use
possibilistic networks [2], a possibility theory counterpart to Bayes nets, for mod-
eling preferences rather than uncertainty (understanding the possibility degrees
as satisfaction levels). Possibility theory uses possibility distribution π, which
are mapping from a universe of discourse Ω to the unit interval [0, 1], or to any
bounded totally ordered scale. Two forms of conditioning, respectively based on
minimum and product, make sense in possibility theory, leading to two types of
chain rules. We may then compute satisfaction values for configurations, taking
advantage of Markov property, and obtain a total order between configurations



Graphical Models for Preference Representation 107

in both cases. In the absence of available quantitative values, one may think of
keeping the possibility degrees unspecified (which also preserves the ability of
representing partial orders). This led us to propose a new graphical preference
model based on possibilistic networks [3], called π-Pref nets. In a π-Pref net, for
each variable Ai ∈ V , for each instantiation pi of Pa(Ai), the preference order
between the values of variable Ai is encoded by a local conditional possibility
distribution expressed by symbolic weights. A symbolic weight means a symbol
representing a real number whose value is unspecified.

Definition 10 (π-Pref Nets). A possibilistic preference network (π-Pref net)
over a set of variables V is a possibilistic network, i.e., a directed graph G =
(V, E), where each node Ai is associated with symbolic conditional possibility
distributions. It encodes the ordering between values ai and a′

i in D(Ai) in each
context pi:

– If ai ≺ a′
i then π(ai|pi) = α, π(a′

i|pi) = β where α and β are non-instantiated
weights on (0, 1] called symbolic weights, and α < β ≤ 1;

– If ai ∼ a′
i then π(ai|pi) = π(a′

i|pi) = α where α ≤ 1;
– ∀pi, ∃ ai ∈ D(Ai) such that π(ai|pi) = 1.

In addition to the preferences encoded by a π-Pref net, additional a set C of
equality or inequality constraints between symbolic weights can be taken into
account. Such constraints may represent, for instance, the relative strength of
preferences associated to different instantiations of parent variables of the same
variable. The satisfaction value of each configuration is computed as the product
of symbolic weights using the chain rule associated with product-based condition-
ing, namely π(a1, ..., aN ) =

∏N
i=1 π(ai|pi) where pi is an instantiation of Pa(Ai).

In spite of the symbolic nature of expressions just obtained, one may still com-
pare some configurations thanks to properties of product and constraints (e.g.,
α < 1, α × β < α, or, if β < γ ∈ C, α × β < α × γ). Obviously, some expressions
may remain incomparable, then only a partial order is obtained.

Example 7. Let Fig. 6 represent a π-Pref net over 3 variables V = {A,B,C}
and C = {δ3 < δ1} represent the set of constraints. Consider two configurations
ab¬c and ¬abc. Using the chain rule, we obtain their corresponding symbolic
joint possibility expressions: π(ab¬c) = 1 × 1 × δ1, π(¬abc) = α1 × 1 × δ3. Since
δ3 < δ1, we can deduce that ab¬c �πPref ¬abc. However, ab¬c ± ¬ab¬c since
no constraint exists between δ1 and α. These two configurations remain non
compared.

Each configuration ω = a1 . . . aN can be associated with a vector
→
ω=

(α1, . . . , αN ), where αi = π(ai|pi) and pi = ω[Pa(Ai)], e.g.,
→

¬abc= (α, 1, δ3).
Symbolic vectors can be equivalently compared by the symmetric Pareto order-
ing [3], which amounts to reordering them so as to exploit the constraints between
weights as much as possible. The resulting partial order is indeed the same as
the one obtained by the comparison of the product expressions.
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π(a) π(¬a)

1 α

π(b) π(¬b)

1 β

BA

C

π(.|.) ab a¬b ¬ab ¬a¬b

c 1 δ2 δ3 1

¬c δ1 1 1 1

Fig. 6. An example of a π-Pref net

In π-Pref nets, it is clear that the best configurations are those having a joint
possibility degree equal to 1, due to the normalization of conditional possibility
distributions. We can always find an optimal configuration, starting from the
root nodes where we choose each time the most or one of the most preferred
value(s). At the end of the procedure, we get one or several configurations having
a possibility equal to 1. This procedure is linear in the size of the network (using
a forward sweep algorithm). Dominance queries are answered by comparing the
symbolic vectors. The complexity of dominance queries is at worst O(N !).

π-Pref nets may be considered as being halfway between qualitative and
quantitative models. This is due to the use of symbolic weights. Indeed, π-Pref
nets can be used in two ways: symbolically, or in an instantiated manner. The
use of product, even in the symbolic case, adds a quantitative flavor. More-
over, symbolic possibilistic networks, using a logarithmic transformation, may be
equivalently represented as symbolic OCF-nets [3]. Instantiated π-Pref nets and
OCF-nets share the same type of (Markovian) independence, and lead exactly
to the same orderings.

Lastly, a π-Pref net can be equivalently represented by a possibilistic logic
base [3]. In [13], attempts at representing a CP-net ordering using a possibilistic
logic framework are reported. But, it may not be possible to build an exact
logical representation due to the particular behavior of CP-nets (see Sect. 2.1).
[13] suggests that symmetric Pareto and leximin orderings respectively lower and
upper bound the CP-net ordering. It may have counterparts in other graphical
models based on the Markov property as OCF-nets.

Fig. 7. Classification of preferential graphical models (continuous arrows point to
extensions of CP-nets and dashed lines are discussed later in the section)
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5 Discussion and Concluding Remarks

Figure 7 presents a classification of the preferential graphical models surveyed.
Roughly speaking, there are three classes: qualitative, quantitative and models
that are halfway. A summary of the main differences and similarities between
the models is given below. These models can be further compared in terms
of the underlying independence relation (and expressiveness), and the ease of
elicitation. Regarding the first issue, we distinguish three situations: (i) Ceteris
Paribus independence is shared by CP-nets, and its extensions. Models based
on it are unable to express all possible orderings between configurations. UCP-
nets can represent some total orderings, at the expense of constraints added on
utilities; (ii) Generalized additive independence used in GAI-nets, is a weaker
form of independence leading to an improved expressive power; (iii) Markov
independence is used by π-Pref nets, OCF-nets and marginal utility nets. In
contrast with GAI, this kind of independence does not allow mutual dependencies
between variables due to the acyclicity constraint. Ceteris Paribus and Markov
independence lead to different completion principles. With Ceteris Paribus, pairs
of compared partial configurations are completed with the same instantiation of
the rest of the variables, while with Markov-based nets, first we choose the best
instantiation for all dependent variables, and next, instantiate the other variables
in the same manner in all possible ways.

Properties Model

CP-nets TCP-nets GAI-nets UCP-nets Marginal
utility nets

π Pref-nets

Graphical component

Node Variable Variable Cliques Variable Variable Variable

Edges Directed Directed Undirected Directed Directed Directed

Preference
table

Conditional
pref.
relation on
variables

Cond. pref.
relation +
Importance
relation

Utility func-
tions

Conditional
utility
distribution

Conditional
utility dis-
tribution

Conditional
symbolic
possibility
distributions

Independence
relation

Ceteris Paribus Ceteris Paribus Generalized
Additive

Ceteris Paribus +
GAI

Markovian Markovian

Ordering Partial Partial Total Total Total Partial/Total

Queries complexity

Optimization Linear Linear Exponential Linear Unknown Linear

Dominance NP-complete to
PSPACE

Unknown Linear Linear Unknown Linear to O(N!)

Regarding elicitation, although quantitative models are convenient since pro-
viding total orderings, they are not easy to assess (any difference in values may
lead to different orderings). In contrast, eliciting qualitative models is easier
since it suffices to provide contextual preference ordering. π-Pref nets enable a
progressive elicitation since we may add constraints between symbolic weights,
or completely instantiate them.

Thanks to some resemblances between those models many transformations
can be considered and are depicted by dashed lines in Fig. 7. UCP-nets are a
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restriction of GAI-nets and a generalization of CP-nets. Indeed, a UCP-net struc-
ture can be transformed into a junction tree such that for each clique we sum
up the local utilities of the variables belonging to it, just leading to a GAI net.
However, due to the acyclic restriction of UCP-nets and the necessary, commit-
ment with Ceteris Paribus, not any GAl-net can be represented by a UCP-net.
Besides, when handled symbolically, π-Pref nets and marginal utility nets lead to
the same orderings. Indeed comparing configurations using product or addition
makes no difference on symbolic weights. Transformation from π-Pref nets to
GAI-nets might also be considered since, as for Bayesian nets, possibilistic nets
can be translated into junction trees. However, an important difference between
these two settings lies in the meaning of values. Both utilities and possibility
degrees express levels of satisfaction, but the latter are bounded. In GAI-nets,
what really matters is the difference between utilities. Thus, representing the
same information in π-Pref nets is not possible; one may only try to induce the
same qualitative order between the configurations. The opposite transformation
requires two steps. First, translating utilities to possibility degrees. Second, mov-
ing from a junction tree to a possibilistic network. Such a procedure has never
been studied in the literature.

As can be seen, the advantages of the different models are a matter of trade-
off. One may prefer one or another depending on the level of information avail-
able, the expressiveness needed for the situation at hand, and the time available
for eliciting preferences. From a computational viewpoint, UCP-nets, instan-
tiated π-Pref nets and OCF-nets are the less demanding. On the other hand,
elicitation and construction might be onerous for UCP-nets, GAI-nets and TCP-
nets, while CP-nets and π-pref nets are easy to elicit. Getting a total order may
also be considered as important. Thus, one may prefer models such as GAI-nets,
OCF-nets and instantiated π-Pref nets in that respect.
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Abstract. In this paper, we present a formal model of opinion diffu-
sion among agents which influence each other. Opinions are modelled as
propositional formulas or equivalently, as sets of logical interpretations,
which allows us to express some kind of uncertainty. Any agent changes
its opinion by merging the opinions of its influencers, from the most
influential one to the least one. Then we generalize this model by taking
topics of opinion into account.

1 Introduction

Understanding the dynamics of opinion among agents is an important question
which has recently received large attention in the community of autonomous
agents and multi-agent systems [1,2,4–6,10–12]. This question depends on sev-
eral parameters.

The first important parameter is the population of agents. This population
may be unstructured, in such a case, agents interact randomly [1,8]. But gen-
erally, some relations exist between agents. The population of agents may be
divided in communities modelling neighborhood relations between agents [2,4,7].
The population may also be structured via an influence relation which relates
two agents, the opinion of one of these agents being influenced by the opinion
of the other [11]. Graphs are widely used to model the structured population:
nodes are agents and links are the relations between agents. Links are symmet-
rical or not, depending on the type of relations and they may also be labelled
with probabilities [13].

The second parameter is the model of opinion. Here again, several options
exist. Most of the works previously cited consider only one opinion and model it
as a real number in [0, 1]. For instance, if the question is to evaluate the opinion
of people about the fact that Canada will host the Winter Olympics in 2026, then
an opinion which is close to 1 means that the agent is quite confident in Canada
candidature or that according to this agent, the probability that Canada will
host the Olympics is high. An opinion which is close to 0 means that the agent
thinks that Canada candidature will be rejected or that according to this agent,
the probability that Canada will host the Olympics is low. Some other works
are based on formal logic and model opinions as propositional formulas or, more
precisely, as the sets of their models. In [6], an opinion is a single interpretation,
called ballot. For instance, an agent whose opinion is CAN 2026∧acroski, thinks
that Canada should organize the Winter Olympics in 2026 and that there should
be acroski trials. Another agent whose opinion is ¬CAN 2026 ∧ acroski, thinks
c© Springer International Publishing Switzerland 2016
S. Schockaert and P. Senellart (Eds.): SUM 2016, LNAI 9858, pp. 112–125, 2016.
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that 2026 Winter Games should not be hosted by Canada but there should be
acroski trials. More generally, [10] considers that an opinion is any propositional
formula, thus modelled by a set of interpretations which is not necessarily a
singleton. For instance, an agent opinion is (CAN 2026 ∨ Norway 2026) ∧
acroski if it thinks that the 2026 Winter Olympics will be hosted by Canada or
by Norway and that there will be acroski trials.

The last parameter is the model of opinion dynamics. Many works in the field
of opinion dynamics in multi-agent systems are based on a theory introduced in
the field of Social Psychology called Social Judgment Theory (SJT). The basic
idea of SJT is that individual opinion changing is a judgmental process: if an
agent considers that a presented opinion is close to its current opinion, then it
is likely to shift in the direction of this opinion (assimilation); if it considers
that the presented opinion is distant to its current opinion, then it is likely to
shift away from this opinion (contrast); otherwise, the agent does not change its
opinion (non-commitment). This general idea has led to different formal models
[1,5,8] in which the thresholds agents use to characterize what are close and
distant opinions are identical or not, universal or agent dependent. Some other
works, like [11], are based on the theory of motivated cognition, defined in Cog-
nitive Psychology, and which also says that agents are skeptical of another agent
when their opinions diverge, but are more receptive to persuasion when their
opinions better align. Some other works in the field of diffusion in multi agent
systems claim to be based on models provided by the Network Science commu-
nity. For instance, [2] is based on the SIR model which says that the value of an
agent’s feature evolves according to the values of its neighbors feature values.
For instance an agent is infected if one of its neighbor is. Or an agent may say
that it believes something if its neighbors said that they also do.

In the present paper, we extend a work presented recently in a short paper
[3]. We model opinions by propositional formulas. As a consequence, some kind
of uncertainty may be expressed: (CAN 2026 ∨ Norway 2026) ∧ acroski is an
uncertain opinion because of the disjunctive term: the agent does not know
exactly who, between Canada and Norway, will host the games. We also assume
that the population of agents is structured by a binary relation of influence which
relates two agents when one influences the other. In a first step, we assume
that any agent orders its influencers (i.e. agents which influence it) according
to the strength of the influence relation. Then, any agent changes its opinion
by merging the opinions of its influencers (who may be contradictory) from the
most influential one to the least. In a second step, we consider that agents order
their influencers according to the topics of opinions. Then, any agent changes
its opinions by merging the opinions of its influencers, topic by topic. This will
allow us to model the fact that, when forming your opinion, you are influenced
more by your friend Paul than by your friend Mary about winter sport events
but you are influenced more by Mary than by Paul about literature. Moreoever,
the merging operator used by any agent in both cases, takes into account some
consistent formula (called integrity constraint) which expresses something true
in the world.
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This paper is organized as follows. Section 2 presents the notion of
Importance-Based Merging Operators and provides some original properties of
these operators. Section 3 presents the notion of Influence-Based Belief Revision
Games (IBRG) used to model opinion diffusion. Section 4 presents some prop-
erties of (IBRG). Section 5 extends (IBRG) so that influencers may be ordered
according to several orders of influence, depending on the topics of opinions. It
also studies some of their properties. Finally, Sect. 6 presents some perspectives.

2 Importance-Based Merging Operators

Consider a finite propositional language L. If ϕ is a formula of L, Mod(ϕ) denotes
the set of models of ϕ i.e., the set of interpretations in which ϕ is true. A multi-
set of formulas {ϕ1, ..., ϕn} equipped with a total order ≺ s.t. ϕi ≺ ϕi+1 (i =
1...n − 1) is called an ordered multi-set of formulas and denoted ϕ1 ≺ ... ≺ ϕn.

Definition 1 (Importance-Based Merging Operator). An Importance-
Based Merging Operator is a function Δ which associates a formula μ and
a non empty ordered multi-set of consistent formulas ϕ1 ≺ ... ≺ ϕn with a
formula denoted Δμ(ϕ1 ≺ ... ≺ ϕn) so that: Mod(Δμ(ϕ1 ≺ ... ≺ ϕn)) =
Min≤d,ϕ1≺...≺ϕn

Mod(μ) with:

– w ≤d,ϕ1≺...≺ϕn
w′ iff

[D(w,ϕ1), ...,D(w,ϕn)] ≤lex [D(w′, ϕ1), ...,D(w′, ϕn)]
– [D(w,ϕ1), ...,D(w,ϕn)] is a vector whose kth element is D(w,ϕk)
– D(w,ϕ) = minw′∈Mod(ϕ)d(w,w′), w and w′ being two interpretations and d

is a pseudo-distance1 between interpretations.
– ≤lex is a lexicographic comparison of vectors of reals defined by: [v1, ...vn] ≤lex

[v′
1, ...v

′
n] iff (i) ∀k vk = v′

k or (ii) ∃k vk < v′
k and ∀j < k vj = v′

j.

Some simple distances d which can be used for instanciating the previous
definition are: dD, the drastic distance, (dD(w,w′) = 0 iff w = w′, 1 otherwise);
dH , the Hamming distance (dH(w,w′) = m iff w and w′ differ on m variables).

Example 1. Let μ be a tautology. ϕ1 = a ∨ b, ϕ2 = ¬a, ϕ3 = ¬b ∧ c. The
eight interpretations2 are w1 = (a, b, c), w2 = (a, b,¬c), w3 = (a,¬b, c), w4 =
(a,¬b,¬c), w5 = (¬a, b, c), w6 = (¬a, b,¬c), w7(¬a,¬b, c), w8 = (¬a,¬b,¬c),
and Mod(Δμ(ϕ1 ≺ ϕ2 ≺ ϕ3)) = Min≤d,a∨b≺¬a≺¬b∧c

({w1, ...w8}). With d = dH

we get: Mod(Δμ(ϕ1 ≺ ϕ2 ≺ ϕ3)) = {w5} thus Δμ(ϕ1 ≺ ϕ2 ≺ ϕ3)) = ¬a ∧ b ∧ c.
With d = dD we get: Mod(Δμ(ϕ1 ≺ ϕ2 ≺ ϕ3)) = {w5, w6} thus Δμ(ϕ1 ≺ ϕ2 ≺
ϕ3)) = ¬a ∧ b.

Let’s now consider the postulates that merging operators should satisfy
according to [9]. We reformulate them within our context where formulas to
be merged are ordered and we check whether Importance-Based Merging Oper-
ators satisfy them or not.
1 ∀w∀w′ d(w, w′) = d(w′, w) and d(w, w′) = 0 =⇒ w = w′.
2 By convention, a propositional letter is positive in an interpretation if it is satisfied,

negative if it is not satisfied.
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Proposition 1. 3 All the postulates but (IC4) are satisfied by Importance-
Based Merging Operators, i.e.

– (IC0) Δμ(ϕ1 ≺ ... ≺ ϕn) |= μ
– (IC1) If μ is consistent then Δμ(ϕ1 ≺ ... ≺ ϕn) is consistent
– (IC2) If

∧n
i=1 ϕi ∧ μ is consistent then |= Δμ(ϕ1 ≺ ... ≺ ϕn) ↔ ∧n

i=1 ϕi ∧ μ
– (IC3) If |= μ ↔ μ′ and ∀i = 1...n, |= ϕi ↔ ϕ′

i then |= Δμ(ϕ1 ≺ ... ≺
ϕn) ↔ Δμ′(ϕ′

1 ≺ ... ≺ ϕ′
n)

– (IC4) is not satisfied i.e. it is not necessarly the case that ifϕ1 |= μ and ϕ2 |=
μ then Δμ(ϕ1 ≺ ϕ2) ∧ ϕ1 is consistent iff Δμ(ϕ1 ≺ ϕ2) ∧ ϕ2 is consistent

– (IC5) Δμ(ϕ1 ≺ ... ≺ ϕn) ∧ Δμ(ϕn+1 ≺ ... ≺ ϕm) |= Δμ(ϕ1 ≺ ... ≺ ϕm)
– (IC6) If Δμ(ϕ1 ≺ ... ≺ ϕn)∧Δμ(ϕn+1 ≺ ... ≺ ϕm) is consistent then Δμ(ϕ1 ≺

... ≺ ϕm) |= Δμ(ϕ1 ≺ ... ≺ ϕn) ∧ Δμ(ϕn+1 ≺ ... ≺ ϕm)
– (IC7) Δμ(ϕ1 ≺ ... ≺ ϕn) ∧ μ′ |= Δμ∧μ′(ϕ1 ≺ ... ≺ ϕn)
– (IC8) If Δμ1(ϕ1 ≺ ... ≺ ϕn) ∧ μ2 is consistent then Δμ1∧μ2(ϕ1 ≺ ... ≺ ϕn) |=

Δμ1(ϕ1 ≺ ... ≺ ϕn)

We can also prove the following:

Proposition 2.

Mod(Δµ(ϕ1 ≺ ...ϕj ... ≺ ϕn)) = Mod(Δµ(ϕ1 ≺ ...Δµ(ϕ1 ≺ ... ≺ ϕn)... ≺ ϕn))

This means that the result of merging different formulas with Δμ, does not
change when one formula, whatever its strength, is replaced by the merged for-
mula. This property is called ballot-monotonicity in [6].

3 Influence-Based Belief Revision Games (IBRG)

In the following, we present the notions of Influence-Based Belief Revision Games
and Influence-Based Belief Sequences which are adapted from [10].

Definition 2 (Influence-Based Belief Revision Game). An Influence-
Based Belief Revision Game (IBRG) is a quadruplet G = (A,μ,B, Inf) where:

– A = {1, ..., n} is a finite set of agents.
– μ is a consistent formula of L.
– B is a function which associates any agent i of A with a consistent formula

of L denoted for short Bi such that Bi |= μ.
– Inf is a function which associates any agent i of A with a non-empty set

of agents {i1, ...ini
} equipped with a total order ≺i s.t. ik ≺i ik+1 for i =

1...(ni − 1). For short, we denote Inf(i) = {i1 ≺i ... ≺i ini
}.

A is the finite set of agents. The formula μ represents the information which
is true in the world. It is called integrity constraint. For any agent i, the formula
Bi represents its initial beliefs. It is called the initial belief state of i. We assume
that agents are rational and thus that Bi is consistent and satisfies the integrity
3 Proofs are omitted due to paper length limitation.
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constraint μ. For any agent i, Inf(i) is the non-empty set of agents i considers
as influent i.e., i considers that its own opinion is influenced by the opinions
of agents in Inf(i). With the total order ≺i, i ranks these influential agents
according to their degree of influence: for any agents j and k in Inf(i), j ≺i k
means that, according to i, it own opinion is more influenced by j’s opinion than
by k’s opinion. Notice that Inf(i) = {i} is allowed and represents the fact that
agent i is not influenced by some other agent but itself.

Definition 3 (Influence-Based Belief Sequence). Consider G = (A,μ,
B, Inf) and i ∈ A with Inf(i) = {i1 ≺i ... ≺i ini

}. The Influence-Based Belief
Sequence of i, denoted (Bs

i )s∈N, is defined by:
(i) B0

i = Bi

(ii) ∀s ∈ N, Bs+1
i = Δμ(Bs

i1
≺ ... ≺ Bs

ini
)

The Influence-Based Belief Sequence (or Belief Sequence for short) of agent
i, (Bs

i )s∈N, represents i’s belief state all along the game: B0
i is the initial belief

state of i; Bs
i is the belief state of i after s moves i.e., the opinion of i after s

steps. The evolution of i’s opinion is done according to the importance-Based
merging operator Δμ: i’s opinion at step s is the result of Δμ applied to the
ordered multi-set of opinions: Bs

i1
≺ ... ≺ Bs

ini
.

The definition of (IBRG) is inspired by the definition of Belief Revision
Games (BRG), given in [10], which is generic: each agent is associated with a
generic revision policy Ri which defines how an agent’s opinion evolves accord-
ing to its acquaintance opinions. In (IBRG), the set of agents which influence a
given agent i, Inf(i), (which corresponds to the acquaintances of i in (BRG)) is
equipped with a total order expressing the relative strength of influence of these
agents. The definition of Influence-Based Belief Sequence shows that opinions
evolve according to this order. Thus, an (IBRG) can be seen as an instantiation
of a (BRG) in which acquaintances are ordered according to their influence and
in which the opinion revision operator is based on this influence order. Notice also
that, like (BRG), (IBRG) offers the possibility of expressing integrity constraints.
This allows to consider that opinions and their evolution are constrained by infor-
mation which are true in the world and that agents are rational. For instance,
if a → b is the integrity constraint, any agent who believes a also believes b.
In particular, any agent who revises its opinion with a will also believe b. It is
important to notice that i may belong to Inf(i) i.e., we do not require that i’s
opinion is only influenced by other agents opinion: i may take it own opinion
into account in the process of opinion changing. Consequently, i may rank itself
in Inf(i). For instance, i ≺i j, for any j ∈ Inf(i) and j �= i when i considers
that, even if it is influenced by other influential agents, its own opinion will only
be strengthened by their opinions. At the opposite, j ≺i i, for any j ∈ Inf(i)
and j �= i when i is keen to modify its opinion according to the influential agent
opinions.

Proposition 3. In an (IBRG), the belief sequence of any agent is cyclic i.e.,
the belief sequence of any agent i is characterized by an initial segment B0

i ...Bb−1
i

and a belief cycle Bb
i ...B

e
i which will be repeated ad infinitum.
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If the belief cycle of the belief sequence of i is Bb
i ...B

e
i , then the size of the

cycle is defined by: | Cyc(Bi) |= e − b + 1.

Example 2. Consider the (IBRG) G = (A,μ,B, Inf) with: A = {1, 2, 3}. μ is a
tautology. B1 = a∨ b, B2 = ¬a∧¬b, B3 = a∨¬a. Inf1 = {1}, Inf2 = {2 ≺2 1},
Inf3 = {1 ≺3 2}. The three agents are called 1, 2, 3. Agent 1 is its own and only
influential agent. Agent 2 is influenced by 1 and by itself, but more influenced
by itself than by 1. Agent 3 is influenced by 1 and by 2, 1 being the agent who
influences it the most. 1 initially believes a ∨ b, 2 initially believes ¬a ∧ ¬b, and
3 has initially no opinion. Table 1 shows the evolution of agent opinions when
the distance used is dH . Agent 1 is not influenced by anyone except itself, so
its opinion remains a ∨ b. Agent 2 is keen to change its opinion by integrating
opinion of 1 if possible. But here, 2 has a complete opinion which is inconsistent
with 1’s opinion. Consequently, 2’s opinion remains ¬a ∧ ¬b. Finally, 3 who had
intially no opinion, is keen to form its own opinion by integrating 1’s opinion and
2’s opinion by giving preference to the first one. Here it gets: (a ∧ ¬b) ∨ (b ∧ ¬a)
Here, | Cyc(B1) |=| Cyc(B2) |=| Cyc(B3) |= 1.

Table 1. Opinion evolution in Example 2

s = 0 s ≥ 1

i = 1 a ∨ b a ∨ b

i = 2 ¬a ∧ ¬b ¬a ∧ ¬b

i = 3 a ∨ ¬a (a ∧ ¬b) ∨ (b ∧ ¬a)

The following example shows a case where lengths of cycles are greater than 1.

Example 3. Consider G = (A,μ,B, Inf) with: A = {1, 2}, μ being a tautology,
Inf1 = {2}, Inf2 = {1}, B1 = a, B2 = ¬a. G represents a network of two
agents each one being influenced by the other one only. Agent 1 initially believes
a and agent 2 initially believes ¬a. Assume that μ is a tautology. Table 2 shows
the evolution of opinions (for distance dH and dD as well). By definition, agent
1 adopts 2’s opinion and agent 2 adopts 1’s opinion in the same time. Since
their initial opinions contradict, the agents change opinion recursively. Here,
| Cyc(B1) |=| Cyc(B2) |= 2.

Table 2. Opinion evolution in Example 3

s = 0 s = 1 s=0 mod 2 s = 1 mod 2

i = 1 a ¬a a ¬a

i = 2 ¬a a ¬a a



118 L. Cholvy

Finally, let us introduce three more definitions on (IBRG) which will be
useful for the next section. The following adapts the definition provided in [6]
and defines some type of IBRG in which only some particular loops are permitted
in the relation of influence.

Definition 4 (DAG with Self-loops). From G = (A,μ,B, Inf), we can build
a graph whose nodes are agents of A and edges are i → j iff i ∈ Inf(j). We say
that G is a DAG with self-loops if this graph is a directed graph where the only
permitted cycles are of type i → i.

The following definition introduces dogmatic agents. An agent is dogmatic
when it is not influenced by other agents. As a consequence, a dogmatic agent i
will never change its opinion i.e., ∀s ≥ 0 Bs

i = B0
i .

Definition 5 (Dogmatic Agent). Consider the (IBRG) G = (A,μ,B, Inf)
and i ∈ A. i is a dogmatic agent iff Inf(i) = {i}.

The next definition introduces the notion of sphere of influence.

Definition 6 (Sphere of Influence of an Agent). Let G = (A,μ,B, Inf)
and i ∈ A. Sphere(i) = {j : Inf(j) = {i ≺ ...}} ∪ {jk : ∃j0...jk−1 ∀m =
1...(k − 1) Inf(jm) = {jm−1 ≺ ...} and j0 = i}.

The sphere of influence of an agent is thus defined as the set of agents which
are directly or indirectly mostly influenced by i. Notice that i may belong to
Sphere(i). For instance in Example 2 and in Example 4, 1 ∈ Sphere(1).

Finally, we introduce the notion of leader.

Definition 7 (Leader). Let G = (A,μ,B, Inf) an IBRG. Consider i ∈ A and
S ⊆ A. i is the leader of S iff i is dogmatic and S ⊆ Sphere(i).

I.e., for being the leader of a set of agents S, an agent i must not be influenced
by no other agent and any agent of S must be directly or indirectly mostly
influenced by i.

4 Properties of IBRG

In this section, we consider some properties, many of them being introduced in
[10], and we check whether (IBRG) satisfy them or not.

Proposition 4. Let G = (A,μ,B, Inf) be an (IBRG). Then, ∀i ∈ A ∀s ∈
N Bs

i |= μ.

This proposition shows that agents take integrity constraints into account to
revise their opinion.

Proposition 5. Let G = (A,μ,B, Inf) be an (IBRG). Then, ∀i ∈ A ∀s ∈ N

Bs
i is consistent.
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This property corresponds to the property of (BRG) called Consistency
Preservation (CP) defined in [10] as: ∀i ∈ A, if Bi is consistent then ∀s ∈ N Bs

i

is consistent. In the case of (IBRG), the premisse is omitted because the initial
belief states are consistent.

Proposition 6. Let G = (A,μ,B, Inf) be an (IBRG) and a consistent formula
ϕ of L. Then, if ∀i ∈ A,ϕ |= Bi then ∀i ∈ A ∀s ∈ N, ϕ |= Bs

i .

This proves that (IBRG) satisfy the property called Agreement Preservation
(AP) defined in [10]: if all agents initially agrees on some alternatives then they
will not change their mind about them.

Proposition 7. Let G = (A,μ,B, Inf) be an (IBRG) and let ϕ be a formula
of L. Then, if ∀i ∈ A, Bi |= ϕ then ∀i ∈ A,∀s ∈ N, Bs

i |= ϕ.

This proposition proves that (IBRG) satisfy the property called Unanimity
Preservation (UP) defined in [10]: every formula which is a logical consequence
of the initial belief states remains so after opinion diffusion. I.e, any opinion
initially shared by the agents remains so after opinion diffusion.

The property of Responsiveness (Resp) introduced in [10] states that an
agent should take into account the opinions of the agents who influence it when-
ever (i) its beliefs are inconsistent with the beliefs of its acquaintances (but itself)
and (ii) its acquaintances (but itself) agree on some alternatives. It is adapted
here as follows:

Definition 8 (Resp). G = (A,μ,B, Inf) satisfies (Resp) iff ∀i ∈ A ∀s ∈ N,
if ∀j ∈ Inf(i)\{i} Bs

j ∧Bs
i is inconsistent and if ∧j∈Inf(i)\{i}Bs

j is consistent,
then Bs+1

i �|= Bs
i .

(Resp) is not necessarily satisfied in (IBRG). As a counterexample, consider
an (IBRG) in which A = {1, 2, 3}, Inf(1) = {1}, Inf(2) = {2}, Inf(3) =
{3 ≺ 1 ≺ 2}, B1 = a ∧ b, B2 = a, B3 = ¬a and μ is a tautology. Then
∀s ≥ 1, Bs

3 = ¬a ∧ b. Consequently, Bs
3 |= B3.

Let us now focus on the property of Convergence (Conv) introduced in [10]
and in [6] as well, which states that there is a step in the game when all opinions
stop evolving.

Definition 9 (Conv). An (IBRG) G = (A,μ,B, Inf) satisfies (Conv) iff ∀i ∈
A | Cyc(Bi) |= 1.

Some (IBRG) satisfy (Conv) and some don’t. In example 2, G converges: the
stable opinions of 1, 2 and 3 are respectively a ∧ b, ¬a ∧ b and a ∧ b. In example
5, G does not converge. The following proposition identifies a case where IBRG
converge.

Proposition 8. DAG with self-loops satisfy (Conv).
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Let us finally consider the property of Acceptability given in [10]. We extend
it for (IBRG) as follows:

Definition 10 (Acceptability). Let G = (A,μ,B, Inf) be an (IBRG) and ϕ
a formula of L. ϕ is accepted by agent i of A iff for all Bs

i ∈ Cyc(Bi), we have
Bs

i |= ϕ. ϕ is unanimously accepted in G iff ϕ is accepted by all i in A. ϕ is
majoritary accepted if the number of agents who accept it is strictly greater than
the number of agents who do not.

In Example 3, for instance, a is majoritary accepted and b is unanimously
accepted. The following proposition identifies cases in which an IBRG satisfies
Acceptability.

Proposition 9. Let G be an IBRG and i the leader of a set of agents S. Then
Bi is accepted by any agent in S.

This means that the opinion of the leader of a group is accepted by any agent
in this group.

Proposition 10. Let G be an IBRG and i a dogmatic agent. Then:
(i) If Sphere(i) = A then Bi is unanimously accepted.
(ii) If | Sphere(i) |> |A|

2 then Bi is majoritary accepted.

Obviously, if a dogmatic agent is the most infuential one for any agent in
the population, then its opinion is unanimously accepted. If a dogmatic agent
is the most infuential one for more than a half population, then its opinion is
majoritary accepted.

5 Taking Topics into Account

In this section, we extend (IBRG) in order to take topics of opinions into account.

5.1 Topics

Definition 11 (Topics). Topics T1, ..., Tm of L are sets of propositional liter-
als4 of L so that: (i) any literal of L belongs to a topic; (ii) for any proposition
letter p of L, for any topic Ti in {T1, ...Tn}, we have: p ∈ Ti ⇐⇒ ¬p ∈ Ti.

Definition 12 (Topic Compatible Orders). Consider m topics T1...Tm and
n formulas {ϕ1...ϕn}. Let ≺1 .... ≺m be m total orders on {ϕ1...ϕn}. We say that
≺1 .... ≺m are topic-compatible iff for any two topics Ti and Tj, if Ti ∩ Tj �= ∅
then ≺i and ≺j are identical.

4 A literal is a propositional letter or the negation of a propositional letter.
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According to this definition, if an agent is preferred to another one regard-
ing a topic then it is also preferred to this one regarding any topic which is
not disjoint. For instance, consider the two topics skiing and ballets (i.e. chore-
graphic disciplines). They are not disjoint because acroski is a kind of skiing
with a choregraphy. Consider two agents Paul and Mary providing information
related to these topics. If you assume that Paul influences you strictly more than
Mary regarding skiing and that Mary influences you strictly more than Paul
regarding ballets, then you can conclude that, regarding acroski, Paul influences
you strictly more than Mary and Mary influences you strictly more tha Paul,
which is nonsense. In the same way, according to Definition 12, if an agent is
preferred to another one regarding a topic, then it is also preferred to this one
regarding any sub-topic (topic which is included in it) or any super-topic (topic
which includes it). For instance, consider the two topics winter sports and ski-
ing. The latter is included in the former. Consider two agents Paul and Mary
providing information related to winter sports. It is not realistic to assume that
Paul influences you strictly more than Mary regarding winter sports and that
Mary influences you strictly more than Paul regarding skiing since skiing is a
special case of winter sport.

5.2 Topic-Dependent Importance Based Merging Operators

We now extend the notion of Importance-Based Merging Operator for taking
topics into account. Before, we introduce the following:

Definition 13. Let ϕ a formula and Ti a topic.
∏

i ϕ is the formula defined
by: Mod(

∏
i ϕ) = {w ∩ Ti : w ∈ Mod(ϕ)}.

Definition 14 (Topic-Dependent Importance-Based Merging Opera-
tor). A topic dependent Importance-Based Merging Operator, is a function Θ
which, given a formula μ, given a multi-set of consistent formulas of L and m
topic-compatible orders on this multi-set denoted ≺1 ... ≺m, produces a formula
denoted Θμ(≺1 ... ≺m) so that:

Mod(Θμ(≺1 ... ≺m)) =
⊕

i=1...m

Mod(Δ∏
i μ(≺i))

with

– Δ an importance-based merging operator as defined in Definition 1.
–

⊕
i=1...m Mi = {w : w ∈ Mod(μ) and ∀i w ∩ Ti ∈ Mi} if not empty;⊕
i=1...m Mi = Mod(μ) else.

Θ first merges formulas topic by topic and computes Mod(Δ∏
i μ(≺i)). Then

it agregates the results with operator
⊕

. This agregation operator aims to select
models of μ whose projections on all topics are results of independent mergings
(i.e., belong to Mod(Δ∏

i μ(≺i))). But it may happen that no model of μ satisfies
this condition, even if each initial formula satisfies μ as shown in Example 4.
In such a case, the operator selects all the models of μ i.e., the merging is
vacuous and the resulting formula is nothing else than μ. Notice that, when μ is
consistent, Mod(Δμ(≺1 ... ≺m)) is not empty.
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Example 4. Consider a language with two letters a, b and two topics: T1 =
{a,¬a}, T2 = {b,¬b}. Consider ϕ1 = a ∧ b and ϕ2 = ¬a ∧ ¬b and μ = a → b.
Notice that ϕ1 |= μ and ϕ2 |= μ. Consider two orders, {ϕ1 ≺T1 ϕ2, ϕ2 ≺T2 ϕ1}.
Then Mod(Δ∏

T1
μ(≺T1)) = {{a}} and Mod((Δ∏

T2
μ(≺T2) = {{¬b}}. But

{a,¬b} �∈ Mod(μ). In this case Mod(Θμ(≺T1≺T2) = Mod(μ) i.e., Θμ(≺T1

≺T2) = a → b.

Notice that Definition 1 is a special case of Definition 14 i.e., if there is only
one topic and only one order on a multi-set of formulas, then Θμ(≺) as defined
in Definition 14 is identical to Δμ(≺) as defined in Definition 1.

Again, we consider the different postulates that merging operators should
satisfy according to [9]. Here, we focus on the first four, we reformulate them
within our context where we have several orders in parameters and we check
whether Topic-dependent Importance-Based Merging Operators satisfy them or
not. Results are shown below.

Proposition 11. Topic-dependent Importance-Based Merging Operators satisfy
postulates (IC0)-(IC3) and do not satisfy postulate (IC4) i.e.

– (IC0) Θμ(≺1 ... ≺m) |= μ
– (IC1) If μ is consistent then Θμ(≺1 ... ≺m) is consistent
– (IC2) If

∧n
i=1 ϕi ∧ μ is consistent then |= Θμ(≺1 ... ≺m) ↔ ∧n

i=1 ϕi ∧ μ
– (IC3) If |= μ ↔ μ′ and ∀i = 1...n, |= ϕi ↔ ϕ′

i then |= Θμ(ϕ1 ≺ ... ≺
ϕn) ↔ Θμ′(ϕ′

1 ≺ ... ≺ ϕ′
n)

– (IC4) is not satisfied i.e. it is not necessarly the case that if ϕ1 |= μ and ϕ2 |=
μ then Θμ(≺1 ... ≺m)∧ϕ1 is consistent iff Θμ(≺1 ... ≺m)∧ϕ2 is consistent
(each ≺k being an order on {ϕ1, ϕ2}).

5.3 Topic-Dependent Influence-Based Belief Revision Game
(TIBRG)

Let us here extend the notion of Influence-Based Belief Revision Game to take
topics into account.

Definition 15 (Topic-Dependent Influence-Based Belief Revision
Game). A Topic dependent Influence-Based Belief Revision Game (TIBRG)
is a quadruplet G = (A,μ,B, Inf) where:

– A = {1, ..., n} is a finite set of agents.
– μ is a consistent formula of L.
– B is a function which associates any agent i of A with a consistent formula

of L denoted Bi such that Bi |= μ.
– For any agent i of A, Inf(i) = {≺1, ...,≺m} where ≺1,... ≺m are m total

topic-compatible orders on a single set of agents {ii1 ...ini
}.

A, μ, Bi are defined as before. Inf(i) is here defined by m orders on the
set of i’s influencers. Each order corresponds to a topic. Given a topic Tk and
≺k∈ Inf(i), i1 ≺k i2 means that i’s opinion is more influenced by i1’s opinion
than by i2’s opinion regarding the topic Tk.
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Definition 16 (Topic-Dependent Influence-Based Belief Sequence). Con-
sider a (TIBRG) G = (A,μ,B, Inf). Let i ∈ A with Inf(i) = {≺1, ... ≺m}
m orders on the set {ii1 ...ini

}. The Topic-dependent Influence-Based Belief
Sequence of i, denoted (Bs

i )s∈N, is defined as follows:

– B0
i = Bi

– ∀s ∈ N, Bs+1
i = Θμ(≺s

1 ... ≺s
m) where each ≺s

k is defined from ≺k by: Bs
i1

≺s
k

Bs
i2

iff i1 ≺k i2.

As before, the Belief Sequence of agent i, (Bs
i )s∈N, represents i’s belief state

along the game: B0
i is the initial belief state of i; Bs

i is the opinion of i after
s steps. Here, i’s opinion is revised according to the topic-importance-Based
merging operator Θμ: i’s opinion at step s is the result of Θμ applied to the
multi-set of opinions: Bs

i1
....Bs

ini
ordered topic by topic by ≺1 ... ≺m.

Proposition 12. In a (TIBRG), the belief sequence of any agent is cyclic i.e.,
the belief sequence of any agent i is characterized by an initial segment B0

i ...Bb−1
i

and a belief cycle Bb
i ...B

e
i which will be repeated ad infinitum.

Example 5. Consider a language whose topics are T1 = {a,¬a} and T2 = {b,¬b}
and a (TIBRG) G = (A,μ,B, Inf) with: A = {1, 2}, μ is a tautology, Inf1 =
{1}, Inf2 = {1 ≺T1 2, 2 ≺T1 1}, B1 = a, B2 = ¬a∧b. In other terms, we consider
two agents 1 and 2. 1 is its own and only influencer. Regarding topic T1, 2 is
influenced by 1 and by itself, but more by 1 than by itself; regarding topic T2, 2
is influenced by 1 and by itself, but more by itself than by 1. Initially, 1 believes
a and 2 believes ¬a∧ b. Table 3 shows the evolution of opinions (for distance dH

and dD as well).

Table 3. Opinion evolution in Example 5

s = 0 s ≥ 1

i = 1 a a

i = 2 ¬a ∧ b a ∧ b

5.4 Some Properties of (TIBRG)

We present here some results about (TIBRG). Mainly, we prove that in (TIBRG),
agents always agree with integrity constraint, that (TIBRG) satisfy Consistency
Preservation and Agreement Preservation but do not satisfy Unanimity Preser-
vation.

Proposition 13. Let G = (A,μ,B, Inf) be a (TIBRG). Then ∀i ∈ A ∀s ∈
N Bs

i |= μ.

Proposition 14. Let G = (A,μ,B, Inf) be a (TIBRG). Then ∀i ∈ A ∀s ∈ N

Bs
i is consistent.
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Proposition 15. Let G = (A,μ,B, Inf) be a (TIBRG) and ϕ a consistent
formula of L. If ∀i ∈ A,ϕ |= Bi then ∀i ∈ A ∀s ∈ N, ϕ |= Bs

i .

Proposition 16. Let G = (A,μ,B, Inf) be a (TIBRG) and ϕ a consistent
formula of L. Then the implication “if ∀i ∈ A, Bi |= ϕ then ∀i ∈ A,∀s ∈
N, Bs

i |= ϕ” is not always true.

This means that an opinion initially shared by all the agents may be rejected
by one agent after opinion diffusion. This is illustrated by the following example.

Example 6. Consider a language with two letters a, b and two topics: T1 =
{a,¬a}, T2 = {b,¬b}. Consider A = {1, 2, 3} so that Inf(1) = {1}, Inf(2) = {2}
and Inf(3) = {1 ≺T1 2, 2 ≺T2 1} i.e., agent 3 is more influenced by agent 1 than
by agent 2 regarding topic T1 but it is more influenced by agent 2 than by agent
1 regarding topic T2. Suppose that μ is a tautology, B0

1 = a ∧ b, B0
2 = ¬a ∧ ¬b,

B0
3 = a → b. We have: ∀i ∈ A,B0

i |= a → b. But B1
3 = a ∧ ¬b and thus

B1
3 �|= a → b.

6 Concluding Remarks

In a first part of this paper, we have presented a formal model of opinion dif-
fusion among agents assuming that each agent revises its opinion by merging
the opinions of its influencers, from the most influential to the least one. We
have made some analysis on this model and found some sufficient conditions for
convergence or acceptability. In a second part of the paper, we have extended
this model in order to take into account the notion of topic. More precisely, the
model has been extended so that an agent may order its influencers topic by
topic. Again, some analysis on this model has been made.

As far as we know, such models have never been studied before and topic-
dependent Importance-Based merging operators are quite original. Hovewer,
many open questions remain. Let us cite some of them.

First of all, as it has been done for the first model, it could be interesting to
find sufficient conditions which ensure convergence or acceptability in the second
model. For instance, for convergence, the notion of DAG with self-loops must
be extended to take into account several influence relations. The question is to
check wether such extended DAG with self-loops converge.

Secondly, it could be interesting to change our assumption about the way
agents orders their influencers. In this present work, we have assumed that agents
order their influencers according to a strict order (or according to several strict
orders if many topics). Thus, two agents cannot be considered as equally influ-
ential for a given agent. Changing this assumption will lead us to consider pre-
orders instead of orders. Defining a merging operator which takes into account
preorders is an open question. More, in this present work, an agent has got a
single set of influencers, which are ordered differently depending on the topics.
But it would be interesting to consider that the sets of influencers are themselves
topic-dependent.
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A third perspective concerns the dynamicity of the influence relation. In this
present work, agents do not change their influencers, nor the relative influence of
their influencers. What if, during the opinion diffusion process, an agent change
its mind about who are its influencers and how strong they influence it?

Finally, an interesting extension is to consider that there is no global integrity
constraint but only some local ones, shared by the agents who, in some way,
belong to a commn community. Studying the acceptability in such a context is
challenging.
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25348.01F (project ROSARIO).
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Abstract. Argumentation frameworks have to be evaluated with
respect to argumentation semantics to compute the set(s) of accepted
arguments. In a previous approach, we proposed a fuzzy labeling algo-
rithm for computing the (fuzzy) set of acceptable arguments, when the
sources of the arguments in the argumentation framework are only par-
tially trusted. The convergence of the algorithm was proved, and the con-
vergence speed was estimated to be linear, as it is generally the case with
iterative methods. In this paper, we provide an experimental validation
of this algorithm with the aim of carrying out an empirical evaluation of
its performance on a benchmark of argumentation graphs. Results show
the satisfactory performance of our algorithm, even on complex graph
structures as those present in our benchmark.

1 Introduction

In crisp argumentation, arguments are evaluated, following a specific semantics,
as being acceptable or not acceptable, as shown by Dung [9]. Roughly, accepted
arguments are those arguments which are not attacked by other accepted argu-
ments, and rejected arguments are those attacked by accepted arguments. The
set of accepted arguments, called extensions, represent consistent set(s) of argu-
ments that can be accepted together. However, in many applications, such as
decision making and agent-based recommendation systems, such a crisp evalua-
tion of the arguments is not suitable to represent the complexity of the considered
scenario. To address this issue, we [8] proposed to perform a fuzzy evaluation
of the arguments of an argumentation framework. Such a fuzzy evaluation of
the arguments is originated by the observation that some arguments may come
from only partially trusted sources. To represent the degrees of trust, we rethink
the usual crisp argument evaluation [6,9] by evaluating arguments in terms of
fuzzy degrees of acceptability. In our previous contribution [8], we proved that
the fuzzy labeling algorithm used to assign to the arguments fuzzy degrees of
acceptability converges, and we discussed its convergence speed. However, no
empirical evaluation was addressed to support this discussion.

c© Springer International Publishing Switzerland 2016
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In this paper, we face this issue by providing an extensive evaluation of the
performance and scalability of the fuzzy labeling algorithm with respect to a
benchmark of abstract argumentation frameworks. We first select three exist-
ing datasets for abstract argumentation tasks used in the literature, namely
the datasets created by Bistarelli et al. [3], by Cerutti et al. [7], and by Vallati
et al. [12]. Moreover, we generate our own dataset of abstract argumentation
frameworks by randomly combining some well known graph patterns in argumen-
tation theory into 20,000 bigger argumentation frameworks. Second, we study
the behaviour of the algorithm with respect to the frameworks in the bench-
mark, to check whether its performance are satisfiable even considering huge
and complex networks as those represented in the datasets, e.g., presenting an
increasing number of strongly connected components.

The reminder of the paper is as follows. In Sect. 2, we provide the basics of
abstract argumentation theory and fuzzy set theory. Section 3 firstly recalls the
main concepts behind the definition of the fuzzy labeling algorithm presented
in [8], and secondly, describes its current implementation. In Sect. 4, we describe
the four datasets which compose the bechmark used to evaluate our algorithm,
and we report about the obtained results. Conclusions end the paper.

2 Preliminaries

In this section, we provide some insights about abstract argumentation theory
and fuzzy sets.

2.1 Abstract Argumentation Theory

We provide the basics of Dung’s abstract argumentation [9].

Definition 1. (Abstract Argumentation Framework) An abstract argumentation
framework is a pair 〈A,→〉 where A is a set of elements called arguments and
→⊆ A×A is a binary relation called attack. We say that an argument Ai attacks
an argument Aj if and only if (Ai, Aj) ∈→.

Dung [9] presents several acceptability semantics which produce zero, one, or
several sets of accepted arguments. These semantics are grounded on two main
concepts, called conflict-freeness and defence.

Definition 2. (Conflict-Free, Defence) Let C ⊆ A. A set C is conflict-free if
and only if there exist no Ai, Aj ∈ C such that Ai → Aj. A set C defends an
argument Ai if and only if for each argument Aj ∈ A if Aj attacks Ai then there
exists Ak ∈ C such that Ak attacks Aj.

Definition 3. (Acceptability Semantics) Let C be a conflict-free set of argu-
ments, and let D : 2A �→ 2A be a function such that D(C) = {A|C defends A}.
– C is admissible if and only if C ⊆ D(C).
– C is a complete extension if and only if C = D(C).
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– C is a grounded extension if and only if it is the smallest (w.r.t. set inclusion)
complete extension.

– C is a preferred extension if and only if it is a maximal (w.r.t. set inclusion)
complete extension.

– C is a stable extension if and only if it is a preferred extension that attacks
all arguments in A \ C.

The concepts of Dung’s semantics are originally stated in terms of sets of
arguments. It is equal to express these concepts using argument labeling [6,10,13]
In a reinstatement labeling [6], an argument is labeled “in” if all its attackers
are labeled “out” and it is labeled “out” if it has at least an attacker which is
labeled “in”.

Definition 4. (AF-Labeling [6]) Let 〈A,→〉 be an abstract argumentation
framework. An AF-labeling is a total function lab : A → {in, out, undec}. We
define in(lab) = {Ai ∈ A|lab(Ai) = in}, out(lab) = {Ai ∈ A|lab(Ai) = out},
undec(lab) = {Ai ∈ A|lab(Ai) = undec}.
Definition 5. (Reinstatement Labeling [6]) Let lab be an AF-labeling.

– a in-labeled argument is said to be legally in iff all its attackers are labeled out.
– a out-labeled argument is said to be legally out iff it has at least one attacker

that is labeled in.
– an undec-labelled argument is said to be legally undec iff not all its attackers

are labelled out and it does not have an attacker that is labelled in.

Definition 6. An admissible labelling is a labelling lab where each in-labelled
argument is legally in and each out-labelled argument is legally out. lab is a
complete labeling if there are no arguments illegally in and illegally out and
illegally undec. We say that lab is a

– grounded, iff in(lab) is minimal (w.r.t. set inclusion);
– preferred, iff in(lab) is maximal (w.r.t. set inclusion);
– stable, iff undec(lab) = ∅

2.2 Fuzzy Sets

Fuzzy sets [14] are a generalization of classical (crisp) sets obtained by replac-
ing the characteristic function of a set A, χA, which takes up values in {0, 1}
(χA(x) = 1 iff x ∈ A, χA(x) = 0 otherwise) with a membership function μA,
which can take up any value in [0, 1]. The value μA(x) or, more simply, A(x) is
the membership degree of element x in A, i.e., the degree to which x belongs
in A.

A fuzzy set is completely defined by its membership function. Therefore, it is
useful to define a few terms describing various features of this function. Given a
fuzzy set A, its core is the (conventional) set of all elements x such that A(x) = 1;
its support, supp(A), is the set of all x such that A(x) > 0. A fuzzy set is normal
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if its core is nonempty. The set of all elements x of A such that A(x) ≥ α, for a
given α ∈ (0, 1], is called the α-cut of A, denoted Aα.

The usual set-theoretic operations of union, intersection, and complement can
be defined as a generalization of their counterparts on classical sets by introduc-
ing two families of operators, called triangular norms and triangular co-norms.
In practice, it is usual to employ the min norm for intersection and the max
co-norm for union. Given two fuzzy sets A and B, and an element x,

(A ∪ B)(x) = max{A(x), B(x)}; (1)
(A ∩ B)(x) = min{A(x), B(x)}; (2)

Ā(x) = 1 − A(x). (3)

Finally, given two fuzzy sets A and B, A ⊆ B if and only if, for every element
x, A(x) ≤ B(x).

3 Fuzzy Labeling for Abstract Argumentation

In this section, we recall the fuzzy labeling algorithm for abstract argumenta-
tion [8] we want to empirically evaluate over the available datasets for abstract
argumentation to study its performance. For a complete description of the algo-
rithm and its convergence theorem as well as the comparison with the related
approaches we remind the reader to [8]. Moreover, we report about the imple-
mentation we develop to test the perfomances of the algorithm.

3.1 Algorithm

In order to account for the fact that arguments may originate from sources that
are trusted only to a certain degree, the (crisp) abstract argumentation structure
described in Sect. 2 may be extended by allowing gradual membership of argu-
ments in the set of arguments A. We have that A is a fuzzy set of trustworthy
arguments, and A(A), the membership degree of argument A in A, is given by
the trust degree of the most reliable (i.e., trusted) source that offers argument
A,1

A(A) = max
s∈src(A)

τs, (4)

where src(A) is the set of sources proposing argument A and τs is the degree to
which source s ∈ src(A) is trusted. We do not make any further assumptions on
the trust model, as it is out of the scope of this paper. However, we refer the
interested reader to [11], where a more detailed description of how the source
trustworthiness degree can be computed starting from elements, like the source
sincerity and expertise, is provided.

1 Here, we suppose that the agent is optimistic. To represent a pessimistic behaviour,
we should use the min operator, for example.
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Definition 7. (Fuzzy AF-Labeling) Let 〈A,→〉 be an abstract argumentation
framework. A fuzzy AF-labeling is a total function α : A → [0, 1].

Such an α may also be regarded as (the membership function of) the fuzzy set
of acceptable arguments: α(A) = 0 means the argument is outright unacceptable,
α(A) = 1 means the argument is fully acceptable, and all cases inbetween are
provided for.

Definition 8. (Fuzzy Reinstatement Labeling) Let α be a fuzzy AF-labeling. We
say that α is a fuzzy reinstatement labeling iff, for all arguments A,

α(A) = min{A(A), 1 − max
B:B→A

α(B)}. (5)

The above definition combines two intuitive postulates of fuzzy labeling: (1)
the acceptability of an argument should not be greater than the degree to which
the arguments attacking it are unacceptable and (2) an argument cannot be
more acceptable than the degree to which its sources are trusted: α(A) ≤ A(A).

We can verify that the fuzzy reinstatement labeling is a generalization of
the crisp reinstatement labeling of Definition 5, whose in and out labels are
particular cases corresponding, respectively, to α(A) = 1 and α(A) = 0. The
intermediate cases, 0 < α(A) < 1 correspond to a continuum of degrees of
“undecidedness”, of which 0.5 is but the most undecided representative.

We denote by α0 = A the initial labeling, and by αt the labeling obtained
after the tth iteration of the labeling algorithm.

Definition 9. Let αt be a fuzzy labeling. An iteration in αt is carried out by
computing a new labeling αt+1 for all arguments A as follows:

αt+1(A) =
1
2
αt(A) +

1
2

min{A(A), 1 − max
B:B→A

αt(B)}. (6)

This defines a sequence {αt}t=0,1,... of labelings which always converges to a
limit fuzzy labeling, as proven in [8]. Moreover, the convergence speed is linear:
in practice, a small number of iterations is enough to compute the limit up to
the desired precision. The fuzzy labeling of a fuzzy argumentation framework is
thus the limit of {αt}t=0,1,....

Definition 10. Let 〈A,→〉 be a fuzzy argumentation framework. A fuzzy rein-
statement labeling for such argumentation framework is, for all arguments A,

α(A) = lim
t→∞ αt(A). (7)

3.2 Implementation

The fuzzy labeling algorithm has been implemented by using the Java language
without using any specific library. The first version of the algorithm was devel-
oped with the support of multi-threading where the update of each node was
parallelized. However, preliminary tests run in multi-threading mode reported
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some computational overhead that make the observation of algorithm perfor-
mance not consistent. For this reason and for measuring performance values
easing the comparison with the obtained results, we opted for running all tests
in a single-thread mode.

Each run was performed on a server equipped with a Xeon E5-2609 v2 @
2.50 GHz. According to official user-based benchmarks,2 the single thread mark
of the CPU is 1229 points. This value can be used as reference for normalizing
results concerning the timing of each run obtained on other machines.

4 Evaluation

In this section, we study the behaviour and the performances of the fuzzy-
labeling algorithm over a benchmark for abstract argumentation, and then we
report about the obtained results.

The aim of our experimental analysis is to assess the scalability of the fuzzy-
labeling algorithm concerning two perspectives:

– the number of iterations needed for convergence with respect to the number
of the nodes in the graph, and

– the time needed for convergence with respect to the number of the nodes in
the graph.

It must be stressed that the time needed for convergence depends on (i) the time
needed for computing each iteration, (ii) the time needed to update the α of each
single argument, and (iii) the number of iterations required for the labeling to
converge.

4.1 Benchmark

The benchmark we used to evaluate the performances of the fuzzy labeling algo-
rithm is composed of different datasets for abstract argumentation tasks used in
the literature. More precisely, we have considered the following datasets:

– The Perugia dataset [2–4]:3 the dataset is composed of randomly gener-
ated directed-graphs. To generate random graphs, they adopted two differ-
ent libraries. The first one is the Java Universal Network/Graph Framework
(JUNG), a Java software library for the modeling, generation, analysis and
visualization of graphs. The second library they used is NetworkX, a Python
software package for the creation, manipulation, and study of the structure,
dynamics, and functions of complex networks. Three kinds of networks are
generated:

2 https://www.cpubenchmark.net/CPU mega page.html.
3 The dataset is available at http://www.dmi.unipg.it/conarg/dwl/networks.tgz.

https://www.cpubenchmark.net/CPU_mega_page.html
http://www.dmi.unipg.it/conarg/dwl/networks.tgz
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• In the Erdős-Rényi graph model, the graph is constructed by randomly
connecting n nodes. Each edge is included in the graph with probability
p independent from every other edge. For the generation of these argu-
mentation graphs, they adopted p = c log n/n (with c empirically set to
2.5), which ensures the connectedness of such graphs.

• The Kleinberg graph model adds a number of directed long-range random
links to an n × n lattice network, where vertices are the nodes of a grid
with undirected edges between any two adjacent nodes. Links have a non-
uniform distribution that favors edges to close nodes over more distant
ones.

• In the Barabási-Albert graph model, at each time step, a new vertex is
created and connected to existing vertices according to the principle of
“preferential attachment”, such that vertices with higher degree have a
higher probability of being selected for attachment.

For more details about the generation of these networks as well as the graph
models, we refer the reader to [2–4].

– The dataset used by Cerutti et al. in their KR 2014 paper [7] (which we will
call the KR dataset): the dataset has been generated to evaluate a meta-
algorithm for the computation of preferred labelings, based on the general
recursive schema for argumentation semantics called SCC-Recursiveness. The
dataset is composed of three sets of argumentation frameworks, namely:

• 790 randomly generated argumentation frameworks where the number
of strongly connected components (SCC) is 1, varying the number of
arguments between 25 and 250 with a step of 25.

• 720 randomly generated argumentation frameworks where the number
of strongly connected components varies between 5 and 45 with a step
of 5. The size of the SCCs is determined by normal distributions with
means between 20 and 40 with a step of 5, and with a fixed standard
deviation of 5. They similarly varied the probability of having attacks
between arguments among SCCs.

• 2800 randomly generated argumentation frameworks where the number
of strongly connected components is between 50 and 80 with a step of 5.

– The dataset presented by Vallati et al. at ECAI 2014 [12] (which we will call
the ECAI dataset): the dataset was produced to study the features of argu-
mentation frameworks. More precisely, it is composed of 10, 000 argumentation
frameworks generated using a parametric random approach allowing to select
(probabilistically average, standard deviation) the density of attacks for each
strongly connected component, and how many arguments (probabilistically) in
each SCC attack how many arguments (probabilistically) in how many (prob-
abilistically) other SCCs. The number of arguments ranges between 10 and
40, 000, and they exploited a 10-fold cross-validation approach on a uniform
random permutation of the instances.

The availability of real-world benchmarks for argumentation problems is
quite limited, with some few exceptions like [5] or AIFdb.4 However, these
4 http://corpora.aifdb.org.

http://corpora.aifdb.org
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a → b, b → a
a → b, b → a, b → c
a → b, b → a, b → c, c → d, d → c
a → b, b → c, c → d, d → e, e → f , f → e
a → b, b → c, c → d, d → c
a → b, b → c, c → a
a → b, b → a, b → c, c → c
a → b, b → a, b → c, c → c, d → d
a → b, b → a, b → c, a → c, c → d, d → c
a → b, b → a, b → c, a → c, c → d
a → b, b → c, c → a, b → d, a → d, c → d, d → e, e → d
a → b, b → c, e → c, c → d
a → b, b → a, b → c, c → d, d → e, e → c
a → b, b → c, c → c
a → b, b → c, c → a, a → d, b → d, c → d
a → b, a → c, c → a, c → d, d → c, d → a, a → d, c → e, d → f

Fig. 1. The “patterns” used for constructing the Sophia Antipolis dataset.

benchmarks are tailored towards problems of argument mining and their repre-
sentation as abstract argumentation frameworks usually leads to topologically
simple graphs, such as cycle-free graphs. These kinds of graphs are not suitable
for evaluating the computational performance of solvers for abstract argumen-
tation problems. For this reason, we decided to use artificially generated graphs
as benchmarks, in line with the preliminary performance evaluation of Bistarelli
et al. [2].

In order to ensure the consideration of all kinds of interesting “patterns”
that could appear in argumentation frameworks (e.g., the abstract argumenta-
tion frameworks used to exemplify the behaviour of the semantics in [1]), we
have generated further graphs by composing these basic well-known examples of
interesting argumentation patterns (shown in Fig. 1) into bigger frameworks.

Our generated dataset (which we will call the Sophia Antipolis dataset)5

consists of 20,000 argumentation graphs created through a random aggregation
of the patterns shown above. This process has been executed with different
settings in order to obtain complex graphs of specific sizes. In particular, a set of
1,000 argumentation graphs is generated for graph sizes from 5,000 to 100,000
nodes, with incremental steps of 5,000 nodes each. The aggregation of patterns
has been done incrementally, and the connections (edges) between single patterns
were generated randomly. The number of created graphs and their different sizes
should support the evaluation of argumentation reasoning algorithms under a
broad number of scenarios.

4.2 Results

Figures 2, 3, 4, 5, 6, 7, 8, 9, 10 and 11 summarize the behavior of the fuzzy-
labeling algorithm on the four datasets we considered. For each dataset, we
applied the algorithm to the argumentation graphs with all argument weights
set to 1 (i.e., arguments coming from fully trusted sources) and with random

5 The Sophia Antipolis dataset is available at https://goo.gl/pN1M9r.

https://goo.gl/pN1M9r
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weights (i.e., arguments coming from a variety of more or less trusted sources
as it may be the case in application scenarios like multiagent systems). From
a first inspection of the figures, it is clear that certain graph types are harder
than others: the Sophia Antipolis appears to be the hardest, followed by the
Erdős-Rényi, the Barabási-Albert, and the KR + EKAI datasets. The Kleinberg
dataset appears to be the easiest. Furthermore, for all datasets, the graphs with
random weights never require a smaller number of iterations for convergence
than their counterparts with all weights fixed to 1.

Figures 2 and 3 show the behaviour of the fuzzy labeling algorithm when
applied to the Barabási-Albert dataset. In particular, Fig. 2 (left-hand side)
illustrates the evolution of the number of iterations needed to reach conver-
gence when all the weights are equal to 1. We can notice that the curve follows a
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Fig. 2. Barabási-Albert dataset of the Perugia benchmark with all weights equal to
1.0.
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Fig. 3. Barabási-Albert dataset of the Perugia benchmark with random weights.
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logarithmic rise with the increasing of the number of nodes. The figure illustrated
through the (right-hand side) curve represents the evolution of the time needed
to reach the convergence. It shows a behaviour rather linear. However, we can
notice that the slope of the curve decreases with the increasing of the number of
nodes. A similar behaviour is depicted in Fig. 3 which illustrates the evolution of
the quantity of time (in ms) needed to reach the convergence when the weights
are assigned randomly. These two illustrations clearly show the capability of the
fuzzy labeling algorithm to handle a growing amount of data.

In Figs. 4 and 5, we present the behaviour of the fuzzy labeling algorithm
when applied to the Erdős-Rényi dataset. We can notice that when all the
weights are equal to 1, the convergence is reached very quickly both when consid-
ering the number of iterations, and the quantity of time needed for convergence.
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Fig. 4. The Erdős-Rényi dataset of the Perugia benchmark with all weights equal to
1.0.
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Fig. 5. The Erdős-Rényi dataset of the Perugia benchmark with random weights.
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Fig. 6. The Kleinberg dataset of the Perugia benchmark with all weights equal to 1.0.
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Fig. 7. The Kleinberg dataset of the Perugia benchmark with random weights.

However, while such a quantity is quite similar with respect to the case in which
the weights are randomly assigned, we can notice that the number of iterations
needed for convergence is higher with respect to the behaviour illustrated in
Fig. 4. This can be due to the fact that the Erdős-Rényi dataset is constructed
by randomly connecting the nodes. As we can see in Figs. 6 and 7, the conver-
gence with the Kleinberg dataset is even globally faster, either when all weights
are equal to 1 or when the weights are randomly assigned. Instead, the behaviour
on the Sophia Antipolis dataset, shown in Figs. 10 and 11, is quite similar to the
behaviors obtained with the Barabási-Albert dataset.

It is less evident, but the fuzzy-labeling algorithm behaves on the KR +
ECAI dataset (illustrated in Figs. 8 and 9) much like it does on the Barabási-
Albert and Sophia Antipolis datasets, with the exception of a few small graphs
which are outliers and which demand a relatively large number of iterations to
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Fig. 8. The benchmark consisting of the KR + ECAI dataset with all weights equal
to 1.0.

0 1000 2000 3000 4000

0
50

10
0

15
0

20
0

25
0

Iterations to convergence

No. of nodes

Ite
ra

tio
ns

0 1000 2000 3000 4000

0
10

0
20

0
30

0
40

0
50

0
60

0
Time to convergence

No. of nodes

T
im

e 
(m

s)

Fig. 9. The benchmark consisting of the KR + ECAI dataset with random weights.
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Fig. 10. The Sophia Antipolis benchmark with all weights equal to 1.0.
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Fig. 11. The Sophia Antipolis benchmark with random weights.

converge. Nevertheless, the time behavior of Barabási-Albert, Sophia Antipolis
and KR + ECAI is qualitatively identical.

Despite the differences among the various graph types, we have a rate of
increase in time which is at most log-linear for all graph types and for all weight
assignments.

5 Conclusions

We have evaluated the performance of the fuzzy labeling algorithm proposed
in [8] on a benchmark consisting of four datasets of argumentation graphs having
widely different characteristics. The experimental results clearly indicate that
the fuzzy labeling algorithm scales up nicely in all circumstances, and is thus a
viable argumentation reasoning tool.
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Abstract. We propose a formal framework to support belief revision
based on a cognitive model of credibility and trust. In this framework,
the acceptance of information coming from a source depends on (i) the
agent’s goals and beliefs about the source’s goals, (ii) the credibility, for
the agent, of incoming information, and (iii) the agent’s beliefs about the
context in which it operates. This makes it possible to approach belief
revision in a setting where new incoming information is associated with
an acceptance degree. In particular, such degree may be used as input
weight for any possibilistic conditioning operator with uncertain input
(i.e., weighted belief revision operator).

1 Introduction

Fulfilling its goals is an important concern for an agent. The agent’s percep-
tions about its environment highly influences this process. Such perceptions
dynamically enrich the agent’s beliefs, namely thanks to new more or less credi-
ble/trusted information. According to the principle of primacy update, in belief
revision new information is generally accepted. However, as pointed out by sev-
eral authors [10,11,13], in real-world situations it is often the case that new
information is not fully considered or simply not accepted due to an insufficient
amount of plausibility [5]. The extent to which new information will be accepted
(i.e., really considered) by the agent directly depends on these credibility and
trust values. A key factor for the agent’s success in fulfilling its goals is then its
ability to compute both the credibility of new information and its trust in the
source providing information. Recently, Adali [1] has proposed to define informa-
tion trust as a computational concept whose value depends on the trustworthi-
ness of the information source,1 and on the credibility of the information content.
Adali’s approach also agrees with the one proposed by Sparks [26]. However, to
the best of our knowledge, a formal framework for measuring the acceptability of
a message which takes into account the agent’s goals and the agent’s beliefs about
the source’s goals, the credibility of the message with respect to its content and
with respect to both the agent’s competence and the source’s competence, and
the agent’s beliefs about the source’s nature (malicious or not) is still missing.
1 In the rest of the paper we will also refer to the “trustworthiness of an information

source” for an agent as the agent’s “trust in a source”.
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The research question of how to provide such a framework breaks down into
the following subquestions:

– How do we take the nature of the information source into account?
– How do we take the agent’s and source’s goals into account?
– How do we measure the credibility of information based on the agent’s and

the source’s competences?

We answer these questions by proposing a possibilistic model whereby the
cognitive notions of trust and credibility can be formalized and the acceptability
of the pieces of information can be computed. Our framework makes it possible
to:

– represent the fact that the agent’s beliefs may include the “nature” of a source,
which may be categorized as malicious, rational, etc.—each evaluation of a
component of trust should consider this fact;

– somehow measure the source’s willingness to cooperate thanks to the agent’s
perceptions about the source’s goals—a source sharing my goals should
(implicitly or explicitly) act/help for the achievement of these goals, unless,
perhaps, it is not rational;

– compute the credibility of information coming from a given source with respect
to:

• the agent’s competence—the agent may be able to evaluate the informa-
tion content regardless of how trustworthy it considers the information
source;

• the source’s competence—we suppose that (1) each piece of information
belongs to a domain of competence and (2) the agent has beliefs about the
domains of competence of the sources. It is then possible to evaluate the
credibility of such a new piece of information with respect to the source’s
competence;

Our approach is cast within the framework of possibility theory in order to
cover cases when not enough data to compute probabilities are available.

The paper is organized as follows: first, we present some related work and we
compare them to the proposed approach. Then, we provide some basic notions
of possibility theory, upon which our model is built. Our proposal is put forth
in Sect. 4, and its formal properties are discussed. Conclusions end the paper.

2 Related Work

In multi-agent systems, representing and making possible the evaluation of the
credibility associated with a piece of information is important especially when
the agents have their own beliefs and can obtain new information from other
sources. In this case, assessing to which extent such new information should be
integrated with the agents’ beliefs depends on its credibility and on the trustwor-
thiness of its source. Tamargo et al. [27] address this problem in a collaborative
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multi-agent system in which agents can receive new information from infor-
mant agents through communication. The authors consider a credibility order
among the informant agents. A belief is then revised when new contradictory
incoming information arrives from an informant that is highly credible. Unlike in
Tamargo’s approach, where credibility is associated to agents, here we propose
to associate a (computed) credibility degree to the new piece of information.

Krümpelmann et al. [14] propose to attach an agent identifier to each piece
of information, representing the credibility of the transferred information. But
still, credibility is associated to an agent. Besides, while our value of credibility
together with the trust value will determine the extent to which the new piece
of information will be accepted, in the above-mentioned approaches the aim of
the credibility order is to help in the choice of which, of the old belief and the
new piece of information, will be adopted/maintained.

On the other hand, there exist several works about trust in the literature
and in different disciplines [19,20,26,31]. Among the numerous and interesting
contributions by Falcone et al., we can underline [12], in which the authors claim
that an agent’s decision about trusting an information source or not depends on
the agent’s representation of the source’s nature. The principle according to
which “only an agent endowed with goals and beliefs can trust another agent”
has been pointed out by Castelfranchi and Falcone [7]. Trust is thus considered
as a matter of utility and a context-sensitive concept. All the above proposals
lead us to argue that trust is a multidimensional concept. Sabater et al. [23]
share this point of view. Indeed, they proposed a model which deals with three
dimensions of trust or reputation. The first dimension is based on an agent’s own
experiences. The second dimension is based on third-party information obtained
thanks to the agent’s social relationships, and the third dimension, also called
the ontological dimension, helps to transfer trust information between related
contexts. Sierra and Debenham [25] propose a trust-based decision model to
be used in the context of negotiation. They propose a probabilistic method to
represent and define trust as depending on the information gain caused by a piece
of evidence—the more information an agent has about an event, the smaller its
(probabilistic) uncertainty about that event. Probability theory is also used by
Teacy et al. [28] to represent trust by taking past interactions with other agents
into account while possibility theory is used in [2] for proposing an interval-based
representations of trust and distrust based on past performances by considering
the fact that data are not necessarily numerous in practice.

3 Background

In this section, we provide basic notions of possibility theory and define how
beliefs and goals are formalized in our framework to model cognitive agents.
Finally, we propose a way to associate the information content of a message to
domains of competence, by adopting implication in logical Information Retrieval
models.
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3.1 Language and Interpretations

A classical propositional language may be used to represent information for
manipulation by a cognitive agent.

Definition 1. (Language) Let Prop be a finite set of atomic propositions and
let L be the propositional language such that Prop∪{�,⊥} ⊆ L, and, ∀φ, ψ ∈ L,
¬φ ∈ L, φ ∧ ψ ∈ L, φ ∨ ψ ∈ L.

As usual, one may define additional logical connectives and consider them as
useful shorthands for combinations of connectives of L, e.g., φ ⊃ ψ ≡ ¬φ ∨ ψ.
We will denote by Ω = {0, 1}Prop the set of all interpretations on Prop. An
interpretation I ∈ Ω is a function I : Prop → {0, 1} assigning a truth value
pI to every atomic proposition p ∈ Prop and, by extension, a truth value φI

to all formulas φ ∈ L.2 We will denote by [φ] the set of all models of φ, [φ] =
{I : I |= φ}.

3.2 Possibility Theory

Fuzzy sets [32] are sets whose elements have degrees of membership in [0, 1].
Possibility theory is a mathematical theory of uncertainty that relies upon fuzzy
set theory, in that the (fuzzy) set of possible values for a variable of interest is
used to describe the uncertainty as to its precise value. At the semantic level,
the membership function of such set, π, is called a possibility distribution and
its range is [0, 1]. A possibility distribution can represent the beliefs of an agent:
π(I) represents the degree of compatibility of the interpretation I with the
available evidence about the real world if we are representing uncertain beliefs.
By convention, π(I) = 1 means that it is totally possible for I to be the real
world, 1 > π(I) > 0 means that I is only somehow possible, while π(I) = 0
means that I is certainly not the real world.

A possibility distribution π is said to be normalized if there exists at least one
interpretation I0 s.t. π(I0) = 1, i.e., there exists at least one possible situation
which is consistent with the available knowledge.

Definition 2 (Fuzzy Measure). Let Ω be a universe of discourse; a function
f : 2Ω → [0, 1] is a fuzzy measure if

1. f(∅) = 0;
2. for all A,B ⊆ Ω, A ⊆ B ⇒ f(A) ≤ f(B).

A fuzzy measure f is normalized if f(Ω) = 1.

Definition 3 (Possibility and Necessity Measures). A possibility distrib-
ution π induces a possibility measure and its dual necessity measure, denoted

2 When φI = 1, i.e., I satisfies formula φ, in symbols I |= φ, I is called a model of φ.
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by Π and N respectively. Both measures apply to a classical set S ⊆ Ω and are
defined as follows:

Π(S) = max
I∈S

π(I); (1)

N(S) = 1 − Π(S̄) = min
I∈S̄

{1 − π(I)}. (2)

A few properties of Π and N induced by a normalized possibility distribution
on a finite universe of discourse Ω are the following. For all subsets S ⊆ Ω:

1. Π(A ∪ B) = max{Π(A),Π(B)}; N(A ∩ B) = min{N(A), N(B)};
2. Π(A ∩ B) ≤ min{Π(A),Π(B)}; N(A ∪ B) ≥ max{N(A), N(B)};
3. Π(∅) = N(∅) = 0; Π(Ω) = N(Ω) = 1;
4. Π(S) = 1 − N(S̄) (duality);
5. N(S) > 0 ⇒ Π(S) = 1; Π(S) < 1 ⇒ N(S) = 0;

In case of complete ignorance on S, Π(S) = Π(S̄) = 1 and N(S) = N(S̄) = 0.

3.3 Beliefs

We assume a possibilistic BDI model of agency like the one proposed in [9].
In that model, the epistemic state of an agent is represented by a normalized
possibility distribution π : Ω → [0, 1]. The degree to which a given arbitrary
formula φ ∈ L is believed can, therefore, be calculated from it as

B(φ) = N([φ]) = 1 − max
I�|=φ

{π(I)}. (3)

Straightforward consequences of the properties of possibility and necessity mea-
sures are that B(φ) > 0 ⇒ B(¬φ) = 0, i.e., if the agent somehow believes φ
then it cannot believe ¬φ at all; B(φ ∧ ψ) = min{B(φ),B(ψ)} and B(φ ∨ ψ) ≥
max{B(φ),B(ψ)}. Notice that B(�) = 1 and B(⊥) = 0.

The rationale for choosing possibility theory to represent beliefs is its ability
to capture epistemic uncertainty. It is well known that possibility theory is suited
to represent uncertainty by only using a notion of order (much easier to have
with few data) between the possible outcomes. A viable alternative would be the
Dempster-Shafer theory of evidence [24]; however, the use of that theory would
be computationally much heavier, due to the need to maintain a probability mass
assignment to every element of 2Ω , as compared to a possibility assignment to
every interpretation of Ω in possibility theory.

3.4 Goals

The goals of an agent may be represented as a set G of formulas from the same
language L. The meaning of saying that ψ ∈ G is a goal for the agent is that
the agent would be happy with any state of the world I ∈ Ω such that I |= ψ.
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3.5 Domains of Competence

We propose to associate formulas to domains of competence. This is in line with
what has been proposed by Paglieri et al. [18], except that they referred to argu-
ments instead of just formulas and they defined domains based on the propo-
sitions their truth depends on. We propose a more general definition inspired
by the use of implication in logical Information Retrieval models [30]. More
precisely, given a domain d described by a formula χd (like a query in (fuzzy)
set-based models of information retrieval) and a formula φ (like a document),
we use implication to determine if φ is relevant to d i.e., if χd |= φ. The intu-
itive meaning of this is that incoming information is relevant to a domain if the
models of the formula describing the domain are included in the models of the
formula describing incoming information. However, because entailment is too
rigid a relation and cannot express partial relevance [15], what we propose is in
line with fuzzy set-based models in Information retrieval [29], where one resorts
to a fuzzy measure of the χd |= φ entailment. We define one such measure based
on possibilistic conditioning [4] of φ by χd.

Definition 4. Given language L and D the set of domains of competence, such
that every d ∈ D is defined by a formula χd ∈ L, the association between formulas
and domains is represented by a fuzzy relation R : L×D → [0, 1] such that, given
φ ∈ L, d ∈ D, the membership degree of formula φ in domain d is

R(φ, d) =
{

1, ifχd |= φ,
Π([φ ∧ χd]), otherwise.

In addition, we may require that the domains D form a partition of the
universe of discourse, i.e., that

∨

d∈D

χd = �, ∀d1, d2 ∈ D,χd1 ∧ χd2 = ⊥.

Proposition 1. Let φ, ψ ∈ L. For all domain d ∈ D, if φ |= ψ, R(φ, d) ≤
R(ψ, d).

Proof. Given a domain d, we may distinguish three cases:

1. χd |= φ; in this case, it must also be that χd |= ψ and, as a consequence,
R(φ, d) = R(ψ, d) = 1, and the thesis holds;

2. χd �|= φ and χd |= ψ; in this case, R(φ, d) = Π([φ ∧ χd]) ≤ 1 and R(ψ, d) = 1,
and the thesis holds;

3. χd �|= φ and χd �|= ψ; in this case, R(φ, d) = Π([φ ∧ χd]) and R(ψ, d) =
Π([ψ ∧ χd]); now, φ |= ψ means [φ] ⊆ [ψ]; therefore, [φ] ∩ [χd] ⊆ [ψ] ∩ [χd],
hence Π([φ ∧ χd]) ≤ Π([ψ ∧ χd]), and the thesis holds. ��

4 A Formal Framework of Cognitive Trust

We are now ready to formalize the notion of trust, the nature of an information
source, the relation between beliefs and goals, and credibility.
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4.1 Trust as Belief

Some pieces of information can contribute to increase or decrease the trust that
an agent has in a source, and others can contribute to increase or decrease
distrust. Trust is also a matter of competences.3 Indeed, we can have different
evaluations of trust (distrust) in the same source relevant to different domains
of competence.

Like in [17], we suppose that trust and distrust are not the opposite ends of
a single continuum, but linked dimensions that can coexist and have different
antecedents and consequences [20]. We consider the social-cognitive model of
trust [7,22], in which trust is defined as beliefs: an agent trusts a source s, in
a domain d, if and only if it somehow believes that s will be able to somehow
help it fulfill its goals. We will also define distrust as a belief: an agent distrusts
a source s with respect to a domain of competence d if and only if it somehow
believes that s might try to prevent it to reach its goals. Although in the next
sections we will show how to compute trust and distrust in a source s, we should
always keep in mind that trust and distrust in s are to be construed conceptually
as if they were defined as follows:

trust(s) ≡ B(“s is trustworthy”), (4)
distrust(s) ≡ B(“s is untrustworthy”). (5)

Notice that proposition “s is untrustworthy” is the logical negation of “s is
trustworthy”.

Some authors treat “distrust” as if it were defined as ¬B(“s is trustworthy”),
in which case distrust(s) = 1 − trust(s): trust is considered as the complement
of distrust [31]. Here, we give distrust a stronger meaning: we distrust someone
if we have valid reasons to believe he is lying, not if we do not have valid reasons
to believe he is telling the truth. In other words, distrust is not the complement
of trust.

A consequence of Eqs. 4 and 5, together with the properties of Π and N ,
is that trust and distrust, wrt a given domain, obey the following mutual con-
straints:

trust(s) > 0 ⇒ distrust(s) = 0, (6)
distrust(s) > 0 ⇒ trust(s) = 0. (7)

In case of total ignorance, we have that trust(s) = distrust(s) = 0. Notice
that if we consider trust as the complement of distrust, we cannot represent the
situations of total ignorance in which the agent does not know anything which
could lead it to trust or distrust the source; distrust(s) = 1 − trust(s) = 0.5
would not mean ignorance!

4.2 The Nature of a Source

Any judgment about the competence or willingness of a source to provide useful
information must be, implicitly or explicitly, based on an agent’s judgment (i.e.,
3 Here, we name such a competence-based trust credibility.
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beliefs) about the source according to past interactions as well as recommenda-
tions or the source’s reputations. We will refer to such assessment as the source’s
nature.

Without any claim of exhaustiveness and just to ground our presentation on
an intuitive setting, we draw inspiration from the abstract model of a human
agent’s social behavior proposed by Italian economist Carlo Cipolla [8] as the
backdrop on which his theory of human stupidity is expounded.

According to Cipolla’s model, an agent’s behavior may be summarized by
two coordinates:

x the average gain (or loss) that an agent obtains as a result of his or her
actions;
y the average gain (or loss) that an agent produces to other agents or groups
of agents.

As a result, agents can be plotted as points on a diagram like the one shown in
Fig. 1 based on their 〈x, y〉 behavior. Such a diagram divides the two-dimensional
plane into four quadrants or eight sectors, corresponding to different natures of
the agents.

For the sake of simplicity, let us represent an agent’s position in one of the
eight sectors by means of three propositional variables: r if agent s is rational
(x > 0); m if agent s is malicious (y < 0); and e if |y| < |x|.

Fig. 1. The correspondence between the eight sectors of the source nature diagram and
the truth assignments to the propositional variables r, m, and e.

It is worth mentioning that this concept of source nature allows us to model
the two kinds of beliefs, namely “willingness belief” and “persistence belief”,
proposed by Ramchurn [21] to ensure that a certain task can be delegated by an
agent to another one. More precisely, the eight sectors we identify are used by
the agent to decide when it needs to maintain a suspicious attitude in dealing
with malicious or irrational agents.

4.3 Trust and (Shareable) Goals

We make the assumption that the agent’s beliefs about the source’s goals
may also influence its trust in the source. Indeed, regardless of the content of
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Fig. 2. A schematic illustration of the four cases of agent’s goal-source’goals relation-
ships.

information, if, for example, a source s shares the same goal g with the agent,
we may suppose that s will act to fulfill g. This should, at least in case of ratio-
nal sources, prevent s from taking actions that could negatively influence the
satisfaction of g.

The way beliefs about the source’s goals, Gs are taken into account is by
comparing them with the agent’s own goals, G. We distinguish four cases, which
represent three possible situations. The four cases are schematically illustrated
in Fig. 2.

(a) [Gs] ⊆ [G] or, equivalently, Gs |= G: if the source achieves its goals, the
agent does too (necessary help).

(b) [Gs] ∩ [G] �= ∅ and [Gs] ∩ [G] �= ∅: the agent’s and the source’s goals are
independent: the fact that either of the two achieves its goals does not
necessarily imply or exclude that the other does; there is thus room for
cooperation (compatibility).

(c) [Gs]∩ [G] = ∅: there is an overt conflict between the agent’s and the source’s
goals (conflict).

(d) [G] ⊂ [Gs] or, equivalently, G |= Gs: if the agent achieves its goals, the
source does too, but not vice versa (compatibility).

4.4 Trust in a Source

We assume that an agent has an internal reasoning mechanism allowing it to
compute the trust/distrust, τz/δz, with z ∈ {(a), (b), (c), (d)} (the four cases in
Sect. 4.3). Such degrees depend on the agent’s beliefs about the source’s position
in the nature diagram and its beliefs about the source’s goals with respect to its
own goals. Figure 3 shows a minimal such mechanism based on look-up tables.

Computing trust can be seen as a set of material implications. Given a
source’s position in the nature diagram, “if the source’s goals configuration is
z, then the agent will associate a trust τz to that source”. However, the agent
may not know precisely the source’s position and it can just have a notion of
order about which among the eight possible sectors the source could be in, some
of them being more possible than others. If we consider a source s, the uncer-
tainty is captured in our formalism trough the possibility distribution on the
worlds (i.e., interpretations) I which are consistent with {0, 1}{rs,ms,es}. The
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Fig. 3. A definition of functions τz(I) and δz(I), for z ∈ {a, b, c, d} and I ∈
{0, 1}{r,m,s}.

above implication is then represented as a fuzzy implication. Among the exist-
ing definitions of fuzzy implications (see for example [16] for a survey) we adopt
the Kleene-Dienes fuzzy implication. Other definitions might be used as well.
The truth value of the fuzzy implication “If a source is somehow compatible
with situation I, then the agent trusts that source to degree τz(I)” quantifies
to what extent “the agent trusts that source to degree τz(I)” is at least as true
as “that source is somehow compatible with situation I”. Let us recall that we
consider eight possible positions and that we have a possibility distribution on
these positions. We have then eight fuzzy implications with their respective truth
values. Therefore, for each goal configuration z, we define the trust and distrust
that the agent has in source s as follows:4

trustz(s) = min
I∈{0,1}{rs,ms,es}

max{τz(I), 1 − π(I)}, (8)

distrustz(s) = min
I∈{0,1}{rs,ms,es}

max{δz(I), 1 − π(I)}. (9)

Besides, we can also have uncertainty about the configuration of the source’s
goals. The overall trust/distrust of an agent in a source s depends then on (i)
its judgment about a source defined by τz/δz, (ii) the uncertainty about the
source’s real nature, and (iii) the uncertainty about the source’s goals. We thus
define these trust and distrust values based on goals and nature as follows:

trust(s) = min
z∈{a,b,c,d}

max{trustz(s), 1 − π(z)}, (10)

distrust(s) = min
z∈{a,b,c,d}

max{distrustz(s), 1 − π(z)}. (11)

Proposition 2. If the two functions τz(I) and δz(I) are such that, for all z
and I, τz(I) > 0 ⇒ δz(I) = 0 and δz(I) > 0 ⇒ τz(I) = 0, then, for all source
s, trust(s) and distrust(s) satisfy the bipolar conditions of Eqs. 6 and 7.
4 For the the sake of readability, we restrict the interpretations I as if the language

were built on atomic propositions rs, ms, and es only.
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Proof. Since π is normalized, ∃z0, I0 such that π(z0) = π(I0) = 1. Then,
trust(s) > 0 ⇒ ∀z max{trustz(s), 1 − π(z)} > 0 ⇒ trustz0(s) > 0 ⇒
τz0(I0) > 0 ⇒ δz0(I0) = 0 and 1 − π(I0) = 0 ⇒ max{δz0(I0), 1 − π(I0)} =
0 ⇒ distrust(s) = 0. A similar reasoning proves that distrust(s) > 0 ⇒
trust(s) = 0. ��

A corollary of this proposition is that, for all source s, trust(s)+distrust(s) ≤
1. We can notice that, in case of complete ignorance, trust(s) = distrust(s) = 0.

Definition 5. (Trustworthiness Order Relation) Let s1 and s2 be two informa-
tion sources. We consider that s1 is less trustworthy than s2, s1 � s2, if and
only if trust(s1) ≤ trust(s2) and distrust(s1) ≥ distrust(s2).

Proposition 3. (Total Order) The relation � is a total order.

Proof. The thesis is a direct consequence of Eqs. 6 and 7. ��

4.5 Credibility and Competence

Let D be the set of domains of competence considered for the agent and the
sources. The agent’s competences are represented through a vector κ, whose
component κd represents the extent to which the agent is competent with respect
to domain d ∈ D. Moreover, we suppose that the agent may have beliefs about
the competences of a source. To this aim, we assume that Prop contains propo-
sitions cs

d, meaning “source s is competent about domain d”; B(cs
d) will thus be

the extent to which the agent believes s is competent about d.

Definition 6. Let φ �≡ ⊥ be new information provided by s. The extent to which
the agent deems φ credible, given that φ is reported by source s, is

cr(φ, s) = max{B(φ),max
d∈D

min{crd(φ, s), R(φ, d)}}, (12)

where

crd(φ, s) =
{

min{B(cs
d), 1 − κd,Π([φ])}, ifκd > B(cs

d);
B(cs

d), otherwise.
(13)

For the sake of completeness, ∀s, cr(⊥, s) = 0.

Equation 12 may be paraphrased as “φ being reported by s is credible if there
exists a domain to which φ is related and with respect to which it is credible”.
Taking a max with B(φ) accounts for the fact that the extent to which something
is believable cannot be less than it is already believed, no matter which source is
reporting it, since credibility is the quality of being believable. Besides, a message
is believable if we deem it possible. Formally, for all formula φ provided by a
source s we have B(φ) ≤ cr(φ, s) ≤ Π([φ]). This definition of credibility allows
us to capture the notion of “competence belief” proposed in [21], going even
further by using both the receiving agent’s own competence and the source’s
expected competences to assess the credibility of the information item.

Equation 13 involves two cases:
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– if the agent is not more competent about d than the source is (κd ≤ B(cs
d),

second case of Eq. 13), then it will not try to filter the incoming message
according to its own beliefs; this is a mandatory assumption if an agent is to
be capable of learning from sources it believes to be more knowledgeable than
it is;

– if, however, the agent believes to be more competent about d than the source
(κd > B(cs

d), first case of Eq. 13), information supplied by the source should
be evaluated by its internal credibility; in addition, the resulting credibility of
supplied information should not be greater than the competence of the source
providing it, otherwise an agent scarcely competent about a domain would
incur the risk of accepting acritically anything that a source just a little more
competent than it about that domain would say, which is not in conflict with
its (admittedly very incomplete) beliefs.

Furthermore, the first case in Eq. 13 refers to an “internal” credibility of φ, which
satisfies the following two intuitive properties:

1. if φ is completely relevant to d, crd(φ) ≤ 1 − B(¬φ);
2. the more the agent’s knowledge is complete on domain d (i.e., the agent is

competent), the more crd(φ) will approach its lower bound B(φ) and, vice
versa, the more the agent is ignorant about d, the more it must be keen on
heeding a φ that does not contradict its current beliefs.

Like in [6], for example, the idea here is to capture the fact that a piece
of information is accepted by the agent if and only if it is “credible” for the
agent. “Our definition” of credibility is nevertheless different from the one used
by Booth et al. They consider the set of credible formulas as “an (explicit)
part of an epistemic state, since it defines how easily an agent can accept very
implausible new pieces of information”. In our setting, the credibility of a piece
of information represents the capability of the agent to evaluate the tenability
of the piece of information with respect to its own competences and the ones
of the sources. Obviously, if the agent is less competent or not competent at all
with respect to a domain, this credibility degree must depend (be weighted), in
a sense, by the source’s competence.

Proposition 4. Given a source s, cr(·, s) is a normalized fuzzy measure.

Proof. We must prove that cr(⊥, s) = 0; cr(�, s) = 1; and ∀φ, ψ ∈ L,
φ |= ψ ⇒ cr(φ, s) ≤ cr(ψ, s) (monotonicity). Now, cr(⊥, s) = 0 holds
by definition; cr(�, s) = 1 holds because cr(�, s) = max{B(�),maxd∈D

min{crd(�, s), R(�, d)}} ≥ B(�) = 1. To prove monotonicity, we observe that,
for every domain d ∈ D,

– B(φ) ≤ B(ψ), because B is a fuzzy measure;
– R(φ, d) ≤ R(ψ, d) by Proposition 1;
– Π([φ]) ≤ Π([ψ]), because Π is a fuzzy measure;
– B(cs

d) and κd do not depend on φ or ψ.
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Therefore, since max{a, b} ≤ max{c, d} and min{a, b} ≤ min{c, d} if a ≤ c and
b ≤ d, cr(φ, s) ≤ cr(ψ, s). ��

Being the credibility cr(·, s) in an information content provided by a certain
source a fuzzy measure, the following two properties hold:

Proposition 5. Given a source s, ∀φ, ψ ∈ L, cr(φ ∨ ψ, s) ≥ max(cr(ψ, s), and
cr(ψ, s)) cr(φ ∧ ψ, s) ≤ min(cr(ψ, s), cr(ψ, s)).

Proof. ∀φ, ψ ∈ L, (a) φ |= φ∨ψ, and ψ |= φ∨ψ; therefore, cr(φ, s) ≤ cr(φ∨ψ, s)
and cr(ψ, s) ≤ cr(φ∨ψ, s); (b) φ∧ψ |= φ and φ∧ψ |= ψ; therefore, cr(φ∧ψ, s) ≤
cr(φ, s) and cr(φ ∧ ψ, s) ≤ cr(ψ, s). ��

4.6 Accepting Information

The extent to which a piece of information φ (provided by a source s) is accepted
by an agent depends on the trust and distrust computed on the basis of the
source’s goals and nature (Eqs. 10 and 11) and the credibility of φ for the agent
(Eq. 12) which depends on the competences of the agent and the sources. We
may be combined these values using the minimum triangular norm, to yield the
extent to which φ provided by s is accepted by the agent:

acc(φ, s) = min{cr(φ, s), trust(s)}. (14)

The choice of min as the aggregation operator is motivated by the fact that an
agent should accept information φ provided by source s to the extent to which
it deems φ credible and s trustworthy according to its goals and nature.

Proposition 6. ∀s, acc(·, s) is a fuzzy measure. It is normalized if trust(s) = 1.

Proof. Since acc(·, s) is the min of a normalized fuzzy measure and trust(s),
which is a constant for a fixed s, acc(·, s) is a fuzzy measure, i.e., acc(⊥, s) = 0
and, for φ, ψ ∈ L such that φ |= ψ,

acc(φ, s) = min{cr(φ, s), trust(s)} ≤ min{cr(ψ, s), trust(s)} = acc(ψ, s).

Finally, if trust(s) = 1, acc(�, s) = min{cr(�, s), 1} = min{1, 1} = 1. ��
A piece of information φ may be provided by more sources. In this case, the

extent to which φ is accepted by the agent, accepted(φ) may be defined as

accepted(φ) = max
s∈src(φ)

{acc(φ, s)}, (15)

where src(φ) denotes the sources of φ. Operators other than max might be used,
e.g., operators with cumulative effects. The value accepted(φ) may be used as
input weight for any weighted belief revision operator, like the ones studied in [3].

Experimental results obtained by Sparks in [26] shows that when untrustwor-
thy sources provide non-credible information, individuals are less likely to revise
their initial beliefs. Our formalism also captures the fact that the initial beliefs
of an agent are not revised if new information is non-credible or is provided by
untrustworthy sources.
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5 Conclusion

The goal of this paper is to shed some light on a few fundamental formal aspects
of credibility and trust as used by humans in view of their implementation
on computers. More precisely, our contribution consists in providing a model
for computing the acceptance of information provided by a source taking into
account both trust in the source and credibility of the message.

Our model encompasses, but is not limited to, the four “kinds” of beliefs
needed by an agent before delegating a task to another agent [21], where the
task is “to provide useful information”. In particular,

– “competence belief” is captured by “our” definition of credibility that goes
even further by using also the receiving agent’s own competence to assess
information provided by another agent;

– “willingness belief” and “persistence belief” are captured thanks to the con-
cept of “source nature”: we should always adopt and maintain a suspicious
attitude with respect to an agent we believe to be irrational for example; and

– “motivation belief” is captured by taking into account both the goals of the
agent and the ones of the source: the agent believes that a source sharing its
goals has some motivation to help it.

As for future work, we plan to apply our formalism towards a cognitive view
of adversarial reasoning, and to analyze and reason over irrational behavior (i.e.,
stupid agents are dangerous because they act irrationally).
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Abstract. Abstract Argumentation is a simple yet powerful formalism
for modeling the human reasoning and argumentation process. Vari-
ous semantics have been suggested with a view of arriving at coher-
ent outcomes of the argumentation process. Two categories of semantics
are well-known, extension-based semantics and labeling-based semantics.
Translations between semantics are an important area of interest that
enhance our understanding of the dynamics of various semantics and
their structural and semantic interrelationship. The application of trans-
lations to extension-based semantics has been investigated in detail in
the literature, however for labeling-based semantics which provide a more
fine grained notion of acceptability such translations have not yet been
studied. In this work, we fill this gab by investigating intertranslatability
of labeling-based semantics. We show in which cases the existing results
from the extension-based setting carry over to the labeling-based setting
and we investigate intertranslatability between the three unique status
semantics grounded, ideal and eager .

Keywords: Argumentation · Labeling-based semantics · Translations

1 Introduction

Argumentation theory and in particular abstract argumentation frameworks
have become a popular field in artificial intelligence. In an abstract argumenta-
tion framework (AF) as introduced by Dung in 1995 [6], one can model scenarios
with conflicting knowledge by considering only abstract entities called arguments
and a binary relation between them the so-called attack relation. The inherent
conflicts are solved on a semantical level usually by selecting sets of arguments,
so-called extensions which can be accepted together. An alternative view on the
semantics is in terms of labeling functions, where one assigns a label to each
argument, depending on the specific semantics, denoting if it should be accepted
(in), rejected (out) or undecided (undec) [5,13]. Thus, labeling-based semantics
give a more fine grained notion of the status of each argument.

The notion of intertranslatability for the extension-based semantics has been
investigated in much detail for most of the prominent semantics [8,9]. For two
semantics σ, σ′, intertranslatability involves translating an AF F to another AF
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F ′ through new arguments and new attacks between arguments such that the
σ-extensions of F are in a certain relation to the σ′-extensions of F ′. In case of
extensions one just needs to compare the sets of accepted arguments, however
when one considers labelings one needs to compare the status of each argument,
as the transformation of the AF might also change the status of the out and
undec labeled arguments.

Knowing about intertranslatability might become more and more important
when it comes to the use of argumentation systems for the evaluation. In partic-
ular if one has an efficient system for semantics σ but one wants to evaluate an
AF F w.r.t. semantics τ where no good implementations exits. Then, one would
be interested in translating F into F ′ such that the σ-labelings of F are in a
certain relation to the τ -labelings of F ′.

The development of efficient systems to evaluate argumentation frameworks
became a major topic. This is also reflected by the newly founded International
Competition on Computational Models of Argumentation (ICCMA) which took
place in 2015 for the first time [11]. Several argumentation systems use labeling-
based algorithms in their computation [10,13], thus knowing about intertrans-
latability for labeling-based semantics can contribute to the development for
such systems, or in the use of such systems.

The main contributions of this article are (i) the definition of exact, faith-
ful and weakly translations for the labeling-based semantics, according to the
intuition from [8,9]; (ii) we show under which conditions the results from the
extension-based setting carry over to the labeling-based setting, in particular for
the results on faithful translations we need to introduce an additional restric-
tion on the translation to preserve the status of arguments labeled with undec;
and (iii) we investigate intertranslatability between the unique-status semantics
grounded, ideal and eager [3,7].

This article is organized as follows. In Sect. 2 we introduce the necessary
background on abstract argumentation frameworks and the semantics in terms
of extensions and labelings. In Sect. 3 we define the different types of translations
for the labeling-based semantics, and in Sect. 4 we show which results from the
extension-based setting carry over to the labeling-based one. Then, in Sect. 5 we
analyze intertranslatability between the unique-status semantics grounded, ideal
and eager. Finally, in Sect. 6 we conclude and discuss future directions.

2 Preliminaries

In this chapter we introduce argumentation frameworks. We then define various
extension and labeling-based semantics. We also recall some results from other
works which shall prove useful in our investigations.

Argumentation Frameworks were introduced by Dung [6]. Formally, an argu-
mentation framework is a pair (A,R) where A is a set of arguments and
R ⊆ A × A is the attack relation. The relation (a, b) ∈ R means argument a
attacks argument b. Similarly, a set of arguments S ⊆ A attacks an argument
a ∈ A if and only if, ∃b ∈ S such that (b, a) ∈ R.
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Additionally, for a set S ⊆ A of arguments, we denote by S−, the set of all
arguments that attack S, i.e., S− = {b | ∃a ∈ S : (b, a) ∈ R}. For a set S ⊆ A
of arguments, we denote by S+ the set of all arguments which are attacked
by S, i.e., S+ = {b | ∃a ∈ S : (a, b) ∈ R}. For S ⊆ A and a ∈ A, we write
S → a, if there exists an argument b ∈ S such that (b, a) ∈ R. Furthermore,
an argument a is defended in an AF F by a set S ⊆ A if for every b ∈ A,
such that (b, a) ∈ R, S → b. Lastly, the range of a set S ⊆ A, denoted by
SR

+, is defined as SR
+ = S ∪ {b | S → b}. Argumentation frameworks can

be represented as directed graphs with nodes representing arguments and edges
representing attacks. We now define extension-based semantics drawing upon
the works [1,2,6,12].

Let F = (AF , RF ) be an AF. A set S ⊆ A is conflict-free in F , if there are
no a, b ∈ S such that (a, b) ∈ R. For a conflict-free set S:

– S ∈ adm(F ), if each a ∈ S is defended by S;
– S ∈ prf(F ), if S ∈ adm(F ) and there is no T ∈ adm(F ) with S ⊂ T;
– S ∈ com(F ), if S ∈ adm(F ) and for each a ∈ A that is defended by S, a ∈ S;
– S ∈ grd(F ), if S ∈ com(F ) and there is no T ∈ com(F ) with T ⊂ S;
– S ∈ sem(F ), if S ∈ adm(F ) and there is no T ∈ adm(F ) with SR

+ ⊂ TR
+;

– S ∈ stb(F ), if for each a ∈ A \ S, S → a;
– S ∈ stg(F ), if there is no conflict-free set T in F , such that TR

+ ⊂ SR
+;

– S ∈ idl(F ), if S ∈ adm(F ) and S is the biggest set (w.r.t. set inclusion) such
that for all T ∈ prf(F ), S ⊆ T;

– S ∈ eag(F ), if S ∈ adm(F ) and S is the biggest set (w.r.t. set inclusion) such
that for all T ∈ com(F ), S ⊆ T.

Where adm, prf, com, grd, sem, stb, stg, idl and eag stand for admissible, pre-
ferred, complete, grounded, semi-stable, stable, stage, ideal and eager semantics.

Labeling-based semantics start by assigning a label from a set of labels Λ =
{in, out, undec} to every argument in an AF F . The set of labels, Λ, stands for
accepted, rejected and undecided arguments respectively. The semantics then
selects labelings from the set of all possible labelings which it sees as representing
a coherent outcome of the conflicts in the AF. Another important notion is that
of ‘legally’ labeled.

– An in-labeled argument is said to be legally in if and only if all it’s attackers
are labeled out ;

– An out-labeled argument is said to be legally out if and only if at least one of
it’s attackers is labeled in;

– An undec-labeled argument is said to be legally undec if and only if not all it’s
attackers are labeled out and it does not have an attacker that is labeled in.

In this work, we will denote by L, possibly indexed, a single labeling and Lσ(F )
will represent the set of labelings for an AF F under a semantics σ.

We represent a labeling L for an AF F as a triple L =
(in(L), out(L), undec(L)) where in(L) = {a ∈ A | L(a) = in}; out(L) = {a ∈
A | L(a) = out}; undec(L) = {a ∈ A | L(a) = undec}. For the set of in-labeled
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arguments of a labeling L, in(L), we define in(L) ↓S , the reduction of in(L) to a
set S ⊆ AF of arguments as: in(L) ↓S= {in(L) ∩ S}. out(L) ↓S and undec(L) ↓S

are defined similarly. For a set of labelings of an AF F under the semantics σ,
Lσ(F ), the reduction of this set of labelings to a set of arguments S, Lσ(F ) ↓S ,
is defined as: Lσ(F ) ↓S = {(in(L) ∩ S, out(L) ∩ S, undec(L) ∩ S) | L ∈ Lσ(F )}.

Let L1, L2 be two labelings for an argumentation framework F . We say that
L2 is more or equally committed than L1(L1 
 L2) iff in(L1) ⊆ in(L2) and
out(L1) ⊆ out(L2). We can then characterize a labeling as being bigger or smaller
than another labeling with respect to 
 which is a partial order.

We now introduce certain specific labeling-based semantics. A labeling L for
an argumentation framework is said to be:

– Admissible if every in-labeled argument is legally in and every out-labeled
argument is legally out.

– Complete if for all arguments a ∈ A: a is labeled in iff it is legally in; a is
labeled out iff it is legally out ; a is labeled undec iff it is legally undecided .

– Grounded if L is a complete labeling and in(L) is minimal (w.r.t. set inclu-
sion) among all complete labelings.

– Preferred if L is a complete labeling and in(L) is maximal (with respect to
set inclusion) among all complete labelings.

– Semi-stable if L is a complete labeling and undec(L) is minimal (w.r.t set
inclusion) among all complete labelings.

– Stable if it is a complete labeling with undec(L) = ∅.
– Stage if it is a conflict-free labeling where undec(L) is minimal (w.r.t. set

inclusion) among all conflict-free labelings.
– Ideal if it is the biggest admissible labeling (with respect to the partial order


) that is smaller than or equal to each preferred labeling.
– Eager if it is the biggest admissible labeling (with respect to the partial order


) that is smaller than or equal to each semi-stable labeling.

Among these semantics, grounded , ideal and eager labelings are unique status
semantics in that they return a single, unique labeling for every AF. All other
semantics are multiple status semantics which return possibly multiple labelings
for every AF. Stable semantics is the only semantics that is not universally
defined.

We now briefly recall some results from previous works which will help us
in our investigations. From Caminada and Gabbay [5], we have that there is a
bijective correspondence between complete extensions and complete labelings. It
follows that for all completeness-based semantics, there is a bijective correspon-
dence between the extension(s) and the labeling(s) for that semantics. All the
semantics we consider in this work except admissible and stage semantics are
completeness-based. We also recall from Caminada [4] that stage extensions and
stage labelings are in a bijective correspondence. From Caminada [3], we have
that the ideal and eager extensions (and hence the ideal and eager labelings)
are also complete extensions (labelings). The proofs of these results are omitted
here.
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3 Translation Properties

By a translation, we mean an expansion of the source argumentation framework
with further arguments and attacks, giving rise to the target argumentation
framework. Formally, a translation Tr is defined as: Tr = (A∗, R∗) where A∗

is a set of additional arguments and R∗ is the set of additional attack relations
between arguments.

In this section, we first recall exactness and faithfulness properties of trans-
lations in the extension-based settings as defined in [9]. We then proceed to
define exactness and faithfulness properties for translations in labeling-based
semantics.

For two AFs F = (A,R) and F ′ = (A′, R′), F ⊆ F ′ if and only if A ⊆ A′

and R ⊆ R′. A translation Tr is called covering if for every AF F , F ⊆ Tr(F ).
A translation Tr is called embedding if for every AF F , AF ⊆ ATr(F ) and
RF = RTr(F ) ∩ (AF × AF ). We now recall the definitions of exactness and
faithfulness properties of translations in the extension-based setting from [9].
For two extension-based semantics σ and σ′, a translation Tr is called:

– Exact: if for every AF F , σ(F ) = σ′(Tr(F )).
– Weakly Exact: if there exists S a given finite collection of (remainder)

sets of arguments that are exclusively occurring in translated AFs, σ(F ) =
σ′(Tr(F )) \ S.

– Faithful: if for every AF F , σ(F ) = {E ∩ AF | E ∈ σ′(Tr(F ))} and |σ(F )| =
|σ′(Tr(F ))|.

– Weakly Faithful: if there exists S a given finite collection of (remainder)
sets of arguments that are exclusively occurring in translated AFs, σ(F ) =
{E ∩ AF | E ∈ σ′(Tr(F )) \ S} and |σ(F )| = |σ′(Tr(F ))\S |.

We now define exactness and faithfulness for labeling-based semantics. Intu-
itively, by exactness we mean that the labelings of the source AF under the
semantics σ and those of the target framework under the semantics σ′ coincide.
Formally:

Definition 1. A translation Tr is called exact for semantics σ ⇒ σ′ if for
every AF F :

1. ∀L ∈ Lσ(F ): ∃L′ ∈ Lσ′(Tr(F )): in(L) = in(L′), out(L) = out(L′)↓AF
,

undec(L) = undec(L′)↓AF
.

2. |Lσ(F )| = |Lσ′(Tr(F ))|.
Definition 2. A translation Tr is called weakly exact for semantics σ ⇒ σ′ if
there exists a set of arguments Ap that are exclusively occurring in the translated
AFs and a finite set of partial labelings Lp of Ap such that for every AF F and
the remainder set L′ = {L ∈ Lσ′(Tr(F )) | ∃Lp ∈ Lp : L↓(Ap∩ATr(F ))

= Lp}:
1. ∀L ∈ Lσ(F ) : ∃L′ ∈ Lσ′(Tr(F )) \ L′ : in(L) = in(L′), out(L) =

out(L′)↓AF
, undec(L) = undec(L′)↓AF

.
2. |Lσ(F )| = |Lσ′(Tr(F )) \ L′|.
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Intuitively, by faithful translations we mean translations that retain the orig-
inal labelings of the source AF under the initial semantics. Formally:

Definition 3. A translation Tr is called faithful for semantics σ ⇒ σ′ if for
every AF F , Lσ(F ) = Lσ′(Tr(F ))↓AF

and |Lσ(F )| = |Lσ′(Tr(F ))|.
Definition 4. A translation Tr is called weakly faithful for semantics σ ⇒
σ′ if there exists a finite set of arguments Ap that are exclusively occurring in
the translated AFs and a finite set of partial labelings Lp of labelings Ap such
that for every AF F and the remainder set L′ = {L ∈ Lσ′(Tr(F )) | ∃Lp ∈
Lp : L↓(Ap∩ATr(F ))

= Lp}: Lσ(F ) = (Lσ′(Tr(F )) \ L′) ↓ AF
and |Lσ(F )| =

|L′
σ(Tr(F )) \ L′|.

Example 1. We now present an example to demonstrate the workings of a weakly
faithful translation. Let F = ({a, b, c}, {(a, b), (b, c), (c, b)}) be an AF. The trans-
lation Tr3 [9] is defined as: Tr3(F ) = (A∗, R∗) where A∗ = AF ∪ {t} and
R∗ = RF ∪ {(a, t), (t, a) | a ∈ AF }. The F target framework obtained from
applying Tr3 to F is depicted in Fig. 1.

We have that Lstb(F ) = {{a, c}, {b}, ∅} and that Lstg(Tr3(F )) =
{({a, c}, {b}, ∅), ({t}, {a, b, c}, ∅)}. It is proven in [9] that Tr3 is weakly exact
for stb ⇒ stg in the extension-based setting. By Theorem 2, we have that Tr3
is embedding and weakly exact for stb ⇒ stg in the labeling-based setting with
Ap = {t} and L′ = {({t}, {a, b, c}, ∅)}.

a b c

a b c

t

Fig. 1. The source AF F (left) and the target AF Tr3(F ) (right)

4 Extension-Based and Labeling-Based Semantics
Translation Comparison

Dvořák and Woltran [9] investigated intertranslatability between extension-
based semantics and defined the notions of exactness and faithfulness for
extension-based semantics. Having defined exactness and faithfulness for
labeling-based semantics, in this section we investigate the relationship between
the exactness and faithfulness of translations in extension-based setting to that
in labeling-based setting.
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First, we define a class of translations called reserved translations which will
help simplify our investigations. We need the notion of reserved translations in
order to be able to establish equivalence between faithfulness in extension-based
and labeling-based setting since a translation which is faithful in extension-based
setting maybe not be faithful in labeling-based because new arguments in the
translation may attack arguments which were undec in the original framework
and cause them to be out in the target framework. We say that a set of arguments
in an AF F constitutes a cycle iff every argument in the set is reachable via the
attack relation from every other argument in the set. The set of cycles of an AF
is denoted by cyc(F ). The length of a cycle C is denoted by lc. We define the
function Ψ(F ) as:

Ψ(F ) = {C ∈ cyc(F ) | ∀c ∈ A \ C, b ∈ C, (c, b) ∈ R : {c}− �= ∅}

An argument a ∈ A is cycle-reachable in F i.e. a ∈ cr(F ) iff one of the following
conditions holds true:

1. ∃C ∈ Ψ(F ) : a ∈ C
2. ∃C ∈ Ψ(F ) s.t. there exists a path from an argument b ∈ C to a and no

argument in the path is attacked by an argument which has no attackers.

The set of cycle-reachable arguments of an AF F is denoted by cr(F ).
Then reserved translations are translations where new arguments that attack

cycle-reachable arguments in the original AF cannot be labeled in under any
completeness-based semantics. For an AF F and a translation Tr = (A∗, R∗) we
define the function Ω(Tr(F )) as:

Ω(Tr(F )) = {a ∈ A∗ | ∃b ∈ cr(F ) : (a, b) ∈ R∗}

A translation Tr is called reserved iff one of the following conditions holds:

1. ∀a ∈ Ω(Tr(F )) : (a, a) ∈ R∗

2. ∀a ∈ Ω(Tr(F )) : ∃c ∈ A′ : (c, a) ∈ R∗, {c}− = ∅
3. ∀a ∈ Ω(Tr(F )) : a is cycle-reachable in Tr(F ).

Lemma 1. Let F = (AF , R) be an AF and let σ be a completeness-based seman-
tics. Then: ∀a ∈ AF : ∃L ∈ Lσ(F ) : L(a) = undec only if a is cycle-reachable
in F .

Proof. We do a proof by contradiction. Let a ∈ AF be an argument in F and
for a labeling L under a completeness-based semantics σ, let L(a) = undec and
let a be non cycle-reachable.

Since L(a) = undec, by definition we have that there exists an argument
b ∈ A such that (b, a) ∈ R and L(b) = undec. Now we have that either a attacks
b or b has an attacker c and L(c) = undec. In the first case we get that (a, b) is
a cycle and we have a contradiction. In the second case, we have that either b
attacks c or c has an attacker d and L(d) = undec. Again, in the first case we have
that (b, c) constitutes a cycle and we have a contradiction. In the second case, we
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have that either c attacks d or d has another undecided attacker. By the same
token, we have that either there exists an infinite chain of undecided arguments
or their exists an undecided argument xi which is attacked by an undecided
argument xi−1 which it also attacks. Since we confine ourselves to finite AFs,
we have that (xi, xi−1) constitutes a cycle and hence that a is cycle-reachable
which is a contradiction and this completes our proof. ��

4.1 Exactness Comparison

We now derive the equivalences between translation properties in the extension-
based and labeling-based settings.

Theorem 1. Let σ, σ′ ∈ {com, grd, prf, sem, stb, idl, eag}. A embedding transla-
tion Tr is exact for σ ⇒ σ′ in the extension-based setting, if and only if Tr is
exact for σ ⇒ σ′ in the labeling-based setting.

Proof. ⇒: Let a translation Tr be exact for σ ⇒ σ′ in the extension-based
setting. Then, by definition, we have that for all AFs F , σ(F ) = σ′(Tr(F )).
Let in(Lσ(F )) be the set of in-labeled arguments (extensions) of F under the
semantics σ, i.e., in(Lσ(F )) = {in(L) | L ∈ Lσ(F )}. Let in(Lσ′(Tr(F ))) =
{in(L) | L ∈ Lσ′(Tr(F ))} be the same for the AF Tr(F ) and the semantics σ′.
Since σ(F ) = σ′(Tr(F )), we have that in(Lσ(F )) = in(Lσ′(Tr(F ))). Hence we
have that ∀L ∈ Lσ(F ) : ∃L′ ∈ Lσ′(Tr(F )) : in(L) = in(L′). We note that since
both σ, σ′ are completeness-based and that it is proven in [5] that there is a
bijective correspondence between complete extensions and complete labelings,
we can conclude that

∀L ∈ Lσ(F ) : ∃L′ ∈ Lσ′(Tr(F )) : (in(L) = in(L′), out(L) = out(L′)↓AF
,

undec(L) = undec(L′)↓AF
) and |Lσ(F ))| = |Lσ′(Tr(F ))|

which completes our proof.
⇐: We know from Caminada and Gabbay [5] that there is a bijective corre-

spondence between complete extensions and complete labelings and we have by
definition that σ, σ′ are completeness-based. Since σ(F ) = {in(L) | L ∈ Lσ(F )}
and σ′(F ) = {in(L) | L ∈ Lσ′(Tr(F ))} and since Tr is exact for σ ⇒ σ′ in the
labeling-based setting, it follows that Tr is exact for σ ⇒ σ′ in the extension-
based setting as well.

Theorem 2. Let σ, σ′ ∈ {com, grd, prf, sem, stb, idl, eag}. If an embedding trans-
lation Tr is weakly exact for σ ⇒ σ′ in the extension-based setting, then Tr is
weakly exact for σ ⇒ σ′ in the labeling-based setting.

Proof. Let Tr be a weakly exact translation in extension-based setting. By def-
inition we have that there exists a set S of arguments (remainder sets) occur-
ring exclusively in Tr(F ) such that σ(F ) = σ′(Tr(F )) \ S. By the fact that
there is a bijective correspondence between complete and stage extensions and
stage and complete labelings we have that |Lσ(F )| = |Lσ′(Tr(F )) \ L′| where
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L′ is the set of labelings in Tr(F ) corresponding to the set of extensions S.
By the fact that Tr is weakly exact in extension-based setting, we get that
in(Lσ(F )) = in(Lσ′(Tr(F )) \ L′). Since in(Lσ′(Tr(F )) \ L′) only contains orig-
inal arguments from F and Tr is embedding (i.e. that no additional arguments
between the original set of arguments are added) we get that out(Lσ(F )) =
out(Lσ′(Tr(F )) \ L′)↓AF

and that undec(Lσ(F )) = undec(Lσ′(Tr(F )) \ L′)↓AF

which completes our proof. ��

4.2 Faithfulness Comparison

Theorem 3. Let σ, σ′ ∈ {com, grd, prf, sem, stb, idl, eag}. If a reserved transla-
tion Tr is faithful for σ ⇒ σ′ in the extension-based setting then Tr is faithful
for σ ⇒ σ′ in the labeling-based setting.

Proof. Let a translation Tr be faithful for σ ⇒ σ′ in the extension-based set-
ting. Then, by definition, we have that for all AFs F , σ(F ) = σ′(Tr(F ))↓AF

and |σ(F )| = |σ′(Tr)|. We note that since σ, σ′ are both completeness-based
and that it is proven in [5] that there is a bijective correspondence between com-
plete extensions and complete labelings and between stage extensions and stage
labelings, we get that |Lσ(F )| = |Lσ′(Tr(F ))|. By definition of faithfulness in
extension-based semantics, we have that in(Lσ(F )) = in(Lσ′(Tr(F )))↓AF

. By
definition of a reserved translation we have that new arguments in the translation
which attack cycle-reachable arguments in the original AF cannot be labeled in
under any completeness-based semantics. In other words, we get that the new
arguments added in Tr(F ) do not cause a potentially undecided argument in
F to become out in Tr(F ). By definition we have that out(Lσ(F )) = {x ∈ F |
(a, x) ∈ R, a ∈ in(Lσ(F ))} and out(Lσ′(Tr(F ))) = {x′ ∈ Tr(F ) | (a′, x′) ∈
R∗, a′ ∈ in(Lσ′(Tr(F )))}. Since in(Lσ(F )) = in(Lσ′(Tr(F )))↓AF

, we have that

out(Lσ(F )) = out(Lσ′(Tr(F )))↓AF
, undec(Lσ(F )) = undec(Lσ′(Tr(F )))↓AF

which completes our proof. ��
Theorem 4. If a translation Tr is faithful for σ ⇒ σ′ in the labeling-based
setting then Tr is faithful for σ ⇒ σ′ in the extension-based setting.

Proof. Let a translation Tr be faithful for σ ⇒ σ′ in the labeling-based setting.
Then, by definition, we have that:

Lσ(F ) = Lσ′(Tr(F )) ↓AF
and |Lσ(F )| = |Lσ′(Tr(F ))|. Reasoning from [5]

and [4], we have that σ(F ) = in(Lσ(F )) and σ′(Tr(F )) = in(Lσ′(Tr(F )))
and hence that Lσ′(Tr(F )) ↓AF

= σ′(Tr(F )) ↓AF
. It follows that σ(F ) =

σ′(Tr(F )) ↓AF
and |σ(F )| = |σ′(Tr(F )) ↓AF

| which completes our proof. ��
Theorem 5. Let σ, σ′ ∈ {com, grd, prf, sem, stb, idl, eag}. If an embedding and
reserved translation Tr is weakly faithful for σ ⇒ σ′ in the extension-based
setting, then Tr is weakly faithful for σ ⇒ σ′ in the labeling-based setting.
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Proof. Let a translation Tr be weakly faithful for σ ⇒ σ′ in the extension-based
setting. Then, by definition we have that for all AFs F , there exists a set of
extensions S such that σ(F ) = σ′(Tr(F ))\S)↓AF

and that |σ(F )| = |σ′(Tr)\S|.
By the fact that there is a bijective correspondence between complete extensions
and complete labelings and between stage extensions and stage labelings, we get
that |Lσ(F )| = |Lσ′(Tr(F )) \ L′| where L′ is the set of labelings corresponding
to the extensions in S.

Since Tr is an embedded reserved translation, from the reasoning in proof
of Theorem 3 and the fact that Tr is exact for σ ⇒ σ′ in the extension-based
setting, we get that

in(Lσ(F )) = in(Lσ′(Tr(F )) \ L′)↓AF
, out(Lσ(F )) = out(Lσ′(Tr(F )) \ L′)↓AF

undec(Lσ(F )) = undec(Lσ′(Tr(F )) \ L′)↓AF

which completes our proof. ��

4.3 Equivalence Theorem Results

Having established equivalences between translation properties in extension-
based and labeling-based settings, we combine the equivalence theorems and the
results about extension-based translations in [9] and in [8] to arrive at results
about labeling-based translations. We present these results in table in Fig. 2. For
example, we have from [9] that Tr8 is exact for grd ⇒ prf in the extension-based
setting. By Theorem 1 we get that Tr8 is exact for grd ⇒ prf in the labeling-
based setting as well. The naming and the numbering of translations follows the
scheme used in the original works mentioned above. Translations 3.7, 3.8, 3.9
and 3.12 are from [8] and the rest are from [9].

Fig. 2. Summary of exact/faithful translations for labeling-based semantics obtained
from equivalence theorems and results in [9] and [8]

5 Translations: Unique Status Semantics

We now introduce some translations related to the three unique status semantics
whose intertranslatability has not been studied: ideal , ground and eager .
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The first translation relates to ideal and eager semantics. For an AF F =
(AF , RF ), Tr1 is defined as: Tr1 = (A∗, R∗), where A∗ = AF ∪ {a′ | a ∈ AF }
and R∗ = RF ∪{(a, a′), (a′, a), (a′, a′) | a ∈ AF }. It is proven in [9] that Tr1 is an
embedding and exact translation for prf ⇒sem and adm⇒com in the extension-
based setting.

Theorem 6. The translation Tr1 is exact for the semantics idl⇒eag.

Proof. Recall the definition of exactness in labeling-based semantics from Page
4. Since both ideal and eager are unique status semantics by definition, i.e., that
for every AF F both return one unique labeling. Hence we have that |Lidl(F )| =
|Leag(Tr1(F ))| = 1 and Condition 2 is proven.

To prove Condition 1 , let L be the ideal labeling of F and L′ be the eager
labeling of Tr1(F ). Since all the additional arguments in Tr1 are self-attacking,
they do not appear in-labeled in any labeling of the AF Tr1(F ). Hence Tr1(F )
is essentially reduced to F . Let in(L) be the set of in-labeled arguments of L
and in(L′) be the same for L′. We have by definition [3] that: in(L) ⊆ in(L′).
We now identify two cases:

1. in(L) = in(L′): Then we have that out(L) = out(L′)∩AF and that undec(L) =
undec(L′) ∩ AF and hence, Condition 1 is proven.

2. in(L) ⊂ in(L′): Assume in(L) ⊂ in(L′). Then there exists an argument a ∈
AF such that a ∈ in(L) ⊂ in(L′)) but a /∈ in(L). Since a ∈ in(L′), by the def-

inition of eager semantics it follows that a ∈
i=n⋂

i=1

in(Li) : Li ∈ Lsem(Tr1(F )).

Since the translation Tr1(F ) is exact for prf ⇒sem, it follows that

i=n⋂

i=1

in(Li) : Li ∈ Lsem(Tr1(F )) =
i=n⋂

i=1

in(Li) : Li ∈ Lprf (Tr1(F ))

Hence we get that a ∈
i=n⋂

i=1

in(Li) : Li ∈ Lprf (Tr1(F )) and hence a ∈ in(L),

which is a contradiction to our assumption. Hence we get that in(L) = in(L′)
and by the reasoning in case 1 (above), we complete our proof. ��
The next three results present negative results about translatability in unique

status semantics.

Theorem 7. There does not exist a covering, embedding and exact translation
for eag⇒grd in the labeling-based setting.

Proof. We do a proof by counter example. We provide an AF for which no
covering, embedding and exact translation exists for eag⇒grd . Consider the AF
F = (A,R) where: A = {a, b} and R = {(a, b), (b, a), (b, b)}.

Since we consider covering and embedding translations, we assume that the
original attacks between the original arguments are retained and no additional
attacks between them are added. Since Leag(F ) = ({a}, {b}, ∅), to prove that no
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exact translation exists it suffices to prove that for all covering and embedding
translations Tr′:

L1 = (∅, ∅, A∗) /∈ Lcom(Tr′(F )) −→ L2 = ({a}, {b...}, ...) /∈ Lcom(Tr′(F ))

This follows from that fact that if L1 is a complete labeling of Tr′(F ), then
by definition it is also the grounded labeling and our proof is complete. On the
other hand, if L1 is not a complete labeling of Tr′(F ), then we need to prove
that a labeling of the form L2 is not a complete labeling and hence cannot
be a grounded labeling of Tr′(F ), which would complete our proof. Assume
L2 = ({a}, {b...}, {...}) ∈ Lcom(Tr′(F )). Since L2(a) = in and knowing that the
translation is covering and embedding, we identify three cases:

1. the translation Tr′(F ) does not add any additional arguments that attack a.
Since Tr′(F ) is covering and embedding, the original attack relations between
a and b are retained. Since in(L2) = {a}, we get that b does not have any
in-labeled attackers. Since a and b have a mutual attack, we have that L1 =
(∅, ∅, A∗) ∈ Lcom(Tr′(F )) which contradicts our assumption.

2. the translation Tr′(F ) adds additional arguments that attack a, but those
arguments are labeled out . Then it follows that ∀x ∈ a−,∃t ∈ A∗ such that
(t, x) ∈ R∗ and L2(t) = in and hence in(L2) �= {a}, which is a contradiction.

3. the translation Tr′(F ) adds additional arguments with mutual attacks to a,
i.e., ∀x ∈ a−, (a, x) ∈ R∗. Then it follows that L1 = (∅, ∅, A∗) ∈ Lcom(Tr′(F ))
which contradicts our assumption. ��

Theorem 8. There does not exist a covering, embedding and exact translation
for eag⇒idl semantics.

Proof. We do a proof by counter example. We provide an AF for which no
covering, embedding and exact translation exists for eag⇒idl in the labeling-
based setting. Consider the AF F = (A,R) where: A = {a, b, c, d, e} and R =
{(a, b), (b, a), (b, c), (c, d), (d, e), (e, c)} [3].

We have that Leag(F ) = ({b, d}, {a, c, e}, ∅) and that in(Leag(F )) = {b, d}.
Since by definition we have that for every AF F |Leag(F ))| = |Lidl(F ))| = 1, in
order to prove that there does not exist a covering, embedding and exact trans-
lation of F for eag⇒idl , we need to prove that for all covering and embedding
translations Tr′(F ): in(Leag(F )) �= in(Lidl(Tr′(F ))). It suffices to prove that for
all covering and embedding translations Tr′(F ):

∃L′ ∈ Lidl(Tr′(F )) s.t. b /∈ in(L′) and d /∈ in(L′)

Let Tr′(F ) be a covering and embedding translation and L = ({b, d}, {a, c,
e...}, {...}) ∈ Lidl(Tr′(F )). Then by definition of Preferred semantics, we have
that there does not exist a labeling L′ ∈ Lprf (Tr′(F )) such that in(L) ⊆ in(L′).
Since L({a, c, e}) = out, the construction of F and the covering and embedding
properties of Tr′(F ), we deduce that none of the additional arguments that
attack the original arguments may be have been added by Tr′(F ) can be labeled
in or undec. We now see that L′′ = ({a}, {b, ..}, {...}) is a complete labeling
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of Tr′(F ) and since in(L′′) �⊆ in(L′), L′′ is a preferred labeling of Tr′(F ). As
in(L′′) ∩ in(L′) �= {b, d}, we have that L = ({b, d}, {a, c, e...}, {...}) is not the
ideal labeling of Tr′(F ), which completes our proof. ��
Theorem 9. There does not exist a covering, embedding and exact translation
for idl⇒grd.

Proof (Proof Sketch). We provide a proof sketch. We present the AF F = (A,R)
where: A = {a, b} and R = {(a, b), (b, a), (b, b)} as a counter-example. Since
Lidl(F ) = ({a}, {b}, ∅), by the same reasoning as in the previous proof we now
need to prove that: for every translation Tr′ = (A∗, R∗):

L1 = (∅, ∅, A∗) /∈ Lcom(Tr′(F )) −→ L2 = ({a}, {...}, {...}) /∈ Lcom(Tr′(F ))

The truth of the premise presents two cases: (1) there is an argument x ∈ Tr′(F )
such that (x, a) ∈ R∗ and x does not have any attackers and (2) all arguments
c ∈ a− are labeled out ; both of which lead to the conclusion. ��

The next result relates to translatability between grounded and the other
two unique status semantics. We recall translation Tr3.8 [8] as Tr3.8 = (A∗, R∗)
where:

A∗ = AF ∪ {F̃i | Fi ⊆ F}
R∗ = RF ∪ {(F̃i, F̃i), (F̃i, a) | Fi ⊆ (A,R), a ∈ AFi

\ in(Lgrd(Fi)}
It is proven in [8] that Tr3.8 is an embedding and exact translation for grd ⇒

{prf , com, sem} in extension-based setting. The target AF obtained by applying
Tr3.8 to the AF F = ({a, b}, {a, b}) is depicted in Fig. 3.

a b c d e

F̃

Fig. 3. The AF Tr3.8(F )

Theorem 10. The translation Tr3.8 is exact for grd⇒{idl, eag}.
Proof. We know from [9] that Tr3.8 is exact for grd⇒{com, prf , sem} in
the extension-based setting. Since grounded is a unique status semantics, we
have that, for every AF F , |grd(F )| = |com(Tr3.8(F ))| = 1 and grd(F ) =
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com(Tr3.8(F )). By definition, we have that com(Tr3.8(F )) = prf(Tr3.8(F )) =
sem(Tr3.8(F )) and hence com(Tr3.8(F )) = idl(Tr3.8(F )) = eag(Tr3.8(F )). We
get that, for all AFs F , grd(F ) = idl(Tr3.8(F )) = eag(Tr3.8(F )). Hence, we have
that, for all AFs F ,

in(Lgrd(F )) = in(Lidl(Tr3.8(F ))) = in(Leag(Tr3.8(F )))

and consequently that

out(Lgrd(F )) = out(Lidl(Tr3.8(F )))↓AF
= out(Leag(Tr3.8(F )))↓AF

and

undec(Lgrd(F )) = undec(Lidl(Tr3.8(F )))↓AF
= undec(Leag(Tr3.8(F )))↓AF

which completes our proof. ��
Since ideal, eager and grounded are unique status semantics the notions

of weakly exact and weakly faithful are not applicable to intertranslatability
between these semantics.

6 Conclusion and Future Work

In this work, we built upon the investigations of Dvořák and Woltran [9] into
the inter-translatability of extension-based semantics. We began our investiga-
tions by defining exactness and faithfulness of translations in the labeling-based
setting. In order to establish faithfulness equivalence we defined a class of trans-
lations called reserved translations. We found that reserved translations which
are exact or faithful in the extension-based setting are also exact or faithful
in the labeling-based setting. This holds for all completeness based semantics.
We also took into account the relatively new unique status semantics such as
ideal and eager . We investigated and present results concerning the mutual inter-
translatability of these three unique status semantics, ideal , grounded and eager .

There are promising directions for further research regarding translatabil-
ity. One area of interest could be to examine the translatability of semantics in
other classes of argumentation frameworks such as Abstract Dialectic Frame-
works (ADF) especially the relationship between acceptance conditions of state-
ments and AF semantics and translations between these semantics. Secondly,
it would be interesting to explore translations between current semantics and
various newly suggested semantics such as cf2-semantics and resolution based
semantics in labeling-based setting.
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Abstract. In this paper, we consider Preference Inference based on a
generalised form of Pareto order. Preference Inference aims at reason-
ing over an incomplete specification of user preferences. We focus on
two problems. The Preference Deduction Problem (PDP) asks if another
preference statement can be deduced (with certainty) from a set of given
preference statements. The Preference Consistency Problem (PCP) asks
if a set of given preference statements is consistent, i.e., the statements
are not contradicting each other. Here, preference statements are direct
comparisons between alternatives (strict and non-strict). It is assumed
that a set of evaluation functions is known by which all alternatives can
be rated. We consider Pareto models which induce order relations on the
set of alternatives in a Pareto manner, i.e., one alternative is preferred
to another only if it is preferred on every component of the model.

We describe characterisations for deduction and consistency based on
an analysis of the set of evaluation functions, and present algorithmic
solutions and complexity results for PDP and PCP, based on Pareto
models in general and for a special case. Furthermore, a comparison
shows that the inference based on Pareto models is less cautious than
some other types of well-known preference model.

Keywords: Preference inference · Pareto models · Incomplete prefer-
ence specifications · Uncertain user preferences

1 Introduction

Preference deduction can be valuable in many fields like recommender sys-
tems [3,9] and multi-objective optimization [8], where one wants to reason over
user preferences. It is often difficult or excessively time-consuming to elicit all
user preferences. Thus, only an incomplete picture of the user’s preferences is
given and there is therefore uncertainty regarding the user’s preferences. In the
Preference Deduction Problem (PDP), the idea is to elicit only a few prefer-
ences from the user and infer other preferences; this might then be used in a
conversational recommender system, for example, to help choose which items
to show to the user next. Here, it is important to check if the given user state-
ments are consistent. Otherwise, it would be possible to deduce any arbitrary
preference statement. The Preference Consistency Problem (PCP) decides if a
c© Springer International Publishing Switzerland 2016
S. Schockaert and P. Senellart (Eds.): SUM 2016, LNAI 9858, pp. 170–183, 2016.
DOI: 10.1007/978-3-319-45856-4 12



Preference Inference Based on Pareto Models 171

set of given user preference statements is consistent, i.e., the statements do not
contradict each other. PDP and PCP have been studied under different order
relations such as lexicographic orders [9,11,12], hierarchical orders [5,13] and
weighted sums [3,4,8]. Under these order relations PDP and PCP are mutually
expressive, i.e., PDP can be solved using algorithms for PCP and vice versa.
For Pareto models, PDP and PCP are not mutually expressive. While Pareto
orders are widely studied in fields like voting theory [10] (unanimity), allocation
problems [1] (Pareto optimality), decision making, database queries [2,7] (sky-
line operator) and economics (Pareto efficiency), there exists no general study of
PDP or PCP based on Pareto orders so far. Pareto orders give a natural way of
comparing alternatives; one alternative is better than another if it is better on all
relevant evaluation functions (different criteria by which the alternatives can be
evaluated). In recommender systems and multi-objective decision making frame-
works as well as the other aforementioned fields it is a reasonable assumption,
that the user expresses her preferences (direct comparisons of two alternatives)
in a Pareto manner. Here, one tries to find a set of optimal alternatives, i.e.,
alternatives that are undominated w.r.t. Pareto order.

This form of order relation leaves no room for compromises or tradeoffs
between evaluation functions. Consider different holiday packages which include
travel and hotel. We can evaluate the different alternatives by four criteria; the
distance from the hotel to the city center, the distance from the hotel to the
beach, the costs for the hotel and the travel costs. One user could consider the
distance from the hotel to the beach and the costs for the hotel as the only rele-
vant aspects. Then she prefers a package α to another package β, if α is closer or
equidistant to the beach than β and the costs of the hotel for α are lower or equal
to the costs of the hotel for β. There is no compromise possible of, e.g., paying a
little bit more in order to get a hotel closer to the beach. We generalise this type
of order relation by considering groups of evaluation functions; only between
the evaluation functions within the same group tradeoffs are possible. Consider
different holiday packages again. One user could divide the four criteria into the
aspects location and costs, such that one alternative is better than another if it
is better in both the location and the costs. To evaluate the location, the two
values for distance are combined by some operator ⊕ (e.g., addition). Similarly,
the cost of the hotel and the travel costs are combined by ⊕ to evaluate the costs
in total. This comparison allows tradeoffs between the distances from the hotel
to the beach and to the city center, and between the costs for travel and for the
hotel. Another user might want to divide the criteria into the aspects hotel and
travel. The only allowed tradeoffs are between the hotel costs and the distance
from the hotel to the beach and to the city center.

Since only partial information on the user preferences is known, we must
consider the set of all Pareto models that satisfy the given preferences, i.e., that
are possible candidates for the user’s true preference model. Only if there exists
such a model, is the given set of preference statements consistent. Only if all these
Pareto models satisfy another statement ϕ, can we deduce ϕ with certainty.
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In the next section we give basic definitions of Pareto models and the two
problems of Preference Deduction and Preference Consistency. In Sect. 3, we first
describe properties for the special case of consistency and deduction based on
Pareto models that don’t allow tradeoffs between evaluation functions. These
properties are exploited to formulate polynomial time algorithms for PDP and
PCP. We then develop similar properties for the case of consistency and deduc-
tion based on the general form of Pareto models, and show that PCP and PDP
based on general Pareto models are NP-complete and coNP-complete, respec-
tively. In the fourth section, we compare the cautiousness of the inference based
on Pareto models with other types of order relations. The last section concludes.
A longer version of this paper including further proves and examples can be
found under http://ucc.insight-centre.org/nwilson/ParetoInferenceProofs.pdf.

2 Preference Consistency and Deduction

To formally define the problems PDP and PCP in a Pareto context, we first
define preference structures and Pareto models. Furthermore, we describe the
language in which preference statements are expressed.

Definition 1 (Preference Structure). A preference structure is a tuple 〈A,
C,⊕〉. Here, A is a (finite) set of alternatives and C is a (finite) set of evaluation
functions c : A −→ Q≥0 by which the alternatives can be rated with non-negative
rational numbers (the lower, the better; 0 is the best possible rating). The eval-
uation functions can be combined by the associative, commutative and strictly
monotonic operation ⊕ on Q≥0, where strict monotonicity means x ⊕ y < z ⊕ y
if and only if x < z. Here, e is the neutral element such that e ⊕ x = x for all
x ∈ Q≥0.

Note, that ⊕ has been defined in a similar context to be only monotonic (not
strictly monotonic) [13]. However, the strict monotonicity property is needed to
establish some important theoretical results in Sect. 3. This excludes operators
like maximum or minimum, but still allows interesting operators like addition
with neutral element 0 which is a natural for combining, e.g., costs, distances,
etc. In the special case of strictly positive evaluation functions A −→ Q>0 multi-
plication can also be used as operator with neutral element 1. For computational
and complexity results, we assume that x ⊕ y can be computed in logarithmic
time for x, y ∈ Q≥0.

α β γ

dc 0 2 1
db 1 1 2
ch 2 1 0
ct 2 1 1

Example 1. Consider the choice of holiday packages α, β and γ.
We rate the holiday packages by the distance from the hotel to the
city center dc, the distance to the beach db, the costs for the hotel
ch and the travel costs ct. The distances are categorised into far
(2), medium (1) and near (0). The costs are categorised into high
(2), medium (1) and low (0). The values of the four criteria for the
alternatives α, β and γ are given by the table on the right.

http://ucc.insight-centre.org/nwilson/ParetoInferenceProofs.pdf
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To combine evaluation functions, consider the operator ⊕ that is the standard
addition on the natural numbers. Then 〈A, C,⊕〉 is a preference structure, where
A = {α, β, γ} is the set of alternatives and C = {dc, db, ch, ct} is the set of
evaluation functions.

Let LA
≤ be the set of non-strict preference statements α ≤ β, and LA

< be the
set of strict preference statements α < β, over all α, β ∈ A. Let LA = LA

≤ ∪ LA
<.

We write ϕ ∈ LA as αϕ < βϕ, if ϕ is strict, and as αϕ ≤ βϕ, if ϕ is non-strict.
For a set Γ of strict and non-strict preference statements in LA, define Γ (≤) to
be the non-strict version of Γ , i.e., Γ (≤) = {αϕ ≤ βϕ | ϕ ∈ Γ}. Furthermore,
define ϕ for a preference statement ϕ to be the statement αϕ > βϕ if ϕ is the
non-strict statement αϕ ≤ βϕ, and αϕ ≥ βϕ if ϕ is the strict statement αϕ < βϕ.

Definition 2 (Pareto Model). For a preference structure 〈A, C,⊕〉, a Pareto
model M is a set of pairwise disjoint subsets of evaluations. More specifically,
M = {C1, . . . , Cr} with r ≥ 0 and pairwise disjoint sets Ci ⊆ C for i = 1, . . . , r.

Let PC denote the set of all Pareto models over the set C of evaluations. We
will abbreviate this notation to P, when the set of evaluations C is clear from
the context. Informally, a Pareto model corresponds to a grouping of evaluation
functions. In the context of votes, one can interpret each evaluation function
to express the preferences from one individual. In a Pareto model, the individ-
uals form groups in which they come to a decision together (by applying the
operator to their preference functions). The collective prefers one alternative α
over another alternative β, if all groups agree that α is at least as good as β.
So, each Pareto model M = {C1, . . . , Cr} induces an order relation on the set
of alternatives A by comparing the combination of evaluations in the sets (by
operator ⊕) in a Pareto manner. Formally, we define:

– α ≤M β if
⊕

c∈Ci
c(α) ≤ ⊕

c∈Ci
c(β) for all i = 1, . . . , r. (M satisfies α ≤ β,

written M �P α ≤ β.)
– α <M β if α ≤M β and there exists j ∈ {1, . . . , r} such that

⊕
c∈Cj

c(α) <
⊕

c∈Cj
c(β). (M satisfies α < β / M strictly satisfies α ≤ β, written

M �P α < β.)
– α ≡M β if α ≤M β and β ≤M α. (M satisfies α ≡ β, written M �P α ≡ β.)

Example 2 (Continued). Consider the preference structure described in
Example 1. The Pareto model M = {{dc, db}, {ch, ct}} describes the situation
in which a user allows tradeoffs between the distance to the city center and the
distance to the beach, and tradeoffs between the cost of the hotel and the travel
costs. This Pareto model satisfies γ <M β since dc(γ) ⊕ db(γ) = 1 + 2 = 2 + 1 =
dc(β) ⊕ db(β) and ch(γ) ⊕ ct(γ) = 0 + 1 < 1 + 1 = ch(β) ⊕ ct(β). Further-
more, the induced order relation of M leaves the pairs of alternatives α, β and
α, γ incomparable. A user that considers Pareto model M ′ = {{db, ch}, {ct}} to
describe her preferences allows tradeoffs between the distance to the beach and
the costs of the hotel. Here, the user considers the travel costs separately and
disregards the distance of the hotel to the city completely. This Pareto model
satisfies γ ≡M ′ β <M ′ α.
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Let M be a set of some preference models, e.g., M = P. In the following we
define M-PDP and M-PCP.

M-Preference Deduction Problem (M-PDP): Given a preference struc-
ture 〈A, C,⊕〉, a set of preference statements Γ ⊆ LA and a preference statement
ϕ ∈ LA \Γ , the Preference Deduction Problem asks whether all preference mod-
els in M that satisfy all statements in Γ also satisfy ϕ, written Γ �M ϕ.

Definition 3 (M-Consistency). For a preference structure 〈A, C,⊕〉 and a set
of preference models M, the preference statements Γ ⊆ LA are M-consistent if
there exists a preference model in M that satisfies all statements in Γ .

M-Preference Consistency Problem (M-PCP): Given a preference struc-
ture 〈A, C,⊕〉 and a set of preference statements Γ ⊆ LA, the Preference Consis-
tency Problem asks whether there exists a preference model in M that satisfies
all given statements Γ .

In Sect. 3, we consider properties and complexity of the problems PCP and
PDP based on Pareto models PC in general and based on the special classes
of Pareto models PC(1) and Ps

C defined as follows. The class PC(1) consists of
Pareto models with only singleton sets, i.e., PC(1) = {{C1, . . . , Cr} ∈ PC | |Ci| =
1 for all i = 1, . . . , r}. The class Ps

C consists of Pareto models that contain only
a single set, i.e., Ps

C = {{C} ∈ PC | C ⊂ C}. We adjust the notation where
Pareto models in PC(1) or Ps

C are considered to avoid confusion, and omit the
set of evaluations C when this is clear from the context.

Example 3 (Continued). Consider the preference structure described in
Example 1 and the set of preference statements Γ = {α < β, α ≤ γ}. The set Γ
is consistent (for P in general and in particular for P(1) and for Ps) and the
following Pareto models satisfy α < β and α ≤ γ:
{{dc}}, {{dc, db}}, {{dc, ct}}, {{dc, db, ch}}, {{dc, db, ct}}, {{dc}, {db}},
{{dc, ct}, {db}}. Furthermore, Γ �P γ ≤ β and Γ �P(1) γ ≤ β since the
Pareto model {{dc}, {db}} ∈ P(1) ⊆ P satisfies Γ but not γ ≤ β. How-
ever, Γ �Ps γ ≤ β since the Pareto models {{dc}}, {{dc, db}}, {{dc, ct}},
{{dc, db, ch}} and {{dc, db, ct}} in Ps all satisfy Γ and satisfy γ ≤ β.

3 Properties and Solutions for PCP and PDP

For many order relations like lexicographic orders, hierarchical models and
weighted sums, PDP and PCP are mutually expressive [4,13]. More specifically,
for M being the set of all feasible preference models due to one of the aforemen-
tioned order relations, Γ �M ϕ if and only if Γ ∪ {ϕ} is M-inconsistent (i.e.,
there exists no model in M that satisfies all statements in Γ ∪ {ϕ}). The fol-
lowing example shows that the “⇐”-direction does not hold for Pareto models.
Thus, we need to find algorithms to solve PCP and PDP separately.



Preference Inference Based on Pareto Models 175

α β γ

c1 5 3 1
c2 0 1 3
c3 1 3 4

Example 4. Let the operator ⊕ be the standard addition on Q≥0.
Consider the table on the right of values for evaluation functions
c1, c2, c3 evaluated at alternatives α, β, γ. Let the set of given pref-
erence statements be Γ = {β < γ} and let ϕ be the strict state-
ment α < β, so that ϕ is α ≥ β. The following Pareto models
satisfy Γ : {{c2}}, {{c3}}, {{c2}, {c3}}, {{c2, c3}}, {{c1, c2}, {c3}},
{{c1, c2, c3}}. However, none of the Γ -satisfying models satisfies α ≥ β. Thus,
the set Γ ∪ {ϕ} = {α ≥ β, β < γ} is P-inconsistent. Also, Γ �P ϕ, as the
Pareto model {{c1, c2}, {c3}} satisfies Γ but not ϕ.

However, we can show that Γ �P ϕ implies Γ ∪ {ϕ} is P-inconsistent.

Proposition 1. Let Γ ⊆ LA and ϕ ∈ LA \ Γ be preference statements. If
Γ �P ϕ, then Γ ∪ {ϕ} is P-inconsistent.

Proof. Suppose Γ ∪ {ϕ} is P-consistent, i.e., there exists a Pareto model M =
{C1, . . . , Cm} that satisfies Γ and M �P ϕ. Suppose ϕ is the strict statement
α < β. Since M �P ϕ, for all i = 1, . . . , m,

⊕
c∈Ci

c(α) ≥ ⊕
c∈Ci

c(β). Thus,
M �P ϕ, and Γ �P ϕ. Analogously, we can show Γ �P ϕ for non-strict ϕ. ��

3.1 Singleton Models

In this section, we find a simpler representation of the Pareto inference restricted
to the class P(1) by using set relations on sets of evaluation functions. We define
the set Cα≤β = {c ∈ C | c(α) ≤ c(β)} of evaluations that satisfy α ≤ β. Similarly,
Cα<β = {c ∈ C | c(α) < c(β)} and Cα=β = {c ∈ C | c(α) = c(β)}. For
better readability we abbreviate the notation of a model M = {{c1}, . . . , {cr}}
in PC(1) to {c1, . . . , cr}.

Note, that the empty Pareto model {} always satisfies non-strict statements,
i.e., a set Γ ⊆ LA

≤ is always P(1)-consistent. We can prove the following charac-
terisation of P(1)-consistency.

Proposition 2. Let Γ ⊆ LA be a set of preference statements that includes
at least one strict statements. Γ is P(1)-consistent if and only if for all ϕ′ ∈
Γ ∩ LA

< there exists an evaluation c that satisfies Γ (≤) and strictly satisfies ϕ′,
i.e., Cϕ′ ∩ ⋂

ϕ∈Γ (≤) Cϕ = ∅.
Proof. Suppose, Γ is P(1)-consistent and let M = {c1, . . . , ck} be a Γ -satisfying
model in P(1). Since M satisfies every statement ϕ ∈ Γ , c(αϕ) ≤ c(βϕ) for every
c ∈ M , i.e., c ∈ ⋂

ϕ∈Γ (≤) Cϕ. Furthermore, for every strict statement ϕ′ ∈ Γ ∩LA
<

there exists a c ∈ M such that c(αϕ′) < c(βϕ′), i.e., c ∈ Cϕ′ ∩ ⋂
ϕ∈Γ (≤) Cϕ = ∅.

Conversely, suppose Cϕ′ ∩ ⋂
ϕ∈Γ (≤) Cϕ = ∅ for all ϕ′ ∈ Γ ∩ LA

<. Consider the
set M =

⋃
ϕ′∈Γ∩LA

<
(Cϕ′ ∩ ⋂

ϕ∈Γ (≤) Cϕ). For every evaluation c ∈ M and every
statement ϕ ∈ Γ , c ∈ ⋂

ϕ∈Γ (≤) Cϕ, i.e., c(αϕ) ≤ c(βϕ). Furthermore, for every
strict statement ϕ′ ∈ Γ∩LA

< there exists a c ∈ M such that c ∈ Cϕ′ ∩⋂
ϕ∈Γ (≤) Cϕ,

i.e., c(αϕ′) < c(βϕ′). Thus M is a Pareto model in P(1) that satisfies Γ , i.e., Γ
is P(1)-consistent. ��
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Following Proposition 2, we formulate the algorithm Singleton-Pareto-Con-
sistency that solves P(1)-PCP in polynomial time O(|Γ ||C|).
Algorithm: Singleton-Pareto-Consistency(Γ ,C)
Let G = Γ ∩ LA

<.
for all c ∈ C do
if c(αϕ) ≤ c(βϕ) for all ϕ ∈ Γ then G = G \ {ϕ ∈ Γ | c(αϕ) < c(βϕ)}.

if G = ∅ then return P(1)-consistent else return P(1)-inconsistent.

We can prove criteria for strict and non-strict Pareto inferences based on
P(1) models by utilising the following lemma.

Lemma 1. Let Γ ⊆ LA be a set of P(1)-consistent preference statements over
preference structure 〈A, C,⊕〉. For every evaluation c ∈ ⋂

ϕ∈Γ (≤) Cϕ there exists
a Γ -satisfying Pareto model in P(1) that contains c. Furthermore, for every
Γ -satisfying Pareto model M in P(1), M ⊆ ⋂

ϕ∈Γ (≤) Cϕ.

Proof. Let M be a Γ -satisfying Pareto model in P(1) that does not contain some
c ∈ ⋂

ϕ∈Γ (≤) Cϕ. Since c(αϕ) ≤ c(βϕ) for all ϕ ∈ Γ , M ∪ {c} is a Γ -satisfying
Pareto model in P(1). Thus, for every evaluation c ∈ ⋂

ϕ∈Γ (≤) Cϕ there exists
a Γ -satisfying Pareto model in P(1) that contains c. Furthermore, for every
evaluation c′ in M and every ϕ ∈ Γ , c′(αϕ) ≤ c′(βϕ), i.e., c ∈ Cαϕ≤βϕ

. Thus,
M ⊆ ⋂

ϕ∈Γ (≤) Cϕ for every Γ -satisfying Pareto model M in P(1). ��

Proposition 3. Let Γ ⊆ LA be a set of PC(1)-consistent preference statements
over preference structure 〈A, C,⊕〉. We can deduce a preference statement α ≤ β
from Γ (Γ �PC(1) α ≤ β) if and only if all evaluation functions c ∈ C that satisfy
Γ (≤) also satisfy c(α) ≤ c(β), i.e.,

⋂
ϕ∈Γ (≤) Cϕ ⊆ Cα≤β. Also, Γ �PC(1) α <

β if and only if
⋂

ϕ∈Γ (≤) Cϕ ⊆ Cα≤β and Γ is PCα=β
(1)-inconsistent for the

set PCα=β
(1) of P(1) models on evaluations Cα=β, i.e., no Γ -satisfying model

satisfies α ≡ β.

Proof. Consider the case of non-strict inference. For every evaluation c involved
in a Γ -satisfying Pareto model in PC(1), c(α) ≤ c(β). By Lemma 1, the set
of evaluations involved in a Γ -satisfying Pareto model in PC(1) is

⋂
ϕ∈Γ (≤) Cϕ.

Thus, Γ �PC(1) α ≤ β is equivalent to c ∈ Cα≤β for all c ∈ ⋂
ϕ∈Γ (≤) Cϕ, i.e.,⋂

ϕ∈Γ (≤) Cϕ ⊆ Cα≤β .
Now, consider the case of strict inference. For every evaluation c involved

in a Γ -satisfying Pareto model in PC(1), c(α) ≤ c(β), and there exists no Γ -
satisfying Pareto model M such that M �PC(1) α ≡ β. Thus, Γ �PC(1) α < β
is equivalent to

⋂
ϕ∈Γ (≤) Cϕ ⊆ Cα≤β and there exists no Γ -satisfying Pareto

model M ∈ PC(1) with M ⊆ Cα=β , i.e., Γ is PCα=β
(1)-inconsistent for the set

PCα=β
(1) of P(1) models on evaluations Cα=β . ��

Following Proposition 3 and using the algorithm Singleton-Pareto-
Consistency we formulate the algorithm Singleton-Pareto-Deduction that solves
PC(1)-PDP in polynomial time O(|Γ ||C|).
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Algorithm: Singleton-Pareto-Deduction(Γ ,C,ϕ)
if Singleton-Pareto-Consistency(Γ ,C) = P(1)-inconsistent then
return Γ �P(1) ϕ.

Let N = ∅.
for all c ∈ C such that c(αρ) ≤ c(βρ) for all ρ ∈ Γ do
if c(αϕ) > c(βϕ) then return Γ �P(1) ϕ.
else if c(αϕ) = c(βϕ) then N = N ∪ {c}.

if ϕ ∈ LA
< and Singleton-Pareto-Consistency(Γ ,N) = P(1)-consistent then

return Γ �P(1) ϕ else return Γ �P(1) ϕ.

3.2 Pareto Inference

In this section, we want to find characterisations for Pareto inference in general
by using set relations similar to those in the previous section. We define the
set Cα≤β = {B ⊆ C | ⊕

c∈B c(α) ≤ ⊕
c∈B c(β)} of sets of evaluations that

satisfy α ≤ β. Similarly, Cα<β = {B ⊆ C | ⊕
c∈B c(α) <

⊕
c∈B c(β)} and

Cα=β = {B ⊆ C | ⊕
c∈B c(α) =

⊕
c∈B c(β)}.

As mentioned previous section before Proposition 2, a set Γ ⊆ LA
≤ is always

P(1)-consistent and thus P-consistent. We can prove the following characterisa-
tion of P-consistency.

Proposition 4. Let Γ ⊆ LA. Γ is P-consistent if and only if
⋂

ϕ∈Γ Cϕ = ∅.
Proof. Suppose,

⋂
ϕ∈Γ Cϕ = ∅. Then any set in

⋂
ϕ∈Γ Cϕ is a Γ -satisfying Pareto

model. Now suppose that Γ is P-consistent, i.e., there exists a Γ -satisfying
Pareto model M = {C1, . . . , Cr}. For every set Ci ∈ M and every ϕ ∈ Γ ,⊕

c∈Ci
c(αϕ) ≤ ⊕

c∈Ci
c(βϕ), and for all ϕ ∈ Γ ∩ LA

< there exists Cj ∈ M with⊕
c∈Cj

c(αϕ) <
⊕

c∈Cj
c(βϕ). Let C ′ =

⋃
i=1,...,r Ci. By strict monotonicity of

⊕,
⊕

c∈C′ c(αϕ) ≤ ⊕
c∈C′ c(βϕ) for ϕ ∈ Γ (≤), and

⊕
c∈C′ c(αϕ) <

⊕
c∈C′ c(βϕ)

for all ϕ ∈ Γ ∪ LA
<. Thus C ′ ∈ ⋂

ϕ∈Γ Cϕ = ∅. ��
Remember, that Ps = {{C} ∈ PC | C ⊂ C} contains all Pareto models

that consist of only a single set. The proof of Proposition 4 directly implies the
following equivalence.

Corollary 1. Let Γ ⊆ LA. Γ is P-consistent if and only if Γ is Ps-consistent.

Consider the relation of P and Ps for deduction. Γ �P ϕ implies Γ �Ps ϕ
because Ps ⊆ P. However, Example 3 shows the contrary is not true.

To find characterisations for preference deduction for PC , for a given set
B ⊆ C, define Γ<B to be the set of statements in Γ that are strictly satisfied by
evaluations B ⊆ C, i.e., Γ<B = {ϕ ∈ Γ | ⊕

c∈B c(αϕ) <
⊕

c∈B c(βϕ)}. Similarly,
Γ=B = {ϕ ∈ Γ | ⊕

c∈B c(αϕ) =
⊕

c∈B c(βϕ)}. Recall, that the non-strict version
of preference statements Γ is denoted by Γ (≤). Thus, Γ↔B = (Γ \ Γ<B) ∪ Γ

(≤)
<B

replaces the preference statements in Γ that are strictly satisfied by B with their
non-strict versions.
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The following two propositions give characterisations for deduction of non-
strict statements and strict statements, respectively. Both propositions can be
proven by technical constructions.

Proposition 5. Let Γ ⊆ LA be a P-consistent set of preference statements and
let α ≤ β /∈ Γ be a non-strict statement. Γ �PC α ≤ β if and only if there
exists a set B ∈ ⋂

ψ∈Γ (≤) Cψ ∩ Cα>β such that Γ↔B is PC\B-consistent, i.e., the
(α ≤ β)-opposing set B can be extended to a Γ -satisfying Pareto model.

Proposition 6. Let Γ ⊆ LA and let α < β /∈ Γ be a strict statement. Γ �P
α < β if and only if Γ �P α ≤ β or

⋂
ψ∈Γ Cψ ∩ Cα=β = ∅.

Note, that the characterisation for deduction and consistency can be realised
as algorithms for P-PCP and P-PDP, but cannot be implemented in polynomial
time. In fact, we can prove the following complexity results for PCP and PDP.

Theorem 1. The P-Preference Consistency Problem is NP-complete.

Proof. For any given Pareto model we can check in polynomial time if it sat-
isfies all given preference statements. Thus, PCP is in the class NP. We prove
NP-completeness by a reduction from SAT. Let B = K1, . . . ,Km be a set of
clauses in conjunctive normal form with clauses Ki = (li,1 ∨ · · · ∨ li,ki

) for
i = 1, . . . ,m, where the literals li,j are chosen from the set of Boolean vari-
ables X = {x1, . . . , xn}. In the following, we construct an instance of PCP from
the SAT instance B. Let s ∈ Q with s > e and ⊕ be an associative, commuta-
tive and strictly monotonic operation with neutral element e. For every Boolean
variable xj , we construct three evaluations: pj (corresponding to xj = 1), nj

(corresponding to xj = e) and the auxiliary evaluation hj . The set of eval-
uations C = {pj , nj , hj | j = 1, . . . , n} has cardinality polynomial in n. We
define the function Q that maps the literals involved in B to the evaluation
functions C by Q(xj) = pj and Q(¬xj) = nj . Let the set of alternatives be
A = {αi, βi | i = 1, . . . , m} ∪ {γj , δj , εj , ζj , ηj , θj | j = 1, . . . , n}. Then the car-
dinality of A is polynomial in the given sizes m and n. Let the values of the
evaluation functions on the alternatives be given by the following tables. For
i = 1, . . . , m and j = 1, . . . , n,

αi < βi

Q(l) with l ∈ Ki e s

others e e

εj < ζj ηj ≤ θj

pj e s s e

nj e s s e

hj e e e s

others e e e e

The set Γ = {αi < βi | i = 1, . . . ,m} ∪ {εj < ζj , ηj ≤ θj | j = 1, . . . , n} of
preference statements on A is polynomial in the given sizes m and n.
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In the following we prove that there exists a Γ -satisfying Pareto model with
evaluations in C if and only if there exists a satisfying truth assignment for B.
Because of the equivalence between P- and Ps-consistency stated in Corollary 1,
we can restrict the following considerations to Pareto models in Ps.

Suppose there exists a Γ -satisfying Pareto model M = {C} with C ⊆ C. In
the following, we prove that for each j = 1, . . . , n, the set C contains either pj

or nj and not both. Suppose for some j ∈ {1, . . . , n}, pj /∈ C and nj /∈ C. Then,
the ⊕-combination of evaluations in C evaluates to e for both εj and ζj . This
contradicts M � εj < ζj . Thus, for all j = 1, . . . , n, either pj ∈ C or nj ∈ C.
Now suppose, for some j ∈ {1, . . . , n}, that hj /∈ C. Then, C evaluates to be
≥ s on ηj and to be e on θj . This contradicts M � ηj ≤ θj . Thus, hj ∈ C for
all j = 1, . . . , n. Suppose, for some j ∈ {1, . . . , n}, both pj ∈ C and nj ∈ C.
Because hj ∈ C, C evaluates to be s ⊕ s(> s) on ηj and to be s on θj . Again,
this contradicts M � ηj ≤ θj . Hence, for each j = 1, . . . , n, M contains either
pj ∈ C or nj ∈ C but not both.

Thus, for a Γ -satisfying model M ∈ Ps the assignment A, with A(li,k) = 1
if and only if Q(li,k) ∈ M , is well defined. Furthermore, we can show that
M contains at least one evaluation Q(l) with l ∈ Ki for every clause with
i = 1, . . . ,m. Suppose otherwise. Then,

⊕
c∈C c(αi) = e ⊕ · · · ⊕ e =

⊕
c∈C c(βi).

This is a contradiction to M � αi < βi. Thus, A is a satisfying truth assignment
of the SAT instance B.

Conversely, let A be a satisfying truth assignment of the Boolean formula B.
Consider the Pareto model M = {C} with hj ∈ C, and pj ∈ C if and only if
A(xj) = 1, and nj ∈ C if and only if A(xj) = 0. We show M �P Γ :

– αi <C βi: Since A satisfies B, there exists l ∈ {li,1, . . . , li,ki
} for every clause

Ki with A(l) = 1. Thus, Q(l) ∈ C and
⊕

c∈C c(αi) = e < s ≤ ⊕
c∈C c(βi).

– εj <C ζj : Every variable xj is assigned to be true or false. Thus either pj ∈ C
or nj ∈ C (not both), and

⊕
c∈C c(εj) = e < s =

⊕
c∈C c(δj).

– ηj ≤C θj : Either pj ∈ C or nj ∈ C but not both, and hj ∈ C. Thus,⊕
c∈C c(ηj) = s =

⊕
c∈C c(θj).

Hence, we have shown, that there exists a satisfying truth assignment for B
if and only if there exists a Γ -satisfying Pareto model in Ps

C , which is if and only
if there exists a Γ -satisfying Pareto model in PC . ��
Theorem 2. The P-Preference Deduction Problem is coNP-complete.

Proof. For any given Pareto model we can check in polynomial time if it satisfies
all given preference statements Γ and does not satisfy ϕ. Thus we can verify in
polynomial time that Γ � ϕ for some instance of PDP. Hence, PDP is in the
class coNP. We prove coNP-completeness by a reduction from SAT. For a set
of clauses B = K1, . . . ,Km, consider the preference structure and statements
as constructed in the proof of Theorem1. In the following, we will define a
preference statement ϕ : ρ < σ such that no Γ -satisfying model satisfies ϕ.
Hence, Γ �P ϕ if and only if Γ is P-inconsistent, which by the previous proof
is if and only if B is not satisfiable. For every evaluation function c ∈ C let
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c(ρ) = c(σ) = e. Then every Pareto model M satisfies M � ρ = σ, because every
set in M evaluates to e on both ρ and σ. Thus, M � ρ < σ. ��

4 Relation with Other Preference Models

In this section we compare the cautiousness of inference based on Pareto models
with inference based on other well-known preference models. Here, we com-
pare the sets of undominated alternatives for the order relations induced by the
different preference models. In applications like recommender systems or multi-
objective optimisation it can be very helpful to use inferences that keep the
number of undominated alternatives small, so that the user is not overwhelmed
when she is presented with them. First, we define HCLP models, lexicographic
models and weighted average models as in [4,13].

Definition 4 (HCLP Model). For a preference structure 〈A, C,⊕〉, an HCLP
model H is an ordered partition of a subset of evaluations. More specifically, H =
(C1, . . . , Cr) with r ≥ 0 for pairwise disjoint sets Ci such that

⋃
i=1,...,r Ci ⊆ C.

An HCLP model forms a hierarchy on a subset of evaluation functions. Let
HCLP denote the set of all HCLP models. Each HCLP model H = (C1, . . . , Cr)
induces an order relation on the set of alternatives A by comparing the combi-
nation of evaluations in the sets (by operator ⊕) in a lexicographic manner.

– α <H β if there exists j ∈ {1, . . . , r} such that
⊕

c∈Ci
c(α) =

⊕
c∈Ci

c(β) for
all 1 ≤ i < j and

⊕
c∈Cj

c(α) <
⊕

c∈Cj
c(β). (Written H �HCLP α < β.)

– α ≤H β if
⊕

c∈Ci
c(α) =

⊕
c∈Ci

c(β) for all 1 ≤ i ≤ r; or α <H β. (Written
H �HCLP α ≤ β.)

– α ≡H β if α ≤H β and α ≥H β. (Written H �HCLP α ≡ β.)

Definition 5 (Simple Lexicographic Model). For a preference structure
〈A, C,⊕〉, a simple lexicographic model or LEX model L = (c1, . . . , cr) is an
ordered subset of evaluations {c1, . . . , cr} ⊆ C with |{c1, . . . , cr}| = r ≥ 0.

LEX models form a special case of HCLP models in which sets are restricted to
contain only one evaluation. The order relations ≤L and <L induced by a LEX
model L = (c1, . . . , cr) are defined analogously. Let LEX denote the set of all
simple lexicographic models. Then LEX ⊆ HCLP .

Definition 6 (Weighted Average Model). For a preference structure
〈A, C,⊕〉, a weighted average model or WA model w is a normalised weights
vector w ∈ R|C| such that for each i ∈ {1, . . . , |C|}, wi ≥ 0, and

∑|C|
i=1 wi = 1.

Let WA be the set of all weighted average models. Each w ∈ R|C| induces
an order relation on A by comparing weighted sums of evaluations C =
{c1, . . . , c|C|}:
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– α ≤w β if
∑|C|

i=1 wici(α) ≤ ∑|C|
i=1 wici(β). (Written w �WA α ≤ β.)

– α <w β if
∑|C|

i=1 wici(α) <
∑|C|

i=1 wici(β). (Written w �WA α < β.)
– α ≡w β if

∑|C|
i=1 wici(α) =

∑|C|
i=1 wici(β). (Written w �WA α ≡ β.)

For a *-consistent set of strict and non-strict preference statements Γ ⊆ LA

with ∗ = LEX,WA,HCLP,P or P(1), we define order relations <∗
Γ and �∗

Γ on
the set of alternatives A in the following way. For α, β ∈ A, α <∗

Γ β if and only
if Γ �∗ α ≤ β and Γ �∗ β ≤ α. For α, β ∈ A, α �∗

Γ β if and only if Γ �∗ α < β.
For a set S ⊆ A, let Opt(S,≺) denote the set of undominated elements in S w.r.t.
an irreflexive and acyclic relation ≺, i.e., Opt(S,≺) is the set of elements α ∈ S
such that for every β ∈ S, β ≺ α. Then Opt(S,≺) represents the alternatives
that could be optimal for a user under the assumption that the users preference
model is an order relation of the form ≺. In [4] the following relations were
established between weighted average (WA) and lexicographic (LEX) models.
Here, ⊆ signifies that the set relation ⊆ dos not necessarily hold for every S ⊆ A
and Γ ⊆ LA (but might hold for some). On the other hand ⊆ means that the
relation is true for any arbitrary S ⊆ A and Γ ⊆ LA.

Opt(S,<WA
Γ ) ⊆ Opt(S,�WA

Γ )

⊆ ⊆

Opt(S,<LEX
Γ ) ⊆ Opt(S,�LEX

Γ )

In the following, we extend these results by:

Opt(S,<HCLP
Γ ) ⊆ Opt(S,�HCLP

Γ )
(II) ⊆ (I) ⊆

Opt(S,<P
Γ ) ⊆ Opt(S,�P

Γ )
(VII) ⊆ (III) ⊆

Opt(S,<
P(1)
Γ ) ⊆ Opt(S,�P(1)

Γ )

and

Opt(S,<HCLP
Γ ) ⊆ Opt(S,�HCLP

Γ ))
(VII) ⊆ (IV) ⊆

Opt(S,<LEX
Γ ) ⊆ Opt(S,�LEX

Γ )
(VI) ⊆ (V) ⊆

Opt(S,<
P(1)
Γ ) ⊆ Opt(S,�P(1)

Γ )

Note, that the relations Opt(S,<∗
Γ ) ⊆ Opt(S,�∗

Γ )) follow directly from the
implication Γ �∗ α < β ⇒ Γ �∗ α ≤ β and Γ �∗ β ≤ α, which is true for
any ∗ = LEX,WA,HCLP,P or P(1). Furthermore, the relations (III) and (IV)
follow directly from the inclusions P(1) ⊆ P and LEX ⊆ HCLP , respectively.
The relations marked with (I) are a consequence of Proposition 7.

Proposition 7. Let Γ ⊆ LA and ϕ ∈ LA. If Γ �HCLP ϕ, then Γ �P ϕ.

Proof. Assume that Γ �HCLP ϕ. Consider a model M = {C1, . . . , Cm} ∈ P
with M �P Γ ; we will show that M �P ϕ, thus proving that Γ �P ϕ. For
any permutation π on the set {1, . . . , m}, Hπ = (Cπ(1), . . . , Cπ(m)) is an HCLP
model with Hπ �HCLP γ for all γ ∈ Γ . Since Γ �HCLP ϕ, Hπ �HCLP ϕ for all
permutations π. Also, in a ϕ-satisfying HCLP model, the first level C set must
satisfy

⊕
c∈C c(αϕ) ≤ ⊕

c∈C c(βϕ). Thus, for every set C ∈ M ,
⊕

c∈C c(αϕ) ≤⊕
c∈C c(βϕ). In case ϕ is a strict statement, there exists a set C ∈ M such that⊕
c∈C c(αϕ) <

⊕
c∈C c(βϕ). This implies that M �P ϕ. As we considered an

arbitrary Γ - satisfying Pareto model M , we have Γ �P ϕ. ��
Analogously, one can prove Proposition 8 which implies relations (V).
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Proposition 8. Let Γ ⊆ LA and ϕ ∈ LA. If Γ �LEX ϕ, then Γ �P(1) ϕ.

The relations (II) and (VI) are demonstrated in the following example.

α β γ

c1 2 1 1
c2 0 2 3

Example 5. Consider the preference structure 〈A, C,⊕〉 with oper-
ator ⊕ as the standard addition on Q≥0. The table on the right
gives the values of the evaluation functions C = {c1, c2} on alter-
natives A = {α, β, γ}. Let S = A and Γ = {β < α}. The
Γ -satisfying HCLP models are ({c1}) and ({c1}, {c2}). The only Γ -satisfying
Pareto model is {{c1}}. Furthermore, ({c1}) �HCLP β ≡ γ and {{c1}} �P
β ≡ γ. Also, ({c1}, {c2}) �HCLP β ≤ γ and ({c1}, {c2}) �HCLP β ≥ γ. Thus,
Γ �P β ≤ γ, β ≥ γ, and Γ �HCLP β ≤ γ and Γ �HCLP β ≥ γ. Then Opt(S,<P

Γ )
= {β, γ} ⊆ {β} = Opt(S,<HCLP

Γ ). Note, that the models ({c1}) and ({c1}, {c2})
are in particular LEX models and {{c1}} is in P(1). Thus, Opt(S,<

P(1)
Γ ) ⊆

Opt(S,<LEX
Γ ) holds.

The relations in (VII) are demonstrated by the following example.

α β γ δ

c1 2 0 1 2
c2 1 2 0 3

Example 6. Consider the preference structure 〈A, C,⊕〉 with
operator ⊕ as the standard addition on Q≥0. The table on the right
gives the values of the evaluation functions C = {c1, c2} on alter-
natives A = {α, β, γ, δ}. Let S = A and Γ = {β ≤ α, γ ≤ β}.
The only Γ -satisfying LEX model is () and the only Γ -satisfying P(1) model is
{}. The Γ -satisfying HCLP models are ({c1, c2}) and () and the Γ -satisfying P
models are {{c1, c2}} and {}. The empty model entails α ≡ β ≡ γ ≡ δ for LEX,
HCLP, P(1) and P. For the HCLP model H = ({c1, c2}), γ <H β <H α <H δ.
Similarly, for the Pareto model M = {{c1, c2}} ∈ P, γ <M β <M α <M δ.
Thus, Opt(S,<

P(1)
Γ ) = {α, β, γ, δ} ⊆ {γ} = Opt(S,<P

Γ ). Also, Opt(S,<LEX
Γ ) =

{α, β, γ, δ} ⊆ {γ} = Opt(S,<HCLP
Γ ).

5 Conclusion

We investigated the Preference Deduction Problem and the Preference Consis-
tency Problem based on Pareto models. Here, we developed characterisations
for consistency and deduction (strict and non-strict) which allow one to design
algorithms for PCP and PDP. However, PCP and PDP are NP-complete and
coNP-complete, respectively. In the special case of singleton models, the char-
acterisations of consistency and deduction lead to polynomial algorithms that
solve PCP and PDP in O(|Γ ||C|) for given preferences Γ and evaluations C. A
comparison shows that Pareto models lead to a less cautious form of inference
considering the relations �∗

Γ , which is often desirable. However, the conjunctive
definition of Pareto satisfaction can lead to more sets of preference statements
being inconsistent, in comparison with other semantics we considered. In future
work, we plan to investigate the cautiousness of inference based on Pareto mod-
els under relation <∗

Γ experimentally. Here, it is essential to implement good
algorithms to solve PDP (and PCP) based on Pareto models in P. Furthermore,
we plan to extend our theory to more complex preference languages.
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Abstract. For persuasion dialogues between a software system and
user, a user should be able to present arguments. Unfortunately, this
would involve natural language processing which is not viable for this
task in the short-term. A compromise is to allow the system to present
potential counterarguments to the user, and the user expresses his/her
degree of belief in each of them. In this paper, we present a protocol for
persuasion that supports this type of move, and show how the system
can use the epistemic approach to probabilistic argumentation to model
the user, and thereby optimize the choice of moves.

1 Introduction

Computational models of argument can potentially be used for systems to per-
suade users to change their behavior (e.g. to eat less, to exercise more, to use
less electricity, to vote, to not text while driving, etc.) [14]. A system (the per-
suader running for example as an app) enters into a dialogue with a user (the
persuadee using the app) to persuade them to believe a specific argument called
the persuasion goal (e.g. eat more fruit because it is healthy for you).

By choosing appropriate arguments to present to the user, the system may
raise the user’s belief in the persuasion goal. However, for the system, there is
a problem of how to get arguments from the user in order to support a fair
and frank persuasion dialogue. We assume the system cannot understand argu-
ments presented in natural language given the complexity of processing argu-
ments in free text. Hence, the interface with the user is restricted. Our solution
is for the system to give a menu of arguments, and the user presents agree-
ment/disagreement in each argument by giving it a score (as in a Likert scale
[20]). This score is in the unit interval and denotes the belief that the user has
in the argument (i.e. the degree to which the user thinks the premises are true
and the claim follows from the premises).

Example 1. Suppose the system gives argument A in Fig. 1 as its persuasion goal.
It is aware of two potential counterarguments B and C. So it presents these in a
menu, and asks the user for his/her degree of belief in them. If the user declares
belief greater than 0.5 in B (resp. C), then the system presents D (resp. E) with
the aim of lowering the user’s belief in B (resp. C) and increasing the user’s belief
in A.
c© Springer International Publishing Switzerland 2016
S. Schockaert and P. Senellart (Eds.): SUM 2016, LNAI 9858, pp. 184–198, 2016.
DOI: 10.1007/978-3-319-45856-4 13
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A = Giving up
smoking will be

good for your health

B = My appetite will increase and
so I will put on too much weight

C = My anxiety will increase and
so I will lose too much weight

D = You can join a healthy eating
course to help you manage your weight

E = You can join a yoga class to help you
relax, and thereby manage your anxiety

Fig. 1. Example of argument graph for persuasion. It contains the arguments known
(but not necessarily believed) by the system. Argument A could be a persuasion goal
and so B and C are potential counterarguments for the user.

The above example is a kind of asymmetric dialogue where the moves avail-
able to the persuader are different to those available to the persuadee. There is a
recent proposal for asymmetric persuasion dialogues with a general definition for
probabilistic user models, and a general definition for updating user models in
terms of mass redistributions [16]. However, [16] does not consider the following
issues: how a menu of potential counterarguments could be presented to the user,
how the user could express his/her belief in each of them, or how these moves
can be used in a protocol that is fair to the user. We address these issues by
making the following contributions in this paper: (1) A dialogue protocol that
incorporates the menu move and that is fair to the persuadee; (2) A probabilistic
model of the persuadee that can be updated through the dialogue and used by
the persuader to predict whether the persuasion is successful; and (3) A method
for simulation of the persuadee by the persuader when deciding on which moves
to make in the dialogue.

2 Dialogues via Restricted Interfaces

We base our paper on abstract argumentation [6]. We assume our dialogues
concern an argument graph G where Args(G) is the set of arguments in G,
and Attacks(G) is the set of attack relations in G. Also Γ ⊆ Args(G) is conflict-
free iff there is no A,B ∈ Γ s.t. (A,B) ∈ Attacks(G). We assume that G contains
the arguments known (but not necessarily believed) by the system.

A dialogue is a sequence of moves D = [m1, . . . ,mk]. Equivalently, we use
D as a function with an index position i to return the move at that index
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(i.e. D(i) = mi). A move is one of the following: (1) A posit A where
A ∈ Args(G); (2) A menu [A1/X1, . . . , An/Xn] where for each A/X ∈
[A1/X1, . . . , An/Xn], A ∈ Args(G) and X ∈ [0, 1] is the belief of the user in
A; and (3) A system termination ⊥.

A protocol specifies what moves should/can follow each move in a dialogue.
For this paper, the protocol assumes that: (1) the first move is a posit called the
persuasion goal which is the argument that the persuader wants the persuadee
to believe (with a probability greater than 0.5); (2) a dialogue does not continue
after the system has terminated (i.e. if 1 ≤ i < k, then D(i) �= ⊥); (3) each
argument in a menu is a counterargument to the posit given immediately before
the menu (i.e. if D(i) = A, and D(i + 1) = [A1/X1, . . . , An/Xn], then for each
Aj/Xj ∈ D(i + 1), (Aj , A) ∈ Attacks(G)); and (4) the user gives the same belief
to an argument if it is repeated (i.e. If ∃i, j s.t. A/X ∈ D(i) and A/X ′ ∈ D(j)
then X = X ′). A dialogue D is finite iff D = [m1, . . . ,mk] and k is finite.

We assume that the system controls the dialogue. At each point in the dia-
logue, the system makes a posit, or menu, or termination move. If it is a menu
move, then the user provides his/her belief in each argument in the menu.

Example 2. For Fig. 1, if the system gives the persuasion goal A, then
[B/0.9, C/0.2] is a menu move where B and C are from the system, and 0.9 and
0.2 are from the user.

For a dialogue D = [m1, . . . ,mk], let Steps(D) = {1, . . . , k}. For dialogues
D′ and D, the subsequence relation, denoted D′ � D, holds iff for all
i′, j′ ∈ Steps(D′), if i′ < j′, then there are i, j ∈ Steps(D) such that i < j
and D′(i′) = D(i) and D′(j′) = D(j). For example, [[F/0.9, G/0.2], D] �
[A, [F/0.9, G/0.2], C, D, E,⊥]. Also D′ � D is defined as D′ � D and not D � D′.

3 Fair Dialogues

In this section, we ensure dialogues are fair by allowing the persuadee to express
belief in potential counterarguments.

Definition 1. For A,B ∈ Args(G), A indirectly attacks B iff (1) A �= B and
(2) either (A,B) ∈ Attacks(G) or there are (A,A′), (A′, A′′) ∈ Attacks(G) s.t.
A �= A′ and A′ �= A′′ and A′′ indirectly attacks B.

Example 3. Let � denote the “indirectly attacks” relationship. So for the fol-
lowing graph A � B, A � D, B � A, B � C, B � E, C � D, C � B, D � A, D � E,
D � C, E � B, and E � D.

A B C D E

Proposition 1. Let X ⊆ Args(G) be s.t. there is no A ∈ X where (A,A) ∈
Attacks(G). X is conflict-free iff for all A,B ∈ X, it is not the case that A
indirectly attacks B.
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Definition 2. For A,B ∈ Args(G), A defends B iff (1) A �= B and (2) either
there is a (A,C), (C,B) ∈ Attacks(G) s.t. A �= C and C �= B, or there is a C
s.t. A defends C and C defends B.

Proposition 2. For B,A ∈ Args(G), if B indirectly attacks A, then there is a
(B,C) ∈ Attacks(G) s.t. C = A or C defends A.

To compose the menus, we assume in Definition 4 that each posit is followed
by a menu of arguments that attack the posit according to the argument graph,
and that have not already appeared in a menu and indirectly attacked by the
posit. As we cover in Sect. 5, we will aim for belief in the posit and disbelief in
the counterargument, and so informally, if a posit indirectly attacks a counter-
argument in an earlier menu, then we do not need to present it to the user in a
menu again.

Definition 3. For a dialogue D, a graph G, an argument A, and a step i. The
fair attacks, FairAttacks(G,D,A, i), is {B | (B,A) ∈ Attacks(G) and there is
no j < i s.t. B/Y ∈ D(j) and A indirectly attacks B}.
Definition 4. A dialogue D is fair for G iff for each i,

if D(i) = A and FairAttacks(G,D,A, i) �= ∅
then D(i + 1) = [B1/X1, . . . , Bn/Xn]

where FairAttacks(G,D,A, i) = {B1, . . . , Bn}.
Example 4. The dialogue [A, [B/0.9], C,⊥] is fair for both the following graphs.

A B C A B C

Example 5. For Fig. 1, [A, [B/1, C/0], D,⊥], [A, [B/0, C/0.7], E,⊥], [A, [B/0, C/0],⊥],
[A, [B/0.9, C/1], C, [B/0.9],⊥], and [A, [B/0.9, C/0.65], D, E,⊥], are fair.

Example 6. The dialogue [A, [B/0.9, C/0.7], C,⊥] is fair for the left graph and the
dialogues [A, [B/0.5],⊥] and [A, [B/1], C, [A/0.9], B, [C/0.9], A, [B/1], . . .] are fair for
the right graph.

A B C A B C

Example 7. For the following graph, C does not indirectly attack C and so the self-
attacks causes the fair dialogue [A, [B/1, C/1], C, [C/1], C, [C/1], . . .] to be infinite.

A B C

An odd cycle is a sequence of arguments A1, . . . , Am s.t. each Ai+1 attacks
Ai and A1 attacks Am where m is odd.
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Proposition 3. If argument graph G contains no odd cycles, and D is a fair
dialogue, then D is finite.

We can assign responsibility of arguments to the persuadee and persuader as
follows.

Definition 5. Let D be a dialogue, the persuader arguments are Persuader
(D) = {A | ∃i ∈ Steps(D) s.t. D(i) = A} and the persuadee arguments, are
Persuadee(D) = {B | ∃i ∈ Steps(D) s.t. B/X ∈ D(i)}.
Example 8. For D = [A, [B/0.9], C,⊥], Persuader(D) = {A, C} and Persuadee
(D) = {B}.

From the perspective of the user, if the dialogue is fair, then s/he has been
able to express his/her belief/disbelief in the potential counterarguments known
by the system.

4 Probabilistic User Models

We use the epistemic approach to probabilistic argumentation [1,13,17,25].

Definition 6. A mass distribution P over Args(G) is such that
∑

Γ⊆Args(G)

P (Γ ) = 1. Let Dist(G) be the set of mass distributions over G. The probability
of an argument A is P (A) =

∑
Γ⊆Args(G) s.t. A∈Γ P (Γ ).

For a mass distribution P , and A ∈ Args(G), P (A) is the belief that an
agent has in A (i.e. the degree to which the agent believes the premises and
the conclusion drawn from those premises). When P (A) > 0.5, then the agent
believes the argument to some degree, whereas when P (A) ≤ 0.5, then the agent
disbelieves the argument to some degree.

Definition 7. The epistemic extension for mass distribution P is Extension
(P ) = {A ∈ Args(G) | P (A) > 0.5}.
Example 9. Consider the graph in Fig. 1. If P (A) = 0.2, P (B) = 0.9, P (C) = 0.4,
P (D) = 0.2, and P (E) = 0.8, then Extension(P ) = {B, E}.

The epistemic approach provides a finer grained assessment of an argument
graph than given by Dung’s definition of extensions. By adopting constraints
on the distribution, the epistemic approach subsumes Dung’s approach [25].
However, there is also a need for a non-standard view [17] where we adopt
weaker constraints on the distribution. For instance, an important aspect of the
epistemic approach is the representation of disbelief in arguments even when
they are unattacked. In this case, a key constraint for the non-standard view is
the following which ensures that the mass distribution respects the structure of
the graph, without forcing an unattacked argument to be believed [13].

Definition 8. A mass distribution P is rational for G iff ∀(A,B) ∈
Attacks(G), if P (A) > 0.5, then P (B) ≤ 0.5.
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A B C D E Rational

P1 0.6 0.9 0.4 0.6 0.7 No

P2 0.3 0.9 0.3 0.1 0.8 Yes

P3 0.9 0.1 0.2 0.8 0.2 Yes

Example 10. Examples of mass distribution for Fig. 1.

The system (the persuader) uses a mass distribution as a model of the user
(the persuadee). It can update the model at each stage of the dialogue. This
is useful for asymmetric dialogues where the user is not allowed to posit argu-
ments/counterarguments. So the only way the user can treat arguments that
s/he does not accept is by disbelieving them (and the user model is intended to
reflect this). In contrast, in symmetric dialogues, the user can posit counterar-
guments to an argument that s/he does not accept.

5 Winning Dialogues

In this paper, we consider two mass distributions for a dialogue. The first is
the initial distribution, denoted P0, which is the model of the user before the
dialogue starts, and the second is the final distribution, denoted Pk which is
the model of the user once the dialogue of k steps has terminated. In this section,
we assume we have the final distribution, and in Sect. 7 we discuss how the final
distribution can be obtained from the initial distribution using the moves in the
dialogue.

The next definition ensures that every menu item that is changed from
believed (when the user presents belief in the menu item) to disbelieved (by
the end of the dialogue) has an attacker that is posited later in the dialogue and
is believed.

Definition 9. A dialogue D is frank for final distribution Pk iff for 1 ≤ i ≤ k,
for each B/X ∈ D(i), if X > 0.5, and Pk(B) ≤ 0.5, then there is an index j
and argument C such that i < j and D(j) = C and (C,B) ∈ Attacks(G) and
Pk(C) > 0.5 and C �= B.

Example 11. The dialogue [A, [B/1, C/0.8], D, E,⊥] is fair and frank for the fol-
lowing argument graph G and rational final distribution Pk where Pk(A) = 0.8,
Pk(B) = 0.2, Pk(C) = 0.2, Pk(D) = 0.9, and Pk(E) = 0.9.

D B A C E

From the perspective of the persuader, if s/he wants to persuade the per-
suadee of the persuasion goal A, then the aim is for Pk(A) > 0.5 where Pk is
the final distribution, and so the persuader can regard the dialogue as a winning
dialogue, whereas if Pk(A) ≤ 0.5, then the persuader can regard the dialogue as
a losing dialogue. We formalize this next.
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Definition 10. Let Pk be a rational final distribution, and let D be a fair, finite,
and frank, dialogue w.r.t. Pk and G s.t. D(1) = A and D(k) = ⊥. If Pk(A) > 0.5,
then D is a winning dialogue, otherwise D is a losing dialogue.

Example 12. For the following argument graph G and rational mass distribution
Pk where Pk(A) = 0.9, Pk(B) = 0, Pk(C) = 1, Pk(D) = 0, and Pk(E) = 0.6.

A B C D E

Let D = [A, [B/0.9], C, [D/0.6], E,⊥]. So D is fair, finite, and frank for Pk, and D
is a winning dialogue. Also Persuader(D) = {A, C, E} and Persuadee(D) = {B, D}.

Example 13. For the following argument graph G and rational final distribution
Pk where Pk(A) = 0, Pk(B) = 0, and Pk(C) = 1.

A B C

Let D = [A, [B/0, C/1], C,⊥]. So D is fair, finite, and frank for Pk, and D is a
losing dialogue. Also Persuader(D) = {A, C} and Persuadee(D) = {B, C}.

Example 14. For the graph in Fig. 1 and rational distribution Pk where Pk(A) =
0.7, Pk(B) = 0, Pk(C) = 0, Pk(D) = 1, and Pk(E) = 1. Let D = [A, [B/0.9,
C/0.8], D, E,⊥]. So D is fair, finite, and frank for Pk, and D is a winning dialogue.
Also Persuader(D) = {A, D, E} and Persuadee(D) = {B, C}.

We now introduce the notion of minimality of a dialogue to remove superflu-
ous moves.

Definition 11. Let D be a winning dialogue w.r.t. Pk and G. D is minimal iff
for all D′ � D, D′ is not a winning dialogue w.r.t. Pk and G.

Example 15. Fair dialogues for the graph include D1 = [A, [B/0.8], C, [E/0.9], F,
⊥], D2 = [A, [B/0.8], D, [F/0.9],⊥], and D3 = [A, [B/0.8], C, [E/0.9], F, G,⊥]. Let
Pk(A) = 0.8, Pk(B) = 0, Pk(C) = 0.8, Pk(D) = 0, Pk(E) = 0, Pk(F) = 0.8, and
Pk(G) = 0.8. So D1 and D3 are winning. D2 is not frank and so losing. Also D1

is minimal but D3 is not minimal.

A B

C

D

E

F

G

The following results show that minimal winning dialogues are well-behaved
in that (1) the persuader arguments are conflict-free, (2) each persuadee argu-
ment is either not believed by the persuadee (as indicated in the menu) or is
countered by the persuader, (3) the persuader and persuadee arguments are dis-
joint, and (4) all persuader arguments are believed and no persuadee argument
is believed.
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Proposition 4. Let G be an argument graph and Pk be a rational final distri-
bution. If D is a minimal winning dialogue w.r.t. Pk and G, then Persuader(D)
is conflict-free.

Proposition 5. Let G be an argument graph and Pk be a rational final dis-
tribution. Also let D be a minimal winning dialogue w.r.t. Pk and G. For all
(B,A) ∈ Attacks(G), if A ∈ Persuader(D), then either B/X ∈ D(i) for some i
and X ≤ 0.5 or there is C ∈ Persuader(D) s.t. (C,B) ∈ Attacks(G).

Note, we do not assume that the user is always consistent. For example, in
Fig. 1, the final distribution could be s.t. Pk(B) = 0.9 and Pk(C) = 0.8. This
would give Extension(Pk) = {B, C} which is not conflict-free. Of course, this
would mean that the dialogue is not a winning dialogue for the persuader.

Proposition 6. Let G be an argument graph and P be a rational final distribu-
tion. If D is a minimal winning dialogue w.r.t. Pk and G, then Persuader(D) ∩
Persuadee(D) = ∅.
Proposition 7. Let G be an argument graph and Pk be a rational final dis-
tribution. If D is a minimal winning dialogue w.r.t. Pk and G, then for all
A ∈ Persuader(D), Pk(A) > 0.5 and for all B ∈ Persuadee(D), Pk(B) ≤ 0.5.

The following example shows that a winning dialogue does not necessarily
have all its persuader arguments being in the epistemic extension.

Example 16. Consider the following graph with final distribution Pk(A) = 1,
Pk(B) = 0, Pk(C) = 0, Pk(D) = 1, and Pk(E) = 1. So Extension(Pk) = {A, D, E}.
The dialogue D = [A, [B/1], C, [D/1], E,⊥] is winning w.r.t. Pk and G. Also
Persuader(D) = {A, C, E}. So the persuader arguments are not a subset of
the epistemic extension. However, D′ = [A, [B/1], E,⊥] is a subdialogue where
Persuader(D′) ⊆ Extension(Pk) and it is winning w.r.t. Pk and G.

A B C D E

Proposition 8. If Pk is a rational final distribution, and D is a minimal win-
ning dialogue w.r.t. Pk and G, then Persuader(D) ⊆ Extension(Pk) holds.

So a minimal dialogue uses arguments in the epistemic extension of Pk to
present a winning position for the goal.

6 Delineated Subgraphs

The aim of this section is to better understand the proposal so far. For this, we
consider properties of the subgraph of the argument graph as delineated by the
dialogue.
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Definition 12. Let D be a dialogue and let G′ be a subgraph of G. D delineates
G′ iff Args(G′) = {A | ∃i s.t. D(i) = A or A/X ∈ D(i)} and Attacks(G′) =
{(A,B) ∈ Attacks(G) | A,B ∈ Args(G′)}.
Example 17. For the following graph (left), D1 = [A, [B/1], C, [B/1], C, . . .] delin-
eates the graph (left), whereas D2 = [A, [B/1],⊥] delineates the subgraph (right).

A B C A B

So when a dialogue D delineates a graph G, the nodes in G are exactly the
arguments that appear in the posits and menus of D, and the arcs are just the
arcs from the argument graph that involve those arguments.

A user declaration is what a user initially believes in an argument in a menu.
Only some arguments have a user declaration, and the aim of the dialogue is to
change the user’s beliefs in some of these user declarations in order to have a
winning dialogue.

Definition 13. For a dialogue D, let Declarations(D) = {B/X | ∃i s.t. B/X ∈
D(i)} be the arguments in a menu, let Declared(D) = {B | B/X ∈
Declarations(D)} and let Undeclared(D) = {A ∈ Args(G) | A �∈ Declared(D)}.
Example 18. Consider the graph in Fig. 1. For the dialogue [A, [B/0.9,
C/0.1], D,⊥], we get Declared(D) = {B, C} and Undeclared(D) = {A, D, E}.

The next definition retrieves the belief that the user assigns to each argument
in a menu, and assigns belief of 0 to any argument that does not appear in a
menu.

Definition 14. The declared belief, denoted QD, of the persuadee in dialogue
D is

QD(B) =
{

X for each B/X ∈ Declarations(D)
0 for each B ∈ Undeclared(D)

Example 19. Continuing Example 18, QD(A) = 0, QD(B) = 0.9, QD(C) = 0.1,
QD(D) = 0, and QD(E) = 0.

The following definition captures the subgraph of argument graph G that con-
tains all the relevant arguments given the user beliefs. It is based on a partition
of the nodes in the subgraph. One partition denotes the persuader arguments
and the other partition denotes the persuadee arguments. Essentially, for each
persuader argument in the subgraph, all the attackers of the argument are also
in the subgraph, whereas for each persuadee argument in the subgraph, all the
attackers of the argument are also in the subgraph, or the persuadee argument
is not believed by the persuadee.

Definition 15. Let QD be the declared belief in D. G′ � G is a good subgraph
of G for D iff there is a partition of Args(G′) into sets Φ and Ψ (i.e. Φ ∩ Ψ = ∅
and Φ ∪ Ψ = Args(G′)), such that the persuasion goal is in Φ, and for each
A ∈ Φ ∪ Ψ ,
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– if A ∈ Ψ , then QD(A) ≤ 0.5 or ∃(B,A) ∈ Attacks(G) s.t. (B ∈ Φ and
(B,A) ∈ Attacks(G′))

– if A ∈ Φ, then ∀(B,A) ∈ Attacks(G), (B ∈ Ψ and (B,A) ∈ Attacks(G′))

We call (Φ, Ψ) the partition of the good subgraph.

So a good subgraph is identified just by the declared beliefs expressed by the
user in the menu moves. As shown below, not every fair dialogue has a good
subgraph.

Example 20. The dialogue [A, [B/1, C/1], D, E,⊥] is winning for Fig. 1 and the final
distribution Pk where Pk(A) = 1, Pk(B) = 0, Pk(C) = 0, Pk(D) = 1, and Pk(E) =
1. The graph is the good subgraph for D with partition Φ = {A, D, E} and Ψ =
{B, C}.

Example 21. The dialogue [A, [B/1], C,⊥] is winning for the following graph and
the final distribution Pk where Pk(A) = 1, Pk(B) = 0, and Pk(C) = 1. The graph
is the good subgraph for D with partition Φ = {A, C} and Ψ = {B}.

A B C

Example 22. Dialogues [A, [B/1, C/1], C,⊥] and [A, [B/1, C/0], C,⊥] are losing for
the graph and any final rational distribution. There is no good subgraph for
the above dialogues, whereas the dialogue [A, [B/0.3, C/0.1],⊥] is winning for the
graph and a good subgraph (which is the graph itself) has the partition Φ = {A}
and Ψ = {B, C}.

A B C

Example 23. [A, [B/1], C, [A/1], B, [C/1], A, [B/1], . . .] is a losing dialogue for the
graph (left), and any rational final distribution. There is no good subgraph for
the above dialogue, whereas the dialogue [A, [B/0],⊥] is winning for the graph
and its good subgraph (right) has the partition Φ = {A} and Ψ = {B}.

A B C A B

Next we show that the partition of a good subgraph splits the arguments
between persuader and persuadee.

Proposition 9. If D is a winning dialogue w.r.t. Pk and G and (Φ, Ψ) is the
partition of the good subgraph of G for D, then Φ = Persuader(D) and Ψ =
Persuadee(D).

The following result shows that if the persuasion goal of dialogue D is believed
(according to the final distribution Pk), and G′ is a good subgraph of G for D,
then G′ does not contain any odd cycles.
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Proposition 10. If G′ is a good subgraph of G for D, then G′ contains no odd
cycles.

We now consider how the declarative notion of a good subgraph corresponds
to winning dialogues (and the associated delineated subgraph). We show that
we get a good subgraph from a minimal winning dialogue, and then we show
that we can construct a winning dialogue from a good subgraph.

Proposition 11. Let D(1) = A. If D is a minimal winning dialogue w.r.t. Pk

and G, then there is a G′ s.t. G′ is a good subgraph of G for D where D delineates
G′ and Pk is rational for G′ and Pk(A) > 0.5.

Proposition 12. If G′ is a good subgraph of G for D, where (Φ, Ψ) is the par-
tition of G′, and Pk is a mass distribution s.t. Pk(B) > 0.5 for each B ∈ Φ, and
Pk(C) ≤ 0.5 for each C ∈ Ψ , then there is a dialogue D, where D is a winning
dialogue w.r.t. Pk and G, and D delineates G′.

So the notion of the good subgraph provides a declarative perspective on
winning dialogues.

7 Updating Mass

Given an initial distribution P0, representing the system’s model of the user’s
beliefs at the start of the dialogue, we update the model to give the final distrib-
ution Pk. For this, we introduce the notion of an update method which generates
a mass distribution Pk from P0 based on the moves in D.

Definition 16. Let P0 be an initial distribution and let D be a dialogue. An
update function, Update(P0,D), returns a final distribution Pk such that if
D = [⊥], then P0 = Pk.

There are many possibilities for defining an update function. Here we give a
basic update function (below) as an example. It updates the belief in an argument
based on the belief in the arguments appearing after it in the dialogue. For
D(i) = A, belief in the arguments in the menu D(i + 1) = [B1/X1, . . . , Bn/Xn]
determines the belief in A. Similarly, for D(i) = [B1/X1, . . . , Bn/Xn], and each
Bj in the menu, belief in the posits that occur after move D(i) (i.e. moves that
occur from i + 1 to k) determine the belief in Bj .

Definition 17. For initial distribution P0 and dialogue D, a basic update
function is Update(P0,D) = Pk s.t. for each A ∈ {B | ∃i s.t. D(i) =
B or B/X ∈ D(i)}:

Pk(A) =

⎧
⎪⎪⎨

⎪⎪⎩

0.2 if A ∈ Persuader(D) and ∃B ∈ Opp(D,A) s.t. Pk(B) > 0.5
0.2 if A ∈ Persuadee(D) and ∃B ∈ Pro(D,A) s.t. Pk(B) > 0.5
0.8 if A ∈ Persuader(D) and ∀B ∈ Opp(D,A), Pk(B) ≤ 0.5
QD(A) if A ∈ Persuadee(D) and ∀B ∈ Pro(D,A), Pk(B) ≤ 0.5

where Opp(D,A) = {B | ∃i s.t. D(i) = A and B/X ∈ D(i+1)} and Pro(D,A) =
{B | ∃i, j s.t. i < j and A/X ∈ D(i) and D(j) = B and (B,A) ∈ Attacks(G)}.
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Example 24. Consider the graph in Fig. 1. For D = [A, [B/0.9, C/0.4], D,⊥], with
P0(A) = 0.1, P0(B) = 0.7, P0(C) = 0.5, P0(D) = 0.1, and P0(E) = 0.1. For the
basic update function, Update(P0,D) = Pk where Pk(A) = 0.8, Pk(B) = 0.2,
Pk(C) = 0.4, Pk(D) = 0.8, and Pk(E) = 0.1.

The values 0.2 and 0.8 in the basic update definition are indicative of possible
assignments. More sophisticated modelling of users allows for the calculation of
the value as a function of the value assigned to the counterarguments.

Proposition 13. If Update(P0,D) = Pk is basic, and D delineates G′, then Pk

is rational for G′.

There is a range of alternatives to the basic update in [16] that allow for
a range of different kinds of user to be modelled. These include options for
modelling more credulous and more skeptical users.

8 Using a User Model to Optimize Dialogues

The system wants a final distribution Pk s.t. Pk(A) > 0.5 for persuasion goal A.
This is done in one of two modes.

In interaction mode, the system gives posit and menu moves, and the user
gives belief in each argument in each menu (as in Example 24). At the end of
the dialogue, the final mass Pk is obtained using an update function, and Pk(A)
is used as a prediction of the degree to which the user believes the persuasion
goal D(1) = A.

In simulation mode, the system simulates a dialogue with the user in order
to predict the outcome. For this, the initial mass P0 is used for the user responses
(and so P0 is a proxy for the user answers). If this simulation is run with each
possible dialogue, a dialogue can be chosen that maximizes Pk(A) where A is
the persuasion goal.

In this section, we focus on simulation mode. For optimization, we consider
the fair and finite dialogues for a particular persuasion goal A and initial mass
P0. We denote this set Fair(G,A, P0). The set of simulated dialogues is the subset
where each user response is specified by the initial distribution. We use the sim-
ulated dialogues when we consider what would be the optimal choice of dialogue
before undertaking the actual dialogue.

Definition 18. The set of simulated dialogues, denoted Simulate(G,A, P0),
is {D ∈ Fair(G,A, P0) | for each i, if B/X ∈ D(i), then P0(B) = X}.
Example 25. Consider Fig. 1 with the initial distribution P0 where P0(A) = 0.2,
P0(B) = 0.9, P0(C) = 0.7, P0(D) = 0.1, and P0(E) = 0.5. So the fair dialogue
[A, [B/0.9, C/0.7], D, E,⊥] is a simulated dialogue.

Definition 19. For a dialogue D, with the initial distribution P0, a basic update
function Update(P0,D) = Pk, and persuasion goal D(i) = A, the score func-
tion is defined as Score(D,P0) = Pk(A).
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Example 26. For a basic update function with Example 25, Score(D,P0) = 0.8.

We define the locally optimal dialogues as dialogues for which all subdialogues
have a lower score, and all superdialogues do not have a higher score. So a
locally optimal dialogue is minimal in the sense that every move in the dialogue
is required in order to get the score, and it is minimal in the sense that adding
further moves will not improve the score.

Definition 20. The locally optimal dialogues are the dialogues Local
(G,A, P0) = {D ∈ Simulate(G,A, P0) | ∀D′ ∈ Simulate(G,A, P0), if D′ �
D, then Score(D′, P0) < Score(D,P0) and if D � D′, then Score(D′, P0) ≤
Score(D,P0)}.

A globally optimal dialogue is a locally optimal dialogue that has the maxi-
mum score of locally optimal dialogues.

Definition 21. The globally optimal dialogues are the dialogues Global
(G,A, P0) = {D ∈ Local(G,A, P0) | ∀D′ ∈ Local(G,A, P0) Score(D′, P0) ≤
Score(D,P0)}.
Example 27. For the following graph, let P0(A) = 0.6, P0(B) = 0.3, P0(C) = 0.3,
and P0(D) = 0.9.

A B C D

The final distribution Pk for each dialogue is given below. So D1 and D2 are
winning dialogues for Pk, but only D2 is locally optimal (and therefore globally
optimal).

A B C D

D1 = [⊥] 0.6 0.3 0.3 0.9

D2 = [A, [B/0.3],⊥] 0.8 0.3 0.3 0.9

Proposition 14. If there is a winning dialogue D for G and Pk, where
Update(P0,D) = Pk, then there is a D′ ∈ Global(G,A, P0) s.t. Score(D′,
P0) > 0.5.

So if there is a winning dialogue, then there is a globally optimal dialogue
with the same outcome.

9 Discussion

In this paper, we have made the following contributions: (1) Introduced the menu
move to get the user’s belief in potential counterarguments; (2) Presented a fair
and frank protocol for persuasion dialogues; and (3) Used the user model to
optimize the choice of moves in the persuasion dialogues. For this, we have used
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the epistemic approach to probabilistic argumentation. This contrasts with the
constellations approach (e.g. [7,12,19]) which is concerned with the uncertainty
about the structure of the graph rather than belief in arguments.

The proposal in this paper relies on a user model. This can be generated by
querying the user, or by learning from previous interactions with similar users.
Some recent studies indicate the potential viability of an empirical approach [5,24].

Most proposals for dialogical argumentation focus on protocols (e.g. [4,8,21,
22]). Some strategies have been investigated (e.g. [3,9,18,26]) but the important
issue of uncertainty is under-developed. A probabilistic model of the opponent
has been used in a dialogue strategy allowing the selection of moves for an agent
based on what it believes the other agent is aware of [23]. The history of previous
dialogues is used to predict the arguments that an opponent might put forward
[10]. For modelling dialogues, a probabilistic finite state machine can represent
the possible moves that each agent can make in each state of the dialogue [15].
This has been generalized to POMDPs when there is uncertainty about what an
opponent is aware of [11]. However, none of these proposals consider the beliefs
of the opposing agent or asymmetric dialogues. In [2], a probabilistic model
of persuadee beliefs is used by the persuader to optimize choice of beliefs to
present, but there is no consideration of how to get beliefs from the persuadee or
how to update the model based on the dialogue. Therefore, the proposal in this
paper is an important contribution towards the theoretical foundations for using
argumentation in apps for helping persuade users to change behaviour (e.g. eat
less, exercise more, drive more carefully, etc.).

Acknowledgements. This research was partly funded by EPSRC grant EP/
N008294/1 for the Framework for Computational Persuasion project.
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Abstract. There are many classifiers that treat entities to be classi-
fied as points in a high-dimensional vector space and then compute a
separator S between entities in class +1 from those in class −1. How-
ever, such classifiers are usually very hard to explain in plain English to
domain experts. We propose Metric Logic Programs (MLPs) which are a
fragment of constraint logic programs as a new paradigm for explaining
S. We present multiple measures of quality of an MLP and define the
problem of finding an MLP-Explanation of S and show that it - and
various related problems - are NP-hard. We present the MLP Extract
algorithm to extract MLP explanations for S. We show that while our
algorithms provide more succinct, simpler, and higher fidelity explana-
tions than association rules that are less expressive, our algorithms do
require additional run-time.

1 Introduction

There are many data mining applications in which generating a human-
understandable explanation of why classifications are correct is more important
than making a prediction. We would be unhappy if a car mechanic told us that
the reason we need an expensive repair is because 2 times the reading of sensor
A plus 5 times the cube of sensor reading B exceeds 10. This classifier is highly
accurate, but unintelligible. The goal of this paper is to generate high-quality,
succinct explanations of separators generated by other predictive algorithms. We
do not make predictions in this paper — we assume predictions are made by a
separator. We wish to come up with good explanations of those separators. Exam-
ples of separators that can be explained using the techniques in this paper include
support vector machines (SVM) and Gaussian process classification (GPC).

Unlike past work seeking to explain separators with association rules [2], we
propose to explain a host of separators with a fragment of Constraint Logic Pro-
gramming [11] with negation [4]. We introduce Metric Logic Programs (MLPs)
in which metric logic rules (ML-rules for short) have three types of constraints
in rule bodies: positive interval constraints, negative interval constraints, and
metric constraints. The heads of ML-rules classify objects into the category +1.
c© Springer International Publishing Switzerland 2016
S. Schockaert and P. Senellart (Eds.): SUM 2016, LNAI 9858, pp. 199–213, 2016.
DOI: 10.1007/978-3-319-45856-4 14
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This very specific type of rule allows greater expressive power than classical
association rules [2]. Moreover, it is easy for humans to understand such rules.
We propose, for the first time, an algorithm to extract MLPs that best “match”
a given separator function’s (such as the separators returned by SVM or GPC)
ability to recognize the +1 class. For a given MLP to match a separator φ, it
must classify all training data instances in the same way as φ — moreover, ML-
rules must define regions that have a bounded overlap with the region identified
as belonging to the −1 class by φ. We also require such rules to be simple, hav-
ing at most a certain body size. The MLP-Explanation (MLP-E) problem is that
of finding an MLP of minimal cardinality (i.e. as few rules as possible) subject
to the above constraints. We prove that MLP-E is NP-hard and so are several
problems associated with it.1

We have created an MLP Extract algorithm to solve the MLP-Explanation
problem and tested it against some past work on finding association rules to
explain SVM using 7 real-world open-source data sets. Our experiments show
that MLP Extract beats past work handily on the quality of explanations. By
using MLPs, MLP Extract provides significantly smaller rule sets (less than half
the size of its nearest competitor), significantly simpler rule bodies (less than half
the body size), as well as significantly improved fidelity. Fidelity is the percentage
of points on which the extracted MLPs agree with the separator function φ that
we are trying to explain. This comes, however, at the cost of increased run time
of our MLP Extract algorithm and hence, MLP Extract should be used when
having human intelligible applications is important (e.g. when a company wants
to make an expensive change to their production line or when a bank wants to
make a big investment in a stock).

Note that we are using a standard classifier (such as SVM or GPC) for
predictive purposes, and our MLPs are trying to explain those classifiers to a lay
person. The MLPs themselves are not used for prediction. Our work is in the
same spirit as abductive inference [10,12] where a set of observations (e.g. the
given data) must be explained. In classical abductive LP, the set of observations
and a logic program would be augmented with a set of hypothesis so that the
LP and hypothesis together entail the observations. In our setting, we still have
observations (given data) and a theory (the separator function) and we try to
infer an MLP that best explains the separator.

Problem Description. As in classical classification, we assume there is a set
of training points T = {x1, . . . , xs} where each xi ∈ R

n is an input vector of
dimensionality n which has an associated “ground truth” class yi ∈ {−1,+1}.
We assume that a separator φ : R

n → {−1,+1} has been found and that φ
predicts the class to which xi belongs. φ may be an imperfect predictor, i.e. it
may not always be the case that ∀xi ∈ T, φ(xi) = yi. Our goal is to find an MLP
that best explains the predictor φ. A “best explanation” must be succinct, easily
understandable by ordinary humans not versed in classification algorithms, and
must closely match the separator φ.

1 The proofs of all theorems can be found in the Appendix at the end of the paper.
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Fig. 1. Geometric representation of the metric logic program in Example 1 for explain-
ing the separator φ(x).

2 Metric Logic Programs

Let D denote the set {1, . . . , n} of dimensions. Our constants, denoted x (possibly
with subscripts) are members of Rn. We use x, possibly with subscripts, to denote
variable symbols ranging over points in R

n. x[i] denotes x’s ith component. As
usual [13], a term is either a variable symbol or a constant symbol. Our language
has just one unary predicate symbol +1. If p is a predicate symbol and t is a
term, then p(t) is an atom. For instance, if n = 2, +1((2, 1)) is an atom saying
that the point (2, 1) belongs to class +1. An atom is an expression of the form
+1(x) and −1(x). We now define constraints.

– If x is a variable symbol and li, ui ∈ R, then li ≤ x[i] ≤ ui is an interval
constraint.

– If x is a variable symbol and li, ui ∈ R, then ¬(li < x[i] < ui) is a negative
constraint.

– If x is a variable symbol, z ∈ T is a point, and d ∈ R, then IN(x, z, d) is a
metric constraint.

Intuitively, IN(x, z, d) holds iff the distance between x and z is less than
or equal to d along each and every dimension. Continuing with our running
example, IN(x, (2, 1), 1) describes the square whose corners are (1,2), (1,0),
(3,0) and (3,2). Any point x within this rectangle will satisfy the constraint
IN(x, (2, 1), 1).2

If A(x) is an atom and C1(x), . . . , Cn(x) are constraints (of any of the three
types listed above), then

A(x) ← C1(x) ∧ · · · ∧ Cn(x)

is a Metric Logic (ML) rule. A Metric Logic Program (MLP) M is a finite set of
ML-rules.
2 Though metric constraints can be expressed via interval constraints, it would require

n interval constraints to express it. This would yield a very long rule body, losing
our desire to have succinct rules. We use metric constraints to gain succinctness.
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For space reasons, we do not provide a model-theoretic definition of entail-
ment. Informally, M entails +1(x) iff there exists an ML-rule with +1(x) ←
C1[x] ∧ . . . , Cn[x] such that for all 1 ≤ i ≤ n, all the constraints Ci/[x/x] hold
where Ci[x/x] is the result of substituting x for x in Ci. Throughout this paper,
we assume MLPs are used to classify members of R

n into the class +1. Any-
thing that is not explicitly classified as belonging to class +1 is in class −1 (by
closed world assumption [16]). Then, we assume that our rules always have the
predicate +1 (or alternatively −1) in the head.

Example 1. Consider the small MLP M1 given below.

+1(x) ← IN(x, (2, 1), 1).

+1(x) ← 0 ≤ x[1] ≤ 1.

Intuitively, we can see that the atom +1((2.5, 1.5)) is entailed by the above
program as the first rule is fired when x = (2.5, 1.5).

Given a set W of points and a ML-rule r, the following definitions specify
which points in W are covered by r with a margin m ≥ 0. The margin is
considered to avoid overfiting of rule r with points in W . The program M1 is
visually represented by the two hyper-rectangles to the left of the separator φ
as shown in Fig. 1.

Definition 1 (Constraint Satisfaction). Suppose x′ ∈ R
n is a point, m > 0

is a “margin” and C is a constraint. x′ satisfies C with margin m iff:

– Case C = (li ≤ x[i] ≤ ui): li + m ≤ x′[i] ≤ ui − m.
– Case C = ¬(li < x[i] < ui): x′[i] ≤ li − m or ui + m ≤ x′[i].
– Case C = IN(x, z, d): maxi∈D |x′[i] − z[i]| ≤ d − m.

We now define what it means for a rule to “cover” a point x′ ∈ R
n.

Definition 2 (Rule Covering). Given a point x′ ∈ R
n, an ML-rule r and a

margin m ≥ 0, r covers x′ with margin m if x′ satisfies each constraint C in
body(r) with margin m. The set cp(W, r,m) of covered points is:

cp(W, r, m) = {x′|x′ ∈ W ∧ x′ is covered by r with margin m}.

Think of W above as referring to all points on the +1 side of the separator φ.
cp(W, r,m) tells us how many points on that side of the separator are covered by
ML-rule r with margin m. This is the set of points (on that side of the separator
line) that are “covered” by r. The set of points covered by an MLP M is the
union of all points covered by each ML-rule r ∈ M. We now formally define the
entailment.

Definition 3 (Entailment with Margin m). Given a point x′ ∈ R
n, an MLP

M and a margin m ≥ 0, we say that the atom +1(x′) (resp. −1(x′)), is entailed
by M with margin m iff there exists a rule r ∈ M having the predicate symbol
+1 (resp. −1) in the head s.t. x′ ∈ cp(W, r,m).
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The previous definition of entailment coincides with this one when m = 0.

Example 2. In Fig. 1, let W be everything to the left of φ, let m = 0, and r be an
ML-rule represented by the hyper-rectangle on the right. The portion of points
to the left of φ covered by this hyper-rectangle is the set cp(W, r,m) (here, r
covers 11 points). For the MLP M1, the union of points in the regions covered
by the two hyper-rectangles to the left of φ constitute cp(W,M1,m) (20 points
in total).

The above discussion shows that the body of an ML-rule r uniquely deter-
mines a region Reg(r) ⊆ R

n. A separator’s goal is to separate R
n into a part

that captures members of the +1 class predicted by φ and another that captures
members of the predicted −1 class. Algorithms like SVM and GPC go to con-
siderable effort to find good separators and use them for good prediction. Our
MLPs attempt to explain these separators rather than to use them to predict.
So the MLP must not contain rules that span both sides of the separator as this
is inconsistent with the separator. This underlies the concept of overlap below.

Example 3. Consider Fig. 1 again. Suppose W is the set of all points to the right
of φ, and M1 consists of the two rules of Example 1 to explain the left side of
φ, represented by the two hyper-rectangles. The portion of points to the right
of φ which are covered by them represents the level of inconsistency between
M1 and φ. The larger the area of the rectangles in the right side of φ is, the
more “inconsistent” the ML-rules are in capturing the data on the left side of
the separator line.

We now formally define overlap below.

Definition 4 (Overlap). Given a fixed separator function φ and an ML-rule
r, the overlap ov(r) is the fraction of all points x ∈ cp(Rn, r, 0) such that φ
(x) = −1.

Intuitively, the overlap of r with φ is the fraction of the region covered by r
which φ states to be in class −1. Intuitively, r misclassifies this region (even if no
training points appear in the region, if the separator is a good one, non-training
data might fall into these overlapping regions, leading to misclassification error).

From Fig. 1, we see that the overlap of the right hyper-rectangle is greater
than the left one (whose overlap is 0). The Average Overlap (AO) of an MLP
M is the average of the overlaps of ML-rules r ∈ M.

Theorem 1. Given a rule r, a fixed separator function φ, the problem of com-
puting the overlap ov(r) is #P -hard.

Recall that proofs of all theorems can be found in the Appendix at the end of
the paper.

To mitigate this intractability, we approximately compute ov(r) using a
Monte Carlo algorithm that uniformly samples points covered by r.

We now formally define the MLP-Explanation problem.
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Metric Logic Program Explanation (MLP-E)
Problem.
INPUT: Training set T = {x1, . . . , xs}, separator φ,
integer rmax > 0, margin m > 0.
OUTPUT: An MLP M s.t. |P | is minimal, subject to:

1. Each point xi ∈ T s.t. φ(xi) = +1 are covered, i.e.
∀xi ∈ T s.t. φ(xi) = +1 there is an ML-rule r ∈ M
s.t. xi ∈ cp(T, r, m);

2. No points xi ∈ T s.t. φ(xi) = −1 is covered, i.e.
∀xi ∈ T s.t. φ(xi) = −1 there is no ML-rule r ∈ M
s.t. xi ∈ cp(T, r, m);.

3. Overlap is bounded. For each r ∈ M, ov(φ) ≤ ovmax

for some constant ovmax.
4. ML-rule size is bounded. All ML-rules in M have at

most rmax constraints.

To best match a separator, we require that ML-rules in M must exactly
match φ. Moreover, we require that the ML-rules honor the separation constraint
found as much as possible by bounding overlap. We also ensure comprehensi-
bility by requiring that rules have at most rmax constraints. Subject to these
constraints, we want to find a minimal-sized MLP. Unfortunately, solving the
MLP-Explanation problem is intractable.

Theorem 2. MLP-E is NP-hard3.

To make matters a bit worse, it turns out that finding ML-rules that satisfy
just constraints (2), (3), and (4) is NP-hard.

Theorem 3. Finding an ML-rule that satisfies constraints 2, 3 and 4 of the
MLP-E problem and maximizes the number of covered points in a set W is NP-
hard.

3 The MLP Extract Algorithm

Our MLP Extract algorithm heuristically solves the MLP-E-problem because of
the intractability results in Theorems 2 and 3. Our algorithm is a set-covering
approach in which we want to cover all training points predicted by the separator
to be in the +1 class (the set W ) while satisfying the other constraints in the
MLP-E problem.

MLP Extract starts by invoking MLRuleGenerator to come up with a list
of candidate rules. It then iterates and in each loop, it finds the ML-rule from
the candidate set that covers the maximal number of points in the set W . It
adds this ML-rule to the result and deletes the covered points from W . This
loop ends when W = ∅.
3 MLP-E may not be in NP due to the overlap constraint. After guessing the set E of

ML-rules in non-deterministic polynomial time, we need an oracle to check overlap,
but this is at least #P -hard by Theorem 1. We leave this as an open problem.
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The set W of points predicted by φ to be in class −1.
The MLRuleGenerator considers points to be covered (from W ). It shuf-

fles the set W of points, then chooses the first point and tries to generate a
rule covering that point and not covering any point in the set W of points pre-
dicted by φ to be in class −1. This rule is generated through invocation of the
MLRuleCreator algorithm (Algorithm 3) which separately ensures that con-
straints (2), (3), (4) of the definition of the MLP-E-problem are satisfied. The
generated rule is improved to cover more points in W as explained in the next
paragraph. The set of ML-rules is iteratively improved to cover remaining points
in W by calling MLRuleCreator. When all points in W have been processed,
the rule produced is returned. Note that because of the shuffle operation (Line 2),
MLRuleGenerator returns a different set of ML-rules each time it is invoked
by MLP Extract. As this is done nR times (the maximum number of rules that
is allowed to explain the points) in lines 3–4 of MLP Extract, we get nR different
sets of ML-rules.

Algorithm 1. MLP Extract Algorithm

1: procedure RulesResult=MLP EXTRACT (W,W, y)
2: Rules = ∅
3: for (1 ≤ i ≤ nR) do

4: Rules = Rules ∪ MLRuleGenerator(W,W, y);
5: end for
6: RulesResult = ∅
7: while (|W | > 0) do
8: choose rule ∈ arg maxrule∈Rules cp(W, {rule},m);

9: if (|cp(W, {rule},m)| > 0) then
10: RulesResult = RulesResult ∪ {rule};
11: W = W \ cp(W, {rule},m);
12: Rules = Rule \ rule;
13: else
14: break;
15: end if
16: end while
17: return RulesResult;
18: end procedure

The MLRuleCreator algorithm finds rules satisfying constraints (2),
(3) and (4) of the MLP-E problem. Given a set W of points predicted by
the separator to be in the +1 class, let Constraints(W ) be the set of
all possible constraints that can be used to create a rule that covers all
points in W . Constraints(W ) is the union of three sets, Constraints1(W ),
Constraints2(W ) and Constraints3(W ) that are the sets containing interval,
negative and metric constraints, respectively. The equations below specifies the
definition of each of these sets (see also Example 4), given the margin m.

Constraints1(W ) =
{

li ≤ x[i] ≤ ui | li = [(minx∈W x[i]) − m],

ui = [(maxx∈W x[i] + m)], i ∈ D
}

.
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Constraints2(W ) =
{

¬(a + m < x[i] < b − m) | i ∈ D,

(a, b) ∈ CI(W, i), b − a > 2m
}

.

Constraints3(W ) =
{

IN(x, xp, d) | xp ∈ W, d = max(li≤x[i]≤ui)∈Constraints1(W )

max(|xp[i] − li|, |xp[i] − ui|)
}

.

We briefly explain these definitions.

(i) Constraints1(W ) is the constraint with the tightest interval that contains all points
in W .

(ii) Constraints2(W ) is the set of constraints describing the intervals that do not
have any points from W in them. Given i ∈ D, CI(W, i) is the set of inter-
vals such that no point in W has its i − th component within the interval. That
is, CI(W, i) = {(x1[i],x2[i]) | x1,x2 ∈ W,x1[i] < x2[i], ¬∃x3 ∈ Ws.t. x1[i] <
x3[i] < x2[i]}. Observe that each negative constraint referring to the feature i is
always within the corresponding interval constraint in Constraints1 for the same
feature i.

(iii) Constraints3(W ) is the set of metric constraints with the smallest possible d’s
and centered at each point xp ∈ W that contains all the points in W .

Algorithm 2. Rules Generation Algorithm

1: procedure Rules=MLRULEGENERATOR(W,W, y)
2: shuffle W ;
3: Rules = ∅;
4: while W �= ∅ do
5: rule = null;
6: W ′ = ∅;
7: W ′′ = ∅;
8: while (W �= ∅) do
9: take the first element w in W ;
10: W = W \ {w};
11: W ′ = W ′ ∪ {w};

12: r =MLRuleCreator(W ′,W, y)
13: if (r �= null) then
14: rule = r;
15: else
16: W ′ = W ′ \ {w}
17: W ′′ = W ′′ ∪ {w}
18: end if
19: end while
20: if (rule �= null) then
21: Rules = Rules ∪ {rule};
22: end if
23: W = W ′′

24: end while
25: return Rules;
26: end procedure

The following example illustrates these concepts.

Example 4. Let W = {xa, xb, xc} (cf. Fig. 2). Then, the set of all interval con-
straints is Constraints1(W ) = {a ≤ x[1] ≤ b, c ≤ x[2] ≤ d} (see Fig. 2a). The
set containing all possible negative constraints is formed by all intervals depicted
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(a) (b) (c)

Fig. 2. Illustration of the sets Constraints1(W ), Constraints2(W ) and Constraints3
(W ) for W = {xa, xb, xc}.

with the symbol ←→ in Fig. 2b. Thus, CI(W, 1) = {(xa[1], xc[1]), (xc[1], xb[1])}, while
CI(W, 2) = {(xc[2], xb[2]), (xb[2], xa[2])}. Then:

Constraints2(W ) = {
¬(xa[1] + m < x[1] < xc[1] − m),
¬(xc[1] + m < x[1] < xb[1] − m),
¬(xc[2] + m < x[2] < xb[2] − m),
¬(xb[2] + m < x[2] < xa[2] − m)

}

where m is the margin. An example of a metric constraint in Constraints3(W ) is
shown in Fig. 2c. It is the square centered at xb and has a side of size 2d where d =
(xb[1]− xa[1])+m. This metric constraint is the set of points x s.t. IN(x, xb, d) covers
x. Thus, the set Constraints3(W ) contains metric constraints similar to the one above
described, one for each point in W .

In addition to covering points in W belonging to the +1 class, we want to make
sure that the constraints do not cover points in the other class ȳ, i.e. the class −1. For
this, we define a function notCov(A, W ) that returns the set W

′ ⊆ W of points not in
W that are not covered by constraint A. It is defined as:

– if A is the positive constraint a ≤ x[i] ≤ b, then notCov(A, W ) = {x ∈ W |(li ≤
x[i] < a) ∨ (b < x[i] ≤ ui)}.

– if A is the negative constraint ¬(a < x[i] < b), then notCov(A, W ) = {x ∈ W |a <
x[i] < b}.

– if A is a metric constraint IN(x, xp, d), then notCov(A, W ) = {x ∈
W | maxi∈D |xp[i] − x[i]| > d}.

The MLRuleCreator algorithm (Algorithm 3) takes a set W of points predicted
by separator φ to be in the +1 class, the set W of points predicted by φ to be in class
−1, and the class y as input and outputs an ML-rule that is discovered by the heuristic
which (i) covers all the points in W , (ii) does not cover any points in W , (iii) has an
overlap of at most cmax, and (iv) has at most rmax constraints.

The first step of the algorithm builds Constraints(W ) (Line 2). The greedy-
Covering function then finds a set B ⊆ Constraints(W ) of possible constraints. The
problem of selecting B is a set covering problem: each constraint A in Constraints(W ),
if selected as part of the body of an ML-rule, ensures that the points in not-
Cov(A, W ) ⊆ W are excluded by the rule. Then this is equivalent to a set covering
problem by selecting a set B that does not cover any point in W . As set covering is
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Algorithm 3. Rule Creation Algorithm

1: procedure rule=MLRULECREATOR(W,W, y)
2: Compute Constraints(W );

3: B = greedyCovering(Constraints(W ),W );
4: while |B| ≤ rmax do
5: E = computeOverlap(B,nS, y);
6: if (|E|/nS ≤ cmax) then
7: rule =

∧
A∈B A → y;

8: return rule;
9: end if
10: W = W ∪ E;
11: B = greedyCovering(Constraints(W ),W );
12: end while
13: return null;
14: end procedure

15: procedure B=GREEDYCOVERING(AW ,W )
16: B = ∅;
17: while (|W | > 0) do

18: choose A ∈ arg maxA∈AW
|notCov(A,W )|;

19: B = B ∪ {A};
20: AW = AW \ {A};

21: W = W \ notCov(A,W );
22: end while
23: return B;
24: end procedure

25: procedure E=COMPUTEOVERLAP(B, nS, y)
26: E = ∅;
27: for (1 ≤ i ≤ nS) do
28: x =getSample(B);
29: if (class(x) �= y) then
30: E = E ∪ {x};
31: end if
32: end for
33: return E;
34: end procedure

NP-hard, greedyCovering computes the greedy ln(uco)4-approximation of the exact
covering, i.e., at each iteration, it computes and adds to B the constraint that covers
the maximal number of points in W which are not yet covered by any selected con-
straint, until all undesirable points are uncovered. As a consequence, the size of B and
the the number of constraints per rule is minimized.

The second step of Algorithm 3 iteratively improves the set B until its size is at most
r, so that the ML-rule defined by the constraints in B has an overlap below ovmax. If
the size of B is greater than r, the algorithm returns null as there is no ML-rule with at
most r constraints which satisfies all the conditions - it covers the points in W , does not
cover the points in W , and has an overlap of at most cmax. The overlap is estimated by
the computeOverlap method by uniformly sampling (see Algorithm 4) nS points in
the region covered by the ML-rule described by the constraints in B, and approximating
the overlap as the percentage of sampled points E that are classified by the separator
φ in the class −1. If the overlap is at most ovmax, then the ML-rule +1(x) ← ∧

A∈B A
is accepted. Otherwise, the set of sampled points E is used to reduce the overlap of the
ML-rule defined by the constraints in B - by adding E to W so that in the next iteration
these points will not be covered, and, hence, the overlap will decrease.

4 uco is the maximum number of points in W , over all constraints.
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Algorithm 4. Uniform Sampling of a point x in the hyper-rectangle defined by B

1: procedure x=GETSAMPLE(B)
2: for each i ∈ D do
3: x[i] =getCoordinateSample(B, i)
4: end for
5: return x;
6: end procedure

7: procedure a=GETCOORDINATESAMPLE(B, i)
8: l = Li, u = Ui;
9: for each (lj ≤ x[i] ≤ uj) ∈ B do
10: l = max(l, lj);
11: u = min(u, uj);
12: end for
13: for each (maxDist(xp,x) ≤ d) ∈ B do
14: l = max(l,xp[i] − d);
15: u = min(u,xp[i] + d);
16: end for
17: Let C be a ordered list containing all negative constraints ¬(lj < x[i] < uj) ∈ B;
18: H = ∅;
19: for each not(lj < x[i] < uj) ∈ C do
20: H = H ∪ {(l ≤ x[i] ≤ lj)};
21: l = uj ;
22: end for
23: H = H ∪ {(l ≤ x[i] ≤ u)};
24: Guess an interval (lj ≤ x[i] ≤ uj) ∈ H with a PDF assigning probability values proportion-

ally to the interval width;
25: Uniformly guess a number a s.t. lj ≤ a ≤ uj ;
26: return a;
27: end procedure

4 Experiments

In this section, we compare the performance of MLP Extract with past attempts to
explain SVM separators. There have been several efforts to rules to explain SVM (cf.
Sect. 5). We used 7 standard datasets (Pima Indians, Breast Cancer Wisconsin, Derma-
tology, Heart Diseases, Iris, Ionosphere and German) from the UCI repository for the
comparison. We ran all experiments on an Intel Xeon @ 2.3 GHz, 24GB RAM Linux
machine.

We compared our algorithm against techniques that generate association rules (the
special case of our framework that only allows interval constraints) - CART, C4.5 and
JRipper — both with and without the ALBA dataset generator [14]. We also compared
our algorithm with the SQRex-SVM algorithm [3].

The algorithms are compared using standard metrics: (i) Average number of rules,
(ii) Average number of antecedents, (iii) Average fidelity, and (iv) Average running
time. The fidelity of an MLP is the fraction of training points for which the expla-
nation assigns the same label as the separator φ. Formally, given a set of points
T = {x1, . . . , xs}, the separator function φ, and its MLP-explanation M, the fidelity
of M is:

fidelity(M) =
|{xi | M |= +1(xi) ∧ φ(xi) = +1}|

|T | .

We experimented with all five possible combinations of constraints in ML-rules.
We denote by IL constraints of the form a ≤ x[i] ≤ b, by NL constraints of the form
¬(a < x[i] < b), and by ML metric constraints. Thus, we experimented with our
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Table 1. Table showing average results comparing all the algorithms over all the
datasets. The shaded rows show the results of our MLP Extract algorithm with subset
of constraints. Values in bold represent the best results for the corresponding evaluation
metric.

Avg. Avg. Avg. Avg.
Algorithm # Rules # Antd Fidelity Runtime (sec)
CART 7.29 2.56 85.03 0.49
C4.5 17.99 3.39 61.65 0.38
Jripper 4.40 1.40 85.26 0.16

CART+Alba 10.09 2.86 89.92 0.76
C4.5+Alba 27.29 3.80 86.77 0.50
Jripper+Alba 4.77 1.78 88.35 0.34
Sqrexsvm 16.83 1.53 53.03 0.06

MLP Extract(IL) 7.60 1.90 94.71 3176.36
MLP Extract(ML) 11.51 0.69 94.67 71.25

MLP Extract(IL+ML) 9.27 2.27 97.47 2794.72
MLP Extract(IL+NL) 6.83 2.13 90.22 3103.54

MLP Extract(IL+NL+ML) 2.06 0.72 95.25 10.60

algorithm by considering the following 5 combinations of constraints: (i) IL, (ii) ML,
(iii) IL+ ML, (iv) IL+ NL, and (v) IL+ NL+ ML. We set rmax = 4, ovmax = 10%.
Table 1 shows the results after 10-fold cross validation on each dataset (90 % training,
10 % validation) in each fold. The measures described above are calculated for each
fold and averaged. The table also shows the average running time (in seconds) taken
to compute the rules after the SVM is obtained5. All our results are statistically valid
with p < 0.002 in the majority of the cases (paired t-test)6. From the table, we can
conclude that the MLP Extract algorithm with IL + NL+ ML constraints:

• It produces rules half as many rules as non-MLP Extract explanations, reflecting a
two-fold improvement in simplicity.

• The rules it produces have only half as many constraints as its nearest non-
MLP Extract competitors, again representing a 2-fold increase in simplicity.

• It beats all non-MLP Extract competitors in terms of fidelity.
• It has larger run-time than past work.

In short, the MLP Extract algorithm with IL + NL+ ML constraints handily
beats most competitors on most measures related to the quality of the explanation
generated — but it does so at the expense of run-time.

5 Related Work

There has been substantial work in explanation of Support Vector Machines. A good
survey on this topic can be found in [3]. Among the algorithms discussed in the survey, the
most effective algorithms in terms of comprehensibility and fidelity are: CART [5], C4.5

5 Tables 3–9 in the online Appendix [1] show the results for each data set.
6 Detailed results are reported in Tables 10–15 in the online Appendix [1].
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[15], JRipper [6] and SQRex-SVM [3]. [14] proposed a method named Active Learning
Based Approach (ALBA) to incorporate additional data instances close to the decision
boundary by using the support vectors. This was shown to improve the fidelity of the
generated rules. We therefore compare our algorithm with these works with and without
ALBA. In contrast to all of these works, MLP-Explanation uses simple metric logicrules
that are not just richer than set of rules with interval constraints only, but is also easy
to understand. We show that MLP-Explanation’s best algorithm outperforms past work
in terms of the quality of the extracted rules when measured by comprehensibility and
fidelity, while taking slightly longer time to run.

As described in [8,18], there are other attempts to explain SVMs with ellipsoids
and hyper-rectangles, fuzzy rules and distance-based regions, but the comprehensibility
of these methods is low. Therefore, we do not compare against these methods.

In addition to SVMs, other classifiers have also been explained such as neural
networks [7,17] and random forest.

6 Conclusions

There are numerous applications in which we wish to explain separators (such as SVM
and GPC separators) to ordinary users in a simple, easy to understand way. In this
paper, we propose Metric Logic Programs that have the following good properties.
First, MLPs can succinctly and simply express rules that ordinary users can understand.
Our results show that MLPs are both twice as simple and twice as succinct as past work
(outside this paper). Second, MLPs have significantly higher fidelity than non-MLP
based attempts to explain SVM. They much more accurately represent the predictions
made by separators like SVM and GPC than past work. On the flip side, we note that
computing MLPs requires more run-time than past work. Hence, it is appropriate to use
it in applications where generating a human-intelligible explanation is very important
(e.g. when data mining results provide input to decision makers for business and policy
applications).

Acknowledgements. Parts of this work were supported by ONR grant
N000141612739 and ARO grant W911NF1610342.

Appendix: Proofs

Proof of Theorem 1 (Sketch). Dyer [9] proved that computing the volume of the
polytope P = {x ∈ R

n | aTx ≤ c, 0 ≤ x[i] ≤ 1, i = 1, . . . , n}, where a is a vector of
integers greater than 0, is #P -hard. Let us assume to have a hyper-rectangle R where
0 ≤ x[i] ≤ 1, ∀i ∈ D, and a hyper-plane of the form wTφ(x)+ b = 0, where w = a and

b = −c − 1. Since the volume of R is equal to 1, then, computing ov(R, y) =
Vy(R)

V (R)
=

Vy(R) where Vy(R) represents the volume of ov(R, y) is the same of computing the
volume of the polytope P .

Proof of Theorem 2 (Sketch). The result is proven with a reduction from the
3-colorability problem, that is proven be NP-hard, to a decision version of the MLP-
Explanation problem that is the following: verify whether there exists at most k MLRs
that satisfy all the four constraints of the MLP-Explanation problem. Given a graph
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G = (V, E), the 3-colorability problem consists into verifying whether there exists a
color assignment to node s.t. two neighbors node are not colored with the same color.

The reduction is the following. We set (i) k = 3, (ii) n = |V |, i.e. we have one
dimension for each vertex, (iii) T y = {ui ∈ {0, 1}n | ui[i] = 1 ∧ i ∈ D : (∀j ∈ D ∧ j �=
i ⇒ ui[j] = 0)} to represent all vertices vi ∈ V , (iv) T y = {u ∈ {0, 1}n |(vi, vj) ∈
E ∧ u[i] = 1 ∧ u[j] = 1 ∧ (∀h ∈ D : h �= i, j ⇒ u[h] = 0)} to represent the set E of
edges, and (v) m = 0. Because of the first MLP-Explanation problem constraint, and
k = 3, a node must be covered by at least one rule of the three, so each rule assigns a
color to each rule.

For instance, suppose we have in G only two vertices v1 and v2 and one edge
(v1, v2). Then, T y = {[1, 0], [0, 1]} and T y = {[1, 1]}. Considering now the rule 0 ≤
x[1] ≤ 1 ∧ 0 ≤ x[2] ≤ 1 → y, we have that it covers T y ∪ T y.

Then, it is not possible that there exist two nodes covered by the same rule that
are connected by an edge, otherwise a point in T y is covered by the rule. This implies
that it is not possible to use the same color to color two nodes connected by an edge.

Note that it is possible that the same node can be colored in two different ways, but
to obtain a feasible coloring it is sufficient choosing one of the two color without violate
the constraints. It follows that the decision version of the MLP-Explanation problem is
at least hard as the 3-colorability, and this means that the MLP-Explanation problem
is NP-hard.

Proof of Theorem 3 (Sketch). We prove the theorem via a reduction from maximal
independent set problem proven to be NP-hard. We recall that, given a graph G =
(V, E) the maximal independent set problem consists into find a set of vertices V ′ ⊆ V
s.t. |V ′| ≥ k and there are no edges in E between any pair of vertices in V ′. The
reduction is the following. We set (i) n = |V |, i.e. we have one dimension for each
vertex, (ii) W = {ui ∈ {0, 1}n | ui[i] = 1 ∧ i ∈ D : (∀j ∈ D ∧ j �= i ⇒ ui[j] = 0)} to
represent all vertices vi ∈ V , (iii) W = {u ∈ {0, 1}n |(vi, vj) ∈ E ∧ u[i] = 1 ∧ u[j] =
1 ∧ (∀h ∈ D : h �= i, j ⇒ u[h] = 0)} to represent the set E of edges, and (iv) m = 0.
Then, our problem is to find a rule, if there exists, that covers at least k points in W
and no point in W . In this reduction we do not consider the MLP-Explanation problem
constraints 2 and 3. Note that if a rule covers two vertices then it automatically cover
also the edge between them if it exist. For instance, suppose we have in G only two
vertices v1 and v2 and one edge (v1, v2). Then, W = {[1, 0], [0, 1]} and W = {[1, 1]}.
Considering now the rule 0 ≤ x[1] ≤ 1 ∧ 0 ≤ x[2] ≤ 1 → y, we have that it covers
W ∪ W . It follows that finding a rule that covers at least k points in W and does not
cover any point in W is at least hard as the independent set problem.
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Abstract. In a team of multiple agents, the pursuance of a common goal
is a defining characteristic. Since agents may have different capabilities,
and effects of actions may be uncertain, a common goal can generally
only be achieved through a careful cooperation between the different
agents. In this work, we propose a novel two-stage planner that com-
bines online planning at both team level and individual level through a
subgoal delegation scheme. The proposal brings the advantages of online
planning approaches to the multi-agent setting. A number of modifica-
tions are made to a classical UCT approximate algorithm to (i) adapt it
to the application domains considered, (ii) reduce the branching factor
in the underlying search process, and (iii) effectively manage uncertain
information of action effects by using information fusion mechanisms.
The proposed online multi-agent planner reduces the cost of planning
and decreases the temporal cost of reaching a goal, while significantly
increasing the chance of success of achieving the common goal.

1 Introduction

Planning is an essential component of autonomous agents. It involves the selec-
tion of a series of actions to perform to achieve a goal desired by the agent [19].
Such a series of actions is commonly referred to as a plan. Ideally, planning algo-
rithms attempt to take all information about the environment into account when
coming up with a plan. However, it is often infeasible to (optimally) plan in real-
istic environments due to their size and the uncertainty of action outcomes [12].
Multi-agent planning is a particular branch of planning where there is a collective
approach from multiple agents to achieve a goal [18]. In collaborative multi-agent
planning, a team of agents try to accomplish a task leading to a common goal by
combining their capabilities and knowledge [15]. Two main approaches for collab-
orative multi-agent planning can be distinguished: (i) centralised, which involves
a planner agent with full knowledge of the environment and the joint task to
undertake, and (ii) distributed or decentralised [4], in which agents plan individ-
ually and coordinate with each other to find a common solution for the planning

The original version of this chapter has been revised: In an older version Fig. 6
was represented incorrectly. An erratum to this chapter is available at 10.1007/
978-3-319-45856-4 27
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problem [10,13]. Centralised multi-agent planning is typically the most efficient,
but is only feasible if agents do not have private or sensitive information [1].

Collaborative multi-agent planning has been an active subject of research in
recent years [2,9,14,16]. However, most of these works focus on offline planning
rather than online planning. Online planning differentiates itself from offline
planning by not fully elaborating a plan before execution, but instead to inter-
leave planning and execution. To this end, it employs approximate methods such
as Monte-Carlo Tree Search (MCTS) [3] to return the next ‘good enough’ action
rather than a complete series of actions [5]. Online planning approaches have the
ability to narrow the scope of the search space, to return “good enough” actions
anytime and to efficiently re-plan when an unexpected situation is encountered
while acting. So far, online planning has been mainly applied to individual agent
planning problems, with only a few proposals for online multi-agent planning
presented in [11,20,21]. Wu et al. [20], use Decentralized POMDPs and stage
games for planning in ad-hoc teams, without pre-coordination, such that each
agent independently plans its next actions under teamwork considerations. The
authors also developed in [21] an online planning approach aimed at minimizing
inter-agent communication. Paquet et al. [11] presented a method called Real-
Time Belief Space Search (RTBSS) for determining the best next action in large
real-time environments.

In this paper we focus on problems and application domains characterised by:

– the existence of a fixed team of agents with common goals requiring coordi-
nation;

– planning at team level is required to ensure coordination between agents;
– each agent knows the outcome probabilities of its own actions only.

An example of domains under these settings are SCADA supervisory control sys-
tems, e.g. for power grid management, or navigation in hazardous environments
such as nuclear sites [6]. The scenario utilised to describe our proposal refers to
navigation by multiple robots for clearance in a country park. To the best of our
knowledge, problems defined under these settings have not been addressed yet
in online planning.

To efficiently solve problems in these domains we introduce a novel two-stage
online collaborative planner where actions may have stochastic effects. The first
stage is a team level centralised planner which plans on an abstract level and
delegates subgoals to individual agents. The second stage is an individual level
distributed planner where each agent pursues its assigned subgoal. The proposed
planner extends the MCTS-based UCT algorithm [8] to (i) collectively plan for
the next best subgoals for every agent in the team, and (ii) to individually
come up with suitable plans to achieve the assigned subgoals (individual level
planning). A fusion approach [22] is introduced in the team planner to combine
uncertain information about the effects of actions, which will help to significantly
reduce the search space.
To adequately scope our work we furthermore assume the following principles:

Principle 1. Agents act in parallel to achieve a common goal. A team planner
agent determines the next subgoal each agent should individually accomplish.
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Principle 2. The agents act in a purely collaborative way, i.e. there is no form of
competition in terms of distinct, conflict goals amongst agents. Furthermore,
agents carry out their actions independently, such that no effects of interfering
the actions of the other agents are considered.

Principle 3. No privacy preservation constraints amongst agents are considered.

The rest of the paper is organised as follows. We start off with some prelim-
inaries in Sect. 2. In Sect. 3 the scenario used to illustrate our proposal is intro-
duced. Our novel, two-stage online multi-agent planner is proposed in Sect. 4
and evaluated in Sect. 5, demonstrating its ability to reduce the cost of planning
and acting in parallel, as well as increasing the chances of successfully reaching
the goal established. Finally, concluding remarks are drawn in Sect. 6.

2 Preliminaries

In offline planning, a complete plan or course of actions to achieve a goal is firstly
generated and then executed by the agent. Therefore, when multiple agents are
present and there is no need for preserving private individual information, the
planning process can be easily centralised even though execution is performed
in a distributed fashion [21]. By contrast, online planning interleaves planning
with execution: instead of generating the whole plan a priori, online planners
return a next “good-enough” action to be executed at the current state. When
an unexpected outcome is obtained, online planners can immediately pick up on
this new information and do not need to plan in advance for all such eventualities.
Our work focuses on integrating online planning at team and individual levels
by using online team planning as a delegation scheme.

UCT (Upper Confidence bounds applied to Trees) [8] is a state-of-the-art
anytime algorithm that combines MCTS [3] with multi-bandit selection methods
[8], and has been utilised for planning in domains pervaded by uncertainty. UCT
[5] allows to quickly return a non-trivial decision after performing a series of
rollouts in which outcomes of actions are sampled based on their probability.
A rollout consists in traversing the search tree from the root node to a node
representing a terminal state. Every time a node is visited in UCT, the selection
of the action to take at its corresponding state is based on all previous rollouts,
favouring actions that either produced higher rewards or were rarely visited
in previous rollouts. This allows for a balance between exploitation (selecting
actions with better reward statistics so far) and exploration (selecting actions
that have still been rarely simulated). A decision node in UCT represents an
environment state. A decision node corresponding to a non-terminal state can
be expanded into available actions at that state, leading to child decision nodes
for the outcomes of such actions. The root decision node represents the current
environment state [5].

In every iteration, UCT applies the following four steps (see Fig. 1): (a) Selec-
tion: select a child node based on a selection function. (b) Expansion: randomly
expand the selected node to a new unsampled one. (c) Rollout : randomly sim-
ulate a playout (e.g. a sequence of selected actions and their outcomes) until



Two-Stage Online Collaborative Multi-agent Planning Under Uncertainty 217

(a)

(b)

(c)

(d)

(a) select
(b) expand
(c) simulate
(d) backpropagate

Fig. 1. The four distinct steps in every MCTS iteration.

reaching a terminal state. (d) Backpropagation: compute a reward value associ-
ated to the terminal state reached, and propagate it back up through the tree
to the root node, updating the information for each node in the path.

3 Scenario Overview

The country park scenario serves to illustrate the concepts and ideas presented in
this paper. A team of forest management robots (agents) are situated in different
locations of a country park, in a region frequently affected by natural disasters
such as strong winds and wildfires. After a storm, a number of fallen boulders
are detected in locations around the park. The robots, which operate in parallel,
must plan and coordinate together to clear the affected locations efficiently. The
problem is further complicated by the following factors: (i) the park is organised
into a number of locations or Points of Interest (PoI) labelled a to n, and a
network of hiking trails labelled t1 to t64 connecting the PoIs; (ii) some trails
are safer than others due to their width (see Fig. 2). Falling off a trail (e.g. into
a cliff, due to a landslide, etc.) permanently disables the robot; and (iii) each
robot has different competences and/or physical sizes, therefore the probability
of successfully crossing a trail can vary from robot to robot. The robots are fully
aware of their current position and the position of the boulders in the scenario.
Moreover, robots can communicate with the team planner agent to inform about
e.g. reaching a new PoI, clearing a boulder, or falling off a trail.

When applying our framework to this scenario the high-level team planning
will direct robots to neighbouring1 PoI on their way to reach a boulder to clear.
On the low-level individual planning the agents themselves will plan for how to
reach that neighbouring PoI given their knowledge of the trails and the likelihood
of reaching the PoI in any of the available ways given their capabilities/physical
sizes.

1 Neighbouring PoIs are those which can be reached from the current agent position
without getting through any other PoI.
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Fig. 2. Country park scenario. PoIs are labeled a to n, and trails (edges) are numbered
t1 to t64

4 Online Collaborative Multi-agent Planner Under
Uncertainty

In this section we present an online multi-agent planner for collaborative teams
of agents whose actions have stochastic outcomes. The main characteristics of the
planner are: (1) two planning stages (team planning and individual planning) are
interleaved through a subgoal delegation scheme, (2) online planning is utilised
through two extensions of the UCT algorithm adapted to both planning phases,
and (3) a number of mechanisms are proposed to deal with uncertain stochastic
information effectively, whilst preventing an excessive search space.

4.1 Notation and Basic Concepts

The following notation is introduced to refer to the different elements utilised in
the proposed multi-agent planner:

– There exists a set AG = {1, 2, . . . , n} of agents.
– There are n action libraries A1,A2, . . . ,An, one for each agent i ∈ AG.

An action library Ai = {a1
i , . . . , a

m
i } encompasses a finite set of actions ak

i ,
k = 1, . . . , m, that can be performed by the agent, i.e. its capabilities. For
simplicity, all agents have access to the same actions (e.g. move forward) but
the probabilities of outcomes are distinct for each agent.

– A subgoal library C = {c1, . . . , cu} common to all agents describes the possible
subgoals that can be assigned to them. A subgoal is achieved by an agent i
by applying (a sequence of) actions from its action library Ai, as explained
later.

Action, plan and (sub)goal representation is based on PPDDL (Probabilistic
Planning Domain Definition Language) [23], as illustrated in several exam-
ples throughout this section. PPDDL is fully supported by implementations of
MCTS-based techniques.
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The set of all possible environment states is represented as E . An environment
state is denoted by ε ∈ E , where ε0 denotes the current state, and EG ⊂ E is the
subset of all possible goal states εG. Since the team planner agent is responsible
for the team planning process, it must be able to formulate environment states at
team level. A decision node in the search tree constructed during team planning
includes these two elements:

1. Collective information about the current state of all agents involved in the
team planning process, describing each agent’s individual status: in our exam-
ple the positions of robots in the environment.

2. Other purely environmental information: in our example, the locations of
remaining boulders, if any.

Thus, a decision node N(ε) associated to an environment state ε, is formalised
as a 2-tuple N(ε) = 〈s(AG); s(env)〉. The set s(AG) = {s1, . . . , sn} denotes the
current state of every agent, and s(env) represents environmental information.
Conversely, we refer to states modelled in the individual planning phase per-
formed by agent i ∈ AG as agent states, εi ∈ E i. Their associated decision nodes
N(εi) contain more specific information than the (team level) environment states
ε introduced above, namely information about i and the environment only. They
are formally represented as N(εi) = 〈si; s(env)〉. In either case (and as occurs
with classic UCT), the root decision node describes the current environment
(resp. agent) state, ε0 (resp. εi

0).

Example 1. Consider the country park scenario (Sect. 3). Let si be the state of
agent i. For simplicity, we assume an agent state is solely formed by a predicate
of the form, at(i, L), indicating the location L of agent i (which can be either one
of the 14 PoIs labeled ‘a’ to ‘n’, a junction connecting some of the 64 trails in the
park, or the symbol “−” indicating that the agent failed in executing an action
and is no longer operating). On the other hand, let s(env)=

∧
at(boulder,L) L be

the locations of boulders not cleared out yet. A decision node describing this
environment state is formalised as follows:

N(ε) = 〈{at(1, a), at(2, f), at(3, i)}; b ∧ e ∧ g ∧ j ∧ m〉

with b∧ e∧g ∧ j ∧m being environmental information (locations of boulders not
cleared yet). Suppose that agent 1 plans individually to cross t5. When reaching
the junction connecting t5, t6 and t7 (denoted by t5,6,7), its resulting decision
node N(εi) is:

N(ε1) = 〈at(t5,6,7); b ∧ e ∧ g ∧ j ∧ m〉
with same environmental information, i.e. no PoIs with boulders have been
reached yet. ��
We now introduce the three central concepts in the proposed planner: primi-
tive action, subgoal and team action. These concepts are illustrated in Fig. 3 to
facilitate their understanding.
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Fig. 3. Actions and subgoals: a team action
is associated one or more subgoals, each
of which indicates (in our scenario) a
target location to be reached e.g. at(k),
whereas primitive actions indicate trails to
be crossed, e.g. t 44.

Fig. 4. Multi-agent planner
scheme: the team planner dele-
gates subgoals to active agents;
each agent in turn plans for
achieving its subgoal and relegates
execution results back to the team
planner.

Definition 1. A primitive action ak
i ∈ Ai can be individually undertaken by

agent i ∈ AG, e.g. t 1 for the action of moving across trail ‘1’. Primitive actions
are evaluated and selected during individual planning.

Definition 2. A subgoal ci ∈ C assigned to agent i represents an individual state
i should aim for, e.g. at(a), which indicates that i must reach the PoI labeled ‘a’.
Subgoals are assigned by the team planner agent to every agent in the team.

Definition 3. A team action τ = {σi, i ∈ pa(τ)} encompasses a number of
subgoals σi simultaneously assigned to a team of participating agents pa(τ) ⊆ AG
(one subgoal per agent) at a given time. Team actions are formulated during team
planning, and they involve those agents that need a new subgoal to be pursued at
a given state.

Example 2. Suppose that the following team action is selected as a result of team
planning in the country park scenario, τ = {at(1, n), at(2, e), at(3, g)}. This means
that the subgoal of reaching location ‘n’, at(n), is delegated to robot 1, the subgoal
at(e) is delegated into 2 and the subgoal at(g) is delegated into 3. ��
Outcomes of team actions are environment states that result either from the
successful accomplishment by every agent of its assigned subgoal, or from one
or more agents in pa(τ) failing to accomplish it (being deemed unavailable here-
inafter because e.g. they fell off a trail). In the search tree constructed during
team planning, decision nodes (except for N(ε0)) represent outcomes of team
actions.

A general scheme of the proposed two-stage multi-agent planner is depicted
in Fig. 4 and explained in the following two subsections.
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4.2 Team Planning

The team planning process aims at determining the next best team action τ
describing the immediate subgoals each agent is assigned. This is not a straight-
forward task for two reasons: (1) determining the probabilities of occurrence
of each available team action requires stochastic information about individual
action libraries, and (2) having multiple agents acting in parallel may involve a
significant number of possible outcomes for τ .

To cope with these difficulties, we firstly distinguish two distinct types of
outcomes for any τ . A success outcome occurs when all agents in pa(τ) succeed
in achieving their respective subgoals. A special case of a success outcome is
when the common goal has been achieved. In such a case the success outcome
is also a goal state. Whenever we do not have a success outcome, we say that
we have an undesired outcome. Both goal states and undesired outcomes are
regarded as terminal states2.

Based on this distinction, we can now focus on defining a reward-driven online
team planner. In particular, we will introduce a method based on uncertain
information fusion to estimate rewards of team actions. Next, we describe how
the phases of the UCT algorithm are adapted to deal with such team actions.
The subsequent individual planning phase (Sect. 4.3) describes how each agent
accurately plans to pursue its assigned subgoal, taking account of its probabilities
of action outcomes.

Reward Estimation at Team Level. In UCT, a reward function assigns a
value to the terminal state encountered at the end of a rollout before it is back-
propagated: the greater this value, the more rewarding the outcome is deemed.
Below we introduce a collective reward function that allows to preserve a reduced
branching factor in the search tree by summarising all possible forms of unde-
sired outcome into one. This general function must be instantiated to suit the
specific scenario tackled.

Definition 4. Let EF (⊂ E) be a set of all undesired outcomes and EG a set of
all goal states, as defined in Sect. 4.1. The set of all terminal states is given by
EG ∪ EF = ET , and Eτ ⊂ EF is the set of all the possible undesired outcomes
εF of τ . We propose summarising such outcomes as one in the search tree,
therefore Eτ is deemed as a single terminal state hereinafter for the reward com-
putation of undesired outcomes. We define a reward function f as a mapping
f : ET → [−1, 1]\{0}, with the following properties:

(i) f(εG) > 0, ∀εG ∈ EG, i.e. arriving at a goal state always produces a positive
reward value.

(ii) f(Eτ ) < 0, ∀Eτ ⊂ EF , i.e. arriving at any undesired outcome always pro-
duces a negative reward value.

2 Undesired outcomes are considered as terminal states: if an unexpected situation is
encountered, the remaining agents start another planning process upon the resulting
environment state.
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(iii) Let d ∈ N be the depth level at which the terminal state is encountered.
Assume two identical terminal states ε1, ε2 can be reached at depth d1 and
d2 respectively, with d1 < d2. Then f(ε1) ≥ f(ε2).

The computation of f(Eτ ) < 0 (property (ii)) is based on the aggregation
of information related to each form of undesired outcome εF ∈ Eτ , as explained
below. It follows from property (iii) that similar goal states lead to an equal or
higher reward when they are encountered after a lower number of consecutive
team actions. Similarly, undesired outcomes are equally or less detrimental when
encountered earlier. A discount factor δ ∈]0, 1[ can be applied in f to reflect this
property.

The reward value for an undesired outcome of τ is defined as follows. Based
on each εF ∈ Eτ , two indicators ϕ(εF ), γ(εF ) ∈ [0, 1] are introduced for resp.
(i) the number of agents in the team who fail to accomplish their subgoal σi

in τ , |fa(τ)|, with respect to the total number of participating agents; and (ii)
the resulting “distance” to the (closest) goal state. The former is computed
as ϕ(εF ) = |fa(τ)|/|pa(τ)|, whereas the latter is domain-dependent. For our
scenario, it is calculated based on the number of remaining boulders when εF

occurs, i.e. γ(εF ) = #remaining/#boulders.
In addition, |Eτ | is the total number of possible undesired outcomes εF of τ .

This parameter is calculated in our scenario as |Eτ | = 2|pa(τ)| − 1, because the
number of possible outcomes only depends on the (possible subsets of) agents
in pa(τ) which fail in achieving their assigned subgoal. Hence, f(Eτ ) is defined
as follows:

f(Eτ ) = −δd−1

∑
εF ∈Eτ

U (ϕ(εF ), γ(εF ))
|Eτ | (1)

with U : [0, 1]2 → [0, 1] a uninorm aggregation function [22], that combines the
two indicators ϕ, γ into a single value (as explained below). The fusion procedure
applied in Eq. (1) for reward computation eliminates the need for splitting unde-
sired outcomes into multiple leaf nodes. This significantly simplifies the search
tree constructed.

Uninorm aggregation functions are a generalisation of t-norm and t-conorm
functions [22] with a neutral element g ∈]0, 1[, fulfilling the full reinforcement
property, i.e. if the two values to aggregate x, y ∈ [0, 1] are both higher (resp.
lower) than g, then the aggregated result becomes even higher (resp. lower).
Conversely, they present a compensating (averaging) behaviour if one of the
values is high and the other is low. The reinforcement property is particularly
interesting in the application domains considered in this paper to emphasise
situations when:

(i) There are few remaining agents, far away from reaching their goal, in which
case both ϕ and γ are high and the aggregated value is reinforced upwards.

(ii) Most agents still remain and they are close to the goal, in which case ϕ, γ
are low and the aggregated value is reinforced downwards.

The use of uninorm functions affects therefore the assessment of single undesired
outcomes εF ∈ Eτ in the two cases outlined above. Because of the minus sign in



Two-Stage Online Collaborative Multi-agent Planning Under Uncertainty 223

Eq. (1), in our context U behaves as a cost function: the higher its value for a
given outcome εF ∈ Eτ , the less rewarding this outcome is, hence the lower the
resulting f(Eτ ) will be. An example of these functions is the cross-ratio uninorm
with g=0.5 [7]:

U(x, y) =

{
0 (x, y) ∈ {(0, 1), (1, 0)},
xy

xy+(1−x)(1−y)
otherwise. (2)

Regarding reward computation for goal states, since we consider problems
where all agents share a common goal, the reward function for any εG ∈ EG

can be simply defined as f(εG) = δd−1, i.e. the sooner the goal is accomplished
(lower d), the less resources are consumed by agents to reach it, hence the more
beneficial the outcome is.

Example 3. Assume the current state of the environment in the country park
scenario is given by N(ε0) = 〈{at(1, n), at(2, k), at(3,−)};j ∧m〉, which means
that robots 1 and 2 are active and situated in ’n’ and ’k’ respectively, whereas 3
already fell off a trail, and the only remaining boulders are located in ’j’ and ’m’.
One of the available team actions for pa(τ) = {1, 2} is τ = {at(1,m), at(2, j)},
whose completion intuitively implies achieving the overall team goal, in which
case d = 1 and f(εG) = δd−1 = 1,∀δ. The reward of reaching the undesired
outcome is computed based on Eqs. (1) and (2):

f(Eτ ) = −U(0.5, 0.33) + U(0.5, 0.33) + U(1, 0.66)
3

= −0.55

��

UCT-based Search Process at Team Level. Assuming that a team action
can either lead to a success outcome, or to a(n) (summarised) undesired outcome,
the collective search tree structure is adapted as follows: every edge representing
a team action leads to a node pair formed by the decision nodes associated to the
success outcome and the undesired outcome (see Fig. 5). The latter is regarded
as a leaf node (terminal state), as explained earlier. If, however, the success
outcome of the node pair does not represent a goal state, it can be expanded
into a number of next available team actions at that state.

The backpropagation process is now adapted to the proposed node pair struc-
ture. We firstly explain how rewards are updated through nodes generated dur-
ing rollout, up to the last expanded node. Rewards throughout the rollout path
cannot be accurately calculated, since a team action τj immediately taken at a
non-terminal state can eventually lead to different terminal states with varying
rewards. Notwithstanding, it is possible to estimate the “best and worst possible
scenario” that might be encountered at any state in the rollout path. In other
words, given a state ε in the rollout path, we can estimate the highest (resp.
lowest) reward that could be eventually achieved after applying a number of
team actions posterior to ε. Based on this, we propose modeling the reward of a
non-terminal state εS ∈ E\ET as an interval, f(εS) = f(τj) = [f(τj)−, f(τj)+],
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with f(τj)− ∈ [−1, 0[ and f(τj)+ ∈]0, 1]. Here, τj is the (unique) team action
generated upon εS during rollout, therefore the interval-valued reward is easily
calculated as:

f(τj) = [ min
τk�τj

f(Eτk
), f(εG)] (3)

where τk � τj represents all rollout actions τk posterior to τj . The shaded area
in Fig. 6 illustrates backpropagation through rollout nodes up to N(ε1).

Fig. 5. UCT-based search in team planning Fig. 6. Team planner backpropa-
gation

Backpropagation between the last expanded node and the root node updates
rewards and also increases the visit count for nodes in the path. However, given
a node N(ε′

S) resulting from applying τj at a previous state εS , the reward
interval backpropagated to N(εS) is not necessarily f(τj), but instead that of
the most rewarding action available at εS . It is therefore necessary to compare
the interval-valued rewards of all available actions at εS and backpropagate the
highest one. To do this, the method in [17] to calculate the preference degree
between intervals of real numbers is utilised:

P (τj > τk) =
max(0, f+

j −f−
k )−max(0, f−

j −f+
k )

(f+
j −f−

j )+(f+
k −f−

k )
(4)

where interval bounds f(τj)− are denoted as f−
j for simplicity. This allows

to determine the most rewarding available action τ∗ at εS . Rewards f(εS) =
[f(εS)−, f(εS)+] are then updated based on the number of visits its correspond-
ing node received so far:

f(εS)− =
f(τ∗)−+#visits · f(εS)−

old

#visits + 1
f(εS)+=

f(τ∗)++#visits · f(εS)+old

#visits + 1
(5)
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In Fig. 6, τ3 is more rewarding than the team action in the backpropagation
path, τ1. Therefore, rewards in N(ε0) are updated based on f(τ3) = [−0.2, 0.5].

After a number of iterations, the best next team action τ = {σi, i ∈ pa(τ)} is
returned. The team planner then delegates the subgoal σi into each participating
agent i, which proceeds to the individual planning phase to pursue the assigned
subgoal.

4.3 Individual Planning

The online approach utilised for the individual planning phase is a standard
UCT-based approach with multiple reward rollouts at each iteration. We dis-
tinguish two types of nodes between which the algorithm alternates during con-
struction of the tree: decision nodes and chance nodes. The latter represent
available primitive actions at the state described by their parent decision node.
Each chance node has in turn a number of children decision nodes, one for each
possible action outcome. The tree structure is represented in Fig. 7.

Fig. 7. Individual search tree structure and rollout-backpropagation after expanding
into a3

i

When a decision node N(εi) is expanded, a child chance node representing
one of the available actions at that state is generated. New decision nodes for
the outcomes of the newly generated chance node are also added to the tree. The
subsequent rollout phase of UCT is modified so that, at each iteration of the algo-
rithm, a number r of rollouts are carried out for each non-terminal outcome3.
This allows to quickly obtain accurate reward estimates for the state from which
rollouts are being currently performed, as well as thoroughly exploring the differ-
ent courses of action available from each outcome. Each rollout takes place until
a terminal state (either subgoal achievement or failure) is encountered, and it is
followed by the backpropagation and cumulation of the reward obtained up to
the root node. The reward value of every individual fail state εi

F is instantiated

3 In the country park scenario, primitive actions have at most one non-terminal out-
come, but this could not be the case in other different scenarios with multiple sto-
chastic action outcomes.
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as f(εi
F ) = −1, as failing any primitive action in our scenario implies that the

agent is no longer available. On the other hand, for an individual (sub)goal state
εG we again have f(εi

G) = δd−1. The reward update process between the last
expanded node and the root node is applied differently for each type of node
(see Fig. 7):

1. Chance node: The reward f(ak
i ) ∈ [−1, 1] of a chance node associated to ak

i

is calculated as the probability-weighted mean of its outcomes’ rewards.
2. Decision node: Rewards of decision nodes are updated similarly as explained

in the team planner, with the only difference that individual rewards of non-
terminal states are real values instead of intervals. Assuming that a∗

i is the
most rewarding available action at εi, the reward in N(εi) is updated as
follows:

f(εi) =
f(a∗

i ) + #visits · f(εi)old

#visits + 1
(6)

5 Experiments and Results

In this section we demonstrate the performance of the proposed multi-agent
planner. Throughout the evaluation, we refer to the country park scenario from
Sect. 3, and the problem formulation shown in Fig. 2. To evaluate the perfor-
mance of our proposed two-stage multi-agent planner, we consider the following
two baselines:

1. one-stage multi-agent planner : this baseline coincides with a fully centralised
planner, which controls the actions of each individual agent. We implemented
this baseline as a simplification of our proposed planning framework, where
the team planner directly plans over primitive actions of agents. Team actions
are thus composed of primitive actions instead of subgoals.

2. multiple agents planning individually : each agent plans independently and
individually for the primitive actions to achieve the overall goal of clearing all
boulders from PoIs. In this baseline there is no coordination schema amongst
agents. To make the baseline more goal-aware, agents do communicate with
each other to update their environmental information when necessary, e.g. if
a PoI has been cleared.

In the experiment we pit our novel two-stage multi-agent planner against both
baselines as discussed above. Each approach is used to solve 100 instances of the
park scenario (see Fig. 2). The following metrics are subsequently considered:

(i) %success: percentage of executions in which the goal is achieved (higher is

better);
(ii) #actions: total number of primitive actions undertaken by all agents per

execution, before achieving the goal or failing to complete it (lower is better).

The first metric gives an indication of how good each approach is in tackling
this particular scenario, whereas the second metric gives an indication of the
temporal complexity of the solutions found by each method.
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Table 1. Comparison of success rate and average number of primitive actions

Two-stage One-stage Individually

% Success 85 62 52

Avg. # actions 15.96 21.68 34.63

Table 1 summarises the resulting values of each metric for the three planning
approaches being compared. Figure 8 depicts the value of #actions obtained by
the proposed planner for each execution, compared to those obtained by the two
baseline planning approaches. Our results show that a team of agents coordinated
by the proposed two-stage framework and acting in parallel outperform both
baseline approaches, in terms of the temporal cost (number of required primitive
actions) to reach the goal (particularly compared to the individual planning
baseline); along with a significant increase in the planning robustness, i.e. the
chances of successfully reaching the common goal. Based on these results, we
conclude that our two-stage online multi-agent planning approach endowed with
a subgoal delegation mechanism allows for higher robustness and lower cost in
the planning domains under uncertainty considered. Furthermore, in the scenario
considered, the inclusion of a subgoal delegation scheme intuitively allows for a
significant reduction in search space, compared to planning at team level over
primitive actions directly.

Fig. 8. Comparison of the number of primitive actions (ordered from most to least)
undertaken by agents per execution
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6 Conclusions

In this paper, we have presented a two-stage online collaborative multi-agent
planner for application domains where agent actions have uncertain stochastic
effects. The proposed planner interleaves team and individual online planning
through a subgoal delegation scheme, and extends state-of-the-art approximate
algorithms to suit the characteristics of the planning problems considered. The
proposed framework estimates rewards of action outcomes at team level, by using
uncertain information fusion procedures, to determine the next best subgoals to
be individually pursed by each agent in the team. Future lines of investigation
aim at developing data-driven online team planning approaches that enable pre-
cise estimations of outcome probabilities of team actions alongside rewards, and
the integration of prunning policies in both planning stages.

Acknowledgments. This work has been funded by EPSRC PACES project (Ref:
EP/J012149/1).
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Abstract. Repair-based techniques are a standard way of dealing with
inconsistency in the context of ontology-based data access where several
inconsistency-tolerant semantics have been mainly proposed for light-
weight description logics. In this paper we present a generic transforma-
tion from knowledge bases expressed within existential rules formalism
into an ASP program. We propose different strategies for this transfor-
mation, and highlight the ones for which answer sets of the generated
program correspond to various kinds of repairs used in inconsistency-
tolerant inferences.

1 Introduction

Dealing with inconsistency in ontology-based query answering is one of the
challenging problems that received a lot of attention in recent years, (e.g.
[2,7,11,17]). In such a setting, inconsistency problem comes from the data, i.e.
occurs when assertional facts contradict constraints imposed by the ontologi-
cal knowledge. In case of inconsistency, standard inference is meaningless: All
queries would be positively answered. In this paper we focus on the mainstream
approach that considers that the ontology, built by experts, is correct, and that
only data has to be repaired. Other approaches (e.g. [20]) rely upon the assump-
tion that the database is reliable but the rules are not. The latter assumption
will not be explored in this paper and left for future work.

Many works (e.g. [12,16,18]), basically inspired by the approaches proposed
in database area (e.g. [1,9]) and in propositional logic (e.g. [8]), deal with incon-
sistency by proposing several inconsistency-tolerant inferences, called semantics.
These semantics are based on the notion of assertional base repair which is closely
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related to the notion of database repair [16] or maximally consistent subbase
used in the propositional logic setting. An ABox repair is simply an assertional
subbase which is consistent with an ontology. Ontology-based consistent query
answering (AR-semantics) [16] comes down first to compute the set of repairs
(i.e. all possible maximally consistent subsets of facts consistent with the onto-
logical knowledge) and then to check to which extent a query can be entailed
using these repairs. As shown in [10,16], the AR-semantics (also called universal
entailment) is a hard task (co-NP complete) for lightweight DLs [16,19]. In fact,
inconsistency-tolerant semantics were introduced for the lightweight description
logics DL-Lite (e.g. [16]), and later extended to other description logics (e.g.
[19]) or existential rules (e.g. [17]). In this paper, we use existential rules (e.g.
[5]) (also called Datalog +/−) as ontology language that generalizes lightweight
description logics, such as DL-Lite and EL by allowing the use of any predicate
arity as well as cyclic structures.

Recently the ASP framework [6], a convenient paradigm for knowledge rep-
resentation and reasoning, especially when information is incomplete, has been
enriched in order to deal with existential variables [13]. ∃-ASP is a fragment of
ASP that generalises skolemized existential rules. It allows for enriching light-
weight description logics with non-monotonic features, and benefits from decid-
ability results obtained for existential rules. ∃-ASP has been naturally imple-
mented on top of the ASP solver ASPeRiX1, which does not rely on preliminary
grounding to compute answer sets [14,15].

The paper first recalls the logical frameworks used in this paper: Existential
rules in Sect. 2, ∃-ASP in Sect. 3, and the best known notions of repair in Sect. 4.
Our contribution is presented in Sect. 5. We present a generic transformation
from knowledge bases expressed within existential rules formalism into an ASP
program. We propose different strategies for this transformation, and highlight
the ones for which answer sets of the generated program correspond to various
kinds of repairs used in inconsistency-tolerant inferences. The sound and com-
plete ∃-ASP algorithm which is central to ASPeRiX computations will be used
to prove the one-to-one correspondence between the answer sets of the generated
program and the knowledge base repairs.

2 Existential Rules

We consider a vocabulary V consisting of three disjoint sets, the set P of predicate
names, the set F of function symbols (each provided with an arity) and the set
C of constants. Disjoint with V, we also consider a set X of variables. In what
follows, constants will be notated in lowercase and variables in uppercase. The
set of terms is defined inductively as follows: Constants and variables alike are
terms, and if f ∈ F is a function symbol of arity k and t1, . . . , tp are terms, then
f(t1, . . . , tp) is also a term. An atom is an object of form p(t1, . . . , tk), where p
is a predicate name of arity k and the ti are terms. An atom is said basic when
none of its terms involve any function symbol, and is said grounded when no
1 Available at http://www.info.univ-angers.fr/pub/claire/asperix/.

http://www.info.univ-angers.fr/pub/claire/asperix/
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variable is used to define any of its terms. A set of atoms is said basic (resp.
grounded) when all its atoms are basic (resp. grounded).

Homomorphisms. A substitution is a mapping σ from a set of variables to a
set of terms. If A is a set of atoms and σ is a substitution, we note σ(A) the
set of atoms obtained, for each variable x appearing both in an atom of A and
the domain of σ, by replacing non-recursively each occurence of x in A by σ(x).
For example, let A = {p(f(X,Y ), Z), q(X, a)} and σ : X �→ f(X, a), Y �→ X.
Then σ(A) = {p(f(f(X, a),X), Z), q(f(X, a), a)}. Let F and Q be two sets of
atoms. A homomorphism from Q to F is a substitution σ such that σ(Q) ⊆ F . If
we note φ(A) the first-order logics (FOL) formula obtained by the conjunction
of the atoms in A, and Φ(A) the existential closure of φ(A), it is well known
that Φ(F ) |= Φ(Q) iff there exists a homomorphism from Q to F . Let σ be a
bijective substitution from the variables of F to a fresh set of constants (that
appear neither in F nor in Q). The ground set of atoms σ(F ) is called a grounding
of F and it holds that Φ(F ) |= Φ(Q) iff Φ(σ(F )) |= Φ(Q).

Existential Rules. An existential rule is of form B → H where both the
body B and the head H are sets of basic atoms. We often note such a rule
B[X,Y ] → H[Y ,Z], where the variables in X are those that appear only in
the body, the variables in Y (called the frontier) are those that appear both in
the body and the head, and those in Z (called existential variables) are those that
appear only in the head. The FOL formula associated with this existential rule
is ∀X∀Y (φ(B) → (∃Zφ(H))). For example, the FOL formula associated with
p(X,Y ), r(X,Y ′, a) → r(Y, Y ′, Z), p(Z,Z ′) is ∀X∀Y ∀Y ′(p(X,Y )∧r(X,Y ′, a) →
(∃Z∃Z ′r(Y, Y ′, Z) ∧ p(Z,Z ′))). Let R = B → H be a rule with frontier Y
and existential variables Z. Let us consider a substitution σR that maps each
existential variable Z ∈ Z to a functional term fR

z (Y ). Then we say that sk(R) =
B → σR(H) is a skolemization of R. Let R be the rule given in the example, then
sk(R) = p(X,Y ), r(X,Y ′, a) → r(Y, Y ′, fR

Z (Y, Y ′)), p(fR
Z (Y, Y ′), fR

Z′(Y, Y ′)).

Derivations. Consider now a set of atoms F and a skolemized existential
rule R = B → H. We say that R is applicable to F when there exists
a homomorphism σ from B to F . In that case, the application of R on
F according to σ produces a set of atoms α(F,R, σ) = F ∪ σ(H). Note
that when F is ground, α(F,R, σ) is also ground. Let R be the rule given
in the previous example, and F = p(a, g(b)), r(a, g(b), a). The substitution
σ : X �→ a, Y �→ g(b), Y ′ �→ g(b) is a homomorphism from B to F and
α(F,R, σ) = F ∪ {r(g(b), g(b), fR

Z (g(b), g(b))), p(fR
Z (g(b), g(b)), fR

Z′(g(b), g(b)))}.
Let F be a set of atoms and R be a set of rules. A R-derivation from F

is a (possibly infinite) sequence F = F0, F1, . . . , Fi, . . . such that, ∀i > 0, there
exists a rule R = B → H ∈ R and a homomorphism σ from B to Fi−1 such
that Fi = α(Fi−1, R, σ). The result of a finite derivation F0, . . . , Fk is the set
of atoms Fk, when it is infinite we define it as the (infinite) union of all Fi.
A derivation is said full when, for every rule R = B → H ∈ R, for every
homomorphism σ from B to its result, there exists some Fi in the derivation
such that Fi+1 = α(Fi, R, σ). Any full R-derivation on F produces the same
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result, and we call that result the R-closure of F and note it ClR(F ) (or simply
Cl(F ) when there is no ambiguity on R). When we consider a set Π = F ∪ R
as a program (as in Sect. 3), we note Cl(Π) = ClR(F ).

Theorem 1. Let F and Q be two set of atoms, and R be a set of existential
rules. We note Fg a grounding of F and Rsk the skolemization of R. Then
ClRsk

(Fg) is a universal model, i.e., F,R |= Q iff there is a homomorphism
from Q to ClRsk

(Fg).

Skolem Chase. Deciding whether or not F,R |= Q is undecidable. However,
for all positive instances of the problem, a homomorphism from Q to ClRsk

(Fg)
can be found after finitely many steps of a breadth first derivation. Such a
derivation is called the skolem chase. For a more precise relationship between the
skolem chase and other chases found in the litterature, the reader can refer to [4].
A lot of work has been devoted to predicting that the chase will stop. Acyclicity
conditions on a set of existential rules such as the ones presented in [3] ensure
that the closure ClRsk

(Fg) will be finite.

3 Existential ASP

Syntax. An existential ASP (∃-ASP) rule is of form H ← B+, notB−
1 , . . . , not

B−
k where the positive body B+, the negative bodies B− and the head H are

sets of basic atoms. Intuitively, such a rule means “if the positive body is
verified, and none of the negative bodies are, then we can conclude with the
head”. To make our definitions easier to read, and without loss of general-
ity (see the safety condition in [13]), we consider that all variables appearing
in negative bodies also appear in the positive body. An ∃-ASP program is a
set ΠF of basic atoms and a set ΠR of ∃-ASP rules. As for existential rules,
we can skolemize ∃-ASP rules respecting the safety condition as follows: The
skolemization of the previous rule results in σ(H) ← B+, notB−

1 , . . . , notB−
k ,

where σ(H) ← B+ is the skolemization of H ← B+, as defined for exis-
tential rules. The skolemization of an ∃-ASP program is defined by the
grounding of ΠF and the skolemization of ΠR. For example, let r(X,Z) ←
p(X,Y ), not q(X), not (r(Y, a), r(a, b)) be an existential ASP rule. Its skolemiza-
tion is r(X, fR

Z (X)) ← p(X,Y ), not q(X), not(r(Y, a), r(a, b)).
Note that the skolemization of an existential ASP program (without function

symbol) is a standard ASP program with function symbols.

Semantics. In what follows we consider Π an ASP program obtained from a
skolemized existential ASP program. Let CΠ be the set of constants appearing
in Π and FΠ be the set of function symbols appearing in Π. The Herbrand
domain of Π is the minimal set of ground terms HΠ such that CΠ ⊆ HΠ

and, if f ∈ FΠ is a function symbol of arity k and h1, . . . , hk are in HΠ , then
f(h1, . . . , hk) is also in HΠ . If R = H ← B+, notB−

1 , . . . , notB−
k is a rule

in Π and σ is a substitution from all its variables in to HΠ , then the rule
σ(R) = σ(H) ← σ(B+), not σ(B−

1 ), . . . , not σ(B−
k ) is a grounding of R. The
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grounding of a program Π is the program obtained from all possible groundings
of all rules in Π. Not that the Herbrand domain (and thus the grounding) of a
finite Π is infinite as soon as Π contains a constant and a predicate symbol of
arity ≥ 1. Let us now consider the grounding ΠG of Π and a (possibly infinite)
set of ground atoms E. The reduct of ΠG with respect to E, denoted ΠG

|E , is the
minimal set that contains all (ground) atoms of ΠG and, for each skolemized
∃-ASP rule R = H ← B+, notB−

1 , . . . , notB−
k in ΠG, if there is no B−

i such
that B−

i ⊆ E, then H ← B+ (called the positive part of R) is a skolemized
existential rule of ΠG

|E .
Finally, E is an answer set (stable model) of Π when E = Cl(ΠG

|E). We
define the answer sets of an existential ASP program as the answer sets of
its skolemization. Note that it is not a neutral choice, for a semantic point of
view (see the discussion in [4] where using different chases can lead to different
semantics and different answer sets).

Computation. Given an ASP program Π, most solvers rely upon a 2-step algo-
rithm that first compute the grounding ΠG of Π, then use ΠG to build an answer
set E (using for instance a SAT solver). However, the grounding becomes infinite
as soon as function symbols (such as the ones obtained from our skolemization)
are involved. Some solvers can try to extract from the grounding rules that have
no chance to be involved in the second step, but doing that optimally would
require to compute that second step, making the 2-steps separation useless. On
the other hand, the ASP solver ASPeRiX [14,15] does not require grounding
to compute answer sets (indeed, using homomorphisms during the computation
is equivalent to generate the grounding effectively required at that step of a
computation). Since our proofs in Sect. 5 heavily rely upon the soundness and
completeness of that algorithm, we explain here its basic version.

In ASPeRiX, given a skolemized existential ASP program Π, a computation is
an incremental development of a (possibly infinite) binary tree. Each node of this
tree contains 3 fields: in is the set of ground atoms that have been proven in the
current branch, out is a set of forbidden sets of ground atoms, and mbt (Must
Be True) is a set of mandatory disjunctions of sets of ground atoms. Initially, the
tree contains a single node, its root, whose IN field contains all ground atoms
of Π, and whose fields out and mbt are empty. At each step, the computation
selects a leaf n of the tree and a rule R = H ← B+, notB−

1 , . . . , notB−
k such that

there exists a homomorphism σ from B+ to in(n) and (R, σ) has not already
been evaluated on n nor on any of its ancestors. Now we say that (R, σ) is
evaluated on n and there is 3 possible outcomes. Blocked case: If there exists
a negative body B−

i in R such that σ(B−
i ) ⊆in(n), meaning that one of the

negative bodies appears in in(n), then this step produces nothing (but marks
this evaluation as done). Positive case: If R = H ← B+ contains no negative
body, then we update in(n) with the result of the rule application, and do not
change out nor mbt. Then in(n) = α(in(n), R, σ) =in(n)∪σ(H). Choice case:
otherwise we create two children n1 and n2 of n. In n1 we effectively apply the
rule and forbid its negative bodies to appear in the final result, in n2 we must
prove that we have the right not to apply it by finding one of the negative bodies
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in the final result. Then in(n1) = α(in(n), R, σ) =in(n) ∪ σ(H), out(n1) is the
set of sets of atoms whose elements are those of out(n) and the k sets of atoms
σ(B−

i ), for 1 ≤ i ≤ k, mbt(n1) =mbt(n) and in(n2) =in(n), out(n2) =out(n),
and mbt(n2) is the set of disjunctions of sets of atoms whose elements are those
of mbt(n) and the disjunction ∨1≤i≤k σ(B−

i ).
Consider a (possibly infinite) branch of this tree. Similarly to what was done

for derivations, we define the result of that branch as the (possibly infinite)
union, for all nodes n in that branch, of the in(n). When such a branch is finite,
its result is in(l), where l is the leaf of the branch. A branch is said full when, for
every rule R and every homomorphism σ from B+ to the result of the branch,
(R, σ) has been evaluated on some node of the branch. If n is a node of a branch
and B is a set of atoms, we say that B satisfies out(n) when, for every set of
atoms O ∈out(n), O �⊆ B. In the same way, we say that B satisfies mbt(n)
when, for every disjunction M1 ∨ . . . ∨ Mk ∈mbt(n), there exists a Mi such that
Mi ⊆ B. A branch is said out-valid (resp. mbt-valid) when its result satisfies
out(n) (resp. mbt-(n)) for every node n in the branch. A branch that is both
out-valid and mbt-valid is said valid.

Theorem 2. Let Π be a skolemized existential ASP program. Then A is an answer
set of Π iff A is the result of a full valid branch in the computation of Π.

Properties. It is first important to note that, when the positive part of rules
satisfy the acyclicity conditions presented in [4], then the computation produces
a finite tree. In that case, validity of a branch with leaf l admits a simpler
characterization: A branch is out-valid (resp. mbt-valid) when in(l) satisfies
out(l) (resp. mbt(l)).

Then we point out the monotonic increase of the field in: If a node n′ is
a descendant of a n, then in(n) ⊆in(n′). It follows that if there is a node n
such that in(n) does not satisfy out(n), then no branch containing n is out-
valid, so we can cut the development of the computation tree for node n. Such
an optimization is more difficult to achieve using the mbt field, to stop the
development of the computation tree for node n, we have to prove that there
exists a disjunction M1∨ . . .∨Mk ∈mbt(n) and a set of atoms Mi that will never
be contained in the in field of any descendant of n. Simple arguments achieve
that goal in the ASP programs we generate in Sect. 5.

4 The Notion of Repair

We now recall the definitions of repairs [1,10,16] rephrased within the frame-
work of existential rules. Let K = (F,R,N ) be a knowledge base where F is a
set of ground atoms, R is a set of existential rules, and N is a set of negative
constraints, i.e. a set of rules of form ⊥ ← B where B is a set of basic atoms
and ⊥ is the absurd symbol. We say that a set of atoms Y is consistent w.r.t.
(R,N ) when (F,R,N ) �|= ⊥, i.e. when Cl(Y,R ∪ N ) does not contain ⊥. Our
knowledge base is thus consistent when F is consistent w.r.t. (R,N ). Differ-
ent kind of repairs can be considered when the knowledge base is inconsistent.
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(Standard) repairs: A repair of K is an inclusion-maximal subset F ′ of F
that is consistent w.r.t. (R,N ), and we note F ′ ∈ R(K). Closed repairs: If X
is a set of atoms, we call ground positive closure of X and note g+Cl(X) the
restriction of Cl(X,R) to basic ground atoms (whose terms are only constants,
and not obtained with function symbols). A closed repair of K is a set of basic
ground atoms F ′′ = g+Cl(F ′), where F ′ is a standard repair of K, and we note
F ′′ ∈ CR(K). Repairs of closure: A repair of the closure of K is a standard
repair F ′ of (g+Cl(F,R),R,N ), and we note F ′ ∈ RC(K).

Recently a unified framework combining modifiers (way of computing the
repairs) and inferences strategies has been proposed for querying ontological
knowledge bases represented with existential rules [2]. This framework covers
the best known semantics and introduces new ones. The semantics are denoted
by 〈◦i, s〉 where ◦i is a modifier and s ∈ {∀,∃,∩,maj} is an inference strategy.
Within this framework ◦1 computes the set of repairs, ◦5 computes the closed
repairs and ◦7 computes the repairs of the closure.

5 Computing Repairs with ∃-ASP

In this section we describe the transformation from a knowledge base K into
a generic ∃-ASP program Π. Though this program computes “repairs” in the
broad sense, two configurable modules (namely selection and display) are used
to obtain the intended behaviour. In particular, we show that, given specific
rules, this program can compute the repairs, the closed repairs or the repairs of
the closure of K. This transformation relies upon the following steps: (1) K is
put into its skolemized form, (2) the user selects either the select or the display
transformation scheme, (3) the transformation builds the program Π, using an
extended vocabulary, (4) we use an ASP solver to compute the answer sets of
Π, (5) the restriction of those answer sets to the original vocabulary provides
the “repairs”.

5.1 Transformation into ∃-ASP

Our knowledge base is built upon an original vocabulary V. For every predicate
name p ∈ V, we consider different versions of p that will be used in the extended
vocabulary of our ∃-ASP program: pi for initial predicate, pp for possible predi-
cate, pn for forbidden predicate, pc for chosen predicate, ps for may be selected
predicate, pv for valid predicate, pg for ground predicate, and pd for display
predicate. If A is a set of atoms built upon the original vocabulary, we note Ax

the set of atoms px(t) built upon the extended vocabulary where p(t) is an atom
of A. The ∃-ASP program Π is obtained as follows:

Encoding of Initial Facts: Π contains Fi (every atom of F is considered as
an initial fact of the program Π).
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Encoding of Positive Closure: For every predicate name in V, we have a
rule of form [P1:] pp(X) ← pi(X), those rules assert that every initial atom
is possible; and for every rule B(X) → H(X,Y ) in Rsk, we have a rule of
form [R1:] Hp(X,Y ), fct(Y1), · · · , fct(Yk) ← Bp(X) where the Yi are the
functional terms of the head of the skolemized rule, those rules are used to encode
the positive closure Cl(F,R) with possible atoms, and to “mark” functional
terms. Finally, for every predicate name p ∈ V, we have a rule of form [P2:]
pg(X) ← pp(X), notfct(X1), · · · notfct(Xk) asserting that every possible atom
using no functional term is ground.

Selection Strategy: Those configurable rules provide the user strategy to define
which atoms (of form ps) are selectable, i.e. can appear or not in the “repairs”.
We provide here two such strategies: SEL1 says that every initial atom is
selectable. For every predicate name p ∈ V, we have a rule [S1:] ps(X) ← pi(X).
SEL2 says that every ground possible atom is selectable. For every predicate
name p ∈ V, we have a rule [S2:] ps(X) ← pg(X).

Choice Rules: These rules are the core of our program, since they will build all
possible subsets of selectable atoms. They say that every atom that is selectable
and not forbidden must be chosen. [P3:] pc(X) ← ps(X), not pn(X).

Definition of Contexts: For every atom p(t), the atom pv(t, c) asserts that
p(t) is valid in the context c. All chosen atoms are valid in the base con-
text. This is encoded, for each predicate name p ∈ V, by the rule [P4:]
pv(X, base) ← pc(X). An atom p(t) that is not chosen will be valid in its
own context, encoded by the term ctx(p, t). This is encoded, for each predicate
name p ∈ V, by the rule [P5:] pv(X, ctx(p,X)), context(ctx(p,X)) ← ps(X),
not pc(X). Finally, we say that every atom valid in the base context is also
valid in any other context. For each predicate name p ∈ V, we have the rule
[P6:] pv(X, C) ← pv(X, base), context(C). The base context encodes the chosen
atoms. Every other context encodes the adding of one particular unchosen atom
to the already chosen ones. Intuitively, to obtain a repair we will have to prove
that the base context is consistent and that all other contexts are not, meaning
that the base context is maximal.

Context Closure: Every atom that can be deduced from those valid in a parti-
cular context will also be valid in that context. For every skolemized existential
rule of the form B(X) → H(X), we obtain the rule [R2:] Hv(X, C) ← Bv(X,
C). Then we say that if a constraint is violated in a given context, then that
context is absurd. For any constraint in N of the form p1(X1), · · · , pk(Xk) → ⊥
we add the rule of form [C1:] absurd(C) ← p1v(X1, C), · · · , pk

v(Xk, C).

Retropropagation of Absurd Contexts: Finally, we say that if the base
context is absurd, then every atom valid in that context is forbidden. For every
predicate p ∈ V, we have the rule [C2:] pn(X) ← pc(X), absurd(base). For
other absurd contexts, only selectable unchosen atoms of that specific context
are forbidden. For every predicate p ∈ V, we have the rule [C3:] pn(X) ←
not pc(X), ps(X), pv(X, C), context(C), absurd(C).
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Visualization Strategy: Those configurable rules provide the user strategy to
define which atoms (of form pd) are displayable, i.e. can appear or not in the
visualization of the “repairs”. Whatever the strategy chosen, only displayable
atoms that are valid in the base context will be displayed (i.e. added using
the original vocabulary). This is encoded, for each predicate name p ∈ V, by
the rule [D:] p(X) ← pd(X), pv(X, base). We provide here two such strategies:
DISP1 says that every initial atom is displayable. For every predicate name
p ∈ V, we have a rule [V1:] pd(X) ← pi(X). DISP2 says that every ground
possible atom is displayable. For every predicate name p ∈ V, we have a rule
[V2:] pd(X) ← pg(X).

Example 1. Let K = (F ,R,N ) be a knowledge base such that F = {p(a), q(a)},
Rsk = {p(X) → r(X, f(X)), q(X) → s(X), r(X,Y ) → t(X)} and N =
{r(X,Y ), q(X) → ⊥}. The original vocabulary of K contains the predicate names
{p, q, r, t}.
The initial facts are pi(a). and qi(a).
The rules encoding the positive closure are those of form P1 for ini-
tialization (we restricted those to the predicates appearing in initial form):
pp(X) ← pi(X). and qp(X) ← qi(X)., those of form R1 for propaga-
tion: rp(X, f(X)), fct(f(X)) ← pp(X). sp(X) ← qp(X). tp(X) ← rp(X,Y ).
and those of form P2 to detect ground atoms: pg(X) ← pp(X), not fct(X).
qg(X) ← qp(X), not fct(X). rg(X,Y ) ← rp(X,Y ), not fct(X), not fct(Y ).
sg(X) ← sp(X), not fct(X). tg(X) ← tp(X), not fct(X).
Two selection strategies are possible. With SEL1 we have: ps(X) ← pi(X).
and qs(X) ← qi(X). With SEL2 we have: ps(X) ← pg(X). qs(X) ← qg(X).
rs(X,Y ) ← rg(X,Y ). ss(X) ← sg(X). and ts(X) ← tg(X).
The choice rules are: pc(X) ← ps(X), not pn(X). qc(X) ← qs(X), not qn(X).
rc(X,Y ) ← rs(X,Y ), not rn(X,Y ). sc(X) ← ss(X), not sn(X). tc(X) ←
ts(X), not tn(X).
For the definition of contexts, we have the rules of form P4 defin-
ing the base context: pv(X, base) ← pc(X). qv(X, base) ← qc(X).
rv(X,Y, base) ← rc(X,Y ). sv(X, base) ← sc(X). tv(X, base) ← tc(X). the
rules of form P5 defining other contexts: pv(X, ctx(p,X)), context(ctx(p,X)) ←
ps(X), not pc(X). qv(X, ctx(q,X)), context(ctx(q,X)) ← qs(X), not qc(X).
rv(X,Y, ctx(r,X, Y )), context(ctx(r,X, Y )) ← rs(X,Y ), not rc(X,Y ).
sv(X, ctx(s,X)), context(ctx(s,X)) ← ss(X), not sc(X). tv(X, ctx(t,X)),
context(ctx(t,X)) ← ts(X), not tc(X). and the rules of form P6 encoding
inheritance of base context: pv(X,C) ← pv(X, base), context(C). qv(X,C) ←
qv(X, base), context(C). rv(X,Y,C) ← rv(X,Y, base), context(C). sv(X,C) ←
sv(X, base), context(C). tv(X,C) ← tv(X, base), context(C).
The context closure will be computed with the rules of form R2:
rv(X, f(X), C) ← pv(X,C). sv(X,C) ← qv(X,C). tv(X,C) ← rv(X,Y,C).
and inconsistencies will be detected by the rule of form C1: absurd(C) ←
rv(X,Y,C), qv(X,C).
Retropropagation of absurd contexts is handled by rules of form C2:
pn(X) ← pc(X), absurd(base). qn(X) ← qc(X), absurd(base). rn(X,Y ) ←
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rc(X,Y ), absurd(base).
sn(X) ← sc(X), absurd(base). tn(X) ← tc(X), absurd(base). and C3: pn(X) ←
not pc(X), ps(X), pv(X,C), context(C), absurd(C). qn(X) ← not qc(X), qs(X),
qv(X,C), context(C), absurd(C). rn(X,Y ) ← not rc(X,Y ), rs(X,Y ), rv(X,Y,
C), context(C), absurd(C). sn(X) ← not sc(X), ss(X), sv(X,C), context(C),
absurd(C). tn(X) ← not tc(X), ts(X), tv(X,C), context(C), absurd(C).
Finally, display rules contain the rules of form D: p(X) ← pd(X), pv(X, base).
q(X) ← qd(X), qv(X, base). r(X,Y ) ← rd(X,Y ), rv(X,Y, base). s(X) ←
sd(X), sv(X, base). t(X) ← td(X), tv(X, base). And the choice of strategy
DISP1 with rules: pd(X) ← pi(X). qd(X) ← qi(X). rd(X,Y ) ← ri(X,Y ).
sd(X) ← si(X). td(X) ← ti(X). or of strategy DISP2 with rules: pd(X) ←
pg(X). qd(X) ← pg(X). rd(X,Y ) ← rg(X,Y ). sd(X) ← sg(X). td(X) ← tg(X).

It is important to note that when the skolem chase halts for the original exis-
tential rules KB (such fragments have been studied for instance in [4]) then the
Skolem chase also halts on the positive part of the generated ASP program, and
thus (see properties in Sect. 3) the ASPeRiX computation generates all answer
sets in finite time.

5.2 General Form of the Computation Tree of Π

Let us now examine what is happening during a computation of such a program
Π. We first point out that we can evaluate rules in a particular order: (1) the
positive closure rules of form P1, (2) those of form R1, (3) those of form P2, (4)
the selection rules, (5) the choice rules P3, (6) the definitions of contexts of form
P4, (7) those of form P5, (8) those of form P6, (9) the context closure of form
R2, (10) and those of form C1, (11) the retropropagation rules C2 and (12) C3,
and (13) the visualisation rules. Indeed, we can check that, if i < j are two of
those steps, no rule evaluated at step j can trigger a new application of a rule
that was evaluated at step i. This will not always be the case with any selection
rules provided by the user, but this property is satisfied by the strategies SEL1
and SEL2 presented here. Among all equivalent computation trees, we will thus
consider those that respect that particular order: The natural computations
of Π.

Proposition 1. Let K = (F ,R,N ) be a knowledge base, and let Π be the ∃-
ASP program obtained from the above encoding. At the end of Step 3 the natural
computation tree corresponding to Π only has one finite branch that could lead
to a full valid branch.

Proof. The computation of Π is a binary tree. Initially the root is s.t IN(root) =
Fi, OUT (root) = ∅,MBT (root) = ∅. After |Fi| applications of the rule P1,
IN(root) = Fi ∪ Fp, since the rule P1 is positive (the negative body of P1 is
empty) OUT (root) and MBT (root) are unchanged. (In the following in case of
positive rule we do not specify that the fields OUT and MBT do not change.)
After a possible infinite number of applications of the rule R1, IN(root) =
Fi∪(Cl(F ,R))p∪{fct(t), t �∈ basic terms of Cl(F)}. We develop the computation



240 J.-F. Baget et al.

tree using the rule P2, starting from the root, for each node n we look for a
homomorphism σ in IN(root) s.t σ(Xi)=ti where ti is a grounded term. Two
cases hold:

– case 1: ∃ti such that fct(ti) ∈ IN(root). This is the blocked case of the
computation tree given in Sect. 3. The node is not changed.

– case 2: �ti such that fct(ti) ∈ IN(root). This is the choice case in the com-
putation tree given in Sect. 3. The node n has two children n1 and n2 such
that IN(n1) = IN(n) ∪ {pg(t1, · · · , tk)}, OUT (n1) = OUT (n) ∪ {{fct(t1)},
· · · , {fct(tk)}}, MBT (n1) = MBT (n) and IN(n2) = IN(n), OUT (n2) =
OUT (n), MBT (n2) = MBT (n) ∪ {fct(t1) ∨ · · · ∨ fct(tk)}.

Note that we get all fct(ti) that could be generated and there will be
no other way to obtain others. According to the properties in Sect. 3 none
of the fct(ti) in MBT (n2) can be proved therefore this branch cannot
lead to a valid branch. At the end of Step 3, the computation tree only
has one branch that could lead to a valid branch and therefore to an
anwser set. Since there is a finite number of atoms without function sym-
bol, this only branch is finite and l denotes its leaf and IN(l) = Fi ∪
(Cl(F ,R))p∪{fct(t)| t is a functional term of Cl(F ,R)} ∪ ({a ∈ Cl(F ,R)|a is a
basic atom})g, OUT (l) = {{fct(t)}|t is a functional term of Cl(F ,R)} and
MBT (l) = MBT (n). As no further development of the computation tree can
add any atom with predicate name fct(t), the result of any branch having the
node l as ancestor will satisfy OUT (l). Thus, in the following, we will ignore
OUT (l).

Example 2. (Example 1, continued) At the end of Step 3 the computa-
tion tree has only one branch and l denotes its leaf. We have IN(l) =
{pi(a), qi(a), pp(a), qp(a), rp(a, f(a)), fct(f(a)),sp(a), tp(a), pg(a), qg(a), sg(a),
tg(a)}, OUT (l) = {{fct(a)}} and MBT (l) = {fct(f(a))}. Note that this branch
may lead to a full valid branch since IN(l) satisfies OUT (l) and IN(l) satisfies
MBT (l).

Proposition 2. Let K=(F ,R,N ) be a knowledge base, and let Π be the ∃-ASP
program obtained from the above encoding. Let X be the finite set of selectable
atoms obtained after Step 4. At the end of Step 5 the natural computation tree
corresponding to Π has 2|X| finite branches (each one determined by the subset
Y of the chosen atoms in X).

Proof. As shown in Proposition 1 the computation tree corresponding to Π
obtained at the end of Step 3 only has one finite branch and l denotes its leaf.
We start from l where IN(l), OUT (l) and MBT (l) are given at the end of the
proof of Proposition 1. Step 4 proposes two strategies for selecting the predi-
cates, in order to handle both cases, we consider the set of atoms X provided by
the selection rules and the field IN is updated with X. Thanks to the proposed
selection rules X is always finite. The application of the rules P3 leads to the
development of 2|X| sub-branches from l, each one encoding a subset Y ⊆ X.
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The branch associated with Y has a leaf denoted by lY1 such that IN(lY1) =
IN(l) ∪ Y denoted by INY 1, OUT (lY1) = OUT (l) ∪ {{pn(t) | ps(t) ∈ Y }} and
MBT (lY1) = MBT (l) ∪ {(X\Y )n}.

Proposition 3. Let K = (F ,R,N ) be a knowledge base, and let Π be the ∃-
ASP program obtained from the above encoding. Let lY1 be the leaf of a branch
obtained after Step 5 of the natural computation tree. Then lY1 can lead to at
most one valid full branch, which is finite.

Proof. We now consider the development of the computation tree from lY1 . The
application of the rules P4 introduces the base context and since they are positive
only the field IN is updated, thus IN(lY1) = INY 1 ∪ {pv(t, base) | p(t) ∈ Y }.
The rules P5 introduce the contexts different from the base context. These are
choice rules however like in the case of rules P2 no other application of rules can
generate chosen predicates (pc(t)) therefore there is only one branch that can
eventually lead to a valid branch and lY2 denotes its leaf. Note that is branch
is finite because X is finite. Thus IN(lY2) = IN(lY1) ∪ {pv(t, ctx(p, t)) | p(t) ∈
X\Y } ∪ {context(ctx(p, t)), | p(t) ∈ X\Y }, denoted by INY 2, the fields OUT
and MBT are unchanged. The application of the rules P6 updates the field
IN , thus IN(lY2) = INY 2 ∪ {pv(t, c)) | p(t) ∈ Y }, denoted by NY 3, where c is
a constant different from base. The application of rules R2 updates the field
IN , thus IN(lY2) = INY 3 ∪ {pv(t, base) | p(t) ∈ Cl(Y,R)} ∪ {pv(t, c) | c =
ctx(q,u), c �= base and p(t) ∈ Cl(Y ∪ {q(u)},R)}, denotes INY 4. The
application of the rules C1 updates the field IN , thus IN(lY2) = INY 4 ∪
{absurd(base) |Cl(Y,R) violates a constraint} ∪{absurd(c) | c = ctx(q,u), c �=
base and Cl(Y ∪{q(u)},R) violates a constraint}, denoted by INY 5. The appli-
cation of the rules C2 updates the field IN , thus IN(lY2) = INY 5 ∪ Yn

if Cl(Y,R) violates a constraint or IN(lY2) = INY 5 otherwise. The rules
C3 introduce the forbidden predicates These are choice rules however like in
the case of rules P4 no other application of rules can generate chosen predi-
cates (pc(t)) therefore there is only one branch that can eventually lead to a
valid branch. lY3 denotes its leaf. Note that this branch is finite because X is
finite. Thus IN(lY3) = IN(lY2) ∪ {pn(t) |Cl(Y ∪ pc(t),R) violates a constraint}
denoted by INY 6, the fields OUT and MBT are unchanged. Step 13 pro-
poses two strategies for visualizing the predicates, with the strategy DISP1
the field IN is updated such that IN(lY3) = INY 6 ∪ {pd(t) | pi(t) ∈ Fi},
while with the strategy DISP2 the field IN is updated such that IN(lY3) =
INY 6 ∪ {pd(t) | pg(t) ∈ (Cl(F ,R))p}. Finally the display rule D updates the
field IN , thus IN(lY3) = INY 7 ∪ {p(t)} where p is valid in the base context
and pd(t) has been selected by a visualization strategy. At the end of Step 13,
the branch associated with Y is full. The computation is finite even if its nodes
can require an infinite derivation.
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5.3 Computation Tree of Π and Repairs

As a preliminary remark, and since all the branches of the computation tree
are finite, let us point out that we can thus use the characterization of the
validity given in the properties of Sect. 3 using the leaves of that tree. The branch
associated with Y is OUT − valid if and only if IN(lY3) satisfies OUT (lY3).
Moreover, the branch associated with Y is MBT − valid if and only if IN(lY3)
satisfies MBT (lY3).

Theorem 3. Let K=(F ,R,N ) be a knowledge base. Let Π be the ∃-ASP program
obtained from K according to the above encoding. Let Y be a subset of the set of
selectable atoms X. The full branch of the computation tree corresponding to Π,
associated with Y is valid if and only if Y is a maximal subset of X such that
Cl(Y,R ∪ N ) �|= ⊥.

Proof. By hypothesis Y ⊆ X, thus by Proposition 3 the computation tree pro-
vides a full branch associated with Y and l denotes its leaf. We prove the first
the direction by contraposition. If Cl(Y,R ∪ N ) |= ⊥ then ∃N ∈ N such
that Cl(Y,R) |= N thus absurd(base) ∈ IN(l), thus ∀p(t) ∈ Y we have
pn(t) ∈ IN(l) and pn(t) ∈ OUT (l) therefore the branch associated with Y is not
OUT − valid. Suppose now that Cl(Y,R∪N ) �|= ⊥ but there exists p(t) ∈ X\Y
s.t Cl(Y ∪{p(t)},R∪N ) �|= ⊥ thus pv(t, ctx(p, t)) ∈ IN(l) and we cannot obtain
absurd(ctx(p, t)). However pn(t) could only be obtained from absurd(ctx(p, t)),
pn(t) �∈ IN(l) but since p(t) ∈ X\Y , pn(t) ∈ MBT (l) therefore the branch is
not MBT -valid.

We now prove the other direction. Let Y be a maximal subset of X such that
Cl(Y,R ∪ N ) �|= ⊥. Thus absurd(base) �∈ IN(l) and ∀p(t) ∈ Y , pn(t) �∈ IN(l).
Since OUT (l) = {{pn(t) | p(t) ∈ Y }} then the branch associated with Y is
OUT − valid. Y is maximal w. r. t. set inclusion thus ∀q(u) ∈ X\Y we have
Cl(Y ∪{q(u)},R∪N ) |= ⊥, thus absurd(ctx(q,u)) ∈ IN(l), thus qn(u) ∈ IN(l)
and since q(u) ∈ X\Y then qn(u) ∈ MBT (l) therefore the branch associated
with Y is MBT -valid.

We did not discuss yet the effects of the selection and visualization strategies
on the results of our program. If we select the atoms with Strategy SEL1 then
X is exactly the set F . If we select the atoms with Strategy SEL2 then X
is exactly the ground closure of F . According to Theorem 3, using Strategy
SEL1 the result of the branch associated with Y is an answer if and only if Y
is maximal consistent subset of F while using Strategy SEL2 the result of the
branch associated with Y is an answer if and only if Y is maximal consistent
subset of the ground closure of F . When displaying atoms with Strategy DISP1
the restriction of the answer set associated with a branch Y to the predicates
of the original vocabulary is exactly Cl(Y,R) ∩ F while displaying the atoms
with Strategy DISP2 the restriction of the answer set associated with a branch
Y to the predicates of the original vocabulary is exactly Cl(Y,R). Let Π be
an ∃-ASP program obtained from the above encoding. Let AS be an answer
set of Π, ρ(AS) denotes the restriction of AS to the original vocabulary V and
ρ(Π) = {ρ(AS) |AS ∈ AS(Π)}.
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Corollary 1. Let K = (F ,R,N ) be knowledge base. Let Π1 be the ∃-ASP pro-
gram obtained from the above encoding using strategies SEL1and DISP1. Then
ρ(Π1) is the set of repairs of K. Let Π5 be the ∃-ASP program obtained from
the above encoding using strategies SEL1 and DISP2. Then ρ(Π5) is the set
of closed repairs of K. Let Π7 be the ∃-ASP program obtained from the above
encoding using strategies SEL2 and DISP2. Then ρ(Π7) is the set of repairs of
the closure of K.

Example 3. The selection strategy SEL1 allows one to select the predicates
in F and provides the set X={ps(a),qs(a)}. The computation tree develops 4
branches, each one encoding a subset of Y of X. Only two of them are full valid
branches. The selection strategy SEL2 allows one to select the predicates in
the grounded closure of F and provides the set X={ps(a), qs(a), ss(a), ts(a)}.
The computation tree develops 16 branches, each one encoding a subset of Y of
X. Only two of them are full valid branches. The visualization strategy DISP1
allows one to display valid predicates within the base context which belong to
F while the visualization strategy DISP2 allows one to display valid predicates
within the base context which belong to grounded closure of F . Using strategies
SEL1 and DISP1 we obtain an ∃-ASP program denoted by Π1 such that the
answer sets restricted to the original vocabulary are {p(a)} and {q(a)}. Note
that they correspond to the repairs of K. Using strategies SEL1 and DISP2 we
obtain an ∃-ASP program denoted by Π5 s.t the answer sets restricted to the
original vocabulary are {p(a), t(a)} and {q(a), s(a)}. Note that they correspond
to the closed repairs of K. Using strategies SEL2 and DISP1 we obtain an
∃-ASP program denoted by Π7 s.t the answer sets restricted to the original
vocabulary are {p(a), s(a), t(a)} and {q(a), s(a), t(a)}. Note that they correspond
to the repairs of the closure of K.

5.4 Other Strategies

We have presented here a generic encoding of a knowledge base K into an
ASP program that computes different kind of repairs of K, according to the
different selection rules and display rules we have chosen in that encoding. This
generic ASP program could take into account other possible select/display rules
to achieve different outcome. For instance, let us consider the following set of
rules. Selection rules: The user defines all “optional” atoms with rules of form
ps(X) ← pi(X)., where all atoms of F with predicate name p are optional and
ps(a) ← pi(a)., where the atom p(a) of F is optional and then asserts that every
atom of F that is not optional is mandatory. For every predicate name p, there
is a rule of form pv(X,base) ← pi(X), notps(X). Display rules: The user can
use rules similar to the selection rules to display only optional atoms of F . With
such a set of select/display rules, the program Π will admit an answer set only
when the subset M of mandatory atoms of F (i.e. those that are not declared
optional) is consistent w.r.t. (R,N ), and in that case, if AS is an answer set
of Π, ρ(AS) will be an inclusion-maximal subset F ′ of F such that M ∪ F ′ is
consistent w.r.t. (R,N ).
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6 Conclusion

This paper presented a generic encoding in ∃-ASP of repair-based techniques for
inconsistent knowledge bases expressed within the formalism of existential rules.
We focused on three kinds of repairs that allow for computing query answer-
ing with the following semantics proposed in [2]: 〈◦1,∀〉 (corresponds to AR-
semantics [16]), 〈◦1,∩〉 (corresponds to IAR-semantics [16]), 〈◦7,∀〉 (close to
CAR-semantics [16]), 〈◦7,∩〉 (close to ICAR-semantics [16]) and 〈◦5,∩〉 (corre-
sponds to ICR-semantics [10]). Indeed these semantics can be rephrased in our
framework as follows. Let K be a knowledge base and let q and qv be first order
formulas, where qv is obtained from q by replacing each predicate p(t) occur-
ring in q by pv(t, base) we have: (1) K |=〈◦1,∀〉 q iff ∀AS ∈ AS(Π1), qv ∈ AS.
(2) K |=〈◦1,∩〉 q iff qv ∈ ∩ASi∈AS(Π1)ASi. (3) K |=〈◦7,∀〉 q iff ∀AS ∈ AS(Π7),
qv ∈ AS. (4): K |=〈◦7,∩〉 q iff qv ∈ ∩ASi∈AS(Π7)ASi. (5): K |=〈◦5,∩〉 q iff
qv ∈ ∩ASi∈AS(Π5)ASi.

A future work will be dedicated to the implementation and experimentation
of the proposed encoding with ASPeRiX [14]. Another interesting issue is the
extension of this encoding to the modifiers proposed within the unified framework
for inconsistency-tolerant query answering stemming from the selection modifier
based on cardinality.
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Abstract. A central question for knowledge representation is how to
encode and handle uncertain knowledge adequately. We introduce the
probabilistic description logic ALCP that is designed for representing
context-dependent knowledge, where the actual context taking place is
uncertain. ALCP allows the expression of logical dependencies on the
domain and probabilistic dependencies on the possible contexts. In order
to draw probabilistic conclusions, we employ the principle of maximum
entropy. We provide reasoning algorithms for this logic, and show that
it satisfies several desirable properties of probabilistic logics.

1 Introduction

A fundamental element of any intelligent application is storing and manipulating
the knowledge from the application domain. Logic-based knowledge representa-
tion languages such as description logics (DLs) [1] provide a clear syntax and
unambiguous semantics that guarantee the correctness of the results obtained.
However, languages based on classical logic are ill-suited for handling the uncer-
tainty inherent to many application domains. To overcome this limitation, vari-
ous probabilistic logics have been investigated during the last three decades (e.g.,
[3,15,20]). In particular, several probabilistic DLs have been developed [18,19].
To handle probabilistic knowledge, many approaches require a complete def-
inition of joint probability distributions (JPD) [5,6,8,16,26]. One approach to
avoid a full JPD specification was proposed by Paris [22]: the user gives a partial
specification through a set of probabilistic constraints and the partial knowledge
is completed by means of the principle of maximum entropy.

In this paper we consider a new probabilistic extension of description logics
based on the principle of maximum entropy. In our approach we group differ-
ent axioms from a knowledge base together into so-called contexts, which are
identified by a propositional formula. Intuitively, each context corresponds to a
possible situation, in which the associated sub-KB is guaranteed to hold. Uncer-
tainty is associated to the contexts through a set of probabilistic constraints,
which are interpreted under the principle of maximum entropy.

To facilitate the understanding of our approach, we focus on the DL ALC [27]
as a prototypical example of a knowledge representation language, and propo-
sitional probabilistic constraints as the framework for expressing uncertainty.
c© Springer International Publishing Switzerland 2016
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As reasoning service we consider subsumption relations between concepts given
some partial knowledge of the current context. Since the knowledge in a knowl-
edge base is typically incomplete, one cannot expect to obtain a precise probabil-
ity for a given consequence. Instead, we compute a belief interval that describes
all the probability degrees that can be associated to the consequence without
contradiction. The lowest bound of the interval corresponds to a sceptical view,
considering only the most fundamental models of the knowledge base. The upper
bound, in contrast, reflects the credulous belief in which every context that is
not explicitly removed is considered. In the worst-case, we get the trivial inter-
val [0, 1], in the best case, we get a point probability where the upper and lower
bounds coincide. In some applications, it might be reasonable to consider only
one of these bounds. For instance, if the probability interval that a treatment
will cause heavy complications is [0.01, 0.05], we might want to use the upper
bound 0.05. In contrast, when the probability interval that a treatment will be
successful is [0.7, 0.9], we might be more interested in the lower bound 0.7.

The main contributions of this paper are the following:

– we define the new probabilistic description logic ALCP that allows for a flexi-
ble description of axiomatic dependencies, and its reasoning problems (Sect. 3);

– we explain in detail how degrees of belief for the subsumption problem can be
computed (Sect. 4); and

– we show that ALCP satisfies several desirable properties of probabilistic logics
(Sect. 5).1

2 Maximum Entropy

We start by recalling the basic notions of probabilistic propositional logic and
the principle of maximum entropy.

Let L be a propositional language constructed over a finite signature sig(L),
i.e., a set of propositional variables, in the usual way. An L-interpretation v is a
truth assignment of the propositional variables in sig(L). Int(L) denotes the set of
all L-interpretations. Satisfaction of a formula φ ∈ L by an L-interpretation v ∈
Int(L) (denoted v |= φ) is defined as usual. A probability distribution over L is a
function P : Int(L) → [0, 1] where

∑
v∈Int(L) P (v) = 1. Probability distributions

are extended to arbitrary L-formulas φ by setting P (φ) =
∑

v |= φ P (v).

Definition 1 (Probabilistic Constraints, Models). Given the propositional
language L, a probabilistic constraint (over L) is an expression of the form

c0 +
k∑

i=1

ci · p(φi) ≥ 0 (1)

where c0, ci ∈ R, and φi ∈ L, 1 ≤ i ≤ k. A probability distribution P over L
is a model of the probabilistic constraint c0 +

∑k
i=1 ci · p(φi) ≥ 0 if and only if

1 The full proofs are available at the technical report [23].
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c0 +
∑k

i=1 ci ·P (φi) ≥ 0. The distribution P is a model of the set of probabilistic
constraints R (P |= R) off it satisfies all the constraints in R. The set of all
models of R is denoted by Mod(R). If Mod(R) �= ∅, we say that R is consistent.

Our probabilistic constraints can express the most common types of constraints
considered in the literature of probabilistic logics. For instance, probabilistic
conditionals (ψ | φ)[�, u] are satisfied iff � · P (φ) ≤ P (ψ ∧ φ) ≤ u · P (φ) [17].
That is, the conditional is satisfied iff the conditional probability of ψ given φ
is between � and u whenever P (φ) > 0. Sometimes P (φ) > 0 is demanded, but
strict inequalities are computationally difficult and the semantical differences
are negligible in many cases, see [25] for a thorough discussion. These conditions
can be expressed in the form (1) as follows

p(ψ ∧ φ) − � · p(φ) ≥ 0, and
u · p(φ) − p(ψ ∧ φ) ≥ 0.

Probabilistic constraints can also express more complex restrictions; for example,
we can state that the probability that a bird cannot fly is at most one fourth of
the probability that a bird flies through the constraint

1
4
p(bird ∧ flies) − p(bird ∧ ¬flies) ≥ 0. (2)

To improve readability, we will often rewrite constraints in a more com-
pact manner, using conditionals as in the first example, or e.g. rewriting (2) as
1
4p(bird ∧ flies) ≥ p(bird ∧ ¬flies).

In general, consistent sets of probabilistic constraints have infinitely many
models, and there is no obvious way to distinguish between them. One well-
studied approach for dealing with this diversity is to focus on the model that
maximizes the entropy

H(P ) = −
∑

v∈Int(L)

P (v) · log P (v).

From an information-theoretic point of view, the maximum entropy (ME) dis-
tribution can be regarded as the most conservative one in the sense that it
minimizes the information-theoretic distance (that is, the KL-divergence) to the
uniform distribution among all probability distributions that satisfy our con-
straints. In particular, if there are no restrictions on the probability distributions
considered, then the uniform distribution is the ME distribution, see, e.g., [28]
for a more detailed discussion of these issues. A complete characterization of
maximum entropy for the purpose of uncertain reasoning can be found in [22].

Definition 2 (ME-Model). Let R be a consistent set of probabilistic con-
straints. The ME-model PME

R of R is the unique solution of the maximization
problem arg maxP |= R H(P ).

Existence and uniqueness of PME
R follows from the fact that H is strictly concave

and continuous, and that the probability distributions that satisfy R form a
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compact and convex set. PME
R is usually computed by deriving an unconstrained

optimization problem by means of the Karush-Kuhn-Tucker conditions. The
resulting problem can be solved, for instance, by (quasi-)Newton methods with
cost |Int(L)|3, see, e.g., [21] for more details on these techniques.

3 The Probabilistic Description Logic ALCP
ALCP is a probabilistic extension of the classical description logic ALC capable
of expressing complex logical and probabilistic relations. As with classical DLs,
the main building blocks in ALCP are concepts. Syntactically, ALCP concepts
are constructed exactly as ALC concepts. Given two disjoint sets NC of concept
names and NR of role names, ALCP concepts are built using the grammar rule
C ::= A | ¬C | C 	 C | ∃r.C, where A ∈ NC and r ∈ NR. Note that we can
derive disjunction, universal quantification and subsumption from these rules
by using logical equivalences like C1 � C2 ≡ ¬(¬C1 	 ¬C2). The knowledge of
the application domain is expressed through a finite set of axioms that restrict
the way the different concepts and roles may be interpreted. To express both
probabilistic and logical relationships, each axiom is annotated with a formula
from L that intuitively expresses the context in which this axiom holds.

Definition 3 (KB). An L-restricted general concept inclusion (L-GCI) is of
the form 〈C � D : κ〉 where C,D are ALCP concepts and κ is an L-formula.
An L-TBox is a finite set of L-GCIs. An ALCP knowledge base (KB) over L
is a pair K = (R, T ) where R is a set of probabilistic constraints and T is an
L-TBox.

Example 4. Consider an application modeling beliefs about bacterial and viral
infections using the concept names strep (streptococcal infection), bac (bacterial
infection), vir (viral infection), inf (infection), and ab (antibiotic); and the role
names sf (suffers from), and suc (successful treatment); and the propositional
variables res (antibiotic resistance), and h (heavy use of antibiotics by patient).
Define the L-TBox Texa containing the L-GCIs

〈∃sf.bac � ∃suc.ab : ¬res∧¬h〉, 〈∃sf.vir � ¬∃suc.ab : �〉, 〈strep � bac : �〉,
〈∃sf.bac � ¬∃suc.ab : res〉, 〈bac � inf : �〉, 〈vir � inf : �〉,

where � is any L-tautology. For example, the first L-GCI states that a bacterial
infection can be treated successfully with antibiotics if no antibiotic resistance
is present and there was no heavy use of antibiotics; the second one states that
viral infections can never be treated with antibiotics successfully. Consider addi-
tionally the set R containing the probabilistic constraints containing

(res)[0.05], (res | h)[0.8].

That is, the probability of an antibiotic resistance is 5% if no further information
is given. If the patient used antibiotics heavily, the probability increases to 80%.
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Notice that the probabilistic constraints, and hence the representation of the
uncertainty in the knowledge, refer only to the propositional formulas that label
the L-GCIs. In ALCP, the uncertainty of the knowledge is handled through
these propositional formulas as explained next.

A possible world interprets both the axiom language (i.e., the concept and
role names) and the context language (the propositional variables). Intuitively,
it describes a possible context (L-interpretation) together with the relationships
between concepts in that situation (ALC-interpretation).

Definition 5 (Possible World). A possible world is a triple I = (ΔI , ·I , vI)
where ΔI is a non-empty set (called the domain), vI is an L-interpretation,
and ·I is an interpretation function that maps every concept name A to a set
AI ⊆ ΔI and every role name r to a binary relation rI ⊆ ΔI × ΔI .

The interpretation function ·I is extended to complex concepts as usual in DLs
by letting (¬C)I := ΔI \CI ; (∃r.C)I := {d ∈ ΔI | ∃e ∈ ΔI .(d, e) ∈ rI , e ∈ CI};
and (C 	D)I := CI ∩DI . A possible world is a model of an L-GCI iff it satisfies
the description logic constraint of the axiom whenever it satisfies the context.

Definition 6 (Model of TBox). A possible world I = (ΔI , ·I , vI) is a model
of the L-GCI 〈C � D : κ〉 (I |= 〈C � D : κ〉) iff (i) vI �|= κ, or (ii) CI ⊆ DI .
It is a model of the L-TBox T iff it is a model of all L-GCIs in T .

The classical DL ALC is a special case of ALCP where all the axioms are anno-
tated with an L-tautology �. To preserve the syntax of classical DLs, we denote
such L-GCIs as C � D instead of 〈C � D : �〉. In this case, the condition (i)
from Definition 6 cannot be satisfied, and hence a model is required to satisfy
CI ⊆ DI for all L-GCIs C � D in the TBox. For a deeper introduction to
classical ALC, see [1].

According to our semantics, we only demand that the L-GCIs are satisfied
in some specific contexts. Thus, it is often useful to focus on the classical ALC
TBox that contains the knowledge that holds in a particular situation. For a KB
K = (R, T ) and v ∈ Int(L), the v-restricted TBox is the ALC TBox

Tv := {C � D | 〈C � D : κ〉 ∈ T , v |= κ}.

The possible world I satisfies Tv (I |= Tv) if for all L-GCIs C � D ∈ Tv it
holds that CI ⊆ DI . In the following, we will often consider subsumption and
strong non-subsumption between concepts w.r.t. a restricted TBox. We say that
C is subsumed by D w.r.t. Tv (Tv |= C � D) if for every I |= Tv it holds that
CI ⊆ DI . Dually, C is strongly non-subsumed by D w.r.t. Tv (Tv |= C � �� D) if for
every I |= Tv, CI �⊆ DI holds. Notice that strong non-subsumption requires that
the inclusion between axioms does not hold in any possible world satisfying Tv.
Hence, this condition is more strict than just negating the subsumption relation.

We now describe how the probabilistic constraints are handled in our logic.
An ALCP-interpretation consists of a finite set of possible worlds and a proba-
bility function over these worlds.
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Definition 7 (ALCP-Interpretation). An ALCP-interpretation is a pair of
the form P = (I, PI), where I is a non-empty, finite set of possible worlds and
PI is a probability distribution over I.

Each ALCP-interpretation induces a probability distribution over L. The prob-
ability of a context can be obtained by adding the probabilities of all possible
worlds in which this context holds.

Definition 8 (Distribution Induced by P). Let P = (I, PI) be an ALCP-
interpretation. The probability distribution PP : Int(L) → [0, 1] induced by P is
defined by PP(v) :=

∑
I∈I|v PI(I), where I|v = {(ΔI , ·I , vI) ∈ I | vI = v}.

As usual, reasoning is restricted to interpretations that satisfy the restrictions
imposed by the knowledge base. In our case, we have to demand that the inter-
pretation is consistent with both the classical and the probabilistic part of our
knowledge base. That is, we consider only those possible worlds that satisfy both
the terminological knowledge (T ) and the probabilistic constraints (R).

Definition 9 (Model). Let P = (I, PI) be an ALCP-interpretation. P is con-
sistent with the TBox T if every I ∈ I is a model of T . P is consistent with the
set of probabilistic constraints R iff PP |= R. The ALCP-interpretation P is
a model of the KB K = (R, T ) iff it is consistent with both T and R. As usual,
a KB is consistent iff it has a model.

Notice that ALCP-KBs can express both, logical and probabilistic dependencies
between axioms. For instance, two L-GCIs 〈C1 � D1 : κ1〉 and 〈C2 � D2 : κ2〉
where κ1 ⇒ κ2 express that whenever the first L-GCI is satisfied, the second
one must also hold. Similarly, the probabilistic dependencies between axioms are
expressed via the probabilistic constraints of the labeling formulas.

We are interested in computing degrees of belief for subsumption relations
between concepts. We define the conditional probability of a subsumption rela-
tion given a context with respect to a given ALCP-interpretation following the
usual notions of conditioning.

Definition 10 (Probability of Subsumption). Let C,D be concepts, κ a
context and P an ALCP-interpretation. The conditional probability of C � D
given κ with respect to P is

PrP(C � D | κ) :=

∑
I∈I,I |= κ,I|=C�D PI(I)
∑

I∈I,I |= κ PI(I)
. (3)

Notice that the denominator in (3) can be rewritten as
∑

I∈I,I |= κ

PI(I) =
∑

v |= κ

∑

I∈I|v
PI(I) =

∑

v |= κ

PP(v) = PP(κ).

As usual, the conditional probability is only well-defined when PP(κ) > 0.
Recall that the set of probabilistic constraints R may be satisfied by an

infinite class of probability distributions. In the spirit of maximum entropy rea-
soning, we consider only the most conservative ones in the sense that they induce
the ME-model PME

R of R.
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Definition 11 (ME-ALCP-Model). An ALCP-model P of K is called an
ME-ALCP-model of K iff PP = PME

R . The set of all ME-ALCP-models of K is
denoted by ModME(K). K is called ME-consistent iff ModME(K) �= ∅.
Note that ME-consistency is a strictly stronger notion of consistency. ME-consis-
tent knowledge bases are always consistent, but the converse does not necessarily
hold if the classical TBox obtained from T by restricting to a context is incon-
sistent as we show in the following example.

Example 12. Let sig(L) = {x} and K = (R, T ) be the KB with R = ∅ and
T = {〈A � ¬A � A 	 ¬A : x〉}. Since A � ¬A � A 	 ¬A is contradictorial, each
ALCP-model of K must satisfy ¬x. There certainly are such models, but in each
such model P, PP(x) = 0. However, since R = ∅, we have PME

R (x) = 0.5 and
hence K has no ME-model.

ME-inconsistency rules out some undesired cases in which the whole knowledge
base is consistent, but the TBox restricted to some context is inconsistent. The
following theorem gives a simple characterization of ME-consistency: to verify
ME-consistency of a KB, it suffices to check consistency of the TBoxes induced
by the L-interpretations that have positive probability with respect to PME

R . By
the properties of the ME distribution, these are the interpretations that are not
explicitly restricted to have zero probability through R.

Theorem 13. The KB K = (R, T ) is ME-consistent iff for every v ∈ Int(L)
such that PME

R (v) > 0, Tv is consistent.

For the rest of this paper we consider only ME-consistent KBs. Hence, whenever
we speak of a KB K, we implicitly assume that K has at least one ME-model.

We are interested in computing the probability of a subsumption relation
w.r.t. a given KB K. Notice that, although we consider only one probability dis-
tribution PME

R , there can still exist many different ME-models of K, which yield
different probabilities for the same subsumption relation. One way to handle
this is to consider the smallest and largest probabilities that can be consistently
associated to this relation. We call them the sceptical and the creduluos degrees
of belief, respectively.

Definition 14 (Degree of Belief). Let C,D be ALCP concepts, κ a context,
and K = (R, T ) an ALCP KB. The sceptical degree of belief of C � D given κ
w.r.t. K is

Bs
K(C � D | κ) := inf

P∈ModME(K)
PrP(C � D | κ).

The credulous degree of belief of C � D given κ w.r.t. K is

Bc
K(C � D | κ) := sup

P∈ModME(K)

PrP(C � D | κ).

Example 15. Consider Kexa from Example 4. If we ask for the degrees of belief
that a patient who suffers from an infection can be successfully treated with
antibiotics, we obtain
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Bs
Kexa

(∃sf.inf � ∃suc.ab | �) = 0,
Bc

Kexa
(∃sf.inf � ∃suc.ab | �) = 1.

These bounds are not very informative, but they are perfectly justified by our
knowledge base since we do not know anything about the effectiveness of antibi-
otics with respect to infections in general. However, for a patient who suffers
from a streptococcal infection we get

Bs
Kexa

(∃sf.strep � ∃suc.ab | �) = 0.9405,

Bc
Kexa

(∃sf.strep � ∃suc.ab | �) = 0.95.

If we know that this patient used antibiotics heavily in the past, then there
is nothing in our knowledge base that guarantees the existence of a successful
treatment. Hence, the degrees of belief become

Bs
Kexa

(∃sf.strep � ∃suc.ab | h) = 0
Bc

Kexa
(∃sf.strep � ∃suc.ab | h) = 0.2.

Our definition of the sceptical degree of belief raises a philosophical question:
should there be no difference between the degree of belief 0 and an infinitely
small degree of belief? A dual question arises for the credulous degree of belief
and the probability 1. However, as we show in the next section, the sceptical and
credulous degrees of belief actually correspond to minimum and maximum rather
than to infimum and supremum (see Corollary 20) so that these questions become
vacuous. From the following theorem we can conclude that every intermediate
degree can also be obtained by some model of the KB.

Theorem 16 (Intermediate Value Theorem). Let p1 < p2 and P1 and P2

be two ME-ALCP-models of the KB K = (R, T ) such that PrP1(C � D | κ) = p1
and PrP2(C � D | κ) = p2. Then for each p between p1 and p2 there exists an
ME-ALCP-model P of K such that PrP(C � D | κ) = p

As we will show in Corollary 20, both the sceptical degree Bs
K(C � D | κ) and

the credulous degree Bc
K(C � D | κ) are in fact witnessed by some ME-models.

Therefore it is meaningful to consider the whole interval of beliefs between
Bs

K(C � D | κ) and Bc
K(C � D | κ).

Definition 17 (Belief Interval). Let C,D be ALCP concepts, κ ∈ L a context
and K = (R, T ) a ALCP KB. The belief interval for C � D w.r.t. K given κ is

BK(C � D | κ) := [Bs
K(C � D | κ),Bc

K(C � D | κ)].

4 Computing Beliefs

In this section we show how to compute the belief interval. The first theorem
states that the sceptical degreef of belief for a subsumption relation can be
computed by adding the probabilities of those L-interpretations w that entail
this subsumption in the corresponding restricted TBox Tw.
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Theorem 18. Let K = (R, T ) be a KB, C,D two concepts, and κ a context
such that PME

R (κ) > 0. Then

Bs
K(C � D | κ) =

∑
w∈Int(L),Tw|=C�D,w|=κ PME

R (w)

PME
R (κ)

.

Dually, the credulous degree of belief for a subsumption relation can be computed
by removing all the situations in which this relation cannot possibly hold.

Theorem 19. Let K = (R, T ) be a KB, C,D two concepts, and κ a context
with PME

R (κ) > 0. Then

Bc
K(C � D | κ) = 1 −

∑
w∈Int(L),Tw|=C � ��D,w|=κ PME

R (w)

PME
R (κ)

.

To prove these theorems, one can build two models of the KB K, P and Q such
that PrP(C � D | κ) and PrQ(C � D | κ) are those degrees expressed by
Theorems 18 and 19, respectively. As a byproduct of these proofs, we obtain
that the infimum and supremum that define the sceptical and the credulous
degrees of belief actually correspond to minimum and maximum taken by some
ME-models, yielding the following corollary.

Corollary 20. Let K be an ALCP KB, C,D be two concepts, and κ be a context.
There exist two ME-models P,Q of K with Bs

K(C � D | κ) = PrP(C � D | κ)
and Bc

K(C � D | κ) = PrQ(C � D | κ).

The direct consequence of Theorems 18 and 19 is that if we want to compute
the belief interval for C � D given some context, it suffices to identify all L-
interpretations whose induced (classical) TBoxes entail the subsumption relation
C � D (for the sceptical belief) or the strong non-subsumption C � �� D (for
credulous belief). Recall that every set of propositional interpretations can be
represented by a propositional formula. This motivates the following definition.

Definition 21 (Consequence Formula). An L-formula φ is a consequence
formula for C � D (respectively C � �� D) w.r.t. the L-TBox T if for every
w ∈ Int(L) it holds that w |= φ iff Tw |= C � D (respectively Tw |= C � �� D).

If we are able to compute these consequence formulas, then the computation of
the belief interval can be reduced to the evaluation of the probability of these
formulas w.r.t. the ME-distribution satisfying R.

Theorem 22. Let K = (R, T ) be an ALCP KB, φ and ψ be consequence for-
mulas for C � D and C � �� D w.r.t. T , respectively, and κ a context. Then
Bs

K(C � D | κ) = PME
R (φ | κ) and Bc

K(C � D | κ) = 1 − PME
R (ψ | κ).

Example 23. In our running example, one can see that a consequence formula
for ∃sf.strep � ∃suc.ab is ¬res ∧ ¬h. Indeed, in order to deduce this consequence
it is necessary to satisfy the first axiom of Texa, which is only guaranteed in the
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Algorithm 1. Computing degrees of belief
Input: KB K = (R, T ), concepts C, D, context κ
Output: Belief degrees

(Bs
K(C � D|κ), Bc

K(C � D|κ))
�s ← 0; �c ← 0
for all v ∈ Int(L) do

if v |= κ then
if Tv |= C � D then

�s ← �s + PME
R (v)

else if Tv |= C � �� D then
�c ← �c + PME

R (v)
return

(
�s/PME

R (κ), 1 − �c/PME
R (κ)

)

context ¬res∧¬h. Similarly, res is a consequence formula for ∃sf.strep � �� ∃suc.ab.
Knowing both the consequence formulas and the ME-model, we can deduce

Bs
Kexa

(∃sf.strep � ∃suc.ab | �) = PME
R (¬res ∧ ¬h) = 0.9405, and

Bc
Kexa

(∃sf.strep � ∃suc.ab | h) = 1 − PME
R (res | h) = 0.2.

In particular, Theorem 22 implies that the belief interval can be computed in
two phases. The first phase uses purely logical reasoning to compute the con-
sequence formulas, while the second phase applies probabilistic inferences to
compute the degrees of belief from these formulas. We now briefly explain how
the consequence formulas can be computed.

Notice first that subsumption and non-subsumption are monotonic conse-
quences in the sense of [2]; that is, if an ALC TBox T entails the subsumption
C � D, then every superset of T also entails this consequence. Similarly, adding
more axioms to a TBox entailing C � �� D does not remove this entailment. More-
over, the set of all L-formulas (modulo logical equivalence) forms a distributive
lattice ordered by generality, in which L-interpretations are all the join prime
elements. Thus, the consequence formulas from Definition 21 are in fact the so-
called boundaries from [2]. Hence, they can be computed using any of the known
boundary computation approaches.

Assuming that the number of contexts is small in comparison to the size of
the TBox, it is better to compute the degrees of belief through a more direct
approach following Theorems 18 and 19. In order to compute Bs

K(C � D | κ) and
Bc

K(C � D | κ), it suffices to enumerate all interpretations v ∈ Int(L) and check
whether Tv |= C � D or Tv |= C � �� D, and v |= κ, or not (see Algorithm 1). This
approach requires 2|sig(L)| calls to a standard ALC reasoner, and each of these
calls runs in exponential time on |T | [9]. Notice that this algorithm has an any-
time behaviour: it is possible to stop its execution at any moment and obtain an
approximation of the belief interval. Moreover, the longer the algorithm runs,
the better this approximation becomes. Thus, this method is adequate for a
system where finding good approximations efficiently may be more important
than computing the precise answers.
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5 Properties

We now investigate some properties of probabilistic logics [22]. First we show that
ALCP is language and representation invariant. Invariance is meant with respect
to logical objects. Language invariance means that just extending the language
without changing the knowledge base should not affect reasoning results. Repre-
sentation invariance means that equivalent knowledge bases should yield equal
inference results. Notice that different notions of representation dependence exist
in the literature. For instance, in [11] a very different notion is considered, where
the language and the knowledge base are changed simultaneously. This case is
not covered by our notion of representation invariance. ALCP also satisfies an
independence property; i.e., reasoning results about a part of the language are
not changed, when we add knowledge about an independent part of the language.
Finally, ALCP is continuous in the sense that minor changes in the probabilistic
knowledge expressed by a knowledge base cannot induce major changes in the
reasoning results.

Theorem 24 (Representation Invariance). Let Ki = (Ri, Ti), i ∈ {1, 2}, be
two KBs such that Mod(R1) = Mod(R2) and Mod(T1) = Mod(T2). Then for all
concepts C,D and contexts κ ∈ L, BK1(C � D | κ) = BK2(C � D | κ).

ALCP is not only representation invariant, but also language invariant. This
property is of computational interest, in particular in combination with inde-
pendence, that we investigate subsequently. To illustrate this, suppose that we
added knowledge about bone fractures in our medical example, which is inde-
pendent of the knowledge about infections. Independence guarantees that we
can ignore the knowledge about infections when answering queries about bone
fractures. In this way, we can decrease the size of the knowledge base. Language
invariance guarantees that we can also ignore the concepts, relations and propo-
sitional variables related to the infection domain. Thus, we can decrease the
size of the language. Exploiting both properties, the size of the computational
problems can sometimes be decreased significantly.

Theorem 25 (Language Invariance). Let K1,K2 be KBs over L1,N1
C,N1

R and
L2,N2

C,N2
R, respectively. If K1 = K2, L1 ⊆ L2,N1

C ⊆ N2
C and N1

R ⊆ N2
R, then for

all concepts C,D ∈ N1
C and contexts κ ∈ L1, it holds that

BK1(C � D | κ) = BK2(C � D | κ).

For an L-TBox T , we define the signature of T to be the set sig(T ) of all
concept names and role names appearing in T . Likewise, sig(R) is the set of all
propositional variables appearing in R. The signature of a KB K = (R, T ) is
sig(K) := sig(R) ∪ sig(T ).

Theorem 26 (Independence). Let K1,K2 be s.t. sig(K1)∩ sig(K2) = ∅, C,D
be two concepts, and κ a context where (sig(C) ∪ sig(D) ∪ sig(κ)) ∩ sig(K2) = ∅.
Then B(C �K1 D | κ) = B(C �K1∪K2 D | κ).
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To conclude, we consider continuity. One important practical feature of contin-
uous probabilistic logics is that they guarantee a numerically stable behaviour.
That is, minor rounding errors due to floating-point arithmetic will not result
in major errors in the computed probabilities. As demonstrated by Paris in [22],
measuring the difference between probabilistic knowledge bases is subtle and is
best addressed by comparing knowledge bases extensionally; i.e., with respect
to their model sets. To this end, Paris considered the Blaschke metric. Formally,
the Blaschke distance ‖S1, S2‖B between two convex sets S1, S2 is defined by

inf{δ ∈ R | ∀P1 ∈ S1∃P2 ∈ S2 : ‖P1, P2‖2 ≤ δ and
∀P2 ∈ S2∃P1 ∈ S1 : ‖P2, P1‖2 ≤ δ}

Intuitively, ‖S1, S2‖B is the smallest real number d such that for each distribu-
tion in one of the sets, there is a probability distribution in the other that has
distance at most d to the former. We say that a sequence of knowledge bases (Ki)
converges to a knowledge base K iff the classical part of each Ki is equivalent to
the classical part of K and the probabilistic part converges to the probabilistic
part of K. Our reasoning approach behaves indeed continuously with respect to
this metric.

Theorem 27 (Continuity). Let (Ki) be a convergent sequence of KBs with
limit K and BKi

(C � D | κ) = [�i, ui]. If BK(C � D | κ) = [�, u], then (li)
converges to � and (ui) converges to u (with respect to the usual topology on R).

6 Related Work

Relational probabilistic logical approaches can be roughly divided into those that
consider probability distributions over the domain, those that consider proba-
bility distributions over possible worlds and those that combine both ideas [10].
Our framework belongs to the second group. Maximum entropy reasoning in
propositional probabilistic logics has been discussed extensively, e.g., in [13,22],
and various extensions to first-order languages have been considered in recent
years [3,4,14,15]. In these works, the domain is restricted to a finite number of
constants or bounded in the limit. We circumvent the need to do so by combin-
ing a classical first-order logic with unbounded domain with a probabilistic logic
with fixed domain.

Many probabilistic DLs have also been considered in the last decades [16,
18,19]. Our approach is closest to Bayesian DLs [5,6] and disponte [26]. The
greatest difference with the former lies in the fact that ALCP KBs do not require
a complete specification of the probability distribution, but only a set of proba-
bilistic constraints. Moreover, the previous formalisms consider only the sceptical
degree of belief, while we are interested in the full belief interval. In contrast to
disponte, ALCP is capable of expressing both, logical and probabilistic depen-
dencies between the axioms in a KB; in addition, disponte requires all uncer-
tainty degrees to be assigned as mutually independent point probabilities, while
ALCP allows for a more flexible specification.
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7 Conclusions

We have introduced the probabilistic DL ALCP, which extends the classical DL
ALC with the capability of expressing and reasoning about uncertain contextual
knowledge defined through the principle of maximum entropy. Effective reason-
ing methods were developed using the decoupling between the logical and the
probabilistic components of ALCP KBs. We also studied the properties of this
logic in relation to other probabilistic logics.

We plan to extend this work in several directions. First, instead of considering
the ME-model, we could reason over all probability distributions that satisfy our
probabilistic constraints similar to [12,17,20]. This will result in larger belief
intervals in general. A smaller interval is preferable since it corresponds to a
more precise degree of belief. However, when using all probability distributions
the size of the interval can be a good indicator for the variation of the possible
beliefs in our query with respect to the knowledge base.

In some applications it is also useful to allow more expressive propositional
or relational context languages like those proposed in [4,7,15,24]. Similarly, we
can consider other DLs for our concept language. Indeed, ALC was chosen as a
prototypical DL for studying the basic properties of our framework. Including
additional constructors into the formalism should be relatively simple. In con-
trast, considering other reasoning problems beyond subsumption is less straight-
forward. Recall, for instance, that if an ALCP KB K contains an inconsistent
context with positive probability, then K has no models. It is thus unclear how
to handle the probability of consistency of a KB.

Practical reasoning with ALCP can be currently performed by combin-
ing existing ME-reasoners2 with any ALC-reasoner3 according to Algorithm 1.
Clearly, such an approach can still be further optimized. We are working on
combining the classical and probabilistic reasoning parts in more sophisticated
ways.
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Abstract. This paper deals with fuzzy quantified queries in a graph
database context. We study a particular type of structural quantified
query and show how it can be expressed in the language FUDGE that
we previously proposed. A processing strategy based on a compilation
mechanism that derives regular (nonfuzzy) queries for accessing the rel-
evant data is also described.

Keywords: Graph databases · Fuzzy quantified queries

1 Introduction

Even though the concept of a graph database is not exactly new [2], it is only
recently that the database community has started to show a strong interest in
it, due in particular to the rise of linked data on the Web and the profusion of
domains where networked objects have to be handled: social networks, genomics,
cartographic databases, etc.

Simultaneously, the need for flexible querying has been acknowledged by
database researchers, and many approaches to relational database preference
queries have been proposed in the last decade, see e.g. [14]. However, the pio-
neering work in this domain dates back to the 70’s and is based on fuzzy set
theory [15]. Since then, much effort has been made to come up with expressive
and efficient flexible querying tools based on fuzzy logic, see e.g. [9]. In particu-
lar, fuzzy quantified queries have proved useful in a relational database context
for expressing different types of imprecise information needs [4]. In a graph data-
base context, such queries have an even higher potential since they can exploit
the structure of the graph, beside the attribute values attached to the nodes or
edges. Nevertheless, only one approach from the literature, described in [5], con-
sidered fuzzy quantified queries so far, and only in a limited way. In the present
paper, we intend to integrate fuzzy quantified queries in a framework that we
defined previously in [10,11].

The remainder of the paper is organized as follows. Section 2 presents the
different elements that constitute the context of the work. Section 3 is a refresher
about fuzzy quantified statements. Section 4 discusses related work. In Sect. 5,
we consider a specific type of fuzzy quantified structural query, we propose a
syntactic format for expressing it in the FUDGE language defined in [10], and
c© Springer International Publishing Switzerland 2016
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we describe its interpretation. Section 6 deals with query processing. Finally,
Sect. 7 recalls the main contributions and outlines research perspectives.

2 Background Notions

In this section, we recall important notions about graph databases, fuzzy graph
theory, fuzzy graph databases, and the query language FUDGE.

2.1 Graph Databases

A graph database management system enables managing data for which the
structure of the schema is modeled as a graph (nodes are entities and edges are
relations between entities), and data is handled through graph-oriented opera-
tions and type constructors. Different models of graph databases have been pro-
posed in the literature (see [2] for an overview), including the attributed graph
(aka. property graph) aimed to model a network of entities with embedded data.
In this model, nodes and edges may contain data in attributes (aka. properties).

2.2 Fuzzy Graphs

A graph G is a pair (V, R), where V is a set and R is a relation on V . The
elements of V (resp. R) correspond to the vertices (resp. edges) of the graph.
Similarly, any fuzzy relation ρ on a set V can be regarded as defining a weighted
graph, or fuzzy graph [13], where the edge (x, y) ∈ V ×V has weight or strength
ρ(x, y) ∈ [0, 1].

An important operation on fuzzy relations is composition. Assume ρ1 and ρ2
are two fuzzy relations on V . Thus, composition ρ = ρ1◦ρ2 is also a fuzzy relation
on V s.t. ρ(x, z) = maxy min(ρ1(x, y), ρ2(y, z)). The composition operation
can be shown to be associative: (ρ1 ◦ ρ2) ◦ ρ3 = ρ1 ◦ (ρ2 ◦ ρ3). The associativity
property allows us to use the notation ρk = ρ ◦ ρ ◦ . . . ◦ ρ for the composition
of ρ with itself k − 1 times. In addition, following [16], we define ρ0 to be s. t.
ρ0(x, y) = 0, ∀(x, y).

Useful notions related to fuzzy graphs are those of strength and length of a
path. Their definition, drawn from [13], is given hereafter.

Strength of a path. — A path p in G is a sequence x0 → x1 → . . . → xn

(n ≥ 0) such that ρ(xi−1, xi) > 0, 1 ≤ i ≤ n and where n is the number of links
in the path. The strength of the path is defined as

ST (p) = min
i=1..n

ρ(xi−1, xi). (1)

In other words, the strength of a path is defined to be the weight of the weakest
edge of the path. Two nodes for which there exists a path p with ST (p) > 0
between them are called connected. We call p a cycle if n ≥ 2 and x0 = xn. It is
possible to show that ρk(x, y) is the strength of the strongest path from x to y
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containing at most k links. Thus, the strength of the strongest path joining any
two vertices x and y (using any number of links) may be denoted by ρ∞(x, y).

Length and distance. — The length of a path p = x0 → x1 → . . . → xn in the
sense of ρ is defined as follows:

Length(p) =
n∑

i=1

1
ρ(xi−1, xi)

. (2)

Clearly Length(p) ≥ n (it is equal to n if ρ is Boolean, i.e., if G is a nonfuzzy
graph). We can then define the distance between two nodes x and y in G as

Distance(x, y) = min
all paths x to y

Length(p). (3)

It is the length of the shortest path from x to y. It can be shown that Distance
is a metric [13], i.e., Distance(x, x) = 0, Distance(x, y) = Distance(y, x), and
Distance(x, z) ≤ Distance(x, y) + Distance(y, z) ∀z.

2.3 Fuzzy Graph Databases

We are interested in fuzzy graph databases where nodes and edges can carry
data (e.g. key-value pairs in attributed graphs). So, we consider an extension of
the notion of a fuzzy graph: the fuzzy data graph as defined in [11].

Definition 1 (Fuzzy data graph). Let E be a set of labels. A fuzzy data graph
G is a quadruple (V, R, κ, ζ), where V is a finite set of nodes (each node n is
identified by n.id), R =

⋃
e∈E{ρe : V × V → [0, 1]} is a set of labeled fuzzy

edges between nodes of V , and κ (resp. ζ) is a function assigning a (possibly
structured) value to nodes (resp. edges) of G.

In the following, a graph database is meant to be a fuzzy data graph. Figure 1
is an example of a fuzzy data graph in which the degree associated with A

-contributor-> B is the proportion of journal papers co-written by A and B,
over the total number of journal papers written by B. The degree associated
with J -domain-> D is the extent to which the journal J belongs to the research
domain D.

Nodes are assumed to be typed. If n is a node of V , then Type(n) denotes
its type. In Fig. 1, the nodes IJWS12, IJAR14, IJIS16, IJIS10 and IJUFK15 are of
type journal, the nodes IJWS12-p, IJAR14-p, IJIS16-p, IJIS10-p, IJIS10-p1 and
IJUFK15-p of type paper, and the nodes Andreas, Peter, Maria, Claudio, Michel,
Bazil and Susan are of type author, the nodes named Database are of type domain
and the other nodes are of type impact factor. For nodes of type journal, paper,
author and domain, a property, called name, contains the identifier of the node
and for nodes of type impact factor, a property, called value, contains the value
of the node. In Fig. 1, the value of the property name or value for a node appears
inside the node.
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Fig. 1. Fuzzy data graph DB

2.4 The FUDGE Query Language

FUDGE, based on the algebra described in [10], is an extension of the Cypher
language [8], used in the Neo4j graph DBMS [1]. These languages are based on
graph pattern matching, meaning that a query Q over a fuzzy data graph DB
defines a graph pattern and answers to Q are its isomorphic subgraphs that can
be found in DB. More concretely, a pattern has the form of a subgraph where
variables can occur. An answer maps the variables in elements of DB.

A fuzzy graph pattern expressed à la Cypher consists of a set of expres-
sions (n1:Type1)-[exp]->(n2:Type2) or (n1:Type1)-[e:label]->(n2:Type2) where
n1 and n2 are node variables, e is an edge variable, label is a label of E, exp is a
fuzzy regular expression, and Type1 and Type2 are node types. Such an expres-
sion denotes a path satisfying a fuzzy regular expression exp (that is simple in the
second form e) going from a node of type Type1 to a node of type Type2. All its
arguments are optional, so the simplest form of an expression is ()-[]->() denot-
ing a path made of two nodes connected by any edge. Conditions on attributes are
expressed on nodes and edges variables in a where clause.
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Example 1. We denote by P the fuzzy graph pattern:

1 match

2 (au2)-[:contributor+]->(au1:author),

3 (au1)-[:author_of]->(ar1:paper), (ar1)-[:published]->(j1),

4 (au1)-[:author_of]->(ar2:paper), (ar2)-[:published]->(j2)

5 where j1.name="IJWS12"

Listing 1.1. Pattern expressed à la Cypher

This pattern “models” information concerning authors (au2) who have,
among their close contributors, an author (au1) who published a paper (ar1)
in IJWS12 and also published a paper (ar2) in a journal (j2). �
Let us illustrate the way a selection query can be expressed in FUDGE, that
embarks fuzzy preferences over the data and the structure specified in the graph
pattern. Given a graph database DB, a selection query expressed in FUDGE is
composed of:

1. A list of define clauses for fuzzy term declarations. If a fuzzy term fterm

corresponds to a trapezoidal function defined by the quadruple (A-a, A, B and
B+b), then the clause has the form define fterm as (A-a,A,B,B+b). If fterm

is a decreasing function, then the clause has the form defineDesc fterm as

(δ,γ) meaning that the support of the term is [0, γ] and its core [0, δ] (there
is the corresponding defineAsc clause for increasing functions).

2. A match clause, which has the form match pattern where conditions that
expresses the fuzzy graph pattern.

Example 2. Listing 1.2 is an example of a FUDGE query.

1 defineDesc short as (3,5), defineAsc high as (0.5,2) in

2 match

3 (au2)-[(contributor+)|Length is short]->(au1:author),

4 (au1)-[:author_of]->(ar1:paper), (ar1)-[:published]->(j1),

5 (au1)-[:author_of]->(ar2:paper), (ar2)-[:published]->(j2),

6 (j2)-[:impact_factor]->(i)

7 where j1.name="IJWS12" and i.value is high

Listing 1.2. A FUDGE query

This pattern “models” information concerning authors (au2) who have, among
their close contributors (connected by a short path — Length is short — made
of contributor edges), an author (au1) who published a paper (ar1) in IJWS12

and also published a paper (ar2) in a journal (j2) which has a high impact factor
(i.value is high). The fuzzy terms short and high are defined on line 1. �

3 Refresher on Fuzzy Quantified Statements

In this section, we recall important notions about fuzzy quantifiers and present
one of the approaches that have been proposed in the literature for interpreting
fuzzy quantified statements.
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3.1 Fuzzy Quantifiers

Zadeh [17] distinguishes between absolute and relative fuzzy quantifiers.
Absolute quantifiers refer to a number while relative ones refer to a propor-
tion. Quantifiers may also be increasing, as “at least half”, or decreasing, as “at
most three”. An absolute quantifier Q is represented by a function μQ from an
integer range to [0, 1] whereas a relative quantifier is a mapping μQ from [0, 1]
to [0, 1]. In both cases, the value μQ(j) is defined as the truth value of the state-
ment “Q X are A” when exactly j elements from X fully satisfy A (whereas it
is assumed that A is fully unsatisfied for the other elements). Figure 2 gives two
examples of monotonous decreasing and increasing quantifiers respectively.

1 2 3 40

1
µat most 2

number of
satisfied criteria

1 2 3 40

1
µat least 3

number of
satisfied criteria

Fig. 2. Quantifiers “at most 2” (left) and “at least 3” (right)

Calculating the truth degree of the statement “QX are A” raises the problem
of determining the cardinality of the set of elements from X which satisfy A. If A
is a Boolean predicate, this cardinality is a precise integer (k), and then, the truth
value of “Q X are A” is μQ(k). If A is a fuzzy predicate, this cardinality cannot
be established precisely and then, computing the quantification corresponds to
establishing the value of function μQ for an imprecise argument.

3.2 Zadeh’s Interpretation

Let X be the usual (crisp) set {x1, x2, . . ., xn}. Zadeh [17] defines the cardinality
of the set of elements of X which satisfy A, denoted by Σcount(A), as:

Σcount(A) =
n∑

i=1

μA(xi) (4)

The truth degree of the statement “Q X are A” is then given by

μ(Q X are A) =

⎧
⎪⎨

⎪⎩

μQ(Σcount(A)) (absolute),

μQ

(
Σcount(A)

n

)

(relative)
(5)

where n denotes the cardinality of X.



266 O. Pivert et al.

As for quantified statements of the form “Q B X are A” (with Q relative),
their interpretation is as follows:

μ(QBXareA) = μQ

(
Σcount(A ∩ B)

Σcount(B)

)

= μQ

(∑
x∈X 
(μA(x), μB(x))

∑
x∈X μB(x)

)

(6)

where 
 denotes a triangular norm (for instance the minimum).

4 Related Work

Fuzzy quantified queries have been thoroughly studied in a relational database
context, see e.g. [4,7] where they serve to express conditions about data values.
In a graph database context, a new dimension can be exploited that concerns
the structure of the graph. In [16], Yager briefly mentions the possibility of
using fuzzy quantified queries in a social network database context, such as the
question of whether “most of the people residing in western countries have strong
connections with each other” and suggests to interpret it using an OWA operator.
However, the author does not propose any formal language for expressing such
queries.

A first attempt to extend Cypher with fuzzy quantified queries — in the con-
text of a regular (crisp) graph database — is described in [5,6]. In [5], the authors
take as an example a graph database representing hotels and their customers and
consider the following fuzzy quantified query:

1 match (c1:customer)-[:knows**almost3]->(c2:customer) return c1,c2

looking for pairs of customers linked through almost 3 hops. The syntax ** is
used for indicating what the authors call a fuzzy linker. However, the interpre-
tation of such queries is not formally given. The authors give a second example
that involves the fuzzy concept popular applied to hotels. They assume that a
hotel is popular if a large proportion of customers visited it. First, they consider
a crisp interpretation of this concept (large being seen as equivalent to at least
n) and recall how the corresponding query can be expressed in Cypher:

1 match (c:customer)-[:visit]->(h:hotel) with h, count(*) as cpt

2 where cpt > n − 1 return h

Then, the authors switch to a fuzzy interpretation of the term popular and
propose the expression:

1 match (c:customer)-[:visit]->(h:hotel) with h, count(*) as cpt

2 where popular(cpt) > 0 return h

In [6], the same authors propose an approach aimed to summarize a (crisp)
graph database by means of fuzzy quantified statements of the form Q X are A,
in the same spirit as what Rasmussen and Yager did for relational databases [12].
Again, they consider that the degree of truth of such a statement is obtained by a
sigma-count (according to Zadeh’s interpretation) and show how the correspond-
ing queries can be expressed in Cypher. More precisely, given a graph database
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G and a summary S = a–[r ]–>b, Q, the authors consider two degrees of truth
of S in G defined by truth1(S) = μQ (count(distinct S)/count(distinct a)) and
truth2(S) = μQ (count(distinct S)/count(distinct a–[r ]–>(?))). They illustrate
these notions using a database representing students who rent or own a house
or an apartment. The degree of truth (in the sense of the second formula above)
of the summary “S = student–[rent ]–>apartment, most” — meaning “most of
the students rent an apartment” (as opposed to a house) — is given by the
membership degree to the fuzzy quantifier most of the ratio: (number of times
a relationship of type rents appears between a student and an apartment) over
(number of relations of type rents starting from a student node).

A limitation of this approach is that only the quantifier is fuzzy (whereas
in general, in a fuzzy quantified statement of the form “Q B X are A”, the
predicates A and B may be fuzzy too).

5 Fuzzy Quantified Queries in the FUDGE Language

In the following, we consider fuzzy quantified queries involving fuzzy predicates
(beside the quantifier) over fuzzy graph databases. The fuzzy quantified state-
ments considered are of the form “Q nodes, that are connected according to a
certain pattern to a node x, satisfy a fuzzy condition ϕ”. An example of such
a statement is: “most of the papers of which x is a main author, have been
published in a renowned database journal”.

This type of statement rewrites “Q YP (x) are ϕ” where the quantifier Q is
represented by a fuzzy set and denotes either a relative quantifier (e.g., most)
or an absolute one (e.g., at least three), YP (x) designates the fuzzy set of nodes
connected, according to the pattern P (x), to a node x in the graph, and ϕ, is
represented also by a fuzzy set and denotes fuzzy (possibly compound) condi-
tions. In a general setting, we have a statement of the form “Q B X are A”
where B is the fuzzy condition “to be connected (according to the pattern P (x))
to a node x”, X is the set of nodes in the graph, and A is the fuzzy condition ϕ.
In the particular case where the graph is crisp, we get a statement of the form
“Q X are A” where the referential X is the (crisp) set of nodes connected to x.

Example 3. The query that consists in finding “most of the papers of which x
is a main author, have been published in a renowned database journal” may be
expressed in FUDGE as follows:
1 defineQrelativeAsc most as (0.3,0.8),

2 defineAsc strong as (0,1), defineAsc high as (0.5,2) in

3 match

4 (x:author)-[author_of|ST IS strong]->(p:paper),

5 (p:paper)-[:published]->(j:journal)-[:impact_factor]->(i:impact_factor),

6 (j:journal)-[:domain]->(d)

7 with x having most(p) are (i.value is high and d.name="database")

8 return x

where the defineQrelativeAsc clause defines the fuzzy relative increasing
quantifier most of Fig. 3(c), and the next defineAsc clauses define the ascending
fuzzy terms strong and high of Fig. 3(d) and (a).



268 O. Pivert et al.

20.50

1

Impact factor

µhigh

2013 20160

1
µrecent

year

(a) Membership function of high (b) Membership function of recent

0.80.30

1
µmost

proportion of
satisfied criteria

0

1
µstrong

strength1

(c) Membership function of most (d) Membership function of strong

Fig. 3. Membership functions

We now consider a slightly more complex version of the above example by
adding a fuzzy condition on the papers’ publication date: “most of the recent
papers written by an important author x have been published in a renowned
database journal”. The syntactic form of this query, denoted by QmostAuthors in
the following, is given in Listing 1.3. �
1 defineQrelativeAsc most as (0.3,0.8), defineAsc recent as (2013,2016),

2 defineAsc strong as (0,1), defineAsc high as (0.5,2) in

3 match

4 (x:author)-[author_of|ST IS strong]->(p:paper),

5 (p:paper)-[:published]->(j:journal)-[:impact_factor]->(i:impact_factor),

6 (j:journal)-[:domain]->(d)

7 where p.year is recent

8 with x having most(p) are (i.value is high and d.name="database")

9 return x

Listing 1.3. Syntax of the fuzzy quantified query QmostAuthors

The general syntactic form of fuzzy quantified queries is given in the Listing 1.4.

1 define... in

2 match P(x,y) where fc1(y)
3 with x having Quant(y) are fc2
4 return x

Listing 1.4. Syntax of a fuzzy quantified query

It contains a list of define clauses for the fuzzy quantifiers and the fuzzy
terms declarations, a match clause for fuzzy graph pattern selection, a where

clause for expressing the (possibly fuzzy) conditions on values, a having clause
for the fuzzy quantified statement definition, and a return clause for specifying
which elements should be returned in the resultset. P(x,y) denotes the fuzzy
graph pattern involving the nodes x and y. fc1 and fc2 are fuzzy conditions.
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Interpretation: From a conceptual point of view, its interpretation involves three
derived queries (hereafter, the define clauses are been omitted for the sake of
simplicity). The first one, Q1 (given in Listing 1.5), aims to retrieve the elements
matching the variable x, for which we will then need to calculate a satisfaction
degree. Query Q1 is obtained by removing the with and having clauses from the
initial query (one may also remove some useless parts of P(x,y), as illustrated
in Example 4 below).

1 match P(x,y) where fc1(y)
2 return x

Listing 1.5. Derived query Q1

The second derived query, denoted by Q2(e) (given in Listing 1.6), where e is
an element returned by Q1, is obtained by removing the with and having clauses
from the initial query, integrating the fuzzy condition fc2 and the condition
x.name=e in the where clause and adding the clause return y. According to the
semantics of a FUDGE query, its result, denoted by AQ2(x), is a set of elements
{(μ1/y1), ..., (μn/yn)}, where μi is the satisfaction degree associated with the
element yi.

1 match P(x,y) where fc1(y) and fc2 and x.name=e

2 return y

Listing 1.6. Derived queries Q2(e) for each e retrieved by Q1

The third derived query, denoted by Q3(e) (given in Listing 1.7), is the initial
fuzzy query from the match to the where clause, adding the condition x.name=e

in the where clause and the clause return y as follows:

1 match P(x,y) WHERE fc1(y) and x.name=e

2 RETURN y

Listing 1.7. Derived queries Q3(e) for each e retrieved by Q1

The result of this query, denoted by AQ3(x), takes the form of a set of elements
{(μ′

1/y1), ..., (μ′
m/ym)}, where μ′

i is the satisfaction degree associated with the
element yi. Note that Q3 only differs from Q2 by its where clause.

In accordance with the semantics of the projection, if the same value of yi
appears in several instances in the resultset of Q2(x) or Q3(x), duplicates are
eliminated and the final degree associated with yi in AQ2(x) and AQ3(x) is equal
to the maximum degree associated with these occurrences.

Then, the results of the initial fuzzy relative quantified query Q (involving
the fuzzy quantifier Q) are results of the query Q1 derived from Q, and the final
satisfaction degree associated with each element e of these results is

μ(e) = μQ

(∑
(µi/yi)∈AQ2(e)

μi
∑

(µ′
i/yi)∈AQ3(e)

μ′
i

)

(7)
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In case of a fuzzy absolute quantified query, the final satisfaction degree associ-
ated with each element e is μ(e) = μQ

(∑
(µi/yi)∈AQ2(e)

μi

)
.

Example 4. Let us consider the query QmostAuthors of Listing 1.3. We evalu-
ate this query according to the fuzzy data graph DB of Fig. 1. In order to
interpret QmostAuthors, we first evaluate the following query Q1, derived from
QmostAuthors, that retrieves “the authors (x) who highly contributed to at least
one recent paper (p) published in a journal”.

1 match (x:author)-[author_of|ST IS strong]->(p:paper),

2 (p:paper)-[:published]->(j:journal)

3 where p.year is recent

4 return x

Listing 1.8. Query Q1 derived from QmostAuthors

Q1 returns four results X = {Peter, Maria, Claudio, Michel}. The authors
Andreas, Susan and Bazil do not belong to the resultset of Q1 because Susan

has not written a journal paper yet and Andreas and Bazil do not have a recent
paper.

For each element x from the resultset X of Q1, we process two queries
Q2(x) and Q3(x). The query Q2(x), derived from QmostAuthors, aims to retrieve
“the recent papers of which x is a main author, that have been published in
a renowned database journal”. For instance, for the element Maria, the query
Q2(Maria) is expressed as follows:
1 match (x:author)-[author_of|ST IS strong]->(p:paper),

2 (p:paper)-[:published]->(j:journal)-[:impact_factor]->(i:impact_factor),

3 (j:journal)-[:domain]->(d)

4 where p.year is recent and i.value is high

5 and d.name="database" and x.name="Maria"

6 return p

Listing 1.9. Query Q2(Maria) derived from QmostAuthors

For a given x, we get a list of papers with their respective sat-
isfaction degrees: μ(p) = min(μstrong(ρauthor(x, p)), μrecent(p), μhigh(i)).
For the running example, we then have AQ2(Peter) = {(min(0.5, 0,
0.92)/IJWS12 p), (min(0.2, 0.33, 1)/IJAR14 p)} = {(0/IJWS12 p), (0.2/IJAR14 p)},
AQ2(Maria) = {(0.33/IJAR14 p), (0.33/IJIS16 p), (0/IJIS10p1)}, AQ2(Claudio) =
{(0.33/IJAR14 p), (0/IJIS10 p1), (0.07/IJUFK15 p)},
AQ2(Michel) = {(0.07/IJUFK15 p)}.

Query Q3(x), derived from QmostAuthors, aims to retrieve “the recent papers
of which x is a main author, that have been published in a journal”. For instance,
for the element Maria, the query Q3(Maria) is expressed as follows:
1 match (x:author)-[author_of|ST IS strong]->(p:paper),

2 (p:paper)-[:published]->(j:journal)-[:impact_factor]->(i:impact_factor),

3 (j:journal)-[:domain]->(d)

4 where p.year is recent and x.name="Maria"

5 return p

Listing 1.10. Query Q3(Maria) derived from QmostAuthors
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For a given x, we get a set of papers written by x satisfying the condi-
tions of query Q3(x) with their respective satisfaction degrees as follows: μ(p) =
min(μstrong(ρauthor(x, p)), μrecent(p)). For the running example, we then have
AQ3(Peter) = {(0/IJWS12 p), (0.2/IJAR14 p)}, AQ3(Maria) = {(0.33/IJAR14 p),
(0.6/IJIS16 p), (0/IJIS10 p1)}, AQ3(Claudio) = {(0.33/IJAR14 p), (0/IJIS10 p1),
(0.3/IJUFK15 p)}, AQ3(Michel) = {(0.3/IJUFK15 p)}.

Lastly, the final result of the query QmostAuthors evaluated on DB, given
by Formula 7, is {μ(Peter) = μmost( 0.20.2 ) = 1, μ(Maria) = μmost( 0.660.93 ) = 0.82,
μ(Claudio) = μmost( 0.4

0.63 ) = 0.67, μ(Michel) = μmost( 0.070.3 ) = 0}. �

6 About Query Processing

The evaluation strategy we propose for these queries consists of a software add-
on layer over the Neo4j graph DBMS. This software, called SUGAR, efficiently
evaluates FUDGE queries that contain fuzzy preferences, but its initial ver-
sion, described in [10,11], does not support fuzzy quantified statements. We now
consider the implementation of this functionality, based on the theoretical foun-
dations defined in the previous section. The SUGAR software implements two
modules, which interact with the embedded Neo4j crisp engine (see Fig. 4): The
Transcriptor module, aimed to translate a FUDGE query requested by a user
into a (crisp) cypher one (using the derivation principle presented in [9] in the
context of relational databases), which is then sent to the crisp Neo4j engine, and
The Score Calculator module, which calculates the satisfaction degree associated
with each answer returned by the crisp engine, and ranks the answers.

Fig. 4. SUGAR software architecture

The main process in our work is the quantified statement evaluation step
which is described in Algorithm 1. For quantified queries of the type introduced
in the previous section (i.e. using relative quantifiers), the principle is to first
evaluate the fuzzy query Q1. For each tuple x from the resulset of Q1, we evaluate
with SUGAR the fuzzy queries Q2(x) and Q3(x). The final satisfaction degree
is given by Formula 7 according to Q2(x) and Q3(x) resultsets. Finally, we get
as an output answers ranked by decreasing order of the satisfaction degree.
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Algorithm 1. Algorithm for the evaluation of a fuzzy quantified query
Input : A query Q containing a fuzzy quantifier Quant
Output: Results X of Q with associated satisfaction degrees {µ(x)|x ∈ X}

1 begin
2 Derive queries Q1, Q2 and Q3 from Q;
3 X=evaluate(Q1);
4 foreach element x from the result of X do
5 evaluate(Q2(x));
6 evaluate(Q3(x));
7 μ(x) = μQuant(μAQ2(x)(y)/μAQ3(x)(y));

8 Rank answers of X by decreasing satisfaction degree (μ)

For a given x, queries Q2(x) and Q3(e) embed the same graph pattern (they
only differ by their where clause that is more restrictive for Q2). This means
that these queries could be processed together at evaluation time. Then one can
see on Algorithm 1 that evaluating a fuzzy quantified query implies processing
x+1 FUDGE queries where x is the number of elements that match the pattern
declared in the match clause of the initial query (without the quantified state-
ment). The cost of the evaluation of a graph pattern query depends on the form
of its pattern [3] and it has already been showed in [10] that a FUDGE query
does not significantly increase the cost with respect to a crisp query in the case
of selection graph pattern queries.

As a proof-of-concept of the proposed approach, the FUDGE prototype is
available and downloadable at http://www-shaman.irisa.fr/fudge-prototype/.

7 Conclusion and Perspectives

In this paper, we have dealt with a specific type of fuzzy quantified queries,
addressed to fuzzy graph databases. We have defined the syntax and semantics
of an extension of the query language Cypher that makes it possible to express
and interpret such queries. A query processing strategy based on the derivation
of non-quantified fuzzy queries has also been proposed. As a future work, we first
intend to carry out some experimentations in order to assess the performances
of the evaluation method outlined here. We then plan to study other types of
fuzzy quantified queries. An example of a fuzzy quantified statement that is out
of the scope of the present approach is “find the authors x that had a paper
published in most of the renowned database journals”. More generally, it would
be interesting to study fuzzy quantified queries that aim to find the nodes x such
that x is connected (by a path) to Q nodes reachable by a given pattern and
satisfying a given condition C.
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Abstract. Artificial intelligence (AI) traditionally deals with knowledge
rather than with data (with the noticeable exception of machine learning).
The term “knowledge” refers here to information with a generic flavor,
while “data” refers to information pertaining to (collections of) particular
cases. The formalization of reasoning patterns with data has been much
less studied until now than knowledge representation and its application
to knowledge-based systems and reasoning, possibly in presence of imper-
fect information. Data are positive in nature by manifesting the possibility
of what is observed or reported, and contrast with knowledge that delimit
the extent of what is potentially possible by specifying what is impossible.
Reasoning from knowledge and data goes much beyond the application of
knowledge to data as in expert systems. Besides, the idea of similarity nat-
urally applies to data and gives birth to specific forms of reasoning such
as case-based reasoning, case-based decision, or even case-based argumen-
tation, interpolation, extrapolation, and analogical reasoning. Moreover,
the analysis, the interpretation of data sets raise original reasoning prob-
lems for making sense of data. This article is a manifesto in favor of the
study of types of reasoning which have been somewhat neglected in AI,
by showing that AI should contribute to (knowledge) and data sciences,
not only in the machine learning and in the data mining areas.

Keywords: Knowledge · Data · Bipolarity · Similarity · Possibility
theory

1 Introduction

Historically, knowledge representation and reasoning have played a central role in
artificial intelligence (AI). AI has been more a “knowledge science” than a “data
science” until now. This does not mean that AI fully ignores data. Certainly
not. Machine learning, which has recently become the most prominent part of
AI, works with data, and is extensively used for inducing knowledge from data.
Note that in this paper we use the term “knowledge” for referring to information
having a generic flavor, while “data” pertains to collections of particular cases
or instances.

Originally, knowledge was mainly supposed to be provided by experts. Expert
systems, which were popular from the mid-seventies to the mid-nineties of the
c© Springer International Publishing Switzerland 2016
S. Schockaert and P. Senellart (Eds.): SUM 2016, LNAI 9858, pp. 274–288, 2016.
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last century, are prototypical illustrations of this state of facts. However, the idea
of extracting knowledge from data has been there for a long time as well. This is
especially the case with numerical methods such as Bayesian nets, fuzzy rules-
based systems, or neural nets. Besides, data mining methods look for pieces of
knowledge of interest including association rules that may have not been thought
of before.

The aim of this paper is neither to survey methods that extract knowledge
from data, nor to discuss machine learning, but rather to provide a structured
overview of problems and approaches where data are directly involved in rea-
soning processes. Note that in this paper we use the phrase “reasoning with
data”, which may cover indifferently “reasoning about data”, or “reasoning from
data”. Obviously, expert systems by operating the separation of the knowledge
base from the factual part of the information pertaining to the case at end,
were dealing with data. But these data, called facts there, were used in isolation
and were specific of the case at hand to which the generic knowledge had to be
applied. The factual base was gathering only facts pertaining to a single case at
once, so it was not really a data base (which usually gathers data pertaining to
collections of different cases). This remark applies as well to abductive reasoning
in diagnosis, where symptoms are facts pertaining to a given situation.

As in knowledge-based systems, description logics also separate knowledge
(in a“TBox”) and data (in a “ABox”, which is not restricted to a single case) [2].
Then they confront knowledge and data, but do not reason from data alone. In
that respect, case-based reasoning by working from a repertory of cases, shows
that AI has considered the problem of reasoning from data (more precisely from
tuples of data, called cases) for a long time.

Interestingly enough, research on case-based reasoning has remained apart
from the main knowledge representation and reasoning trend, and has been much
less oriented towards formal theoretical studies. Indeed “reasoning with data”
could not benefit much of the tradition of mathematical reasoning and math-
ematical logic interested in the deduction of universal theorems, while applied
mathematics applies generic equations to (numerical) data, as it was the case
for knowledge-based systems (up to the problem of handling exceptions and
uncertainty, not much encountered in mathematics).

Reasoning with data, which certainly includes case-based reasoning, is how-
ever potentially much larger, as we are trying to suggest in this paper. Moreover,
reasoning with data and reasoning with knowledge are not necessarily topics that
should be considered separately. Indeed reasoning from both knowledge and data
may be worth doing. This is already the case in machine learning, where back-
ground knowledge, when available, is jointly used with data, or in case-based
reasoning where domain knowledge may be taken into account, but not so much
in deductive reasoning.

Knowledge and data are of different nature, and are not subject to have
exactly the same kinds of defects, even if knowledge may be incomplete or per-
vaded with uncertainty, and data may be missing or suspect. Indeed knowledge
may be inconsistent, or may be incoherent with respect to potential data, while
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data can be accumulated without inconsistency, nor redundancy. Data cannot be
inconsistent by themselves, but only with respect to integrity constraints. Still
some discrepancy may exist between data, which is a matter of (dis)similarity,
and may then suggest outliers among data (if the reliability of the data is not
fully guaranteed). But this differs from logical inconsistency between pieces of
knowledge.

Moreover, as just mentioned, the notion of similarity makes sense for data,
and is often instrumental when reasoning with data, while knowledge is more
concerned with subsumption. Besides, it is worth mentioning that data, even if
there is a massive amount of them, may be scarce in some areas where we would
need to have more information.

In fact, data are a positive form of information, while knowledge has rather
a negative flavor. Indeed knowledge restricts possible worlds, and thus implicitly
states what worlds are impossible. The more knowledge you have, the greater
the restriction on the remaining possible worlds, and the closer the information
is to be complete about the world of interest, provided that the knowledge you
have remains consistent. This contrasts with data that by nature are diverse,
but should be regarded as positive information expressing that some worlds are
really possible, since they are observed, or reported (assuming that the sources
are reliable).

The paper is a kind of manifesto1 in favor of more unified thinking and
researches on the diverse forms of use of data in reasoning, possibly jointly with
knowledge. The rest of the paper is structured as follows. The next section recalls
how the idea of bipolarity, which distinguishes between positive and negative
information may provide a setting for reasoning with data, in a coherent man-
ner with respect to knowledge-based reasoning. Section 3 deals with similarity-
based reasoning, including case-based reasoning, case-based decision, analogical
reasoning, interpolation and extrapolation; it also points out the role of data in
argumentation. Section 4 surveys issues related to the need of making sense of
data, of reasoning about data, rather than reasoning from data, as in the two
previous sections.

2 Reasoning with Data vs. Reasoning with Knowledge:
A Bipolar Issue

Pieces of knowledge are generally understood as constraints2 on sets of possible
worlds. “Humans are mortal” means that it is impossible to find a human who
is not mortal. Thus generic information, generally referred to as knowledge, may
be viewed as negative, in the sense that what is really stated is an impossibility,
which by complementation defines a set of worlds that are not impossible, i.e.
that are potentially possible. Generic knowledge may have exceptions, and thus
1 A preliminary version of this paper exists in French [41].
2 Such a view is sometime termed as being “intensional”; see Pearl [38] who opposes

it, in the case of rules, to “extensional” approaches where a (decision) rule would
then express the license (rather than the obligation) to do something.
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the information is pervaded with uncertainty. In such a case, the situation is
basically the same, but impossibility is no longer fully strong. “Generally birds
fly” is to be understood as it is rather impossible, but maybe not completely
impossible to find birds that cannot fly. The more knowledge we have, the more
restricted the remaining set of possible worlds, by effect of the conjunctive com-
bination of such restrictive pieces of information.

By contrast, if we consider the piece of data “Mary is 111 years old”, it is both
a fact about Mary, and the indication that it is possible for sure (guaranteed
possible) to live until 111 years, as long we regard the information as reliable.
This type of information, based on observed, or reported cases, is not of the same
nature as the claim that according to our understanding of our biological nature,
it would be impossible to live more than 150 years in any case, where here living
until 140 years remains just a potential possibility, as long as no case is reported.
Observed facts give birth to what may be termed positive information. Positive
information can be accumulated without any risk of inconsistency. For instance,
if you want to know the price for a house having some specificities to let at a
given time period, you may look to list of offers, select the ones that correspond
to what you are looking for, and from them gather a collection of prices that can
be regarded as possible for sure. But this does not mean that any other price
would be impossible.

Possibility theory [19] (but also evidence theory [23], particular modal logics
[15]) are suitable frameworks for representing both positive and negative infor-
mation. Indeed the representation capabilities of possibilistic logic that extends
classical logic by associating formulas with certainty levels, can be enlarged into
a bipolar possibilistic setting [4,15]. It allows the separate representation of both
negative and positive information taken in the following sense. Negative infor-
mation reflects what is not (fully) impossible and remains potentially possible.
It induces (prioritized) constraints on where the real world is (when expressing
knowledge), which can be encoded by necessity-based possibilistic logic formulas.
Positive information expressing what is actually possible, is encoded by another
type of formula based on a set function called guaranteed (or actual) possibility
measure (which is to be distinguished from “standard” possibility measures that
rather express potential possibility (as a matter of consistency with the avail-
able information). This bipolar setting is thus of interest for representing both
knowledge and reported data.

Positive information can be represented by formulas denoted [ϕ, d], which
expresses the constraint Δ(ϕ) ≥ d, where Δ denotes a measure of strong (actual)
possibility [19] defined from a possibility distribution δ by Δ(ϕ) = minω|=ϕ δ(ω).
Thus, the piece of positive information [ϕ, d] expresses that any model of ϕ is at
least possible with degree d (d reflects the minimal confidence in the reported
observations gathered in the models of ϕ). More generally, let D = {[ϕj , dj ] | j =
1, · · ·, k} be a positive possibilistic logic base. Its semantics is given by the pos-
sibility distribution

δD(ω) = maxj=1,···,k δ[ϕj ,dj ](ω)
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with δ[ϕj ,dj ](ω) = 0 if ω |= ¬ϕj , and δ[ϕj ,dj ](ω) = dj if ω |= ϕj . As can be seen,
δD is obtained as the max-based disjunctive combination of the representation
of each formula in D. This is in agreement with the idea that observations
accumulate and are never in conflict with each other.

This contrasts with a standard possibilistic logic base K = {(ψi, ci)}i=1,···,m,
which is associated with the possibility distribution πK representing the weighted
set of models of K:

πK(ω) = mini=1,···,m max(μ||ψi||(ω), 1 − ci)

where an interpretation ω is all the less possible as it falsifies a formula ψi

having a higher level of certainty ci (μ||ψi|| is the characteristic function of the
set of models of ψi). Each formula (ψi, ci) corresponds to the semantic constraint
N(ψi) ≥ ci, where N is a necessity measure, associated with a measure of (weak)
possibility Π. Namely, we have N(ψ) = 1 − Π(¬ψ). Thus, the formula (ψi, ci)
expressed that the interpretations outside ||ψi|| have a level of possibility upper
bounded by 1−ci, and are somewhat impossible (when ψi is fully certain, ci = 1,
and the possibility of any ω �∈ ||ψi|| is 0, which means full impossibility).

A positive possibilistic knowledge base D = {[ϕj , dj ]|j = 1, k} is inconsistent
with a negative possibilistic knowledge base K = {(ϕi, ai)|i = 1,m} as soon as
the following fuzzy set inclusion is violated:

∀ω, δD(ω) ≤ πK(ω).

This violation occurs when something is observed or reported, while one is
somewhat certain that the opposite should be true. Then a revision should take
place by either questioning the generic knowledge represented by K, or what is
reported, which is represented by D.

Reasoning with both negative and positive information is clearly an issue
of interest, since one may have information of both type in the same time. For
instance consider, a second-hand car; there may exist some rules stating that
for a car of some trade mark having some mileage, the price should be in some
range, but one may also have examples of similar cars recently sold. See [15,51]
for general settings allowing us to reason with knowledge and data in the same
time. It is also worth mentioning that the setting of version space learning is
bipolar in nature, since counter-examples play the role of negative information
(counter-examples are by nature associated with the negation of generic rules),
and examples are positive information [45].

3 Similarity-Based Forms of Reasoning

Similarity plays an important role when dealing with data. Two obvious exam-
ples are clustering data in unsupervised learning, and k-nearest neighbors meth-
ods in classification. Another example is provided by fuzzy rules in rule-based
fuzzy controllers, where a rule is of the form “if the observed output x is in A,
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the command y should be chosen in B”, and A and B are fuzzy sets [32]3. These
fuzzy sets, which have unimodal membership functions, may be understood as
expressing closeness to the mode of the membership function. If a (resp. b) is the
unique value having a membership grade to A (resp. B) equal to 1, then the rule
means “the closer x is to a, the closer y is to b”. This a gradual rule [6,18]. This
is the basis for an interpolation mechanism [39], as soon as we have a second
rule “the closer x is to a′, the closer y is to b′”, and an input x = a0, such that
a0 ∈ [a, a′]. This can be also related to the representation of co-variations [46].

3.1 Case-Based Reasoning

Case-based reasoning (CBR) is the main form of reasoning with data studied in
AI. An attempt at formalizing it has been proposed in the setting of fuzzy sets
and possibility theory [29]. Viewing a case as a pair (<situation>, <associated
result>), it relies on the modeling of a CBR principle that relates the similarity
of situations to the similarity of associated results. Let us state the idea more
formally. Let C be a repertory of n cases ci = (si, ri) with i = 1, ..., n, where
si ∈ S (resp. ri ∈ R) denotes a situation (resp. a result). Let S and R be two
graded similarity relations (assumed to be reflexive and symmetrical) defined on
S × S and R × R respectively, where S(s, s′) ∈ [0, 1] and R(r, r′) ∈ [0, 1]. Let
us assume that we use a CBR principle based on the gradual rule “the more
similar s0 to si, the more similar r0 to ri” [1], where s0 denotes the situation
under consideration, and r0 the unknown associated result. Then, it leads to the
following expression for the fuzzy set r̃0 of possible values for the unknown value
y of r0:

r̃0(y) = min
(sj ,rj)∈C

S(s0, sj) → R(y, rj) (1)

where → denotes Gödel implication a → b = 1 if a ≤ b and a → b = b if
a > b. It is worth noticing that the above expression underlies an interpolation
mechanism. For instance, if a second hand car s0 is identical to two other cars s
and s′, except that its mileage is between the ones of s and s′, then the estimated
price r0 will be between r and r′, and may be quite precise due to the min-based
combination in (1). Thus, the estimation of r0 is not just based on the closest
similar case, but takes advantage of the “position” of s0 among the si’s such as
(si, ri) ∈ C. In order to ensure the normalization of the fuzzy set r̃0 in (1), it is
necessary for the repertory of cases to be “consistent” with the CBR principle
used (see [13] for details), which means, informally speaking, that the cases in
the repertory should themselves obey the principle “the more similar two case
situations, the more similar the case results”. In particular, letting s0 = si, if we
want to ensure r̃i(ri) = 1 (i.e., one retrieves the case (si, ri) as a solution) for
any i, we should have ∀i ∀j S(si, sj) ≤ R(ri, rj).

3 Strictly speaking, such a rule was usually modeled as meaning “if x is in A, then y can
be chosen in B”, implicitly taking the view that it was reflecting commands already
observed as being successful, and thus echoing positive information, or “extensional”
rules [38]; see footnote 2.
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If, on the contrary, there exist i and j such that S(si, sj) > R(ri, rj), i.e., the
situations are more similar than the results, then another weaker CBR principle
should be used. Namely, the fuzzy CBR principle reads “the more similar s0 to
si, the more possible the similarity r0 and ri”, and then we obtain [16]

r̃0(y) = max
(sj ,rj)∈C

min(S(s0, sj), R(y, rj)) (2)

As can be seen, we now take the union (rather than the intersection) of the fuzzy
sets of values close to the ri’s weighted by the similarity of s0 with si, for all
(sj , rj) ∈ C. For instance, if a second hand car s0 is quite similar to two other cars
s and s′, thus themselves quite similar, but having quite different prices r and
r′, then the estimated price r0 will be the union of the fuzzy sets of values that
are close to r or close to r′ (the union may be replaced here by the convex hull,
for taking into account that here the price domain is a continuum). Generally
speaking, the result may be quite imprecise due to the max-based combination
in (2). Still, it is a weighted union of all the possibilities that are supported by
known cases. Note also that (2) is fully in the spirit of reasoning with data as
discussed in the previous section: each result of a reported case is all the more
guaranteed to be possible as the case is similar to the situation at hand, and all
these conclusions are combined disjunctively.

One might also think of using a fuzzy rule of the form “the more similar
s0 to si, the more certain the similarity r0 and ri”, leading to an expression
similar to (1) where Gödel implication is replaced by Dienes implication (i.e.,
a → b = max(1 − a, b)). However, such a rule would be less appropriate here,
even if it leaves room for exceptions, since we observe that r̃i(ri) = 1 holds for
any i, only if ∀i ∀j S(si, sj) > 0 ⇒ R(ri, rj) = 1, which is a condition stronger
than the one for (1) with Gödel implication.

A thorough study of the formalization of CBR principles linking the similarity
of solutions to the one of problems is presented in the research monograph [29].

3.2 Case-Based Decision

This approach can be readily extended to case-based decision, where we have
a repertory D of experienced decisions under the form of cases ci = (si, d, ri),
which means that decision d in situation si has led to result ri (it is assumed
that ri is uniquely determined by si and d). Classical expected utility is then
changed into U(d) = Σ(si,d,ri)∈DS(s0,si)·u(ri)

Σ(si,d,ri)∈DS(s0,si)
, where u is a utility function, here

supposed to be valued in [0, 1] [28]. Besides, counterparts to (1) and (2) are

U∗(d) = min
(si,d,ri)∈D

S(s0, si) → u(ri)

and

U∗(d) = max
(si,d,ri)∈D

min(S(s0, si), u(ri)).
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U∗(d) is a pessimistic qualitative utility that expresses that a decision d is all the
better as the fuzzy set of results associated with situations similar to s0 where
decision d was experienced is included in the fuzzy set of good results. When →
is Dienes implication, U∗(d) = 1 only if the result obtained with decision d in
any known situation somewhat similar to s0 was fully satisfactory. U∗(d) is an
optimistic qualitative utility since it expresses that a decision d is all the better
as it was already successfully experienced in a situation similar to s0. See [14]
for postulate-based justifications. Another idea would be to use the approach of
the previous subsection for estimating the more or less possible results of each
decision, and then to compute the possible values of the utility function for each
of them, which would then lead to compare fuzzy utilities.

A situation s is usually described by means of several features, i.e., s =
(s1, ..., sm). Then the evaluation of the similarity between two situations s and
s′ = (s′1, ..., s′m) amounts to estimating the similarity according to each feature
k according to a similarity relation Sk, and to combine these partial similarities
using some aggregation operator agg, namely S(s, s′) = aggk=1,...,mSk(sk, s′k).
A classical choice for agg is the conjunction operator min, which retains the
smallest similarity value as the global evaluation. But one may also think, for
instance, of using some weighted aggregation if all the features have not the same
importance. See [12] for a detailed example (with min).

Besides, the approach can be extended to prediction about some imprecisely
or fuzzily specified cases (e.g., one has to estimate the price of a car with precisely
specified features except that the horse power is between 90 and 110). A fur-
ther generalization is necessary in order to accommodate incompletely specified
cases in the repertory. See [16] for these extensions in the case of possibility rules
(thus corresponding to (2)), and [31] for the discussion of several other general-
izations (including the discounting of untypical cases and the flexible handling
and adequate adaptation of different similarity relations, which provides a way
of incorporating domain-specific (expert) knowledge). A comparative discussion
with instance-based learning algorithms, a form of transduction, is in [30]. Appli-
cations to flexible querying [9], including examples (and counter-examples)-based
querying4, and to recommendation systems [17] have been also proposed.

Lastly, one may think of cases that provide an argumentative support in
favor of a claim as positive examples of it, or more strongly of cases used as a
counter-example to a rule used in an argument; see a brief outline of this idea
in [40], when discussing an argumentative view of case-based decision.

3.3 Analogical Reasoning

The notion of similarity is as essential to CBR as it is to the idea of analogy,
and in particular, to analogical proportions. The core idea underlying analogical
proportions comes from the numerical field where proportions express an equal-
ity of ratios, e.g. 1

2 = 5
10 , which could be read “1 is to 2 as 5 is to 10”. It is also

4 An item is all the more a solution as it resembles to some example(s) in all important
aspects, and is dissimilar from all counter-examples in some important aspect(s).
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agreed that “read is to reader as lecture is to lecturer” is a natural language
analogical proportion, and the notation read : reader :: lecture : lecturer is
then preferred. More generally, an analogical proportion is an expression usu-
ally denoted a : b :: c : d involving 4 terms a, b, c, d, which reads “a is to
b as c is to d”. It clearly involves comparisons between the pairs (a, b) and
(c, d). Recent works have led to a logical formalization of analogical propor-
tions, where similarities/dissimilarities existing between a and b are equated to
similarities/dissimilarities existing between c and d.

Let us assume that the items a, b, c, d represent sets of binary features belong-
ing to an universe U (i.e. an item is then viewed as the set of binary features in
U that it satisfies). Then, the dissimilarity between a and b can be appreciated
in terms of a ∩ b and/or a ∩ b, where a denotes the complement of a in U , while
the similarity is estimated by means of a∩ b and/or of a∩ b. Then, an analogical
proportion between subsets is formally defined as [35]:

a ∩ b = c ∩ d and a ∩ b = c ∩ d

This expresses that “a differs from b as c differs from d” and that “b differs
from a as d differs from c”. It can be viewed as the expression of a co-variation.
It has an easy counterpart in Boolean logic, where a, b, c, d now denote simple
Boolean variables. In this logical setting, “are equated to” translates into “are
equivalent to” (≡), a is now the negation of a, and ∩ is changed into a conjunction
(∧), and we get the logical condition expressing that 4 Boolean variables make
an analogical proportion:

(a ∧ b ≡ c ∧ d) ∧ (a ∧ b ≡ c ∧ d)

It is logically equivalent to the following condition that expresses that the
pairs made by the extremes and the means, namely (a, d) and (b, c), are (posi-
tively and negatively) similar [35]:

(a ∧ d ≡ b ∧ c) ∧ (a ∧ d ≡ b ∧ c).

An analogical proportion is then a Boolean formula. It takes the truth
value “1” only for any of the 6 following patterns for abcd: 1111, 0000, 1100,
0011, 1010, 0101. For the 10 other lines of its truth table, it is false (i.e., equal to
0). As expected, it satisfies the following remarkable properties:

a : b :: a : b (reflexivity),
(and thus a : a :: a : a (identity));

a : b :: c : d ⇒ c : d :: a : b (symmetry);
a : b :: c : d ⇒ a : c :: b : d (central permutation).

Another worth noticing property [42] is the fact that the analogical propor-
tion remains true for the negation of the Boolean variables. It expresses that the
result does not depend on a positive or a negative5 encoding of the features:
5 The use of these words here just refers to the application of a negation, and should

not be confused with their use in other parts of the paper.
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a : b :: c : d ⇒ a : b :: c : d (code independency).

Finally, analogical proportions satisfy a unique solution property, which
means that, 3 Boolean values a, b, c being given, when we have to find a fourth
one x such that a : b :: c : x holds, we have either no solution (as in the cases
of 011x or 100x), or a unique one (as, e.g., in the case of 110x). More formally,
the analogical equation a : b :: c : x is solvable iff ((a ≡ b) ∨ (a ≡ c)) = 1. In
that case, the unique solution x is a ≡ (b ≡ c) [35]. This allows us to deal with
Boolean analogical proportions in a simple way.

The basic idea underlying the analogical proportion-based inference is as
follows: if there is a proportion that holds between the first p components of four
vectors, then this proportion should hold for the last remaining components as
well. This inference principle [50] can be formally stated as below:

∀i ∈ {1, ..., p}, ai : bi :: ci : di holds
∀j ∈ {p + 1, ..., n}, aj : bj :: cj : dj holds

This is a generalized form of analogical reasoning, where we transfer knowledge
from some components of our vectors to their remaining components.

It is worth pointing out that properties such as full identity or code inde-
pendency are especially relevant in that perspective. Indeed, it is expected
that in the case where d is such that it exists a case a in the repertory with
∀i ∈ {1, ..., p}, di = ai, then ai : ai :: ai : di holds. Thus, the approach includes
the extreme particular case where we have to classify (or to predict components
of) an item whose representation (in the input space) is completely similar to
the one of a completely known item. The code independency property, which
expresses independence with respect to the encoding, seems also very desirable
since it ensures that whatever the convention used for the positive or the nega-
tive encodings of the value of each feature and of the class, one shall obtain the
same result for features in {p + 1, ..., n}. Then analogical reasoning amounts to
finding completely informed triples suitable for inferring the missing value(s) of
an incompletely informed item as in the following example. In case of the exis-
tence of several possible triples leading to possibly distinct plausible conclusions,
a voting procedure may be used, as in case-based reasoning.

Let us consider for instance a database of homes to let, containing houses (1)
and flats (0), which are well equipped or not (1/0), which are cheap or expensive
(1/0), where you have to pay a tax or not (1/0). Then a house, well equipped,
expensive and taxable is represented by the vector a = (1, 1, 0, 1). Having 2
other cases b = (1, 0, 1, 1), c = (0, 1, 0, 1), we can predict the price and taxation
status of a new case d which is a flat not well equipped, i.e. d = (0, 0, x, y)
where 2 values are unknown. Applying the above approach, and noticing that
an analogical proportion a : b :: c : d holds for the 2 first components of each
vector, we “infer” that such a proportion should hold for the 2 last components
as well, yielding x = 1 and y = 1 (i.e. cheap and taxable).

This approach, using Boolean analogical proportions, has been extended to
numerical features using multiple-valued connectives [43]. It has been successfully
applied to classification problems [3,34,44], where the attribute to be predicted
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is the class of the new item. Analogical proportions may be also applied to
interpolation and extrapolation reasoning between if-then rules [10,48,49], but
this is beyond their direct application to data.

4 Making Sense of Data

Making sense of data may cover a large range of situations where we reason about
data. By reasoning about data, we mean reasoning from a (possibly dynamic) set
of data, without the purpose of drawing a conclusion on a particular attribute in a
given situation, as in deductive, abductive, case-based, or analogical reasoning.
The issue is then to understand the whole set of data in a way or another.
Reasoning about data covers a variety of problems as briefly reviewed now.

A first class of problems is when receiving a flux of information to figure
out what is going on. We are close to the recognition of temporal scenarii [52].
We may need to identify what causes what (see, e.g., [7]). In such problems, we
have to check if data fits with knowledge describing an abnormal, or the normal
course of things.

Another important class of problems deals with the structuring of the data.
We may start from a table of data, as in formal concept analysis [25], where
a formal context R indicates what Boolean attribute(s) is/are true for a given
object. Then, a formal concept is a maximal pair (X, Y ), such as X × Y ⊆ R
where X is a set of objects and Y is a set of properties; each object in X has all
properties in Y , and each property in Y is possessed by all objects in X. A formal
context is associated with a lattice of formal concepts, from which association
rules can be extracted [24,36]. This is the theoretical basis for data mining.

Interestingly enough, the operator which is at the basis of the definition of
formal concepts is analogous to the guaranteed possibility measure mentioned in
Sect. 2; indeed, in a formal concept (X, Y ), the properties in Y are guaranteed for
any object in X. Note also that (x, y) ∈ R is understood here as a positive fact,
while (x′, y′) �∈ R is not viewed as a negative fact, it rather means that the piece
of information (x′, y′) ∈ R is not available (at least if there is no closed world
assumption underlying the formal context R). Moreover, other possibility theory
operators have been imported in formal concept analysis, and enables us to
consider other forms of reasoning, still to be investigated in detail, including case-
based reasoning, see [20]. Moreover, formal concept analysis can be related [21]
to other theoretical frameworks such as rough sets [37] or extensional fuzzy sets,
in the general setting of granular computing [53], where the idea of clustering is
implicitly at work. Closely related is the summarization of data which exploits
ideas of similarity and clustering (e.g., [5,27,33]).

Classification or estimation methods are usually black box devices. They may
be learnt from data. It is clearly of interest to lay bare the contents of these black
boxes in understandable terms. There have been a number of attempts in that
directions; let us mention a few examples like a non-monotonic inference view
[26] or a fuzzy rule-based interpretation [8] of neural nets, or more recently a
weighted logic view of Sugeno integrals [22] laying bare the rules underlying the
global estimation.
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5 Concluding Remarks

Taking machine learning and data mining apart, reasoning with data has
remained confined in few specialized works (at least if we restrict ourselves to
formalized approaches), or in particular areas such as fuzzy logic, or rough sets
[37]. This overview has emphasized two important points: (i) data and knowledge
being of different nature, they should be handled differently, and handling both
knowledge and data requires a bipolar setting; (ii) similarity (and dissimilarity)
play an important role when reasoning with data.

It becomes timely to recognize reasoning with data as a general research
trend in AI, to identify all the facets and issues raised by the handling of data
in various forms of reasoning, and to develop a unified view of these problems.
It may also contribute to a better interfacing between reasoning and learning
research areas [11,33,47].
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Fuzzy modelling of case-based reasoning and decision. In: Leake, D.B., Plaza, E.
(eds.) ICCBR 1997. LNCS, vol. 1266, pp. 599–610. Springer, Heidelberg (1997)

13. Dubois, D., Esteva, F., Garcia, P., Godo, L., López de Mántaras, R., Prade, H.:
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Abstract. In this paper we present a novel framework and full imple-
mentation of probabilistic spatial reasoning within a Logic Programming
context. The crux of our approach is extending Probabilistic Logic Pro-
gramming (based on distribution semantics) to support reasoning over
spatial variables via Constraint Logic Programming. Spatial reasoning
is formulated as a numerical optimisation problem, and we implement
our approach within ProbLog 1. We demonstrate a range of powerful
features beyond what is currently provided by existing probabilistic and
spatial reasoning tools.

Keywords: Probabilistic Logic Programming · Constraint Logic
Programming · Declarative spatial reasoning

1 Introduction

The research field of declarative spatial reasoning focuses on extending Knowl-
edge Representation and Reasoning frameworks to natively support variables
that range over spatial domains (such as Constraint Logic Programming [3]
and Answer Set Programming Modulo Theories [23]). The aim is to provide
a high-level logic programming language for seamlessly reasoning about both
conceptual, domain specific knowledge and spatial constraints between objects.

However, in many application scenarios spatial information is only available
with a degree of uncertainty. For example, spatial relations that have been deter-
mined to hold between objects may come from image recognition software that
is prone to various segmentation errors. Extensions to Logic Programming for
supporting probabilistic reasoning such as ProbLog provide a natural interface
for expressing such information.

For a simple example, let circles C1, C2, C3 have the following qualitative spa-
tial relations: (a) C1 is inside C2 and touching its boundary (i.e. it is a tangential
proper part (tpp)) with probability 0.7; (b) C1 is inside C2 and not touching its
boundary (i.e. it is a non-tangential proper part (ntpp)) with probability 0.3; (c)
C2 is external to C3 and touching its boundary (i.e. it is externally connected
(ec)) with probability 0.8. Circles C1, C2, C3 could be spatial representations of
c© Springer International Publishing Switzerland 2016
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cells (cell1, cell2, cell3) in a histopathology application that have been automat-
ically recognised from an image of a stained tissue section:

We can then formulate a query that asks what topological relations may hold
between cells C1 and C3, and what the probabilities are of the logic programs
in which those relations are consistent:

The spatial reasoning component has determined that only two topologi-
cal relations are possible: C1 is disconnected from C3 (dc) or C1 is externally
connected to C3 (ec). The probabilistic reasoning component has determined
the exact probabilities of each set of facts. The meaning is that there is a 0.8
probability (resp. 0.56) that C1, C3 can be arranged to be dc (resp. ec) with-
out violating any other constraints, i.e. the probabilities refer to the consistency
of the relations.1 As an integrated system these components provide a power-
ful framework for expressing complex probabilistic models that involve spatial
clauses in a high-level manner.

In this paper we develop foundations for a probabilistic declarative spatial
reasoning system within Constraint Logic Programming. Building on our pre-
vious work, we target a specific class of qualitative spatial constraints that we
formulate in the framework of numerical optimisation, including: contact, inci-
dence, orientation, relative size. We make the following novel contributions:

– We show how mixed numerical-qualitative spatial reasoning, along with soft
constraints, can be naturally specified in our spatial reasoning framework due
to the formulation as a numerical optimisation problem (Sect. 3);

1 Importantly, observe that the probabilities do not state that the dc relation holds
with probability 0.8; this cannot be the case as dc and ec are mutually exclusive,
and yet the probabilities 0.8 and 0.56 sum to more than 1. Such an inference would
require information about the spatial distribution of the objects which has not been
given in the problem description.
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– We integrate spatial reasoning (based on numerical optimisation) within the
framework of probabilistic logic programming based on Sato’s distribution
semantics (Sect. 4);

– We define probabilistic extensions of three fundamental spatial reason-
ing tasks: consistency, configuration generation, and interactive geometry
(Sect. 4).

2 Preliminaries: Probabilistic Logic Programming

We build on the probabilistic logic programming theory used in the original
ProbLog [8], which, along with other prominent approaches, is based on Sato’s
distribution semantics [18]. We emphasise that our approach is not directly
dependent on ProbLog specifically; we have opted to build on the ProbLog
framework2 as it provides efficient and sound inference procedures for computing
success probabilities of probabilistic logic programming queries. Our approach
for integrating spatial reasoning can be similarly employed in other probabilistic
logic programming frameworks.

Prolog [22]. We assume basic familiarity with first-order logic. A term is either
a variable, constant, or a structure f(t1, . . . , tn) with functor f applied to terms
t1, . . . , tn. An atom p(t1, . . . , tn) is a predicate p of arity n with terms t1, . . . , tn.
A Prolog program LP consists of a finite set of universally quantified rules of
the form h ← b1, . . . , bn such that h is an atom, and the expression b1, . . . , bn
is a conjunction of atoms (i.e. rules are Horn clauses). Prolog facts are rules of
the form h ← �. A query is a conjunction of atoms b1, . . . , bn. A ground term is
a term with no variables. The Herbrand universe U of LP is the set of ground
terms that can be made from the constants and function symbols of LP . Let q be
a query, then qθ is a conjunction of ground atoms resulting from an assignment
θ of all variables in q to values from U . A query is a logical consequence of LP

if there exists an assignment θ such that (LP |= qθ).

Distribution Semantics [18]. Let LT = {f1, . . . , fn} be a set of facts and
let LP be a set of facts and rules (i.e. LP is a Prolog program). Moreover, the
disjoint condition between LT and LP holds: no atom in LT unifies with a rule
in LP . A joint distribution can be given to the set of facts in LT , resulting in
T = {p1 : f1, . . . , pn : fn}, where pi is a probability and fi is a ground Prolog
fact. T defines a probability distribution over subsets of logic programs LT ∪LP

as follows. Let L ⊆ LT , then the probability of this program L given T is [8]:

P (L|T ) =
( ∏

fi∈L

pi
) · ( ∏

fi∈LT \L
1 − pi

)

We will henceforth refer to (T ∪ LP ) as a ProbLog program [8]. Given query
q and ProbLog program (T ∪ LP ), the success probability P (q|(T,LP )) of q is
defined as follows [8]:
2 Specifically, we have used the original ProbLog 1 implemented in Yap Prolog v6.3.4

with the default ProbLog algorithm flags and settings when consulted.
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P (q|(L,LP )) =

{
1 ∃θ

(
(L ∪ LP ) |= qθ

)

0 otherwise

P (q, L|(T,LP )) = P (q|(L,LP )) · P (L|T )

P (q|(T,LP )) =
∑

M⊆LT

P (q,M |(T,LP ))

Informally, the success probability of q is the sum of the probabilities of all logic
programs (that are subsets of the given ProbLog program) in which q can be
proven.

ProbLog supports annotated disjunctions to model mutually exclusive
options of the form {p′

1 : f ′
1, ..., p

′
n : f ′

n} such that p′
1 + · · · + p′

n ≤ 1 interpreted
as only one f ′

i being true in a given logic program according to the assigned
probabilities p′

i (we use the encodings presented in [12] Chap. 3.3).

3 Spatial Representation and Reasoning

The qualitative spatial domain (QS) that we focus on in our formal framework
consists of the following ontology.

Spatial Domains. Domain entities in QS include points, line segments, cir-
cles, simple polygons, and egg-yolk regions. While our method is applicable to a
wide range of 2D and 3D spatial objects and qualitative relations, for brevity
and clarity we primarily focus on a 2D spatial domain. Our method is readily
applicable to other 2D and 3D spatial domains and qualitative relations, for
example, as defined in [3,4,16]:

– a point is a pair of reals x, y,
– a line segment is a pair of end points p1, p2 (p1 �= p2),
– a circle is a centre point p and a real radius r (0 < r),
– an egg yolk region3 is defined by a circular upper and lower approximation

c+, c− such that c− is a proper part of c+,
– a simple polygon is defined by a list of n vertices (points) p1, . . . , pn (spatially

ordered counter-clockwise) such that the boundary is non-self-intersecting, i.e.,
there does not exist a polygon boundary edge between vertices pi, pi+1 that
intersects some other edge pj , pj+1 for all 1 ≤ i < j < n and i + 1 < j.

A spatial object o ∈ O is a variable associated with a spatial domain D (e.g.
the domain of 2D points). An instance of an object i ∈ D is an element from
the domain. Given O = {o1, . . . , on}, and domains D1, . . . , Dn such that oi is

3 We employ the egg-yolk method of modelling regions with indeterminante boundaries
[6] to characterise a class of regions (including polygons) that satisfies topological
and relative orientation relations [19]. Each egg-yolk region is an equivalence class
for all regions that are contained within the upper approximation (the egg white),
and completely contain the lower approximations (the egg yolk).
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associated with domain Di, then a configuration of objects ψ is a one-to-one
mapping between object variables and instances from the domain, ψ(oi) ∈ Di.

For example, a variable o1 is associated with the domain D1 of 2D points.
The point (0, 1) is an instance of D1. A configuration is defined that maps o1 to
(0, 1) i.e. ψ(o1) = (0, 1).

Spatial Relations. Let D1, . . . , Dn be spatial domains. A spatial relation r of
arity n (0 < n) is defined as:

r ⊆ D1 × · · · × Dn

That is, each spatial relation is an equivalence class of instances of spatial objects.
Given a set of objects O, a relation r of arity n can be asserted as a constraint
that must hold between objects o1, . . . , on ∈ O, denoted r1,...,n. The constraint
r1,...,n is satisfied by configuration ψ if

(
ψ(o1), . . . , ψ(on)

) ∈ r.
For example, if dc is a topological relation disconnected, and O is a set of

polygon objects, then dc4,9 is the constraint that polygons o4, o9 ∈ O are dis-
connected.

We define the following spatial relations in QS. We have selected this can-
didate set of relations as (a) they have been studied extensively within artificial
intelligence [1,14,15], and (b) they demonstrate a range of spatial aspects. The
set of supported relations is readily extensible within our framework.
Mereotopology. Part-whole and contact relations between regions [17]: discon-
nected (dc), externally connected (ec), partially overlapping (po), tangential
proper-part (tpp), non-tangential proper part (ntpp), equal (eq), discrete from
(dr) defined as dc or ec, and proper part (pp) defined as tpp or ntpp.

Relative Orientation. Left, right, collinear, in front, behind orientation relations
of points and regions with respect to line segments, and parallel, perpendicular
relations between line segments.
Incidence. Interior, on boundary, exterior incidence relations between points and
regions.
Size. Smaller, equisized, larger size relations between regions.

Spatial Reasoning Tasks. In the following tasks the input is a set of objects
O and a set of qualitative spatial relations R between those objects.
Consistency. Determine whether there exists a configuration ψ of O that sat-
isfies all relation constraints in R. Such a configuration is called a consistent
configuration.
Generating configurations. Return a consistent configuration ψ of O.
Interactive geometry. Given (a possibly inconsistent) configuration ψ, and an
object o ∈ O, return a consistent configuration ψ′ such that ψ(o) = ψ′(o).

Intuitively, interactive geometry allows a user to “move”, “resize” or other-
wise manipulate object instances in a configuration. The spatial solver automat-
ically updates the other object instances so that the given spatial relations are
maintained at all times.
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3.1 Formulating Spatial Semantics as Numerical Optimisation

One approach for formalising the semantics of spatial reasoning is by analytic
geometry, i.e. to encode qualitative spatial relations as systems of polynomial
equations and inequalities. The task of determining whether a set of spatial
relations is consistent is then equivalent to determining whether the set of poly-
nomial constraints are satisfiable. We have previously shown how all relations in
QS (as described above) can be expressed as polynomial constraints [3,23].

Numerical Optimisation. Let X = (x1, . . . , xn) be a vector of n real variables
(encoding object parameters) over m polynomial equation constraints (encoding
qualitative spatial relations): fi(x1, . . . , xn) = 0 for 1 ≤ i ≤ m. Numerical opti-
misation is used to solve the system of constraints by applying an optimisation
function such as the sum of squares [10]:

σ(X) =
m∑

i=1

fi(X)2

Iterative methods for solving systems of polynomial constraints generate
sequences of approximate solutions that aim to converge on a solution. Many
specialised global and local optimisation algorithms have been developed e.g.
low storage BFGS [5].

Proposition 1. Spatial reasoning based on numerical optimisation supports the
required tasks of (1) consistency, (2) configuration generation, and (3) interactive
geometry.

(1) A system of polynomial constraints over variables X is satisfiable when the
sum of squares is minimised, σ(X) = 0. When such a minimum is found then
the corresponding spatial constraint problem is consistent. (2) The real values
assigned to variables X that minimise the sum of squares are retrieved from the
numerical optimisation algorithm. These values correspond to a consistent con-
figuration of spatial objects.(3) Variables in X can be marked as immutable so
that their currently assigned value will not be changed by the numerical optimi-
sation algorithm. Interactive geometry is formalised in numerical optimisation
by modifying a variable value x ∈ X (e.g. representing moving a geometric point
by clicking and dragging the point in a GUI), marking the variable as immutable,
running the numerical optimisation algorithm to find values that minimise the
polynomial constraints.

Proposition 2. Spatial reasoning based on numerical optimisation is (1) sound
when consistency is determined by the algorithm, and (2) incomplete when incon-
sistency is determined by the algorithm.

(1) By definition, spatial consistency requires that at least one configuration ψ
exists that satisfies all constraints R simultaneously. Assume a numerical optimi-
sation algorithm finds a global minimum σ(X) = 0. Then it has produced values
for X that are interpreted as a spatially consistent configuration. Therefore, at
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least one consistent configuration necessarily exists when σ(X) = 0 (i.e. the
values that globally minimised σ). (2) There is no guarantee of convergence of
numerical optimisation methods in general, and thus consistent spatial problems
may not be determined to be consistent.

With respect to inconsistency, it is standard within geometric constraint
solving to define thresholds that define the global minimum, and an upper limit of
the number of iterations [10]. Thus, in the case when an inconsistency is reported,
there is considerable scope in adapting the numerical optimisation framework to
suit the needs of the current application task. For instance, we routinely combine
numerical optimisation with other analytic approaches, primarily Satisfiability
Modulo Theories (SMT) solvers such as z3 [7]. Such systems are both sound and
complete but have highly prohibitive computational complexity, i.e. O(22

n

) (see
[2] for details). We use this to identify inconsistent triples of objects (i.e. path
consistency) when numerical optimisation fails.

3.2 Soft Constraints

Constraints fi can be separated into strict constraints F ′ and soft constraints F .
The numerical optimisation procedure is executed as usual by minimising σ(X) at
each iteration, however consistency now only relies on the strict set of constraints
being satisfied, i.e.

σ′(X) =
∑

f ′∈F ′
f ′(X)2

The procedure is terminated when σ′(X) = 0. Thus, the algorithm attempts to
minimise soft constraints, but this is no longer a criterion for spatial consistency.

4 Probabilistic Spatial Reasoning in Constraint Logic
Programming

In this section we integrate spatial reasoning (based on numerical optimisation)
within the probabilistic logic programming framework via Constraint Logic Pro-
gramming (CLP)[13].

CLP(ProbLog + QS). A term in standard probabilistic logic programming is
either a variable, constant, or a functor applied to terms. We extend this so that
a term can also be spatial variable o ranging over a spatial domain D as defined
in Sect. 3. All permitted spatial domains are uncountably infinite,4 and thus logic
programs defined with such terms are no longer restricted to the Herbrand uni-
verse [13].

Let r be a spatial constraint (i.e. a primitive constraint [13]) defined over
spatial variables. The set of permitted functor symbols corresponding to spatial
4 To clarify, there are an infinite number of 2D points defined by two real coordinates,

and so the spatial domain of 2D points is infinite in size. Similarly the domains of
lines, circles, egg-yolk regions, and polygons are infinite.
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constraints are specified in Sect. 3 (e.g. dc, ec, etc.). Each spatial constraint
is defined as a particular system of polynomial constraints over spatial object
parameters.5 A spatial constraint ro1,...,on with arity n is solvable over spatial
variables o1, . . . , on if the corresponding numerical optimisation problem can be
globally minimised, σ(X) = 0, as defined in Sect. 3.1. We extend the definition
of a rule to [13]:

h ← α1, . . . , αk

where αi is either a spatial constraint or an atom. We denote a set of such
rules as LPQS . Similarly, queries take the form α1, . . . , αk. Given spatial domains
D1, . . . , Dm, and query q, then qθQS is a conjunction of atoms resulting from
an assignment of all variables in q to values from (U ∪ ⋃m

i=1 Di). A query is a
logical consequence of LPQS if ∃θQS(LPQS |= qθQS).

We refer to a probabilistic logic program extended to spatial variables and con-
straints as CLP(ProbLog + QS). A CLP(ProbLog + QS) program consists of:

– a set of facts, each labelled with a probability T = {p1 : f1, . . . , pn : fn}
– a set of rules LPQS of the form h ← α1, . . . , αk

The disjoint condition holds between LT , LPQS , where LT = {f1, . . . , fn}. Given
query q and CLP(ProbLog + QS) program (T ∪ LPQS ), the success probability
P (q|(T,LPQS )) of q is defined as the usual success probability of a probabilistic
logic program (based on distribution semantics) with θQS replacing θ.

That is, the success probability of a query in CLP(ProbLog + QS) is the
probability that it has a spatially consistent proof given the distribution defined
by T . Standard spatial reasoning tasks are extended according to the distribution
of logic programs defined by T :
Probabilistic Consistency. Determine the probability that there exists a config-
uration ψ of O that satisfies all relation constraints in R in a randomly sampled
logic program.
Probabilistic Configuration. Return a consistent configuration ψ of O in a ran-
domly sampled logic program with at least probability p.
Probabilistic Interactive Geometry. Given (a possibly inconsistent) configuration
ψ, and an object o ∈ O, return a consistent configuration ψ′ such that ψ(o) =
ψ′(o) in a randomly sampled logic program with at least probability p.

Implementation. The probabilistic spatial constraint system is implemented
using native CLP language features within ProbLog 1 (and thus can seamlessly
be utilised in any such similar probabilistic logic programming framework), which
is implemented in Yap; we are using Yap version 6.3.4. Spatial constraints are
maintained in plain CLP via attributed variables. The current consistent config-
uration is also maintained via variable attributes. When a new spatial constraint
is introduced or two spatial variables are unified then consistency of the spatial

5 For brevity we do not list all of the spatial constraint definitions here, and instead
we refer readers to [3,23].
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constraint store is evaluated by an external call to a numerical optimisation
solver. Importantly, the use of the external solver is stateless, i.e. all spatial con-
straints are maintained on the Prolog side. This guarantees that the integration
with the external solver does not interfere with the SLD resolution procedure
(which is the procedure used to prove queries in Prolog), i.e. the system is equiv-
alent to a plain CLP program with a stateless spatial reasoning “oracle” that
provides semantics for determining whether a given spatial constraint store is
consistent. We refer readers to [21] for further details on implementing spatial
reasoning in CLP.

5 Illustrative Examples and Evaluation

We have fully implemented our probabilistic spatial reasoning framework.
In this section we demonstrate applicability on problems from spatial Q/A.
CLP(ProbLog + QS) is implemented in Yap, and we have integrated the geo-
metric constraint solver FreeCAD.6

Probabilistic Spatial Composition. (Figure 1(a)) Let c1, c2, c3 be circles with
the following relations: tpp (tangential proper part) holds between c1, c2 with
probability 0.7; ntpp (non-tangential proper part) holds between c1, c2 with prob-
ability 0.3; ec (external contact) holds between c1, c2 with probability 0.8. What
topological relations can possibly hold between c1, c3, and what are the respec-
tive probabilities of each possible relation?

CLP(ProbLog + QS) determines that the only possible relations between c1, c3
are (see Fig. 1(b) and (c)):

1. ec with probability 0.56, which occurs when c1, c2 are tpp and c2, c3 are ec,
i.e. P(ec(c1, c3)) = P(tpp(c1, c2)) · P(ec(c2, c3)) = 0.7 · 0.8 = 0.56.

2. dc with probability 0.8, which occurs when c2, c3 are ec, and c1, c2 are either
tpp or ntpp. The probability that c1, c2 are either tpp or ntpp is calculated as
an annotated disjunction, P(tpp(c1, c2)) + P(ntpp(c1, c2)) = 0.7 + 0.3 = 1.0.
Therefore, P(dc(c1, c3)) = P(ec(c2, c3)) · (P(tpp(c1, c2)) + P(ntpp(c1, c2))) =
0.8 · 1.0 = 0.8.

6 www.freecadweb.org.

www.freecadweb.org
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Fig. 1. Probabilistic Spatial Composition.

Notice that we deliberately did not consider the probability that ¬ec(c2, c3)
(although we could do so with a second annotated disjunction); i.e. we are only
interested in logic programs in which ec(c2, c3) is provable, a fact which has
probability 0.8 in our scenario. This demonstrates that we are not restricted to
modelling jointly-exhaustive pairwise disjoint sets of spatial relations.
Next we add the constraint that the centres of c1, c2, c3 are not collinear.

CLP(ProbLog + QS) correctly infers that the ec relation can not hold between
c1, c3 if the centres of all three circles are not collinear.
Growing Bacteria Colonies. Let b1, . . . , b5 be five bacterial colonies been
cultivated in a petri dish. Over time each colony grows until it comes in con-
tact with another colony, at which point growth is interrupted due to competi-
tion of resources. Colonies are spatially represented as circles. After some weeks
in a given laboratory experiment, each pair of colonies either have no contact
(spatially disconnected) or are in conflict (spatially externally connected) with
probabilities 0.8 and 0.2 respectively.

In the first experiment three of the colonies are seeded in specific locations:
the centres of b1, b2, b3 are (0, 0), (35, 82), (2, 133) respectively.
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We pose the following queries:

There is a 0.4 probability that any given pair of colonies are the same bacteria
species with comparable resources and will grow at precisely the same rate. This
corresponds to colonies being of equal size.

CLP(ProbLog + QS) correctly determines that all colonies being of the same
species and in conflict is spatially impossible given the initial seeded positions. In
the final experiment two additional bacteria b4, b5 are introduced at unspecified
locations. CLP(ProbLog + QS) correctly determines that it is also spatially
impossible that all colonies are in conflict regardless of their species, as five
circles can not be mutually externally connected in the plane.

Evaluating Runtime. As an indication of the practicality of our approach with
respect to runtime we have executed the following tests. We emphasise that our
focus in this paper is on the integration of spatial reasoning within a probabilistic
logic programming framework, and not on evaluating and optimising runtime
efficiency of spatial solving; we anticipate that runtimes of the spatial solving
component can be significantly improved by utilising optimisations e.g. presented
in [20]. Experiments were run on a Mac OSX 10.8.5 with 2.6 GHz Intel Core
i7. Due to the heuristic nature of optimisation algorithms, we are currently
conducting more comprehensive experiments with statistical analysis of runtimes
based on a wider range of inputs; the runtimes below are only based on a single
run of each test.

The first test is a set of relations r(ci, ci+1), such that ci, ci+1 are circles, for
1 ≤ i < N . Running the test, for example, with N = 11 and r = ntpp, takes
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0.095 s; r = ec takes 0.363 s; r = dc takes 0.014 s; r = tpp takes 0.704 s; r = po
takes 0.006 s. In all cases a consistent configuration is generated.

In the second test we have N = 10 circles such that each pair ci, ci+1 (1 ≤
i < N) can take one of two mutually exclusive relations: ec(ci, ci+1) with prob-
ability 0.8, and dr(ci, ci+1) with probability 0.2. We execute a query asking for
the exact probability that some relation holds between each pair ci, ci+1, causing
ProbLog to consider all combinations of possible relations. There are N − 1 = 9
relations, and each relation can select one of two options giving 29 = 512 com-
binations, i.e. spatial problems to solve. This takes 263.73 s, or approximately
0.5 s per spatial problem.

The final test focuses on interactive geometry: we simulate the scenario where
an image is segmented and processed, giving a set of circles that are initially
arranged in a N × N grid such that they are all disconnected. For this test we
select N = 5 giving 5 × 5 = 25 circles - all circles can be moved and resized, i.e.
the problem contains 75 spatial parameters. Two (arbitrary) circles e.g. c8, c11
need to be modified to become partially overlapping po(c8, c11) (while still be
discrete from all other circles). All other pairs of circles are discrete: dr(ci, cj)
for all 1 ≤ i < j ≤ 25 except when (i = 8 ∧ i = 11). The spatial problem for the
po case is solved in 4.02 s.

6 Conclusions and Related Work

We have presented a framework and full implementation in CLP(ProbLog +
QS) that integrates spatial reasoning with probabilistic logic programming. Our
method facilitates efficient high-level reasoning about both probabilistic facts,
domain-specific knowledge and spatial constraints in a seamless manner.

Within the fields of Artificial Intelligence and Knowledge Representation and
Reasoning, a variety of frameworks have been developed that formalise notions
of space, and spatial relations between objects. Diverse frameworks include: (a)
geometric reasoning and constructive solid geometry [14]; (b) relational algebraic
semantics of ‘qualitative spatial calculi’ [15]; and (c) axiomatic frameworks of
mereotopology and mereogeometry [1].

However, the distinction with our research here, and what we argue is lack-
ing within the KR community, is a systematic formal account and computa-
tional characterisation of such spatial theories as a KR language —e.g., suited
for declarative modelling, commonsense inference and query. In this paper we
emphasise the power of such a research agenda, as our approach leverages from
the strengths of both extensive research in probabilistic logic programming and
spatial reasoning.

Table 1 compares the capabilities of CLP(ProbLog + QS) with other promi-
nent spatial reasoning systems, and the original ProbLog system. GQR [9] is a
binary constraint calculi reasoner. Spatial reasoning with GQR has a number of
key limitations: numerical information cannot be incorporated, and reasoning is
not complete i.e. it only guarantees path-consistency [15]. The SMT solver z3 [7]
is not integrated within a logic programming framework, and is not capable of
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Table 1. Feature comparison with other prominent reasoning systems.

facilitating interactive geometry. CLP(QS) is our extension of Constraint Logic
Programming to spatial variables [3]; the distinction in this paper is that we have
integrated core spatial reasoning components of CLP(QS) into a probabilistic
logic programming framework. ASPMT(QS) [23] is our extension of Answer
Set Programming Modulo Theories to support spatial variables; as this system
utilises SMT solving for spatial reasoning, it is also not capable of interactive
geometry nor probabilistic reasoning. CLP(ProbLog + QS) is the only system
capable of probabilistic spatial reasoning within a KR context.

Girlea and Amir [11] present an approach and algorithm for probabilistic
inference with region connection calculus relations. The key distinctions with
our work are that we propose a fundamentally different mechanism for spatial
reasoning based on numerical optimisation, and we integrate spatial reasoning
within probabilistic logic programming to support application specific rules and
background knowledge. In a topic related to interactive geometry, Wallgrün [24]
presents an approach for adjusting polygonal data to satisfy specified qualitative
spatial relations, based on mixed-integer programming. An interesting direction
for future research is determining how such a method could be incorporated into
a probabilistic logic programming framework.
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Abstract. We consider the problem of modeling competitive diffusion
in real world social networks via the notion of ChoiceGAPs which combine
choice logic programs and Generalized Annotated Programs. We assume
that each vertex in a social network is a player in a multi-player game
(with a huge number of players) — the choice part of the ChoiceGAPs
describes utilities of players for acting in various ways based on utilities
of their neighbors in those and other situations. We define multi-player
Nash equilibrium for such programs — but because they require some
conditions that are hard to satisfy in the real world, we introduce the
new model-theoretic concept of strong equilibrium. We show that strong
equilibria can capture all Nash equilibria. We prove a host of complex-
ity (intractability) results for checking existence of strong equilibria and
identify a class of ChoiceGAPs for which strong equilibria can be poly-
nomially computed. We perform experiments on a real-world Facebook
data set surrounding the 2013 Italian election and show that our algo-
rithms have good predictive accuracy with an Area Under a ROC Curve
that, on average, is over 0.76.

1 Introduction

The need to understand and predict the results of diffusion in social networks
has taken on great importance in recent years. Most past work assumes a non-
competitive scenario in which we model diffusion of one phenomenon at a time.
However, in the real world, multiple competing phenomena are often diffusing
concurrently. For instance, the “likes” for a political candidate A and a compet-
ing candidate B might be mutually exclusive — a person may support at most
one of them. Likewise, two competing marketing campaigns, one each for the
iOS and Android platforms, may garner “likes” from supporters of each but it is
unlikely that they will both get “likes” from the same person. In a similar vein,
various “issues” may have supporters - for instance, in the US, there are “pro”
and “anti” abortion supporters, “pro” and “anti” immigration supporters, etc.
In all these cases, people typically choose at most one of these positions.

In this paper, we present the ChoiceGAP framework using which we can
model competing diffusive processes via a mix of generalized annotated pro-
grams (GAPs) [14] and Choice Logic Programs [17]. The use of GAPs to model
c© Springer International Publishing Switzerland 2016
S. Schockaert and P. Senellart (Eds.): SUM 2016, LNAI 9858, pp. 303–319, 2016.
DOI: 10.1007/978-3-319-45856-4 21



304 E. Serra et al.

diffusion processes was already proposed in [6,19] — there, the authors show how
many well-known diffusion models can be expressed as GAPs.1 [19] assumes only
one diffusive process is occurring at a time and there is no competition going
on. [6] presents first steps toward modeling competitive diffusion but does so
by identifying one solution of a convex set of constraints. They do not present
complexity results, nor do they present accuracy results based on real data, and
their framework usually takes hours to compute.

After introducing the syntax and semantics of ChoiceGAPs in Sect. 2, we
define in Sect. 3 the notion of strong equilibrium which represents the solution
concept of our game and present complexity results about the existence of strong
equilibria and about the entailment problem. When members of a social network
can choose at most one of n different competing positions, we first use n different
diffusion models, each capturing how support for each of the competing positions
spreads through a social network. Each vertex in the social network can be
considered to be a player in the game with one of n + 1 choices to make. He can
either choose one of the competing positions or he can choose none – he can never
choose more than one. The players’ utility (for a given course of action, e.g. being
pro-Obamacare) is defined by a choice rule that uses inputs from the n different
GAPs. We can think of the spread of support for a political candidate in a social
network as a “game” in which an equilibrium represents a stable adoption of
positions by the members of the social network. Section 4 formally defines our
game and compares “strong” and “Nash” [16] equilibria. Unfortunately, Nash
equilibria require assumptions that are unrealistic in real world social networks.
We show that every game (in our sense) can be expressed using a ChoiceGAP in
such a way that strong equilibria capture Nash equilibria without inheriting any
of the disadvantages. Because the entailment problem is intractable, we identify a
class of ChoiceGAPs called “Vertex Independent Choice” (or VIC) programs and
show that for a class of these called V IC2 programs, we can both find a strong
equilibrium (and they are guaranteed to exist) and solve the entailment problem
in PTIME (all proofs are in Appendix C [1]). Section 6 describes experiments we
have carried out pertaining to a real competitive situation during the 2013 Italian
election using data gathered from Facebook. Depending upon the settings used
in our algorithms, our experiments show that our algorithms achieve an average
Area Under ROC Curve of 0.762, showing good predictive accuracy.

2 Choice GAPs

In this section, we formally define a social network (SN) and introduce the Choice
Generalized Annotated Program (ChoiceGAP) paradigm.

1 Specifically, [19] shows that ChoiceGAPs can express cascade models such as [8] used
to model the spread of “favorites” in Flickr, tipping models such as the Jackson-Yariv
model of product adoption in economics [12], the SIR and the SIS models of disease
spread [2,11], as well as homophilic models such as those involving mobile phone
usage [4].
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Social Network Formalization. We assume the existence of two arbitrary
but fixed disjoint sets V P,EP of vertex and edge predicate symbols respectively.
Each vertex predicate symbol has arity 1 and each edge predicate symbol has
arity 2.

Definition 1. A social network is a 4-tuple (V, E, lvert, w) where:

1. V is a finite set whose elements are called vertices.
2. E ⊆ V × V × EP is a finite set of labeled edges.
3. lvert : V → 2V P is a function, called the vertex labeling function.
4. w : E → [0, 1] is a function assigning a weight to each edge. �

Syntax of Choice GAPs (ChoiceGAPs). A ChoiceGAP consists of two parts:
(1) an “annotation” language and (2) a logical language that is connected to the
annotation language via certain shared syntactic elements.

Let AVar be a set of symbols (called “annotated variable symbols”) ranging
over the unit real interval [0, 1] and let F be a set of symbols (called “annotation
function symbols”), each with an associated arity.

Definition 2 (Annotation). Annotations are inductively defined as follows:
(1) Any member of [0, 1] ∪ AVar is an annotation. (2) If f ∈ F is an n-ary
annotation function symbol and t1, . . . , tn are annotations, then f(t1, . . . , tn) is
an annotation2. �

We define a separate logical language whose constants are members of V and
whose predicate symbols consist of V P ∪ EP . We also assume the existence of
a set V of variables ranging over the constants (vertices). No function symbols
are present. Terms and atoms are defined in the usual way (cf. [Lloyd 1987]).
If A = p(t1, . . . , tn) is an atom and p ∈ V P (resp. p ∈ EP ), then A is called a
vertex (resp. edge) atom.

Definition 3 (Annotated Atom/GAP-Rule/GAP). If A is an atom and
μ is an annotation, then A : μ is an annotated atom. If A is a vertex (resp.
edge) atom, then A : μ is also called a vertex (resp. edge) annotated atom.
If A0 : f(μ1, . . . , μn), A1 : μ1, . . . , An : μn are annotated atoms, then A0 :
f(μ1, . . . , μn) ← A1 : μ1, . . . , An : μn is an annotated rule.3 When n = 0, the
above rule is called a fact. A generalized annotated program (GAP) is a finite
set of annotated rules. An annotated atom (resp. a rule, a GAP) is ground iff
there are no occurrence of variables from either AVar or V in it. �

Every social network SN =(V, E, lvert, w) can be represented by the set of
GAP-rules (actually facts) ΠSN={q(v) : 1 ← | v ∈ V∧q ∈ lvert(v)}∪{ep(v1, v2) :

2 As in the case of Generalized Annotated Programs [14], note that each annotation
function symbol f of arity i denotes some fixed pre-theoretically defined function
from [0, 1]i to [0, 1].

3 We refer to A0 : f(μ1, . . . , μn) as the head of the rule, and to A1 : μ1, . . . , An : μn

as the body of the rule.
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w(〈v1, v2, ep〉) ← | 〈v1, v2, ep〉 ∈ E}. To construct a GAP from a social network
SN , we look at each vertex v and each property q. If v has property q, then
q(v):1← is inserted into ΠSN . Likewise, we look at each edge (v1, v2) ∈ E. If this
edge has weight w and edge property ep, then we insert the fact ep(v1, v2):w←
into ΠSN .

ChoiceGAPs extend GAPs by adding a single rule called a Vertex Choice (VC)
Rule inspired by the choice construct for classical Datalog [17]. Every ChoiceGAP
consists of a GAP together with a single vertex choice rule.

Definition 4 (Vertex Choice (VC) Rule). Suppose {a1, . . . , am} and
{b1, . . . , bm} are two ordered sets of vertex predicate symbols. Then
b1(X), . . . , bm(X) ←↩ a1(X), . . . , am(X) is a vertex choice (VC) rule of size m
for the vertex X. A VC-rule is ground iff there are no occurrence of variables
from V in it. �

The body indicates the possible choices for a vertex, while the head contains
the possible decisions. Note that edge predicate symbols cannot appear anywhere
inside a VC-rule. Moreover, usually, only conflicting predicate symbols occur
within a VC-rule and usually the predicate symbol bi is the decision predicate
corresponding to a utility predicate ai. VC-rules do not contain any annotations.

Definition 5 (Choice GAP). A Choice GAP (ChoiceGAP) Π is a finite set
of annotated rules plus a single vertex choice rule. �

Semantics of ChoiceGAP. We are now ready to define the semantics of Choice-
GAPs. Given a ChoiceGAP Π, let atoms denote the set of all ground atoms of Π.

Definition 6 (Interpretation). Given a ChoiceGAP Π, an interpretation I
for Π is any mapping I : atoms → [0, 1] of ground atoms to real numbers in
[0, 1]. �

Thus, an interpretation merely assigns a certainty value to each ground atom
in atoms. The set I of all interpretations can be partially ordered via the ordering

 defined as follows: I1 
 I2 iff for all ground atoms A, I1(A) ≤ I2(A). I forms
a complete lattice under the 
 ordering. Given two interpretations I1 and I2,
we define their intersection I1 ∩ I2 as the interpretation (I1 ∩ I2) such that
(I1 ∩ I2)(A) = min(I1(A), I2(A)) for all A ∈ atoms. Similarly, the union I1 ∪ I2
of interpretations I1 and I2 is the interpretation I1 ∪ I2 such that (I1 ∪ I2)(A) =
max(I1(A), I2(A)) for all A ∈ atoms. We are now ready to define satisfaction.

Definition 7 (Satisfaction). Let I be an interpretation.

• I satisfies a ground annotated atom A : μ, denoted I |= A : μ, iff I(A) ≥ μ.
• I satisfies a ground ChoiceGAP annotated rule r of the form A0 : μ0 ← A1 :

μ1, . . . , An : μn, denoted I |= r, iff I(A0) ≥ μ0 or for some i ∈ {1, . . . , n},
I �|= Ai : μi.

• I satisfies a ground VC-rule r of the form B1, . . . , Bm ←↩ A1, . . . , Am, denoted
I |= r, iff ∃i ∈ {1, . . . , m} such that I(Bi) = I(Ai) and ∀j ∈ {1, . . . , m}, j �= i,
I(Bj) = 0.
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• I satisfies a non-ground GAP/VC rule iff it satisfies all ground instances of
it.

• I satisfies a ChoiceGAP Π (or is a model of Π) iff I satisfies all rules in Π.

�

A key part of this definition is the satisfaction of VC-rules. For I to satisfy a VC-
rule r of the form shown above, there must exist exactly one pair (Ai, Bi) such
that I(Ai) = I(Bi) ≥ 0. For all other pairs (Aj , Bj), we have I(Aj) = I(Bj) = 0.
We now provide a simple example.

Example 1. Consider a social network SN and two diffusion models DM1 and
DM2 relating to diffusion about the tendency to buy ASUS computers versus
buying Macs. For this toy example which will be used throughout the paper, we
assume these are the only two options of computers to buy (the same reasoning
works if there are n different computers to buy). We assume there are two vertices
1, 2 and a friend edge from 1 to 2.

SN = friend(1, 2) : 1 ←

DM1 =

{
buyAsusU (1) : 0.6 ←
buyAsusU (Y ) : μ ← friend(X, Y ) : 1, buyAsusD(X) : μ

DM2 =

{
buyMacU (1) : 0.3 ←
buyMacU (Y ) : μ ← friend(X, Y ) : 1, buyMacD(X) : μ

Suppose we have the vertex choice rule

r : buyMac
D
(X), buyAsus

D
(X) ←↩ buyMac

U
(X), buyAsus

U
(X)

For each conflicting vertex predicate vp, we introduce a “utility”predicate vpU

and a “decision” predicate vpD. The former contains the utility value of the
corresponding choice, while the latter represents the vertex’s actual choice.

Consider the two interpretations I1 and I2 shown below.

buyAsusU(1) buyAsusD(1) buyAsusU(2) buyAsusD(2) buyMacU(1) buyMacD(1) buyMacU(2) buyMacD(2)

I1 0.6 0.6 0.6 0.6 0.3 0.0 0.3 0.0

I2 0.6 0.6 0.6 0.0 0.3 0.0 0.7 0.7

Consider the situation of vertex 1. Interpretation I1 assigns: (i) 0.6 to all
ground atoms buyAsusD(1), buyAsusU (1), buyAsusD(2), buyAsusU (2), (ii) 0.3
to buyMacU (1), (iii) 0 to buyMacD(1), (iv) 0.3 to buyMacU (2), and (v) 0 to
buyMacD(2).

We see that I1 satisfies all the diffusion rules as well as the one VC-rule.
Consider the ground instance of this VC-rule with X = 1. Exactly one of the
two head decision atoms, buyAsusD(1) has a value greater than 0 (0.6) and
this coincides with the value assigned by I1 to buyAsusU (1). Likewise, when we
consider the ground instance with X = 2, we see the same thing. Thus, I1 is a
model of the ChoiceGAP program Π = SN∪DM1∪DM2∪{r}. Similarly, we can
also establish that I2 is also a model of Π.
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3 Coherent Models and Strong Equilibria

Though I2 is a model of Π in the above example, it assigns overly high utilities.
For instance, consider the second rule of DM2 with the substitution θ = {X = 1,
Y = 2}. We know that for the ground atom buyMacD(1) in the body of this rule
after θ is applied to it, I2(buyMacD(1)) = 0. But the head of this rule under
substitution θ, which is the atom buyMacU (2) is assigned a utility of 0.7 instead
of the 0 that is the minimum needed for this rule to be satisfied. In order to
address this, we define the concept of a coherent model.

Definition 8 (Coherence Transformation). Suppose Π is a ChoiceGAP, r ∈
ground(Π) is an instance of the single VC-rule in Π, and I an interpretation.
Suppose r has the form B1(v), . . . , Bm(v) ←↩ A1(v), . . . , Am(v) The coherence-
transform of r is the set coh(r, I) = {Bi(v) : μ ← Ai(v) : μ | I(Ai(v)) > 0 and
I(Ai(v)) = I(Bi(v))}. Note that this set can be empty.

The coherence transform of Π w.r.t. I is simply the GAP ground(Πnon vc) ∪⋃
r ∈ ground(Π)∧
r is a VC-rule

coh(r, I), where Πnon vc is the set of all non-VC rules in Π.

Thus, the coherence transform of Π w.r.t. I simply looks at ground VC-
rules in ground(Π). If there is a ground atom Ai(v) in the body of the rule
such that I(Ai(v)) > 0 and I(Ai(v)) = I(Bi(v)), then we include the GAP rule
Bi(v) : I(Bi(v)) ← Ai(v) : I(Bi(v)) in coh(Π, I) — otherwise we just get rid
of the rule. All non-VC rules of Π are included in coh(Π, I). Thus, coh(Π, I) is
always a GAP which, by [14], is guaranteed to have a unique minimal model. We
use MM(Π) to denote the minimum model of a GAP Π. We can now define
coherent models.

Definition 9 (Coherent Model). Let Π be a ChoiceGAP and let M be a model
for Π. M is a coherent model for Π iff it is the minimum model of the GAP
coh(Π,M). �

We now present a quick example of coherent models.

Example 2. We show that the model I1 from Example 1 is a coherent model for
the following ChoiceGAP Π:

Π =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

friend(1, 2) : 1 ←
buyAsusU (1) : 0.6 ←
buyAsusU (Y ) : μ ← friend(X, Y ) : 1, buyAsusD(X) : μ

buyMacU (1) : 0.3 ←
buyMacU (Y ) : μ ← friend(X, Y ) : 1, buyMacD(X) : μ

buyMacD(X), buyAsusD(X) ←↩ buyMacU (X), buyAsusU (X)

Let r be the single VC-rule in Π. By grounding Π we obtain

ground(Π) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

friend(1, 2) : 1 ←
buyAsusU (1) : 0.6 ←
buyAsusU (2) : 0.6 ← friend(1, 2) : 1, buyAsusD(1) : 0.6

buyMacU (1) : 0.3 ←
buyMacD(1), buyAsusD(1) ←↩ buyMacU (1), buyAsusU (1)

buyMacD(2), buyAsusD(2) ←↩ buyMacU (2), buyAsusU (2)
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Consider each of the two ground VC-rules above. For the first VC-rule, we see
that I1(buyMacD(1)) �= I1(buyMacU (1)) and I1(buyAsusD(1)) = I1(buyAsusU (1))

= 0.6 > 0. Hence, the rule buyAsusD(1) : 0.6 ← buyAsusU (1) : 0.6 belongs
to the set coh(r, I1), and gets added to the coherent transform of Π w.r.t. I1,
denoted by Π ′ in the following. Likewise, with the second VC-rule, we know that
I1(buyMacD(2)) = I1(buyMacU (2)) = 0, and I1(buyAsusD(2)) = I1(buyAsusU (2))

= 0.6 > 0 and so we add the GAP rule buyAsusD(2) : 0.6 ← buyAsusU (2) : 0.6 to

Π ′. The final GAP Π ′ that we get is the same as ground(Π) but where the two
vertex choice rules are replaced as discussed above. It is easy to see that I1 is the
minimal model of Π ′. Hence, I1 is a coherent model of Π.

We now introduce the concept of Strong equilibrium.

Definition 10 (Strong Equilibrium). A coherent model I is a Strong
equilibrium for a ChoiceGAP Π iff for each ground vertex choice rule of
the form B1, . . . , Bm ←↩ A1, . . . , Am it is the case that

∑m
i=1 I(Bi) =

max(I(A1), . . . , I(Am)). �
Recall that by the definition of VC-rule satisfaction, there exists only one Bi

such that I(Bi) ≥ 0, while, for all other Bj , for j �= i, I(Bj) = 0. Thus, a Strong
equilibrium is a coherent model where each choice coincides with the maximum
annotation value, taken as a measure of utility, in the VC-rule body. We use
SE(Π) to denote the set of all strong equilibria of a ChoiceGAP Π.

Example 3. The coherent model I1 from Examples 1 and 2 is a Strong equilibrium
because (i) I1(buyAsusD(1)) + I1(buyMacD(1)) = 0.6 + 0.0 = max(I1(buyAsusU (1)),

I1(buyMacU (1))) = max(0.6, 0.3) = 0.6, and (ii) I1(buyAsusD(2))+ I1(buyMacD(2))

= 0.6 + 0.0 = max(I1(buyAsusU (2)), I1(buyMacU (2))) = max(0.6, 0.3) = 0.6.

We are now ready to define when a ChoiceGAP entails an annotated atom.

Definition 11 (Entailment). A ChoiceGAP Π entails a ground annotated
atom AA, denoted Π |= AA, iff every Strong equilibrium of Π satisfies
AA. �

ChoiceGAP Complexity. In this section, we study the computational complex-
ity of various problems related to strong equilibria. Our first complexity result
shows that determining existence of strong equilibria is an NP-complete problem.

Theorem 1 (Strong Equilibria Existence Complexity). Given a Choice-
GAP Π as input, the problem of deciding whether Π has a Strong equilibrium is
NP-complete under data and combined complexity. �

A major problem occurs when multiple strong equilibria exist. In this case,
a player who computes all of these strong equilibria may not know which strong
equilibria the other players might act in accordance with. Thus, he may wish to
know if a particular action he is considering is true in all strong equilibria. This
problem too is intractable.

Theorem 2 (Entailment). Given a ChoiceGAP program Π and a ground
annotated atom AA as input, the problem of deciding whether Π |= AA is coNP-
complete under data and combined complexity. �
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4 ChoiceGAPs : A Game Perspective

Let Π be a ChoiceGAP, SN be a social network, and let n be the number of
vertices in SN. Each vertex v is considered to be a player Pv. We use ΓΠ to
denote the set of all players in Π. In this section, we first describe the concept of
a state (which basically is a mapping of players to actions, specifying the action
the player takes). We develop a formal definition of a Nash equilibrium for the
resulting game, as well as a relationship between states and strong equilibria for
the game. Each player Pv ∈ ΓΠ has a the same set of actions (or strategies)
Q = {1, . . . , m} where m is the size of the vertex choice rule in Π. These are
the m competing choices the player can make (e.g. buying an Asus vs. buying a
Mac). A state S for a ChoiceGAP Π represents a choice for each player Pv and
it is defined as a mapping S : ΓΠ → Q. Given a ChoiceGAP Π and a state S for
Π, we define the notion of an induced ground GAP ΠS .

Definition 12 (Induced Ground GAP ΠS). Suppose Π is a ChoiceGAP and
S is a state for Π. We define a GAP ΠS that can be obtained from Π and S as
follows: (1) replace each ground VC-rule r : b1(v), . . . , bm(v) ←↩ a1(v), . . . , am(v)
in ground (Π), with the ground annotated rule bi(v) : X ← ai(v) : X where
i = S(Pv). (2) All non-VC rules in Π are also in ΠS.

Intuitively, when considering the ground instance r of a VC-rule in Π and
a state S, exactly one of the bi(v)’s can be true in the state as a vertex v can
make exactly one choice. This choice is the i = S(Pv).

Proposition 3 Let Π be a ChoiceGAPsuch that every predicate appearing in the
head of the VC-rule does not appear in the head of a GAP rule, and let S be a
state. Then, the minimal model of ΠS is a coherent model for Π.

Given a state S, each player has a utility value for each of its actions. The
utility u(S,Pv, i) of the player Pv performing the action i ∈ Q in the state S is
given by the value assumed by the atom ai(v) in the interpretation MM(ΠS),
i.e. we set u(S,Pv, i) = MM(ΠS)(ai(v)), where ai(x) is the i’th atom in the
body of the VC-rule. This value is the likelihood of the player performing action
i ∈ Q according to the GAP ΠS . We assume that each player is a rational agent,
i.e. he is motivated by maximizing his own payoff.

Definition 13 (State Representation of Strong Equilibria). A state
S represents a Strong equilibrium for Π iff, for all players Pv ∈ ΓΠ ,
u(S,Pv, S(Pv)) ≥ u(S,Pv, i), for each action i ∈ Q.

Intuitively, a state is a choice of actions, one for each player. In contrast,
strong equilibria, as defined in the previous section, is a coherent model of a
ChoiceGAP that satisfies certain equilibrium conditions. The above definition
specifies the relationship between states and strong equilibria so we can refer to
the actions taken in a strong equilibrium as a state and vice versa. Note that
the set {MM(ΠS) | S is a state} contains all strong equilibria for Π - but not
all its members are necessarily strong equilibria.
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Nash Equilibrium vs. Strong Equilibrium. A Nash equilibrium is a state
where no player has anything to gain by unilaterally changing his own action.
In order to define Nash equilibria, we first define the utility û(S,Pv) of a state
S for a player Pv as follows: û(S,Pv) = u(S,Pv, S(Pv)). This definition says the
utility of the state S for player Pv is simply the utility of the action S(Pv) that
he takes in that state.

Definition 14 (Nash Equilibrium). Let Π be a ChoiceGAP and S a state.
MM(ΠS) is a Nash equilibrium for Π iff, for each player Pv, û(S,Pv) ≥
û(S′,Pv) for each S′ such that S(Pv′) = S′(Pv′) if v′ �= v, and S(Pv′) �= S′(Pv′)
if v′ = v. �

Intuitively, MM(ΠS) is a Nash equilibrium if all players have no utility
benefit in moving in other states. Thus, if one player tries to perform an action
different from that in a Nash equilibrium (trying to raise his own utility), this
would imply a reduced utility for some other player, who may then try to per-
form some other action, leading to an unstable situation. The above definition
of classical Nash equilibrium applied to competitive diffusion in SNs assumes
that each player has common knowledge about: (1) the whole structure of the
social network (and every vertex in it), (2) for all players, how they think (diffu-
sion model mechanism for each vertex), and (3) the strategies adopted by each
other player. All these assumptions are needed to compute the utility û(S′, p)
— unfortunately, they are too strong for a real-world social network context.
In most real-world social networks, we have information on our neighbors but
not on others. Likewise, we are not privy to the strategies of the players and
how they make decisions. Fortunately, our notion of strong equilibrium works
without all these assumptions and, as stated in the following theorem, it is able
to capture all Nash equilibria as well.

A generic game G is a triple G = (P̂ , Q̂, Û) where (i) P̂ is the set of players
{p1, . . . , pn}, (ii) Q̂ = {q1, . . . , qm} is the set of actions (the same for each player),
and (iii) Û = {û1, . . . , ûn} is the set of utility functions ûi : Q̂n → �, one for
each player.

Theorem 4 Nash equilibria can be captured by strong equilibria of
ChoiceGAPs. For every generic game G = (P̂ , Q̂, Û), there exists a Choice-
GAP Π such that the strong equilibria of Π coincide with the Nash equilibria of G.

Apt and Simon [3] define a social network game where all users of the social
network must choose one product from among a set of products and their utilities
depend on the choices of their neighbors. We show in the online Appendix A [1]
that their game can be expressed with our framework, i.e. here exists a Choice-
GAP Π s.t. the strong equilibria of Π coincide with the Nash equilibria of their
game. As a consequence, we can provide a new special case of their game (i.e.
when only two products are considered as choices) where a Nash equilibrium
always exists and can be computed in PTIME.
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5 Vertex Independent Choice Programs

As strong equilibria may not exist for all ChoiceGAPs we will define a class
of programs called vertex independent choice (VIC) programs and denoted by
V IC2, for which a Strong equilibrium always exists when the size of the vertex
choice rule is 2.

Definition 15 (Dependency Graph). Suppose Π is a ChoiceGAP. The
dependency graph G(Π) associated with Π has the set VP of vertex predicates as
the set of vertices. The set E of edges is defined as follows: (p2, p1) ∈ E iff (1)
there is a ChoiceGAP rule r with p2 appearing in body(r) and p1 in head(r), or
(2) in the vertex choice rule r : B1, . . . , Bm ←↩ A1, . . . , Am there is an 1 ≤ i ≤ m

such that p2 appears in Ai and p1 appears in Bi.

We are now ready to define a VIC program.

Definition 16 (Vertex Independent Choice (VIC) Program). A Choice-
GAP Π is said to be Vertex Independent Choice (VIC) if (1) every predicate
symbol appearing in the head of the VC-rule in Π does not appear in the head of
a GAP rule, and (2) Suppose B1, . . . , Bm ←↩ A1, . . . , Am ∈ Π and p1 appears in
Bj and p2 appears in Ai and i �= j. Then there is no path from p1 to p2 in the
dependency graph G(Π).

A VIC-program is said to be a V ICm program when its VC-rule has the form
B1, . . . , Bm ←↩ A1, . . . , Am.

Intuitively, the VIC condition requires that the choice of a vertex is com-
pletely independent, because (1) it cannot be forced by factors other than the
diffusion process, and (2) it is not influenced by conflicting atoms.

Given a VICm program Π containing the vertex choice rule b1(X), . . . , bm(X)
←↩ a1(X), . . . , am(X), and having dependency graph G(Π), we define m sets of
predicates Pred1Π , . . . , P redm

Π of Π, such that each set Predi
Π contains all the

predicates obtained by a reverse visit (i.e. with each edge inverted, e.g. edge
(a, b) is considered as (b, a)) of G(Π) starting from the predicate bi. Moreover,
given a state S, we can divide the induced ground VIC program ΠS into m
independent programs Π1

S , . . . , Πm
S , where each Πm

S contains all rules from ΠS

involving only predicates from Predi
ΠS

.
The following result shows some properties of VIC programs.

Proposition 5. Given two states S1 and S2 of a VIC program Π, where S2

only differs from S1 in the choice of player p, i.e. S1(p′) = S2(p′) if p′ �= p, and
S1(p′) �= S2(p′) if p′ = p, then for each player p̂ ∈ ΓΠ the following statements
hold:

1. u(S1, p̂, S1(p)) ≥ u(S2, p̂, S1(p)).
2. u(S1, p̂, S2(p)) ≤ u(S2, p̂, S2(p)).
3. ∀j ∈ Q \ {S1(p), S2(p)} : u(S1, p̂, j) = u(S2, p̂, j). �
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Example 4 below shows that VIC programs are not guaranteed to have strong
equilibria.

Example 4. Consider the following VIC program where the size of vertex choice
rule is 3:

g
U
(1) : 0.4 ← r

U
(2) : 0.4 ← b

U
(3) : 0.4 ←

bU (1) : 1.0 ← bD(3) : 0.2

gU (2) : 1.0 ← gD(1) : 0.2

rU (3) : 1.0 ← rD(2) : 0.2

g
D
(X), r

D
(X), b

D
(X) ←↩ g

U
(X), r

U
(X), b

U
(X)

This program does not have any Strong equilibrium. Moreover, observe that
if we remove any one of the facts, three strong equilibria exist.

The following result shows that the problem of checking existence of a strong
equilibrium for V IC3 programs is NP-hard.

Theorem 6 (Existence of Strong Equilibrium for V IC3 Programs).
Given a VIC ChoiceGAP program Π where the size of vertex choice rule is 3, the
problem of deciding whether Π has a Strong equilibrium is still NP-hard under
data and combined complexity. �

The following result shows that for VIC programs, all Nash equilibria are
strong equilibria, but the converse is not necessarily true.

Theorem 7. Let Π be a VIC program. Then every Nash equilibrium is a Strong
equilibrium for Π, but in general a Strong equilibrium for Π may not be a Nash
equilibrium. �

VIC2 Programs. Fortunately, V IC2 programs have two nice properties. First,
they are guaranteed to have a strong equilibrium. And second, the problem of
finding a strong equilibrium can be solved in polynomial time. Algorithm1 shows
how to find such a strong equilibrium. We use the concept of state defined in
Sect. 4. We start (line 2) by creating an initial state where all players take action
1 (of the two actions 1, 2 supported by the V IC2 program). Recall that for each
player Pv, we have only two choices in V IC2 programs, i.e. Q(Pv) = {1, 2}. If
this state is not a strong equilibrium, we identify all players for which a higher
utility is obtained by performing action 2 (lines 3 − 7) and if this is the case, we
set their action appropriately. Finally (line 8), we return the minimal model of
the induced ground GAP ΠS (see Definition 12). Observe that a different Strong
equilibrium can be found by inverting action 1 with 2 and vice versa.

Theorem 8. Algorithm1 runs in PTIME and returns a Strong equilibrium
(that always exists). �
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Algorithm 1. Algorithm finding a Strong equilibrium.
1: procedure findSE(ChoiceGAP V IC2 program Π)
2: Let S be a state s.t. S(Pv) = 1 for all players Pv ∈ ΓΠ ;
3: while (S does not represent a Strong equilibrium for Π) do
4: for all (players Pv s.t. u(S, Pv, 1) < u(S, Pv, 2)) do
5: Set S(Pv) = 2;
6: end for
7: end while
8: return MM(ΠS)
9: end procedure

From the set of all ground atoms of a V IC2 program Π, we can define two par-
tial interpretations: MM(Π1

S) is the interpretation for all atoms in MM(ΠS)
referring to action 1 — MM(Π2

S) is the interpretation for all atoms in MM(ΠS)
referring to action 2. Let S12 (S21) be the state identifying the Strong equilibrium
computed by Algorithm 1 (resp. by inverting the action 1 with 2 and vice versa).
The following result shows certain relationships about the utilities returned by
the different minimal models of GAPs depending upon our choice of S.

Theorem 9 (Maximal and Minimal Models). Suppose Π is a V IC2 pro-
gram. For each state S identifying a Strong equilibrium the following statements
hold: MM(Π2

S12
) 
 MM(Π2

S) 
 MM(Π2
S21

) and MM(Π1
S21

) 
 MM(Π1
S) 


MM(Π1
S12

).

The following result shows that checking whether an action is true in all
strong equilibria is polynomially solvable in the case of V IC2 programs.

Proposition 10 (Entailment in V IC2). Given a V IC2 program Π and a
ground annotated atom AA, the problem of deciding whether Π |= AA is in
PTIME under data and combined complexity. �

6 Experiments

We ran experiments to check the scalability and accuracy of our framework
in predicting real-world election outcomes by considering Facebook discussions
surrounding the latest Italian general election (2013). All experiments were run
on an Intel I7 2.70 GHz machine with 8 GB RAM.

Dataset. We used a dataset extracted from Facebook containing information
about Italian Facebook users and their Facebook friends, together with all Face-
book pages that each user likes. For each Facebook like we store the page url,
name and type (e.g. Actor/Director, Public Figure, Community, Political Orga-
nization, etc.). The dataset contains about 65K users, 84 K friendship relations,
and 520K likes. As our dataset was extracted after the elections, it contains a lot
of user preferences about the political parties and/or politicians involved in the
electoral competition, expressed in terms of likes of pages maintained by political
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parties and/or politicians. There were three main political alliances involved in
the election competition, denoted by p1, p2 and p3.

For each user u in our Facebook dataset and for each party pi who partici-
pated in the elections, we assigned a confidence value ρ(u, pi) ∈ [0, 1], 1 ≤ i ≤ 3
and

∑3
i=1 ρ(u, pi) = 1, that expresses how much the user u likes the party p, as

follows. First of all, we classified the Facebook pages of type Political Organi-
zation or Politician contained in the dataset (1002 pages) into three categories,
p1, p2 and p3, according to the content of the page. Second, for each user u

and for each party pi, we computed the value ρ(u, pi) = #likes(u,pi)∑3
i=1 #likes(u,pi)

, where
#likes(u, pi) is the number of Facebook pages of type pi user u likes. Finally, we
classified a user u as supporter of the party pi, if pi corresponds to the maximum
coefficient ρ(u, pi).

In our experiments we considered 4 competitions, namely (C1) p2 vs. p3,
(C2) p2 and p3 vs. p1, (C3) p2 vs. p1, and (C4) p3 vs. p1. For each competition,
we constructed 20 (training set, validation set) pairs of data to use in the exper-
iments. We did this as follows: given the set U of users having at least one like
to a page of type Political Organization or Politician (a total of 1 439 users), and
a value δ ∈ [0, 100], we randomly select δ% of the users in U to be part of the
training set, while the remaining (1− δ)% of users are part of the validation set.
We used 20, 30, 40, 50, 60, 70 and 80 as values for δ. Of course, our algorithm
is then executed over the whole network (65K users).

Diffusion Models. We used three different diffusion models in our experiments.
The first diffusion model is a kind of cascade model in which the likelihood of
a vertex adopting a political preference is the average of the likelihoods of its
friends adopting that position:

model1 :
choice1(v) : 1

|nbr(v)|
∑

u∈nbr(v) μu ← ∧u∈nbr(v) choice1(u) : μu.

choice2(v) : 1
|nbr(v)|

∑
u∈nbr(v) μu ← ∧u∈nbr(v) choice2(u) : μu.

Due to lack of space we report the other two diffusion models (including a tip-
ping model [9,18]) in the Online Appendix B [1]. For each competition-diffusion
model pair, we computed the maximal model (M1) and the minimal model
(M2) using Algorithm 1. We assigned real utility values to users in the training
set, while users in the validation set were assigned a 0 utility value (because
we will use our model to predict which of the two political orientations these
users prefer). The real utility values are computed by taking into account the
values ρ(u, pi). For instance, for the second competition the utility of vertex u

for p2 and p3 is u1(u) = ρ(u,p2)+ρ(u,p3)
ρ(u,p1)+ρ(u,p2)+ρ(u,p3)

, while the utility of u for p1 is

u2(u) = ρ(u,p1)
ρ(u,p1)+ρ(u,p2)+ρ(u,p3)

.

Area Under the ROC Curve. To evaluate our model, we built a threshold
classifier by using bounds over the vertices’ utility values returned by the models
M1 and M2 (details are reported in Appendix B [1]). We computed the ROC
curve by varying the threshold τ , and used the Area Under the ROC curve
(AUROC) to measure the accuracy of our model. A receiver operating charac-
teristic (ROC) curve plots false positive rates on the x-axis and true-positive
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rates on the y-axis. The AUROC is the area under the resulting curve. Figure 1
(left) shows a graph of the average AUROC as we vary the size of the training set
from 20 % of the overall data set to 80 % in steps of 10 %. For each value of this
size, we randomly selected a data set of that size from our Facebook data in 20
ways. Then, as mentioned above, another 4500 combinations of parameters were
considered, making a total of 90,000 experimental settings for each data set size.
We have a total of 8 data set sizes, making 720 K runs in all in our experiments.
For each data set size, Fig. 1 (left) shows the average AUROC we derived. We
see that on average, the AUROC varies between 0.75 and 0.78 which is quite a
narrow band. Recall that an AUROC of 0.5 denotes random guessing and hence
these AUROCs show strong predictive power. Moreover, the predictive power
seems relatively flat as we vary the size of the training set from 20 % to 80 %,
varying by just about 3 percentage points overall, which indicates that we can
get good predictive accuracy even without large training sets. Figure 1 (right)
shows the standard deviation of the AUROCs we obtained. We see the impor-
tant trend that the standard deviation stays small, under 0.05, even as the size
of the training set varies from 20 % to 80 %. Table 1 in [1] reports the maximum
AUROC we obtained for each competition. With the exception of competition
C1, the AUROC is over 0.88 for competitions C2 and C3, and over 0.75 for C4.

Fig. 1. On y-axis average AUROC (left) and standard deviation of AUROC (right) as
we vary the size of the training set (x-axis) from 20 % to 80 % of the entire Facebook
data set.

7 Related Work

To the best of our knowledge, this paper presents the first game-theoretic frame-
work for competitive diffusion which scales to large social networks and which
has been proven to have high accuracy. Many works have addressed the problem
of competitive diffusion through social networks but with a perspective differ-
ent from our work. [5,7,10] extended the “influence maximization problem” [13]
to a competitive scenario. In this setting, the players are entities outside the
social network (and not the network users) that try to diffuse new technologies,
rumors, etc. [7,10] allow one competitor to actively maximize the diffusion of a
property against competing static ones. In our work, all competitors are active
at the same time. The diffusion model that is typically used is an extension
of the independent cascade model which has the sub-modular property. In [5]
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all players are active and their move consists in choosing an initial set of seeds
to maximize their influence on the network. They prove this game has mixed-
strategy Nash Equilibria (but not pure ones). [15] addresses the problem as a
2-player-game where the players are the competitors or rumors. The first player
starts by choosing its set of seeds, then the second player makes his choice of dif-
ferent seeds. The payoff of a player is computed after the diffusion (propagated
with specific models) has terminated and equals the number of vertices that
believes in the rumor corresponding to the player. They show that computing
the optimal strategy for both players is NP-complete, as well as determining an
approximated solution for the first player. In contrast to all the above efforts,
our framework allows more than two competitors, allows vertices and edges to
have property labels, and, in addition, our framework of ChoiceGAPs allows us
to express a huge variety of diffusion models whereas these other papers focus on
just one type of diffusion model. Moreover, we do not require diffusion models
having the submodularity property. Also, our algorithm is scalable and performs
well in practice.

[6] presented a logic-based competitive diffusion model in which they induced
a probability distribution over the space of models of a annotated logic program
and hypothesized that the most likely “model” was the one that was likely to
happen in practice. This one model of the annotated logic program was used to
make forecasts (e.g. if the model said more people would adopt choice 1 instead
of choice 2, then that is what would happen). However, no accuracy results
were presented. One flaw with this is that it is possible that the most probable
model has probability 5 % and suggests that more people would adopt choice
1, while the remaining models (carrying 95 % probability of occurring) suggest
they would adopt choice 2. Moreover, even on networks of under 10 K vertices,
the algorithm took many, many hours to compute. In contrast, the results of
this paper show far greater scalability as well as strong accuracy results.

This paper builds upon our previous work [19] leveraging a GAPs [14] frame-
work for diffusion in networks. However, [19] differs in several key aspects: it
does not consider competitive diffusion models (then GAPs are not combined
with choice logic programs), and addresses a different problem, i.e. determin-
ing which vertices in the network will cause a property to spread to a maximal
extend (w.r.t. a complex aggregate). The problem considered here is determine
how competing properties will diffuse.

8 Conclusions

In real-world social networks, multiple diffusive phenomena are competing for the
attention of the same individual. In this paper, we take the problem of competing
diffusions “head on”. Using the general framework of ChoiceGAPs, we build a
game-theoretic framework in which every social network user is considered to be
a player — thus the resulting game consists of a very large number of players.
We show that certain models of the resulting logic programs can be thought
of as “strong equilibria” models having very nice properties, similar to Nash
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equilibria (whose direct use would require making some unrealistic assumptions).
We prove that the entailment problem is coNP-complete for a general ChoiceGAP
and we identify a tractable class of ChoiceGAPs called V IC2 programs where a
strong equilibrium always exists and the entailment is in PTIME. We tested our
framework on the real-world competitive diffusion situation of the 2013 Italian
election on a data set we extracted from Facebook. We show that our framework
works well in practice and can predict the number of those who like various
political parties with an AUROC of 0.76 on average across all experiments.

Acknowledgements. Parts of this work were supported by ARO grant
W911NF1610342.
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silviu.maniu@lri.fr

Abstract. Query answering over probabilistic data is an important task
but is generally intractable. However, a new approach for this problem
has recently been proposed, based on structural decompositions of input
databases, following, e.g., tree decompositions. This paper presents a
vision for a database management system for probabilistic data built
following this structural approach. We review our existing and ongoing
work on this topic and highlight many theoretical and practical chal-
lenges that remain to be addressed.

1 Introduction

To have an accurate description of the real world, it is often necessary to associate
probabilities to our observations. For instance, experimental and scientific data
may be inherently uncertain, because, e.g., of imperfect sensor precision, harmful
interferences, or incorrect modelling. Even when crisp data can be obtained, it
can still be the case that we do not trust who retrieved it or how it came to
us. The notion of probabilistic databases has been introduced to capture this
uncertainty, reason over it, and query it: these databases are augmented with
probability information to describe how uncertain each data item is. Given a
probabilistic database D and a query q, the probabilistic query evaluation problem
(PQE) asks for the probability that the query q holds on D. Unfortunately, even
on the simplest probabilistic database models, PQE is generally intractable [14].

One possibility to work around this intractability is to use approximate
approaches, such as Monte Carlo sampling on the data instances. A different
direction was recently explored in [2], namely, restricting the kind of input
instances that we allow, in what we call the structural approach. It is shown
in [2] that the data complexity of PQE is linear if the instances have bounded
treewidth, i.e., they can be structurally decomposed in a tree-like structure where
each node must contain at most k elements, for a fixed parameter k. Moreover,
in [3], it is shown that bounding the instance treewidth is necessary to ensure
the tractability of PQE, because some queries are hard on any unbounded-
treewidth instance family (under some conditions). Hence, bounded-treewidth
methods seem to be the right way to make PQE tractable by the structural
approach.

c© Springer International Publishing Switzerland 2016
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DOI: 10.1007/978-3-319-45856-4 22
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These theoretical works, however, left open the question of practical applica-
bility: many challenges must still be addressed to implement a practical system
using these techniques. First, obtaining an optimal decomposition of an arbi-
trary instance is NP-hard [5]. Second, the complexity is only polynomial in the
data, with the query and parameter being fixed; this hides a constant which can
be exponential in the width k and non-elementary in the query q. Third, we do
not know which real datasets can indeed be decomposed, at least partially, with
a small k.

This paper thus presents our vision of a database management system based
on the structural approach, and gives an overview of the research directions,
both theoretical and practical, which we intend to address to this end.

2 Probabilistic Query Evaluation: A Structural Approach

We first review our structural approach [2] for probabilistic query evaluation
(PQE). The approach is illustrated in Fig. 1.

The approach applies to tuple-independent (TID) instances (but general-
izes to more expressive models [1]). Formally, a TID instance I is a rela-
tional database D where each tuple t ∈ D has some probability pt. The TID
I represents a probability distribution over the subinstances D′ ⊆ D (sub-
sets of facts): following the independence assumption, the probability of D′ is∏

t∈D′ pt × ∏
t∈D\D′(1 − pt).

We study the probabilistic query evaluation (PQE) problem: given a Boolean
query q and TID instance I, determine the probability that q holds on I, i.e., the
total probability of the subinstances of I that satisfy q. We refer to the combined
complexity of PQE when I and q are given as input; we refer to data complexity
when I is the input and q is fixed.

The first step of the structural approach (Sect. 3) is to translate the query
q to a formalism that can be efficiently evaluated. In the approach of [2],

Fig. 1. Overview of the structural approach for PQE
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following [13], the query is compiled to a tree automaton, i.e., a finite-state
automaton over trees [12]. The approach works for expressive queries written
in monadic second-order logic, which covers in particular first-order logic and
(unions of) conjunctive queries. This translation of the query is independent
from the instance, so does not affect data complexity; however, it depends on
a parameter k of the instance, to be defined soon. Intuitively, the automaton
represents an algorithm to evaluate the query on suitable instances.

The second step (Sect. 4) applies to the instance I, and computes a structural
decomposition of it. In [2], we compute a tree decomposition [10,11], equivalent
to junction trees in graphical models [19], and then a tree encoding over a finite
alphabet: the results of [3] show that tree decompositions are essentially the
only possible way to make PQE tractable. The parameter k measures how well
I could be decomposed: in our case, k is the treewidth, measuring how close I is
to a tree. By treelike instances, we mean instances whose treewidth is bounded
by a constant.

The third step (Sect. 5) is to compute a lineage of the query q on the instance
I, i.e., compute an object that represents concisely the subinstances of I that
satisfy q. This object can be used for PQE, as what we want to compute is
precisely the total probability of this set of subinstances. Specifically, we compute
a Boolean lineage circuit of the tree automaton for the query over the tree
encoding of the instance, according to the construction of [2]. This step is purely
symbolic and does not perform any numerical probability computation.

The fourth and last step is to evaluate efficiently the probability of the query
from this lineage representation, by computing the probability that the circuit
is true. This task cannot be performed efficiently on arbitrary Boolean circuits,
but it is feasible in our context, for two independent reasons [2,3]. First, this
circuit can also be tree decomposed, which allows us to apply a message-passing
algorithm [19] for efficient probability computation. Second, in the case where
we made the query automaton deterministic [12], the circuit is actually a d-
DNNF [15], for which probabilistic query evaluation is tractable.

3 Efficient Compilation to Expressive Automata

Compiling the query to an automaton following the structural approach of [2], by
applying [13], is generally non-elementary in the query. This section presents our
main ideas to address this problem: we intend to restrict to tractable query frag-
ments, and to use more expressive automata targets to compile the query more
efficiently. These challenges are not specific to PQE; the next section presents
the lineage computation tasks, which are specific to PQE.

Efficient Compilation. Of course, we cannot hope to compile all Monadic
Second Order logic (MSO) to automata efficiently, or even all conjunctive queries
(CQs). Indeed, efficient compilation to automata implies that non-probabilistic
query evaluation is also tractable in combined complexity on treelike instances;
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however, CQs are already hard to evaluate in this sense (even on fixed instances).
Hence, we can only hope to compile restricted query languages efficiently.

Many fragments are known from earlier work to enjoy efficient combined
query evaluation. In the database context, for instance, acyclic CQs can be
evaluated in polynomial combined complexity [23]. This generalizes to first-order
logical sentences that can be written with at most k variables, i.e., FOk [17].
However, it also generalizes to the guarded fragment (GF) [4], whose combined
complexity is also PTIME, and where better bounds can be derived if we know
the instance treewidth [9]. The tractability of GF, however, does not capture
other interesting query classes: reachability queries, and more generally two-way
regular path queries (2RPQs) and variants thereof [6], as well as Monadic Datalog
as in [16].

Our first task would thus be to develop an expressive query language that
captures GF, 2RPQs, and Monadic Datalog. Ideally this fragment should be
parameterized, i.e., all CQs or all FO queries q could be expressible in the frag-
ment, up to increasing some parameter kq, with the compilation being PTIME
for fixed kq but intractable in kq. We would then develop an efficient algorithm
to compile such queries to automata that check them on bounded-treewidth
instances, for fixed values of the query parameter kq and of the treewidth. Our
ongoing work in this direction investigates very recent extensions of GF with
negation and fixpoints [7,8], for which compilation to automata was studied as
a tool for logical satisfiability. We believe that these results, suitably extended
and adapted to query evaluation, can yield to bounded-treewidth automaton
compilation methods that covers the query classes that we mentioned.

Expressive Automata Targets. The efficient compilation of queries to
automata is made easier by allowing more expressive automaton classes as the
target language. In [2], we used bottom-up tree automata, which process the tree
decomposition of the instance from the leaves to the root. Our idea is to move
to more expressive representations, namely, two-way alternating automata [12].
These automata can navigate through the tree in every direction (including
already visited parts), and thus can be more concise. The notion of alterna-
tion allows automata to change states based on complex Boolean formulae on
the neighboring states, which also helps for concision. Indeed, the expressive lan-
guages of [7] are compiled to two-way alternating parity automata, which further
use a parity acceptance condition on infinite runs, to evaluate fixpoints.

To make automaton compilation more efficient, another idea is to compile
queries to automata with a concise implicit representation. In particular, we can
use automata with a structured state space: the states are tuples of Boolean
values, and the transition function can be written concisely for each coordinate
of the tuple as a function of the tuples of child states. It may be possible to
capture the tractability of query evaluation for 2RPQs via automaton methods,
structuring the state space to memorize separately the regular sublanguages of
paths between node pairs.
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4 Obtaining Tree Decompositions

Estimating Treewidth. As we have mentioned, computing the treewidth of
an instance directly is an NP-hard problem. Hence, a practical system using the
structural approach must compute tree decompositions more efficiently, even if
this limits us to non-optimal decompositions. We intend to experiment with two
main kinds of methods to obtain tree decompositions efficiently: separator-based
algorithms, which recursively divide the instance based on various heuristics;
and elimination ordering algorithms, where the nodes in the graph are ordered
using some measure and eliminated one by one from the graph [10]. To estimate
the quality of our decompositions, we can also estimate lower bounds on the
instance treewidth: for instance via graph degeneracy or average degree [11].

Query-Specific Decompositions. In some cases, knowledge about the query
can help us to obtain better tree decompositions of the instance. A trivial situa-
tion is when we know that the query is only on a subset of the database relations:
we can then ignore the others when decomposing. More subtly, if we know that
specific joins are not made by the query, then we may be able to rewrite the
instance accordingly, and lower the treewidth. For instance, if no R- and S-atoms
share a variable in the query, then the instance {R(a, b), S(b, c)} can be rewritten
to {R(a, b), S(b′, c)}, which may lower the treewidth by disconnecting elements.
We do not understand this process yet in the general case, but we believe that a
theory of lineage-preserving instance rewritings for a given query (or query class)
can be developed, using the notion of instance unfoldings introduced in [3].

5 Tractable Lineage Targets

Once we have compiled the query to an automaton and decomposed the instance
to a tree encoding, our goal is to compute a lineage representation of the automa-
ton on the encoding, namely, a representation of the subinstances where the
query holds, which we will build as a Boolean circuit. We can then use this to
perform PQE, by computing the probability of the query as that of the lineage.
In so doing, we need to rely on the fact that the lineage is in a class of circuits
for which probability can be efficiently computed.

To this end, a first step towards a practical system is to adapt the methods
of [2] to the expressive automaton classes that are needed for efficient query
compilation. We believe that this is possible, but with a twist: because two-
way automata can navigate a tree in every direction, they may go back from
where they came, thus resulting in cyclic runs. Therefore, it seems that the
natural lineages that we would obtain for alternating two-way automata are
cyclic Boolean circuits, which we call Boolean cycluits. A semantics for such
circuits would need to be defined based on the semantics of automaton runs and
reachable states: we believe that the evaluation could follow least fixed-point
semantics, and be performed in linear time.
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Second, we would need to perform efficient probability computation on these
cycluits. One first way to address this would be to eliminate cycles and trans-
form them to tractable classes of Boolean circuits (e.g., d-DNNFs), which we
believe can be done assuming bounds on the treewidth of the cycluits. Alterna-
tively, we can apply message passing methods directly on the cycluits [19]; or we
can try to rewrite the automaton to produce acyclic circuits or even d-DNNFs
directly. All these methods would be generally intractable in the query, which is
unsurprising: indeed, PQE is often intractable even for languages with tractable
combined complexity, and efficient compilation to automata. It would be inter-
esting, however, to identify islands of tractability; and, in intractable cases, to
benchmark the previously mentioned approaches and see which ones perform
best in practice.

Another important direction for a practical system is to be able to evaluate
queries on instances where facts are not independent, i.e., go beyond the TID
formalism. For instance, facts could be present or absent according to a complex
lineage, like the cc-instances of [1]. In this context, new methods can be efficient.
For instance, if the number of probabilistic events is small, performing Shannon
expansions on some well-chosen events may make large parts of the instance
deterministic, making the query easier to evaluate on these parts.

6 Practical Matters

We now review possible approaches and directions to implement and evaluate
the structural approach for PQE on real-world datasets.

Results on Treelike Instances. In [21], the structural approach has been com-
pared with one of the existing probabilistic data management systems, namely
MayBMS [18]. The instances considered have been randomly generated to have
low treewidth (�7). The results show that an implementation of the struc-
tural approach can perform query evaluation faster than the exact methods of
MayBMS, in cases where there are many matches and many correlations between
them. Indeed, MayBMS does not take advantage of the fact that the instances
are treelike. However, in this work, the queries were compiled to automata by
hand rather than automatically, and there was no study of practical datasets.

Practical Datasets and Partial Decompositions. A first question is to
extend this study to practical datasets, and to investigate whether such datasets
have low treewidth, or whether we can use approximate decompositions or rea-
sonably low treewidth. Our preliminary results suggest that some datasets have
high treewidth, but others, in particular transportation networks, have treewidth
much smaller than their size. For instance, the OpenStreetMaps graph of Paris
has over 4 million nodes and 5 million edges, but we estimated its treewidth to be
�521. We do not know yet of a theoretical reason explaining why transportation
networks generally exhibit this property.
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However, this bound is still too large to be practical. One way to work around
this problem is thus to compute a partial decomposition [22] of the instance, i.e.,
a tree decomposition of a part of the instance whose width is at most k, with k
fixed. This results in a structure formed of a forest of instances with treewidth
� k, called the tentacles, that interface with a core, i.e., the remaining facts,
whose treewidth is too high and that cannot be decomposed. Our preliminary
experiments have shown that, for some transportation networks, a partial decom-
position for k = 10 results in a core instance whose size is about 10 % of the
original instance.

This decrease in the size of the core, in turn, can potentially have an imme-
diate effect in the processing of queries. Preliminary results [20] have shown
that using partial decompositions of fixed treewidth for probabilistic reachabil-
ity queries, in conjunction with sampling in the core graph, can make query
processing up to 5 times faster.

Tentacle Summarization. An important problem when computing probabili-
ties on partial decompositions is the interface between the tentacles and the core,
i.e., we must find a way to summarize the tentacles in the core when applying
sampling to the core. As the tentacles are treelike, we can efficiently compute
probabilities and lineages in them: the goal of summarization is to eliminate the
tentacles and replace them by summary facts that are added to the core. In
the case of simple queries, such as reachability queries, the summary facts can
have the same semantics as in the original instance, but this does not seem to
generalize to arbitrary queries: it may even be the case that some queries cannot
be rewritten to the summary facts while remaining in the same language.

Having summarized the tentacles, we may also answer queries approximately
via sampling, using the (exact) tentacle summaries added to the core: as the
instance is now smaller, this process can be performed faster.
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ParisTech (2016). 2016-ENST-0021

2. Amarilli, A., Bourhis, P., Senellart, P.: Provenance circuits for trees and treelike
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Abstract. We propose to apply a variant of forgetting, a simple method
to restore consistency, in order to get a new inconsistency measure from
the following intuitive idea: How much effort is needed to restore consis-
tency of a knowledge base is presumably indicative of how inconsistent
the knowledge base is. We discuss properties of the inconsistency measure
obtained, in particular in the face of well-known postulates for inconsis-
tency measures. We also mention in what sense this new measure does
not fall into the dichotomy of inconsistency measures proposed in the
literature: alphabet-based approaches vs formula-based approaches.

1 Introduction

Inconsistency measures have gained much interest recently (Ammoura et al.
2015; Grant and Hunter 2013; Hunter et al. 2014; Jabbour et al. 2015, 2016; Liu
and Mu 2016; McAreavey et al. 2014; Mu et al. 2012; Mu 2015; Thimm 2013,
2016a, 2016b; Thimm and Wallner 2016; Xiao and Ma 2012). An inconsistency
measure ascribes a quantity to a logical knowledge base, a quantity which is
meant to tell how inconsistent the knowledge base is. Here, we apply forgetting
(Lin and Reiter 1994), a well-known method to restore consistency (Lang and
Marquis 2002), in order to get a new inconsistency measure from the following
idea: How much effort is needed to restore consistency of a knowledge base is
presumably indicative of how inconsistent the knowledge base is.

1.1 Formal Preliminaries

By a knowledge base, we mean a finite multiset of formulas of propositional logic.
We use ¬, ∧, ∨ to denote the usual Boolean connectives: negation, conjunction,
disjunction. We use Greek letters ϕ,ψ, . . ., whether indexed or not, to denote
formulas of propositional logic. We use capital Greek letters Δ,Γ ,. . . to denote
knowledge bases (i.e., multisets of formulas of propositional logic, as just said).
We use κ (which is introduced in Definition 1) to denote forgetting: Intuitively,
κ “forgets” occurrences of a propositional variable.

c© Springer International Publishing Switzerland 2016
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DOI: 10.1007/978-3-319-45856-4 23



332 P. Besnard

2 An Inconsistency Measure

We consider formulas labelled with superscripts denoting occurrences of atoms.
Every formula ϕ in which an unlabelled atom v occurs k > 0 times is identified
as ϕ(v1, . . . , vk) where vi denotes the ith unlabelled occurrence of v in ϕ.1

Example. The unlabelled formula a ∧ b ∧ ¬ b is identified with the labelled
formula a1 ∧ b1 ∧ ¬b2.

Accordingly, given the list of propositional variables P = v1, v2, . . . define the
set of atom occurrences as

A def=
⋃

v∈P
{v1, v2, . . .}

Importantly, vi is identified with vj for all purposes (e.g., consistency issues)
except for purposes of occurrences of atoms. In particular, a Boolean combination
of labelled formulas may display multiple copies of the same atom occurrence
e.g., (a1 ∧ b1 ∧ ¬b2)

∣
∣ b1 → �,⊥ (see below) is (a1 ∧ � ∧ ¬b2) ∨ (a1 ∧ ⊥ ∧ ¬b2).

Notation. The symbol → is used for substitution as follows.

ϕ

∣
∣
∣
∣
∣
∣
∣

v
i1
1 → ψ1

...
v
ih
k → ψh

denotes the formula resulting from ϕ by replacing simultaneously each atom
occurrence v

ij
j by ψj (informally speaking, an atom occurrence refers either to

an unlabelled occurrence of the atom or to a labelled version of the atom).
The abbreviation

m∨

1

ϕ
∣
∣ vi→ ψ1,...,ψm

is used to denote the disjunction whose each disjunct is the formula obtained
from ϕ by replacing vi by one of ψ1, . . . , ψm in turn.

Example. Taking ϕ to be a1∧b1∧¬b2∧(b3∨¬(a1∧b1)), the substitution of b1 by
� in ϕ is denoted by ϕ |(b1→ �) , yielding a1 ∧�∧¬b2 ∧ (b3 ∨¬(a1 ∧�)). That is,
all occurrences of b1 in ϕ are replaced by occurrences of �. Also,

∨
ϕ

∣
∣ b1→ �,⊥

denotes [a1 ∧ � ∧ ¬b2 ∧ (b3 ∨ ¬(a1 ∧ �))] ∨ [a1 ∧ ⊥ ∧ ¬b2 ∧ (b3 ∨ ¬(a1 ∧ ⊥))].

Definition 1. κi,v.ϕ is the labelled formula obtained from the labelled formula2

ϕ by replacing the atom occurrences vi in ϕ, first by �, second by ⊥, taking the
disjunction thereof. In symbols,

κi,v.ϕ
def= ϕ(v1, . . . , vi−1,�, vi+1, . . . , vk) ∨ ϕ(v1, . . . , vi−1,⊥, vi+1, . . . , vk)

1 As to labelling, logical constants � and ⊥ are not considered atoms: A formula in
which either occurs is regarded as labelled if all other atoms in it are superscripted.

2 That is, if ϕ is unlabelled, it is identified with ϕ(v1
1 , . . . , v

i1
1 , . . . , v1

p, . . . , v
ip
p ) where

v1, . . . , vp are all the propositional variables in ϕ.
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For clarity, let us stress that κi,v.ϕ is a labelled formula hence κj,u.(κi,v.ϕ) is
such that κj,u introduces no superscript (but it duplicates superscripted atoms).

Lemma 1. Using the substitution notation,

κi1,v1 .κi2,v2 . · · · .κih,vh
.ϕ =

2h∨

1

ϕ

∣
∣
∣
∣
∣
∣
∣

v
i1
1 →�,⊥

...
v
ih
h →�,⊥

In previous work (Lin and Reiter 1994; Lang and Marquis 2002; Lang et al.
2003) about forgetting, it is shown that consistency can be recovered if enough
atoms are forgotten. It is of interest to characterize which occurrences of atoms
are enough to consider if consistency is to be recovered.

Definition 2. Define σ(ϕ) as the set of multisets of atom occurrences whose
forgetting is enough to turn ϕ into a consistent formula, in symbols,

σ(ϕ) def= {A ⊆ A | ∃h∃vi1
1 ..vih

h , A = {vi1
1 , . . . , vih

h }, κi1,v1 .κi2,v2 . · · · .κih,vh
.ϕ 	
 ⊥}.

Then, the inconsistency number of ϕ is intuitively the minimum number n
of (iterated) applications of κ operators such that κi1,v1 .κi2,v2 . · · · .κih,vh

.ϕ 	
 ⊥
i.e. such that ϕ is turned into a consistent formula.

Definition 3. The inconsistency number of Γ is n(Γ ), defined as

n(Γ ) def= min
A∈σ(∧Γ )

| A |

Reminder. Before turning to the examples, it is important to repeat that vi is
identified with vj for most purposes, including consistency issues. For instance,
in Example 2, (� ∧ a2) ∧ (¬a3 ∧ ¬a4) is inconsistent because it is identified with
(� ∧ ai) ∧ (¬ai ∧ ¬ai) which is inconsistent, whatever i.

Example 1. Let Γ1 = {a ∨ a,¬a ∨ ¬a}. Then,
∧

Γ1 = (a1 ∨ a2) ∧ (¬a3 ∨ ¬a4).
{a1} ∈ σ(Γ1) since κ1,a.

∧
Γ1 is [(�∨a2)∧ (¬a3 ∨¬a4)]∨ [(⊥∨a2)∧ (¬a3 ∨¬a4)]

which is consistent. Hence n(Γ1) = 1.

Example 2. Let Γ2 = {a ∧ a,¬a ∧ ¬a}. Hence,
∧

Γ2 = (a1 ∧ a2) ∧ (¬a3 ∧ ¬a4).
It does not matter whether considering a1 instead of a2 and a3 instead of a4.
κ1,a.

∧
Γ2 is [(�∧a2)∧(¬a3∧¬a4)]∨[(⊥∧a2)∧(¬a3∧¬a4)] which is inconsistent.

κ3,a.κ1,a.
∧

Γ2 is [(� ∧ a2) ∧ (¬� ∧ ¬a4)] ∨ [(⊥ ∧ a2) ∧ (¬� ∧ ¬a4)] ∨ [(� ∧ a2) ∧
(¬⊥ ∧ ¬a4)] ∨ [(⊥ ∧ a2) ∧ (¬⊥ ∧ ¬a4)] i.e. [⊥ ∨ ⊥] ∨ [⊥ ∨ ⊥] which is inconsistent
(and so is κ4,a.κ1,a.

∧
Γ2). However, κ2,a.κ1,a.

∧
Γ2 is [(� ∧ �) ∧ (¬a3 ∧ ¬a4)] ∨

[(⊥ ∧ �) ∧ (¬a3 ∧ ¬a4)] ∨ [(� ∧ ⊥) ∧ (¬a3 ∧ ¬a4)] ∨ [(⊥ ∧ ⊥) ∧ (¬a3 ∧ ¬a4)] i.e.
[(¬a3 ∧ ¬a4) ∨ ⊥] ∨ [⊥ ∨ ⊥], it is consistent. Hence, n(Γ2) = 2.

Keep in mind that n refers to the minimum amount of forgetting needed to
restore consistency. E.g., each of the knowledge bases Γ below satisfies n(Γ ) = 1.

{a,¬a}
{a ∧ a,¬a}

{a ∨ b, a ∨ ¬b,¬a ∨ b,¬a ∨ ¬b}
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3 How Inconsistent About v?

Besides determining how inconsistent Γ is, it would be interesting to determine
how inconsistent Γ is about some v.

Definition 4. n |v (Γ ) def= min
A∈σ(∧Γ )

| A ∩ {v}ω |

Notation. {v}ω denotes the multiset consisting of countably many copies of v.

Example 3. Let Γ3 = {(a ∧ ¬a) ∨ (b ∧ ¬b)}. Therefore, {b1} ∈ σ(Γ3) because
κ1,b.

∧
Γ3 is [(a1 ∧¬a2)∨ (�∧¬b2)]∨ [(a1 ∧¬a2)∨ (⊥∧¬b2)] which is consistent.

Hence, n |a (Γ3) = 0 due to {b1} ∩ {a}ω being empty. Similarly, n |b (Γ3) = 0.
However, n(Γ3) = 1.

Comment. The reader may be unhappy that n |v (Γ ) = 0 captures both the case
that v is involved in no contradiction in Γ and the case (as in Example 3) that
v is involved in a contradiction together with at least another atom. There are
many ways to change Definition 4, e.g. by considering some liability function l
(with the constraint lv,σ(Γ ) > 1) so as to alternatively define n |v as follows:

n |v (Γ ) =

⎧
⎨

⎩

0 if A ∩ {v}ω = ∅ for all A ∈ σ(∧Γ )
minA∈σ(∧Γ ) | A ∩ {v}ω | if A ∩ {v}ω 	= ∅ for all A ∈ σ(∧Γ )
1/lv,σ(Γ ) otherwise

Anyway, knowledge bases can be compared in the following way: Γ is at least
as v-inconsistent as Γ ′ iff n |v (Γ ) ≥ n |v (Γ ′).

Lemma 2. If n(Γ ) ≥ n(Γ ′) then there exists an atom v such that Γ is at least
as v-inconsistent as Γ ′.

Lemma 3. n(Γ ) ≥ n(Γ ′) if for every v, Γ is at least as v-inconsistent as Γ ′.

It is also possible to compare the involvement of atoms in the conflicts of a
knowledge base. Therefore, if atoms can be mapped to topics, such a measure
n |v would permit to judge whether a topic gives rise to more severe conflicts
than some other topic, or to judge whether the overall inconsistency degree of
the knowledge base amounts to the inconsistency degree ascribed to such and
such topic. (Please keep in mind that “severe” only refers to intensity, there can
be a severe conflict about a topic of little importance.)

4 Postulates for Inconsistency Measures

We now turn to examining what postulates are satisfied by our inconsistency
measure n. In this respect, a useful lemma is the following one.

Lemma 4. For all j ≥ h, if κi1,v1 . · · · .κih,vh
.ϕ 	
 ⊥ then κi1,v1 . · · · .κij ,vj

.ϕ 	
 ⊥.
If ϕ 	
 ⊥ then for all j ≥ 0, κi1,v1 . · · · .κij ,vj

.ϕ 	
 ⊥ (hence 2A ⊆ σ(ϕ) for ϕ 	
 ⊥).
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We begin with considering postulates proposed in Hunter and Konieczny (2010),
expressed using I to denote an arbitrary inconsistency measure.

– I(Γ ) = 0 iff Γ 	
 ⊥ (Consistency Null)
– I(Γ ∪ Γ ′) ≥ I(Γ ) (Monotony)
– If ϕ is free3 for Γ then I(Γ ∪ {ϕ}) = I(Γ ) (Free Formula Independence)

It happens that our inconsistency measure n satisfies the postulates above.
However, n fails the following postulate, also due to (Hunter and Konieczny
2010).

– If ϕ 
 ψ and ϕ 	
 ⊥ then I(Γ ∪ {ϕ}) ≥ I(Γ ∪ {ψ}) (Dominance)

Example 4. Let Γ = {¬a ∧ ¬a ∧ ¬a}. Take ϕ = a and ψ = a ∧ a ∧ a. Then,
n(Γ ∪ {ϕ}) = 1 but n(Γ ∪ {ψ}) = 3.

Failure of (Dominance) entails failure wrt the postulate (Besnard 2014) below

– if Γ ′ 	
 ⊥ and Γ ′ ≡ Γ ′′ then I(Γ ∪ Γ ′) = I(Γ ∪ Γ ′′) (Exchange)

Furthermore, our inconsistency measure n satisfies the following postulate,
introduced in Besnard (2014).

– if σΓ = Γ ′ and σ′Γ ′ = Γ for some substitutions σ and σ′ then I(Γ ) = I(Γ ′)
(Variant Equality)

Keeping in mind that Γ denotes a multiset of formulas, it is easy to check
that n satisfies the next postulate also introduced in Besnard (2014).

– I(Γ ∪ {ϕ,ψ}) = I(Γ ∪ {ϕ ∧ ψ}) (Adjunction Invariancy)

Since n satisfies both (Monotony) and (Adjunction Invariancy), it satisfies

– I(Γ ∪ {ϕ ∧ ψ}) ≥ I(Γ ∪ {ϕ}) (Conjunction Dominance)

Similarly, an easy consequence of (Free Formula Independence) is

– I(Γ ∪ {�}) = I(Γ ) (Tautology Independence)

which our inconsistency measure n satisfies as well as the related postulate
(Besnard 2014) below

– if ϕ ≡ � then I(Γ ∪ {ϕ ∧ ψ}) = I(Γ ∪ {ψ}) (�-conjunct Independence)

3 A formula ϕ is free for Γ iff Δ ∪ {ϕ} � ⊥ for no consistent subset Δ of Γ .
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5 Conclusion

The inconsistency measure introduced in this paper shows two main distinc-
tive features. First, it deals with multisets of formulas. Second, it breaks the
dichotomy suggested in Hunter and Konieczny (2010) which splits the universe
of inconsistency measures into two categories: inconsistency measures based on
minimal inconsistent subsets and inconsistency measures based on the alphabet
(i.e., what atoms are involved in conflicts). Indeed, Example 4 is such that the
inconsistency value differs in two cases with isomorphic sets of minimal incon-
sistent subsets and also differs in two cases where the alphabet consists of one
propositional symbol.

Acknowledgements. The author is grateful to the reviewers for both useful com-
ments on this paper and insightful suggestions about this topic.
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(eds.) JELIA 2014. LNCS, vol. 8761, pp. 383–396. Springer, Heidelberg (2014)

Grant, J., Hunter, A.: Distance-based measures of inconsistency. In: van der Gaag, L.C.
(ed.) ECSQARU 2013. LNCS, vol. 7958, pp. 230–241. Springer, Heidelberg (2013)

Hunter, A., Konieczny, S.: On the measure of conflicts: Shapley inconsistency values.
Artif. Intell. 174(14), 1007–1026 (2010)

Hunter, A., Parsons, S., Wooldridge, M.: Measuring inconsistency in multi-agent sys-
tems. Künstliche Intelligenz 28(3), 169–178 (2014)

Jabbour, S., Ma, Y., Raddaoui, B., Sais, L., Salhi, Y.: A MIS partition based framework
for measuring inconsistency. In: Proceedings of the 15th Conference on Principles of
Knowledge Representation and Reasoning (KR 2016), pp. 84–93. AAAI Press (2016)

Jabbour, S., Raddaoui, B., Sais, L.: Inconsistency-based ranking of knowledge bases. In:
Proceedings of the 7th International Conference on Agents and Artificial Intelligence
(ICAART 2015), vol. 2, pp. 414–419. SciTePress (2015)

Lang, J., Marquis, P.: Resolving inconsistencies by variable forgetting. In: Proceedings
of the 8th Conference on Principles of Knowledge Representation and Reasoning
(KR 2002), pp. 239–250. Morgan Kaufmann (2002)

Lang, J., Liberatore, P., Marquis, P.: Propositional independence: formula-variable
independence and forgetting. J. Artif. Intell. Res. 18, 391–443 (2003)

Lin, F.: On strongest necessary and weakest sufficient conditions. Artif. Intell. 128(
1–2), 143–159 (2001)

Lin, F., Reiter, R.: Forget it! In: Proceedings of the AAAI Fall Symposium on Rele-
vance, pp. 154–159 (1994)

Liu, W., Mu, K.: Editors of special issue on theories of inconsistency measures and
their applications. Approx. Reason. (2016, to appear)



Forgetting-Based Inconsistency Measure 337

McAreavey, K., Liu, W., Miller, P.: Computational approaches to finding and measuring
inconsistency in arbitrary knowledge bases. Approx. Reason. 55, 1659–1693 (2014)

Kedian, M.: Responsability for inconsistency. Approx. Reason. 61, 43–60 (2015)
Kedian, M., Liu, W., Jin, Z.: Measuring the blame of a formula for inconsistent prior-

itized knowledge bases. Logic Comput. 22(3), 481–516 (2012)
Su, K., Lv, G., Zhang, Y.: Reasoning about knowledge by variable forgetting. In: Pro-

ceedings of the 9th Conference on Principles of Knowledge Representation and Rea-
soning (KR 2004), pp. 576–586. Morgan Kaufmann (2004)

Thimm, M.: Inconsistency measures for probabilistic logics. Artif. Intell. 197, 1–24
(2013)

Thimm, M.: On the expressivity of inconsistency measures. Artif. Intell. 234, 120–151
(2016)

Thimm, M.: Stream-based inconsistency measurement. Approx. Reason. 68, 68–87
(2016)

Thimm, M., Wallner, J.P.: Some complexity results on inconsistency measurement. In
Proceedings of the 15th Conference on Principles of Knowledge Representation and
Reasoning (KR 2016), pp. 114–124. AAAI Press (2016)

Xiao, G., Ma, Y.: Inconsistency measurement based on variables in minimal unsatisfi-
able subsets. In: Proceedings of the 20th European Conference on Artificial Intelli-
gence (ECAI 2012), pp. 864–869. IOS Press (2012)



A Possibilistic Multivariate Fuzzy c-Means
Clustering Algorithm

Ludmila Himmelspach(B) and Stefan Conrad

Institute of Computer Science, Heinrich-Heine-Universität Düsseldorf,
40225 Düsseldorf, Germany

{himmelspach,conrad}@cs.uni-duesseldorf.de

Abstract. In this paper, we present a new possibilistic multivariate
fuzzy c-means (PMFCM) clustering algorithm. PMFCM is a combination
of multivariate fuzzy c-means (MFCM) and possibilistic fuzzy c-means
(PFCM) that produces membership degrees of data objects to each clus-
ter according to each feature and typicality values of data objects to each
cluster. In this way, PMFCM produces a multivariate partitioning of a
data set detecting clusters with unevenly distributed data over different
features. It also reduces the influence of noise and outliers to computation
of cluster centers.

Keywords: Fuzzy clustering · c-Means models · Possibilistic cluster-
ing · Multivariate memberships

1 Introduction

Clustering is an unsupervised learning technique for identifying groups of similar
data objects within a data set. It is used in many fields, including image process-
ing, bioinformatics, text mining where high dimensional data objects have to be
grouped. Clustering high dimensional data bears several challenges that can be
explained on the example of text clustering where a document is represented by
a vector of tf-idf s of terms in the collection [1]. Due to the documents related to
several topics, there are usually overlapping clusters in the data set. Depending
on the range of topics, only few feature values in data vectors are significantly
greater than zero. This implies that only few dimensions determine clusters. The
information about the belonging of data objects to clusters in each dimension
might be of great use. Finally, documents in the collection that do not belong
to any cluster have to be recognized as noise and outliers. In this paper, we pro-
pose a new objective function based possibilistic multivariate fuzzy clustering
algorithm that aims at satisfying these requirements.

The rest of the paper is organized as follows: in Sect. 2 we give a short
overview over the different fuzzy clustering algorithms that we used as a basis
for our approach. The possibilistic multivariate fuzzy c-means algorithm is pre-
sented in Sect. 3. The evaluation results of our method and the comparison with
the basic approach are presented in Sect. 4. Section 5 closes the paper with a
short summary and the discussion of future research.
c© Springer International Publishing Switzerland 2016
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2 Related Works

The first problem described in introduction can be solved by using the fuzzy
c-means (FCM) [2] clustering algorithm that assigns each data object to each
cluster with a membership degree. The objective function of the fuzzy c-means
algorithm is defined as follows:

Jm(U, V ;X) =
n∑

k=1

c∑

i=1

um
ikd2(vi, xk), (1)

where c is the number of clusters, uik ∈ [0, 1] is the membership degree of data
object xk to cluster i, m > 1 is the fuzzification parameter, d(vi, xk) is the
distance between cluster center vi and data object xk. The objective function of
FCM has to be minimized under constraint (2) to obtain a good partitioning of
the data set.

c∑

i=1

uik = 1 ∀k ∈ {1, ..., n} and
n∑

k=1

uik > 0 ∀i ∈ {1, ..., c}. (2)

FCM is able to model the soft transitions between clusters. The information
about the clustering structure, especially about the overlaps between clusters
can be derived from the partitioning results.

The problem about FCM is that due to constraint (2) it assigns outliers
and noise points to clusters in the same way as data objects within clusters.
On the one hand, the information about whether a data object is a typical
representative of the data structure or whether it is an outlier or noise point
cannot be derived from the membership degrees. On the other hand, the outliers
affect the computation of cluster centers. This problem can be solved by using
the possibilistic fuzzy c-means (PFCM) [3] clustering algorithm that additionally
produces the typicality values of data objects to clusters which express a relative
degree of typicality of a data object to the overall structure of data. The objective
function of PFCM is defined as follows:

Jm,η(U, T, V ;X) =
n∑

k=1

c∑

i=1

(aum
ik + btηik)d2(vi, xk) +

c∑

i=1

γi

n∑

k=1

(1 − tik)η, (3)

where tik ≤ 1 is the typicality value of data object xk to cluster i, m > 0 and
η > 0 are user defined constants. The first term in the objective function of
PFCM has the same meaning as in FCM, where constants a > 0 and b > 0
control the relative influence of fuzzy memberships and typicality values. The
second term ensures that the typicality values are determined as large as possible.
The second summand is weighted by the parameter γi > 0 that the authors in
[4] recommend to choose by computing:

γi = K

n∑

k=1

um
ikd2(vi, xk)

n∑

k=1

um
ik

1 ≤ i ≤ c, (4)
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where the {uik} are the terminal membership degrees computed by FCM and
K > 0 (usually K = 1). The objective function of PFCM has to be minimized
under constraint (2) and

∑n
k=1 tik > 0, ∀i ∈ {1, ..., c}.

The possibilistic fuzzy c-means algorithm solves the first and the third prob-
lems described above but it assumes that all features are equally important
for all clusters. Since few features usually determine particular clusters in high
dimensional data sets, using either the attribute weighting fuzzy clustering algo-
rithm [5] or the multivariate fuzzy c-means (MFCM) [6] method might be a
better choice in such domains. We abstain from using the subspace clustering
algorithms because they determine clusters in subspaces disregarding values of
data objects in other features. In our case we aim for finding clusters where data
objects have similar values in all features. Since MFCM produces the member-
ship degrees of data objects to each cluster according to each feature which is
beneficial for subsequent use of clustering results, we use it as a basis for our
approach. The objective function of MFCM is defined as follows:

Jm(U, V ;X) =
n∑

k=1

c∑

i=1

p∑

j=1

um
ikj(vij − xkj)2, (5)

where p is the number of features and uikj ∈ [0, 1] is the membership degree of
data object xk to cluster i on feature j. Similarly to FCM, the objective function
of MFCM has to be minimized under constraint (6).

c∑

i=1

p∑

j=1

uikj = 1 ∀k ∈ {1, ..., n} and
p∑

j=1

n∑

k=1

uikj > 0 ∀i ∈ {1, ..., c}. (6)

In order to obtain the membership degrees of data objects to clusters, the authors
propose to sum up the multivariate membership degrees over the dimensions [6].
Like FCM, its multivariate version does not recognize outliers and noise points as
such assigning them to clusters in the same way as data objects within clusters.

3 A Possibilistic Multivariate Fuzzy c-Means Clustering
Algorithm

The possibilistic FCM algorithm simultaneously produces membership degrees
and the typicality values of data objects to clusters which makes it possible to
derive the information about the overlaps between clusters and the noise points
from the partitioning results. Unfortunately, it does not provide the informa-
tion about the dimensions in which clusters overlap. This information might be
valuable for subsequent use. Therefore, in our new approach called possibilis-
tic multivariate fuzzy c-means (PMFCM) we combine the ideas of PFCM and
MFCM algorithms. We define the objective function of PMFCM as follows:

Jm,η(U, T, V ;X) =
n∑

k=1

c∑

i=1

p∑

j=1

(aum
ikj + btηik)(vij − xkj)2 + p

c∑

i=1

γi

n∑

k=1

(1 − tik)η.

(7)
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In (7) the typicality values of data objects to clusters are included in the weight-
ing of the dimension-wise distances between data objects and cluster centers. We
do not compute the typicality values of data objects to clusters at each feature
because we consider the noise points as data objects that have a large overall
distance (here, the Euclidean distance) to cluster centers. Unlike MFCM, we do
not constrain the sum over all clusters and variables to a particular data object
to be 1. In order to keep the equal weighting of distances by the membership
degrees and the typicality values, we only constrain the sum over all clusters to
a particular data object in each feature to be 1. Thus, the objective function of
PMFCM has to be minimized under constraint (8).

c∑

i=1

uikj = 1 ∀k, j ∧
n∑

k=1

uikj > 0 ∀i, j ∧
n∑

k=1

tik > 0 ∀i. (8)

In PMFCM, the membership degrees, the typicality values, and the cluster cen-
ters are updated according to formulae (9), (10), and (11).

uikj =
1

c∑

l=1

(
(xkj−vij)2

(xkj−vlj)2

) 1
m−1

1 ≤ i ≤ c, 1 ≤ k ≤ n, 1 ≤ j ≤ p. (9)

tik =
1

1 +
(

b
∑p

j=1(xkj−vij)2

γip

) 1
η−1

1 ≤ i ≤ c, 1 ≤ k ≤ n. (10)

vij =

n∑

k=1

(aum
ikj + btηik)xkj

n∑

k=1

(aum
ikj + btηik)

1 ≤ i ≤ c, 1 ≤ j ≤ p. (11)

The membership degrees of data objects to clusters can be computed in our
model as the average of the multivariate membership degrees over all variables,
uik = 1

p

∑p
j=1 uikj .

The working principle of PMFCM is basically the same as of PFCM. So,
due to the lack of space we omit the details and refer to [3]. As in [4] we also
recommend using terminal outputs of FCM for the initialization of our algorithm.

4 Data Experiments

The proposed algorithm PMFCM is tested on artificial data in order to exam-
ine its ability to correctly determine the centers of clusters that have different
extends in different dimensions in presence of noise and outliers. Unfortunately,
we could not test its ability to distinguish between the data objects belonging to
clusters and the noise points because the transitions between the data objects
on the border of clusters and noise points are rather soft. Therefore, we could
not find any meaningful threshold for typicality values to differentiate between
cluster objects and noise.
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Figure 1(a) shows the data set 4-clusters with 1245 data objects unequally
distributed on one spherical cluster and three clusters that have a low variance
in one dimension. The sum of the distances between the means of clusters in this
data set is 31.5785. We generated the data set 4-clusters-noise by adding 150
noise points to the data set 4-clusters. The data set 4-clusters-noise is depicted
in Figure 1(b).
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Fig. 1. Test data: (a) 4-clusters, (b) 4-clusters-noise.

Table 1 shows the comparison results between the algorithms MFCM and
PMFCM for a = 0.5 and different values of b on the data set with four clusters
without noise. We computed the Frobenius distance dorig between the original
means of clusters and the cluster centers produced by the clustering algorithms.
We also computed the sum of the distances between the cluster centers dmeans

produced by the clustering algorithms. For a small values of b our approach pro-
duced less accurate cluster prototypes than MFCM. It determined cluster centers
too close to each other, while MFCM produced cluster centers that were farther
from each other than the original means of clusters. However, our approach
produced much more accurate cluster centers for b = 12 than MFCM. With the
increasing weight of the typicality values, our algorithm produced cluster centers
that were slightly farther from each other than the original means of clusters.
Unfortunately, we did not manage to find the golden mean where the sum of

Table 1. Comparison between MFCM and PMFCM on data set 4-clusters.

MFCM: m = 2 PMFCM: m = 2, PMFCM: m = 2, PMFCM: m = 2,

η = 2 a = 0.5, b = 4 η = 2 a = 0.5, b = 12 η = 2 a = 0.5, b = 20

dorig 2.49 2.92 1.12 1.17

dmeans 33.73 27.87 31.52 31.65
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the distances between the cluster centers produced by PMFCM corresponded to
the sum of the distances between the original means of clusters in order to test
whether or not our algorithm could produce the cluster centers which met the
original means of clusters.

Table 2 shows the comparison results between MFCM and our algorithm on
the data set 4-clusters-noise. Unsurprisingly, the MFCM algorithm produced
less accurate cluster centers than on the data set 4-clusters. This is due to
the fact that MFCM does not deemphasize the noise points while clustering.
Consequently, it adjusted the cluster centers according to the distribution of
all data objects in the data set. In contrast, PMFCM did not sustain a loss
of performance in comparison to the data set without noise points. The fact
that our approach produced more accurate cluster centers than on the data
set 4-clusters is due to the presence of noise points located close to the cluster
borders. Apparently, such noise points advantageously completed the clusters so
that PMFCM was able to produce more accurate cluster centers. As on the data
set 4-clusters, PMFCM produced cluster centers farther from each other with
the increasing b and achieved the best results for a = 0.5 and b = 12.

Table 2. Comparison between MFCM and PMFCM on data set 4-clusters-noise.

MFCM: m = 2 PMFCM: m = 2, PMFCM: m = 2, PMFCM: m = 2,

η = 2 a = 0.5, b = 4 η = 2 a = 0.5, b = 12 η = 2 a = 0.5, b = 20

dorig 8.82 2.43 0.93 0.94

dmeans 41.14 27.38 31.27 31.89

5 Conclusion and Future Works

In this paper, we proposed a possibilistic multivariate fuzzy c-means (PMFCM)
algorithm that produces a multivariate partitioning of a data set detecting clus-
ters with unevenly distributed data over different features in presence of noise
points and outliers. In experiments, we showed that our algorithm is able to pro-
duce more accurate cluster centers than the MFCM algorithm on data sets with
and without noise. Like the PFCM algorithm, the performance of the proposed
method depends on the choice of the parameters that control the influence of the
membership degrees and the typicality values. Therefore, in the future we plan
to adapt MFCM to other possibilistic clustering models to test if the role of the
right choice of user defined parameters can be minimized. Furthermore, we aim
to apply our method for the text clustering to find out whether the subsequent
text retrieval can be improved by the multivariate membership degrees. In this
context it would be very helpful to find a heuristic for a distinction between the
data objects belonging to clusters and noise points.
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Nicolás Maŕın, Gustavo Rivas-Gervilla, and Daniel Sánchez(B)

Department of Computer Science and A.I.,
University of Granada, 18071 Granada, Spain

{nicm,daniel}@decsai.ugr.es, g.r.gervilla@gmail.com

Abstract. In this paper we propose a measure of the referential suc-
cess of a referring expression, defined by a collection of fuzzy properties,
with respect to a certain object. The measure yields the degree to which
the object is univocally identified by the referring expression among a
collection of objects in a certain context. We consider the alpha-cuts of
the fuzzy subset of objects that satisfy the referring expression as crisp
versions of the problem, and we obtain the final measure by measuring
the subset of levels in [0,1] where the referring expression has referential
success in the crisp sense.

Keywords: Referring expression generation · Referential success ·
Linguistic descriptions of data · Fuzzy properties

1 Introduction

Data-to-text systems, originated in the natural language generation area [1], aim
at generating linguistic descriptions of data (GLiDD), that is, generating texts
expressing the relevant information in a dataset for specific purposes. This prob-
lem has been also dealt with by researchers in the fuzzy sets community, mostly
under the name of linguistic summarization, since fuzzy sets are specially well
suited for filling the semantic gap between data and natural language. However,
in linguistic summarization, a query is usually employed on the data, provid-
ing as result a single (usually quantified) statement, whilst linguistic description
of data does not consider a particular query, and the description is comprised
of a collection of statements obtained after a search procedure, among other
differences [2].

One of the most relevant tasks in GLiDD is that of referring expression
generation (REG) [3,4]. Given a dataset containing objects and their properties,
a referring expression is a collection of properties that are put together with the
communicative purpose of uniquely identifying a certain object in the dataset.
When a referring expression re univocally identifies an object o, we say that re
has referential success regarding o.

When objects satisfy properties to a certain degree, for instance when prop-
erties are fuzzy, the referential success is also a matter of degree. This problem
c© Springer International Publishing Switzerland 2016
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is presented in [5] and it is studied with more depth in relation to measures
of specificity of fuzzy sets in [6]. Some related work is much earlier, see [7] for
the generation of discriminating descriptions of objects, and [8] for the related
problem of querying by examples and counter-examples, the latter with the dif-
ference that one does not necessarily point to a unique object. Given a referring
expression re comprised of a collection of fuzzy properties, and a certain object
o to be referred to, the measures proposed in these papers yield a degree of
referential success of re with respect to o as a value in [0, 1].

In this paper we show how a measure of referential success of a referring
expression re with fuzzy properties can be defined on the basis of α-cuts of the
fuzzy subset of objects that satisfy re. Specifically, it is defined as the measure
of the subset of levels in [0,1] where, in the corresponding α-cuts, the referring
expression have referential success in the usual crisp sense.

2 Referential Success and Fuzziness

Let P be a set of properties, O a set of objects, and re = {p1, ..., pn} ⊆ P a
referring expression. As we have previously mentioned, for a referring expression
to have referential success, it must not only describe the object that is intended
to be identified, but it should not describe any other.

This concept, in conventional approaches to the referring expression genera-
tion problem, becomes a matter of compliance with the following restriction:

⋂

pi∈re

[[pi]] = {o} (1)

where, for each property p ∈ P , [[p]] ⊆ O denotes the set of objects that
accomplish property p, and o is the object the referring expression intends to
point to.

However, in many cases, the management of referring expressions in relation
to a given object of the context under study does not perfectly fit into a bi-
valuated framework. In many domains of application, some of these properties
have a gradual compliance with the objects under study, and this fact has an
impact on how to handle referring expressions. For example, in the case of images,
many of the concepts that can be used to describe an object within a scene have
the mentioned fuzziness. Consider, for example, properties like color, shape,
or position. Many of these concepts are gradual in nature: when is an object
considered to be red?, when do we say that it is triangular?, or, when is it
located on the top left of the image?

The fuzzy set theory allows us to handle the problem of representation and
manipulation of such properties, that can be employed in referring expressions.
In this sense, if we consider that p(o) is the degree of compliance of object o with
property p, then the accuracy of a referring expression re = {p1, ..., pn} can be
calculated as follows [5]:
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accre(o) =
n⊗

i=1

pi(o) (2)

where ⊗ is a t-norm. In this paper we shall consider the minimum as t-norm,
and the results we show in the following are valid for this particular case.

This expression induces the appearance of a fuzzy set of objects associated
with each reference expression re, namely, the set of referred objects defined by
the following membership function:

Ore(o) = accre(o),∀o ∈ O (3)

where O is the set of all objects in the context under study.
This set is fuzzy and can be simply understood as the information that the

expression brings about which object in the context is the object referred to
by the expression. In this fuzzy environment, the calculation of the referential
success of a given referring expression has to be adapted because it also becomes
a gradual concept. This problem is presented in [5] and it is studied with more
depth in relation to measures of specificity of fuzzy sets in [6].

In this latter work, three properties that a referential success measure must
satisfy are proposed:

Property 1. rs(re, o) = 1 iff Ore = {o}.

Property 2. If Ore(o) = 0 then rs(re, o) = 0.

Property 3. If Ore(oi) ≤ Ore′(oi) ∀oi ∈ O\{o} and Ore(o) ≥ Ore′(o) then
rs(re, o) ≥ rs(re′, o).

This set of properties is rather general and opens the possibility of defining
a broad range of measures. As an example, Eq. (4) defines a family of referential
success measures that fulfills these properties [5] (additional families can be
found in [6]):

rs(re, oi) = Ore(oi) ⊗
⎛

⎝
⊗

oj∈O∧j �=i

¬(Ore(oj))

⎞

⎠ (4)

where ⊗ is a t-norm and ¬ is a fuzzy negation.
These measures can be the basis, not only for validating referring expressions,

but also for the development of heuristics which aid to guide the operation of
algorithms for the automatic generation of such expressions.

3 Analyzing Referential Success on α-cuts

The REG problem can be addressed by means of optimization algorithms that
search the space of referring expressions induced by a collection of properties,
looking for the referring expression which optimizes a measure of referential suc-
cess. In this sense, measures as those discussed in the previous section are a good
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tool for building systems for generating referring expressions. Such algorithms
are well known in the field of soft computing.

In the field of conventional natural language generation systems, there are
well known algorithms and techniques for generating such expressions [3,4]. One
way to reuse all the know-how involving these classic approaches to the REG
problem with fuzzy properties is to establish mechanisms that permit to adapt
these yet developed algorithms and techniques in the fuzzy case.

The simplest way to do that is to fix a compliance threshold that discrimi-
nates which properties hold for every object. Given a fuzzy set F and a threshold
α ∈ [0, 1], the set of objects in F with degree at least α is a crisp set called the
α-cut of F . This is a conventional way to filter the graded results in a wide range
of applications of fuzzy logic as in the case of fuzzy rules systems or in the area
of flexible querying, to cite only a couple of well known examples. As we will
see, depending on the considered threshold, different referring expressions arise;
the analysis of this fact along interval [0,1] lead us to an alternative measure of
referential success.

3.1 Some Definitions

Once a threshold α is considered, the set of objects that accomplish each property
above this threshold is crisp.

Definition 1. Let re = {p1, ..., pn} be a referring expression with pi fuzzy prop-
erties and let α be a value in [0,1]. For each property pi, the set of objects that
accomplish the property with at least level α, denoted [[pi]]α, is the α-cut of O{pi}.

According to this definition, we can adapt the crisp definition of referential
success for a given referring expression and threshold.

Definition 2. Let re = {p1, ..., pn} be a referring expression conformed by fuzzy
properties, α a value in [0,1], and a given object o in the context under study.
We say that re has referential success at level α and for object o if and only if:

⋂

pi∈re

[[pi]]α = {o} (5)

On the basis of these definitions, we can define the validity set associated to
a referring expression as follows:

Definition 3. Let re = {p1, ..., pn} be a referring expression conformed by fuzzy
properties and a given object o in the context under study. The validity set of re
for object o is the set of α-values where the referring expression has referential
success, that is:

V o
re =

{

α |
⋂

pi∈re

[[pi]]α = {o}
}

(6)
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Let us introduce the following proposition:

Proposition 1. If V o
re �= ∅, then V o

re is an interval.

Proof. Since the intersection in Eq. (6) is performed on α-cuts of the same level,
it is immediate that ⋂

pi∈re

[[pi]]α = (Ore)α (7)

where (Ore)α is the α-cut of Ore with the accuracy defining Ore in Eq. (3)
calculated using the minimum as t-norm in Eq. (3). Since α-cuts are nested so
that α > β implies (Ore)α ⊆ (Ore)β , it is not possible to find 1 ≥ α > β > δ ≥ 0
such that (Ore)α = (Ore)δ = {o} and (Ore)β �= {o}. Hence, when it is not
empty,V o

re is an interval.

3.2 The Measure

That is, roughly speaking, each referring expression such that V o
re �= ∅ begins to

have referential success at a certain value α1 ∈ [0, 1] and stops having referential
success at another (lower or equal) α2 ∈ [0, 1], with

α1 = sup(V o
re) (8)

α2 = inf(V o
re) (9)

where sup(A) and inf(A) stand, respectively, for the supremum and the infimum
of the set A.

Proposition 2. Let re be a referring expression with fuzzy properties and Ore

the fuzzy subset of objects satisfying re. Let O = {o1, o2, . . . , om} with m ≥ 2
such that Ore(oi) ≥ Ore(oi+1) ∀1 ≤ i < m. Let o ∈ O and V o

re �= ∅. Then
1. o = o1
2. α1 = Ore(o) > Ore(o2) = α2

Proof. Under the conditions,

– If o �= o1 or Ore(o1) = Ore(o2) then there is no α ∈ [0, 1] such that (Ore)α =
{o}, and hence V o

re = ∅ (contradiction). Hence, o = o1 and Ore(o1) > Ore(o2).
– For α > Ore(o) it is (Ore)α = ∅. For Ore(o) ≥ α > Ore(o2) it is (Ore)α = {o}.

For Ore(o2) > α it is {o, o2} ⊆ (Ore)α and hence (Ore)α �= {o}. Hence, V o
re =

{α ∈ [0, 1] | Ore(o) ≥ α > Ore(o2)} and hence α1 = Ore(o) > Ore(o2) = α2.

Thus, the greater the value of α1, the greater the accuracy of the expression
for object o. The lower the value of α2, the lower the accuracy of the expres-
sion for objects different than o. According to this, we can define the following
measure of referential success for a referring expression re regarding object o:

rs(re, o) =
{

α1(α1 − α2), V o
re �= ∅

0, otherwise (10)

Let us show that this measure satisfies the required properties for a measure
of referential success:
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Proposition 3. Equation (10) satisfy Properties 1, 2 and 3 for measures of ref-
erential success.

Proof. We have three properties:

1. rs(re, o) = 1 iff α1 = 1 and α2 = 0 and V o
re �= ∅ iff (Ore)α = {o} ∀α ∈ (0, 1]

iff Ore = {o}.
2. If Ore(o) = 0 then o �∈ (Ore)α ∀α ∈ (0, 1] and we have two cases:

– If O = {o} then V o
re = {0} and α1 = α2 = 0, hence rs(re, o) = 0.

– If {o} � O then V o
re = ∅, and hence rs(re, o) = 0.

3. Let Ore(oi) ≤ Ore′(oi) ∀oi ∈ O\{o} and Ore(o) ≥ Ore′(o). Let O =
{o1, o2, . . . , om} with m ≥ 2 such that Ore(oi) ≥ Ore(oi+1) ∀1 ≤ i < m
and O = {o′

1, o
′
2, . . . , o

′
m} such that Ore(o′

i) ≥ Ore(o′
i+1) ∀1 ≤ i < m. We

have two cases:
– If V o

re′ = ∅ or V o
re′ = {0} then rs(re′, o) = 0 and rs(re, o) ≥ rs(re′, o).

– If {0} �= V o
re′ �= ∅ then by Proposition 2 we have o = o′

1 and α′
1 =

Ore′(o) > Ore′(o′
2) = α′

2. By the conditions of the third property it is
immediate that o = o1 = o′

1 and

Ore(o) = α1 ≥ α′
1 = Ore′(o) > Ore′(o′

2) = α′
2 ≥ α2 = Ore(o2)

and hence

rs(re, o) = α1(α1 − α2) > α′
1(α

′
1 − α′

2) = rs(re′, o)

4 Conclusions

We have proposed a measure of referential success for referring expressions with
fuzzy properties. The motivation behind this measure is the use of work by
α-cuts in adapting to the fuzzy case existing crisp REG algorithms [3,4]. The
application of the measure for such purpose will be an object of a future paper.
The proposed measure can be considered as part of the quality assessment model
for linguistic description of data [2,9,10]. Also future work will be the application
of the resulting algorithm in the linguistic description of data, particularly on
digital images [11] and time series data [2,12–16]. Finally, we will consider results
using other t-norms in the definition of accuracy, that will require redefining the
set V o

re of Eq. (6).
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15. Castillo-Ortega, R., Maŕın, N., Sánchez, D., Tettamanzi, A.: A multi-objective
memetic algorithm for the linguistic summarization of time series. In: 13th Annual
Genetic and Evolutionary Computation Conference, GECCO, pp. 171–172 (2011)

16. Kacprzyk, J., Zadrozny, S.: Computing with words is an implementable paradigm:
fuzzy queries, linguistic data summaries, and natural-language generation. IEEE
Trans. Fuzzy Syst. 18(3), 461–472 (2010)

http://dx.doi.org/10.1007/978-3-319-40596-4_17


Graded Justification of Arguments via Internal
and External Endogenous Features

Francesco Santini(B)

Dipartimento di Matematica e Informatica, University of Perugia, Perugia, Italy
francesco.santini@dmi.unipg.it

Abstract. We propose a framework to compute a graded justification
of arguments and a ranking of them. The framework is based on two
different features that can be directly extracted from an Argumentation
Framework (endogenously). Hence, the suggested approach does not con-
sider any side-information on arguments or attacks, e.g., in the form of
preferences. The two features are derived from (i) allowing a number of
attacks inside an extension, and (ii) computing how well such an exten-
sion can defend its arguments (the difference between the number of
attacks and counter-attacks). The ranking of arguments is provided by
computing their justification status w.r.t the semantics redefined through
i and ii.

1 Introduction and Related Work

Argumentation is based on the exchange and valuation of interacting arguments,
followed by the selection of the most acceptable of them (for example, in order
to take a decision). The original notion of defence is very simple: if argument a
attacks argument b, and c attacks a, then c defends b. Defining the properties of
an argumentation semantics [9] amounts to specifying the criteria for deriving
a set of subsets of arguments (i.e., extensions) from an Abstract Argumentation
Framework (AAF ), which is defined by a set of arguments and an attack rela-
tionship, i.e., 〈Args, R〉. On the basis of such extensions, a justification status
can be assigned to each argument; in particular, an argument is considered as
justified, w.r.t. a given semantics, if it belongs to all its extensions [14].

In the following, for “graduality” we refer to the concept expressed in [8]:
a partitioning of the set of arguments into more than the two usual subsets of
“selected” and “non-selected” arguments (as in classical semantics [9]), in order
to represent different levels of increasing preference. To be more precise, we refer
to approach described the seminal work of Pollock [14], where different degrees of
justification are computed in order to define a strength level for each argument.

To key-idea behind this paper is to extract information from an AAF, taking
inspiration from [12]. Such information, both in [12] and here, is used to differ-
entiate the same classical semantics [9] (e.g., admissible) according to different
strength levels, thus obtaining graded semantics. From graded semantics we then
derive a notion of graded justification for arguments, leading to a more fine-
grained notion than what provided by non-graded approaches, as also advanced
c© Springer International Publishing Switzerland 2016
S. Schockaert and P. Senellart (Eds.): SUM 2016, LNAI 9858, pp. 352–359, 2016.
DOI: 10.1007/978-3-319-45856-4 26
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in [16]. Reaching such enrichment in the definition of argument justification is
the ultimate aim of this paper.

As in [12], we consider a feature that concerns a strength level related to
defence, that is a score that relates the arguments inside and outside an exten-
sion. In addition, we extract one more feature that concerns only the arguments
inside an extension. As in [5] we suppose to being capable to allow some attacks
in an extension (differently from [5], here attacks are not weighted). The basic
idea is that an argument that is justified when allowing a lower amount of incon-
sistency is stronger than an argument justified when tolerating a higher number
of internal attacks. Even this feature can be directly extracted from a plain AAF,
and it directly derives from the structure of a given extension.

The paper is structured as follows: after summarising the preliminary infor-
mation on Abstract Argumentation systems (Sect. 2), we introduce the suggested
approach (Sect. 3) and an example to show how it works in practice. A final
section wraps up the paper with related work from the literature, conclusions,
and future work (Sect. 4).

2 Background

In this section we briefly summarise the background information related to clas-
sical Abstract Argumentation Frameworks (AAFs) [9].

Definition 1 (AAF). An Abstract Argumentation Framework (AAF) is a pair
〈Args, R〉 of a set A of arguments and a binary relation R ⊆ Args ×A, called the
attack relation. ∀a, b ∈ Args, aR b (or, a � b) means that a attacks b. An AAF
may be represented by a directed graph whose nodes are arguments and edges
represent the attack relation. A set of arguments E ⊆ Args attacks an argument
a, i.e., E � a, if a is attacked by an argument of E , i.e., ∃b ∈ E .b � a.

Definition 2 (Defence). Given F = 〈Args, R〉, an argument a ∈ Args is
defended (in F ) by a set E ⊆ Args if for each b ∈ Args, such that b � a,
then E � b holds.

The “acceptability” of an argument can be defined under different seman-
tics σ which characterise a collective “acceptability” for arguments. In Def-
inition 3 we only report the original semantics given by Dung [9]: σ =
{cf , adm, com, prf , stb, gde}, which stand for conflict-free, admissible, complete,
preferred, stable, and grounded semantics.

Definition 3 (Semantics [9]). Let F = 〈Args, R〉 be an AAF. A set E ⊆ Args

is conflict-free, denoted E ∈ cf (F ), iff there is no a, b ∈ E , such that a � b ∈ R.
For E ∈ cf (F ), it holds that (i) E ∈ adm(F ), if each a ∈ E is defended by E ;
(ii) E ∈ com(F ), if E ∈ adm(F ) and for each a ∈ A defended by E , a ∈ E holds;
(iii) E ∈ prf (F ), if E ∈ adm(F ) and there is no C ∈ adm(F ) with E ⊂ C ; (iv)
E ∈ stb(F ), if for each a ∈ Args\E , E � a; (v) E = gde(F ) if E ∈ com(F ) and
there is no C ∈ com(F ) with C ⊂ E .
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At a first level, the justification state of an argument can be conceived in
terms of its extension membership: accepted (if it belongs to every extension),
rejected (if it does not belong to any extension), or undecided, if it is in some
extensions and not in others.

Definition 4 (Argument Justification [15]). Given any of the semantics σ
in Definition 3 and a framework F , an argument a is (i) justified iff ∀E ∈
σ(F ), a ∈ E , (ii) a is defensible if ∃E ∈ σ(F ), a ∈ E and a is not justified,
(iii) a is overruled iff 	 ∃E ∈ σ(F ), a ∈ E .

Example 1. Consider F = 〈Args, R〉 in Fig. 1, with Args = {a, b, c, d, e} and
R = {a � b, c � b, c � d, d � c, d � e, e � e}. In F we have
adm(F ) = {∅, {a}, {c}, {d}, {a, c}, {a, d}}, com(F ) = {{a}, {a, c}, {a, d}},
prf (F ) = {{a, d}, {a, c}}, stb(F ) = {{a, d}}, and gde(F ) = {a}. Hence, argu-
ment a is sceptically accepted in com(F ), prf (F ) and stb(F ), while it is only
credulously accepted in adm(F ).

a b c d e

Fig. 1. An example of AAF.

3 Graded Justification

The two principles in [12] are, (i) having fewer attackers is better than having
more, and (ii) having more defenders is better than having fewer. The result
is the definition of a graded defence dm,n(E ), which defines different levels of
defence-strength: if dm,n(E ) holds, E is a set of arguments for which each a ∈ E
does not have at least m attackers that are not counter-attacked by at least n
arguments in E . Hence, if both m ≤ s and t ≤ n, being mn-defended is preferable
over being st-defended. From this defence, the authors accordingly define graded
semantics (e.g., mn-complete), and, w.r.t. these semantics, they define graded
justification of arguments in the same way as in Definition 4.

We propose two different features instead. The basic idea behind the first
one is that, if we tolerate a given amount of conflict inside an extension, then
some arguments may become “more justifiable”: e.g., an overruled argument
may become defensible because some attacks are now tolerated. While in [5] this
amount corresponds to the sum of weights associated with attacks, here it is
just the number of attacks between any two arguments in E . The second feature
concerns a strength level w.r.t the arguments outside an extension E (specular
to the first feature). It is composed by two parts: the fist one counts the number
of outward attacks (w.r.t. E ) from arguments that are not attacked (this is not
considered in [12]), while the second one counts the number of counter-attacks
in E . In Definition 5 we compute such two features (Internal and External):



Graded Justification of Arguments via Endogenous Features 355

Definition 5. Given a AAF = 〈Args, R〉 and a subset of arguments E ⊆ Args,
we define the following two functions:

– I : (Args,E ) → N returns the number of attacks in E :
∑

a,b∈E

(a � b)

– E : (Args,E ) → N returns the number of attacked arguments from all un-
attacked ones in E , plus the number of counter-attacks from E :

−( ∑

a∈E , b,c �∈E , �∃b.b�a

(a � c) +
∑

a,c∈E , b �∈E , ∃b.b�a

(c � b)
)

In Definition 6 we redefine the notion of conflict-free semantics as ᾱ-conflict-
free semantics: a number of attacks up to a maximum of ᾱ can be present in E .
Such inconsistency budget has been already considered in other works, as [5,10],
even if for different purposes (e.g., to find more than one grounded extension
in [10]).

Definition 6 (ᾱ-Conflict-Free Semantics). Given an AAF = 〈Args, R〉, a
subset of arguments E ⊆ Args is ᾱ-conflict-free iff I(Args,E ) ≤ ᾱ.

Now we define γ̄-defence, which extends Dung’s defence by counting if the
total number of counter-attacks is greater than the total number of attacks:

Definition 7 (γ̄-Defence). Given an AAF = 〈Args, R〉 and a set of arguments
E ⊆ Args, then γ̄-defends b ∈ E iff E(Args,E ) ≤ γ̄.

The notion of γ̄-defence brings to the definition of the first semantics in Def-
inition 3 that takes advantage of the notion of defence, that is the ᾱγ̄-admissible
semantics:

Definition 8 (ᾱγ̄-Admissible Semantics). Given an AAF = 〈Args, R〉, an
ᾱ-conflict-free set E ⊆ Args is ᾱγ̄-admissible iff it is classically admissible
according to [9] (see Definition 3) and D(Args,E ) ≤ γ̄.

As an example, w.r.t Fig. 1, {d, e} is 2−1-admissible, while {d} is 0−2-
admissible. For the sake of presentation, in this work we do not extend the
other semantics in Definition 3.

Both ᾱ and γ̄ represent a degree of “goodness” for each ᾱγ̄-admissible seman-
tics: if ᾱ and/or γ̄ are increased, than strength-level of the corresponding seman-
tics decreases:

Proposition 1. Given ᾱ1 ≤ ᾱ2 and γ̄1 ≤ γ̄2, if E is ᾱγ̄2
2 -admissible then it is

also ᾱγ̄1
1 -admissible.

In the following definition we rephrase the three-level classification in Defin-
ition 4 by considering ᾱγ̄-admissible semantics.

Definition 9 (ᾱγ̄-Justification). Given F = 〈Args, R〉, and Eadmᾱγ̄ (F ) the
set of all the ᾱγ̄-admissible extensions. An argument a ∈ Args is

– ᾱγ̄-justified if and only if ∀E ∈ Eadmᾱγ̄ (F ), a ∈ E ;
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– ᾱγ̄-defensible if and only if a is not ᾱγ̄-justified but ∃E ∈ Eadmᾱγ̄ (F ), a ∈ E ;
– ᾱγ̄-overruled if and only if ∀E ∈ Eadmᾱγ̄ (F ), a 	∈ E .

Using Proposition 1, we show what happens to Eadmᾱγ̄ (F ) when ᾱ and γ̄
change:

Proposition 2. Given F = 〈Args, R〉, ᾱ1 < ᾱ2 and γ̄1 < γ̄2, then Ecf
ᾱ1

γ̄1
(F ) ⊆

Ecf
ᾱ2

γ̄2
(F ) and Eadm

ᾱ1
γ̄1

(F ) ⊆ Eadm
ᾱ2

γ̄2
(F ).

We have now all the ingredients to let justification become graded. For
instance, if argument a is justified in Eadm

ᾱ1
γ̄1

(F ), while argument b is only
justified in Eadm

ᾱ2
γ̄2

(F ) but not justified in Eadm
ᾱ1

γ̄1
(F ), then a is preferred

w.r.t. b.
From Proposition 2 we relate how the justification of a changes by increasing

ᾱ and γ̄:

Proposition 3. For ᾱ1 < ᾱ2, γ̄1 ≤ γ̄2, a ∈ Args , the three justification sta-
tuses in Definition 4 (justified/defensible/overruled), and considering the ᾱγ̄-
admissible semantics, we have:

– If a is ᾱ1
γ̄1-defensible then a cannot be ᾱ2

γ̄2-justified.
– If a is ᾱ1

γ̄1-overruled then a cannot be ᾱ2
γ̄2-justified.

– If a is ᾱ1
γ̄1-defensible or ᾱ1

γ̄1-justified, then it cannot be ᾱ2
γ̄2-overruled.

While only justified (resp. defeasible) arguments can be considered as
“stronger” than defensible ones (resp. overruled), we can exploit α and γ to
have a more refined ranking. We define a partial order among arguments as
stated by the rules in Definition 10.

Definition 10 (Ranking of Arguments). Given ᾱ1 < ᾱ2, γ̄1 < γ̄2, a, b ∈
Args , and a given the ᾱγ̄-admissible semantics, then all arguments are incompa-
rable except:

– if a is ᾱ1
γ̄1-justified and b is ᾱ1

γ̄1-defensible, then a is strictly stronger than b
(i.e., a  b);

– if a is ᾱ1
γ̄1-defensible and b is ᾱ1

γ̄1-overruled, then a is strictly stronger than
b (i.e., a  b);

– if a, b are ᾱ1
γ̄1-justified, but only a is ᾱ2

γ̄2-justified, then a is strictly stronger
than b (i.e., a  b);

– if a, b are ᾱ2
γ̄2-defensible, but only a is ᾱ1

γ̄1-defensible while b is ᾱ1
γ̄1-

overruled, then a is strictly stronger than b (i.e., a  b).

Example 2. To show how the proposed ranking can be extracted, we consider
the AAF in Fig. 2 and the ᾱγ̄-admissible semantics. In the following, we high-
light in bold the first time an argument appears in the set of extensions, i.e.,
the first time it is at least defensible. By not allowing any internal attack and
not considering the second feature (i.e., 0−∞-admissible semantics) we obtain
{∅, {e}, {d}, {d, e}}. By allowing one attack instead (i.e., 1−∞-admissible) we
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obtain: {∅, {e}, {d}, {c, d}, {b, d}, {d, e}, {c, d, e}, {b, d, e}}. Finally, by admitting
two attacks (i.e., 2−∞-admissible) we let also argument a appear: {∅, {e}, {d},
{c, d}, {d, e}, {c, d, e}, {b, d}, {b, d, e}, {b, c, d}, {b, c, d, e}, {a, d, e}}.

According to the ranking defined in Sect. 3, the result is that d, e  b, c  a.
From this example, we define a more refined ranking of arguments w.r.t. just
computing Dung’s admissible extensions, which are {∅, {e}, {d}, {d, e}}. From
this set we can only say that arguments e and d are defensible, but no information
is given about b and a. If we compute the stable semantics (the strictest one [9]),
the only result {d, e} adds no info.

However, by using the second feature we can directly compare also d and e:
E(Args, {e}) = −1, E({d} = −3), and E(Args, {d, e}) = −4. According to the
ranking in Definition 1 (item 3), d  e because both arguments are 0−4-justified,
but only d is 0−3-justified , while e is only 0−1-justified. Note that comparing
d and e is not possible in [12], since dm,n(E ) does not consider un-attacked
arguments. It may be reasonable to prefer a more aggressive argument, since it
rules out more arguments, following the principle behind the preferred/stable
semantics (see also Sect. 4 for possible refinements in this sense).

Arguments b and c are incomparable, by looking at the current ranking d 
e  b, c  a. Therefore we exploit E: {b, d} is 1−4-defensible, while {c, d} is only
1−3-defensible: hence b  c, according to Definition 10. b is preferred w.r.t. c
because the conflict with d (present in both cases) is tolerated in {b, d} with the
purpose to better defend b from a, with two counter-attacks. Hence, the final
ranking is d  e  b  c  a.

The procedure followed in Example 2 can be generalised to an algorithm,
as proposed in Fig. 3, in order to avoid enumerating all the extensions for any
couple 〈ᾱ, γ̄〉.

ab

cd
e

Fig. 2. The AAF used in Example 2. Fig. 3. How to find graded ranking.
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4 Related Work and Conclusion

We have introduced a framework where to rank arguments according to graded
justification, with the final aim to extend [14]. We use the principles that, (i) the
more an extension breaks Dung’s conflict-freeness, the more it is weaker, and (ii)
the more it counter-attacks outside arguments and defends its arguments, the
more it is stronger. We relax conflict-freeness in order to get more information
from the AAF structure, and to strictly rank more arguments than in [14].

Some previous work aimed at defining different levels of acceptability for
arguments [1–3,8,11,16]. Such levels can be obtained by attaching numerical
scores between 0 and 1 to each argument, or by ranking arguments over an
ordinal scale. One distinct but still related work is [13]: there the objective is not
to question the classical binary framework for inference, where an argument is
inferred or not, but to define inference relations allowing to infer more arguments
than sceptical inference.

However, differently from [3,8,16] for instance, we grade the justification sta-
tus of arguments through a generalisation of the body of notions used in Dung’s
theory, such as defence/acceptability and extensions. The proposed approach is
similar to [12], but here we can also rank not-attacked arguments. The idea to
apply relaxation [5] to compute graded justification is novel; moreover, we pro-
pose an algorithm to avoid the computation of all the extensions for any couple
〈ᾱ, γ̄〉.

For a recent comparison of ranking-based semantics for Abstract Argumen-
tation, the interested reader can refer to [7].

All the exploited features can be directly extracted from the AAF structure
itself (endogenously). In the future more features can be elicited and composed
with the ones used in this work: for instance, the defence in [12] could represent
a further criterion. Other features may come from Graph Theory: for instance,
the cluster coefficient of E can be used together with ᾱ, in order to weigh the
distribution of internal attacks of an extension, besides its number as in this
paper.

The presented framework can be extended to Weighted AAFs [4,10] by con-
sidering the weights associated with attacks instead of the number of attacks, or
to coalition-based partitioning of arguments [6].
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